Lecture Notes for CS 2110 Introduction to Theory of Computation

Ne:-:t| l_Jp| Previous Caﬂtent5| Index

Next: Forward

Lecture Notes for CS 2110
Introduction to Theory of Computation

Robert Daley
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

. Forward

. Contents
. 1. Introduction

. 1.1 Preliminaries

1.2 Representation of Objects
. 1.3 Codings for the Natural Numbers
. 1.4 Inductive Definition and Proofs

. 2. Models of Computation

. 2.1 Memoryless Computing Devices
2.2 Digital Circuits

. 2.3 Propositional Logic

. 2.4 Finite Memory Devices
2.5 Reqular Languages

. 3. Loop Programs

3.1 Semantics of LOOP Programs

. 3.2 Other Aspects
. 3.3 Complexity of LOOP Programs

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w.html (1 of 3) [12/23/2006 12:00:41 PM]

Lecture Notes for CS 2110 Introduction to Theory of Computation

. 4. Primitive Recursive Functions

. 4.1 Primitive Recursive Expressibility

. 4.2 Equivalence between models

. 4.3 Primitive Recursive Expressibility (Revisited)
. 4.4 General Recursion

. 4.5 String Operations

. 4.6 Coding of Tuples

. 5. Diagonalization Arguments
. 6. Partial Recursive Functions
. 7. Random Access Machines

. 7.1 Parsing RAM Programs

. 7.2 Simulation of RAM Programs
. 7.3 Index Theorem

. 7.4 Other Aspects

. 7.5 Complexity of RAM Programs

8. Acceptable Programming Systems

. 8.1 General Computational Complexity
. 8.2 Algorithmically Unsolvable Problems

. 9. Recursively Enumerable Sets
. 10. Recursion Theorem

. 10.1 Applications of the Recursion Theorem
o 10.1.1 Machine Learning
o 10.1.2 Speed-Up Theorem

. 11. Non-Deterministic Computations

. 11.1 Complexity of Non-Deterministic Programs
. 11.2 NP-Completeness

. 11.3 Polynomial Time Reducibility

. 11.4 Finite Automata (Review)

. 11.5 PSPACE Completeness

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w.html (2 of 3) [12/23/2006 12:00:41 PM]

Lecture Notes for CS 2110 Introduction to Theory of Computation

. 12. Formal Languages

. 12.1 Grammars
. 12.2 Chomsky Classification of Lanquages

. 12.3 Context Sensitive Languages
. 12.4 Linear Bounded Automata

. 12.5 Context Free Languages

. 12.6 Push Down Automata

. 12.7 Reqular Languages

. Bibliography
. Index

Ne:{t| l_Jp| Previous Caﬂtent5| Inde:{|

Next: Forward

Bob Daley
2001-11-28

©Copyright 1996
Permission is granted for
personal (electronic and
printed) copies of this
document provided
such copy (or portion
thereof) is accompanied by
this copyright notice.
Copying for any commercial
use including books,
jJournals, course notes,

etc., is prohibited

that each

http://www:.cs.pitt.edu/~daley/cs2110/notes/cs2110w.html (3 of 3) [12/23/2006 12:00:41 PM]

Forward

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: Contents Up: Lecture Notesfor CS 2110 Introduction to Theory Previous. Lecture Notes for CS

2110 Introduction to Theory

Forward

These notes have been compiled over the course of more than twenty years and have been greatly
influenced by the treatments of the subject given by Michagl Machtey and Paul Young in An
Introduction to the Genereal Theory of Algorithms and to alesser extent by Walter Brainerd and
Lawrence Landweber in Theory of Computation. Unfortunately both these books have been out of print
for many years. In addition, these notes have benefited from my conversations with colleagues
especially John Case on the subject of the Recursion Theorem.

Rather than packaging these notes as a commercial product (i.e., book), | am making them available via
the World Wide Web (initially to Pitt students and after suitable debugging eventually to everyone).

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: Contents Up: Lecture Notes for CS 2110 Introduction to Theory Previous. Lecture Notes for CS

2110 Introduction to Theory

Bob Daley
2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel.html [12/23/2006 12:01:17 PM]

Contents

Ne:-:t| Up| F’reviuu5| Inde:-:|

Next: 1. Introduction Up: Lecture Notesfor CS 2110 Introduction to Theory Previous. Forward

Contents

. Contents
. 1. Introduction
o 1.1 Preliminaries
o 1.2 Representation of Objects
o 1.3 Codingsfor the Natural Numbers
o 1.4 Inductive Definition and Proofs
. 2. Models of Computation
o 2.1 Memoryless Computing Devices
o 2.2 Digital Circuits
o 2.3 Propositional Logic
o 2.4 Finite Memory Devices
o 2.5 Regular Languages
. 3. Loop Programs
o 3.1 Semantics of LOOP Programs
o 3.2 Other Aspects
o 3.3 Complexity of LOOP Programs
. 4. Primitive Recursive Functions
o 4.1 Primitive Recursive Expressibility
o 4.2 Equivalence between models
o 4.3 Primitive Recursive Expressibility (Revisited)
o 4.4 General Recursion
o 4.5 String Operations
o 4.6 Coding of Tuples
. 5. Diagonalization Arguments
. 6. Partial Recursive Functions
. 7. Random Access Machines
o 7.1 Parsing RAM Programs
o 7.2 Simulation of RAM Programs
o 7.3 Index Theorem
o 7.4 Other Aspects
o 7.5 Complexity of RAM Programs
. 8. Acceptable Programming Systems

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node2.html (1 of 2) [12/23/2006 12:01:34 PM]

Contents

o 8.1 General Computational Complexity
o 8.2 Algorithmically Unsolvable Problems
. 9. Recursively Enumerable Sets
. 10. Recursion Theorem
o 10.1 Applications of the Recursion Theorem
= 10.1.1 Machine Learning
= 10.1.2 Speed-Up Theorem
. 11. Non-Deterministic Computations
o 11.1 Complexity of Non-Deterministic Programs
o 11.2 NP-Compl eteness
o 11.3 Polynomia Time Reducibility
o 11.4 Finite Automata (Review)
o 11.5 PSPACE Compl eteness
. 12. Forma Languages
o 12.1 Grammars
o 12.2 Chomsky Classification of Languages
o 12.3 Context Sensitive Languages
o 12.4 Linear Bounded Automata
o 12.5 Context Free Languages
o 12.6 Push Down Automata
o 12.7 Regular Languages
. Bibliography
. Index

Next| L_Jp| F’reviﬂu5| Index|

Next: 1. Introduction Up: Lecture Notes for CS 2110 Introduction to Theory Previous. Forward

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node2.html (2 of 2) [12/23/2006 12:01:34 PM]

1. Introduction

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: 1.1 Preliminaries Up: Lecture Notes for CS 2110 Introduction to Theory Previous: Contents

1. Introduction

@ Goal

To learn the fundamental properties and limitations of computability (i.e., the ability to solve
problems by computational means)
@ Major Milestones

@ |nvariance
in formal descriptions of computable functions -- Church's Thesis
@ Undecidability
by computer programs of any dynamic (i.e., behavioral) properties of computer programs
based on their text
@ Major Topics

@ Models
of computable functions
@ Decidable vs undecidable
properties
@ Feasiblevsinfeasible
i

problems -- P =NP
@ Formal Languages
(i.e., languages whose sentences can be parsed by computer programs)

. 1.1 Preliminaries

. 1.2 Representation of Objects

. 1.3 Codings for the Natural Numbers
. 1.4 Inductive Definition and Proofs

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 1.1 Preliminaries Up: Lecture Notes for CS 2110 Introduction to Theory Previous: Contents

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node3.html (1 of 2) [12/23/2006 12:01:55 PM]

1. Introduction

Bob Daley
2001-11-28
©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node3.html (2 of 2) [12/23/2006 12:01:55 PM]

1.1 Preliminaries

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|
Next: 1.2 Representation of Objects Up: 1. Introduction Previous:. 1. Introduction

1.1 Preliminaries

We will study avariety of computing devices. Conceptually we depict them as being "~ "black boxes" of
the form

Figure 1.1:Black box computing device

where x is an input object of type X (i.e., x € X) and y is an output object of type Y. Thus, at this level

the device computes afunction f : X —— Y defined by f (x) =Y.

. For some computing devices the function f will be a partial function which means that for some

Inputs X the function is not defined (i.e., produces no output). In this case we write f (X) T :

Similarly, we write f () .l, whenever f on input X is defined.
. Theset of al inputs on which the function f is defined is called its domain (denoted by dom f),
and isgiven by dom f = {x:f(x) +}.

. Also, the range of afunction f (denoted by ran f), and isgivenby ran f = {y: dx € domf,y
=f (9}

We will aso beinterested in computing devices which have multiple inputs and outputs, i.e., which can
be depicted as follows:

Figure 1.2:Multiple input-output computing device

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded.html (1 of 3) [12/23/2006 12:02:07 PM]

1.1 Preliminaries

I

: s o Ym

where Xy,..., X, are objects of type Xq,..., X, (i.e., X; € Xy,..., X4 € X,), and yy,..., y,, are objects of type

Y1,---» Ym- Thus, the device computes a function

frXgX =X Xy = Yy X X Yy

defined by f (Xq,..., Xp) = (V1,---» Ym)- HErewe use X; x - x X, to denote the cartesian product, i.e.,

Xy X X Xy = { Xy X)) 1 X € Xgpoy Xy € X}

. We also use X" to denote the cartesian product when X; = X, = == X, = X.

. Of course, since X; X X X, isjust someset X and Y; X - X Y,, issome set Y, the situation with

multiple inputs and outputs can be viewed as a more detailed description of a single input-output
device where the inputs are n-tuples of elements and the outputs are m-tuples of elements.
— — —
. Weuse I {"todenotex, X; 4+ 1,..., X, Wherei < n,and ' "to denote T (" (i.e, Xq,..., X,)-

Besides viewing computing devices as mechanisms for computing functions we are also interested in
them as mechanisms for computing sets.

. Given aset X the characteristic function of X (denoted by X x) isgiven by

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded.html (2 of 3) [12/23/2006 12:02:07 PM]

1.1 Preliminaries

1, fzeX

XX =00 irgx

. A computing device (which computes the function f) can = compute” a set X in 3 different ways:

1.
it can compute the characteristic function X x of theset X, i.e, f= Xx .

2.
itsdomainisequal to X, i.e., X =dom f. In this case we say that the device is an acceptor
(or arecognizer) for the set X.

3.

itsrangeisequal to X, i.e,, X=ran f. In this case we say that the device is a generator for
the set X.

Ne:{t| Up| Previous Ccmtent5| Iﬂde:{|

Next: 1.2 Representation of Objects Up: 1. Introduction Previous: 1. Introduction

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded.html (3 of 3) [12/23/2006 12:02:07 PM]

1.2 Representation of Objects

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|
Next: 1.3 Codings for the Natural Numbers Up: 1. Introduction Previous: 1.1 Preliminaries

1.2 Representation of Objects

Weuse I to denote the set {0, 1, 2,...} of Natural Numbers, and we use IB for the set {0, 1} of Binary

Digits. We are most interested in functions over M butin real ity numbers are abstract objects and not
concrete objects. Therefore it will be necessary to deal with representations of the natural numbers by
means of strings over some alphabet.

. Analphabet %2 isany finite set of symbols{ T ,..., @, }. The symbols themselves will be

unimportant, so we will use 1 for &y , ..., and nfor &, , and denote by E.ﬂ_ theset {1,..., n}.
. A word over the alphabet 2 isany finite string a; - & of symbolsfrom b3 (e, x=a;~a). We

denoteby 24" the set of all words over the alphabet 3.
- Thelength of aword X = a; -~ g (denoted by | x |) is the number j of symbols contained in x.

. Thenull or empty word (denoted by £) isthe (unique) word of length O.
. Giventwowordsx = a; -~ g andy = by - by, the concatenation of x and y (denoted by x-y) isthe

word a; - ajby - by. Clearly, [x-y | =[x [+ [y | Wewill often omit the - symbol in the

concatenation of x and y and ssimply write xy.
. Theword xiscalled an initial segment (or prefix) of the word y if there is some word z such that

y=X-Z

. For any symbol a € 2, we use a™ to denote the word of length m consisting of ma's.

. We often refer to a set of strings over an alphabet 2= asalanguage.
. We extend concatenation to sets of strings over an alphabet 2> asfollows:

XY T X* then

X-Y={xy:x EX and yE Y}
XO={€}

X(n+1)= XN . X for n= 0

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node5.html (1 of 2) [12/23/2006 12:02:24 PM]

1.2 Representation of Objects

oo
X = U X(n)
n=>0

00

X+ = U X(n)

n=1

Thus X(Nisthe set of all ““words" of length nover the “alphabet” X.

Ne:{t| Up| Previous Ccmtent5| Iﬂde:{|

Next: 1.3 Codings for the Natural Numbers Up: 1. Introduction Previous: 1.1 Preliminaries

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node5.html (2 of 2) [12/23/2006 12:02:24 PM]

1.3 Codings for the Natural Numbers

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: 1.4 Inductive Definition and Proofs Up: 1. Introduction Previous. 1.2 Representation of Objects
1.3 Codingsfor the Natural Numbers

We will introduce a correspondence between the natural numbers and strings over E:,_ whichis

different from the usual number systems such as binary and decimal representations.

Table 1.1:Codings for the
Nautral Numbers

N| B| X5 | X)
of of | £
1l 1| 1| 1
2| 10| 2| 2
3| 11| 11| 3
4| 100| 12| 4
5/ 101 21| 11
6| 110| 22| 12
7| 111| 111 13
8|1000| 112 | 14
9/1001| 121 | 21
10 (1010 | 122 | 22
111011 | 211 | 23

The codings via EE and E: are one-to-one and onto. The coding via IB* is not -- 010 = 10.

@ Thefunction K, : N — 1 e

providing the one-to-one and onto map is defined inductively as follows:

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node6.html (1 of 3) [12/23/2006 12:02:29 PM]

1.3 Codings for the Natural Numbers

Kn (0)= €

Next, suppose that #y, (X) = dy - d;, and let k < jbe the greatestinteger such that d, ?én(so k=0if dy= -
=d;=n). Then,

dy - di_y(dp +1)17%, if k& >0,

Fo (D= Y 1341 otherwise.

@ Thefunction ¥, : E:;_ — N,
whichistheinversefor K, isdefined asfollows:

Letx € 2 be the string a; - a;ag. Then,

Vi (%)= Vg (3~ a130)

j

= Zaixni

=0

=g xn+-+a; X n+ag

@ Observethat
Vg (X-y) = YV 09 x nlY 1+ Y (y),

eg., 16=3x 22+ 4= V5 (11 12) = V5(1112).

Ne:{t| Up| F’reviﬂu5| Ccmtent5| Iﬂde:{|
Next: 1.4 Inductive Definition and Proofs Up: 1. Introduction Previous: 1.2 Representation of Objects

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node6.html (2 of 3) [12/23/2006 12:02:29 PM]

1.3 Codings for the Natural Numbers

Bob Daley
2001-11-28
©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node6.html (3 of 3) [12/23/2006 12:02:29 PM]

1.4 Inductive Definition and Proofs

Mext| Upl Previous| Contents| Index

Next: 2. Models of Computation Up: 1. Introduction Previous: 1.3 Codings for the Natural Numbers

1.4 Inductive Definition and Proofs

An inductive definition over the natural numbers N usually takes the form:

f(0,y)=9a(y)
f(n+1,y)=h(ny f(ny))

where g and h are previously defined.

@ Example of inductive definition

yo=1
yn +1= yn Xy

so that g(y) = 1 and h(x, y, 2) = zxy.

@ Definitionsinvolving *..."" are usually inductive.

@ Exampleof ... definition
T
zai:ao"'al"'"""an
i=0

The inductive equivalent is:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node7.html (1 of 7) [12/23/2006 12:02:39 PM]

1.4 Inductive Definition and Proofs

n+1 n

Zai: Zai+an+l
=0 =0

so that g(y) = agand h(X, y, 2) = z+ &y 4 1.
Most “‘recursive" procedures are really just inductive definitions.

Induction Principle|: For any proposition P over N | if
1) P(0) istrue, and

2) ¥n, P(n) —* P(n+ 1) istrue,
then Wn, P(n) istrue.

1) is called the Basis Step
2) iscalled the Induction Sep

The validity of this principle follows by a ""Dominoe Principle”

@ P(0) means "0 falls":

P(0)

@ P(n) — P(n + 1) means “if n falls, then n + 1 falls'":

P(n) P(n+1

Combining these two parts, we see that “"all dominoes fall":

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node7.html (2 of 7) [12/23/2006 12:02:39 PM]

1.4 Inductive Definition and Proofs

@ Example of inductive proof
n nx{ntl)
Let P(n) : E.izﬂlz — a9 .

@ Basis Step:
Show P(0) istrue

@ |nduction Step:
Let n be arbitrary and assume P(n) istrue. This assumption is called the Induction Hypothesis,
viz. that

]

Z_znx(n-i—l]

i=(2

Then,

n+1 n

Zi:2i+(n+l)
i=0 i=0

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node7.html (3 of 7) [12/23/2006 12:02:39 PM]

1.4 Inductive Definition and Proofs

nx(n+1)

= 9 +(n+1)

nx(n+1)+2x(n+1)

(n+1) x (n+2)

Note: Line 1 uses the inductive definition of E (hereg; =1).

Line 2 uses the Induction Hypothesis; and
Line4isP(n + 1), so we have shown P(n) —* P(n+ 1).

By reasoning similar to that for Induction Principle I, we also have
Induction Principlell: For any proposition P over the positive integers, if
1) P(0) istrue, and

2) ¥n(Vi<n+1,P(i)) —* P(n+1)istrue,
then ¥n, P(n) istrue.

Here2) means "'If 0, 1, 2,..., nfalls, thenn + 1 falls'. Note that ™ Vi<n+1, P(i)" isreally shorthand for ™
Yii<n+1 — Pgi)"
Induction Principle |1 is needed for inductive definitions like the one for the fibonacci numbers:

f(0)=0

f()=1
f(n+1)=f(n)+f(n- 1)

However, some domains of interest do not have such a "“linear" structure as the natural numbers. For
example, theset [B* hasa “tree" structure:

Figure 1.3:Structure of IB*

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node7.html (4 of 7) [12/23/2006 12:02:39 PM]

1.4 Inductive Definition and Proofs

Thuseachwordx € IB* hastwo successors; x- 0 and X - 1.
@ Example of inductive definition over) Dy

The reversal function @ suchthat 2(a; - a,) = a, - a; isdefined inductively by:

P(E)=E
Px-a)=a P

Thus, we see that inductive defintions over ¥ havethe genera form:

f(E,y)=9(y)

f(x-a,y)=hyxy f(xy)) foreach a € X

Principlelll: For any proposition P over by If

1) P(£) istrue, and

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node7.html (5 of 7) [12/23/2006 12:02:39 PM]

0
W @ ® W

1.4 Inductive Definition and Proofs
2) ¥x € L* (Va € ¥, Px) — P(x-a))istrue,

then ¥x € L% P(x) istrue.

The validity of this principle aso follows from a "Dominoe Principle"

@ P(£) means ™ £ falls':
@ P(x) — P(x-a) means “if x falls, then x - afalls":

These combined yield “all dominoes fall" when they are arranged according to the structure of I

Figure 1.4:Top view
= \\\
(TN

00 01 10 11

@ Example of inductive proof over) Dy

LetP(X) = YVa € X,P@@X= £ a

@ Basis Step:
Show P(£) istrue

P(a- E): P(a): p(E-a):a- P(E):a E=-a=¢€ .a= P(E)a

@ |nduction Step:
Let x be arbitrary and assume P(X) is true, so the Induction Hypothesisis

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node7.html (6 of 7) [12/23/2006 12:02:39 PM]

1.4 Inductive Definition and Proofs

Va€ X pax=pPx-a

Then, for any a, b € 2

Pla (x-b)= P(@x)-b)
=b- P(a-¥)
=b-(P(%)-a)
=(b- P(¥)-a
= P(x-b)-a

So P(x- a) istrue. Therefore, Vx € L* Va€ X p@a x= PK a

Note: Lines 1 and 4 use the associativity of - ;
Lines 2 and 5 use the definition of /2;

and Line 3 use the Induction Hypothesis.

Ne:-:t| Up| Previous Cﬁntent5| Inde:-:|

Next: 2. Models of Computation Up: 1. Introduction Previous. 1.3 Codings for the Natural Numbers

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion
thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node7.html (7 of 7) [12/23/2006 12:02:39 PM]

2. Models of Computation

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 2.1 Memoryless Computing Devices Up: Lecture Notes for CS 2110 Introduction to Theory
Previous. 1.4 Inductive Definition and Proofs

2. Models of Computation

@ Memoryless Computing Devices

@ Boolean functions and Expressions
@ Digital Circuits
@ Propositional Logic

@ Finite Memory Computing Devices

@ Finite state machines
@ Regular expressions
@ Unbounded Memory Devices

@ L oop programs

@ (Partial) recursive functions

@ Random access machines

@ First-order number theory
@ Other Aspects

@ Non-deterministic devices
@ Probabilistic devices

. 2.1 Memoryless Computing Devices
. 2.2 Digital Circuits

. 2.3 Propositional Logic

. 2.4 Finite Memory Devices

. 2.5 Regular Languages

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 2.1 Memoryless Computing Devices Up: Lecture Notes for CS 2110 Introduction to Theory

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node8.html (1 of 2) [12/23/2006 12:02:48 PM]

2. Models of Computation

Previous: 1.4 Inductive Definition and Proofs

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node8.html (2 of 2) [12/23/2006 12:02:48 PM]

2.1 Memoryless Computing Devices

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|
Next: 2.2 Digital Circuits Up: 2. Models of Computation Previous: 2. Models of Computation

2.1 M emoryless Computing Devices

A boolean function isany functionf : JBn — IBm, and thus has the schematic form

Figure 2.1: Multiple input-output computing device

oo - 1

T o o Ym

We will be concerned here primarily with the case where m= 1. Since B has finite cardinality, the
domain of fisfinite, and f can be represented by means of afinite table with 2" entries.

Example 2.1
Table 2.1:
Example
boolean
function

|

X1 | X2 | X3

| ,r| ol ol o] o
o|l ol »r| r| Oo| O
|l ol r| ol Rr| o
~l ol ol of 0|~

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node9.html (1 of 3) [12/23/2006 12:02:59 PM]

2.1 Memoryless Computing Devices

110ﬁ
111ﬁ

It is aso possible to represent a boolean function by means of a boolean expression. A boolean
expression consists of boolean variables (x4, X,,...), boolean constants (0 and 1), and boolean

operations (—, V,and /), and isdefined inductively as follows:

1.
Any boolean variable X4, X,,... and any boolean constant O, 1 is a boolean expression;

If e; and e, are boolean expressions, then so are (—ey), (e; V &), and (e; /N &y).

The operations —, W , /A are defined by the table:

Table 2.2:Boolean operations

Xp (X | X [X VX [xg A X

1

0
0
1
1

R R R,| O

0 0
1 0
0 0
1 1

sothat =, V', /A represent boolean functions. In general, every boolean expression with n variables
represents some boolean function f : Br — B,

Conversely, we have

Theorem 2.1 Every boolean functionf: JBn — IB is represented by some boolean expression with
n variables.

Example 2.2

The function given in Example 2.1 above can be represented by the boolean expression

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node9.html (2 of 3) [12/23/2006 12:02:59 PM]

2.1 Memoryless Computing Devices

(Txg N T AN TIxg) V(g A T Aoxg) V(g N xo),

f (X0 %o Xa) = (X0 AN T A Tixg) Vg A i Axg) V(% A o).

@ Terminology:

o A literal iseither avariable (e.g.,) or its negation (e.g., —1X).
o A termisaconjunction (i.e., e; A — /A g) of literalsey,..., e.

o A clauseisadigunction (i.e., e; V' — \ g) of literdsey,..., ..

o A boolean expression is a DNF (digunctive normal form) expression if it isadigunction
of terms.

o A monomial is aone-term DNF expression.

o A boolean expression is a CNF (conjunctive normal form) expression if it isaconjunction
of clauses.

Q The previous theorem is proved by constructing a DNF expresssion for any given boolean function.

Ne:{t| Up| Previous Caﬂtent5| Iﬂde:{|

Next: 2.2 Digital Circuits Up: 2. Models of Computation Previous: 2. Models of Computation

Bob Daley
2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node9.html (3 of 3) [12/23/2006 12:02:59 PM]

2.2 Digitd Circuits

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 2.3 Propositional Logic Up: 2. Models of Computation Previous. 2.1 Memoryless Computing
Devices

2.2 Digital Circuits

We can " implement" boolean functions using digital logic circuits consisting of " gates' which compute
the operations —, V', and /A, and which are depicted as follows:

Figure 2.2:Digital
logic gates

q A gate
=)V gate
~D'=— - gate

Example 2.3 (circuit for function of Example 2.1)

Figure 2.3:Digital logic circuit

Iy |_>¢ _D_FL =
R

Ne:{t| Up| Previous Ccmtent5| Iﬂde:{|

Next: 2.3 Propositional Logic Up: 2. Models of Computation Previous. 2.1 Memoryless Computing
Devices

Bob Daley

2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel0.html (1 of 2) [12/23/2006 12:03:03 PM]

2.2 Digitd Circuits

Copying for any commercial use including books, journals, course notes, €etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel0.html (2 of 2) [12/23/2006 12:03:03 PM]

2.3 Propositional Logic

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: 2.4 Finite Memory Devices Up: 2. Models of Computation Previous: 2.2 Digital Circuits

2.3 Propositional Logic

If we interpret the boolean value 0 as "FALSE" (F) and the boolean value 1 as " TRUE" (T), then the
boolean operations become "logical operations” which are defined by the following " truth tables":

Table 2.3:Logica operations

Xl Xo _IXl Xl 1"|.I'Ir X2 Xl .l'ﬂ'.. X2
FIF] T F F
F[T T F
T[F[F T F
TI|T T T

Then the boolean variables become ""logical variables', which take on valuesfrom the set V ={T,F}.
Analagously, boolean expressions become "logical expressions' (or * propositional sentences"), and are
useful in describing concepts.

Example 2.4 Suppose X4, Xo, X3, X4, X5, Xg are propositional variables which are interpreted as follows:
X1 -- "is alarge mammal"

Xy -- "livesin water"

X3 -- "has claws"

X4 -- "has stripes’

X5 -- "hibernates’

Xg -- "has mane"

Then the propositional statement x; A =%, M (x4 WV x5 W Xg) defines a concept for a class of
animals which inclues lions and tigers and bears!

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_nodell.html (1 of 2) [12/23/2006 12:03:06 PM]

2.3 Propositional Logic

Next: 2.4 Finite Memory Devices Up: 2. Models of Computation Previous: 2.2 Digital Circuits

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodell.html (2 of 2) [12/23/2006 12:03:06 PM]

2.4 Finite Memory Devices

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: 2.5 Regular Languages Up: 2. Models of Computation Previous. 2.3 Propositional Logic

2.4 Finite Memory Devices

We construct finite memory devices be adding afinite number of memory cells (" flip-flops"), which can
storeasingle bit (0 or 1), to alogical circuit as depicted bel ow:

Figure 2.4:Finite memory
device

i B
— L
2k — 2
— L

Here, z isthe current contents of memory cell i, and z* is the contents of that memory cell at the next
unit of time (i.e., clock cycle).

Of course, memory cells themselves can be realized by digital circuits, e.g., the following cicuit realizes
aflip-flop:

Figure 2.5:Flip Flop

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel2.html (1 of 4) [12/23/2006 12:03:10 PM]

2.4 Finite Memory Devices

et 1O

et 1O

The device operates as follows: At each time step, the current input values X;,..., X,, are combined with
the current memory values z;,..., 7, to produce viathe logical circuit the output valuesy;,..., Y, and
memory values z;*,..., z.* for the next time cycle. Then, the device uses the next input combination of
X1, Xy @Nd Z4,..., Z (i.€.,, the previously calculated z;+,..., ™) to compute the next output vyj,..., Y, and

the next memory contents z;*,..., z.*, and so on.

Of course, at the beginning of the computation there must be some initial memory values. In thisway we
see that such a device transforms a string of inputs (i.e., aword over IB*) into a string of outputs.

A device that has k memory cells will have 2k combinations of memory values or states . Of course,
depending on the circuitry, not al combinations will be realizable, so the device may have fewer actual
states.

We formalize matters as follows:

. Weregard the pattern of bits x,,..., X, as encoding the |etters of some input alphabet »;,and

similarly yj,..., Yy & encoding the letters of some output alphabet [
. Welet Q denote the set of possible states (i.e., legal combinations of z,..., 7).

Asindicated above 22, I, and Q need not have cardinality that is a power of 2.

. Sincethe output (yy,..., Y, depends on the input (X4,..., X,) and the current memory state (z,...

Z,), we have an output function A : Qx 2 — I

. Similarly, since the next memory state (z;*,...z.*) depends on the input and the current memory

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel2.html (2 of 4) [12/23/2006 12:03:10 PM]

2.4 Finite Memory Devices

state, we have a state transition function) Qx & — Q.

. When the device begins its computation on a given input its memory will be in someinitial state
Co-

Therefore, such adevice can be abbreviated as atuple

M= (XL qd A qg).

We depict M schematically as follows:

Figure 2.6: Schematic for Finite State Automaton

input |dqagldy o by,

M

bbby A output

While this model of afinite memory device clearly models the computation of functionsf :) DT
™ with finite memory, we need only consider arestricted form which are acceptors for languages over
Iy (i.e., subsets of strings from)y). In this restricted model we replace the output function A by a

set of specially designated states F C Q called final states. The purpose of F isto indicate which input

words are accepted by the device.

Definition 2.1 A deterministic finite state automation (DFA) is a 5-tuple

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel2.html (3 of 4) [12/23/2006 12:03:10 PM]

2.4 Finite Memory Devices

M= (X, Q0 g F),

where 2} istheinput alphabet, Q is the finite set of states, gp istheinitial state, F C Qisthe set of

final states, and i) :Qx 2 — Qisthe statetransition function.

- Wesay that an input x = a; - g is accepted by the DFAM = { 3,0, rf, dos F} if thereisa
sequence of states py,..., pj + 1 such that p, istheinitial stateggand p; 4 1 € F andfor eachi Ej,

O (P, &) =P+ 1.
. We say that alanguage X C)y is accepted by the DFA M if and only if every word x € Xis
accepted by M.

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 2.5 Regular Languages Up: 2. Models of Computation Previous. 2.3 Propositional Logic

Bob Daley
2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel2.html (4 of 4) [12/23/2006 12:03:10 PM]

2.5 Regular Languages

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: 3. Loop Programs Up: 2. Models of Computation Previous: 2.4 Finite Memory Devices
2.5 Regular Languages

The class of regular languages over 2" isdefined by induction as follows:

the sets @ { £}, and{a} foreacha € X areregular languages;
if R; and R, are regular languages, thenso are Ry LJ R,, Ry - Ry, and R;™.

In other words, the class of regular languages is the smallest class of subsets of 2* containi ng @ A

£}, and {a} for each a € 3, and closed under the operations of set union, set concatenation, and *.

We define the class of regular expressions for denoting regular sets by induction as follows:

1.

9, £, and a are regular expressions for @ { £}, and {a}, respectively;

if r{ and r, are regular expressions for the regular sets R; and Ry, then (r{ LJ r5), (r{-r»), and

(r{") areregular expressionsfor R; LJ Ry, R; - Ry, and Ry", respectively.

Theorem 2.2 Every regular language is accepted by some deterministc finite automaton, and
conversely every language accepted by some deterministic finite automaton is aregular language.

Next| L_Jp| Previous Ccmtents| Iﬂdey{|

Next: 3. Loop Programs Up: 2. Models of Computation Previous: 2.4 Finite Memory Devices
Bob Daley

2001-11-28

©Copyright 1996

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel3.html (1 of 2) [12/23/2006 12:03:13 PM]

2.5 Regular Languages

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, €etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel3.html (2 of 2) [12/23/2006 12:03:13 PM]

3. Loop Programs

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 3.1 Semantics of LOOP Programs Up: Lecture Notes for CS 2110 Introduction to Theory
Previous. 2.5 Regular L anguages

3. Loop Programs

The programming language LOOP over EI—, consists of:

@ Program Variables:

X, Xg,X3,... (asoUV,W,Y,Z with subscripts)

@ Elementary Statements:

@ |nput Statements:

INPUT(X1;- - 5 Xp)

@ Output Statements:

OUTPUT(Y)

@ Assignment Statements:

JX:L'{—[]
2 X, + X, +1
Jxl'{—Yl

@ Control Structures:

@ For Statements:

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel4.html (1 of 2) [12/23/2006 12:03:16 PM]

3. Loop Programs

rFor X; TIMES DO

ENDFOR
@ Until Statements:

unTIL X; TRUE DO

ENDUNTIL

. 3.1 Semantics of LOOP Programs
. 3.2 Other Aspects
. 3.3 Complexity of LOOP Programs

Ne:{t| Up| Previous Caﬂtent5| Iﬂde:{|

Next: 3.1 Semantics of L OOP Programs Up: Lecture Notes for CS 2110 Introduction to Theory
Previous. 2.5 Regular L anguages

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel4.html (2 of 2) [12/23/2006 12:03:16 PM]

3.1 Semantics of LOOP Programs

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: 3.2 Other Aspects Up: 3. Loop Programs Previous:. 3. Loop Programs

3.1 Semantics of LOOP Programs

[X1] denotes the contents of the variable X,

@ |ogical values:

@ FALSE
IS zero
@ TRUE
IS any non-zero value

@ INPUT(X1, - -, Xy)

-- input [X4],....[X,]
@ OUTPUT(Y)
-- output [Y4]

@ X, 0

-- replace [X4] with &£
X, X, 41

-- replace [X4] with x, where Vg (x) = Vg ([X{]) +1
@ Kl — Y]_

-- replace [X4] with [Y{]

@ For Statement:

For X; TIMES DO

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel5.html (1 of 6) [12/23/2006 12:03:21 PM]

3.1 Semantics of LOOP Programs

body .

ENDFOR
-- repeat body of loop ¥ ([X4]) times

@ Until Statement:

unTiL X; TRUE DO

body y

ENDUNTIL
-- repeat body of loop until [X4] ?é £

Definition 3.1 A LOOP-program over E; Is asequence of LOOP statements S,..., S, such that

1.

S, isan input statement
2.

S, isan output statement
<

and noneof S,, ..., §,. 1 areinput or output statements.

Definition 3.2 A LOOP-program P over EI—, computes the (partial) function f : (EI:)n — EE If
and only if
1.

the input statement of P has n variables;
2.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel5.html (2 of 6) [12/23/2006 12:03:21 PM]

3.1 Semantics of LOOP Programs
for all xy,..., X5, When Pisexecuted T with xq,..., X, asitsinput,

(@

P haltsif and only if f (Xg,..., %) +,
(b)

if P halts, then P outputs f (X1,..., Xp)-

1' Execution of a LOOP program involves:

initialy all variables have value 0

statements are executed according to the “"obvious" semanticsin the “"obvious" order.

ﬁ Observe that the choice of alphabet b3 k. entersinto consideration only through 1/0 and the

“internal representation” or ~semantics” of the program. We could have taken as our primitive operation
J"{1 * & (for each a (S Ek Instead of J"{1 +1 and then the choice of E;; would have been much

more evident.

-

Example 3.1 The following program computes the function f (x) = x — 1, where the operation —

(called “"'monus") is defined by:

0, if x <y,

X—y= .
T — y, otherwise.

INPUT(X1)
FOR %; TIMES DO

Z, Y,
Y, Y +1

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel5.html (3 of 6) [12/23/2006 12:03:21 PM]

3.1 Semantics of LOOP Programs

ENDFOR
OUTPUT(Z,)

Notation 3.3 Let P be a LOOP-program with input statement
INPUT(Xl-,. -y X—n) and output statement OUTPUT (Y ;). We denote by P- the result of

removing from P its input and output statements, and we denote by U, 4— P(Vl-, sy V-n] the

sequence of statements:

Xl{—vl

Xp ¢ Vy
P_
U, &Y,

We can implement other control structures using FOR and UNTIL loops. First, we need a program BLV
for the function blv (""boolean / logical value") define by:

1, if x>0,

blv(x) = .
0, otherwise.

and we need a program NEG for the function neg (" "logical negation™) defined by:

0, if > 0,

neg(x) = .
&8 1, otherwise.

The program BLV is given by

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel5.html (4 of 6) [12/23/2006 12:03:21 PM]

3.1 Semantics of LOOP Programs

INPUT (X 1)

Z, <0
For X; TIMES DO

Z, <0

Z, 4 Z.+1

ENDFOR
OUTPUT(Z,)

and the program NEG is given by:

INPUT(X1)
X, « BLV [Kl]l

Zo 4= Zo+1
For X; TIMES DO

Z, 0
ENDFOR
OUTPUT(Z,)

Then the if-then-else control structure, that takes the form

Fr X, TRUE THEN

S,

ELSE

ENDIF

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel5.html (5 of 6) [12/23/2006 12:03:21 PM]

3.1 Semantics of LOOP Programs

where S; and S, stand for lists of statements, can be implemented by:

}Q;+—IIEﬁT}Lﬂ
FOR Xy TIMES DO

S1

ENDFOR
}Qg+—IqE“3£X&)

For Xg TIMES DO

>

ENDFOR

Ne:{t| Up| Previous Ccmtent5| Iﬂde:{|

Next: 3.2 Other Aspects Up: 3. Loop Programs Previous. 3. Loop Programs

Bob Daley
2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel5.html (6 of 6) [12/23/2006 12:03:21 PM]

3.2 Other Aspects

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|
Next: 3.3 Complexity of LOOP Programs Up: 3. Loop Programs Previous: 3.1 Semantics of LOOP
Programs

3.2 Other Aspects

. We can construct non-deterministic LOOP programs by adding statements of the form

seLECT(X1)

which assigns either a0 or a 1 non-deterministically to the variable X

« We can construct probabilistic LOOP programs by adding statements of the form

PRASSIGN(X1)

1
which assigns either a0 or a 1 probabilistically with probability 7 to the variable X

We distinguish between deterministic, non-deterministic, and probabilistic LOOP programs by using the
notation DLOOP, NLOOP, and PLOORP, respectively.

Next| L_Jp| Previous Ccmtents| Iﬂdey{|
Next: 3.3 Complexity of LOOP Programs Up: 3. Loop Programs Previous: 3.1 Semantics of L OOP

Programs

Bob Daley
2001-11-28
©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel6.html [12/23/2006 12:03:25 PM]

3.3 Complexity of LOOP Programs

Ne:-:t| Up| F’reviuu5| Ccmtent5| Iﬂdey-:|

Next: 4. Primitive Recursive Functions Up: 3. Loop Programs Previous: 3.2 Other Aspects

3.3 Complexity of LOOP Programs

Definition 3.4 If P isadeterministic LOOP program (a program without SELECT or PRASSIGN
statements) over E}: with input variables Xl: s -:X-n and all variablesincluded in

Xla SN X, , then we define the following complexity measures for P.

C — Tl
S0, | zi | + # of stmts of P executed on input z
_}- - -
DLPtimes(£ n)= § if P halts on it,

T, otherwise.

o [max ¥ | Xt |,Vt < DLPtimep(z), if P halts,
DLPepacer(#1) = T, otherwise

i : : : —F
where X1 denotes the contents of register X at step t of the computation of P oninput T N,

Next| L_Jp| Previous Cuntent5| Iﬂdey{|

Next: 4. Primitive Recursive Functions Up: 3. Loop Programs Previous: 3.2 Other Aspects
Bob Daley

2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel7.html [12/23/2006 12:03:28 PM]

4, Primitive Recursive Functions

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 4.1 Primitive Recursive Expressibility Up: Lecture Notes for CS 2110 Introduction to Theory
Previous. 3.3 Complexity of L OOP Programs

4. Primitive Recur sive Functions

The class of primitive recursive functions is defined inductively as follows:
@ Base functions:

@ Null function:

N(X) =0, foranyx € N

@ Successor function:

Sx)=x+1,foranyx € M

@ Projection functions:
— —
Pj“(i‘”):x-,foranylﬂj En,andany zn € Nn

@ Operations:

@ Substitution:
Given integersmand n, and functionsg: m — N and hy,..., Ny, where by Rfn

— N thenf: Nn — N jsdefined from g, hy,..., hy, viasubstitution if for any
En € Nn
— — —
FCE M) =g(hy(E"),..., hyy().
@ Primitiverecursion:

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel8.html (1 of 5) [12/23/2006 12:03:33 PM]

4, Primitive Recursive Functions

Given an integer n, and functionsg: Mn-1 — M andh: Mn+1 — M thenf:
Nn — N is defined from g and h via primitive recursion if for any y € M and any

—}.
Z N € Nn-1

f(0, & ;N =g(L N

— — —
fly+1 % M=hiy fy %", %N.

Definition 4.1 A functionf: Nn — N s primitive recursive if it can be obtained from the base
functions (null, successor, and projections) by finitely many applications of the operations of
substitution and primitive recursion.

. Thus, the class of primitive recursive functions is the smallest class containing the base functions
and closed under the operations of substitution and primitive recursion.
. If inthe definition of primitive recursion n = 1, then the schema takes the form:

f(0)=c
f(y+1)=h(y, f(y))

for some constant cand some function h.

. We could have defined the primitive recursive functions over EE instead of I by replacing S
with k successors S(y) =y-afor each a € Ek ; and by replacing primitive recursion over N

with primitive recursion over EE which takes the form:

f(E, T m=g(L N

fy-aZM=hyfy,Zm T, Va€ X

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel8.html (2 of 5) [12/23/2006 12:03:33 PM]

4. Primitive Recursive Functions

. Addition is primitive recursive as seen by the following application of the operation of primitive
recursion:

0+x=X
y+1l+x=(y+x)+1

Actually, the formal definition takes the form (where add(y, X) = y+ X)

add(0, x) = P11(x)
add(y + 1, X) = S(P23(y, add(y, X), X))

. We can then define multiplication (mult(y, X) =y X X) using primitive recursion applied to the
null function and addition:
mult(0, X) = N(X)
mult(y + 1, x) = add(P3(y, mult(y, X), X), Pz3(y, mult(y, X), X))
or lessformally,
Ox x=0

y+1Xx x=(yX X)+X

. Sometimes, asis the case with addition and multiplication, it is more natural or convenient to
allow the recursive definition to occur over avariable other than the first variable. Thisis
permissable since we can use the projection functions to rearrange the variables in any order we
wish. For example, we can define the function

add'(x, y) = add(P22(x, y), P12(x, ¥))
= add(y, x)

s0 that in effect we have;

http://lwww.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel8.html (3 of 5) [12/23/2006 12:03:33 PM]

4, Primitive Recursive Functions

X+0=X
X+y+1l=(x+y)+1

. Thefunction blv is also primitive recursive:

blv(0)=0

blvy+1)=1

Or, formally
blv(0)=0
biv(y + 1) = SIN(P12(y, blv(y))))
. Similarly, the function neg is primitive recursive

neg(0)=1

neg(y +1)=0

Proposition 4.1 Every primitive recursive function is atotal function, i.e., defined on all natural
numbers.

Proof: The proof is by induction on the definition of a primitive recursive function f. Clearly, all the
base functions are total functions. Next, if f is defined by substitution from g and h;,..., h,,, then f istotal

whenever g and hy,..., h,, aretotal.

Suppose f is defined by primitive recursion from g and h, and suppose by induction hypothesis that g and
—+ —+
h are total functions. We prove by induction that for every y € N, ¢ (y, < 5N i' First, f (O, T ;") 4'

—+ — —+ —+
sincef (O, & ,") = g(& ,") and g istotal. Next, assuming that f (y, & 5") 4' we seethat f (y + 1, T ,")

— —+ =+
¥, sincef (y+1, T) = h(y, f (y, T), T ,) and histotal.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel8.html (4 of 5) [12/23/2006 12:03:33 PM]

4, Primitive Recursive Functions

. 4.1 Primitive Recursive Expressibility

. 4.2 Equivalence between models

. 4.3 Primitive Recursive Expressibility (Revisited)
. 4.4 General Recursion

. 4.5 String Operations

. 4.6 Coding of Tuples

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 4.1 Primitive Recursive Expressibility Up: Lecture Notes for CS 2110 Introduction to Theory
Previous. 3.3 Complexity of L OOP Programs

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://lwww.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel8.html (5 of 5) [12/23/2006 12:03:33 PM]

4.1 Primitive Recursive Expressibility

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 4.2 Equivalence between models Up: 4. Primitive Recursive Functions Previous: 4. Primitive
Recursive Functions

4.1 Primitive Recur sive Expressibility

An n-ary predicate on M isasubset of Mn

— —
P(Ln)isTRUE <= InEPpP

—+ —
ie,P={Zn:P(ZN)isTRUE}.

Thus sets and predicates are interchangeable. The characteristic function of a predicate P is the function
X p defined by

1, ifz €P

En =
AU (), otherwise.

Definition 4.2 A predicate P is primitive recursive if and only if X p is primitive recursive.

Conversely, given any 0 - 1 valued function f, we can associate with a predicate P; and a set § defined
by

— —
P{(L N)iSTRUE = f(ZLn=1

S={Zn:f(Tn=1)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel9.html (1 of 4) [12/23/2006 12:03:37 PM]

4.1 Primitive Recursive Expressibility

Proposition 4.2 If P and Q are primitive recursive predicates with the same number of variables, then
soare = P,P A Q,andP WV Q.

Proof: The characteristic functions of these predicates are givenin termsof X p and J{Q asfollows:

X-p (L M=neg(Xp (M)
Xpa@(LTM=Xp(TMx Xg(LN)

Xpvg (ZM=bv(Xp (TN + Xg(TM)

Proposition 4.3 If Pq,..., P, are pairwise disjoint primitive recursive predicates over M nand flpens fm +

1 are primitive recursive functions over M n then soisthe function g: Mn — N defined by

f(Z), if Pu(Z),
fn(@), if Pu(Z),

. fm+1{§n], otherwise.

Pr oof:

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel9.html (2 of 4) [12/23/2006 12:03:37 PM]

4.1 Primitive Recursive Expressibility
—+ —+ —+ — —+
g(E M= (LMx Xp (TM) + -+ ({n(LM X Xp, (M)

+ (fn+ 1(L 1) X X"{P]_"-.l"---"-.l"szl (L)

_}.
Definition 4.3 (Bounded Quantifiers) If P(y, £ N) isan+ 1-ary predicate, then we definethen + 1-ary
predicates Ay = xP(y, 2 M and ¥y = xP(y, 2 N) asfollows:

. —
dy <xP(y,) <= thereissome y=x suchthat P(y, Z ")

— —
VYEXP(y, Zn) <= foral y<x P(y, ")

— —
We abbreviate Jy = xP(y, 2" by dy =xPand Wy =xP(y, 2 ") by Vy=xP.

Proposition 4.4 |f P isaprimitive recursive predicate, then so are
Ay <xpPand ¥y = xP.

Proof: We show only that XEIy*‘i:r‘P{y ™ IS primitive recursive, since
— 1

VyEXP(y, ;n) = — Elyix—lP(y, ;n).

Xay<zP (whichweabbreviateby X3<p) isdefined asfollows:

Xa<p (0, #M= Xp (0, 1)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel9.html (3 of 4) [12/23/2006 12:03:37 PM]

4.1 Primitive Recursive Expressibility
— — —
Xa<p (x+1,2M= Xgy<ep (2N V Xp(x+1, 21

-+ =
= blv(add(P," * 2(x, X3y<gp (X, £ 1), 2 1),

— -
XP (S(P1"*2(x, Xay<ap (X, # 1), &),

SN —
PN+ 2(x, Xay<zp (X, # M), ZN),...,

—+ =+
Pos 2" 2% Xay<zP (X # 1), €M)

Next| L_Jp| Previous Ccmtents| Iﬂdey{|
Next: 4.2 Equivalence between models Up: 4. Primitive Recursive Functions Previous: 4. Primitive

Recursive Functions

Bob Daley
2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodel9.html (4 of 4) [12/23/2006 12:03:37 PM]

4.2 Equivalence between models

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 4.3 Primitive Recursive Expressibility (Revisited) Up: 4. Primitive Recursive Functions
Previous:. 4.1 Primitive Recursive Expressibility

4.2 Equivalence between models

In order to compare primitive recursive functions with functions computed by LOOP programs over

E; we need to interpret functions computed by such programs as functions over N.

Definition 4.4 Let P be a LOOP program over EI—, and let fp: (E}'::)n — EI—, be the function

computed by P. The we say that P computes the numer-theoretic function f : Mn — N where

FOEN = Vi (fo(Kk (X0, Ko (%))

Theorem 4.5 Every primitive recursive function is computed by some LOOP program which contains
no UNTIL loops.

Proof: We prove this by induction on the number of operations used in the definition of the given
primitive recursive function f.

@ |nduction basis;
Base functions

@ Case 1:
The null function N is computed by the program

INPUT(X1)
X, +0

ouTPUT(X1)

@ Case2:
The successor function Sis computed by the program

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node20.html (1 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

INPUT(X1)
X+ X +1

ouTPUT(X1)

@ Case3:
The projection function P;" is computed by the program

INPUT (X1, - -- 5 Xp)

ouTPUT(X;)

@ Induction step:
Operations
@ Casel:
Suppose

FCE M =g(hy(E1),..., hyy(E).

and let P, Qq,..., Q,be LOOPprograms (without UNT I L loops) for g, hy,..., hy, respectively. The
following program computes f, where Z 4,....Z,,Y 1,..., Y nand W ;are new program variables which
do not occur in any of P, Qq,..., Q-

INPUT(Y1,....Y})
Zy — QYY)

Zm = Qm(Y1Yi)
Wl "':_ P{Zj.j' =3 Z'ﬂl)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node20.html (2 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

OUTPUT(W,)

@ Case2:
Suppose

f(0, T M) =g(L N

-+ =

.
foy+1 2 M=hy, f(y, ", T "

—
fory €ENand z N € Nn- 1, and suppose Pand Qare LOOPprograms (without UNT I L loops)

for gand h, respectively. The following program computes f, where'Y 4,...,Y ,,Z1, and W are new
program variables not occurring in Por Q.

INPUT(Y,....Y)
z, — P(Yo,...,Y,)
W, &0
FOR Y; TIMESDO
Z, — QWpZ1Y 0. Y)

W, ¢ W, +1

ENDFOR
OUTPUT(Z,)

Q The above proof isreally an informal proof, since we haven't proved formally that the programs are

correct. We do that now.

@ |nduction basis:
Base functions

@ Case 1

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node20.html (3 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

INPUT (X1)
X, +0

ouTPUT(X1)

The output of this program isaways £, and since Vi (£) = 0, this program correctly

computes the null function N.
@ Case2:

INPUT (X1)

X+ X, +1

ouTPUT(X1)

Letx € N pethe input to S, then the input to this program is K (X), and the output is

that string [Xl] such that

ve(X1]) = velre(@) + 1=z + 1 = S(a)

@ Case 3:

INPUT(X1, - -- 5 Xp)

ouTPUT(X;)

—}.
Giveninput £n € Nnto P,n, the output of this program is #k (x), and since Yk (*

.
(%)) =X = P"(L "), the program is correct.

@ |nduction step:

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node20.html (4 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

Operations
@ Casel:

INPUT(Y 1,...Y 1)
Z1 & Qy(Yq,....Yp)

Zm — Q(YynYp)
Wl "':_ P(Zl',l' 0o Zm}
OUTPUT(W,)

The Induction Hypothesisis that

(Y mM = Vg (fp(B (YD) Bie (Ym)))

andforeachlﬂjﬂm

(M) = Vi (fo(Kk (%0),-... o (%))

_}.
Given inputs .’ N € Nnto f, at the end of this program

[Z]] = o (Kk (X0),..., Hig (%) for all 1 <j < m, and hence

Vi (W1q]) = Vi ofplfo, (K (X1, g (X)),
foun(Kk (X1),-.., K (X))

= 1"':;; Ofp(-"ﬁk 0) Hk Ole('k':i: (Xl),..., 'k':j: (Xn)),...,

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node20.html (5 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models
Ko Vg ofg (Kg (X)..... Bk (X))

—
= Hk ofp(-"'Ek ohy(Z n,...,
_}.
H‘k Ohm(&)

=g(hy (L N),..., hyy(E M)

—

= (L n)

where odenotes the operation of function composition.

@ Case2:
(Left as an exercise)

Theorem 4.6 Every number-theoretic function computed by a LOOP program without UNTIL loopsis
primitive recursive.

Proof: Let P be agiven LOOP program without UNTIL loops of the form:

INPUT (X1, - -- , Xp)
p-
ouTPUT(Xk)

Let X1,--- ; Xy bealist of all the variables occurring in P, and let Y 4,...,Y ,, be alist of

“imaginary” loop control variables needed by the internal implementation of FOR loops. We define by
induction on the number of steps used in the construction of P- a set of primitive recursive functions fp

— —
of r + mvariablessuch that if & "and ¥ ™M are the values of the variables Xiy--- 3 Xy and \ET

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node20.html (6 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

— =
Y ,, @ the beginning of the execution of P-, then for each 1 Ej <r, fol(1, ¥ M) isthe (numerical)

_}.
vaue of the variable Xj at the end of the execution of P-, and similarly for each 1 Ej = m, fpl FI(T,

—
1 M) isthe value of the imaginary loop contol variable Y j @ the end of the execution of P-. Of course, if

— =
P- doesn't halt (which it will always do), then the value of fp! +1(& f, § M) is undefined.

Having defined fpJ, then the primitive recursive function which P computesiis given by

— —
f(ZN)=fk(Zn 0,.,0)

= fpK(PLY(Z)., P M), NY(Z 1),..., (L)

where N(Z: 1) = N(P,(Z M) = 0.

@ |nduction basis:

@ Case 1
Pis X = 0 Then,

- =

fpi(_'l’,' r ’y m) = Nr+m(§r’ E‘r}m)

and for all j i,

— —+ =

fpj(E.'}r’ ym)zpjr+m(.".'-_."'r, Yy m)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node20.html (7 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

@ Case2:
Pis X — X;+ 1 Then

—+ =+

fRi(L1, Y m) = SPr+m(Tr, Y m)

and for all j i,

— = —+ =

fpj(:rr”ym):Pme(:I.'r, Yy m)

@ Case 3:
P-is X; = X4 Then,

fpi(Er’ E‘r}m) = ptr+m(Er’ gm)

and for all j i,

— — —+ =

fpj(i'r’ym):pjwm(i?r, Yy m)

@ Induction step:

@ Case 1
P- isof the form:

Py
P

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node20.html (8 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

where, of course P,and Poare lists of LOOPstatements which do not include any 1/0 statements
(or UNTILIoops). Then,

fol(Z 1, Y M) = o J(lp (T, Y, fp T ¥ (L T, Y),

@ Case2:
P- isof theform:

ror X; TIMES DO

Q

ENDFOR

Suppose that thisis the tthFORIoop thus far encountered in the construction of P-. We first define
via primitive recursion a set of primitive recursive functions gQiof r+ marguments such that if

—+ =+ —*
I T, Y mare the values of the variables before entering this FORIoop, then gQi(LY e Vi

Y isthe value of the jthvariable after y,consecutive executions of the loop body Q. First,

- = - =
0 E LY M =P (T, Y m)

Next, for | $£r+ t,

= —+ =+
9 (LT, Vg Oy Y) = P F ML T, Y M)

9Q(F T Y1 Yo+ Lo V) = QAN T T Yareoes Yereeor Yoo

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node20.html (9 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

_}.
= gQHm('T L Y1 Yoo Ym))-

Then, the primitive recursive function fpJis defined by

(1, M) =g (L1, Yy, PEMCEC UM,y

Q Technically, the ““recursive" definition of gQi Isnot primitive recursive, since for each j, the

definition of goJ dependson ggl,..., gg" * ™, i.e., onall ggl. Thisis an example of the *simultaneous

inductive definition” of a set of functions. We will show that this form of recursion as well as other
general forms of recursion are all constructible from primitive recursive functions.

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 4.3 Primitive Recursive Expressibility (Revisited) Up: 4. Primitive Recursive Functions
Previous. 4.1 Primitive Recursive Expressibility

Bob Daley
2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node20.html (10 of 10) [12/23/2006 12:03:42 PM]

4.3 Primitive Recursive Expressibility (Revisited)

Ne:{t| Up| Previous Cﬁntent5| Inde:{|

Next: 4.4 General Recursion Up: 4. Primitive Recursive Functions Previous: 4.2 Equivalence between
models

4.3 Primitive Recursive Expressibility (Revisited)

Definition 4.5 (Bounded Minimization) Thefunctionf: Mn+1 — N jsobtained from the

_}.
predicate P of n + 1 arguments by bounded minimization if for all x, & n

) .
— m, where m is the least number < z such that P(m, z)

f (X, Zny=)
o5 z + 1, otherwise.

— —+
Weusef(x, ") =miny < X[P(y, & M)] to denote that f is obtained from P via bounded minimization.

Proposition 4.7 If P isaprimitive recursive predicate, then so is any function f obtained from P via
bounded minimization.

—¥ —F
Proof: If f(x, ZM) =miny =< X[P(y, & "], then we define f by induction as follows:

[0, 2 =1 Xp (0, 27

r

f(e,2"), if Iy < 2[P(y,2")]
f(x+ 1;n) = { = + 1, otherwise if P(z + 1, En]

|z + 2, otherwise.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node21.html (1 of 2) [12/23/2006 12:03:45 PM]

4.3 Primitive Recursive Expressibility (Revisited)

Proposition 4.8 Integer division is primitive recursive.

Pr oof:

Xy = min z< X[(z+ 1) xy>X].

Mext| Lp| Previous| Contents| Index
Next: 4.4 General Recursion Up: 4. Primitive Recursive Functions Previous: 4.2 Equivalence between

models
Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node21.html (2 of 2) [12/23/2006 12:03:45 PM]

4.4 Genera Recursion

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 4.5 String Operations Up: 4. Primitive Recursive Functions Previous: 4.3 Primitive Recursive
Expressibility (Revisited)

4.4 General Recursion

Definition 4.6 Given functionsg : Nn — N h: Nn+2 — N and atota functionr : I
—— N suchthat r(0) = 0and r(x) < xfor all x>0, thenf: Mn+1 — T jsdefined from g, h and

—
r viarecursion, if forany I'n € Nn
—* —
(0, ZM=g(T")
— —+ =
fiy, LM=h(y, f(r(y),L"),E" forany y>O0.

Proposition 4.9 If fisdefined by recursion from (primitive / partial) recursive functions g, h, and r,
then fis (primitive/ partial) recursive.

Proof: First define the function r* by

(0, X) = x
'y +1,x)=r(r"(y, X))

and the function q by

q(x) = miny < x[r*(y, X) = 0]

_}.
The value g(y) specifies the number of stepsin the building-up processfor f (y, L 1).

Sincer istotal (primitive) recursive and r(x) < x for any x > 0, we see that r* and g are also total
(primitive) recursive. Also, g(xX) =0 <= x = 0. Next define the (primitive / partial) recursive function

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node22.html (1 of 3) [12/23/2006 12:03:49 PM]

4.4 Genera Recursion

H asfollows:
—
H(@O,y,z L "N=z2

— . -+ =
Hm+1,y,z £M=h(r"(qy) — (m+1),y), Hm,y, z L"), I N
We prove by induction for all m<= q(y) that
-+ = . . —
H(m,y, g(-E "), LM =f("(aly) —my), L")

from which it follows

f(y, 2" =H(ay),y. (L"), L")

so that f is (primitive / partial) recursive.
@ Induction basis:

— —

H(O,y, g("), & M =g(L ")

=f(0, T M =f(r"(qy),y), L")

@ |nduction step:
—+ —+ . —
Suppose that H(m, y, g(& "), Z ") =f (r*(q(y) — m, y), & "), then

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node22.html (2 of 3) [12/23/2006 12:03:49 PM]

4.4 Genera Recursion

— =+ =+
H(m+1, y,g(T”) T”) h(r* (q(y)—(m+ 1), y), H(m, y, g(& 1), & "), L n)

. . - =
=h(r"(gy) — (m+1),y), f(r"(aly) — m,y), £n), L")

. —
=f(r(aly) — (m+1),y), L")

Ne:{t| Up| Previous Caﬂtent5| Iﬂde:{|
Next: 4.5 String Operations Up: 4. Primitive Recursive Functions Previous: 4.3 Primitive Recursive

Expressibility (Revisited)
Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node22.html (3 of 3) [12/23/2006 12:03:49 PM]

4.5 String Operations

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: 4.6 Coding of Tuples Up: 4. Primitive Recursive Functions Previous: 4.4 General Recursion

4.5 String Oper ations

Fix an alphabet) & ={1,.., K}. We adopt the convention of using u, v, and w to denote strings over
E; . We define the following elementary string functions:

Supposew = a,, - ajay € 21 , then

endy (W) = ag
rsf(w) = a, - a,

Proposition 4.10 The functions end, and rsfy are primitive recursive in the sense that ¥ oend,o ¥,

and ¥ orsfio K. are primitive recursive.
Proof: The functions are defined as follows:

rsh(¥) = (x— 1)k

end,(X) = x — (rsfi(x) x K)

-

To see that these are correct, observethat if w= K (X) =a,~ajag, thenx —1=a,x k" + -+ a; x k+

(g - 1),where0£ao- 1<k, sothat rsfi(x) =a,x kn-1+--+a, x k+ a; asrequired. Given the

correctness of rsfy, the correctness of end, isimmediate.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node23.html (1 of 5) [12/23/2006 12:03:52 PM]

4.5 String Operations

Proposition 4.11 The string functions | w | k and u-v (i.e, length and concatenation) are primitive

recursive.

Proof: String length over EE is defined by

I |& =miny < x(rsi (%, y) = 0],

where rsf " is defined by
rka* (X, O) =X

rsfi’ (x, y + 1) = rsfy (rsfy " (%, y)).

and concatenation over E}: Is defined by

X-y=xx klY|p +y.

Proposition 4.12 The following string predicates and functions are primitive recursive.

occy (U, W) = the string u occurs in the string w.

prex(u, W) = the prefix of the first occurrence of uin w.
sufi (U, W) = the suffix of the first occurrence of uin w.

rep(U, V, W) = the result of replacing the first occurrence of uinw by v.

For pre, and suf, we require that if u does not occur in w, then the value of the functionisw + 1.

Pr oof:

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node23.html (2 of 5) [12/23/2006 12:03:52 PM]

4.5 String Operations

occ (X, 2) = Elylﬂz Elyzﬂz[z:yl-x-yz].
pregx 2=miny, <z dy, <z[z=y; Xy,

suf(X, 2= miny, < z[z= preg(X, 2) - X-ysl.
repg(X, ¥, 2) = prey(x, 2) -y - sufy(x, 2).

Corollary 4.13 If gand h, for each a = E;; are (primitive / partial) recursive functions, then so isthe
function f defined by
— —+
f(&, LMm=g(Em

- =

N
f(y-a Tn=hyy f(y, LM, T, forexh a € 2y

Proof: Define the (primitive/ partial) recursive function H by

F]

hi(rsfi(y),z, x), if endi(y) =1

_}.
H(y’ Z’.'I-'n): 4

—}-ﬂ

hi(rsf(y), 2,2), if endi(y) = k

Then

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node23.html (3 of 5) [12/23/2006 12:03:52 PM]

4.5 String Operations

—+ =

f(y'a, L n): ha(y’ f (y1 & n)’ € n)
=H(y-a f(rsfi(y-a),), L")

so that f is defined by recursion from g, H, and rsfy. But, clearly rsfy(x) < x for all x> 0, so that the result
follows from Proposition 4.9.

Exercise4.1 Show that if g isaprimitive recursive function and P is a primititve recursive predicate,
then are the following are also primitive recursive functions and predicates.

miny < g [Py, 2 7]
maxy < g(x) [Py, 2 7]
Yy < g [P(y, 2 "]

Iy < g9 [Py, 2)

Exercise4.2 Show that the following are primitive recursive:

XY

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 4.6 Coding of Tuples Up: 4. Primitive Recursive Functions Previous: 4.4 General Recursion
Bob Daley

2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node23.html (4 of 5) [12/23/2006 12:03:52 PM]

4.5 String Operations

portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node23.html (5 of 5) [12/23/2006 12:03:52 PM]

4.6 Coding of Tuples

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 5. Diagonalization Arguments Up: 4. Primitive Recursive Functions Previous: 4.5 String
Operations

4.6 Coding of Tuples

As an application of the above we show how to code n-tuples of integersin a primitive recursive

fashion. We simply view Xq,..., X, @ astring over Ek-l—l consisting of n strings over E;; separated by
the symbol **," (which is the k+1St symbol of Ek+1 and as such does not belong to E;.-, . Thus, the

function of n arguments which produces this string, which we denote by {xl,..., Xn }.n_ , IS primitive

recursive via

{Xl,..., Xn }n = Xl T Xn.

Note that {xl,..., Xn }.n_ Issimply some primitive recursive function of n arguments which we could

have denoted by f,, { } (X,..., X). Next the projection functions H;-l for each 1 Ej < n are defined by

H;-l(x)zxj, where x= {Xl,---,xn}-n.-

In order to see that H.,J,_ IS primitive recursive, we must first define some useful primitive recursive

functions. We use',' (instead of k + 1) when we wish to refer to the specia separation symbol ",".

. Thefunction noc,(j, X), which gives the number of occurrences of the symbol j in the string x

over 2.
noc(j,£)=0

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node24.html (1 of 6) [12/23/2006 12:03:57 PM]

4.6 Coding of Tuples

(0, if j > k
noc(j, x-a) = § nocg(g, z), if a # j
| noci (g, z) + 1, ifa = 3.

. Then, the predicate tup(n, X), which specifies whether or not x codes an n-tuple, is given by

-

tup(n, X) = nocy ; 1(,,X)=n—1

. Next, we define the function prt,(j, x, n), which gives the part in the string x over 2 J between

the nth and the n+1st occurrence of the symbol j,

‘max z<zIpy <zIp<z[z=y -2 Yo
Anocg(f,y1) = n A —oeeg(d, 2)],

i = 4
Pril, % n) if nocg(j,z) > n

|z + 1, otherwise.

Observe, that if x has n occurrences of j, then prt,(j, X, n) gives the part of x between the nth
occurrence of j in x and the end of x.

.« Next, we define the primitive recursive uniform projection function as follows:

prig (), 2, 5-1), if tup(n,z) A1<j<n

T (n,j,%) =
(n,], X) T + 1, otherwise.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node24.html (2 of 6) [12/23/2006 12:03:57 PM]

4.6 Coding of Tuples

Finally, the projections H;-l are defined by

[T 9 = In, j, %).

Thus { : }.n_ together with H? HE establish a one-to-one correspondence between all n-

tuples of natural numbers and all strings over EI—, +1 with n- 1 occurrences of ™ ,". Furthermore,

the uniform projection function 11 allows for the decoding of every natural number as a unique
tuple of natural numbers.

As another application of coding we at last show that it is possible to define several functions
simultaneously by induction.

Proposition 4.14 Let g3,..., 9y, ad hy,..., hy, be (primitive / partial) recursive functions. Then the
functionsfy,..., f;, defined by

fi(0, T M =gi(L")

— g — —
fi(y+ 1, T n) = hi(y’ fl(y’ & n)’"" fm(y’ &z n)’ & n)

foreach1<i<m, areaso (primitive/ partial) recursive.
Proof: Define G and H by

— —* —

G(Z M= (G T M,.. gn(") I
— —
Hy.z M= {hy [@... ILn@, 2)....
—+
oy 117 @) T @, Z7))

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node24.html (3 of 6) [12/23/2006 12:03:57 PM]

4.6 Coding of Tuples

and then the function F by
— —
F(O, % 1)=G(Z 1)

F(y+1, T M)=H(y, F(y, T "), L n)

Clearly, G, H and hence F are (primitive/ partial) recursive. We first show by induction that

FOL 2 = (0 20, fon 1) D

@ |nduction basis:
FO.Z m=G(Z ")
= {gl(T n)""1 gm(Z n) }'ﬂl

= (1,0, "), 1,0, "))y,

@ Induction step:

v v v
Assumethat F(y, Z M) = {,(y, Z ..., - (y, Z ") }ym . Then,

- =

F(y+ 1, L ") =H(y, F(y, £ "), L' n)

= Hy, (R 2, Fn 3 T 1) Y, 2 1)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node24.html (4 of 6) [12/23/2006 12:03:57 PM]

4.6 Coding of Tuples

—+ =

= {hl(y’ f]_(y, T n)""1 fm(y1 Z n)’ T n)v--,
¥ F10%, & e 3, 2), L), Dy

= (fiy+ 1, T 1),y + 1,2)

— ™ — N :
Therefore, we see that fi(y, £ ") = 4 (F(y, & ")), and sofy,..., f,are each (primitive / partial)

recursive.

. We now seein retrospect that in the proof of Theorem 4.6 the definition of the functions gQi are

legitimate primitive recursive definitions.
. We can now see that it suffices to consider only (primitive / partial) recursive functions of one
variable. Suppose f is a (primitive / partial) recursive function of n variables and let f1 be the

(primitive / partial) recursive function defined by f(x) = f (11T (x),..., LI% (x)). Then, for any

input xy.,..., X, € T ntof, we seethat
F (g %) = (X X0).

Therefore, every (primitive/ partial) recursive function of nvariables can be replaced by a

(primitive/ partial) recursive function of one variable whose input is {xl,..., X }.n_ instead of

X1,---» X FUrthermore, we can easily implement (primitive / partial) recursive functions with
outputs by "interpreting” outputs as tuples.

Ne:{t| Up| Previous Caﬂtent5| Iﬂde:{|

Next: 5. Diagonalization Arguments Up: 4. Primitive Recursive Functions Previous: 4.5 String

Operations
Bob Daley

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node24.html (5 of 6) [12/23/2006 12:03:57 PM]

4.6 Coding of Tuples

2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node24.html (6 of 6) [12/23/2006 12:03:57 PM]

5. Diagonalization Arguments

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 6. Partial Recursive Functions Up: Lecture Notesfor CS 2110 Introduction to Theory Previous:
4.6 Coding of Tuples

5. Diagonalization Arguments

Q Observe that there clearly are LOOP programs which compute non-total functions:

INPUT(X1)

UNTIL Y, TRUE DO

ENDUNTIL
OUTPUT(Y)

Thus, because of the foregoing we must add some operation which can transform total functionsinto
non-total functions to our set of primitive recursive functionsin order to capture all the functions
computed by LOOP programs. In fact, we now give an argument which shows that all models of
computability must include some non-total functions.

Proverb 5.1 To define something (e.g., afunction) which does not have a specified property, make it
different from al those things (i.e., functions) which do have that property.

Arguments that use this proverb are called diagonalization arguments.
Example5.1 There exist uncountably many total functions from NN,

Proof: Let fy, fy,... be some list of the countably many functions from M to M. Consider the followi ng

tableau:
Table 5.1: Diagonalization
Construction

fo(0) fo(D) fo(2) fo(3) fpo(4) 0 0 O
f1(0) £1(1) f1(2) f1(3)

f2(0) fo(1) 12(2) f2(3)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node25.html (1 of 4) [12/23/2006 12:04:00 PM]

5. Diagonalization Arguments
f3(0) f3(1) f3(2) f3(3)
f4(0) f4(4)
0 0

(0) 0)

) 0)

Then the function f°(n) = f.(n) + Lisclearly different from each function on the list. Moereover, since

each function on thelist istotal, so isfC.

ﬁ Many arguments by contradiction are in fact diagonalization arguments in disguise.

Example 5.2 The cardinality of the power set 2X of any set X is greater than the cardinality of X itself.

Proof: We denote the cardinality of aset Y by #Y. Clearly, #X < #2X, since we can define a function h :

X —* 2X by h(x) = {x}. Now suppose g : X —* 2X isany function. We show that g cannot be onto
(so 2X must have more elements than X). Define

Xd={x € X:x E‘g(x)}.
If g isonto, then thereis some element y € X such that g(y) = Xd. Consider the question whether y €
Xd:

y EXd ==y E-g(y) =y E‘Xd contradiction!

y EXd = yEgy —ryEX contradiction!

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node25.html (2 of 4) [12/23/2006 12:04:00 PM]

5. Diagonalization Arguments

Therefore, no g : X —* 2X can be onto. We can also give an explicit diagonalization argument as

follows: Let fy = X gk, O

1, if z € g(k)
W9=90, if z ¢ g(k)

Then, define

0
1

1, if fi(zx)

"0, if £,(z)

Then, 9 isatotal 0 - 1 valued function on X, i.e., 1t isthe characteristic function of some subset X° of X.

But, X° € 2X and X° is different from each set g(k), so g cannot be onto. Observe!

X2 ={x:f°(x) = 1}

= {X: f(x) = O}
= {x:x €g(x)}
:Xd

. Under the assumption that the class of effectively computable functions should be countable and
that programs for them should be effectively listable, we can show that the effectively
computable functions must contain some non-total functions, i.e., functions which are undefined

for some inputs.

In the proof above that there are uncountably many total functions from M to M if welet f, be

the function computed by the nth program in the effective listing of programs for computable

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node25.html (3 of 4) [12/23/2006 12:04:00 PM]

5. Diagonalization Arguments

functions, we see that if all f,, are total, then so is°.

But, f° is also effectively computable (intuitively) since on input n we simply find the nth
program; run it on input n; and then add 1 to the result.

Thus the list cannot contain all the effectively computable functions, which contradicts our
assumption. Thus, the list must contain some non-total function.

. Thisargument also shows that there cannot exist any effective listing of all and only the total
computable functions.

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 6. Partial Recursive Functions Up: Lecture Notes for CS 2110 Introduction to Theory Previous.
4.6 Coding of Tuples

Bob Daley

2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node25.html (4 of 4) [12/23/2006 12:04:00 PM]

6. Partial Recursive Functions

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|
Next: 7. Random Access Machines Up: Lecture Notesfor CS 2110 Introduction to Theory Previous: 5.
Diagonalization Arguments

0. Partial Recursive Functions

Notation 6.1 Weuse ¢' : ?ff : H,... to denote (possible) partial functions.

We usef, g, h,... to denote total functions.
@ (x) + meansthat © (x) is defined (convergent), i.e., x € dom .

‘:f’(x) T means that '?L"(x) isundefined (divergent), i.e., X Edom ¢'

@ = Y meansthat for al x either both @ (x) T and ¥ (x) T,0or @) + and ¥ (x) + and P (x) =
’Ifi’(x).

Definition 6.2 The function ‘fv‘ - I{n —— N isobtained from the function *Iﬁ! - M+l — N

_}.
viaminimization if for all &£ n = Nn

m, where m is the least number such that for all
¢(§n)= 0 <k <m, Pk, En] = () and ¥(m, }m] #0

T, otherwise.

— —
'i’(i‘ M) =min y[?fi’(y, 4l ?é 0] denotes that @I’ is obtained from ’IJE’ viaminimization.

. Theintuitive basis for minimization is that of an unbounded search for the first y satisfying the

h, = 7; : : / :
property that ¥ (y, n) 0. Inthisregard, since ¥ may be anon-total function, we must be

—+ —
sure that ﬂ’(k, Zn) 4' forall 0 < k< m before testing ":Ji’(m, Tn).

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node26.html (1 of 4) [12/23/2006 12:04:14 PM]

6. Partial Recursive Functions

— —
. |f Pisapredicate, then min yP(y, ' " means min y[XP (y, L ") ?E 0].

Definition 6.3 A function is partial recursiveif it can be obtained from the base functions (null,
successor, projections) by finitely many applications of the operations of substitution, primitive
recursion, and minimization.

. A partia recursive function which istotal is called total recursive.
. A predicate Pisarecursive predicateif X p isatotal recursive function.
Theorem 6.1 Every partial recursive function is computed by a LOOP program.

Proof: We need only add to Theorem 4.5 an additional case in the induction step dealing with the
operation of minimization.

@ Case 3:
Suppose

BT =miny{ ¥y, T # 0

and let Pbe a LOOPprogram for W and let Y1, Y 121, W 1be new program variables which do not

occur in P. The program for ';f’is given by:

INPUT(Y1,....Y})
W, « P(le PEATPE Yﬂ-)
UNTIL W, TRUE DO

Z, 4 Z.+1

W, « P{le ez . Yﬂ-]

ENDUNTIL
OUTPUT(Z,)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node26.html (2 of 4) [12/23/2006 12:04:14 PM]

6. Partial Recursive Functions

Theorem 6.2 Every number-theoretic function computed by a LOOP program is partial recursive.

Proof: We need only add to the proof of Theorem 4.6 an additional case in the induction step dealing
with UNTIL loops:

@ Case3:
Suppose P- is of the form

unTiL X; TRUE DO

Q

ENDUNTIL

L et this be the tloop (of any kind), and let Y ;be an imaginary program variable which will be used to

count the number of times through the UNTIL loop, and et gQi be the set of functions defined previously
in the proof of Theorem 4.6. Define,

h(Z 1, Y™ = miny, [0 (L 7, Y1 Yoo Vi) 7 O,

Then,

—+ -

(1, UM =g (LT, yy,, N(L T, UM, yig).

Theorem 6.3 Fix some alphabet 3 k . The class of number-theoretic functions computed by LOOP

programs over EI—, Isidentical to the class of partial recursive functions.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node26.html (3 of 4) [12/23/2006 12:04:14 PM]

6. Partial Recursive Functions
* Observe, that there is an effective (i.e., computable) procedure which given a LOOP program over

E; constructs (an expression for) the partial recursive function which computesit. Conversely, thereis
also an effective procedure which given a partial recursive function constructs a LOOP program over

E}: which computesit.

Q Observe aso that for any LOOP program text, the partial recursive function which computesit is

independent of the al phabet 2 % Which is used to specify its semantics.

Q Observe further, however, that the complexity of a LOOP program does depend on the al phabet

E;.-, , Since it depends on the length of the internal and 1/0O representation used. Specifically, since for

anyk>1,| K (X |= |-Iogkx-| , Where |-y-| denotes the |east integer :_}y, but | 1 (X) | =, we see

that between any two alphabets of more than one symbol, the respective complexity measures are related

by a constant factor, whereas between ET and any other alphabet consisting of more than one symbol

the difference in complexity can be exponential.

Ne:{t| Up| Previous Caﬂtent5| Iﬂde:{|

Next: 7. Random Access Machines Up: Lecture Notesfor CS 2110 Introduction to Theory Previous: 5.
Diagonalization Arguments

Bob Daley

2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node26.html (4 of 4) [12/23/2006 12:04:14 PM]

7. Random Access Machines

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 7.1 Parsing RAM Programs Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 6.

Partial Recursive Functions

7. Random Access M achines

A random access machine is an idealized computer with a random access memory consisting of afinite
number of idealized registers (i.e., they can hold any sized number) Ry, R,,... whose contents are strings

over some al phabet Ek , and which has afinite set of machine instructions. The set of machine

instructions are as follows:

Table 7.1:RAM Machine Instructions

Machine |Assembly |Effect
Instruction | Language
Umlj; jmp; Ry
jmpg: if aisthe leftmost
symbol of R, then GoTo
linej of the program
k/mlj; Jjmpy Ry
k+1m; |suc; Ry
suc,: concatenate
an a to theright
end of R,
2k/m; suc, Ry,
2k + 1/m; |inp Ry, input avalueinto Ry,
2k + 2/m; |out R, output avalue from R,

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node27.html (1 of 3) [12/23/2006 12:04:17 PM]

7. Random Access Machines

’2k +3/m:; ’Isf R ’delete |eftmost symbol of Ry,

Definition 7.1 A RAM-program over EE Is asequence of RAM statements §;,..., S, such that for some

1<m<n,
1.
S, Sy arethe only input statements
2.
S, isthe only output statement
3.

and no conditional jump statement in S, + 1, ..., $,. 1 €an cause ajump to any line <m

Definition 7.2 A RAM-program P over EE computes the (partial) function f : (E}f—,)n — EI—, if

and only if
1.
there are n input statements of P;
2.
for al xy,..., X5, When Pisexecuted T with x4,..., X, asitsinput,
(@
P haltsif and only if f (Xg,..., X) ¥,
(b)

if P halts, then P outputs f (X1,..., Xp)-

1' Execution of a RAM program involves:

initially all registers have value 0

statements are executed according to the “"obvious' semanticsin the “"obvious' order.
Proposition 7.1 Every function computed by a LOOP program is also computed by a RAM program.

Proof: (Left as an exercise)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node27.html (2 of 3) [12/23/2006 12:04:17 PM]

7. Random Access Machines

. 7.1 Parsing RAM Programs

. 7.2 Simulation of RAM Programs
. 7.31ndex Theorem

. 7.4 Other Aspects

. 7.5 Complexity of RAM Programs

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 7.1 Parsing RAM Programs Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 6.
Partial Recursive Functions

Bob Daley
2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node27.html (3 of 3) [12/23/2006 12:04:17 PM]

7.1 Parsing RAM Programs

[Wext Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 7.2 Simulation of RAM Programs Up: 7. Random Access Machines Previous. 7. Random Access
Machines

/.1 Parsing RAM Programs

Every RAM program over E;; Isastring over the a phabet E;; U {/;} = E;H_g ,il.e, the/and;

are the k+1st and k+2nd | etters of b3 k-2 , respectively. We will use'/' and ;' to denote (the codes of)

these special symbols. We now show that given any natural number, regarding it as a string over

Ek +2 , thereis aprimitive recursive function which ""parses” that number.

. First suppose that x codes a RAM instruction (minus the ";"). We define primitive recursive
functions opc, reg, gto, which produce, respectively, the opcode part of x, the register named in X,
and the goto part of x (if x codes a conditional jump instruction).

opc(x) = pre + o' X)

Sﬂfﬁ:{-ﬂ {,:’ﬂ: I]v if NoCk42 {,:’H: I] =1
reg) = § Prtga('/'s 2, 1), if nocgya('/', z)
0, otherwise.

2

prig ('), z,2), if nocgio('/', 2) =2

to(x) = :
o) 0, otherwise.

. Next, we define a primitive recursive predicate ins(x) which determines whether x codes a legal
instruction (minus the ;"):

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node28.html (1 of 3) [12/23/2006 12:04:20 PM]

7.1 Parsing RAM Programs
ins(x) = (Tocg 4 (5, %) N (ope(x) = 2k + 3)
A (ope(x) > 0) /A (reg(x) > 0)
A (ope(x) =k = noc, 4 (1, X) = 2)

A (ope(X) > k == nocy . o(/', X) = 1)

. Suppose now that x codes a RAM program. We define primitive recursive functions Ing(x) and Ine
(j, X) which give, respectively, the number of lines of x and the jth line (ie., instruction) of x:

Ing(x) = NOCx + 2(5', X)
Ine(j, X) = Prig + 205, %,) — 1)
. Next, define primitive recursive programs nrg(x) and mxr(X) which give, respectively, the

number of arguments of program x (i.e., the number of input statements), and the maximum
number of any register used in x.

nrg(x) = minm < Ing(X)[Y <mjj >0 = opc(ine(j,) = 2k + 1]
A Y <ingx[j >m = opc(ine(j, x)) # 2+ 1]]
mxr (x) = miny < x 1"?"'rj < IngX)[j >0 = reg(Ine(j, X)) <]

. Then, we define the primitive recursive predicate prg(x) which specifies whether or not x codes a
legal program:

pro0) = V) = Ing(x)[j >0 == ins(ine(,)] A (nrg(x) > 0)
A (nrg(¥) <Ing(x)) /\ (ope(ine(ing(x),) = 2k + 2)

N vj < Ing(x) - 1 [opc(Ine(j, X)) ?é 2k + 2]

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node28.html (2 of 3) [12/23/2006 12:04:20 PM]

7.1 Parsing RAM Programs
A Vi <ingxli >0 A opc(ine(, x) <k =

nrg(x) < gto(Ine(j, x)) < Ing(X)]

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|
Next: 7.2 Simulation of RAM Programs Up: 7. Random Access Machines Previous. 7. Random Access

Machines

Bob Daley
2001-11-28
©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node28.html (3 of 3) [12/23/2006 12:04:20 PM]

7.2 Simulation of RAM Programs

Mext| Up| Previous| Contents| Index
Next: 7.3 Index Theorem Up: 7. Random Access Machines Previous: 7.1 Parsing RAM Programs

7.2 Simulation of RAM Programs

We now show how to simulate the execution of a RAM program (coded by) p over EE on inputs (coded by)
y= {xl,..., Xn }ﬂ_ . Thus, pisastring over E;H_g andy isastring over Ek+l . In order to do this we need

at each step to record the " state” of the program execution, which will be given by the pair {j, z }g , Wherej
Is the current line number, and z codes the current values of the registers used by p (so zwill be amxr(p)
tuple).

. First, we need to show that the primitive operations of RAM programs are primitve recursive. We
define primitive recursive functionsval(p, z, j), Ind(p, z j), Isf(p, z j), suc(a, p, z j), and inp(p, z, j, M),
which give, respectively, the current value of register j, the leftmost symbol of register j, the result of
deleting the leftmost symbol of register j, the result of adding the symbol a to the right end of register
], and the result of copying minto register j:

(mar(p), 4, 2), i 0 < j < mar(p) and tup(mar(p), 2)

val(p, z,j) = .
bz 0, otherwise.

Ind(p, 2, j) = s + 1" (val(p, z), |val(P, z J) 41 — 1)

inp(p, z, j, M) =is9(P, z j) - repy + 1(val(p, z j), m, sufy + 1(is9(p, Z J), 2))
Isf(p, z, j) = INP(P; Z,], suf + 1(Ind(p, &, J), val(p, Z,})))
SUC(a, P, Z J) = Inp(p’ Z, j’ val(p, Z, J) ’ a)

whereisg(p, z j) =val(p,z 1)-',-~-"-val(p,z | — 1) ',

. We can now simulate the execution of RAM programs. We define two primitive recursive functions nxl|
(p, ¥, z j), which gives the next line of program p on input y to be executed given that the current
register values are z and the current lineisj; and nxv(p, v, z, j), which gives the next values of the
registers for program p on input y given that the current register values are z and the current lineisj:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node29.html (1 of 4) [12/23/2006 12:04:24 PM]

7.2 Simulation of RAM Programs

(gto(Ine(j,p)), if 3 <k [ope(lne(j,p)) =i
nx|(p, Y, Z, J) = 4 Elld Iﬂ-d{p., z., Tﬂg{fﬂﬁ{j,p}}} B JIE‘]
|7+ 1, otherwise

suc(a, p, z, reg(Ine(3,p))), if ope(ine(s,p)) =k +a
Isf(p, z, reg(Ine(j, p))), if ope(lne(j, p)) = 2k +3
mv(p.y.z.j) = § inp(p, z, reg(ine(j; p)), I(nrg(p), 5,v)),
if ope(lne(s,p)) =2k +1
|z, otherwise.

. Now we define the primitive recursive function ssm(p, y, m), which gives the pair {j, z }g which

codes the current line and the current register values after m steps of the computation of p on input y:

sm(p, v, 0)= {1, zro(mxr(p)))2
sim(p, y, m+ 1)= {rd(p, v, 113 gm(p, y, m)), 113 (sim(p, y, m)),

(. y, 113 simip, y, m)), 113 (simip, y, m)))2

where zro(n) = {O O}ﬂ_.

. Next, we define the partial recursive function stp(p, y), which gives the number of stepsin the
computation of p oninput y if p halts on input y:

stp(p, y) = mint{ 113 (sim(p, y, 1)) = Ing(p)]

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node29.html (2 of 4) [12/23/2006 12:04:24 PM]

7.2 Simulation of RAM Programs

. Now, we can define the universal" partial recursive function @5““” (p, y), which gives the result, if

any, of the computation of p on input y:

(T1(mar(p), reg(Ine(ing (p), p)), 2(sim(p, y, stp(p,y)))),

¢'uﬂﬂ (P, y) = § if prg [p}
| T, otherwise.

#® Observethat if p does not code alegal program then ¢'mw (p, y) isundefined for al y. We define an

indexing or Godel numbering { @Iv‘.i} of the RAM computable functions (of one argument) by letting @Iv‘.i

denote the partial recursive function computed by the RAM program (with code) i. Observe that since every
partial recursive function is computable by a LOOP program, and hence in turn by a RAM program, every

partial recursive function isincluded inthe list { ‘f"-;' }. The promised effective trandlation of RAM programs

into partial recursive functionsis given by the following.

Theorem 7.2 For the indexing { @Iv‘.i} given abovethereisa "universal" partia recursive function @Iv‘uﬂﬂ

such that for all xandy, Puny (%, y) = Pz (¥).

. Thisresult is not specific to RAM programs and partial recursive functions. We could have just as well
written a LOOP program which transforms partial recursive function definitions into RAM programs.
. Since every partial recursive function is computable by a RAM program, there exists a RAM program

Punv which computes the function t,?'»‘“m, , 1.e., aRAM program which interprets (i.e., an " interpreter”

for) other RAM programs and simulates their execution.

. Observe that in the process of defining ¢'uﬂ.u only one application of (unbounded) minimization was

used. Therefore, every partial recursive function can be computed by a LOOP program which uses
only one UNTIL loop!

* The equivalence of LOOP computable, RAM computable and the class of partial recursive functions

gives empirical evidence for Church's Thesis, which states that the class of partia recursive functionsyield a
formalization of our intuitive notion of effectively computable function.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node29.html (3 of 4) [12/23/2006 12:04:24 PM]

7.2 Simulation of RAM Programs

Ne:-:t| Up| Previous Cuntent5| Iﬂde:-:|

Next: 7.3 Index Theorem Up: 7. Random Access Machines Previous. 7.1 Parsing RAM Programs

Bob Daley

2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion
thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node29.html (4 of 4) [12/23/2006 12:04:24 PM]

7.3 Index Theorem

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|
Next: 7.4 Other Aspects Up: 7. Random Access Machines Previous. 7.2 Simulation of RAM Programs

7.3 Index Theorem

Theorem 7.2 shows that we can effectively interpret RAM programs. We now show that we can also
effectively transform them. In particular, we show

Theorem 7.3 For every m,n € N, there is a primitive recursive function S, such that for every

RAM program p of m+ n agruments, S,"(p, X1,-..» Xm) IS @ RAM program of n arguments such that

DSn 0,21,) Vs Yo) = Pp (Xtseve X Yreos Vi)

The inutitive meaning of Theorem 7.3 isthat given any RAM program p of m + n arguments and any set
of fixed values xy,..., Xy, we can build these as constants into p and construct a program S,,\"(p, X1,---, Xp)

of the remaining n arguments which behaves exactly like p with its first m arguments fixed to be xy,...,
Xm- Thiswill allow usto build data into programs. We will suppose that Xg,..., Xy, and yy,..., y,, are coded

astuples and so will denote them by x and y, respectively. Thus, we need to show that ';?5 S™ (p,x) (y)=

Pp (%,).

We can imagine the structure of p consisting of minput statements (which will be replaced), followed by
the remaining n input statements, followed by the remainder of p.

Figure 7.1:Index Theorem Transformation

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node30.html (1 of 5) [12/23/2006 12:04:29 PM]

7.3 Index Theorem

P S::i[pv 4 P '.'"I"'m]
. Copy I,
inp R, —2 to R,
COpY Iy :

mp R,, ——= toR.,

~ other n
input stmts

rest
of p

Proof: First, the primitive recursive function isgy + 1(p, z J), mentioned previously, is defined by:
S0+ 1P, 2) = minyy Sz Jy, Sz[z=y; -y, A nogeq(,yp) =]

Exercise 7.1 Show that if g isaprimitive recursive function of n + 1 arguments, then the function
defined by

fo U= (Dol Un
=1
=9(L ¥m-gx, Y

_}.
is primitive recursive. Observe that f (0, ¥ N) should have the value 0.

One key part of the required transformation is to replace an input statement by a block of statements

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node30.html (2 of 5) [12/23/2006 12:04:29 PM]

7.3 Index Theorem

which assign a specified fixed value z to the variable R, of the assignment statement. More precisely,
we need to replace the statement

INPR,

by the block of statements

suc, R

suc; Ry

where the specified value z = a, - a,,. Thisreplacement is effected by the primitive recursive function rcp
(z, m), which is defined by

|2|x+1

rep(z, m) = O (k+smb(z, j)) -/ -m-";
j=1

where smb(z, j) is the primitive recursive function which gives the jth symbol (from the left) of the string
7

Then, the block of such copy statements for the m-tuple x is given by

i

epo(p,m %) = () rep(1T (m j,), reg(ineg, p)
=1

Next, we need to adjust the goto parts of the rest of the program in order to account for the change in the
number of lines. The function adl(z, r, s) adjusts the goto part of the instruction coded by zby +r if r >
0, and by - sif r =0, and is defined by

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node30.html (3 of 5) [12/23/2006 12:04:29 PM]

7.3 Index Theorem

P

ope(z) * [- reg(2) ! [' - (gto(2) +),
if ope(z) < kand r >0

adizr,9= § ope(z) ' /' -reg(z) /' - (gto(z)—s),

if ope(z) < kand r =10

| 2, otherwise.

and the result of adjusting all the lines of a program p is given by

ing(p)

adp(p, r, s) = O adl(Inej, p), r,s) - "'
j=1

Finally, we can express the definition of the transfoirmation S, by

Sn"(p, X) = sufy 4 2(ISTy + 2(P, M), 1S + 2(P, M+ Nn,5))
’ Cpb(p, m, X)

- adp(sufy 4 5T + 20 M+ 1.3,), [X kg2 + 1= @x m),

@xm)—1= |x|g42)

-

The number | x | k+2 + 17 (2x m) arises from the fact that the net increase in length due to the copy

block is equal to the length of x minus the mlines which are replaced. Observe, that it is possible for this
number to be negative (e.g., when each element of the mtuple xisa0).

Ne:{t| Up| F’reviﬂu5| Ccmtent5| Iﬂde:{|

Next: 7.4 Other Aspects Up: 7. Random Access Machines Previous. 7.2 Simulation of RAM Programs
Bob Daley

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node30.html (4 of 5) [12/23/2006 12:04:29 PM]

7.3 Index Theorem

2001-11-28
©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node30.html (5 of 5) [12/23/2006 12:04:29 PM]

7.4 Other Aspects

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 7.5 Complexity of RAM Programs Up: 7. Random Access Machines Previous: 7.3 Index
Theorem

7.4 Other Aspects

. We can construct non-deterministic RAM programs by adding instructions of the form

2k+4fi; nipigor

which non-deterministically selects one of two lines (j;0r j,) to jump to.
. We can construct probabilistic RAM programs by adding instructions of the form

2k+5,0; Pipi1ors

1
which selects with probability 3 one of two lines (j;or j,) to jump to.

We distinguish between deterministic, non-deterministic, and probabilistic RAM programs by using the
notation DRAM, NRAM, and PRAM, respectively.

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 7.5 Complexity of RAM Programs Up: 7. Random Access Machines Previous: 7.3 Index
Theorem

Bob Daley

2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node31.html [12/23/2006 12:04:32 PM]

7.5 Complexity of RAM Programs

Mext| Up| Previous| Contents| Index
Next: 8. Acceptable Programming Systems Up: 7. Random Access Machines Previous: 7.4 Other

Aspects

7.5 Complexity of RAM Programs

Definition 7.3 If Pisadeterministic RAM program (a DRAM program) over E}: with n inputs and

which uses only registersR4,...,R, , then we define the following complexity measures for P.

- —TE
S | = | + # of stmts of P executed on input =,

DRMtinep(En) = ¢ if P halts on it,

T, otherwise.

—+ max Y7, | R! |, V¢t < DRMtimep(z), if P halts,

DRMspaces(1) = T, otherwise
, otherwise.

_}.
where R;! denotes the contents of register R; at step t of the computation of P on input & .

Proposition 7.4 The following predicates are primitive recursive:

— —
= | <

— —

QruispaceP: £ ™ Y) = [DRMspace (£ 1) Sy

Proof: For time complexity, we have

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node32.html (1 of 3) [12/23/2006 12:04:35 PM]

7.5 Complexity of RAM Programs

— . . 9 —
QP 209 = 2= D 1 i) 1 simp, { 1)y, 2) = Ingi)

i=1

For space complexity, observe that given afixed amount of space, it is possible for a computation to
enter an infinite computation loop within that amount of space. In this case, since the space complexity is

still undefined, the predicate QDRMSpace must respond with False. Moreover, if the program is ever in the

situation where it is about to execute an instruction with a current memory contents that isidentical to an
instruction and memory contents combination that it encountered earlier, then clearly it isin such an
infinite loop. Thus, the number of distinct instruction-memory combinationsis an upper bound on the
number of steps a program can execute in an a priori given amount of space beforeit iscertainto bein
an infinite loop. Given this analysis we now define

Q (. Zny) = Fz2<Ing(p) x b [Hf sim(p, { Z 1)y, 2) = Ing(p)

DRMspace

AV <z 11T Emm, (Z0hy, 2) et +1— ma() <yl

where the term 1 — mixr(p) is (minus) the number of commas in the internal representation of the

contents of the registers of p.

Proposition 7.5 For each DRAM program p there exist constants c,, ¢, such that

—}.
DRMtime,(£) < ¢ 0 X PRMspace (i)

DRMspace(E”) < DRMti meg(-_T}”)

Proof: Thefirst inequality follows from the analysis given preceding the primitive recursive definition of

QDRNIS'%lce in Proposition 7.4. The second inequality follows since the only RAM instructions which can

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node32.html (2 of 3) [12/23/2006 12:04:35 PM]

7.5 Complexity of RAM Programs

increase the space beyond that occupied by the input is the suc, instruction, which can only increase it by

one symbol.

Proposition 7.6 Let p beany DLOOP program over EE , and let p' be the equivalent DRAM program

over EE constructed in Proposition 7.1. There exist constants ¢4, C,, and c3 such that

DRMtime(En) =< 1 x (DLPtimey(En))CZ

— —
DRMspacey(& 1) < c3x DLPspace,(&)

Next' l_Jp| Previous CCIFI’[EFI’[S' Iﬂde:-:|
Next: 8. Acceptable Programming Systems Up: 7. Random Access Machines Previous: 7.4 Other

A;s,gects

Bob Daley

2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node32.html (3 of 3) [12/23/2006 12:04:35 PM]

8. Acceptable Programming Systems

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 8.1 General Computational Complexity Up: Lecture Notes for CS 2110 Introduction to Theory
Previous. 7.5 Complexity of RAM Programs

8. Acceptable Programming Systems

We now wish to examine the properties of computable functions without getting bogged down with the
details of any of the particular models which we have heretofore studied. Therefore, we generalize our
notion of (standard) model of computable function.

Definition 8.1 A programming systemisalisting @g, @1 ,... (denoted by { ©;}) which includes all of

the partial recursive functions (of one variable) over N.A acceptable programming systemisa

programming system { G'LI’.;'} for which

there exists a universal program unv such that ';'L"uﬂﬂ @i,x) = @5’.1- (x) for dl i and x; and

there isatotal recursive Sm-n function S, such that ¢'5‘:‘_ (i,z) ¥) = ¢'.;' (x,y) for al i, mtuples

X, and n-tuplesy.

We will abbreviate S,\" by Swhenever it is clear how many arguments it takes.

Theorem 8.1 Let { @5’.1-} be any acceptable programming system, and let { ’Iﬁ’.i} be any programming
system. Then, { ’%Lf*‘.i} Is acceptable if and only if there exist total recursive functions f and g such that for

. f f
al i, '?5'“-;-3 = Vi and Wy = ;.
Proof: Since { '?L".i} IS acceptable, there exist partia recursive ¢'um’ and total recursive Ssuch that

Punw (i, 0= Pi (%)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node33.html (1 of 4) [12/23/2006 12:04:40 PM]

8. Acceptable Programming Systems

'?5'5{.;',::))= Pi(x,y).

@ Case(=)

Since{ ’Ifi’.;'} is also acceptable, there exist partial recursive Jtl'lljuﬂu and total recursive S such that

Yunw (%= Vi ()
’Iﬁ"s’{i,mj W= Yixy).

Now, since{ ';f’.;-} isalisting of allpartial recursive functions, there is an index (i.e., program code)
esuch that ¢' = ’Iﬁ*‘uﬂﬂ. . Then, we define

f(i)=Se i)
so that

Vi (0= Vunw (L0 = Pe (i, = Psei) 0= Preiy .

Similarly, there exists an index €'such that ’Ifi’f_.r = ¢'uﬂﬂ. , and we defineg(i) = S(¢, i) so that 'Jt"v‘.;' (x) =

szi’g{.;'j (X).

@ Case(<==):
Suppose f and g are total recursive functions such that

ey =¥i ad Vg = P

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node33.html (2 of 4) [12/23/2006 12:04:40 PM]

8. Acceptable Programming Systems

Then, we can define the universal function for { ’fJ")i} by

Viunw (%) = Puny (1), 9 = Priiy 0 = Vi).

Finally, we define the function Sfor { ”"J")i} by
S(i, x) = 9(S(f (1), X))
so that

Ver(iz)) = Pars(ri)e) 0 = Ps(sinz) &) = Pray 6) = Vi (x,y).

Definition 8.2 A program transformation is any total recursive function whose domain and range are
programs (i.e., indices) for partial recursive functions.

Observe that this definition is vacuous in the sense that every number can be interpreted as a program.
However, it isuseful for itsintensional aspect.

. 8.1 General Computational Complexity
. 8.2 Algorithmicaly Unsolvable Problems

Mext| Up| Previous| Contents| Index

Next: 8.1 General Computational Complexity Up: Lecture Notes for CS 2110 Introduction to Theory
Previous. 7.5 Complexity of RAM Programs

Bob Daley

2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node33.html (3 of 4) [12/23/2006 12:04:40 PM]

8. Acceptable Programming Systems

portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node33.html (4 of 4) [12/23/2006 12:04:40 PM]

8.1 General Computational Complexity

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 8.2 Algorithmically Unsolvable Problems Up: 8. Acceptable Programming Systems Previous: 8.
Acceptable Programming Systems

8.1 General Computational Complexity

One of the most important behavioral aspects of a computation is the complexity of the computation, i.
e., the amount of computation resources used during that computation. It will play akey role in many of
the proofs which follow, so we now define a general notion of computational complexity which is
suitable for our generalized model of computability.

Definition 8.3 Let { ‘fv‘.;-} be any acceptable programming system. A listing of partial functions { ':I‘.i }

Is a computational complexity measure for { @5'.1'} if it satisfies:

dom @; =dom @; ie, forali,x @0 + < P,

‘I‘.i (X) < yisarecursive predicateini, x, and y.

Clearly, the complexity measures defined for LOOP and RAM programs satisfy the first condition of a
general computational complexity measre. It is also clear from Proposition 7.4 (and its analog for LOOP

programs) that the second condition is satisfied by these complexity measures as well.

Proposition 8.2 If { ‘I’.i} is a computational complexity measure for { @5'.;'}, then ‘I‘.i isapartia

recursive function for each i.

Pr oof:

D; () =miny[P; 0 <yl

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node34.html (1 of 6) [12/23/2006 12:04:46 PM]

8.1 General Computational Complexity

Proposition 8.3 Thereisaprogram transformation 7 such that ¢'ﬂ.ﬂ = ‘I]'.;-.
Proof: Define

h(i,)= minyl i (0 <]

= ®; (v

Let e be aprogram for h, i.e., ';'L"E (i, X) = h(i, X), then by the S-m-n function which exists for { ';'L".i },

PS(e,i) W= Pe (i, %) =h(, 9 = P)

Therefore, we define 7 (i) = e, i), sothat @iy = P;.

* Nearly al program transformations which we will encounter will be defined in thisway using the S

m-n function.

Theorem 8.4 (Recursive Relatedness of Complexity Measures) Let { G’LI’.;'} and { ?fl‘l}-i} be acceptable
programming systems, and let g be atotal recursive function such that ¢' = Tﬁ?g{.i:, forali. Let{ ':I’.i}
and { ‘I".i} be computational complexity measures for { ¢'.;'} and { J!:'ff’-;; }, respectively. Then, there exists

atotal recursive function r such that for all i and for all x :_” i

;0 <rix, Yoy (9) and
Wi 0 = rix P ()

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node34.html (2 of 6) [12/23/2006 12:04:46 PM]

8.1 General Computational Complexity

Proof: Define the total recursive function r as follows:

r(x, z)=maxj£x{ ‘I’j (x),wg{jj(x): ‘I’j (x)Ez or ‘I’g{jj(x)ﬂz}

Then, for al x = i,

r(x, Wiy (9)= maxj < x{ L5, Yyiy 01 L0 < Wiy 0
or gy 9 = Wi)
= max { P; 9, ¥y(i) 9}
> ;v

similarly, r(x, L3) = ¥ gy (), for all x = i.

We fix some arbitrary acceptable programming system { @5'.1'} and computational complexity measure {

‘I:'.;' } for it which we will use from now on.
Proposition 8.5 Thereisaprogram transformation g such that for al x, ran ';'L"T =dom @5’_9{3::, :

Proof: Define the partial recursive function ’I,'i’ by,

Pixy)=mingd P, (I @) < M3 @ and 8, (1 @) =)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node34.html (3 of 6) [12/23/2006 12:04:46 PM]

8.1 General Computational Complexity
First, observe the ’f}") Isindeed partial recursive, since we can write Gﬁ'm” (T (x),y) for i}x (y) (where

T isthe program transformation of Proposition 8.3), and Gﬂ‘,m;. (x,y) for ';ﬂ‘;,.; (y). Next we have

Yy + = I a.2) P@ <nad D2(z) =y]

=y € ran O,

Leti beaprogram for ¥, s0 @; = ¥, and define g(x) = (i, X), o that Py(zy (v) = ¥ (x, y). Then,

y € dom Gﬁy{x}l — ';by{::] () ‘1' —y € ran ¢’.’E

Therefore, ran ';i‘;.; = dom 95‘9{,;}.

Proposition 8.6 Thereis aprogram transformation h such that for all x, ran Gﬂ‘h{,;} =dom '}{‘; :

Proof: Define the partial recursive function ’fJ") by

¥ (x, 0 = 11 minZ @ (115 (2) < 115 2))

W(z,y), if O (y +1)) > I3(y + 1)

Y y+1)= :
“YTDE\ M2y + 1), otherwise.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node34.html (4 of 6) [12/23/2006 12:04:46 PM]

8.1 General Computational Complexity

Leti besuchthat @; = ¥, and define h(x) = (i, X), sothat Ppy(z) (¥) = ¥ (x, y). We considler two

cases:

@ Casel:

dom @'5' = @
In this case, since dom ‘I‘;,; =dom '?",,weseethat ’@5’(x, y) T for all y, so that ran Gf’h{;,;j =

®=d0m ';i’;r

@ Case2:

dom ';?'?I ?é @

Observe first that since dom ';?5;," ?E @ the function ’Ifi’ must be total recursive. For eachy €
dom ¢',,clearly ’Iﬁ’(x, {y, ‘I’;,; (y) }g):y,sothat dom ';'L"I C ran @5;1{3::,.Ontheother

2
hand, if ’Iﬁ*‘(x, y)=12 ?E ’Iﬁ*‘(x,y- 1) (including the case y = 0), then we have that ‘I’;,; (2 < Hg

(y), so that @ (2) + andran ‘;I"h{::j C dom @,

00

Notation 8.4 For any predicate P, wewrite =Ix P(x) (or P(x) i.0.) if there exist infinitely many
00

numbers x for which P(x) is true. We also write v x P(X) (or P(x) a.e) if for all but finitely many
numbers x P(X) istrue. The expressionsi.o. and a.e. are abbreviations for “"infinitely often” and ~“almost
everywhere", respectively.

Theorem 8.7 For any total recursive function t there exists atotal recursive function f such that if ';?'5'.1-

=, then for all x =i, ®; () > t(x).

Proof: Proof is by diagonalization using Proverb 5.1. Define the total recursive function

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node34.html (5 of 6) [12/23/2006 12:04:46 PM]

8.1 General Computational Complexity

f (X) = max{ ¢'j xX)+1:] < xand ‘I‘j (X)Et(x)}.

Thus, if @; =fandx =1, then P; (x) > t(x), sSince otherwise we would have

i =f)=max{ P;) +1:] <x A P;x) <t}

> 0;0) + 1.

Thus, we see that there are functions which are functions which are a.e. difficult to compute with respect
to any given complexity measure. We observe that we cannot improve this result to everywhere difficult
to compute, since we can always ~ speed-up" the computation of any function on finitely many of its
inputs by building in atable with the corresponding outputs and then computing the function on those
inputs by table lookup.

Ne:{t| Up| Previous Ccmtent5| Iﬂde:{|

Next: 8.2 Algorithmically Unsolvable Problems Up: 8. Acceptable Programming Systems Previous:. 8.
Acceptable Programming Systems

Bob Daley

2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node34.html (6 of 6) [12/23/2006 12:04:46 PM]

8.2 Algorithmically Unsolvable Problems

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 9. Recursively Enumerable Sets Up: 8. Acceptable Programming Systems Previous: 8.1 General
Computational Complexity

8.2 Algorithmically Unsolvable Problems

Theorem 8.8 (Unsolvability of the Halting Problem) The function f such that for all x andy,

1, if ¢z(y)
0, if gz(y) T -

f(xy)=

IS not recursive.

Proof: Define the total function g(x) = f (x, X), and the partial function ’Iﬁ’ by

0, if g(z)

/ —
TR ifg@

0
1

If ?ﬁ? Is partial recursive, then thereis aprogram i such that ’3,'5’ = ¢' but then

Y()= 9;()=0 <= g(i)=0 <= &;() T

which is a contradiction. Therefore, ’1}5’ cannot be partial recursive, so that g and hence f cannot be total

recursive.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node35.html (1 of 5) [12/23/2006 12:04:51 PM]

8.2 Algorithmically Unsolvable Problems

* The following set H (referred to as the “Halting Problem") plays an important rolein

undecibability results:

H =x: b, 1.

Corollary 89 Theset H (and its complement E) IS Not recursive.

We will be able to show that there are many such problems which are agorithmically unsolvable. One
of the major techniques is to reduce one problem to another, i.e., to show that if one problem were
solvable then the other would also be solvable.

Definition 85 LetX, Y & N, We say that X is many-one reducible to Y (denoted by X Em Y), if
thereis atotal recursive function f such that for all x, x € X <= f(x) € Y. WewriteX =, Y

whenever X E.m YandY Em X.
Proposition 8.10 If Yisarecursive set and X Em Y, then X is also recursive.

Proof: Let f be atotal recursive function such that x € X <==+ f(x) € Y. Then, the characteristic

function of Xisgivenby Xx = Xy of,i.e,

Xx(®=1— Xy (fX)=1

Proposition 8.11 The following sets are not recursive:

IF]IH:{X: dom ‘ﬁ’;,- isfinite}
TOT ={x: O, is total}

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node35.html (2 of 5) [12/23/2006 12:04:51 PM]

8.2 Algorithmically Unsolvable Problems

Proof: Define the partial recursive function ’Ifi’ by
; .
Yixy= ql’llﬂf.l' (X x) = ‘ﬁ'unu (X, X).

Then,

0, if ¢, (z) 4 (ie., z € H)

YON=N 1, if do(z) 1 (e, 7 ¢ H)

Leti besuchthat @; = ¥ and definethe total recursive function f by f (x) = (i, X), so that @ f(zy (¥) =

’3;'5’ (X, y). Let tt be the everywhere undefined partial recursive function. Clearly,

N, ifzeH

Pre) = w, ifx & H

Therefore,x € H <= f(x) € TOT hence H <,,, TOT . By Proposition 8.10if TOT
were arecursive set, then so would Hl be recursive, contradicting Corollary 8.9. Similarly, x 'E H

— (X € [FIN, and H Em FIN, soif IFIN were recursive so would H be, again a

contradiction.

Definition 8.6 For any class C of partia recursive functions, we define the set of programs Pc

(called an index set) for these functions by

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node35.html (3 of 5) [12/23/2006 12:04:51 PM]

8.2 Algorithmically Unsolvable Problems

Pg:{i?l;fhEC}

Theorem 8.12 (Rice's Theorem) P¢ isrecursiveif and only if either Pc = 9 of Pc =N

Proof: Clearly, @ and I are recursive sets. So, suppose that Pc ?E @ and P ?é N et wbe

the everywhere undefined partial recursive function, and assume without loss of generality that w €
c. since Pe ?E N, there is some partial recursive function ’Iff such that ’Iﬁ*‘ E‘C. Let i be such that

'Jﬂ" = ’i?i’ , and define the partial recursive function
g(X’ y) = ¢'uﬂf.r (,y) +(¢'uﬂf.r (X, X) — l;btlﬂf.l' (X, X)).

Then,

Let j be such that ¢' = 5', and define the program transformation f by f (x) = §j, X), so that ¢' 21 (Y)
j flz)

= 8 (x, y). Then,

O, ifzeH

Prte) = w, ifz ¢ H

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node35.html (4 of 5) [12/23/2006 12:04:51 PM]

8.2 Algorithmically Unsolvable Problems

Therefore,x € H <= f(x) € P¢ sotha H <,, Pc,andso P cannot be recursive.

ﬁ Rice's Theorem says in essence that there are no non-trivial apsects of the behavior of a program

which are algorithmically determinable given only the text of the program. By trivial we mean that
either no programs have that behavior or all programs have that behavior. As such, Rice's Theorem
represents an extremely severe limitation on the power of algorithms,

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 9. Recursively Enumerable Sets Up: 8. Acceptable Programming Systems Previous: 8.1 General
Computational Complexity
Bob Daley

2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node35.html (5 of 5) [12/23/2006 12:04:51 PM]

9. Recursively Enumerable Sets

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 10. Recursion Theorem Up: Lecture Notesfor CS 2110 Introduction to Theory Previous: 8.2
Algorithmically Unsolvable Problems

9. Recursively Enumerable Sets

Definition 9.1 A set Xisrecursively enumerable (or r.e.) if and only if X=ran ';?5' for some partia

recursive function ¢'
By Propositions 8.5 and 8.6 we have

Corollary 9.1 A set Xisrecursively enumerableif and only if X =dom ';'L" for some partial recursive

function ‘fv‘ .

Corollary 9.2 A set Xisrecursively enumerableif and only if either X = @ or X=ran f for some total

recursive function f.

ﬁ Thus, we see that the class of sets generated by partial recursive functionsisidentical to the class of

sets accepted by partial recursive functions.

Proposition 9.3 A setisrecursiveif and only if both it and its complement are recursively enumerable.

Proof: Since 9 isclearly recursive and r .e., it suffices to consider only non-empty sets.

) (=)
Since the recursive sets are closed under complementation, it suffices to show that every non-

empty recursive set is recursively enumerable. Let X be recursiveand lety € X. Then, Xis

enumerated by the function

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node36.html (1 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

I
=

z, if xx(z)

f(x)= :
” i, lf;‘:{x(i“)

'J({:::);

Suppose X is non-empty and enumerated by the total recursive function f and that X isnon-
empty and enumerated by the total recursive function g. Then,

1, if f(min y[f(y) =z or g(y) =z]) =2

eby= (0, otherwise.

Proposition 9.4 a) H isrecursively enumerable.

b) H isnot recursively enumerable.

Proof: H =dom %, where ¥ (x) = @5 (x). Since H isr.e, if H werer.e., then by Proposition 9.3

H would be recursive, which would contradict Corollary 8.9.

Proposition 9.5 If Yisrecursively enumerable and X Em Y, then X isrecursively enumerable.

Proof: Let Y=dom ’3:'5’ , for some partial recursive function ’Iﬁ*‘ and let f be atotal recursive function

suchthat x € X <= f(x) € V. Define @ = ¥ of, so that

P = Vi) + >t EYE=S X EX

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node36.html (2 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

Hence, Xisr.e.

Definition 9.2 A set Ziscalled complete for the class of recursively enumerable sets with respect to the
reducibility Em (called many-one complete) if and only if Zisr.e. and for al r.e. sets X, X Em Z

Proposition 9.6 H is completefor the class of recursively enumerable sets with respect to E.m :

Proof: Clearly, H isr.e. Now, let X be any r.e. set and let x be such that X = dom ';t';r Define the

program transformation f by

'if’fr;.i,jj @ = i).

Then,

yEX = Pu(y) + = Pf(z) @ + foralz
> Df(zy) (2 + for somez

= Pragy F0Y) +

Defineg(y) = f (x, y). Then,y € X <= g(y) € H,o0x<,, H.

Proposition 9.7 The set FIN isnot recursively enumerable.

Proof: Let the partial recursive ’?ff and total recursive f be as defined in Proposition 8.11. Then,

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node36.html (3 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

N, ifze H
dom O1@) =\ g if ¢ ¢ H

Therefore, x € H <= f(x) € FIN, o H <,, FIN, and by Proposition 9.5, if IFIN were

r.e., then so would H be, which contradicts Proposition 9.4.

Definition 9.3 A functioniscalled finite if and only if it has afinite domain.

. Thus, if Cisthe class of adl finite functions, then Pf:‘ - MN.

. We can effectively enumerate the class of finite functions as follows: Since each finite function f

consists of only finitely many pairs (Xq, Y1),---» (X ¥5n), We can code f by { {xl, Y1 }g {xn, Yn

}g }.n_. Next, we define the recursive function ’Iﬁf by

Ui, if 2 = ({Elvyl}‘h' -y {Eﬂvyﬂ}ﬂ}n
W(zx= andz=z;and 1<j<n

T, otherwise.

Letibesuchthat @5= ¥, andlet 1, = Pgy;). Then, for any finite function fwith code z, %
(z, X) = f(x), and hence ’Iﬁ’z =f. Also, if zdoes not code any finite function, then ’!f;z = W, the

everywhere undefined partial recursive function (which is afinite function). Thus, { ’1}5’3 } isan

effective enumeration of the class of all finite functions.
. Wefix{ ’95’.1- } asthe above effective enumeration of the class of al finite functions.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node36.html (4 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

Q Observe that there is a very important distinction to be made between effectively enumerating a

class C of functions, and effectively enumerating the class Pc of al programs for those functions. To

enumerate C we need only enumerate one program for each function in C. Thus, the effective
enumerability of the class of all finite functions does not contradict Proposition 8.11.

We now consider two lemmas which are very useful for demonstrating that a set Pc isnotr .e., where

Cisaclassof partia recursive functions.
Lemma 9.8 (Closure Under Finite Subfunctions) If Pc isre and ‘ﬁ’ € C, then there is some finite

function ¥, € Csuchtha ¥, T @

Proof: Let Pe ber.e, let ‘fv‘ € C, and define a program transformation g such that

o(y), if @o(z) >y

P01, if 0,(2) <.

Suppose ¢' has no finite subfunctions which also belong to C. If x E‘ H, then 935'2{3:3, = ¢' sog(x) €
Pe ifx € H, then @59{:,::, is afinite subfunction of '?LI’ (since G'LI’E{;,;;) T for all y:_” ‘I';,; (X)), so
90 € P . Thus x € H <= gx € Pe, andhence H <,,, P . But then, since P isr.

e., H isr.e., whichisa contradiction.

Therefore, ‘fv‘ must contain some finite subfunction ’1}5’3 C ¢' which also belongsto C.

Corollary 9.9 The set TOT Is not recursively enumerable.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node36.html (5 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

Lemma 9.10 (Closure Under Superfunctions) If Pe Isrecursively enumerable and ';’L" € C, then for

any partial recursive function % if @ € ¥ then ¥ € C.

Proof: Let P¢ ber.e andlet ¢'.;' € C, and suppose that ’Iﬁ*‘ isapartial recursive function for which

‘:?I’.;' C ’Iﬁ: Define the partial recursive function 7 by

ET"'(x, y)=minZ ‘I’;,; (X) <zor [11,1- (y) < 7]

=min{ Pz (), i ()}

Define the program transformation h such that

¢i(y), if6(z,y) | and @;(z) > 0(z,y)
gﬂ’h{:‘j (y) = ﬂ}{y)! if ﬂ'{i‘.,’y) ‘l' and P, (E] < ﬂ'(I‘, y]
T, if 0(z,y) T.

Assume that ’?fi E‘ C. We clam that

';bi'.l leEH

Pnie) = O, ifz € H

Presuming the claim istrue, wehavex € H <= hx) € P¢ sotha H <,, P, 0 Pe

can't ber.e., which is acontradiction.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node36.html (6 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

To show that claim first supposethat x € H, then Py (x) T

it D;(y) +,then Bxy) 4 and Py () > B(x, y):
it ©;(y) T,then O@xy) T,

so that in either case ‘ﬁ'ﬁ) (Y) = ‘:‘I’ (y).

Suppose on the other hand that x € H, then P (x) 4+ and B (x, y) +.

if @;(y) +,thensince @; © ¥, ¥ (y) + = @;(y), soineither case Pp(yy (v) = ¥

);
if @i(y) T,then Pz (0 < O(x,y), 50 Phizy) = ¥).

Thus, the claim and hence the lemmais proved.

Corollary 9.11 The set TOT ={x: ‘,TI’I Is not total}, the complement of TOT , ISnot recursively

enumerable.

Proof: Any total function extends the everywhere undefined function L', which belongs to TOT

Theorem 9.12 (Rice's Theorem for R.E. Sets) Let C be any class of partial recursive functions. Then,

Pc = {-T - ¢';r = C} Isrecursively enumerable if and only if thereissomer.e. set Z such that for

dix P, Ec+e— 7€z, C ¢_.
Pr oof:

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node36.html (7 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

) (+=):
Let Z be a (non-empty) r.e. set such that

Pc = {z: ¢, C ¢, for some z € Z}.

Define the partial recursive function E’by

where the total recursive function fis such that Z=ran f. Observe, that ’Ifi’j C ¢' , If true, will
eventually be discovered, since it entails checking that t;t'),l- has the proper outputs on afinite set of

inputs. Let x € PG.Then, ’1}5’3 C '?L";,;for some z € Z. Let ybe such that f(y) = z, so that E:"({x,y}g)

= X. Also, if H({X,y}g) -L,then 3({x,y}g):xand ’Iﬁ’ﬂyj - ¢',,sox'E 1:”f:‘.Therefore,
Pr=ran f
@ (=)

Leti besuchthat P = dom @; ang let g be atotal recursive function such that ‘:?I’g{zj =

Tﬁ?z for al z Define the recursively enumerable set Z by Z =dom (@5’.1- 0Q), so that

7€z = d;g2) 4 €= g9 € Pe = 1), € C.

Suppose @ € C. Then by Lemma 9.8there is some z € Zsuch that ¥, € @, . On the other hand,

suppose ¥, € @, for somez € Z Then, ¥, € Cand by Lemma9.10 @5 € C.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node36.html (8 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 10. Recursion Theorem Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 8.2
Algorithmically Unsolvable Problems

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node36.html (9 of 9) [12/23/2006 12:04:56 PM]

10. Recursion Theorem

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 10.1 Applications of the Recursion Theorem Up: Lecture Notesfor CS 2110 Introduction to
Theory Previous: 9. Recursively Enumerable Sets

10. Recursion Theorem

@ Special Case:

There exists a program e such that '?5'.3 xX) =e

@ Cdl Analogy:

Figure 10.1:Cell Analogy

d ell body — functional part

o nucleus — blueprint for cell d

(genetic information)

normal cell ¢

@ Replication Process:

Figure 10.2: Replication Process

<) o)

1. d acts on “d” to produce new cell
2. d copies “d’ into nucleus of new cell

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node37.html (1 of 5) [12/23/2006 12:05:01 PM]

10. Recursion Theorem

@ General Cdll:

Figure 10.3:General Cell

cell & with genetic info y
via recombinant DNA process)

recombinant cell

@ General Replication:

Figure 10.4:General Replication

Observation 10.1

Cell x with genetic information y
7= program" x with ““data" y
~2 Sx,Y)

Mimicing replication in agenera cell we find that for some program x (which does only replication)

Dr(y, 2) = SV, Y)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node37.html (2 of 5) [12/23/2006 12:05:01 PM]

10. Recursion Theorem

so that by the S-m-n function,

Ps(zg) (@ =V, Y).

Now, lety = x, so

PS(z,2) (D) = SX, X).

Finally, letting e = S(x, X), we have for al z

¢'e (29=e

* The program e is program x with data x.

Theorem 10.1 (General Form of Recursion Theorem) For every partial recursive function ’I,'i’ : N2

— N thereis a program e such that for al x, ’I;i’(e, X) = ‘fv‘e (x).

Proof: Let i be aprogram such that

D; (v, %) = ¥ (y, y), %).

Then, @55{.1-&:, x) = ’Qi’(S(y, y), X). Lety=iande= g, i), then we have

Pe ()= Ps(ii) 0= ¥ (S, i), 9 = ¥ (e x).

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node37.html (3 of 5) [12/23/2006 12:05:01 PM]

10. Recursion Theorem

Theorem 10.2 (Fixed-Point Form of Recursion Theorem) For every program transformation f : N
— N there Isaprogram e such that ';t'ﬁej, = @5’3.

Proof: Letf: M —= I beatotal recursive function and define the partial recursive function ’Ifi’ by

’Iff’(y, X) = @"_f{yj (X).

Then, by Theorem 10.1 there exists a program e such that '?53 x) = ’Iﬁ! (e, x) = '?LI’ fle) (%)

Proposition 10.3 For every program transformation f : N3 — N there exists a program
transformationg: N2 — N suchthat '?5'_,1-{.1-!:,;,2{.1',:,;” = 'S%{ﬂﬂ foralliandj.

Proof: Define the partial recursive function ’Iﬁ*‘ by

JIJI:} (v, 1, %) = ¢f{i:j15{y:i:jjj ().
By Theorem 10.1 there exists a program e such that f,fi'e (,j,x) = P (ei,j,X). Letg(i,j)=Se i, j).
Then,

Dyfii) 9= Ds(ed) 0= Pelij 0=V (eij x
= D r(,4,5(esirg)) ¥
= D r(i.4.9(i.3))

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node37.html (4 of 5) [12/23/2006 12:05:01 PM]

10. Recursion Theorem

As a consequence of the General Form of the Recursion Theorem we will, whenever we need to, assume
that programs which we construct have copies of themselves built into them.

. 10.1 Applications of the Recursion Theorem
o 10.1.1 Machine Learning
o 10.1.2 Speed-Up Theorem

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 10.1 Applications of the Recursion Theorem Up: Lecture Notesfor CS 2110 Introduction to
Theory Previous: 9. Recursively Enumerable Sets

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node37.html (5 of 5) [12/23/2006 12:05:01 PM]

10.1 Applications of the Recursion Theorem

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: 10.1.1 Machine Learning Up: 10. Recursion Theorem Previous. 10. Recursion Theorem

10.1 Applications of the Recursion Theorem

Corollary 10.4 The set TOT IS not recursively enumerable.

Proof: Suppose that TQT isr.e., and let f be atotal recursive function such that ran f = TOT :

Define the partial recursive function ’Ifi’ by

0, if Ve <y f(z) # 2

II —
Yoy= T, if 2 <y f(z) =z

By the Recursion Theorem there is a program e such that ’1}5’ (ey)= ‘fv‘e (y), so that

0, if Vz <y f(z) #e

Pe)= T, ifdz <y f(z) =e

supposethat @, istotal. Then,e € TOT andsoe € ranf, but by the definition of ', we see that
sz(z) ?‘5 e, which is a contradiction. On the other hand, suppose that 'Jt"v‘e isnot total. Then, e

Eran f, but again from the definition of ’If; weseethat 3z f (2) = e, which again is a contradiction.

Therefore, no such function f can exist.

Proposition 10.5 (Inefficiency Lemma) There exists a program transformation g : N2 — N such

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node38.html (1 of 3) [12/23/2006 12:05:05 PM]

10.1 Applications of the Recursion Theorem

that

dom ¢g[i,j} =dom @; M dom ¢'j

and

Vx € dom ¢9{i,j}[¢5{i,j}(x) = 9) N q‘g{i,j} (x) > ¢'j ()]

Proof: Define the program transformation f : N3 — N by

gﬁk{i“} -+ 1:, if tIlk{m} < gﬁj{.‘l‘}
¢;(z), otherwise.

Dr(i,gk) 09 = {

By Proposition 10.3 there exists a program transformation g : N2 — N such that Gi'y{i,j} =

D f(3.,9(3,3)) - Then, we have

bori 00 = Byti) (2) + 1, if Byijy(2) < 65(2)
D) gi(z), otherwise.

Therefore, if @i ;) () +, then Py 0= i and Py v (0> 5 ().

. 10.1.1 Machine Learning

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node38.html (2 of 3) [12/23/2006 12:05:05 PM]

10.1 Applications of the Recursion Theorem

. 10.1.2 Speed-Up Theorem

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 10.1.1 Machine Learning Up: 10. Recursion Theorem Previous. 10. Recursion Theorem

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://lwww.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node38.html (3 of 3) [12/23/2006 12:05:05 PM]

10.1.1 Machine Learning

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 10.1.2 Speed-Up Theorem Up: 10.1 Applications of the Recursion Theorem Previous. 10.1
Applications of the Recursion Theorem

10.1.1 Machine Learning

Figure 10.5:Learning By Example Scenario

-~ .
-~ ol T -
- LS
- Ty
l:" e - -
Experimental Learnin _
P e & I Hypothesis
Data Agent

. Weview alearning algorithm (or inductive inference machine) as atotal recursive function M
which takes as input afinite portion of the graph of some (total recursive) function f and produces
as output (the code of) some program p which isits conjecture for f.

. We say that M learnsafunction f in the limit if eventually it converges to afixed conjecture
which is acorrect program for f.

. Wenow formalize these notions: If {x;} denotes a sequence of numbers Xg, X1,..., then

lim X = X
T— 00

o0
meansthat Am¥n = m X,= x(or equivalently Yn Xn= X). In this case we say that { x;}

convergesin the limit tox.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node39.html (1 of 3) [12/23/2006 12:05:09 PM]

10.1.1 Machine Learning

Given atotal functionf: I — W,Wedenotebyﬂn, the finite subfunction of f consisting of f
restricted to the set {0, 1, 2,..., n}, and code it by {f 0,..., f(n) }ﬂ_.

Definition 10.1 We say that atotal recursive function M isatotal learner if M conjectures only

programs for total functions, i.e., Vx G'LI’M{) isatotal recursive function.

Definition 10.2 We say that the total learner M learns a function f syntactically in the limit (written f
€ SYN {t }[M]) if and only if the sequence of conjectures p, = M(f | n) by M on f convergesto a

correct program p for f, i.e.,

@ (Convergence Criterion)

llmn—:rm P =P, and

@ (Correctness Criterion)

Py =1,

We denote by R the class of all total recursive functions.

We denote by SYN {t } the class of sets of functions which can be learned with respect to SYN {t } -

type learning:

syN{t) ={sC rR: Ims C st} my.

Theorem 10.6 R 'ESYN {t}

Proof: Given any M we can define via the Recursion Theorem a function @5’,3 € R such that ';'L"E

& st) [M] by

Pe(0)=e

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node39.html (2 of 3) [12/23/2006 12:05:09 PM]

10.1.1 Machine Learning

';I'-I?E x+1)=1+ ';I'-I’H{q_',,pj (x+1).

Observe that since for all y ¢'M{yj € R, thefunction @, € R. Let p,=M(P |n). Suppose now

that there is some program p such that p = l.lm.n__,m P, @nd let m be so large that Yn=Zm Pn = P
Then,

Pe(M+1)= 1+ Pug(g, |m) (M+1) =1+ Pp(m+1),

so that M cannot converge in the limit to a correct program for '?LI’E :

Observe that although M has the index e available to it, it can't produce e as its answer, since in general e
might not compute atotal function.

Ne:{t| Up| Previous Caﬂtent5| Iﬂde:{|

Next: 10.1.2 Speed-Up Theorem Up: 10.1 Applications of the Recursion Theorem Previous. 10.1
Applications of the Recursion Theorem

Bob Daley

2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://lwww.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node39.html (3 of 3) [12/23/2006 12:05:09 PM]

10.1.2 Speed-Up Theorem

Mext| Up| Previous| Contents| Index

Next: 11. Non-Deterministic Computations Up: 10.1 Applications of the Recursion Theorem Previous:
10.1.1 Machine Learning

10.1.2 Speed-Up Theorem

From the definition of DLPtime that it is possible to ~ speed-up” (i.e., reduce) the computation time and
space for any recursive function be choosing a program over alarger alphabet. Here, we imagine that we
have an acceptable programming system consisting of LOOP programs (or RAM programs) over all
possible a phabets, where the al phabet on which a program is based isincluded in its coding. We have also
observed that any program for a recursive function can be sped-up on finitely many of its inputs by
building afinite table for those inputs into that program.

Definition 10.3 Let h be atotal recursive function. A programi is called h-optimal for a partial recursive
function fif and only if

'i’.;' =f
and
Vid; =t = Yx ;) <n(P; (v).

Thus, modulo h, the program i is as fast as any program for f.

Question 10.1 Does there exist atotal recursive function h such that every partial recursive function has
an h-optimal program?

Theorem 10.7 (Speed-Up) For every total recursive function h there exists atotal recursive function f
such that

Vi =t => 3j ¢ =tand Vx P; x>n(P;)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (1 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

Corollary 10.8 For every total recursive function h there exists atotal recursive function f that has no h-
optimal program.

Figure 10.7: Repeated Speed-Up

time

input

Definition 10.4 A complexity sequence for atotal recursive function f is a set of total functions {t;} such

that
Yndj ¢'j =fand [I’j <t,ae
Vi ¢'j =f = dmt, < [I’j a.e.

Thus a complexity sequence {t;} is cofinal with { ‘I]'.;' ; ¢' =f}.

Figure 10.7:Complexity Sequence

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (2 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

time

input

If we can construct a complexity sequence {t;} for afunction f such that hot,, , ¢ < t, a.e, then f has h-

speed-up:
‘:f’.;' =f ZZP{E:I EImtmE ‘I’.i ae

1
=) Jj @ =fand P; <t ae

= Jj 9; =tandho ®; <hot, Xt < D; ae

Proof: (of Speed-Up Theorem)
@ Construction of f:
The construction of fisamodification of the standard diagonalization argument (see Theorem 8.7),

but is biased against smaller programs (which have less information content). We can assume
without loss of generality that his strictly increasing, i.e., h(x) > x.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (3 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

(1, if v = ((Z1,91)2, - - , (Tn Yn)2)n
andz=z;and 1<j<n

Dotiupy W= § 1+ max{d;(z) : u < j <z and ®;(z) < @i(z — j) and

F)Vyu<y<zAj<y=P;(y) > 2y -5},
otherwise.

Define, f = Gﬁ'ﬂ{i,g!g} , Where the function gﬁi is yet to be determined.
‘ Observe, by (*) that ';l{‘:_.' can affect only one argument x in the definition of f.

For the present we will assume that '}{‘i istotal, so that f isalso total. Wefirst have that

¢ =t => Vx=j ;0> P; (x-]) (10.1)

Thisis so becauseif x = j and P; < @; (x-j), thensince (u=v=0), f () = 1+ P; (%).

@ Construction of Tablev:

Next,

Vudv by u) =1 (102)

By our previous observation, we have for all uand v,

Potiug) = Polin0) ae

Figure 10.8: Speed-Up Table

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node40.html (4 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

: Do (i,0,0)

The required ""table" vis given by

v={ {xg, Fx)). {Xu—lif(xu—l)}ﬂ Vu

wherefor each j, 1 < j<u, xwas the only value affected by diagonalization against @Iv‘j :

@ Construction of function r:

Next, there exists atotal recursive function r such that

r(x) > x

and

ViVuVv ¥x @pi0,0) (0 < rmaq i) : 0y Sx-u). (103)
We define

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (5 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

Pl

Dy i uw) (z), if 2> max{®;(z — j): u < j <z}
oli, U, v, % 2) = 3 (= 2> max{P(y): 0< y <z —u})
|0, otherwise.

Then define

r(2 =max{g(i,u,v,% 2,z+1:i,u,V, XEZ}.

Then, for al x:_} u,

r(max{ ‘I’.i (y): OEyEx-u}) :_'""g(i, u, v, X, max{ ‘I’.i (y):OEyEx-u})

2 cI]nr{-i,u,-u] ()

Observe, that in the definition of r the maximum is taken over al i < z, which may include programsi for

non-total functions. Observe also that r is strictly increasing.

@ Construction of complexity sequence {t,}:

We now construct the complexity sequence {t,} . Define,

ta0) = L (x- n).

Suppose @Iv‘j =f, then by (10.1) for x > jwe have ‘I’j (x) > ‘I’.;' (x-j) =t(x). Thus, condition (2) in the
definition of a complexity sequenceis satisfied.

Suppose ';f’.i is such that

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (6 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

D; (x+1) = hr(L; (9)),

so that ':I]'.i (x+1) > ':I]'.i (x), since hand rare strictly increasing functions.
Then, using (10.3), that [11,1- Isincreasing, and (10.4) we have,

(Lo i)) < hr(max Pi) : 0=y <x-u})
< h(r(P; (x- u))

< Q;(x-u+1)= Pj(x-(u-1) =t, 4.

Therefore, given n, by (10.2) there existsaj(j= ¢ (i, n+ 1, v), for an appropriate v) such that

';i’j =f and ‘I]j < ho ‘I’j Etn a.e.

so that condition (1) in the definition of a complexity sequence is satisfied. Moreover,

tm() = Li (x-m) = hr(L (x- (m+ 1))))
= h(P; (x- (m+ 1))

2 (hoty + 1)(¥)

Thus, {t,} isthe desired complexity sequence.

@ Construction of an approporiate @Iv‘.;':

Define

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (7 of 8) [12/23/2006 12:05:14 PM]

(10.4)

10.1.2 Speed-Up Theorem

0,ifz=0
Vi,n= di(z) +1, if ®j(z) < max{®(z — 1), h(r(®i(z — 1)))}
z, otherwise.

By the Recursion Theorem there exists an igsuch that ’fJ") (igyX) = 'i‘i.;, (x) for al x. Then, clearly ‘I’i,} (%)

>h(r(‘I'i,,;. (x- 1))). Observe, aso that ';i‘i,} Istotal, which can be proved by induction on the domain of

i -

Ne:-:t| l_Jp| Previous Ccmtent5| Inde:-:|
Next: 11. Non-Deterministic Computations Up: 10.1 Applications of the Recursion Theorem Previous:

10.1.1 Machine Learning

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, €etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node40.html (8 of 8) [12/23/2006 12:05:14 PM]

11. Non-Deterministic Computations

Mext| Upl Previous| Contents| Index

Next: 11.1 Complexity of Non-Deterministic Programs Up: Lecture Notes for CS 2110 Introduction to
Theory Previous: 10.1.2 Speed-Up Theorem

11. Non-Deter ministic Computations

. Recall that non-deterministic LOOP programs (i.e., NLOOP programs) are obtained by adding the
following SELECT statement:

seLECT(X1)

which assigns either a0 or a 1 non-deterministically to the variable X,

. Similarly, non-deterministic RAM programs (i.e., NRAM programs) are obtained by adding the
following JUMP instruction:

2k +4j 1 njpjyorjo

which non-deterministically selects one of two lines (j;0r j,) to jump to.

. Wewill investigate non-deterministic computations by means of NRAM programs, but we could could
equally use NLOOP programs.

Definition 11.1 Given an NRAM program P and an input x, an accepting computation of P on x is any legal
sequence of instruction executions of P for which that last instruction executed is the output instruction of P, i.
e., for which P halts.

Definition 11.2 We say that the NRAM program P accepts the input x if and only if there exists some
accepting computation of P on x. We define the set accepted by the NRAM program P by

Lp={x : Pacceptsx}.

Thus, a non-deterministic computation has the following tree-like structure, where each node of the tree
represents a non-deterministic branch point (i.e., execution of anjp instruction).

Figure 11.1:Non-Deterministic Computation

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_nodedl.html (1 of 4) [12/23/2006 12:05:18 PM]

11. Non-Deterministic Computations

s

Instead of viewing the execution of anjp instruction as a non-deterministic selection of a branch point, we
can imagine that it corresponds to a bifurcation of a process which is executing the program and which creates
two child processes each of which branches to one of the two possible branch points, and such that when a
child process halts, it will cause its parent processto halt, etc. Thus, and aternate (and perhaps more realistic)
view of non-determinism is as unbounded parallelism.

Theorem 11.1 Every set accepted by a NRAM program can be accepted by a DRAM program.

Proof: It sufficesto show that every set accepted by an NRAM program is the domain of some partial
recursive function. Recall in the construction of the universal partial recursive function for DRAM programs
we defined primitive recursive functions nxlI and nxv, which computed the next line and next register contents
during the simulation. However, since the program which we now wish to simulate is non-deterministic, it is
no longer the case that the next line to be executed is determined by (i.e., isafunction of) the current line and
current contents. Instead, we now construct a primitive recursive predicate NxI which decides whether or not a
given line can leagally be the next line. Moreover, since the sequence of computation stepsis no longer
determined by the program and input, we will define a predicate Acc that will decide whether or not a given
sequence of program states represents an accepting computation.

First we need to provide some parsing predicates which allow usto parse NRAM programs:

pﬁk{—ﬂ[,f’v €I, 1]1]-f ﬁpﬂ[i‘-] =2k + 4

01(x) = .
90100 0, otherwise.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_nodedl.html (2 of 4) [12/23/2006 12:05:18 PM]

11. Non-Deterministic Computations

Prtk—k‘l[,fﬂvm':g}? lf ﬂpﬂ[i‘} =2k +4

02(X) = .
90209 0, otherwise.

which produce the two branch points of the njp instruction coded by x. We also need to define the predicates
Ins(x) and Prg(x) which decide whether or not x codes alegal instuction and program respectively. Then, we
define the primitive recursive predicate

NXI(p, v, z j,r) = (opc(Ine(j, p)) ?E 2k+4 == r=nxl(p,y, 2 j)) N
(opc(Ine(j, p)) = 2k + 4 =

(r =gol(ine(j, p)) V r =go2(Ine, p))))

Next, let w code for a comma separated sequence S, Sy,..., S, Of numbers each of which isinterpreted as a pair
representing a state (line number, register contents) of the program p during its execution.

Then, the predicate Acc(p, y, w), where p codes the program and y codes the input, is defined by:

Acc(p, y, w) = (lin(w, 0) =1 /\ con(w, 0) = zro(mxr(p)))) /\

(lin(w, nog + 1/, W) = Ing(p)) /\

Vj < nocy + 1(",', W[NXI(p, y, con(w, j), lin(w, j), lin(w, j + 1)) N

nxv(p, y, con(w, j), lin(w, j)) = con(w, | + 1)]

where lin(w, j) and con(w, j) give the line number and register contents for the jth state in w and are defined by

2
lin(w, j)= 113 (prt o 1€ wi j))

con(w,)= 113 (prt + 14 w,).

Finally, we see that

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_nodedl.html (3 of 4) [12/23/2006 12:05:18 PM]

11. Non-Deterministic Computations

Lp = dom ¢'

where the partial recursive function ¢' is defined by

@ (y) = minw[Acc(p, y, w)].

11.1 Complexity of Non-Deterministic Programs
. 11.2 NP-Completeness

. 11.3 Polynomia Time Reducibility

. 11.4 Finite Automata (Review)

. 11.5 PSPACE Completeness

Ne:-:t| l_Jp| Previous Cﬁntent5| Inde:-:|

Next: 11.1 Complexity of Non-Deterministic Programs Up: Lecture Notesfor CS 2110 Introduction to
Theory Previous: 10.1.2 Speed-Up Theorem

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion
thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_nodedl.html (4 of 4) [12/23/2006 12:05:18 PM]

11.1 Complexity of Non-Deterministic Programs

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 11.2 NP-Completeness Up: 11. Non-Deterministic Computations Previous: 11. Non-
Deterministic Computations

11.1 Complexity of Non-Deter ministic Programs

Definition 11.3 Let P be aNRAM program over EE (where k > 1), then we define the following

complexity measures for P.

[minimum over all accepting computations

{ | z | + # of stmts of P executed on input z,
NRAMtimep(x) = . :
& if P halts on it,

| T, otherwise.

" minimum over all accepting computations
maxy ., | R |,Vt < DRMtimep(z),

if P halts,
| T, otherwise.

NRAMspacep(x) =

where R;t denotes the contents of register R; at step t of the computation of P on input x.

Thus, for non-deterministic computations the complexity is defined in terms of the most efficient (with
respect to time or space) accepting computation. The rationale for thisisthat since the program is
allowed to ""guess’ an accepting computation it might as well be allowed to guess the most efficient
accepting computation. Observe that the most space efficient accepting computation need not be the
most time efficient one, and vice versa.

Definition 11.4 We define the following (deterministic) complexity classes:

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded2.html (1 of 2) [12/23/2006 12:05:22 PM]

11.1 Complexity of Non-Deterministic Programs
DPTIME={L : 3 prRAM program P and a polynomial function t such that
P computes X7, and Yx DRAMi mep(X) < t(|x|)}.
DPSPACE={L : 3 prRAM program P and a polynomial function t such that

P computes X7, and Vx DRAMspaces(X) <= t(| x|)}.

. Aliasssfor DPTIME is IP, and for DPSPACE is PSIPACIE .
. Thedéefinitions of DPTIME and DPSPACE are independent of the (standard) model of
computation used (see Proposition 7.6).

Definition 11.5 We define the following (non-deterministic) complexity classes:

NPTIME={L : 3 NRAM program P and a polynomial function t such that
PacceptsLand Vx € L NRAMtimes(x) < t(|x|)}.
NPSPACE={L : 3 NRAM program P and a polynomial function t such that

PacceptsLand Vx € L NRAMspaces(x) = t(| x|)}.

. Aliasesfor NPTIME is NP and for NPSPACE is NSIPACE |

Next| L_Jp| F’reviﬂu5| Ccmtents| Iﬂdey{|

Next: 11.2 NP-Completeness Up: 11. Non-Deterministic Computations Previous: 11. Non-
Deterministic Computations

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded2.html (2 of 2) [12/23/2006 12:05:22 PM]

11.2 NP-Completeness

Next| l_Jp| Previous Cn:mtents| Inde;-:|

Next: 11.3 Polynomial Time Reducibility Up: 11. Non-Deterministic Computations Previous: 11.1 Complexity of

Non-Deterministic Programs

11.2 NP-Completeness

Definition 11.6 We say that afunction f is polynomial-time computable if and only if there is some DRAM
program P and a polynomial function t such that P computes the function f and DRAMtimep(X) < t(|x]). We say

that the set Y is polynomial-time reducible to the set X (written Y E.P X) if and only if there exists a polynomial-

time computable function f suchthaty € Y <= f(y) € X.
* Observeif f is computable in polynomial timet, then | f (X) | < t([x]).

Definition 11.7 A set X iscalled NP-completeif and only if X is complete for NP with respect to EP, i.e, X
€ NP andY <, Xforal Yy € NI

Definition 11.8 A propositional formula B is called satisfiable if and only if there exists some assignment of truth
valuesto its variables which makes the value of B true.

Example11.1 LetB=(x; V Xp) A (—xg V xg) A (—xg V' —x V' —xg). Then Bissatisfiable viathe
assignmentx; =T, X =F, X3 =T.

Definition 11.9 SAT isthe set of al satisfiable propositional formulas in conjunctive normal form.

Proposition 11.2 SAT € NP,

Proof: A non-deterministic algorithm works as follows:
Given apropositional formula B with variables xy,..., X, it:

. guesses (correctly, if possible) a satisfying truth assignment to Xy, ..., X;
. verifiesthat the chosen assignment to xy,..., X, makes the value of B true, and if so, accepts.

Thus, if B € SAT, then there is some assignment to X1, Xy, SO the algorithm will “"guess' it and so will accept. If

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (1 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

B ﬁ‘: SAT, then no guess will make the value of B true, so the algorithm does not accept.

Figure 11.2:Non-Deterministic Computation for B= (x; W' X5) M (=X W xg) A (=X WV =% V —xg)

I P
Lo T
I3

T F

%F Tfji}?
F T T

Proof: It suffices to show that every set X € NP is polynomial-time reducible to SAT. Let X € NP andletP

F F T

Theorem 11.3 SAT is NP-complete.

be a NRAM program over EE which accepts X in polynomia timep, i.e, x € X <= NRAMt mep(X) < p(| x
|). We construct for each x a propositional formula B, in conjunctive normal form such that x € X &= By is

satisfiable.

The propositional formula B, must be satisfiable if and only if thereis an accepting computation of P on input X, so

we will need to describe NRAM computation by means of propositional variables and formulas. Let m be the
number of lines of P and let w be the maximum number register named in P. Let x=a, -~ a,, so | x| = n. We will

represent the contents of each register by a string of length p(n) over 2 k+1 , where we use the k+1%t symbol asa

blank LI to pad (to the right) the actual contents so the representation is exactly of length p(n). Length p(n)
suffices since we can add at most one symbol per time step to the contents of any register and since the length of
the input isincluded in the computation time.

We first introduce polynomially many propositional variables as follows:
Table11.1:Variablesfor B,

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (2 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

Variable Intended meaning

SMB[t:i:r:g |Attimetthesymbol in positioni of registerr iss

LIN[t:] At timet the current line number isj

We also introduce notation for the various symbols which occur in any given line | (depending on the type of
instruction).

Table 11.2: Constants for B,

Constant | Description Instruction Type

Register named inlinej |All, except njp

S Symbol namedinlinej |jmp and suc

9 Goto part of line| jmp

gl First goto part of linej njp

gj2 Second goto part of linej |njp

. Part of the definition of B, will be devoted to making sure that the intended interpretation of the above

variablesisin fact the actual meaning.
. Inorder to describe in amore readable form the formula By, we introduce the following notation. Let E(2)

be some propositional formula with variable symbol z, where E(2) iswell formed for al u < z< V. Then,

V E(z) standsfor E(u) ¥ Eu+1) V - V EW)

22—l

/\ E(z) standsfor E(u) N\ E(u+1) /N - A EV)

2=
. Observethat if Ay,..., A, and By,..., B, areliteras, thentheformulaA; A ~ A A, == B; V -~ V B,is

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (3 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

logically equivalentto —A; WV WV —A, V B; V -V B, and soisasingle digunction of literals.

. To further enhance the readibility of B, we will assign types to certain variables and abbreviate quantifiers
over these variables asindicated in the following table.

Table 11.3:Quantifiers for B,

Var. | Type Range q v

t time | 0<t< p(n) V{i’;ﬁ hFiﬂ-}

i | positions | 1= = p(n) Vﬂﬂ} f.\F{ﬂ}

r regisers | 1=r=w | VL AL

k+1 hk+1

s | symbols 1Ss<k+1 Va=1 s—1

i | oires | 1ZiS=m | VEL AL

. Wewill also use the abbreviation EI1 s E(s) (read "there exists a unique s such that E(s)") for the

expression
k+1
e A Yy N\ (CEe V "Ew)
sa=1,82781

Observe that the above expression isin conjunctive normal form. Similarly, EI1 J E(j) stands for
T

Fenp AV, N (Cei) V —EG)
fa=1,jaF#j1

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (4 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

@B,

@ B,

@ B

@B,

@ B

In this context the meaning of the quantifiers ¥ t<p(n), ¥i>n, etc., should also be clear.

The formula B, consists of the conjunction of several ~"subformulas’ By,..., Bg which are defined below, i.

e,B,=B; A - A B

The formula B, asserts that at each point in time each bit position of each register contains a unique symbol:

Vi Vi ¥y EI13 SVB[t:i:r:g

The formula B, asserts that at each point in time there is a unique current line number:

Y 3y LNt

The formula B3 asserts that the computation begins correctly:

LIN[O: 1] /A Ve Vi SVB[O:i:r: L]

The formula B, asserts that at some point in time the last line of P is reached:

Jt LIN[t: m

The formula Bs, which is a conjunction of subformulas Bg 4,..., Bg 5, asserts that at any point in time the

next line to be executed islegally reachable from the current line:
= BS 1-

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node43.html (5 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

Vt<p(n) LIN[t: m] == LIN[t+1:m]

Each of the following subformulae are included for each line j of the specified type:
™ Bg5:
for each linej whichisnot ajmp, njp, or out instruction
Vt<p(n) LIN[t:j] = LIN[t+1:j+1]

¥ Bg 3.

for each line j which isajmp instruction

Vi<pn) LINE:j] A TSMB[t:1:r,:5] = LIN[t+1:]+1]

@ Bsy:
for each line j which isajmp instruction
Vi<p(n) LIN[t:j] AN SwvB[t: 1: ri:s] == LIN[t+1:g]
@ Bss:
for each linej whichisanjp instruction
1"i"'rt<p(n) LIN[t:j] = LIN[t+1: g] VOLINEt + 1:9]
@ B

The formula Bg, which is a conjunction of subformulas Bg 4,..., Bg g, asserts that at any point in time the

next register contents are correctly calculated:
¥ Bg 1

for each linej and for all r ?E rior foral rif linej isanjp or jmp instruction

Vi<pin) Vi Vs LINt:j] A SvB[t:i:r:g = SMB[t+1:i:r:g

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node43.html (6 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

¥ Bgo:

for line 0 which isan inp instruction and time 1

Vi<n SMB[1:i:rg: &]

9 Bga:
for l[ine 0 which isan inp instruction and time 1

Visn avB[L:i:ry: U]
¥ Bg 4
for each line) which isasuc instruction
Vi<pm) Vi Vs<kLINt:j] ASvBt:i:r:g =

SMB[t+1:i:rj:q

¥ Bgs:

for each line) which isasuc instruction

Yi<pm) Yi<pm) LINE:j] A TsvBt:icn: LA

SVB[t:i+1:r: L] == quB[t+1:i+1:r:5]

¥ Bgg:

for each line) which isasuc instruction

Vi<pmn) Vi<pm LINt:j] A smBt:icr: LA

SVB[t:i+1:r: L] == quBlt+1:i+1:r: U]

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (7 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

¥ Bg7:

for each line) whichisasuc instruction
Vi<p(n) LIN[t:j] A svBlt:1:r: L] = svBt+1:1:1;:5]
¥ Bgg:
for each line j which isan Isf instruction
Vi<pn) Yi<pmn YsLN:j] A SMB[t:i+1:r:5 =
SMB[t+1:i:rj:q
¥ Bgo:

for each line j which isan Isf instruction

Yi<pn) LINE:j] = SvB[t+1:p(n):r;: L]

This completes the construction of the formula B,. To complete the proof it is necessary to prove by induction on
the timet that

if B, issatisfiable, then there exists an accepting computation for P on input X. The accepting computation
Is constructed from the satisfying assignment to the variables of B,; and

if P accepts input X, then there is a satisfying assignment to the variables of B,. The satisfying assignment is
constructed from the accepting computation of P on input x.

Proposition 11.4 For any set X, if X is NP-completeand X € [P, then P = NIP’.

Proof: Clearly, P C NP LetXbe NP-complete and suppose X € [P, so that there exists some DRAM

program Q which accepts X in polynomial time. Next, let Y € NIP'. Then, since Y <, X, there is some

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (8 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

polynomial-time computable function f suchthaty € Y <==> f(y) € X. Thus,y € Y <=3 f(y) € X <>

Q acceptsf (y). Hence, thereis apolynomial time acceptor for Y that, given 'y, computesf (y) and applies Q to f (y).
Therefore, Y € P, andso NP € P,

Proposition 11.5 For any sets X and Y, if X is NP-completeand Y € NP and X EPY, then Y isalso NP-

complete.

Proof: Thisfollows from the transitivity of the relation EP’ i.e., from the fact that the composition of two

polynomial-time computabl e functions is polynomial-time computabl e.

Notation 11.10 Let V be a set of propositional variables. Then we use £ to denote an arbitrary truth assignment
to the variablesof V, i.e,, f.v— {T,F}. Given any propositional formula B we denote by Var(B) the set of
variables occurring in B. If Var(B) C v, then thetruth assignment £ above determines uniquely atruth value for

B which we denote by 3(8). In these terms, then, aCNF formulaB =C; /A - /A C issdtisfiableif and only if
there exists a & :Var(B) —* {T,F} suchthat ﬁ'(Ci) =Tforal 1<i<n

The next two results involve specializing the NP-completeness of SAT to restricted cases of the satisfiability
problem which retain the property of being NP-complete. In each case beginning with a propositional formulaB =

C; A - A C,in conjunctive normal form, we construct anew CNF formula B belonging to the restricted

satisfiability class by replacing each clause C; by a set of clauses O:;,l Cq-,m.. , Whose variables are those of C;

plus some new variables V, that are used nowhere else and such that

1.
for each truth assignment £ to Var(B) for which 7l (G) =T, thereis an extension of B to atruth
assignment H.;' to Var(B) LJ V._ such that E".;'(C.i,j):T foral 1<j< m; and

2.

given any truth assignment 9.1' to Var(B) LJ V; such that H{(C.;-,j) =T for all 1Ej < my, we have E.;-

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node43.html (9 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

C)=T.

Itthen followsthat C; A - A Cyissatisfiableif andonly if (Cr g A~ A Cpm) A A (Cyp A -

L

Al Oln,m,.) issatisfiable. Finally, asin the case of the general satisfiability problem it will be easy to see that

each of the restricted cases belongs to NP by guessing an assignment of truth values and then verifying that all
the appropriate conditions are satisfied.

Definition 11.11 3SAT isthe set of all satisfiable propositional formulas in conjunctive normal form which have
exactly 3 literals per clause.

Proposition 11.6 3SAT is NP-complete.

Proof: Clearly, 3SAT € NP LetB= C; A - A C,beapropositiona formulain conjunctive normal form.
For each clause C; containing k literals, where k ?é 3, we replace C; with a set of clauses C.i,1 Cﬂ',m.- , that
contain new variables in addition to those of C; such that C; will be satisfiable by atruth assignment B if an only if

L L

al of Cri,l Ci-,m.. are satisfiable by atruth assignment 5}- extending . The proof is broken naturally into

the following three cases:

@ Case l:
Ci = w, for some literal w. Define

lfi'-;',1=(W V2V 2y

wV 72 V Z)

C-i,z

Cia=wV 2, V = %)

Y

ia=wV 12 V)

where #1 and 9 are new propositional variables.

@ Case2:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (10 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

C; = (wy V w,), for literalswy, w,. Define

Cit=tw Vw, V 2)

[

C‘i,ﬂ =(wy "'.I'FWZ Vo .5'1)

where 2 1isanew propositiona variable.

@ Case3:
Ci=(wy V wy, VN wy), for literalswy,..., wy, where k > 3. Define

[

C‘i,l :(Wl "‘nl"r Wop "‘.I"r El)

and for 1 <j < k- 3, aclause asserting > *%j—l —wi,q V ‘%j :

Cii=(T% Vw, V%)

and finally a clause asserting ™ Zr_3 —rw 1 V"

[

Cig—2=(" k-3 Vw1 Vw

In Cases 1 and 2, given atruth assignment B to the variables of C; such that E(Ci) =T, any extension 5'.1- of 8
will work, since all combinations of the new variables E"j areincluded. In Case 3, we extend f to ﬂ.;' by

assigning truth values to the variables 5'1 E;;_g in order as follows:

2 = Twg YV owy)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (11 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

andfor 1<j < k-3,

P

Zi = T(Wieq YV Zjo1).

Conversaly, suppose that g.i(c.i,j)=T foral 1 Ej < m;. Then, in Cases 1 and 2, since C‘.i,j is of the form C;

v C',Where CJ' contains only new variables, there is somej such that H{(Gj) =F, so 9.1' (G)=T.InCase

3, we suppose that & (w;) = F for all 1 <j <k, and show by induction that &; (Z;) =T forall 1 <j < k-3, and

hence H.i (w) =T, so ﬂ.;- (C)=T.

Definition 11.12 Let (1/3)SAT be the set of all satisfiable propositional formulas with three literals per clause for
which there is a satisfying assignment which makes exactly one literal per clause true.

Proposition 11.7 (1/3)SATis NP-compl ete.

Proof: Clearly (1/3)SAT € MP . LetB= C,; M\ - /A C,beapropositional formulain conjunctive normal form.
We construct anew CNF propositional formula /3 by replacing each clause C; of B by aconjunction of clauses

C-i,l FANEAY C.;',g. IfC,=(x V y V 2),wherex, y, zarethethreeliterals of C;, then C-:‘,l FANEAY C.i,g

contain new variables (not used elsewhere) Ly, Uy, £, LYy, L2, , YZ4 and Ty, Yy, Ly, LYy, L2y, YZp as

follows:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (12 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

3

o V Zq V TZ,)

£
11
P
B

e

i6=(¥a V 24 V ¥Z,)
i,7 =(Zp V Uy V TYp)
is =(Zp V 2 V 2%,
él-i,ﬁ =(Up V 2 V YZp)
Suppose first that B isatruth assignment to the variables of B such that H(Ci) =T. Wewill construct atruth
assignment H.i which extends & such that ﬂ.i((ji,j) =T for all 15] < 9, and such that exactly one literal per

clause istrue. Wefirst observe that the clauses Cq-,l FANE A Cq-,g are so constructed that the following

relationships hold:
x A\ y= fyu A Iﬁyb
x \Nz= Tz, N Iz

y Nz= Yz, A Yz,

We consider three cases:

@ Casel:
=0y =0@=T

Then from the above equival ences the assignment H.i isunique, and ﬂ.;- assignsT to

myﬂ 1myb’mzﬂ’mzb’yzﬂ] and yzb ’
and assigns Fto

Eﬂvmbiyﬂiybizﬂvand zb

hittp:/www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node43.html (13 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

@ Case2:
Exactly two of x, y, zare assigned T by 6
Suppose for definiteness that zis the unique literal such that 7 (2) = F. Then, by the above equivalences,

H.;' must assign T to
LYy and LYy,
and assign Fto
ia,ib,ﬂu ,and ﬂb.
Next, there are two possible completions of the assignment H.i . Either ﬂ.;- assigns Tto
Z, TZy and Y2,
and Fto
2y, LZq, and YZ,,
or ¥;assigns Tto

'E'b) Iﬁzﬂ y and 'yﬁz ’
and Fto

@ Case3:
Exactly oneof x, y, zare assigned T by K
Suppose for definiteness that x is the unique literal such that ﬂ(x) =T. Clearly, 9¢ must assign F to iﬁﬂ

and I k. There are again two possible completions of the assignment 3.1' . Either 3.;' assignsT to

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (14 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

ﬁﬂ. ’ xﬂzﬂ] E&! and fy&

and Fto

'E'ﬂ.] fyﬂ) ynzﬂ) ﬂb) xﬂz&i and yﬂzb)

or 'B,- assigns Tto

ﬂhixﬂzhiﬁﬂiand fyﬂl

and Fto

Eﬁ ' fyb ’ yﬁzb) ﬁﬂ.) xﬁzﬂ ’ and yﬂzﬂ .

The two possible assignments are summarized in the following tables:

Table 11.4: Alternative 1

hittp://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node43.html (15 of 19) [12/23/2006 12:05:33 PM]

x|ylz|Zg |Ua |20 | LY, | T2, | Y2, | Tp | Ty | 25 | TV | T2 | Y2
Tttt [F[E] T T T [F[E[E| T T [T
Tt E[E [T T = F [eE[F[E[T T [T
Tle[T[E [T [E| E T F [eE[F[E[T T [T
Flr[r[T[F[F[F [F [T [F[F[F[T [T [T
TIE[eE[E [T TE[E T F [F[E[T[T = =
FlT[F[F[F [T [T [F [FE[T[F[F[F[F [T
Flr[t[T [F[F[F [F [T [FE[T[FE[F [T [F
Table 11.5: Alternative 2

x|y lz|Zg | U, | 2, | T, | T2, |YZ, | Ty | Uy | 25 | Ty | T2 | U2
Tttt e [F[F F|F T |7
TIT[el e [F [F FIFE [T

11.2 NP-Completeness

n| | A |
n| = | A |
al Bl sl]
m| d| M| M| T
| M| M| M| T
m| M| 4 M| T
I R R
—| | | 4
Tl 4 m 4
—| M| m| 4| T
m| M| 4 M| -
m| HA| M| M| T
m| dA| M| M| T
m| M| 4 M| -
—| M| M| 4| T

Suppose on the other hand that 3,' Isatruth asignment such that 3,' (Ci, j)=Tforall <] < 9, where exactly
one literal per clauseistrue under the assignment 9{ . Suppose aso that 3,' (x)=Fand Bi (y) = F. We then show

that &;(2) =T, sothat 0;(C) = T. Since &; (x) = F and Bi(fi‘i,l) =T, wehave

0;i(Z4)=T and 0;(Zp)=F
or

0i(2,)=Fand 0;(Tp)=T.
Similarly, since ¥ (y) = F and Ei(éi,g) =T, we have

i (Ug)=Tand 0;(Tp)=F
or

0; (o) =Fand 0; (Gp)=T.
Next, since Bi(éi,.;) =T and Bi(éi,r) =T, we have

0i(Z4) =T and 0(Jp)=T

or

hittp://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node43.html (16 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

ESI'-1'(“;;:.!:)=Tand ﬂ.;'(’g’u):T.

In the first case from 3.1-(6:,5) =T we have
0i(2q)=F

and from ﬂ.i((ji,g) =T we have
ﬁi-;'(*’!"3'1:-) =F.

Similarly, in the second case from 3.1' (é.i,g) =T we have
0 (%) =F

and from E-i(@-i!ﬁ) =T we have

g-i ('E'ﬂ) =F.
Thus, in either case we have

0;(Za)=F and 0;(Zp)=F
so that from B.i(é.ijg) =T we have H.i 2=T.

* Choosing of the assignment H.i in Proposition 11.7 can be viewed as a game on the following graph where

one must choose exactly one node of each colored triangle. Note that doing so will require choosing exactly one of
XY, Z

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (17 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

Figure 11.3:(1/3)SATGame

Definition 11.13 Let + (1/3)SAT denote the set of all satisfiable propositional formulas belonging to (1/3)SAT in
which there are no negated variables, i.e., al literals are single variables.

Corollary 11.8 + (1/3)SAT is NP-complete.

Proof: GivenaformulaB=C; /A - /A C,wefirst add two specia variablest and f and the special clause

Co=¢t ViV
Since exactly one literal in each clause must be assigned T, we see that any such assignment which makes Ct

true, must assign T to t and F to f. Then for each variable x € Var(B), we introduce a new variable &, and the

clause

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (18 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

C,=xV % V1)

L

Thus, any appropriate assignment to C ¢ Which makes C 7 true, must assign the opposite truth values to x and

I,s0 & = —x Then, we replace each clause C; by the clause C; , Where Ct' is obtained by replacing every

negated literal of the form —x with the positive literal .

Ne:-:t| Up| Previous Cn:mtents| Inde:{|

Next: 11.3 Polynomial Time Reducibility Up: 11. Non-Deterministic Computations Previous: 11.1 Complexity of
Non-Deterministic Programs

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion thereof)
is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

hittp://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node43.html (19 of 19) [12/23/2006 12:05:33 PM]

11.3 Polynomial Time Reducibility

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 11.4 Finite Automata (Review) Up: 11. Non-Deterministic Computations Previous. 11.2 NP-
Completeness

11.3 Polynomial Time Reducibility

We can now show that many other problems X are NP-complete by reducing + (1/3)SAT to X and using
Proposition 11.5.

Definition 11.14 Let *- be afinite alphabet and let V = {x} beaset of symbolswhich isdigont from

2. The symbols of V are called string variables. A pattern 7 isany non-null string over 23 LJ V. Let
7T be a pattern which contains n different variables. Without loss of generality we may assume that the

variablesof T arexy,..., X,. Given non-empty stringss;...., s, € E+,then T [X] = S,y Xy &

Sl isthe result of simultaneously substituting s; for all occurrences of x;, for al 1 <] <n.The pattern

language L = generated by 7T is defined by

La ={T[x; € Sy Xy €5 : S Sy € E+}.

Definition 11.15 Define PATMEM as the set of all pairs { 7 't), where T isapatternandt €

E+,suchthattELz.

Proposition 11.9 PATMEM is NP-complete.

Proof: It iseasy to seethat given 7 and t a non-deterministic algorithm can smply guess strings sy,...,
Sywuchthat [x) 4= s,..., X, €= s3] =tand verify thisfact in polynomial time, since all 5 must

satisfy | 5| = [t]. Thus, PATMEM € NIP.

To see that PATMEM is NP-complete we show that + (1/3)SAT EPPATMEM. LeeB=C; M A Cp,

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded4.html (1 of 5) [12/23/2006 12:05:39 PM]

11.3 Polynomial Time Reducibility
be a CNF propositional formula, where C; = (w; 1 V w; o V' w; 3), and wherew; ; isapositive literal,
and let Xy,..., X, be the variables of B. Let a,b be two distinct symbols of 2. We construct a pattern 7

whose string variables are identical to the propositional variables of B. The pattern 7 is defined by

T =afijaliga-ali,a
where for each 1E [E m,

g =W Wi oW 3.

The string t is defined by

t= atlatza atma
whereforeach1 =i < m,
t; = bbbb.

Suppose now that B is satisfiable by a truth assignment & which assigns T to exactly one literal per
clause. We then construct a string assignment «¥ to the string variables of T asfollows:

bb, if §(z;) = T
b, if §(z,;) = F.

T (x) =

Since # makes exactly one literal per clause true (and two literals per clause false), & assignsto 7i;

the string bbbb = t;. Therefore, t € L.
Suppose on the other hand that t € L« and let & be the corresponding assignment of strings from

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded4.html (2 of 5) [12/23/2006 12:05:39 PM]

11.3 Polynomial Time Reducibility

3t to the variables of 7T . Then, clearly each 7i; must generate the string t; = bbbb, so that for each i

exactly one of wi 1, W, », W; 3isassigned the string bb by &, and the other two are assigned the string

b by . We then construct atruth assignment f to the propositional variables of B asfollows:

T, if o(z;) = bb

7

B) -
D=\F, if o(z;) = b.

Itisclear that € assigns T to exactly one literal per clause of B.

Definition 11.16 An instance of the Knapsack Problem (denoted by {sl sn;c}) consists of a set of

integerss,,..., S, called sizes, and an integer c, called the capacity. An instance of the Knapsack Problem

Is called solvable if and only if there is some set of indices J C {1,...,n} suchthat c= EjEJ 5- We
define KNAPSACK asthe set of all solvable instances of the Knapsack Problem.

Proposition 11.10 KNAPSACK is NP-complete.

Proof: It iseasy to see that KNAPSACK & MIP, since anon-deterministic algorithm can, given an

instance (31 sn;c}

guess a subset J C {1,...,n},and
verify that ¢ = Ej,-:h;%.

We show that + (1/3)SAT EP KNAPSACK. Let B=C; /A - /A C,, be aCNF propositiona formula,

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded4.html (3 of 5) [12/23/2006 12:05:39 PM]

11.3 Polynomial Time Reducibility
whereCi = (w; 1 V' W, » V' w; 3), and wherew; ; isapositive literal, and It xy,..., X, be the variables

of B. We define an instance {sl sn;c} of the Knapsack Problem as follows:

For each variable x; we define aweight

% = E'ﬂ':fj 4i’

wherel; ={i : x occursin C}. The knapsack capacity is defined by

Suppose {sl,...,sn;c} € KNAPSACK. Let J be such that ¢ = EjEJ 5. We define atruth assignment

f to Xq,...» X, @S follows:

T, if j€J

B (x) =
& F, otherwise.

We first observe that since there are only three literals per clause each ““bit" 4' in the capacity ¢ must be
generated by some size s such that i € j- Further, since the coefficient of 4iis 1 (and not 2 or 3), the

assignment f must assign T to exactly oneliteral of each clause C;. Thus, B € + (1/3)SAT.
Suppose on the other hand that B € + (1/3)SAT. Define

I={j: B)=T}.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded4.html (4 of 5) [12/23/2006 12:05:39 PM]

11.3 Polynomial Time Reducibility

m
Thenit is easy to see that EjEJ% = Ei:l 4i = c. Thus, {sl,...,sn;c} € KNAPSACK.

Ne:{t| Up| Previous Caﬂtent5| Iﬂde:{|

Next: 11.4 Finite Automata (Review) Up: 11. Non-Deterministic Computations Previous. 11.2 NP-
Completeness

Bob Daley

2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded4.html (5 of 5) [12/23/2006 12:05:39 PM]

11.4 Finite Automata (Review)

Next| Up| Previous Cu:mtents| Inde:-:|
Next: 11.5 PSPACE Completeness Up: 11. Non-Deterministic Computations Previous. 11.3 Polynomial Time
Reducibility

11.4 Finite Automata (Review)

In this section we review the magjors results for finite state machines. From Definition 2.1 we see that a

deterministic finite automaton (DFA) M consists of { >, 0, i) , 0o, F } , where 2 istheinput alphabet, Q isthe

finite set of states, qg isthe start state, F isthe set of final states, and i) :Qx & — Qisthe state transition

function.

Observe that for a DFA the state transition function & must be defined for all inputs and all states.

We depict the internal state transition behavior of M by means of alabelled directed graph G, as follows:

The nodes of G, are the states of M, and there is adirected edge from g, to g, labelled a whenever i) (01, @) =
gp, and is depicted as:

Figure 11.4: State Transition

\l £l

state transition

We also depict theinitial state gy and final states g € Fas

Figure 11.5:Initial and Final States

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded5.html (1 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

initial state

final state

Definition 11.17 For any DFA M the language L, accepted by M is the set of al input strings x = a4 - a, such

that there is a path from theinitial state g, to somefinal state g € F with label a; - a,,, i.e.,

Figure 12.11: Accepting Computation Path

@ : e - e : :

Definition 11.18 A non-deterministic finite state automaton (NFA) M consists of { 37, Q, r’i, I, F } ,where ¥

Isthe input alphabet, Q isthe finite set of states, | C Qisthe set of start states, F isthe set of final states, and

I Qx (2 U {€}) — 2Qisthe (non-deterministic) state transition function.
* Observe that we allow € -transitions for NFA's.

Definition 11.19 For any NFA M the language L, accepted by M isthe set of al input strings x = a; - a, such

that there is a path from someiinitial stateqy € | to somefinal state g € F with label a; - ay,.

Theorem 11.11 The class of languages accepted by NFA's is the same as the class of languages accepted by
DFA's.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded5.html (2 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)
Proof: (<==): Thisisimmediate since givenaDFA M = { 37, Q, o) , Jo, F } , We construct an equivalent NFA

M = {E,Q,S,I,F},WhereI:{qo} and S(q,a):{ri(q,a)}.

(=) LeM= {E,Q,ﬁ,I,F} be an NFA. We construct an equivalent DFA ﬂ:f = {E,@g 57@‘{:1 ﬁ'}

asfollows:

L

F-ixCo:xNg#

bxa=|J d@a

geX

Thus, the states of M are subsets of states of M. Then one completes the proof by showing that M oninput x
enters state X € 2Q if and only if M on input x could enter (viathe right choices) each sateq € X.

® |t the NFA M has n states, then the equivalent DFA M has 2n states.

Proposition 11.12 Every regular language is accepted by some finite state automaton.

Proof: Let r be aregular expression. Then, an NFA with € transtions M such that Ly, = L, is defined by
induction on the length of r asfollows:

@ |nduction Basis;

@ Casel: r= 9:

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded5.html (3 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

Figure 11.7:NFA for @

0 &

@ Case2: r=a wherea € X U {€e}:

Figure 11.8:NFA fora € * LJ{ €}

{1

do qy

@ |nduction Step:

Let

M= {E,Ql,‘il,'l, Fl}

My= {E,Qz,‘iﬂ,b, Fz}

be NFA'ssuch that Ly = Ly,and Ly = L,

@ Caselir=ry Ury

Figure 11.9:NFA for ry Ur,

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded5.html (4 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

@ Case2:r=rq 1y

Figure 11.10:NFA forrq - rp

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded5.html (5 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

@ Case3:r=ry"

Figure 11.11:NFA for rq"

£
@

* If the length of the regular expression r is n (excluding parentheses), then the number of states of the

equivalent NFA is 2n.

Proposition 11.13 For every NFA M there is some regular expression r such that Ly, = L,.

Proof: Let M = (¥, 0, r’f, I, F } . Themain ideais to compute the transitive closure of the (labelled) edge

relation given by d in G- More precisely, we construct viathe standard transitive closure algorithm a regular

expression r that describes the set of all labels of accepting pathsin Gy,. Suppose Q ={q;,..., 0.} . L€t rijo bea
regular expression which denotes the finite set of labels from g to g in Gy;. Since every finite set of stringsisa
regular language, such aregular expression clearly exists. Consider the following algorithm from computing the
trangitive closure:

for 1<i<ndo

riio — riio L) €

endfor
for 1<k<ndo

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded5.html (6 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

for 1<1i,j <ndo

r”k — rijk-l U rlkk-l(rkkk-l) .rkjk-l

endfor
endfor

The required regular expression r is given by

r= U rij”.

g€l qeF

The correctness of the regular expression can be shown by proving by induction on k for 1 < k< nthat ri jk

describes the set of all labels of paths from g; to ¢ via the intermediate nodes { d,..., o} -

Figure 11.12:Paths from gjto gyvia{qy,..., G}

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded5.html (7 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

Theorem 11.14 The class of regular languages is precisely the class of languages accepted by finite state
automata

Proposition 11.15 The class of regular languages is closed under complementation.

Proof: Let L bearegular language and let M = { F Q, d , do» F} be a DFA such that Ly, = L. Define

.I!‘Ef = {E’Q’fi’qo’Q_F}_

Then, x € L M <> x ‘E‘LM.Thus, Lag=2" _L= I.a,so L isaregular language.

Theorem 11.16 (Pumping Lemma for Regular Languages) For every regular language L thereis a positive
integer p (called the pumping length) such that for all s € Lif | s| > p, then there exist strings x, y, zsuch that s

=Xx-y-zand
1.
ly[>0,
2.
|xy| = p, and
3.

forali= 0,xyiz € L.

Proof: Suppose L isaregular language and that M = { 32,0,) , o, F } isaDFA such that Ly, = L. Choose p =
#Q. Let s € L be such that | S| = p. Thus, s=a; -~ a,, wheren = p. Consider the accepting path for s:
Figure 12.11: Accepting Computation Path
@ - e - e - :
Sincetherearen + 1 > p statesin this accepting path, there must exist two (least) indices j < k such that g; = ¢.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded5.html (8 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

Thus, overlaying g and gy to form aloop we have:

Figure 11.14: Accepting Computation Path with Loop
Gj+1- -0k

ay a; Af+1 (p,

Choose x = a; - g (the part before the loop), y = & + 1 -~ & (theloop itself), and z= & , 1 - &, (the part after the

loop). Sincej <k, we have|y | > 0, and since we chose the least pair j < k such that g; = g, we have | xy | < p.
Finally, the path consisting of the part from g to ¢, followed by any number of times (including 0) around the

loop, followed by the part from g to g, is an accepting path, i.e., xy'z € L foreveryi = 0.

Theorem 11.17 For every regular language L there exists a positive integer p such that L ?é @ if and only if

ds € L suchthat [s|<p.

Proof: Let L be aregular language and let p be the pumping length as given by the Pumping Lemma above.
@ Case(<):
Clearly, if ds € L suchthat[s[<p,thenL 7 0.

@ Case(=):
Suppose L ?é 9 andlets € L. If |s| = p, then by the Pumping Lemmafor regular languages, s can be

written ass = xyzwhere |y | > 0, so the string s; = xz € Land| S, | <|s|. By repeating this pruning

process (if | s | = p) we must eventually obtain astring s; € L suchthat | S |<p.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded5.html (9 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

Next| l_Jp| Previous Cu:mtents| Inde:{|
Next: 11.5 PSPACE Completeness Up: 11. Non-Deterministic Computations Previous. 11.3 Polynomial Time

Reducibility
Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion
thereaf) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded5.html (10 of 10) [12/23/2006 12:05:45 PM]

11.5 PSPACE Completeness

Ne:{t| Up| F’reviﬂus| Cn:mtents| Inde:-:|
Next: 12. Formal Languages Up: 11. Non-Deterministic Computations Previous. 11.4 Finite Automata (Review)

11.5 PSPACE Completeness

Definition 11.20 A set X is called PSPACE-complete if and only if it is complete for the class PSIPACIE with
respect to EP, ie, X € PSPACE and YEPXfor dly € PSPACE .

Definition 11.21 [RIE ?é 9 isthe set of all regular expressionsr over 22 suchthat L, ?E E*,i.e., P ?E 9

Theorem 11.18 RE 7 isPSPACE-complete.

The theorem follows from the following two propositions.

Proposition 11.19 RIE 7# # € PSPACE

Proof: Let r bearegular expression of sizen, and let M = { 3,0, r5, [F} be an NFA with 2n states such that L,

=L,.Let M = (2,Q,6,4o, F') beaDFAwith 220 states such that L &7 = L (i.e., the complement of

Ly)- Then, using Theorem 11.17, we have

LEFX & 1 g #F0 < €071 <o

We give an agorithm that, when implemented on a DRAM, operatesin O(n2) space and that decides whether or not
L &f ?é @ by checking all pathsin G Af of length < 2210 seeif thereisan accepting path. Actually, the

algorithm cannot store the graph G A sinceit is of size exponential in n. Therefore, the algorithm will work with

Gy instead. Let Q ={Qy,..., 0o} - The states of M will be coded as binary strings of length 2n in such away that

"y

foral X € @

biti of state Xis1 < ¢ € X.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (1 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

By Theorem 11.11,

L

X € F &> (q € x =>q €F).

The agorithm first constructs the NFA M and stores Gy, which requires O(n2) space, and then executes the
following program:

for X € ﬁ'do

if Access(l, X, 2n) then
output(true)
endif

endfor
output(false)

The recursive subroutine Access(Xy, Xo, M) is defined by:

input(Xy, Xp, 2)
if Z=0then

ifX1:X20r Ha E E X2: S(Xl’ a)then

return(true)
else

return(false)
endif

endif
for 0= X < 22n-1do

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (2 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

If Access(Xq, X, Z - 1) and Access(X, Xo, Z - 1) then

return(true)
endif

endfor
return(false)

In the subroutine Access checking whether or not X, = 4 (X1, @) involves checking whether or not qu € X, dqy
S X1 o € § (a1, @), which can easily be done by consulting Gy,. Since the path length examined doubles with

each recursive call (beginning at the lowest level), it is clear that all paths of length < 22n gre examined. Each

recursive call to Access(xy, Xo, M) requires O(n) space overhead for stacking the arguments Xy, X,, m (2n space for

each of x; and Xy, and log,2n for m). The maximum depth of recursion is 2n, so the total space used by the

algorithm is O(n2).

Figure 11.15: Space Usage for Recursive Algorithm Access

Gy I, Xf,2n I.X.2n -1 I, X, 1
level 1 level 2 e level 2n
X,Xf,gﬂ—]. R X.I,Xg.l,].

In order to simplify the regular expression constructed in Proposition 11.20 below, we observe that for any DRAM

program P over Ek which uses m registers (with one input instruction) we can construct a DRAM program F

over Ek+1 = E:,r.-, LJ {,} that uses exactly one register and such that L P = Lp and for some constant c,

DRAMspace F (X) <c DRAMspacep(x) for all x. The program P maintainsin its one register a string of the form

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (3 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

Zy, 0, Zy o, Where zq,..., Z,,, are the current contents of registersRy,..., Ry, of P. It simulates each instruction of P
by:
1.
exposing the right or left end (depending on the type of instruction) of the register mentioned in the
instruction (if any);

executing that instruction;

returning the contents of its one register to the canonical form which begins with the contents of R, at the
| eft.

Proposition 11.20 For any X € PSPAEE,XEPRET #0

Proof: Let X € PSIPACIE . Then there is some DRAM program P over E;; which uses one register and has

one input statement, and there is some polynomial function p such that x € X <= DRAMspacep(X) < p(|x])-

We will construct an alphabet A\ and for each x aregular expression r, over A (in polynomial time) such that

x Ex<= € RE #

— L. #90.

In other words,

x Ex =, = A

The construction of r, will be similar to the construction of B, in Theorem 11.3 in that we will use regular

expressions to describe computations. More precisely, the regular expression over A which we construct will
describe non-accepting computations, i.e., if X Ex, then every string in A* represents a non-accepting

computation.

Asin Theorem 11.3 welet x = a; -~ a,, S0 | X | = n, and let m be the number of lines of P. Weuseq to denote the
symbol (if any) mentioned inlinej of P, and g; to denote the goto part (if any) of linej. We will represent the

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (4 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

register contents by aleft justified string of length exactly p(n) over 2 k-1 , where the k+1t symbol represents a

blank (depicted by LI). Wewill encode line numbers by using finitely many special additional symbols 1" =
{bq,..., by} not belonging to Ek+1 . The state of P at any point in time will be represented by the string of length p

(n) + 1 of the form

b:

j 2

where | isthe current line number of P and z represents the current contents of the (only) register of P. Finally, a
computation string will be represented by the string

yoytbm

wheret isthe number of steps of P on input x, and y; is the representation of the state of P at the ith step.

The regular expressionry, =rq L ry Lrg Ly U rg, where

1.
r, describes all strings which don't represent accepting computations because they are syntactically ill-
formed;

2.
r, describes al computation strings which don't start correctly;

3.
r3 describes al computation strings which don't end correctly;

4.
r, describes all computation strings in which some line number does not follow correctly from the previous
state;

5.

s describes al computation strings in which the register contents does not follow correctly from the
previous stete.

We will use the following abbreviations:

. if Wisafinite set of symbols{wj,..., wg}, then we use W to stand for the regular expressionw; LJ - LJ wg

. if risaregular expression, then we use ri for the concatenation of r with itself i times, wherer0= €.

Define A = EJ;;_|_1 ur.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (5 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

r= rl, 1 W rl, 6 where

ry,1= I-,-|-1 (no line number)

r o= Zga - I Y (only 1 line number)

ry 3= Ek+1 A (line number not first)
ry 4= A* E;H_l (line number not last)

. n)+1 *
A . EP{)+ A (contents too long)

N, s k+1

r16=r,60 J~ Uryepn-1 (contentstoo short)
whereforal 0<j < p(n)- 1

&*.[‘.Eiﬂ.[‘.&"‘_

r,6,j=

r2 = r2, 1 J r2’ 2i where

rp1= (1" -by)- A (wrong initial line number)

r2,2=by- k1 - g A* (initial contents not blank)

3= &* '(F'bm)

rg=rq 1 Y- Ury m wherefor al 1<j<m

o if j isnot aconditional jump instruction

ra,j= A* by EE—H '(F'bj+1)' A*

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (6 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness
o if j isaconditional jump statement ry ;=14 j 1 LU 1y 2, where

raj,1= A% b5 Ty (I -by) A”
r4,j,2= A* -bj'(Ek+1 -5)- EI:+1 '(F-bj+1)- A*

r5=r5 1 U Urg o, wherefor each 1<j<m
o if jistheinputinstructionrs ;=rg5; 1 L - L r5 j 41, where

foreachlEi{_:n

* i—1 *
rs,j,i = b1 “k+1 by E;;+1 (Vg1 -) A
and

¥ ¥ ¥
5, jn+1= D1 k41 by Es:-=!'+1 C TR Y- A

o if jisaconditional jump instructionrs ; = UﬂEzH_l s, j, & Where

o if j isaleft shiftinstructionrs j=r5 j o LJ - UEEEk+1 s, j o Where

- A" - E;.:'.+1 ‘a- AP()-1 '(Ek+1 -a)- A*

r5,j,a—

o if j isasuccessor ingtructionrs ;=15 o U rsj 4 U Uﬂezk s, | & Where

A* . Tpyy e AP (D g A

Is,j,a=

&".bj.E;H.u.u.&F{“}.Ek.&"

I's,j,0=

hittp://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded6.html (7 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

r5,j,1=ﬂh by D1 - g - LI APt Y1 - S)- A

Q We observe that the alphabet over which the regular expression is defined depends on the program P. We can

use afixed alphabet ¥ = {0, 1} by coding theith symbol of A by thestring 1- 0.

Theorem 11.21 PSPACE - NSPACE .

Proof: Since IRIE ?E @ € PSPAEE,itwfficestoshowfor every X € NSPACE thaIXEPEET ?E

@. Asin Proposition 11.20 we may assume that X = Lp for some NRAM program P over 2 k With one register and

one input statement. Thus, we need only show how to modify the construction of Proposition 11.20 to handle njp
instructions. If linej isan njp instruction (with goto parts gjl and gjz), thenrs ; isthe same as for comditional jump

instructions, and

= A" g T (T - {bga,) - A

g1

Theorem 11.21 is usually obtained as a corollary to the following Theorem (known as Savitch's Theorem).

Theorem 11.22 Let Sbe afunction satisfying the following conditions:

1.
S(n) > log,n;

for some DRAM program P, (| x|) = DRAMspacep(x) for all x.

Then, for any NRAM program P such that NRAMspacep(X) < S |x|) thereis an equivalent DRAM program F°

such that Lp = L P and there is a constant ¢; such that DRAMspace P (X) <= ¢, ((|x|)?).

Proof: Asusual we may assume that P isan NRAM program over 3 & With one register and one input statement.

Let P have mlines. Let x be someinput to P with | x | = n. Asin Theorem 11.20 we represent a state of P by a string
of length §n) + 1 of the form b; - z, where b is a special symbol representing linej (['= {bq,..., bp}) and zisa

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (8 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness
string of length §(n) that represents the contents of P's one register. We construct a state transition graph Gp for the
. . . . S(n) _
computation of P on input x as follows. The nodes of Gp are the strings belonging to [Ek . Gp will be
similar to the state transition graph of an NFA except that the edges will not be labelled with input symbols, but

rather an edge from one state to another will mean that it is possible to go from the first state to the second by
executing the current instruction of P with the current register contents.

Then, thereisan edge from b; -) to by; - z, if and only if

1.

linej isaninputinstruction, z; = €,i =]+ 1, and z, = X;
2.

linej isaconditional jump instruction, z; beginswith s, i = g;, and 2, = 7.
3.

linej isaconditional jump instruction, z; does not beginwith s, i =j + 1, and 2, = ;.
4.

linej is anon-deterministic jump instruction, z; = z,, and either i = g or i = g%
5.

line j isasuccessor instruction, i =j +1and z, = z; - §;
6.

linej isaleft shift instruction, i =j + 1, and z; = a- z, for some a e E;r,.

Theninitial state of G, isb, - € and the set of final statesis
Sin)
F= U b S
i=0

The rest of the proof proceeds as in the proof of Theorem 11.20. If there is an accepting computation for P on input

X, then there must be some path from theinitial state to some final state of length < m kS, since otherwise there

would be aloop in the non-deterministic computation which could be eliminated. We can rewritem kS(0) == 2¢ S
(n) for some constant c. We then use the same strategy as in Theorem 11.20 to search by divide-and-conquer the
graph Gp for such an accepting computation path, i.e., we execute the following program.

for X € Fdo

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (9 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness
iIf Access(b; - €, X, c §n)) then

output(true)
endif

endfor
output(false)

The recursive soubroutine Access(Xy, Xo, M) is defined by:

input(Xy, Xo, 2)
if Z=0then

if X=X, 0r (X3, Xp) € Gpthen

return(true)
else
return(false)
endif
endif
for 1< X< 2¢ S0 do

If Access(Xq, X, Z - 1) and Access(X, Xp, Z - 1) then

return(true)
endif

endfor
return(false)

The algorithm does not store Gp, but rather stores a copy of the program P, that it uses to decide whether of not (X,

X5) = Gp, for any states X; and X,. This can be done without using very much space. Again, asin the proof of

Theorem 11.20 an analysis of the space required to store the recursive subroutine calls to Access shows that the

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (10 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

total space used is bounded by ¢; (S(n))2, for some constant c;.

Ne:-:t| Upl Previous Cn:mtentsl Indexl

Next: 12. Formal Languages Up: 11. Non-Deterministic Computations Previous: 11.4 Finite Automata (Review)

Bob Daley

2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion thereof)
is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

hittp://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded6.html (11 of 11) [12/23/2006 12:05:52 PM]

12. Formal Languages

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|
Next: 12.1 Grammars Up: Lecture Notesfor CS 2110 Introduction to Theory Previous. 11.5 PSPACE

Compl eteness

12. Formal Languages

. 12.1 Grammars

. 12.2 Chomsky Classification of Languages
. 12.3 Context Sensitive L anguages

. 12.4 Linear Bounded Automata

. 12.5 Context Free Languages

« 12.6 Push Down Automata

. 12.7 Regular Languages

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|
Next: 12.1 Grammars Up: Lecture Notesfor CS 2110 Introduction to Theory Previous. 11.5 PSPACE

Compl eteness

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_noded7.html [12/23/2006 12:05:56 PM]

12.1 Grammars

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 12.2 Chomsky Classification of Languages Up: 12. Formal Languages Previous: 12. Formal
Languages

12.1 Grammars

Example 12.1 (English fragment)

{ sentence) = {noun phrase} {verbphrase} {noun phrase }
{ noun phrase} = {noun} | {adjective} {noun phrase)
(verbphrase) = (verb} | {adverb) {verb phrase)
(adjective) = big | small | black | white] .

{ adverb) = slowly | quickly | secretly | ...

{noun} = boy | dog | cat | girl | ...

(verb) = likes | hates| hits | desires| ...

This fragment generates (or derives) the following:

big black dog hits small boy
small cat secretly desires big black cat

But it also generates.
big small {noun phrase} {verb } black cat
The former are called sentences and the latter are called sentential forms.

Definition 12.1 A grammar G is denoted by { >V, R S} , Where

. 2 isafinite set of symbolscalled terminals;

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node48.html (1 of 6) [12/23/2006 12:06:06 PM]

12.1 Grammars

. Visafinite set of symbolsdisjoint from 2= called variables (or non-terminals);

. Risafinite set of productions (or rewrite rules) of theformx —* y, wherex,y € (2 U v)*
and x ?’E E;

. S € Visaspecia symbol called the start symbol (or axiom).

Definition 12.2 If x —* yisaproduction of the grammar G and w, z € (2 U V)", then we say that
wxz directly deriveswyzin G (written wxz = wyz). Also, we say that X, derives x,, in G (written x;
=" %) if and only if there exist strings X,,..., X,.1 € (& U V)" suchthat x; = x5, X, = Xg,..., X,

-1 = Xn-
Definition 12.3 The language generated by the grammar G isdefined by Lg = {X € X' . g=>* X}.
Proposition 12.1 For every grammar G, X == yisaprimitive recursive predicate.

Proof: Let G= { X, V, R S},whereR:{rl,..., r},andr; =x —% y: foreach1 =i < n. Then,

X =y =Dy (xy) V-~ VD (xy),

where

D, = Ju<x dv<x x=u-x-vAy=uy-v

Theorem 12.2 For every grammar G the language L is recursively enumerable.

Proof: Wefirst code derivations X; = X, Xo = Xg,..., Xy 1 = X, DY {xl,..., xn}.Then, the partial

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node48.html (2 of 6) [12/23/2006 12:06:06 PM]

12.1 Grammars

recursive function ¢' such that dom ¢' = Lgisgiven by

@5'(x)= minz(z = {xl,..., xn} and X; = Sand x;, = X

and Ym<n x, = x4 1)

Theorem 12.3 For every NRAM program P thereisagrammar G such that Lp = L.

Proof: We first observe that since the grammar G must output every string that P accepts on input,
derivationsin G will correspond to the reverse of accepting computations. Thus, it will not matter
whether or not P is deterministic, since even if it were certain instructions result in a loss of information
(i.e., are not reversible). For example, aleft shift instruction loses the information regarding the leftmost
symbol, so that in reversing such an instruction one must guess which symbol was deleted in the actual

Instruction execution. We will assume that P is an NRAM program over E;.-, with exactly one register

and one input instruction. Suppose P has mlines. As usua we use s, g, gjl, and gj2 to denote the

specific items mentioned in the instruction at linej of the program P. The current global state of program
P during its execution will be represented by the string I - b; -z =1, where| is the current line number

and z isthe current register contents.

Then, the grammar G for P is defined as follows:
G= {E;;,F,R,S},

— —

— —
where I ={by,... b} U{ by, 0 3 U{b,.. b} U{SE, -} adthesetRof
productions is defined to contain for each line j of P the following rules:

1.
if j isaconditional jump instruction, then

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node48.html (3 of 6) [12/23/2006 12:06:06 PM]

12.1 Grammars

bj,ira—b-a fordla € L -{s}

if] Isanon-deterministic jump instruction, then

bgjl —3 bj

bgjz — bj

If j isaleft shift instruction, then

b, —*b-a forala€ 2

If] Isasuccessor instruction, then

-
b1 — b,

b .ac—a b .c forala, c € Z;.-,

— —
a-b.— b .a fordla € 2

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node48.html (4 of 6) [12/23/2006 12:06:06 PM]

12.1 Grammars

5.
if j isthe input instruction (i.e.,] = 1), then
= b, = by
bra—+ab, foradla€ 2
by - 4= €
6.

if j isthe output instruction (i.e., j = m), then
s— . by 1
b —* b,-a fordla € 2
The way in which the grammar G generates an output x which P acceptsisto first generate by the rules
for the output instruction the final contents of P's register when it reached the output instruction during

some accepting computation. Then it successively reverses each instruction execution during the
computation (guessing appropriate values). When it reaches the input instruction (so the contents of the

register should be x) it erases all the special symbols =, by, =1 leaving the terminal string x.

Theorem 12.4 A set Xisrecursively enumerableif and only if X = Lg for some grammar G.

Corollary 125 A set Xis accepted by some NRAM program if and only if X is accepted by a DRAM
program.

* Given the equivalences between languages generated by grammars and recursively enumerable sets,

because of Rice's Theorem we see that most questions about the properties of languages generated by
grammars are algorithmically undecidable.

Next| L_Jp| Previous Ccmtents| Iﬂdey{|

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node48.html (5 of 6) [12/23/2006 12:06:06 PM]

12.1 Grammars

Next: 12.2 Chomsky Classification of Languages Up: 12. Formal Languages Previous: 12. Formal

Languages

Bob Daley
2001-11-28
©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node48.html (6 of 6) [12/23/2006 12:06:06 PM]

12.2 Chomsky Classification of Languages

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: 12.3 Context Sensitive Languages Up: 12. Formal Languages Previous: 12.1 Grammars

12.2 Chomsky Classification of L anguages

Table 12.1: Chomsky Hierarchy

Name Productions Acceptor
grammar arbitrary (Non-det.)
RAM Programs
context-sensitive X =+Yy, Non-det.
(CSG) with | x| = |y| Linear Bounded Automata
-or- (LBA)
WAZ —+ Wyz,

withA € v,y 7 €

context-free A—ry, Non-det.
(CFG) withA € V,y # e Push Down Automata
(PDA)
right linear A — yBorA —ry, (Non-det.)
. = = v+ ..
(RLG) withA, B € V,y Finite State Automaton
(FSA)

Next| L_Jp| Previous Ccmtents| Iﬂdey{|

Next: 12.3 Context Sensitive Languages Up: 12. Formal Languages Previous. 12.1 Grammars
Bob Daley

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node49.html (1 of 2) [12/23/2006 12:06:09 PM]

12.2 Chomsky Classification of Languages

2001-11-28
©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node49.html (2 of 2) [12/23/2006 12:06:09 PM]

12.3 Context Sensitive Languages

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|
Next: 12.4 Linear Bounded Automata Up: 12. Formal Languages Previous: 12.2 Chomsky

Classification of Lanquages

12.3 Context Sensitive L anguages

Example 12.2 The grammar

S—* aBC
S —* SABC
CA —* AC
BA —* AB
CB —* BC
aA — aa
aB —* ab
bB —* bb
bC —* bc

cC — cc

generates the language {a"b"c" : n > 1}.
For example, we have

S = SABC = aBCABC =* aBACBC =" aBABCC =+ aABBCC

= aaBBCC = aabBCC = aabbCC = aabbcC = aabbcc

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node50.html (1 of 2) [12/23/2006 12:06:12 PM]

12.3 Context Sensitive Languages

Ne:{t| Up| Previous Ccmtent5| Iﬂde:{|

Next: 12.4 Linear Bounded Automata Up: 12. Formal Languages Previous. 12.2 Chomsky
Classification of L anguages

Bob Daley

2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node50.html (2 of 2) [12/23/2006 12:06:12 PM]

12.4 Linear Bounded Automata

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|
Next: 12.5 Context Free Languages Up: 12. Formal Languages Previous: 12.3 Context Sensitive
Languages

12.4 Linear Bounded Automata

Definition 12.4 A linear bounded automaton is an NRAM program P that operatesin linear space, i.e.,
for some constant ¢

¥x € domP NRAMspaces(x) < c|x|.

Theorem 12.6 For every context sensitive grammar G, thereis alinear bounded automaton P such that
Lp=Lg

Proof: Given somex € Lg, the NRAM program P can " "guess' each step of a derivation of x by starting

with Sand at each step guessing the next string in the derivation and verifying that it follows by some
rule of G from the current string. If the input string x ever appears as the current string in the derivation,

then P halts. Since G is context sensitive, each string in the derivation must be of length < | x|, and

since P needs only afixed number of strings of thislength (X, the current string, and the guessed next
string), it operatesin linear space.

Theorem 12.7 For every linear bounded automaton P there is a context sensitive grammar G such that
LG = Lp.

Proof: Let P be aoneregister LBA over E;.-, such that for some congtant ¢, ¥x € dom P

NRAMspacep(X) <c | X |.

We first replace P be an equivalent LBA P, over E{;H_l:,n such that

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node51.html (1 of 6) [12/23/2006 12:06:17 PM]

12.4 Linear Bounded Automata
Yx € dom P, NRAMspacep, (X) < |Ix].
P, operates by viewing each symbol of E{k+1}|" asastring of < ¢ symbols over E;.-, u{}.
Next we replace P, by an equivalent by an equivalent LBA P, over E{ k1), Where

Yx € dom P, NRAMspacep, (X) < |Ix],

and the symbol LI isused as aspecia blank symbol and every successor instruction isimmediately

preceded by aleft shift instruction. P, simulates P, as follows:

1.
every time P, executes aleft snift instruction, P, executes the same | eft shift instruction, but also
adds a blank symbol to the right end of P,'s register;
2.
every time P, executes a successor instruction, P,
(@)
exposes (on the right) the non-blank right end of the register by rotating (leftwards) the
register contents;
(b)
removes a blank symbol from the left end;
(©)
executes the same successor instruction;
(d)

and reshifts (Ieftward) the register contents so that all the blank symbols are on the right
end.

Careful examination of P, revealsthat it is also the case that every left shift instruction isimmediately
followed by a successor instruction, so that these instructions always occur in pairs.

We now show how to construct a CSG G such that Lg = Lp,. For the most part the construction isthe

same asin Theorem 12.3. Observe first of all that al of the productions are context sensitive except

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node51.html (2 of 6) [12/23/2006 12:06:17 PM]

12.4 Linear Bounded Automata

those given for successor instructions (see 4) and the input instruction (see 5). We deal with these two
exceptions separately. The only rulein 4) which is not context sensitive isthe rule

—

bj.sq..—i — bj.—i

We eliminate this kind of rules by using the fact that in P, every successor instruction isimmediately

preceded by aleft shift instruction, and vice versa. Suppose j is asuccessor instruction sothatj - Lisa
left shift instruction, then we replace parts 3) and 4) in the construction in Theorem 12.3 by the

following rules:

—

b+1 = b,

b..a.c—}a- li}--C fOI'a”a,CE Ek

—

bj.%.—i—} E'.rj.a.—i forala € 2

— —

c- b..a— E‘.rj-a-c foralla,c € 2

i b, — |_'bj-1

The non-context sensitive rules for the input instruction are simply intended to remove the special
grammatical markers = , by, = that were introduced by the rules for the output instruction. We can
eliminate the necessity of having the special symbols by adding special diacritical marksto al the

symbols of) & (thereby increasing the size of our a phabet) which play the same roles as these specia

symbols. For example, we could replace the first rule of part 6) with the rule

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node51.html (3 of 6) [12/23/2006 12:06:17 PM]

12.4 Linear Bounded Automata

S—adikby forala € 2

and we could replace the second rules of part 6) with the rules

ckbn = abbu.c foralac € X

With careful analysis one can eliminate the use of all the special symbolsin all the rules, although there
are numerous special casesto consider.

Theorem 12.8 Every context sensitive language is a primitive recursive Set.

Proof: First of al, alinear bounded automaton can be ssmulated by a DRAM program that recognizes
the context sensitive language and that operatesin polynomial space, i.e., there is a constant ¢ such that

on input x it uses at most ¢ | X | space. But, the latter is a primitive recursive function, and DRAM

programs which operate within primitive recursive time or space bounds compute primitive recursive
functions.

Theorem 12.9 The class of context sensitive languages is closed under intersection.

Proof: Let L, and L, betwo CS.'s and let P, and P, be two oneregister LBA'ssuchthat Ly = Lp and L,

=Lp,. Then the following two-register LBA P acceptsL 'l L.

inp Ry

“copy Ry to Ry
P

“copy RrtoRy"
Py

out Ry

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node51.html (4 of 6) [12/23/2006 12:06:17 PM]

12.4 Linear Bounded Automata

Theorem 12.10 The Emptiness Problem for context sensitive languages is undecidable.

Proof: We show that if the question Lp = @ for an arbitrary LBA P were algorithmically decidable (i.e.,

{P: Lp= 9} were recursive) then the Halting Problem would be algorithmically decidable. Let P be

an arbirary DRAM program with one register over E;; with mlines. Let x be an arbitrary input to P. We

represent an accepting computation of P on input x in the usual way by strings of the form

Yoo W
wheret is the number of steps of the computation, y; represents the state of P on input x at the ith step
and is of the form
-Z

where | isthe line number at step i and z represents the register contents at step i. Further, we may
assume that by padding with blanks the lengths of all they; are identical.

We construct an LBA £ With two registers, that depends on both P and x, and that will accept only

valid computation strings of the above form. The LBA P x doesthis by first copying itsinput from R4

to R, and shifting left to remove the first state from the second copy. After that it removes symbols from
R, and R, until it reaches the end of R, and verifies that the input string was a valid computation string
by checking that

1.
Vi |=1Y; + 1 | @and it must encounter symbols of [" simultaneously in both R; and R,;

Yo istheinitial state;

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node51.html (5 of 6) [12/23/2006 12:06:17 PM]

12.4 Linear Bounded Automata

3.
y; isthe final state;

y; + 1 follows from y; by alegal instruction execution of P on input X.

[

Thus, P haltson input x if and only if P ¢ accepts some input.

Ne:{t| Up| Previous Caﬂtent5| Iﬂde:{|

Next: 12.5 Context Free Languages Up: 12. Formal Languages Previous: 12.3 Context Sensitive

Languages
Bob Daley
2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node51.html (6 of 6) [12/23/2006 12:06:17 PM]

12.5 Context Free Languages

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|
Next: 12.6 Push Down Automata Up: 12. Formal Languages Previous. 12.4 Linear Bounded Automata

12.5 Context Free Languages

Example 12.3 Let the context free grammar G have the following rules:

S — aAS

S— a
A — DA

A~ ba
Then the string aabbaa € Lg viathe derivation
S = aAS = aAa = aSbAa = aabAa = aabbaa

Observe, that the string aabbaa can also be derived using the leftmost derivation

S = aAS = aSbAS = aabAS = aabbaS =# aabbaa
Theorem 12.11 For each context free grammar G and each x € L thereisaleftmost derivation of x
in G.

Definition 12.5 A derivation tree for astring w in a context free grammar G = (>, V,R S} iIsatree

satisfying:

1.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node52.html (1 of 5) [12/23/2006 12:06:20 PM]

12.5 Context Free Languages

every vertex has alabel, whichisasymbol of V U 22;

: the [abel of theroot is S

i every interior node has alabel fromV;

N if avertex hasalabel A and the X;,..., X are the |abels of the immediate descendants of the
vertex in order from left to right, then therule A —# X, - X, must belong to R;

5

w equals the concatenation of the labels of the leaf vertices from left to right.

Theorem 12.12 LetG= { >, VR S} be a context free grammar. Then S =" xif and only if there

iIsaderivation treein G for x.

Example12.4 Let G beasin Example 12.3 and let w = aabbaa. Then aderivation treeforwin Gis:

Figure 12.8: Derivation tree for aabbaa

\@
| ™ ¥
SHCH-NGRS

In the above example by inspection we see that the following are also derivation treesin G:

Figure 12.2: Derivation tree for abaa

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node52.html (2 of 5) [12/23/2006 12:06:20 PM]

12.5 Context Free Languages

Figure 12.3: Derivation tree for aababbaa

‘* TR\

Basic Property of Derivation Trees:
Given aderivation tree with repeated non-terminals on some path:

Figure 12.4:Derivation tree for with repeated non-terminal

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node52.html (3 of 5) [12/23/2006 12:06:20 PM]

12.5 Context Free Languages

then the tree can be

@ Pruned
to obtain the tree:
Figure 12.5: Derivation tree after pruning
repeated non-terminal
:
’
@ Grafted
to obtain the tree:

Figure 12.6: Derivation tree after grafting repeated non-terminal

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node52.html (4 of 5) [12/23/2006 12:06:20 PM]

12.5 Context Free Languages

Ne:-:t| Up| Previous Caﬂtent5| Iﬂdey-:|

Next: 12.6 Push Down Automata Up: 12. Formal Languages Previous. 12.4 Linear Bounded Automata

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node52.html (5 of 5) [12/23/2006 12:06:20 PM]

12.6 Push Down Automata

Ne:-:t| Upl Previcnus| Cantents| Inde:-:l
Next: 12.7 Regular Languages Up: 12. Formal Languages Previous: 12.5 Context Free L anguages

12.6 Push Down Automata

Definition 12.6 A push down automaton (PDA) M is a system
{E,Q,F,:’f,qo, 1 ,F},where

1
22 isafinite set of symbols called the input alphabet;
2.
Qisafinite set of states;
3.
[" isafinite set of symbols called the stack al phabet;
4.
0o € Qistheinitial state;
5.
1 € T isthe start symbol;
6.
FC Q isthe set of final states;
7.

d isamapping fromQx (X U { €})x I tofinitesubsetsof Qx L.

Figure 12.7: Schematic for Push Down Automaton

ay | az | as by input (one-way READ-only)

M e (top)

Finite State Control

stack

71

L (bottom)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node53.html (1 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

The semantics of the state transition function i) is defined as follows:

Forayg € Qa€ Y, AE T

8 (g, 2, A) = {(Pr, Y1)reesPrre Y)}

whereforeach1 < < m, pi € Qand Y; € ™ meansthat the PDA M isin state g reading input symbol awith

the symbol A on top of its stack, can for any 1 <i<m replace A with 7; , advance the input head one symbol to the right,
and enter state p;;
Foranyg €E QAE I’

80, €, A) = {(P V1)rosPre Yo)}

whereforexch1<i<mp € Qand %; € I meansthat the PDA M isin state g, with the symbol A on top of its

stack, can for any 1 <i<m replace A with “J; , and without advancing itsinput head enter state p;.

Definition 12.7 An instantaneous description (ID) for aPDA M isatriple (g, w, Y), whereq € Q (the current state), w

e X* (the remaining input string), and ¥ € [(the current stack contents). We define the relation

(@ a-w - A Farpw .)

wheea € ¥ U{€},p.q €EQAE I and a,B € I' whenever (p,) € 6(q, a A).
Also, if | and Jare ID'sthen | |_Lr Jif and only if there exists a sequence of ID's |,..., |, such that

=1 a1y Fag1,=3

Definition 12.8 The language accepted by empty stack of a PDA M, denoted by Ny, is defined by

Ny ={W: (G0, W, L) Fr (p, €, €) for somep € Q}.

The language accepted by final state of a PDA M, denoted by L, is defined by

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node53.html (2 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

Ly ={w: (G w, L) Fhr (0.€,7)forsomep € F, ¥ € 'y,

Theorem 12.13
For every PDA M, thereisaPDA M; suchthat Ny, = Ly,

For every PDA M, thereisaPDA M; suchthat Ly, = Ny,
Example 125 LetM= ({0, 1} {ay, g} {R B, G}, &, qp, R0)}, where & isdefined by:

g (g5, 0, R ={ (a1, RB)}

8 (qy, 0, G)= { (@, GB)}

8 (ay, 0, B)={ (dy, BB) (. €)}
g (g5, 1, R ={(a, RG)}

8 (ay, 1, B)={(ay, BG)}

8 (ay, 1, G) = {(dz, GO), (. €)}
J (o, €, R={(a €}

8 (6p, 0, B)= {(cp €}

8 (6. 1,6)= {(a,)}

0 (dp, €, R)={ (0, €)}

Then, Ny ={w- A(w) : w € {0, 1}"}.

Then on input 0110 the computation proceeds as follows:

input ’ state ’ stack

0110 R
+ 1

0%10 q |RB

01%0 4% |RBG

011 0 RB
+ G2

0110 R
+ (07)

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node53.html (3 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

()

0110
T

So the PDA stops and accepts.

Theorem 12.14 For every CFG G thereisaPDA M such that Lg = Ny.

Proof: LetG= { ©,V,R S} bethegiven CFG. The definethePDAM = (£,Q, 2 UV,d,q5 L .0) insucha

way that for eachw, w € Lg if and only if M accepts w. The PDA M will proceed by reversing the derivation of win G

based on a derivation tree. We first define a macro instruction:

A €,7)={(p. 2},

whereq,p € Q,Z € V,and ¥ € (X U W, suchthat M in state q replaces 7Y = T ... O, on the stack (Where Ty, is
on the top of the stack) by Z.

A€, ={(.2}:
0(q, €, 0p)={(q. Y n-1,€)}

0(qYn-1,€,0, 1)={@7 n-2€)

0(q.7.1€01)={(p, 2}

The PDA M isthen defined by:

0(qpa2)={(dpa2} foz€T
Agy €,9={(G A} forA = x ER
0 (g0 €. 9={(cn. €))
O (g€ L)={(a €

One then easily shows by induction on the length of the derivation/computation that M accepts w if and only if w € L.

Example 12.6 Let G beasin Example 12.3 and |let w = aabbaa.

Figure 12.8: Derivation tree for aabbaa

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node53.html (4 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

(@) ()

10NN

Then, the computation by M on w as defined in Theorem 12.14 is:

’input state |stack ’rule
Gabbaa |q, | L

1».

aa?baa o |la [|sS—a
aa?baa @ |l as

aabbaf#i qQ | L asbba |[A = ba
aabba%} Qo | L asvA A — DA
aabba%} Qo | L aA

aabbaaT © |lata |s—a
asbbaa. . | 1 aAs |s— aAsS
aabbaaT w |LS

aabbaa |g; | L

‘1».
aabbaaT q |€

Lemma 1215 Forevery CFGG= { 3, V,R S) thereexistsaCFG G = { ¥, v, R, s} suchthat Lg=L@G and

R contains no rules of theform A — B where A, B € V.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node53.html (5 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

Proof: If Rcontainstherule A — B, then replaceit by the set of rules{A — x : B — X € R}. This replacement

occurs one rule at atime, where the rules are ordered according to the |efthand side non-terminal, and rules of the form A
—+ Aareimmediately removed. Clearly, Lg =L G3.

Theorem 12.16 (Pumping Lemma) For every CFG G there exists a positive integer p such that for any z € Lg suchthat | z

| :jp,zcanbewrittenaszzwwxy,where|vwx| Ep,|v|>00r|x|>0,anduviwxiy € LGforaIIi:_""‘ 0.

Proof: Letn=max{ |x| : A —* x € R} andletk=#V. Definep = nk+1. Supposez € Lgissuchthat | z| :_"p. Let T be
aderivation tree for z. Since the maximum length of the righthand side of any ruleis < n, the maximum branchi ngof Tis

aso < n. Therefore, since [z] 2 nk+1, there must be some path in thetree T of length Zk+1 (having Zk+2

vertices). Furthermore, since there are at most k non-terminals, there must be some path with some repeated non-terminal A
on it. Consider the following schematic for the derivation tree T. We can choose the segment vwx of zin such away that it
is derived from the first occurrence of arepeated non-terminal A from the bottom of the tree. In this way we see that | vwx

| < nk+ 1, Furthermore, since we can assume that there are no rules of the form A — B, where A, B € V, we have that

either |v|>0or | x| > 0. By the Basic Property of derivation trees repeated grafting (and pruning for the casei = 0)
yields derivation trees for the strings uviwxy.

Figure 12.9:Pumping Down

x L]

Figure 12.10: Pumping Up

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node53.html (6 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

Theorem 12.17 For each CFG G there exist integers p and q such that

1
Lg 7 D i and only if Iz € L |z|<p

Lgisinfiniteif andonlyif 3z € Lg p< |z|<aq.

Proof: Letn=max{ |x| : A —* x € R} andletk=#V. Definep = nk+1and let q = 2p.

1
Clearly, if z € Lgsuchthat|z| < p, thenLg # @.SupposeLG # D andletz € Lg. If | 2| = p, then by the
Pumping Lemmafor CFG's, z can be written as z = uvwxy and the string z; = uwy € Lg and either [v|>0or |[x|>0,s0|z
| <|z]. By repeating this pruning process (if | z; | > p) we must eventually obtain a string z; = Lgsuchthat [z | <p.

2.

Suppose 1z € Lg such that p < |z| < g. By the Pumping Lemmafor CFG's we have that z can be written as z =

uvwxy, where | v | >0 or | x| > 0, and the string uviwxly € L for al i = 0. Clearly, Lg isinfinite.
Suppose L isinfinite. Then there must exist astring z € Lg suchthat | z | > g. Using the Pumping Lemma again we see

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node53.html (7 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

that z = uvwxy and the string z; = uwy € Lgissuchthat | z; | = |z]- p>p(since|vwx | Ep). By repeating this

pruning process (if | z; | > g) we must eventually obtain astring z; € Lg such that p < |z |<q.

Example12.7 LetL ={a""c" : n > 1}. ThenLisaCSL, but L isnot a CFL.
Proof: Clearly, L isinfinite, so the Pumping Lemma appliesto L (assuming that L were a CFL). Let p be the pumping

length specified in the Pumping Lemmafor L. Let z= aPbPcP, so z can be written z = uvwxy, where|v|>0or | x|> 0, and
|lwx | < p, and wiwxly € L foralli = 0.

Observe first that v and x can contain at most one letter. For example, if v = ab, then v2 = abab and uv2wx2y L.

Next, we then see that the string uv2wx2y cannot have equal numbers of a's, b's and c's, since at most two of the letters a, b
and c can be pumped up.

Proposition 12.18 The class of context free languages is not closed under intersection.

Proof: Define the languages

L, ={abmcm : nm= 1}

and

L, ={ambmc" : nm= 1}

Theclearly, Ly M1 Ly={a"b"%c" : n > 1}, and so by the previous exampleis not a CFL. However, L, and L, are easily seen

to be CFL's. The PDA M which accepts L, operates as follows:

L
M, first scans past the a's checking that thereis at least one &,
2.
M, pushes al b's onto its stack, checking that thereis at least one b and that there are no a's mixed in with the b's;
3.
M, matches c'sin the input with b's on the stack, reading a ¢ and popping a b, checking that there are no a's or b's mixed in
with the C's;
4.

M, checks that both the input and the stack are empty simultaneously.

Theorem 12.19 For any PDA M the language Ny, is context free.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node53.html (8 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

Proof: LetM = { 2.l 4,00 L @} be agiven PDA. DefineG= { ¥, V, R,S} asfollows:

V={[q,A,p] : g, p € QandA € I'}

and Risthe set of rules:

1.
S — [0 L ,al,

foreachq € Q;

[q' A’ qm + l] _} a‘[qll BlY qz] [qm’ Bm’ qm + 1]'

foreach @, Gy, G+ 1 € Q eacha € X U { €}, andeach A By,.., B, € ', wherewe havethat 8 (g, a, A)

contains (g, By - Byyy). (If m= 0, then theruleis|[q, A, ql] —+ a).

G is defined in such away that for any input x, x € Ny if and only if x € Lg and aleftmost derivation of x in G

corresponds to an accepting computation of x by M. Moreover, [q, A, p] =" xif and only if x causes M to erase an A from

its stack by some sequence of computation steps beginning in state g and ending in state p.

Example 12.8 Let M be the PDA given in Example 12.5 for the language L = {w- & (w)

corresponding grammar G is:

s—[a,Rq fordlqg €Q

[, R.dl = o[q,,B,4]1¢, R, q]
[0, Gl = o[q,,B,4][4,G.]
[a,, 8.4l = o[q,,B,4](4, B d]
[a,B.a,] — o

[, R.dl = 0[q,, ,4][§, R, q]
[a,, G.al = o[q,, G, 41§, G, 4]
[a,,B.9] = 0[q,,G.4](§, B, q]

[ql' Gv q2] — 1

[0, R.a,] — €

foral q,§ € @
foral q,§ € @

foralq,§ € @

foralq,§ € @
foral q,§ € @

foral q,§ € @

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node53.html (9 of 10) [12/23/2006 12:06:27 PM]

:w € {0,1}*}. The

12.6 Push Down Automata
[a,B.9,] = o
A, G, 0.l — 1

[q2! R, qZ] — €

Consider theinput 0110 to M:

input | state |stack [string/ (rule)

2110 @ |R |4 R.q)

(S —[a,R.q,))

0}10 ¢ |RB |0, B, q,lla, R, q)

(g, R.q,] — 0[a, B, q,][a, R, q,)

01}0 a |RBG |01q,,G,qla, B, q,lla, R.q,]

(g, B.q,] — 1[q,, G, q,][d,, B, q,])

011? o |RB |01[q,, B, qq, R,q,)]

(l9, G.a,] — 1)

0110 |, |R |0110[q, R,]

([a,B,a,] = 0)

010, (g, |€ |0L10

([a,R.q,] —* €)

Ne:-:t|£| Previous Cuntent5| Index'

Next: 12.7 Regular Languages Up: 12. Formal Languages Previous: 12.5 Context Free L anguages
Bob Daley

2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion thereof)
is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node53.html (10 of 10) [12/23/2006 12:06:27 PM]

12.7 Regular Languages

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: Bibliography Up: 12. Formal Languages Previous: 12.6 Push Down Automata
12.7 Regular Languages

Theorem 1220 GivenanNFA M = { 2, Q J, Jo, F } there isaregular grammar G such that L =
Ly-

Proof: The grammar G = { 37, Q, R qo,)}1 has the following rules:

g, —* agy, whenever g, € fi(% a);

q; — a, wheneverq, € (g, @) andg, € F.

It is easy to see that each accepting computation path

Figure 12.11: Accepting Computation Path

@ : o - e : :

has the corresponding derivation

do = ayy TP aaty =7 - TP Ay an_ 10n.1 7 8 a,

Theorem 12.21 For each regular grammar G = { 2, V,R S} thereisan NFA M such that Ly, = L.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node54.html (1 of 2) [12/23/2006 12:06:32 PM]

12.7 Regular Languages

Proof: The NFA M = { 2.vUu { o}, i) , S{q} } has its state transition function & defined in such a
way that

1.
B E d(A a), whenever A — aB € R

o € d (A a), whenever A — a €E R
Then, for any derivation

S= aA T a@phy T - T agan 1Ay T agay

there is a corresponding computation

Figure 12.12: Accepting Computation Path

e - 9 - @ : :

Next| L_Jp| Previous Ccmtents| Iﬂdey{|

Next: Bibliography Up: 12. Formal Languages Previous: 12.6 Push Down Automata

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node54.html (2 of 2) [12/23/2006 12:06:32 PM]

Bibliography

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|
Next: Index Up: Lecture Notesfor CS 2110 Introduction to Theory Previous. 12.7 Regular Languages

Ne:-:t| Up| F’reviuu5| Caﬂtent5| Iﬂdey-:|

Next: Index Up: Lecture Notesfor CS 2110 Introduction to Theory Previous. 12.7 Regular Languages

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node55.html [12/23/2006 12:06:37 PM]

Index

Ne:-:t| Up| Previous| Contents

Up: Lecture Notesfor CS 2110 Introduction to Theory Previous: Bibliography

| ndex

accept : cs2110w_.4
acceptable programming system : ¢s2110w
acceptor : ¢cs2110w .1

L &

YV :cs2110w .1

alphabet : cs2110w .2
input : cs2110w_.4
output : cs2110w .4

am: cs2110w .2

B :cs2110w 2
Xx :cs2110w .1

Church'sThesis: cs2110w_.2

clause: cs2110w_.1

CNF : cs2110w .1

computational complexity measure: cs2110w .1
concatenation : cs2110w_.2

conjunctive normal form : cs2110w .1

constants
boolean : cs2110w .1

DFA : cs2110w_.4

diagonalization : cs2110w_ | cs2110w .1
digunctive normal form : cs2110w .1
DNF : cs2110w .1

dom :cs2110w .1

domain : cs2110w .1

2110w 1

£ :1¢cs2110w .2

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node56.html (1 of 4) [12/23/2006 12:06:40 PM]

Index

]

A : cs2110w .1

expression
boolean : cs2110w_.1
logical : cs2110w .3
regular : cs2110w_.5

FIN : cs2110w .2

function
boolean : cs2110w .1

characteristic: cs2110w_.1

finite: cs2110w

number-theoretic : cs2110w_.2

output : cs2110w .4

partial : cs2110w .1

partial recursive : cs2110w

primitiverecursive: ¢s2110w_ | cs2110w

statetransition : ¢cs2110w_.4

uniform projection : ¢cs2110w .6
Godel numbering : cs2110w_.2
generator : cs2110w .1

H : cs2110w .2

halting problem : cs2110w .2 | cs2110w .2
index set : cs2110w_.2

indexing : cs2110w_.2

initial segment : cs2110w_.2

K, : cs2110w .3

(Xpos X Iy CS2110W 6

language : cs2110w .2
regular : cs2110w .5
length : cs2110w .2

literal : cs2110w .1
many-one complete : cs2110w
minimization : ¢s2110w
bounded : ¢s2110w .3
monomial : ¢s2110w .1

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node56.html (2 of 4) [12/23/2006 12:06:40 PM]

Index

M : cs2110w 2
noc : ¢s2110w_.6

numbers
natural : cs2110w .2

V., :cs2110w .3

oper ation
boolean : cs2110w .1
logical : cs2110w .3

P:’:‘ 1 cs2110w .2

I1 : cs2110w .6
IT7 : co110w 6| cs2110w_6

predicate
primitiverecursive: cs2110w .1

recursive : cs2110w
prefix : cs2110w .2
program
non-deterministic : cs2110w .2 | cs2110w .4
probabilistic : ¢s2110w .2 | cs2110w_.4
program transfor mation : cs2110w
programming system : cs2110w
prt, : ¢s2110w_.6

ran :cs2110w .1
range: cs2110w .1
recognizer : cs2110w .1

recursion

general : cs2110w .4

primitive : cs2110w
recursive

total : cs2110w
recursively enumerable : ¢cs2110w
reducibility

many-one: ¢s2110w .2
Rice'sTheorem : cs2110w .2

sentence
propositional : cs2110w .3

¥ cs2110w .2

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node56.html (3 of 4) [12/23/2006 12:06:40 PM]

Index
2 es2110w 2

2, cs2110w 2

speed-up : cs2110w .1
state: cs2110w .4
final : cs2110w .4
Initital : ¢s2110w .4
substitution : ¢s2110w

TOT - c110w 2

term : cs2110w .1
tup : cs2110w_.6

T cs2110w 1

variable
boolean : cs2110w .1

logical : cs2110w_.3
propositional : cs2110w .3
word : ¢s2110w_.2
empty : cs2110w .2
null : cs2110w_.2
X(M) : cs2110w .2
X" :cs2110w .2
X*:cs2110w .2
XN:cs2110w .1

| Up| Previous| Contents

Up: Lecture Notes for CS 2110 Introduction to Theory Previous. Bibliography

Bob Daley
2001-11-28

©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~dal ey/cs2110/notes/cs2110w_node56.html (4 of 4) [12/23/2006 12:06:40 PM]

	pitt.edu
	Lecture Notes for CS 2110 Introduction to Theory of Computation
	Forward
	Contents
	1. Introduction
	1.1 Preliminaries
	1.2 Representation of Objects
	1.3 Codings for the Natural Numbers
	1.4 Inductive Definition and Proofs
	2. Models of Computation
	2.1 Memoryless Computing Devices
	2.2 Digital Circuits
	2.3 Propositional Logic
	2.4 Finite Memory Devices
	2.5 Regular Languages
	3. Loop Programs
	3.1 Semantics of LOOP Programs
	3.2 Other Aspects
	3.3 Complexity of LOOP Programs
	4. Primitive Recursive Functions
	4.1 Primitive Recursive Expressibility
	4.2 Equivalence between models
	4.3 Primitive Recursive Expressibility (Revisited)
	4.4 General Recursion
	4.5 String Operations
	4.6 Coding of Tuples
	5. Diagonalization Arguments
	6. Partial Recursive Functions
	7. Random Access Machines
	7.1 Parsing RAM Programs
	7.2 Simulation of RAM Programs
	7.3 Index Theorem
	7.4 Other Aspects
	7.5 Complexity of RAM Programs
	8. Acceptable Programming Systems
	8.1 General Computational Complexity
	8.2 Algorithmically Unsolvable Problems
	9. Recursively Enumerable Sets
	10. Recursion Theorem
	10.1 Applications of the Recursion Theorem
	10.1.1 Machine Learning
	10.1.2 Speed-Up Theorem
	11. Non-Deterministic Computations
	11.1 Complexity of Non-Deterministic Programs
	11.2 NP-Completeness
	11.3 Polynomial Time Reducibility
	11.4 Finite Automata (Review)
	11.5 PSPACE Completeness
	12. Formal Languages
	12.1 Grammars
	12.2 Chomsky Classification of Languages
	12.3 Context Sensitive Languages
	12.4 Linear Bounded Automata
	12.5 Context Free Languages
	12.6 Push Down Automata
	12.7 Regular Languages
	Bibliography
	Index

