
Lecture Notes for CS 2110 Introduction to Theory of Computation

Next: Forward

Lecture Notes for CS 2110
Introduction to Theory of Computation

Robert Daley
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

● Forward

● Contents
● 1. Introduction

● 1.1 Preliminaries
● 1.2 Representation of Objects
● 1.3 Codings for the Natural Numbers
● 1.4 Inductive Definition and Proofs

● 2. Models of Computation

● 2.1 Memoryless Computing Devices
● 2.2 Digital Circuits
● 2.3 Propositional Logic
● 2.4 Finite Memory Devices
● 2.5 Regular Languages

● 3. Loop Programs

● 3.1 Semantics of LOOP Programs
● 3.2 Other Aspects
● 3.3 Complexity of LOOP Programs

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w.html (1 of 3) [12/23/2006 12:00:41 PM]

Lecture Notes for CS 2110 Introduction to Theory of Computation

● 4. Primitive Recursive Functions

● 4.1 Primitive Recursive Expressibility
● 4.2 Equivalence between models
● 4.3 Primitive Recursive Expressibility (Revisited)
● 4.4 General Recursion
● 4.5 String Operations
● 4.6 Coding of Tuples

● 5. Diagonalization Arguments
● 6. Partial Recursive Functions
● 7. Random Access Machines

● 7.1 Parsing RAM Programs
● 7.2 Simulation of RAM Programs
● 7.3 Index Theorem
● 7.4 Other Aspects
● 7.5 Complexity of RAM Programs

● 8. Acceptable Programming Systems

● 8.1 General Computational Complexity
● 8.2 Algorithmically Unsolvable Problems

● 9. Recursively Enumerable Sets
● 10. Recursion Theorem

● 10.1 Applications of the Recursion Theorem
�❍ 10.1.1 Machine Learning
�❍ 10.1.2 Speed-Up Theorem

● 11. Non-Deterministic Computations

● 11.1 Complexity of Non-Deterministic Programs
● 11.2 NP-Completeness
● 11.3 Polynomial Time Reducibility
● 11.4 Finite Automata (Review)
● 11.5 PSPACE Completeness

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w.html (2 of 3) [12/23/2006 12:00:41 PM]

Lecture Notes for CS 2110 Introduction to Theory of Computation

● 12. Formal Languages

● 12.1 Grammars
● 12.2 Chomsky Classification of Languages
● 12.3 Context Sensitive Languages
● 12.4 Linear Bounded Automata
● 12.5 Context Free Languages
● 12.6 Push Down Automata
● 12.7 Regular Languages

● Bibliography
● Index

Next: Forward
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for
personal (electronic and
printed) copies of this
document provided that each
such copy (or portion
thereof) is accompanied by
this copyright notice.
Copying for any commercial
use including books,
journals, course notes,
etc., is prohibited .

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w.html (3 of 3) [12/23/2006 12:00:41 PM]

Forward

Next: Contents Up: Lecture Notes for CS 2110 Introduction to Theory Previous: Lecture Notes for CS
2110 Introduction to Theory

Forward
These notes have been compiled over the course of more than twenty years and have been greatly
influenced by the treatments of the subject given by Michael Machtey and Paul Young in An
Introduction to the Genereal Theory of Algorithms and to a lesser extent by Walter Brainerd and
Lawrence Landweber in Theory of Computation. Unfortunately both these books have been out of print
for many years. In addition, these notes have benefited from my conversations with colleagues
especially John Case on the subject of the Recursion Theorem.

Rather than packaging these notes as a commercial product (i.e., book), I am making them available via
the World Wide Web (initially to Pitt students and after suitable debugging eventually to everyone).

Next: Contents Up: Lecture Notes for CS 2110 Introduction to Theory Previous: Lecture Notes for CS
2110 Introduction to Theory
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node1.html [12/23/2006 12:01:17 PM]

Contents

Next: 1. Introduction Up: Lecture Notes for CS 2110 Introduction to Theory Previous: Forward

Contents

● Contents
● 1. Introduction

�❍ 1.1 Preliminaries
�❍ 1.2 Representation of Objects
�❍ 1.3 Codings for the Natural Numbers
�❍ 1.4 Inductive Definition and Proofs

● 2. Models of Computation
�❍ 2.1 Memoryless Computing Devices
�❍ 2.2 Digital Circuits
�❍ 2.3 Propositional Logic
�❍ 2.4 Finite Memory Devices
�❍ 2.5 Regular Languages

● 3. Loop Programs
�❍ 3.1 Semantics of LOOP Programs
�❍ 3.2 Other Aspects
�❍ 3.3 Complexity of LOOP Programs

● 4. Primitive Recursive Functions
�❍ 4.1 Primitive Recursive Expressibility
�❍ 4.2 Equivalence between models
�❍ 4.3 Primitive Recursive Expressibility (Revisited)
�❍ 4.4 General Recursion
�❍ 4.5 String Operations
�❍ 4.6 Coding of Tuples

● 5. Diagonalization Arguments
● 6. Partial Recursive Functions
● 7. Random Access Machines

�❍ 7.1 Parsing RAM Programs
�❍ 7.2 Simulation of RAM Programs
�❍ 7.3 Index Theorem
�❍ 7.4 Other Aspects
�❍ 7.5 Complexity of RAM Programs

● 8. Acceptable Programming Systems

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node2.html (1 of 2) [12/23/2006 12:01:34 PM]

Contents

�❍ 8.1 General Computational Complexity
�❍ 8.2 Algorithmically Unsolvable Problems

● 9. Recursively Enumerable Sets
● 10. Recursion Theorem

�❍ 10.1 Applications of the Recursion Theorem
■ 10.1.1 Machine Learning
■ 10.1.2 Speed-Up Theorem

● 11. Non-Deterministic Computations
�❍ 11.1 Complexity of Non-Deterministic Programs
�❍ 11.2 NP-Completeness
�❍ 11.3 Polynomial Time Reducibility
�❍ 11.4 Finite Automata (Review)
�❍ 11.5 PSPACE Completeness

● 12. Formal Languages
�❍ 12.1 Grammars
�❍ 12.2 Chomsky Classification of Languages
�❍ 12.3 Context Sensitive Languages
�❍ 12.4 Linear Bounded Automata
�❍ 12.5 Context Free Languages
�❍ 12.6 Push Down Automata
�❍ 12.7 Regular Languages

● Bibliography
● Index

Next: 1. Introduction Up: Lecture Notes for CS 2110 Introduction to Theory Previous: Forward
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node2.html (2 of 2) [12/23/2006 12:01:34 PM]

1. Introduction

Next: 1.1 Preliminaries Up: Lecture Notes for CS 2110 Introduction to Theory Previous: Contents

1. Introduction

 Goal

To learn the fundamental properties and limitations of computability (i.e., the ability to solve
problems by computational means)

 Major Milestones

 Invariance
in formal descriptions of computable functions -- Church's Thesis

 Undecidability
by computer programs of any dynamic (i.e., behavioral) properties of computer programs
based on their text

 Major Topics

 Models
of computable functions

 Decidable vs undecidable
properties

 Feasible vs infeasible

problems -- P NP
 Formal Languages

(i.e., languages whose sentences can be parsed by computer programs)

● 1.1 Preliminaries
● 1.2 Representation of Objects
● 1.3 Codings for the Natural Numbers
● 1.4 Inductive Definition and Proofs

Next: 1.1 Preliminaries Up: Lecture Notes for CS 2110 Introduction to Theory Previous: Contents

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node3.html (1 of 2) [12/23/2006 12:01:55 PM]

1. Introduction

Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node3.html (2 of 2) [12/23/2006 12:01:55 PM]

1.1 Preliminaries

Next: 1.2 Representation of Objects Up: 1. Introduction Previous: 1. Introduction

1.1 Preliminaries
We will study a variety of computing devices. Conceptually we depict them as being ``black boxes'' of
the form

Figure 1.1:Black box computing device

where x is an input object of type X (i.e., x X) and y is an output object of type Y. Thus, at this level

the device computes a function f : X Y defined by f (x) = y.

● For some computing devices the function f will be a partial function which means that for some

inputs x the function is not defined (i.e., produces no output). In this case we write f (x) .

Similarly, we write f (x) whenever f on input x is defined.

● The set of all inputs on which the function f is defined is called its domain (denoted by dom f),

and is given by dom f = {x : f (x) }.

● Also, the range of a function f (denoted by ran f), and is given by ran f = {y : x dom f, y

= f (x)}.

We will also be interested in computing devices which have multiple inputs and outputs, i.e., which can
be depicted as follows:

Figure 1.2:Multiple input-output computing device

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node4.html (1 of 3) [12/23/2006 12:02:07 PM]

1.1 Preliminaries

where x1,..., xn are objects of type X1,..., Xn (i.e., x1 X1,..., xn Xn), and y1,..., ym are objects of type

Y1,..., Ym. Thus, the device computes a function

f : X1 x ... x Xn Y1 x ... x Ym

defined by f (x1,..., xn) = (y1,..., ym). Here we use X1 x ... x Xn to denote the cartesian product, i.e.,

X1 x ... x Xn = {(x1,..., xn) : x1 X1,..., xn Xn}.

● We also use Xn to denote the cartesian product when X1 = X2 = ... = Xn = X.

● Of course, since X1 x ... x Xn is just some set X and Y1 x ... x Ym is some set Y, the situation with

multiple inputs and outputs can be viewed as a more detailed description of a single input-output
device where the inputs are n-tuples of elements and the outputs are m-tuples of elements.

● We use in to denote xi, xi + 1,..., xn where i n, and n to denote 1n (i.e., x1,..., xn).

Besides viewing computing devices as mechanisms for computing functions we are also interested in
them as mechanisms for computing sets.

● Given a set X the characteristic function of X (denoted by) is given by

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node4.html (2 of 3) [12/23/2006 12:02:07 PM]

1.1 Preliminaries

● A computing device (which computes the function f) can ``compute'' a set X in 3 different ways:
1.

it can compute the characteristic function of the set X, i.e., f = .

2.
its domain is equal to X, i.e., X = dom f. In this case we say that the device is an acceptor
(or a recognizer) for the set X.

3.
its range is equal to X, i.e., X = ran f. In this case we say that the device is a generator for
the set X.

Next: 1.2 Representation of Objects Up: 1. Introduction Previous: 1. Introduction
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node4.html (3 of 3) [12/23/2006 12:02:07 PM]

1.2 Representation of Objects

Next: 1.3 Codings for the Natural Numbers Up: 1. Introduction Previous: 1.1 Preliminaries

1.2 Representation of Objects

We use to denote the set {0, 1, 2,...} of Natural Numbers, and we use for the set {0, 1} of Binary
Digits. We are most interested in functions over , but in reality numbers are abstract objects and not
concrete objects. Therefore it will be necessary to deal with representations of the natural numbers by
means of strings over some alphabet.

● An alphabet is any finite set of symbols { ,..., }. The symbols themselves will be

unimportant, so we will use 1 for , ..., and n for , and denote by the set {1,..., n}.

● A word over the alphabet is any finite string a1 ... aj of symbols from (i.e., x = a1 ... aj). We

denote by the set of all words over the alphabet .

● The length of a word x = a1 ... aj (denoted by | x |) is the number j of symbols contained in x.

● The null or empty word (denoted by) is the (unique) word of length 0.
● Given two words x = a1 ... aj and y = b1 ... bk, the concatenation of x and y (denoted by x . y) is the

word a1 ... ajb1 ... bk. Clearly, | x . y | = | x | + | y |. We will often omit the . symbol in the

concatenation of x and y and simply write xy.
● The word x is called an initial segment (or prefix) of the word y if there is some word z such that

y = x . z.

● For any symbol a , we use am to denote the word of length m consisting of m a's.

● We often refer to a set of strings over an alphabet as a language.
● We extend concatenation to sets of strings over an alphabet as follows:

If X, Y , then

X . Y = {x . y : x X and y Y}

X(0) = { }

X(n + 1) = X(n) . X, for n 0

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node5.html (1 of 2) [12/23/2006 12:02:24 PM]

1.2 Representation of Objects

X* = X(n)

X+ = X(n)

Thus X(n)is the set of all ``words'' of length nover the ``alphabet'' X.

Next: 1.3 Codings for the Natural Numbers Up: 1. Introduction Previous: 1.1 Preliminaries
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node5.html (2 of 2) [12/23/2006 12:02:24 PM]

1.3 Codings for the Natural Numbers

Next: 1.4 Inductive Definition and Proofs Up: 1. Introduction Previous: 1.2 Representation of Objects

1.3 Codings for the Natural Numbers

We will introduce a correspondence between the natural numbers and strings over which is

different from the usual number systems such as binary and decimal representations.

Table 1.1:Codings for the
Nautral Numbers

*

0 0

1 1 1 1

2 10 2 2

3 11 11 3

4 100 12 4

5 101 21 11

6 110 22 12

7 111 111 13

8 1000 112 14

9 1001 121 21

10 1010 122 22

11 1011 211 23

The codings via and are one-to-one and onto. The coding via * is not -- 010 = 10.

 The function : ,

providing the one-to-one and onto map is defined inductively as follows:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node6.html (1 of 3) [12/23/2006 12:02:29 PM]

1.3 Codings for the Natural Numbers

(0) =

Next, suppose that (x) = d1 ... dj, and let k jbe the greatestinteger such that dk n(so k= 0 if d1= ...

= dj= n). Then,

(x + 1) =

 The function : ,

which is the inverse for is defined as follows:

Let x be the string aj ... a1a0. Then,

(x) = (aj ... a1a0)

 = ai x ni

 = aj x nj + ... + a1 x n + a0

 Observe that

(x . y) = (x) x n | y | + (y),

e.g., 16 = 3 x 22 + 4 = (11 . 12) = (1112).

Next: 1.4 Inductive Definition and Proofs Up: 1. Introduction Previous: 1.2 Representation of Objects

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node6.html (2 of 3) [12/23/2006 12:02:29 PM]

1.3 Codings for the Natural Numbers

Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node6.html (3 of 3) [12/23/2006 12:02:29 PM]

1.4 Inductive Definition and Proofs

Next: 2. Models of Computation Up: 1. Introduction Previous: 1.3 Codings for the Natural Numbers

1.4 Inductive Definition and Proofs

An inductive definition over the natural numbers usually takes the form:

f (0, y) = g(y)
f (n + 1, y) = h(n, y, f (n, y))

where g and h are previously defined.

 Example of inductive definition

y0 = 1
yn + 1 = yn x y

so that g(y) = 1 and h(x, y, z) = zxy.

 Definitions involving ``...'' are usually inductive.

 Example of ... definition

ai = a0 + a1 + ... + an

The inductive equivalent is:

ai = a0

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node7.html (1 of 7) [12/23/2006 12:02:39 PM]

1.4 Inductive Definition and Proofs

ai = ai + an + 1

so that g(y) = a0and h(x, y, z) = z+ ax + 1.

Most ``recursive'' procedures are really just inductive definitions.

Induction Principle I: For any proposition P over , if
1) P(0) is true, and
2) n, P(n) P(n + 1) is true,
then n, P(n) is true.

1) is called the Basis Step
2) is called the Induction Step

The validity of this principle follows by a ``Dominoe Principle''

 P(0) means ``0 falls'':

 P(n) P(n + 1) means ``if n falls, then n + 1 falls'':

Combining these two parts, we see that ``all dominoes fall'':

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node7.html (2 of 7) [12/23/2006 12:02:39 PM]

1.4 Inductive Definition and Proofs

 Example of inductive proof

Let P(n) : i = .

 Basis Step:
Show P(0) is true

i = 0 =

 Induction Step:
Let n be arbitrary and assume P(n) is true. This assumption is called the Induction Hypothesis,
viz. that

i =

Then,

i = i + (n + 1)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node7.html (3 of 7) [12/23/2006 12:02:39 PM]

1.4 Inductive Definition and Proofs

 = + (n + 1)

 =

 =

Note: Line 1 uses the inductive definition of (here ai = i).

Line 2 uses the Induction Hypothesis; and
Line 4 is P(n + 1), so we have shown P(n) P(n + 1).

By reasoning similar to that for Induction Principle I, we also have

Induction Principle II: For any proposition P over the positive integers, if
1) P(0) is true, and
2) n,(i < n + 1, P(i)) P(n + 1) is true,
then n, P(n) is true.

Here 2) means ``If 0, 1, 2,..., n falls, then n + 1 falls''. Note that `` i < n + 1, P(i)'' is really shorthand for ``

i, i < n + 1 P(i)''.

Induction Principle II is needed for inductive definitions like the one for the fibonacci numbers:

f (0) = 0
f (1) = 1

f (n + 1) = f (n) + f (n - 1)

However, some domains of interest do not have such a ``linear'' structure as the natural numbers. For
example, the set * has a ``tree'' structure:

Figure 1.3:Structure of *

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node7.html (4 of 7) [12/23/2006 12:02:39 PM]

1.4 Inductive Definition and Proofs

Thus each word x * has two successors: x . 0 and x . 1.

 Example of inductive definition over

The reversal function such that (a1 ... an) = an ... a1 is defined inductively by:

() =

(x . a) = a . (x)

Thus, we see that inductive defintions over have the general form:

f (, y) = g(y)

f (x . a, y) = ha(x, y, f (x, y)), for each a

Principle III: For any proposition P over , if

1) P() is true, and

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node7.html (5 of 7) [12/23/2006 12:02:39 PM]

1.4 Inductive Definition and Proofs

2) x ,(a , P(x) P(x . a)) is true,

then x , P(x) is true.

The validity of this principle also follows from a ``Dominoe Principle''

 P() means `` falls'':
 P(x) P(x . a) means ``if x falls, then x . a falls'':

These combined yield ``all dominoes fall'' when they are arranged according to the structure of .

Figure 1.4:Top view

 Example of inductive proof over

Let P(x) a , (a . x) = (x) . a

 Basis Step:
Show P() is true

(a .) = (a) = (. a) = a . () = a . = a = . a = () . a

 Induction Step:
Let x be arbitrary and assume P(x) is true, so the Induction Hypothesis is

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node7.html (6 of 7) [12/23/2006 12:02:39 PM]

1.4 Inductive Definition and Proofs

a , (a . x) = (x) . a

Then, for any a, b

(a . (x . b)) = ((a . x) . b)

 = b . (a . x)

 = b . ((x) . a)

 = (b . (x)) . a

 = (x . b) . a

So P(x . a) is true. Therefore, x , a , (a . x) = (x) . a.

Note: Lines 1 and 4 use the associativity of . ;

Lines 2 and 5 use the definition of ;

and Line 3 use the Induction Hypothesis.

Next: 2. Models of Computation Up: 1. Introduction Previous: 1.3 Codings for the Natural Numbers
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion
thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node7.html (7 of 7) [12/23/2006 12:02:39 PM]

2. Models of Computation

Next: 2.1 Memoryless Computing Devices Up: Lecture Notes for CS 2110 Introduction to Theory
Previous: 1.4 Inductive Definition and Proofs

2. Models of Computation

 Memoryless Computing Devices

 Boolean functions and Expressions
 Digital Circuits
 Propositional Logic

 Finite Memory Computing Devices

 Finite state machines
 Regular expressions

 Unbounded Memory Devices

 Loop programs
 (Partial) recursive functions
 Random access machines
 First-order number theory

 Other Aspects

 Non-deterministic devices
 Probabilistic devices

● 2.1 Memoryless Computing Devices
● 2.2 Digital Circuits
● 2.3 Propositional Logic
● 2.4 Finite Memory Devices
● 2.5 Regular Languages

Next: 2.1 Memoryless Computing Devices Up: Lecture Notes for CS 2110 Introduction to Theory

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node8.html (1 of 2) [12/23/2006 12:02:48 PM]

2. Models of Computation

Previous: 1.4 Inductive Definition and Proofs
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node8.html (2 of 2) [12/23/2006 12:02:48 PM]

2.1 Memoryless Computing Devices

Next: 2.2 Digital Circuits Up: 2. Models of Computation Previous: 2. Models of Computation

2.1 Memoryless Computing Devices

A boolean function is any function f : n m, and thus has the schematic form

Figure 2.1:Multiple input-output computing device

We will be concerned here primarily with the case where m = 1. Since has finite cardinality, the
domain of f is finite, and f can be represented by means of a finite table with 2n entries.

Example 2.1
Table 2.1:
Example
boolean
function

x1 x2 x3 f

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node9.html (1 of 3) [12/23/2006 12:02:59 PM]

2.1 Memoryless Computing Devices

1 1 0 1

1 1 1 1

It is also possible to represent a boolean function by means of a boolean expression. A boolean
expression consists of boolean variables (x1, x2,...), boolean constants (0 and 1), and boolean

operations (, , and), and is defined inductively as follows:

1.
Any boolean variable x1, x2,... and any boolean constant 0, 1 is a boolean expression;

2.
If e1 and e2 are boolean expressions, then so are (e1), (e1 e2), and (e1 e2).

The operations , , are defined by the table:

Table 2.2:Boolean operations

x1 x2 x1 x1 x2 x1 x2

0 0 1 0 0

0 1 1 0

1 0 0 1 0

1 1 1 1

so that , , represent boolean functions. In general, every boolean expression with n variables
represents some boolean function f : n .

Conversely, we have

Theorem 2.1 Every boolean function f : n is represented by some boolean expression with
n variables.

Example 2.2

The function given in Example 2.1 above can be represented by the boolean expression

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node9.html (2 of 3) [12/23/2006 12:02:59 PM]

2.1 Memoryless Computing Devices

(x1 x2 x3) (x1 x2 x3) (x1 x2),

i.e.,

f (x1, x2, x3) = (x1 x2 x3) (x1 x2 x3) (x1 x2).

 Terminology:

�❍ A literal is either a variable (e.g., xj) or its negation (e.g., xj).

�❍ A term is a conjunction (i.e., e1 ... ek) of literals e1,..., ek.

�❍ A clause is a disjunction (i.e., e1 ... ek) of literals e1,..., ek.

�❍ A boolean expression is a DNF (disjunctive normal form) expression if it is a disjunction
of terms.

�❍ A monomial is a one-term DNF expression.
�❍ A boolean expression is a CNF (conjunctive normal form) expression if it is a conjunction

of clauses.

 The previous theorem is proved by constructing a DNF expresssion for any given boolean function.

Next: 2.2 Digital Circuits Up: 2. Models of Computation Previous: 2. Models of Computation
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node9.html (3 of 3) [12/23/2006 12:02:59 PM]

2.2 Digital Circuits

Next: 2.3 Propositional Logic Up: 2. Models of Computation Previous: 2.1 Memoryless Computing
Devices

2.2 Digital Circuits
We can ``implement'' boolean functions using digital logic circuits consisting of ``gates'' which compute
the operations , , and , and which are depicted as follows:

Figure 2.2:Digital
logic gates

Example 2.3 (circuit for function of Example 2.1)

Figure 2.3:Digital logic circuit

Next: 2.3 Propositional Logic Up: 2. Models of Computation Previous: 2.1 Memoryless Computing
Devices
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node10.html (1 of 2) [12/23/2006 12:03:03 PM]

2.2 Digital Circuits

Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node10.html (2 of 2) [12/23/2006 12:03:03 PM]

2.3 Propositional Logic

Next: 2.4 Finite Memory Devices Up: 2. Models of Computation Previous: 2.2 Digital Circuits

2.3 Propositional Logic
If we interpret the boolean value 0 as ``FALSE'' (F) and the boolean value 1 as ``TRUE'' (T), then the
boolean operations become ``logical operations'' which are defined by the following ``truth tables'':

Table 2.3:Logical operations

x1 x2 x1 x1 x2 x1 x2

F F T F F

F T T F

T F F T F

T T T T

Then the boolean variables become ``logical variables'', which take on values from the set V = {T,F}.
Analagously, boolean expressions become ``logical expressions'' (or ``propositional sentences''), and are
useful in describing concepts.

Example 2.4 Suppose x1, x2, x3, x4, x5, x6 are propositional variables which are interpreted as follows:

x1 -- "is a large mammal"

x2 -- "lives in water"

x3 -- "has claws"

x4 -- "has stripes"

x5 -- "hibernates"

x6 -- "has mane"

Then the propositional statement x1 x2 (x4 x5 x6) defines a concept for a class of

animals which inclues lions and tigers and bears!

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node11.html (1 of 2) [12/23/2006 12:03:06 PM]

2.3 Propositional Logic

Next: 2.4 Finite Memory Devices Up: 2. Models of Computation Previous: 2.2 Digital Circuits
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node11.html (2 of 2) [12/23/2006 12:03:06 PM]

2.4 Finite Memory Devices

Next: 2.5 Regular Languages Up: 2. Models of Computation Previous: 2.3 Propositional Logic

2.4 Finite Memory Devices
We construct finite memory devices be adding a finite number of memory cells (``flip-flops''), which can
store a single bit (0 or 1), to a logical circuit as depicted below:

Figure 2.4:Finite memory
device

Here, zi is the current contents of memory cell i, and zi+ is the contents of that memory cell at the next

unit of time (i.e., clock cycle).

Of course, memory cells themselves can be realized by digital circuits, e.g., the following cicuit realizes
a flip-flop:

Figure 2.5:Flip Flop

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node12.html (1 of 4) [12/23/2006 12:03:10 PM]

2.4 Finite Memory Devices

The device operates as follows: At each time step, the current input values x1,..., xn are combined with

the current memory values z1,..., zk to produce via the logical circuit the output values y1,..., ym and

memory values z1+,..., zk+ for the next time cycle. Then, the device uses the next input combination of

x1,..., xn and z1,..., zk (i.e., the previously calculated z1+,..., zk+) to compute the next output y1,..., ym and

the next memory contents z1+,..., zk+, and so on.

Of course, at the beginning of the computation there must be some initial memory values. In this way we
see that such a device transforms a string of inputs (i.e., a word over *) into a string of outputs.

A device that has k memory cells will have 2k combinations of memory values or states . Of course,
depending on the circuitry, not all combinations will be realizable, so the device may have fewer actual
states.

We formalize matters as follows:

● We regard the pattern of bits x1,..., xn as encoding the letters of some input alphabet , and

similarly y1,..., ym as encoding the letters of some output alphabet .

● We let Q denote the set of possible states (i.e., legal combinations of z1,..., zk).

As indicated above , , and Q need not have cardinality that is a power of 2.

● Since the output (y1,..., ym) depends on the input (x1,..., xn) and the current memory state (z1,...

zk), we have an output function : Q x .

● Similarly, since the next memory state (z1+,...zk+) depends on the input and the current memory

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node12.html (2 of 4) [12/23/2006 12:03:10 PM]

2.4 Finite Memory Devices

state, we have a state transition function : Q x Q.
● When the device begins its computation on a given input its memory will be in some initial state

q0.

Therefore, such a device can be abbreviated as a tuple

M = , , Q, , , q0 .

We depict M schematically as follows:

Figure 2.6:Schematic for Finite State Automaton

While this model of a finite memory device clearly models the computation of functions f :

 with finite memory, we need only consider a restricted form which are acceptors for languages over

 (i.e., subsets of strings from). In this restricted model we replace the output function by a

set of specially designated states F Q called final states . The purpose of F is to indicate which input

words are accepted by the device.

Definition 2.1 A deterministic finite state automation (DFA) is a 5-tuple

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node12.html (3 of 4) [12/23/2006 12:03:10 PM]

2.4 Finite Memory Devices

M = , Q, , q0, F ,

where is the input alphabet, Q is the finite set of states, q0 is the initial state, F Q is the set of

final states, and : Q x Q is the state transition function.

● We say that an input x = a1 ... aj is accepted by the DFA M = , Q, , q0, F if there is a

sequence of states p1,..., pj + 1 such that p1 is the initial state q0 and pj + 1 F and for each i j,

(pi, ai) = pi + 1.

● We say that a language X is accepted by the DFA M if and only if every word x X is

accepted by M.

Next: 2.5 Regular Languages Up: 2. Models of Computation Previous: 2.3 Propositional Logic
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node12.html (4 of 4) [12/23/2006 12:03:10 PM]

2.5 Regular Languages

Next: 3. Loop Programs Up: 2. Models of Computation Previous: 2.4 Finite Memory Devices

2.5 Regular Languages

The class of regular languages over is defined by induction as follows:

1.

the sets , { }, and {a} for each a are regular languages;

2.
if R1 and R2 are regular languages, then so are R1 R2, R1 . R2, and R1*.

In other words, the class of regular languages is the smallest class of subsets of containing , {

}, and {a} for each a , and closed under the operations of set union, set concatenation, and *.

We define the class of regular expressions for denoting regular sets by induction as follows:

1.

, , and a are regular expressions for , { }, and {a}, respectively;

2.
if r1 and r2 are regular expressions for the regular sets R1 and R2, then (r1 r2), (r1 . r2), and

(r1*) are regular expressions for R1 R2, R1 . R2, and R1*, respectively.

Theorem 2.2 Every regular language is accepted by some deterministc finite automaton, and
conversely every language accepted by some deterministic finite automaton is a regular language.

Next: 3. Loop Programs Up: 2. Models of Computation Previous: 2.4 Finite Memory Devices
Bob Daley
2001-11-28
©Copyright 1996

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node13.html (1 of 2) [12/23/2006 12:03:13 PM]

2.5 Regular Languages

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node13.html (2 of 2) [12/23/2006 12:03:13 PM]

3. Loop Programs

Next: 3.1 Semantics of LOOP Programs Up: Lecture Notes for CS 2110 Introduction to Theory
Previous: 2.5 Regular Languages

3. Loop Programs

The programming language LOOP over consists of:

 Program Variables:

 (also U,V,W,Y,Z with subscripts)

 Elementary Statements:

 Input Statements:

INPUT(

 Output Statements:

OUTPUT(Y1)

 Assignment Statements:

 Control Structures:

 For Statements:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node14.html (1 of 2) [12/23/2006 12:03:16 PM]

3. Loop Programs

FOR

 .
 .
 .
ENDFOR

 Until Statements:

UNTIL

 .
 .
 .
ENDUNTIL

● 3.1 Semantics of LOOP Programs
● 3.2 Other Aspects
● 3.3 Complexity of LOOP Programs

Next: 3.1 Semantics of LOOP Programs Up: Lecture Notes for CS 2110 Introduction to Theory
Previous: 2.5 Regular Languages
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node14.html (2 of 2) [12/23/2006 12:03:16 PM]

3.1 Semantics of LOOP Programs

Next: 3.2 Other Aspects Up: 3. Loop Programs Previous: 3. Loop Programs

3.1 Semantics of LOOP Programs

[X1] denotes the contents of the variable .

 logical values:

 FALSE
is zero

 TRUE
is any non-zero value

 INPUT(

-- input [X1],...,[Xn]

 OUTPUT(Y1)

-- output [Y1]

-- replace [X1] with

-- replace [X1] with x, where (x) = ([X1]) + 1

-- replace [X1] with [Y1]

 For Statement:

FOR

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node15.html (1 of 6) [12/23/2006 12:03:21 PM]

3.1 Semantics of LOOP Programs

body

ENDFOR

-- repeat body of loop ([X1]) times

 Until Statement:

UNTIL

body

ENDUNTIL

-- repeat body of loop until [X1]

Definition 3.1 A LOOP-program over is a sequence of LOOP statements S1,..., Sn such that

1.
S1 is an input statement

2.
Sn is an output statement

3.
and none of S2, ..., Sn - 1 are input or output statements.

Definition 3.2 A LOOP-program P over computes the (partial) function f : ()n if

and only if

1.
the input statement of P has n variables;

2.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node15.html (2 of 6) [12/23/2006 12:03:21 PM]

3.1 Semantics of LOOP Programs

for all x1,..., xn, when P is executed with x1,..., xn as its input,

(a)

P halts if and only if f (x1,..., xn) ,

(b)
if P halts, then P outputs f (x1,..., xn).

 Execution of a LOOP program involves:

1.
initially all variables have value 0

2.
statements are executed according to the ``obvious'' semantics in the ``obvious'' order.

 Observe that the choice of alphabet enters into consideration only through I/O and the

``internal representation'' or ``semantics'' of the program. We could have taken as our primitive operation

 (for each a instead of and then the choice of would have been much

more evident.

Example 3.1 The following program computes the function f (x) = x 1, where the operation

(called ``monus'') is defined by:

x y =

INPUT(

FOR

 Z1 Y1

 Y1 Y1 + 1

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node15.html (3 of 6) [12/23/2006 12:03:21 PM]

3.1 Semantics of LOOP Programs

ENDFOR
OUTPUT(Z1)

Notation 3.3 Let P be a LOOP-program with input statement

INPUT(and output statement OUTPUT(Y1). We denote by P- the result of

removing from P its input and output statements, and we denote by U1 the

sequence of statements:

 .
 .
 .

U1 Y1

We can implement other control structures using FOR and UNTIL loops. First, we need a program BLV
for the function blv (``boolean / logical value'') define by:

blv(x) =

and we need a program NEG for the function neg (``logical negation'') defined by:

neg(x) =

The program BLV is given by

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node15.html (4 of 6) [12/23/2006 12:03:21 PM]

3.1 Semantics of LOOP Programs

INPUT(

Z1 0

FOR

 Z1 0

 Z1 Z1 + 1

ENDFOR
OUTPUT(Z1)

and the program NEG is given by:

INPUT(

Z2 Z2 + 1

FOR

 Z2 0

ENDFOR
OUTPUT(Z2)

Then the if-then-else control structure, that takes the form

IF

S1

ELSE

S2

ENDIF

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node15.html (5 of 6) [12/23/2006 12:03:21 PM]

3.1 Semantics of LOOP Programs

where S1 and S2 stand for lists of statements, can be implemented by:

FOR

S1

ENDFOR

FOR

S2

ENDFOR

Next: 3.2 Other Aspects Up: 3. Loop Programs Previous: 3. Loop Programs
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node15.html (6 of 6) [12/23/2006 12:03:21 PM]

3.2 Other Aspects

Next: 3.3 Complexity of LOOP Programs Up: 3. Loop Programs Previous: 3.1 Semantics of LOOP
Programs

3.2 Other Aspects
● We can construct non-deterministic LOOP programs by adding statements of the form

SELECT(

which assigns either a 0 or a 1 non-deterministically to the variable .

● We can construct probabilistic LOOP programs by adding statements of the form

PRASSIGN(

which assigns either a 0 or a 1 probabilistically with probability to the variable .

We distinguish between deterministic, non-deterministic, and probabilistic LOOP programs by using the
notation DLOOP, NLOOP, and PLOOP, respectively.

Next: 3.3 Complexity of LOOP Programs Up: 3. Loop Programs Previous: 3.1 Semantics of LOOP
Programs
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node16.html [12/23/2006 12:03:25 PM]

3.3 Complexity of LOOP Programs

Next: 4. Primitive Recursive Functions Up: 3. Loop Programs Previous: 3.2 Other Aspects

3.3 Complexity of LOOP Programs
Definition 3.4 If P is a deterministic LOOP program (a program without SELECT or PRASSIGN

statements) over with input variables and all variables included in

, then we define the following complexity measures for P.

DLPtimeP(n) =

DLPspaceP(n) =

where denotes the contents of register at step t of the computation of P on input n.

Next: 4. Primitive Recursive Functions Up: 3. Loop Programs Previous: 3.2 Other Aspects
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node17.html [12/23/2006 12:03:28 PM]

4. Primitive Recursive Functions

Next: 4.1 Primitive Recursive Expressibility Up: Lecture Notes for CS 2110 Introduction to Theory
Previous: 3.3 Complexity of LOOP Programs

4. Primitive Recursive Functions
The class of primitive recursive functions is defined inductively as follows:

 Base functions:

 Null function:

N(x) = 0, for any x

 Successor function:

S(x) = x + 1, for any x

 Projection functions:

Pjn(n) = xj, for any 1 j n, and any n n

 Operations:

 Substitution:
Given integers m and n, and functions g : m , and h1,..., hm, where hj : n

 , then f : n is defined from g, h1,..., hm via substitution if for any

n n,

f (n) = g(h1(n),..., hm(n)).

 Primitive recursion:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node18.html (1 of 5) [12/23/2006 12:03:33 PM]

4. Primitive Recursive Functions

Given an integer n, and functions g : n - 1 , and h : n + 1 , then f :
n is defined from g and h via primitive recursion if for any y and any

2n n - 1,

f (0, 2n) = g(2n)

f (y + 1, 2n) = h(y, f (y, 2n), 2n).

Definition 4.1 A function f : n is primitive recursive if it can be obtained from the base
functions (null, successor, and projections) by finitely many applications of the operations of
substitution and primitive recursion.

● Thus, the class of primitive recursive functions is the smallest class containing the base functions
and closed under the operations of substitution and primitive recursion.

● If in the definition of primitive recursion n = 1, then the schema takes the form:

f (0) = c
f (y + 1) = h(y, f (y))

for some constant cand some function h.

● We could have defined the primitive recursive functions over instead of by replacing S

with k successors Sa(y) = y . a for each a ; and by replacing primitive recursion over

with primitive recursion over which takes the form:

f (, 2n) = g(2n)

f (y . a, 2n) = ha(y, f (y, 2n), 2n) a

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node18.html (2 of 5) [12/23/2006 12:03:33 PM]

4. Primitive Recursive Functions

● Addition is primitive recursive as seen by the following application of the operation of primitive
recursion:

0 + x = x
y + 1 + x = (y + x) + 1

Actually, the formal definition takes the form (where add(y, x) = y+ x)

add(0, x) = P11(x)

add(y + 1, x) = S(P23(y, add(y, x), x))

● We can then define multiplication (mult(y, x) = y x x) using primitive recursion applied to the
null function and addition:

mult(0, x) = N(x)
mult(y + 1, x) = add(P23(y, mult(y, x), x), P33(y, mult(y, x), x))

or less formally,

0 x x = 0
y + 1 x x = (y x x) + x

● Sometimes, as is the case with addition and multiplication, it is more natural or convenient to
allow the recursive definition to occur over a variable other than the first variable. This is
permissable since we can use the projection functions to rearrange the variables in any order we
wish. For example, we can define the function

add'(x, y) = add(P22(x, y), P12(x, y))
 = add(y, x)

so that in effect we have:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node18.html (3 of 5) [12/23/2006 12:03:33 PM]

4. Primitive Recursive Functions

x + 0 = x
x + y + 1 = (x + y) + 1

● The function blv is also primitive recursive:

blv(0) = 0
blv(y + 1) = 1

Or, formally

blv(0) = 0
blv(y + 1) = S(N(P12(y, blv(y))))

● Similarly, the function neg is primitive recursive

neg(0) = 1
neg(y + 1) = 0

Proposition 4.1 Every primitive recursive function is a total function, i.e., defined on all natural
numbers.

Proof: The proof is by induction on the definition of a primitive recursive function f. Clearly, all the
base functions are total functions. Next, if f is defined by substitution from g and h1,..., hm, then f is total

whenever g and h1,..., hm are total.

Suppose f is defined by primitive recursion from g and h, and suppose by induction hypothesis that g and

h are total functions. We prove by induction that for every y , f (y, 2n) . First, f (0, 2n) ,

since f (0, 2n) = g(2n) and g is total. Next, assuming that f (y, 2n) , we see that f (y + 1, 2n)

, since f (y + 1, 2n) = h(y, f (y, 2n), 2n) and h is total.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node18.html (4 of 5) [12/23/2006 12:03:33 PM]

4. Primitive Recursive Functions

● 4.1 Primitive Recursive Expressibility
● 4.2 Equivalence between models
● 4.3 Primitive Recursive Expressibility (Revisited)
● 4.4 General Recursion
● 4.5 String Operations
● 4.6 Coding of Tuples

Next: 4.1 Primitive Recursive Expressibility Up: Lecture Notes for CS 2110 Introduction to Theory
Previous: 3.3 Complexity of LOOP Programs
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node18.html (5 of 5) [12/23/2006 12:03:33 PM]

4.1 Primitive Recursive Expressibility

Next: 4.2 Equivalence between models Up: 4. Primitive Recursive Functions Previous: 4. Primitive
Recursive Functions

4.1 Primitive Recursive Expressibility

An n-ary predicate on is a subset of n

P(n) is TRUE n P

i.e., P = { n : P(n)is TRUE}.

Thus sets and predicates are interchangeable. The characteristic function of a predicate P is the function

 defined by

(n) =

Definition 4.2 A predicate P is primitive recursive if and only if is primitive recursive.

Conversely, given any 0 - 1 valued function f, we can associate with a predicate Pf and a set Sf defined

by

Pf(n) is TRUE f (n) = 1

Sf = { n : f (n) = 1}

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node19.html (1 of 4) [12/23/2006 12:03:37 PM]

4.1 Primitive Recursive Expressibility

Proposition 4.2 If P and Q are primitive recursive predicates with the same number of variables, then
so are P, P Q, and P Q.

Proof: The characteristic functions of these predicates are given in terms of and as follows:

(n) = neg((n))

(n) = (n) x (n)

(n) = blv((n) + (n))

Proposition 4.3 If P1,..., Pm are pairwise disjoint primitive recursive predicates over n and f1,..., fm +

1 are primitive recursive functions over n, then so is the function g : n defined by

g(n) =

Proof:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node19.html (2 of 4) [12/23/2006 12:03:37 PM]

4.1 Primitive Recursive Expressibility

g(n) = (f1(n) x (n)) + ... + (fm(n) x (n))

 + (fm + 1(n) x (n))

Definition 4.3 (Bounded Quantifiers) If P(y, n) is a n + 1-ary predicate, then we define the n + 1-ary

predicates y xP(y, n) and y xP(y, n) as follows:

y xP(y, n) there is some y x such that P(y, n)

y xP(y, n) for all y x, P(y, n)

We abbreviate y xP(y, n) by y xP and y xP(y, n) by y xP.

Proposition 4.4 If P is a primitive recursive predicate, then so are

y xP and y xP.

Proof: We show only that is primitive recursive, since

y xP(y, n) = y x P(y, n).

 (which we abbreviate by) is defined as follows:

(0, n) = (0, n)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node19.html (3 of 4) [12/23/2006 12:03:37 PM]

4.1 Primitive Recursive Expressibility

(x + 1, n) = (x, n) (x + 1, n)

 = blv(add(P2n + 2(x, (x, n), n),

 (S(P1n + 2(x, (x, n), n)),

 P3n + 2(x, (x, n), n),...,

 Pn + 2n + 2(x, (x, n), n)))

Next: 4.2 Equivalence between models Up: 4. Primitive Recursive Functions Previous: 4. Primitive
Recursive Functions
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node19.html (4 of 4) [12/23/2006 12:03:37 PM]

4.2 Equivalence between models

Next: 4.3 Primitive Recursive Expressibility (Revisited) Up: 4. Primitive Recursive Functions
Previous: 4.1 Primitive Recursive Expressibility

4.2 Equivalence between models
In order to compare primitive recursive functions with functions computed by LOOP programs over

 we need to interpret functions computed by such programs as functions over .

Definition 4.4 Let P be a LOOP program over and let fP : ()n be the function

computed by P. The we say that P computes the numer-theoretic function f : n , where

f (n) = (fP((x1),..., (xn)))

Theorem 4.5 Every primitive recursive function is computed by some LOOP program which contains
no UNTIL loops.

Proof: We prove this by induction on the number of operations used in the definition of the given
primitive recursive function f.

 Induction basis:
Base functions

 Case 1:
The null function N is computed by the program

INPUT(

OUTPUT(

 Case 2:
The successor function S is computed by the program

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node20.html (1 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

INPUT(

OUTPUT(

 Case 3:
The projection function Pjn is computed by the program

INPUT(

OUTPUT(

 Induction step:
Operations

 Case 1:
Suppose

f (n) = g(h1(n),..., hm(n)).

and let P, Q1,..., Qmbe LOOPprograms (without UNTILloops) for g, h1,..., hm, respectively. The

following program computes f, where Z1,...,Zm,Y1,...,Ynand W1are new program variables which

do not occur in any of P, Q1,..., Qm.

INPUT(Y1,...,Yn)

Z1 Q1(Y1,...,Yn)

 .
 .
 .
Zm Qm(Y1,...,Yn)

W1

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node20.html (2 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

OUTPUT(W1)

 Case 2:
Suppose

f (0, 2n) = g(2n)

f (y + 1, 2n) = h(y, f (y, 2n), 2n).

for y and 2n n - 1, and suppose Pand Qare LOOPprograms (without UNTILloops)

for gand h, respectively. The following program computes f, where Y1,...,Yn,Z1, and W1are new

program variables not occurring in Por Q.

INPUT(Y1,...,Yn)

Z1

W1 0

FOR Y1 TIMES DO

 Z1 Q(W1,Z1,Y2,...,Yn)

 W1 W1 + 1

ENDFOR
OUTPUT(Z1)

 The above proof is really an informal proof, since we haven't proved formally that the programs are

correct. We do that now.

 Induction basis:
Base functions

 Case 1:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node20.html (3 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

INPUT(

OUTPUT(

The output of this program is always , and since () = 0, this program correctly

computes the null function N.
 Case 2:

INPUT(

OUTPUT(

Let x be the input to S, then the input to this program is (x), and the output is

that string [such that

([

 Case 3:

INPUT(

OUTPUT(

Given input n n to Pjn, the output of this program is (xj), and since (

(xj)) = xj = Pjn(n), the program is correct.

 Induction step:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node20.html (4 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

Operations
 Case 1:

INPUT(Y1,...,Yn)

Z1 Q1(Y1,...,Yn)

 .
 .
 .
Zm Qm(Y1,...,Yn)

W1

OUTPUT(W1)

The Induction Hypothesis is that

g(m) = (fP((y1),..., (ym)))

and for each 1 j m

hj(n) = (fQj
((x1),..., (xn)))

Given inputs n nto f, at the end of this program

[Zj] = fQj
((x1),..., (xn)) for all 1 j m, and hence

([W1]) = ofP(fQ1
((x1),..., (xn)),...,

 fQm
((x1),..., (xn)))

 = ofP(o ofQ1
((x1),..., (xn)),...,

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node20.html (5 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

 o ofQm
((x1),..., (xn)))

 = ofP(oh1(n),...,

 ohm(n))

 = g(h1(n),..., hm(n))

 = f (n)

where odenotes the operation of function composition.
 Case 2:

(Left as an exercise)

Theorem 4.6 Every number-theoretic function computed by a LOOP program without UNTIL loops is
primitive recursive.

Proof: Let P be a given LOOP program without UNTIL loops of the form:

INPUT(

OUTPUT(

Let be a list of all the variables occurring in P, and let Y1,...,Ym be a list of

``imaginary'' loop control variables needed by the internal implementation of FOR loops. We define by
induction on the number of steps used in the construction of P- a set of primitive recursive functions fP-j

of r + m variables such that if r and m are the values of the variables and Y1,...,

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node20.html (6 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

Ym at the beginning of the execution of P-, then for each 1 j r, fP-j(r, m) is the (numerical)

value of the variable at the end of the execution of P-, and similarly for each 1 j m, fP-r + j(r,

m) is the value of the imaginary loop contol variable Yj at the end of the execution of P-. Of course, if

P- doesn't halt (which it will always do), then the value of fP-r + j(r, m) is undefined.

Having defined fP-j, then the primitive recursive function which P computes is given by

f (n) = fP-k(n, 0,..., 0)

 = fP-k(P1n(n),..., Pnn(n), Nn(n),..., Nn(n))

where Nn(n) = N(P1n(n)) = 0.

 Induction basis:

 Case 1:

P- is . Then,

fP-i(r, m) = Nr + m(r, m)

and for all j i,

fP-j(r, m) = Pjr + m(r, m)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node20.html (7 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

 Case 2:

P- is . Then,

fP-i(r, m) = S(Pir + m(r, m))

and for all j i,

fP-j(r, m) = Pjr + m(r, m)

 Case 3:

P- is . Then,

fP-i(r, m) = Ptr + m(r, m)

and for all j i,

fP-j(r, m) = Pjr + m(r, m)

 Induction step:

 Case 1:
P- is of the form:

P1

P2

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node20.html (8 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

where, of course P1and P2are lists of LOOPstatements which do not include any I/O statements

(or UNTILloops). Then,

fP-j(r, m) = fP2
j(fP1

1(r, m),..., fP1
r + m(r, m)).

 Case 2:
P- is of the form:

FOR

Q

ENDFOR

Suppose that this is the tthFORloop thus far encountered in the construction of P-. We first define
via primitive recursion a set of primitive recursive functions gQjof r+ marguments such that if

r, mare the values of the variables before entering this FORloop, then gQj(r, y1,..., yt,...,

ym) is the value of the jthvariable after ytconsecutive executions of the loop body Q. First,

gQr + t(r, m) = Pr + tr + m(r, m).

Next, for j r+ t,

gQj(r, y1,..., 0,..., ym) = Pjr + m(r, m)

gQj(r, y1,..., yt + 1,..., ym) = fQj(gQ1(r, y1,..., yt,..., ym),...,

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node20.html (9 of 10) [12/23/2006 12:03:42 PM]

4.2 Equivalence between models

 = gQr + m(r, y1,..., yt,..., ym)).

Then, the primitive recursive function fP-jis defined by

fP-j(r, m) = gQj(r, y1,..., Pir + m(r, m),..., ym).

 Technically, the ``recursive'' definition of gQj is not primitive recursive, since for each j, the

definition of gQj depends on gQ1,..., gQr + m, i.e., on all gQj. This is an example of the ``simultaneous

inductive definition'' of a set of functions. We will show that this form of recursion as well as other
general forms of recursion are all constructible from primitive recursive functions.

Next: 4.3 Primitive Recursive Expressibility (Revisited) Up: 4. Primitive Recursive Functions
Previous: 4.1 Primitive Recursive Expressibility
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node20.html (10 of 10) [12/23/2006 12:03:42 PM]

4.3 Primitive Recursive Expressibility (Revisited)

Next: 4.4 General Recursion Up: 4. Primitive Recursive Functions Previous: 4.2 Equivalence between
models

4.3 Primitive Recursive Expressibility (Revisited)

Definition 4.5 (Bounded Minimization) The function f : n + 1 is obtained from the

predicate P of n + 1 arguments by bounded minimization if for all x, n

f (x, n) =

We use f (x, n) = min y x[P(y, n)] to denote that f is obtained from P via bounded minimization.

Proposition 4.7 If P is a primitive recursive predicate, then so is any function f obtained from P via
bounded minimization.

Proof: If f (x, n) = min y x[P(y, n)], then we define f by induction as follows:

f (0, n) = 1 (0, n)

f (x + 1, n) =

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node21.html (1 of 2) [12/23/2006 12:03:45 PM]

4.3 Primitive Recursive Expressibility (Revisited)

Proposition 4.8 Integer division is primitive recursive.

Proof:

x/y = min z x[(z + 1) x y > x].

Next: 4.4 General Recursion Up: 4. Primitive Recursive Functions Previous: 4.2 Equivalence between
models
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node21.html (2 of 2) [12/23/2006 12:03:45 PM]

4.4 General Recursion

Next: 4.5 String Operations Up: 4. Primitive Recursive Functions Previous: 4.3 Primitive Recursive
Expressibility (Revisited)

4.4 General Recursion

Definition 4.6 Given functions g : n , h : n + 2 , and a total function r :
 such that r(0) = 0 and r(x) < x for all x > 0, then f : n + 1 is defined from g, h and

r via recursion, if for any n n

f (0, n) = g(n)

f (y, n) = h(y, f (r(y), n), n) for any y > 0.

Proposition 4.9 If f is defined by recursion from (primitive / partial) recursive functions g, h, and r,
then f is (primitive / partial) recursive.

Proof: First define the function r* by

r*(0, x) = x
r*(y + 1, x) = r(r*(y, x))

and the function q by

q(x) = min y x[r*(y, x) = 0]

The value q(y) specifies the number of steps in the building-up process for f (y, n).

Since r is total (primitive) recursive and r(x) < x for any x > 0, we see that r* and q are also total
(primitive) recursive. Also, q(x) = 0 x = 0. Next define the (primitive / partial) recursive function

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node22.html (1 of 3) [12/23/2006 12:03:49 PM]

4.4 General Recursion

H as follows:

H(0, y, z, n) = z

H(m + 1, y, z, n) = h(r*(q(y) (m + 1), y), H(m, y, z, n), n)

We prove by induction for all m q(y) that

H(m, y, g(n), n) = f (r*(q(y) m, y), n)

from which it follows

f (y, n) = H(q(y), y, g(n), n)

so that f is (primitive / partial) recursive.

 Induction basis:

H(0, y, g(n), n) = g(n)

 = f (0, n) = f (r*(q(y), y), n)

 Induction step:

Suppose that H(m, y, g(n), n) = f (r*(q(y) m, y), n), then

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node22.html (2 of 3) [12/23/2006 12:03:49 PM]

4.4 General Recursion

H(m + 1, y, g(n), n) = h(r*(q(y) (m + 1), y), H(m, y, g(n), n), n)

 = h(r*(q(y) (m + 1), y), f (r*(q(y) m, y), n), n)

 = f (r*(q(y) (m + 1), y), n)

Next: 4.5 String Operations Up: 4. Primitive Recursive Functions Previous: 4.3 Primitive Recursive
Expressibility (Revisited)
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node22.html (3 of 3) [12/23/2006 12:03:49 PM]

4.5 String Operations

Next: 4.6 Coding of Tuples Up: 4. Primitive Recursive Functions Previous: 4.4 General Recursion

4.5 String Operations

Fix an alphabet = {1,..., k}. We adopt the convention of using u, v, and w to denote strings over

. We define the following elementary string functions:

Suppose w = an ... a1a0 , then

endk(w) = a0
rsfk(w) = an ... a1

Proposition 4.10 The functions endk and rsfk are primitive recursive in the sense that oendko

and orsfko are primitive recursive.

Proof: The functions are defined as follows:

rsfk(x) = (x 1)/k

endk(x) = x (rsfk(x) x k)

To see that these are correct, observe that if w = (x) = an ... a1a0, then x 1 = an x kn + ... + a1 x k +

(a0 - 1), where 0 a0 - 1 < k, so that rsfk(x) = an x kn - 1 + ... + a2 x k + a1 as required. Given the

correctness of rsfk, the correctness of endk is immediate.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node23.html (1 of 5) [12/23/2006 12:03:52 PM]

4.5 String Operations

Proposition 4.11 The string functions | w and u . v (i.e., length and concatenation) are primitive

recursive.

Proof: String length over is defined by

| x = min y x[rsfk*(x, y) = 0],

where rsfk* is defined by

rsfk*(x, 0) = x

rsfk*(x, y + 1) = rsfk(rsfk*(x, y)).

and concatenation over is defined by

x . y = x x k | y + y.

Proposition 4.12 The following string predicates and functions are primitive recursive.

occk(u, w) the string u occurs in the string w.

prek(u, w) = the prefix of the first occurrence of u in w.
sufk(u, w) = the suffix of the first occurrence of u in w.

repk(u, v, w) = the result of replacing the first occurrence of u in w by v.

For prek and sufk we require that if u does not occur in w, then the value of the function is w + 1.

Proof:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node23.html (2 of 5) [12/23/2006 12:03:52 PM]

4.5 String Operations

occk(x, z) y1 z y2 z [z = y1 . x . y2].

prek(x, z) = min y1 z y2 z [z = y1 . x . y2].

sufk(x, z) = min y2 z [z = prek(x, z) . x . y2].

repk(x, y, z) = prek(x, z) . y . sufk(x, z).

Corollary 4.13 If g and ha for each a are (primitive / partial) recursive functions, then so is the

function f defined by

f (, n) = g(n)

f (y . a, n) = ha(y, f (y, n), n), for each a

Proof: Define the (primitive / partial) recursive function H by

H(y, z, n) =

Then

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node23.html (3 of 5) [12/23/2006 12:03:52 PM]

4.5 String Operations

f (y . a, n) = ha(y, f (y, n), n)

 = H(y . a, f (rsfk(y . a), n), n)

so that f is defined by recursion from g, H, and rsfk. But, clearly rsfk(x) < x for all x > 0, so that the result

follows from Proposition 4.9.

Exercise 4.1 Show that if g is a primitive recursive function and P is a primititve recursive predicate,
then are the following are also primitive recursive functions and predicates.

min y g(x) [P(y, n)]

max y g(x) [P(y, n)]

y g(x) [P(y, n)]

y g(x) [P(y, n)]

Exercise 4.2 Show that the following are primitive recursive:

x y

x = y

x y

xy

Next: 4.6 Coding of Tuples Up: 4. Primitive Recursive Functions Previous: 4.4 General Recursion
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node23.html (4 of 5) [12/23/2006 12:03:52 PM]

4.5 String Operations

portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node23.html (5 of 5) [12/23/2006 12:03:52 PM]

4.6 Coding of Tuples

Next: 5. Diagonalization Arguments Up: 4. Primitive Recursive Functions Previous: 4.5 String
Operations

4.6 Coding of Tuples
As an application of the above we show how to code n-tuples of integers in a primitive recursive

fashion. We simply view x1,..., xn as a string over consisting of n strings over separated by

the symbol ``,'' (which is the k+1st symbol of and as such does not belong to . Thus, the

function of n arguments which produces this string, which we denote by x1,..., xn , is primitive

recursive via

x1,..., xn = x1 . , , . xn.

Note that x1,..., xn is simply some primitive recursive function of n arguments which we could

have denoted by fn (x1,..., xn). Next the projection functions for each 1 j n are defined by

(x) = xj, where x = x1,..., xn .

In order to see that is primitive recursive, we must first define some useful primitive recursive

functions. We use ',' (instead of k + 1) when we wish to refer to the special separation symbol ``,''.

● The function nock(j, x), which gives the number of occurrences of the symbol j in the string x

over .

nock(j,) = 0

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node24.html (1 of 6) [12/23/2006 12:03:57 PM]

4.6 Coding of Tuples

nock(j, x . a) =

● Then, the predicate tup(n, x), which specifies whether or not x codes an n-tuple, is given by

tup(n, x) nock + 1(',', x) = n 1

● Next, we define the function prtk(j, x, n), which gives the part in the string x over between

the nth and the n+1st occurrence of the symbol j,

prtk(j, x, n) =

Observe, that if x has n occurrences of j, then prtk(j, x, n) gives the part of x between the nth

occurrence of j in x and the end of x.

● Next, we define the primitive recursive uniform projection function as follows:

(n, j, x) =

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node24.html (2 of 6) [12/23/2006 12:03:57 PM]

4.6 Coding of Tuples

Finally, the projections are defined by

(x) = (n, j, x).

Thus . together with ,..., establish a one-to-one correspondence between all n-

tuples of natural numbers and all strings over with n- 1 occurrences of `` ,''. Furthermore,

the uniform projection function allows for the decoding of every natural number as a unique
tuple of natural numbers.

As another application of coding we at last show that it is possible to define several functions
simultaneously by induction.

Proposition 4.14 Let g1,..., gm and h1,..., hm be (primitive / partial) recursive functions. Then the

functions f1,..., fm defined by

fi(0, n) = gi(n)

fi(y + 1, n) = hi(y, f1(y, n),..., fm(y, n), n)

for each 1 i m, are also (primitive / partial) recursive.

Proof: Define G and H by

G(n) = g1(n),..., gm(n)

H(y, z, n) = h1(y, (z),..., (z), n),...,

 hm(y, (z),..., (z), n)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node24.html (3 of 6) [12/23/2006 12:03:57 PM]

4.6 Coding of Tuples

and then the function F by

F(0, n) = G(n)

F(y + 1, n) = H(y, F(y, n), n)

Clearly, G, H and hence F are (primitive / partial) recursive. We first show by induction that

F(y, n) = f1(y, n),..., fm(y, n) .

 Induction basis:

F(0, n) = G(n)

 = g1(n),..., gm(n)

 = f1(0, n),..., fm(0, n)

 Induction step:

Assume that F(y, n) = f1(y, n),..., fm(y, n) . Then,

F(y + 1, n) = H(y, F(y, n), n)

 = H(y, f1(y, n),..., fm(y, n) , n)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node24.html (4 of 6) [12/23/2006 12:03:57 PM]

4.6 Coding of Tuples

 = h1(y, f1(y, n),..., fm(y, n), n),...,

 hm(y, f1(y, n),..., fm(y, n), n),

 = f1(y + 1, n),..., fm(y + 1, n) .

Therefore, we see that fi(y, n) = (F(y, n)), and so f1,..., fmare each (primitive / partial)

recursive.

● We now see in retrospect that in the proof of Theorem 4.6 the definition of the functions gQj are

legitimate primitive recursive definitions.
● We can now see that it suffices to consider only (primitive / partial) recursive functions of one

variable. Suppose f is a (primitive / partial) recursive function of n variables and let f1 be the

(primitive / partial) recursive function defined by f1(x) = f ((x),..., (x)). Then, for any

input x1,..., xn n to f, we see that

f (x1,..., xn) = f1(x1,..., xn).

Therefore, every (primitive / partial) recursive function of nvariables can be replaced by a

(primitive / partial) recursive function of one variable whose input is x1,..., xn instead of

x1,..., xn. Furthermore, we can easily implement (primitive / partial) recursive functions with

outputs by ``interpreting'' outputs as tuples.

Next: 5. Diagonalization Arguments Up: 4. Primitive Recursive Functions Previous: 4.5 String
Operations
Bob Daley

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node24.html (5 of 6) [12/23/2006 12:03:57 PM]

4.6 Coding of Tuples

2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node24.html (6 of 6) [12/23/2006 12:03:57 PM]

5. Diagonalization Arguments

Next: 6. Partial Recursive Functions Up: Lecture Notes for CS 2110 Introduction to Theory Previous:
4.6 Coding of Tuples

5. Diagonalization Arguments

 Observe that there clearly are LOOP programs which compute non-total functions:

INPUT(

UNTIL Y1 TRUE DO

ENDUNTIL
OUTPUT(Y1)

Thus, because of the foregoing we must add some operation which can transform total functions into
non-total functions to our set of primitive recursive functions in order to capture all the functions
computed by LOOP programs. In fact, we now give an argument which shows that all models of
computability must include some non-total functions.

Proverb 5.1 To define something (e.g., a function) which does not have a specified property, make it
different from all those things (i.e., functions) which do have that property.

Arguments that use this proverb are called diagonalization arguments.

Example 5.1 There exist uncountably many total functions from to .

Proof: Let f0, f1,... be some list of the countably many functions from to . Consider the following

tableau:
Table 5.1:Diagonalization

Construction

f0(0) f0(1) f0(2) f0(3) f0(4) o o o

f1(0) f1(1) f1(2) f1(3)

f2(0) f2(1) f2(2) f2(3)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node25.html (1 of 4) [12/23/2006 12:04:00 PM]

5. Diagonalization Arguments

f3(0) f3(1) f3(2) f3(3)

f4(0) f4(4)

o o

o o

o o

Then the function fo(n) = fn(n) + 1 is clearly different from each function on the list. Moereover, since

each function on the list is total, so is fo.

 Many arguments by contradiction are in fact diagonalization arguments in disguise.

Example 5.2 The cardinality of the power set 2X of any set X is greater than the cardinality of X itself.

Proof: We denote the cardinality of a set Y by #Y. Clearly, #X #2X, since we can define a function h :

X 2X by h(x) = {x}. Now suppose g : X 2X is any function. We show that g cannot be onto
(so 2X must have more elements than X). Define

Xd = {x X : x g(x)}.

If g is onto, then there is some element y X such that g(y) = Xd. Consider the question whether y

Xd:

y Xd y g(y) y Xd contradiction!

y Xd y g(y) y Xd contradiction!

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node25.html (2 of 4) [12/23/2006 12:04:00 PM]

5. Diagonalization Arguments

Therefore, no g : X 2X can be onto. We can also give an explicit diagonalization argument as

follows: Let fk = , so

fk(x) =

Then, define

fo(x) =

Then, fo is a total 0 - 1 valued function on X, i.e., it is the characteristic function of some subset Xo of X.

But, Xo 2X and Xo is different from each set g(k), so g cannot be onto. Observe!

Xo= {x : fo(x) = 1}

 = {x : fx(x) = 0}

 = {x : x g(x)}

 = Xd

● Under the assumption that the class of effectively computable functions should be countable and
that programs for them should be effectively listable, we can show that the effectively
computable functions must contain some non-total functions, i.e., functions which are undefined
for some inputs.

In the proof above that there are uncountably many total functions from to if we let fn be

the function computed by the nth program in the effective listing of programs for computable

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node25.html (3 of 4) [12/23/2006 12:04:00 PM]

5. Diagonalization Arguments

functions, we see that if all fn are total, then so is fo.

But, fo is also effectively computable (intuitively) since on input n we simply find the nth
program; run it on input n; and then add 1 to the result.

Thus the list cannot contain all the effectively computable functions, which contradicts our
assumption. Thus, the list must contain some non-total function.

● This argument also shows that there cannot exist any effective listing of all and only the total
computable functions.

Next: 6. Partial Recursive Functions Up: Lecture Notes for CS 2110 Introduction to Theory Previous:
4.6 Coding of Tuples
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node25.html (4 of 4) [12/23/2006 12:04:00 PM]

6. Partial Recursive Functions

Next: 7. Random Access Machines Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 5.
Diagonalization Arguments

6. Partial Recursive Functions

Notation 6.1 We use , , ,... to denote (possible) partial functions.

We use f, g, h,... to denote total functions.

(x) means that (x) is defined (convergent), i.e., x dom .

(x) means that (x) is undefined (divergent), i.e., x dom .

 = means that for all x either both (x) and (x) , or (x) and (x) and (x) =

(x).

Definition 6.2 The function : n is obtained from the function : n + 1

via minimization if for all n n

(n) =

(n) = min y[(y, n) 0] denotes that is obtained from via minimization.

● The intuitive basis for minimization is that of an unbounded search for the first y satisfying the

property that (y, n) 0. In this regard, since may be a non-total function, we must be

sure that (k, n) for all 0 k < m before testing (m, n).

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node26.html (1 of 4) [12/23/2006 12:04:14 PM]

6. Partial Recursive Functions

● If P is a predicate, then min yP(y, n) means min y[(y, n) 0].

Definition 6.3 A function is partial recursive if it can be obtained from the base functions (null,
successor, projections) by finitely many applications of the operations of substitution, primitive
recursion, and minimization.

● A partial recursive function which is total is called total recursive.

● A predicate P is a recursive predicate if is a total recursive function.

Theorem 6.1 Every partial recursive function is computed by a LOOP program.

Proof: We need only add to Theorem 4.5 an additional case in the induction step dealing with the
operation of minimization.

 Case 3:
Suppose

(n) = min y[(y, n) 0]

and let Pbe a LOOPprogram for and let Y1,...,Yn,Z1,W1be new program variables which do not

occur in P. The program for is given by:

INPUT(Y1,...,Yn)

W1

UNTIL W1 TRUE DO

 Z1 Z1 + 1

 W1

ENDUNTIL
OUTPUT(Z1)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node26.html (2 of 4) [12/23/2006 12:04:14 PM]

6. Partial Recursive Functions

Theorem 6.2 Every number-theoretic function computed by a LOOP program is partial recursive.

Proof: We need only add to the proof of Theorem 4.6 an additional case in the induction step dealing
with UNTIL loops:

 Case 3:
Suppose P- is of the form

UNTIL

Q

ENDUNTIL

Let this be the tthloop (of any kind), and let Ytbe an imaginary program variable which will be used to

count the number of times through the UNTILloop, and let gQjbe the set of functions defined previously

in the proof of Theorem 4.6. Define,

h(r, m) = min yt [gQi(r, y1,..., yt,..., ym) 0].

Then,

fP-j(r, m) = gQj(r, y1,..., h(r, m),..., ym).

Theorem 6.3 Fix some alphabet . The class of number-theoretic functions computed by LOOP

programs over is identical to the class of partial recursive functions.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node26.html (3 of 4) [12/23/2006 12:04:14 PM]

6. Partial Recursive Functions

 Observe, that there is an effective (i.e., computable) procedure which given a LOOP program over

 constructs (an expression for) the partial recursive function which computes it. Conversely, there is

also an effective procedure which given a partial recursive function constructs a LOOP program over

 which computes it.

 Observe also that for any LOOP program text, the partial recursive function which computes it is

independent of the alphabet which is used to specify its semantics.

 Observe further, however, that the complexity of a LOOP program does depend on the alphabet

, since it depends on the length of the internal and I/O representation used. Specifically, since for

any k > 1, | (x) | = logkx , where y denotes the least integer y, but | (x) | = x, we see

that between any two alphabets of more than one symbol, the respective complexity measures are related

by a constant factor, whereas between and any other alphabet consisting of more than one symbol

the difference in complexity can be exponential.

Next: 7. Random Access Machines Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 5.
Diagonalization Arguments
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node26.html (4 of 4) [12/23/2006 12:04:14 PM]

7. Random Access Machines

Next: 7.1 Parsing RAM Programs Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 6.
Partial Recursive Functions

7. Random Access Machines
A random access machine is an idealized computer with a random access memory consisting of a finite
number of idealized registers (i.e., they can hold any sized number) R1, R2,... whose contents are strings

over some alphabet , and which has a finite set of machine instructions. The set of machine

instructions are as follows:

Table 7.1:RAM Machine Instructions

Machine Assembly Effect

Instruction Language

1/m/j; jmp1 Rm/j

 . . jmpa: if a is the leftmost

 . . symbol of Rm, then GoTo

 . . line j of the program

k/m/j; jmpk Rm/j

k + 1/m; suc1 Rm

 . . suca: concatenate

 . . an a to the right

 . . end of Rm

2k/m; suck Rm

2k + 1/m; inp Rm input a value into Rm

2k + 2/m; out Rm output a value from Rm

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node27.html (1 of 3) [12/23/2006 12:04:17 PM]

7. Random Access Machines

2k + 3/m; lsf Rm delete leftmost symbol of Rm

Definition 7.1 A RAM-program over is a sequence of RAM statements S1,..., Sn such that for some

1 < m < n,

1.
S1,..., Sm are the only input statements

2.
Sn is the only output statement

3.

and no conditional jump statement in Sm + 1, ..., Sn - 1 can cause a jump to any line m.

Definition 7.2 A RAM-program P over computes the (partial) function f : ()n if

and only if

1.
there are n input statements of P;

2.

for all x1,..., xn, when P is executed with x1,..., xn as its input,

(a)

P halts if and only if f (x1,..., xn) ,

(b)
if P halts, then P outputs f (x1,..., xn).

 Execution of a RAM program involves:

1.
initially all registers have value 0

2.
statements are executed according to the ``obvious'' semantics in the ``obvious'' order.

Proposition 7.1 Every function computed by a LOOP program is also computed by a RAM program.

Proof: (Left as an exercise)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node27.html (2 of 3) [12/23/2006 12:04:17 PM]

7. Random Access Machines

● 7.1 Parsing RAM Programs
● 7.2 Simulation of RAM Programs
● 7.3 Index Theorem
● 7.4 Other Aspects
● 7.5 Complexity of RAM Programs

Next: 7.1 Parsing RAM Programs Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 6.
Partial Recursive Functions
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node27.html (3 of 3) [12/23/2006 12:04:17 PM]

7.1 Parsing RAM Programs

Next: 7.2 Simulation of RAM Programs Up: 7. Random Access Machines Previous: 7. Random Access
Machines

7.1 Parsing RAM Programs

Every RAM program over is a string over the alphabet {/,;} , i.e., the / and ;

are the k+1st and k+2nd letters of , respectively. We will use '/' and ';' to denote (the codes of)

these special symbols. We now show that given any natural number, regarding it as a string over

, there is a primitive recursive function which ``parses'' that number.

● First suppose that x codes a RAM instruction (minus the ``;''). We define primitive recursive
functions opc, reg, gto, which produce, respectively, the opcode part of x, the register named in x,
and the goto part of x (if x codes a conditional jump instruction).

opc(x) = prek + 2('/', x)

reg(x) =

gto(x) =

● Next, we define a primitive recursive predicate ins(x) which determines whether x codes a legal
instruction (minus the ``;''):

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node28.html (1 of 3) [12/23/2006 12:04:20 PM]

7.1 Parsing RAM Programs

ins(x) (occk + 2(';', x)) (opc(x) 2k + 3)

 (opc(x) > 0) (reg(x) > 0)

 (opc(x) k nock + 2('/', x) = 2)

 (opc(x) > k nock + 2('/', x) = 1)

● Suppose now that x codes a RAM program. We define primitive recursive functions lng(x) and lne
(j, x) which give, respectively, the number of lines of x and the jth line (ie., instruction) of x:

lng(x) = nock + 2(';', x)

lne(j, x) = prtk + 2(';', x, j 1)

● Next, define primitive recursive programs nrg(x) and mxr(x) which give, respectively, the
number of arguments of program x (i.e., the number of input statements), and the maximum
number of any register used in x.

nrg(x) = minm lng(x)[j m[j > 0 opc(lne(j, x)) = 2k + 1]

 j lng(x)[j > m opc(lne(j, x)) 2k + 1]]

mxr(x) = miny x j lng(x)[j > 0 reg(lne(j, x)) y]

● Then, we define the primitive recursive predicate prg(x) which specifies whether or not x codes a
legal program:

prg(x) j lng(x)[j > 0 ins(lne(j, x))] (nrg(x) > 0)

 (nrg(x) < lng(x)) (opc(lne(lng(x), x) = 2k + 2)

 j lng(x) 1 [opc(lne(j, x)) 2k + 2]

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node28.html (2 of 3) [12/23/2006 12:04:20 PM]

7.1 Parsing RAM Programs

 j lng(x)[j > 0 opc(lne(j, x)) k

 nrg(x) < gto(lne(j, x)) lng(x)]

Next: 7.2 Simulation of RAM Programs Up: 7. Random Access Machines Previous: 7. Random Access
Machines
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node28.html (3 of 3) [12/23/2006 12:04:20 PM]

7.2 Simulation of RAM Programs

Next: 7.3 Index Theorem Up: 7. Random Access Machines Previous: 7.1 Parsing RAM Programs

7.2 Simulation of RAM Programs

We now show how to simulate the execution of a RAM program (coded by) p over on inputs (coded by)

y = x1,..., xn . Thus, p is a string over and y is a string over . In order to do this we need

at each step to record the ``state'' of the program execution, which will be given by the pair j, z , where j

is the current line number, and z codes the current values of the registers used by p (so z will be a mxr(p)
tuple).

● First, we need to show that the primitive operations of RAM programs are primitve recursive. We
define primitive recursive functions val(p, z, j), lnd(p, z, j), lsf(p, z, j), suc(a, p, z, j), and inp(p, z, j, m),
which give, respectively, the current value of register j, the leftmost symbol of register j, the result of
deleting the leftmost symbol of register j, the result of adding the symbol a to the right end of register
j, and the result of copying m into register j:

val(p, z, j) =

lnd(p, z, j) = rsfk + 1*(val(p, z, j), | val(p, z, j) 1)

inp(p, z, j, m) = isg(p, z, j) . repk + 1(val(p, z, j), m, sufk + 1(isg(p, z, j), z))

lsf(p, z, j) = inp(p, z, j, sufk + 1(lnd(p, a, j), val(p, z, j)))
suc(a, p, z, j) = inp(p, z, j, val(p, z, j) . a)

where isg(p, z, j) = val(p, z, 1) . ',' ',' . val(p, z, j 1) . ','.

● We can now simulate the execution of RAM programs. We define two primitive recursive functions nxl
(p, y, z, j), which gives the next line of program p on input y to be executed given that the current
register values are z and the current line is j; and nxv(p, y, z, j), which gives the next values of the
registers for program p on input y given that the current register values are z and the current line is j:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node29.html (1 of 4) [12/23/2006 12:04:24 PM]

7.2 Simulation of RAM Programs

nxl(p, y, z, j) =

nxv(p, y, z, j) =

● Now we define the primitive recursive function sim(p, y, m), which gives the pair j, z which

codes the current line and the current register values after m steps of the computation of p on input y:

sim(p, y, 0) = 1, zro(mxr(p))

sim(p, y, m + 1) = nxl(p, y, (sim(p, y, m)), (sim(p, y, m))),

 nxv(p, y, (sim(p, y, m)), (sim(p, y, m)))

where zro(n) = 0,..., 0 .

● Next, we define the partial recursive function stp(p, y), which gives the number of steps in the
computation of p on input y if p halts on input y:

stp(p, y) = min t[(sim(p, y, t)) = lng(p)]

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node29.html (2 of 4) [12/23/2006 12:04:24 PM]

7.2 Simulation of RAM Programs

● Now, we can define the ``universal'' partial recursive function (p, y), which gives the result, if

any, of the computation of p on input y:

(p, y) =

 Observe that if p does not code a legal program then (p, y) is undefined for all y. We define an

indexing or Gödel numbering { } of the RAM computable functions (of one argument) by letting

denote the partial recursive function computed by the RAM program (with code) i. Observe that since every
partial recursive function is computable by a LOOP program, and hence in turn by a RAM program, every

partial recursive function is included in the list { }. The promised effective translation of RAM programs

into partial recursive functions is given by the following.

Theorem 7.2 For the indexing { } given above there is a ``universal'' partial recursive function

such that for all x and y, (x, y) = (y).

● This result is not specific to RAM programs and partial recursive functions. We could have just as well
written a LOOP program which transforms partial recursive function definitions into RAM programs.

● Since every partial recursive function is computable by a RAM program, there exists a RAM program

Punv which computes the function , i.e., a RAM program which interprets (i.e., an ``interpreter''

for) other RAM programs and simulates their execution.

● Observe that in the process of defining only one application of (unbounded) minimization was

used. Therefore, every partial recursive function can be computed by a LOOP program which uses
only one UNTIL loop!

 The equivalence of LOOP computable, RAM computable and the class of partial recursive functions

gives empirical evidence for Church's Thesis, which states that the class of partial recursive functions yield a
formalization of our intuitive notion of effectively computable function.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node29.html (3 of 4) [12/23/2006 12:04:24 PM]

7.2 Simulation of RAM Programs

Next: 7.3 Index Theorem Up: 7. Random Access Machines Previous: 7.1 Parsing RAM Programs
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion
thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node29.html (4 of 4) [12/23/2006 12:04:24 PM]

7.3 Index Theorem

Next: 7.4 Other Aspects Up: 7. Random Access Machines Previous: 7.2 Simulation of RAM Programs

7.3 Index Theorem
Theorem 7.2 shows that we can effectively interpret RAM programs. We now show that we can also
effectively transform them. In particular, we show

Theorem 7.3 For every m, n , there is a primitive recursive function Smn such that for every

RAM program p of m + n agruments, Smn(p, x1,..., xm) is a RAM program of n arguments such that

(y1,..., yn) = (x1,..., xm, y1,..., yn)

The inutitive meaning of Theorem 7.3 is that given any RAM program p of m + n arguments and any set
of fixed values x1,..., xm we can build these as constants into p and construct a program Smn(p, x1,..., xn)

of the remaining n arguments which behaves exactly like p with its first m arguments fixed to be x1,...,

xm. This will allow us to build data into programs. We will suppose that x1,..., xm and y1,..., yn are coded

as tuples and so will denote them by x and y, respectively. Thus, we need to show that (y) =

(x, y).

We can imagine the structure of p consisting of m input statements (which will be replaced), followed by
the remaining n input statements, followed by the remainder of p.

Figure 7.1:Index Theorem Transformation

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node30.html (1 of 5) [12/23/2006 12:04:29 PM]

7.3 Index Theorem

Proof: First, the primitive recursive function isgk + 1(p, z, j), mentioned previously, is defined by:

isgk + 1(p, z, j) = min y1 z y2 z [z = y1 . y2 nock + 1(',', y1) = j]

Exercise 7.1 Show that if g is a primitive recursive function of n + 1 arguments, then the function
defined by

f (x, n) = g(j, n)

 = g(1, n) ... g(x, n)

is primitive recursive. Observe that f (0, n) should have the value 0.

One key part of the required transformation is to replace an input statement by a block of statements

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node30.html (2 of 5) [12/23/2006 12:04:29 PM]

7.3 Index Theorem

which assign a specified fixed value z to the variable Rm of the assignment statement. More precisely,

we need to replace the statement

inpRm

by the block of statements

suca1
Rm

 .
 .
 .
sucan

Rm

where the specified value z = a1 ... an. This replacement is effected by the primitive recursive function rcp

(z, m), which is defined by

rcp(z, m) = (k + smb(z, j)) . '/' . m . ';'

where smb(z, j) is the primitive recursive function which gives the jth symbol (from the left) of the string
z.

Then, the block of such copy statements for the m-tuple x is given by

cpb(p, m, x) = rcp((m, j, x), reg(lne(j, p)))

Next, we need to adjust the goto parts of the rest of the program in order to account for the change in the
number of lines. The function adl(z, r, s) adjusts the goto part of the instruction coded by z by + r if r >
0, and by - s if r = 0, and is defined by

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node30.html (3 of 5) [12/23/2006 12:04:29 PM]

7.3 Index Theorem

adl(z, r, s) =

and the result of adjusting all the lines of a program p is given by

adp(p, r, s) = adl(lne(j, p), r, s) . ';'

Finally, we can express the definition of the transfoirmation Smn by

Smn(p, x) = sufk + 2(isgk + 2(p, m,';'), isgk + 2(p, m + n,';))

 . cpb(p, m, x)

 . adp(sufk + 2(isgk + 2(p, m + n,';'), p), | x + 1 (2 x m),

 (2 x m) 1 | x)

The number | x + 1 (2 x m) arises from the fact that the net increase in length due to the copy

block is equal to the length of x minus the m lines which are replaced. Observe, that it is possible for this
number to be negative (e.g., when each element of the m-tuple x is a 0).

Next: 7.4 Other Aspects Up: 7. Random Access Machines Previous: 7.2 Simulation of RAM Programs
Bob Daley

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node30.html (4 of 5) [12/23/2006 12:04:29 PM]

7.3 Index Theorem

2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node30.html (5 of 5) [12/23/2006 12:04:29 PM]

7.4 Other Aspects

Next: 7.5 Complexity of RAM Programs Up: 7. Random Access Machines Previous: 7.3 Index
Theorem

7.4 Other Aspects
● We can construct non-deterministic RAM programs by adding instructions of the form

2k + 4/j1/j2; njp j1 or j2

which non-deterministically selects one of two lines (j1or j2) to jump to.

● We can construct probabilistic RAM programs by adding instructions of the form

2k + 5/j1/j2; pjp j1 or j2

which selects with probability one of two lines (j1or j2) to jump to.

We distinguish between deterministic, non-deterministic, and probabilistic RAM programs by using the
notation DRAM, NRAM, and PRAM, respectively.

Next: 7.5 Complexity of RAM Programs Up: 7. Random Access Machines Previous: 7.3 Index
Theorem
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node31.html [12/23/2006 12:04:32 PM]

7.5 Complexity of RAM Programs

Next: 8. Acceptable Programming Systems Up: 7. Random Access Machines Previous: 7.4 Other
Aspects

7.5 Complexity of RAM Programs

Definition 7.3 If P is a deterministic RAM program (a DRAM program) over with n inputs and

which uses only registers R1,...,Rr , then we define the following complexity measures for P.

DRMtimeP(n) =

DRMspaceP(n) =

where Rit denotes the contents of register Ri at step t of the computation of P on input n.

Proposition 7.4 The following predicates are primitive recursive:

QDRMtime(p, n, y) [DRMtimep(n) y]

QDRMspace(p, n, y) [DRMspacep(n) y]

Proof: For time complexity, we have

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node32.html (1 of 3) [12/23/2006 12:04:35 PM]

7.5 Complexity of RAM Programs

QDRMtime(p, n, y) z (y | xi)[(sim(p, n , z)) = lng(p)].

For space complexity, observe that given a fixed amount of space, it is possible for a computation to
enter an infinite computation loop within that amount of space. In this case, since the space complexity is
still undefined, the predicate QDRMspace must respond with False. Moreover, if the program is ever in the

situation where it is about to execute an instruction with a current memory contents that is identical to an
instruction and memory contents combination that it encountered earlier, then clearly it is in such an
infinite loop. Thus, the number of distinct instruction-memory combinations is an upper bound on the
number of steps a program can execute in an a priori given amount of space before it is certain to be in
an infinite loop. Given this analysis we now define

QDRMspace(p, n, y) z lng(p) x ky [(sim(p, n , z)) = lng(p)

 z1 z [| (sim(p, n , z1)) + 1 mxr(p) y]],

where the term 1 mxr(p) is (minus) the number of commas in the internal representation of the

contents of the registers of p.

Proposition 7.5 For each DRAM program p there exist constants c1, c2 such that

DRMtimep(n) c1c2 x DRMspace
p(n)

DRMspacep(n) DRMtimep(n)

Proof: The first inequality follows from the analysis given preceding the primitive recursive definition of
QDRMspace in Proposition 7.4. The second inequality follows since the only RAM instructions which can

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node32.html (2 of 3) [12/23/2006 12:04:35 PM]

7.5 Complexity of RAM Programs

increase the space beyond that occupied by the input is the suca instruction, which can only increase it by

one symbol.

Proposition 7.6 Let p be any DLOOP program over , and let p' be the equivalent DRAM program

over constructed in Proposition 7.1. There exist constants c1, c2, and c3 such that

DRMtimep'(n) c1 x (DLPtimep(n))c2

DRMspacep'(n) c3 x DLPspacep(n)

Next: 8. Acceptable Programming Systems Up: 7. Random Access Machines Previous: 7.4 Other
Aspects
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node32.html (3 of 3) [12/23/2006 12:04:35 PM]

8. Acceptable Programming Systems

Next: 8.1 General Computational Complexity Up: Lecture Notes for CS 2110 Introduction to Theory
Previous: 7.5 Complexity of RAM Programs

8. Acceptable Programming Systems
We now wish to examine the properties of computable functions without getting bogged down with the
details of any of the particular models which we have heretofore studied. Therefore, we generalize our
notion of (standard) model of computable function.

Definition 8.1 A programming system is a listing , ,... (denoted by { }) which includes all of

the partial recursive functions (of one variable) over . A acceptable programming system is a

programming system { } for which

1.

there exists a universal program unv such that (i, x) = (x) for all i and x; and

2.

there is a total recursive S-m-n function Smn such that (y) = (x, y) for all i, m-tuples

x, and n-tuples y.

We will abbreviate Smn by S whenever it is clear how many arguments it takes.

Theorem 8.1 Let { } be any acceptable programming system, and let { } be any programming

system. Then, { } is acceptable if and only if there exist total recursive functions f and g such that for

all i, = and = .

Proof: Since { } is acceptable, there exist partial recursive and total recursive S such that

(i, x) = (x)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node33.html (1 of 4) [12/23/2006 12:04:40 PM]

8. Acceptable Programming Systems

(y) = (x, y).

 Case ():

Since { } is also acceptable, there exist partial recursive and total recursive S' such that

(i, x) = (x)

(y) = (x, y).

Now, since { } is a listing of allpartial recursive functions, there is an index (i.e., program code)

esuch that = . Then, we define

f (i) = S(e, i)

so that

(x) = (i, x) = (i, x) = (x) = (x).

Similarly, there exists an index e'such that = , and we define g(i) = S'(e', i) so that (x) =

(x).

 Case ():
Suppose f and g are total recursive functions such that

 = and =

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node33.html (2 of 4) [12/23/2006 12:04:40 PM]

8. Acceptable Programming Systems

Then, we can define the universal function for { } by

(i, x) = (f (i), x) = (x) = (x).

Finally, we define the function S'for { } by

S'(i, x) = g(S(f (i), x))

so that

(y) = (y) = (y) = (x, y) = (x, y).

Definition 8.2 A program transformation is any total recursive function whose domain and range are
programs (i.e., indices) for partial recursive functions.

Observe that this definition is vacuous in the sense that every number can be interpreted as a program.
However, it is useful for its intensional aspect.

● 8.1 General Computational Complexity
● 8.2 Algorithmically Unsolvable Problems

Next: 8.1 General Computational Complexity Up: Lecture Notes for CS 2110 Introduction to Theory
Previous: 7.5 Complexity of RAM Programs
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node33.html (3 of 4) [12/23/2006 12:04:40 PM]

8. Acceptable Programming Systems

portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node33.html (4 of 4) [12/23/2006 12:04:40 PM]

8.1 General Computational Complexity

Next: 8.2 Algorithmically Unsolvable Problems Up: 8. Acceptable Programming Systems Previous: 8.
Acceptable Programming Systems

8.1 General Computational Complexity
One of the most important behavioral aspects of a computation is the complexity of the computation, i.
e., the amount of computation resources used during that computation. It will play a key role in many of
the proofs which follow, so we now define a general notion of computational complexity which is
suitable for our generalized model of computability.

Definition 8.3 Let { } be any acceptable programming system. A listing of partial functions { }

is a computational complexity measure for { } if it satisfies:

1.

dom = dom , i.e., for all i, x, (x) (x) ;

2.

(x) y is a recursive predicate in i, x, and y.

Clearly, the complexity measures defined for LOOP and RAM programs satisfy the first condition of a
general computational complexity measre. It is also clear from Proposition 7.4 (and its analog for LOOP
programs) that the second condition is satisfied by these complexity measures as well.

Proposition 8.2 If { } is a computational complexity measure for { }, then is a partial

recursive function for each i.

Proof:

(x) = min y[(x) y].

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node34.html (1 of 6) [12/23/2006 12:04:46 PM]

8.1 General Computational Complexity

Proposition 8.3 There is a program transformation such that = .

Proof: Define

h(i, x) = min y[(x) y]

 = (x)

Let e be a program for h, i.e., (i, x) = h(i, x), then by the S-m-n function which exists for { },

(x) = (i, x) = h(i, x) = (x)

Therefore, we define (i) = S(e, i), so that = .

 Nearly all program transformations which we will encounter will be defined in this way using the S-

m-n function.

Theorem 8.4 (Recursive Relatedness of Complexity Measures) Let { } and { } be acceptable

programming systems, and let g be a total recursive function such that = for all i. Let { }

and { } be computational complexity measures for { } and { }, respectively. Then, there exists

a total recursive function r such that for all i and for all x i,

(x) r(x, (x)) and

(x) r(x, (x))

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node34.html (2 of 6) [12/23/2006 12:04:46 PM]

8.1 General Computational Complexity

Proof: Define the total recursive function r as follows:

r(x, z) = max j x { (x), (x) : (x) z or (x) z}

Then, for all x i,

r(x, (x)) = max j x { (x), (x) : (x) (x)

 or (x) (x)}

 max { (x), (x)}

 (x)

Similarly, r(x, (x)) (x), for all x i.

We fix some arbitrary acceptable programming system { } and computational complexity measure {

} for it which we will use from now on.

Proposition 8.5 There is a program transformation g such that for all x, ran = dom .

Proof: Define the partial recursive function by,

(x, y) = min z[((z)) (z) and ((z)) = y]

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node34.html (3 of 6) [12/23/2006 12:04:46 PM]

8.1 General Computational Complexity

First, observe the is indeed partial recursive, since we can write ((x), y) for (y) (where

 is the program transformation of Proposition 8.3), and (x, y) for (y). Next we have

(x, y) z1, z2 [(z1) z2 and (z1) = y]

 y ran

Let i be a program for , so = , and define g(x) = S(i, x), so that (y) = (x, y). Then,

y dom (y) y ran .

Therefore, ran = dom .

Proposition 8.6 There is a program transformation h such that for all x, ran = dom .

Proof: Define the partial recursive function by

(x, 0) = (min z[((z)) (z)])

(x, y + 1) =

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node34.html (4 of 6) [12/23/2006 12:04:46 PM]

8.1 General Computational Complexity

Let i be such that = , and define h(x) = S(i, x), so that (y) = (x, y). We consider two

cases:

 Case 1:

dom = .

In this case, since dom = dom , we see that (x, y) for all y, so that ran =

 = dom .

 Case 2:

dom .

Observe first that since dom , the function must be total recursive. For each y

dom , clearly (x, y, (y)) = y, so that dom ran . On the other

hand, if (x, y) = z (x, y - 1) (including the case y = 0), then we have that (z)

(y), so that (z) and ran dom .

Notation 8.4 For any predicate P, we write x P(x) (or P(x) i.o.) if there exist infinitely many

numbers x for which P(x) is true. We also write x P(x) (or P(x) a.e.) if for all but finitely many
numbers x P(x) is true. The expressions i.o. and a.e. are abbreviations for ``infinitely often'' and ``almost
everywhere'', respectively.

Theorem 8.7 For any total recursive function t there exists a total recursive function f such that if

= f, then for all x i, (x) > t(x).

Proof: Proof is by diagonalization using Proverb 5.1. Define the total recursive function

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node34.html (5 of 6) [12/23/2006 12:04:46 PM]

8.1 General Computational Complexity

f (x) = max{ (x) + 1 : j x and (x) t(x)}.

Thus, if = f and x i, then (x) > t(x), since otherwise we would have

(x) = f (x) = max{ (x) + 1 : j x (x) t(x)}

 (x) + 1.

Thus, we see that there are functions which are functions which are a.e. difficult to compute with respect
to any given complexity measure. We observe that we cannot improve this result to everywhere difficult
to compute, since we can always ``speed-up'' the computation of any function on finitely many of its
inputs by building in a table with the corresponding outputs and then computing the function on those
inputs by table lookup.

Next: 8.2 Algorithmically Unsolvable Problems Up: 8. Acceptable Programming Systems Previous: 8.
Acceptable Programming Systems
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node34.html (6 of 6) [12/23/2006 12:04:46 PM]

8.2 Algorithmically Unsolvable Problems

Next: 9. Recursively Enumerable Sets Up: 8. Acceptable Programming Systems Previous: 8.1 General
Computational Complexity

8.2 Algorithmically Unsolvable Problems
Theorem 8.8 (Unsolvability of the Halting Problem) The function f such that for all x and y,

f (x, y) =

is not recursive.

Proof: Define the total function g(x) = f (x, x), and the partial function by

(x) =

If is partial recursive, then there is a program i such that = , but then

(i) = (i) = 0 g(i) = 0 (i)

which is a contradiction. Therefore, cannot be partial recursive, so that g and hence f cannot be total

recursive.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node35.html (1 of 5) [12/23/2006 12:04:51 PM]

8.2 Algorithmically Unsolvable Problems

 The following set (referred to as the ``Halting Problem'') plays an important role in

undecibability results:

 = {x : (x) }.

Corollary 8.9 The set (and its complement) is not recursive.

We will be able to show that there are many such problems which are algorithmically unsolvable. One
of the major techniques is to reduce one problem to another, i.e., to show that if one problem were
solvable then the other would also be solvable.

Definition 8.5 Let X, Y . We say that X is many-one reducible to Y (denoted by X Y), if

there is a total recursive function f such that for all x, x X f (x) Y. We write X Y

whenever X Y and Y X.

Proposition 8.10 If Y is a recursive set and X Y, then X is also recursive.

Proof: Let f be a total recursive function such that x X f (x) Y. Then, the characteristic

function of X is given by = of, i.e.,

(x) = 1 (f (x)) = 1.

Proposition 8.11 The following sets are not recursive:

= {x : dom is finite}

= {x : is total}

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node35.html (2 of 5) [12/23/2006 12:04:51 PM]

8.2 Algorithmically Unsolvable Problems

Proof: Define the partial recursive function by

(x, y) = (x, x) (x, x).

Then,

(x, y) =

Let i be such that = and define the total recursive function f by f (x) = S(i, x), so that (y) =

(x, y). Let be the everywhere undefined partial recursive function. Clearly,

 =

Therefore, x f (x) , hence . By Proposition 8.10 if

were a recursive set, then so would be recursive, contradicting Corollary 8.9. Similarly, x

 f (x) , and , so if were recursive so would be, again a

contradiction.

Definition 8.6 For any class C of partial recursive functions, we define the set of programs

(called an index set) for these functions by

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node35.html (3 of 5) [12/23/2006 12:04:51 PM]

8.2 Algorithmically Unsolvable Problems

Theorem 8.12 (Rice's Theorem) is recursive if and only if either of .

Proof: Clearly, and are recursive sets. So, suppose that and . Let be

the everywhere undefined partial recursive function, and assume without loss of generality that

C. Since , there is some partial recursive function such that C. Let i be such that

 = , and define the partial recursive function

(x, y) = (i, y) + ((x, x) (x, x)).

Then,

(x, y) =

Let j be such that = , and define the program transformation f by f (x) = S(j, x), so that (y)

= (x, y). Then,

 =

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node35.html (4 of 5) [12/23/2006 12:04:51 PM]

8.2 Algorithmically Unsolvable Problems

Therefore, x f (x) , so that , and so cannot be recursive.

 Rice's Theorem says in essence that there are no non-trivial apsects of the behavior of a program

which are algorithmically determinable given only the text of the program. By trivial we mean that
either no programs have that behavior or all programs have that behavior. As such, Rice's Theorem
represents an extremely severe limitation on the power of algorithms.

Next: 9. Recursively Enumerable Sets Up: 8. Acceptable Programming Systems Previous: 8.1 General
Computational Complexity
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node35.html (5 of 5) [12/23/2006 12:04:51 PM]

9. Recursively Enumerable Sets

Next: 10. Recursion Theorem Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 8.2
Algorithmically Unsolvable Problems

9. Recursively Enumerable Sets

Definition 9.1 A set X is recursively enumerable (or r.e.) if and only if X = ran , for some partial

recursive function .

By Propositions 8.5 and 8.6 we have

Corollary 9.1 A set X is recursively enumerable if and only if X = dom , for some partial recursive

function .

Corollary 9.2 A set X is recursively enumerable if and only if either X = or X = ran f for some total

recursive function f.

 Thus, we see that the class of sets generated by partial recursive functions is identical to the class of

sets accepted by partial recursive functions.

Proposition 9.3 A set is recursive if and only if both it and its complement are recursively enumerable.

Proof: Since is clearly recursive and r.e., it suffices to consider only non-empty sets.

 ():
Since the recursive sets are closed under complementation, it suffices to show that every non-

empty recursive set is recursively enumerable. Let X be recursive and let y X. Then, X is

enumerated by the function

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node36.html (1 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

f (x) =

 ():

Suppose X is non-empty and enumerated by the total recursive function f and that is non-
empty and enumerated by the total recursive function g. Then,

(x) =

Proposition 9.4 a) is recursively enumerable.

b) is not recursively enumerable.

Proof: = dom , where (x) = (x). Since is r.e., if were r.e., then by Proposition 9.3

 would be recursive, which would contradict Corollary 8.9.

Proposition 9.5 If Y is recursively enumerable and X Y, then X is recursively enumerable.

Proof: Let Y = dom , for some partial recursive function , and let f be a total recursive function

such that x X f (x) Y. Define = of, so that

(x) (f (x)) f (x) Y x X.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node36.html (2 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

Hence, X is r.e.

Definition 9.2 A set Z is called complete for the class of recursively enumerable sets with respect to the

reducibility (called many-one complete) if and only if Z is r.e. and for all r.e. sets X, X Z.

Proposition 9.6 is complete for the class of recursively enumerable sets with respect to .

Proof: Clearly, is r.e.. Now, let X be any r.e. set and let x be such that X = dom . Define the

program transformation f by

(z) = (j).

Then,

y X (y) (z) for all z

 (z) for some z

 (f (x, y))

Define g(y) = f (x, y). Then, y X g(y) , so X .

Proposition 9.7 The set is not recursively enumerable.

Proof: Let the partial recursive and total recursive f be as defined in Proposition 8.11. Then,

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node36.html (3 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

dom =

Therefore, x f (x) , so , and by Proposition 9.5, if were

r.e., then so would be, which contradicts Proposition 9.4.

Definition 9.3 A function is called finite if and only if it has a finite domain.

● Thus, if C is the class of all finite functions, then .

● We can effectively enumerate the class of finite functions as follows: Since each finite function f

consists of only finitely many pairs (x1, y1),..., (xn, yn), we can code f by x1, y1 ,..., xn, yn

. Next, we define the recursive function by

(z, x) =

Let ibe such that = , and let = . Then, for any finite function fwith code z,

(z, x) = f(x), and hence = f. Also, if zdoes not code any finite function, then = , the

everywhere undefined partial recursive function (which is a finite function). Thus, { } is an

effective enumeration of the class of all finite functions.

● We fix { } as the above effective enumeration of the class of all finite functions.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node36.html (4 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

 Observe that there is a very important distinction to be made between effectively enumerating a

class C of functions, and effectively enumerating the class of all programs for those functions. To

enumerate C we need only enumerate one program for each function in C. Thus, the effective
enumerability of the class of all finite functions does not contradict Proposition 8.11.

We now consider two lemmas which are very useful for demonstrating that a set is not r.e., where

C is a class of partial recursive functions.

Lemma 9.8 (Closure Under Finite Subfunctions) If is r.e. and C, then there is some finite

function C such that .

Proof: Let be r.e., let C, and define a program transformation g such that

(y) =

Suppose has no finite subfunctions which also belong to C. If x , then = , so g(x)

. If x , then is a finite subfunction of (since (y) for all y (x)), so

g(x) . Thus, x g(x) , and hence . But then, since is r.

e., is r.e., which is a contradiction.

Therefore, must contain some finite subfunction , which also belongs to C.

Corollary 9.9 The set is not recursively enumerable.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node36.html (5 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

Lemma 9.10 (Closure Under Superfunctions) If is recursively enumerable and C, then for

any partial recursive function if , then C.

Proof: Let be r.e. and let C, and suppose that is a partial recursive function for which

 . Define the partial recursive function by

(x, y) = min z[(x) z or (y) z]

 = min{ (x), (y)}.

Define the program transformation h such that

(y) =

Assume that C. We claim that

 =

Presuming the claim is true, we have x h(x) , so that , so

can't be r.e., which is a contradiction.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node36.html (6 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

To show that claim first suppose that x , then (x) .

if (y) , then (x, y) and (x) > (x, y);

if (y) , then (x, y) ,

so that in either case (y) = (y).

Suppose on the other hand that x , then (x) and (x, y) .

if (y) , then since , (y) = (y), so in either case (y) =

(y);

if (y) , then (x) (x, y), so (y) = (y).

Thus, the claim and hence the lemma is proved.

Corollary 9.11 The set = {x : is not total}, the complement of , is not recursively

enumerable.

Proof: Any total function extends the everywhere undefined function , which belongs to .

Theorem 9.12 (Rice's Theorem for R.E. Sets) Let C be any class of partial recursive functions. Then,

 is recursively enumerable if and only if there is some r.e. set Z such that for

all x, C z Z, .

Proof:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node36.html (7 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

 ():
Let Z be a (non-empty) r.e. set such that

Define the partial recursive function by

(w) =

where the total recursive function fis such that Z= ran f. Observe, that , if true, will

eventually be discovered, since it entails checking that has the proper outputs on a finite set of

inputs. Let x . Then, for some z Z. Let ybe such that f(y) = z, so that (x, y)

= x. Also, if (x, y) , then (x, y) = xand , so x . Therefore,

.

 ():

Let i be such that , and let g be a total recursive function such that =

 for all z. Define the recursively enumerable set Z by Z = dom (og), so that

z Z (g(z)) g(z)

Suppose C. Then by Lemma 9.8there is some z Zsuch that . On the other hand,

suppose for some z Z. Then, Cand by Lemma 9.10 C.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node36.html (8 of 9) [12/23/2006 12:04:56 PM]

9. Recursively Enumerable Sets

Next: 10. Recursion Theorem Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 8.2
Algorithmically Unsolvable Problems
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node36.html (9 of 9) [12/23/2006 12:04:56 PM]

10. Recursion Theorem

Next: 10.1 Applications of the Recursion Theorem Up: Lecture Notes for CS 2110 Introduction to
Theory Previous: 9. Recursively Enumerable Sets

10. Recursion Theorem

 Special Case:

There exists a program e such that (x) = e.

 Cell Analogy:

Figure 10.1:Cell Analogy

 Replication Process:

Figure 10.2:Replication Process

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node37.html (1 of 5) [12/23/2006 12:05:01 PM]

10. Recursion Theorem

 General Cell:

Figure 10.3:General Cell

 General Replication:

Figure 10.4:General Replication

Observation 10.1

Cell x with genetic information y
 ``program'' x with ``data'' y
 S(x, y)

Mimicing replication in a general cell we find that for some program x (which does only replication)

(y, z) = S(y, y)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node37.html (2 of 5) [12/23/2006 12:05:01 PM]

10. Recursion Theorem

so that by the S-m-n function,

(z) = S(y, y).

Now, let y = x, so

(z) = S(x, x).

Finally, letting e = S(x, x), we have for all z

(z) = e.

 The program e is program x with data x.

Theorem 10.1 (General Form of Recursion Theorem) For every partial recursive function : 2

 there is a program e such that for all x, (e, x) = (x).

Proof: Let i be a program such that

(y, x) = (S(y, y), x).

Then, (x) = (S(y, y), x). Let y = i and e = S(i, i), then we have

(x) = (x) = (S(i, i), x) = (e, x).

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node37.html (3 of 5) [12/23/2006 12:05:01 PM]

10. Recursion Theorem

Theorem 10.2 (Fixed-Point Form of Recursion Theorem) For every program transformation f :

 there is a program e such that = .

Proof: Let f : be a total recursive function and define the partial recursive function by

(y, x) = (x).

Then, by Theorem 10.1 there exists a program e such that (x) = (e, x) = (x).

Proposition 10.3 For every program transformation f : 3 , there exists a program

transformation g : 2 such that = for all i and j.

Proof: Define the partial recursive function by

(y, i, j, x) = (x).

By Theorem 10.1 there exists a program e such that (i, j, x) = (e, i, j, x). Let g(i, j) = S(e, i, j).

Then,

(x) = (x) = (i, j, x) = (e, i, j, x)

 = (x)

 = (x)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node37.html (4 of 5) [12/23/2006 12:05:01 PM]

10. Recursion Theorem

As a consequence of the General Form of the Recursion Theorem we will, whenever we need to, assume
that programs which we construct have copies of themselves built into them.

● 10.1 Applications of the Recursion Theorem
�❍ 10.1.1 Machine Learning
�❍ 10.1.2 Speed-Up Theorem

Next: 10.1 Applications of the Recursion Theorem Up: Lecture Notes for CS 2110 Introduction to
Theory Previous: 9. Recursively Enumerable Sets
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node37.html (5 of 5) [12/23/2006 12:05:01 PM]

10.1 Applications of the Recursion Theorem

Next: 10.1.1 Machine Learning Up: 10. Recursion Theorem Previous: 10. Recursion Theorem

10.1 Applications of the Recursion Theorem

Corollary 10.4 The set is not recursively enumerable.

Proof: Suppose that is r.e., and let f be a total recursive function such that ran f = .

Define the partial recursive function by

(x, y) =

By the Recursion Theorem there is a program e such that (e, y) = (y), so that

(y) =

Suppose that is total. Then, e and so e ran f, but by the definition of , we see that

z f (z) e, which is a contradiction. On the other hand, suppose that is not total. Then, e

ran f, but again from the definition of we see that z f (z) = e, which again is a contradiction.

Therefore, no such function f can exist.

Proposition 10.5 (Inefficiency Lemma) There exists a program transformation g : 2 such

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node38.html (1 of 3) [12/23/2006 12:05:05 PM]

10.1 Applications of the Recursion Theorem

that

dom = dom dom

and

x dom [(x) = (x) (x) > (x)].

Proof: Define the program transformation f : 3 by

(x) =

By Proposition 10.3 there exists a program transformation g : 2 such that =

. Then, we have

(x) =

Therefore, if (x) , then (x) = (x) and (x) > (x).

● 10.1.1 Machine Learning

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node38.html (2 of 3) [12/23/2006 12:05:05 PM]

10.1 Applications of the Recursion Theorem

● 10.1.2 Speed-Up Theorem

Next: 10.1.1 Machine Learning Up: 10. Recursion Theorem Previous: 10. Recursion Theorem
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node38.html (3 of 3) [12/23/2006 12:05:05 PM]

10.1.1 Machine Learning

Next: 10.1.2 Speed-Up Theorem Up: 10.1 Applications of the Recursion Theorem Previous: 10.1
Applications of the Recursion Theorem

10.1.1 Machine Learning

Figure 10.5:Learning By Example Scenario

● We view a learning algorithm (or inductive inference machine) as a total recursive function M
which takes as input a finite portion of the graph of some (total recursive) function f and produces
as output (the code of) some program p which is its conjecture for f.

● We say that M learns a function f in the limit if eventually it converges to a fixed conjecture
which is a correct program for f.

● We now formalize these notions: If {xi} denotes a sequence of numbers x0, x1,..., then

xn = x

means that m n m xn= x(or equivalently n xn= x). In this case we say that {xi}

converges in the limit tox.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node39.html (1 of 3) [12/23/2006 12:05:09 PM]

10.1.1 Machine Learning

Given a total function f : , we denote by f | n, the finite subfunction of f consisting of f

restricted to the set {0, 1, 2,..., n}, and code it by f (0),..., f (n) .

Definition 10.1 We say that a total recursive function M is a total learner if M conjectures only

programs for total functions, i.e., x is a total recursive function.

Definition 10.2 We say that the total learner M learns a function f syntactically in the limit (written f

 SYN t [M]) if and only if the sequence of conjectures pn = M(f | n) by M on f converges to a

correct program p for f, i.e.,

 (Convergence Criterion)

pn = p, and

 (Correctness Criterion)

 = f.

We denote by R the class of all total recursive functions.

We denote by SYN t the class of sets of functions which can be learned with respect to SYN t -

type learning:

SYN t = {S R : M S SYN t [M]}.

Theorem 10.6 R SYN t .

Proof: Given any M we can define via the Recursion Theorem a function R such that

SYN t [M] by

(0) = e

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node39.html (2 of 3) [12/23/2006 12:05:09 PM]

10.1.1 Machine Learning

(x + 1) = 1 + (x + 1).

Observe that since for all y R, the function R. Let pn = M(| n). Suppose now

that there is some program p such that p = pn, and let m be so large that n m pn = p.

Then,

(m + 1) = 1 + (m + 1) = 1 + (m + 1),

so that M cannot converge in the limit to a correct program for .

Observe that although M has the index e available to it, it can't produce e as its answer, since in general e
might not compute a total function.

Next: 10.1.2 Speed-Up Theorem Up: 10.1 Applications of the Recursion Theorem Previous: 10.1
Applications of the Recursion Theorem
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node39.html (3 of 3) [12/23/2006 12:05:09 PM]

10.1.2 Speed-Up Theorem

Next: 11. Non-Deterministic Computations Up: 10.1 Applications of the Recursion Theorem Previous:
10.1.1 Machine Learning

10.1.2 Speed-Up Theorem

From the definition of DLPtime that it is possible to ``speed-up'' (i.e., reduce) the computation time and
space for any recursive function be choosing a program over a larger alphabet. Here, we imagine that we
have an acceptable programming system consisting of LOOP programs (or RAM programs) over all
possible alphabets, where the alphabet on which a program is based is included in its coding. We have also
observed that any program for a recursive function can be sped-up on finitely many of its inputs by
building a finite table for those inputs into that program.

Definition 10.3 Let h be a total recursive function. A program i is called h-optimal for a partial recursive
function f if and only if

 = f

and

j = f x (x) h((x)).

Thus, modulo h, the program i is as fast as any program for f.

Question 10.1 Does there exist a total recursive function h such that every partial recursive function has
an h-optimal program?

Theorem 10.7 (Speed-Up) For every total recursive function h there exists a total recursive function f
such that

i = f j = f and x (x) > h((x))

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (1 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

Corollary 10.8 For every total recursive function h there exists a total recursive function f that has no h-
optimal program.

Figure 10.7:Repeated Speed-Up

Definition 10.4 A complexity sequence for a total recursive function f is a set of total functions {ti} such

that

1.

n j = f and tn a.e.

2.

j = f m tm a.e.

Thus a complexity sequence {ti} is cofinal with { : = f}.

Figure 10.7:Complexity Sequence

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (2 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

If we can construct a complexity sequence {ti} for a function f such that hotn + 1 tn a.e., then f has h-

speed-up:

 = f m tm a.e.

 j = f and tm + 1 a.e.

 j = f and ho hotm + 1 tm a.e.

Proof: (of Speed-Up Theorem)

 Construction of f:

The construction of f is a modification of the standard diagonalization argument (see Theorem 8.7),
but is biased against smaller programs (which have less information content). We can assume
without loss of generality that h is strictly increasing, i.e., h(x) > x.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (3 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

(x) =

Define, f = , where the function is yet to be determined.

 Observe, by (*) that can affect only one argument x in the definition of f.

For the present we will assume that is total, so that f is also total. We first have that

 = f x j (x) > (x - j) (10.1)

This is so because if x j and (x - j), then since (u = v = 0), f (x) 1 + (x).

 Construction of Table v:

Next,

u v = f. (10.2)

By our previous observation, we have for all u and v,

 = a.e.

Figure 10.8:Speed-Up Table

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (4 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

The required ``table'' vis given by

v = x1, f (x1) ,..., xu - 1, f (xu - 1) ,

where for each j, 1 j<u, xjwas the only value affected by diagonalization against .

 Construction of function r:

Next, there exists a total recursive function r such that

r(x) > x

and

i u v x (x) r(max{ (y) : 0 y x - u}). (10.3)

We define

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (5 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

g(i, u, v, x, z) =

Then define

r(z) = max{g(i, u, v, x, z), z + 1 : i, u, v, x z}.

Then, for all x u,

r(max{ (y) : 0 y x - u}) g(i, u, v, x, max{ (y) : 0 y x - u})

 (x)

Observe, that in the definition of r the maximum is taken over all i z, which may include programs i for

non-total functions. Observe also that r is strictly increasing.

 Construction of complexity sequence {tn}:

We now construct the complexity sequence {tn}. Define,

tn(x) = (x - n).

Suppose = f, then by (10.1) for x jwe have (x) > (x- j) = tj(x). Thus, condition (2) in the

definition of a complexity sequence is satisfied.

Suppose is such that

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (6 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

(x + 1) h(r((x))), (10.4)

so that (x+ 1) > (x), since hand rare strictly increasing functions.

Then, using (10.3), that is increasing, and (10.4) we have,

h((x)) h(r(max{ (y) : 0 y x - u}))

 h(r((x - u)))

 (x - u + 1) = (x - (u - 1)) = tu - 1(x).

Therefore, given n, by (10.2) there exists a j(j= (i, n+ 1, v), for an appropriate v) such that

 = f and ho tn a.e.

so that condition (1) in the definition of a complexity sequence is satisfied. Moreover,

tm(x) = (x - m) h(r((x - (m + 1))))

 h((x - (m + 1)))

 (hotm + 1)(x)

Thus, {tn} is the desired complexity sequence.

 Construction of an approporiate :

Define

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (7 of 8) [12/23/2006 12:05:14 PM]

10.1.2 Speed-Up Theorem

(i, x) =

By the Recursion Theorem there exists an i0such that (i0, x) = (x) for all x. Then, clearly (x)

>h(r((x- 1))). Observe, also that is total, which can be proved by induction on the domain of

.

Next: 11. Non-Deterministic Computations Up: 10.1 Applications of the Recursion Theorem Previous:
10.1.1 Machine Learning
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (8 of 8) [12/23/2006 12:05:14 PM]

11. Non-Deterministic Computations

Next: 11.1 Complexity of Non-Deterministic Programs Up: Lecture Notes for CS 2110 Introduction to
Theory Previous: 10.1.2 Speed-Up Theorem

11. Non-Deterministic Computations
● Recall that non-deterministic LOOP programs (i.e., NLOOP programs) are obtained by adding the

following SELECT statement:

SELECT(

which assigns either a 0 or a 1 non-deterministically to the variable .

● Similarly, non-deterministic RAM programs (i.e., NRAM programs) are obtained by adding the
following JUMP instruction:

2k + 4/j1/j2; njp j1 or j2

which non-deterministically selects one of two lines (j1or j2) to jump to.

● We will investigate non-deterministic computations by means of NRAM programs, but we could could
equally use NLOOP programs.

Definition 11.1 Given an NRAM program P and an input x, an accepting computation of P on x is any legal
sequence of instruction executions of P for which that last instruction executed is the output instruction of P, i.
e., for which P halts.

Definition 11.2 We say that the NRAM program P accepts the input x if and only if there exists some
accepting computation of P on x. We define the set accepted by the NRAM program P by

LP = {x : P accepts x}.

Thus, a non-deterministic computation has the following tree-like structure, where each node of the tree
represents a non-deterministic branch point (i.e., execution of a njp instruction).

Figure 11.1:Non-Deterministic Computation

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node41.html (1 of 4) [12/23/2006 12:05:18 PM]

11. Non-Deterministic Computations

Instead of viewing the execution of a njp instruction as a non-deterministic selection of a branch point, we
can imagine that it corresponds to a bifurcation of a process which is executing the program and which creates
two child processes each of which branches to one of the two possible branch points, and such that when a
child process halts, it will cause its parent process to halt, etc. Thus, and alternate (and perhaps more realistic)
view of non-determinism is as unbounded parallelism.

Theorem 11.1 Every set accepted by a NRAM program can be accepted by a DRAM program.

Proof: It suffices to show that every set accepted by an NRAM program is the domain of some partial
recursive function. Recall in the construction of the universal partial recursive function for DRAM programs
we defined primitive recursive functions nxl and nxv, which computed the next line and next register contents
during the simulation. However, since the program which we now wish to simulate is non-deterministic, it is
no longer the case that the next line to be executed is determined by (i.e., is a function of) the current line and
current contents. Instead, we now construct a primitive recursive predicate Nxl which decides whether or not a
given line can leagally be the next line. Moreover, since the sequence of computation steps is no longer
determined by the program and input, we will define a predicate Acc that will decide whether or not a given
sequence of program states represents an accepting computation.

First we need to provide some parsing predicates which allow us to parse NRAM programs:

go1(x) =

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node41.html (2 of 4) [12/23/2006 12:05:18 PM]

11. Non-Deterministic Computations

go2(x) =

which produce the two branch points of the njp instruction coded by x. We also need to define the predicates
Ins(x) and Prg(x) which decide whether or not x codes a legal instuction and program respectively. Then, we
define the primitive recursive predicate

Nxl(p, y, z, j, r) (opc(lne(j, p)) 2k + 4 r = nxl(p, y, z, j))

 (opc(lne(j, p)) = 2k + 4

 (r = go1(lne(j, p)) r = go2(lne(j, p))))

Next, let w code for a comma separated sequence s0, s1,..., sn of numbers each of which is interpreted as a pair

representing a state (line number, register contents) of the program p during its execution.

Then, the predicate Acc(p, y, w), where p codes the program and y codes the input, is defined by:

Acc(p, y, w) (lin(w, 0) = 1 con(w, 0) = zro(mxr(p))))

 (lin(w, nock + 1(',', w)) = lng(p))

 j < nock + 1(',', w)[Nxl(p, y, con(w, j), lin(w, j), lin(w, j + 1))

 nxv(p, y, con(w, j), lin(w, j)) = con(w, j + 1)]

where lin(w, j) and con(w, j) give the line number and register contents for the jth state in w and are defined by

lin(w, j) = (prtk + 1(',', w, j))

con(w, j) = (prtk + 1(',', w, j)).

Finally, we see that

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node41.html (3 of 4) [12/23/2006 12:05:18 PM]

11. Non-Deterministic Computations

Lp = dom

where the partial recursive function is defined by

(y) = minw[Acc(p, y, w)].

● 11.1 Complexity of Non-Deterministic Programs
● 11.2 NP-Completeness
● 11.3 Polynomial Time Reducibility
● 11.4 Finite Automata (Review)
● 11.5 PSPACE Completeness

Next: 11.1 Complexity of Non-Deterministic Programs Up: Lecture Notes for CS 2110 Introduction to
Theory Previous: 10.1.2 Speed-Up Theorem
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion
thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node41.html (4 of 4) [12/23/2006 12:05:18 PM]

11.1 Complexity of Non-Deterministic Programs

Next: 11.2 NP-Completeness Up: 11. Non-Deterministic Computations Previous: 11. Non-
Deterministic Computations

11.1 Complexity of Non-Deterministic Programs

Definition 11.3 Let P be a NRAM program over (where k > 1), then we define the following

complexity measures for P.

NRAMtimeP(x) =

NRAMspaceP(x) =

where Rit denotes the contents of register Ri at step t of the computation of P on input x.

Thus, for non-deterministic computations the complexity is defined in terms of the most efficient (with
respect to time or space) accepting computation. The rationale for this is that since the program is
allowed to ``guess'' an accepting computation it might as well be allowed to guess the most efficient
accepting computation. Observe that the most space efficient accepting computation need not be the
most time efficient one, and vice versa.

Definition 11.4 We define the following (deterministic) complexity classes:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node42.html (1 of 2) [12/23/2006 12:05:22 PM]

11.1 Complexity of Non-Deterministic Programs

DPTIME = {L : DRAM program P and a polynomial function t such that

 P computes and x DRAMtimeP(x) t(| x |)}.

DPSPACE = {L : DRAM program P and a polynomial function t such that

 P computes and x DRAMspaceP(x) t(| x |)}.

● Aliases for DPTIME is , and for DPSPACE is .
● The definitions of DPTIME and DPSPACE are independent of the (standard) model of

computation used (see Proposition 7.6).

Definition 11.5 We define the following (non-deterministic) complexity classes:

NPTIME = {L : NRAM program P and a polynomial function t such that

 P accepts L and x L NRAMtimeP(x) t(| x |)}.

NPSPACE = {L : NRAM program P and a polynomial function t such that

 P accepts L and x L NRAMspaceP(x) t(| x |)}.

● Aliases for NPTIME is , and for NPSPACE is .

Next: 11.2 NP-Completeness Up: 11. Non-Deterministic Computations Previous: 11. Non-
Deterministic Computations
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node42.html (2 of 2) [12/23/2006 12:05:22 PM]

11.2 NP-Completeness

Next: 11.3 Polynomial Time Reducibility Up: 11. Non-Deterministic Computations Previous: 11.1 Complexity of
Non-Deterministic Programs

11.2 NP-Completeness
Definition 11.6 We say that a function f is polynomial-time computable if and only if there is some DRAM

program P and a polynomial function t such that P computes the function f and DRAMtimeP(x) t(| x |). We say

that the set Y is polynomial-time reducible to the set X (written Y X) if and only if there exists a polynomial-

time computable function f such that y Y f (y) X.

 Observe if f is computable in polynomial time t, then | f (x) | t(| x |).

Definition 11.7 A set X is called NP-complete if and only if X is complete for with respect to , i.e., X

 and Y X for all Y .

Definition 11.8 A propositional formula B is called satisfiable if and only if there exists some assignment of truth
values to its variables which makes the value of B true.

Example 11.1 Let B = (x1 x2) (x1 x3) (x1 x2 x3). Then B is satisfiable via the

assignment x1 = T, x2 = F, x3 = T.

Definition 11.9 SAT is the set of all satisfiable propositional formulas in conjunctive normal form.

Proposition 11.2 SAT .

Proof: A non-deterministic algorithm works as follows:
Given a propositional formula B with variables x1,..., xn, it:

● guesses (correctly, if possible) a satisfying truth assignment to x1,..., xn;

● verifies that the chosen assignment to x1,..., xn makes the value of B true, and if so, accepts.

Thus, if B SAT, then there is some assignment to x1,..., xn, so the algorithm will ``guess' it and so will accept. If

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (1 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

B SAT, then no guess will make the value of B true, so the algorithm does not accept.

Figure 11.2:Non-Deterministic Computation for B= (x1 x2) (x1 x3) (x1 x2 x3)

Theorem 11.3 SAT is NP-complete.

Proof: It suffices to show that every set X is polynomial-time reducible to SAT. Let X and let P

be a NRAM program over which accepts X in polynomial time p, i.e., x X NRAMtimeP(x) p(| x

|). We construct for each x a propositional formula Bx in conjunctive normal form such that x X Bx is

satisfiable.

The propositional formula Bx must be satisfiable if and only if there is an accepting computation of P on input x, so

we will need to describe NRAM computation by means of propositional variables and formulas. Let m be the
number of lines of P and let w be the maximum number register named in P. Let x = a1 ... an, so | x | = n. We will

represent the contents of each register by a string of length p(n) over , where we use the k+1st symbol as a

blank to pad (to the right) the actual contents so the representation is exactly of length p(n). Length p(n)
suffices since we can add at most one symbol per time step to the contents of any register and since the length of
the input is included in the computation time.

We first introduce polynomially many propositional variables as follows:

Table 11.1:Variables for Bx

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (2 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

Variable Intended meaning

SMB[t : i : r : s] At time t the symbol in position i of register r is s

LIN[t : j] At time t the current line number is j

We also introduce notation for the various symbols which occur in any given line j (depending on the type of
instruction).

Table 11.2:Constants for Bx

Constant Description Instruction Type

rj Register named in line j All, except njp

sj Symbol named in line j jmp and suc

gj Goto part of line j jmp

gj1 First goto part of line j njp

gj2 Second goto part of line j njp

● Part of the definition of Bx will be devoted to making sure that the intended interpretation of the above

variables is in fact the actual meaning.
● In order to describe in a more readable form the formula Bx, we introduce the following notation. Let E(z)

be some propositional formula with variable symbol z, where E(z) is well formed for all u z v. Then,

E(z) stands for E(u) E(u + 1) ... E(v)

E(z) stands for E(u) E(u + 1) ... E(v)

● Observe that if A1,..., Au and B1,..., Bv are literals, then the formula A1 ... Au B1 ... Bv is

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (3 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

logically equivalent to A1 ... Au B1 ... Bv, and so is a single disjunction of literals.

● To further enhance the readibility of Bx we will assign types to certain variables and abbreviate quantifiers

over these variables as indicated in the following table.

Table 11.3:Quantifiers for Bx

Var. Type Range

t time 0 t p(n)

i positions 1 i p(n)

r registers 1 r w

s symbols 1 s k + 1

j lines 1 j m

● We will also use the abbreviation s E(s) (read ``there exists a unique s such that E(s)'') for the

expression

s E(s) s1 (E(s1) E(s2))

Observe that the above expression is in conjunctive normal form. Similarly, j E(j) stands for

j E(j) j1 (E(j1) E(j2))

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (4 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

In this context the meaning of the quantifiers t<p(n), i>n, etc., should also be clear.

● The formula Bx consists of the conjunction of several ``subformulas'' B1,..., B6 which are defined below, i.

e., Bx = B1 ... B6.

 B1:

The formula B1 asserts that at each point in time each bit position of each register contains a unique symbol:

t i r s SMB[t : i : r : s]

 B2:

The formula B2 asserts that at each point in time there is a unique current line number:

t j LIN[t : j]

 B3:

The formula B3 asserts that the computation begins correctly:

LIN[0 : 1] r i SMB[0 : i : r :]

 B4:

The formula B4 asserts that at some point in time the last line of P is reached:

t LIN[t : m]

 B5:

The formula B5, which is a conjunction of subformulas B5.1,..., B5.5, asserts that at any point in time the

next line to be executed is legally reachable from the current line:
 B5.1:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (5 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

t < p(n) LIN[t : m] LIN[t + 1 : m]

Each of the following subformulae are included for each line j of the specified type:
 B5.2:

for each line j which is not a jmp, njp , or out instruction

t < p(n) LIN[t : j] LIN[t + 1 : j + 1]

 B5.3:

for each line j which is a jmp instruction

t < p(n) LIN[t : j] SMB[t : 1 : rj : sj] LIN[t + 1 : j + 1]

 B5.4:

for each line j which is a jmp instruction

t < p(n) LIN[t : j] SMB[t : 1 : rj : sj] LIN[t + 1 : gj]

 B5.5:

for each line j which is a njp instruction

t < p(n) LIN[t : j] LIN[t + 1 : gj1] LIN[t + 1 : gj2]

 B6:

The formula B6, which is a conjunction of subformulas B6.1,..., B6.9, asserts that at any point in time the

next register contents are correctly calculated:
 B6.1:

for each line j and for all r rj or for all r if line j is a njp or jmp instruction

t < p(n) i s LIN[t : j] SMB[t : i : r : s] SMB[t + 1 : i : r : s]

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (6 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

 B6.2:

for line 0 which is an inp instruction and time 1

i n SMB[1 : i : r0 : ai]

 B6.3:

for line 0 which is an inp instruction and time 1

i > n SMB[1 : i : r0 :]

 B6.4:

for each line j which is a suc instruction

t < p(n) i s k LIN[t : j] SMB[t : i : rj : s]

 SMB[t + 1 : i : rj : s]

 B6.5:

for each line j which is a suc instruction

t < p(n) i < p(n) LIN[t : j] SMB[t : i : rj :]

 SMB[t : i + 1 : rj :] SMB[t + 1 : i + 1 : rj : sj]

 B6.6:

for each line j which is a suc instruction

t < p(n) i < p(n) LIN[t : j] SMB[t : i : rj :]

 SMB[t : i + 1 : rj :] SMB[t + 1 : i + 1 : rj :]

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (7 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

 B6.7:

for each line j which is a suc instruction

t < p(n) LIN[t : j] SMB[t : 1 : rj :] SMB[t + 1 : 1 : rj : sj]

 B6.8:

for each line j which is an lsf instruction

t < p(n) i < p(n) s LIN[t : j] SMB[t : i + 1 : rj : s]

 SMB[t + 1 : i : rj : s]

 B6.9:

for each line j which is an lsf instruction

t < p(n) LIN[t : j] SMB[t + 1 : p(n) : rj :]

This completes the construction of the formula Bx. To complete the proof it is necessary to prove by induction on

the time t that

1.
if Bx is satisfiable, then there exists an accepting computation for P on input x. The accepting computation

is constructed from the satisfying assignment to the variables of Bx; and

2.
if P accepts input x, then there is a satisfying assignment to the variables of Bx. The satisfying assignment is

constructed from the accepting computation of P on input x.

Proposition 11.4 For any set X, if X is NP-complete and X , then = .

Proof: Clearly, . Let X be NP-complete and suppose X , so that there exists some DRAM

program Q which accepts X in polynomial time. Next, let Y . Then, since Y X, there is some

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (8 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

polynomial-time computable function f such that y Y f (y) X. Thus, y Y f (y) X

Q accepts f (y). Hence, there is a polynomial time acceptor for Y that, given y, computes f (y) and applies Q to f (y).

Therefore, Y , and so .

Proposition 11.5 For any sets X and Y, if X is NP-complete and Y and X Y, then Y is also NP-

complete.

Proof: This follows from the transitivity of the relation , i.e., from the fact that the composition of two

polynomial-time computable functions is polynomial-time computable.

Notation 11.10 Let V be a set of propositional variables. Then we use to denote an arbitrary truth assignment
to the variables of V, i.e., : V {T,F}. Given any propositional formula B we denote by Var(B) the set of

variables occurring in B. If Var(B) V, then the truth assignment above determines uniquely a truth value for

B which we denote by (B). In these terms, then, a CNF formula B = C1 ... Cn is satisfiable if and only if

there exists a : Var(B) {T,F} such that (Ci) = T for all 1 i n

The next two results involve specializing the NP-completeness of SAT to restricted cases of the satisfiability
problem which retain the property of being NP-complete. In each case beginning with a propositional formula B =

C1 ... Cn in conjunctive normal form, we construct a new CNF formula belonging to the restricted

satisfiability class by replacing each clause Ci by a set of clauses ,..., , whose variables are those of Ci

plus some new variables that are used nowhere else and such that

1.
for each truth assignment to Var(B) for which (Ci) = T, there is an extension of to a truth

assignment to Var(B) such that () = T for all 1 j mi; and

2.

given any truth assignment to Var(B) such that () = T for all 1 j mi, we have

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (9 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

(Ci) = T.

It then follows that C1 ... Cn is satisfiable if and only if (...) ... (...

) is satisfiable. Finally, as in the case of the general satisfiability problem it will be easy to see that

each of the restricted cases belongs to by guessing an assignment of truth values and then verifying that all
the appropriate conditions are satisfied.

Definition 11.11 3SAT is the set of all satisfiable propositional formulas in conjunctive normal form which have
exactly 3 literals per clause.

Proposition 11.6 3SAT is NP-complete.

Proof: Clearly, 3SAT . Let B = C1 ... Cn be a propositional formula in conjunctive normal form.

For each clause Ci containing k literals, where k 3, we replace Ci with a set of clauses ,..., , that

contain new variables in addition to those of Ci such that Ci will be satisfiable by a truth assignment if an only if

all of ,..., are satisfiable by a truth assignment extending . The proof is broken naturally into

the following three cases:

 Case 1:
Ci = w, for some literal w. Define

= (w)

= (w)

= (w)

= (w)

where and are new propositional variables.

 Case 2:

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (10 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

Ci = (w1 w2), for literals w1, w2. Define

= (w1 w2)

= (w1 w2)

where is a new propositional variable.

 Case 3:
Ci = (w1 w2 ... wk), for literals w1,..., wk, where k > 3. Define

 = (w1 w2)

and for 1 <j k- 3, a clause asserting `` wj + 1 ''

 = (wj + 1)

and finally a clause asserting `` wk - 1 wk''

 = (wk - 1 wk)

In Cases 1 and 2, given a truth assignment to the variables of Ci such that (Ci) = T, any extension of

will work, since all combinations of the new variables are included. In Case 3, we extend to by

assigning truth values to the variables ,..., in order as follows:

 (w1 w2)

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (11 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

and for 1 < j k - 3,

 (wj + 1).

Conversely, suppose that () = T for all 1 j mi. Then, in Cases 1 and 2, since is of the form Ci

 , where contains only new variables, there is some j such that () = F, so (Ci) = T. In Case

3, we suppose that (wj) = F for all 1 j < k, and show by induction that () = T for all 1 j k - 3, and

hence (wk) = T, so (Ci) = T.

Definition 11.12 Let (1/3)SAT be the set of all satisfiable propositional formulas with three literals per clause for
which there is a satisfying assignment which makes exactly one literal per clause true.

Proposition 11.7 (1/3)SATis NP-complete.

Proof: Clearly (1/3)SAT . Let B = C1 ... Cn be a propositional formula in conjunctive normal form.

We construct a new CNF propositional formula by replacing each clause Ci of B by a conjunction of clauses

 If Ci = (x y z), where x, y, z are the three literals of Ci, then ...

contain new variables (not used elsewhere) , , , , , and , , , , , as

follows:

 = (x)

 = (y)

 = (z)

 = ()

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (12 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

 = ()

 = ()

 = ()

 = ()

 = ()

Suppose first that is a truth assignment to the variables of B such that (Ci) = T. We will construct a truth

assignment which extends such that () = T for all 1 j 9, and such that exactly one literal per

clause is true. We first observe that the clauses ... are so constructed that the following

relationships hold:

x y

x z

y z

We consider three cases:

 Case 1:
(x) = (y) = (z) = T:

Then from the above equivalences the assignment is unique, and assigns T to

, , , , , and ,

and assigns Fto

, , , , , and .

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (13 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

 Case 2:
Exactly two of x, y, z are assigned T by :
Suppose for definiteness that z is the unique literal such that (z) = F. Then, by the above equivalences,

 must assign T to

 and ,

and assign Fto

, , , and .

Next, there are two possible completions of the assignment . Either assigns Tto

, , and

and Fto

, , and ,

or assigns Tto

, , and ,

and Fto

, , and .

 Case 3:
Exactly one of x, y, z are assigned T by :

Suppose for definiteness that x is the unique literal such that (x) = T. Clearly, must assign F to

and . There are again two possible completions of the assignment . Either assigns T to

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (14 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

, , , and

and Fto

, , , , , and ,

or assigns Tto

, , , and ,

and Fto

, , , , , and .

The two possible assignments are summarized in the following tables:

Table 11.4:Alternative 1

x y z

T T T F F F T T T F F F T T T

T T F F F T T F F F F F T T T

T F T F T F F T F F F F T T T

F T T T F F F F T F F F T T T

T F F F T F F T F F F T T F F

F T F F F T T F F T F F F F T

F F T T F F F F T F T F F T F

Table 11.5:Alternative 2

x y z

T T T F F F T T T F F F T T T

T T F F F F T T T F F T T F F

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (15 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

T F T F F F T T T F T F F T F

F T T F F F T T T T F F F F T

T F F F F T T F F F T F F T F

F T F T F F F F T F F T T F F

F F T F T F F T F T F F F F T

Suppose on the other hand that is a truth asignment such that () = T for all 1 j 9, where exactly

one literal per clause is true under the assignment . Suppose also that (x) = F and (y) = F. We then show

that (z) = T, so that (Ci) = T. Since (x) = F and () = T, we have

() = T and () = F

or

() = F and () = T.

Similarly, since (y) = F and () = T, we have

() = T and () = F

or

() = F and () = T.

Next, since () = T and () = T, we have

() = T and () = T

or

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (16 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

() = T and () = T.

In the first case from () = T we have

() = F

and from () = T we have

() = F.

Similarly, in the second case from () = T we have

() = F

and from () = T we have

() = F.

Thus, in either case we have

() = F and () = F

so that from () = T we have (z) = T.

 Choosing of the assignment in Proposition 11.7 can be viewed as a game on the following graph where

one must choose exactly one node of each colored triangle. Note that doing so will require choosing exactly one of
x, y, z.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (17 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

Figure 11.3:(1/3)SATGame

Definition 11.13 Let + (1/3)SAT denote the set of all satisfiable propositional formulas belonging to (1/3)SAT in
which there are no negated variables, i.e., all literals are single variables.

Corollary 11.8 + (1/3)SAT is NP-complete.

Proof: Given a formula B = C1 ... Cn we first add two special variables t and f and the special clause

 = (t f f).

Since exactly one literal in each clause must be assigned T, we see that any such assignment which makes

true, must assign T to t and F to f. Then for each variable x Var(B), we introduce a new variable , and the

clause

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (18 of 19) [12/23/2006 12:05:33 PM]

11.2 NP-Completeness

 = (x f).

Thus, any appropriate assignment to which makes true, must assign the opposite truth values to x and

, so x. Then, we replace each clause Ci by the clause , where is obtained by replacing every

negated literal of the form x with the positive literal .

Next: 11.3 Polynomial Time Reducibility Up: 11. Non-Deterministic Computations Previous: 11.1 Complexity of
Non-Deterministic Programs
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion thereof)
is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (19 of 19) [12/23/2006 12:05:33 PM]

11.3 Polynomial Time Reducibility

Next: 11.4 Finite Automata (Review) Up: 11. Non-Deterministic Computations Previous: 11.2 NP-
Completeness

11.3 Polynomial Time Reducibility
We can now show that many other problems X are NP-complete by reducing + (1/3)SAT to X and using
Proposition 11.5.

Definition 11.14 Let be a finite alphabet and let V = {xi} be a set of symbols which is disjont from

. The symbols of V are called string variables. A pattern is any non-null string over V. Let
 be a pattern which contains n different variables. Without loss of generality we may assume that the

variables of are x1,..., xn. Given non-empty strings s1,..., sn , then [x1 s1,..., xn

sn] is the result of simultaneously substituting sj for all occurrences of xj, for all 1 j n. The pattern

language L generated by is defined by

L = { [x1 s1,..., xn sn] : s1,..., sn }.

Definition 11.15 Define PATMEM as the set of all pairs , t , where is a pattern and t

, such that t L .

Proposition 11.9 PATMEM is NP-complete.

Proof: It is easy to see that given and t a non-deterministic algorithm can simply guess strings s1,...,

sn wuch that [x1 s1,..., xn sn] = t and verify this fact in polynomial time, since all sj must

satisfy | sj | | t |. Thus, PATMEM .

To see that PATMEM is NP-complete we show that + (1/3)SAT PATMEM. Let B = C1 ... Cm

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node44.html (1 of 5) [12/23/2006 12:05:39 PM]

11.3 Polynomial Time Reducibility

be a CNF propositional formula, where Ci = (wi, 1 wi, 2 wi, 3), and where wi, j is a positive literal,

and let x1,..., xn be the variables of B. Let a,b be two distinct symbols of . We construct a pattern

whose string variables are identical to the propositional variables of B. The pattern is defined by

 = a a a ... a a

where for each 1 i m,

 = wi, 1wi, 2wi, 3.

The string t is defined by

t = at1at2a ... atma

where for each 1 i m,

ti = bbbb.

Suppose now that B is satisfiable by a truth assignment which assigns T to exactly one literal per
clause. We then construct a string assignment to the string variables of as follows:

(xj) =

Since makes exactly one literal per clause true (and two literals per clause false), assigns to

the string bbbb = ti. Therefore, t L .

Suppose on the other hand that t L and let be the corresponding assignment of strings from

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node44.html (2 of 5) [12/23/2006 12:05:39 PM]

11.3 Polynomial Time Reducibility

 to the variables of . Then, clearly each must generate the string ti = bbbb, so that for each i

exactly one of wi, 1, wi, 2, wi, 3 is assigned the string bb by , and the other two are assigned the string

b by . We then construct a truth assignment to the propositional variables of B as follows:

(xj) =

It is clear that assigns T to exactly one literal per clause of B.

Definition 11.16 An instance of the Knapsack Problem (denoted by s1,..., sn;c) consists of a set of

integers s1,..., sn, called sizes, and an integer c, called the capacity. An instance of the Knapsack Problem

is called solvable if and only if there is some set of indices J {1,..., n} such that c = sj. We

define KNAPSACK as the set of all solvable instances of the Knapsack Problem.

Proposition 11.10 KNAPSACK is NP-complete.

Proof: It is easy to see that KNAPSACK , since a non-deterministic algorithm can, given an

instance s1,..., sn;c

1.

guess a subset J {1,..., n}, and

2.

verify that c = sj.

We show that + (1/3)SAT KNAPSACK. Let B = C1 ... Cm be a CNF propositional formula,

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node44.html (3 of 5) [12/23/2006 12:05:39 PM]

11.3 Polynomial Time Reducibility

where Ci = (wi, 1 wi, 2 wi, 3), and where wi, j is a positive literal, and let x1,..., xn be the variables

of B. We define an instance s1,..., sn;c of the Knapsack Problem as follows:

For each variable xj we define a weight

sj = 4i,

where Ij = {i : xj occurs in Ci}. The knapsack capacity is defined by

c = 4i.

Suppose s1,..., sn;c KNAPSACK. Let J be such that c = sj. We define a truth assignment

 to x1,..., xn as follows:

(xj) =

We first observe that since there are only three literals per clause each ``bit'' 4i in the capacity c must be

generated by some size sj such that i Ij. Further, since the coefficient of 4i is 1 (and not 2 or 3), the

assignment must assign T to exactly one literal of each clause Ci. Thus, B + (1/3)SAT.

Suppose on the other hand that B + (1/3)SAT. Define

J = {j : (xj) = T}.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node44.html (4 of 5) [12/23/2006 12:05:39 PM]

11.3 Polynomial Time Reducibility

Then it is easy to see that sj = 4i = c. Thus, s1,..., sn;c KNAPSACK.

Next: 11.4 Finite Automata (Review) Up: 11. Non-Deterministic Computations Previous: 11.2 NP-
Completeness
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node44.html (5 of 5) [12/23/2006 12:05:39 PM]

11.4 Finite Automata (Review)

Next: 11.5 PSPACE Completeness Up: 11. Non-Deterministic Computations Previous: 11.3 Polynomial Time
Reducibility

11.4 Finite Automata (Review)
In this section we review the majors results for finite state machines. From Definition 2.1 we see that a

deterministic finite automaton (DFA) M consists of , Q, , q0, F , where is the input alphabet, Q is the

finite set of states, q0 is the start state, F is the set of final states, and : Q x Q is the state transition

function.

 Observe that for a DFA the state transition function must be defined for all inputs and all states.

We depict the internal state transition behavior of M by means of a labelled directed graph GM as follows:

The nodes of GM are the states of M, and there is a directed edge from q1 to q2 labelled a whenever (q1, a) =

q2, and is depicted as:

Figure 11.4:State Transition

We also depict the initial state q0 and final states qf F as:

Figure 11.5:Initial and Final States

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (1 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

Definition 11.17 For any DFA M the language LM accepted by M is the set of all input strings x = a1 ... an such

that there is a path from the initial state q0 to some final state qf F with label a1 ... an, i.e.,

Figure 12.11:Accepting Computation Path

Definition 11.18 A non-deterministic finite state automaton (NFA) M consists of , Q, , I, F , where

is the input alphabet, Q is the finite set of states, I Q is the set of start states, F is the set of final states, and

 : Q x ({ }) 2Q is the (non-deterministic) state transition function.

 Observe that we allow -transitions for NFA's.

Definition 11.19 For any NFA M the language LM accepted by M is the set of all input strings x = a1 ... an such

that there is a path from some initial state qi I to some final state qf F with label a1 ... an.

Theorem 11.11 The class of languages accepted by NFA's is the same as the class of languages accepted by
DFA's.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (2 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

Proof: (): This is immediate since given a DFA M = , Q, , q0, F , we construct an equivalent NFA

 = , Q, , I, F , where I = {q0} and (q, a) = { (q, a)}.

(): Let M = , Q, , I, F be an NFA. We construct an equivalent DFA = ,

as follows:

= 2Q

= I

= {X Q : X F }

(X, a) = (q, a)

Thus, the states of are subsets of states of M. Then one completes the proof by showing that on input x

enters state X 2Q if and only if M on input x could enter (via the right choices) each sate q X.

 If the NFA M has n states, then the equivalent DFA has 2n states.

Proposition 11.12 Every regular language is accepted by some finite state automaton.

Proof: Let r be a regular expression. Then, an NFA with transtions M such that LM = Lr is defined by

induction on the length of r as follows:

 Induction Basis:

 Case 1: r = :

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (3 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

Figure 11.7:NFA for

 Case 2: r = a, where a { }:

Figure 11.8:NFA for a { }

 Induction Step:

Let

M1 = , Q1, , I1, F1

M2 = , Q2, , I2, F2

be NFA's such that LM1
= Lr1

and LM2
= Lr2

.

 Case 1: r = r1 r2:

Figure 11.9:NFA for r1 r2

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (4 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

 Case 2: r = r1 . r2:

Figure 11.10:NFA for r1 . r2

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (5 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

 Case 3: r = r1*:

Figure 11.11:NFA for r1*

 If the length of the regular expression r is n (excluding parentheses), then the number of states of the

equivalent NFA is 2n.

Proposition 11.13 For every NFA M there is some regular expression r such that LM = Lr.

Proof: Let M = , Q, , I, F . The main idea is to compute the transitive closure of the (labelled) edge

relation given by in GM. More precisely, we construct via the standard transitive closure algorithm a regular

expression r that describes the set of all labels of accepting paths in GM. Suppose Q = {q1,..., qn}. Let rij0 be a

regular expression which denotes the finite set of labels from qi to qj in GM. Since every finite set of strings is a

regular language, such a regular expression clearly exists. Consider the following algorithm from computing the
transitive closure:

for 1 i n do

rii0 rii0

endfor

for 1 k n do

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (6 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

for 1 i, j n do

rijk rijk - 1 rikk - 1 . (rkkk - 1)* . rkjk - 1

endfor

endfor

The required regular expression r is given by

r = rijn.

The correctness of the regular expression can be shown by proving by induction on k for 1 k n that rijk

describes the set of all labels of paths from qi to qj via the intermediate nodes {q1,..., qk}.

Figure 11.12:Paths from qito qjvia {q1,..., qk}

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (7 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

Theorem 11.14 The class of regular languages is precisely the class of languages accepted by finite state
automata.

Proposition 11.15 The class of regular languages is closed under complementation.

Proof: Let L be a regular language and let M = , Q, , q0, F be a DFA such that LM = L. Define

 = , Q, , q0, Q - F .

Then, x L x LM. Thus, L = - L = , so is a regular language.

Theorem 11.16 (Pumping Lemma for Regular Languages) For every regular language L there is a positive

integer p (called the pumping length) such that for all s L if | s | p, then there exist strings x, y, z such that s

= x . y . z and

1.
| y | > 0,

2.

| xy | p, and

3.

for all i 0, xyiz L.

Proof: Suppose L is a regular language and that M = , Q, , q0, F is a DFA such that LM = L. Choose p =

#Q. Let s L be such that | s | p. Thus, s = a1 ... an, where n p. Consider the accepting path for s:

Figure 12.11:Accepting Computation Path

Since there are n + 1 > p states in this accepting path, there must exist two (least) indices j < k such that qj = qk.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (8 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

Thus, overlaying qj and qk to form a loop we have:

Figure 11.14:Accepting Computation Path with Loop

Choose x = a1 ... aj (the part before the loop), y = aj + 1 ... ak (the loop itself), and z = ak + 1 ... an (the part after the

loop). Since j < k, we have | y | > 0, and since we chose the least pair j < k such that qj = qk, we have | xy | p.

Finally, the path consisting of the part from q0 to qj, followed by any number of times (including 0) around the

loop, followed by the part from qk to qn is an accepting path, i.e., xyiz L for every i 0.

Theorem 11.17 For every regular language L there exists a positive integer p such that L if and only if

s L such that | s | < p.

Proof: Let L be a regular language and let p be the pumping length as given by the Pumping Lemma above.

 Case ():

Clearly, if s L such that | s | < p, then L .

 Case ():

Suppose L , and let s L. If | s | p, then by the Pumping Lemma for regular languages, s can be

written as s = xyz where | y | > 0, so the string s1 = xz L and | s1 | < | s |. By repeating this pruning

process (if | s1 | p) we must eventually obtain a string s1 L such that | s1 | < p.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (9 of 10) [12/23/2006 12:05:45 PM]

11.4 Finite Automata (Review)

Next: 11.5 PSPACE Completeness Up: 11. Non-Deterministic Computations Previous: 11.3 Polynomial Time
Reducibility
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion
thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (10 of 10) [12/23/2006 12:05:45 PM]

11.5 PSPACE Completeness

Next: 12. Formal Languages Up: 11. Non-Deterministic Computations Previous: 11.4 Finite Automata (Review)

11.5 PSPACE Completeness

Definition 11.20 A set X is called PSPACE-complete if and only if it is complete for the class with

respect to , i.e., X and Y X for all Y .

Definition 11.21 is the set of all regular expressions r over such that Lr , i.e., .

Theorem 11.18 is PSPACE-complete.

The theorem follows from the following two propositions.

Proposition 11.19 .

Proof: Let r be a regular expression of size n, and let M = , Q, , I, F be an NFA with 2n states such that LM

= Lr. Let = , be a DFA with 22n states such that L = (i.e., the complement of

LM). Then, using Theorem 11.17, we have

Lr L z L | z | 22n.

We give an algorithm that, when implemented on a DRAM, operates in O(n2) space and that decides whether or not

L by checking all paths in G of length 22n to see if there is an accepting path. Actually, the

algorithm cannot store the graph G since it is of size exponential in n. Therefore, the algorithm will work with

GM instead. Let Q = {q1,..., q2n}. The states of will be coded as binary strings of length 2n in such a way that

for all X

bit i of state X is 1 qi X.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (1 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

By Theorem 11.11,

X (q X q F).

The algorithm first constructs the NFA M and stores GM, which requires O(n2) space, and then executes the

following program:

for X do

if Access(I, X, 2n) then

output(true)

endif

endfor
output(false)

The recursive subroutine Access(x1, x2, m) is defined by:

input(X1, X2, Z)

if Z = 0 then

if X1 = X2 or a X2 = (X1, a) then

return(true)

else

return(false)

endif

endif

for 0 X 22n - 1 do

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (2 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

if Access(X1, X, Z - 1) and Access(X, X2, Z - 1) then

return(true)

endif

endfor
return(false)

In the subroutine Access checking whether or not X2 = (X1, a) involves checking whether or not q2 X2 q1

 X1 q2 (q1, a), which can easily be done by consulting GM. Since the path length examined doubles with

each recursive call (beginning at the lowest level), it is clear that all paths of length 22n are examined. Each

recursive call to Access(x1, x2, m) requires O(n) space overhead for stacking the arguments x1, x2, m (2n space for

each of x1 and x2, and log22n for m). The maximum depth of recursion is 2n, so the total space used by the

algorithm is O(n2).

Figure 11.15:Space Usage for Recursive Algorithm Access

In order to simplify the regular expression constructed in Proposition 11.20 below, we observe that for any DRAM

program P over which uses m registers (with one input instruction) we can construct a DRAM program

over = {,} that uses exactly one register and such that L = LP and for some constant c,

DRAMspace (x) c DRAMspaceP(x) for all x. The program maintains in its one register a string of the form

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (3 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

z1 . , , . zm . , where z1,..., zm are the current contents of registers R1,..., Rm of P. It simulates each instruction of P

by:

1.
exposing the right or left end (depending on the type of instruction) of the register mentioned in the
instruction (if any);

2.
executing that instruction;

3.
returning the contents of its one register to the canonical form which begins with the contents of R1 at the

left.

Proposition 11.20 For any X , X .

Proof: Let X . Then there is some DRAM program P over which uses one register and has

one input statement, and there is some polynomial function p such that x X DRAMspaceP(x) p(| x |).

We will construct an alphabet and for each x a regular expression rx over (in polynomial time) such that

x X rx

 .

In other words,

x X Lrx
 =

The construction of rx will be similar to the construction of Bx in Theorem 11.3 in that we will use regular

expressions to describe computations. More precisely, the regular expression over which we construct will

describe non-accepting computations, i.e., if x X, then every string in represents a non-accepting

computation.

As in Theorem 11.3 we let x = a1 ... an, so | x | = n, and let m be the number of lines of P. We use sj to denote the

symbol (if any) mentioned in line j of P, and gj to denote the goto part (if any) of line j. We will represent the

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (4 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

register contents by a left justified string of length exactly p(n) over , where the k+1st symbol represents a

blank (depicted by). We will encode line numbers by using finitely many special additional symbols =

{b1,..., bm} not belonging to . The state of P at any point in time will be represented by the string of length p

(n) + 1 of the form

bj . z

where j is the current line number of P and z represents the current contents of the (only) register of P. Finally, a
computation string will be represented by the string

y0 yt . bm

where t is the number of steps of P on input x, and yi is the representation of the state of P at the ith step.

The regular expression rx = r1 r2 r3 r4 r5, where

1.
r1 describes all strings which don't represent accepting computations because they are syntactically ill-

formed;
2.

r2 describes all computation strings which don't start correctly;

3.
r3 describes all computation strings which don't end correctly;

4.
r4 describes all computation strings in which some line number does not follow correctly from the previous

state;
5.

r5 describes all computation strings in which the register contents does not follow correctly from the

previous state.

We will use the following abbreviations:

● if W is a finite set of symbols {w1,..., ws}, then we use W to stand for the regular expression w1 ... ws.

● if r is a regular expression, then we use ri for the concatenation of r with itself i times, where r0 = .

Define = .

1.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (5 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

r1 = r1, 1 ... r1, 6, where

r1, 1 = (no line number)

r1, 2 = . . (only 1 line number)

r1, 3 = . (line number not first)

r1, 4 = . (line number not last)

r1, 5 = . . . (contents too long)

r1, 6 = r1, 6, 0 ... r1, 6, p(n) - 1 (contents too short)

where for all 0 j p(n) - 1

r1, 6, j =

2.
r2 = r2, 1 r2, 2, where

r2, 1 = (- b1) . (wrong initial line number)

r2, 2 = b1 . . . (initial contents not blank)

3.

r3 = . (- bm)

4.

r4 = r4, 1 ... r4, m, where for all 1 j < m:

�❍ if j is not a conditional jump instruction

r4, j = . bj . . (- bj + 1) .

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (6 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

�❍ if j is a conditional jump statement r4, j = r4, j, 1 r4, j, 2, where

r4, j, 1 = . bj . sj . . (- bgj
) .

r4, j, 2 = . bj . (- sj) . . (- bj + 1) .

5.

r5 = r5, 1 ... r5, m, where for each 1 j m:

�❍ if j is the input instruction r5, j = r5, j, 1 ... r5, j, n + 1, where

for each 1 i n

r5, j, i = b1 . . b2 . . (- ai) .

and

r5, j, n + 1 = b1 . . b2

�❍ if j is a conditional jump instruction r5, j = r5, j, a, where

r5, j, a = . bj . . a . . (- a) .

�❍ if j is a left shift instruction r5, j = r5, j, 0 . r5, j, a, where

r5, j, a = . bj . . a . . (- a) .

r5, j, 0 = . bj . . .

�❍ if j is a successor instruction r5, j = r5, j, 0 r5, j, 1 r5, j, a, where

r5, j, a = . bj . . a . . (- a) .

r5, j, 0 = . bj

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (7 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

r5, j, 1 = . bj (- sj) .

 We observe that the alphabet over which the regular expression is defined depends on the program P. We can

use a fixed alphabet = {0, 1} by coding the ith symbol of by the string 1 . 0i.

Theorem 11.21 = .

Proof: Since , it suffices to show for every X that X

. As in Proposition 11.20 we may assume that X = LP for some NRAM program P over with one register and

one input statement. Thus, we need only show how to modify the construction of Proposition 11.20 to handle njp
instructions. If line j is an njp instruction (with goto parts gj1 and gj2), then r5, j is the same as for comditional jump

instructions, and

r4, j = . bj . . (- {bgj1
, bgj2

}) .

Theorem 11.21 is usually obtained as a corollary to the following Theorem (known as Savitch's Theorem).

Theorem 11.22 Let S be a function satisfying the following conditions:

1.

S(n) log2n;

2.
for some DRAM program P, S(| x |) = DRAMspaceP(x) for all x.

Then, for any NRAM program P such that NRAMspaceP(x) S(| x |) there is an equivalent DRAM program

such that LP = L and there is a constant c1 such that DRAMspace (x) c1 (S(| x |)2).

Proof: As usual we may assume that P is an NRAM program over with one register and one input statement.

Let P have m lines. Let x be some input to P with | x | = n. As in Theorem 11.20 we represent a state of P by a string

of length S(n) + 1 of the form bj . z, where bj is a special symbol representing line j (= {b1,..., bm}) and z is a

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (8 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

string of length S(n) that represents the contents of P's one register. We construct a state transition graph GP for the

computation of P on input x as follows. The nodes of GP are the strings belonging to . . GP will be

similar to the state transition graph of an NFA except that the edges will not be labelled with input symbols, but
rather an edge from one state to another will mean that it is possible to go from the first state to the second by
executing the current instruction of P with the current register contents.

Then, there is an edge from bj . z1 to bi . z2 if and only if

1.
line j is an input instruction, z1 = , i = j + 1, and z2 = x;

2.
line j is a conditional jump instruction, z1 begins with sj, i = gj, and z2 = z1.

3.
line j is a conditional jump instruction, z1 does not begin with sj, i = j + 1, and z2 = z1.

4.
line j is a non-deterministic jump instruction, z1 = z2, and either i = gj1 or i = gj2;

5.
line j is a successor instruction, i = j + 1 and z2 = z1 . sj;

6.

line j is a left shift instruction, i = j + 1, and z1 = a . z2 for some a .

Then initial state of GM is b1 . and the set of final states is

F = bm . .

The rest of the proof proceeds as in the proof of Theorem 11.20. If there is an accepting computation for P on input

x, then there must be some path from the initial state to some final state of length m kS(n), since otherwise there

would be a loop in the non-deterministic computation which could be eliminated. We can rewrite m kS(n) 2c S
(n) for some constant c. We then use the same strategy as in Theorem 11.20 to search by divide-and-conquer the
graph GP for such an accepting computation path, i.e., we execute the following program.

for X F do

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (9 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

if Access(b1 . , X, c S(n)) then

output(true)

endif

endfor
output(false)

The recursive soubroutine Access(x1, x2, m) is defined by:

input(X1, X2, Z)

if Z = 0 then

if X1 = X2 or (X1, X2) GP then

return(true)

else

return(false)

endif

endif

for 1 X 2c S(n) do

if Access(X1, X, Z - 1) and Access(X, X2, Z - 1) then

return(true)

endif

endfor
return(false)

The algorithm does not store GP, but rather stores a copy of the program P, that it uses to decide whether of not (X1,

X2) GP, for any states X1 and X2. This can be done without using very much space. Again, as in the proof of

Theorem 11.20 an analysis of the space required to store the recursive subroutine calls to Access shows that the

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (10 of 11) [12/23/2006 12:05:52 PM]

11.5 PSPACE Completeness

total space used is bounded by c1 (S(n))2, for some constant c1.

Next: 12. Formal Languages Up: 11. Non-Deterministic Computations Previous: 11.4 Finite Automata (Review)
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion thereof)
is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (11 of 11) [12/23/2006 12:05:52 PM]

12. Formal Languages

Next: 12.1 Grammars Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 11.5 PSPACE
Completeness

12. Formal Languages

● 12.1 Grammars
● 12.2 Chomsky Classification of Languages
● 12.3 Context Sensitive Languages
● 12.4 Linear Bounded Automata
● 12.5 Context Free Languages
● 12.6 Push Down Automata
● 12.7 Regular Languages

Next: 12.1 Grammars Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 11.5 PSPACE
Completeness
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node47.html [12/23/2006 12:05:56 PM]

12.1 Grammars

Next: 12.2 Chomsky Classification of Languages Up: 12. Formal Languages Previous: 12. Formal
Languages

12.1 Grammars
Example 12.1 (English fragment)

sentence = noun phrase verb phrase noun phrase

noun phrase = noun | adjective noun phrase

verb phrase = verb | adverb verb phrase

adjective = big | small | black | white | ...

adverb = slowly | quickly | secretly | ...

noun = boy | dog | cat | girl | ...

verb = likes | hates | hits | desires | ...

This fragment generates (or derives) the following:

big black dog hits small boy
small cat secretly desires big black cat

But it also generates:

big small noun phrase verb black cat

The former are called sentences and the latter are called sentential forms.

Definition 12.1 A grammar G is denoted by , V, R, S , where

● is a finite set of symbols called terminals;

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node48.html (1 of 6) [12/23/2006 12:06:06 PM]

12.1 Grammars

● V is a finite set of symbols disjoint from called variables (or non-terminals);

● R is a finite set of productions (or rewrite rules) of the form x y, where x, y (V)*

and x ;

● S V is a special symbol called the start symbol (or axiom).

Definition 12.2 If x y is a production of the grammar G and w, z (V)*, then we say that

wxz directly derives wyz in G (written wxz wyz). Also, we say that x1 derives xn in G (written x1

 xn) if and only if there exist strings x2,..., xn - 1 (V)* such that x1 x2, x2 x3,..., xn

- 1 xn.

Definition 12.3 The language generated by the grammar G is defined by LG = {x : S x}.

Proposition 12.1 For every grammar G, x y is a primitive recursive predicate.

Proof: Let G = , V, R, S , where R = {r1,..., rn}, and ri = xi yi for each 1 i n. Then,

x y Dr1
(x, y) ... Drn

(x, y),

where

Dri
 u x v x x = u . xi . v y = u . yi . v.

Theorem 12.2 For every grammar G the language LG is recursively enumerable.

Proof: We first code derivations x1 x2, x2 x3,..., xn - 1 xn by x1,..., xn . Then, the partial

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node48.html (2 of 6) [12/23/2006 12:06:06 PM]

12.1 Grammars

recursive function such that dom = LG is given by

(x) = minz(z = x1,..., xn and x1 = S and xn = x

 and m < n xm xm + 1)

Theorem 12.3 For every NRAM program P there is a grammar G such that LP = LG.

Proof: We first observe that since the grammar G must output every string that P accepts on input,
derivations in G will correspond to the reverse of accepting computations. Thus, it will not matter
whether or not P is deterministic, since even if it were certain instructions result in a loss of information
(i.e., are not reversible). For example, a left shift instruction loses the information regarding the leftmost
symbol, so that in reversing such an instruction one must guess which symbol was deleted in the actual

instruction execution. We will assume that P is an NRAM program over with exactly one register

and one input instruction. Suppose P has m lines. As usual we use sj, gj, gj1, and gj2 to denote the

specific items mentioned in the instruction at line j of the program P. The current global state of program
P during its execution will be represented by the string . bj . z . , where j is the current line number

and z is the current register contents.

Then, the grammar G for P is defined as follows:

G = , , R, S ,

where = {b1,..., bm} { 1,..., m} { 1,..., m} {S, , }, and the set R of

productions is defined to contain for each line j of P the following rules:

1.
if j is a conditional jump instruction, then

bgj
 . sj bj . sj

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node48.html (3 of 6) [12/23/2006 12:06:06 PM]

12.1 Grammars

bj + 1 . a bj . a for all a - {sj}

2.
if j is a non-deterministic jump instruction, then

bgj1 bj

bgj2 bj

3.
if j is a left shift instruction, then

bj + 1 bj . a for all a

4.
if j is a successor instruction, then

bj + 1 j

j . a . c a . j . c for all a, c

j . sj . j .

a . j j . a for all a

 . j . bj

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node48.html (4 of 6) [12/23/2006 12:06:06 PM]

12.1 Grammars

5.
if j is the input instruction (i.e., j = 1), then

 . b2 b1

b1 . a a . b1 for all a

b1 .

6.
if j is the output instruction (i.e., j = m), then

S . bm .

bm bm . a for all a

The way in which the grammar G generates an output x which P accepts is to first generate by the rules
for the output instruction the final contents of P's register when it reached the output instruction during
some accepting computation. Then it successively reverses each instruction execution during the
computation (guessing appropriate values). When it reaches the input instruction (so the contents of the
register should be x) it erases all the special symbols , b1, leaving the terminal string x.

Theorem 12.4 A set X is recursively enumerable if and only if X = LG for some grammar G.

Corollary 12.5 A set X is accepted by some NRAM program if and only if X is accepted by a DRAM
program.

 Given the equivalences between languages generated by grammars and recursively enumerable sets,

because of Rice's Theorem we see that most questions about the properties of languages generated by
grammars are algorithmically undecidable.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node48.html (5 of 6) [12/23/2006 12:06:06 PM]

12.1 Grammars

Next: 12.2 Chomsky Classification of Languages Up: 12. Formal Languages Previous: 12. Formal
Languages
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node48.html (6 of 6) [12/23/2006 12:06:06 PM]

12.2 Chomsky Classification of Languages

Next: 12.3 Context Sensitive Languages Up: 12. Formal Languages Previous: 12.1 Grammars

12.2 Chomsky Classification of Languages

Table 12.1:Chomsky Hierarchy

Name Productions Acceptor

grammar arbitrary (Non-det.)

 RAM Programs

context-sensitive x y, Non-det.

(CSG) with | x | | y | Linear Bounded Automata

 -or- (LBA)

 wAz wyz,

 with A V, y

context-free A y, Non-det.

(CFG) with A V, y Push Down Automata

 (PDA)

right linear A yB or A y, (Non-det.)

(RLG) with A, B V, y Finite State Automaton

 (FSA)

Next: 12.3 Context Sensitive Languages Up: 12. Formal Languages Previous: 12.1 Grammars
Bob Daley

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node49.html (1 of 2) [12/23/2006 12:06:09 PM]

12.2 Chomsky Classification of Languages

2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node49.html (2 of 2) [12/23/2006 12:06:09 PM]

12.3 Context Sensitive Languages

Next: 12.4 Linear Bounded Automata Up: 12. Formal Languages Previous: 12.2 Chomsky
Classification of Languages

12.3 Context Sensitive Languages
Example 12.2 The grammar

S aBC

S SABC

CA AC

BA AB

CB BC

aA aa

aB ab

bB bb

bC bc

cC cc

generates the language {anbncn : n 1}.

For example, we have

S SABC aBCABC aBACBC aBABCC aABBCC

 aaBBCC aabBCC aabbCC aabbcC aabbcc

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node50.html (1 of 2) [12/23/2006 12:06:12 PM]

12.3 Context Sensitive Languages

Next: 12.4 Linear Bounded Automata Up: 12. Formal Languages Previous: 12.2 Chomsky
Classification of Languages
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node50.html (2 of 2) [12/23/2006 12:06:12 PM]

12.4 Linear Bounded Automata

Next: 12.5 Context Free Languages Up: 12. Formal Languages Previous: 12.3 Context Sensitive
Languages

12.4 Linear Bounded Automata
Definition 12.4 A linear bounded automaton is an NRAM program P that operates in linear space, i.e.,
for some constant c

x dom P NRAMspaceP(x) c | x | .

Theorem 12.6 For every context sensitive grammar G, there is a linear bounded automaton P such that
LP = LG

Proof: Given some x LG, the NRAM program P can ``guess'' each step of a derivation of x by starting

with S and at each step guessing the next string in the derivation and verifying that it follows by some
rule of G from the current string. If the input string x ever appears as the current string in the derivation,

then P halts. Since G is context sensitive, each string in the derivation must be of length | x |, and

since P needs only a fixed number of strings of this length (x, the current string, and the guessed next
string), it operates in linear space.

Theorem 12.7 For every linear bounded automaton P there is a context sensitive grammar G such that
LG = LP.

Proof: Let P be a one register LBA over such that for some constant c, x dom P

 NRAMspaceP(x) c | x |.

We first replace P be an equivalent LBA P1 over such that

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node51.html (1 of 6) [12/23/2006 12:06:17 PM]

12.4 Linear Bounded Automata

x dom P1 NRAMspaceP1
(x) | x | .

P1 operates by viewing each symbol of as a string of c symbols over { } .

Next we replace P1 by an equivalent by an equivalent LBA P2 over , where

x dom P2 NRAMspaceP2
(x) | x | ,

and the symbol is used as a special blank symbol and every successor instruction is immediately

preceded by a left shift instruction. P2 simulates P1 as follows:

1.
every time P1 executes a left shift instruction, P2 executes the same left shift instruction, but also

adds a blank symbol to the right end of P1's register;

2.
every time P1 executes a successor instruction, P2

(a)
exposes (on the right) the non-blank right end of the register by rotating (leftwards) the
register contents;

(b)
removes a blank symbol from the left end;

(c)
executes the same successor instruction;

(d)
and reshifts (leftward) the register contents so that all the blank symbols are on the right
end.

Careful examination of P2 reveals that it is also the case that every left shift instruction is immediately

followed by a successor instruction, so that these instructions always occur in pairs.

We now show how to construct a CSG G such that LG = LP2
. For the most part the construction is the

same as in Theorem 12.3. Observe first of all that all of the productions are context sensitive except

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node51.html (2 of 6) [12/23/2006 12:06:17 PM]

12.4 Linear Bounded Automata

those given for successor instructions (see 4) and the input instruction (see 5). We deal with these two
exceptions separately. The only rule in 4) which is not context sensitive is the rule

j . sj . j .

We eliminate this kind of rules by using the fact that in P2 every successor instruction is immediately

preceded by a left shift instruction, and vice versa. Suppose j is a successor instruction so that j - 1 is a
left shift instruction, then we replace parts 3) and 4) in the construction in Theorem 12.3 by the
following rules:

bj + 1 j

j . a . c a . j . c for all a, c

j . sj . j . a . for all a

c . j . a j . a . c for all a, c

 . j . bj - 1

The non-context sensitive rules for the input instruction are simply intended to remove the special
grammatical markers , bj, that were introduced by the rules for the output instruction. We can

eliminate the necessity of having the special symbols by adding special diacritical marks to all the

symbols of (thereby increasing the size of our alphabet) which play the same roles as these special

symbols. For example, we could replace the first rule of part 6) with the rule

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node51.html (3 of 6) [12/23/2006 12:06:17 PM]

12.4 Linear Bounded Automata

S a bm for all a

and we could replace the second rules of part 6) with the rules

c bm a bm . c for all a, c

With careful analysis one can eliminate the use of all the special symbols in all the rules, although there
are numerous special cases to consider.

Theorem 12.8 Every context sensitive language is a primitive recursive set.

Proof: First of all, a linear bounded automaton can be simulated by a DRAM program that recognizes
the context sensitive language and that operates in polynomial space, i.e., there is a constant c such that

on input x it uses at most c | x space. But, the latter is a primitive recursive function, and DRAM

programs which operate within primitive recursive time or space bounds compute primitive recursive
functions.

Theorem 12.9 The class of context sensitive languages is closed under intersection.

Proof: Let L1 and L2 be two CSL's and let P1 and P2 be two one register LBA's such that L1 = LP1
 and L2

= LP2
. Then the following two-register LBA P accepts L1 L2.

inp R1

``copy R1 to R2''

P1-

``copy R2 to R1''

P2-

out R1

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node51.html (4 of 6) [12/23/2006 12:06:17 PM]

12.4 Linear Bounded Automata

Theorem 12.10 The Emptiness Problem for context sensitive languages is undecidable.

Proof: We show that if the question LP = for an arbitrary LBA P were algorithmically decidable (i.e.,

{P : LP = } were recursive) then the Halting Problem would be algorithmically decidable. Let P be

an arbirary DRAM program with one register over with m lines. Let x be an arbitrary input to P. We

represent an accepting computation of P on input x in the usual way by strings of the form

y0 yt

where t is the number of steps of the computation, yi represents the state of P on input x at the ith step

and is of the form

bj . z

where j is the line number at step i and z represents the register contents at step i. Further, we may
assume that by padding with blanks the lengths of all the yi are identical.

We construct an LBA with two registers, that depends on both P and x, and that will accept only

valid computation strings of the above form. The LBA does this by first copying its input from R1

to R2 and shifting left to remove the first state from the second copy. After that it removes symbols from

R1 and R2 until it reaches the end of R2 and verifies that the input string was a valid computation string

by checking that

1.
| yi | = | yi + 1 | and it must encounter symbols of simultaneously in both R1 and R2;

2.
y0 is the initial state;

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node51.html (5 of 6) [12/23/2006 12:06:17 PM]

12.4 Linear Bounded Automata

3.
yt is the final state;

4.
yi + 1 follows from yi by a legal instruction execution of P on input x.

Thus, P halts on input x if and only if accepts some input.

Next: 12.5 Context Free Languages Up: 12. Formal Languages Previous: 12.3 Context Sensitive
Languages
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node51.html (6 of 6) [12/23/2006 12:06:17 PM]

12.5 Context Free Languages

Next: 12.6 Push Down Automata Up: 12. Formal Languages Previous: 12.4 Linear Bounded Automata

12.5 Context Free Languages
Example 12.3 Let the context free grammar G have the following rules:

S aAS

S a

A SbA

A ba

Then the string aabbaa LG via the derivation

S aAS aAa aSbAa aabAa aabbaa

Observe, that the string aabbaa can also be derived using the leftmost derivation

S aAS aSbAS aabAS aabbaS aabbaa

Theorem 12.11 For each context free grammar G and each x LG there is a leftmost derivation of x

in G.

Definition 12.5 A derivation tree for a string w in a context free grammar G = , V, R, S is a tree

satisfying:

1.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node52.html (1 of 5) [12/23/2006 12:06:20 PM]

12.5 Context Free Languages

every vertex has a label, which is a symbol of V ;
2.

the label of the root is S;
3.

every interior node has a label from V;
4.

if a vertex has a label A and the X1,..., Xk are the labels of the immediate descendants of the

vertex in order from left to right, then the rule A X1 ... Xk must belong to R;

5.
w equals the concatenation of the labels of the leaf vertices from left to right.

Theorem 12.12 Let G = , V, R, S be a context free grammar. Then S x if and only if there

is a derivation tree in G for x.

Example 12.4 Let G be as in Example 12.3 and let w = aabbaa. Then a derivation tree for w in G is:

Figure 12.8:Derivation tree for aabbaa

In the above example by inspection we see that the following are also derivation trees in G:

Figure 12.2:Derivation tree for abaa

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node52.html (2 of 5) [12/23/2006 12:06:20 PM]

12.5 Context Free Languages

Figure 12.3:Derivation tree for aababbaa

Basic Property of Derivation Trees:
Given a derivation tree with repeated non-terminals on some path:

Figure 12.4:Derivation tree for with repeated non-terminal

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node52.html (3 of 5) [12/23/2006 12:06:20 PM]

12.5 Context Free Languages

then the tree can be

 Pruned
to obtain the tree:

Figure 12.5:Derivation tree after pruning
repeated non-terminal

 Grafted
to obtain the tree:

Figure 12.6:Derivation tree after grafting repeated non-terminal

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node52.html (4 of 5) [12/23/2006 12:06:20 PM]

12.5 Context Free Languages

Next: 12.6 Push Down Automata Up: 12. Formal Languages Previous: 12.4 Linear Bounded Automata
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node52.html (5 of 5) [12/23/2006 12:06:20 PM]

12.6 Push Down Automata

Next: 12.7 Regular Languages Up: 12. Formal Languages Previous: 12.5 Context Free Languages

12.6 Push Down Automata
Definition 12.6 A push down automaton (PDA) M is a system

, Q, , , q0, , F , where

1.
 is a finite set of symbols called the input alphabet;

2.
Q is a finite set of states;

3.
 is a finite set of symbols called the stack alphabet;

4.

q0 Q is the initial state;

5.

 is the start symbol;

6.

F Q is the set of final states;

7.

 is a mapping from Q x ({ }) x to finite subsets of Q x .

Figure 12.7:Schematic for Push Down Automaton

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node53.html (1 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

The semantics of the state transition function is defined as follows:

For any q Q, a , A

(q, a, A) = {(p1,),...,(pm,)},

where for each 1 i m, pi Q and means that the PDA M is in state q reading input symbol a with

the symbol A on top of its stack, can for any 1 i m replace A with , advance the input head one symbol to the right,

and enter state pi;

For any q Q, A

(q, , A) = {(p1,),...,(pm,)},

where for each 1 i m, pi Q and means that the PDA M is in state q, with the symbol A on top of its

stack, can for any 1 i m replace A with , and without advancing its input head enter state pi.

Definition 12.7 An instantaneous description (ID) for a PDA M is a triple (q, w,), where q Q (the current state), w

 (the remaining input string), and (the current stack contents). We define the relation

(q, a . w, . A) (p, w, .)

where a { }, p, q Q, A , and , , whenever (p,) (q, a, A).

Also, if I and J are ID's then I J if and only if there exists a sequence of ID's I0,..., In such that

I = I0 I1 ... In - 1 In = J

Definition 12.8 The language accepted by empty stack of a PDA M, denoted by NM is defined by

NM = {w : (q0, w,) (p, ,) for some p Q}.

The language accepted by final state of a PDA M, denoted by LM is defined by

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node53.html (2 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

LM = {w : (q0, w,) (p, ,) for some p F, }.

Theorem 12.13
For every PDA M1 there is a PDA M2 such that NM1

 = LM2
.

For every PDA M1 there is a PDA M2 such that LM1
 = NM2

.

Example 12.5 Let M = {0, 1},{q1, q2},{R, B, G}, , q1, R, , where is defined by:

(q1, 0, R) = {(q1, RB)}

(q1, 0, G) = {(q1, GB)}

(q1, 0, B) = {(q1, BB),(q2,)}

(q1, 1, R) = {(q1, RG)}

(q1, 1, B) = {(q1, BG)}

(q1, 1, G) = {(q1, GG),(q2,)}

(q1, , R) = {(q2,)}

(q2, 0, B) = {(q2,)}

(q2, 1, G) = {(q2,)}

(q2, , R) = {(q2,)}

Then, NM = {w . (w) : w {0, 1}*}.

Then on input 0110 the computation proceeds as follows:

input state stack

110 q1 R

0 10 q1 RB

01 0 q2 RBG

011 q2 RB

0110 q2 R

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node53.html (3 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

0110 q2

So the PDA stops and accepts.

Theorem 12.14 For every CFG G there is a PDA M such that LG = NM.

Proof: Let G = , V, R, S be the given CFG. The define the PDA M = , Q, V, , q0, , in such a

way that for each w, w LG if and only if M accepts w. The PDA M will proceed by reversing the derivation of w in G

based on a derivation tree. We first define a macro instruction:

(q, ,) = {(p, Z)},

where q, p Q, Z V, and (V)*, such that M in state q replaces = ... on the stack (where is

on the top of the stack) by Z.

(q, ,) = {(p, Z)} :

(q, ,) = {(q. .n - 1,)}

(q. .n - 1, ,) = {(q. .n - 2,)}

(q. .1, ,) = {(p, Z)}

The PDA M is then defined by:

(q0, a, Z) = {(q0, a . Z)} for Z

(q0, , x) = {(q0, A)} for A x R

(q0, , S) = {(q1,)}

(q1, ,) = {(q1,)}

One then easily shows by induction on the length of the derivation/computation that M accepts w if and only if w LG.

Example 12.6 Let G be as in Example 12.3 and let w = aabbaa.

Figure 12.8:Derivation tree for aabbaa

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node53.html (4 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

Then, the computation by M on w as defined in Theorem 12.14 is:

input state stack rule

abbaa q0

aa baa q0 aa S a

aa baa q0 aS

aabba q0 aSbba A ba

aabba q0 aSbA A SbA

aabba q0 aA

aabbaa q0 aAa S a

aabbaa q0 aAS S aAS

aabbaa q0 S

aabbaa q1

aabbaa q1

Lemma 12.15 For every CFG G = , V, R, S there exists a CFG = , V, , S such that LG = L and

 contains no rules of the form A B where A, B V.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node53.html (5 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

Proof: If R contains the rule A B, then replace it by the set of rules {A x : B x R}. This replacement

occurs one rule at a time, where the rules are ordered according to the lefthand side non-terminal, and rules of the form A
 A are immediately removed. Clearly, LG = L .

Theorem 12.16 (Pumping Lemma) For every CFG G there exists a positive integer p such that for any z LG such that | z

| p, z can be written as z = uvwxy, where | vwx | p, | v | > 0 or | x | > 0, and uviwxiy LG for all i 0.

Proof: Let n = max{ | x | : A x R} and let k = #V. Define p = nk + 1. Suppose z LG is such that | z | p. Let T be

a derivation tree for z. Since the maximum length of the righthand side of any rule is n, the maximum branching of T is

also n. Therefore, since | z | nk + 1, there must be some path in the tree T of length k + 1 (having k + 2

vertices). Furthermore, since there are at most k non-terminals, there must be some path with some repeated non-terminal A
on it. Consider the following schematic for the derivation tree T. We can choose the segment vwx of z in such a way that it
is derived from the first occurrence of a repeated non-terminal A from the bottom of the tree. In this way we see that | vwx

| nk + 1. Furthermore, since we can assume that there are no rules of the form A B, where A, B V, we have that

either | v | > 0 or | x | > 0. By the Basic Property of derivation trees repeated grafting (and pruning for the case i = 0)
yields derivation trees for the strings uviwxiy.

Figure 12.9:Pumping Down

Figure 12.10:Pumping Up

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node53.html (6 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

Theorem 12.17 For each CFG G there exist integers p and q such that

1.

LG if and only if z LG | z | < p

2.

LG is infinite if and only if z LG p | z | < q.

Proof: Let n = max{ | x | : A x R} and let k = #V. Define p = nk + 1 and let q = 2p.

1.

Clearly, if z LG such that | z | p, then LG . Suppose LG and let z LG. If | z | p, then by the

Pumping Lemma for CFG's, z can be written as z = uvwxy and the string z1 = uwy LG and either | v | > 0 or | x | > 0, so | z1

| < | z |. By repeating this pruning process (if | z1 | p) we must eventually obtain a string z1 LG such that | z1 | < p.

2.

Suppose z LG such that p | z | q. By the Pumping Lemma for CFG's we have that z can be written as z =

uvwxy, where | v | > 0 or | x | > 0, and the string uviwxiy LG for all i 0. Clearly, LG is infinite.

Suppose LG is infinite. Then there must exist a string z LG such that | z | q. Using the Pumping Lemma again we see

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node53.html (7 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

that z = uvwxy and the string z1 = uwy LG is such that | z1 | | z | - p > p (since | vwx | p). By repeating this

pruning process (if | z1 | q) we must eventually obtain a string z1 LG such that p | z1 | < q.

Example 12.7 Let L = {anbncn : n 1}. Then L is a CSL, but L is not a CFL.

Proof: Clearly, L is infinite, so the Pumping Lemma applies to L (assuming that L were a CFL). Let p be the pumping
length specified in the Pumping Lemma for L. Let z = apbpcp, so z can be written z = uvwxy, where | v | > 0 or | x | > 0 , and

| vwx | p, and uviwxiy L for all i 0.

Observe first that v and x can contain at most one letter. For example, if v = ab, then v2 = abab and uv2wx2y L.

Next, we then see that the string uv2wx2y cannot have equal numbers of a's, b's and c's, since at most two of the letters a, b
and c can be pumped up.

Proposition 12.18 The class of context free languages is not closed under intersection.

Proof: Define the languages

L1 = {anbmcm : n, m 1}

and

L2 = {ambmcn : n, m 1}

The clearly, L1 L2 = {anbncn : n 1}, and so by the previous example is not a CFL. However, L1 and L2 are easily seen

to be CFL's. The PDA M1 which accepts L1 operates as follows:

1.
M1 first scans past the a's checking that there is at least one a;

2.
M1 pushes all b's onto its stack, checking that there is at least one b and that there are no a's mixed in with the b's;

3.
M1 matches c's in the input with b's on the stack, reading a c and popping a b, checking that there are no a's or b's mixed in

with the c's;
4.

M1 checks that both the input and the stack are empty simultaneously.

Theorem 12.19 For any PDA M the language NM is context free.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node53.html (8 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

Proof: Let M = , Q, , , q0, , be a given PDA. Define G = , V, R, S as follows:

V = {[q, A, p] : q, p Q and A }

and R is the set of rules:

1.
S [q0, , q],

for each q Q;

2.
[q, A, qm + 1] a[q1, B1, q2] ... [qm, Bm, qm + 1],

for each q, q1,..., qm + 1 Q, each a { }, and each A, B1,..., Bm , where we have that (q, a, A)

contains (q1, B1 ... Bm). (If m = 0, then the rule is [q, A, q1] a).

G is defined in such a way that for any input x, x NM if and only if x LG and a leftmost derivation of x in G

corresponds to an accepting computation of x by M. Moreover, [q, A, p] x if and only if x causes M to erase an A from

its stack by some sequence of computation steps beginning in state q and ending in state p.

Example 12.8 Let M be the PDA given in Example 12.5 for the language L = {w . (w) : w {0, 1}*}. The

corresponding grammar G is:

S [q1, R, q] for all q Q

[q1, R, q] 0[q1, B, [for all q,

[q1, G, q] 0[q1, B, [for all q,

[q1, B, q] 0[q1, B, [for all q,

[q1, B, q2] 0

[q1, R, q] 0[q1, G, [for all q,

[q1, G, q] 0[q1, G, [for all q,

[q1, B, q] 0[q1, G, [for all q,

[q1, G, q2] 1

[q1, R, q2]

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node53.html (9 of 10) [12/23/2006 12:06:27 PM]

12.6 Push Down Automata

[q2, B, q2] 0

[q2, G, q2] 1

[q2, R, q2]

Consider the input 0110 to M:

input state stack string / (rule)

110 q1 R [q1, R, q2]

 (S [q1, R, q2])

0 10 q1 RB 0[q1, B, q2][q2, R, q2]

 ([q1, R, q2] 0[q1, B, q2][q2, R, q2])

01 0 q1 RBG 01q1, G, q2][q2, B, q2][q2, R, q2]

 ([q1, B, q2] 1[q1, G, q2][q2, B, q2])

011 q2 RB 011[q2, B, q2][q2, R, q2]

 ([q1, G, q2] 1)

0110 q2 R 0110[q2, R, q2]

 ([q2, B, q2] 0)

0110 q2 0110

 ([q2, R, q2])

Next: 12.7 Regular Languages Up: 12. Formal Languages Previous: 12.5 Context Free Languages
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion thereof)
is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node53.html (10 of 10) [12/23/2006 12:06:27 PM]

12.7 Regular Languages

Next: Bibliography Up: 12. Formal Languages Previous: 12.6 Push Down Automata

12.7 Regular Languages

Theorem 12.20 Given an NFA M = , Q, , q0, F there is a regular grammar G such that LG =

LM.

Proof: The grammar G = , Q, R, q0 has the following rules:

1.

q1 aq2, whenever q2 (q1, a);

2.

q1 a, whenever q2 (q1, a) and q2 F.

It is easy to see that each accepting computation path

Figure 12.11:Accepting Computation Path

has the corresponding derivation

q0 a1q1 a1a2q2 ... a1 ... an - 1qn - 1 a1 ... an.

Theorem 12.21 For each regular grammar G = , V, R, S there is an NFA M such that LM = LG.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node54.html (1 of 2) [12/23/2006 12:06:32 PM]

12.7 Regular Languages

Proof: The NFA M = , V {qf}, , S,{qf} has its state transition function defined in such a

way that

1.

B (A, a), whenever A aB R;

2.

qf (A, a), whenever A a R.

Then, for any derivation

S a1A1 a1a2A2 ... a1 ... an - 1An a1 ... an.

there is a corresponding computation

Figure 12.12:Accepting Computation Path

Next: Bibliography Up: 12. Formal Languages Previous: 12.6 Push Down Automata
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node54.html (2 of 2) [12/23/2006 12:06:32 PM]

Bibliography

Next: Index Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 12.7 Regular Languages

Next: Index Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 12.7 Regular Languages
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node55.html [12/23/2006 12:06:37 PM]

Index

Up: Lecture Notes for CS 2110 Introduction to Theory Previous: Bibliography

Index

accept : cs2110w_.4
acceptable programming system : cs2110w_
acceptor : cs2110w_.1

 : cs2110w_.1
alphabet : cs2110w_.2

input : cs2110w_.4
output : cs2110w_.4

am : cs2110w_.2

 : cs2110w_.2

 : cs2110w_.1

Church's Thesis : cs2110w_.2
clause : cs2110w_.1
CNF : cs2110w_.1
computational complexity measure : cs2110w_.1
concatenation : cs2110w_.2
conjunctive normal form : cs2110w_.1
constants

boolean : cs2110w_.1
DFA : cs2110w_.4
diagonalization : cs2110w_ | cs2110w_.1
disjunctive normal form : cs2110w_.1
DNF : cs2110w_.1
dom : cs2110w_.1
domain : cs2110w_.1

 : cs2110w_.1

 : cs2110w_.2

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node56.html (1 of 4) [12/23/2006 12:06:40 PM]

Index

 : cs2110w_.1
expression

boolean : cs2110w_.1
logical : cs2110w_.3
regular : cs2110w_.5

 : cs2110w_.2
function

boolean : cs2110w_.1
characteristic : cs2110w_.1
finite : cs2110w_
number-theoretic : cs2110w_.2
output : cs2110w_.4
partial : cs2110w_.1
partial recursive : cs2110w_
primitive recursive : cs2110w_ | cs2110w_
state transition : cs2110w_.4
uniform projection : cs2110w_.6

Gödel numbering : cs2110w_.2
generator : cs2110w_.1

 : cs2110w_.2
halting problem : cs2110w_.2 | cs2110w_.2
index set : cs2110w_.2
indexing : cs2110w_.2
initial segment : cs2110w_.2

 : cs2110w_.3

x1,..., xn : cs2110w_.6

language : cs2110w_.2
regular : cs2110w_.5

length : cs2110w_.2
: .
literal : cs2110w_.1
many-one complete : cs2110w_
minimization : cs2110w_

bounded : cs2110w_.3
monomial : cs2110w_.1

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node56.html (2 of 4) [12/23/2006 12:06:40 PM]

Index

 : cs2110w_.2
nock : cs2110w_.6

numbers
natural : cs2110w_.2

 : cs2110w_.3

operation
boolean : cs2110w_.1
logical : cs2110w_.3

 : cs2110w_.2

 : cs2110w_.6

 : cs2110w_.6 | cs2110w_.6

predicate
primitive recursive : cs2110w_.1
recursive : cs2110w_

prefix : cs2110w_.2
program

non-deterministic : cs2110w_.2 | cs2110w_.4
probabilistic : cs2110w_.2 | cs2110w_.4

program transformation : cs2110w_
programming system : cs2110w_
prtk : cs2110w_.6

ran : cs2110w_.1
range : cs2110w_.1
recognizer : cs2110w_.1
recursion

general : cs2110w_.4
primitive : cs2110w_

recursive
total : cs2110w_

recursively enumerable : cs2110w_
reducibility

many-one : cs2110w_.2
Rice's Theorem : cs2110w_.2
sentence

propositional : cs2110w_.3

 : cs2110w_.2

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node56.html (3 of 4) [12/23/2006 12:06:40 PM]

Index

 : cs2110w_.2

 : cs2110w_.2

speed-up : cs2110w_.1
state : cs2110w_.4

final : cs2110w_.4
initital : cs2110w_.4

substitution : cs2110w_

 : cs2110w_.2

term : cs2110w_.1
tup : cs2110w_.6

 : cs2110w_.1

variable
boolean : cs2110w_.1
logical : cs2110w_.3
propositional : cs2110w_.3

word : cs2110w_.2
empty : cs2110w_.2
null : cs2110w_.2

X(n) : cs2110w_.2
X* : cs2110w_.2
X+ : cs2110w_.2
Xn : cs2110w_.1

Up: Lecture Notes for CS 2110 Introduction to Theory Previous: Bibliography
Bob Daley
2001-11-28
©Copyright 1996
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or
portion thereof) is accompanied by this copyright notice.
Copying for any commercial use including books, journals, course notes, etc., is prohibited.

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node56.html (4 of 4) [12/23/2006 12:06:40 PM]

	pitt.edu
	Lecture Notes for CS 2110 Introduction to Theory of Computation
	Forward
	Contents
	1. Introduction
	1.1 Preliminaries
	1.2 Representation of Objects
	1.3 Codings for the Natural Numbers
	1.4 Inductive Definition and Proofs
	2. Models of Computation
	2.1 Memoryless Computing Devices
	2.2 Digital Circuits
	2.3 Propositional Logic
	2.4 Finite Memory Devices
	2.5 Regular Languages
	3. Loop Programs
	3.1 Semantics of LOOP Programs
	3.2 Other Aspects
	3.3 Complexity of LOOP Programs
	4. Primitive Recursive Functions
	4.1 Primitive Recursive Expressibility
	4.2 Equivalence between models
	4.3 Primitive Recursive Expressibility (Revisited)
	4.4 General Recursion
	4.5 String Operations
	4.6 Coding of Tuples
	5. Diagonalization Arguments
	6. Partial Recursive Functions
	7. Random Access Machines
	7.1 Parsing RAM Programs
	7.2 Simulation of RAM Programs
	7.3 Index Theorem
	7.4 Other Aspects
	7.5 Complexity of RAM Programs
	8. Acceptable Programming Systems
	8.1 General Computational Complexity
	8.2 Algorithmically Unsolvable Problems
	9. Recursively Enumerable Sets
	10. Recursion Theorem
	10.1 Applications of the Recursion Theorem
	10.1.1 Machine Learning
	10.1.2 Speed-Up Theorem
	11. Non-Deterministic Computations
	11.1 Complexity of Non-Deterministic Programs
	11.2 NP-Completeness
	11.3 Polynomial Time Reducibility
	11.4 Finite Automata (Review)
	11.5 PSPACE Completeness
	12. Formal Languages
	12.1 Grammars
	12.2 Chomsky Classification of Languages
	12.3 Context Sensitive Languages
	12.4 Linear Bounded Automata
	12.5 Context Free Languages
	12.6 Push Down Automata
	12.7 Regular Languages
	Bibliography
	Index

