
M A N N I N G

Timothy Perrett

The simply functional web framework for Scala

Covers Lift 2.x

Lift in Action

Lift in Action
THE SIMPLY FUNCTIONAL

WEB FRAMEWORK FOR SCALA

TIMOTHY PERRETT

M A N N I N G
SHELTER ISLAND

 To my Dad
 for teaching me that hard work and dedication

 can triumph over any problem

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Katharine Osborne
20 Baldwin Road Copyeditor: Andy Carroll
PO Box 261 Typesetter: Dennis Dalinnik
Shelter Island, NY 11964 Cover designer: Marija Tudor

ISBN: 9781935182801
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11

http://www.manning.com
mailto:orders@manning.com

brief contents
PART 1 GETTING STARTED ..1

1 ■ Introducing Lift 3

2 ■ Hello Lift 20

PART 2 APPLICATION TUTORIAL ..37

3 ■ The auction application 39

4 ■ Customers, auctions, and bidding 60

5 ■ Shopping basket and checkout 83

PART 3 LIFT IN DETAIL..105

6 ■ Common tasks with Lift WebKit 107

7 ■ SiteMap and access control 140

8 ■ HTTP in Lift 160

9 ■ AJAX, wiring, and Comet 187

10 ■ Persistence with Mapper 223

11 ■ Persistence with Record 259
v

BRIEF CONTENTSvi
12 ■ Localization 282

13 ■ Distributed messaging and
Java enterprise integration 293

14 ■ Application testing 317

15 ■ Deployment and scaling 347

contents
preface xiii
acknowledgments xv
about this book xvii
about the author xxi
about the cover illustration xxii

PART 1 GETTING STARTED...1

1 Introducing Lift 3
1.1 What is Scala? 4

1.2 What is Lift? 6

Lift design goals 7 ■ View-first design 8
Community and team 10

1.3 Lift features 11

Lift Core and Lift Web 12 ■ Lift Persistence 15
Lift Modules 17

1.4 Summary 18
vii

CONTENTSviii
2 Hello Lift 20
2.1 Getting started with SBT 21

2.2 Your first Lift application 23

Creating the project 23 ■ Inspecting the project 26
Booting the application 29

2.3 Snippets and templating overview 31

Snippets 31 ■ Templating overview 33

2.4 Summary 35

PART 2 APPLICATION TUTORIAL37

3 The auction application 39
3.1 Application requirements 40

Frontend 40 ■ Administration 41

3.2 Template structure 43

Design workflow 43 ■ Template setup 43

3.3 Data models 46

Schema definition 46 ■ Connecting to the database 49

3.4 Scaffolding 50

Prototype traits 50 ■ CRUD generation 53

3.5 Validation 57

Definitions 58 ■ Displaying field errors 58

3.6 Summary 59

4 Customers, auctions, and bidding 60
4.1 Building an auction catalog 61

Listing auctions 61 ■ Adding to SiteMap 65

4.2 Displaying auctions 66

Auction detail URLs 66 ■ The AJAX
bidding interface 68 ■ Real-time bidding 74

4.3 Summary 82

CONTENTS ix
5 Shopping basket and checkout 83
5.1 Order creation 84

Order models 84 ■ Attributing auctions to customers 87

5.2 Implementing the basket and checkout process 91

Implementing the basket 91 ■ Implementing the checkout 93

5.3 Collecting payment with PayPal 99

Environment setup 99 ■ The Buy Now button 102

5.4 Summary 103

PART 3 LIFT IN DETAIL ..105

6 Common tasks with Lift WebKit 107
6.1 Templates, snippets, and views 108

Templates 108 ■ Snippets 114 ■ Views 125

6.2 Managing state 128

Request and session state 128 ■ Cookies 130

6.3 Forms with LiftScreen and Wizard 131

LiftScreen 132 ■ Wizard 135

6.4 Widgets 137

AutoComplete widget 137 ■ Gravatar widget 138

6.5 Summary 139

7 SiteMap and access control 140
7.1 Menus and locations 141

Understanding and implementing locations 143
Rendering menus 143

7.2 Location parameters 146

Default location parameters 147
Authentication parameters 150

7.3 Customizing SiteMap 153

Creating a custom Loc 153 ■ When to customize SiteMap? 158

7.4 Summary 159

CONTENTSx
8 HTTP in Lift 160
8.1 HTTP pipeline 161

HTTP abstraction 161 ■ Application lifecycle 162
Request lifecycle 166

8.2 URL rewriting 170

Defining a RewritePF 171 ■ Advanced rewriting 173

8.3 Dispatching and web services 174

Using the HTTP dispatch DSL 176 ■ Basic REST service 179
Advanced multiformat REST service 182

8.4 Summary 185

9 AJAX, wiring, and Comet 187
9.1 AJAX 188

JavaScript abstractions 189 ■ AJAX 101 194
Sophisticated AJAX 197 ■ Using JSON forms
with AJAX 200 ■ AJAX with LiftScreen 202

9.2 Wiring 203

Formula wiring 203

9.3 Comet 207

What are actors? 208 ■ Basic Comet usage 209
Comet-based rock-paper-scissors 212

9.4 Summary 221

10 Persistence with Mapper 223
10.1 Setting up a database 224

Installation and connectivity 224 ■ Defining Mappers 227
Relationships 232 ■ Schema creation and control 235

10.2 Interacting with Mapper 237

Creating data 237 ■ Querying data 238 ■ Updating and
deleting data 244 ■ Validation and lifecycle callbacks 245
Display functionality 248

10.3 Advanced Mapper 251

Query logging 251 ■ Transactions 252
Custom mapped fields 254

10.4 Summary 258

CONTENTS xi
11 Persistence with Record 259
11.1 Common Record functionality 260

Common Record fields 262 ■ Integration with
LiftScreen and Wizard 265

11.2 Record for relational databases 266

Connecting and querying with Squeryl 266 ■ A bookstore
with Squeryl 268

11.3 Record for NoSQL stores 273

NoSQL support in Lift 273 ■ Bookstore with MongoDB 278

11.4 Summary 280

12 Localization 282
12.1 Implementing localization 283

Implementing locale calculator 284 ■ Localizing templates
and code 286

12.2 Defining localized resources 289

Using XML resources 289 ■ Using Java properties resources 290
Using custom resource factories 291

12.3 Summary 292

13 Distributed messaging and Java enterprise integration 293
13.1 Distributed programming 294

Messaging with AMQP 295 ■ Messaging with Akka 300

13.2 Integrating Lift into existing Java infrastructure 309

JPA and Scala EntityManager 309

13.3 Summary 316

14 Application testing 317
14.1 Scala testing frameworks 318

ScalaTest 318 ■ Scala Specs 319 ■ ScalaCheck 321
Code coverage reports 322

14.2 Writing testable code 324

Complexities of testing state 325 ■ Dependency injection 327

CONTENTSxii
14.3 Testing strategies 334

Testing snippets 334 ■ Testing web services 336
Testing with Mapper 340 ■ Testing Comet and AJAX 341

14.4 Summary 345

15 Deployment and scaling 347
15.1 Choosing a servlet container 348

15.2 Handling state 351

Sticky session strategies 352 ■ Distributing critical state 356

15.3 Choosing a configuration 361

Single server 362 ■ Multiple servers 363

15.4 Deployment tools and techniques 364

Built-in assistance 364 ■ Monitoring 367

15.5 Case studies 371

Foursquare 372 ■ Novell Vibe 372

15.6 Summary 373

appendix A Introduction to Scala 375

appendix B Configuring an IDE 384

appendix C Options and boxes 388

index 393

preface
The web has completely revolutionized the way we live our lives—the average person
in the UK now does an average of six Google searches a day. Within the lifetime of one
generation, our entire society has changed, and it continues to be catalyzed by tech-
nology in a very fundamental way. For me, this is the most fascinating thing to observe
and an even more interesting thing to be a part of.

 The web development industry has seen sweeping change over the past five or six
years as it has attempted to cope with these new social habitats and behaviors. Proba-
bly one of the most notable changes was the way in which Ruby on Rails altered devel-
opers’ outlook toward building applications and the manner in which they
approached problems. Massive enterprise architecture was out the window and small,
iterative, agile processes became all the rage. At the beginning of 2006, I had been
coding Ruby on Rails for quite some time and had built several large systems with the
Ruby stack. Although I was blown away by the productivity gains that Rails supplied,
taking code to production was a comparative nightmare. I specifically recall Zed
Shaw’s “Rails is a Ghetto” rant and how that was very similar to my own views at the
time. It was then that I started to look for something else, something new.

 Before long, I came across Lift, which felt “right” from the very beginning. Scala and
Lift’s elegant fusion of the functional and object-oriented paradigms was a breath of
fresh air when compared to other languages and frameworks. It was great to have all
the security features baked right into a framework, and not have to worry about many
things that typically cause a lot of headaches for developers. These kinds of choices
make a great developer-oriented framework: focusing on removing work from the
developer in a pragmatic and logical way while using as little runtime magic as possible.
xiii

PREFACExiv
 Having been involved with Lift from an early stage, seeing it grow and evolve in an
organic fashion has been very rewarding. Even with an intimate understanding of Lift,
writing this book has been far more difficult than I could have ever anticipated. As a
framework, Lift is growing at an exponential rate, and I’ve tried to cover as much of it
as possible and keep it up-to-date with the latest advancements, all while providing you
with a base from which to understand the Lift way of solving problems.

acknowledgments
Many people contributed to this book, both in the tangible sense of giving reviews
and feedback, and also in a more intangible regard by giving me the encourage-
ment and positive words to continue with the project, even when there was seemingly
no end in sight.

 Throughout the course of writing, I was fortunate enough to receive feedback
from a wide range of sources, but there are several people that I specifically need to
single out and thank. First, I would like to thank Jon-Anders Teigen and Ross
Mellgren for being such amazing sounding boards for ideas, and for often providing
a much-needed sanity check late at night. In addition, I would like to thank the fol-
lowing people from the Scala community who have had an influence on me during
the writing of this book; your blogs, screencasts, and personal discussions have
been a source of inspiration and always remind me there is so much more to learn:
Martin Odersky, Debasish Ghosh, Tony Morris, Rúnar Bjarnason, Mark Harrah,
Jeppe Nejsum Madsen, Jeppe Cramon, Vassil Dichev, Marius Danicu, Derek Chen-
Becker, Jorge Ortiz, and Josh Suereth.

 I would also like to thank the companies that use Scala commercially and who have
constructively given their feedback; particular thanks go to Harry Heymann and all
the Foursquare engineers, Daniel Spiewak and David LaPalomento at Novel, Steve
Jenson and Robey Pointer at Twitter, and Jonas Bonér and Viktor Klang at Typesafe.

 Writing Lift in Action has without doubt been one of the most difficult things I’ve
ever done, and it’s been a huge personal challenge. During the writing of this book,
I’ve circumnavigated the globe nearly twice, severely broken my hand, learned Italian,
xv

ACKNOWLEDGMENTSxvi
and still found time for a day job. None of those things would have been achievable
without the support of my family and three best friends: Robert Dodge, Paul Dredge,
and Michael Edwards. I simply couldn’t wish for closer friends or a more supportive
family. You guys are awesome.

 I’d also like to say thank you to all the amazing people who have contributed to
Lift over the years, and also to David Pollak for founding the project in the first place.
Working on Lift and being a part of the community has truly been one of the high-
lights of my career to date.

 The team at Manning has also been a huge, huge help. Working with such a pro-
fessional group of people has been a joy end-to-end. I would specifically like to thank
Michael Stephens for bringing me on board to write this book: his words from our
first call together, “…writing a book is completely survivable,” are something I have
thought about often. Additionally, Katharine Osbourne has been a legendary devel-
opment editor; without her support and consultation, this book would likely have
never made it to completion. Thanks also to the production team of Andy Carroll,
Melody Dolab, Dennis Dalinnik, and Mary Piergies; and to Jon Anders Teigen, Graham
Tackley, and Phil Wells for their careful technical proofread of the manuscript,
shortly before it went to press.

 Finally, my thanks to the reviewers who read the manuscript numerous times dur-
ing development and who provided invaluable feedback: Andy Dingley, Paul Stusiak,
Guillaume Belrose, John Tyler, Ted Neward, Andrew Rhine, Jonas Bandi, Tom Jensen,
Ross Mellgren, Richard Williams, Viktor Klang, and Dick Wall.

about this book
Lift is an advanced, next-generation framework for building highly interactive and
intuitive web applications. Lift aims to give you a toolkit that scales with both your
needs as a developer and the needs of your applications. Lift includes a range of fea-
tures right out of the box that set it apart from other frameworks in the marketplace:
namely security, statefulness, and performance.

 Lift also includes a range of high-level abstractions that make day-to-day development
easy and powerful. In fact, one of the main driving forces during Lift’s evolution has
been to include only features that have an actual production use. You, as the developer,
can be sure that the features you find in Lift are distilled from real production code.

Lift in Action is a step-by-step exploration of the Lift web framework, and it’s split
into two main parts: chapters 1 through 5 introduce Lift and walk you through build-
ing a small, sample application, and then chapters 6 through 15 take a deep dive into
the various parts of Lift, providing you with a deep technical reference to help you get
the best out of Lift.

Roadmap
Chapter 1 introduces Lift and sets the scene with regard to how it came into existence.
It also covers the various modules of the framework to give you an appreciation for
the bigger picture.

 Chapter 2 shows you how to get up and running with the Scala build tool SBT and
start making your first web application with Lift. This chapter focuses on small, incremen-
tal steps covering the concepts of development that you’ll need in the rest of the book.
xvii

ABOUT THIS BOOKxviii
 Chapter 3, 4, and 5 walk you through the construction of a real-time auction appli-
cation to cover as many different parts of Lift as possible. This includes creating tem-
plates, connecting to a database, and implementing basic AJAX and Comet.

 Chapter 6 takes a dive into the practical aspects of Lift WebKit, showing you how to
work with the sophisticated templating system, snippets, and form building through
LiftScreen and Wizard. Additionally, this chapter introduces Lift’s own abstraction
for handling application state in the form of RequestVar and SessionVar. This chap-
ter concludes with an overview of some useful extension modules, known as widgets,
that ship with the Lift distribution.

 Chapters 7 focuses on Lift’s SiteMap feature, which allows you to control access
and security for particular resources.

 Chapter 8 covers the internal working of Lift’s HTTP pipeline, detailing the various
hooks that are available and demonstrating several techniques for implementing
HTTP services.

 Chapter 9 explores Lift’s sophisticated AJAX and Comet support, demonstrating
these technologies in practice by assembling a rock-paper-scissors game. This chapter
also covers Lift’s AJAX abstraction called wiring, which allows you to build chains of
AJAX interaction with ease.

 Chapters 10 and 11 cover Lift’s persistence systems, Mapper and Record. Mapper
is an active-record style object-relational mapper (ORM) for interacting with SQL data
stores, whereas Record is store-agnostic and can be used with any backend system
from MySQL to modern NoSQL stores such as MongoDB.

 Chapter 12 demonstrates Lift’s localization toolkit for building applications that
can work seamlessly in any language. This includes the various ways in which you can
hook in your ResourceBundles to store localized content.

 Chapter 13 is all about the enterprise aspects often associated with web application
development. Technologies such as JPA are prevalent within the enterprise space, and
companies often want to reuse them, so this chapter shows you how to implement JPA
with Lift. Additionally, this chapter covers messaging using the Akka framework.

 Chapter 14 covers testing with Lift and shows you some different strategies for test-
ing snippets. More broadly, it demonstrates how to design code that has a higher
degree of decoupling, so your general coding lends itself to testing.

 Finally, chapter 15 consolidates all that you’ve read in the book and shows you how
to take your application into production. This includes an overview of various servlet
containers, a demonstration of implementing distributed state handling, and a guide
to monitoring with Twitter Ostrich.

Who should read this book?
Primarily, this book is intended to demonstrate how to get things done using Lift.
With this in mind, the book is largely slanted toward users who are new to Lift, but
who have experience with other web development frameworks. Lift has its own unique
way of doing things, so some of the concepts may seem foreign, but I make conceptual

ABOUT THIS BOOK xix
comparisons to things you may be familiar with from other popular frameworks or
libraries to smooth the transition.

 If you’re coming to Lift with little or no knowledge of Scala, you should know that
Lift makes use of many Scala language features. This book includes a Scala rough
guide to get you up and running within the context of Lift as quickly as possible.

 The book largely assumes that you have familiarity with XML and HTML. Lift’s
templating mechanism is 100 percent based on XML, and although it’s straightfor-
ward to use, it’s useful to have an understanding of structured XML that makes use
of namespaces.

 Finally, because Lift is primarily a web framework designed for browser-based
experiences, JavaScript is inevitably part of the application toolchain. Lift includes a
high-level Scala abstraction for building JavaScript expressions, but having an under-
standing of JavaScript and client-side scripting can greatly improve your understand-
ing of the client-server interactions supplied by Lift.

Code conventions and examples
This book includes a wide range of examples and code illustrations from Scala code
and HTML templates, to plain text configurations for third-party products. Source
code in the listings and in the text is presented in a fixed width font to separate it
from ordinary text. Additionally, Scala types, methods, keywords, and XML-based
markup elements in text are also presented using fixed width font. Where applica-
ble, the code examples explicitly include import statements to clarify which types and
members originate from which packages. In addition, functions and methods have
explicitly annotated types where the result type is not clear.

 Although Scala code is typically quite concise, there are some listings that needed
to be reformatted to fit in the available page space in the book. You are encouraged to
download the source code from the online repository, in order to see the sample code
in its original form (https://github.com/timperrett/lift-in-action). In addition to
some reformatting, all the comments have been removed for brevity. You can also
download the code for the examples in the book from the publisher’s website at
www.manning.com/LiftinAction.

 Code annotations accompany many of the source code listings, highlighting
important concepts. In some cases, numbered bullets link to explanations in the sub-
sequent text.

 Lift itself is released under the Apache Software License, version 2.0, and all the
source code is available online at the official Github repository (https://github.com/
lift/framework/). Reading Lift’s source code can greatly speed your efforts at becom-
ing productive in using Lift for your own applications.

Author Online
Purchase of Lift in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical

https://github.com/timperrett/lift-in-action
http://www.manning.com/LiftinAction
https://github.com/lift/framework
https://github.com/lift/framework

ABOUT THIS BOOKxx
questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/Liftin
Action or www.manning.com/perrett. This page provides information on how to get
on the forum once you’re registered, what kind of help is available, and the rules of
conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://www.manning.com/LiftinAction
http://www.manning.com/perrett
http://www.manning.com/LiftinAction

about the author
Timothy Perrett is a technical specialist at a business unit
of Xerox Corporation and has been a member of the Lift
core team since early 2008. He has a wealth of experience
programming in different languages and platforms but
has now settled on Scala as his language (and community)
of choice for nearly all production activities. Timothy is a
specialist in enterprise integration and automation systems
for manufacturing and marketing workflows.

 When not speaking at conferences or blogging about
Scala and Lift, Timothy lives by the river in the beautiful
city of Bath, England, where he enjoys socializing with
friends and drinking the local ale.
xxi

about the cover illustration
The figure on the cover of Lift in Action is captioned “A Water Carrier.” The illustra-
tion is taken from a 19th-century edition of Sylvain Maréchal’s four-volume compen-
dium of regional dress customs published in France. Each illustration is finely drawn
and colored by hand. The rich variety of Maréchal’s collection reminds us vividly of
how culturally apart the world’s towns and regions were just 200 years ago. Isolated
from each other, people spoke different dialects and languages. In the streets or in
the countryside, it was easy to identify where they lived and what their trade or station
in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxii

Part 1

Getting started

The first two chapters of this book introduce the Lift framework and dem-
onstrate how you can get everything set up and ready for your first development.

 Chapter 1 starts by introducing both Scala and Lift concepts, complete with
high-level explanations and samples. The aim is to give you grounding in what is
a fundamentally different way of thinking. In chapter 2, you’ll be building upon
the basis laid down in chapter 1 by constructing your very first Hello World
application, which will involve the most basic Lift steps. In these chapters, you’ll
see first-hand how Lift leverages a view-first architecture and how easy it is to get up
and running with the Lift web framework.

Introducing Lift
Lift is an exciting new way of building web applications that feature rich, highly
interactive user experiences. Lift is built atop the powerful functional program-
ming language Scala, which lends itself to writing exceedingly concise but powerful
code. By leveraging Scala, Lift aims to be expressive and elegant while stressing the
importance of maintainability, scalability, and performance.

 The first section of this chapter will introduce Scala and functional program-
ming, including some examples of how the language compares and contrasts to
the more familiar style of imperative programming. The second section intro-
duces Lift and discusses how it differs from other web programming tools avail-
able today. Lift is largely a conceptual departure from many of the traditional
approaches to building web frameworks; specifically, Lift doesn’t have a controller-
dispatched view system and opts for an idea called view first. This chapter dis-
cusses these core design goals and introduces these new ideas at a high level.
Throughout the course of the book, the concepts outlined here will be expanded

This chapter covers
■ An overview of Scala and Lift
■ Lift’s history and design rationale
■ An overview of Lift’s structure
3

4 CHAPTER 1 Introducing Lift
on in much greater detail, and you’ll see concrete examples to assist you in getting
up to speed.

 If you’re reading this book but are new to Scala programming, you can find a rough
guide in appendix A that will show you the ropes and give you a foundation for making
use of Lift. If you want to get serious with Scala, I highly recommend looking at the
other Scala titles published by Manning: Scala in Action by NilanjanRaychaudhuri, and
then the more advanced Scala in Depth by Joshua Suereth.

1.1 What is Scala?
Scala (http://www.scala-lang.org/) is a powerful, hybrid programming language that
incorporates many different concepts into an elegant fusion of language features and
core libraries. Before delving any deeper, let’s just consider how functional program-
ming differs from imperative programming with languages such as Java and Ruby, and
what a functional programming language actually is.

 As the name implies, functional programming languages have a single basic idea at
their root: functions. Small units of code are self-contained functions that take type A as
an argument and return type B as a result; this is expressed more directly in Scala
notation: A => B. How this result is achieved is an implementation detail for the most
part; as long as the function yields a value of type B, all is well.

NOTE Functional programming languages often derive from a mathematical
concept called lambda calculus. You can read more about it on Wikipedia:
http://en.wikipedia.org/wiki/Lambda_calculus.

With this single concept in mind, it’s possible to boil down complex problems into
these much smaller functions, which can then be composed to tackle the larger prob-
lem at hand; the result of function one is fed into function two and so on, ad infini-
tum. The upshot of such a language design is that once you wrap your head around
this base level of abstraction, many of the language features can be thought of as
higher levels built upon this foundation of basic functions.

 Immutability is another trait that marks out functional languages against their
imperative cousins. Specifically, within functional languages the majority of data struc-
tures are immutable. That is to say, once they’re created there is no changing that
instance; rather, you make a copy of that instance and alter your copy, leaving the orig-
inal unaltered.

 Martin Odersky, however, wanted to fuse object orientation and functional pro-
gramming together in one unified language that could compile and run on the Java
Virtual Machine (JVM). From here, Scala was born, and consequently Scala compiles
down to Java bytecode, which means that it can run seamlessly on the JVM and inter-
operate with all your existing Java code, completely toll free. In practical terms, this
means that your existing investment in Java isn’t lost; simply call that code directly
from your Scala functions and vice versa.

http://www.scala-lang.org
http://en.wikipedia.org/wiki/Lambda_calculus

5What is Scala?
 With this fusion of programming styles, Scala gives you the ability to write code
that’s typically two or three times more concise than the comparative Java code. At the
same time, the Scala code is generally less error-prone due to the heavy use of immuta-
ble data constructs, and it’s also more type-safe than Java, thanks to Scala’s very sophis-
ticated type system.

 These are the general concepts that make up functional programming, and upon
which Scala is built. To further exemplify these differences, table 1.1 presents some
examples that illustrate the differences in Scala’s approach compared to imperative
code. If you don’t know Java, don’t worry: the examples here are pretty easy to fol-
low, and the syntax should be fairly readable for anyone familiar with Ruby, PHP, or
similar languages.

Table 1.1 Comparing Java and Scala styles of coding

Java Scala

When building class definitions, it’s common to have to build so-called getter and setter methods in
order to set the values of that instance. This typically creates a lot of noise in the implementation (as
seen in the Java example that follows). Scala combats this by using the case modifier to automatically
provision standard functionality into the class definition. Given an instance of the Person case class,
calling person.name would return the name value.

public class Person {
 private int _age;
 private String _name;
 public Person(String n, int a){
 _age = a;
 _name = n;
 }
 String name(){ return _name; }
 int age(){ return _age; }
}

case class Person(
 name: String, age: Int)

Most applications at some point have to deal with collections. The examples that follow create an ini-
tial list and then produce a new list instance that has the same animal names, but in lowercase. The
Java example on the left creates a list of strings, then creates a second empty list, which then has its
contents mutated by looping through the first list and calling toLowerCase() on each element. The
Scala version achieves the exact same result by defining a function that should be executed on each
element of the list. The Scala version is a lot more concise and does the exact same thing without the
code noise.

List<String> in = Arrays.asList(
 "Dog", "Cat", "Fish");

List<String> out =
 new ArrayList<String>();

for(String i : in){
 out.add(i.toLowerCase());
}

List("Dog","Cat","Fish")
 .map(_.toLowerCase)

6 CHAPTER 1 Introducing Lift
These are just some of the ways in which Scala is a powerful and concise language.
With this broad introduction to Scala and functional programming out of the way,
let’s learn about Lift.

1.2 What is Lift?
First and foremost, Lift (http://liftweb.net/) is a sophisticated web framework for
building rich, vibrant applications. Secondly, Lift is a set of well-maintained Scala
libraries that are used by many other projects within the broader Scala ecosystem. For
example, the Dispatch HTTP project (http://dispatch.databinder.net/Dispatch.html)
uses Lift’s JSON-handling library extensively for parsing JSON within the context of
standalone HTTP clients. This book, however, really focuses on Lift as a web frame-
work, and it’s here that our story begins.

 User behavior online in recent years has changed; people now spend more time
than ever online, and this means they want the way they interact with online services
to be more intuitive and natural. But building such rich applications has proven to be
tough for many developers, and this often results in interfaces and infrastructures that
aren’t really up to the job or user expectations. Lift aims to make building real-time,
highly interactive, and massively scalable applications easier than it has ever been by
supporting advanced features like Comet, which allow you to push data to the browser
when it’s needed, without the user having to make any kind of request for it.

 In fact, Lift has been designed from the ground up to support these kinds of sys-
tems better than anything else. Building interactive applications should be fun, acces-
sible, and simple for developers. Lift removes a lot of the burdens that other
frameworks place on developers by mixing together the best ideas in the marketplace
today and adding some unique features to give it a component set and resume that
are unlike any other framework you have likely come across before. Lift brings a lot of
new ideas to the web framework space, and to quote one of the Lift community mem-
bers, “it is not merely an incremental improvement over the status quo; it redefines
the state of the art” (Michael Galpin, Developer, eBay). This departure from tradi-
tional thinking shouldn’t worry you too much, though, because Lift does adopt tried
and tested, well-known concepts, such as convention over configuration, to provide
sensible defaults for all aspects of your application while still giving you a very granu-
lar mechanism for altering that behavior as your project dictates.

 One of the areas in which Lift is radically different is in how it dispatches content
for a given request. Unlike other frameworks, such as Rails, Django, Struts, and oth-
ers, Lift doesn’t use the traditional implementation of Model-View-Controller (MVC),
where view dispatching is decided by the controller. Rather, Lift uses an approach
called view first. This is one of the key working concepts within Lift, and it affects
nearly everything most developers are used to when working with a framework. Specif-
ically, it forces you to separate the concerns of content generation from content ren-
dering markup.

http://liftweb.net
http://dispatch.databinder.net/Dispatch.html

7What is Lift?
 In the early days of web development, it was commonplace to intermingle the code
that did business computations with the code that generated the HTML markup for
the user interface. This can be an exceedingly painful long-term strategy, as it makes
maintaining the code problematic and tends to lead to a lot of duplication within any
given project. Conceptually, this is where the MVC pattern should shine, but most
implementations still give the developer the ability to write real code within the pre-
sentation layer to generate dynamic markup; this can add accidental complexity to a
project when the developer unwittingly adds an element of business or process logic
to the presentation layer. It takes programmers who are very disciplined to ensure that
none of the business or application logic seeps into the view. Lift takes the standpoint
that being able to write interpreted code within markup files can lead to all manner of
issues, so it’s outlawed completely; this ensures that your templates contain nothing
but markup.

 The view-first idea in Lift really inherits from the broader design goals upon which
Lift was conceived. The following sections will cover these design goals, provide some
details about Lift’s architecture, and give you an overview of the Lift project structure
and community.

1.2.1 Lift design goals

The design goals upon which Lift was based have remained fairly constant features of
the project. For example, the belief that complex problems, such as security, should
be the responsibility of a framework, and not of the developer, have remained central
ideals. In short, Lift’s design goals are security, conciseness, and performance. Let’s
just take a look at these in closer detail and consider how they impact you when using
Lift as a general-purpose web development framework.

SECURITY

The web can be a dangerous place for developers who don’t fully appreciate the
potential attacks their applications could come under. There are whole rafts of mali-
cious techniques, including cross-site request forgery (CSRF), cross-site scripting
(XSS), SQL injection, and lots, lots more. Many developers can’t keep up with the con-
stantly changing world of security threats, let alone fully understand how to effectively
and securely protect their applications.

 To this end, Lift provides protection against common malicious attacks without
the need for the developer to do any additional work or configuration; Lift just does the
right thing. Whenever you make an AJAX call, use Comet, or even build a simple
form, Lift is right there in the background securing the relevant processing from
attack. Lift typically does this by replacing input names and URLs with opaque GUIDs
that reference specific functions on the server; this essentially completely eliminates
tampering, because there is no way for an attacker to know what the right GUID might
be. This comprehensive security is covered in more detail in chapters 6 and 9.

 A nice illustration of Lift’s security credentials is the popular social media site
Foursquare.com, which runs on Lift. Even RasmusLerdorf, the inventor of PHP

8 CHAPTER 1 Introducing Lift
and infamous security pundit, was impressed by not being able to find a single
security flaw!1

CONCISENESS

If you have spent any time coding in a moderately verbose imperative programming
language like Java, you’ll be more than familiar with the value of conciseness. More-
over, studies have shown that fewer lines of code mean statistically fewer errors, and
overall it’s easier for the brain to comprehend the intended meaning of the code.2

 Fortunately, Scala assists Lift in many aspects with the goal of conciseness; Scala has
properties, multiple inheritance via traits, and as was touched on earlier, it has a com-
plex type system that can infer types without explicit type annotations, which gives an
overall saving in character tokens per line of code that you write. These are just some
of the ways in which Scala provides a concise API for Lift, and these savings are cou-
pled with the design of the Lift infrastructure, which aims to be short and snappy
where possible, meaning less typing and more doing.

PERFORMANCE

No matter what type of application you’re building for use on the web, no devel-
oper wants his or her work to be slow. Performance is something that Lift takes very
seriously, and as such, Lift can be very, very quick. As an example, when using the
basic Lift project, you can expect upward of 300 requests per second on a machine
with only 1 GB of RAM and a middle-of-the-road processor. In comparison, you
should see upwards of 2,000 requests per second on a powerful 64-bit machine with
lots of RAM. Whatever your hardware, Lift will give you really great throughput and
blistering performance.

1.2.2 View-first design

Lift takes a different approach to dispatching views; rather than going via a control-
ler and action, which then select the view template to use based upon the action
itself, Lift’s view-first approach essentially does the complete opposite. It first chooses
the view and then determines what dynamic content needs to be included on that
page. For most people new to Lift, trying not to think in terms of controllers and
actions can be one of the most difficult parts of the transition. During the early
phases of Lift development, there was a conscious choice taken to not implement
MVC-style controller-dispatched views.

 In a system where views are dispatched via a controller, you’re essentially tied to
having one primary call to action on that page, but with modern applications, this is
generally not the case. One page may have many items of page furniture that are
equally important.

1 Tweet on Rasmus Lerdorf’s Twitter stream: http://twitter.com/rasmus/status/5929904263
2 For more information, see Gilles Dubochet’s paper, “Computer Code as a Medium for Human Communica-

tion: Are Programming Languages Improving?” (ÉcolePolytechniqueFédérale de Lausanne, 2009). http://
infoscience.epfl.ch/record/138586/files/dubochet2009coco.pdf?version=2

http://twitter.com/rasmus/status/5929904263
http://infoscience.epfl.ch/record/138586/files/dubochet2009coco.pdf?version=2
http://infoscience.epfl.ch/record/138586/files/dubochet2009coco.pdf?version=2

9What is Lift?
 Consider a typical shopping-cart application: the cart itself might feature on multi-
ple pages in a side panel, and a given page could contain a catalog listing with the
mini shopping cart on the left. Both are important, and both need to be rendered
within the same request. It’s at this very point that the MVC model becomes somewhat
muddy, because you’re essentially forced to decide which is the primary bit of page
content. Although there are solutions for such a situation, the concept of having a pri-
mary controller action for that request immediately becomes less pure.

 In an effort to counter this problem, Lift opts for the view-first approach.
Although it’s not a pattern you may have heard about before, the three compo-
nent parts are view, snippet, and model—VSM for short. This configuration is illus-
trated in figure 1.1.

 Figure 1.1 shows that the view is the initial calling component within this architec-
ture, and this is where the view-first name comes from. Let’s now take a moment to
review each element within the view-first setup.

VIEW

Within the context of view-first, the view refers primarily to the HTML content served
for a page request. Within any given Lift application, you can have two types of view:

■ Template views that bind dynamic content into a predefined markup template
■ Generated views in which dynamic content is created, typically with Scala

XML literals

Template views are the most commonly used method of generating view content, and
they require that you have a well-formed XHTML or HTML5 template. It’s important
to note that Lift doesn’t allow you to use view code that’s invalid; this means that
when you’re working with a design team, if their templates are W3C-validate, you
know they’ll work with Lift because the snippet invocations are also part of the
markup. This ensures that designers don’t inadvertently introduce problems by

Figure 1.1 A representation of the view-first design. The view invokes the snippets, which in
turn call any other component of the application business logic.

10 CHAPTER 1 Introducing Lift
altering framework-specific code within the template, which is a common problem
with other frameworks.

 Generated views are far less common, but sometimes they’re used for quick proto-
typing by using Scala XML literals.

 Whichever route you choose to take, the view is the calling component in the
architecture, and as such you can invoke as many different (and completely separate)
snippets as you like from within any given view. This is a core idea within Lift: views
can have more than a single concrete purpose. This helps to minimize the amount of
code duplication within an application and lends itself nicely to a pure model of com-
ponent encapsulation.

SNIPPET

Snippets are rendering functions that take XML input from within a given page tem-
plate and then transform that input based upon the logic within the snippet function.
For example, when rendering a list of items, the template could contain the markup
for a single item, and then the snippet function would generate the markup for an
entire list of items, perhaps by querying the database and then iterating over the result
set to produce the desired list of items.

 There’s a very tight and deliberate coupling between the snippet and the XML out-
put. The snippet isn’t intended to be a controller, such as those found in the MVC
design pattern, nor is it meant to take on any control-flow responsibilities. The snip-
pet’s sole purpose within Lift is to generate dynamic content and mediate changes in
the model back to the view.

MODEL

In this context, the model is an abstract notion that could represent a number of dif-
ferent things. But for most applications, it will represent a model of persistence or
data (irrespective of the actual process it undertakes to get that data). You ask the
model for value x, and it returns it.

 In terms of Lift’s view-first architecture, the snippet will usually call the model for
some values. For example, the snippet might request a list of all the current prod-
ucts in an ecommerce application or ask the model to add an item to the user’s
shopping cart. Whatever the operation, when the model is asked to do something, it
applies whatever business logic it needs to and then responds appropriately to the
snippet. The response could include validation errors that the snippet then renders
to the view.

 The actual mechanism for updating the view isn’t important for this discussion
(full page load, AJAX, or some other method). Rather, the model responds and the
response is passed to the view via the snippet.

1.2.3 Community and team

Since the very beginning, the Lift team has always been very diverse; right from the
early days, the team grew in a very organic fashion and has continued to do so over
recent years. Today the Lift core team consists of professional and highly talented

http://mng.bz/5tOy

11Lift features
individuals not only from all over the world but in a bewildering array of different
market sectors. This gives Lift its vibrancy and overall well-rounded approach.

 If you’re new to the Lift community, welcome. It’s a very stimulating place, and
you’ll find that the majority of our team members on the mailing list or hanging out
in IRC will assist you if you get stuck with something. Although I hope that this book
will cover most of the things you might want to know about Lift, there will inevitably
be things you wonder about as you continue to use Lift in your own projects. To that
end, take a look at the resources listed in table 1.2.

Now that you’ve had a brief overview of the Lift framework and its evolution, let’s get
into some technical details as to what it can actually do and how it can help you be
more productive and produce higher quality applications.

1.3 Lift features
During the past three years, the Lift codebase has exploded in size and now features
all manner of functionality, from powerful HTTP request-response control, right
through to enterprise extensions like a monadic transaction API and Actor-based
wrappers around AMQP and XMPP.

 Lift is broken down into three top-level subprojects: Lift Core and Lift Web, Lift
Persistence, and Lift Modules. We’ll now take a closer look at each module to give you
an overview of its structure and functionality.

Table 1.2 Helpful Lift resources that can be found online

Resource Description

Main Lift site http://liftweb.net

First and foremost is the main Lift homepage. Here you’ll find the latest
news about Lift, regularly updated as time goes by. This page also has
links to the source code, the issue tracker, and the wiki.

Assembla https://www.assembla.com/wiki/show/liftweb

Lift moved to the Assembla platform for its wiki and bug-tracking require-
ments some time ago, and since then it has accumulated a fair amount
of community-created articles.

Mailing list http://groups.google.com/group/liftweb

The Google group is the official support channel for Lift. If you have a
question, you can come to the mailing list and find a friendly, responsive
community that will be more than happy to answer your questions.

IRC channel #lift on freenode.net

IRC isn’t as popular as it once was, but you’ll still find some of the Lift
team hanging out in IRC from time to time.

http://liftweb.net
https://www.assembla.com/wiki/show/liftweb
http://groups.google.com/group/liftweb

12 CHAPTER 1 Introducing Lift
1.3.1 Lift Core and Lift Web

There are two modules that make up the central framework: Core and Web. The Core
consists of four projects that build to separate libraries that you can use both with and
without Lift’s Web module. The Web module itself builds upon the Core and supplies
Lift’s sophisticated components for building secure and scalable web applications.
The Web module itself is made up of three projects: the base web systems and two
additional projects that provide specialized helpers. Figures 1.2 and 1.3 depict the var-
ious modules and their layering.

 Let’s spend some time going through each module in figure 1.2, working from the
bottom up, and discuss their key features and functionality.

LIFT COMMON

The Lift Common module contains a few base classes that are common to everything
else within Lift. Probably most important of all, Lift Common can be used in projects
that aren’t even web applications. Utilities like Box, Full, and Empty (discussed more in
appendix C) can be exceedingly useful paradigms for application development, even if
the application isn’t using any other part of Lift. Lift Common also includes some base
abstractions that make working with the logging facade SLF4J (http://www.slf4j.org/)
much simpler.

LIFT ACTOR

Actors are a model for concurrent programming whereby asynchronous messaging is
used in place of directly working with threads and locks. There are several actor
implementations within the Scala ecosystem, and Lift has its own for the specific
domain of web development. To that end, Lift Actor provides concrete implementa-
tions of the base actor traits that are found within Lift Common (more information
on traits can be found in appendix A).

Figure 1.2 An illustration of the
module dependencies within the
Lift Core and Web subprojects

http://www.slf4j.org

13Lift features
LIFT UTILITIES

During the development of web applications, there are invariably things that can be
reused because there are common idioms in both your and other peoples’ work. Lift
Utilities is a collection of classes, traits, and objects that are designed to save you time
or provide convenience mechanisms for dealing with common paradigms.

 A good example is the handling of a time span. Consider the following code,
which defines a pair of TimeSpan instances by way of implicitly converting a regular inte-
ger value into a TimeSpanBuilder:

10 seconds
1 hour

Simplistic helpers provide an easy-to-use dialect for handling even complex subjects
like time and duration. This example shows both hour and second helpers, where
both lines result in net.liftweb.util.Helpers.TimeSpan instances.

 Here’s another example from the SecurityHelpers trait. It hashes the string
“hello world” with an MD5 algorithm:

md5("hello world")

Once again, Lift Utilities provides simple-to-use helper methods for common use
cases found within web development—everything from handling time to hashing and
encrypting values and much more.

LIFT JSON

Probably one of the most popular additions to the Lift Core grouping, Lift JSON pro-
vides an almost standalone package for handling JSON in a highly performant way.
Needless to say, JSON is becoming one of the standards within the emerging online
space, so having great support for it is quite critical for any web framework. The parser
included within Lift JSON is approximately 350 times faster than the JSON parser that’s
included in the Scala standard library—this gives Lift blisteringly fast performance
when serializing back and forth to JSON.

 You might be wondering if Lift can only parse JSON quickly, or if it also provides a
means to construct JSON structures. Well, Lift JSON provides a slick domain-specific
language (DSL) for constructing JSON objects.

 Let’s take a quick look at a basic example:

val example = ("name" -> "joe") ~ ("age" -> 35)

compact(JsonAST.render(example))

This example defines a value in the first line, which represents a JSON structure with
Scala tuples. This structure is then rendered to JSON by using the compact and render
methods from the JsonAST object in the second line. Here’s the output:

{"name":"joe","age":35}

As you can see, this is a straightforward String and Int construction from the DSL,
but we’ll cover more in-depth details of Lift-JSON in chapter 9. All you need to know
for now is that Lift’s JSON provisioning is fast and very versatile.

14 CHAPTER 1 Introducing Lift
LIFT WEBKIT

Finally we get to the central part of Lift’s web toolkit. The WebKit module is where
Lift holds its entire pipeline, from request processing right down to localization and
template rendering. For all intents and purposes, it’s the main and most important
part of Lift.

 Rather than covering the various parts of WebKit in detail here, table 1.3 gives an
extremely brief overview of each of the core components and notes the chapter that
addresses it in more detail.

Although you aren’t familiar with Lift syntax or classes just yet, the following listing
shows an example of a real-time Comet clock to give you a flavor of the kinds of things
contained within the WebKit project.

import scala.xml.Text
import net.liftweb._,
 util.Schedule, util.Helpers._,
 http.CometActor, http.js.JsCmds.SetHtml

class Clock extends CometActor {
 Schedule.schedule(this, Tick, 5 seconds)
 def render = "#clock_time *" replaceWithtimeNow.toString
 override def lowPriority = {
 case Tick =>

Table 1.3 Features of Lift WebKit

Feature Description Chapter

Snippet processing Snippets are the core of Lift’s rendering and page-display
mechanism.

6

SiteMap SiteMap provides a declarative model for defining security
and access control to page resources.

7

HTTP abstraction Although Lift typically operates within a Java servlet con-
tainer, it’s totally decoupled from the underlying imple-
mentation and can run anywhere.

8

Request-response pipeline
processing

The whole request and response pipeline is contained
within WebKit, as are the associated configuration hooks.

8

REST components REST features allow you to hook into the request-response
pipeline early on and deliver stateless or stateful web
services.

8

Secure AJAX All the AJAX processing and function mapping infrastruc-
ture lives in WebKit.

9

Rich Comet support The Comet support Lift provides is one of the main fea-
tures WebKit offers.

9

Listing 1.1 CometActor clock

Schedule
redraw

15Lift features
 partialUpdate(SetHtml("clock_time", Text(timeNow.toString)))
 Schedule.schedule(this, Tick, 5 seconds)
 }
}

With only a few lines of code, you get a clock that pushes the updated time to the
browser, so it will appear as if there’s a live clock in the user’s browser. All the complex-
ities associated with Comet, like connection handling, long polling, and general
plumbing are handled by Lift right out of the box!

1.3.2 Lift Persistence

The vast majority of applications will at some point want to save their data for later
use. This typically requires some kind of backend storage, and this is where Lift Persis-
tence comes into play. Lift provides you with a number of options for saving your data,
whether it’s a relational database management system (RDBMS) or one of the new
NoSQL solutions.

 There are three foundations for persistence, as depicted in figure 1.3; the follow-
ing subsections take a look at these base components.

LIFT DB AND MAPPER

The vast majority of applications you’ll write will no doubt want to communicate with
an RDBMS of some description, be it MySQL, SQL Server, or one of the other popular
storage systems. When you’re working with Lift, Mapper provides you with a unified
route for persistence.

 At a high level, Mapper takes a design direction that’s similar, but not completely
faithful to the Active Record pattern. Mapper provides you with an object-relational
mapping (ORM) implementation that handles all the usual relationship tasks, such as
one-to-one, one-to-many, and many-to-many, so that you don’t have to write SQL join
queries manually. But when you want to write that raw SQL, perhaps for performance
reasons or by preference, you can easily pull back the covers and write SQL directly.

 Mapper is unified into many parts of Lift and thus has several advantages out of
the box over other solutions that are available within the Scala ecosystem. Consider
this very basic example of the Mapper API and how it can be used:

User.find(By(User.email, "foo@bar.com"))

User.find(By(User.birthday, new Date("Jan 4, 1975")))

Figure 1.3 Dependency structure of persistence within Lift

mailto:foo@bar.com

16 CHAPTER 1 Introducing Lift
Notice that this code is quite readable, even without a prior familiarity with the Map-
per API. For example, in the first line, you want to find a user by their email address.
In the second line, you’re finding a user by their birthday.

LIFT JPA

The Java Persistence API is well known in the wider Java space, and, being Java, it can
work right out of the box from the Scala runtime, which shares the common JVM plat-
form. Unfortunately, because JPA is Java, its idiomatic implementation gives it a lot of
mutable data structures and other things that are typically not found within Scala
code—so much so that you might well choose to avoid writing Java-like code when
you’re working with Scala.

 To that end, a module was added to Lift’s persistence options to wrap the JPA API
and give it a more idiomatic Scala feel. This module significantly reduces the Java-style
code that you need to write when working with JPA and the associated infrastructure.
This is covered in more detail in chapter 13.

LIFT RECORD

This is one of the most interesting aspects of Lift Persistence. Record was designed
with the idea that persistence has common idioms no matter what the actual backend
implementation was doing to interact with the data. Record is a layer that gives users
create, read, update, and delete (CRUD) semantics and a set of helpers for displaying
form fields, operating validation, and so forth. All this without actually providing the
connection to a concrete persistence implementation.

 Currently, Record has three backend implementation modules as part of the
framework: one for working with the NoSQL document-orientated storage system
CouchDB (http://couchdb.apache.org/), a second for the NoSQL data store Mon-
goDB (http://www.mongodb.org/), and finally a layer on top of Squeryl (http://
squeryl.org/), the highly sophisticated functional persistence library. These imple-
mentations could not be more different in their underlying mechanics, but they
share this common grounding through Record because of the abstract semantics the
Record infrastructure provides.

 At the time of writing, Record is still fairly new. As time goes by, more and more
backend implementations will come online, and perhaps eventually the Mapper
RDBMS code will also be merged with Record.

 Here is a sample from the CouchDB implementation that queries a CouchDB
people_by_age JavaScript view:

Person.queryView("test", "people_by_age", _.key(JInt(30)))

It’s important to note that third-party backend implementations for Record are start-
ing to appear in the Scala ecosystem, and although they aren’t a bona fide part of Lift,
they’re available on github.com and similar services.

http://couchdb.apache.org
http://www.mongodb.org
http://squeryl.org
http://squeryl.org

17Lift features
UNDERSTANDING YOUR USE CASE

As you’ve probably grasped from the framework overview, Lift has many different com-
ponents, some of which overlap in their intended usage. This isn’t a legacy growing
pain, quite the opposite: it’s deliberate. With Lift there’s often more than one way to
reach an acceptable solution, and the factors that dictate which route you take are
largely application-specific and depend on the particular problem domain you’re
working with.

 Throughout the course of this book, you’ll see a range of different approaches to
solving problems with Lift. Often the different methods are equally as good, and
which you choose is a matter of preference or style. For example, in chapter 14 you’ll
learn about three different approaches to dependency injection with Scala. These
approaches ultimately achieve very similar results, but depending upon your team,
environment, or application, one may be a better fit than the others. That’s some-
thing you must experiment with for yourself to get a feel for which is going to work
best for you.

 The next section discusses some plugins, or modules of ancillary code that are also
available as part of the Lift project. They may help you in building your applications
and getting up to speed with less plumbing.

1.3.3 Lift Modules

Lift Modules is where the project houses all the extensions to the core framework.
Unlike the other groups of subprojects within Lift, the modules are more organic and
have little or no relation to one another. Each module is generally self-contained
regarding the functionality it provides.

 Rather than go through each module in detail here, table 1.4 lists the modules
available at the time of writing.

Table 1.4 Available add-on modules supplied as part of Lift

Module Description

Advanced Message Queue Protocol
(AMQP)

Actor-based wrapper system on AMQP messaging

Facebook integration API integration module for the popular social
networking site

Imaging Selection of helper methods for manipulating images

Java Transaction API (JTA) integration Functional style wrapper around the Java Transaction
API

Lift state machine State machine tightly integrated with WebKit and
Mapper

OAuth Building blocks for creating the server component
of OAuth

18 CHAPTER 1 Introducing Lift
At the time of writing, the available modules are located within a separate Git reposi-
tory (https://github.com/lift/modules), and the community is discussing making the
addition of new modules available to non–core team committers.

 If you want to create your own modules, it’s just a case of depending upon the
parts of Lift that you wish to extend. Typically this means creating a small library of
your own that depends upon WebKit and extends or implements the relevant types.
To use this custom module within another application, you only have to provide some
kind of initialization point that will wire the relevant materials into that Lift applica-
tion during startup. That’s all there is to it.

1.4 Summary
In this chapter, we’ve taken a look at both Scala and Lift and outlined their major con-
ceptual differences from more traditional web frameworks. Lift provides developers
with a very capable toolkit for building interactive, scalable, and highly performant
real-time web applications. These themes really underpin the core design goals of Lift:
security, conciseness, and performance.

 As the author of a Lift application, you don’t need to worry about the bulk of
security issues prevalent in other systems: Lift does that for you. The framework is
always there securing element names and URIs without you having to intervene. In
addition to security, idiomatic Lift application code tends to be brief and make use
of powerful Scala language features to create an API that’s readable, maintainable,
and performant.

 Lift also differs quite wildly from other frameworks available today in that it
doesn’t implement controller-dispatched views as many MVC frameworks do. Instead,

OAuth Mapper Extension to the OAuth module to use Mapper as
a backend

Open ID Integration module for using OpenID federated providers

OSGi For those who want to run their Lift app within an OSGI
container

PayPal Integration module for PayPal PDT and IPN services

Test kit Helpers for writing tests concerning the HTTP operations
in Lift

Textile Scala implementation of a Textile markup parser

Widgets Selection of helpful widgets (such as calendaring,
Gravatar, and JavaScript autocomplete)

XMPP Actor-based wrappers around XMPP message
exchange

Table 1.4 Available add-on modules supplied as part of Lift (continued)

Module Description

https://github.com/lift/modules

19Summary
Lift implements its own view-first architecture that gives you a far purer model for cre-
ating components and modularity within your code. Your rendering logic takes the
form of neat, maintainable functions rather than monolithic stacks of special classes.

 Finally, the majority of the code contained within the Lift framework is either run-
ning in production, or is a distillation from live production code. To that end, you can
have absolute confidence in Lift when building your enterprise applications.

 Without further ado, let’s move on to setting up your environment and getting
your very first Lift-powered application up and running.

Hello Lift
In this chapter, you’ll be creating your first Lift application, but before getting to
that, you need to set up your environment so you can compile and run your appli-
cation code. In order to run on the JVM, Scala code must be compiled before it can
be executed. Although it’s possible to compile Scala source code manually, it’s a
good idea to have an automated build tool that does this for you.

 If you’re coming from a dynamic language such as Ruby or PHP, you may never
have needed a build tool. Essentially, build tools automate parts of your devel-
opment and deployment processes. Typical tasks include compiling and packag-
ing code into deployable binaries, generating code documentation, and lots of
other things.

 In this chapter, you’ll be setting up the Simple Build Tool (SBT) that you’ll use
throughout this book. You’ll also see how you can get SBT to speed up your devel-
opment by generating starting points for projects, classes, and markup templates.

 Once you have your environment configured, you can get to work making
your first Lift application. Section 2.2 walks you through creating this first

This chapter covers
■ An introduction to the SBT build tool
■ Creating your first Lift-powered application
■ Snippet and templating overview
20

http://mng.bz/5tOy

21Getting started with SBT
project and explains the various component parts, their purposes, and how you can
add to them.

 The final section builds upon this introduction and explains how you can put
together your own snippets and templates.

 First, though, let’s get you set up and working with SBT.

2.1 Getting started with SBT
SBT is primarily a command-line tool and is shipped as an executable JAR file. This
section will show you how to configure that executable as a command-line system
tool, but it’s also possible to leverage it from within your IDE if that’s how you pre-
fer to work. For more information on setting up an IDE to work with Scala, see
appendix B.

NOTE Scala is fully interoperable with Java, which means that Scala is also
very conversant with the range of Java build tools, such as Maven (http://
maven.apache.org) and Ant (http://ant.apache.org). These tools have fair
support, and you can use them within your IDE of choice if you prefer.

Even though there are a variety of tools available to build your Scala code, SBT is the
most prevalent in the community, and it’s what you’ll find the majority of projects
using (including Lift). Broadly speaking, SBT is relatively fast at compiling code, it has
a simple command interface, and it’s easy to extend with simple Scala plugins, which
is likely why it has proven so popular.

 In order to set up SBT, you need to take a moment to make sure you have sev-
eral things in place. As discussed in chapter 1, Scala runs inside the Java runtime, so
you’ll need to have Java Runtime Edition (JRE) 1.5 or greater installed to work with
Lift. At the time of writing, Lift will work equally well with either Java 1.5 or 1.6, but
in future versions Java 1.5 will likely be dropped in order to tighten up the Lift API.
You can verify your Java version by opening a console window and running the fol-
lowing command:

java -version

If you have Java installed, this will output something like: java version "1.6.0_17". If
you don’t have Java, head over to the main download site (http://www.java.com/en/
download/index.jsp) and follow the instructions to install it.

 Provided Java is on your system, the first thing to do is download the SBT launcher
JAR and place it somewhere on the environment path ($PATH on Unix and %PATH% on
Windows). SBT is provided as an executable JAR file, which essentially means that the
JAR file is like a mini application; it’s a compiled archive that has the ability to be run
as a program or process. Invoking it from the command line will load Java and then
load the SBT shell.

 To get SBT, head over to the SBT downloads page and grab the latest release (http://
code.google.com/p/simple-build-tool/downloads/list). At the time of writing 0.7.7,

http://maven.apache.org
http://maven.apache.org
http://ant.apache.org
http://www.java.com/en/download/index.jsp
http://www.java.com/en/download/index.jsp
http://code.google.com/p/simple-build-tool/downloads/list
http://code.google.com/p/simple-build-tool/downloads/list

22 CHAPTER 2 Hello Lift
was the latest stable build of the 0.7.x series of SBT, but the instructions that follow
should make sense with subsequent versions of SBT.

NOTE As this book was being finished, the SBT project was starting to
release early versions of a completely redesigned version of SBT under the
0.10+ branches. Currently this series is so radically different that the configu-
ration and setup will differ from what is described here. The 0.7 series will
continue to be supported for the foreseeable future, so using it is fine, and,
when the time comes, migrating to the official 1.0 version of SBT shouldn’t
be too difficult.

SBT is a command-line application and has no out-of-the-box graphical user interface
(GUI) to speak of, so it must be executed from a console window and interacted with
from the SBT shell. In order to make executing SBT easy, it’s best to wrap it in a small
shell script (or .cmd file on Windows) that will let you execute the JAR with the simple
command sbt. This small extra step will pay dividends in your development cycle, so
let’s take a moment to set up the wrapper script, as shown in table 2.1.

Table 2.1 Setting up SBT on your development machine

Configuring SBT

Step Action Result

1 Download SBT, place it in a
well-known location, and name it
sbt-launch-VERION.jar.

Unix: We recommend putting the file in
/usr/local/bin

Windows: We recommend putting the file in
C:\scala\sbt

The downloaded SBT launcher should have exe-
cutable permissions and be in a well-known file
location.

2 Create a file in the same directory called
“sbt” and give it executable permissions.

Note: Windows users will need to call their
file “sbt.bat” or “sbt.cmd”.

3 Populate that file with the correct execution
command for your operating system.

Unix java -XX:+CMSClassUnloadingEnabled
-XX:MaxPermSize=1024m -Xmx2048M -
Xss4M -jar `dirname $0`/sbt-
launch.jar "$@"

Windows set SCRIPT_DIR=%~dp0
java -XX:+CMSClassUnloadingEnabled
-XX:MaxPermSize=1024m -Xmx2048M -
Xss4M -jar "%SCRIPT_DIR%sbt-
launch.jar" %*

23Your first Lift application
With your SBT script set up and available on your environment path, it should be pos-
sible to open a console window, type sbt, and see the following:

$ sbt
Project does not exist, create new project? (y/N/s)

If you’re prompted to create a new project, SBT has successfully been installed! For
the moment you can simply enter n as the answer to quit the shell; you’ll be creating
an application in the next section. But if you don’t see a prompt similar to the preced-
ing snippet of terminal output, please refer to the SBT installation documentation
(http://code.google.com/p/simple-build-tool/wiki/Setup).

 Providing your install went well, from here on you’ll only work with SBT from its
interactive console to execute tasks and actions. Without further ado, let’s get on with
creating your first Lift application with your fresh install of SBT!

2.2 Your first Lift application
Throughout the course of the next few chapters, you’ll be building an auction-style
application. The next chapter discusses in detail the application’s functionality, so for
the moment we’ll focus on the fundamental building blocks that form the basis of any
Lift project. This will involve creating an empty SBT project and then populating that
with the configuration required to run a Lift application. This will give you a fully
functioning (albeit very basic) Lift application that you can take forward to subse-
quent chapters. You’ll also be able to use it as a guide for building your own applica-
tions, both in terms of the steps used to create the project and in terms of the
interaction within the SBT shell.

 The next section will walk you through the commands and options involved in cre-
ating a new SBT project and also introduce a Lift community tool called Lifty (http://
lifty.github.com/Lifty/), which you can use to speed the setup of new projects. With
the project structure in place, the subsequent two sections will discuss the various
components of the default Lift application and then demonstrate how to boot the
built-in web server so you can interact with the application on your local computer.

2.2.1 Creating the project

To get started, open a console window switch, with cd, into a new working directory of
your choosing. Here you should invoke the sbt command. After doing so, SBT will
check to see if a project is already in place, and if not, it will then prompt you to create
a new SBT project. SBT determines whether a project already exists by checking for a
project directory containing a build.properties file.

 When creating a new SBT project, you’ll be prompted to answer several questions
about the new project configuration. SBT displays the defaults in square brackets next
to the question. For each line, just enter the value you would like to use, and press the
Enter key. Table 2.2 lists the things SBT will ask for and describes them, providing
some suggested values.

http://code.google.com/p/simple-build-tool/wiki/Setup
http://lifty.github.com/Lifty
http://lifty.github.com/Lifty

24 CHAPTER 2 Hello Lift
After answering the SBT prompts, the terminal should drop into a shell with a single
prompt on the left side—the > prompt that your console window is now displaying.
This is the interactive SBT shell, and this is where you must issue commands to control
your project and execute tasks. Figure 2.1 shows the full interaction with SBT involved
in creating a new project.

Table 2.2 SBT prompts and suggested values

Prompt Description

Name This value defines the name of your project. It’s also used as the
artifact identifier for the published binary. For example, having a
name of “Sample” will result in a binary named Sample.jar.

Organization This is typically the group identifier of the output application binary.
For example, Lift’s WebKit module has organization set
as net.liftweb.

Version [1.0] This is the version number you want to start your project with.

Scala version [2.8.1] At the time of writing, 2.8.1 was the latest release of Scala that
Lift officially supported, and this is what all the code samples in this
book are compiled against. The 2.7.x series of Scala is now depre-
cated.

sbt version [0.7.7] If you want to specify a newer version of SBT, you can enter it here,
and SBT will automatically find the correct JAR online from its repos-
itory and use that for this project.

Figure 2.1 Output from creating a new SBT project

25Your first Lift application
You may have noticed that SBT has generated a folder structure consisting of several
elements that manage the SBT build, providing you with a starting point for any Scala-
based application. Right now, this project can only compile standalone Scala code and
lacks the required files and configuration to support a web application.

 All SBT projects have a project definition class, or project file (typically called Project
.scala). By default, SBT doesn’t generate this because it isn’t mandatory for the most
basic Scala console applications, but in order to build a Lift web app, you’ll need to
create a project file to define dependencies and generally control the build process.
To avoid creating this manually, you can use an SBT feature called processors, which
allow SBT to pull executables from the internet to augment the default commands
that SBT ships with.

 To get started creating the project structure, you’ll use a processor to generate
the structure and default files you’ll need to start working on the application.
From the interactive shell, run this command:

> *lift is org.lifty lifty 1.6.1

This command instructs SBT to define a processor called lift; the asterisk in the com-
mand is important, so make sure you include it.

 Now, whenever lift is entered into the shell, it should use the processor actions
defined in the org.lifty.lifty JAR file that’s located on the scala-tools.org repository.
Because both SBT and Lift are hosted on the same online repository, SBT already knows
where to find the Lifty binaries. The first time you define the lift processor, there may
be a slight pause after pressing Enter, because SBT has to fetch the JAR from the online
repository. Don’t worry, though; the downloading should only take a few moments.

Now that the lift processor is defined in your SBT setup, you can invoke any of the
actions that are defined in it. For example, create is an action that takes a set of argu-
ments and can create files in your SBT project, whether it’s a single snippet or a whole
project. If you want more information about the actions available, just type lift help.
You can also get more specific information on the arguments that a specific template
requires by typing lift <name_of_template>. For example, lift create will tell you
specifically what arguments it needs and what the options are.

It’s Lifty, not Lift
Lifty is a community project developed by Mads Hartmann Jensen during the 2010
Google Summer of Code, and although it isn’t an official part of the Lift project, it has
strong links with the Lift community and team. More information about Lifty is avail-
able from the project home page (http://lifty.github.com/Lifty/).

Note that you could define the SBT processor as being called “lifty” if you wanted. It
won’t have any practical impact, so call it whatever you like. For the purposes of this
book, though, it will be called lift.

http://lifty.github.com/Lifty

26 CHAPTER 2 Hello Lift
 In order to start creating your application, you need to add the components
required for a Lift web project. Fortunately, the lift processor already knows how to
add these things, so you only need to execute the following command to populate a
blank SBT project with Lift web goodness!

> lift create project-blank

Invoking this command will prompt you for a mainpack. This is the main package
that you would like the code to be generated in. An example value could be
com.mycompany, but by default it will be the value you supplied as the organization
when you created the project. Next, it will prompt you for a Lift version; use 2.3
because all of the code samples in this book are compiled and tested against that
version of Lift. When you press Enter, Lifty will generate a set of files for your Lift
application, including the SBT project definition and all the associated elements
(which we’ll discuss shortly).

 Now you need to tell SBT about the new defi-
nition. To do this, type the following commands:

> reload
> update

These are important commands that you’ll use
pretty frequently with SBT. The reload command
tells SBT to recompile the project definition and
refresh the classpath, whereas the update com-
mand gets SBT to download the necessary depen-
dencies from the repositories defined in the
project definition.

 All Lift applications depend on a set of libraries
that contain the Lift code, and SBT automatically
downloads these for you and enables them within
the project. The required JAR files will be down-
loaded into the lib_managed directory that SBT cre-
ates. For more information on SBT and how it
handles dependencies and Scala versions, head
over to the online wiki: http://code.google.com/p/
simple-build-tool/wiki/LibraryManagement.

2.2.2 Inspecting the project

Now that you have a fresh project created, let’s take
a moment to inspect the files that were created.
The generated source tree should be quite similar
to figure 2.2.

 For readers familiar with Java web development,
you’ll notice several familiar elements in the project

Figure 2.2 A new project tree
detailing the files you’ll see after
creating a new project with SBT

http://code.google.com/p/simple-build-tool/wiki/LibraryManagement
http://code.google.com/p/simple-build-tool/wiki/LibraryManagement

27Your first Lift application
structure. In particular, the web.xml file and WEB-INF directory are standard Java web
application items. One of the great benefits of Lift is that it utilizes standard Java
deployment packages such as Web Application Archives (WAR) and Enterprise
Archives (EAR), so it can be easily deployed in your standard Java servlet containers with
no changes to code or reinvestment in business infrastructure. It just works.

 If you’re not familiar with Java web application structure, don’t worry too much;
these files are essentially default configurations that indicate to the Java web server
how it should handle the application when it’s deployed.

 Let’s take a look at generated project structure and the functions of the main com-
ponents of the source tree.

PROJECT DIRECTORY

Working from the root folder through the project tree, you should see the project
directory. This is where SBT holds the information about the application, dependencies,
and repositories. You configure the build environment with Scala code, which is fully
type-safe, and SBT won’t let you proceed if your Project.scala won’t compile. The basic
project file for the example application should look something like the next listing.

import sbt._

class LiftProject(info: ProjectInfo)
 ➥ extends DefaultWebProject(info) {
 val liftVersion = "2.3"

 val webkit = "net.liftweb" %% "lift-webkit" %
 liftVersion % "compile->default"
 val logback = "ch.qos.logback" % "logback-classic" %
 "0.9.26" % "compile->default"
 val servlet = "javax.servlet" % "servlet-api" %
 "2.5" % "provided->default"
 val jetty6 = "org.mortbay.jetty" % "jetty" %
 "6.1.22" % "test->default"
 val junit = "junit" % "junit" %
 "4.5" % "test->default"
 val specs = "org.scala-tools.testing" %% "specs" %
 "1.6.6" % "test->default"

 lazy val scalatoolsSnapshots = ScalaToolsSnapshots
}

All SBT project definitions must extend one of the bundled project types, and for web
applications that’s DefaultWebProject B. This trait supplies actions for executing a
local Jetty server for development and some other web-specific infrastructure that
you’ll need when developing a web application.

 Dependencies within your project are defined by using the percent character as a
delimiter between group identifier, artifact identifier, version, and finally the scope
that you require from that dependency C. You’ll also sometimes see artifacts that are
delimited by a double percent symbol (%%), and in this case SBT will automatically

Listing 2.1 The project definition

Extends
DefaultWebProject

B

Defines
dependencies

C

28 CHAPTER 2 Hello Lift
append the Scala version to the artifact identifier when attempting to resolve the
dependency. For example, the main WebKit JAR that this project depends upon uses
the %% notation; SBT will automatically append the Scala version, so the dependency is
resolved as lift-webkit_2.8.1.jar. This feature was added to SBT because there are dis-
tinct binary incompatibilities between different versions of Scala; this neat solution
hides having to detail the Scala version for every Scala-based dependency.

 If you’re new to dependency management, all you need to know is that you have
the scopes defined in table 2.3.

There are some additional scopes available, but these are the most common ones
you’ll use in conjunction with SBT.

SRC DIRECTORY

As the name implies, the src directory is where all the source code for your applica-
tion lives. In its main directory there are three important directories that you’ll
need to utilize during your Lift development; table 2.4 describes the purpose of
each section. The src directory contains everything that directly contributes to the
application’s functionality.

Table 2.3 Available SBT dependency scopes

Scope Description

Compile Dependencies directly required to compile parts of your code

Provided Dependencies required to compile your code but that will be provided
at deployment time, usually by the servlet container or deployment runtime

Runtime Dependencies that are required only at runtime, and not for compilation

Test Dependencies that aren’t required for normal operation of the
application, but only for testing purposes

Table 2.4 Directories created in the SBT project

Directory Description

src/main/resources The resources directory is where you can place configuration and
related files that you want to be packaged up with your application
deployment WAR. The things you place here will be on the root class-
path of the output package, so it’s usually a good place to hold things
like logging configuration or other resources that you need access to at
runtime. Lift’s configuration files (ending with .props) typically live in the
resources/props folder.

src/main/scala This is where all the Scala and Lift code you write will be placed
and managed from. By default, Lift will look for a Boot class in the
bootstrap.liftweb package within your application. In the package
name that you supplied earlier on the command line, several subpack-
ages have been created with a sample HelloWorld.scala file for illus-
trative purposes.

29Your first Lift application
There is also the test folder, but as the name implies, it only contains testing materials.
Testing is discussed in more detail in chapter 14.

 The next section will show you how to take your stub application and run it and
start playing with Lift itself.

2.2.3 Booting the application

Now that you’re fully oriented with your first Lift application, let’s get on with get-
ting it running! Fortunately, SBT comes with a built-in Jetty web server (http://
jetty.codehaus.org/jetty/) that you can use to run your application while you’re
developing it, so there’s no need to go through the process of building a WAR and
deploying to a standalone servlet container as you would do when your application
goes to production.

 Boot up your application with the following command at the SBT interactive shell:

> jetty

This will compile all your code before starting up a local Jetty server in the root of
your project; you can then visit http://localhost:8080 in your browser to see the appli-
cation running. Your application is fully functional and will operate exactly the same
in this embedded Jetty server as it will in production, which is an invaluable develop-
ment aid.

NOTE By default, SBT will attempt to start Jetty on port 8080, but in the event
that you already have something running on that port, you can easily swap to
an alternative port by overriding the jettyPort method in your SBT configu-
ration: override def jettyPort = 9090.

With Jetty now running, you should be able to open a browser window and see some-
thing similar to figure 2.3.

 In order to stop the Jetty server, press the Enter key to return to the SBT shell and
stop Jetty outputting to the console. Then type this command:

> jetty-stop

Jetty will then stop what it’s doing and shut down.

src/main/webapp This directory holds all your XHTML markup files and any associated
static resources you might want to use as part of your Lift application.
The main difference between this setup and usual Java web applications
is the templates-hidden directory. Lift has a very sophisticated templat-
ing system, and any markup files that are present in templates-hidden
can only be used for templating and not for complete pages. More on
this in chapter 6.

Table 2.4 Directories created in the SBT project (continued)

Directory Description

http://jetty.codehaus.org/jetty
http://jetty.codehaus.org/jetty
http://localhost:8080

30 CHAPTER 2 Hello Lift
There are often times when you’ll want to work on your project with the compiler run-
ning and giving you feedback on the code you’re writing at that moment. There’s a
convenient command for this:

> ~compile

This will force the compiler into a mode called continuous compilation. With continu-
ous compilation running, any files you save will automatically be recompiled. The ~
symbol can be prefixed to any SBT action, and the action will then attempt to do that
task continuously.

 Now let’s look at the basics of snippets and get an overview of Lift’s sophisticated
templating mechanism.

Avoid restarting with JRebel
During your development cycle, it can be annoying to need to restart the Jetty
server when you want to check the effect of some new changes, but, by default,
this is the only way to test out the impact of your changes. That’s where tools
such as JRebel (http://www.zeroturnaround.com/jrebel/current/) can be extremely
useful when used in conjunction with continuous compilation. JRebel lets you
dynamically reload your altered classes, removing the need to restart Jetty your-
self after each change.

JRebel is a commercial tool, but they do kindly offer a free license for pure Scala
development—all you need to do is apply online (http://sales.zeroturnaround.com/).
After you do so, they’ll send you a license that you can use when you’re developing
your Lift (or any other Scala-based) applications. Awesome!

Figure 2.3 A screenshot of the browser window after you start the local development server running
the basic Lift application

http://www.zeroturnaround.com/jrebel/current
http://sales.zeroturnaround.com

31Snippets and templating overview
2.3 Snippets and templating overview
Now you’ve seen the overall structure of a Lift application based upon the generated
project, but you haven’t yet looked at any Lift code, so you may be wondering exactly
how this all hangs together and what the code looks like. Well, several different file
groups were generated, but the two we’ll look at here form the crux of any Lift appli-
cation: snippets and templates.

2.3.1 Snippets

In chapter 1, we touched on the concept of snippets and mentioned how one of
the key principals of the view-first pattern is having small, reusable pieces of render-
ing logic. Snippets are just functions that take template markup as their input and
then transform it by executing the logic defined in that function to produce the
desired markup.

 Because snippets are just functions, they typically have an encapsulating class to
contain them. The default project you generated doesn’t have any snippet classes yet,
but you can create a new one by giving SBT the following command:

>lift create snippet

This command will then prompt you to enter a name for the snippet class and ask you
which package you would like it to be placed in. Answer these two prompts, and then
Lifty will generate a new snippet class.

 If you called the snippet class HelloWorld, the newly created file would have the
definition displayed in the following listing.

package example.travel.snippet

import scala.xml.NodeSeq
import net.liftweb.util.Helpers._

class HelloWorld {
 def render = "*" #> hello world!
}

This is a simple Scala class featuring a single snippet method that defines what is
known as a CSS transformer B. These CSS transformers are essentially functions of
NodeSeq => NodeSeq and are supplied by importing the Helpers._ object, which con-
tains the right implicit conversions.

 Scala referrers to XML as a NodeSeq; that is, a sequence of XML nodes. You can
think of snippet methods as things that take in XML, transform it, and then yield an
XML output. In listing 2.2, the render method will replace the snippet call site with
the words hello world in bold. CSS transformers are discussed in depth in chapter 6, but
just be aware that it’s possible to use them to replace or transform the nodes you select
with the computed dynamic values that feature in your snippet.

Listing 2.2 Default HelloWorld snippet

Import implicit
helpers

Begin snippet
definition B

32 CHAPTER 2 Hello Lift
Let’s take this example a little further and illustrate exactly what the snippet method is
doing. Consider the following markup:

<p lift="HelloWorld.render">Replace me</p>

This markup calls the render snippet on the HelloWorld class, so assuming this
XML is passed into the render method from listing 2.2, the resulting markup would
be as follows:

hello world!

The entire <p /> node has been replaced with the node. Although this is a
simple example, it’s a very powerful concept, and it means that absolutely zero code
makes it into your markup templates—they always remain fully valid XHTML files.

 You may already be wondering how it is that these templates trigger the right
snippet transformations. Well, Lift has several methods for resolving snippets to
actual Scala code, but the one that we’ll be focusing on for the moment is reflection-
based lookup.

 Lift can be very clever about the snippet markup so that it remains idiomatic no
matter how you like to work or what your conventions are. Given the snippet in list-
ing 2.2, any one of the following would be a valid snippet call in your template.

<div lift="HelloWorld.render">...</div>
<div class="l:HelloWorld.render">...</div>
<div class="lift:HelloWorld.render">...</div>
<lift:hello_world.render><p>Replace me</p></lift:hello_world.render>
<lift:HelloWorld.render><p>Replace me</p></lift:HelloWorld.render>
<lift:helloWorld.render><p>Replace me</p></lift:helloWorld.render>
<lift:snippet type="HelloWorld:render"><p>Replace me</p></lift:snippet>

Lift uses reflection and some basic name translation rules to look for the correct class,
and then uses that to transform the input markup to the desired output markup,
which is then piped back into the rendered output to the browser.

 Although this fundamental concept of transforming XML is a simple one, it can be
very powerful when you’re building web applications, and Lift uses the same snippet
mechanism for implementing many parts of its default infrastructure. A primary

Implicit conversions
The Helpers object from Lift Utilities contains a whole set of functions that are
somewhat special to the Scala compiler. The functions are known as implicit con-
versions, and what that essentially means is that given a function that knows how
to turn type A into type B, the compiler will automatically apply that function at the
right time. This allows you to build APIs that call seemingly nonexistent functions
on particular types.

In listing 2.2, String doesn’t have a definition of #> but the compiler knows how
to take a String and wrap it in such a way so that it’s the right type to satisfy the
call to #>.

33Snippets and templating overview
example of that would be Lift’s templating support, which is built upon the very same
snippet mechanism.

2.3.2 Templating overview

Templates in Lift are always fully valid XHTML or HTML5 markup. Lift doesn’t let you
write invalid markup. Even though templates are just XML without any executable
code, templates have a lot more functionality than just being a place to invoke your
own application snippets.

 In the same way that Lift helps keep your server code cleanly separated, Lift
offers some convenient helpers for your templates via some built-in snippets. These
snippets let you modularize your template code and promote reuse of both markup
and Scala code.

 More often than not, your application will use either a single or small collection of
top-level templates that contain the majority of the markup. Each page has a much
smaller template that contains the static content and calls to whichever snippets are
needed to provide the various dynamic items for the page. These smaller page frag-
ments are wrapped with what is referred to as a surround, in order for them to inherit
the full-page template. Surrounds can wrap other pieces of template markup to con-
struct a hierarchical structure within the template so each page has only the minimum
markup required to render the page.

 The following listing is an example of a template that could have page content
inserted by individual pages at the bind point called “content.”

<html xmlns=http://www.w3.org/1999/xhtml
 xmlns:lift="http://liftweb.net/">
 <head>
 <title>demo:demo:1.0-SNAPSHOT</title>
 </head>
 <body>
 <lift:bind name="content" />
 </body>
</html>

Listing 2.3 defines a binding point B for specific page content to be injected into,
and the handle with which you can reference it with later is content. That is to say,
pages can declare surrounds that bind to content, and their markup will be
replaced at that location. It’s important to note that you can have as many binding
points as you like in any given template, and not all the points have to be used in a
given page rendering.

 From the page-level perspective, each template (for example, index.html) can
specify the surrounding template that it will be wrapped with. Importantly though,
each child template can only have a single root element, because otherwise it would
be an invalid XML document.

Listing 2.3 Example of a template surround

Binding point referenced
by “content”

B

http://www.w3.org/1999/xhtml
http://liftweb.net

34 CHAPTER 2 Hello Lift
 An example of using a surround in a page can be seen in the following markup:

<lift:surround with="default" at="content">
 <h2>Your content goes here</h2>
</lift:surround>

The purpose here is to wrap the <h2>...</h2> code (the particular page content)
with the broader page template defined in templates-hidden/default.html. Together
they make a full page, inclusive of content.

 The surround snippet takes two parameters. The first is with, which defines the
template to wrap the content with. In this case, "default" refers to the template
located at src/main/webapp/templates-hidden/default.html. By default, your sur-
round, or parent, templates need to be located in templates-hidden in order for Lift
to actually find them. The second parameter is at, which defines the reference name
of the binding point in the parent template. Essentially, you’re telling Lift to take this
content and insert it into the parent at a given location based on the <lift:bind />
element discussed in listing 2.3.

 In addition to the functionality provided by surrounds, you might find you need to
insert markup from another template while building your application, to avoid dupli-
cation of markup. For example, a form for adding a product to a system would be
much like a form for editing that product in a different section of the system. Lift has
this covered; here’s an example of using template embedding:

<lift:embed what="/foo/_bar"/>

This call to <lift:embed> allows you to arbitrarily embed templates into one another
so you don’t have to worry about duplicating your presentation code. The what
attribute parameter takes a path from the root of the webapp directory; in this case, it
would include the content from the template in the src/main/webapp/foo/
_bar.html file. This can be an extremely effective technique and can really assist you in
not repeating yourself in the application markup.

 Whether you’re embedding or surrounding content, another common idiom that
most applications require is to have page-specific items such as JavaScript and CSS ele-
ments in the <head> of a page. Lift has some nifty tooling for this. All you need to do
is define the <head> element inside of a surround element, and Lift will automatically
merge that content with the top <head> element. Consider this example:

<lift:surround with="default" at="content">
 <head>
 <script type="text/javascript"
 src="thing.js"></script>
 </head>
 <h2>Whatever Page</h2>
 ...
</lift:surround>

In this code block, notice how the sample JavaScript file detailed at B is enclosed in the
<head /> element. When Lift runs this template, it will realize that the head element is

Demo JS
fileB

35Summary
present and merge its child nodes with the top-level head element so that all your page-
specific resources sit where they should.

 Alternatively, if you prefer to speed the page loading and place a file before the clos-
ing <body> tag, as is the current fashion, Lift also supports this via the <lift:tail />
snippet. The functionality is the same as the head merge, but it instead places content
just before the closing </body> tag.

 These are a few of the out-of-the-box tools Lift supplies for working with dynamic
content and page markup. There are a whole set of additional tools that are covered
in chapter 6.

2.4 Summary
In this chapter, you built a basic, but fully functioning, Lift application with SBT. In
addition, you’ve had a high-level overview of some of Lift’s templating and snippet
functionality. You should now have a good idea of how a Lift application is assembled
and be aware of some of the high-level components that can be used to get it off the
ground. These include the powerful concept of snippets that transform input XML to
dynamically rendered output, and the way Lift assists you in keeping your template
code concise and empowers you to not repeat yourself.

 Importantly, though, you put in place the building blocks for the main application
that you’ll be building during the course of the book. In the next chapter, you’ll
enhance the application and start to design and implement some of the core func-
tionality. This will take us deeper into Lift’s snippet system, and you’ll learn about
database connectivity with Mapper.

Part 2

Application tutorial

Now that you’re up to speed with the basics of working with Lift, we can
pick up the pace and really delve into the framework, demonstrating some of
the awesome features it has. In order to do that effectively, we’re going to
build on your new skills by creating a full-blown application for purchasing
last-minute vacations.

 In chapter 3, we’ll outline the functionality of the tutorial application and
we’ll build the first stage of the administration site. This will include an intro-
duction to Mapper, Lift’s ORM implementation, so you can insert information
into the database. We shall also be touching on CRUDify, Lift’s super-slick scaf-
folding functionality.

 Chapters 4 and 5 will show you how to implement Lift’s highly integrated
Comet and AJAX support to create a real-time bidding system and shopping cart,
which will let users bid for last minute holiday deals and pay through PayPal.

The auction application
In order to firmly root your understanding of Lift in the real world, we’ll create a
full-blown auction application. This part of the book will walk you through the first
part of building this application, which, among other things, includes a basic AJAX
shopping cart, several real-time components, and a checkout via PayPal. As we go
through each chapter, adding new elements of functionality, you’ll learn about
many of Lift’s features.

 The first two sections in this chapter present an overview of the application
you’ll be constructing. This includes a breakdown of the application’s pages and
their functionality, along with how you could integrate content supplied by a fron-
tend design team into your Lift templates.

 The last three sections deal with defining and constructing the data model
using Lift’s object-relational mapping (ORM) tool: Mapper. These sections also

This chapter covers
■ Auction application requirements
■ Segmenting XHTML templates
■ Defining data models and validation with

Mapper
■ Scaffolding with CRUDify
39

40 CHAPTER 3 The auction application
show how you can leverage some of the traits within Mapper to get up and running
quickly via the Mapper scaffolding, including making a user-registration facility with-
out writing too much boilerplate code. Finally, the last section touches on validation
and demonstrates how you can add custom rules to your Mapper models.

3.1 Application requirements
Before starting to code any application, it’s important to sketch out your requirements
and have an idea of how you would like the page flow to operate in the completed
product. Sure, things are bound to change during your development cycle, but it’s
likely that the overall aim won’t have changed much. The auction application is no
different in this respect, so let’s take a moment to outline our aims and get a feel for
what the finished product will be able to do.

 The auction application aims to provide its users with auctions on travel. The sup-
pliers will post travel offers into the system that users can then bid for in real time,
which means they can see other users’ bids as they happen. Upon winning a round of
bidding, the trip is then entered into the user’s shopping cart, and they can either
continue to bid on other auctions or check out through PayPal. This is a fairly typical
format for a lot of ecommerce applications.

3.1.1 Frontend

Let’s walk through an outline of the application’s page flow, as shown in figure 3.1.
This will help us visualize the functionality and user experience before we start defin-
ing data models and so forth.

GLOBAL ELEMENTS

As visitors navigate through the site, we need to provide them with some common ele-
ments in order to keep the interface intuitive and easy to use.

 The first common element will be the shopping basket. Each customer using the
application will have an associated order that consists of auctions they successfully bid
on; it’s the usual shopping cart setup that most users will be familiar with. As users
might already be in a bidding war but not actually be on the site when the auction is
over, use of Lift’s state machine to ensure that any auctions the users wins while the
site isn’t loaded in their browser will be properly attributed to them.

 Every page will also include a dynamically generated navigation menu powered by
Lift’s SiteMap functionality. This might not sound like a particularly important thing
to list at this stage, but all will become clear as you move through the book and delve
deeper into the operation of SiteMap.

HOME PAGE

As with all good applications, the home page will give a flavor of what’s happening
on the site and give a short list of the most recent auctions posted by suppliers. Vis-
itors can either click through to a specific auction or just move on to the main auc-
tion listing.

41Application requirements
AUCTION DETAIL AND BIDDING

We finally reach the most substantive part of the application. The detail page is where
item information is displayed, and it’s where users can make bids on auctions.

 The auction will have several components, but most importantly it will count down
until its closing time in real time. Moreover, any bids that are submitted by other users
while the current page is loaded will automatically be reflected in the open page,
informing the user that they have been out-bid.

CHECKOUT

When a user has at least one successful auction in their shopping basket, they can
check out to render payment to the travel company and complete the transaction. For
the purposes of this example application, you’ll be using the online payment provider
PayPal to collect payment. Assuming the user successfully pays for their items, PayPal
will call back to your application and use the out-of-the-box Lift integration for PayPal.
You can wire up your own handlers to collect information about that transaction and
detail the specifics of the purchases.

3.1.2 Administration

Any good application needs a content-management system from which the adminis-
trators can manage the day-to-day running of the site. We’ll be building a small admin
area that allows administrators to do the following:

Figure 3.1 The application
page flow. The items with
dotted borders are
asynchronous.

42 CHAPTER 3 The auction application
■ Log into the admin area using HTTP authentication.
■ Add new suppliers to the system, including information about their services.
■ Specify new auctions for a particular supplier. This is really the core of the sys-

tem, and the administrator must supply information about the closing date of
the offer, a detailed description of the auction, and potentially a picture that
might entice users to bid on the auction.

Figure 3.2 outlines the administration structure as a tree.
 Generally speaking, the administration side of this application will essentially be a

create, read, update, delete (CRUD)-style data entry system. The only real exception to
this is the order management, which will be customized rather than using Lift’s
CRUDify scaffold mechanism.

Figure 3.2 Page flow for the administration aspect of
the application

43Template structure
Now that we’ve covered the broad-stroke requirements, we can begin to assemble the
application. It’s highly likely that real-world requirements will change during each
iteration of development, but this outline should provide enough contextual informa-
tion to get started with the first cycle. Lift aims to let you be as flexible as your business
requirements need you to be.

3.2 Template structure
Most applications you build in the real world will require some creative input from a
designer or user experience guru, and more often than not, the designers will come
up with layouts that can be tricky for developers to implement. Lift can help you, by
making it easy to not repeat yourself in markup code and to create complex tem-
plate hierarchies.

3.2.1 Design workflow

Lift has a great set of features for dealing with the design workflow and letting you cre-
ate highly modular code. We’ll apply a design to the auction application and demon-
strate how to use Lift’s templating features in a real scenario.

 Figure 3.3 displays the implemented design of this auction application. The design
is relatively complex and very design-led, with several elements that will be common
across multiple pages, such as the shopping basket and stylized frame that surrounds
the page content.

 Traditionally, designers have worked in an isolated workflow and have usually sup-
plied everything to the developers. The developers then have to make any frontend
changes themselves, or face the prospect of sending their templates back to the
designers, complete with server-side code; more often than not, the designers unwit-
tingly break critical application functionality while making design alterations.

 Lift’s templating is based on HTML, and no executable code can slip into the view
at all. Instead, Lift developers have some new ways of interacting with designers. When
working with Lift, you are always working with fully valid HTML templates, so when
designers check their pages for validity, both the designers and developers can have
confidence that nothing has inadvertently been broken. This approach can also lead
to a more iterative creative process, compared to the “throw it over the wall” approach
that’s currently practiced by most dev shops.

3.2.2 Template setup

Upon receiving the design from the creative team, you can divide up the design into
its component pieces so that the presentation code required for implementing each
page is as minimal as possible. Figure 3.4 shows how the nesting and embedding rela-
tionships between the surrounding templates and the markup fragments work.

 The top level surround is base.html, which carries all the top-level content that
makes up a normal web page, such as the <head> element and other wrappers that
don’t change for each page.

44 CHAPTER 3 The auction application
On the next level of nesting, we have three templates to choose from in our pages,
depending on the content that needs to be displayed:

■ default.html has the left sidebar and main body content column.
■ wide.html has no left-hand sidebar, and the main content column spans the

whole width.
■ splash.html is used for pages that need space for a halo banner and two col-

umn layout.

Figure 3.3 The design of the index page for the auction application, as supplied by the designers

45Template structure
In this application, spash.html is only used on the homepage, but it’s completely feasi-
ble that in a full application you might need to reuse this layout elsewhere, so it
deserves its own surround template.

 Below the surround templates are the markup fragments that can be embedded in
any page that requires them. The basket functionality is going to be the same no mat-
ter which wrapper it needs, so we have _basket.html containing the actual basket func-
tionality that lists the won auctions, and then we have _dark_basket.html and _light_
basket.html, which are slightly different designs around the same actions.

 Before finishing with templating, it’s important to note one of the key “got-
chas” that most new Lift users encounter: new page templates resulting in 404
errors in the browser. Lift has a component called SiteMap that we briefly discussed
in chapter 1, and which is fully explored in chapter 7. It’s a very powerful feature
for managing page access, and unless a page (something you want to be accessible
by users) is defined in the SiteMap definition, Lift will yield a 404 Not Found error.
Ergo, make sure you add any pages you define to your SiteMap, as shown in the
next listing.

import net.liftweb.sitemap.{SiteMap,Menu}

val sitemap = List(
 Menu("Home") / "index",
 Menu("Auctions") / "auctions"
)
LiftRules.setSiteMap(SiteMap(sitemap:_*))

This code should be placed in the Boot.boot method in order to initialize and config-
ure the SiteMap. Note that each page is given a title and then expresses the full the URL

Listing 3.1 Example SiteMap entries

Figure 3.4 Template nesting
relationships

46 CHAPTER 3 The auction application
that resource uses. Do be aware that once you set up a SiteMap, you need to add all
pages to it if you want them to be accessible. We’ll discuss this further in chapter 7.

 We’ve now covered the overall structure of the application and you’ve had a
glimpse of the template setup and workflow. In the next section, we’ll add the founda-
tion for the data model with Mapper, which will eventually power all the rich compo-
nents you’ll be adding to this application.

3.3 Data models
In order for the application to actually do anything worthwhile, it needs to be able to
persist and retrieve data. To that end, let’s add some code to the project to connect
to the database and build the tables that will power the auctions. We’ll start by defin-
ing the models and generating the schema, and ultimately connect with the database
to make queries and retrieve useful data.

 Before getting into writing any Mapper code, be sure to add the dependency to
your SBT project definition as shown:

val mapper = "net.liftweb" %% "lift-mapper" % liftVersion

Don’t forget to run reload and update from the SBT shell in order to refresh the
project dependencies.

3.3.1 Schema definition

For this auction application, we’ll be implementing an Active Record pattern using
the Mapper ORM that’s included as part of Lift. Figure 3.5 shows an entity-relationship
diagram (ERD) detailing the models you’ll be building. You’ll need to add more fields
than are in this diagram as we continue, but this is a good starting point.

NOTE For more information on the Active Record architectural pattern, see
the Wikipedia entry: http://en.wikipedia.org/wiki/Active_record_pattern.

This type of ERD should be familiar to most developers: it communicates the relation-
ships the tables will have to each other. For instance, one auction has many bids.
When working with Mapper, you define your model classes and let a special object
called Schemifier know about the new model. Lift will then automatically create the
tables in the database for you.

NOTE When working with the sample code, the first time you boot the appli-
cation, it will automatically generate an appropriate data set for you to play
around with. You don’t have to worry about initial data entry.

The first thing you need to do is define the Supplier class and add it to the
Schemifier. In chapter 2 you used the Lifty SBT helper to create a whole project
structure from scratch, and this same helper can generate the Supplier model for
you. Simply run the following command in the SBT shell:

> lift create mapper Supplier

http://en.wikipedia.org/wiki/Active_record_pattern

47Data models
This one line of code will generate the Supplier.scala file. You can then add the fields
as in the following completed Supplier model.

object Supplier extends Supplier with LongKeyedMetaMapper[Supplier]{
 override def dbTableName = "suppliers"
}

class Supplier extends LongKeyedMapper[Supplier]
 with IdPK
 with CreatedUpdated
 with OneToMany[Long, Supplier] {
 def getSingleton = Supplier
 object name extends MappedString(this, 150)
 object telephone extends MappedString(this, 30)
 object email extends MappedEmail(this, 200)
 object address extends MappedText(this)
 object openingHours extends MappedString(this, 255)
 object auctions extends MappedOneToMany(Auction, Auction.supplier,
 OrderBy(Auction.close_date, Descending))

Listing 3.2 Supplier model definition

Figure 3.5 An entity-relationship diagram detailing the data flow you’ll implement using Mapper

48 CHAPTER 3 The auction application
 with Owned[Auction]
 with Cascade[Auction]
}

Mapper uses a class and companion object idiom so that all model objects have the
ability to call static methods and instance methods. For example, you could call
Supplier.findAll to get a list of all the suppliers in the database. This chapter only
covers some of the things you need to get going with Mapper, and saves the detailed
explanations for later on.

 The definition in the following listing is somewhat daunting the first time you see
it, but don’t worry, it can be easily explained.

class Supplier extends LongKeyedMapper[Supplier]
 with IdPK
 with CreatedUpdated
 with OneToMany[Long, Supplier]

LongKeyedMapper is a special Mapper type that forms the basis of your model; it has an
RDBMS underneath, and it will work with a table that has a Long as the primary key.
Most applications use tables that have some kind of auto-incrementing primary key, so
this should be fairly familiar.

 Next, IdPK is a trait that tells Mapper to create a primary key column called
id. This is a convenience trait for yet another common idiom when defining Map-
per entities.

 The CreatedUpdated trait automatically adds and manages two fields called
createdAt and updatedAt to whichever Mapper classes it’s composed with. This is a
helpful idiom in most situations as it allows you to keep track of the insert and modifi-
cation dates of any given table row.

 Finally, the OneToMany[Long,Supplier] trait indicates that this model is related to
another model type—in this case, the Auction type. Specifically, the OneToMany trait
allows you to add a MappedOneToMany field to the model definition, which you’ll hear
about shortly. With the exception of defining relationships, all Mapper fields are
defined something like this:

object name extends MappedString(this, 150)

This field definition represents the underlying Name column in the database. It
extends MappedString, which is another Mapper type that knows how to operate
with different text fields for different databases, such as nvarchar in SQL Server and
varchar in MySQL. All the other field definitions extend some kind of MappedField
type, which keeps your model definitions database agnostic.

 In order to make this Supplier class fit into the ERD in figure 3.5, you need to
relate it to the Auction class. This relationship is mapped to the usual foreign key
setup under the hood and is implemented using MappedOneToMany. MappedOneToMany
is a class in Mapper that takes the companion object you wish to connect to and the

Listing 3.3 Class definition type composition

49Data models
field you wish to be the foreign key on the target—in this case Auction.supplier. As
you can also see from the following code snippet, we pass a QueryParam called
OrderBy. It’s obvious what this modifier does, but the interesting thing here is that you
are also able to compose the Owned and Cascade traits into the MappedOneToMany for
additional functionality.

 This is the relationship definition to relate the Supplier class to the Auction class:

object auctions extends MappedOneToMany(Auction, Auction.supplier,
 OrderBy(Auction.ends_at, Descending))
 with Owned[Auction]
 with Cascade[Auction]

With the Auction class defined, we now need to let Lift know about it so that it can
automatically create the table in the database when the application is booted up for
the first time (when the tables don’t already exist). This is done by invoking a special
Mapper object known as Schemifier, which is done with the following line of code in
the Boot class:

Schemifier.schemify(true, Schemifier.infoF _, Auction, Bid, Customer,
 Order, OrderAuction, Supplier)

Notice that the argument list includes some models that we haven’t explicitly covered.
Rather than cluttering these pages with lots of code definitions that are largely similar
to the Supplier model, you can find the code for the other models in the online
repository on github.com (http://github.com/timperrett/lift-in-action).

3.3.2 Connecting to the database

You may have noticed that we currently have code that compiles but won’t actually do
anything, because no database connection has been defined. Because Lift runs in any
servlet container, you have several options for getting a database connection, just as
you would in a traditional Java application. In this section, we’ll only deal with a direct
application connection to the database, but the other options are covered in full in
chapter 10.

 In order to make a direct application connection to the database you need to add
three declarations to your application’s Boot class and call some of the helpful Lift
connection wrappers. The next listing shows an example of the code you’ll need to
implement to create the connection.

import net.liftweb.mapper.{DB,DefaultConnectionIdentifier}
import net.liftweb.http.{LiftRules,S}

DB.defineConnectionManager(DefaultConnectionIdentifier, DBVendor)

LiftRules.unloadHooks.append(
 () => DBVendor.closeAllConnections_!())

S.addAround(DB.buildLoanWrapper)

Listing 3.4 Boot configuration to connect to the database

http://github.com/timperrett/lift-in-action

50 CHAPTER 3 The auction application
For completeness, we have included the import statements so that it’s clear where
the various types are held. First, the call to DB.defineConnectionManagger creates
the wiring between the application-specific DBVendor (defined in the next code
snippet) and Lift’s connection manager. The next two lines detail what Lift should
do during the shutdown process in order to cleanly close any database connec-
tions. Finally, configure Lift’s specialized loan wrapper so that database operations
conducted on the DefaultConnectionIdentifier are transactional for the whole
HTTP request cycle.

NOTE Lift’s specialized loan wrapper makes use of the Scala Loan pattern.
For an introduction to the loan pattern please see: http://jimplush.com/
blog/article/185/Loan-Shark---Using-the-Loan-Pattern-in-Scala

To complete the picture, consider the definition of DBVendor, which was specified as
an argument to DB.defineConnectionManager in listing 3.4:

object DBVendor extends StandardDBVendor(
 Props.get("db.class").openOr("org.h2.Driver"),
 Props.get("db.url").openOr("jdbc:h2:database/chapter_3"),
 Props.get("db.user"),
 Props.get("db.pass"))

This object definition extends the StandardDBVendor trait from Lift’s Mapper.
StandardDBVendor provides the default behavior desired for database connections,
such as connection pooling and connection reaping. This is a convenience setup so
that pretty much everything is taken care of for you. This DBVendor pulls its con-
nection string and credentials from a properties file unless the file and key pair
don’t exist, in which case it will failover to using the file-based H2 database.

3.4 Scaffolding
During the development cycle, having some form of scaffolding that can get you up
and running can be extremely helpful. Your client will see quicker results, and you
can spend time focusing on business logic rather than common idioms like user regis-
tration. There are two forms of scaffolding in Lift:

■ Prototype traits for inheriting common functionality into your implementation
■ CRUDify for generating CRUD-style interfaces for common use cases

These two options differ quite significantly, so we’ll cover them separately.

3.4.1 Prototype traits

This type of scaffolding usually confuses newcomers to Lift. Rather than there being
just one type of trait, the Prototype traits are a common idiom throughout the whole
Lift framework, from ProtoUser, which handles user registration complete with
signup forms and validation emails, right through to ProtoStateMachine, which gives
you scaffolding for building complex state machines!

http://jimplush.com/blog/article/185/Loan-Shark---Using-the-Loan-Pattern-in-Scala
http://jimplush.com/blog/article/185/Loan-Shark---Using-the-Loan-Pattern-in-Scala

51Scaffolding
 In our auction application, we want customers to register for our auction site so we
know who’s bidding on the deals offered by suppliers. That means we’ll need to create
customers, so let’s take a look at ProtoUser and see how we can implement it in our
Customer class.

 If you remember earlier in this chapter, listing 3.2 defined the whole Supplier
class and its companion (or meta) object. It was important to define the desired
fields in the underlying table, but the Customer class we’re going to implement with
ProtoUser already knows about a selection of fields that are commonly imple-
mented in user-orientated workflows. The following listing shows the Customer class
implementing ProtoUser.

object Customer extends Customer
 with KeyedMetaMapper[Long, Customer]
 with MetaMegaProtoUser[Customer]{

 override def dbTableName = "customers"
 override val basePath = "account" :: Nil
 override def skipEmailValidation = true
}
class Customer extends ProtoUser[Customer] {
 def getSingleton = Customer
}

The basePath definition sets the URI at which the user actions will be available B. In
this case, it will let users sign up at /account/sign_up. The method override for
skipEmailValidation tells ProtoUser that it doesn’t need to validate the registered
email address C. Listing 3.5 demonstrates that you don’t need to define any addi-
tional fields in the Customer model because things like first name, last name, email,
and so forth are all included as part of ProtoUser. Very handy!

 The usefulness of ProtoUser doesn’t stop there because ProtoUser subtypes can
also wire themselves up to the application SiteMap, as shown in the next listing.

val sitemap = List(
 Menu("Home") / "index",
 Menu("Search") / "search",
 Menu("History") / "history"
) ::: Customer.menus

This code takes the existing SiteMap and appends the menus defined by Proto-
User. This will provide you with a nice Sign Up link on the navigation bar and allow
access to the Sign Up, Login, and Logout pages you’ll need for user control. Proto-
User has a range of configuration options for its integrated SiteMap locations, and
we encourage you to check the documentation and customize ProtoUser to meet
your needs.

Listing 3.5 Full customer class

Listing 3.6 Wiring up ProtoUser types to SiteMap

Base location URIB

Skip email
validationC

52 CHAPTER 3 The auction application
With ProtoUser, you get a fair amount of functionality with little coding, but this isn’t
quite the end of the story. If you were to boot up the application right now and click
on the Sign Up link, you’d see a rather unsightly mess, similar to figure 3.6.

 To make ProtoUser useable, you need to specify some rendering particulars so
that the output of ProtoUser is skinned properly and fits in with your design. In the
auction application, we have to override the screenWrap method in the Customer
class. The following listing shows the overridden method you need to add to the
Customer definition.

override def screenWrap: Box[Node] = Full(
 <lift:surround with="default" at="content">
 <div id="box1" class="topbg">
 <lift:msgs showAll="true" />
 <lift:bind />
 </div>

Listing 3.7 ScreenWrap addition to the Customer class

Figure 3.6 The ProtoUser configured with no template is unsightly. This is easily fixed by
specifying your own template surround.

Boxed XML
contentB

53Scaffolding
 <lift:with-param name="sidebar">
 <lift:embed what="_light_basket" />
 </lift:with-param>
 </lift:surround>
)

Here we override the screenWrap method and define a boxed scala.xml.Node. Box
types are covered in appendix C, so don’t worry about what the call to Full is doing
right now B. Just understand that it’s essentially telling Lift that a template is present
that it should use. In addition, this code is beginning to use some of the templating
techniques discussed at the start of this chapter, but the only real difference is that
here the templating is defined inline in the model rather than in a separate HTML
template, which would be more typical in production Lift applications.

With the screenWrap method in place, running jetty-run at the SBT prompt should
now give you a very nice-looking form, similar to the one displayed in figure 3.7. It’s
fully functional and ready to accept new user registrations.

 The signup form is now fully operational; once you register, Lift will log you in and
redirect you to the home page of the application. The Sign Up link will also disappear
from the SiteMap-powered menu at the top of the page.

3.4.2 CRUD generation

The second type of scaffolding in Lift is somewhat different from the Proto traits that
we looked at previously. It’s called CRUDify and it works by a simple composition on
any Mapper class. As the name implies, it provides an interface that allows you to cre-
ate, read, update, and delete records. In many ways, it’s an extension to ProtoUser; it
just provides more complete functionality.

Template code in models? Are you crazy?
Template code in a model is something that newcomers find difficult to
accept. Yes, that’s indeed putting view code inside the model class in server
code, not in a template. But it’s critical that you understand that this isn’t the
primary pattern in Lift. Binding through snippets keeps a clean separation
between view and logic, and we’re putting this markup inline with our code for
one reason: productivity.

The Proto-series traits are a starting point, not an ending solution. In many ways,
they’re similar to Rails’ scaffolding: they boost productivity in the short term, but
in the long term you’ll outgrow them and gradually factor them out of your applica-
tion, either by replacing with your own code or perhaps with code from some plu-
gin or library.

Don’t be scared when you see this approach—embrace it for what it is and con-
tinue with your application build at full steam.

54 CHAPTER 3 The auction application
In our auction application, we want to have an administration part of the site where
administrators can add suppliers, new auctions, and so forth. It needn’t be fancy—we
just want a quick and easy way to achieve this. Here, CRUDify is a perfect fit.

 The original Supplier class defined back in listing 3.2 only needs a few modifica-
tions to its companion object in order to implement the CRUDify functionality. The
next listing shows the modified Supplier class.

object Supplier extends Supplier
 with LongKeyedMetaMapper[Supplier]
 with CRUDify[Long,Supplier]{

 override def dbTableName = "suppliers"
 override def pageWrapper(body: NodeSeq) =
 <lift:surround with="admin" at="content">{body}</lift:surround>
 override def calcPrefix =
 List("admin",_dbTableNameLC)
 override def displayName = "Supplier"
 override def showAllMenuLocParams =
 LocGroup("admin") :: Nil
 override def createMenuLocParams =
 LocGroup("admin") :: Nil
}

Listing 3.8 Supplier class including CRUDify

Figure 3.7 Sign-up form complete with surround

Implement
CRUDify

B

Configure
CRUDify

C

55Scaffolding
Implementing CRUDify is quite easy given an existing Mapper model. In this exam-
ple, B defines the composition of the CRUDify[Key,Model] trait by mixing it into
the meta object using the with keyword. In order to have the Supplier class render
CRUDify pages with the same theme, you need to instruct it on how to wrap the page
content, as defined by the pageWrapper method, which will give the page the admin-
istration template rather than use the default frontend template.

 Because you also want this CRUD feature to be accessible as part of the admin back-
end of the site, overriding calcPrefix lets you specify a context from which to gener-
ate the subordinate pages. Finally, when the CRUDify locations are hooked into the
application SiteMap and rendered with the backend interface (which has a menu
snippet that only loads items from the admin location group), it’s important to let the
CRUDify trait composed into Supplier know that these menu items will also be part of
that group C.

 With all this being said, the code in listing 3.8 currently doesn’t do anything,
because there’s no way of accessing this great new functionality. In order to rectify this
situation, you need to add some items to the SiteMap definition so that the CRUDify
options appear in the administration menus. Moreover, it’s important to differentiate
between the public menu system and the administration menus, so you need to utilize
a special LocParam class called LocGroup.

 The new SiteMap definition is shown in the next listing.

val sitemap = List(
 Menu("Home") / "index" >> LocGroup("public"),
 Menu("Admin") / "admin" / "index" >> LocGroup("admin"),
 Menu("Suppliers") / "admin" / "suppliers" >> LocGroup("admin")
 submenus(Supplier.menus : _*),
) ::: Customer.menus

Note that the primary change to the SiteMap has been the addition of a special loca-
tion parameter, or LocParam, to the menu items that identifies each page location as
being part of a logical group. For example, the Home location is part of the public
group, whereas the administration pages are part of the admin group. These Loc-
Groups allow you to select groups of menus in different areas of the application from
the individual pages as needed.

 Finally, much like you previously added the Customer menus from ProtoUser,
CRUDify can also wire itself into SiteMap. Because the Supplier menus need to be
subordinate to the top-level supplier menu structure, you can simply call the sub-
menus method and pass the list of menus from the built-in CRUDify trait composed
into Supplier.

 Figure 3.8 shows a screenshot of the admin interface. It includes some very simple
CSS so it isn’t quite as visually plain, but nothing fundamental has been changed other
than the styling. You can see the CRUDify menus featured in the top navigation bar.
Also note that only admin locations are displayed.

Listing 3.9 SiteMap modifications for administration

56 CHAPTER 3 The auction application
These special menu groups are invoked from within the template using the built-in
Menu snippet. The following example shows the administration implementation,
which only shows items that are part of the admin location group.

<lift:menu.builder group="admin" linkToSelf="true" li_item:id="current" />

The other options available are discussed in detail in chapter 7.
 The implementations for the other aspects of our system are exactly the same:

compose the CRUDify trait into your Mapper class (ensuring you have the correct
overrides in place on the meta object), and then just add those menus to the SiteMap.

RELATIONSHIP INTERFACES

CRUDify can create a pretty full-featured interface right out of the box, but there are
situations where it makes sense to customize forms and relationships so that you can
make CRUDify construct inputs for one-to-many and other relationships. For example,
in this application, an Auction belongs to a Supplier, so you might want to provide a
way for administrators to select which Supplier is hosting this auction.

Figure 3.8 Screenshot of the administration interface with the additional CSS styling. Clean but
functional.

57Validation
 In order to create a drop-down list, you need to override a special method on the
relationship field in the Auction class. The following listing shows the Auction class
complete with Supplier relationship modification.

class Auction extends LongKeyedMapper[Auction]
 with IdPK with CreatedUpdated {
 def getSingleton = Auction
 object name extends MappedString(this, 150)
 object description extends MappedText(this)
 object endsAt extends MappedDateTime(this)
 object outboundOn extends MappedDateTime(this)
 object inboundOn extends MappedDateTime(this)
 object flyingFrom extends MappedString(this, 100)
 object isClosed extends MappedBoolean(this)
 object startingAmount extends MappedDouble(this)
 object supplier extends LongMappedMapper(this, Supplier){
 override def dbColumnName = "supplier_id"
 override def validSelectValues = Full(Supplier.findMap(
 OrderBy(Supplier.name, Ascending)){
 case s: Supplier => Full(s.id.is ->s.name.is)
 })
 }
}

By overriding the validSelectValues method B on the foreign key in the Auction
class, the CRUDify trait can determine which values you want the user to be able to
select from when it generates the admin interface.

 You’ll learn more about making queries with Mapper classes in chapter 10, so for
now just know that the query returns a list of Supplier objects and maps them onto
key/value pairs to display in a HTML select dropdown. So now when you go to create a
new Auction in the admin interface, you can just select from the suppliers you have
defined in your database. The primary purpose of such a control is so that the user
can choose a sensible value for the supplier and doesn’t need to guess at a number or
enter something invalid.

 This brings us nicely to the topic of validation. The next section discusses how you
can implement validation in Mapper.

3.5 Validation
Validation is something that all applications need in one form or another, and this
auction application is no different. You need suppliers to have names and descrip-
tions, and auctions need to have starting bids greater than 0. These are just a
couple of things you’d want to validate in the application logic. Fortunately, Lift
has a heap of helpers for such common scenarios, and we’re going to apply a few
of them to the existing model classes before continuing to build out other sec-
tions of functionality.

Listing 3.10 Providing a drop-down menu for the auction/supplier relationship

Override
method

B

58 CHAPTER 3 The auction application
 The following sections cover the definition of validation rules, including how you
can create your own custom rules and how validation messages are displayed back to
the user.

3.5.1 Definitions

Validations in Mapper are defined at field level; that is, they’re defined on things like
MappedString and MappedBoolean, which were covered in section 3.1. Out of the box,
Mapper supports common validation requirements, such as text length, matching reg-
ular expressions, and checking for uniqueness.

 In the Auction class, it’s important to make sure that the permanentLink field isn’t
blank. Here’s an example of this validator in action:

object permanent_link extends MappedString(this, 150){
 override def validations =
 valMinLen(3, "Link URL must be at least 5 characters") _ ::
 super.validations
}

Field validations are essentially a list of partial functions that take a particular field
type and return a list of errors. If there are no errors, the list will be Nil. The cons
operator (::) is used here to create the list of validations, so if you wanted to add
another validation, you could do so very simply by adding another line to the list of
validation rules:

object permanent_link extends MappedString(this, 150){
 override def validations =
 valMinLen(3, "Link URL must be at least 5 characters") _ ::
 valUnique("That link URL has already been taken") _ ::
 super.validations
}

The idiom of validation is pretty much the same for all the MappedField derivatives,
no matter what the type. There are some specializations worth mentioning, such as
MappedEmail, which includes automatic validation of email addresses, and Mapped-
PostalCode, which can perform automatic checks on the format of addresses for pop-
ular countries, such as the UK, USA, and a selection of other nations.

3.5.2 Displaying field errors

Validations really wouldn’t be that useful if we didn’t have any way to display them,
right? Fortunately, Lift provides a nice API for this purpose that Mapper hooks into,
and Lift has built-in snippets to display these errors in your template markup; namely
the Msgs snippet, which can be used like this:

<lift:msgs showAll="true" />

Using the Msgs snippet couldn’t be easier—any notices that are posted from Mapper
will be displayed in your markup with the messages you specified in your model.

59Summary
 For the moment, just add this line of markup to the admin.html template in the
src/main/webapp/templates-hidden directory so that any errors are displayed in a
table wherever you elect to put this line of markup. Lift also supports the display of
notices with a specific ID so that you can refine how and where specific messages are
displayed to a user. That’s covered in chapter 6.

3.6 Summary
The application is starting to take shape. In this chapter, we’ve covered what it takes to
create an application that has a basic but functional administration interface and a
rather fetching frontend. OK, so the frontend is a little light on functionality right
now, but we’ve covered some of the core working practices of Lift development,
including the options available to you when working with designers, how to separate
your templates into reusable sections, and Lift’s scaffolding mechanisms for boosting
development productivity. We also covered Mapper, the default ORM system in Lift,
and showed you how to define your models, create database tables, and establish inter-
model relationships.

 In the next chapter, you’ll be adding the bulk of the functionality to the frontend
of the auction application: listing available auctions, building the bidding interface,
and setting up push notifications. You’ll also be learning about Lift’s awesome Comet
support, which you’ll use to implement some of these features, as well as its unified
and secure AJAX support.

Customers, auctions,
 and bidding
Now that you have the base of the application in place, the next thing to do is con-
struct the frontend so that visiting customers can browse through the auction cata-
log and access details on any particular auction. By its very nature, an auction is a
highly spontaneous affair, so it’s critical to get real-time feedback when other cus-
tomers bid on the same auction as you, particularly if they placed a higher bid!

 These updates will be delivered via Lift’s sophisticated Comet mechanism, so if
a competing customer places a higher bid, all the other users viewing that auction
will receive a notification telling them about this new bid and inviting them to
place another bid. The bidding itself will be passed to the server using Lift’s built-in
AJAX support, so you’ll be able to see the interplay between snippets, AJAX, and
Comet, all in a single user interface.

 We’ll be building on chapter 3’s CRUD interface assembled with the CRUDify
traits and adding custom snippets, and we’ll also be covering a range of new topics,
including automatic list pagination.

This chapter covers
■ Binding queries from snippets
■ Implementing Comet
■ Bidding via AJAX
60

61Building an auction catalog
4.1 Building an auction catalog
So far, you’ve added a very basic CRUD interface in the administration area so admin-
istrators can add auctions to the system, but there is currently no way for users to see
those auctions and interact with them. This is problematic because without some kind
of display, no one will be able to bid on the auctions! To address this, you’ll build a cat-
alog of auctions with a new snippet and the existing Mapper models from chapter 3.

4.1.1 Listing auctions

In order to list the auctions that still have time remaining, you need to assemble a query
using the Mapper models and then render that list of items using a snippet. For this
example, we called our snippet Listings, but you may call yours whatever you prefer.

 If you remember from figure 3.3 in the previous chapter, space was left on the
homepage to display the latest three auctions and provide a link to see the full list of
auctions on the system. This functionality will be powered by another snippet that
demonstrates how to use the Auction model to get a list of all the auctions. This is the
code to get the top three rows:

Auction.findAll(MaxRows(3), OrderBy(Auction.id, Descending))

This should be fairly self-explanatory given the Mapper API naming convention, but
to be clear, this code returns a List[Auction] that can then be used in the snippet to
iterate through and create the corresponding markup. As discussed in part 1 of this
book, snippets are essentially just NodeSeq => NodeSeq functions, so imagine the func-
tion input here to be the markup from the HTML template that defines the display for
each auction item on the homepage. The logic in the snippet then iterates through
the resulting list of auctions from the database and binds the dynamic content to the
respective element from the template.

 The next listing shows what the Listings snippet should look like.

import net.liftweb.util.Helpers._
import net.liftweb.mapper._
import net.liftweb.textile.TextileParser

class Listings {
 def top = {
 val auctions = Auction.findAll(By(
 Auction.isClosed, false),
 MaxRows(3), OrderBy(Auction.id, Descending))
 ".auction_row *" #> auctions.map { auction =>
 ".name *" #> auction.name &
 ".desc" #> TextileParser.toHtml(
 auction.description) &
 "a [href]" #> "/auction/%s".format(
 auction.id.toString)
 }
 }
}

Listing 4.1 First version of the Listings snippet definition

DB queryB

CSS-style
transformers

C

62 CHAPTER 4 Customers, auctions, and bidding
You can see that this snippet takes the list of auctions received by the query B, and by
calling map on the resulting List[Auction] iterates through, binding the various
fields of the Auction instance to HTML nodes within the template. In addition, notice
that the enclosing selector is marked as ".auction_row *", which tells Lift that it
needs to replace the subordinate elements with nested transformation statements C.
Specifically, these bindings, or transformation statements, attach a bit of dynamic con-
tent to an element in the HTML template by choosing it with these CSS-style selectors.
The auction name and description are both bound to elements by their class
attribute, whereas the link to the auction details page is bound to an anchor element’s
href attribute. Finally, the description is processed as Textile markup using Lift’s Tex-
tile support, so this gives the administrator a good level of control over how the con-
tent is rendered while still being safe and secure.

 If you’re struggling to visualize how this pairs with the template, consider the
markup being used to call this snippet:

<div class="auction_row" lift="listings.top">

 <p>
 <strong class="name">NAME (learn more...)

Description
 </p>
</div>

Notice how the markup is just plain HTML, and the only Lift-specific part is the Lift
attribute placed on the opening <div> tag. If you compare this markup with the snip-
pet definition, you should be able to see how the input => output transformation
takes place. CSS selectors are pretty powerful tools for selecting and binding dynamic
content to your templates; if you want a more in-depth introduction, there’s a full
explanation in chapter 6 (section 6.1.2).

 Although the code in listing 4.1 is valid and will work just fine, you find yourself
about to add another method to list all the auctions in the system and bind that to a
similar-looking list. Being a good developer, you don’t want to duplicate things at all,
so you can refactor the code into a helpful method that will allow you to reuse the
binding for rendering single auctions. The following listing shows the refactored snip-
pet class with the additional method.

import net.liftweb.util.Helpers._
import net.liftweb.mapper._
import net.liftweb.textile.TextileParser

class Listings {

 def top =
 ".auction_row *" #> many(Auction.findAll(
 By(Auction.isClosed, false),
 MaxRows(3),
 OrderBy(Auction.id, Descending)))

Listing 4.2 The Listings snippet definition with refactored display methods

63Building an auction catalog
 private def many(auctions: List[Auction]) =
 auctions.map(a => single(a))

 private def single(auction: Auction) =
 ".name *" #> auction.name &
 ".desc" #> TextileParser.toHtml(
 auction.description) &
 "#winning_customer *" #> winningCustomer(auction) &
 "#travel_dates" #> auction.travelDates &
 "a [href]" #> "/auction/%s".format(
 auction.id.toString)
}

In this listing, the binding function has been placed into a private utility method
called many, which handles the element binding for a list of auctions. By doing this,
each snippet method only has to worry about the individual auction list it’s going to
generate, and the standard binding will automatically be taken care of by passing that
list of auctions to the many binding method.

 Moreover, this listing also abstracts the rendering of default things that other
methods might want to bind into a method called single. This method can be reused
elsewhere or can be composed together with other functions that need to bind ele-
ments other than those defined in the single method. This is achieved by calling the
special & operator after calling single; this essentially composes the additional bind-
ings with those specified in single and keeps the code as clutter free as possible.

NOTE The approach taken here is a baby step in reusing code. Our pur-
pose is to illustrate that you can quite simply externalize common pieces of
functionality. In a production system, the binding would more likely be an
implicit type class applied by the compiler,1 but we’ve taken this approach
so that the examples appear less like magic and are more understandable
for Scala newcomers.

In addition to the list of top auctions on the homepage, you’ll also need a mechanism
for displaying all the auctions available, but as this could be a fairly long list, having a
way to paginate the results is quite important. To achieve this, you can implement Lift’s
MapperPaginatorSnippet class, which will automatically manage the creation of page
links and querying with the right row offset. The following listing shows the modifica-
tions you need to make to the Listings snippet to use the pagination functionality.

import net.liftweb._,
 util.Helpers._,
 http.DispatchSnippet,
 mapper.{MaxRows,By,OrderBy,Descending,StartAt},

1 For more about binding with type classes, see the “Using Type Classes for Lift Snippet Binding” entry in my
blog, The Loop: http://blog.getintheloop.eu/2011/04/11/using-type-classes-for-lift-snippet-binding/

Listing 4.3 Listings snippet definition with pagination

Bind auction listB

Bind single
auction

C

http://blog.getintheloop.eu/2011/04/11/using-type-classes-for-lift-snippet-binding

64 CHAPTER 4 Customers, auctions, and bidding
 mapper.view.MapperPaginatorSnippet
import example.travel.model.Auction
import example.travel.lib.AuctionHelpers

class Listings extends DispatchSnippet
 with AuctionHelpers {
 override def dispatch = {
 case "all" => all
 case "top" => top
 case "paginate" => paginator.paginate _
 }

 private val paginator =
 new MapperPaginatorSnippet(Auction){
 override def itemsPerPage = 5
 }

 def all = "li *" #> many(paginator.page)

 def top = ...
}

trait AuctionHelpers {
 protected def many(auctions: List[Auction]) = ...
 protected def single(auction: Auction) = ...
}

The first thing to note in this code is the addition of a supertype called Dispatch-
Snippet, which allows you to be very specific about snippet method dispatching B. By
overriding the dispatch method, you can define which method name in the template
maps to the appropriate snippet function C. This can be particularly helpful if you
only want to expose certain methods to the designers but still need them to be public
in your application classes. Also notice that the common rendering methods have
been factored out into a Scala trait called AuctionHelpers F so that they can be
reused in other parts of the application where auction information needs to be dis-
played, such as in the bidding interface you’ll create shortly.

 The primary change in this listing is the addition of a specialized version of Lift’s
Paginator that knows how to deal with Mapper instances: MapperPaginator-
Snippet D. This class takes two arguments to determine the types of Mapper classes
it needs to query. Using this built-in pagination functionality can save a lot of boiler-
plate in your application, because all you need to do is grab the current page’s items
from the paginator E and add the relevant controls in the template markup to
enable pagination links.

 The following listing demonstrates this markup. Of particular interest should be
the page control nodes toward the end of the listing.

<lift:surround with="wide" at="content">
 <h1>Actions</h1>
 <ol class="auctions" lift="listings.all">
 <li class="top">

Listing 4.4 Markup for auction listing including pagination

Extend
DispatchSnippet trait

B

Delegate dispatch
methods

C

Display 5
records per page

D

Bind list of
auctionsE

Move common
methods into traitF

Invoke Listings
snippet

B

65Building an auction catalog
 ...

 <div lift="listings.paginate">
 <p><nav:records/></p>
 <nav:first /> |
 <nav:prev/> |
 <nav:allpages> | </nav:allpages> |
 <nav:next/> |
 <nav:last />
 </div>
</lift:surround>

When this page is called, the page content will be dis-
played with a list of auctions supplied by the call to
the listings.all snippet function B, followed by a
list of pages at the bottom of the screen. Figure 4.1
illustrates the output of this snippet markup.

 It’s important to note that even though the Pag-
inator is a built-in snippet, you could quite easily
move the view around without impacting the snip-
pet at all.

4.1.2 Adding to SiteMap

Remember that as you add pages and functionality to your application, you also need
to update SiteMap where applicable. Entries need to be added for both the full auc-
tion list and the auction details.

 The SiteMap definition should now look like the next listing.

 val sitemap = List(
 Menu("Home") / "index" >> LocGroup("public"),
 Menu("Auctions") / "auctions" >> LocGroup("public"),
 Menu("Auction Detail") / "auction"
 >> LocGroup("public") >> Hidden,
 Menu("Admin") / "admin" / "index" >> LocGroup("admin"),
 Menu("Suppliers") / "admin" / "suppliers"
 >> LocGroup("admin") submenus(Supplier.menus : _*),
 Menu("Auction Admin") / "admin" / "auctions"
 >> LocGroup("admin") submenus(Auction.menus : _*)
) ::: Customer.menus

The interesting part here is the use of a special LocParam called Hidden B. The name
is fairly self-explanatory and is needed so that the page intended to display a specific
auction’s detailed information isn’t listed in its own right on the main menu, as we
only ever want people to visit that page using the fully qualified (rewritten) URL that
we’ll be defining in the next section.

Listing 4.5 Complete SiteMap definition

Start pagination
controls

Separate pagination
links with pipe

Figure 4.1 Example output of the
pagination support

Exclude from
main menu

B

66 CHAPTER 4 Customers, auctions, and bidding
4.2 Displaying auctions
Now we’re coming to the really interesting part of the application: displaying auctions
and allowing customers to bid on them. In order to display auctions, we’ll be touching
on several Lift features:

■ The rewriting mechanism for providing friendly URLs
■ Built-in AJAX support
■ JavaScript abstraction
■ Comet support

You might have noticed that when you click the link in the auction lists, you see the
404 page. This is because Lift doesn’t know what to do with the /auction/1234 URL.
Unsurprisingly, no template exists for each of the auctions, so to map this URL pattern
to a known template, you need to implement Lift’s rewriting mechanism. Rewriting is
helpful for a variety of tasks, but it comes in particularly useful when prettifying
dynamic URLs.

4.2.1 Auction detail URLs

In the booking application, each auction will have a URL based on the ID defined for
that row in the database. The URL could be anything you want, but in this case we’ll
just use the ID column to ensure that the URL is unique. This will give you URLs that
look like this:

/auction/12345

To implement this, you need to add the following code to your Boot.scala file as you
would do for any other aspect of application configuration:

LiftRules.statelessRewrite.append {
 case RewriteRequest(ParsePath("auction" :: key :: Nil,"",true,_),_,_) =>
 RewriteResponse("auction" :: Nil, Map("id" -> key))
}

There’s quite a lot going on in this short snippet of code, and it might look pretty daunt-
ing the first time you see it. Not to worry, though—it’s really not that difficult. Let’s take
a moment to break out some component parts, starting with the RewriteRequest.

 The RewriteRequest object is looking for three parameters:

■ A matching URI, as determined by the special ParsePath Lift class. This gives
you very tight control over the URL, from high-level things like the path, right
down to whether or not it has a trailing slash.

■ The type of incoming request to match on. You can be specific as to what types
of requests should be rewritten: GET, POST, or any other method the HTTP proto-
col provides.

■ The HTTPRequest instance that represents the incoming request. This can be
used when you want to extract information from the request that the default
matchers don’t allow for.

67Displaying auctions
You’ve probably noticed that this code snippet uses a lot of underscores in place of
defining actual parameters. This is a somewhat confusing Scala syntax for newcomers,
but in this context it essentially means “any value is fine.” You’ll see this kind of usage
throughout Lift’s API and more broadly in idiomatic Scala code.

 With this rewrite rule in place, you have the ability to pass a specific auction ID
wherever you please, so let’s create a snippet that renders the detail view for an
Auction. This implementation will use another snippet specialization trait in Lift
called StatefulSnippet. The reason you might want to use a stateful snippet in this
scenario is because there will be several things going on in this page view, from
Comet through to AJAX, and they all need to interact with the same instance of
Auction. Without using a StatefulSnippet, you would otherwise need to pass
around an ID and keep loading the Auction from the database, which would have
fairly severe performance ramifications and add a degree of accidental complexity
and overhead that you can quite easily avoid. By using StatefulSnippets, you can
keep a single instance of Auction around longer than the initial request, allowing
access to it from wherever it’s needed. StatefulSnippet functionality is covered in
full in chapter 6 (section 6.1.2), but the key thing to understand here is that
StatefulSnippet instances are kept around in memory longer than the lifetime of
a single request but they’re otherwise the same as regular snippets in terms of usage.
That is to say that you don’t need to do anything very different when it comes to
invoking the snippet—the only change is a minor one in the definition itself.

 In order to implement the StatefulSnippet trait, create another snippet that will
present the individual auction. We named this new snippet Details and provisioned a
couple of methods in the dispatch method. Here’s a stub implementation with some
placeholder method bodies:

import net.liftweb.util.Helpers._
import net.liftweb.http.StatefulSnippet

class Details extends StatefulSnippet with AuctionHelpers {
 override def dispatch = {
 case "show" => show
 case "bid" => bid
 }
 def show = "*" #> Text("Not implemented")
 def bid = "*" #> Text("Not implemented")
}

Right now there’s nothing here that really requires a stateful lifecycle versus regu-
lar stateless snippets, but you’ll only want to keep a single Auction instance around
and access that from several snippet locations. This means its necessary to retain the
Auction instance.

 To retain the Auction instance after the initial loading it’s simply a matter of add-
ing a val property to the class that grabs the specific auction from the database based
on the key in the URL. The StatefulSnippet then takes care of retaining that value
for later use; from the API perspective, it’s just an immutable property of the class. The

68 CHAPTER 4 Customers, auctions, and bidding
next listing shows a slightly more fleshed-out Details snippet that makes use of these
new stateful abilities.

import net.liftweb.http.StatefulSnippet

class Details extends StatefulSnippet with AuctionHelpers {
 ...
 val auction = Auction.find(
 By(Auction.id,S.param("id").map(
 _.toLong).openOr(0L)))

 def show = auction.map {
 single(_) &
 "#current_amount" #>
 {leadingBid.toString} &
 "#next_amount" #> {minimumBid.toString}
 } openOr("*" #> "That auction does not exist.")
 ...
}

If you’re wondering why this looks like normal Scala code with no magic beans or
such, that’s because it’s just that—plain Scala code! The interesting thing here is that
the whole instance is kept around in a special state called RequestVar[T], so the next
time a snippet method is invoked (from AJAX, for example) the exact same auction
value (as set at B) is reused, and the subsequent invocation has access to every prop-
erty and function, just like the first invocation did.

 This can have some very powerful uses in application development. Here we’ll be
using it so that each subsequent bid the user makes is attached to the correct auction.
Interestingly, notice how show only binds the extra items needed for this specific snip-
pet by composing the single method that was created earlier and inherited through
the AuctionHelpers trait C. The call to single(_) yields a specialized CSS selector
function, which can be composed together with other CssSel functions by way of the
& operator. The net effect is that all the elements are bound to placeholders without
the need to repeat the binding.

4.2.2 The AJAX bidding interface

The application can now list and display auctions, but there is no facility for customers
to place bids. This needs fixing. We’re going to implement a fairly simple bidding
interface and touch on Lift’s AJAX support during the process. But first, we need to
modify the Auction class.

MODIFYING THE AUCTION CLASS

Before we start building the interface, we need to modify the Auction class and add
some helper methods for common operations, such as finding the highest current bid,
determining the minimum next required amount, and placing a bid on an auction.

 Listing 4.7 shows three methods that assist in the calculation of auction values.

Listing 4.6 Defining stateful instances in the Details snippet

Auction
query

B

Element
binding

C

69Displaying auctions
class Auction extends LongKeyedMapper[Auction]
 with IdPK with CreatedUpdated {
 ...
 private def topBid: Box[Bid] = bids match {
 case List(first, _*) => Full(first)
 case _ => Empty
 }
 def currentAmount: Box[Double] = topBid.map(_.amount.is)
 def nextAmount: Box[Double] = currentAmount.map(_ + 1D)
 ...
}

The topBid method uses the bids relationship defined in chapter 3 to check whether
there are any bids placed against this auction. There’s a key thing to note here before
we progress further: the return type of the topBid method is Box[Bid].

Box is a monadic type that exists in the Lift Common package, and it’s an excellent
way to work around programming to null, which is the typical idiom in imperative
programming, such as Java, where the code is full of if statements checking for null
or "". Understanding Box[T] isn’t that difficult, and there’s a great value in taking the
time to do so. Box types and what they can do are explained in appendix C.

 For now, just understand that boxes allow you to contain types in such a way that
you can statically check for missing values and gracefully handle runtime exceptions
that might occur by using the Box states listed in table 4.1.

The next method, currentAmount, builds on the topBid method and provides a
helper to get the top bid if one exists. If no bids have been made on this auction,
then the method will return 0. The nextAmount method is another helper that
requires the next bid to be exactly one more than the current highest bid. In real
terms, this perhaps isn’t the most robust system, but it’s adequate for the purpose of
this tutorial.

Listing 4.7 Auction value methods

Table 4.1 Possible states of the Box[T] data type

Subtype name Description

Full If you think of a physical box, when you place items in the box it becomes full,
hence the name. Boxes that have a value are of type Full.

Empty This is the opposite of Full—boxes that are empty.

Failure This is a special type that’s used to express and contain errors. For instance, if
you try to convert a string to an int, Scala will throw an exception at runtime,
and this can have some hazardous side effects. Wrapping the type in a Box
lets you programmatically check for errors and chain errors together using
Failure. We won’t go into the details here; just understand that Failure
wraps errors and provides a safe way of handling unexpected things during pro-
gram execution.

70 CHAPTER 4 Customers, auctions, and bidding
 We still have no way for people to bid on auctions, so let’s add a helper method
called barter that handles the process of creating a new bid in the database and runs
some commonsense checks on the input, as shown in the next listing.

def barter(next: Box[String]): Box[Bid] = for {
 ann <- next ?~! "Amount is not a number"
 amo <- tryo(BigDecimal(ann).doubleValue) ?~! "Amount is not a number"
 vld <- tryo(amo).filter(_ >= (nextAmount openOr 0D))
 ?~ "Your bid is lower than required!"
 } yield Bid.create.auction(this)
 .customer(Customer.currentUser).amount(vld).saveMe

This listing defines what is likely the most complex Scala code covered so far, so let’s
take a moment to review some of the more alien-looking symbols in the listing.

 The first line uses the Scala keyword for. This is a Scala language feature and not
like the imperative for loop you’ve likely seen before. This structure is covered in
more detail in appendix A, but in broad terms it extracts the items on the right side of
the arrow and projects them to the value on the left, which can be used without its con-
taining type. For example, Box[Double] on the right is projected to Double on the left.

 The next line uses a rather odd looking piece of syntax: ?~!. This is a method on
the Box class that, in the event of the parameter next being Empty will convert that
Empty value into a Failure with the message "Amount is not a number." This is very
helpful; rather than getting some zero-length error, or NullPointerException, we
can expect the code to behave in a very predictable and manageable way in the event
of something unexpected.

 In the next few lines, we have two examples of one of Lift’s built-in helper meth-
ods from net.liftweb.util.Helpers. It’s called tryo and can be used instead of
the try { ... } catch { ... } block that most imperative programmers will be famil-
iar with. The difference here is that rather than returning exceptions or arbitrary
values, it will always return one of the Box subtypes. In listing 4.8, we ensure that the
value is a number and that it can be converted to a double. If someone passes a
string or other value that would cause this to explode in an exception, tryo will
catch it and convert it to a Failure with the specified message. This can be rather
helpful in a large variety of situations.

 Finally, the last couple of lines define a new Bid instance with the appropriate val-
ues extracted from the for comprehension. The previous section added code to the
SiteMap that would mean only customers who were logged in could use this page, so
it’s completely safe to use Customer.currentUser to get the current customer
instance to reference from this new bid—you know that they will always be logged in
at this point.

ADDING A BIDDING SNIPPET

Next we need to add a small utility method to the AuctionHelpers trait in the snip-
pet package. This method will let you apply JavaScript actions for different Box types

Listing 4.8 The barter helper method

71Displaying auctions
and provide a notification to let the user know what happened. Specifically, when a
Box is a Failure and contains an error, it will show an appropriately styled error mes-
sage, and when the Box is Full it will show a success message. The next listing shows
the utility method definition.

trait AuctionHelpers {
 ...
 def boxToNotice[T](yes: String, no: String)(f: => Box[T]){
 f match {
 case Full(value) => S.notice(yes)
 case Failure(msg,_,_) => S.error(msg)
 case _ => S.warning(no)
 }
 }
 ...
}

The boxToNotice method lets you pass a string as a message for both the success and
failure outcomes.

 Now that this utility method is in the AuctionHelpers trait, let’s get on with defin-
ing the bid method in the Details snippet, which will actually let users place bids on
auctions. The modifications for the snippet class are shown in the following listing.

import net.liftweb.http.{S,StatefulSnippet,SHtml}
import net.liftweb.http.js.JsCmds.{Noop}
import net.liftweb.mapper.{MaxRows,By,OrderBy,Descending,StartAt}
import example.travel.model.{Auction,Bid,Customer}

class Details extends StatefulSnippet with AuctionHelpers with Loggable {
 override def dispatch = {
 case "show" => show
 case "bid" => bid
 }
 ...
 def bid = {
 var amount: Box[String] = Empty
 def submit = boxToNotice(
 "Your bid was accepted!",
 "Unable to place bid at this time."){
 for {
 a <- auction
 b <- a.barter(amount)
 c <- amount
 d <- tryo(c.toDouble)
 } yield AuctionServer ! NewBid(a.id.is, d,
 S.session.map(_.uniqueId))
 }
 "type=text" #> SHtml.text(
 amount.openOr(""), s => amount = Box.!!(s)) &

Listing 4.9 Notification utility method

Listing 4.10 Adding the bid method to the Details snippet

Set default
amount value

B

Define form
submit action

C

72 CHAPTER 4 Customers, auctions, and bidding
 "type=submit" #>
 SHtml.ajaxSubmit("Place Bid", submit _)
 andThen SHtml.makeFormsAjax
 }
 ...
}

For convenience’s sake, we’re using Lift’s built-in notification system, which is part of
the S object. Typically you can use S.notice, S.warning, and S.error to inform users
of different outcomes after form submissions, AJAX events, or anything else you can
think of. As notification is such a common idiom in web development, it makes sense
to leverage Lift’s notice system rather than reinvent the wheel by implementing some-
thing where you specify div IDs specifically (although that would have been possible by
using the JsCmds system).

 The bid method assigns an internal boxed variable called amount that will hold the
value passed by the frontend AJAX B. It’s of type String and not Double (or another
numeric format) because at this point in the code you just want to hold the value that
came in from the user; the processing of that input can be done later.

 The internal submit method is the method that will be invoked when the user
clicks the Submit button C. It calls the boxToNotice helper method defined previ-
ously in the AuctionHelpers trait, passing string parameters for both success and fail-
ure messages. The block (or second parameter group) calls the barter method that
we created on the Auction class, passing in the value of amountBox, which will contain
whatever input the user entered. The barter method will correctly execute the busi-
ness logic to determine whether it’s a valid value and so forth. If, for instance, the user
enters a string, and not something that can be converted to a number, the barter
method will return a Failure type with the appropriate message, which would then be
presented as a notice to the user.

 The last few lines within the barter method define form inputs required to place a
bid. In brief, the SHtml object provides Lift’s server-side representation of markup ele-
ments that provide some kind of user interaction. In this case, we want a form that
submits its values via AJAX, so we use the ajaxForm method. We then bind a text input
using SHtml.text and pass two arguments. The first can be thought of as the getter—
the value the text box should use when it needs to obtain a value for display. In this
example, it should just display the value of the amountBox, or an empty string if no
value is present. The second parameter can be thought of as a setter function that
should be executed when the form has been submitted—essentially you’re defining
what logic the value entered by the user will have performed on it at runtime. In this
case, the value that the user enters will become the value assigned to amountBox.

 The final component to make this work is the Submit button binding D. The
first parameter is a text value for the button; the really interesting thing here is
the function passed to the second parameter. This Submit button is no regular
button. It’s an AJAX button, so the result of the passed function must be a special
Lift type: JsCmd.

Bind the Submit
button

D

73Displaying auctions
You only need to display the bidding interface if the user is logged in, so you can lever-
age one of Lift’s built-in snippets called TestCond. Lift has a built-in notion of a known
user being logged in, so we only need to add one line of code to your Boot.scala:

LiftRules.loggedInTest = Full(() => Customer.loggedIn_?)

Here we’re leveraging a special loggedIn_? method on the Customer Mapper that’s
inherited from MetaMegaProtoUser. This method stores the current user in session
state as part of its login and logout functionality. No extra coding is required to pro-
vide this check— LiftRules.loggedInTest tells Lift that when it needs to determine
if someone is logged in, this is the function it should evaluate.

 With this in place, we can now alter the auction.html markup to look like the
following listing.

<lift:test_cond.loggedin>
 <div id="bidding-form" lift="details.bid">
 <label>Enter New Bid:</label>
 <div class="half">
 <form>
 <input type="text" id="amount" />
 <input type="submit" />

 (must be more than: £
)

 </form>
 </div>
 </div>
</lift:test_cond.loggedin>

<lift:test_cond.loggedout>
 <label>Enter New Bid:</label>
 <div class="half">Log in to place a bid</div>
</lift:test_cond.loggedout>

What is a JsCmd?
JavaScript is a core part of modern web development, and during the creation and
evolution of Lift, JavaScript has played and continues to play a critical role. Early on,
the Lift team found that there’s a disparity between coding JavaScript and coding
Scala. To that end, several JavaScript abstractions were added to smooth the inter-
action between client and server code. This is where JsCmd comes into action.

A JsCmd can represent pretty much any arbitrary JavaScript code, and Lift has support
for a whole raft of common operations, such as hiding markup divs or focusing on an
input element. There are also extensions to JsCmd that cover some specific JQuery,
YUI, and ExtJS library features.

Listing 4.11 Implementing the TestCond snippet

Display if user
is logged in

Display if user
is unknown

74 CHAPTER 4 Customers, auctions, and bidding
It would have been possible to achieve the same result with two or three other routes
of implementation within Lift, but this is probably the most “Lift-esque” solution
because you’re defining two different templates that are selected based on a known
server function: in this case, the loggedInTest defined in LiftRules.

 This isn’t the end of the story. If you run the code as it is now, you’ll notice that it
does indeed update the database and insert the new bid, complete with auction and
customer references. The interface, however, isn’t updated. This is intentional. In the
next section, we’ll be covering Comet, and the bidding values will be updated from
the CometActor, along with a real-time countdown.

4.2.3 Real-time bidding

An auction is intrinsically a real-time event: users need to see what the highest bid cur-
rently is, and see if they’re winning the auction in question. The user experience
would be greatly enhanced if each user’s bids were automatically propagated to the
other users; the resulting interface then wouldn’t need to be refreshed, and users
would receive instant updates whenever someone else makes a successful bid on an
item the user is viewing. It would also be good if the user were notified when an auc-
tion they had previously bid on but weren’t currently viewing received another bid.
Fortunately, Lift provides a mechanism to make this a reality: Comet.

Lift has one of the best Comet implementations available today, and it’s built on a pro-
gramming paradigm called actors. You can find a lot more information about actors on
the main scala-lang.org site (specifically at http://www.scala-lang.org/node/242), so
we won’t cover it here other than to say that actors are a lightweight model for concur-
rent programming, and they generally remove the need to explicitly deal with thread-
ing and locking.

 Actors send and receive information as messages, and this happens to be a very
nice fit with the request and response cycle present in HTTP. To this end, Lift provides
an abstraction for Comet programming called CometActor. Figure 4.2 illustrates how

What is Comet?
Comet differs from both the traditional style of web-based user experience and
AJAX applications, because it’s not an iterative cycle of request then response. In
a Comet application, generally the page loads, and the page-rendering updates are
pushed to the browser via a long-lived HTTP connection.

In practice, Lift uses long-polling for the majority of browsers, but it can automati-
cally detect the ability of the client to use HTML5 web sockets*, and it will use this
newer technology if it’s available. This model of Comet application programming is
what allows Lift to make applications real-time because the application can arbi-
trarily update any part of the page or supply new data to a client-side visualization
technology like JavaScript, Adobe Flash, or even Java applets.

* Currently not available in Lift 2.3, but should be available by the time 2.4 makes a final release.

http://www.scala-lang.org/node/242

75Displaying auctions
Comet-orientated applications typically differ from traditional request and response
workflows. Compared to both standard HTTP calls and AJAX calls, Comet doesn’t
require a request to have a matched response. Once the page has been rendered and
Lift has an appropriate CometActor in the current session, said CometActor can arbi-
trarily push updates to the browser and pretty much alter the object model of the
markup in any way.

SETTING UP AUCTION FOR COMET

Before we get into the Comet implementation itself, let’s take a moment to add two
helper methods to the Auction model so we can easily ask certain things about an auc-
tion without having to continually jump through hoops to get the right answers.

 The following code shows the additional helper methods added to the Auction class:

def expired_? : Boolean = endsAt.is.getTime < now.getTime
def winningCustomer: Box[Customer] = topBid.flatMap(_.customer.obj)

The first of these methods checks whether the auction has expired and the second
determines the current auction leader.

 It’s also a good idea to add two convenience methods to the AuctionHelpers and
AuctionInstanceHelpers traits created earlier. The latter will ultimately be composed
with a CometActor so that it can easily access and update the browser based on an auc-
tion instance it obtains. Listing 4.12 details the changes to AuctionHelpers, and list-
ing 4.13 shows the AuctionInstanceHelpers.

protected def hasExpired_?(a: Box[Auction]) : Boolean =
 a.map(_.expired_?).openOr(true)

Listing 4.12 Additional helper methods for the AuctionHelpers trait

Figure 4.2 Comet workflow versus traditional HTTP request and response workflow. Notice how the
Comet application can asynchronously push information to the browser.

76 CHAPTER 4 Customers, auctions, and bidding
protected def leadingBid(a: Box[Auction]): Double =
 a.flatMap(_.currentAmount).openOr(0D)

protected def minimumBid(a: Box[Auction]): Double =
 a.flatMap(_.nextAmount).openOr(0D)

protected def winningCustomer(a: Box[Auction]): NodeSeq =
 Text(a.flatMap(_.winningCustomer.map(_.shortName)
).openOr("Unknown"))

protected def winningCustomer(a: Auction): NodeSeq =
 winningCustomer(Full(a))

These helper methods either take Auction or Box[Auction] instances and serve as
useful assessors for common auction aspects, ensuring that you don’t continually need
to unbox auctions throughout your code. You can merely compose the class or object
with the AuctionHelpers trait and have these functions automatically.

trait AuctionInstanceHelpers extends AuctionHelpers {
 protected def auction: Box[Auction]
 protected def hasExpired_? : Boolean = hasExpired_?(auction)
 protected def leadingBid: Double = leadingBid(auction)
 protected def minimumBid: Double = minimumBid(auction)
 protected def winningCustomer: NodeSeq = winningCustomer(auction)
}

This is a very simple trait that builds on the AuctionHelpers trait, provides an implied
Box[Auction], and then calls the methods we just defined in AuctionHelpers. The
reason for this is that in both the CometActor and the Details snippet, we’ll want to
be accessing a boxed instance of Auction, and as the auction is a member field, we
might as well deal with it as an implied value rather than constantly passing it as an
argument to methods. This is most certainly a style preference, but composing such a
trait is more idiomatic Lift development and thus merits discussion.

PROVIDING A BACKEND

One of the things that makes Lift great for Comet-style development is the fact that it’s
highly stateful. For each CometActor you have in your application, Lift maintains one
instance per session until its defined lifetime expiration (typically 10 minutes or so).
This means that you need to have a design whereby the updating actor can obtain a
list of other sessions watching a particular auction and receive updates from them
about bidding information.

 For example, suppose two users (A and B) are bidding on an auction. When A
places a bid, this should immediately be updated on B’s screen. In order to achieve
this sort of cross-session communication, we need to have some kind of auction server.
As customers browse the site viewing different auctions, their CometActor will notify
the AuctionServer object about the auction that the CometActor is currently updat-
ing. The AuctionServer then holds these values in a map so that when a user places a

Listing 4.13 Definition of the AuctionInstanceHelpers trait

77Displaying auctions
bid on a particular auction, AuctionServer can work out which other CometActors
need to receive an update.

 The next listing shows the definition of the global AuctionServer object.

import scala.collection.immutable.Map
import net.liftweb.actor.LiftActor
import net.liftweb.http.CometActor

object AuctionServer extends LiftActor {
 private var cometActorAuctions =
 Map.empty[CometActor,List[Long]]
 private def auctionCometActors = cometActorAuctions
 .foldLeft[Map[Long, List[CometActor]]](
 Map.empty withDefaultValue Nil){
 case (prev, (k, vs)) => vs.foldLeft(prev)(
 (prev, v) => prev + (v -> (k::prev(v))))
 }

 override def messageHandler = {
 case ListenTo(actor,auctions) =>
 cometActorAuctions =
 cometActorAuctions + (actor -> auctions)
 case msg@NewBid(auction,amount,session) =>
 auctionCometActors(auction).foreach(_ ! msg)
 }
}

The most important thing to note about this listing is that this is the backend actor,
not the CometActor itself. This is the global singleton object that holds information
about which CometActors are viewing which auctions, and which CometActor
instances need notifications about which currently active auctions.

 The first thing that this object defines is a pair private variables that contain a map-
ping between a specific CometActor instance and a list of auction IDs B. This is useful
because if a user is bidding on more than one auction at a time, you can send updates
about the status of all the user’s auctions in a unified manner.

 Although the definition of auctionCometActors looks somewhat complicated,
you don’t need to understand the specifics of what’s going on here; you just need to
understand that it’s a section of what transforms the Map[CometActor,List[Long]]
to Map[Long,List[CometActor]]. In this auction application, this is eminently help-
ful, because when a user bids on an auction, the ID for that auction is passed along
so the AuctionServer can then figure out exactly who needs to be notified of this
new bid. Again, it’s important to stress that this isn’t Lift-specific code; it’s just regu-
lar Scala code that inverts a Map in a very specific way, which is useful for this auc-
tion application.

 The messageHandler is really where all the work happens C. It defines the handlers
for what the actor should do upon receiving a message. (The messages will be detailed
in listing 4.16.) This handler allows the AuctionServer to receive new auction IDs for

Listing 4.14 Definition of the global AuctionServer

Map CometActors
to auction IDs

B

Handing incoming
messages

C

78 CHAPTER 4 Customers, auctions, and bidding
a particular CometActor instance and keep track of which auctions are of interest to
which sessions.

 When a customer places a new bid, the AuctionServer dispatches the NewBid mes-
sage to every CometActor that has expressed an interest in that auction. You might be
wondering what the exclamation mark syntax here is actually doing. When dealing
with actors, the ! means to send the message (on the right side of the exclamation
mark) to the actor instance (on the left side of the exclamation mark). This message
sending is asynchronous, so there’s no need to wait for a reply of any kind.

 Here are the messages used in the application’s Comet components. For the
moment, just understand that these are simple Scala case classes, and there’s no Lift
intervention happening here:

case object CountdownTick
case class ListenTo(actor: CometActor, auctions: List[Long])
case class CurrentAuction(auction: Box[Auction])
case class NewBid(auction: Long, amount: Double, sessionid: Box[String])

These messages are immutable and throwaway; once they’ve been received and han-
dled by their destination actor, they’ll just disappear into the ether and be garbage-
collected by the JVM automatically.

ADDING THE AUCTIONUPDATER COMETACTOR

Now that we have the backend in place, it’s time to add the Comet implementation
that will update the customer’s browser. First, let’s add the markup in the auction.html
file to load the CometActor when the page renders:

<lift:surround with="wide" at="content">
 <lift:comet type="AuctionUpdater" />

<lift:surround>

One important point to note here is that the CometActor has been placed before the
call to the Details snippet. There are many scenarios where the placement wouldn’t
matter, but in this case, because we’re going to be sending messages from the Details
snippet to the AuctionUpdater, we need to be sure that the AuctionUpdater has
already been instantiated. There are ways to programmatically ensure that within Lift,
but for the sake of keeping this tutorial straightforward for newcomers, we’ve kept the
Comet call at the head of the template.

 Calling CometActors from markup differs from calling snippets because you have
to use the special postfix comet and then pass the name of the CometActor subtype. In
this case, AuctionUpdater is the name of the CometActor.

 The following listing shows a trimmed down CometActor that we can work through
and add the other methods to.

import scala.xml.{NodeSeq,Text}
import net.liftweb._,

Listing 4.15 Basic auction countdown CometActor

79Displaying auctions
 common.{Full,Empty,Failure,Box},
 util.Schedule, util.Helpers._,
 http.{CometActor,S},
 http.js.JsCmds._, http.js.jquery.JqJsCmds.FadeOut
import example.travel._,
 model.{Auction,Customer},
 lib.AuctionInstanceHelpers

class AuctionUpdater extends CometActor
 with AuctionInstanceHelpers {
 private lazy val countdownId = "time_remaining"
 private val server = AuctionServer
 private var _auction: Box[Auction] = Empty
 protected def auction = _auction
 private def auctionId = auction.map(_.id.is).openOr(0L)

 private def countdown =
 if(hasExpired_?) Text("This auction has ended.")
 else Text(TimeSpan.format(
 (auction.map(_.ends_at.is.getTime).openOr(
 now.getTime) – now.getTime) / 1000L * 1000L))

 override def lowPriority = {
 case CountdownTick => {
 partialUpdate(SetHtml(countdownId, countdown))
 if(!hasExpired_?)
 Schedule.schedule(this, CountdownTick, 5 seconds)
 }
 case CurrentAuction(a) => {
 _auction = a
 registerListeners
 }
 }

 def registerListeners {
 auction.map(a => server ! ListenTo(this,(a.id.is :: Customer.currentUser
 .map(_.participatingIn).openOr(Nil)).removeDuplicates))
 }

 override def render = {
 registerListeners
 Schedule.schedule(this, CountdownTick, 2 seconds)
 NodeSeq.Empty
 }
}

Here we have a basic CometActor that reads the ends_at date from the Auction
instance, does a short computation to figure how much time is remaining until the
auction ends, and updates this to the user’s browser every 5 seconds.

 All CometActors in a Lift application must be a subtype of the CometActor class
and live in the comet subpackage of any package you add to Lift’s search path by
invoking LiftRules.addToPackages B.

 Within CometActors, it’s typically idiomatic to assign the element IDs of the con-
tent you want to update to some private values C, as these IDs can then be referenced
throughout the rest of the actor definition. To start with, you only need the ID of the

Implement
CometActor trait

B

Define DOM IDs
for updatingC

Calculate
remaining
auction time

D

Increment
countdown

E

Render
CometActorF

80 CHAPTER 4 Customers, auctions, and bidding
 element containing the countdown, and its new value is computed using Lift’s
TimeSpan time helper class D.

 The lowPriority block is essentially a delegate for the messageHandler from
LiftActor. In this implementation, it can receive two types of message: Countdown-
Tick and CurrentAuction E. CountdownTick is a case object that periodically tells
the CometActor to update the browser with the new time. It does this by determining
whether the auction has finished. Upon finding a live auction, it uses a special utility
in Lift Util called Schedule, which lets you set a time in the future when a message will
be sent to a particular actor. In this case, it sends itself an arbitrary message to update
the clock, and upon receiving that message, it reschedules itself for the next update.
Upon receiving the second type of message—CurrentAuction—the CometActor
updates its internal _auction variable with this new instance. The result is that when
the user is moving around the site viewing different auctions, this instance can be
passed by the Details snippet when needed.

 When the CometActor is rendered for the first time during page load, the contents
of the render method F will execute and be presented to the user. In this case, we
don’t have any content that the actor needs to render, so we can return
NodeSeq.Empty, telling the compiler that no content should be rendered.

 As the render method is normally only executed upon the initial page load, this
is an appropriate place to tell the AuctionServer that this CometActor will be listen-
ing to this particular auction, and merge that auction with any other active auctions
that can be determined from the database. You can facilitate this step by adding a
participatingIn helper method to the Customer class:

def participatingIn: List[Long] = (for {
 b <- Bid.findAll(By(Bid.customer, this.id))
 a <- b.auction.obj
 } yield a.id.is).distinct

This helper method allows you to obtain a list of the entire range of auction IDs that a
customer is currently participating in. This is then added to the auction they’re cur-
rently viewing, and the updated list is passed to the AuctionServer.

 As it stands, this won’t actually update the countdown timer because its internal
_auction variable will continually be Empty. The following code snippet shows a
minor modification to the show method in the Details snippet: when the page is ren-
dered, it notifies the CometActor with the current auction instance.

def show = {
 S.session.map(_.findComet("AuctionUpdater"))
 .openOr(Nil).foreach(_ ! CurrentAuction(auction))
 ...
}

This may look somewhat complicated, but its function is quite straightforward. Using
the Lift state object, S, you obtain a reference to the current session, and then iterate
through it calling the findComet method, which will in turn yield a list of Comet-
Actors. With this list in hand, the foreach call iterates through the list, sending the

81Displaying auctions
CurrentAuction message with this new Auction instance. This is how the Auction-
Updater instance knows which is the current auction being viewed by the customer.
With this modification in place, the AuctionUpdater will function perfectly and
update the auction countdown every five seconds.

 This is all very nice, but it’s really only the base for the main functionality we want
to achieve using this CometActor. We still want to update the current auction value,
the minimum bid value, and the current auction leader. To get the full functionality,
we only need to add a few more lines of code. The following listing shows the addi-
tional methods needed.

class AuctionUpdater extends CometActor with AuctionInstanceHelpers {
 ...
 private lazy val nextAmountId = "next_amount"
 private lazy val currentAmountId = "current_amount"
 private lazy val winningCustomerId = "winning_customer"
 private lazy val amountId = "amount"

 private def notifyOtherAuctionUpdate {
 warning("""You have been outbid on an
 auction you are participating in""")
 }

 private def notifyThisAuctionUpdate {
 partialUpdate {
 SetHtml(currentAmountId,
 Text(leadingBid.toString)) &
 SetHtml(nextAmountId,
 Text(minimumBid.toString)) &
 SetHtml(winningCustomerId, winningCustomer) &
 SetValueAndFocus(amountId,"")
 }
 }

 override def highPriority = {
 case NewBid(auctionId,amount,fromsession) =>
 notifyThisAuctionUpdate
 if((S.session.map(_.uniqueId)

➥ equals fromsession) == false)
 notifyOtherAuctionUpdate
 }
 ...
}

First, notifyOtherAuctionUpdate B defines a utility method that’s very similar in
function to the S notices covered earlier in the chapter and is simply a convenience
method for displaying notices to the user. The main part of this listing, however, is
notifyThisAuctionUpdate, which defines what’s known as a partialUpdate—these
deliver JsCmds to the browser C. Here we’ve specified a chain of commands that
will update the various IDs with new values and then focus on the input field after
clearing its value so it’s ready for the next customer bid. Finally, the highPriority

Listing 4.16 Enhancements to AuctionUpdater

More DOM IDs
to update

Deliver notification
that you’ve been
outbid

B

Update and reset
auction GUI

C

Handle receiving
a NewBid

D

82 CHAPTER 4 Customers, auctions, and bidding
message dispatcher receives the NewBid message, updates the current user’s browser
with the new values, determines whether this session was the sending session, and, if
not, notifies the user that they were outbid by another customer D.

 This concludes the implementation of the bidding interface. We’ve looked at a
range of Lift’s interactive components and how they can play together. Chapter 9 pro-
vides some more in-depth AJAX and Comet examples that will give you a more com-
plete picture on these features.

4.3 Summary
We’ve covered a lot of ground in this chapter and advanced the application signifi-
cantly. Hopefully you’re now starting to appreciate how many parts of Lift slot
together seamlessly to make your life as a developer easier. We’ve covered how to
retrieve information from the database using Mapper queries and subsequently dis-
play that information in a nice list with automatic controls for paging. We also
touched on URL rewriting and Lift’s awesome AJAX support.

 The real takeaway from this chapter, however, is the flexibility that Lift allows and
how it encourages you to use idiomatic Scala code that’s highly functional and highly
composable. Whether you’re writing snippets or CometActors, you can compose and
reuse functionality in many ways with no to little overhead. We also took our first
plunge into real-time Comet applications and actor-orientated programming by
implementing an automatic notification system for concurrent auction bidding.

 In the next chapter, we’ll be implementing the classic shopping basket functional-
ity and ensuring that when an auction ends, it’s attributed to the correct user by
implementing Lift’s ProtoStateMachine. To finish off, we’ll add a basic checkout pro-
cess and collect payments with Lift’s built-in PayPal support.

Shopping basket
 and checkout
So far our booking application is missing a couple of very important aspects that
any online retail system must have to complete orders. First, it’s missing the work-
flow that attributes an item—or in this case an auction—to a particular order for a
particular customer. This notion of an order is something that was included in the
original entity-relationship diagram (ERD) shown in figure 3.5 (in chapter 3). The
order portion of the ERD is shown here in figure 5.1. It exists in the application
already, but it currently does nothing.

 To enable this workflow, we’ll utilize one of Lift’s lesser-known features called
Machine to automatically assign expired auctions to the winning customer—the
next time they load the shopping basket, they’ll see the completed auction ready
for checkout.

 Secondly, we’ll be building a checkout process to collect delivery information
from customers. To implement this, we’ll be utilizing LiftScreen, Lift’s high-level
abstraction on building forms and input screens.

This chapter covers
■ Order creation and processing
■ Attributing auctions to customers
■ Creating a shopping basket
■ Collecting payment through PayPal
83

84 CHAPTER 5 Shopping basket and checkout
Finally, no online shopping system would be complete without some mechanism to
collect payment from users. To this end, we’ll be leveraging Lift’s built-in integration
with PayPal, the online payment gateway.

5.1 Order creation
Before addressing any of the technical issues around order creation and processing,
let’s take a moment to clarify the term order. In the context of this booking application,
you should think of an order as a logical group of auctions that have all been won by a
single user. This order exhibits the following properties:

■ One customer might have multiple orders over a period of time
■ One order could contain multiple auctions
■ At any particular moment a single user can only have one active order

Technically speaking, this means that we’ll require two Mapper models to implement
the functionality:

■ Order—to represent the order itself
■ OrderAuction—to act as a join table between the orders and auctions tables

Let’s now take a look at the implementation of these order models in detail.

5.1.1 Order models

Having outlined in broad terms what the overall ordering process should achieve, let’s
look at some specific implementation details.

 The Order class will need to hold information about its current status (open, pend-
ing, complete, or failed), and it will need to know which customer this order is for,
along with which auctions are attributed to it. Another class, OrderAuction, will han-
dle the auction references. We’ll explore it after the Order implementation.

 With these things in mind, let’s take a look at the Mapper code that will implement
the Order class, as shown in the following listing.

Figure 5.1 The original Order and OrderAuction ERD
table definitions

85Order creation
import net.liftweb.common.{Full,Box,Empty,Failure}
import net.liftweb.mapper._
import net.liftweb.util.Helpers.randomLong

object OrderStatus extends Enumeration {
 val Open = Value(1,"open")
 val Pending = Value(2,"pending")
 val Complete = Value(3,"complete")
 val Failed = Value(4,"failed")
}

object Order extends Order with LongKeyedMetaMapper[Order]{
 override def dbTableName = "orders"
 override def beforeCreate = List(
 _.customer(Customer.currentUser)
 .status(OrderStatus.Open)
 .reference(randomLong(99999999L)))
}

class Order extends LongKeyedMapper[Order]
 with IdPK with OneToMany[Long, Order]
 with CreatedUpdated {
 def getSingleton = Order
 object reference extends MappedLong(this)
 object status extends MappedEnum(this, OrderStatus)
 object customer

➥ extends LongMappedMapper(this, Customer){
 override def dbColumnName = "customer_id"
 }
 object order_auctions extends MappedOneToMany(
 OrderAuction, OrderAuction.order)
 with Owned[OrderAuction]
}

First, you define an enumeration of statuses that a given order can move through; for
this simple use case you only need to extend scala.Enumeration. A user always needs
to have an Open order in case they win one of the auctions they bid on. Upon winning
an auction, it can then be assigned to the user’s currently open order, and then their
order progresses to the Pending state and then to the Complete state upon successful
payment (or Failed if their payment was declined). The OrderStatus enumeration is
then applied to a special field type called MappedEnum—any value being assigned to
this field must be a value from the OrderStatus enumeration B.

 Mapper offers a set of lifecycle methods that let you define functions that allow an
order instance to be modified before it’s persisted to the underlying database. In this
instance, if a new order is being created, its initial status must be Open and it requires a
new order reference number that can be included in any communication with the
customer C.

 Finally, the Order class utilizes Mapper relationship classes that you’ve already seen
in implementing other models in the application d and e.

Listing 5.1 Definition of the Order class

Create OrderStatus
enumeration

B

Add post-creation
functions

C

Define foreign key
to customers table

D

Reference OrderAuction
Mapper entity

E

86 CHAPTER 5 Shopping basket and checkout
 The next listing shows the definition of the join-table Mapper class, OrderAuction.

import net.liftweb.common.{Full,Box,Empty,Failure}
import net.liftweb.mapper._

object OrderAuction extends OrderAuction with
LongKeyedMetaMapper[OrderAuction]{
 override def dbTableName = "order_auctions"
}

class OrderAuction extends LongKeyedMapper[OrderAuction]
with IdPK with CreatedUpdated {
 def getSingleton = OrderAuction
 object order extends LongMappedMapper(this, Order){
 override def dbColumnName = "order_id"
 }
 object auction extends LongMappedMapper(this, Auction){
 override def dbColumnName = "auction_id"
 }
}

This listing defines the entire OrderAuction class, along with the companion object B.
Although this implementation is quite small, it’s key in the application, as without it
there’s no way to effectively assign auctions to a specific customer order and determine
what that customer needs to pay.

 With both the Order and OrderAuction models in place, the next thing we need to
do is ensure that when the customer logs into the application, and they don’t have a
currently Open order, that an order is assigned to them. Fortunately, MetaMegaProto-
User, from which the Customer model descends, already has a hook for executing
functions when the user successfully logs in (and logs out). With the following small
modification to the Customer class and companion object, we can ensure that the user
always has a valid Order instance, as shown in the next listing

class Customer extends MegaProtoUser[Customer] with CreatedUpdated {
 ...
 def order: Box[Order] =
 Order.find(By(Order.customer, this.id),
 ByList(Order.status,
 OrderStatus.Open, OrderStatus.Pending)
) or Full(Order.create.saveMe)
 ...
}

object Customer extends Customer with MetaMegaProtoUser[Customer]{
 ...
 onLogIn = List({ _.order })
 ...
}

Listing 5.2 Definition of the OrderAuction class

Listing 5.3 Providing a login hook on the Customer class

Join table to
reference auctions
and orders

B

Give customer
an order

B

Execute
on loginC

87Order creation
This modification to the Customer class provides a method that looks in the database
for a currently open Order for this particular customer, and if it doesn’t find one, it
creates a new one B. This happens by way of the or operator that’s part of Box. In
short, if the left-hand expression results in Empty, the right-hand expression is used as
a fallback. In this case, the fallback is to create a new order and return it.

 To ensure that a customer always has an Order, no matter what their situation,
the order method is appended to a ProtoUser hook that executes functions when the
user logs in C.

 You now have the underlying structure for the ordering process. The next section
will take you through the application logic that facilitates the ordering process. In the
process, you’ll implement a basic state machine using Lift Machine and collect pay-
ment through Lift’s built-in PayPal support.

5.1.2 Attributing auctions to customers

Currently, when an auction reaches its predefined expiry time, nothing happens. The
auction will just sit there, still active but not accepting any new bids. What’s required is
that when the auction reaches completion, it must be attributed to the winning cus-
tomer’s currently open order—this has to be done irrespective of the customer’s
browser being open or not.

 Fortunately, Lift has a solution for this in its state machine implementation: Lift
Machine. Machine is one of the lesser-known modules in Lift’s toolkit, and it’s a great
tool that can be used for all sorts of operations that run asynchronously to the browser
or standard user workflow. It’s not widely used because there isn’t a great deal of
understanding about what it can actually do.

In exactly the same way that Lift provides prototypical traits to assist in your user-
orientated development, Lift also has two proto-traits for its state machine: Meta-
ProtoStateMachine and ProtoStateMachine. To implement these traits, you first
need to make a few choices about the states that you’re going to have and the actions
that will be attached to them.

What is a state machine?
A state machine is an abstraction that allows the developer to define a set number
of states, including any transitions between those states and subsequent actions
that need to be executed during that process flow.

For example, we could assign a running auction a state called active and define
a transition to a state called expired. This flow or transition could have an
action applied to it, so that upon reaching the expired state, a particular func-
tion is executed.

For more information on finite state machines, see Wikipedia’s “Finite-state
machine” article: http://en.wikipedia.org/wiki/Finite-state_machine.

http://en.wikipedia.org/wiki/Finite-state_machine

88 CHAPTER 5 Shopping basket and checkout
 For the auction use case, there are only two states that we’re concerned about:
when the auction is active and when it has expired. There is, of course, a strong
conceptual coupling between the countdown in the auction and the transition from
an active state to an expired one. Within the state machine, we can easily schedule
the transition to expired.

 The following listing shows the implementation that extends the machine proto-traits.

import net.liftweb.common.{Loggable,Full,Empty}
import net.liftweb.machine.{ProtoStateMachine,MetaProtoStateMachine}
import net.liftweb.mapper.MappedLongForeignKey
import net.liftweb.util.Helpers._

object AuctionStates extends Enumeration {
 val Initial, Active, Expired = Value
}

object AuctionMachine extends AuctionMachine
 with MetaProtoStateMachine[AuctionMachine, AuctionStates.type]{
 def instantiate = new AuctionMachine
 val stateEnumeration = AuctionStates
 def initialState = AuctionStates.Initial
 def globalTransitions = Nil
 def states = List(
 State(AuctionStates.Initial,
 On({case _ => }, AuctionStates.Active)),
 State(AuctionStates.Active,
 ➥After(Auction.duration,
 ➥AuctionStates.Expired)))

 case object FirstEvent extends Event
}

class AuctionMachine
 extends ProtoStateMachine[AuctionMachine, AuctionStates.type]{
 import AuctionStates._
 def getSingleton = AuctionMachine

 object auction

➥ extends MappedLongForeignKey(this, Auction){
 override def dbColumnName = "auction_id"
 }

 override def transition(
 ➥from: AuctionStates.Value, to: StV, why: Meta#Event){
 (from, to, auction.obj) match {
 case (Active, Expired, Full(auc)) => {
 auc.attributeToWinningCustomer
 auc.close
 }
 case (from,to,why) =>
 }
 super.transition(from, to, why)
 }
}

Listing 5.4 Implementation of Lift Machine

Enumeration of
auction states

B

State machine
required
methods

C

Initial event to
kick things offD

Foreign key to
auction table

E

State transition
actions

F

89Order creation
There’s a lot of code to digest in this listing, so let’s look at the key methods and their
functions. First, ProtoStateMachine is a subtype of Mapper, so the state is persisted in
your database of choice.

 As was briefly touched on in the preceding paragraph, a state machine is all about
the transition of one state to another. In order to define those states programmati-
cally, it’s necessary to first define the types of states B and then the transitions
between them C. All instances start with the Initial state but are automatically pro-
moted to Active. The only transition that matters in this example, however, is moving
from Active to Expired.

 In order to execute some meaningful code upon the transition taking place,
transition uses a pattern match to call two new helper methods on the Auction
instance: attributeToWinningCustomer and close F.

 In addition to the code that controls the state machine actions, listing 5.4 also
defines two items that you’ll need in order to hook up the state machine to the
Auction model. Specifically, the FirstEvent object D will be used later to set up an
AuctionMachine instance for a given auction; more on that shortly. Second, as Auction-
Machine instances should always be related to a given Auction instance, the
AuctionMachine needs a foreign key E.

 You might be wondering how it knows to call these action methods at a particular
point in the future. Well, the real key is this line of code:

State(AuctionStates.Active,After(
 Auction.duration, AuctionStates.Expired))

In essence, this says “move to the Expired state after the time defined by Auction
.duration has passed.” For simplicity’s sake, and to not lose clarity in the example, we
set the duration of auctions in the system to 24 hours. In this example, we’re using Lift
Machine to demonstrate the stateful nature of Lift and how powerful that concept can
be. A more typical use case for Lift Machine might be something like reminding a
user to validate their account one day after registering; essentially, anything that
requires some action to be asynchronously executed at a given point in the future.
The real take-away here is that Lift Machine can perform actions away from the
browser, resulting in multifaceted workflows.

 To complete the functionality, it’s also necessary to modify the Auction class to
include some new helper methods and lifecycle hooks. As it stands, there’s nothing
to instantiate the AuctionMachine instances and initialize the state. Fortunately,
because all AuctionMachine instances have a close relationship with Auction instances
and their subsequent lifecycles, it makes sense to instantiate a new AuctionMachine
instance when a new Auction is added to the system. Listing 5.5 shows the revised
Auction definition.

 object Auction
 extends Auction

Listing 5.5 Revised Auction class definition

90 CHAPTER 5 Shopping basket and checkout
 with LongKeyedMetaMapper[Auction]
 with CRUDify[Long,Auction]{
 ...
 override def beforeCreate =
 List(_.endsAt(duration.later.toDate))

 override def afterCreate = List(
 a => new Bid().amount(a.starting_amount.is)
 .auction(a).save,
 a => AuctionMachine.createNewInstance(
 AuctionMachine.FirstEvent, Full(_.auction(a)))
)
 val duration = 24 hours
 ...
 }

 class Auction extends LongKeyedMapper[Auction]
 with CreatedUpdated with IdPK {
 ...
 def expired_? = if(!is_closed.is)
 ends_at.is.getTime < now.getTime else true

 def expires_at: TimeSpan =
 TimeSpan(((ends_at.is.getTime –
 now.getTime) / 1000L * 1000L))

 def close: Boolean = this.is_closed(true).save

 def attributeToWinningCustomer {
 winningCustomer.map(_.order.foreach(o => {
 o.order_auctions.+:(OrderAuction.create
 .order(o).auction(this)).save
 o.status(OrderStatus.Pending).save
 }))
 }
 ...
 }

Similar to the lifecycle additions made previously to the Customer definition, here we
add a couple of different functions that will be executed before and after the row has
been persisted to the database. First, beforeCreate sets the auction to end 24 hours
(the value defined by duration, D from the current time B. Then, afterCreate cre-
ates an initial bid and a new instance of the AuctionMachine C.

 In order to streamline some operations for a particular Auction instance, the mod-
ifications in listing 5.5 add three utility methods: expired_? E, expires_at F, and
close() G. These methods help in removing some of the boilerplate from the calling
code. The attributeToWinningCustomer definition H is a bit more complicated:
when an Auction expires, it’s first necessary to determine which customer had the
highest bid and obtain the related Order instance. With this Order in hand, you then
need to create a new OrderAuction and reference this Auction instance.

 With these methods implemented, the auctions will expire and automatically be
assigned to the correct customer.

Auction ends
24 hrs. later

B

Auction setup
operations

C

Duration of
auctionsD

Is auction
expired?

E

When does
auction expire?

F

Close this
auctionG

Assign auction
to winner

H

91Implementing the basket and checkout process
 With the auction process now in place and operational, the next component of
functionality to implement is the basket and checkout—an auction is no good if users
can’t pay for it! The next section implements a rudimentary checkout function and
allows people to pay via PayPal.

5.2 Implementing the basket and checkout process
Now that orders are successfully being attributed to the right customers, we need to
give the customers a method to provide their shipping details so the tickets and collat-
erals can be dispatched to them successfully.

 The first thing that’s missing is what would traditionally be referred to as a shop-
ping basket or cart to hold the user’s won auctions and where they can see the items
that they have pending payment.

 The second component that you’ll be building is a very basic checkout form to col-
lect the user’s shipping information. To achieve this we’ll be looking at another aspect
of Lift, LiftScreen, which is designed specifically to make constructing forms and
user input simple.

5.2.1 Implementing the basket

The basket is quite straightforward and inherits a lot of its functionality from things
that have already been defined, such as the AuctionHelpers trait. The goal is to create
a simple snippet that reads the contents of the database based upon which the cus-
tomer is currently logged in. If there is no current customer session, it should display
a friendly message requesting that the user log in to see the contents of their basket.

 Once again, we’ll use the built-in TestCond snippet to present the correct con-
tent depending on whether the user is logged-in or not. That will keep this logic
separate from the snippet controlling basket rendering. The basket itself only has
to decide whether the current basket has any contents or not. The next listing
shows the Basket snippet.

import scala.xml.NodeSeq
import net.liftweb.util.Helpers._
import example.travel.model.Customer
import example.travel.lib.AuctionHelpers

class Basket extends AuctionHelpers {
 private lazy val contents = Customer.currentUser.flatMap(
 .order.map(.order_auctions.all)).openOr(Nil)

 def items = ".basket-row *" #>
 contents.map(x => single(x.auction.obj)) andThen
 "%s ^*".format(
 if(contents.isEmpty) "empty"
 else "full") #> NodeSeq.Empty
}

Listing 5.6 The Basket snippet

Load items
from basket

B

Render items
template

C

92 CHAPTER 5 Shopping basket and checkout
The whole Basket class inherits from AuctionHelpers so that you don’t need to rede-
fine the bindings for a single Auction to obtain its name and so forth. The first thing
to do is load the current user’s completed auctions from the database B. This is done
by using the helper methods that were previously defined on both the Customer and
OrderAuction classes earlier in this chapter. The result here is a List[OrderAuction]
if auctions exist; if the current user hasn’t won any auctions, the method returns an
empty list, or Nil.

 The items snippet itself C uses a different CSS-style selector that might look a little
strange. This selector takes the input markup and selects a specific child node. In this
case, it allows you to select either the <full> element if the contents value isn’t
empty, or the <empty> node in the markup if the contents list is empty. You can find
more detailed information about the available CSS-style selectors in section 6.1.2.

 When it comes to the actual binding for the content, the items snippet reuses
the single method from the AuctionHelpers trait that has been used elsewhere
in the application.

 The next listing shows the view code—note how part of the content is contained
in the <full> and <empty> nodes. This allows the designer to explicitly decide
what should be displayed for each scenario without needless coupling to the server-
side code.

<div class="bg3 basket">
 <h2>Your Basket</h2>

 <lift:test_cond.loggedin>
 <lift:basket.items>
 <full>
 <div class="basket-row">
 <h3 class="name">Name</h3>
 </div>
 <div>
 <input type="button"
 name="checkout"
 value="checkout" />
 </div>
 </full>

 <empty>
 <p>You have not won any auctions</p>
 </empty>
 </lift:basket.items>
 </lift:test_cond.loggedin>

 <lift:test_cond.loggedout>
 <p>Please log-in to see the contents of your basket</p>
 </lift:test_cond.loggedout>

</div>

Listing 5.7 Basket markup from _basket.html

Start of logged-
in content

B
Invoke Basket.items
snippet

C

Define template
for full baskets

D

Define template for
basket when empty

E

93Implementing the basket and checkout process
Once again, this template uses the TestCond snippet to determine whether the user is
logged in or not B. From there, the Basket.items snippet determines the appropriate
content node in the XHTML C. Specifically, if the basket has items, it renders the <full>
node D; otherwise it renders the content to be displayed if the user’s basket is empty E.

 Note that neither <empty> nor <full> are valid HTML tags; they’re simply used as
markers in the template, and they’re removed by the snippet during page rendering.
The markup also defines a link to the checkout page so that users can enter their ship-
ping information for that order and pay via the online payment provider PayPal.

5.2.2 Implementing the checkout

With the basket complete, the frontend needs to receive some shipping information
from the customer so their tickets can be sent out. In addition, you’ll also add func-
tionality to pass the customer to PayPal so they can pay for the auctions and complete
the transaction.

 As this section makes use of Lift’s PayPal integration, so you’ll need to make sure
you add the lift-paypal artifact as a dependency to your project. Add the following
line to your SBT project:

val paypal = "net.liftweb" %% "lift-paypal" % liftVersion % "compile"

Be sure to call reload and update from the SBT shell before continuing.
 In the current Mapper models, there’s nowhere to hold shipping details in the

database, so first you’ll need to add some extra fields to the Order model. The follow-
ing listing shows the required additional fields and convenience method.

 class Order extends LongKeyedMapper[Order]
 with IdPK with OneToMany[Long, Order] with CreatedUpdated {
 ...
 object shippingAddressOne

➥ extends MappedString(this,255){
 override def displayName = "Address One"
 }
 object shippingAddressTwo

➥ extends MappedString(this,255){
 override def displayName = "Address Two"
 }
 object shippingAddressCity

➥ extends MappedString(this,255){
 override def displayName = "City"
 }
 object shippingAddressPostalCode extends

➥ MappedPostalCode(this,shippingAddressCounty){
 override def displayName = "Postcode"
 }
 object shippingAddressCounty

➥ extends MappedCountry(this){
 override def displayName = "Country"
 }

Listing 5.8 Additions to the Order model

Extra fields
for shipping

B

94 CHAPTER 5 Shopping basket and checkout
 ...
 def totalValue: Double = (for(
 oa <- order_auctions.all;
 au <- oa.auction.obj;
 av <- au.currentAmount
) yield av).reduceLeft(_ + _)
 }

This listing defines a simple set of additional addressing fields that should be familiar
to anyone who has shopped online before B. The totalValue helper method deter-
mines the overall value of the auctions attributed to this order C. Essentially, this
method just maps through the auctions invoking the currentAmount helper we
defined in the previous chapter.

 With the changes to the Order model complete, we can now focus on creating the
basic checkout. The checkout process itself will consist of two screens:

■ The first to input the shipping information
■ The second to confirm the basket and shipping information, with a link to con-

duct the transaction through PayPal

In order to implement the form for the shipping details, we could quite happily use a
snippet and code it manually with the bind statements and so forth, exactly as we’ve
done with everything else in the application. But there’s another component in Lift
WebKit called LiftScreen that can help us with this.

 Web applications typically have complex flows for form completion and collection
of user input. To this end, LiftScreen makes building forms super simple and pro-
vides a way to test forms programmatically without involving any form of HTTP simula-
tion. LiftScreen also has a bigger brother called Wizard that can link lots of different
screens together and control complex page flow and validation. To keep things simple
here, we’ll be implementing a single screen, but making a more complex multi-screen
flow based on user selection would be a simple extension of the LiftScreen code.
Wizard is covered in more detail in chapter 6.

 The purpose of using LiftScreen is to ease the creation of user input flows
and reduce code bulk. The following listing shows the whole LiftScreen imple-
mentation for the checkout.

import net.liftweb.http.{LiftScreen,S}
import example.travel.model.{Customer,Order}

object Checkout extends LiftScreen {
 object order extends
 ScreenVar(Customer.currentUser.flatMap(
 _.order) openOr Order.create)

 addFields(() => order.shippingAddressOne)
 addFields(() => order.shippingAddressTwo)
 addFields(() => order.shippingAddressCity)

Listing 5.9 Input for collecting shipping details using LiftScreen

Helper for
order value

C

Define internal
variable

B

Register
specific fields

C

95Implementing the basket and checkout process
 addFields(() => order.shippingAddressPostalCode)
 addFields(() => order.shippingAddressCountry)

 def finish(){
 if(order.save) S.redirectTo("summary")
 else S.error("Unable to save order details")
 }
}

The first thing to say about this LiftScreen is that it sits alongside the other regular
snippets in the application. LiftScreen is a subtype of DispatchSnippet, so it can be
thought of as an abstraction over the normal snippets that you’re familiar with. The
next point of note is that the Checkout implementation is a singleton, rather than a
class like the other snippets in the application.

 Within the object itself, the first item is a local ScreenVar used to hold the order
instance that’s retrieved via the logged-in customer B. ScreenVars are local to the
screen and can’t be shared directly. The next group of method calls C registers spe-
cific model fields for receiving input in the UI. Had you wanted to construct inputs for
the entire model, you could simply pass the model reference itself, and LiftScreen
would automatically construct inputs for all the fields on the specified model. Finally,
the finish method definition takes the order instance and saves it with the updated
values from the form D. It couldn’t be easier!

 Of course, it’s necessary to invoke this screen from checkout.html, but as its ren-
dering methods are already plumbed in just like any other snippet; you only need to
do this:

<lift:checkout />

In order to make this screen appear in an application-specific style, you can provide a
customized template so that when Lift renders the screen, it does so in a manner that
suits your application. The wizard and screen template you can customize is located at
webapp/templates-hidden/wizard-all.html. This special template ensures that any
rendering completed by either LiftScreen or its bigger brother Wizard will be styled
in a manner that’s appropriate to your specific application. LiftScreen and Wizard
are very powerful user input abstractions, and they save heaps of time when building
user forms and workflows.

 With these things in place, your input form should look something like figure 5.2.
 When the user clicks the Finish button, the input is saved to the database and the

user is redirected to an overview page where they can see their cart contents and its
value, along with the shipping details they entered. To make this work, we need to add
an OrderSummary snippet to display the shipping information and grab some summary
information about the order, such as its total worth. The purpose is to let the user
review what they’re purchasing, confirm their information, and give them the option
to amend any details before being transferred to PayPal to collect payment.

Register
specific fields

C

Finish
action

D

96 CHAPTER 5 Shopping basket and checkout
Listing 5.10 shows the OrderSummary snippet.

import scala.xml.NodeSeq
import net.liftweb.util.Helpers._
import net.liftweb.paypal.snippet.BuyNowSnippet
import example.travel.model.Customer

class OrderSummary extends BuyNowSnippet {
 override def dispatch = {
 case "paynow" => buynow _
 case "value" => value
 case "shipping" => shipping
 }

 val order = Customer.currentUser.flatMap(_.order)
 val amount = order.map(_.totalValue).openOr(0D)
 val reference = order.map(
 _.reference.is.toString).openOr("n/a")

 override val values = Map(
 "business" -> "seller_XXXXX_biz@domain.com",
 "item_number" -> reference,
 "item_name" -> ("Auction Order: " + reference))

 def value = "*" #> amount.toString

Listing 5.10 The OrderSummary snippet

Figure 5.2 User input form for collecting the shipping information

Wire up
BuyNowSnippet

B

Configure
PayPal

C

Get order value
for auctionD

mailto:biz@domain.com

97Implementing the basket and checkout process
 def shipping = order.map { o =>
 "address_one" #> o.shippingAddressOne.is &
 "address_two" #> o.shippingAddressTwo.is &
 "city" #> o.shippingAddressCity.is &
 "postcode" #> o.shippingAddressPostalCode.is
 } openOr("*" #> NodeSeq.Empty)
}

This class extends the Lift PayPal integration snippet, BuyNowSnippet, which provides
a mechanism for automatically generating the relevant markup required to post trans-
action information to PayPal. By connecting the dispatch table to the buynow method
in the BuyNowSnippet B, buynow becomes callable from your template markup. In
addition, the BuyNowSnippet allows you to define extra configuration parameters that
will be transferred to hidden inputs in the resulting PayPal form. This is done by pro-
viding a simple key-value Map C.

 In addition to the PayPal setup, the value snippet method D obtains the overall
value of the order using the totalValue helper method that was added to the Order
model earlier in the chapter.

 The shipping method reads the values that were entered in the Checkout screen
and binds them for display using the familiar CSS-style selectors. Had this example
been using a full Wizard, you wouldn’t need to reload the values in this way, but for
the sake of simplicity, we chose to do it this way rather than complicate the example
with even more new content E.

 With this snippet code in place, you need to implement these snippets and add the
checkout and summary pages to the sitemap. The next listing shows the markup
required for the summary page.

<lift:surround with="wide" at="content">
 <div>
 <h2>Order Summary</h2>
 <lift:basket.items>
 ...
 </lift:basket.items>

 <div class="basket-row">
 <p class="bold">Total purchase value: £
 <em lift="order_summary.value" /></p>
 </div>

 <h2>Shipping Details</h2>
 <p>Details of travel will be sent to the
 following address: (

➥ Edit)</p>
 <p class="bold" lift="order_summary.shipping">
 <address_one />

 <address_two />

 <city />

 <postcode />

 </p>

Listing 5.11 XHTML for checkout summary

Bind shipping
info from order

E

Reuse basket
markup

B

Display total
value

C

Display shipping
details

D

98 CHAPTER 5 Shopping basket and checkout
 <h2>Payment</h2>
 <p>Please pay for your items using the PayPal button below</p>
 <lift:order_summary.paynow />
 </div>
</lift:surround>

This markup should look fairly familiar. It’s just implementing the snippet methods as
you’ve done in the past couple of chapters. First it reuses the Basket snippet from the
previous section B, and then it displays the total order value C. In addition, it ren-
ders the customer’s shipping information D and finally generates the Buy Now but-
ton E, which sends the transaction to PayPal.

 The only other point of note here is the static link back to the checkout page. The
checkout screen is clever enough to figure out what it needs to do in order to obtain
the values, so the same screen serves as both an input and editing form with no extra
work. The final result should look like figure 5.3.

 A couple of visual features have been added in this screenshot, such as the stage
pin to indicate what phase of the transaction the user is at, but these are just standard
HTML and CSS tricks, so they don’t warrant discussion here. As this screen is near the
end of the user’s journey through the application, the only thing remaining is to
transfer them to PayPal for payment.

Render
PayPal formE

Figure 5.3 The completed checkout summary page

99Collecting payment with PayPal
5.3 Collecting payment with PayPal
As it stands, there’s no way for the user to actually send the funds for their orders. This
is somewhat problematic and wouldn’t make for a very good ecommerce site! Fortu-
nately, the Lift module that you added to the project dependency earlier in this chap-
ter provides out-of-the-box support for the online payment service provider PayPal.
The integration supports the two most common forms of electronic payment used by
PayPal: Payment Data Transfer (PDT) and Instant Payment Notification (IPN).

NOTE You can read more about PDT and IPN on the PayPal site. PDT is dis-
cussed at https://mng.bz/3gvM and IPN is covered at https://mng.bz/5tOy.

The PayPal integration means you don’t have to set up your own dispatch functions
for handling the responses from PayPal and parsing their postback to your applica-
tion. Typically, all you need to do is create a handler object that implements methods
required by the PaypalIPN and PaypalPDT traits, and hook up the dispatchers sup-
plied by those traits in your application boot.

5.3.1 Environment setup

Before we cover the PayPal implementation, there are several things you must know
about PayPal and their developer process. First, you’ll need to register yourself on
developer.paypal.com. Then you should do some background reading on PDT and
IPN. The online documentation is very comprehensive, and as this is a book about
Lift, and not about PayPal, we won’t repeat it here other than to touch on some high-
level configuration instructions.

 With your account created and logged in to developer.paypal.com follow the steps
in table 5.1.

Table 5.1 Process of configuring the PayPal sandbox environment

Configuring your PayPal sandbox

Action Result

1 Set up both a “preconfigured seller”
and “preconfigured buyer” account in
the sandbox.

PayPal generates random account names and
allows you to log in as those “people.”

https://mng.bz/3gvM
https://mng.bz/5tOy

100 CHAPTER 5 Shopping basket and checkout
Now that your environment is set up, you need to wire up the Lift side of things, or the
communications from PayPal will disappear into the ether. As I mentioned, there are
two main traits in the PayPal package to take responsibility for the two supported trans-
action systems: PaypalIPN and PaypalPDT. In this example, let’s create a handler that
implements these traits called PaypalHandler with the implementation shown in the
following listing

import net.liftweb.common.{Loggable,Full,Box,Empty,Failure}
import net.liftweb.paypal.{PaypalIPN,PaypalPDT,
 PaypalTransactionStatus,PayPalInfo}
import net.liftweb.http.DoRedirectResponse
import net.liftweb.mapper.By
import example.travel.model.{Order,OrderStatus}

object PaypalHandler extends PaypalIPN with PaypalPDT with Loggable {
 import PaypalTransactionStatus._
 val paypalAuthToken = "yourtokengoeshere"
 def pdtResponse = {
 case (info, resp) => info.paymentStatus match {
 case Full(CompletedPayment) =>
 DoRedirectResponse.apply("/paypal/success")
 case _ =>
 DoRedirectResponse.apply("/paypal/failure")
 }
 }

 def actions = {
 case (CompletedPayment,info,_) =>
 updateOrder(info,OrderStatus.Complete)
 case (FailedPayment,info,_) =>
 updateOrder(info,OrderStatus.Failed)
 case (status, info, resp) =>
 }

2 Log into the sandbox as the seller account
you just created, and enable Auto Return in
the selling preferences. The PayPal
documentation can be found here:
http://mng.bz/M8NJ.

Enabling Auto Return ensures that the user is sent
back to the application when their transaction is
completed. Your autoreturn URL will now be http://
YOUREXTERNALHOST/paypal/pdt.

3 Enable PayPal Data Transfer (it’s on
the same screen as the Auto Return
configuration).

Enabling PDT will ensure that when the transaction
completes, PayPal passes back a few details about
the order, such as the transaction token.

4 Edit the IPN callback URL and enable IPN.
The PayPal documentation can be found
here: https://www.paypal.com/ipn.

IPN is an asynchronous call back to your
server with all the specific details about a
given transaction.

Listing 5.12 The PaypalHandler implementation

Table 5.1 Process of configuring the PayPal sandbox environment (continued)

Configuring your PayPal sandbox

Action Result

PDT token keyB
Successful
PDT action

C

Failure PDT
actionD

IPN response
handlers

E

http://mng.bz/M8NJ
http://YOUREXTERNALHOST/paypal/pdt
http://YOUREXTERNALHOST/paypal/pdt
https://www.paypal.com/ipn

101Collecting payment with PayPal
 private def updateOrder(info: PayPalInfo,
 status: OrderStatus.Value){
 Order.find(By(Order.reference,
 info.itemNumber.map(_.toLong)

➥ .openOr(0L))) match {
 case Full(order) => order.status(status).save
 case _ =>
 }
 }
}

In short, this code block composes the two PayPal traits supplied by the Lift PayPal
integration and implements the required methods to handle the various responses
PayPal might provide. It goes without saying, however, that this is only an example. In
a real production system, you’d account for a lot more responses and intelligently
handle them. This, in comparison, is a mere stub to illustrate the process and ease of
implementing ecommerce in Lift.

 When you enabled PDT in the PayPal sandbox, you were assigned a security token
to use in the PDT request. It needs to be entered in this code so PayPal can know that
it’s your application calling back to it for information on the transaction B. In this
implementation, PDT serves only to display the correct response screen back to the
user; the pdtResponse cases C and D dictate which URL the user should be redi-
rected to based on the result of the transaction.

 The actions are somewhat more complex E, because when the PayPal servers
make the IPN callback to the application, it contains much more data and is generally
considered the best way to then update order information with the transaction data.
The updateOrder helper method F will look up an order by the order reference
number that was generated when the order was created; then, depending upon the
status received from the IPN data, the order has its status set appropriately.

 Although this code is functional, it’s currently not wired into the application boot
cycle, so it won’t ever be invoked by Lift. In order for Lift to be able to call the PayPal-
Handler you need to add the following code within your Boot class:

import net.liftweb.paypal.PaypalRules
import example.travel.lib.PaypalHandler

class Boot extends Loggable {
 def boot {
 ...
 PaypalRules.init
 PaypalHandler.dispatch.foreach([LiftRules.dispatch.append(_))
 ...
 }
}

The PaypalRules and PaypalHandler lines of code first initialize the PaypalRules
object that contains configuration information used to determine a range of factors
about the transaction. For example, it contains a function configuration that lets you
dynamically determine which currency should be used when communicating with

Find and update
order by ref

F

102 CHAPTER 5 Shopping basket and checkout
PayPal. In this case, it uses the defaults, so it will select a currency based upon the
locale of the JVM running the example. Second, they take the dispatch functions in
the PaypalHandler object (inherited from the two Lift PayPal traits), which respond
to the IPN and PDT callbacks, and map them into the application using Lift’s dis-
patching mechanism. We’ll discuss Lift’s dispatching mechanism in chapter 8.

5.3.2 The Buy Now button

With the backend all wired up and ready to go, you need to supply the user with a sim-
ple one-click button to instantiate the transaction process in the familiar PayPal way: a
bright orange button! In Lift’s PayPal support there’s a mechanism for automatically
generating these buttons. You simply need to implement the BuyNowSnippet trait into
one of your snippet classes and populate the required methods so it knows the value
and other metadata you wish to send to PayPal.

 Earlier in the chapter, listing 5.10 detailed the OrderSummary snippet that com-
puted the overall value of the order and presented the user with a rundown of what
they were going to purchase. As this already has the data we need for the button, the
simplest approach is to just compose the BuyNowSnippet with the existing class. The
next listing shows the changes made to the class.

import net.liftweb.paypal.snippet.BuyNowSnippet

class OrderSummary extends BuyNowSnippet {
 ...
 override val values = Map(
 "business" -> "me@business.com",
 "item_number" -> reference,
 "item_name" -> ("Auction Order: " + reference))

}

As you can see in the listing, very few lines of code are required to implement the but-
ton. The main code overrides the Map[String,String] of the key-value pairs that
need to be included in the form submission to PayPal B, but these parameters are
detailed in the PayPal documentation (https://mng.bz/YnC1).

 Finally, ensure that you add the PayPal response pages to the SiteMap in the
Boot class:

Menu("Transaction Complete") / "paypal" / "success"
 >> LocGroup("public") >> Hidden,
Menu("Transaction Failure") / "paypal" / "failure"
 >> LocGroup("public") >> Hidden,

For simplicity’s sake, we’ve populated these two files with a friendly message so the
user is aware of the transaction’s outcome. You might also want to customize the pages
with customer information about their order; you have everything at your disposal in
the PDT and IPN responses supplied by PayPal.

Listing 5.13 Implementing the BuyNowSnippet trait

Configure
PayPal fields

B

mailto:me@business.com
https://mng.bz/YnC1

103Summary
5.4 Summary
The application is now functioning with a good degree of functionality, and during its
implementation you’ve seen various parts of Lift—some parts at a high level, and oth-
ers in more detail. This chapter has made use of several Lift modules, including the
state machine and PayPal integration. The real take-away here is that Lift has numer-
ous modules for many aspects of web development, and they can often enhance your
development cycle and cut the time to market for your application. Specifically, Lift
Machine can be a very useful tool when you need to execute actions after or at a par-
ticular time in the future. This is a very common idiom in modern web applications,
whether you’re sending reminder emails or triggering some kind of notification in an
application. Lift’s stateful nature lends itself to this kind of sophisticated functionality.

 In the next chapter, we’ll start looking at the various aspects of Lift in far more
detail than we’ve done so far. In the next chapter you’ll be taking a deep dive into
Lift’s powerful templating and snippet mechanism, handling state with sessions and
request variables, and looking at examples of how you can implement Lift’s frontend
components like LiftScreen. In the templating discussion, you’ll see how you can
make use of HTML5 and automatic validation of your markup templates while also uti-
lizing powerful CSS-style element transformations to bind dynamic content to your
design templates via Lift’s snippet mechanism.

Part 3

Lift in detail

We’ve swept through several of Lift’s features during the construction of
the example booking application; it’s now time to take a more extensive tour of
the Lift toolset. This part of the book aims to act as a guide and in-depth refer-
ence and to provide helpful bits of advice along the way that should smooth your
learning curve with Lift.

 Chapter 6 covers common techniques for implementing applications with
Lift, including templating, views, sessions, and multipage input structures. Chap-
ter 7 covers Lift’s excellent SiteMap module, which provides a lightweight access
control mechanism and slick way to componentize logic within your applica-
tions. Chapters 8 and 9 cover Lift’s HTTP feature set—from REST web services,
through dispatching and URL rewriting, right up to advanced Comet usage.
Chapters 10 and 11 cover persistence within Lift. They demonstrate both the
Mapper module for working with RDBMS with an Active Record pattern, and the
Record module, which provides a context wrapper around a store-agnostic pro-
vider system for working with backends from RDBMS to NoSQL.

 The final three chapters in this part of the book cover topics usually associ-
ated with complex enterprise applications. Chapter 12 covers localization within
Lift. Chapter 13 covers distributed programming and messaging. These technol-
ogies are increasingly becoming a part of application requirements in the enter-
prise. Chapter 14 explains how you can leverage Lift’s test kit and the other Scala
testing frameworks to ensure your code is of high quality before getting it ready
for a production deployment. Finally, chapter 15 shows how you can take your
Lift application into deployment, and covers some strategies for scaling and per-
formance, including complicated topics like state handling and monitoring.

Common tasks
 with Lift WebKit
There are many ways to achieve similar results in Lift, especially with templating
and rendering. This chapter will show different ways that templates can be com-
posed together and how you can control the rendering of dynamic content in your
applications. Lift’s view system, for example, is perfect for generating markup con-
tent from anything other than a standard template while still maintaining full
access to the application state.

 We also look at how you can effectively utilize Lift’s type-safe session and request
variables to hold on to important pieces of application state. From there we move
on to look at Lift’s stateful page flow mechanisms, LiftScreen and Wizard. Finally,
we touch on what are known as Lift’s widgets, which are a group of ready-made com-
ponents that provide an easy API for adding things like autocomplete text boxes to
your apps.

This chapter covers
■ Templates, views, and snippets
■ Session and request variables
■ Forms with LiftScreen and Wizard
■ Widgets
107

108 CHAPTER 6 Common tasks with Lift WebKit
 The first things we cover are Lift’s templates, views, and snippets, because these are
typically where most users will spend the majority of their time working with Lift.

6.1 Templates, snippets, and views
Any web framework, irrespective of language or implementation style, will ultimately
need to generate markup to pass back to the browser. With this in mind, the templat-
ing system must be flexible but also easy to use because it’s highly likely that develop-
ers and designers will spend a lot of time using the template system. Lift takes this to
heart and recognizes that templating should not just be an afterthought to flush
markup to the client side.

 In the following subsections, we look at how you can implement different tem-
plating strategies in Lift, and we highlight some of the best practices for designing
your snippets.

6.1.1 Templates

At its core, you can think of Lift’s entire template system as a mechanism for replacing
XML nodes. The markup templates are essentially simple indicators to Lift that it
ought to replace the markers with something dynamic from a particular snippet, a
view computation, or another template. This kind of system allows for a high degree
of reuse within templates, and Lift provides a selection of additional utilities to further
reduce the amount of repetition in your applications.

 This section covers the core components and strategies you’ll need to wield
Lift’s template system in the vast majority of situations: from building common tem-
plates to avoiding repeating regularly used elements through to handling Lift’s
HTML5 support.

SURROUNDS

When dealing with presentation markup and templates, the same rules apply, and it’s
unfortunately all too easy to repeat yourself and create a maintenance nightmare.
Developers by their very nature hate to repeat themselves; we’re always looking for
ways to reuse this, that, or the other. To that end, Lift provides a mechanism called sur-
rounds that allow you to build hierarchies of templates, with grandparent, parent, and
child relationships, where the child inherits from both the parent and the grandpar-
ent. You can have as many levels in this hierarchy as you require. The most common
use case for such a technique is to save repeating the <head> elements and other bits
of page furniture that are common over all your pages.

 To give this concept a little more substance, suppose the following listing shows the
contents of a parent template called default.html found in webapp/templates-hidden.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html xmlns:lift="http://liftweb.net" xmlns="http://www.w3.org/1999/xhtml">
<head>

Listing 6.1 Example of a parent template

http://www.w3.org/TR/html4/strict.dtd
http://liftweb.net
http://www.w3.org/1999/xhtml

109Templates, snippets, and views
 <title>My Application</title>
</head>
<body>
 <lift:bind name="content" />
</body>
</html>

For the most part, this is pretty standard markup. But you’ll notice that there’s a spe-
cial Lift element called bind B. This marks a location in your template where child
templates will be merged in place. The name attribute must be unique, but otherwise
you’re free to name these bind locations whatever you like.

 You might be wondering how you can actually get content into this placeholder.
That’s simple. For child templates binding to a single placeholder, the surround ele-
ment is your friend. Consider this example of using surround:

<lift:surround with="default" at="content">
 <p>Will be displayed in the placeholder position</p>
</lift:surround>

As you can see, the at attribute denotes the name defined in the parent template.
When the page containing the surround is loaded, Lift wraps the content defined in
the page template with that of the parent, defined by the with attribute. By default,
it’s assumed that parent templates are located in the templates-hidden directory in
the webapp folder, but if you’d rather place the template somewhere else, you simply
have to do something like this:

<lift:surround with="/path/from/webapp_dir/template" at="content">

Be sure to not place .html at the end of the with attribute value, though.
 This simple system covers a lot of use cases, but what if you need to bind to multi-

ple placeholders in the parent template? In that case, there’s a handy helper called
<bind-at> that’s perfect for such a situation. Lift templates can only have a single root
element because they must all be well-formed XML markup, so when you want to use
bind-at, your implementing template would look like the next listing.

<lift:surround with="default" at="content">
 <lift:bind-at name="another_placeholder">
 <p>Wow, I am going elsewhere!</p>
 </lift:bind-at>
 <p>Will be displayed in the placeholder position</p>
</lift:surround>

The <bind-at> element sits within the surround, and the content defined therein is
placed at the named bind point, irrespective of where that lives on the page.

 As a side note, if you have a template that’s only updating fragments of pages utiliz-
ing <lift:bind-at>, but you attempt to supply a template that effectively has more
than one root node, the markup parser will explode with an error because well-
formed XML must have a single root node. In this situation, you may not want to wrap

Listing 6.2 Using multiple bind placeholders in a child template

Bind
placeholder

B

110 CHAPTER 6 Common tasks with Lift WebKit
your fragments with a <div> or other erroneous markup as it would impact your CSS
implementation, so there’s a helpful wrapper called children. Simply wrap the group
of nodes with <lift:children> and the template will pass markup validation—this
won’t cause any adverse impact on the ultimate rendering in the browser.

NOTE You may be wondering if all this processing of markup and templates
has a performance impact. To a degree, it does, but Lift is clever enough to
realize that when you’re running in production mode you’re unlikely to be
changing your templates, so by default Lift caches the templates. If, for what-
ever reason, you want to alter this behavior or stop the caching, just look at
LiftRules.templateCache.

Using layers of surrounds can be an extremely effective technique for reducing
markup duplication. But there are some use cases that would be somewhat cumber-
some with surrounds, and an embedding strategy would be more effective for directly
reusing content.

CONTENT EMBEDDING AND PARTIAL TEMPLATES

One of the things that <lift:surround> doesn’t give you is the ability to easily reuse a
segment of markup in multiple places in an ad hoc fashion. It’s doable, but it wouldn’t
be overly elegant, and you’d certainly be better served by an alternative solution. This
is exactly what content embedding was designed to do.

 Let’s assume that you have the following markup, and it represents something that
you want to repeatedly use in your application:

<div style="amazing">
 <p>Did you realize quite how amazing this is</p>
</div>

If you wanted to embed that markup in an ad hoc fashion in any template, all you
need to do is place it in the templates-hidden directory and then call <lift:embed> in
the template where you’d like that content to be imported. Here’s an example:

<lift:embed what="_amazing" />

As a general convention, we recommend denoting your partial templates in some way
so that it’s immediately obvious that they’re different from your main surround tem-
plates. Typically, I prefix their names with an underscore, but this is just a suggested
convention; it’s not a hard and fast rule required to make the system work.

HEAD RESOURCES

It’s very common to want to externalize the surrounding <head> content and other
global resources into a single template. Doing this can really cut down on mainte-
nance, but it does, like most things, have a downside too. Let’s assume that you have a
single page that requires some extra CSS and JavaScript that deviates from the stan-
dard <head> you have elsewhere, and that it’s an unacceptable weight to include in
the main parent surround. Lift provides the solution in a feature called a head merge.

111Templates, snippets, and views
 In essence, head merge looks in your child (page) templates for the <head> ele-
ment, and, upon finding it, will merge that together with the <head> from the sur-
round template, giving you a rendered page that’s an amalgamation of the resources
from child and parent templates. It couldn’t be simpler.

 Lift also provides the reverse mechanism so you can insert content just before
the closing </body> tag, which a lot of frontend developers like to do to boost page-
loading speeds. Unsurprisingly, being the opposite of <head>, this mechanism is
called tail, and it can be used like any other Lift tag:

<lift:tail>
 <!-- stuff you want before the closing body -->
</lift:tail>

Both during the development cycle and after moving an application into production,
you can get strange results when the client-side browser has cached the CSS, Java-
Script, and perhaps even image files. Lift provides a simple helper to prevent the
browser from using an incorrectly cached resource: <lift:with-resource-id>. Sim-
ply wrap the element you want to have a specialized ID appended to with the with-
resource-id tag like this:

<lift:with-resource-id>
 <script type="text/javascript" src="js/example.js"><script>
</lift:with-resource-id>

Then when Lift renders your page, you’ll get a consistent URL that will only change
when the application is rebooted. If you were wondering, the URL would be some-
thing like this:

<script
 type="text/javascript"
 src="js/example.js?F1142850447932JLI=_"></script>

Altering the String => String function that lives in LiftRules.attachResourceId
can easily modify this appended string.

DOCTYPES AND MARKUP VALIDATION

As Lift runs all your template markup through its rendering pipeline, it will automati-
cally strip off any Document Type Definition (DTD) information you apply directly in
the template, and it will render your pages with XHTML Transitional document type
by default. In order to set the DocType to your preferred type, you need to apply the
following in your Boot class:

import net.liftweb.common.Full
import net.liftweb.http.{LiftRules,Req,DocType}

LiftRules.docType.default.set((r: Req) => Full(DocType.xhtmlStrict))

Because the LiftRules.docType configuration parameter is a FactoryMaker, you can
set a different document type based upon information in the request. For example, if
the request was from an iPhone, you might want to render the content with a mobile

112 CHAPTER 6 Common tasks with Lift WebKit
DocType rather than the standard default. FactoryMakers are covered in detail in
chapter 14 (section 14.2.2).

 Table 6.1 details the available DocType declarations that Lift provides and shows
examples of their usage.

Because your application could feasibly end up with a large number of templates, vali-
dating that they’re all correct can often be difficult. With this in mind, Lift supports
automatic validation of application markup in the normal course of development. If
any validation errors exist, a notice is pushed out to the browser explaining the error.

 To enable a validator, configure the following option in your Boot class:

import net.liftweb.common.Full
import net.liftweb.http.{LiftRules,StrictXHTML1_0Validator}

LiftRules.xhtmlValidator = Full(StrictXHTML1_0Validator)

This example employs the XHTML Strict validation during development. Lift supplies
a couple of validators by default; these are listed in table 6.2.

If you want to implement your own validator, just extend net.liftweb.http.Generic-
Validator and provide the location of the relevant XSD.

HTML5 SUPPORT

When Lift was first conceived, XHTML was lined up to be the successor for the HTML
standard, and as such XHTM required all templates to be valid XML documents. At the

Table 6.1 DocType declarations in Lift

DocType Usage

XHTML Transitional DocType.xhtmlTransitional

XHTML Strict DocType.xhtmlStrict

XHTML Frameset DocType.xhtmlFrameset

XHTML 1.1 DocType.xhtml11

XHTML Mobile DocType.xhtmlMobile

HTML5 DocType.html5

Table 6.2 Default template validators in Lift

Validator Usage

XHTML Strict LiftRules.xhtmlValidator =
 Full(StrictXHTML1_0Validator)

XHTML Transitional LiftRules.xhtmlValidator =
 Full(TransitionalXHTML1_0Validator)

113Templates, snippets, and views
time of writing, HTML5 was starting to make a large impact on the web development
world, and HTML5 appeared to be slowly but surely overtaking the XHTML standard,
which was not adopted as broadly as the W3C might have hoped. All versions of Lift
still fully support XHTML, and it’s the default mode for Lift applications, but as of ver-
sion 2.2 onward, Lift fully supports HTML5. There is a parser for HTML5 templates and
support within Lift’s own rendering pipeline for emitting HTML5 to the browser.

 In order to enable HTML5 support in Lift, just add the following line to your
Boot class:

import net.liftweb.http.{LiftRules,Req,Html5Properties}

LiftRules.htmlProperties.default.set((r: Req) =>
 new Html5Properties(r.userAgent))

This configuration comes with a couple of oddities that relate to the strictness of
HTML5. Specifically, HTML5 has some incompatibilities with XHTML templates and
doesn’t like self-closed tags, like <lift:menu.builder />. It also doesn’t function with
mixed-case tags, which are frequently used for snippets in Lift.

 But there’s a solution; if you want HTML5 output but would prefer XHTML tem-
plates, you can implement the following configuration in your Boot class:

import net.liftweb.http.{LiftRules,Req,XHtmlInHtml5OutProperties}

LiftRules.htmlProperties.default.set((r: Req) =>
 new XHtmlInHtml5OutProperties(r.userAgent))

This configuration can be exceedingly helpful if you’re migrating an existing applica-
tion to HTML5 from XHTML, or if you’d simply prefer to continue to build your tem-
plates in the way you’ve become accustomed to. More information about Lift’s
HTMLProperties system can be found on the Lift wiki: http://www.assembla.com/
spaces/liftweb/wiki/HtmlProperties_XHTML_and_HTML5.

DISPLAYING MESSAGES

If you’ve been reading this book from the beginning, you’ll be familiar with the
S.notice, S.warning, and S.error methods. You can implement these methods in
your snippet and pass them a String that represents a message you wish to pass back
to the user.

 In order to allow the designer to position and style these messages, Lift provides
the <lift:msgs /> and <lift:msg /> helpers. These have a variety of options to allow
you style the message and interface precisely.

 The following listing shows an example of applying custom styles to the built-in
notice system through <lift:msgs />.

<lift:msgs>
 <lift:error_msg>Error! The details are:</lift:error_msg>
 <lift:error_class>errorBox</lift:error_class>
 <lift:warning_msg>Whoops, I had a problem:</lift:warning_msg>

Listing 6.3 Applying custom styling to the Msgs helper

http://www.assembla.com/spaces/liftweb/wiki/HtmlProperties_XHTML_and_HTML5
http://www.assembla.com/spaces/liftweb/wiki/HtmlProperties_XHTML_and_HTML5

114 CHAPTER 6 Common tasks with Lift WebKit
 <lift:warning_class>warningBox</lift:warning_class>
 <lift:notice_msg>Note:</lift:notice_msg>
 <lift:notice_class>noticeBox</lift:notice_class>
</lift:msgs>

The sequence of nodes enclosed by <lift:msgs> allows you to control various aspects
of the messages. Each type of notification has a pair of styling elements. The nodes
ending in _msg denote the text to be prefixed to each type of notice display, whereas
nodes ending with _class allow you to customize the CSS class that’s applied to the
relevant display type.

 One other interesting point about the notification system is that irrespective of
whether it’s displaying notifications after a hard page reload or notifications in
response to some AJAX function, they operate in exactly the same way and can be styled
through a single mechanism. You can even get the message to dynamically fade out
after a defined period of time. In your application Boot, simply define the following:

import net.liftweb.http.{LiftRules,NoticeType}
import net.liftweb.common.Full
import net.liftweb.util.Helpers._

LiftRules.noticesAutoFadeOut.default.set(
 (notices: NoticeType.Value) =>Full(2 seconds, 2 seconds))

For any messages that are defined in your application, this configuration will automat-
ically fade them out after displaying for a period of 2 seconds, and it will take 2 sec-
onds to conduct the fade out.

 Despite the significant differences between all these methods, they’re all imple-
mented using the same mechanism: snippets. Snippets are essentially sections of ren-
dering logic, and the only difference between them and other rendering logic is that
they’re shipped with Lift and are automatically made available to the template mecha-
nism, so they appear to be built in. Otherwise, they aren’t leveraging anything that
you couldn’t implement yourself. This should give you a good indication of how pow-
erful the snippet idiom can actually be.

6.1.2 Snippets

Way back in chapter 1 (section 1.2.2), we first discussed Lift’s model of snippet opera-
tion, and in the previous section you saw how Lift itself, builds on the concept of snip-
pets to provide a rich templating system. In this section, we spend some time
comparing and contrasting the different types of snippet you can create and cover
some useful things to know when making your own snippets.

CSS TRANSFORMERS

Snippets are essentially a way of generating dynamically rendered content, and hav-
ing a clean and effective way to actually work with the template markup is key. This
is where Lift’s CSS transformers come in. Generally speaking, when you’re building
interactive content in Lift, you create server-side controls via the SHtml object and
then bind that to a particular sequence of XML nodes. In order to choose which

115Templates, snippets, and views
nodes have which server controls, Lift supplies a CSS-style selectors API; these are
also collectively known as CSS transformers because they take template markup as
input and transform that to rendered output markup. Let’s take a look at a few exam-
ples of using SHtml and Lift’s CSS transformers to understand the interplay between
these two pieces.

 The SHtml object has methods for creating text fields, check boxes, AJAX content,
and much, much more. Most of the user interaction components you might want in
your application can be found in SHtml. With this in mind, let’s take a look at a basic
example of attaching a text box and submit button, along with the template code used
to call it, as shown in the following listing.

import net.liftweb.util.Helpers._
import net.liftweb.http.SHtml

class BasicExample {
 def sample = {
 var message = "Change this text"
 "type=text" #>SHtml.text(message, message = _) &
 "type=submit" #>SHtml.onSubmitUnit(
 () =>println(message))
 }
}

This listing shows a very simple class that has a lone method called sample. This
method has a single variable inside called message that will temporarily hold the value
that’s entered by the user before it’s printed to the console by the submit function.
The really important parts here are defined at B. At first look, this may look like
rather strange syntax, but bear with me while we step through it.

CSS selector statements are defined in the following fashion:

"selector" #> thing-to-bind

The left-hand selector could be a variety of things, examples of which are detailed
later in table 6.3. On the right side of the #> symbol is the content that you want to
bind to that selector; this content could be a NodeSeq or some type that’s implicitly pro-
motable via implicit conversion to CssSel. All the default implicit conversions are
imported into scope via the import Helpers._ statement, so be sure to include that or
the selectors won’t work as anticipated.

 In this example, the elements being bound are SHtml controls for the required
form. As this form only has two elements, we can just use the CSS-style selectors to grab
the two elements from the template markup that have the attributes type="text" and
type="submit". The template code in this instance would look like this:

<p class="l:basic_example.sample?form=post">
<input type="text" />

<input type="submit" /></p>

Listing 6.4 Basic binding snippet

Make SHtml
controls

B

116 CHAPTER 6 Common tasks with Lift WebKit
You can almost think of the surrounding <p> element as invoking the class and call-
ing the method, with anything contained in that block essentially being the markup
that your selectors will address. Finally, but importantly, in order to make the form
function correctly, you must add the ?form=post attribute to the snippet. This tells
Lift that the element should be surrounded with a <form> tag, which enables the
HTML submit to work as expected and submit the form when the users hit the Sub-
mit button.

 Before we move on to a slightly more compli-
cated example, let’s first take a closer look at
the SHtml call in listing 6.4. As previously men-
tioned, SHtml has a lot of different methods—far
too many to cover in this section—but there are
some important concepts that apply to all the
different methods and that should help you.
Consider figure 6.1.

 As a general rule, most of the HTML element
controls, such as inputs and non-AJAX interactions (AJAX controls are covered in
chapter 9), will have two parameters:

■ A getter function that reads an initial value (for example, from a Mapper model)
■ A function that’s of type String => Any and that’s used to set the target’s value

(in listing 6.4, the value of the message var)

TIP Lift has a built-in garbage collection system that intelligently cleans up
any functions that have not been seen on the page in the past 10 minutes.
This ensures that your application remains tight and doesn’t become unduly
bloated. You’ll notice that each page is assigned an identifier like var
lift_page = "F6205612861985YP"; that’s inserted just before the </body>
tag, and this is used by Lift to identify the currently active page of functions,
essentially allowing Lift to detect when you browsed away from a particular
page. You can turn Lift’s garbage collection mechanism off if you want to, but
that isn’t recommended.

Consider table 6.3, which details some specific examples of using CSS selectors. If you
aren’t too keen on the #> method and would prefer something a little more regular,
you can use replaceWith instead of #> and all the examples in the table will work just
as well.

Table 6.3 Examples of implementing Lift’s CSS-style transformers

Selector Description

Subordinate selection "*" #><p>Replace all</p>

Global selectors replace all child nodes with the content defined on the
right side of the function. Every element is replaced.

Figure 6.1 Typical SHtml usage
patterns

117Templates, snippets, and views
The base selectors give you functionality for selecting elements in a wide variety of sce-
narios and replacing their content. But this is only useful for some operations; there
are times when you want to select something more specific than just one node, such as
if you want to dynamically alter the class attribute of a given node to change its styling.
CSS transformers also have a range of modifiers that work in conjunction with the
straightforward element selectors, as detailed in table 6.4.

ID selection "#thing" #><p>Replaced</p>

Given an element that has an id="thing" attribute, this selector
will replace the whole node with the content on the right side
of the function.

Class selection ".amazing" #><p>WOW</p>

Given an element with class="amazing", this selector will replace
the whole node with the content on the right side of the function. This
will be applied to all elements meeting the condition in the template
markup.

Attribute selection "type=text" #>SHtml.text(thing, thing = _)

Attribute selection chooses a node based upon the attribute=key
syntax. In this example, it would select all text input nodes in
the markup.

Name selection "@signup" #>NodeSeq. Empty

Given an element with a name attribute, you can use the
@nameofthing syntax to select that element. Name selection is
essentially a shorthand for name=signup.

Specialized selection ":button" #>SHtml.button ("Hit me",
 () =>println("w00t"))

Like some JavaScript libraries, Lift provides convenience selectors for
commonly used elements. At the time of writing, the following shorthand
selectors were supported: :button, :checkbox, :file,
:password, :radio, :reset, :submit, and :text.

Table 6.4 CSS transformation modifiers and their usage

Selector modifier Description

Replace element
subordinates

"li *" #> List("monday", "tuesday", "wednesday")

Transform the children of a given node by mixing together the element
selector with the subordinate selector. This example will iterate through
the list and replace all the elements with {{list
element}}.

Table 6.3 Examples of implementing Lift’s CSS-style transformers (continued)

Selector Description

118 CHAPTER 6 Common tasks with Lift WebKit
This idiom of replacing elements can be exceedingly powerful, as you can chain the
use of CSS selectors with the & operator. This allows you to build up chained transfor-
mation functions in any given block. Also, because the CSS transformations derive
from a NodeSeq => NodeSeq function type, you can compose function blocks together
using compose and the andThen methods, giving you blocks of functions that feed
input through one set of chained transformations to another. Here’s an example of a
render function we look at in more detail in chapter 10:

Append element
subordinates

"#apd *+" #> "Timothy"

Appends content to existing nodes children. For example,

<div id="apd">Welcome, </div>

would become

<div id="apd">Welcome, Timothy</div>

Prepend element
subordinates

"#prepend_target -*" #> "Timothy"

Prepends the content on the right side of the function to the start of the
child nodes.

Element attribute
replacement

"type=text [class]" #> "textinput"

Selects an element and then uses the [attribute] modifier to
change a particular attribute. This example adds the textinput class
to all text inputs in the input content.

Element attribute
append

".foo [class+]" #> "bar"

Similar to the attribute replacement, but this modifier appends to the exist-
ing content. The classic use case here is to dynamically append a specific
CSS class to a given element.

Root template
selector

"#content ^^" #> NodeSeq. Empty

Commonly, you’ll need to only display a segment of content to a particu-
lar user. For example, if they’re not logged in, you need to render a login
form, but if they’re already logged in, you might need to show them some
other content. The ^^ modifier takes the selected element, removes all
the other nodes in scope of this snippet, except for the one identified by
the selector, and uses the remaining nodes as the display content. This
allows you to select template content dynamically; in this example, the
id="content" node would be used as the root node for that snip-
pet’s content.

Child template
selector

"#content ^*" #> NodeSeq.Empty

Provides identical functionality to the root template selector, but the
specified node is dropped and only the children are used for the tem-
plate content.

Table 6.4 CSS transformation modifiers and their usage (continued)

Selector modifier Description

119Templates, snippets, and views
def render =
 "#value_one" #> doubleInput(one = _) &
 "#value_two" #> doubleInput(two = _) andThen SHtml.makeFormsAjax

Note how the first two declarations define input fields, and that’s composed with
another NodeSeq => NodeSeq function from the SHtml object: makeFormsAjax. For the
moment, don’t worry about what this function does; just understand that the content
from the first two declarations is processed and then passed to the secondary func-
tion. The result is that elements can go for a second round of processing, or, in this
case, be wrapped with an AJAX form element.

 Armed with this new information, let’s create a slightly more complex example
that’s more indicative of what you’d likely want to code in a real-world application.
Let’s construct two case classes that model the simple relationship between authors
and the books they’ve written.

case class Book(name: String)
case class Author(name: String, books: List[Book])

This is a simple relationship but one that can be used to create a list of authors and their
works. Given a List[Author], you could create the snippet shown in the following listing.

import scala.xml.NodeSeq
import net.liftweb.util.Helpers._

object Library {
 case class Book(name: String)
 case class Author(name: String, books: List[Book])
 val books = List(
 Author("JK Rowling", List(
 Book("Harry Potter and the Deathly Hallows"),
 Book("Harry Potter and the Goblet of Fire"))
),
 Author("Joshua Suereth", List(
 Book("Scala in Depth"))
)
)
}

class Authors {
def list =
 "ul" #> Library.books.map { author =>
 ".name" #> author.name &
 ".books" #> ("li *" #> author.books.map(_.name))
 }
}

In this example, the Library object is used purely for the purpose of example B. The
really interesting part of this example is the list method C.

 The first thing this list method does is map the List[Author] and implement the
right CSS transformations based upon the markup supplied by the designer. In this
case, the display is going to be an unordered list containing a nested unordered list

Listing 6.5 A more complex iteration

Supply
sample data

B

Iterate through
authors

C

Iterate through
booksD

120 CHAPTER 6 Common tasks with Lift WebKit
that displays the books of the given author. As the Author type is a case class, this
means that the parameters are automatically made immutable properties of that class,
so it’s possible to access them directly, as in the case of author.name, without the need
to write the boilerplate getXXX-style methods that are commonly found in Java code.

 Finally the nested iteration bound to the .books selector is used to display a given
author’s books D. You may remember from table 6.4 that the CSS transformers can
automatically render list types, so in this example it’s possible to map the List[Book]
into a List[String] to obtain the titles, and then Lift takes care of the rest!

 The picture would not be complete without the markup—the following listing
shows the template code that implements the snippet in the next listing.

<ul lift="authors.list">
 Author
 <ul class="books">
 Book title

Here you can see the nested lists that were referred to in the snippet code. Specifi-
cally, notice that in the nested list, the elements all have dummy placeholder values,
such as the book title in this example, that are replaced at runtime by the snippet.

EAGER EVALUATION AND SNIPPET ATTRIBUTES

When you have a page that encompasses a selection of distinctly different snippets,
you may end up with a scenario where you explicitly need to nest snippets inside of
each other. Consider this example:

<lift:example.one>
 ...
 <lift:example.two>
 ...
 </lift:example.two>
</lift:example.one>

By default, example.one would execute first, followed by example.two. Depending on
your circumstances and the actual actions of these snippets, you may want to reverse
this execution so that the inner snippet, example.two in this context, executes and
yields its markup as part of the input for the outer snippet, example.one.

 To trigger this behavior, you simply need to add the eager_eval="true" attri-
bute to the outer snippet. This attribute indicates to Lift that it should evaluate the
inner markup before evaluating this snippet. In this example, the first line would
look like this:

<lift:example.one eager_eval="true">

That’s all there is to it.

Listing 6.6 Markup for complex iteration snippet

121Templates, snippets, and views
 It’s also possible to add your own custom attributes to snippets and readily access
those attributes from your Scala code. This can be a helpful idiom for making reusable
snippet code, and it’s something you’ll see in the Lift codebase itself. Assume you have
the following snippet call:

<lift:attribute_example.thing extraStuff="true" fictionalCount="1" />

The two attributes here—extraStuff and fictionalCount—would, in the normal
course of processing, be totally ignored. In order to access these attributes in your
snippet code, you can call the S.attr method. The following listing shows a com-
plete example.

import scala.xml.{NodeSeq,Text}
import net.liftweb.http.S
import net.liftweb.util.Helpers._

classAttributeExample {
 def thing(xhtml: NodeSeq): NodeSeq = {
 val stuff = S.attr("extraStuff", _.toBoolean)

➥ .openOr(false)
 val count = S.attr("fictionalCount", _.toInt)

➥ .openOr(0)
 Text("extraStuff: %s fictionalCount: %s".format(stuff,count))
 }
}

As you can see, the attributes are accessed and then a converting function is applied to
create the correct type B. Generally speaking, this is my preferred method of access-
ing attributes unless I’m simply accessing a string. This way you end up with a value
that’s the appropriate type, and you can provide a nice default value if the attribute is
either not supplied or had problems during the type conversion.

METHOD DISPATCHING

Before we get into anything more detailed, let’s take a moment to consider how Lift
resolves template markup to server-side classes and methods.

 Given a template snippet call like this,

<lift:my_snippet.some_method />

Lift will, by default, use reflection to resolve this to a class in a package called snippet
that lives in whichever package you have defined in your application Boot.scala with a
call to LiftRules.addToPackages. In this default scheme, Lift will translate snake_
case naming conventions to CamelCase ones. In the preceding example, Lift would
go looking for MySnippet.someMethod. If it can’t find the snippet, Lift will throw an
exception and present you with a nice red box where the snippet content should be,
informing you that the class or method doesn’t exist. (Note that the red box only
appears in development mode.)

 The alternative to loading snippet methods via reflection, and the one that’s gen-
erally recommended when your application starts to grow, is what’s known as a dis-

Listing 6.7 Accessing snippet attributes

Get attribute
and convert
type

B

122 CHAPTER 6 Common tasks with Lift WebKit
patch snippet. Dispatch snippets differ slightly from reflection-loaded snippets in that
they determine which template markup invokes which class method by way of an
explicit dispatch table that defines a string and then the appropriate NodeSeq =>
NodeSeq function. The enclosing class itself can still be resolved using reflection.

 The following listing demonstrates an example of a basic dispatch snippet.

class Example extends DispatchSnippet {
 def dispatch = {
 case "example" => render _
 }
 def render(xhtml: NodeSeq): NodeSeq = Text("sample")
}

You may well be wondering why you’d want to have the class discovered via reflection
and yet do this manual dispatching. The answer is quite simple. When your application
starts to grow, it will often make more sense to break your snippet classes into more
manageable traits and compose the snippet entirely from traits. In such a situation, wir-
ing up the dispatch map to invoke methods in the supertype is extremely helpful.
Among the Lift community, using dispatch snippets would certainly be considered a
best practice for this very reason, not to mention that you get some compile-time
checking on the map between template snippet names and your actual method names.

 The other situation that DispatchSnippet is useful for is when the operation that
the snippet conducts is completely stateless, and it makes sense to use an object rather
than a class, saving the need for the same thing to be instantiated in multiple sessions.
As it happens, nearly all of the built-in snippets (surround, msgs, bind-at, and so on)
are object snippets. Of course, as objects are by their very nature singletons in Scala,
reflection won’t work because the class instance already exists in the classloader.

 To that end, if you have a completely stateless, object dispatch snippet, you can let
Lift know about it by making a call to LiftRules like this:

LiftRules.snippetDispatch.append {
 case "example" => Example
}

Reflection snippet gotchas
When using snippets loaded via reflection, class methods that are inherited from
any applicable supertypes won’t automatically be available as callable methods. For
example, if you had class MySnippet extends CommonSnippet, any methods that
were in CommonSnippet would not automatically be available when called from the
template. If you try to make such a call, you’ll be told by Lift that the snippet method
you tried to call doesn’t exist.

If you want to reuse code and build a compositional snippet structure, all you need
to do is implement a dispatch snippet and directly map a snippet dispatch name to
the supertype method.

Listing 6.8 Basic dispatch snippet

123Templates, snippets, and views
As you can see, you simply need to give the snippet a name that will be used in the
template and tell Lift where to find the object in question.

STATELESS OR STATEFUL?

Lift provides two different types of snippet: the normal and most common variety is
what can generally be thought of as a stateless snippet, and the second is highly state-
ful and a subtype of StatefulSnippet.

 Before going any further, we must be clear about the term stateful, because it’s all
too easy to misunderstand when terms like state are tossed around. When your snip-
pet class is a normal Scala class, the instance is essentially discarded after the request
has completed, so any class members or state in that instance are lost. But if in that
snippet you make calls to Lift elements that create function bindings for things such
as form submissions, the snippet itself is still stateless, but it causes a stateful action
to occur in Lift. In contrast, when creating a snippet that’s a subtype of Stateful-
Snippet, the whole instance is kept around after the request cycle, so any variables
or values that you have living in the instance are still accessible by subsequent calls
in that session.

 With this definition of the two types, let’s talk a little more about why you would
choose one over the other, and when you would choose class versus object for state-
less snippets. Using stateless class snippets is the most common kind of Lift code you’ll
see. For the most part, there’s absolutely nothing wrong with that—it provides the
path of least resistance, as it requires no wiring up or other configuration. Consider
the two definitions of the same snippet in the following listing.

import scala.xml.{NodeSeq,Text}
import net.liftweb.http.DispatchSnippet

classExampleA {
 def howdy(xhtml: NodeSeq) = Text("Hello world")
}

object ExampleB extends DispatchSnippet {
 def dispatch = {
 case _ => howdy _
 }
 def howdy(xhtml: NodeSeq) = Text("Hello world")
}

You can see how the object snippet is slightly more verbose, but because everything is
explicitly wired, you benefit from the compile-time checking and bypassing the need
for loading snippets via reflection at runtime. For a lot of applications, this may never
be an issue, but if you want to take your application into any serious production envi-
ronment where you’re under anything but trivial load, we recommend using a single-
ton object and manually wiring it up through LiftRules, as discussed in the previous
subsection on method dispatching.

Listing 6.9 Class snippet and object singleton snippet

Stateless class
snippet

Stateless object
snippet

124 CHAPTER 6 Common tasks with Lift WebKit
 By contrast, StatefulSnippet subtypes must always be class (instance) based
because they’re exclusive to a particular session. As the name suggests, any state that
you’re handling in the snippet is preserved longer than the initial page request, so
you can reference it on subsequent requests. As StatefulSnippet is actually a subtype
of DispatchSnippet, you must once again implement the dispatch method to specify
which method dispatches which template call. The powerful thing about snippets
inheriting from the StatefulSnippet trait compared to their stateless counterparts is
that they can retain information from the previous operations; you can even make
conditional dispatching rules based upon some stateful variable to determine which
internal method the template will display when it renders the next time around. Con-
sider the following listing, which details a simple stateful snippet that increments a
counter and conditionally displays a form if the value of that counter is less than 5.

import scala.xml.{NodeSeq,Text}
import net.liftweb.util.Helpers._
import net.liftweb.http.{StatefulSnippet,SHtml}

class CountIncrement extends StatefulSnippet {
 def dispatch = {
 case _ if count < 5 => renderBelowFive
 case _ if count >= 5 => renderAboveFive
 }

 def renderBelowFive =
 "count" #>count.toString&
 "increment" #>SHtml.submit("Increment",
 ➥ () => count += 1)

 def renderAboveFive = (xhtml: NodeSeq) =>
 ➥Text("Count is five or more.")

 private var count = 0
}

This small example increments the private count variable each time the button is
clicked. This provides a clear illustration that the same instance is being used for
each subsequent request. In the explicit dispatch function, the logic determines
which method it should use to render the snippet, based upon the value of the inter-
nal count variable B. Every time the user clicks the button, the form is submitted
and the count variable is increased by the function attached to the Submit button C.
When the value is greater than 5, the renderAboveFive method is used D.

LAZY LOADING AND PARALLEL EXECUTION

When you have a snippet implementation, you have the option to apply a couple of
different processing techniques to that snippet, irrespective of what it does. Let’s
assume that you have a system that takes some time to process a particular element
that you need to display. Rather than delaying the rendering of the page, you could
instruct Lift to lazily load that snippet. Lazy loading is baked right into Lift, and you

Listing 6.10 Stateful snippet count incrementing

Conditional
dispatching

B

Increment
count

C

Executed if
more than five

D

125Templates, snippets, and views
can easily apply it to any snippet in your application by wrapping the invocation in
the template.

 Consider the following example:

<div class="l:LazyLoad">
 Started this computation
 atstart and it completed
 atend.

</div>

Notice how the LongTime snippet is wrapped with the LazyLoad snippet. LazyLoad is a
snippet built into Lift, and it will automatically inject a Comet component into the
page that renders a placeholder for this snippet (complete with loading GUI) while
the processing happens asynchronously on the server. When the snippet finishes pro-
cessing, the content is pushed to the server automatically via Lift’s Comet mechanism,
which is discussed in depth in chapter 9. That’s all there is to it!

 In addition to lazily loading snippets, Lift can also parallelize the processing of
snippets. Suppose you were building a system in which you needed to communicate
with several backend servers, such as an advertising server. If each server took one sec-
ond to respond, that’s would seriously damage the user experience, so it makes sense
to run those operations in parallel. To let Lift know that a particular snippet should be
executed in parallel, just pass the snippet the parallel flag with the value of true.
Here’s an example:

<div class="l:FetchAd?parallel=true">
 ...
</div>

Notice the addition of ?parallel=true to the regular snippet invocation. When exe-
cuting this snippet, Lift will farm off the processing to another thread and continue to
process the rest of the page in the original thread. When the second thread completes
processing, that markup will be reconstituted into the main page markup before
returning the content to the browser. This is different from the lazy loading tech-
nique, which continues the page rendering and defers only a small portion until it’s
ready, and then pushes the completed content at a later date. In contrast, parallel pro-
cessing defers the rendering of the whole page until it’s ready.

 So far in this section, you’ve seen how to leverage Lift’s snippet and template infra-
structure, including how to use Lift’s powerful CSS transformers to attach server-side
controls to rendered content. The next section shows you another Lift mechanism for
displaying content:views.

6.1.3 Views

So far we’ve covered snippets as a mechanism for generating HTML content. Views
offer an alternative route to generating that dynamic content. So what do they do? In
terms of the generated output, the functionality is identical to that of snippets. The

126 CHAPTER 6 Common tasks with Lift WebKit
difference between the two approaches is in how that output is generated. In this sec-
tion we look at what views are for and when they should be used instead of their snip-
pet counterparts.

 Before we get into anything too specific, let’s consider what views offer over snip-
pets. In the abstract, a view is Box[() => NodeSeq]. This is different from the familiar
NodeSeq => NodeSeq transformation that snippets offer, and as the function implies,
views are generating content from scratch rather than using a template as a basis. In
this way, views lend themselves nicely to a couple of different tasks.

WHAT ARE VIEWS GOOD FOR?

One of the nice things about snippets is that they provide the development team a
structured idiom for separating template and rendering logic. Although this is the
most common of all Lift practices, Lift is ultimately about choice. To that end, one
of the things views can offer you is the ability to work with different types of tem-
plate mechanisms. Out of the box, Lift provides a secondary templating engine pow-
ered by Scalate (http://scalate.fusesource.org/) that allows you to write type-safe
templates that encompass both the markup and the rendering logic. This style of
intermingling code and markup will be familiar to anyone who has used JSP or ERB
previously. The takeaway point here is that views allow you to generate markup con-
tent, which can even be used for plugging in other styles of templating to comple-
ment the defaults Lift provides.

 Secondly, views offer developers who are working alone or who are at the very
beginning of a project and require a fast, iterative approach to development a way to
build markup output directly from their Scala code without the subjective indirection
of HTML templates. Alternatively, you may be building something like an RSS feed,
where the content output is XML-based but there’s no need to involve a designer tem-
plate (because RSS is a machine-to-machine process and so is handled by developers).

Snippets or views?
No doubt you’re wondering which option—snippets or views—is the right route to
choose. Well, Lift development is largely about choices. Some are neatly abstracted
away and appear as defaults that you rarely need to touch, but others are more
intrinsic to the way you and your team work and can’t really be decided for you. You
must make the choices that best suit your environment and the task at hand. Views
versus snippets are such a choice. Both solutions offer you a way of rendering con-
tent, but they do so through different approaches, and before making a selection
one way or another, you should play with both options and see which fits your
project best.

Experience tells us that projects that involve designers or larger, more complex
templating requirements will opt for snippets and HTML templates, whereas
another project may prefer using SCAML rather than traditional markup and utiliz-
ing the view system. Understand your goals and constraints and make your choice
accordingly.

http://scalate.fusesource.org

127Templates, snippets, and views
USING VIEWS

With this introduction in mind, let’s consider a few small examples in order to explore
the view dispatch system and illustrate the ways in which views can be utilized.

 First and foremost, the view dispatch system is controlled via the LiftRules prop-
erty viewDispatch. This property takes a List[String] that represents the incoming
URL, and returns

Either[() => Box[NodeSeq], LiftView]

Either is a type from the Scala standard library that allows for two different value
types; in this case either () =>Box[NodeSeq], or LiftView. Ultimately this particular
Either represents two ways of producing XML content. The Left part of the Either
construct is the () =>Box[NodeSeq] function, and this can be thought of as a genera-
tor of content. The Right side of the structure is a special type called LiftView.

 First, let’s explore the Left side of the Either used in the view system by wiring a
custom view into Lift’s viewDispatch handler, as shown:

LiftRules.viewDispatch.append {
 case "viewthing" :: "example" :: Nil =>
 Left(() => Full(<h1>Manual Sample</h1>))
}

In essence, viewDispatch is a map of incoming URLs to match for. When a match is
found, a function is returned that can later be called to generate markup that will be
returned to the browser. In this example, the /viewthing/example URL is matched,
and an extremely simple bit of markup is returned to represent a heading. This whole
response is wrapped in a Left() call to tell the compiler which part of the optional
return type you’re going to yield. In this case, it knows to expect () => Box[NodeSeq].

 So what about Right and the LiftView type? The LiftView type is a special one in
Lift because LiftViews are wired into the template lookup mechanism. In practice,
that means that you can place LiftView subtypes in a package called view that has its
parent defined by LiftRules.addToPackage. The real difference here is that no man-
ual wiring is required to define the input URL by default. Lift calculates the URL the
same way it resolves snippets. For example, consider the following listing.

packagesample.view

import scala.xml._
import net.liftweb.http.LiftView

class MyView extends LiftView {
 override def dispatch = {
 case "sample" => render _
 }
 def render: NodeSeq = <h1>Test</h1>
}

Listing 6.11 Implementing a LiftView subtype

Extend
LiftView

B

Provide XML
generator

C

128 CHAPTER 6 Common tasks with Lift WebKit
First, note that the MyView class is present in the sample.view package, and within the
Boot.boot method there’s a call like this:

LiftRules.addToPackages("sample")

From here, Lift goes looking for the view package below sample, and then locates
everything that’s a subtype of LiftView B. The class and dispatch names are then
used to determine the URL that this item addresses. Given this example, you can see
that the sample dispatch name maps to the render method C. The URL to access this
view would be /MyView/sample. It’s as simple as that.

TIP In exactly the same way that you can choose between reflection-based
snippet lookup and explicit wiring, you can make that choice with views by
using the two techniques outlined here.

Now that you have seen how to command Lift’s templating and view generation mech-
anisms, let’s move on to another commonly used part of Lift’s functionality: session
and request variables.

6.2 Managing state
In the vast majority of web applications, you’ll find yourself needing to retain a spe-
cific value or object in order to access it later. That “later” context might be to span a
request cycle, or it may be later down the line in your application flow. Either way, hav-
ing a succinct method of temporarily storing a value is extremely handy.

 In Java web applications, information is held in the loosely typed javax
.http.servlet.HttpSession. One of the issues with this approach is that everything
is generically referenced as a java.lang.Object instance, so you lose a lot of the type
safety developers are used to having elsewhere in their toolchain and end up with ugly
looking Scala code that has to use asInstanceOf[T]. As Scala has a more sophisti-
cated type system than Java, it made sense for Lift to provide a session mechanism that
was also strongly typed and in keeping with the rest of Lift’s infrastructure and
strongly typed nature. To that end, Lift provides its own session backing called Lift-
Session. Layered on top of this strongly typed mechanism are two abstractions,
RequestVar and SessionVar, to deal with storing values for the duration of the
request and session respectively. In the following subsections, you’ll learn how to man-
age state in Lift using the abstractions on top of LiftSession and also how to utilize
cookies from your Lift code.

6.2.1 Request and session state

At a basic level, a request is something that’s sent from the client to the web server and
that’s then serviced with a response. Unless you’re using a stateful snippet, the
instance of that snippet will be discarded after that response cycle. But what if you
wanted to hold on to a key piece of information from that snippet, rather than hold-
ing on to the entire snippet? This is where RequestVar comes in.

129Managing state
 For example, let’s assume that you have two snippets that are rendered on a page,
and you want to share a value between both of them. By default, there’s no easy way of
doing this because each snippet is contained in a separate instance that knows noth-
ing of the other. RequestVar was designed for just such a situation (among others).

 You have a general idea what RequestVar is for, but how does it work? Well, the
common practice for any descendent of AnyVar—of which RequestVar and its
brother SessionVar are subtypes—is for it to extend a singleton object and use its
apply method to provide a neat syntax for setting the value.

 Consider the following listing, which is an enhancement of listing 6.7, which used
a stateless snippet with a private var.

import scala.xml.NodeSeq
import net.liftweb.common.{Box,Full,Empty}
import net.liftweb.util.Helpers._
import net.liftweb.http.{RequestVar,SHtml,DispatchSnippet}

object sample extends RequestVar[Box[String]](Empty)

object RequestVarSample extends DispatchSnippet {
 def dispatch = {
 case _ => render
 }
 def render = {
 "type=text" #>SHtml.text(
 sample.is.openOr(""),
 v => sample(Box.!!(v))) &
 "type=submit" #>SHtml.onSubmitUnit(

➥ () => println(sample.is))
 }
}

The key thing to note in this example is that even when the form is submitted, the text
box doesn’t lose its present value because it was held in the RequestVar defined at B.
Specifically, the value held in the RequestVar is read out, if it exists, by the sample.is
call, which returns a Box[T], where T is the value of the RequestVar type. In this case,
T is a String, so calling openOr on the resulting value allows you to provide a sensible
default if the RequestVar is empty C.

 You may be thinking that the outcome of this example is similar to that of the ear-
lier example using the StatefulSnippet trait in listing 6.10. But these two examples
only appear to do similar things. In practice, the applications are quite different.

 Typically, StatefulSnippet is great when you want to keep that instance around
and access its state on a subsequent request or function execution (such as with
AJAX). But what stateful snippets don’t allow you to do is share that state over more
than one snippet. In effect, when using StatefulSnippet, the whole instance is in a
private RequestVar[Map[String, DispatchSnippet]], so your other application snip-
pets can’t access its state: it’s a self-contained instance.

Listing 6.12 Implementing a RequestVar[Box[String]]

Make RequestVar
objectB

Get and set
RequestVar

C

130 CHAPTER 6 Common tasks with Lift WebKit
 In contrast, RequestVar can be extremely useful when you wish to contain a piece
of state that you either need to keep around without the weight of keeping the whole
snippet instance, or when you need to share the state with another snippet or applica-
tion process.

 Unsurprisingly, because SessionVar is also a subtype of AnyVar, it takes on
exactly the same usage semantics as RequestVar, except that its lifetime isn’t lim-
ited to the page request cycle—it persists until the session is ultimately torn down
by Lift or the container is shut down.

6.2.2 Cookies

Cookies have been with us in internet computing since 1994, when Netscape added
them to their browser to give it a sort of memory. To that end, it’s no surprise that Lift
also has an abstraction for managing cookies as part of its state-handling system.

 Lift is fully decoupled from the Java servlet API by way of a provider API, and it can
be deployed in non-servlet environments, such as Netty. To that end, Lift has a layer
on top of the various request and response components one would usually find in web
applications: HTTPRequest, HTTPContext, HTTPParam, and HTTPCookie. With the
exception of HTTPCookie, you’ll likely never need these classes. Cookies are a little
special because it’s common to want to interoperate with them, but you don’t have to
worry about how they’re implemented in the environment—you just deal with HTTP-
Cookie instances.

 The next listing shows the basic setting and getting of a cookie value.

import scala.xml.{NodeSeq,Text}
import net.liftweb.common.{Full,Empty,Box}
import net.liftweb.util.Helpers._
import net.liftweb.http.{DispatchSnippet,S,SHtml}
import net.liftweb.http.provider.HTTPCookie

class CookieSample extends DispatchSnippet {
 def dispatch = {
 case "add" => add
 case "delete" => delete
 case _ => display _
 }

 private val cookieName = "liftinaction.sample"

 private def action(does: String, using: () => Any) =
 "*" #> SHtml.submit(does,

➥ () => {using(); S.redirectTo(S.uri)})

 def delete = action("Delete Cookie",

➥ () => S.deleteCookie(cookieName))

 def add = action("Create Cookie", () => S.addCookie(
 HTTPCookie(cookieName,"I love cookies")))

Listing 6.13 Getting and setting a cookie value

Form helperB

Delete the
cookie

C

Create the
cookieD

131Forms with LiftScreen and Wizard
 def display(xhtml: NodeSeq) =
 S.findCookie(cookieName).map { cookie =>
 Text("Cookie found!: %s".format(cookie))
 } openOrText("No cookie set.")
}

This listing demonstrates how to control cookies via the S object. Here, the snippet is
a straightforward dispatch snippet, resolved via reflection.

 First, note that the class provides an internal cookieName value so that you don’t
have to repeat the name of the cookie continually. Next, the action helper method is
defined to generate the form buttons for adding and deleting the cookie B. Don’t
worry too much about this helper; it’s there purely to save on code duplication in the add
and delete snippet methods. The second argument of the action method is a function
that can return Any. This is where the cookie-modifying code is passed, and you can see
in the delete method that the second argument includes S.deleteCookie(cookie-
Name) C. As you might imagine, based upon its method name, deleteCookie removes
a cookie with the given name from the response. The add method does the opposite;
it creates a new cookie and adds it to the response state D. Note here that the HTTP-
Cookie type is from Lift’s environment-agnostic provider API and that this two-
parameter method is essentially an instance factory that lives in the companion object
of the case class, HTTPCookie. For the sake of this example, we’re only really concerned
with the cookie name and its subsequent value. If you want to control the expiry or
valid domains, for example, you can use the full case class and pass the various boxed
arguments. See the Lift scaladoc for more information on valid parameters.

 With cookies, RequestVar, and SessionVar, you have a robust toolbox for con-
structing complicated applications with sophisticated state handling. As your applica-
tion grows, you may want to add some kind of state-dependent page-flow; fortunately
Lift builds on its state abstractions and provides a neat API for building page flows and
forms. It’s called LiftWizard.

6.3 Forms with LiftScreen and Wizard
The more code you write in your Lift applica-
tions, the more you may find that you have
some loose conceptual relationships between
the various snippets within your application
in order to create some kind of flow, or a par-
ticular way of servicing user input and making
application choices therein. In such a situa-
tion, neither having these as separate snippets
nor converting them to one large stateful
snippet feels like the right solution, and this is
where LiftScreen and Wizard can help.

 Consider a user interaction flow like that
detailed in figure 6.2.

Check and display
cookie content

Figure 6.2 Page flow requiring user input on
page A, which dictates the following page, B
or C, both of which lead to D. An example
would be choosing a delivery type at an
ecommerce checkout, where different
couriers require different information.

132 CHAPTER 6 Common tasks with Lift WebKit
 This kind of simple page flow is common in a lot of applications. What is typically
very tricky is managing the relationships and state between each logical section.
Wizard provides a structured system for defining these screen relationships, and
LiftScreen provides a mechanism for implementing the contents of each screen.

6.3.1 LiftScreen

When you require a page flow in your application, it isn’t uncommon for it to be hard-
coded in one aspect or another, be it templating, snippets, or something else. This is
obviously less than optimal; it would be far better to have well-defined stories that you
could test in a single environment, devoid of a HTTP environment. Wizard provides
such a construct by allowing you to knit together multiple LiftScreen instances in a
unified and declarative fashion.

 Let’s take a moment to manually construct a single, isolated LiftScreen to collect
some user input, validate it, and then serve a response based upon the user input. The
next listing shows the most basic type of LiftScreen.

import net.liftweb.http.{LiftScreen,S}

object AskAboutIceCreamBasic extends LiftScreen {
 val flavor =
 field("What's your favorite Ice cream flavor", "")
 def finish(){
 S.notice("I like "+flavor.is+" too!")
 }
}

This small example shows the smallest LiftScreen you can make, with a single field
and an action function to be executed upon the submission of the form. In this case,
the finish method simply reports a notice via the message infrastructure.

NOTE Both LiftScreen and Wizard support AJAX operations right out of the
box. Chapter 9 covers this AJAX support in full with all the necessary back-
ground information.

All LiftScreen implementations must descend from the net.liftweb.http.Lift-
Screen trait and implement a set of fields either manually—as in this example—or by
registering a Mapper or Record type. You must also implement the finish(): Unit
method so that the screen has a final action, even if that action does nothing.

 In order to manufacture a field in the output, this listing calls the field method
and assigns it to a value called flavor. The field method is essentially a factory
method for the internal Field type, and it takes two mandatory parameters and one
optional one:

■ The label for the field (mandatory).
■ The default value for the field (mandatory). Importantly, the type and subse-

quent rendering of the field is, by default, asserted from the type of the default

Listing 6.14 Basic LiftScreen implementation

133Forms with LiftScreen and Wizard
value. String gets a text box, Boolean gets a check box, and so forth. If you use
a custom type, you can override the rendering of the field by implementing a
custom FormBuilderLocator and appending that to LiftRules.appendGlobal-
FormBuilder.

■ A varargs of FilterOrValidate functions that are applied for validation
(optional). LiftScreen ships with several basic validation helpers for rudimen-
tary operations, such as non-null values, matching to a regular expression, and
ensuring minimum and maximum lengths.

Currently, the example in listing 6.14 will take in a string value and report a notice
upon submission, but it would be helpful to apply some validation rules and do some
kind of computation based upon the field input. The following listing shows the origi-
nal example with some modifications and with basic validation.

object AskAboutIceCreamTwo extends LiftScreen {
 val flavor = field("What's your favorite Ice cream flavor", "",
 trim, valMinLen(2,"Name too short"),
 valMaxLen(40,"That's a long name"))

 val sauce = field("Like chocolate sauce?", false)

 def finish(){
 if(sauce){
 S.notice(flavor.is+" tastes especially good with chocolate sauce!")
 } else S.notice("I like "+flavor.is+" too!")
 }
}

As you can see, this version has a few modifications to add validation options to the
flavor field. These simply aggregate together so you can apply whatever validation
you require B. There’s also a new field called sauce that demonstrates a different type
assertion around display elements, and as field has been passed a Boolean, Lift will
automatically create a check box C.

 You may be wondering how all of this actually gets displayed. Handily, LiftScreen
takes care of all the rendering by using the following template resolution path:

1 Look for the template located at allTemplatePath in the context of that Lift-
Screen object.

2 Look for the wizard-all.html template in the webapp/templates-hidden directory.
3 Use the built-in markup defined by allTemplateNodeSeq.

Given the template markup resolved by the aforementioned search path, all the fields,
labels, and validations will be correctly rendered. All you need do is style it to your
own tastes, and because it’s essentially just snippet markup, there’s no limit upon how
you can position items or sections on the screen. It’s very much up to you.

Listing 6.15 Applying validation to the LiftScreen sample

Validation
functions

B

Checkbox fieldC

134 CHAPTER 6 Common tasks with Lift WebKit
CUSTOM FIELD TYPES

As discussed earlier in this section, LiftScreen automatically determines what kind of
user interface element it should render based upon the type of the value it’s instanti-
ated with. Although this is helpful for the default use cases, there are times when
you’ll want to customize that behavior, such as in the case of a password. The password
is a string, so it does need a text input, but it must be a password input and not a regu-
lar text input field. Another example would be rendering a text area instead of a one-
line text input.

 Fortunately, it’s simple enough to create an ad hoc field type in your LiftScreen.
Implementing a custom field allows you to build a field for a type that isn’t supported
by Lift directly, so you can present your own domain classes however you wish. That’s
demonstrated in the following listing.

object ScreenWithCustomField extends LiftScreen {
 val password = new Field {
 type ValueType = String
 override def name = "Password"
 override implicit def manifest = buildIt[String]
 override def default = ""
 override def toForm: Box[NodeSeq] = SHtml.password(is, set _)
 }
 def finish() = println("Submitted")
}

This implementation of LiftScreen includes a custom field type called ValueType.
The key thing about this is that the ValueType lets the Field know what type the con-
tent is. Finally, the toForm method provides the customized implementation of the UI
control itself. In this example, supplying SHtml.password will result in a password
input being presented to the user.

 This is exceedingly helpful for a one-time implementation, but it can result in
duplication of code if you have a specialized type that you need to display in several
screens. In this case, it’s much better to use a global form builder so that every
form in which you need to represent a particular type doesn’t need a repeat imple-
mentation of the display logic. The following listing shows an example of this global
form building.

import net.liftweb.common.Empty
import net.liftweb.util.FormBuilderLocator
import net.liftweb.http.{SHtml,LiftRules}

case class Book(reference: Long, title: String)

➥LiftRules.appendGlobalFormBuilder(FormBuilderLocator[List[Book]](
 (books,setter) => SHtml.select(books.map(b =>
 (b.reference.toString, b.title)), Empty, v => println(v))))

Listing 6.16 Implementing an ad hoc custom field type with LiftScreen

Listing 6.17 Implementing a custom form build

135Forms with LiftScreen and Wizard
This listing defines a custom type: Book. In practice, this might be one of your custom
domain types or something similar, but it will suffice for this example. When Lift-
Screen is presented with a List[Book] type, it will automatically render it as a drop-
down list with no additional configuration or input at the call site. By calling to Lift-
Rules.appendGlobalFormBuilder, you only define this functionality once and it
becomes available globally within your application.

 Form builders are functions that LiftScreen uses to create the interface elements
for any given form, and in this example the code just takes the list of books and con-
structs the drop-down list by using SHtml.select. In order to use this in conjunction
with a field, you just need to do this:

val book = field("Choose book", books)

Now you know how to make single-page forms with LiftScreen, but what if you
wanted to create a multipage wizard, as we suggested in the introduction to this sec-
tion? Well, you can take what you learned about LiftScreen and wrap that in a
Wizard, which is a collection of LiftScreen definitions.

6.3.2 Wizard

Lift’s Wizard system builds on the base of LiftScreen and allows you to build com-
plex, stateful workflows with only a few lines of code. In this example, we build a small
form that simulates a registration system. On the first screen, users enter their name
and age, and depending on whether they’re under 18 or not, they will be presented
with a second screen asking them to populate their parents’ names. Of course, this
isn’t applicable to users who are over 18, so in that case the parents screen is skipped
and the final screen is displayed right away.

 Before diving into the code, don’t forget to add the wizard dependency to your
project. Unlike LiftScreen, which is generic and lives in the main WebKit JAR, Wizard
carries more infrastructure, so it’s in a separate JAR called lift-wizard. Add the follow-
ing definition to your SBT project class:

val wizard = "net.liftweb" %% "lift-wizard" % liftVersion

The following listing shows the example wizard.

import net.liftweb.http.S
import net.liftweb.wizard.Wizard

object PetSurveyWizard extends Wizard {
 object completeInfo extends WizardVar(false)

 val you = new Screen {
 val yourName = field("First Name", "",
 valMinLen(2, "Name Too Short"),
 valMaxLen(40, "Name Too Long"))

Listing 6.18 Using Lift’s Wizard

Extend Wizard
typeB

Define
screensC

136 CHAPTER 6 Common tasks with Lift WebKit
 val yourAge = field("Age", 1,
 minVal(5, "Too young"),
 maxVal(125, "You should be dead"))

 override def nextScreen =
 if (yourAge.is< 18) parents
 else pets
 }

 val parents = new Screen {
 val parentName = field("Parent or Guardian's name", "",
 valMinLen(2, "Name Too Short"),
 valMaxLen(40, "Name Too Long"))
 }

 val pets = new Screen {
 val pet = field("Pet's name", "",
 valMinLen(2, "Name Too Short"),
 valMaxLen(40, "Name Too Long"))
 }

 def finish(){
 S.notice("Thank you for registering your pet")
 completeInfo.set(true)
 }
}

In this listing, you can see that with the lift-wizard package on the classpath, you
can import the Wizard type and create a singleton called PetSurveyWizard, which is a
subtype of Wizard B. In this object, several Screen instances are defined C. As the
name suggests, these define the screens (and fields) that the end user will interact
with. The fields themselves are defined exactly the same as for LiftScreen, so we
won’t cover them again. Interestingly, you can see the nextScreen method D; overrid-
ing this and providing your own implementation gives you the flexibility you need to
define very complex workflows through linked screens. The Screen type itself also has
other things you can override, such as the confirmScreen_? method to tell Lift that
this screen is for confirmation only.

 More broadly, the Wizard type has several helpful features that can assist in making
sophisticated user interaction flows. For example, a Wizard can have a snapshot taken
of its state at any given time, and you can restore that snapshot at a later date in the
same session. At the time of writing, these snapshots were not serializable, but that’s
certainly on the roadmap, so check the wiki or scaladoc for up-to-date information.
Although you can’t currently save the Wizard state directly, it’s possible to persist form
data to the database, such as by calling the save method on a Mapper instance you
might hold in a WizardVar.

 As you can see, Wizard provides you with a helpful out-of-the-box frame for
creating multipage user interactions, whatever they might be. In the next section,
we look at another module of Lift that provides functionality for certain common
web components.

Define link to
next screen

D

Define screensC

137Widgets
6.4 Widgets
There are often times in web development when you might want to add an autocom-
plete text box, or perhaps a Gravatar icon. These are fairly common things to want in
your application, and Lift provides a group of ready-made widgets to fill this need. As
there are quite a number of widgets, we’ll only cover two here. The others follow simi-
lar patterns of implementation.

 Note that the term widget is essentially an arbitrary term referring to what is
essentially a cluster of JavaScript, CSS, and Scala class files that make up individual
units of functionality.

 Before we get started, don’t forget to add the Lift Widgets dependency to your
project, as shown:

val widgets = "net.liftweb" %% "lift-widgets" % liftVersion

The lift-widgets JAR holds all the JavaScript, CSS, and markup required by the vari-
ous widgets.

6.4.1 AutoComplete widget

The first widget we look at is called AutoComplete. As the name suggests, this is a wid-
get wrapper around completion JavaScript that makes an AJAX request to the server
while you type and presents a list of possible options based upon the current input. As
with most of the widgets, it carries its own resources that need to be served to the
browser. In order to automatically wire this up, the general idiom for widgets is to call
an init method in your Boot class.

 For example, the following lines are needed to enable the AutoComplete widget:

import net.liftweb.widgets.autocomplete.AutoComplete

class Boot {
 def boot {
 ...
 AutoComplete.init
 ...
 }
}

With this wired up in your application Boot class, all the resources required to make
the widget work are now available to Lift. The following listing shows how you would
implement the AutoComplete helper in your snippet code.

import scala.xml.NodeSeq
import net.liftweb.util.Helpers._
import net.liftweb.widgets.autocomplete.AutoComplete

class AutoCompleteSample {
 private val data = List(
 "Timothy","Derek","Ross","Tyler",
 "Indrajit","Harry","Greg","Debby")

Listing 6.19 Implementing the AutoComplete snippet helper

Import
widget

B

Define
sample data

C

138 CHAPTER 6 Common tasks with Lift WebKit
 def sample = "*" #> AutoComplete("", (current,limit) =>
 data.filter(_.toLowerCase.startsWith(
 current.toLowerCase)),
 x => println("Submitted: " + x))
}

This listing here shows a normal snippet class that includes the specially imported
AutoComplete class from lift-widgets B. For the purpose of this example, this listing
just uses a static List[String] as the data source to search C, but in practice you’d
probably use a database or similar source to obtain the matched results.

 This class is a regular snippet, but rather than binding to some straight text or
markup content, it calls the AutoComplete class from the widget D. Under the hood,
this returns Elem (a NodeSeq subtype) so it’s bindable in terms of Lift’s templating sys-
tem. The first parameter is the default value, whereas the second and third parame-
ters are functions that have a little more going on.

 The second parameter is the function invoked when the AJAX call is made to the
server when the user makes a keystroke. This example simply lowercases the input and
looks for a string that starts with whatever the user entered. It’s certainly crude, but
the purpose here is to show how you can seamlessly evaluate user input with a func-
tion. The third parameter is a simple handler to be executed when the form is submit-
ted. In this case, the value is just output to the console.

 Just to be clear, this is a normal snippet and its implementation only requires the
regular style of invocation:

<lift:auto_complete_sample.sample form="post">
 <p>Type a name here: <f:find_name /></p>
</lift:auto_complete_sample.sample>

When these three things are in place—the
line in the Boot class, the snippet class, and
the HTML—you should see an outcome sim-
ilar to figure 6.3.

 That really is all you need to do. This
short example shows how powerful widgets
can be, and it should give you some ideas
about how you can wrap up your own code
into reusable widgets. Before closing this
section, let’s look at one more widget—the Gravatar, which doesn’t have any Java-
Script or CSS and is a straight snippet helper.

6.4.2 Gravatar widget

Gravatar is an online service for what they call globally recognized avatars that follow you
from site to site based upon your registered email address. Simply pass the helper
object an email address, and it will generate the correct markup for you in order to
fetch the right image from gravatar.com.

 The following listing shows just how simple this is.

Bind
autocomplete

D

Figure 6.3 The finished AutoComplete
widget as seen in Firefox

139Summary
import scala.xml.NodeSeq
import net.liftweb.widgets.gravatar.Gravatar

class GravatarSample {
 def display(xhtml: NodeSeq): NodeSeq =
 Gravatar("your.email@domain.com")
}

This is very straightforward. It returns a NodeSeq, which, like other widgets, allows it to
sit within a bind statement.

 That pretty must rounds up our discussion of widgets. The key things to remember
when working with widgets are, first, that if a widget uses any kind of JavaScript or CSS,
you’ll likely have to call init from in your Boot class to allow the resources to be
served by Lift. Second, nearly all widgets have some kind of markup-producing com-
ponent so you can use them in nearly all Lift templating situations.

6.5 Summary
Wow, we covered a lot in this chapter! Hopefully you’re still with us and managed to
follow along for the duration. This chapter should have given you a good insight into
how Lift differs from other frameworks and how you can go about implementing com-
mon operations in Lift, from the aspects of templating, through to making complex
multiscreen forms. Ultimately, Lift is a rich infrastructure for doing many things, and
these are just some of the items that are important to cover.

 In this chapter, you’ve seen how to utilize Lift’s built-in snippets to perform com-
mon operations, and you’ve seen when and where the different types of snippets
should be used when designing your own applications. Snippets can come in many
different forms, but it’s generally better to use manually wired dispatch snippets when
you can, so you have the safety of compile-time checks on the snippet-to-template
mapping. You’ve also seen how to make use of session and request variables, right
through to using full-blown stateful snippets to retain entire snippet instances for fur-
ther computation.

 You’ve also seen how to wield LiftScreen and Wizard to build complex, stateful
page flows. Using these tools, you can construct sophisticated flows with a minimal
amount of code and still have complete control over the rendering. LiftScreen can
also automatically assert the appropriate input control based upon the type it’s passed.
For example, it will automatically generate a check box when passed a Boolean type.

 You may be wondering why we didn’t cover anything to do with persistence. Unsur-
prisingly, there are several ways to handle the issue of persistence in Lift, and we didn’t
want to introduce any more topics into this chapter. Persistence is covered in depth in
chapters 10, 11, and 12.

 The next chapter looks at Lift’s HTTP system in depth and at how you can han-
dle rewriting to create friendly URLs and build REST web services using Lift’s dis-
patching API.

Listing 6.20 The Gravatar widget

mailto:email@domain.com

SiteMap and
 access control
SiteMap offers you granular page-level security, a tidy DSL for defining applica-
tion structure, and an automatic way to generate user navigation. Bearing in mind
Lift’s view-first architecture and the way in which snippets are executed in a given
page request, there’s nothing to effectively control access or execute code before
the page (and its snippets) start to load. This is where SiteMap fits in, architectur-
ally speaking.

 Everything within the SiteMap is related to what is known as a location, or Loc
for short. These locations typically represent pages that have a corresponding
markup template in your application, but more broadly these locations are
resources within your application, something that will be accessed by your applica-
tion’s users. As SiteMap is executed before any page rendering takes place, it can
effectively execute access control rules, or even short circuit the whole rendering of
that resource and return a response directly.

This chapter covers
■ Access control functionality
■ Menu generation
■ Building custom location parameters
■ HTTP authorization
140

141Menus and locations
 In this chapter, you’ll first use SiteMap’s high-level DSL, then learn about location
parameters, and finally create your very own componentized custom location for gen-
erating a wiki. SiteMap is perfectly positioned for defining access control rules or even
just executing arbitrary code before a page loads. Whichever you want to do, you can
typically bolt on functionality for a given location via location parameters, which are dis-
cussed in section 7.2.

 The idea of locations is fundamental in SiteMap, and the next section will show
you how to use the Menu class to define these locations, and how to define the func-
tionality associated with each location.

7.1 Menus and locations
A location can be either a page or a view—it’s usually something that renders HTML
output. These locations within your application can be grouped into logical sets, and
in SiteMap terminology these are called menus.

 Menus and locations form the base of SiteMap’s functionality. Within your applica-
tion, the pages and views can be arranged into these two abstract concepts quite
neatly. In this section, we look at how you can construct menu hierarchies that include
all the locations in your application. You’ll also see how the Lift SiteMap can be
extended in various ways to either apply your own application functionality to a given
location, or provide encapsulated components of logic that can be reused in wholly
different applications.

 To illustrate the concept of locations, imagine the site structure in any shopping or
catalog site. More often than not, you’ll have a menu called products (or something
indicative of the content), and when you interact with that menu, either by clicking it,
rolling over it, or performing some other UI action, it will display the submenu con-
tent, which usually has location links to take you to whichever product item you select.
This notion of locations is an important one, because SiteMap really only deals with
the locations of template files in your application deployment, and not, as many new
users think, with the URLs that access those templates.

 Consider the folder structure in figure 7.1. By default,
the application will respond to the following URLs:

■ /

■ /index

■ /products

■ /products/another

■ /products/example

If the user visited /products/another in their browser,
they would see the content held in another.html. This
would work by default, and it’s fairly obvious given the folder structure why that
specifically works: the URLs being accessed correspond directly with the layout in the
webapp directory.

Figure 7.1 Example layout
of a webapp folder. Listing 7.1
defines a SiteMap for this
folder.

142 CHAPTER 7 SiteMap and access control
 If you were to define a SiteMap for an application structure like that in figure 7.1,
it would look something like the following listing.

import net.liftweb.sitemap.{SiteMap,Menu,**}

val pages = List(
 Menu("Home") / "index",
 Menu("Products") / "products" submenus(
 Menu("Another") / "products" / "another",
 Menu("Example") / "products" / "example"
)
)

LiftRules.setSiteMap(SiteMap(pages:_*))

Let’s just pause for a moment to inspect what’s happening in this code block. One of
the key notions in SiteMap is the Menu. A Menu is a logical grouping of locations, and
each Menu can have any number of submenus, and so on. In this instance, all the lines
except one define a location entry in the SiteMap for their individual page, whereas
the products location defines a menu that groups the two subordinate locations
together, in addition to having its own location B.

 The code in listing 7.1 leverages the SiteMap domain-specific language (DSL) to
make the construction of the SiteMap easier and less verbose. You may come across
SiteMap examples online that look quite different, but there’s no difference in behav-
ior. The difference is purely cosmetic. For example, this line,

Menu("Home") / "test"

can also be written as

Menu(Loc("Home",List("test"),"Home"))

The latter is more verbose but possibly more easily understood. As you can see, the
first parameter of the Loc (the location) is its title, the second is the path to the tem-
plate, and the final parameter is the text to be used for the link in any navigation gen-
erated by Lift.

 Being able to nest menus allows you to build complex and detailed hierarchies
that define your application structure, often referred to as a site map (hence the
SiteMap name). You can use this structure to control access to individual locations or
groups of locations, generate dynamic navigation, and execute arbitrary code early in
the incoming request cycle. For example, had you wanted to group everything under
the products directory in one simple expression, you could have replaced the Menu
lines in listing 7.1 with this one:

Menu("Products") / "products" / **

The ** syntax denotes a wildcard for any location subordinate to products—the use of
* as a wildcard idiom is quite commonplace in most programming languages. Typi-
cally it makes sense to use the ** wildcard syntax when you would prefer to allow

Listing 7.1 SiteMap definition to match figure 7.1

Create location
with submenus

B

143Menus and locations
access to all pages within a site hierarchy. A common example of this is when you just
want to allow access for a bunch of static files. The only downside of using the wild-
card is that without an explicit entry, Lift won’t know what information to assign those
submenus in the navigation structure that’s rendered by the built-in Menu snippet
which is discussed in section 7.1.2 of this chapter. Just understand for the moment
that the Menu snippet can only generate nested links for the locations explicitly
defined in the SiteMap.

7.1.1 Understanding and implementing locations

At the beginning of this chapter, we briefly introduced the idea of locations. This sec-
tion expands on that introduction and covers some of the finer details and goes into
the concrete implementation of a location: the Loc.

 Each and every Loc has a swath of information associated with it, such as basic
properties (page title and text for a generated link) and more advanced properties (a
breadcrumb trail through the hierarchies and custom templates the Loc will be ren-
dered with).

 By default, a Loc must be unique in your application. You can’t have two entries
that define a menu item for the same resource location. You can’t, for example, have
two entries in different parts of your menu structure that point to the contact page.
While this is fine for the majority of applications, you may occasionally run across a sit-
uation where you need to define the same resource location in multiple parts of your
SiteMap. By default, Lift will throw an error if you try to define the same location
twice, but you can disable this restriction with the following call in Boot:

SiteMap.enforceUniqueLinks = false

Now that you know the purpose of Menus and Locs, you might be wondering how to
instruct Lift to generate a set of navigation menus from the SiteMap. Lift has a built-in
snippet to do this; it too is called Menu.

7.1.2 Rendering menus

The Menu snippet is a regular DispatchSnippet, and it functions in exactly the same
way as one of your own snippets. Its purpose is to extract the hierarchical information
from the defined SiteMap and render it.

 To render the default navigation, include the following line in one of your templates:

<lift:menu.builder />

This then generates the following markup, providing the browser is currently viewing
the home page (by default, the Menu snippet does not generate links for the page it’s
currently displaying):

 Home
 Sample

144 CHAPTER 7 SiteMap and access control
It generates the following HTML when selecting the products link. If you recall from
listing 7.1, the products location had two subordinate locations, and when the browser
is displaying the products location, it expands to display the menus of the next tier
down in the tree of submenus (if they exist):

 Home

 Products

 Another
 Example

This is straightforward HTML code for unordered lists, and it’s completely out-of-the-
box markup rendering for the Menu snippet.

 You’ll probably often want to apply CSS styling to the current page or do some
other customization that will affect the way the menu will be displayed. To this end,
the Menu snippet allows you to pass a raft of different attributes to it to customize the
markup. Table 7.1 lists the valid attributes that can be passed to the Menu snippet. As
you can see, the Menu snippet gives you a good degree of control over how the menu is
rendered, and you’re free to style the markup however you please with little or no
constraints from Lift.

Table 7.1 SiteMap’s Menu.builder attribute options

Attribute
namespace

Description Usage

ul Attributes that feature the ul prefix
will be merged onto every ul list node
irrespective of menu depth.

<lift:menu.builder
ul:class="sample" />

Will render this:

<ul class="sample">...

li Like ul, the li prefix merges attri-
butes with every list node recursively.

<lift:menu.builder
li:class="sample" />

Will render this:

<li class="sample">...

li_item These attributes will only be
merged with the currently selected
menu item.

<lift:menu.builder
li_item:class="me" />

Will render this:

<li class="me">...

145Menus and locations
There are a couple of other things to note about the Menu snippet. Not only can it ren-
der the menu structure, it has a built-in method for getting the title of the currently
active page:

<title>My Application – <lift:menu.title /></title>

All you need to do is insert this line into your template, and all the pages will automat-
ically be assigned the title that you defined in your SiteMap Menu structure.

 Finally, the Menu snippet can also render your whole SiteMap navigation structure
as JSON if you want to do some fancy navigation with JavaScript or Adobe Flash, for
example. To illustrate this functionality, calling <lift:menu.json /> on the menu
from listing 7.1 would generate output like this:

{"menu": [
{ "text": "Home",
 "uri": "/index",

linkToSelf This attribute specifies whether the
currently selected page should be an
active link or not.

<lift:menu.builder
linkToSelf="true" />

level This attribute renders the menu from
a specific starting level based on a
zero index. If you specify a level
deeper than is currently being
displayed, the menu will be blank
(not displayed).

<lift:menu.builder
level="1" />

expandAll Setting this attribute will expand the
entire menu statically rather than
have each set of submenus be ren-
dered dynamically after the selection of
their parent.

<lift:menu.builder
expandAll="true" />

outer_tag If you don’t want the menu to render
using the normal list markup, you can
change the element rendered by pass-
ing it to outer_tag to replace the
default ul.

<lift:menu.builder
outer_tag="div" />

inner_tag This is like outer_tag but it
replaces the default li node with the
specified value.

<lift:menu.builder
outer_tag="div" />

top Merges the specified attribute and its
value into the very first (root) element
of the menu markup. Typically used to
define an element ID for the menu
tree markup.

<lift:menu.builder
top:id="something" />

Will render this:

<ul id="something">...

Table 7.1 SiteMap’s Menu.builder attribute options (continued)

Attribute
namespace

Description Usage

146 CHAPTER 7 SiteMap and access control
 "children": [],
 "current": false,
 "placeholder": false,
 "path": false
 },
{ "text": "Products",
 "uri": "/products",
 "children": [
{ "text": "Another",
 "uri": "/products/another",
 "children": []}
 ...
]
 }
 ...
]}

You might be wondering what to do if you want to allow access to a page, but still apply
some special rule or condition to it so that it would be omitted from the main naviga-
tion. This might be necessary for an editing page that requires parameters to be
passed to it in order to function correctly. SiteMap’s solution to this is location param-
eters—LocParam.

7.2 Location parameters
Location parameters allow you to add an aggregated set of rules to a given menu. For
example, suppose you have a selection of menu locations, one of which is an edit
screen with a form that’s populated with data by loading a specific item from the data-
base, based upon a URL parameter. Obviously, the parameter must be present, and
SiteMap provides location parameters, which are simple declarative mechanisms for
ensuring that this page can’t be accessed without that parameter.

 These location parameters typically come in the form of small, self-contained case
classes, and in this section, we demonstrate Lift’s default LocParam instances, which
augment both control and rendering functionality for any location in your SiteMap.

 To continue with the edit page example, it’s highly unlikely that such a screen
would be displayed in the menu structure because, without the appropriate parameter
the page would not operate correctly. To that end, the location needs to be both hid-
den within the rendered output of the Menu snippet, and it also needs to block access
if the necessary request parameters are missing. These use cases are exactly the types
of situations that Lift’s location parameters are designed for.

 First, let’s deal with hiding the menu item. Consider the following menu definition:

Menu("Edit Something") / "edit" >> Hidden

As you can see, appended to the normal menu definition, by way of the << operator, is
the Hidden location parameter. This instructs Lift that it must not include this menu
entry as part of the larger menu structure that’s rendered with the Menu snippet.

 That’s fairly straightforward, but what about ensuring that the URL parameter is
always present? Lift provides a collection of LocParams right out of the box (listed

147Location parameters
in tables 7.2 and 7.3), one of which is Unless. Let’s look at how you could use this
LocParam:

Menu("Edit Something") / "edit" >> Hidden
 >> Unless(
 () => S.param("id").isEmpty,
 () => RedirectResponse("index"))

In this example, the additional location parameter is aggregated into the existing
menu and parameters. This concept of parameter aggregation is an important one
to note, because as your applications grow in complexity, it allows you to remain
very granular about controlling the flow of pages and access control. Essentially, you
can layer LocParams on top of each other as you need to in order to achieve the
desired functionality. With the Unless class, specifically, you need to supply two com-
ponent functions, as you can see in the preceding code: a function yielding a Boolean
based on some information about that request, and a function that yields a subtype
of LiftResponse.

 In this example, the page requires that the id attribute be set. If it’s not (if isEmpty
evaluates to true), the second function is executed. This second function can essen-
tially return any subtype of LiftResponse (more on this in chapter 8), so you could
present a page informing the user of the error, or as in this case, just direct the user
back to the index page.

Location parameters are fairly unassuming, but they’re a powerful means for control-
ling a lot of different user experience aspects, from controlling menu visibility, right
through to rendering an entire dynamic page with snippets. Lift provides a selection
of default location parameters that can make your development process smoother,
and we look at them next.

7.2.1 Default location parameters

Lift ships with a raft of location parameters that solve typical use cases, such as the
Hidden and Unless classes that were covered in the previous subsection. There are a
variety of parameters with different functions, so we go over them and look at their
usage in this section.

Ahhh, symbols make my head hurt!
Symbols acting as function identifiers are something that’s quite prevalent in Scala
and functional programming in general. This is because math and computer science
have had a large influence on the functional community, and they share many things
in common.

In this instance, >> represents the aggregation of location parameters. But if you
aren’t comfortable using these symbols, you can replace >> with rule and get the
same functionality (rule is an alias of >>).

148 CHAPTER 7 SiteMap and access control
With the exception of the authentication parameters that will be covered in the next
section, there are two distinct groups of location parameters:

■ View-affecting parameters—These parameters have a direct effect on the output or
rending of the view. The view in this context is the UI that users are operating.
An example of such a location parameter would be the Hidden parameter,
which hides a menu item from rendering.

■ Control-affecting parameters—These parameters affect the user’s experience. For
example, the Unless class affects LocParam.

Why make this distinction? It helps to distinguish the two types based on the task that
the LocParam will be performing. Moreover, their usual patterns of usage are quite
different. View-affecting parameters will usually yield a NodeSeq, whereas control-
affecting parameters will usually return a Box[LiftResponse].

 Table 7.2 lists and describes the view-affecting parameters. As you’ll see, there are
quite a number of ways to manipulate the view that’s ultimately rendered for the user.
Table 7.3 lists and describes the control-affecting location parameters.

Rails and Django users: think controller filters
If you have previously used either Ruby on Rails or Python Django (or any other
framework that has filters), you’re likely to be familiar with the concept of a before
filter. Because Lift is a view-first framework, the snippet mechanism is tightly cou-
pled with the markup rendering, and it wouldn’t make sense for that process to play
a part in executing code before a page renders (technically, it can’t do that anyway).
This is where SiteMap can step in.

If you’re familiar with the before_filter style of working, your use case may
enable you to use one of the default parameters or simply extend LocParam to do
your bidding before the request processing gets underway. It’s also important to
note that LocParam does have access to the current request and session state.

Table 7.2 Default location parameters that affect view rendering

Parameter type Description

Hidden Hides the current menu from being rendered with the rest of the
SiteMap.

Usage:

>> Hidden

HideIfNoKids If the menu has no child menus, drops this menu from the SiteMap
rendering.

Usage:

>> HideIfNoKids

149Location parameters
PlaceHolder This menu item is purely for structural purposes within the SiteMap.
Typically this is useful for grouping subordinate menus when rendering
the menu as a JSON representation.

Usage:

>> PlaceHolder

Title Overrides the name of a page defined in the menu definition, perhaps
with something more dynamic.

Usage:

>> Title(x =>
 Text("Some lovely title"))

Template Provides an XHTML template that this location will use to render
the display.

Usage:

>> Template(() =>
TemplateFinder.findAnyTemplate(
 List("example")) openOr
<div>Template not found</div>)

Snippet Registers a single snippet for use in this location. You specify a
name (what the snippet will be called from the template) and then
the NodeSeq => NodeSeq function as you would for a normal snip-
pet definition.

Usage:

>> Snippet("sample", xhtml =>
 bind("l",xhtml,"sample" -> "sample"))

Markup (only valid for the given SiteMap location the LocParam is
applied to):

<lift:demo><p><l:sample /></p></lift:demo>

DispatchLocSnippets Registers multiple snippets on a single location (building on the
single snippet registration method). In this case, the
DispatchLocSnippets parameter lets you apply snippets based
on a partial function.

Usage:

lazy val MySnippets = new DispatchLocSnippets {
 def dispatch = {
 case "demo" =>xhtml =>
 bind("l",xhtml,"sample" -> "sample")
 case "thing" =>xhtml =>
 bind("x",xhtml,"some" -> "example")
 }
}
...
>> MySnippets

Table 7.2 Default location parameters that affect view rendering (continued)

Parameter type Description

150 CHAPTER 7 SiteMap and access control
Location parameters offer you a robust and flexible way to aggregate functionality
in your application, even at the individual page level. The selection presented in
tables 7.2 and 7.3 are the defaults supplied by Lift. If you need to make your own
LocParam, all you need to do is extend UserLocParam and implement whatever
functionality you need.

 Now it’s time to look at controlling page access. Lift ships with several rather help-
ful authentication parameters that allow you to both test for access in a general way
and also use HTTP authentication modes.

7.2.2 Authentication parameters

We’ve touched on using SiteMap for access control, but we haven’t demonstrated any
of that functionality yet. Broadly speaking, Lift has three location parameters that are
used for access control: Test, TestAccess, and HttpAuthProtected. (If and Unless
can also be used quite successfully.) These names are a little confusing, so let’s take a
moment to outline their functionality.

TEST AND TESTACCESS

There are two ways of thinking about results from access control systems in web appli-
cations. One is that if the user doesn’t have permissions for that part of the applica-
tion, it shouldn’t even appear to exist for them; anything they don’t have access for
should resolve to a HTTP 404 Not Found page. This is the route that Test takes. The

Table 7.3 Default location parameters that affect control

Parameter type Description

EarlyResponse Lets you serve any LiftResponse subtype to the browser
before any other processing has taken place. This is useful for
several reasons, such as redirecting old content URLs to new
content URLs.

Usage:

>> EarlyResponse(() =>
 RedirectResponse("newstuff"))

If / Unless Does the same thing as Unless but with a reversed testing
polarity. The test function must evaluate to true, not false
as is the case with Unless.

Usage:

>> If(
() => S.param ("something").isEmpty,
() => PlainTextResponse("missing"))

LocGroup Allows you to group different menus together in a virtual way.
The user has no idea about these groups; they’re purely for
developer convenience and operations.

Usage:

>> LocGroup("admin")

151Location parameters
other line of thought is that it’s OK to admit that the application is there, so as not to
baffle the user, but you should direct the user to a login screen or some other friendly
landing screen. This is the approach TestAccess adopts. Depending on your applica-
tion’s requirements, you can choose either implementation.

Test differs from TestAccess in that it takes a Req instance as its function argument
so you can check any aspect of the request that you like. For example, perhaps the
incoming request must have a particular cookie, or can only be accessed under a cer-
tain host (like localhost). All these things are easily tested for with the Test parameter.

 Consider the following usage:

>> Test(req => req.hostName == "localhost")

In this example, unless the URL is being accessed under http://localhost/, Lift
will yield a 404. You can try this out by visiting http://127.0.0.1/ and then http://
localhost/. The former will get a 404 page, but the latter will give you the page as
expected. Pretty neat.

Test has its uses in certain applications, but you’ll likely use TestAccess more
because it removes items from the menu that yield a Full[LiftResponse] from the
function. TestAccess allows you to check any resource you like within your function,
to verify that the current user has access to that aspect of the application. For exam-
ple, it’s common to check whether a user is logged in, and if they are a particular
value will exist in the current session. If the user then happens to navigate to that page
without logging in (perhaps the page was saved as a bookmark), you can safely redi-
rect them to the login URL.

 Here’s an example of forcing a user to log in to a page:

object LoggedIn extends SessionVar[Box[Long]](Empty)

>> TestAccess(() =>LoggedIn.is.choice(
 x => Empty)(Full(RedirectResponse("login"))))

There are several things going on in the preceding code. First, an object called LoggedIn
that holds a user ID is set by a page called login. The TestAccess parameter then
checks for the existence of the properly set SessionVar before allowing access to the
page. If TestAccess is Empty, the menu is displayed and all is well. If it yields the redi-
rect response, the link is removed from the rendered menu and any attempt to access
the page will result in a redirect to login. On the login page, the user could enter their
credentials and the code there would properly set the value of LoggedIn, allowing them
to successfully access the page in question.

HTTPAUTHPROTECTED

In order to use Lift’s HTTP authentication, you must first define something like list-
ing 7.2 in your Boot class to define the type of HTTP authentication you wish to use.
You can currently choose between HTTP basic authentication and the more sophisti-
cated HTTP digest authentication. Currently the choice between the two mecha-
nisms is global in your application, but this generally isn’t an issue because it would
likely be problematic to mix the two authentication formats.

http://localhost
http://127.0.0.1
http://localhost
http://localhost

152 CHAPTER 7 SiteMap and access control
LiftRules.authentication = HttpBasicAuthentication("yourRealm"){
 case (un, pwd, req) =>
 if(un == "admin" && pwd == "password"){
 userRoles(AuthRole("admin")); true
 } else false
}

NOTE For more information on the difference between HTTP basic authenti-
cation and digest authentication, see the Wikipedia articles at http://en.wiki-
pedia.org/wiki/Basic_access_authentication and http://en.wikipedia.org/
wiki/Digest_access_authentication.

Listing 7.2 shows how to configure HTTP basic authentication within your applica-
tion, but the implementation is nearly identical for HTTP digest authentication; for
the digest authentication, just replace HttpBasicAuthentication with HttpDigest-
Authentication.

 Whichever scheme you choose, credential checking in real-world code would be
significantly better than this, but the point is that you just need to check what the user
has actually entered by pattern matching on the request input (as seen here in the
case statement). Whether you look that up in a database, in some configuration file
in your app, or any other way, it’s not the concern of Lift. Ultimately you only have to
return true to allow the user access to the page, or false to deny access.

 With that in mind, the implementation of the HttpAuthProtected parameter is
very simple. Consider the following:

>> HttpAuthProtected(req => Full(AuthRole("admin")))

You might be wondering about these roles, which were also used in listing 7.2.
Essentially the userRoles and Role types allows you to define a simplistic role struc-
ture: userRoles, in listing 7.2, is just a RequestVar with a List[Role]. In listing 7.2,
we assigned everyone to the admin role, and then in the LocParam, the Full(AuthRole
("admin")) tells Lift that users must qualify as admin in order to gain access to
the page.

EXTERNAL SECURITY MODELS

Finally, let’s take a look at external security models. Many people coming to Lift from
an enterprise Java background wonder why Lift doesn’t ship with integration for prod-
ucts such as Spring Security. The reason for this is mostly ideological.

 The model that’s provided by Lift allows you to use the following security construct:

(Session, Resource) => Boolean

Consider for a moment that such a function can be applied to pages, locations,
URLs, and even field-level access in Mapper. The Lift ethos is that this construct can
be applied throughout your application to whatever degree of granularity you
require. With integrated access control, you always know what the access rules are
for a given resource.

Listing 7.2 Configuring HTTP authentication in Boot

http://en.wiki-pedia.org/wiki/Basic_access_authentication
http://en.wiki-pedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/wiki/Digest_access_authentication
http://en.wikipedia.org/wiki/Digest_access_authentication

153Customizing SiteMap
 Lift is evolving constantly, and modules for things such as OpenID are continu-
ally being added and improved upon. Technically speaking, there are no difficulties
in using an external security model. But with SiteMap protecting your pages, you’ll
never present the user a link that isn’t accessible for them, nor do you have to worry
about parallel logic between your menu rendering and your external access control
system, as would be the case with off-the-shelf-solutions. One such external security
model that has been neatly integrated into Lift via a third-party module is Apache
Shiro (http://shiro.apache.org/). This integration hooks into SiteMap and Lift’s
snippet pipeline, so you get all the functionality of Apache Shiro coupled with the
power of Lift.

 That pretty much covers controlling access with SiteMap. Lift provides you with a
comprehensive set of tools for determining how and when a user should be allowed
access to a page. If you require more control, you can always either write your own
location parameter or extend SiteMap locations.

7.3 Customizing SiteMap
We’ve covered SiteMap, Menu, and LocParam in moderate detail and skimmed over the
Loc class itself. Loc is a very powerful class that can do a lot more than an initial glance
might reveal.

 Consider what you have seen of LocParam (which essentially an add-on to Loc); it
can add its own snippets, specify control flow rules, and supply its own template. To all
intents and purposes, these LocParam are altering the Loc that they’re attached to.

 Given that, imagine what you could do if you were to subtype Loc and provide your
own implementation. You would have a pretty powerful platform for providing
dynamic content in a componentized way.

7.3.1 Creating a custom Loc

Nearly everyone who uses the internet will have come across a wiki at some point. Of
course, the most well-known is Wikipedia, but the principles are pretty much the
same in all wikis: the URL is the article name, and the content is pretty much free to
edit. In this section, you’ll see how to assemble a wiki component based upon a cus-
tom Loc implementation.

NOTE A Mapper model called WikiEntry powers each page of the wiki pages
you’ll use in this section. The sample code for this chapter has all the basic
Mapper configuration stuff set up, so rather than repeat all the configuration
information here, please either check the sample code for reference or use
your knowledge from previous chapters to make a simple WikiEntry class
with two fields for the name (MappedString) and entry (MappedTextarea).

To get started, we’ll create a simple caseclass to model each wiki page, and by page
we’re referring to some content from the database. Each wiki entry has two states that
we care about: display and editing. Consider the definition of Page, which shows a sim-
ple case class that wraps the wiki content needed for each page:

http://shiro.apache.org

154 CHAPTER 7 SiteMap and access control
case class Page(title: String, edit: Boolean){
 lazy val data: WikiEntry =
 WikiEntry.find(By(WikiEntry.name, title))
 openOr WikiEntry.create.name(title)
}

This is a fairly standard caseclass definition with one difference: it has a lazy value
called data that will query the database looking for appropriate content, based upon
the page name it’s passed. If that content doesn’t exist (as is often the case with wikis),
a new WikiEntry will be created, and its name will be set to the name that was passed
into the title parameter.

CREATING THE LOC

Making a subtype of Loc requires that you implement several different parameters.
The following code listing demonstrates a Loc subtype with the required method
implementations.

import scala.xml.{Text, NodeSeq}
import net.liftweb.common.{Box,Full,Empty,Failure}
import net.liftweb.util.NamedPF
import net.liftweb.util.Helpers._
import net.liftweb.http.{SHtml,RewriteRequest,RewriteResponse,ParsePath}
import net.liftweb.sitemap.Loc
import net.liftweb.mapper.{OrderBy,Ascending,By}
import net.liftweb.textile.TextileParser
import net.liftweb.textile.TextileParser.WikiURLInfo
import sample.model.WikiEntry

object Wiki extends Loc[Page]{
 def name = "wiki"
 def defaultValue = Full(Page("HomePage", false))
 def params = Nil
 val link = new Loc.Link[Page](

➥List("wiki"), false){
 override defcreateLink(in: Page) =
 if(in.edit) Full(

➥ Text("/wiki/edit/"+urlEncode(in.page)))
 else Full(Text("/wiki/"+urlEncode(in.page)))
 }
 val text = new Loc.LinkText(calcLinkText _)
 def calcLinkText(in: Page): NodeSeq =
 if(in.edit) Text("Wiki edit "+in.page)
 else Text("Wiki "+in.page)
}

In order to create a custom Loc, first define a new class that’s a subtype of Loc and that
has a type to model pages with. In this example, the implementation makes use of the
Page case class type discussed a moment ago. The body of the class contains a few
parameters; some are more obvious than others. First, name defines the name of the
location B and defaultValue defines a default value for whatever this Loc does. In

Listing 7.3 The most basic Loc implementation

Location nameB
Default
page value

C

Extra LocParamD

Location linkE

Location textF

155Customizing SiteMap
this case, the Loc loads wiki pages from the database, so we want to make sure that
there’s a default page to load—the HomePage C. Next is the params method, which
lets you add additional LocParams to this custom Loc D. In this example, there are no
LocParams required, so supplying a Nil (an empty list) will suffice.

 The next method, link, is a rather important one; it manages how links for this
location are created and handled E. Specifically, the first parameter for new Loc.Link
provides a list representing the URL to match against. In this case, passing
List("wiki") is sufficient as it will be the base URL for all pages in this Loc. The sec-
ond parameter passed to Loc.Link is a Boolean that dictates whether the URL match-
ing is only looking for a head match (so that anything within the incoming request
path that fell after the aforementioned URL list being passed to Link.Loc would con-
stitute a valid match). In this case, we’re looking for absolute matches only, but a
head-only match can be very useful, such as if you wanted to open up a whole direc-
tory structure for a help system.

 Finally, text defines the text that should be used for this link in the menu render-
ing F. As you can see, depending upon the state of the Page—whether it’s being
edited or just displayed—different text content is returned.

 The code in listing 7.3 just gets the Loc up and running with the compiler. It
doesn’t actually do anything helpful. Let’s now add some methods to handle the dis-
play, editing, and listing of wiki entries. The following listing shows the additions
required to the Loc.

object Wiki extends Loc[Page] {
 ...
 def showAll(in: NodeSeq): NodeSeq = WikiEntry.findAll(
 OrderBy(WikiEntry.name, Ascending)).flatMap(e =>
 <div>{e.name}</div>)

 def displayRecord(entry: WikiEntry) =
 "content" #>TextileParser.toHtml(
 ➥entry.entry, textileWriter) &
 "a [href]" #>createLink(Page(entry.name, true)) &
 "view ^*" #>NodeSeq.Empty

 def editRecord(r: WikiEntry) = {
val isNew = !r.saved_?
val pageName = r.name.is
 "a [href]" #> url(pageName) &
 "form [action]" #> url(pageName) &
 "textarea" #>r.entry.toForm&
 "type=submit" #>SHtml.submit(
 isNew ? "Add" | "Save", () =>r.save) &
 "message" #>
 (if(isNew) Text("Create Entry '"+pageName+"'")
 else Text("Edit entry named '"+pageName+"'")) &
 "edit ^*" #>NodeSeq.Empty
 }

Listing 7.4 Additions to the Loc to enable display, editing, and listing

List all pagesB

Show wiki
entry

C

Edit wiki
entry

D

156 CHAPTER 7 SiteMap and access control
 def url(page: String) =
 createLink(Page(page, false))
 def stringUrl(page: String) =
 url(page).map(_.text).getOrElse("")
 private val textileWriter =

➥Some((info: WikiURLInfo) => info match {
 caseWikiURLInfo(page,_) =>
 (stringUrl(page), Text(page), None)
 })
 ...
}

This is a fairly long code block, so let’s take a look at what’s going on in it. You’ll be sur-
prised how much of it will be familiar from working with snippets in earlier chapters.

 First, showAll is simply retrieving all the WikiEntrys from the database and mak-
ing a very list with links to the relevant entries B. The structure used here is exactly
the same as in a standard snippet, in that it’s a function of NodeSeq => NodeSeq.

 The displayRecord method is what renders the contents of the WikiEntry C.
Note, however, that the method has two parameter groups, the first taking a WikiEntry
instance, and the second taking a NodeSeq for the incoming template markup. This is
key, because it lets you use the WikiEntry, and in this instance read its data, to display
that content to the user. Once again, the method makes use of Lift’s CSS-style trans-
formers functionality, which will be familiar from our earlier discussion of snippets.

 The editRecord definition D also sports two parameter groups for passing
both the WikiEntry instance and HTML markup. The difference here is that we
construct a form using the SHtml.submit helper; this form executes the save func-
tion upon being submitted.

 Finally, the last section of the code E defines some helper utilities that handle
constructing URLs and converting the plain WikiEntry content into valid markup by
using Lift’s built-in Textile support.

 The methods in this example are mostly doing the work of pulling information
from and pushing it to the database and subsequently rendering the output. Your
custom Loc can do anything you want—it doesn’t need to use Mapper or anything
else specific.

 Let’s now take a look at the actual Loc plumbing that makes this all work. We
take a look at where the rendering methods are actually invoked and how that fits
together in SiteMap. The following listing shows the final Loc methods that join the
dots together.

object Wiki extends Loc[Page] {
 ...
 object AllEntriesLoc extends Page("all", false)

 override val snippets: SnippetTest = {
 case ("wiki", Full(AllEntriesLoc)) => showAll _
 case ("wiki", Full(wp @ Page(_ , true))) =>

Listing 7.5 Final Loc methods to implement the wiki

Define helper
methods

E

Internal
wiki entry

B

Snippet
dispatch

C

157Customizing SiteMap
 editRecord(wp.record) _
 case ("wiki", Full(wp @ Page(_ , false)))
 if !wp.record.saved_? =>editRecord(wp.record) _
 case ("wiki", Full(wp: Page)) =>
 displayRecord(wp.record) _
 }
 override val rewrite: LocRewrite =
 ➥Full(NamedPF("Wiki Rewrite"){
 case RewriteRequest(ParsePath(
 ➥"wiki" :: "edit" :: page :: Nil,_,_,_),_,_) =>
 (RewriteResponse("wiki" :: Nil), Page(page, true))
 case RewriteRequest(ParsePath(
 ➥"wiki" :: page :: Nil, _, _,_),_,_) =>
 (RewriteResponse("wiki" :: Nil), Page(page, false))
 })
 ...
}

In section 7.2.2 we looked at providing location-specific snippets via the LocParam
snippet. In listing 7.5, we’re making a subtype of Loc, so we can add the snippet dis-
patching directly C.

 Interestingly, this implementation gives the wiki snippet several different func-
tions. First, it responds to a specialized Page implementation called AllEntriesLoc B
that causes this location to list all the entries in the database. For example, if the URL
is /wiki/all, it dispatches this to the showAll method that was defined in listing 7.4.
Similarly, the next two function cases dispatch to the editRecord method, saving the
record in the case that it’s modified but not saved. Finally, if the URL is for the wiki,
but it’s not an editing URL, it displays the wiki entry itself by calling displayRecord.

 Finally, the rewriting pattern tells Lift how to rewrite the URLs to the wiki.html
file D. We haven’t covered rewriting in any detail yet, but you just need to under-
stand that there are two URL schemes that both need to dispatch to the same tem-
plate, /wiki/edit/<page> and /wiki/<page>, and this functionality is conveniently
supplied by Lift’s rewriting mechanism. For more information on rewriting, see sec-
tion 8.2.

 The following listing shows the markup required to make everything work.

<lift:surround with="default" at="content">
 <p>Show All Pages</p>
 <lift:wiki>
 <edit>
 <form action="" method="post">
 <p><message />
<textarea></textarea></p>
 <p>Cancel
 <input type="submit" /></p>
 </form>
 </edit>

Listing 7.6 Markup for the wiki.html template

Snippet
dispatch

C

Wiki
rewrites

D

Display
template

B

158 CHAPTER 7 SiteMap and access control
 <view>
 <content />
 <p>Edit</p>
 </view>
 </lift:wiki>
</lift:surround>

The markup in this code should be familiar, given the fields that were bound in the
Loc definition. There are only two points of note here: the template code for the edit-
ing page B and the straightforward display code C. Because the content is being ren-
dered with Textile, it will come complete with the correct tags, so just placing the
<content /> placeholder within the template is sufficient, as the element will be com-
pletely replaced by the snippet rendering.

 The final thing to do is to register the custom location with the SiteMap itself:

Menu(Wiki)

As you can see, it wasn’t too difficult to build a custom location that’s essentially a self-
contained component of functionality. There are many things that you can use cus-
tom locations for, and it’s an underused idiom in Lift development.

7.3.2 When to customize SiteMap?

You may be wondering what the benefit of utilizing a SiteMap extension is over and
above regular snippet functionality. There are several use cases that are a good fit for
custom locations:

■ Shared state—In some scenarios, you may want to have lots of separate snippets
on a page that are rightly separate but that require a degree of shared state.
Because a custom Loc[T] allows you to control the instantiation of snippets on
that page, you can inject common data into the snippet’s constructor. In this
way, you could (if your use case demands it) have a mini-controller to centralize
some shared state for a given page.

■ Help directory—Consider a help directory that has lots and lots of pages that
you’d like to be available under multiple URLs, based upon their content. In
this situation, rather than having a single canonical URL, you may want the
same content available at multiple URLs. Moreover, you could have a single
location without the need to explicitly specify all the locations; for these this
scenario using a custom Loc is often preferable to using the generic ** notation
within the Menu definition, because you would not want to lose the ability to set
specific page titles, and so on.

■ Wiki—As in this chapter’s example, a wiki is a great use case for custom loca-
tions, because the content tends to be relatively fluid and thus driven directly by
the URL.

■ Blog—It’s a fairly common idiom in blogging to use URLs that have the date
embedded, such as /2010/01/30/some-article. In this case, the URL is carrying

Edit
template

C

159Summary
significant information about the resource that’s being requested, so it makes
sense to use a custom location.

Generally speaking, using a custom Loc works well when your URLs have meaning or
metadata that’s important for the page. In the wiki example, the URL itself is every-
thing, as it denotes the page to be loaded. Likewise, the other three use cases in the
preceding list have in common the notion of meaningful URLs. If your problem
involves meaningful resource URLs, using a custom location in SiteMap is probably
going to be a good solution.

7.4 Summary
SiteMap is an unassuming but powerful part of Lift. In this chapter, you’ve seen how
you can leverage SiteMap’s simplistic DSL to build sophisticated menu structures and
apply granular security to those menu locations. Lift also provides a convenient way
to render your application’s navigation by using the built-in Menu snippet. The Menu
snippet offers you a flexible way to dynamically generate your application’s navigation
and automatically ensure that your application displaying the correct menus for any
given user.

 The other important topic covered in this chapter was the notion of locations and
location parameters. Locations give you a convenient way to build functionality that’s
highly componentized and pluggable between your applications. This was demon-
strated by building a location that automatically adds wiki functionality to the sample
application. Locations can also have location parameters associated with them to aug-
ment both the presentation and control flow. Lift’s location parameter system pro-
vides a highly integrated way to add authentication either by using your own custom
login system or using the built-in HTTP authentication providers.

 In the next chapter, we cover Lift’s HTTP feature set. At its very core, Lift is a highly
capable abstraction on the HTTP request and response cycle. With the concepts of
REST (Representational State Transfer) permeating all the corners of the web in
recent times, it’s important to understand what a good companion Lift can be for
your adventures on the web. So far you’ve seen several fundamental classes that make
up Lift’s awesome HTTP support, such as Req. The next chapter covers the core of Lift
and demonstrates how you can build applications that leverage sophisticated REST
services, and that can respond with multiple formats, including XML and plain text.

HTTP in Lift
Because Lift uses its view-first architecture, it’s often not clear to users who are not
familiar with this setup how Lift handles requests. To that end, this chapter
explains how to do everything related to request handling in Lift, such as rewrit-
ing to provide friendly URLs, dispatching to create REST web services, and under-
standing Lift’s HTTP pipeline.

 Lift’s HTTP pipeline consists of numerous components, and it’s often difficult to
visualize where the things you configure during your application boot phase actu-
ally take effect in the request cycle. This chapter starts by positioning the various
pipeline components and exploring some of the configuration points available
during the process. After looking at the pipeline in moderate detail, we take a
deeper practical look at both URL rewriting and dispatching.

 Rewriting provides you a robust toolkit for defining content-resolution rules.
For example, if you have a file called help.html in your application webapp
folder, rewriting allows you to alter the URLs that can access this template. For
example, you may decide at a later date that /support/ would be a better URL

This chapter covers
■ The request pipeline
■ URL rewriting
■ Dispatching and web services
160

161HTTP pipeline
than simply /help.html, because you want to provide a more comprehensive set of
support materials. In this case, you could internally alter the routing of /support/
to map to the help.html file. In broad terms, you can think of rewriting as being
about routing and resolution. A more in-depth use case is discussed in section 8.2.

 Conversely, dispatching is primarily about content generation. The content could
be anything from markup through to PDF, or even some custom format. In essence,
dispatching is the core of Lift’s HTTP service, and plugging into it gives you as much
control over the response as internal Lift operations have. It can be a very powerful
and effective tool, and it’s commonly used for building REST services. We discuss this
more in section 8.3.

 Without further ado, let’s start our exploration of Lift’s HTTP processing pipeline.

8.1 HTTP pipeline
It can be useful to understand the HTTP processing pipeline, where these facilities sit,
and the classes involved in booting, servicing requests, and destroying a Lift applica-
tion. Users coming to Lift from other Java frameworks often like to have this wider pic-
ture so they can understand the relationship between components and classes in the
codebase. This section presents that overview.

 With that being said, you can also safely skip this section and go straight to sec-
tion 8.2 without missing any critical information if you’re only interested in getting
things done with Lift’s HTTP feature set.

8.1.1 HTTP abstraction

Lift has an abstraction of the whole HTTP request-response cycle that completely
decouples it from the Java servlet container specification. This means that Lift is actu-
ally capable of running on anything from a normal servlet container like Jetty or Tom-
cat, right up to next-generation high-performance networking stacks like JBoss Netty.

 The abstraction is visualized in figure 8.1 with the Lift application running in a
traditional servlet container and using Lift’s implementation of a javax.servlet
.Filter. Because Lift is a filter, you can mix and match your application stack with-
out affecting any other applications in your service chain. If Lift is unable to service
a particular request, or you configure it not to, it simply forwards the request to the
next process in the chain. In this way, Lift can be seamlessly integrated into your
existing application stack.

 The HTTP abstraction covers all parts and services Lift interacts with on the given
platform—everything from basic requests right through to asynchronous request APIs
for native Comet support. The benefit of this is that whenever you’re dealing with
HTTP aspects in your application, you have a single unified API to deal with, which
keeps your application portable by removing platform-specific dependencies. More-
over, if you then need to implement something that’s vendor specific, you simply need
to provide the thin provider layer that delivers the behavior you require.

 With this in mind, let’s look at how Lift boots up in this abstracted environment.

162 CHAPTER 8 HTTP in Lift
8.1.2 Application lifecycle

Lift has three distinct phases in its application lifecycle: boot up, request handling,
and shutdown. Request handling is where the vast majority of work is done, so it will
be discussed separately in section 8.1.3. Here we’ll cover the application lifecycle: boot
up and shutdown. Section 8.1.1 outlined Lift’s HTTP abstraction and the interface for
talking to its container. That consistent interface means that Lift will always go
through the same lifecycle process irrespective of its environment.

 Let’s assume that we have the most basic type of Lift application running in a stan-
dard Java servlet container. We look at configuration details in chapter 15, so here we
just assume that the application is running under http://domain.com/myapp/, where
myapp is the application context. Figure 8.2 shows the process Lift goes through dur-
ing its boot cycle, when the container loads the application.

Figure 8.1 A visualization of Lift’s HTTP abstraction as seen in the familiar Java
servlet container. The request comes in a ServletRequest but is internally
mapped in Lift to the HTTPRequest type.

http://domain.com/myapp

163HTTP pipeline
As you can see, there are a few operations going on here. The container loads the
web archive (WAR) file through the filter interface, and Lift assimilates the HTTP
context passed to it via the container. In this case, the context is “myapp”, so all
URLs in the application are rewritten to be prefixed with that context. Then Lift
configures the ResourceServer.

RESOURCE SERVER

The ResourceServer is a special object that can serve static content from the applica-
tion classpath, allowing you to make (or simply use) portable components that include
frontend content like CSS and JavaScript and wire those into your application.

Figure 8.2 Flow chart detailing the Lift application boot process.
During the startup sequence, Lift goes through a set number of tasks
to configure its environment. The main one to take note of here is the
invocation of the bootloader, because that’s what actually starts
the application.

164 CHAPTER 8 HTTP in Lift
 During this early boot phase, Lift is configuring the ResourceServer to serve
things that are bundled with Lift itself, such as JQuery and YUI JavaScript libraries.
You’ll notice that by default Lift applications can serve URLs such as this:

/classpath/jquery.js

The jquery.js file isn’t coming from the webapp folder, as you might expect, but from
the WAR classpath, in the lift-webkit JAR. If you wanted to make a reusable component
of application logic and bundle some CSS styling inside the JAR file, all you’d need to
do is place the CSS file that you’d like to serve inside the following folder: src/main/
resources/toserve/css/. You would subsequently wire that up in your Lift application
boot, as shown:

import net.liftweb.http.ResourceServer

ResourceServer.allow {
 case "css" :: "nameOfYourFile.css" => true
}

Any requests for /<context>/classpath/css/nameOfYourFile.css are serviced by the
CSS content from the application classpath, rather than the webapp directory. This
functionality is especially useful if you want to externalize some common user interface
components, because it allows you to serve content from any JAR on the classpath.

 Resources that are serviced via the ResourceServer are done so using Lift’s state-
less dispatch. We cover this in detail in section 8.3.

BOOTLOADER

The next phase of the boot process is for Lift to look for the application bootloader.
That’s the class that will contain your entire application configuration and setup,
including such things as calls to LiftRules and other application-global configuration
points. If you want to alter the environment Lift operates in, the bootloader is the
place to do it.

 By default, Lift will attempt to use the bootstrap.liftweb.Boot class. When run-
ning in a servlet container, you can override this by adding an additional init-param
to the application web.xml as shown:

<filter>
 ...
 <init-param>
 <param-name>bootloader</param-name>
 <param-value>org.mycompany.Boot</param-value>
 </init-param>
</filter>

The only stipulation with this is that your custom bootloader must extend the type
net.liftweb.http.Bootable.

 Upon locating the bootloader, Lift makes a new instance of this class and calls the
boot method.

165HTTP pipeline
TEMPLATE CACHE

When you’re running your application in production mode, Lift optimizes the serving
of page templates by using its TemplateCache system. Unless you specifically config-
ured this value in your application bootloader, Lift will set up an in-memory cache
that can hold 500 templates. This is perfectly acceptable for most applications, and
more often than not you won’t need to tune this value. With these boot operations
completed, Lift creates an instance of the internal class LiftServlet and is now ready
to start serving requests. Huzzah!

NOTE Production mode is just one of Lift’s run modes. They’re covered in
detail in chapter 15.

This is the end of the booting up phase. The next phase, the request lifecycle, is cov-
ered in detail in section 8.1.3. The opposite pole of booting up is the shutdown phase.

SHUTDOWN

Shutting down an application is always a sad time, but it’s important to understand
what happens when you do and how that can affect the service your application deliv-
ers. Figure 8.3 shows the shutdown process followed by Lift.

 The application will receive the shutdown signal from the environment, and from
there it will start to mark sessions on its internal session controller as shutting down.

Figure 8.3 Lift’s shutdown lifecycle gracefully stops taking requests and
shuts down its internal operations before executing any user-defined
functions prior to terminating.

166 CHAPTER 8 HTTP in Lift
Those sessions then start to be killed off and Lift checks to see if it has any currently
active requests. In the interests of good service, Lift will give any requests in progress
10 seconds to close. Or, if the live request count is 0 under 10 seconds, Lift will con-
tinue to shut down its internal actors and operations before it moves to the final
step—LiftRules.unloadHooks—which is typically used for shutting your connection
to the database or cleaning up other services in a polite way.

 That’s the whole Lift application cycle—fairly short but sweet. The request cycle is
where you’ll likely find some interesting information and get a better appreciation for
where the intercept points are, to which you can apply your executable functions.

8.1.3 Request lifecycle

Lift’s request pipeline is made up of many facets and several nontrivial moving parts.
In this section, you’ll gain an appreciation for the parts and the process of this pipe-
line, rather than get a blow-by-blow account of method calls. At the very high level,
you can visualize Lift’s pipeline as a two-step process: the initial stateless processing
and the subsequent state initialization and processing.

 There are various intercept points in Lift where you can define URLs to be handled
statelessly, either using a stateless dispatch (covered in section 8.3) or a stateless test.
The latter is more complicated, so for now we stick with the notion of whether some-
thing is stateless or not.

We start by looking at the first part of the request lifecycle: stateless processing. Fig-
ure 8.4 details the stateless part of Lift’s HTTP request pipeline.

 Let’s break this first part of the rather long workflow down into its most important
components and look at some example code for the various configuration points.

Clarifying state
In the request lifecycle, we talk a lot about stateful and stateless processes, so it’s
important that you understand the practical difference and their implications.

A stateless request or component has no access to session variables, cookies, or
other such items that can be categorized as state. By contrast, stateful requests
have full access to request variables, session variables, and all the other goodies
that are available from the S and SHtml objects.

State is very important for Lift, especially when using the built-in form helpers and
secure AJAX, because Lift keeps a function around to execute later (such as when
a form is submitted), and it can only do this function mapping when there’s some-
where to store it for later use. Without access to state, these functions wouldn’t
be able to work.

167HTTP pipeline
EARLY FUNCTIONS

The early executing functions are user-defined function types of the form HTTP-
Request => Any. This allows you to modify the request before it’s passed to any other
parts of Lift’s processing chain. For example, you may want to alter the parameter
parsing of the container like this:

LiftRules.early.append(_.setCharacterEncoding("UTF-8"))

The only point of note here is that if Lift is operating as one of many filters in your
application stack, the other filters must be expecting UTF-8, or some unexpected
things might ensue as different encoding schemes clash.

 The next important stage is the application of rewriting rules. Because rewriting is
a sizable topic in its own right, it’s covered in section 8.2. The important thing to
understand here is that the rewriting is applied recursively until there are no more
matches with the specified rewrite pattern. Lift then assigns the incoming parameters
from the query string or the request body. The request body itself is lazily evaluated,
so until it’s touched directly by the code, the body remains assigned but unparsed.

Figure 8.4 The very first part of the Lift processing pipeline, illustrated here, is stateless. Once this
part of the pipeline is complete, if the request isn’t stateless, it proceeds to the steps in figure 8.5 for
state initialization and further processing.

168 CHAPTER 8 HTTP in Lift
 The final step in the stateless pipeline is to evaluate the URL for any parts that have
been defined as decorators. This essentially means that the incoming URLs can have a
fixed or static item suffixed to them. Here’s an example:

LiftRules.urlDecorate.prepend {
 case url => if(url.contains("?")) url + "&srv=001" else "?srv=001"
}

In this example, all Lift requests will have the static suffix srv automatically
applied, and some infrastructure configuration could be made to route requests to
specific servers, for example. Decorators are essentially a mechanism that allows you
to define static additions to the incoming URLs, in order to serve some application-
specific purpose.

REQUEST VALIDATION AND EXECUTION

In the second column of processes in figure 8.4, Lift has to decide whether it should
be servicing this request or not. This is once again configurable through LiftRules
with a simple Req => Boolean function that you can use like so:

LiftRules.liftRequest.append {
 case Req("nolift" :: Nil,"xml",_) => false
}

When would you use such a function? There are several scenarios in which this can
prove useful:

■ A single Lift application is running in a container, and you want to serve a static
file from the container directly rather than piping it through Lift.

■ A Lift application is running as part of a set of filters, and you know that a par-
ticular incoming request needs to be serviced by a filter further down the chain
from Lift, so piping it through Lift’s pipeline doesn’t gain you anything.

Assuming that the request is indeed for processing by Lift, the first hook available to
you is the LiftRules.onBeginProcessing function list. This hook allows you to exe-
cute a side-effecting function with full access to the incoming Req instance. The final
step before moving on to a stateless dispatch, is ensuring that this request doesn’t have
any HTTP authentication applied, based on the definition at LiftRules.httpAuth-
ProtectedResource, which we touched on in chapter 7.

 With the request now through the preservice validation, Lift checks to see if
the request should be dealt with via the stateless dispatch mechanism (covered in
section 8.3) or whether it should continue into phase two of the servicing and ini-
tialize a session, being a stateful request. Figure 8.5 shows the stateful request-
processing pipeline.

 Once again, there are several distinct components in this second phase of process-
ing. All of the operations depicted in figure 8.5 have access to the application state,
such as session variables. With this in mind, the first operation is to check whether this
URL should be serviced directly using a stateful HTTP dispatch. This is an identical
process to the stateless dispatch discussed in the previous section, but it has access to

169HTTP pipeline
all the current session state. Stateful dispatching is discussed in section 8.3. If the URL
is not handled by dispatching, the request is then checked to see if it is an AJAX or
Comet request; if it is, it’s bounced to the appropriate handler for further processing
and response to the browser.

 Assuming this is a regular (non-Comet, non-AJAX, non-dispatch) request for a
resource, the next check in the pipeline is the SiteMap, as discussed in chapter 7. If
the page passes the SiteMap access control checks, it will return a 404 Not Found if
the access control returned false, or it will continue with request processing and
attempt to load the template and handle the dynamic page content.

Figure 8.5 This is the second phase of the processing pipeline. If the request makes it to this stage,
it’s by definition stateful. The process here is concerned with loading the template content and
processing any functions or state that are being used in the application logic.

170 CHAPTER 8 HTTP in Lift
TEMPLATE RESOLUTION

At this point in the request processing, all the access control is completed and Lift is
only concerned with generating and serving the dynamic markup content. To that
end, TemplateFinder goes looking for the appropriate template file in the applica-
tion WAR by removing parts of the path that start with a period (.) or underscore (_)
or that contain -hidden and then looking for a filename match. In addition to these
rules about template resolution, Lift will also attempt to augment the filename with
some rules for finding locale-specific templates, but this is discussed specifically in
chapter 12.

 There is also the possibility that a template doesn’t exist for this URL, at least as a
file. You may remember from chapter 6 that Lift also has the LiftView mechanism for
generating content. If a template file doesn’t exist on the classpath as a file resource,
Lift will start looking in the class system for an appropriate view. Lift knows where to
look for views, Comet, and reflection snippets because of the following configuration
in the application boot:

LiftRules.addToPackages("com.mycompany.project")

Lift will subsequently look for an appropriate view in the com.mycompany.project
.view package. Whether the template is a class view or a file template, the result will
ultimately be a scala.xml.NodeSeq that a response can be generated from by execut-
ing the appropriate snippets, handling any content, and so forth. Whatever the output
contains, it will be some form of markup, and Lift then converts that to a Lift-
Response and flushes it to the browser. That’s pretty much all there is to it!

 Now that you’ve seen how Lift handles requests and controls its environment, it’s
time to look at two of the main HTTP features we touched on during this discussion
of the pipeline: rewriting and dispatching. These are common components that
you’ll want to use in your application, and both come in stateless and stateful flavors.
Section 8.2 will take you through the details of rewriting, and section 8.3 will walk you
through creating a REST service with dispatching.

8.2 URL rewriting
When seeing a term like URL rewriting, you might think about .htaccess from
Apache, or another frontend web server. Other frameworks on the market also call
this functionality routing. Conceptually, Lift’s URL rewriting is the same, in that it takes
an input URL and maps that onto an output URL, which in the context of Lift is either
a specific view or template.

 We briefly touched on the rewriting of a response in chapter 7 with SiteMap
.LocParam, and this is the same mechanism under the hood. In the LocParam use,
however, the rewrite is often targeted for a single site component or piece of applica-
tion functionality. Here we cover the global application rewriting and focus on spe-
cific details of the mechanism that you can use either here in the global context or
when building a LocParam.

171URL rewriting
 Consider the following situation: You have a template called product that displays a
detailed view of a particular product, alongside some information about other prod-
ucts within the same category. By default, your URLs might look something like this:

/product?id=5678&category=1234

This is a little clunky because the product 5678 is in fact a subordinate resource of cat-
egory 1234. That is, the product ID has no relationship with the category ID, and it
would be nicer if the accessing URL were a better semantic representation of the
resources being used.

 By implementing rewriting, that URL could be changed to this:

/category/1234/product/5678

This is a trivial example, but the takeaway is that you can completely alter the incom-
ing URL and still extract the component parts and issue them to the correct template
or view. Let’s take this use case and look at a basic example.

8.2.1 Defining a RewritePF

Most things in Lift are configured through the LiftRules object, and rewriting is no
different. There are two different modes of rewriting with Lift: stateful and stateless.
We encourage you to use stateless rewriting in most cases, unless you specifically have
a use case that demands it be stateful. In my experience, there are only a few corner
cases that truly require stateful rewrites, so you’re generally better off not carrying that
slight extra overhead with each request.

 The following listing shows a full example of using stateless rewriting.

import net.liftweb.http.{LiftRules,RewriteRequest,
 RewriteResponse,ParsePath}

LiftRules.statelessRewrite.append {
 case RewriteRequest(ParsePath(
 ➥"category" :: cid :: "product" :: pid :: Nil, "",true,false),
 GetRequest, http) =>
 RewriteResponse("product" :: Nil,
 Map("cid" ->cid, "pid" -> pid))
}

This can be confusing as rewriting makes use of Scala’s unapply functionality, which at
first glance can seem somewhat mystical. Let’s break this statement into its compo-
nent parts.

NOTE For more information on Scala’s unapply method, see the article on
“Extractor Objects” in the “Tour of Scala”: http://www.scala-lang.org/
node/112.

Listing 8.1 Example of stateless rewriting

http://www.scala-lang.org/node/112
http://www.scala-lang.org/node/112

172 CHAPTER 8 HTTP in Lift
All rewrites have two phases: the request, denoted by the RewriteRequest type,
and the output, RewriteResponse. First, let’s look at the input RewriteRequest and
its parameters:

case class RewriteRequest(
 path: ParsePath,
 requestType: RequestType,
 httpRequest: HTTPRequest)

The first parameter is of type ParsePath. This is a special Lift type that lets you control
elements of a request. In listing 8.1 the ParsePath definition is essentially going to
match this:

/category/<variable>/product/<variable>

The first parameter of ParsePath is a List[String]. Listing 8.1 uses the cons notation
to build that list, and where the URL parts should be variable, a placeholder is used
instead of a static string, which at runtime will have its value set based on the incoming
URL values. The second parameter defines the suffix this request should use. In this
example, no suffix is used, so passing "" is sufficient. But if you wanted to only allow
requests that ended in .xml, you would specify "xml" as the value, or if you didn’t care
what the extension was, you could simply pass an underscore, and any suffix would be
considered a match. The final two parameters are simple Boolean values: the first is a
switch to specify whether this must be an absolute match from the root context, or
whether any URL matching this pattern will do; the second specifies whether this URL
has a trailing slash or not.

ParsePath is the biggest part of the input RewriteRequest, so you should take a lit-
tle bit of time to understand the options it provides. With the request aspect under
control, let’s look at the second part of the partial function, the RewriteResponse.
The purpose of this class is to define which template file is servicing this request. In
listing 8.1, for example, the URL itself isn’t going to match any template path by itself,
so you have to tell Lift which resource it should use to service this request and detail
how to map the URL parameters so they can be accessed later from your snippets
using the S.param method.

 In listing 8.1, the following RewriteResponseis implemented:

RewriteResponse("product" :: Nil, Map("cid" -> cid, "pid" -> pid))

This line tells Lift that when handling this request, it should use the webapp/
product.html template and map the product ID in the URL that was denoted by the
pid placeholder to a parameter called pid. This parameter can be named whatever
you want, but it’s idiomatic to name the mapped parameter the same as the place-
holder. This mapping allows you to access the value of the pid URL parameter in any
state-initialized part of your application using S.param("pid").

 The RewriteResponse object has several overloaded methods that support differ-
ent use cases. For example, you have seen how rewriting can be used to make friendly
URLs and map parameters into your application, but there are situations where you

173URL rewriting
may want to alias a resource, or perhaps alter the rewrite based upon an HTTP verb.
The overrides are listed in table 8.1.

These overloads provide you with enough flexibility to support the vast majority of
things you’ll likely want to do in your applications. However, there are some more
advanced use cases that require you to build custom parameter extractors. We look at
those next.

8.2.2 Advanced rewriting

In the previous section, we looked at examples of rewriting that will cover a lot of what
you might want to do in the course of normal application programming. But rewriting
(and dispatching, for that matter) makes extensive use of Scala’s partial functions and
pattern-matching features, and as mentioned in the previous section, you can use
unapply functions in conjunction with these match statements.

 The rewriting examples you’ve seen so far have exclusively dealt with strings. This
is all well and good if you’re working with string values like words, but it’s a little cum-
bersome when you’re working with numeric values, such as a reference or identifica-
tion number. Moreover, consider a rewrite request pattern like this:

RewriteRequest(ParsePath("account" :: aid :: Nil,_,_,_))

Table 8.1 List of RewriteResponse overloaded apply methods

Method Usage

def apply(path: ParsePath,
 params: Map[String, String])

RewriteResponse(
ParsePath("sample" :: Nil,
 "xml",true,false),
 Map("pid" -> id))

Rewrites the incoming RewriteRequest to use the
template located at src/main/webapp/sample.html.

def apply(path: List[String]) RewriteResponse("sample" :: Nil)

Rewrites the incoming RewriteRequest to use the
template located at src/main/webapp/sample.html.

def apply(path: List[String],
 suffix: String)

RewriteResponse("sample" :: Nil,
"xml")

Rewrites the incoming RewriteRequest to
/sample.xml.

def apply(path: List[String],
 params: Map[String, String])

RewriteResponse("sample" :: id :: Nil,
 Map("pid" -> id))

Rewrites the incoming RewriteRequest to use the
template at src/main/webapp/sample.html and map
the <id> parameter in the URL pattern to a parameter
that’s accessible via S.param("pid").

174 CHAPTER 8 HTTP in Lift
This would match both /account/rubbish and /account/12345, so how can we deter-
mine the difference between them?

 Scenarios like this are a perfect use case for unapply. In the net.liftweb.util
.Helpers object there is an object called AsInt that sports the following definition:

def unapply(in: String): Option[Int] = asInt(in)

Without getting into the specifics of how unapply actually works and is handled in pat-
tern-matching statements, you can see that this method takes a string argument and
converts it to an integer value, if it can be converted. Helpfully, we can drop this into
the RewriteRequest pattern and Lift will automatically check the type of the incom-
ing URL and only match on those it can successfully convert to integers, meaning that
the /account/rubbish URL simply won’t match and will yield a 404 Not Found error.

 This listing demonstrates such a use of the AsInthelper:

LiftRules.statelessRewrite.append {
 case RewriteRequest(
 ParsePath("account" :: AsInt(aid) :: Nil,"",true,false),_,_) =>
 RewriteResponse("account" :: Nil, Map("aid" -> aid))
}

The listing should look very similar to what you have seen previously, but with the key
difference being in the ParsePath method. As you can see, the AsInt helper has been
applied as a specific part of the URL List[String] match. It’s this component that
ensures that incoming URLs are integer values rather than any old string.

 Using unapply with rewriting can provide you with a flexible system for doing all
manner of interesting things. For example, given a situation where you have a page
with several snippets, you could feasibly initialize a RequestVar from the rewriting and
have that ready for use in all your snippets featured on that page, thus negating the
issue of having a main snippet that must load the item from the database. This tech-
nique is certainly something to bear in mind when building your own applications—it
may well come in handy.

 At the beginning of this chapter, we talked about rewriting being all about content
resolution, and its counterpart being dispatching, which was all about content cre-
ation. Now that you’ve had a good introduction to resolving application resources,
let’s take a deep dive into dispatching and content creation.

8.3 Dispatching and web services
In this section, we look at how you can hook into Lift’s HTTP dispatching, which is the
system that lets you return any subtype of LiftResponse. This could be a markup
response, some kind of binary response such as a PDF, or pretty much anything else
you can transport via HTTP. It’s fairly common practice in other web frameworks to
use strings to set the headers, content type, and other response parameters, and then
just flush this heap of strings to the browser. Lift takes a slightly different approach

Listing 8.2 Using AsIntunapply to add type checking to rewrites

175Dispatching and web services
and provides an extensible, strongly typed mechanism for servicing content. This is
known as the LiftResponse trait, and Lift has a raft of premade subtypes that give
you, as the developer, a simple API for putting together structures that will be sent to
the browser.

 A common use case for dispatching is the creation of web services, and often
those services follow a RESTful Resource Orientated Architecture (ROA) design.
Here you will see the high-level DSL that can assist you in creating basic web services
and also cover the lower-level dispatch table, so you can implement your own dis-
patchers and even conduct content negation to deliver the right content to the right
client (you could deliver HTML content to a browser, but PDF content to a mobile
eReader, for example).

NOTE Resource-oriented architecture (ROA) is discussed in the Wikipedia
article: http://en.wikipedia.org/wiki/Resource_oriented_architecture. For
more information about content negotiation, see the discussion in RFC 2616
at http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html.

Before we get started, it’s important to understand that Lift can service HTTP dis-
patching in either stateful or stateless modes. There is a slight overhead in using state-
ful dispatching, because it’s creating a session if one doesn’t already exist, but the key
thing that should decide your implementation route is the use case in which it’s being
applied. For example, if you need to use session variables to hold information over
multiple requests, then stateless dispatching won’t work for you, but otherwise state-
less dispatching should be good for most use cases. Either way, it’s a fairly minimal dif-
ference, and the only change in implementation is the LiftRules property that you
append to. For stateful dispatching, use

LiftRules.dispatch.append(...)

and for stateless dispatching, use

LiftRules.statelessDispatchTable.append(...)

All of the examples we cover here will work well irrespective of which dispatcher you
wire things up to—it’s completely down to your use case.

 In terms of its implementation, all HTTP dispatching in Lift is based upon two
things: a request, or Req instance, and a response, which is a LiftResponse subtype.
As we just mentioned, there are a couple of different ways to interact with this process,
and both have their respective merits. We cover more specific details of both Req and
LiftResponse later in the chapter, but, for now, just understand that these are the
input and output types used by Lift to service the process.

 Let’s get on with looking at how to implement a small example using the high-level
dispatching DSL.

http://en.wikipedia.org/wiki/Resource_oriented_architecture
http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html

176 CHAPTER 8 HTTP in Lift
8.3.1 Using the HTTP dispatch DSL

Before we get into anything more complicated, such as REST and content negotiation,
let’s first check out how you can create simple services using Lift’s dispatch DSL. The
next listing shows the most basic example.

import net.liftweb.http.rest.RestHelper

object BasicDispatchUsage extends RestHelper {
 serve {
 case "my" :: "sample" :: _ Get _ => Static
 }
}

This small example implements the RestHelper trait in a singleton object called
BasicDispatchUsage. Inheriting from RestHelper delivers a whole set of functional-
ity via special helper types and implicit conversions to keep your implementation code
as light as possible. The main method inherited from the RestHelper is the serve
method, which allows you to define case statements and use specialized helpers like
Get to define your HTTP resources. As you can see, the case statement in listing 8.3
defines a URL using a List[String] (via the :: cons operator) that will match /my/
sample/** and serve it with the most basic XML response.

 With this definition in place, the only thing that must also be done is to tell the
appropriate dispatcher about this service definition object:

LiftRules.dispatch.append(BasicDispatchUsage)

This is rather nice, you’ll probably agree. All you need to do is reference the singleton
object that extends RestHelper, and no other wiring is needed. Of course, this exam-
ple is rather trivial, but it illustrates the point at hand rather nicely. At compile time Lift
is able to determine the type of response conversion it should be doing. In this
instance, it defines an XML literal in the code, which the Scala compiler sees as type
scala.xml.Elem. It also sees that within the serve block there are implicit conversions
in scope that can take a scala.xml.Elem and convert it to the correct LiftResponse
subtype, which in this instance is a NodeResponse, because we’re serving XML.

 Let’s just pause for a moment to review the LiftResponse mechanism that we’ve
briefly touched on in the past couple of paragraphs. All dispatch methods in your Lift
application, no matter how they’re constructed, must return a subtype of Lift-
Response. Out of the box, Lift comes with a whole raft of response types for serving
XML, JSON, Atom, and so on, and each response type typically takes care of any appro-
priate options that need setting; nevertheless, you can override any behavior as you
see fit.

 In Lift’s dispatching system, anything that will ultimately return something to the
browser must yield a subtype of LiftResponse. With this in mind, it’s useful to be
aware of the wide variety of prebaked LiftResponse types available. Table 8.2 details

Listing 8.3 Using the HTTP dispatch DSL

177Dispatching and web services
some of the types you’ll likely find yourself using fairly regularly, with examples of
their usage. There are other types that fill the whole spectrum of HTTP response pos-
sibilities—these are just the common usages. Also bear in mind that several of these
response types have companion objects with overloaded apply methods, meaning
that they can often be used with different arguments to control behavior in a more
specific way or to provide a more simplistic API.

The syntax of the DSL relies quite heavily on Scala currying and implicit conversions
to achieve its construction, so let’s look at a few examples that illustrate how the types
are built up into the bare metal LiftRules.DispatchPF that all of Lift’s dispatching is
based upon.

NOTE Broadly speaking, curried functions are those that have multiple argu-
ment lists. Currying can be a fairly deep subject in and of itself, but for more
in-depth information on currying, see Joshua D. Suereth’s Scala in Depth.

At a very base level, the dispatching mechanism boils down to this:

PartialFunction[Req, () => Box[LiftResponse]]

Table 8.2 Commonly used LiftResponse subtypes

Response type
HTTP
code

Usage

OkResponse 200 OkResponse()

JsonResponse 200 JsonResponse(JString
 ➥("This is JSON"))

PlainTextResponse 200 PlainTextResponse("Your message")

XmlResponse 200 XmlResponse(<sample />)

AcceptedResponse 202 AcceptedResponse()

PermRedirectResponse 301 PermRedirectResponse("/new/
 ➥path", req)

RedirectResponse 302 RedirectResponse("/new/path")

BadResponse 400 BadResponse()

UnauthorizedResponse 401 UnauthorizedResponse("Magical
 ➥Realm")

ForbiddenResponse 403 ForbiddenResponse("No access
 ➥for you")

NotFoundResponse 404 NotFoundResponse()

InternalServerErrorResponse 500 InternalServerErrorResponse()

178 CHAPTER 8 HTTP in Lift
That is to say, a request comes in and your code will return a Function0 that has a
boxed LiftResponse. The DSL makes this whole process easier for you by abstracting
and providing sensible defaults via implicit conversions. For example, if you’re return-
ing an XML response, the RestHelper has conversions that translate the scala
.xml.Node into () => Box[Node].

 There are many conversions to make working with the DSL as seamless as possible.
The following listing demonstrates four different statements that all create XML
responses but make use of the RestHelper at different levels of abstraction.

object SecondDispatchUsage extends RestHelper {
 serve {
 case "sample" :: "one" :: _ XmlGet _ => Static
 case "sample" :: "two" :: Nil XmlGet _ => Static
 case XmlGet("sample" :: "three" :: Nil, _) => Static
 case Req("sample" :: "four" :: Nil, "xml", GetRequest) =>
 Static
 }
}

Listing 8.4 defines four cases that illustrate the various routes you can use with the dis-
patching DSL. The first shows a basic implementation that simply services /sample/
one/*/*.xml and is very similar to what was defined in listing 8.2, but as this version
uses the XmlGet helper, so the incoming request must present an .xml extension and
the content accept header must be text/xml. If these conditions aren’t met, Lift will
return a 404 Not Found response to the calling client. This is an important difference
from the definition in listing 8.2, which would serve XML irrespective of what the
caller could actually accept.

 The second case is nearly identical to the first, with a subtle difference; the request
URL that’s defined is suffixed with Nil. The result of this is that the incoming URL
must match /sample/two.xml exactly, or a 404 Not Found will be returned. To clarify
this a little further, the URL in the first case was defined as follows:

"sample" :: "one" :: _

This trailing underscore essentially means any other pattern. Behind the scenes, this
uses Scala pattern matching and a language feature called extractors to determine the
resulting types, which in this instance are (List[String], Req). Extractors are a fairly
complex topic, so we don’t dwell on them here—just understand how you can use the
underscore to ignore parts of the pattern.

NOTE For more information on extractors, see the “Extractor Objects” page
in the “Tour of Scala”: http://www.scala-lang.org/node/112.

The third case utilizes the exact same extractor, XmlGet, but you may find this usage a
little easier to get your head around. Here you can see that the exact same syntax is in

Listing 8.4 Understanding dispatch DSL type hierarchy

http://www.scala-lang.org/node/112

179Dispatching and web services
play for the URL, followed by another underscore to ignore the Req instance and sat-
isfy the extractor pattern.

 Finally, the fourth case involves the most verbose DSL usage. So far, we’ve been
ignoring the Req instance with these patterns, in favor of the prebaked extractors sup-
plied by the RestHelper trait, but here we’re using the raw Req instance directly to
match on.

 You may be wondering what the advantages are of accessing the Req directly, as
compared to using the built-in extractors. There are a couple of considerations when
choosing a route of implementation:

■ The Req instance has a whole bunch of helper methods. For example, if you
wanted to service a particular request only if the incoming request came from an
iPhone, you could put a guard on the match statement with req.isIPhone.
Depending upon your use case, these helper methods may be something you want
to access, but otherwise the prebaked DSL extractors may be the ticket for you.

■ It’s a matter of preference. The DSL uses a fair amount of currying and what is
known as infix operation pattern (http://www.scala-lang.org/docu/files/
ScalaReference.pdf, section 8.1.10); some people really like this, and others
don’t. Ultimately, with choice comes personal preference.

The dispatch DSL gives you the tools to quickly create HTTP services, so let’s look at a
more concrete example. In the next section, we make a base REST service.

8.3.2 Basic REST service

We’ve spent some time looking at the RestHelper dispatch DSL, and hopefully you
can see how this can quickly assist you to construct HTTP services. Let’s create a
short and very basic example with a couple of services to put that overview into prac-
tice. This example will be based on the premise of a bookstore and creating a sim-
ple read-only web service that you can use to get a list of stock and to query the stock
by publisher.

 To get started, let’s define some simple domain objects to model and store the stock
list. To implement this simply, create a case class that can model a Book at the most sim-
plistic level, and a singleton Bookshop object that contains the actual list of books. This
listing shows the appropriate code.

case class Book(publisher: String, title: String)

object Bookshop {
 val stock = List(
 Book("Bloomsbury", "Harry Potter and the Deathly Hallows"),
 Book("Bloomsbury", "Harry Potter and the Goblet of Fire"),
 Book("Manning", "Scala in Depth"),
 Book("Manning", "Lift in Action")
)
}

Listing 8.5 Bookstore domain classes

http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf

180 CHAPTER 8 HTTP in Lift
This is an extremely simple example, where Book is the model and the singleton
Bookshop object holds a list of books, which represents the stock. Although this may
seem trivial, this example is really about the dispatching, rather than a complex
domain model or persistence system, so we just need some data to interact with. In
practice, you’d likely be accessing a database or domain model to grab live data and
serve that to the client.

 Let’s get on with creating the basic service. The goal here is to create two services
with the following HTTP resources:

GET - /bookshop/books.xml

GET - /bookshop/books/<publisher>.xml

Having earlier constructed an XML dispatching service in section 8.3.1 by using the
RestHelper, you can probably guess how to implement the first resource in this
task. The following listing shows an implementation for retrieving a list of all the
books in stock.

import net.liftweb.http.rest.RestHelper

object BookshopHttpServiceBasic extends RestHelper {
 serve {
 case "bookshop" :: "books" :: Nil XmlGet _ =>
 <books>{Bookshop.stock.flatMap{b =>
 <book publisher={b.publisher} title={b.title}/>}
 }</books>
 }
}

Here again the RestHelper trait is used as a base for the implementation object. And
again, the definition in the case statement should be pretty familiar from the preced-
ing section. As this is to be an XML service, you simply implement the XmlGet type.
The <books> definition is the interesting part here, though, because you pull the list
from the static Bookshop object and iterate through that list, creating XML elements.
The RestHelper brings an implicit conversion into scope that converts Elem to Lift’s
NodeResponse. Simple enough.

 Right now, this service can tell the caller what books are currently in stock, but it
gives the client no way to filter or query the bookstore’s stock. To remedy this, let’s
add another service that allows the caller to filter the stock by publisher. We need to
refactor a touch so that we don’t duplicate the XML generation. The following listing
shows the updated implementation.

object BookshopHttpServiceBasic extends RestHelper {
 serve {
 case "bookshop" :: "books" :: Nil XmlGet _ =>
 response(Bookshop.stock)

Listing 8.6 Retrieving a list of bookstore stock items

Listing 8.7 Adding the filtering resource

181Dispatching and web services
 case "bookshop" :: "books" :: publisher :: Nil XmlGet _ =>
 response(Bookshop.stock.filter(
 _.publisher equalsIgnoreCase publisher))
 }

 private def response(in: List[Book]) =
 <books>{in.flatMap(b =>
 <book publisher={b.publisher} title={b.title}/>)
 }</books>
}

The List[Book] => NodeSeq function has been moved into a separate method called
response, which is detailed at B. More importantly, because the query by publisher
URL requires some dynamic input (name of publisher), you specify this in the second
case statement B. Notice how publisher is unquoted—it’s not a static String value
but a placeholder for a variable value of type String for the value that makes up that
URL. Handily, this placeholder can be used on the right side of the case statement, so
you can simply pass the value directly into the creation of the filter predicate B,
which removes all items from the list that don’t match the input.

 To give a concrete example, if you accessed the URL,

GET - /bookshop/books/manning.xml

the response would be

<books>
 <book title="Scala in Depth" publisher="Manning"/>
 <book title="Lift in Action" publisher="Manning"/>
</books>

That’s all there is to it. This kind of implementation works well for most circumstances
because it’s very simple, very straightforward, and quick to create.

DISPATCH GUARDS

Lift also has a rather nice mechanism that allows you to apply guards to your dispatch
services by defining a partial function to check the incoming request. In short, this
gives you the following style of syntax:

LiftRules.dispatch.append(onMondays guard BookshopService)

Parts of this declaration should look familiar, but it’s likely that the onMondays and
guard appear to be somewhat undefined. In this context, onMondaysis a simplistic par-
tial function that defines the parameters under which this service should operate.
Consider the definition of onMondays:

import net.liftweb.util.Helpers._
import java.util.Calendar

val onMondays: PartialFunction[Req, Unit] = {
 case _ if day(now) == Calendar.MONDAY =>
}

Notice that the partial function simply compares today’s day of the week to see if it’s
Monday, with the result being that this will only evaluate to true when it’s actually

Response
builder

B

182 CHAPTER 8 HTTP in Lift
Monday. As a result, when onMondays is applied to the service definition with the
guard keyword, the service will only respond to requests on Mondays.

 In practice, it would be more likely that you’d be checking for authentication or
something else meaningful, but the same pattern holds true. In order to make this
work, it’s necessary to have the Helpers._ import statement so that the required
implicit conversions are available to the compiler.

 Let’s throw another requirement into the mix: what if you needed to represent a
single set of logic in multiple formats? You could perhaps use function passing, or
maybe even some kind of workflow system to determine the output, but neither of
those solutions feel very Scala-ish. Scala’s type system is incredibly powerful and can
do quite amazing things. In the next section, we show you a rather advanced tech-
nique for producing REST services in multiple representation formats while utilizing
only a single implementation of a service method.

8.3.3 Advanced multiformat REST service

Before we dive into this section, we need to add a slight disclaimer: this section is
advanced. It may be some time, if ever, before you feel comfortable with this kind of
implementation, but we really want to show you some of the amazing things that can
be done with Scala and Lift to yield a nice clean API.

 This advanced example builds on the simple bookstore example from the previous
section; the Bookshop and Book types are exactly the same. In this case, though, we
add the requirement of multiple service representations, so we go through a very dif-
ferent route of implementation.

 Let’s step back and consider the problem. We only want to write the actual service
method once, but we need to have multiple response representations. In a broad
sense, this can be modeled as T =>LiftResponse. That is to say, an input type is con-
verted to a LiftResponse. If this input type was the output from our single method
definition, we could design an API that implicitly converts the single method output to
a given LiftResponse. The API we’ll end up with is going to look like this:

case "bookshop" :: "books" :: Nil XmlGet _ => list[XmlResponse]

where the list method looks like this:

def list[R : Return[List[Book]]#As]: R = Return(Bookshop.stock)

You don’t need to worry about this right now. Just be aware that what we’re driving at
here is to make an implementation that doesn’t care about the resulting output format.

 The following listing shows a simple structure we can use to start modeling the
input => output relationship this section started with.

trait ReturnAs[A, B]{
 def as(a: A): B
}

Listing 8.8 Modeling representational types

183Dispatching and web services
object ReturnAs {
 implicit def f2ReturnAs[A, B](f: A => B): ReturnAs[A, B] =
 new ReturnAs[A, B]{
 def as(a: A) = f(a)
 }
}

This is a non-trivial piece of code, so don’t worry if it looks intimidating: it is. First, the
ReturnAs trait defines a method called as that can be used to essentially say “here’s
type A; give me it as type B.”

 Next, the ReturnAs object defines the companion that takes a function A => B and
yields the input/output structure by creating a new instance of the ReturnAs trait. So
what’s the reason for this? Well, this section lets you define the conversion methods as
simple functions. In practice, the service method itself will yield a List[Book], and a
representation conversion could be a List[Book] => XmlResponse function. To that
end, this implicit f2ReturnAs converts that A => B type (or, if it helps you grasp it men-
tally: Function1[A,B]) to a ReturnAs[A,B].

 Let’s jump ahead for one second and look at the service implementation, or cen-
tral point of logic, and then work backwards to fill in the blanks. This listing shows the
service implementation for the same two operations implemented in listing 8.7: they
list all books and list all books for a specific publisher.

trait BookshopService {
 def list[R : Return[List[Book]]#As]:R =
 Return(Bookshop.stock)

 def listByPublisher[R : Return[List[Book]]#As](publisher:String):R =
 Return(Bookshop.stock.filter(_.publisher equalsIgnoreCase publisher))
}

First, you probably recognized the operation code that gets the entire stock list and
also queries the bookshop stock by publisher from the previous example in listing 8.7.
What likely looks rather crazy are the type signatures for both the list and listBy-
Publisher methods. This specialized notation, A : B, is a Scala feature called context
bounds, which are brand new in Scala 2.8 and are rather awesome. We won’t explore
them fully here, as it’s out of the scope of this book but do check out Joshua D.
Suereth’s Scala in Depth if you’d like to know more.

 In short, given the following definition,

def sample[T : Bound]

the compiler would expand that to the following:

def sample[T](implicit a: Bound[T])

What does that have to do with this exercise? Well, the goal with this implementation
is to push the representation type out to the method call site and leave a generic ser-
vice method that’s agnostic to representation. Bearing in mind the information you

Listing 8.9 Advanced service implementation

184 CHAPTER 8 HTTP in Lift
just read about context bounds, consider the following listing in conjunction with the
type signatures in listing 8.9. Listing 8.10 is the missing piece of the type puzzle!

trait Return[A] {
 type As[B] = ReturnAs[A, B]
}
object Return {
 def apply[A, B](a: A)(implicit f: ReturnAs[A, B]) = f.as(a)
}

Notice how in listing 8.9 the type signature isn’t complete because the #As declaration
is missing the type parameter: Return[List[Book]]#As]. The actual implementation
of the Return[A] trait requires that As take a type parameter and that the apply
method take an implicit parameter. The compiler fills these in for you by way of the
context bound notation, which is awesome.

 You may be wondering about the actual conversion, as currently there is no code
to make the List[Book] into a representation. Here we can also get the compiler to
fill in some blanks for us by providing the conversions as implicit once again.
These methods live in the companion object of the Book type and are detailed in the
next listing.

object Book {
 implicit val booksAsXml:

➥Return[List[Book]]#As[XmlResponse] =
 (books:List[Book]) => XmlResponse(
 <books>{books.flatMap(b =>
 <book publisher={b.publisher} title={b.title}/>)
 }</books>)

 implicit val booksAsPlainText:

➥ReturnAs[List[Book],PlainTextResponse] =
 (books:List[Book]) => PlainTextResponse("Books\n"+
 books.map(b => "publisher: %s, title: %s"

➥ .format(b.publisher, b.title)))
}

Earlier we discussed the implicit method that converted Function1[A,B] to a
ReturnAs[A,B] in the ReturnAs companion object. This is the implicit conversion
that’s at play here; the booksAsPlainText function shows this as a straightforward
example C. Conversely, one of the awesome things you can do in Scala is use a type
projection to yield the ReturnAs from the Return trait, which can be seen in the
booksAsXml function type signature B. A nice byproduct of this is that it gives you a
cool type-level grammar that describes this conversion method! The actual method
implementations here are nearly identical to those in listing 8.7, but with the addition
of delivering a plain text version as well.

Listing 8.10 Implementing the Return[A] trait and type projection

Listing 8.11 Convert domain to response types

Implicit with
projection syntax

B

Generate XML
response

C

185Summary
 The last part of this jigsaw is wiring up the HTTP dispatch through the dispatch
DSL. If you remember from section 8.3.1, the right side of the dispatch DSL match
statement only needs to return a subtype of LiftResponse, which we have here, so
they should fit together like peas in the proverbial pod. The following listing demon-
strates the wiring and use of the service implementation.

object BookshopHttpServiceAdvanced
 extends BookshopService with RestHelper {
 serve {
 case "bookshop" :: "books" :: Nil XmlGet _ =>
 list[XmlResponse]
 case "bookshop" :: "books" :: Nil Get _ =>
 list[PlainTextResponse]
 case "bookshop" :: "books" :: pub :: Nil XmlGet _ =>
 listByPublisher[XmlResponse](pub)
 case "bookshop" :: "books" :: pub :: Nil Get _ =>
 listByPublisher[PlainTextResponse](pub)
 }
}

Once again, you only need to make an object that extends the RestHelper but in
addition composes the BookshopService trait from listing 8.9. Doing this provides
both the methods that will conduct the service operation (list B and listBy-
Publisher C) and the dispatch DSL. Notice that in order to call a format-specific
response, you just pass the type of response required, like this:

list[XmlResponse]

That’s all there is to it. I quite like this pattern of implementation as it keeps the logic
and representation code nicely separated and gives you a really sweet syntax when you
understand what it is you’re looking at. Scala is a powerful language, and I think it’s
important to be able to leverage such abstractions in your applications. Lift won’t stop
you or make life difficult in the vast majority of situations, so learn the advanced Scala
and go crazy!

8.4 Summary
At its core, Lift is a simple abstraction on HTTP. Hopefully in this chapter, you’ve seen
how to leverage the tools and structures that build on that base abstraction and that
enable you to quickly and effectively get things done. Early in this chapter, we demon-
strated the various processes and flows that make up the HTTP pipeline in Lift and
highlighted the important intercept points where you can inject your own code or
functions to really customize Lift for your requirements. You have also seen how to
control URL resolution using rewrite partial functions and how to build REST services
using dispatching.

 Lift’s lifecycle is made up of three distinct parts: application boot, the request-
handling pipeline, and application shutdown. The boot and shutdown are in many

Listing 8.12 Wiring up the advanced REST sample

Define list all
services

B

Define list
by publisher
services

C

186 CHAPTER 8 HTTP in Lift
respects similar to normal Java servlet applications, but Lift provides configuration
points through both processes. Request handling, on the other hand, is broken down
into two distinct parts: the initial stateless part and then stateful initialization with fur-
ther processing. The whole cycle has injection points for you to control the behavior
and output that Lift ultimately serves to the client.

 Part of Lift’s HTTP pipeline is rewriting. Lift’s rewriting system can be used to
tightly control the incoming URL and map its structure to templates, parameters, or
pretty much any other type you can create. Rewriting can operate in two modes: state-
ful and stateless. Generally speaking, using stateless rewriting is recommended as it
ensures that the rewrite and mapping is done early in the processing pipeline.

 Finally, section 8.3 explored Lift’s dispatching mechanism, which is commonly
used for building web services or providing a direct API into Lift’s response and servic-
ing system. You’ve seen how to utilize the RestHelper trait to quickly assist you in mak-
ing HTTP services, and you created a very basic XML service that checks the incoming
request to see if it can accept a text/xml response and that the incoming request fea-
tures an .xml extension. You then saw how to build on a simple example and leverage
the full power of the Scala language to service multiple media formats from a single
service definition.

 In the next chapter, we build on the base HTTP knowledge covered here and explore
Lift’s JavaScript, AJAX, and Comet support. Lift has one of the best Comet implemen-
tations available today, and it sits upon a lightweight actor concurrency model.

AJAX, wiring,
 and Comet
This chapter covers Lift’s advanced support for AJAX, connected AJAX components,
known as wiring, and Comet, or server-push architectures. Creating highly interactive
content with Lift is often easier or more intuitive than creating “normal” web appli-
cations. Pretty much everything in Lift’s interactive toolkit boils down to writing
Scala functions, and AJAX is no different. As Harry Heymann, the lead engineer
from Foursquare.com, puts it, “Writing AJAX style code is actually easier in Lift than
writing traditional forms… All web programming should work like this.”1

 Over the past few years particularly, the internet has seen a mass popularization
of extremely interactive online experiences. People no longer tolerate green
screen experiences and demand rich user interfaces that are slick and responsive.

This chapter covers
■ Lift’s JavaScript abstraction
■ Using AJAX controls
■ AJAX wiring
■ Server-push with CometActors

1 Harry Heymann, “Foursquare.com & Scala/Lift” (1/11/2010). http://mng.bz/1eX6
187

http://mng.bz/1eX6

188 CHAPTER 9 AJAX, wiring, and Comet
For developers, this creates several different challenges, but it primarily means using
AJAX and Comet programming paradigms to create these rich applications.

AJAX is increasingly well supported by the web programming ecosystem, but Comet,
or server-push style programming, where data is dynamically sent to the browser with-
out the user explicitly requesting it, has remained elusively difficult to implement for
many developers. Lift provides powerful abstractions for both of these technologies.

9.1 AJAX
Before getting into the specifics of how to build AJAX components with Lift, let’s
take a few moments to explore the actual purpose of AJAX. AJAX provides develop-
ers a technique they can use to load parts of a page on demand, typically in reac-
tion to a user event such as the click of a button. An example that many readers
have likely experienced is that of the Gmail user interface. When clicking on an
email you wish to read, the browser makes a request to the server asynchronously to
fetch the required content. Such techniques have several material bonuses.

 First, AJAX supplies an increase in the perceived speed of an application. When the
page loads, it can contain only a bare bones structure or the base level of informa-
tion required to fulfill the initial request. Any subsequent content that’s needed for
the page would be loaded on demand in reaction to a user operation. The perfect
example of this is Google Maps (http://maps.google.com/). Each fragment of the
map is a relatively expensive download in terms of bandwidth, so you couldn’t down-
load the entire world every time you browsed Google maps. Instead, Google Maps
loads only the fragments of the map that are being displayed at the time. Scrolling
around the map prompts the client-side JavaScript to make asynchronous requests to
the server to obtain any additional map fragments that are now visible in the user’s
browser window.

 Second, AJAX allows you to offload elements of processing to the client-side
machine. The average computer these days has far more power than a regular user
makes use of, and modern browsers can do many things at once. Bolster this with the
ever-increasing sophistication of JavaScript applications, and you have an environ-
ment in which many operations can be executed on the client side, saving the server a
degree of load for each connection that exists. This is a small saving in one instance,
but over tens or hundreds of thousands of requests, this can really mount up.

AJAX gives the web a richer model of programming. In the majority of other frame-
works, or in static HTML, this is accomplished by using a client-side JavaScript library,
such as JQuery (http://jquery.com/) to specify a server URL from which a response
will be fetched and subsequently processed. Even in the most basic example, you typi-
cally have to conduct three separate operations to get a single AJAX call set up:

1 Define the client-side request with JavaScript.
2 Set up the server-side handler, controller, or component that will retrieve the

content you need for that page.
3 Implement the response handling in the client-side JavaScript.

http://maps.google.com
http://jquery.com

189AJAX
Although this does work, it sucks time, which is often the most valuable commodity a
developer has. Moreover, many developers are more familiar with either the server
side or client side, and they may not be familiar enough with both sides of that pro-
gramming fence to implement this. Fortunately, Lift has a solution for this.

 Lift has a pair of abstractions that you can work with from your Scala code that dis-
tances you from the process of programming in JavaScript. For instance, if you’re
dealing with a process that alters the client-side user interface, you won’t need to
worry about which URLs need to be invoked to handle the request, nor do you have
to write JavaScript code to trigger an element effect such as a fade out. The keys to this
whole process are two subset abstractions known as JavaScript commands (JsCmd) and
JavaScript expressions (JsExp). These types allow you to program client-side interac-
tions from within your server-side Scala code. Ultimately, these implementations do
boil down to JavaScript, but you don’t have to deal with that if you don’t want to. But
with that being said, it’s important to note that you can write your own JavaScript code
and invoke that from the server side as well.

 Given that these abstractions result in JavaScript code that’s executed on the
client side, you may be thinking that this sounds a lot like reinventing the wheel, but
Lift actually leverages existing JavaScript libraries and uses them to do the client-
side legwork. Lift calls this system of leveraging existing libraries JSArtifacts. At
the time of writing, there were three implementations of JSArtifacts that used
JQuery, YUI (http://developer.yahoo.com/yui/), and ExtJS (http://www.sencha.com/
products/extjs/) respectively. JQuery is used in all Lift applications unless you over-
ride this default in your application Boot.

9.1.1 JavaScript abstractions

In chapter 8, you saw how Lift configures something called the ResourceServer in
order to serve resources that are bundled in the classpath JARs. Some of the things
that ship with Lift by default are the implementations of the JavaScript libraries. In
practice, this means that you can simply include the following link in your HTML tem-
plate and get the JQuery library:

<script src="/classpath/jquery.js" type="text/javascript"></script>

If your application is running in a different context than the root, this URL will be
automatically rewritten to include the contextual prefix. As JQuery is the default Java-
Script artifact for Lift applications, we assume in all of the examples going forward
that this is the library in use. But all the fundamental abstractions will work irrespec-
tive of the library, so if you want to configure a different artifact, here’s what you need
to do:

import net.liftweb.http.js.yui.YUIArtifacts

class Boot {
 def boot {
 ...

http://developer.yahoo.com/yui
http://www.sencha.com/products/extjs
http://www.sencha.com/products/extjs

190 CHAPTER 9 AJAX, wiring, and Comet
 LiftRules.jsArtifacts = YUIArtifacts
 ...
 }
}

Configure the appropriate JavaScript library within the application Boot class by pass-
ing a JSArtifacts subtype to the LiftRules.jsArtifacts setting. In this example,
the Yahoo! YUI library is specified explicitly.

NOTE During development, Lift will use the uncompressed version of the
JavaScript library, but in production mode it will automatically use the mini-
fied version without you having to change any URLs in your templates. (Lift’s
run mode system is discussed in section 15.4.1 of chapter 15.)

Now that you have your JavaScript library all configured and ready to go, let’s explore
the JsCmd and JsExp abstractions.

BASIC JAVASCRIPT COMMANDS

In order to illustrate the JavaScript abstraction, we look at a couple of examples that
highlight particular features of the API.

 Let’s begin by creating a very simple example that displays a JavaScript alert box
when opening the page. For this, you’ll need a snippet. You can use the Lifty tool to
do this with the following command:

> lift create snippet MySnippet

Or you can make a new snippet class and configure it however you like, using either
convention-based reflection or by manually wiring it up. Add the code to your snippet
as shown in the next listing.

import scala.xml.NodeSeq
import net.liftweb.http.js.JsCmds.{Alert,Script}

class AbstractionExamples {
 def alert(xhtml: NodeSeq): NodeSeq =
 Script(Alert("Important Alert Goes Here!"))
}

This is a super-simple snippet that implements the Alert JsCmd. It has a single param-
eter for the message that will be displayed in the alert dialog box. For anyone who is
familiar with JavaScript at all, it should be fairly obvious what the outcome will be. Per-
haps less obvious is the Script class that’s wrapping the call to Alert. You’ve seen
throughout this book that you always need to return a NodeSeq subtype from snippet
methods, and the Script tag ensures this.

 To clarify that, take a look at the rendered code that reaches the browser:

<script type="text/javascript">
// <![CDATA[

Listing 9.1 Basic JavaScript alert using JsCmds

191AJAX
alert("Important Alert Goes Here!");
//]]>
</script>

As you can see here, the call to the alert method is wrapped in a well-formed
<script> tag, including a CDATA block. This ensures that the snippet method
returns a NodeSeq-compatible type and that the JavaScript is correctly presented to
the browser.

NOTE Using a CDATA block essentially escapes any HTML entities or tags
when received by the browser. The contents of the CDATA block are not
literally converted into HTML entities, but rather the surrounding CDATA
instructs the browser to parse the contents as escaped entities, as opposed to
literal HTML. For more information, see the CDATA article on Wikipedia:
http://en.wikipedia.org/wiki/CDATA.

There are lots of different commands that you can import from the JsCmds object,
and invoking them individually would be verbose and litter your rendered source
code with <script> blocks. Fortunately, JsCmd subtypes are chainable. This means
that you can link together multiple JavaScript commands, and they’ll all be flushed to
the browser as a single <script> block. This kind of functionality is very helpful when
you want to create more complex user interactions, and it’s an idiom you’ll see a lot
throughout this chapter. The following listing shows an example of chaining two
JsCmd instances together.

import scala.xml.{NodeSeq,Text}
import net.liftweb.http.js.JsCmds.{Alert,Script,SetHtml}

class AbstractionExamples {
 ...
 def two(xhtml: NodeSeq): NodeSeq = Script(
 SetHtml("replaceme", Text("I have been replaced!")) &
 Alert("Text Replaced")
)
}

This listing is a direct extension of the previous example, and you can see the usage
of the JsCmd instances SetHtml and Alert B and C. The real point of note, how-
ever, is the & at the end of the first JsCmd B. This is actually a method defined as
part of JsCmd, and it allows you to combine an arbitrary depth of JsCmd instances to
create a single output.

 The other aspect of the JavaScript abstraction is JsExp. It differs from JsCmd in
that JsExp is an abstraction of JavaScript expressions, such as an array or an if/else
statement, whereas JsCmd is really focused on statements such as “fade this div out”
and so on.

 Here’s an example of using one of the JsExp subtypes:

Listing 9.2 Chaining JsCmd types together

First JsCmdB

Second JsCmdC

http://en.wikipedia.org/wiki/CDATA

192 CHAPTER 9 AJAX, wiring, and Comet
import net.liftweb.http.js.JE.{JsNotEq,Num}

Script(Run(
 JsIf(JsNotEq(Num(1), Num(2)), Alert("3: 1 does not equal 2!")).toJsCmd
))

Here the JsNotEq JsExp is used to create an expression that does a simple if state-
ment comparison on the two passed values. The JE object holds most of the JsExp
subtypes, and here, because the expression is simply comparing two integers, they’re
wrapped in the Num expression. The two integer values will never be equal in this
example, so the body JsCmdAlert will fire. The resulting JavaScript rendered in the
browser source code is as follows:

<script type="text/javascript">
 // <![CDATA[
 if (1 != 2) { alert("1 does not equal 2!"); };
 //]]>
</script>

Although this use case is exceedingly trivial, a common use case for JsExp is when you
want to check a value from within an AJAX callback. Also, many of the AJAX elements
in SHtml have an optional Call expression, which allows you to call an arbitrary Java-
Script expression before executing that interaction.

 For more complex JavaScript statements, the JsExp API would likely become some-
what unwieldy, and using the Call and JsRaw commands can often be more elegant.
Call simply takes the name of your preexisting JavaScript function and a set of argu-
ments (if any):

Call("nameOfFunc", Str("arg1"))

By using Call, you can keep the client-side logic on the client side. Alternatively, if you
simply want to pass some arbitrary JavaScript to the client to execute, you can make
use of JsRaw. Here’s an example:

JsRaw("alert('Passed from lift!')")

The clear downside with JsRaw is that your actual JavaScript is embedded in the Scala
code, but for certain operations or situations it can be a useful tool.

 Broadly speaking, if the JavaScript you need to execute is fairly complex, leave it
on the client side and use Call to invoke and pass any required data to that function.

JSON HANDLING

Another technology that’s extremely prevalent in client-side programming is Java-
Script Object Notation (JSON). JSON has pretty much become the ubiquitous inter-
change format for many different aspects of the web, and it’s often used in AJAX
solutions to serialize data back and forth between client and server. Because of this,
Lift has excellent JSON support, including a DSL for constructing JSON structures in
type-safe Scala.

193AJAX
 Lift JSON is a fairly standalone library in the Lift project, and it’s utilized by many
other projects in the Scala ecosystem because it’s extremely fast and reliable. Let’s
look at an example of parsing and creating some JSON using this toolkit.

 All of Lift’s JSON handling types are packaged in net.liftweb.json, so you can
parse a JSON string by doing this:

scala> import net.liftweb.json._

scala> val json = parse(""" { "numbers" : [1, 2, 3, 4] } """)
res2: JValue = JObject(List(
JField(numbers,JArray(List(
JInt(1), JInt(2), JInt(3), JInt(4))))))

In this example, the parse method comes from Lift JSON and it’s passed a literal JSON
string. This string is then parsed and returned as a JValue subtype with all the compo-
nent parts broken out into strongly typed representations, such as JInt. This then
allows you to interact with the JSON in an intuitive manner.

 Let’s assume that you wanted to get the list of integers from this JSON. You could
simply do

json \ "numbers" children

This would give you List[JValue], and you could operate on it however you please.
 The JSON structures have several convenience features, like the backslash (\)

method that allows you to traverse the JSON structure programmatically from the root
of the document. Alternatively, you can use the \\ method to find a given object any-
where in the document.

 Parsing is straightforward enough, but what about construction? Well, that too is
pretty easy to get to grips with. Consider the following example:

scala> import net.liftweb.json.JsonDSL._

scala> val json = ("name" -> "joe")

scala> compact(render(json))
res1: String = {"name":"joe"}

Here the members of JsonDSL are imported into the current compilation scope,
which includes a set of implicit conversions that allow you to supply regular Scala
types like tuples to the JSON render method. The result of the render method is then
passed to compact, which does the serialization to a string. As the name implies, the
compact method will create a compacted JSON string so it takes up as little room as
possible. Alternatively, if you’d prefer nicely structured output, you can replace
compact with pretty, and it will render a pretty printed version of the JSON output,
complete with structured spacing.

 With these basics laid down, the number of things you’ll want to do with JavaScript
when the page loads is limited. Most of the cool things you can do with Lift’s AJAX and
JavaScript system are driven by user interaction. To that end, let’s move on to look at
using the JavaScript abstraction in conjunction with Lift’s AJAX system.

194 CHAPTER 9 AJAX, wiring, and Comet
9.1.2 AJAX 101

You’ve now heard about the overall benefits of Lift’s AJAX implementation and how it
conceptually works, and you’ve seen some examples of using Lift’s server-side Java-
Script abstractions. It’s now time to build on this understanding and apply it to user
interaction.

 In Lift, the vast majority of concepts can be condensed into a functional represen-
tation. Snippets, for example, are NodeSeq => NodeSeq, and views are () => NodeSeq.
Lift’s AJAX system is no different in this regard, and generally it can be thought of as
the function type () => JsCmd. Let’s take a moment to evaluate this in more detail and
understand exactly what the process is when using AJAX function binding. Figure 9.1
outlines a basic AJAX request process from the initial request through to a secondary
asynchronous request and response.

 This illustration has several related points but let’s begin with the solid black dura-
tion line that goes from time marker 1 to A to 2. This line indicates the initial request
coming from the user’s browser going to the server. At marker A, Lift does a bunch of
processing to generate the in-memory function mapping for any bound elements and
returns content to the browser with session-specific opaque GUIDs. That may sound a
little cryptic, but it’s like the form processing covered in chapter 6 where each ren-
dered <input> on a page was automatically assigned a random GUID for a name. The
same is happening here, but rather than it being a form input, the GUID is passed
from the client to the server so the server knows which callback function it should exe-
cute when the AJAX request is triggered by a particular user interaction.

 At time marker 2, the page has loaded completely. For argument’s sake, let’s
assume the user is reading the page and they click a button on the page. If this but-
ton is a Lift AJAX button, a second asynchronous request is made to the server. In the
illustration, this is the line from time marker 2 to B to 3. When the request is made
from 2 to B, the JavaScript call on the client side will pass the function GUID back to

Figure 9.1 An example of an AJAX request and response cycle, including the original HTTP
request and detailing the touchpoints with the server over time

195AJAX
the server, and Lift will then look up that GUID in its function map to figure out what
needs executing. After completing the server-side callback, Lift will return the
response, and that often (but not always) includes some JsCmd that’s subsequently
executed on the client side.

 Given this process diagram in figure 9.1, let’s now implement a basic snippet that
performs exactly this functionality. The following listing details the code required to
make an anchor link that, once clicked, fires an AJAX call to the server.

import scala.xml.{NodeSeq,Text}
import net.liftweb.http.SHtml
import net.liftweb.http.js.JsCmds.Alert

class BasicAjax {
 def one(xhtml: NodeSeq): NodeSeq =
 SHtml.a(() => Alert("You clicked me!"),
 Text("Go on, click me"))
}

This is a simple AJAX link. The first parameter is a () => JsCmd, and for familiarity’s
sake we used JsCmds.Alert once more as the command to execute upon returning a
response to the client side. The second parameter here denotes the text or NodeSeq
that the link will display to the user. In practice, it might not be particularly useful to
display an alert after clicking a link, but if you watch the traffic between your browser
and the server with a tool such as Firebug (http://getfirebug.com/), you’ll see the
AJAX event occurring and the response being handed back to the browser. Neat!

 That was a pretty trivial example, so let’s now look at something that has a little
more functionality. The SHtml object has many helpers for creating AJAX elements,
and the previous example covered the a method. The next example makes uses of
SHtml.ajaxEditable, which is a helper that creates a field type that has both a read
component and a write component. The write aspect is an in-place editor for which
the value is submitted via AJAX.

 To clarify this, consider the definition of ajaxEditable:

def ajaxEditable(
 displayContents: => NodeSeq,
 editForm: => NodeSeq,
 onSubmit: () => JsCmd)

The important thing to note here is that both the first and second parameters are by-
name functions that return NodeSeq. These NodeSeqs represent the two states that the
item can have: read and write, as mentioned before.

 To illustrate this functionality, let’s create a session variable to hold a simple text
field that will be updated via this AJAX component. The following listing demonstrates
the use of ajaxEditable.

Listing 9.3 Basic AJAX example with clickable anchor

Create AJAX
text link

http://getfirebug.com

196 CHAPTER 9 AJAX, wiring, and Comet
import scala.xml.{NodeSeq,Text}
import net.liftweb.http.{SHtml,SessionVar}
import net.liftweb.http.js.jquery.JqJsCmds.FadeIn

class BasicAjax {
 ...
 object ExampleVar extends SessionVar[String]("Replace Me")

 def two(xhtml: NodeSeq): NodeSeq =
 SHtml.ajaxEditable(Text(ExampleVar.is),
 SHtml.text(ExampleVar.is, ExampleVar(_)),
 () => FadeIn("example_two_notice"))
}

This listing defines a SessionVar called ExampleVar that will act as a placeholder for
the value on the server. It’s important to note that this could be anything or any server-
side action; most frequently it would be a Mapper or Record persistence object, but
here it’s simply storing the string value to and from the ExampleVar. The first argument
to the SHtml.ajaxEditible control is a Text (or any other NodeSeq) instance, and it
defines what will be displayed to the user initially. In this case, the value of the session
variable is loaded and passed as text content to the browser.

 Looking to the second argument of SHtml.ajaxEditible, you can see the use of
the (by now) familiar SHtml.text for creating and binding input fields with getter
and setter arguments. Here, the input simply displays the value of the user and exe-
cutes the set function to insert the value back into the session when the OK button,
which is automatically rendered next to the display, is clicked by the user.

 Finally, the SHtml.ajaxEditible control requires a () => JsCmd function as its
final argument; something that will be executed upon completion of editing B. In
this example, a specialized type of JavaScript abstraction that we haven’t looked at
before is being used. Earlier in this section, you saw how JSArtifacts acted as an
intermediary between the various JavaScript libraries. Although these abstractions
give you a baseline of functionality, Lift has library-specific operation abstractions, and
here you can see the use of one of the JQuery implementations: FadeIn. As the name
and first parameter suggest, upon the AJAX request being successful, this function is
executed and it fades in a hidden DOM element called example_two_notice.

 If you’re an eager reader and have just tried out this code, you may have noticed
that there is a slight lag between clicking the OK button and the start of the fade oper-
ation. That’s because the frontend JavaScript is making the AJAX call, Lift is doing the
processing, and then the browser interprets the result. Although this happens fairly
quickly, you’ll often want to display a loading spinner or some other page furniture to
keep the user happy. Lift provides some nice built-in hooks for this, so that any time
an AJAX call is being made, it will automatically show the content you define, wherever
you want on the page. Simply add the following lines to your Boot definition:

LiftRules.ajaxStart =
 Full(() => LiftRules.jsArtifacts.show("loading").cmd)

Listing 9.4 Implementing SHtml.ajaxEditable

Define success
JsCmd

B

197AJAX
LiftRules.ajaxEnd =
 Full(() => LiftRules.jsArtifacts.hide("loading").cmd)

These two LiftRules configurations should be fairly self-explanatory. The first exe-
cutes a particular JsCmd when the AJAX request is started, and the latter executes
when the response is completed. In this particular illustration, there’s an element ID
within the template markup called loading, and this JavaScript essentially toggles
whether it will be displayed or hidden. Provided your function is of type () => JsCmd,
you can essentially get Lift to execute whichever JavaScript functions you would like
surrounding AJAX requests.

 You’ve now seen two examples of fairly basic AJAX in Lift. All AJAX operations
revolve around simple function passing, and at no point have you had to deal with
request URLs, HTTP verbs, or any other such plumbing. Lift makes it very simple for
you to construct slick AJAX interfaces and provides hooks in the Life cycle to custom-
ize its display behavior.

 But although they’ve been informative, these two isolated examples don’t tell
you anything else in specific terms. In the next section, you’ll see how to create a
more complex AJAX example that’s closer to the real-world scenarios you may be
faced with.

9.1.3 Sophisticated AJAX

In this section, you’ll see how to construct an entire AJAX form with some more funky
AJAX goodness, building on the example introduced in the previous section. Before
we get to the code, though, let’s look at the workflow you’ll need to create.

 This example will display a simple list of books with an Edit link beside each item.
When the user clicks the link, the browser will make an AJAX request to the server to
retrieve an update form that will then appear on the same page. The user can then
update the title of the book, and when they click Submit, the browser will make an
AJAX request to the server, which in turn responds with JavaScript to update the list
with the new value.

 There are many times where you’ll want to update a value, or provide some kind of
form or editing functionality, and this example will give you a base on which to build.
Of course, in reality you’d likely be interacting with some kind of persistent storage,
like Mapper or Record, but to keep this example focused on the AJAX elements, we
simply use the session as the data store.

 The next listing shows the code to create the editable AJAX list.

import scala.xml.{NodeSeq,Text}
import net.liftweb.util.Helpers._
import net.liftweb.http.{SHtml,SessionVar}
import net.liftweb.http.js.JsCmds.SetHtml
import net.liftweb.http.js.jquery.JqJsCmds.{Show,Hide}

case class Book(reference: String, var title: String)

Listing 9.5 Editable AJAX list

Sample
model type

B

198 CHAPTER 9 AJAX, wiring, and Comet
class MoreAjax {
 object stock extends SessionVar[List[Book]](List(
 Book("ABCD", "Harry Potter and the Deathly Hallows"),
 Book("EFGH", "Harry Potter and the Goblet of Fire"),
 Book("IJKL", "Scala in Depth"),
 Book("MNOP", "Lift in Action")
))

 private val editFormDiv = "edit_display"

 def list =
 ".line" #> stock.is.map { b =>
 ".name *" #> b.title &
 ".name [id]" #> b.reference &
 ".edit" #> edit(b)
 }

 def edit(b: Book): NodeSeq => NodeSeq = { ns =>
 val form =
 "#book_name" #> SHtml.text(b.title, b.title = _) &
 "type=submit" #> SHtml.ajaxSubmit("Update",
 () => SetHtml(b.reference, Text(b.title))
) andThenSHtml.makeFormsAjax

 SHtml.a(() =>
 SetHtml(editFormDiv, form(ns)) &
 Show(editFormDiv, 1 seconds),
 Text("Edit"))
 }
}

You’ll notice that the first thing this code listing defines is the simple Bookcase class
that you’ll use to model the list of stock with B. The stock object details the list of
books that are stored in the session C. Again, this is really not advisable for produc-
tion usage and is simply for example purposes as it gives you a simple route to update
a dataset without the need to setup a database and associated overhead.

 The real meat of this class begins at D. As stock is a List[Book], you can use Lift’s
CSS transformer binding mechanism to create many copies of a single template ele-
ment by passing a list of promotable types. In this instance, each element that’s
assigned the template class .line will have several other transformations applied to
both that element and its children. (In order to make sense of this definition, con-
sider the template code in listing 9.6 along with the code in listing 9.5.)

 Currently this is very similar to any kind of binding or listing that you’d create with
Lift; you’re simply iterating through a List[T] and implementing the bound proper-
ties. The primary difference here is the call to the edit function, which contains both
a binding for the update form E and the AJAX link that dynamically inserts the form
on the page F. The edit function is really the key to this whole process, as it binds
the elements that feature the .edit class with an AJAX link: essentially, these elements
will have their values replaced with an AJAX anchor, which you’ll remember from the
first AJAX example in listing 9.3. The interesting part here is that rather than simply
using an AlertJsCmd type, the function makes use of the SetHtmlJsCmd.

Dummy
data set

C

Initial listing
bind

D

Update for
binding

E

AJAX edit
link

F

199AJAX
 As the name suggests, this JsCmd is all about setting the content of a specific DOM
node, and here SetHtml is passed editFormDiv, which holds the name of the element
that will be displaying the form. The second parameter for SetHtml is the NodeSeq
(HTML markup) that will be displayed. As you can see, in order to generate the
form markup, a call to the internal form function is made. The form value is a
NodeSeq => NodeSeq function, nested inside the edit method, which is also a NodeSeq
=> NodeSeq function, which means that the incoming markup bound to the edit
function can be passed down to the form function in order to generate the correct
form markup using the template HTML as its input.

 To recap the process, the user will click the Edit link that will make an AJAX call to
the server and retrieve an AJAX form that’s subsequently rendered in editFormDiv.
The reason that the edit elements aren’t bound in the initial CssBindFunc is that oth-
erwise each element in the list would have a form attached to it, when we really only
want to create a form for a particular item when the user requests it. Finally, do note
that SetHtml is actually a JsCmd chained via the & operator, and here it has been cou-
pled with a Show instance that will cause the element to fade in, presenting the form to
the user.

 With the form displayed, the contents are now bound to server-side actions, so
the field itself, will update the value of the book title when the form is submitted E.
SHtml.ajaxSubmit is the function that does the legwork to update the original list
of books, thus negating the need for a page refresh. For simplicity’s sake, each item
in the list had its ID attribute set to the book reference, which allows you to simply
call the specific DOM element by reference and update its content value with the
latest user input.

 The next listing shows the template code that goes with listing 9.5.

<lift:surround with="default" at="content">
 <ul id="list" lift="more_ajax.list">
 <li class="span-12 clear line">
 <div class="span-7 name" id=""></div>
 <div class="span-3 edit">
 <p>Name: <input id="book_name" /></p>
 <p><input type="submit" value="Update" /></p>
 </div>

 <div id="edit_display"
 ➥ style="display: none;"></div>
</lift:surround>

As you can see, the elements here make use of the terse designer-friendly templating
mechanism discussed in chapter 6, whereby the snippet is invoked at the start of the
 tag and the <div id="edit_display"> element is where the AJAX-rendered con-
tent will be displayed.

Listing 9.6 Template markup to accompany listing 9.5

Form
template

Form display
node

200 CHAPTER 9 AJAX, wiring, and Comet
9.1.4 Using JSON forms with AJAX

Lift has several different ways to interact with forms and AJAX, and as you saw in the
previous section, you can quite easily configure Lift to create an AJAX form by using
SHtml. SHtml contains many useful methods and should be your main port of call for
all of the out-of-the-box AJAX functionality.

 One of the other interesting facilities that the SHtml object offers is the ability to
create forms that are serialized and sent to the server using JSON. The following listing
shows an example of using a JSON form.

import scala.xml.NodeSeq
import net.liftweb.util.JsonCmd
import net.liftweb.util.Helpers._
import net.liftweb.http.{SHtml,JsonHandler}
import net.liftweb.http.js.{JsCmd}
import net.liftweb.http.js.JsCmds.{SetHtml,Script}

class JsonForm {

 def head = Script(json.jsCmd)

 def show =
 "#form" #> ((ns: NodeSeq) =>
 SHtml.jsonForm(json, ns))

 object json extends JsonHandler {
 def apply(in: Any): JsCmd =
 SetHtml("json_result", in match {
 case JsonCmd("processForm", _,
 ➥ params: Map[String, Any], _) =>
 <p>Publisher: {params("publisher")},
 Title: {params("title")}</p>
 case x =>
 Unknown error: {x}
 })
 }
}

You can see that this is once again a basic class with a few snippet methods. First, this
class defines a snippet that adds a JavaScript element to the page that will handle the
form serialization B. Typically, you would call this method from within the <head> tag
in your template, so that the head is merged into the main page template. The point
of this is that the JsonHandler implementation (in this instance the json object) con-
tains JavaScript that registers a function to serialize the passed object to JSON.

 The show method C is the familiar snippet method setup, which binds to the
jsonForm method, passing the JsonHandler instance and the passed NodeSeqfrom the
template. This generates a <form> element that will wrap the fields in your template. A
point to note here is that the fields in your template won’t have randomized names
because they aren’t generated with SHtml helpers; they’re raw from the template, so,

Listing 9.7 Implementing JsonForm

JSON serialize
function

B

JSON form
wrapper

C

Parameter
handling

D

201AJAX
from a security perspective, this is something to bear in mind. Listing 9.8 shows the
full contents of the markup template.

 The guts of this class are really the implementation of the JsonHandler, but the
specific point of interest is the match statement that determines what content to
serve D. This defines the handling of parameters passed from the browser. Because
params is a Map, you must be careful to only request keys that actually exist. This
could throw a runtime exception if the key you’re expecting doesn’t exist.

<lift:surround with="default" at="content">
 <head>
 <script type="text/javascript"
 ➥ src="/classpath/jlift.js" />
 <lift:json_form.head />
 </head>
 <h2>JSON Form</h2>
 <div id="form" lift="JsonForm.show">
 <p>Book Name:

 ➥<input type="text" name="title" /></p>
 <p>Publisher:

 <select name="publisher">
 <option value="manning">Manning</option>
 <option value="penguin">Penguin</option>
 <option value="bbc">BBC</option>
 </select>
 </p>
 <p><input type="submit" /></p>
 </div>
 <hr />
 <h2>JSON Result</h2>
 <div id="json_result"></div>
</lift:surround>

Lift provides a specialized client-side JavaScript library with a set of helper functions
for conducting operations such as serializing forms, handling collections, and so
forth, called jlift.js. Here it’s included at within the head element B, which is
important, because otherwise the JSON form functionality won’t operate as expected.

 When the library is included and the head method in the JsonForm class is called
from the template, you’ll be left with something similar to the following:

<script src="/classpath/jlift.js" type="text/javascript"></script>
<script type="text/javascript">
//<![CDATA[
function F950163993256RNF(obj){
 liftAjax.lift_ajaxHandler('F950163993256RNF='+
 encodeURIComponent(JSON.stringify(obj)), null,null);
}
//]]>
</script>

Listing 9.8 Template implementation for JsonForm

Include Lift JSON
functions

B

Input fields

Result element

202 CHAPTER 9 AJAX, wiring, and Comet
As you can see, it’s important to call the head method from your template so the ren-
dered output includes this function.

9.1.5 AJAX with LiftScreen

Back in chapter 6, you were introduced to Lift’s support for creating forms and inter-
active input elements: LiftScreen and its bigger brother Wizard. AJAX was deliber-
ately left out of that earlier discussion because it requires knowledge of the JsCmd
infrastructure, which you’ve now seen in operation in several scenarios. This section
builds on chapter 6’s introduction to LiftScreen and AJAX’ifies the example we
looked at then.

 The following listing recaps the LiftScreen implementation from chapter 6.

import net.liftweb.http.{LiftScreen,S}

object LiftScreenExample extends LiftScreen {
 val flavour = field("What's your favorite Ice cream flavor", "",
 trim, valMinLen(2,"Name too short"),
 valMaxLen(40,"That's a long name"))

 val sauce = field("Like chocolate sauce?", false)

 def finish(){
 if(sauce)
 S.notice("%s goes great with chocolate sauce!"
 .format(flavour.is))
 else S.notice("I like %s too!".format(flavour.is))
 }
}

Currently, this form will force a hard refresh every time it’s submitted. This is func-
tional, but it’s somewhat clunky. Fortunately Lift supports AJAX in LiftScreen right
out of the box, and enabling this is a simple two-step process.

 First, in the invoking markup, you need to indicate to Lift that this form will
use AJAX:

<lift:LiftScreenAJAXExample ajax="true" />

Specifically note the addition of the ajax="true" parameter. This is the simplest way to
add AJAX to an existing form, but you can also override the defaultToAjax_? method
in the screen definition if you’d prefer to keep all the configuration in Scala code.

 Second, it’s likely that you’ll want to fire some client-side activity when the form is
submitted, so be sure to add the following line to the screen definition:

override def calcAjaxOnDone = Alert("Form submitted!")

This example is not particularly practical, as it just throws up an alert box, but you just
need to supply some kind of JsCmd subtype to this method and it will be executed
when the form is successfully submitted. If you don’t override this method, the default

Listing 9.9 A recap of the base LiftScreen example

203Wiring
functionality is to redirect the user back to the page that referred them, which is likely
not what you want when using an AJAX user interface.

 So far in this chapter, you’ve seen how to construct JavaScript commands in your
Scala code and how Lift’s seamless AJAX system provides you a secure and flexible way
to write interactive apps with simple function constructions. With that being said,
there is a point where having a slightly higher level of abstraction is most useful,
because you can then focus more on the interactivity you’re building rather than
“update XYZ div element here.” This is exactly what Lift’s wiring mechanism can help
you with. When you have several components on the page and you want them to have
a related set of UI interactions, wiring is a great fit.

9.2 Wiring
Lift 2.2 brought with it many great enhancements, and one of those was the wiring
feature. Wiring provides a high-level abstraction for building AJAX-rich pages in which
you can wire together different page elements.

 For example, imagine a spreadsheet that calculates the tax and total value of a
product when given its unit cost minus tax. There would be two formulas at work: one
to calculate the tax field, and a second to calculate the value of the item plus the tax.
By using Lift’s wiring system, you could set up a scenario where the user would enter a
value into the input field, and the two other components on the page that displayed
the output calculations would automatically update. Wherever you have user interac-
tion resulting in more than one simple DOM update, wiring is more often than not a
good fit.

 In this section, you’ll build a basic formula wiring example that delivers the func-
tionality we just outlined. This example uses wiring to conduct multiple page-content
updates based upon user input.

9.2.1 Formula wiring

The formula wiring example involves a simple set
of snippets whose behavior is wired together. As
the name implies, there is a distinct relationship
between these snippets; when the value of the
input field is updated, the two wired snippets will
also update.

 Before getting into the code for this example,
take a look at figure 9.2. This is the result of the
example you’ll be building; it illustrates the out-
put and how the automatic updating will oper-
ate. Without further ado, let’s start constructing
this example.

 The first thing that you need to consider is how
to handle the input data. The values of the Tax

Figure 9.2 Rendered output of the
formula-wiring sample. The Product
Value field B is the field for input,
whereas the Tax and Total fields C
and D are automatically updating
values based on the input.

204 CHAPTER 9 AJAX, wiring, and Comet
and Total fields are designed to change based upon the user’s input into the Product
Value field. Typically, sharing the state between several snippets can be tricky to do
safely. Simply using a global, mutable var can be a nightmare because you must bear
in mind the synchronization and thread safety of that particular variable. Fortunately,
it’s common to have a variable that has volatile state, that must remain thread safe,
and whose value you’ll need to transform—Lift provides what is known as a ValueCell
to handle this use case.

 Consider the following:

import net.liftweb.common.{Box,Empty}
import net.liftweb.util.ValueCell

val sample = ValueCell[Box[Double]](Empty)

Here, the value sample is assigned a ValueCell that takes Box[Double]. You may be
wondering what the purpose is of putting Box, which is a sort of container, into seem-
ingly another container. In this instance, Box affords us the ability to initialize the
value without a concrete value of its own, and ValueCell gives us some additional
functionality. For example, if you call the currentValue method of sample, you’re
returned a Tuple2 of Box[Double] (or whatever T you passed the ValueCell), and a
Long of the timestamp when that value was specified. The purpose here is that the
timestamp acts as a clock for that value and allows you to resolve conflicts if you were
in a scenario where you had two of the same ValueCell and needed to determine the
latest value to use.

 Getting back to the formula-wiring example, you’ll be using ValueCell to hold the
user input and then to determine resulting output values. The next listing shows the
starting implementation for this example.

import scala.xml.{NodeSeq,Text}
import net.liftweb.common.{Box,Full,Empty}
import net.liftweb.util.ValueCell
import net.liftweb.util.Helpers._
import net.liftweb.http.{SHtml,WiringUI}
import net.liftweb.http.js.JsCmds.Noop
import net.liftweb.http.js.jquery.JqWiringSupport

class FormulaWiring {

 private val productValue =
 ValueCell[Box[Double]](Empty)

 private val taxValue = productValue.lift(_.map(x =>
 (x/100d*17.5d)).openOr(0d))

 private val totalValue = productValue.lift(_.map(x =>
 (x+taxValue.currentValue._1)).openOr(0d))
}

Listing 9.10 Setting up the ValueCell holders for the formula wiring example

User input
cell

B

Tax calculationC

Tax plus
product value

D

205Wiring
Here we set up the various ValueCells for this example. First, you define a Value-
Cell to contain the product value entered by the user B. Next, you make two
ValueCells to calculate the tax and total values. These are the interpreted cells that
both calculate their own values by lifting the productValue cell value given by the
user C and D. These two cells do fairly simple calculations; taxValue does a
straightforward sum to determine 17.5 percent of the original product value, and
totalValue adds the value entered by the user with the computed tax amount.

TIP “Lifting” is a term you’ll sometimes see when discussing data structures
within Scala and other functional programming languages. Typically, lifting a
structure means you create another version of it by applying the given func-
tion to the structure. With regard to wiring, the values are lifted to the new
values by applying the tax calculations.

With these value holders in place, you now have a mechanism to collect and compute
the values to be used in the example. But currently there’s no way for the user to inter-
act with this. Let’s fix that now by adding the methods shown in the following listing to
the base class implementation.

class FormulaWiring {
 ...
 def product =
 "#value" #> SHtml.ajaxText(
 productValue.map(_.toString).openOr(""),
 v => { asDouble(v).pass(
 ➥productValue.set(_)); Noop })

 def tax(xhtml: NodeSeq): NodeSeq =
 WiringUI.asText(xhtml, taxValue,
 JqWiringSupport.fade)

 def total(xhtml: NodeSeq): NodeSeq =
 WiringUI.asText(xhtml, totalValue,
 JqWiringSupport.fade)
}

To complete this example, add the three rendering methods to the FormulaWiring
class. The product definition implements SHtml.ajaxText B, which is used to collect
the input from the user.

TIP If your output doesn’t update, you should be aware that, by default, the
second parameter, SHtml.ajaxText, which defines the action to update
the values, is only executed when the field is blurred somehow—when the
field is deselected. Usually the user does this either by pressing Enter or by
deselecting the field with the mouse.

The thing to focus on here is how the user input is actually sent to the productValue
instance in the function definition that’s defined within the second parameter passed

Listing 9.11 Adding snippet methods to the formula wiring example

Bind input
field

B

Wire up
tax text

C

Wire up
total text

D

206 CHAPTER 9 AJAX, wiring, and Comet
to SHtml.ajaxText. The function is passed the value entered by the user and repre-
sented here by v. Using the asDouble method from util.Helpers, Lift will try to con-
vert the text input to a Double and return a Box[Double]. Conveniently, this is the
same type as the productValue cell, so by using the pass method from Box you can
pass the result of asDouble to be set into the ValueCell. Doing so protects you from
exceptions, in the case of the user entering something like a text string that can’t be
converted to Double, as it will simply be set to Empty.

 The calls to the wiring infrastructure are defined at C and D. These are the snip-
pet methods for tax and total respectively. Like regular snippets, they’re NodeSeq =>
NodeSeq functions, but they call the WiringUI object to connect the wiring.

 The WiringUI.asText method takes several arguments: the markup consumed by
the snippet, the Cell instance, and the JavaScript effect that will be executed when
updating the UI. In this example, the effect is a fade, so that the text fades out, the
value is updated, and the new value fades back in. There are several out-of-the-box
effects to choose from, and if you’d prefer something custom, you can construct your
own effect that conforms to the following type signature: (String, Boolean, JsCmd)
=> JsCmd.

 Now that you know how to set up the wiring, the last piece of the puzzle is the tem-
plate markup The relevant code is shown in the next listing.

<lift:surround with="default" at="content">
 <h2>Simple Wiring Example</h2>
 <div lift="formula_wiring.product"
 <p>Product value (minus tax):
 <input id="value" /></p>
 </div>
 <h2>Output</h2>
 <p>
 Tax:
 unknown

 Total:
 unknown
 </p>
<lift:surround>

This template is a very regular one; the input B is a simple placeholder, and it’s
replaced with the correct AJAX form element at runtime. The other interesting
thing in this template is that the two output elements that are wired are exactly the
same as any other snippet call C. Lift does the right thing, without any specific
input from you.

 Both the manual AJAX and automatic wiring systems in Lift provide rich models
for interactive programming. But there is a change afoot as users demand more and
more interactivity—over the past few years, the web has been a constantly shifting
landscape, with user behavior transitioning to a more social model. This puts a whole
different set of technical requirements on developers, as they have to contend with

Listing 9.12 Template markup for the formula wiring example

User inputB

Wired
output

C

207Comet
the move from read-orientated or broadcast-style applications to very write-orientated
application designs with users constantly demanding instant gratification. These are
tough challenges, and this change requires more interactivity than AJAX can reason-
ably supply without things becoming clogged up. This next step requires Comet.

9.3 Comet
Although AJAX supplies a great model for interactive programming, it still requires
the sending of a request from the browser before you can obtain any data or con-
tent to render a display or create an interactive element for the user. This is where
Comet differs; the content can be pushed to the browser as the application dic-
tates. An example of such a technique is the Gmail online email portal: when an
email is received, it’s a much better user experience if the new email simply appears
in your inbox as opposed to you having to manually refresh the page or poll with
AJAX. The user doesn’t experience any slowness or batching, so it’s a lot more like a
desktop user experience.

 With Comet, the page has been requested by the client, and the server is then able
to push content back to the browser with no additional requests from that same
browser, asynchronous or otherwise. That means no secondary AJAX requests, no page
refreshes, nothing. This is a totally different model than most developers are used to,
and it really lends itself to building event-based systems: when something happens (an
event) you can act upon it and shunt data to the browser without the need for the cli-
ent to ask for it. In Lift’s implementation of Comet, when an event occurs for which
you’d like a response pushed to the browser, you simply send a message to the Lift
abstraction that deals with Comet, and the message is passed down to the client.

 Comet as a programming concept, however, isn’t specific to Lift. Alex Russell is
widely credited as having first coined the term on his blog in 2006.2 He drew common
patterns from services at the time that were leveraging long-lived HTTP connections to
push data in an event-driven manner.

 Consider figure 9.3, which illustrates the Comet request and response workflow. At
time marker 1, the browser makes the initial request to the page that has the Comet
component present. The server responds to the browser at time marker 2 and renders
the page. But the server also keeps that initial request active using a technique called
long polling. With the request still open, the server can then push data to the browser
whenever it needs to, as illustrated at B.

 This approach opens the door to building applications that truly operate in real
time, because page furniture can be dynamically altered via events occurring on the
server. There are several Comet applications in the public eye today—one of the most
well-known is Facebook chat. As users input messages to each other, they’re relayed via
the Facebook servers and are pushed to the other user’s browser.

2 Alex Russell, “Comet: Low Latency Data for the Browser,” in his blog, Infrequently Noted. http://infrequently
.org/2006/03/comet-low-latency-data-for-the-browser/

http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/

208 CHAPTER 9 AJAX, wiring, and Comet
NOTE Long polling keeps the request active, but this means that there
are potential scalability issues with high numbers of connections. This issue
is addressed in chapter 15, along with the more general topic of scaling
Lift applications.

Because Comet can be thought of primarily in terms of events and messaging, the
abstraction in Lift that deals with Comet is primarily based around the Actor pro-
gramming paradigm. Lift comes with its own actor implementation called (unsur-
prisingly) LiftActor.

9.3.1 What are actors?

Actors are a high-level abstraction on concurrency and parallelism. Using manual
threading and locking to create programs that execute concurrently or that use par-
allel processing is exceedingly difficult to get right, so that’s why concurrent pro-
gramming has been difficult over the past decade or so. Actors provide a convenient
model for parallelizing code and neatly encapsulating logical operations that
exchange state via lightweight messages. This sounds like a really great new idea, but
actors are nothing new; they were invented in the 1960s and were popularized in the
1980s in the telecom industry, where having highly parallelized, fault-tolerant code
was key to achieving the scalability and reliability required by their problem domain.
With commodity computing hardware operating more and more processing cores,
developers now must start to parallelize their code to achieve the best results from the
available resources.

 Actors encapsulate both state and behavior into lightweight processes, but these
processes don’t share any kind of state. They communicate via lightweight, asynchronous
messages that are sent and then forgotten: fire and forget, if you will. Each actor has an

Figure 9.3 A Comet request requires no secondary request in order to push data to
the browser.

209Comet
inbox for messages that can be thought of as a message queue, and each message the
actor receives is operated on by that process or thread.

 Consider the basic actor example in the next listing.

import net.liftweb.actor.LiftActor

object Example extends LiftActor {
 def messageHandler = {
 case s: String => println("Sent '%s'".format(s))
 }
}

This is the simplest LiftActor you can make. Lift actors differ from other implemen-
tations available in the Scala ecosystem in that you never explicitly call start or shut-
down. The instance is simply dereferenced and is garbage collected by the JVM when
it’s no longer being used. After implementing an actor by extending the LiftActor
trait, you must implement the messageHandler method. This essentially tells the actor
how it should respond to the different messages it receives. In this case, this Example
actor only knows how to deal with String messages, and upon receiving a String
instance, it will simply print out a message to the console.

 Now that you have this shiny new actor, how do you call it? Well, the Actor pattern
was popularized through languages like Erlang, and the Scala implementations follow
very similar syntactic idioms. You send messages to actors using the bang (!) method,
like so:

Example ! "w00t"

If you try this out in the SBT console shell, you’ll notice that this command doesn’t
appear to finish. That’s because the command is processing in a thread independent
from the one running the console. Actors are generally thread-safe because there’s no
shared state to speak of. Nevertheless, actors typically operate from a thread pool, so
although you don’t need to use thread-blocking synchronization or similar tech-
niques, the execution may still happen on the same thread.

 Actor-based programming is a very broad subject, and one that this book can only
give a cursory introduction to, so if you’d like more information on actors, check out
Joshua D. Suereth’s Scala in Depth, which provides more specific information on the
actor pattern in Scala.

 Now that you have an appreciation for the event-based nature of actors and how
you can communicate via asynchronous messages, let’s get back to seeing how that
relates to using Comet in Lift.

9.3.2 Basic Comet usage

Lift’s Comet implementation builds upon this actor foundation, so the semantics of
sending messages to Comet components are exactly the same as sending messages to a

Listing 9.13 Basic actor usage

210 CHAPTER 9 AJAX, wiring, and Comet
regular actor. The main difference is that the messages are piped out via the appropri-
ate HTTP connection and are executed in the client’s browser.

 In the same way that the basic actor example in listing 9.13 extended Lift-
Actor, Lift provides a specialized trait for Comet components called CometActor.
This trait contains all the plumbing required to implement a Comet element, so
you simply need to implement this in your own class and you can start building a
real-time component!

 In this section, we create a simple Comet component that simulates a basic clock
that pushes the time to the browser every five seconds. Comet components are actu-
ally resolved in the template via reflection, and the class is looked up and instantiated
once per session. The only exception to this is if you have manually overridden the
CometActor lifecycle method so the instance expires after a certain period of time,
causing the lapsed CometActor to be re-instantiated.

 The next listing shows the basic Clock implementation.

import scala.xml.Text
import net.liftweb.util.ActorPing
import net.liftweb.util.Helpers._
import net.liftweb.http.CometActor
import net.liftweb.http.js.JsCmds.SetHtml

case object Tick

class Clock extends CometActor {
 ActorPing.schedule(this, Tick, 5 seconds)

 def render =
 ➥ "#clock_time *" replaceWith timeNow.toString

 override def lowPriority = {
 case Tick => partialUpdate(SetHtml("clock_time",
 ➥Text(timeNow.toString)))
 ActorPing.schedule(this, Tick, 5 seconds)
 }
}

This listing shows a simple class that implements the CometActor trait. The first thing
you’ll notice is the call to ActorPing lurking in the body of the class B. Scala classes
don’t define constructors in the same way Java classes do, so this will only be called
when the class is instantiated. When the class is instantiated, the CometActor will send
a message of Tick to itself C, subsequently getting the time and flushing that to the
browser and critically kick-starting the ticking of the clock—each time the Tick mes-
sage is received, another Tick is schedule in five seconds’ time D.

 You may be wondering why in a CometActor there is no messageHandler but rather a
lowPriority method that defines the message dispatcher. Well, the CometActor provides
three levels of message handling: highPriority, mediumPriority, and lowPriority.

Listing 9.14 Basic Comet clock implementation

Schedule
first ping

B

Render to
DOM

C

Update time,
schedule next update

D

211Comet
The different priorities essentially allow you to control which messages are more
important and should be handled over and above others in a high-load environment.

 For the vast majority of situations, using lowPriority dispatching will be fine. In
the implementation of CometActor, the messageHandler is a fall-through set of partial
functions that will all get evaluated eventually; unless you’re operating with very high
loads and the message inbox of a particular actor which is very full, causing some
delay on the fall-through processing of handlers, any handler you use will be fine.

 The render method is mandatory for all CometActor subtypes and must be imple-
mented. When the page loads, the render method is called to render the initial value,
and in this instance it uses the timeNow method from util.Helpers to grab the cur-
rent time.

 Last, but not least, is the construct that does the updating: partialUpdate D. This
method takes a by-name function that yields a JsCmd. In this example, it uses the famil-
iar SetHtml method to update the correct DOM element with the new time.

 The markup for using the Clock within your template is equally simple:

<div lift="comet?type=Clock">
 Current Time:
Missing Clock
</div>

Here, the lift="comet?type=Clock" command causes Lift’s templating mechanism
to find and load the correct Clock instance if one doesn’t already exist in the current
session. By default, Comet instances will last for the duration of the session in which
they are created, but if your use case demands it, you can specifically set a lifespan for
a given Comet actor implementation by overriding the lifespan method:

override def lifespan = 2 minutes

Additionally, it’s worth noting that, just like snippets, more than one way exists to
instantiate them. The other template markup that you may well see in examples is this:

<lift:comet type="Clock"> ... </lift:comet>

The effect is identical; this is just a different way of achieving the same thing.
 The only other way to create Comet components is programmatically using Lift-

Rules.cometCreation. This method allows you to specify how you want to create par-
ticular types, and it requires passing a set of properties to the class, such as the current
session and the default markup, among other things.

 This Clock example is one of the simplest CometActor implementations you could
build, and because data is only ever being pushed to the browser, there is very little
coding that needs to be done. It’s a simple repeat broadcast in the scope of a single
session. In order to explore some of the more complex facilities Lift’s Comet support
has to offer, we build a much more complicated example in the next section: a game
of rock-paper-scissors.

212 CHAPTER 9 AJAX, wiring, and Comet
9.3.3 Comet-based rock-paper-scissors

In order to properly explore Lift’s Comet support, we take a meander down memory
lane and play rock-paper-scissors. No doubt nearly everyone will be familiar with this
game, but if not, rock-paper-scissors is a game in which each player chooses to be rock,
paper, or scissors, where certain properties of each can defeat their opponents:

■ Paper defeats rock by wrapping it
■ Rock defeats scissors by blunting them
■ Scissors defeat paper by cutting it

NOTE For everything you ever wanted to know about rock-paper-scissors, see
the Wikipedia article: http://en.wikipedia.org/wiki/Rock-paper-scissors.

The nice thing about this game for the purpose of this example is that it’s totally
event- based. Both players make a move, which can be modeled as an event, and the
game logic is fairly simplistic so it isn’t overly complex to model using Scala case
classes and objects.

 Before starting to code anything, let’s define a few parameters: first, you must have
two human players. AI would be fairly simple to implement, but it clouds the example
of utilizing Comet, so we exclude it. Moreover, a player must only be able to play one
game at a time, and when a game is won, it will automatically reset after 5 seconds so
you can continue playing. In a real-life implementation, it would be sensible to
include some kind of return to lobby type of functionality, but again, that will simply
complicate matters in this example.

 Getting down to the implementation details, actors communicate with immutable
messages, so let’s first define a set of objects that model the basic parts of the game
functionality. The following listing details these classes and objects.

sealed trait Move
final case object Rock extends Move
final case object Paper extends Move
final case object Scissors extends Move

sealed trait Outcome
final case object Tie
final case class Winner(is: CometActor)

final case classAddPlayer(who: CometActor)
final case classRemovePlayer(who: CometActor)
final case object PairPlayersInLobby
final case classNowPlaying(game: Game)
final case class Make(move: Move, from: CometActor)
final case object HurryUpAndMakeYourMove
final case object ResetGame
final case object Adjudicate

Listing 9.15 Classes and objects required for the rock-paper-scissors game

Game move
types

B

Possible
outcomes

C

Game eventsD

http://en.wikipedia.org/wiki/Rock-paper-scissors

213Comet
These sets of messages are all that the actors will use to communicate between them-
selves. The first block of classes B defines the possible moves that a player can make
in the game, and they all inherit from the sealed Move trait. The purpose here is that
when implementing the message handler, the actor can simply match on the Move
type rather than on the specific type of move.

 The second set of classes C defines the available outcomes: a tie if there’s a stale-
mate or someone wins. The third and final set D of types defines the messages that
are actively interchanged between the actor instances. This may seem a little abstract
at the moment, but it will come into focus shortly.

 The next things that need to be modeled are the actors that will be doing the send-
ing and receiving of these messages. There are going to be four main actors in order
to model the problem domain, as listed in table 9.1.

It can often be tricky to visualize the relationships between actors, especially when the
concept is a new one. To that end, consider figure 9.4, which details the first-stage
relationships between the three main types: RockPaperScissors, Lobby, and Game.

 This diagram may seem a little strange at first. Each circle represents an actor, and
the whole figure assumes that the RockPaperScissorsinstance (RPS) has just been
instantiated for the first time in this session—this is the first page visit. As depicted at
A, the RockPaperScissors instance first creates a new instance of AskName, at which
point the user is prompted to input a nickname. As you might imagine, this is the ask
stage of the ask/answer workflow. After the nickname is entered, the AskName instance
sends an answer back to the RockPaperScissors actor with the relevant answer, and
the user’s nickname is saved into a local private variable.

Table 9.1 Actor models used in rock-paper-scissors

Actor Description

RockPaperScissors This will be the actor that extends CometActor and thus deals with all
the presentation issues, such as updating the display and sending any
communication back to the user. There can only be one instance of
RockPaperScissors in any given session, so it’s essentially repre-
senting a player.

Lobby When a player becomes active, they’re registered with the Lobby. The
Lobby pairs players together and creates enough games for people to
play. If there is a lone player in the Lobby, it will wait until someone
else joins before creating a game.

AskName Before a player can join the lobby, they must enter a nickname. This allows
you to experience the rather powerful ask/answer paradigm supported by
Lift CometActors.

Game Finally, the game itself. When the players are paired off into a game,
they’re sent a reference to the Game actor so they can communicate
directly with it. This allows you to neatly encapsulate the game function-
ality for logic, such as determining the winner of any particular match.

214 CHAPTER 9 AJAX, wiring, and Comet
After receiving the nickname, the RockPaperScissors instance is registered with the
Lobby object, as shown at B. The Lobby holds a list of players that are currently not
participating in a game, and every time a new player joins, it will check to see if it has
n pairs of players that it can create games for, as shown at C. In a real-life use case, it
would probably be wise to add some kind of upper limit to this, or to add more sophis-
ticated logic for assigning users to games, but for the purpose of this example it works
well. Upon finding users that it can pair, the Lobby will create a new instance of the
Game actor, and assign these two users to that Game.

 Finally, D shows each player being asynchronously notified about the game they’re
being added to, so they can notify the game of their moves later on.

 Listings 9.16 through 9.18 demonstrate the segments of functionality described so
far, starting with the RockPaperScissors actor.

import scala.xml.Text
import net.liftweb.common.{Box,Full,Empty}
import net.liftweb.http.{CometActor,SHtml}

class RockPaperScissors extends CometActor {

 private var nickName = ""
 private var game: Box[Game] = Empty

 ...

 override def localSetup(){
 askUserForNickname
 super.localSetup()
 }
 override def localShutdown() {

Listing 9.16 Part one of the RockPaperScissors actor

Figure 9.4 Illustrating the
message passing between the three
main operational types in the rock-
paper-scissors game

Internal
variables

B

Lifecycle
methods

C

215Comet
 Lobby ! RemovePlayer(this)
 super.localShutdown()
 }

 private def askUserForNickname {
 if (nickName.length == 0){
 ask(new AskName, "What's your nickname?"){
 case s: String if (s.trim.length> 2) =>
 nickName = s.trim
 Lobby !AddPlayer(this)
 reRender(true)
 case _ =>
 askUserForNickname
 reRender(false)
 }
 }
 }
}

The RockPaperScissors actor is essentially representing the player. First, this
CometActor defines some internal state you want to keep about this session-scoped
instance; namely, the player’s nickname and the reference to the game in which
they’re participating B.

 The important parts to note about the class at this phase are at C. The local-
Setup and localShutdown methods are implemented in the CometActor trait and
allow you to hook into the lifecycle of the CometActor instance. In this case, you use
the localShutdown method to remove this particular player from the Lobby. The
localSetup method is used to jump into the ask workflow defined at D.

 The ask/answer paradigm can be thought of much like a person-to-person conver-
sation, except that here the CometActor asks a new instance of AskName the question
“What’s your nickname?” and AskName gets that answer from the user and responds.

 The second parameter group, or block, in D, processes the subsequent answer.
The next listing shows the simple definition of the AskName actor.

import net.liftweb.http.{CometActor,SHtml}

class AskName extends CometActor {
 def render = SHtml.ajaxForm(
 <p>What is your player nickname?
{
 SHtml.text("",n => answer(n.trim))}</p> ++
 <input type="submit" value="Enter Lobby"/>)
}

The implementation of AskName is super simple. In this case, its only task is to get the
name from the user and pass that to the answer method. The awesome thing about
this ask/answer paradigm is that you don’t have to manage the relationship between
the two actors. Lift does that for you, and as soon as the asking actor has its answer,
Lift will shut down the redundant partner for you.

Listing 9.17 Definition of the AskName actor

Ask/Answer
construct

D

216 CHAPTER 9 AJAX, wiring, and Comet
 In the response handling of the original ask block in RockPaperScissors (list-
ing 9.16), you can see that if it receives an acceptable answer, it tells the Lobby to
add this player to the lobby state by sending the Lobby object an AddPlayer mes-
sage. This brings us neatly to the Lobby object itself. What does the Lobby actor do
upon receiving an AddPlayer message? How does the Lobby handle the state and
assign games? The following listing shows the Lobby implementation.

import net.liftweb.actor.LiftActor
import net.liftweb.http.CometActor

object Lobby extends LiftActor {
 private var games: List[Game] = Nil
 private var lobby: List[CometActor] = Nil

 def messageHandler = {
 case PairPlayersInLobby => {
 for(i <- 0 until (lobby.size / 2)){
 val players = lobby.take(2)
 val game = new Game(players.head, players.last)
 games ::= game
 players.foreach(_ ! NowPlaying(game))
 lobby = lobby diff players
 }
 }
 case AddPlayer(who) =>
 lobby ::= who
 this ! PairPlayersInLobby
 case RemovePlayer(who) =>
 lobby = lobby.filter(_ ne who)
 }
}

The Lobby actor object is essentially a dispatcher that creates games and assigns play-
ers. The Lobby first defines some private variables that hold state about the ongoing
games and players that are waiting in the lobby B. Next, the Lobby implements the
mandatory messageHandler so that upon receipt of a PairPlayersInLobby message,
the Lobby actor will execute the necessary logic to assign players to a game. If the
Lobby has a player count that’s evenly divisible by 2, it will iterate through the list of
waiting players and assign pairs of players to a new Game instance C and D. Then,
with this new Game instance, it notifies both players which instance of Game they’ve
been assigned to and removes these players from the Lobby E.

 The next step is to implement the Game actor that actually handles the processing
of Rock, Paper, or Scissor moves made by the user. As this is really the next part of
the actor implementation, consider figure 9.5, which details the way players send
moves to the Game instance.

 After the game has been initialized and players are in position to make their moves,
one eventually will make the first move, as indicated at A. The Game actor then checks
to see if the other player has made their move, and if not, sends them a hastening

Listing 9.18 Creating the Lobby actor

Maintain
state

B

Iterate lobby
players

C

Notify players
of game

D

Register/remove
player

E

217Comet
message, after which the second user will also make their move (B). Finally, C illus-
trates the point at which the game adjudicates the match and notifies both parties of
the winner. Each instance then displays a witty message appropriate to the user’s win-
ning or losing status.

 Having the game itself be an actor allows for all the logic relating to the match to
be encapsulated in the Game actor’s message handlers. The Game actor implementa-
tion is as follows.

import scala.collection.mutable.Map
import net.liftweb.common.{Box,Full,Empty}
import net.liftweb.util.Helpers._
import net.liftweb.util.ActorPing
import net.liftweb.actor.LiftActor
import net.liftweb.http.CometActor

class Game(playerOne: CometActor, playerTwo: CometActor)
 extends LiftActor {

 private var moves: Map[CometActor, Box[Move]] = Map()
 clearMoves()

 private def sendToAllPlayers(msg: Any){
 moves.foreach(_._1 ! msg)
 }

 private def clearMoves() {
 moves = Map(playerOne -> Empty, playerTwo -> Empty)
 }

 def messageHandler = {
 case Adjudicate => {
 val p1move = moves(playerOne)
 val p2move = moves(playerTwo)
 if(p1move == p2move)
 sendToAllPlayers(Tie)

Listing 9.19 Implementing the Game actor

Figure 9.5 The event cycle
depicting users making moves in
the game, and the notifying of
players as to which participants
were the winners and losers

Player movesB

Determine
match outcome

C

Notify players
of a tie breakD

218 CHAPTER 9 AJAX, wiring, and Comet
 else {
 (p1move, p2move) match {
 case (Full(Rock), Full(Scissors)) |
 (Full(Paper), Full(Rock)) |
 (Full(Scissors), Full(Paper)) =>
 sendToAllPlayers(Winner(playerOne))
 case _ =>
 sendToAllPlayers(Winner(playerTwo))
 }
 }
 Schedule.schedule(this, ResetGame, 5 seconds)
 }
 case Make(move, from) => {
 moves.update(from,Full(move))
 if(moves.flatMap(_._2).size == 2)
 this ! Adjudicate
 else
 moves.filter(_._1 ne from).head._1 ! HurryUpAndMakeYourMove
 }
 case ResetGame =>
 clearMoves()
 sendToAllPlayers(ResetGame)
 }
}

Unlike the other actors in this setup, the Game actor can only be instantiated with two
players. This cuts down on the amount of mutability and ensures that any game
always has the correct number of players it requires to operate. That being said, the
current implementation could benefit from some additional logic to handle session
expiry, users opting to leave a game, and so forth, but that’s somewhat out of scope
for this example.

 The Game actor first defines an internal Map that relates a particular player to the
move they made B. Due to the simple nature of rock-paper-scissors, this is really easy
to implement. All you need to do is make the Move itself boxed, so that you can initial-
ize the value with Empty. Later on, when you receive the message with their move, you
can update this internal map G.

 In addition to updating this internal map upon receiving a player’s move, the
game will check to see if the other player has already made a move as well. If not,
the game sends an asynchronous message to the player to remind them to make a
move. Assuming the other player then makes a move, a message is sent to itself to
trigger the adjudication of the match, as detailed at D, E, and F. This block of
code is really the core of the game because it computes the outcome and then sends
messages out to the relevant actors notifying them of their next action.

 In order to adjudicate a given match, the Game actor assigns both players’ moves to
a value C and first checks to see if the moves are equivalent, which would result in a
tiebreak D. It’s perfectly fine to check for equality on these values. They’re case
objects, meaning that there can only ever be one instance of that value in a single
classloader, so the equality check is valid here. If the result is not a tie, the Game does a

Determine
match outcome

C

Notify the
winner

E

Reset current
gameF

Hastener for
the opponent

 G

219Comet
basic pattern match using a Tuple2 of the move values and notifies all the players of
the winner E.

 Finally, let’s complete the picture of the RockPaperScissors actor, which is han-
dling the receipt of all these different events and the subsequent rendering to the
browser. The next listing shows the remaining parts of the implementation.

import scala.xml.Text
import net.liftweb.common.{Box,Full,Empty}
import net.liftweb.util.Helpers._
import net.liftweb.http.{CometActor,SHtml}
import net.liftweb.http.js.JsCmds.{SetHtml,Run}

class RockPaperScissors extends CometActor {
 ...
 private def showInformation(msg: String) =
 partialUpdate(SetHtml("information", Text(msg)))

 override def mediumPriority = {
 case NowPlaying(g) =>
 game = Full(g)
 reRender(true)

 case HurryUpAndMakeYourMove =>
 showInformation(
 "Hurry up! Your opponent has already made their move!")

 case Tie =>
 showInformation("Damn, it was a tie!")

 case Winner(who) =>
 if(who eq this)
 showInformation("You are the WINNER!!!")
 else
 showInformation("Better luck next time, loser!")

 case ResetGame =>
 reRender(true)
 }

 def render =
 if(!game.isEmpty)
 "#information *" #>
 ➥ "You're playing! Make your move..." &
 ".line" #> List(Rock, Paper, Scissors).map(move =>
 SHtml.ajaxButton(Text(move.toString), () => {
 game.foreach(_ ! Make(move, this))
 Run("$('button').attr('disabled',true);")
 }))
 else
 "#game *" #>
 ➥ "Waiting in the lobby for an opponent..."

 ...
}

Listing 9.20 Part two of the RockPaperScissors actor

Message
display helper

B

Initialize the
game

C

Am I the
winner?

D

Render
game or
lobby

E
Notify
move and
disable UI

F

220 CHAPTER 9 AJAX, wiring, and Comet
This is the final part of the implementation of the game’s actors. As RockPaper-
Scissors is the only CometActor in play here, the entire rendering and communica-
tion of user-bound information must pass through it in order to be pushed to the
browser. For example, when the instance receives the winner notification, it deter-
mines what text it should display D. Note that the showInformation private helper
has been defined to alleviate the duplication for displaying messages by supplying a
simple wrapper around rendering updates to the browser B. If the GUI were more
complex, it would probably be better to read content from a template using S.run-
Template, but for this example it works perfectly.

 Upon receiving the NowPlaying message, which contains a game reference, the
RockPaperScissorsCometActor sets its internal game variable to the passed refer-
ence C. Critically though, notice the call to reRender(true). When a page that fea-
tures a CometActor loads up, its render method is called and the output is displayed.
CometActors have two main ways to update the page: either redraw themselves using
reRender, or use partialUpdate to alter a specific part of the DOM. In this exam-
ple, the internal state of the game has changed from waiting in the lobby to playing,
so rather than updating specific DOM elements that would be lost if the user
refreshed their page, the render method produces something different based upon
whether or not the user is participating in a game, so calling reRender(true) from
the NowPlaying message handler is a simple way to have the page display correctly.
The important thing to remember here is that there is not a huge difference between
partialUpdate and reRender in small CometActor examples. But in a larger, more
complex examples, redrawing the whole component could be a costly operation, so
using partialUpdate would be a better strategy in that situation.

 Finally, the render method uses a pretty standard binding syntax that’s the same as
you would use in a snippet invocation E. The point of note in this section is where
the buttons are being created F. Given a list of moves, a SHtml.button is created with
a callback function that sends the appropriate Move message to the game actor before
executing some custom JavaScript code on the client side via the Run JsCmd. The Run
command essentially lets you pass a string through as a JsCmd, and Lift will then run
this for you on the client side. The only caveat is that the JavaScript code must execute
and be valid, or it simply won’t work!

 Last, but certainly not least, the final piece of the puzzle in this rock-paper-
scissors example is the template markup. The complete template is shown in the
next listing.

<lift:surround with="default" at="content">
 <h2>Rock, Paper, Scissors</h2>
 <div lift="comet?type=RockPaperScissors">
 <div id="game">
 <p id="information">Pending information...</p>
 <ul id="button">

Listing 9.21 Template markup for the rock-paper-scissors example

Call Comet
componentB

221Summary
 <li class="line">

 </div>
 </div>
</div>

By now you should be familiar with the general feel of template markup in Lift. The
main differentiator here is the call to the Comet component in the first instance B.
As was touched on in section 9.3.2, you can invoke components from the view in sev-
eral ways, but you always have to tell Lift to use the Comet snippet and give it the
name of the CometActor it should use at that location within the markup.

 This concludes the rock-paper-scissors game and our exploration of using Lift’s
Comet support to build real-time applications and leverage the powerful event-based
architectures that actors lend themselves to so well.

9.4 Summary
AJAX and Comet are two areas that Lift really excels in. Throughout this chapter,
you’ve seen how Lift provides a set of server-side abstractions for working with Java-
Script, in the form of the JsCmd and JsExp types. These JavaScript abstractions pro-
vide you with a flexible and straightforward way to affect client-side behavior, all from
within your Scala code.

 As these calls on the server side result in JavaScript being generated on the client-
side rendering in the browser, Lift has a decoupled interface for JavaScript libraries
called JSArtifacts. Due to this loose coupling, you can use whatever client-side
library you like and implement the appropriate JSArtifacts trait to tell Lift about
certain parts of that library. Moreover, Lift ships with three popular library integra-
tions out of the box: JQuery, Yahoo UI (YUI), and ExtJS, so you can get up and running
quickly and make use of all that these popular libraries have to offer. In addition, Lift
has several library-specific server-side representations, so you can have access to partic-
ularly popular parts of a given library. For example, fading a div out is a popular oper-
ation in JQuery, and Lift lets you call JqJsCmds.FadeOut and you’re all set.

 These JavaScript abstractions are used throughout Lift, and we also looked at how
you can leverage the SHtml AJAX builder methods to create elements on the page that
trigger server-side actions. The powerful thing about Lift’s AJAX system is that you can
capture the logic to be executed upon making the specific callback in a Scala func-
tion. This gives you a flexible system that can pretty much execute whatever you’d like
when an AJAX event occurs.

 When an AJAX element is used, Lift automatically assigns it a random GUID. Each
AJAX element then has a session-specific and opaque name, much in the same way Lift
does with every input on regular forms. This is important, because it prevents large-
scale request tampering or cross-site request forgery. Lift lets you focus on the logic
and completely hides the request and response workflow. In short, you can spend
more time focusing on getting things done rather than worrying about how or where
the AJAX call is being sent.

222 CHAPTER 9 AJAX, wiring, and Comet
 With more and more AJAX elements being added to pages, it can often be tricky
creating complex interactions between these dynamic AJAX elements. This is where
Lift’s wiring mechanism comes into play. Using wiring, you can automatically update
different user interface elements without having to explicitly specify a change or
action to occur. You simply wire them together, and Lift takes care of the rest.

 The next step in interactivity from AJAX and automatic wiring is Comet. With
Comet you no longer need to have a request coming from the browser to push data or
content back to the client. Once the page featuring a Comet component has loaded,
your application can push data to the browser whenever the need arises. This yields an
extremely dynamic and event-driven systems architecture that makes great use of the
actor-programming paradigm. As examples, we looked at both a simple clock that
pushes the new time to the browser every 5 seconds, and a rock-paper-scissors game
that included a game lobby and the ability for two players to play each other in a
match via the web.

 In the next chapter, we cover Lift’s SQL persistence system: Mapper. You’ll
learn how to create queries and relationships and how to implement validation for
your application models. Mapper is one of the oldest parts of Lift, but it has lots of
functionality and is widely used by many applications in production. See you in the
next chapter!

Persistence with Mapper
The vast majority of web applications that do anything semiuseful will ultimately
need to store their data somewhere. Over the past decade or more, the rela-
tional database management system (RDBMS) has been the solution of choice for
most developers, and the ANSI Structured Query Language (SQL) has become a
standardized dialect for interacting with these databases. Although many data-
base vendors have added and extended the ANSI version of SQL in several differ-
ent directions, the core operations are still pretty much the same in any engine
you choose to work with.

 In the beginning, developers would construct their SQL statements as strings in
their application code and then ultimately pass that to a database driver for execu-
tion. This approach worked fine and was used by many, many applications. But as
time progressed and the object-oriented (OO) revolution took hold, there was a

This chapter covers
■ Connecting to a database
■ Query constructs
■ Relationships
■ Entity validation
223

224 CHAPTER 10 Persistence with Mapper
desire to interact with the underlying data store in a more OO manner. At this point,
object-relational mapping (ORM) systems were born.

 Today, you can find ORM implementations in nearly every programming lan-
guage, and they often take different forms and routes of design. In this regard, both
Scala and Lift are no different. The Scala ecosystem has numerous ORM-style inter-
faces to SQL stores, and Lift provides two implementations: Mapper and its younger
brother Record.

 This chapter will demonstrate how to leverage Mapper to create, query, update,
and delete records in a database, including how to pull back the covers and write
some more granular SQL if the need arises. It will also cover how to define relation-
ships between tables to abstract SQL joins so they’re simply lazy collections available
on a given Mapper entity. Moreover, you’ll see how to define validation for individual
data fields and ensure that all the necessary requirements have been satisfied, before
trying to flush the instance back to the store.

 Before moving on to interacting with the database, you need to get set up and con-
figured with a database system. The following section walks you through setting up
PostGreSQL but also provides configuration information for other database types if
you’d prefer to use one of the other options supported by Mapper.

10.1 Setting up a database
Before diving into the specifics of how to use the Mapper abstractions, you need to have
a database to work with. Two databases have proven to be particularly popular in the
open source space—MySQL (http://www.mysql.com/) and PostgreSQL (http://www
.postgresql.org/)—whereas in the commercial fields, Microsoft SQL Server (http://
www.microsoft.com/sqlserver/) and Oracle (http://www.oracle.com/us/products/
database/index.html) are still very prevalent. Despite each of these products making
use of extensions to the SQL standard and implementing a slightly different dialect for
commonly used operations, Mapper ships with drivers for each of these database stores
and a whole set of others (Derby, H2, MaxDB, Sybase, Sybase ASE), so you can move
platforms with the minimum of fuss.

 With that being said, this chapter is written on the assumption that you’ll be using
PostgreSQL, but the examples should still perform admirably with MySQL, SQL Server,
and others. PostgreSQL is a great choice as a relational database. It’s very fast, very sta-
ble, and has a lot of advanced features that will see you through from small startup
applications right up to large-scale enterprise usage.

10.1.1 Installation and connectivity

There are many convenient ways to install PostgreSQL, no matter what platform you’re
using. The primary route is to head over to the official download page (http://www
.postgresql.org/download/) and grab the one-click installer for your operating sys-
tem. If you’re using Mac OS X, there are also packages available for both the Homebrew

http://www.mysql.com
http://www.postgresql.org/
http://www.postgresql.org/
http://www.microsoft.com/sqlserver
http://www.microsoft.com/sqlserver
http://www.oracle.com/us/products/database/index.html
http://www.oracle.com/us/products/database/index.html
http://www.postgresql.org/download
http://www.postgresql.org/download

225Setting up a database
(http://mxcl.github.com/homebrew/) and Mac Ports (http://www.macports.org/)
installation systems, which make getting up and running a breeze. Where possible,
I would suggest that Mac users install via Homebrew because it will give you the
most seamless experience and will require no additional compilation or configuration
of dependent libraries. Linux users should also consider looking in their package
manager for the appropriate database packages, which will likely be the simplest route
of installation.

 In order to start utilizing the Mapper persistence system with your application,
you must first add the correct dependencies to your SBT project. Mapper is a sepa-
rate module of Lift because not all applications require database access, so to have
the classes load in your project you need to add the following dependency to your
project definition:

val mapper = "net.liftweb" %% "lift-mapper" % liftVersion

Depending upon your choice of database access, you may require an additional
dependency for the database driver itself.1 This is true for nearly every database type,
and in the case of PostgreSQL, the dependency should be as follows:

val postgresql = "postgresql" % "postgresql" % "9.0-801.jdbc4"

Don’t forget that if you’re already running SBT, you’ll need to call the reload and
update commands so that SBT will fetch the new dependencies for you and apply
them to the classpath. If you see errors about Mapper types not being available, it’s
highly likely you need to update your dependencies.

 Once you’ve installed and booted PostgreSQL and applied the necessary depen-
dencies to your project, you must configure the application to connect to the backend
database upon booting up. If you have been following along from the beginning of
the book, you may remember from chapter 3 (section 3.2) that there are two mecha-
nisms for obtaining a connection to the database.

 The first connectivity route is to obtain a connection via JNDI. When taking an
application into deployment, this is generally the preferred route because then all the
connection management can be handled by the servlet container and can usually be
configured either via a container GUI or the server configuration. All you then need
to do on the Lift side is add the following line of code to your Boot class:

DefaultConnectionIdentifier.jndiName = "jdbc/liftinaction"

This line specifies which JNDI data source you’d like to connect to, and Lift will then
resolve this connection, provided it exists with the same name in your container, and
connect to it.

 The second connectivity route is to set up a direct connection that’s created by
your application on startup and torn down at shutdown. Lift provides the plumbing
for this in the form of StandardDBVendor from the Mapper module. This class wraps

1 Table 10.1 lists the dependencies required for different database types.

http://mxcl.github.com/homebrew
http://www.macports.org

226 CHAPTER 10 Persistence with Mapper
up all the common aspects of making a database connection, such as connection pool-
ing, and provides a single extension point that only needs the fully qualified driver
class name, connection string, and credentials. Implement the following:

objectDBVendor extends StandardDBVendor(
 Props.get("db.class").openOr("org.h2.Driver"),
 Props.get("db.url").openOr("jdbc:h2:database/chapter_ten"),
 Props.get("db.user"), Props.get("db.pass"))

The interesting thing here is that rather than hard-coding the connection details,
they’re externalized into a properties file that can be altered for different deployment
environments. Chapter 15 details the specifics of the run modes, but for the moment
just understand that the db.class will have a set value from the external .props file, or
if that value is missing, the application will fall back onto H2 and attempt to make a
local database on the filesystem. This is a really common idiom in Lift development,
because it allows you to use one type of database during development and another in
production. For example, many people like to use H2 locally during development or
testing and then swap to a server-based database in production.

 It can often be confusing determining which connection strings and driver combi-
nations to use with which databases, but table 10.1 lists some of the most popular con-
figurations for the four most popular database types: H2 (often used in development),
PostgreSQL, MySQL, and Microsoft SQL Server.

Table 10.1 Commonly used connection settings for server-based data sources. These were the latest
versions at the time of writing, but newer versions will inevitably become available, so check with the
driver vendor.

Database Connection parameters

H2 Dependency:

val h2 = "com.h2database" % "h2" % "1.3.146"

Driver:

org.h2.Driver

Connection URL:

jdbc:h2:database/yourdb

PostgreSQL Dependency:

val pg = "postgresql" % "postgresql" % "9.0-801.jdbc4"

Driver:

org.postgresql.Driver

Connection URL:

jdbc:postgresql://localhost/yourdb

227Setting up a database
Once you have the database settings configured, the final step in database setup is
actually getting the application to make the connection during the boot up part of the
applications lifecycle.

if (!DB.jndiJdbcConnAvailable_?){
 DB.defineConnectionManager(
 DefaultConnectionIdentifier, DBVendor)

 LiftRules.unloadHooks.append(() =>
 DBVendor.closeAllConnections_!())
}

The first three lines of code check to see if an appropriate JNDI connection can be
resolved, but if not, it will attempt to create a new connection to the database using
the DBVendor object outlined earlier in this section. The last two lines instruct Lift to
close all the database connections when Lift starts shutting down.

 Now that you have an active connection to the database, let’s start creating some
entities to utilize it.

10.1.2 Defining Mappers

For the most part, Mapper follows what is known as the Active Record pattern. In
practice, this means that each entity represents a concrete table in the database, and
the inner objects of that entity define the columns in the table.

MySQL Dependency:

val mys = "mysql" % "mysql-connector-java" % "5.1.12"

Driver:

com.mysql.jdbc.Driver

Connection URL:

jdbc:mysql://localhost/yourdb

MS SQL Server Dependency:

val jtds = "net.sourceforge.jtds" % "jtds" % "1.2.2"

Driver:

net.sourceforge.jtds.jdbc.Driver

Connection URL:

jdbc:jtds:sqlserver://localhost:1433/
yourdb;instance=Thing

Table 10.1 Commonly used connection settings for server-based data sources. These were the latest
versions at the time of writing, but newer versions will inevitably become available, so check with the
driver vendor. (continued)

Database Connection parameters

mysql://localhost/yourdb

228 CHAPTER 10 Persistence with Mapper
Each Mapper entity generally comes with two parts: the first is the Mapper instance,
which typically represents the data rows that the table holds. This is a good place to
include helper methods that operate on a given instance; for example, given a Person
Mapper, a possible action method would be wave. The second part is the MetaMapper.
The MetaMapper is defined as an object and typically provides additional services on
top of the Mapper instance—things such as lifecycle hooks and methods to find
datasets (more on this in section 10.2).

 In order to demonstrate Mapper’s usage in this chapter, you’ll be working with
a fairly straightforward three-table model that represents a simplified version of
the relationship between publishers, authors, and books. Figure 10.1 visualizes this
entity relationship.

 Conceptually speaking, the diagram in figure 10.1 shows the two relationships at
play. There’s a one-to-many relationship from the Publisher entity to Book, because
publishers nearly always release a wide selection of titles. The second relationship is
the many-to-many relationship between the Book and Author entities. This relation-
ship is due to the fact that authors often end up writing many titles, so to keep the
data effectively normalized it’s extrapolated into the additional table. Section 10.1.3
specifically covers how to make relationships with Mapper, but before that let’s study
the construction of the Publisher, Book, and Author entities.

 As the simplest model in this example is Publisher, let’s address it first. The next
listing shows the definition for the Publisher entity.

Figure 10.1 Relationship diagram for the entities deployed in this chapter. Any
given publisher has many books in publication, and a single book can have many
authors who may have contributed to many books. This diagram outlines the
conceptual relationships; the implementation will differ slightly.

229Setting up a database
import net.liftweb.mapper._

class Publisher extends LongKeyedMapper[Publisher]
 with CreatedUpdated with IdPK {
 def getSingleton = Publisher

 object name extends MappedString(this, 255)
 object description extends MappedText(this)
}

object Publisher extends Publisher
 ➥with LongKeyedMetaMapper[Publisher]{
 override def dbTableName = "publishers"
}

Earlier in this section we touched on the concept of having both an instance imple-
mentation and a companion, or meta implementation of any given Mapper entity. The
first thing defined here is the instance implementation. It simply defines a Scala class
and extends Mapper[T]. You may have noticed that in this instance Publisher actually
extends a trait called LongKeyedMapper[T], rather than a plain Mapper[T]; this is for
convenience. It’s common for an entity to have a field called ID that has an auto incre-
menting Long value, so rather than repeatedly add this field, it’s inherited from the
LongKeyedMapper trait. This is just one way that common idioms have been factored
into compositional traits.

 In addition to extending LongKeyedMapper, this example also mixes in the
CreatedUpdated trait B, which will add two fields to this Mapper: a DateTime field
called createdAt, which has its value set (unsurprisingly) when the entity is first per-
sisted to the database, and a field called updatedAt that has its DateTime value
updated automatically whenever changes are persisted. The second trait that’s inher-
ited here is IdPk. Given that this Mapper inherits LongKeyedMapper, it will have an ID
column, so the IdPk trait applies a constraint to make that ID column the primary
key in the database.

 Next, the Publisher class defines the entity fields (database columns), and it’s
where the bulk of your Mapper instances will usually fall. You can see here that there
are two separate fields defined as inner objects of the main class. All Mapper field types
follow the naming convention Mapped<Type>; here MappedString and MappedText are
used C. Under the hood, MappedString will boil down to a varchar(max) or similar
column type, depending upon the database, whereas MappedText will save down to a
text BLOB and thus is capable of handling far more data than a simple string.

 Lastly comes the definition of the meta, or companion object, for this Mapper D.
You create an object that extends the LongKeyedMetaMapper trait, which is the
opposite number of the LongKeyedMapper inherited by the class definition. Notice
how it extends the class definition, which gives you the object Publisher extends
Publisher syntax. Some users find this a little confusing and prefer to name the com-
panion MetaPublisher or something like that. There’s no hard and fast rule you

Listing 10.1 Definition of the Publisher model

Common
traits

B

Specialized
field types

C

Meta objectD

230 CHAPTER 10 Persistence with Mapper
must obey here—the choice in naming is largely a matter of personal preference. In
section 10.2, you’ll see how to construct queries and use the functionality defined on
the companion object, and there you’ll see why many users find it more intuitive to
give both the class definition and the companion the same type of name. Whatever
you decide, the getSingleton method of the class instance must reference the
appropriate companion object.

 The Publisher type is a pretty simple implementation, so let’s now consider the
Book and Author entities, which use some additional Mapper features. The following
listing shows the implementation for the Book and Author models.

import net.liftweb.mapper._

class Book extends LongKeyedMapper[Book]
 with CreatedUpdated with IdPK {
 def getSingleton = Book
 object title extends MappedString(this, 255)
 object blurb extends MappedText(this)
 object publishedOn extends MappedDate(this)
}

object Book extends Book with LongKeyedMetaMapper[Book]{
 override def dbTableName = "books"
}

class Author extends LongKeyedMapper[Author]
 with CreatedUpdated with IdPK {
 def getSingleton = Author
 object title extends MappedEnum(this, Titles)
 object firstName extends MappedString(this, 255)
 object lastName extends MappedText(this)
 object email extends MappedEmail(this, 150)
}

object Author extends Author with LongKeyedMetaMapper[Author]{
 override def dbTableName = "authors"
}

object Titles extends Enumeration {
 val Mr, Mrs, Miss, Dr = Value
}

Here the implementation of Book is also pretty simplistic, and it follows a similar pat-
tern of usage as the Publisher entity. The only notable difference is the use of a new
mapped field type: MappedDate B. As the name implies, this field type boils down to
the date type supported by the backend database. Often this is a datetime, but the
time element is ignored when saving the value.

 Once again, the Author entity treads the same path as Publisher and Book by
using a class definition and a companion object. The interesting thing with Author
is that it uses two new field types: MappedEnum C and MappedEmail D. These types
are specifically interesting because they model additional context over and above

Listing 10.2 Implementation of the Book and Author models

Using MappedDateTime typeB

Using MappedEnumC

Using MappedEmailD

231Setting up a database
simply storing a string or value. MappedEnum allows you to define a strongly typed
enumeration of values that are valid for use with this column. In this instance, it’s a
simple enumeration of salutations, but the database is only storing the identifier of
the enumeration value, not the values “Mr” or “Mrs" and so on.

MappedEmail, on the other hand, is an extension of the standard MappedString
implementation. You may well be wondering what the value of having a different con-
crete type for an email address verses a regular string is, because ultimately an email is
a string. Although this is true, there are many things you might want to do with an
email address, such as validating that it’s an email address and not just a random
string of numbers and letters. By using this approach, you can have rich column types
in your entities and get access to a whole set of helpers, depending upon the abstrac-
tion. Table 10.2 shows a list of rich column types available at the time of writing and
includes a short description and example usage for each.

Table 10.2 The MappedField subtypes available in the Mapper package

Field type Description and usage

MappedBirthYear Holds the year of a person’s birth. The implementation must include a mini-
mum page parameter, and the field will only accept years of birth that make
the user older than the supplied value.

object birthday extends MappedBirthYear(this, 18)

MappedCountry A subtype of MappedEnum that is used to represent a single country from
the list of countries defined in net.liftweb.mapper.Countries.
There is also a utility method called buildDisplayList that will generate
a select input element of the countries for you automatically.

object country extends MappedCountry(this)

MappedEmail Represents a string that’s an email address. Supports out-of-the-box valida-
tion for email patterns. The email regex itself is held in the companion object:
MappedEmail.emailPattern.

object email extends MappedEmail(this, 200)

MappedGender Another extension of MappedEnum where net.liftweb.mapper
.Genders provides the generic male or female enumeration of gender.

object gender extends MappedGender(this)

MappedLocale Saves a representation of java.util.Locale, and allows you to return
the value as a Locale instance via isAsLocale.

object locale extends MappedLocale(this)

MappedPassword Stores user passwords as encrypted hash values. The underlying database
will have two columns: the hash value and the random salt used to generate
that hash. MappedPassword fields allow you to test a value against the
stored value by using the match_?("passwordinput") method.

object password extends MappedPassword(this)

232 CHAPTER 10 Persistence with Mapper
In order to satisfy the original entity relationship diagram laid down in figure 10.1,
you’ll need to implement the relationships between the Mapper entities. As it stands
right now, each entity lives in isolation with no way to communicate with its peers. It’s
time to add relationships to the Mapper implementations.

10.1.3 Relationships

The original proposition was to use two different types of relationships. The first was a
one-to-many relationship with a publisher having many book titles, and the second
was a many-to-many relationship because many authors could feasibly have authored
or contributed to many different books. Table 10.3 summarizes the three most com-
mon types of relationships.

MappedPostalCode Stores a postal code string value for a particular country. You must provide a
MappedCountry member as a reference.

object postcode extends
 MappedPostalCode(this, mappedCountry)

MappedTimeZone A stored representation of java.util.TimeZone. In much the same
way as MappedLocale provides a method to obtain the concrete repre-
sentation of the Locale type,MappedTimeZone can yield values as an
actual TimeZone instance by using the isAsTimeZone method.

object timezone extends MappedTimeZone(this)

Table 10.3 Types of relationships commonly used with RDBMS

Relationship Description

One-to-one In a one-to-one relationship, the tables are associated in such a way
that the record in the first table can only have a single corresponding
row in the secondary table. An example of this sort of implementa-
tion would be having a list of capital cities and relating them to a
country table. A capital city can only have one country and vice versa.

One-to-many One-to-many is probably the most common of all relationship types
and the most frequently used by developers. An example use case
would be when modeling a book publisher: the publisher publishes
many different titles, so one book publisher has many books.

Many-to-many In a many-to-many relationship, it’s said that each side of the rela-
tionship has and belongs to many of the other entity. For example,
it’s feasible for an author to have written many books with many dif-
ferent publishers. This means that there would be a many-to-many
relationship between publisher and author because each side of the
relationship can both have and belong to many instances of the
other entity.

Table 10.2 The MappedField subtypes available in the Mapper package (continued)

Field type Description and usage

233Setting up a database
With this in mind, Mapper supplies a few different ways to make these relation-
ships happen. Let’s start by exploring the one-to-many structure between publish-
ers and books.

ONE-TO-MANY

In order to facilitate the one-to-many relationship, you need to make a couple of
changes to both the Book and Publisher models, as shown in the following listing.

class Publisher extends LongKeyedMapper[Publisher]
 with CreatedUpdated with IdPK
 with OneToMany[Long,Publisher] {
 ...
 object books extends MappedOneToMany(Book, Book.publisher)
}

class Book extends LongKeyedMapper[Book]
 with CreatedUpdated with IdPK {
 ...
 object publisher extends LongMappedMapper(this, Publisher)
}

The first thing happening in this listing is the additional composition of the OneTo-
Many trait into the Publisher class definition. The OneToMany trait provides an inner
class called MappedOneToMany that can then be used as many times as needed within
that class to define one-to-many relationships to other Mapper entities. In this
instance, only the Book relationship exists, and you can see its definition as an object
called books. MappedOneToMany takes two parameters: the entity that’s the child collec-
tion of this entity (Book in this case), and the foreign key on the target entity that
relates to the parent entity (in this case, Publisher). This should be a fairly familiar
approach for anyone familiar with SQL.

 Of course, with the Publisher model now looking for a foreign key on the Book
instance, you need to add a LongMappedMapper to the Book definition to satisfy the
relationship on both sides. You can see that it extends LongMappedMapper and passes a
reference to the Publisher companion object.

TIP At the time of writing, Lift did not have a specific trait for handling one-
to-one relationships, because the functionality can be encompassed by the
OneToMany trait. If you require a one-to-one relationship, simply use the One-
ToMany trait.

Out of the box, Lift ships with prebaked abstractions for making foreign keys that are
of type Long, but in the unlikely event that you need to make a foreign key that’s based
on another type (like String, for example) you can make up your own MappedForeign
type that extends both MappedForeignKey and BaseForeignKey and implements simi-
lar functionality to MappedLongForeignKey.

Listing 10.3 Adding OneToMany to the Publisher model

234 CHAPTER 10 Persistence with Mapper
MANY-TO-MANY

The next relationship is the many-to-many relationship needed to model many authors
having many books, and books potentially having multiple authors. The many-to-many
relationship is implemented much like that in any other RDBMS-backed system, in that
it requires a join table to operate. Put simply, an intermediate table is required to hold
information that relates the authors with multiple books and vice versa. In this
instance, the join table holds ID numbers for both sides of the relationship.

 In practical terms, this means it’s necessary to create a Mapper representation of
this intermediary table. The following listing shows the intermediate table’s definition.

class BookAuthors extends LongKeyedMapper[BookAuthors] with IdPK {
 def getSingleton = BookAuthors
 object author extends LongMappedMapper(this, Author)
 object book extends LongMappedMapper(this, Book)
}

object BookAuthors extends BookAuthors
 with LongKeyedMetaMapper[BookAuthors]

This join table looks a lot like the other entities you’ve already defined. The only
slight difference here is that it uses plain Mapper and MetaMapper, rather than the
LongKeyedMapper and MetaMapper. The main points of interest are the author and
book fields, as these fields reference the Author and Book entities using the already-
familiar LongMappedMapper.

 With the join table in place, you need to make a couple of adjustments to the Author
and Book entities to make them both aware of the relationship set up between them via
the join table. Mapper comes with a trait called ManyToMany, which (unsurprisingly) is
a container for the field type that handles many-to-many relationships. Let’s apply the
ManyToMany trait to the Book and Author entities, as shown in the next listing.

class Book extends LongKeyedMapper[Book]
 with CreatedUpdated with IdPK
 with ManyToMany {
 ...
 object authors extends MappedManyToMany(
 BookAuthors, BookAuthors.book,
 BookAuthors.author, Author)
}
class Author extends LongKeyedMapper[Author]
 with CreatedUpdated with IdPK
 with ManyToMany {
 ...
 object books extends MappedManyToMany(
 BookAuthors, BookAuthors.author,
 BookAuthors.book, Book)
}

Listing 10.4 Definition of the AuthorBooks join table

Listing 10.5 Adding the ManyToMany trait to the Author and Book entities

Implement
authors

B

Implement
books

C

235Setting up a database
Both classes in this listing now inherit the ManyToMany trait, which provides the cor-
rect MappedManyToMany field type needed to deliver the correct collection semantics.
In order to implement MappedManyToMany, a field is added to each entity that refer-
ences its opposite number in the relationship. For example, the Book entity has an
authors object B that passes four parameters to the MappedManyToMany field: the
entity representing the join table, the foreign key for this entity, the target foreign
key, and the target entity companion, which in this instance is Author. The same is
true for the Author entity, but the parameters passed to MappedManyToMany instead
reference Book C.

 The three entities are now constructed in accordance with the original proposal
outlined in figure 10.1. Now it would be most helpful if Lift could create the tables in
the database for us. Fortunately, there’s a solution for this in the form of Schemifier.

10.1.4 Schema creation and control

During the development phase of a project, the database schema can often be in mod-
erate flux as fields are added or altered. To this end, it can be quite helpful for the
corresponding database schema to be updated as well. Mapper provides a tool called
Schemifier for exactly this purpose.

 In order to use Schemifier, you need to register the relevant entities in your boot
class, as shown:

if(Props.devMode)
 Schemifier.schemify(true, Schemifier.infoF _,
 Author, BookAuthors, Book, Publisher)

Provided this call is specified after the database connection call, this one line of code
will attempt to connect to the specified database and create or alter the tables based
upon changes to the passed entity definitions.

NOTE The database will only be updated or affected when the application is
running in development mode.

The first argument required by the Schemifier object is a Boolean that determines
whether or not the tables will actually be written to the database. The second parameter
is a logging function that comes with Schemifier by default, and there are two possible
options: Schemifier.infoF, which will log the actual SQL statements that Schemifier
is trying to use, and Schemifier.neverF which will disable logging of these creation
statements. When logging is enabled, you’ll see output like this in the console:

INFO - CREATE TABLE book_authors (author BIGINT , book BIGINT)
INFO - ALTER TABLE books ADD COLUMN publisher_id BIGINT
INFO - CREATE INDEX book_authors_author ON book_authors(author)
INFO - CREATE INDEX book_authors_book ON book_authors(book)
INFO - CREATE INDEX books_publisher_id ON books (publisher_id)

As you can see here, Schemifier is creating tables and adding columns and even indi-
ces. By default, Schemifier uses the field names defined in the entity for the names of

236 CHAPTER 10 Persistence with Mapper
the database columns, but there are situations where you may not want this, or you
may want to assign a different name for operational reasons. Mapper supports this
with a combination of approaches.

 Like the global LiftRules configuration object that controls Lift’s WebKit, Map-
per has its own configuration object called MapperRules. This object primarily con-
trols the interaction with the backend database, and naming is one of those control
systems. Consider the following:

import net.liftweb.util.Helpers
MapperRules.columnName = (_,name) => Helpers.snakify(name)
MapperRules.tableName = (_,name) => Helpers.snakify(name)

These two lines essentially instruct Mapper to address the database using column and
table names that use snake case—words separated by underscores in the place of
spaces. For example, an object field called updatedAt would be translated to a column
name of updated_at.

 Although this covers many common practices, there are situations where you’d
prefer the underlying database to differ entirely from a given field name. For exam-
ple, in relationships, a lot of developers prefer to have the foreign key use column
names suffixed with “_id”. In the case of the many-to-many join table outlined in list-
ing 10.3, you might prefer to keep the collection named publisher but have the col-
umn named publisher_id rather than just publisher. In order to do this, you can
override the dbColumnName method on any given Mapper field as shown:

object publisher extends LongMappedMapper(this, Publisher){
 override def dbColumnName = "publisher_id"
}

The usefulness here should be apparent. This method is present in every Mapped-
Field subtype, so you can override the actual column name on a field-by-field basis if
you wish. As it happens, each field supplies several things that you might want to over-
ride. The available options are shown in the next listing.

object exampleThing extends MappedString(this, 50){
 override def dbColumnName = "custom_name"
 override def dbIndexed_? = true
 override def dbForeignKey_? = false
 override def dbNotNull_? = true
 override def dbPrimaryKey_? = false
 override def ignoreField_? = false
 override def writePermission_? = false
}

Here you can see some field methods provided by MappedField that change the
behavior of the underlying database column during schemification and querying.
The methods themselves are very self-explanatory so you shouldn’t need too much

Listing 10.6 Optional overrides to control common database interaction

237Interacting with Mapper
additional information. There are other options available, but these are the most
commonly used controls.

 Now that you have an appreciation for designing and constructing Mapper enti-
ties, the next section will show how you can interact with Mapper, run queries on the
database, and work with the resulting data set.

10.2 Interacting with Mapper
Now that the Mapper entities are defined and the database schema has automatically
been generated, you’re left with a fresh, empty database complete with all the neces-
sary tables. This section covers the controls provided by Mapper for constructing, que-
rying, updating, and deleting records in the backend database. Section 10.2.1 details
how you can insert data into the database purely by interacting with the Mapper enti-
ties, and section 10.2.2 demonstrates the different ways in which you can use Mapper
to construct type-safe queries, or even write your own SQL statements directly.

 Let’s start by inserting some data into the database using the Mapper entities.

10.2.1 Creating data

Given a Mapper entity, there are some standard mechanisms for inserting content
into the backend database. In order to demonstrate this Mapper functionality, you’ll
need to use the SBT console command. In practice, this means you’ll be able to inter-
act with the database live, right from within the terminal window.

 To get started, type console at the SBT shell. Provided all your code compiled with-
out errors, this will load the Scala REPL with all your entities on the classpath. Once
that’s loaded, you’ll first need to run the following command to configure your Lift
environment and then import the model classes (assuming you used the package
name sample.model).

scala> new bootstrap.liftweb.Boot().boot
scala> import sample.model._

There will be a slight pause while the Boot class executes, and depending upon your
setup, you may see console output from the Schemifier. When that’s complete, con-
sider the first entity you created, Publisher, and enter the following command:

Publisher.create.name("Manning").description("What a great company")

This creates a new instance of the Publisher class with the specified field content.
Every call to the apply method on a field returns the instance of the Mapper entity,
which allows you to write this chained-field notation. The REPL will likely output
something similar to this:

res3: sample.model.Publisher = sample.model.Publisher={createdAt=Sun,

➥2 Jan 2011 17:05:25 UTC,updatedAt=Sun, 2 Jan 2011 17:05:25 UTC,

➥id=-1,description=What a great company,name=Manning}

Notice specifically how the values of createdAt and updatedAt have been set. This is
due to the CreatedUpdated trait that was composed into the entity earlier, in listing 10.1.

238 CHAPTER 10 Persistence with Mapper
This is all well and good, but at this point the instance hasn’t been saved, and the data-
base is still untouched. There are a couple of ways to save the instance:

scala>Publisher.create.name("Manning").description("Great company").save()
res5: Boolean = true

scala>Publisher.create.name("Manning")

➥.description("Great company").saveMe()
res6: sample.model.Publisher = sample.model.Publisher={...}

The first command here saves the entity to the database and returns a true value if
the operation is successful. The second command calls saveMe, which returns the
resulting instance as opposed to a Boolean. This can be helpful if you need to con-
tinue to work with the same entity after it has been saved. Both of these operations
are capable of throwing exceptions if there was a fatal error in conducting the
insert operation.

 You can see that adding a single record to a table is pretty straightforward, but you
may be wondering how you can add to the collections representing OneToMany and
ManyToMany. That’s fairly simple too:

scala> val manning = Publisher.create.name("Manning").saveMe
manning: sample.model.Publisher = sample.model.Publisher={...}

scala>Book.create.title("Lift in Action").publisher(manning).saveMe
res14: sample.model.Book = sample.model.Book={...}

Continuing the example of creating records here, the first command creates a
new Publisher and persists it to the database. The returned instance is assigned
to the value manning. The second command creates a new Book instance and
explicitly assigns the publisher field, with the Publisher instance saved in the
manning value.

 Although this is fairly explicit, you may prefer a more collection-oriented API. The
exact same process can be expressed with the following alternate syntax:

scala>manning.books += Book.create.title("Another book")
scala>manning.books.save

The LongMappedMapper field (books) defined on the Publisher instance defines
the += method, which allows you to append Mapper instances of the foreign key
type—in this case, Book. This collection-style syntax is exactly the same for many-to-
many relationships.

 Now that you’ve seen how to create data and insert it into the database, let’s start
exploring how you can query for specific records and load data dynamically.

10.2.2 Querying data

The vast majority of applications spend time doing reads rather than writes, and there
are many different ways that you can obtain data using raw SQL. Mapper supports sev-
eral of these mechanisms, but as with nearly all ORM systems, there is a point when
writing SQL directly is a more practical approach. This section covers the various

239Interacting with Mapper
methods you can use to access data with Mapper, and it also touches upon how you
can write SQL directly if you so wish.

 For the most part, all querying for an object of a specific type is done via the entity
companion object, and there are two primary methods that facilitate queries: find
and findAll. The former will only ever find a single record and will always return a
Box[YourMapper], whereas findAll returns a List[YourMapper].

 To start, let’s use the find method and assume you know the primary key for the
record you’re looking for:

scala>Publisher.find(10)
res26: Box[sample.model.Publisher] = Full(sample.model.Publisher={... })

Using the find method on the companion object, it’s possible to find the record by its
primary key. This is nice, but perhaps not all that useful because you’ll often want to
find a row by one or more field values. For this, Mapper has By parameters.

 Let’s assume you want to find a publisher by the name field alone, and only return
a single result:

scala>Publisher.find(By(Publisher.name, "Manning"))
res28: Box[sample.model.Publisher] = Full(Publisher={...,name=Manning})

Notice here that the find method is passed the By instance that first takes the field
type for which this constraint is based upon, and secondly takes the constraining
value. The By parameter (and its negative counterpart, NotBy) will work with any field
type; you just have to supply the right type of expected value.

 Here are some more examples:

import java.text.{DateFormat => Df}

Book.find(By(Book.title, "Wind In The Willows"))

Book.find(By(Book.publishedOn, Df.getDateInstance.parse("March 10, 1908")))

Author.find(NotBy(Author.email, "demo@demo.com"))

The key thing to observe here is that the constraint system is completely type-safe; you
couldn’t look for a string field and accidentally pass it a java.util.Date or other type.

 In addition to the regular By class, there are other types of By parameters, as out-
lined in table 10.4.

Table 10.4 Details of the other By parameters available in Mapper query constructs

Type Description and usage

ByList Often when retrieving something from the database, you’ll need to address multi-
ple columns in order to obtain the correct result. Mapper lets you pass several
fields in addition to the regular find syntax:

Book.findAll(ByList(Book.title,
 "Lift in Action" :: "Scala in Depth" :: Nil))

mailto:demo@demo.com

240 CHAPTER 10 Persistence with Mapper
However you choose to implement your query, the resulting instance of the find
method will always have a map and flatMap function, either from the Box[Mapper] or
List[Mapper] result type, and as such, the usage pattern is very similar for either find
or findAll Mapper query constructs coupled with any of the By locators.

 Let’s now investigate how to actually use the resulting values once you’ve retrieved
an instance from the database. The following listing details such an example.

import net.liftweb.mapper.By

val manning = Publisher.find(

➥By(Publisher.name, "Manning"))

By_> and By_< Another common idiom is operating on records that are either less than or
greater than a certain constraint. The By_< and By_> methods get you
exactly that.

Book.findAll(By_<(Book.publishedOn, date))

ByRef and
NotByRef

The ByRef mechanism looks for equality in two field values on the same
entity. This can sometimes be helpful for creating tree-like structures or
self-referencing table joins. For example, given a tree structure, you could do
the following:

TreeNode.findAll(ByRef(TreeNode.parent,TreeNode.id))

BySql There are times when it makes more sense to write the SQL for the WHERE
clause directly, such as if you have a calculation best expressed in SQL. With this
tool, you can retrieve Mapper instances however you like, provided it returns a
compatible result with the calling Mapper entity. This means that you can’t return
a List[Dog] from the Cat Mapper. Note that the second parameter is the spe-
cial IHaveValidatedThisSQL type. This forces the developer to check that
the SQL is operational and secure, and to put their name and date by it for
accountability purposes.

Book.findAll(
BySql("created_at > (CURRENT_DATE - interval '2 days')",
IHaveValidatedThisSQL("tperrett", "2010-01-02")))

BySql (with
parameter values)

The other method for using BySql allows you to use placeholders in the SQL
statement, so that the passed values are properly escaped and your code stays
safe from SQL injection attacks. The placeholders in the SQL statement are ques-
tion marks (?). You must still pass the IHaveValidatedThisSQL type, and
then your parameter values in the order that you wish them to be replaced in the
SQL statement.

Book.findAll(BySql("id BETWEEN ? AND ?",
IHaveValidatedThisSQL("tperrett", "2010-01-02"),
 start, end))

Listing 10.7 Accessing values of a Mapper instance returned from the database

Table 10.4 Details of the other By parameters available in Mapper query constructs (continued)

Type Description and usage

Query DB for
publisher “manning”

B

241Interacting with Mapper
val name = manning.map(_.name.is).openOr("unknown")

for {
 publisher <- manning
 book <- publisher.books.all
} yield book.title.is.openOr("No Name")

val book = Book.find(By(Book.title, "Lift in Action"))

book.flatMap(_.publisher.obj.map(_.name)).openOr("No Publisher")

This listing demonstrates a couple of different operations using a specific publisher
instance once it has been retrieved from the database B. The first technique is for
accessing a specific field (or set of fields) but that provides a default value in case the
database call was not successful or yields no results. Note the specific use of the is
method on the name field. All MappedField subtypes have an is method for obtaining
the value they contain, which in this case is a String.

 The second, and slightly more complex example, utilizes a for comprehension to grab
the list of book titles this publisher has available. By calling the all method on the
books MappedOneToMany collection, Mapper will retrieve the list of book entities.
There is a slight hitch with this, however, in that Mapper will retrieve the list of books
in an arbitrary way, with no particular ordering. You can apply a QueryParam to the
MappedOneToMany definition to ensure that it always pulls back the results in alphabet-
ical order (for example); this is more efficient than sorting the results in memory with
a Scala sortBy call. To achieve this, adjust the books collection like so:

object books extends MappedOneToMany(Book, Book.publisher,
OrderBy(Book.title, Ascending))

You can append any number of query parameters to the definition to control the
returned result.

WARNING There is a slight gotcha with using the all method, in that once it
has been called for the first time in the scope of a given execution, the result
is cached. Any updates you make to the child collection won’t be represented
until you call the refresh method to repopulate the result set.

The final example in listing 10.7 demonstrates the reverse method for traversing up
the collection and determining the publisher’s name given only a book instance. The
Book entity has a LongMappedMapper defined called publisher that acts as the foreign
key to the Publisher entity. You can just ask the publisher field for the correspond-
ing instance by using the obj method. The obj method will return a Box[Mapper]
instance of the parent type.

 Now that you have the basics of retrieving records, let’s explore some of the other
query parameters that are available, like OrderBy and Distinct, by using the findAll
method in some more examples.

QUERY PARAMETERS

Earlier in this section, you briefly saw how you could use query parameters to apply
additional behavior to the Mapper relationships. But that isn’t the end of the story for

242 CHAPTER 10 Persistence with Mapper
query parameters, because they encapsulate a lot of additional functionality you might
want to apply to a SQL statement, both in terms of value comparison and control.
Table 10.5 details the available query parameters and relevant samples of how you can
use them in the context of a Mapper query statement.

Table 10.5 Optional query parameters for controlling the query your Mapper entity
will execute

Query parameter Description and usage

In The In query parameter allows you to control the selection of records in
exactly the same way you usually would with the IN SQL keyword.

Book.findAll(
 In(Book.publisher, Publisher.id,
 Like(Publisher.name, "Man%"))).map(_.title)

InRaw The InRaw parameter allows you to specify your own SQL for the
subquery part of the IN only. The offshoot of this is that there are
usually some additional massaging steps required to get the exact
result you want. If you’d rather push this back to the database engine
and write more complex queries, see listing 10.7 for information on
findAllByInsecureSql and findAllByPreparedStatement.

Book.findAll(InRaw(
Book.publisher,
 "SELECT id FROM publishers
 WHERE created_at >
 (CURRENT_DATE - interval '2 days')",
IHaveValidatedThisSQL("tperrett", "2010-01-02")))

Like Once again, this query parameter is a direct representation of the SQL key-
word and is used to retrieve wildcard patterns from your data set. Assuming
you had a list of Manning books in the database, you could search for all
the “in Action”-style books using this simple expression:

Book.findAll(Like(Book.title, "% in Action"))

StartAtandMaxRows It’s often useful to create systems that have a paginated view, or perhaps
you need to collect a ranged subset of data. StartAt and MaxRows pro-
vide you an abstraction for specifying limited ranges of data.

Book.findAll(StartAt(10),MaxRows(10))

OrderBy OrderBy does exactly what it says on the tin and sorts the result set by
the passed field in ascending or descending order.

Book.findAll(OrderBy(Book.title, Ascending))
Book.findAll(OrderBy(Book.title, Descending))

OrderBySql If the regular OrderByQueryParam doesn’t give you what you want, you
may wish to use OrderBySql instead to gain some additional control.

Book.findAll(
 OrderBySql("created_atDESC, title DESC",
 IHaveValidatedThisSQL("tperrett", "2010-01-02")))

243Interacting with Mapper
Although working with query parameters provides you a fair level of control, this
may still not quite be enough, or perhaps the SQL being generated isn’t optimal for
your particular data set. In this situation, you can execute SQL directly on the
underlying database.

DIRECT SQL EXECUTION

The entities you’ve defined so far are essentially type-safe abstractions on a low-level
access to the JDBC data store. There are a couple of different levels at which you can
execute your own, custom SQL. The first involves using the findAllByInsecureSql
method on your entity companion object. For the second, you throw away your enti-
ties and interact with the net.liftweb.mapper.DB object instead. The DB object is far
“closer to the metal” than the entity abstractions shown thus far, but there are pros
and cons to both approaches.

 When you need to retrieve a particular set of data that fits into an already defined
entity, using findAllByInsecureSql is probably your best bet. A good use case would
be if you needed to find a group of records by using some complex aggregated func-
tion, but ultimately the result was compatible with (for example) the Book entity. In
that case, having a List[Book] is quite helpful, because you can achieve the lookup
you want but still retain the Mapper helpers and all the functionality therein. The fol-
lowing listing shows an example.

Author.findAllByInsecureSql("""
 SELECT *
 FROM authors
 WHERE email LIKE '%@demo.com'
 OR email LIKE '@another.co.uk'""",
 IHaveValidatedThisSQL("tperrett","2010-1-2"))

As you can see in the listing, this SQL specifically deals with authors, so it makes sense
to return Author instances. The complexity here was more in the specific SQL expres-
sion for retrieving the desired data set, rather than it being an ad hoc query that
didn’t fit into the predefined entities.

PreCache Finally we come to PreCache. When Mapper loads an entity that has a for-
eign key defined, the foreign key isn’t usually evaluated until it’s requested.
That is to say, it’s lazily loaded. There are situations where you may know
that you’re going to be accessing this collection so preloading the results of
the foreign key can be advantageous instead of executing additional queries
later on.

Book.find(By(Book.id, 5), PreCache(Book.publisher))

Listing 10.8 Using the findAllByInsecureSql method

Table 10.5 Optional query parameters for controlling the query your Mapper entity
will execute (continued)

Query parameter Description and usage

mailto:'@another.co.uk

244 CHAPTER 10 Persistence with Mapper
 If the query you want to execute was not directly related to a specific entity, or if
it encompasses several tables in the result, you may consider using the DB object
directly to run the SQL statement. The only downside here is that you get a raw
Tuple2(List[String], List[List[String]]) as the result, which means you have
to fish the values out of the structure accordingly. The following listing shows an
example of using the DB object to execute a query.

importnet.liftweb.mapper.DB

val result = DB.runQuery("""
 SELECT * FROM authors
 WHERE email LIKE '%@demo.com'
 OR email LIKE '@another.co.uk'""")

This listing details the same SQL query as listing 10.8, but this time it’s being run
directly with the DB object by using the DB.runQuery method. The DB object is essen-
tially the core of all database connections in Mapper, and later in section 10.3 you’ll
see how you can use it to build transactions and talk to multiple databases.

 Now that you have a good understanding of how to read records from the database
using Mapper’s query constructs, let’s move on to updating and deleting.

10.2.3 Updating and deleting data

There will come a time when you want to update or delete some data in your applica-
tion. Fortunately, this is pretty simple and builds on what we’ve already covered with
regard to reading data.

 The first thing you need to do in order to update a particular database entry is to
obtain an entity instance to make changes to, and from there you can set new values
into the fields and call save or saveMe, exactly as you did to create the records in the
first place. Consider the following console session:

scala> val manning = Publisher.find(By(Publisher.name, "Manning"))
manning: Box[Publisher] = Full(Publisher={...})

scala>manning.map(_.name("Manning Publications").saveMe)
res88: Box[Publisher] = Full(Publisher={..., name=Manning Publications})

That’s all there is to it! Simply obtain the Mapper entity instance that you wish to mod-
ify, pass the data to the appropriate fields, and call save.

 Deletion is a little different. Let’s consider a basic example:

scala> val manning = Publisher.find(By(Publisher.name, "Manning"))
manning: Box[Publisher] = Full(Publisher={...})

scala>manning.map(_.delete_!).openOr(false)
res94: Boolean = false

The important thing to note here is the delete_! method. The _! suffixed to the end of
the method is an indication that it’s a dangerous method and should be used with care.

Listing 10.9 Running a query directly using the DB object

mailto:'@another.co.uk

245Interacting with Mapper
 Deleting a single record is quite straightforward. But what if you needed to delete
lots of records? Well, each entity companion has a method called bulkDelete_!! just
for this kind of task:

Book.bulkDelete_!!(Like(Book.title, "% in Action"))

As you can see, the usage is simple and once again makes use of the query parame-
ters to define the subset of records that should be deleted. In this example, the
query would delete all records from the books table where the title was an in
Action book.

 You may be wondering what happened to other records that referenced these
rows. As it stands, they’re effectively orphaned because there is no constraint to cas-
cade delete operations to dependent rows. This is an easy fix, though, because you
can add some additional code to the foreign key constraints in the Publisher entity,
as follows.

class Publisher extends LongKeyedMapper[Publisher]
 with CreatedUpdated with IdPK
 with OneToMany[Long,Publisher] {
 ...
 object books extends MappedOneToMany(Book, Book.publisher,
 OrderBy(Book.title, Ascending))
 with Owned[Book]
 with Cascade[Book]
}

In order to properly cascade the deletion from Publisher down to Book, you need
to compose the Owned and Cascade traits into the books MappedOneToMany collec-
tion B. With this change in place, whenever you delete a Publisher, their books
will also be removed.

TIP At the time of writing, there is a slight gotcha with the way cascading deletes
work. The MappedOneToMany field isn’t actually a field, so there’s nothing to ini-
tialize it before it has been touched by your calling code, because all object ini-
tialization in Scala is lazy. Just ensure that you touch the books field before
calling delete_! in order to see the cascading delete operate as intended.

That’s pretty much all you need to know about updating and deleting entity records
with Mapper. It’s surprisingly straightforward.

 You’ve now got the Mapper relationships set up, and you’re freshly versed in cre-
ate, read, update, and delete operations, so the next things to look at are validation
and lifecycle callbacks.

10.2.4 Validation and lifecycle callbacks

Most applications require validation, whether it’s something simple like ensuring that
a field has a value, or something more complicated like applying a custom regular

Listing 10.10 Adding cascading deletes to the Publisher entity

Define cascade
requirement

B

246 CHAPTER 10 Persistence with Mapper
expression to ensure that an entry conforms to a specific pattern. Mapper supports a
set of validations out of the box for common use cases, such as minimum string length
and regular expressions, but creating your own validation methods is trivial.

 The second thing this section covers is the lifecycle of Mapper entities. Each Map-
per can specify functions that should be executed at different stages in its own lifecy-
cle. For example, you could specify functions that run beforeSave, afterSave, and a
whole lot more. By defining these functions, you’re passed the current Mapper
instance and can then create any function you want.

VALIDATION

To get started, let’s add a minimum-length validation to the Author firstName field.
The following listing shows the changes required for the Author entity.

class Author extends LongKeyedMapper[Author]
 with CreatedUpdated with IdPK
 with ManyToMany {
 ...
 object firstName extends MappedString(this, 255){
 override def validations =
 valMinLen(3,
 ➥ "Name must be at least 3 characters") _ :: Nil
 }
 ...
}

In this listing, you override the validations method B and supply one of the preba-
ked validation functions: valMinLength. As the name suggests, this function validates
the minimum length of the string value the field contains. Some of the other field
types will automatically validate themselves: for example, MappedEmail will validate
itself as an email address. But given a type such as MappedDouble, you’d need to con-
struct your own validation method to suit your business logic.

 The following listing shows an example of building your own validation function.
This one can be applied to book titles to ensure users can only add books that have a
title ending with in Action.

import net.liftweb.util.{FieldIdentifier,FieldError}

object Validations {
 def onlyInActionBooks(field: FieldIdentifier)
 ➥ (string : String) =
 if(!string.toLowerCase.endsWith("in action"))
 List(FieldError(field, "Not an in action book?"))
 else List[FieldError]()
}

class Book extends LongKeyedMapper[Book]
 with CreatedUpdated with IdPK with ManyToMany {

Listing 10.11 Adding validation to the Author entity

Listing 10.12 Adding custom validation to Mapper fields

Apply validation
function

B

Custom
method

B

247Interacting with Mapper
 ...
 object title extends MappedString(this, 255){
 override def validations =
 Validations.onlyInActionBooks(this) _ :: Nil
 }
 ...
}

In this listing, you create another object called Validations and build a method
called onlyInActionBooks B. The custom validation is then applied by overriding
the validations method on the field C. As you can see, the method does a very basic
bit of logic to check that the string value ends with “in action”. Note that if the string
doesn’t end with “in action”, the method returns a List[FieldError] containing a
message that would be displayed to the user on the frontend. Although trivial, this
same approach would work well for any custom validation you might want to apply in
your own applications.

 To round off this section, let’s take a tour of the lifecycle functionality each Map-
per supports and implement an example to demonstrate the idiom used for all call-
back points.

LIFECYCLE CALLBACKS

Each and every Mapper entity has a set of lifecycle callbacks that can be used to exe-
cute a list of functions at different points in the entity’s lifecycle. Figure 10.2 shows the
various points you can hook into.

 There are five lifecycle states, each of which has a before and after hook.
Table 10.6 details the various states.

With this in mind, listing 10.13 demonstrates how to implement the lifecycle hook for
beforeSave and afterSave in the companion object of Book.

Table 10.6 Mapper lifecycle states

State Description

Create Whenever a call to YourEntity.create is made, the before and after
hooks are executed at the appropriate time.

Save When a new record is added to the database; essentially surrounding the
INSERT procedure.

Update When a record for the given Mapper instance already exists in the data-
base, and the content is modified and saved. Equivalent to a table
UPDATE procedure.

Validation Strictly speaking, validate can be called at whatever point is best for
your application. Calling the validate method triggers all the valida-
tion rules for each field within the entity and the lifecycle methods wrap
this operation.

Delete Whenever there is a call to delete_! for this Mapper instance.

Apply
validator

C

248 CHAPTER 10 Persistence with Mapper
object Book extends Book with LongKeyedMetaMapper[Book]{
 ...
 override def beforeSave = List(book =>
 println("About to save '%s'".format(book.title.is)))

 override def afterSave = List(book =>
 println("I've saved!"))
}

The lifecycle hooks are implemented in the companion object of Book, and you can
see here in the listing that the method override defines a list of functions, with
each function being passed the correct instance of the entity in turn. After imple-
menting this, whenever you save a new record, you should see the messages print to
the console.

10.2.5 Display functionality

In addition to being a frontend to your database, Mapper also provides richer abstrac-
tions for data types than your typical database allows. Earlier in section 10.1.2, you

Listing 10.13 Implementing the beforeSave and afterSave lifecycle hooks

Figure 10.2 Illustration of the different phases a Mapper can go through and
where you can execute different functions around this process. Strictly
speaking, the process doesn’t flow from one to another in such an intrinsic way,
but this details the lifecycle effectively.

249Interacting with Mapper
heard about the richness of field types and how they can represent more than just
plain types, such as string—you can add meaning to a field by using MappedEmail, for
example, which provides some context about what that string actually does or means.
As an extension to this idea, Mapper also allows these rich fields to render themselves
as form types.

 For example, imagine a MappedEnum. It knows right out of the box that its default
course of action is to render itself as a <select> element with the options from the
enumeration. MappedString, on the other hand, generates a generic <input
type="text />. In essence, you can quickly create frontends to Mapper entities by
utilizing their ability to render themselves as HTML markup. In addition, Mapper
has close integration with LiftScreen—so much so that LiftScreen can render a
complete form with only a couple of lines of code.

 You’ll be using the Book entity for this example, so before we look at how to imple-
ment the Mapper toForm method, make the change shown in the next listing to the
publisher LongMappedMapper.

import net.liftweb.common.Full

object publisher extends LongMappedMapper(this, Publisher){
 ...
 override def validSelectValues =
 Full(Publisher.findMap(
 OrderBy(Publisher.name, Ascending)){
 case p: Publisher => Full(p.id.is -> p.name.is)
 })
 }

The small change to the model here B essentially tells Mapper how it can obtain the
correct information to display in a drop-down select input from the foreign reference
object. In this case, it grabs a list of publishers ordered by name and makes the value
of the select list their database ID field.

 Now that this small bit of plumbing is done, you can implement the following
snippet:

import net.liftweb.common.Full
import sample.model.Book

class Demo {
 def example = Book.findAll.head.toForm(Full("Submit"), { _.save })
}

This one liner is purely for example purposes. In reality, you’d likely obtain the Map-
per instance by some slightly more useful means than grabbing the top one in the list,
but the purpose here is to show that given a Mapper, you only need to call toForm to
generate the form markup, inputs, and everything you need. Figure 10.3 shows what
this code generates in the browser.

Listing 10.14 Generating a select box from a foreign key

Build select
input

B

250 CHAPTER 10 Persistence with Mapper
 As you can see, with this one line of code you
have a fully functioning update form. As it stands,
the field names aren’t ideal, but all that’s required is
to override the displayName method of the various
form fields, and Mapper will use those instead of
the raw field names.

LIFTSCREEN INTEGRATION

In addition to the toForm support that Mapper has,
it also has great integration with LiftScreen and
Wizard, meaning that you can build fully functional
forms with minimal code and get baked-in function-
ality, such as validation presented right next to the
input fields.

 The following listing shows how to implement LiftScreen just by using a Mapper.

import net.liftweb.http.{LiftScreen,S}
import sample.model.Book

object BookScreen extends LiftScreen {
 object book extends ScreenVar(
 ➥Book.find(1) openOr Book.create)

 addFields(() => book)

 def finish(){
 if(book.save) S.notice("Saved!")
 else S.error("Unable to complete save...")
 }
}

This is a basic implementation of using Mapper with LiftScreen. First, the entity is
loaded into a local ScreenVar B, though you wouldn’t call find(1) in your code—
you’d hopefully load something more meaningful!. Then that entity is registered
with the screen C. This technique will subsequently display all the fields defined on
that Mapper.

 If, however, you only want to register certain fields, you can just register the ones
you want rather than the top-level object:

addFields(() => book.title)
addFields(() => book.blurb)

The particular benefit of the LiftScreen approach over using the previously illus-
trated toForm is that you get better control over templating, validation, and a whole
host of other things, so it’s best to use LiftScreen over toForm where you can.

 In the past two sections, you’ve seen the majority of the Mapper functionality. The
next section takes a look at some of the more advanced features of Mapper, from

Listing 10.15 Building a LiftScreen with only a Mapper

Load Mapper
instance

B

Register with
LiftScreenC

Figure 10.3 Example of the one-line
form generated by Mapper

251Advanced Mapper
query and performance logging, through to transactions and creating your own cus-
tom field types.

10.3 Advanced Mapper
When your development reaches a certain stage, you may find yourself needing to
tune some of your queries or maybe create a custom field that represents part of your
own problem domain as an intrinsic part of the Mapper model. This section addresses
these types of concerns and shows you how to implement query logging with Mapper
so you can see what SQL is being executed in the lifecycle of a request. You’ll also see
how to grab metrics from query executions, which you could either log or pass to a
monitoring tool. In addition, you’ll see how you can use Mapper to construct transac-
tions containing operations that must all succeed or all roll back.

 First up, though, let’s take a look at the query logging support that Mapper offers
and build a sample atop the entities you created earlier in this chapter.

10.3.1 Query logging

When structuring your application and migrating from development to production, it
can often be important to get a handle on the queries that your ORM system is gener-
ating, because it may be making inefficient choices that aren’t specifically tailored to
your data set. Mapper provides hooks for logging the queries generated by Mapper
and for delivering performance statistics on the length of any given query execution.

 Like many things in Lift, functionality often boils down to simple functions. In this
instance, Mapper isn’t any different because it has the concept of logging functions.
Each function is of type (DBLog, Long) => Any, where DBLog is an encapsulating type
containing information about the query, and the Long is the time of execution.

 Before exploring this any further, let’s take a look at an example. The following
listing shows how you can use the query log.

import net.liftweb.util.LazyLoggable
import net.liftweb.mapper.{DB,DBLogEntry}

class Boot extends LazyLoggable {
 def boot {
 ...
 DB.addLogFunc((query, time) => {
 logger.info("All queries took " + time + " milliseconds ")
 query.allEntries.foreach((e: DBLogEntry) =>
 logger.info(
 e.statement + " took " + e.duration + "ms"))
 })
 ...
 }
}

Listing 10.16 Implementing a Mapper logging function

Log all queries
in this request

B

252 CHAPTER 10 Persistence with Mapper
During the application boot phase, you can add your own custom logging functions
so that every time Mapper makes a query, it will be logged as you see fit. In this
example, notice that the Boot class inherits the LazyLoggable trait, and thus gains
access to the logger value and the ability to send messages at different levels to the
logging backend.

 The important definition block starts with the DB.addLogFunc invocation. The
DB.addLogFunc method expects the logging function discussed earlier as its argument.
In this example, you can see that the query and time parameters pass to a block that
executes the logging calls. The query object is actually an instance of DBLog, which is a
special query logging type that contains information about the things Mapper is doing.
Here the code calls the allEntries method, which returns a list of DBLogEntry. This
list is subsequently iterated through using foreach, and each log entry has the state-
ment executed and the duration of execution dumped to the log B.

 If you boot up the console and start running queries, you’ll see output similar to
the following:

INFO - All queries took 52 milliseconds
INFO - Exec query "SELECT publishers.name, publishers.id,

publishers.description, publishers.created_at, publishers.updated_at
FROM publishers WHERE id = 1" :
org.postgresql.jdbc4.Jdbc4ResultSet@2c3474d6 took 44ms

INFO - Closed Statement took 0ms

As you can see, this is a direct dump of the SQL query and specifically what Mapper
is doing.

 Many nontrivial applications require transactions to ensure consistency in their
application data. We’ll look at that next.

10.3.2 Transactions

A transaction is a process in which you have multiple queries to execute, but if one of
the operations fails or for some reason can’t be applied, all the other operations must
be rolled back to their state before any query execution began, ensuring that the data
set remains consistent.

 The classic example is that of bank accounts. Suppose person A has 10 pounds in
their bank account, and person B has 5 pounds in theirs. If person B had to pay per-
son A 5 pounds, person A would have 15 pounds and person B would have none. This
transaction would succeed, but consider a second transaction of another 5 pounds
from person B to person A. Person B would be unable to pay this (assuming overdrafts
aren’t allowed), so you’d need to make sure that person A’s bank balance wasn’t
updated if the debit from person B’s account failed. This is exactly the kind of sce-
nario that transactions were designed for. In the scope of any given transaction, the
operations either all succeed or they all fail with no side effects.

 Mapper supports transactions with the DB.use block. Operations are defined in
the block, and unless an exception is raised, the block is committed to the database.

253Advanced Mapper
Implementing the DB.use block in the bank account scenario would look something
like this:

DB.use(DefaultConnectionIdentifier){ connection =>
 account1.deposit(5)
 account2.withdraw(5)
}

In this example, the value of 5 pounds is being taken from account2 and added to
account1. Let’s take a moment to look at the Mapper implementation for this
Account entity, as shown in the next listing.

import net.liftweb.mapper._

object Account extends Account with LongKeyedMetaMapper[Account]{
 override def beforeSave = List(_.validate)
}

class Account extends LongKeyedMapper[Account] with IdPK {
 def getSingleton = Account
 object balance extends MappedLong(this){
 override def validations =
 AccountValidations.notLessThanZero(this) _ :: Nil
 }
 def deposit(value: Long) = updateAndSave(value)
 def withdraw(value: Long) = updateAndSave(-value)
 def updateAndSave(value: Long) =
 balance(balance.is + value).save
}

import net.liftweb.util.{FieldIdentifier,FieldError}

object AccountValidations {
 def notLessThanZero(field : FieldIdentifier)
 ➥ (amount : Long) =
 if(amount < 0) throw new Exception(
 ➥"Cannot be less than zero. You need money!")
 else List[FieldError]()
}

The Account entity is really no different from the other entities you’ve built through-
out this chapter. First, this listing utilizes the lifecycle methods to automatically
enforce validation upon saving the record B. The validation it applies is a custom val-
idation method defined separately in the AccountValidations object D, which
ensures that the balance value is greater than 0; if the validation fails, it throws a
generic exception. This is important because the DB.use block should not commit if
one of the balance values is lower than 0, and in order for this to take effect, an excep-
tion must be thrown. Finally, to make usage simpler the Account entity also imple-
ments two helper methods, deposit and withdraw that update the value of balance
accordingly C.

Listing 10.17 Implementing the Account entity

Apply
validationB

Implement helper
methods

C

Define validation
method

D

254 CHAPTER 10 Persistence with Mapper
 Let’s load up the console and play with this new entity:

scala> val account1 = Account.create.balance(5).saveMe
account1: sample.model.Account = sample.model.Account={id=1,balance=5}

scala> val account2 = Account.create.balance(5).saveMe
account2: sample.model.Account = sample.model.Account={id=2,balance=5}

scala>DB.use(DefaultConnectionIdentifier){ connection =>
 | account1.deposit(5)
 | account2.withdraw(5)
 | }
res1: Boolean = true

scala>DB.use(DefaultConnectionIdentifier){ connection =>
 | account1.deposit(5)
 | account2.withdraw(5)
 | }
java.lang.Exception: Cannot be less than zero. You need money!
at sample.model.AccountValidations$.notLessThanZero(Account.scala:29)

Notice how two account records were created and their balance values were assigned
as 5. The first attempt at the transaction completed without issue, because there were
sufficient funds in the bank account to make the transaction, but the second attempt
failed and the database value wasn’t updated.

 The last advanced topic to be covered in this section is creating your own custom
field types. Mapper comes with a whole set of fields that will cover the majority of your
use cases, but there may be situations where you want to go beyond those fields.

10.3.3 Custom mapped fields

Mapper ships with many different field types, but there may come a time when you’d
like to construct your own representation of a field, perhaps either extending one of
the regular types, like MappedString, or making something completely new. Which-
ever you want to do, most things should be possible, provided you can boil the type
down to a SQL-compatible value and store the piece of data in an RDBMS.

 Imagine if you will, a specialized field type that uses column aggregation to repre-
sent two database fields with a single MapperField subtype. Consider a field that rep-
resents a user’s first and last names in a name field in the Mapper entity, but stores the
values as two distinct columns. Figure 10.4 illustrates such a proposal.

Figure 10.4 Field aggregation from the Mapper model (right) to the
database table (left)

255Advanced Mapper
As you might imagine, this is more complex than a regular one-column, one-field save
operation. But Mapper gives you a fairly reasonable abstraction with which to work. In
order to execute the aggregation, you need to give Mapper some additional informa-
tion about the columns and how they should be addressed. To that end, let’s get
started by making the implementation for MappedSplitString.

 The following listing details an example of aggregation implemented in a Map-
per entity.

import scala.xml.Elem
import net.liftweb.mapper._
import net.liftweb.common.{Box,Full,Empty,Failure}
import net.liftweb.util.FatLazy
import net.liftweb.json.JsonAST
import net.liftweb.json.JsonAST.JString
import net.liftweb.http.S
import net.liftweb.http.js.{JE,JsExp}
import java.sql.Types
import java.lang.reflect.Method
import java.util.Date

abstract class MappedSplitName[T<:Mapper[T]](
 val fieldOwner: T,
 val maxLen: Int) extends MappedField[String, T] {

 def dbFieldClass = classOf[String]

 override def dbColumnCount = 2

 override def dbColumnNames(name: String) =
 List("first","last").map(_ + "_" + name.toLowerCase)

 def targetSQLType = Types.VARCHAR

 override lazy val dbSelectString =
 ➥dbColumnNames(name).map(cn =>
 fieldOwner.getSingleton._dbTableNameLC + "." + cn
).mkString(", ")

 override def jdbcFriendly(column: String) =
 if(column.startsWith("first_"))
 firstName.get
 else if(column.startsWith("last_"))
 lastName.get
 else null

 def real_convertToJDBCFriendly(
 ➥value: String): Object = value

 def fieldCreatorString(
 ➥dbType: DriverType, colName: String): String =
 colName+" "+dbType.varcharColumnType(maxLen) +
 notNullAppender()

 def defaultValue = ""

Listing 10.18 Implementing column aggregation with Mapper, part 1

Specify class
types

B

Specify column
constraints

C

SQL converters
and generators

D

256 CHAPTER 10 Persistence with Mapper
 override protected[mapper] def doneWithSave(){}

 protected def i_obscure_!(in : String) : String = ""

 override def _toForm: Box[Elem] = Empty
 override def toForm: Box[Elem] = Empty

 def asJsExp: JsExp = JE.Str(is)

 def asJsonValue: Box[JsonAST.JValue] = Full(is match {
 case null => JsonAST.JNull
 case str => JsonAST.JString(str)
 })

 ...
}

As the code required to manufacture your own column is quite large, this listing has
been split into two parts. This first dollop of code outlines the custom field and inher-
its from MappedField. This means there’s a set of methods that you must implement
in order to satisfy the MappedField abstract methods, and the first part is where you
tell Mapper what type of class the value of this field will be B: in this case, it’s a simple
String. Second, you have to give Mapper some information about the columns and
field types the database should use C. As this is an aggregate column, you can instruct
Mapper to use two fields and make them of type VARCHAR (or whatever type is appro-
priate for your fields).

 Now that Mapper is aware of the types on both sides (database and code), you
must describe how this new field is to be addressed. It’s feasible that your implementa-
tion might use some vendor-specific SQL. For example, if you wanted to wrap some
special type up with SQL Server’s embedded XML query language, you could then
instruct Mapper how it should build that query using the methods defined at D.

 You may have noticed that the code in listing 10.18 pretty much only deals with
describing the fields and not with setting or handling values. The following listing
contains the second half of the code.

abstract class MappedSplitName ... {
 ...

 private var firstName = FatLazy(defaultValue)
 private var lastName = FatLazy(defaultValue)

 private def wholeGet = "%s %s".format(
 firstName.get, lastName.get)
 override def i_is_! = wholeGet
 protected def i_was_! = wholeGet
 override def readPermission_? = true

 override def writePermission_? = true

 override def real_i_set_!(value : String): String = {
 value.split(" ") match {
 case Array(first, last) =>

Listing 10.19 Implementing column aggregation with Mapper, part 2

Internal
state

B

GettersC

SettersD

257Advanced Mapper
 firstName.set(first)
 lastName.set(last)
 case _ => ""
 }
 this.dirty_?(true)
 wholeGet
 }

 override def setFromAny(in: Any): String = {
 in match {
 case JsonAST.JNull => this.set(null)
 case seq: Seq[_] if !seq.isEmpty =>
 seq.map(setFromAny).apply(0)
 case (s: String) :: _ => this.set(s)
 case s :: _ => this.setFromAny(s)
 case JsonAST.JString(v) => this.set(v)
 case null => this.set(null)
 case s: String => this.set(s)
 case Some(s: String) => this.set(s)
 case Full(s: String) => this.set(s)
 case None | Empty | Failure(_, _, _) =>
 this.set(null)
 case o => this.set(o.toString)
 }
 }

 def apply(ov: Box[String]): T = {
 ov match {
 case Full(s) => this.set(s)
 case _ => this.set(null)
 }
 fieldOwner
 }

 override def apply(ov: String): T = apply(Full(ov))

 private def wholeSet(in: String){
 real_i_set_!(in)
 }

}

This listing defines all the getting and setting operations for the field, essentially
defining how it should handle different types and values. First, this class contains two
internal variables that will hold the first and last parts of the person’s name in this triv-
ial example: firstName and lastName B. Next it defines the methods that will read
the value whenever it’s requested in calling code with the is method C. Finally, the
rather large block methods that form the bulk of the class define how the field should
respond on receipt of various types D.

 Finally, to complete the listing, the apply methods allow fields to be set with
nameOfField("value") notation E. These methods are essentially just proxies to the
set methods defined earlier in the class D.

 This section has shown you how you can create your own custom field types and
even present aggregate columns as a single Mapper field that saves data into multiple

SettersD

Set via
apply

E

258 CHAPTER 10 Persistence with Mapper
database columns. By providing Mapper with the information it needs to properly cre-
ate the query for the underlying data store, you can essentially store whatever you like
in a custom field type.

10.4 Summary
Throughout the course of this chapter, you’ve seen how you can utilize Mapper in
your Lift project and how it can be quickly utilized to build effective applications,
thanks to its close integration with other parts of the Lift framework.

 The first thing to be explored was how to configure various types of database con-
nections with Lift, and you also created a whole set of Mapper entities and explored
the relationship constructs available, including the OneToMany and ManyToMany traits.
By composing these traits into your Mapper entity definitions, you can gain access to
other field types, such as MappedManyToMany, that abstract away what would otherwise
be manual querying between objects. The entities defined here were also applied to
the Schemifier, so that during development Lift will automatically adjust the schema
of the database in accordance with the additions in your model, saving you the task of
migrating tables by hand.

 You also saw examples of Mapper’s query syntax and how to make range queries,
single queries, and build expressions that encompass custom constraints to retrieve
specific batches of data. This section also covered how to execute raw SQL on the data-
base via DB.runQuery.

 The next chapter covers Record. Mapper predates Record by a couple of years,
and Record brings with it support for modern NoSQL data stores, such as MongoDB,
as well as a completely different approach to dealing with relational databases via the
awesome Squeryl library.

Why use setFromAny?
If you’re looking at the code and wondering why the setFromAny method is set up
like it is, there’s a partly good reason for that. Mapper is one of the oldest parts of
Lift, and like all projects that have been around for a while, the earlier parts have a
different design than the newer components because trends and styles evolve over
time. setFromAny may not be particularly idiomatic of Scala’s type-safe approach,
but it’s idiomatic for Mapper and follows the conventions in other fields. Perhaps it’s
not ideal, but it’s a solidified and supported API for now.

Persistence with Record
The previous chapter discussed Mapper and how you can use it to define an active-
record style of interaction with a relational database. Mapper is one of the oldest
parts of the Lift framework, and some of the ideas that were born in Mapper even-
tually evolved into another persistence system called Record and Field, or Record
for short.

 Record builds upon the idea of having contextually rich fields in your data
model, but allowing you to interact with any data storage mechanism. This data stor-
age could be a relational database, a NoSQL solution such as MongoDB, or even
something as primitive as a filesystem. Record is ultimately a specialized persistence
facade designed to make the development of web applications more intuitive, no
matter which system is actually doing the persistence.

 This chapter discusses the anatomy that all Record facades share, irrespec-
tive of their storage mechanism or actual function. Many parts of Record have
been influenced directly by its initial vision of “keeping the meaning with the

This chapter covers
■ Common Record anatomy
■ Using Record for relational databases
■ Using Record for NoSQL data stores
259

260 CHAPTER 11 Persistence with Record
bytes.” You’ll see how Record shares and improves upon concepts from Mapper and
gives you a contextually rich wrapper around different persistence technologies
and libraries.

 One of the backends currently shipping with Record is called Lift-Squeryl, which
provides the ability to interact with relational database systems via a Scala JDBC library
called Squeryl (http://squeryl.org/). Squeryl provides a type-safe syntax for state-
ments, and you can be sure that if your code compiles, the statement will successfully
execute. This negates the all- too-common runtime issues that plague other ORM or
database abstraction systems.

NOTE Over the past three years, the so called NoSQL movement has become
increasingly prevalent as many developers building web applications face
both the issue of applications becoming write-oriented (resulting from the
prevalence of social media), and the move to solve the inherent impedance
mismatch between the application domain and ORM tools.

One of the major advancements of Record over Mapper is its ability to address both
relational and nonrelational backend systems. With such nonrelational systems now
being more widely adopted, Record comes with interfaces for the popular MongoDB
(http://www.mongodb.org/) and CouchDB (http://couchdb.apache.org/) databases.

 Before getting into any specific backend implementation of Record, though, let’s
walk through the common anatomy of a Record and see some of the functionality you
get right out of the box.

11.1 Common Record functionality
In order to get started with Record, it’s important to understand its package structure
and its derivative modules—its anatomy. Figure 11.1 shows the package structure at
the time of writing.

 The lift-record JAR essentially provides you with an abstract base of traits and
classes that act as building blocks for specific backend implementations. An applica-
tion that implements it wouldn’t typically include lift-record as a dependency directly;
rather, it would be transitively resolved by the implementation you are using. For
example, Lift Couch would be added to your project by including the following line,
which negates the need to explicitly include the Record dependency:

val couch = "net.liftweb" %% "lift-couch" % liftVersion

Figure 11.1 The package
structure of Record and
derivative projects

http://squeryl.org
http://www.mongodb.org
http://couchdb.apache.org

261Common Record functionality
It’s almost certain that you’ll be working with a persistence store, but for the
moment, let’s assume that you don’t have a persistence store composed into your
implementation. Even with no storage mechanism, you can still make Records that
model validation and other semantics, and ignore the fact that the data isn’t actu-
ally going anywhere. For the sake of this exercise, add the following record depen-
dency to your project configuration:

val record = "net.liftweb" %% "lift-record" % liftVersion

The following listing shows a simplistic usage of Record that has no way of saving data
but that allows for validation of the Record instance, among other things.

import net.liftweb.record.{MetaRecord, Record}
import net.liftweb.record.field.{LongField,
 OptionalEmailField, StringField}

class Example extends Record[Example] {
 def meta = Example

 val name = new StringField(this, ""){
 override def validations =
 valMinLen(5, "Must be more than 5 characters") _ ::
 super.validations
 }
 val funds = new LongField(this)
 val email = new OptionalEmailField(this, 100)
}

object Example extends Example with MetaRecord[Example]

This is one of the most basic Record implementations. As you can see, it’s composed
of two parts B in much the same way Mapper entities are, having both the class defini-
tion extending Record[T] and the meta or companion object that extends Meta-
Record[T].

 The record system comes complete with a whole set of field types that again are con-
ceptually similar to the MappedField subtypes from Mapper, with the distinct addition
of optional field types D. Fields in Record also allow for validation semantics, and some
of those are included in the Field type C. You can also implement your own custom
validation methods where applicable. Section 11.1.1 covers fields in more depth.

 Irrespective of the persistence system that you ultimately elect to use with Record,
the general concepts and idioms are typically the same. Nearly all records implement
create, read, update, and delete semantics and provide contextually rich field types to
add more meaning to a field over and above its persisted type.

 Even with the example in listing 11.1, it’s possible to implement validation and use
all the display helpers Record supplies. Consider the following console session:

scala> import net.liftweb.common._; import sample.model._
import net.liftweb.common._
import sample.model._

Listing 11.1 Basic implementation of Record

Class and meta B

Field with
validator

C

Other field
typesD

262 CHAPTER 11 Persistence with Record
scala>Example.createRecord.name("Tim").email(Empty)
res3: sample.model.Example = sample.model.Example@30dbd621

scala>Example.createRecord.name("tim").validate
res4: List[FieldError] =
List(Full(name_id) : Must be more than 5 characters)

scala>Example.createRecord.name("timothy").asJSON
res5: net.liftweb.http.js.JsExp =
 {"name": "timothy", "funds": 0, "email": null}

Notice that it’s still possible to validate the record by calling the validate method B
and even serialize it to a JSON structure automatically by calling asJSON C. This is an
important point, because it means that all records, regardless of any other implemen-
tation details, come with a whole set of baked-in functionality, including the ability to
serialize to and from JSON, render the record instance as markup, and automatically
construct a record instance directly from an incoming request. This means that any
derivative implementations get a fairly comprehensive set of functionality without hav-
ing to create their own plumbing. All you have to do is build on top of the provided
defaults in a way that’s specific to the backend data store.

11.1.1 Common Record fields

One of the main goals of Record is to apply higher-level contextual information to the
data being operated on. For example, consider a java.util.Locale class; this is often
persisted to the data store as a string and then converted back and forth in application
code from locale to string and string to locale. In situations like these, it makes sense
for the field to have this slightly richer interface, where the field or attribute knows
how to present you with the strongly typed version of a value rather than just String
or some other nondescript type.

 One of the main differences in field design in Record, when compared to Lift’s
Mapper module, is that field types are composed rather than solely relying on inheri-
tance. This generally promotes more code reuse, and you’ll see signatures similar to
the following:

class BinaryField[O <: Record[O]](rec: O)
 extends Field[Array[Byte], O]
 with MandatoryTypedField[Array[Byte]]
 with BinaryTypedField

Specifically note how the generic field functionality is composed with Mandatory-
TypedField and the BinaryTypedField traits in order to deliver the correct product
for the BinaryField class. This gives you a more flexible system if (or when) you want
to make your own custom field types: there is far less reinvention of the wheel than is
found in Mapper.

 The base field types supplied in the generic lift-record package are fields for con-
crete implementations (which are actually usable) and also fields you can use to build
other store-specific field types. For example, MongoDB uses BSON-documents as part
of its persistence system, so the Mongo-Record integration has specialized fields that

Validate
recordB

Serialize
to JSONC

263Common Record functionality
build on these abstract fields to represent the specific functionality required by
Mongo. Table 11.1 shows the fields supplied with the generic Record package.

Table 11.1 Field-related traits contained in Record. Some fields also have an optional sister-field type
that takes the form OptionalXX, such as StringField and OptionalStringField. If the field
type has an optional variant, it’s noted in the second column.

Field type Optional? Description and usage (if applicable)

BaseField No All field types must extend BaseField. This trait supplies gen-
eral semantics to any field, irrespective of data store. For exam-
ple, it determines whether or not the field is writable.

TypedField No Fields requiring a value should extend this trait in order
to supply the methods for setting and getting the
contained value.

OwnedField No Fields that belong to a specific record (which is practically
all fields) should extend this trait in order to propagate type
information about the containing Record class.

DisplayWithLabel No As fields know how to render themselves to XHTML markup,
compose this trait with your field in order to prefix a <label>
element to the output markup.

BinaryField Yes For generically representing Array[Byte] in your backend
store, use this field.

object sample extends BinaryField(this)

BooleanField Yes This is a container field for Booleans; supply a default in the
second argument.

object sample extends BooleanField
(this, true)

CountryField Yes Much like the Mapper country field, this field uses a predeter-
mined list of countries from the Record.Countries
enumeration.

object sample extends CountryField(this)

DateTimeField Yes Date fields take a java.util.Calendar instance as their
second parameter. Implicit conversions exist in
util.Helpers between various date formats.

object sample extends DateTimeField(this,
 java.util.Calendar.getInstance)

DecimalField Yes The decimal field has two possible apply constructors. The
verbose one detailed here includes a MathContext, but this
is optional and you can simply supply the BigDecimal if
you prefer.

object sample extends DateTimeField(this,
 MathContext.UNLIMITED,
 new java.math.BigDecimal(10.5))

264 CHAPTER 11 Persistence with Record
DoubleField Yes This is a container field for a Double value.

object sample extends DoubleField(this, 1D)

EmailField Yes This rich string field includes validation of the content string as
an email address.

object sample extends EmailField(this, 90)

EnumField Yes This field persists the value part of an enumeration and will
only accept value types of the specified enumeration as input
values.

object Thing extends Enumeration {
 val One, Two = Value
}
object sample extends EnumField(this, Thing)

IntField Yes IntField is a container field for an Int value.

object sample extends IntField(this, 5)

LocaleField Yes This is a rich field that contains a java.util.Locale but is
persisted as a serialized string, such as en_GB. Use the isAs-
Locale method to get the field value as a Locale instance.

object sample extends LocaleField(this,
 java.util.Locale.UK)

LongField Yes This is a container field for a Long value.

object sample extends LongField(this, 1L)

PasswordField Yes This higher-level abstraction upon StringField contains
both a salt field and a value field. Backends commonly extend
this trait to utilize their own specific encryption or storage
choices.

object sample extends PasswordField(this,"")

PostalCodeField Yes This container field for postal codes persists its value as a
string but comes with some validation semantics baked in
for certain countries, and all values must be bigger than three
characters.

object sample extends PostalCodeField(this,
yourCountryField)

StringField Yes This is a container field for a String value. All other fields
based upon strings typically extend this field type.

object sample extends StringField(this, "")

Table 11.1 Field-related traits contained in Record. Some fields also have an optional sister-field type
that takes the form OptionalXX, such as StringField and OptionalStringField. If the field
type has an optional variant, it’s noted in the second column. (continued)

Field type Optional? Description and usage (if applicable)

265Common Record functionality
All the fields listed in table 11.1 can be chained together by the caller, allowing you to
have a usage API that looks like this:

MyThing.createRecord.fieldOne("whatever").someThing(1234).another(9)

This can be a fairly powerful idiom, and it’s supplied at the common level in Record,
so all subsequent implementations follow the same style.

 Now that you’ve seen some of the common fields, the next section explains how
these fields can be used to generate interfaces automatically using LiftScreen.

11.1.2 Integration with LiftScreen and Wizard

Back in chapter 6 (section 6.3.1), you saw part of Lift’s form-handling support: Lift-
Screen. In that section, you learned how to manually construct fields in a declarative
fashion, define validation rules, and so on. In chapter 10 (section 10.2.5), you then
saw how LiftScreen interoperates with Mapper automatically by determining the
field types and presenting the correct presentation format for that particular field.
The good news is that both Mapper and Record share this functionality, and Record
can also be used in conjunction with LiftScreen and its bigger brother Wizard:

import net.liftweb.http.{LiftScreen,S}
import sample.model.mongo.Book

object ScreenSample extends LiftScreen {
 object book extends ScreenVar(Book.createRecord)
 addFields(() => book.is)
 def finish(){ S.redirectTo("/") }
}

As you can see, it only takes a few lines of code to produce an input for all the fields in
the Record instance.

TextareaField Yes This field represents string-based content, but the toForm
method produces a <textarea> element as opposed to
an <input>.

object sample extends TextareaField
(this, 200)

TimeZoneField Yes You can persist a java.util.TimeZone value and access
the field’s TimeZone representation directly by calling
isAsTimeZone. The value defaults to the TimeZone of the
hosting JVM.

object sample extends TimeZoneField(this)

Table 11.1 Field-related traits contained in Record. Some fields also have an optional sister-field type
that takes the form OptionalXX, such as StringField and OptionalStringField. If the field
type has an optional variant, it’s noted in the second column. (continued)

Field type Optional? Description and usage (if applicable)

266 CHAPTER 11 Persistence with Record
 Record differs from Mapper because many of the backend storage implementa-
tions provide custom field types and mandatory hidden fields as part of their infra-
structure. A good case in point is MongoDB, which must have its _id column in
order to operate correctly at a database level, but you wouldn’t particularly want to
present it to the user, so it normally makes more sense to construct the screen and
list the fields you want to display explicitly.

 In the case that you’re using a storage system that has custom field types such as
MongoDB’s nested document structures, you may want to consider overriding the
toForm method of the field to provide your own implementation for that display logic.
By default, Lift assumes that these custom field types won’t be used directly in a user
interface as there is no way of knowing how they should (or could) be presented.

 The first type of Record implementation we’ll look at provides support for working
with RDBMS, but it has a very unique approach that is distinctly different from that of
Lift’s Mapper module.

11.2 Record for relational databases
Relational database systems still dominate persistence systems in web applications
today. For the vast majority of developers, having a flexible and intuitive interface to
that relational database is key to their development.

 Record is all about providing a persistence interface that allows you to plug in the
technologies you want to work with, and the wider Scala community has several very
sophisticated abstractions on top of the popular Java JDBC interfaces. One of these
projects that already has a Record integration is called Squeryl (http://squeryl.org/).

 Squeryl was designed to be a type-safe abstraction that allows you to compose state-
ments that are checked at compile time. This allows you to be 100 percent confident
that the SQL statements you write to access your data won’t fail because of a runtime
syntax error. Squeryl provides a declarative DSL for query construction that’s intuitive
and that allows for a high degree of code reuse. As it stands, the Record abstraction
doesn’t interrupt the Squeryl DSL or any of the querying tools; it simply wraps the
entity definition and provides the rich contextual fields where you need them for
building your web applications.

 In order to get started with the Squeryl-Record module, simply add the following
dependency to your project configuration:

val squeryl = "net.liftweb" %% "lift-squeryl-record" % liftVersion

Once the dependency is added, don’t forget to call reload and then update in the
SBT console, so that the appropriate JARs are downloaded. The Squeryl classes will
also be transitively resolved and downloaded in addition to the Lift module.

11.2.1 Connecting and querying with Squeryl

Squeryl uses JDBC to talk to the database, and at a base level it simply requires an
active java.sql.Connection to function. Conveniently, Lift has a set of abstractions

http://squeryl.org

267Record for relational databases
on these common database interactions, and Squeryl can make use of them without
any glue code.

 In order to connect to the database, you must specify connection settings in
exactly the same way you would for Mapper. As this was discussed at some length
in chapter 11 (section 11.1.1), the following only includes a brief recap and
assumes that you have a connection string set up. Specifically, you’ll need some
code that looks similar to this in your Boot class to obtain a connection:

if (!DB.jndiJdbcConnAvailable_?){
 DB.defineConnectionManager(DefaultConnectionIdentifier, Database)
 LiftRules.unloadHooks.append(() =>Database.closeAllConnections_!())
}

NOTE If you want transactional semantics over the whole request cycle with
Squeryl, you need to do the same thing as with Mapper: add the S.add-
Around(DB.buildLoanWrapper) call into your application Boot class.

With the connection in place, there is one final thing your Boot class must feature in
order to tell Squeryl what type of database you’d like to talk to:

import net.liftweb.squerylrecord.SquerylRecord
import org.squeryl.adapters.PostgreSqlAdapter

SquerylRecord.init(() => new PostgreSqlAdapter)

Simply pass the SquerylRecord.init method a function that yields the correct data-
base adapter, and you should be good to go. Squeryl provides its own dialect drivers to
convert its own statement syntax into the appropriate SQL. Table 11.2 lists the other
possible driver options.

One of the other significant differences between Squeryl and Mapper is that Squeryl
advocates manual schema upgrades and alterations; its makers believe conducting
automated migrations is too risky. With this in mind, however, Squeryl does provide
an initial schema creation tool, and the ability to output the current data definition
language (DDL) defined by the Squeryl entities. It’s not really feasible to have Squeryl
attempt to create the database every time your application loads, because it would

Table 11.2 Alternative Squeryl database dialect adapters

Database Driver class

IBM DB2 SquerylRecord.init(() => new DB2Adapter)

H2 SquerylRecord.init(() => new H2Adapter)

Microsoft SQL Server SquerylRecord.init(() => new MSSQLServer)

MySQL SquerylRecord.init(() => new MySQLAdapter)

Oracle SquerylRecord.init(() => new OracleAdapter)

268 CHAPTER 11 Persistence with Record
throw exceptions about the tables that already exist, but if you want to use Squeryl to
create your schema on a one-time basis, you can make this call:

import net.liftweb.mapper.{DB, DefaultConnectionIdentifier}
 DB.use(DefaultConnectionIdentifier){ connection => Bookstore.create }

Because it’s not a good idea to have this happening upon every application boot-up,
it can be nice to log the DDL that Squeryl will attempt to use so you can either make
the necessary alterations or disregard it as appropriate. In order to do that, simply
add the following to your Boot class:

if(Props.devMode)
 DB.use(DefaultConnectionIdentifier){ connection => Bookstore printDdl }

In both these commands, the DB.use block is required because it ensures that the
Squeryl operation is conducted in the scope of the database connection.

 Now that you have Squeryl-Record configured and ready, let’s reconstruct the
bookstore example from chapter 10, including the relationships and queries, to use
Squeryl. This will demonstrate some of the powerful features Squeryl and Record
bring to the party.

11.2.2 A bookstore with Squeryl

The model for the bookstore will remain exactly the same as in chapter 10, with the
entity relationship being as it was defined in figure 10.1. This requires you to imple-
ment three Squeryl entities: Publisher, Book, and Author.

 Unlike Mapper, Squeryl defines a central Schema subtype that defines the table-to-
class mapping. The following listing defines an example.

import org.squeryl.Schema

object Bookstore extends Schema {
 val authors = table[Author]("authors")
 val books = table[Book]("books")
 val publishers = table[Publisher]("publishers")
}

This Schema subtype calls the table method and has a type parameter of the imple-
menting class. It’s this very method that connects the class to the table definition. The
first parameter of the table method allows you to define a specific name for that
table, which is useful if you’re working with a legacy schema or are very particular
about how your tables are named.

 This won’t compile yet because the specified entities don’t yet exist. Let’s start by
creating the Publisher entity and consider how that differs from the Mapper version
defined in listing 10.1. The next listing shows the Squeryl-Record implementation of
the basic Publisher entity.

Listing 11.2 Defining a Squeryl schema

269Record for relational databases
import net.liftweb.record.{MetaRecord, Record}
import net.liftweb.record.field.{LongField, LongTypedField, StringField}
import net.liftweb.squerylrecord.KeyedRecord
import net.liftweb.squerylrecord.RecordTypeMode._
import org.squeryl.Query
import org.squeryl.annotations.Column

class Publisher private ()
 extends Record[Publisher]
 with KeyedRecord[Long]{

 def meta = Publisher

 @Column(name="id")
 val idField = new LongField(this, 1)
 val name = new StringField(this, "")
}

object Publisher extends Publisher with MetaRecord[Publisher]

In this Publisher entity, you can first see that the constructor is made private and
the class extends both Record and a special Squeryl-Record type called KeyedRecord.
The class constructor is marked private so that new Records can’t be constructed by
way of the new Publisher method, which could interfere with the way in which
Record introspects the field values. It’s generally a good idea to mark the constructor
private, which will then give you compile-time failures if you try to use the new key-
word; Record instances should always be created using the Publisher.createRecord
method to avoid these issues. In addition to the class definition, note that, like the
Mapper implementation, Squeryl-Record has both an instance and a companion, or
meta object.

 Next, you can see two examples of implementing fields with Record B. Squeryl-
Record has a slight nuance in that KeyedRecord already implements an id method, so
you need to implement idField and provide the @Column annotation from the Sque-
ryl distribution so that the idField correctly uses the ID column on the appropriate
database table.

 In order to complete the picture, let’s define the remaining two entities and take a
look at their relationships. The following listing shows the Author and Book entities.

import net.liftweb.record.{MetaRecord, Record}
import net.liftweb.squerylrecord.KeyedRecord
import net.liftweb.squerylrecord.RecordTypeMode._
import net.liftweb.record.field._
import org.squeryl.annotations.Column

class Book private ()
 extends Record[Book]
 with KeyedRecord[Long] {
 def meta = Book

Listing 11.3 Squeryl-Record implementation of the Publisher entity

Listing 11.4 Squeryl-Record implementation for the Author and Book entities

Fields for
record

B

270 CHAPTER 11 Persistence with Record
 @Column(name="id")
 val idField = new LongField(this, 100)
 val publisherId = new LongField(this, 0)
 val authorId = new LongField(this, 0)
 val title = new StringField(this, "")
 val publishedInYear = new IntField(this, 1990)
}

object Book extends Book with MetaRecord[Book]

class Author private ()
 extends Record[Author]
 with KeyedRecord[Long] {

 def meta = Author

 @Column(name="id")
 val idField = new LongField(this, 100)
 val name = new StringField(this, "")
 val age = new OptionalIntField(this)
 val birthday = new OptionalDateTimeField(this)
}

object Author extends Author with MetaRecord[Author]

These two entities follow a very similar pattern to the Publisher entity by implement-
ing the Record and KeyedRecord traits. Moreover, both records include some addi-
tional fields to contain the appropriate data attributes to model that particular entity

B and C.

SQUERYL CRUD STATEMENTS

With the entities defined, you can now start to play with the create, read, update, and
delete syntax that Squeryl supplies. Remember that Record is a thin abstraction, so
the statement syntax is used wholesale from the Squeryl library. The following sections
explore some of this functionality, but Squeryl is an ORM in its own right and there is
much functionality that can’t be covered here. I strongly recommend you check out
the Squeryl documentation (http://squeryl.org/introduction.html) for more specific
information on what is possible.

 The Publisher entity is quite straightforward, so let’s start by inserting some data
into it using the SBT console:

scala> import sample.model.squeryl._
import sample.model.squeryl._

scala> import net.liftweb.mapper.{DB,DefaultConnectionIdentifier}
import net.liftweb.mapper.{DB, DefaultConnectionIdentifier}

scala> import Bookstore._
import Bookstore._

scala> new bootstrap.liftweb.Boot().boot

scala>DB.use(DefaultConnectionIdentifier){ connection =>
 | publishers.insert(
 | Publisher.createRecord.name("Manning"))
 | }
res10: sample.model.squeryl.Publisher = sample.model.squeryl.Publisher@9

Book recordB

Author fieldsC

Insert
to DB

B

http://squeryl.org/introduction.html

271Record for relational databases
First, this code imports the types that are needed to interact with the Squeryl entities
and, in addition, the Mapper database connection abstractions so the statements can
connect to the backend database. But the real line of interest here is B. publishers
refers to the value defined on the Bookstore Schema, so this line literally says “insert
this passed object into the publishers table.” The parameter in this case is an instance
of Publisher that has been created with the Publisher.createRecord method to
obtain a fresh (unsaved) instance to which a name has been applied.

 With Squeryl, it’s also possible to do batch insertions right from within your code,
as shown:

publishers.insert(List(
 Publisher.createRecord.name("Manning"),
 Publisher.createRecord.name("Penguin"),
 Publisher.createRecord.name("Bloomsbury")
))

As it stands, this operation will throw an exception if the save operation fails, so
remember to provide exception handling where appropriate.

 At this point, we strongly recommend taking some time to play around with Sque-
ryl by inserting various bits of data into the database from within the REPL. This will
give you a good feel for how to construct records and for the interplay between
Record and Squeryl types. In addition, you’ll need to have some data in the tables to
test out the querying syntax!

SQUERYL QUERYING STATEMENTS

Now that you have the entities set up and some data in your tables, let’s take a
quick tour around the querying syntax that Squeryl provides. The query DSL in
Squeryl models itself on SQL. Unlike many ORM systems that attempt to ignore the
fact that they’re interacting with a relational database, Squeryl embraces this real-
ity wholeheartedly.

 The next listing shows several examples of query operations with the Squeryl-
Record entities defined in the previous listings.

import org.squeryl.RecordTypeMode._

from(Bookstore.publishers)(p =>
 where(p.id === 1) select(p)).single

import Bookstore._

publishers.where(_.id === 1).single

publishers.toList

authors.where(_.age.is >= 20)

from(publishers, books)((p,b) =>
 where(b.title.is like "%in Action"
 and p.name.is === "Manning") select(b,p))

Listing 11.5 Various Squeryl query expressions

Explicit
query

B

Import schema
and query

C

Operator
examplesD

Type-safe joinsE

272 CHAPTER 11 Persistence with Record
This listing shows you a small selection of Squeryl syntax. The first thing you must do
in order to use the Squeryl query DSL is import the implicit conversions supplied by
the library. The common import is shown at the top of the listing; without this import,
you’ll receive a whole set of errors from the compiler telling you that methods don’t
exist and so forth.

 Next in the listing are several different examples of explicit queries using the
Squeryl DSL. The first statement would be equivalent to this SQL:

SELECT * FROM publishers WHERE id = 1

The from() method takes tables that are defined in the Schema subtype; Bookstore in
this instance from listing 11.2. This statement is a bit on the verbose side B, though,
and it can thankfully be condensed somewhat.

 Scala allows you to import object members into a particular scope, and as you’re
likely to execute these queries somewhere where you’d like access to that information,
you can call import Bookstore._ to save constantly having to prefix Bookstore to the
table call. Here you can see the same query again, but without the from() component;
it operates directly on the schema table. Also note the second example that has the
where() clause removed C; this is, as you might expect, equivalent to running a
SELECT * FROM table and converting it into a List[Publisher]. You should be able to
see how the predicate you pass to where() is translated into the correct SQL under the
hood by Squeryl

 Another type of predicate is defined for greater than or equal to D. There are a
whole set of optional predicates and combinations, so check the Squeryl documenta-
tion for more specific information (http://squeryl.org/selects.html).

 Finally, listing 11.5 defines an ad hoc multi-table query E, much like you might do
with SQL joins, but in this case you can see that the like method has been used to
define a wildcard that looks for book titles ending with “in Action” and where the pub-
lisher name is “Manning.”

 As you can see, this is a very different approach to interacting with SQL data stor-
age than is used by Mapper or other popular Java ORM systems, such as Hibernate.
The real advantage of using Squeryl over something like Hibernate is that you can be
sure that the query will execute if the code compiles: it has complete type-safety. The
prospect of having a query engine that won’t arbitrarily blow up on you at runtime is
an attractive one, and with Record’s rich field system you can also gain many of the
conveniences you’re used to from Mapper.

 The next section moves away from traditional SQL data stores and takes a look at
the emerging world of NoSQL and semi-structured data. These new systems are typi-
cally designed to be specialized storage systems for specific types of problems, but
some of the products in the marketplace, such as MongoDB, are proving to be popu-
lar for solving more general problems because they fit more idiomatically with the way
developers think of objects and data structures.

http://squeryl.org/selects.html

273Record for NoSQL stores
11.3 Record for NoSQL stores
Nearly every developer is familiar with SQL. It has been the reliable provider of data
persistence for many years, both prior to mass adoption of the internet right up to the
current day. The continued growth of the internet means that applications have to
deal with more and more data in increasingly write-orientated architectures. Simply
put, the massive amount of interaction that applications commonly require these days
is progressively making SQL-based stores tricky to scale.

 We can also all appreciate the elegant logic behind the normalization of database
schema, but there’s more often than not a mismatch between this structure and mod-
ern web programming paradigms. Developers often place ORM systems, such as Map-
per, in between their application code and the underlying RDBMS in order to obtain a
more OO feel to their data access.

 Increasingly, particular organizations have started to wonder if there is perhaps a
better, more natural way to work with their data that would better suit various special-
ized problem domains. Although these problem domains differ fairly widely, the vari-
ous products are broadly united under the so-called NoSQL movement, because they
all shun SQL in favor of a specialized interface. Examples include custom communica-
tion interfaces like Thrift, custom data formats like BSON, and custom query con-
structs like MapReduce. The Wikipedia article has more background about NoSQL
(http://en.wikipedia.org/wiki/NoSQL).

NOTE The NoSQL movement is still a relatively new development, and if you
haven’t had time to investigate it, you may be wondering what the purpose of
all this specialized technology is. The majority of NoSQL solutions are
designed to solve a specific use case, usually from the industry the vendor is
from. Although many people are finding these technologies useful in a gen-
eral sense, there’s no need to worry about them if they don’t fit your use case.
Relational databases are still a really good fit for most applications.

There are many NoSQL stores currently available, and it’s somewhat beyond the scope
of this book to list them all and their various nuances, so the following section specifi-
cally covers Lift’s integration with NoSQL stores and the Record abstractions the
framework provides.

11.3.1 NoSQL support in Lift

NoSQL comes in many flavors, and each store provides different functionality. Lift’s
support for the different backends has grown rather organically as the NoSQL
scene has expanded and evolved. At the time of writing, Lift provides out-of-the-box
NoSQL support for CouchDB (http://couchdb.apache.org/) and MongoDB (http://
www.mongodb.org/).

 Both Couch and Mongo are what is known as document-oriented data stores. This
essentially means that rather than using tables, as in relational database systems, sche-
maless JSON documents store information, where each document has properties and

http://en.wikipedia.org/wiki/NoSQL
http://couchdb.apache.org
http://www.mongodb.org
http://www.mongodb.org

274 CHAPTER 11 Persistence with Record
collections that can be accessed just like any other JSON document. You can retrieve a
specific document by asking for a specific key. For example, imagine asking for a spe-
cific ISBN number to retrieve the book object you were interested in from among a
collection of books. You can think of these keys as being analogous to the primary keys
in RDBMS tables.

 Record also provides certain idioms so that the different storage mechanisms have
similar if not identical operational semantics. Typically, records can be created and
persisted like so:

MyThing.createRecord.fieldOne("value").fieldTwo("tester").save

This is true for both the CouchDB and MongoDB implementations covered here, and
it should generally be the case for most Record implementations.

 Without further ado, let’s walk through some of the basic functionality that
each abstraction provides before going on to explore the MongoDB abstraction in
greater depth.

COUCHDB

One of the first NoSQL stores to land in popular IT culture was CouchDB. Broadly
speaking, Couch and Mongo appear to have many similarities, but they’re mostly skin-
deep. Couch typically excels in scenarios where you have master-master replication,
typically found in applications that go offline or require the syncing of databases. A
good example would be an email client syncing with the server—the local database
would likely be out of date if the user was disconnected from the network for a period
of time. In essence, if your problem requires eventual consistency over distributed
storage nodes, or you require a MapReduce interface, CouchDB is a good candidate
to evaluate.

 Lift provides a Record abstraction to interoperate with CouchDB, and it allows
you to interact with Couch in a manner that follows the Record idioms of having

Eventual consistency
With the rise of distributed systems, it quickly became apparent that building dis-
tributed systems (particularly data stores) that maintained the ACID properties (ato-
micity, consistency, isolation, durability) was going to be exceedingly difficult, and
that such systems would be unlikely to scale to the needs of the humongous sys-
tems being constructed now and looking to the future.

Subsequently, the idea of a system that was eventually consistent was born. Given
a multi-node database to which an update is sent and a sufficiently long period of
time, you can assume that all updates are either applied to all nodes, or that the
nodes that didn’t take the updates retired from the service, so that the various dis-
tributed nodes of that system eventually become consistent. This is known as Basi-
cally Available, Soft-state, Eventual consistency (BASE), and it’s a principle that
nearly all distributed NoSQL stores adopt.

275Record for NoSQL stores
contextually rich fields. Before attempting to use the Couch module, make sure that
you’ve included the dependency in your SBT project definition:

val couch = "net.liftweb" %% "lift-couchdb" % liftVersion

In order to start using the Lift integration with Couch, a small amount of setup is
required for your Boot class:

import net.liftweb.couchdb.{CouchDB, Database}
import dispatch.{Http, StatusCode}

val database = new Database("bookstore")
database.createIfNotCreated(new Http())
CouchDB.defaultDatabase = database

The code in this example is pretty straightforward and should be fairly self-explanatory,
with the possible exception of the new Http() statement. Lift’s CouchDB client builds
on top of the HTTP Dispatch project (http://dispatch.databinder.net/) in order to
communicate back and forth with the Couch server. This statement essentially hands
the CouchDB record a vehicle through which it can make HTTP calls. In this particular
case, a database is defined and specified in the CouchDB configuration object so you
don’t have to pass the connection information later on, assuming you only want to
communicate with a single Couch server.

 With the database connection configured, you can start to interact with CouchDB
by defining the specialized Record classes as detailed in the following listing.

import net.liftweb.record.field._
import net.liftweb.couchdb.{CouchRecord,CouchMetaRecord}

class Book private () extends CouchRecord[Book]{
 def meta = Book

 val title = new StringField(this, "")
 val publishedInYear = new IntField(this, 1990)
}

object Book extends Book with CouchMetaRecord[Book]

The implementation here looks rather similar to the Squeryl variant detailed in list-
ing 11.4. Specifically, note how the definitions of the fields are identical. The main
difference between Squeryl and CouchDB here is the extension of the CouchRecord
and CouchMetaRecord types. CouchDB requires a couple of different fields to be
implemented in any given entity in order to control the versioning and revision sys-
tems, both of which are handled automatically for you by the CouchRecord supertype.

 The CouchMetaRecord and Database types give you various convenience methods
for interacting with the views provided by Couch for interacting with stored docu-
ments: both to create and query. CouchDB querying essentially utilizes these Map-
Reduce views in order to obtain query-style data. The views themselves can be
precreated and then used in your application at runtime.

Listing 11.6 Implementing a basic CouchDB record

Implement
Couch types

Define field
types

http://dispatch.databinder.net

276 CHAPTER 11 Persistence with Record
 To create a view using lift-couchdb, you can do something like this:

import net.liftweb.json.Implicits.{int2jvalue, string2jvalue}
import net.liftweb.json.JsonAST.{JObject}
import net.liftweb.json.JsonDSL.{jobject2assoc, pair2Assoc, pair2jvalue}

val design: JObject =
 ("language" -> "javascript") ~
 ("views" -> ("oldest" ->
 (("map" -> "function(doc) {
if (doc.type == 'Book'){ emit(doc.title, doc.publishedInYear); }}") ~
 ("reduce" -> "function(keys, values) {
return Math.max.apply(null, values); }"))))

Http(database.design("design_name") put design)

If you’re not too familiar with Couch, this may look somewhat odd. This is a special-
ized CouchDB MapReduce function that obtains the oldest book document. The key
line sends the design with the assigned name “design_name” to the database B. Once
it’s in place, you can run a query via the Book meta record as shown:

val book = Book.queryView("design_name", "oldest")

This one line calls Couch and executes the predefined view to retrieve the oldest Book
title held in the database.

 CouchDB is a large subject in and of itself, but this should give you a sense, at a
high level, of how the Lift implementation operates.

MONGODB

MongoDB, like CouchDB, is a document-oriented store, but rather than using prewrit-
ten views to obtain query data, Mongo is better suited to creating dynamic queries,
similar to what you might construct using traditional SQL. Mongo uses a custom query
syntax rather than using MapReduce, which although supported, is for data aggrega-
tion rather than general-purpose querying.

 Mongo uses a custom binary protocol to communicate from your application to the
data store, which generally yields a more flexible programming interface than is possi-
ble with HTTP. In addition, MongoDB positions itself as being a general-purpose
NoSQL database that was designed from the ground up for use in internet applications.

 Unlike the CouchDB implementation, the Mongo support in Lift comes in two
parts: lift-mongo provides a thin Scala wrapper around the MongoDB driver for Java,
and lift-mongo-record provides the integration for using Record with Mongo.

 To get started, ensure you’ve added the dependency to your project and called
update from the SBT shell:

val mongo = "net.liftweb" %% "lift-mongodb-record" % liftVersion

By default, Lift assumes that the MongoDB server is configured on the same machine
(localhost), so for development and testing, it’s likely you’ll need no configuration in
your Boot class. But if you need to specify where your Mongo installation is hosted,
simply add the following lines:

Create new
design

B

277Record for NoSQL stores
import net.liftweb.mongodb.{MongoDB, DefaultMongoIdentifier,
 MongoAddress, MongoHost}

MongoDB.defineDb(
 DefaultMongoIdentifier,
 MongoAddress(MongoHost("localhost", 27017), "your_db"))

The call to MongoDB.defineDb essentially tells the MongoDB driver where to locate the
MongoDB server. The following examples, however, assume that the MongoDB install
is the default, local install.

 Now that the connection is ready, the next thing is to define your Mongo Record.
The next listing shows the most basic example.

import net.liftweb.record.field._
import net.liftweb.mongodb.record.{MongoRecord,MongoMetaRecord,MongoId}

object Book extends Book with MongoMetaRecord[Book]

class Book private () extends MongoRecord[Book]

➥ with MongoId[Book]{
 def meta = Book

 object title extends StringField(this, "")
 object publishedInYear extends IntField(this, 1990)
}

This is nearly identical to the CouchDB and Squeryl examples previously listed, with
the only change being the two supertypes, which are now MongoRecord and Mongo-
MetaRecord B. MongoRecord supports the specialized querying for the backend store,
just as CouchRecord does.

 MongoDB deals with collections. These collections can be thought of as similar to
tables, and each MongoDB Record entity you create generally represents a collection.
By default, the collection will use the pluralized name of the class—Books in this
instance. Each document in the collection will be represented by a Book entity instance.

 Let’s assume you want to run a couple of queries:

import net.liftweb.json.JsonDSL._

Book.findAll("title" -> "Lift in Action")
Book.findAll("publishedInYear" -> ("$gte" -> 2005))
Book.findAll("$where" -> "function() {
 return this.publishedInYear == '2011'}")

There are three different queries here, but the first one should be fairly self-explana-
tory: Mongo will go looking for titles that match “Lift in Action”. The second line
defines a range query that will retrieve all documents where the publishedInYear is
greater than 2005. Finally, the last line makes use of the special MongoDB query con-
struct $where and passes a JavaScript function to confine the result set. Mongo has a
whole set of these special identifiers, documented at http://www.mongodb.org/
display/DOCS/Advanced+Queries, but by using the Lift abstraction, you can use what-
ever combinations you prefer.

Listing 11.7 Basic implementation of Mongo Record

Extend Mongo
classes

B

http://www.mongodb.org/display/DOCS/Advanced+Queries
http://www.mongodb.org/display/DOCS/Advanced+Queries

278 CHAPTER 11 Persistence with Record
 That’s the basics of using NoSQL with Record. Irrespective of these two different
stores, you can see how Record brings a degree of uniformity that makes it smoother
to change your backing store at a later date and also interoperate with other Lift infra-
structure. Let’s take the information from this section and re-implement the book-
store from earlier in the chapter with MongoDB.

11.3.2 Bookstore with MongoDB

NoSQL solutions have a rather different way of handling their data, and in many
respects this significantly alters the way we as developers need to model our entities.
Specifically with MongoDB, it’s more idiomatic to store information using embedded
documents that appear as collections on a given entity, if for the majority of time that
data isn’t changing. In practice, the data is just copied into each document. Some-
times having a reference is beneficial, but it depends on your use case.

 With the Book, Publisher, and Author relationships, the Book entity will really be
the main interaction point because once a Book has a Publisher, it’s largely immuta-
ble—the same is true of Author. With this in mind, it isn’t a problem to simply embed
the appropriate Publisher and Author documents so that they appear as properties
of the Book entity.

TIP When using Mongo, a general rule of thumb is that you embed and copy
data when it seems reasonable, and fall back to referencing separate entities
when the use case demands it. Generally speaking, try to arrange your Mongo
entities with the most commonly accessed aspect being the top level, and
other aspects being either embedded documents or, in lesser cases, refer-
enced entities. The classic scenario is a single blog post that has many com-
ments; the comments are appended directly to the post entity document.

Let’s add those two additional fields for Publisher and Author to the Book record, as
shown in the next listing.

import net.liftweb.record.field._
import net.liftweb.mongodb.{JsonObject,JsonObjectMeta}
import net.liftweb.mongodb.record.{MongoRecord,MongoMetaRecord,MongoId}
import net.liftweb.mongodb.record.field._

class Book private () extends MongoRecord[Book]
 with MongoId[Book]{
 def meta = Book

 object title extends StringField(this, "")
 object publishedInYear extends IntField(this, 1990)

 object publisher
 extends JsonObjectField[Book, Publisher]
 ➥(this, Publisher) {
 def defaultValue = Publisher("", "")
 }

Listing 11.8 The full Book entity using MongoRecord

Embedded
publisher

B

279Record for NoSQL stores
 object authors extends
 MongoJsonObjectListField[Book, Author](this, Author)
}

object Book extends Book with MongoMetaRecord[Book]

case class Publisher(name: String, description: String)
 extends JsonObject[Publisher] {
 def meta = Publisher
}

object Publisher extends JsonObjectMeta[Publisher]

case class Author(firstName: String,
 lastName: String)
 extends JsonObject[Author] {
 def meta = Author
}
object Author extends JsonObjectMeta[Author]

There’s a fair amount going on here, over and above the initial implementation in list-
ing 11.7. First, notice the publisher object at B. This inner object extends Json-
ObjectField, which essentially means it holds a nested Mongo document. In this
particular case, the field is told that it should expect the Publisher type defined at D.
The Publisher definition, itself, is a simple case class that extends JsonObject and
has a companion object called JsonObjectMeta.

 The same is true for the Author class defined at E, but because a single Book could
feasibly have multiple authors, the entity property authors extends MongoJson-
ObjectListField C. As you might imagine, this contains a list of documents, as
opposed to the single document required by publisher, so in practice you can think
of this field as a simple list or array of documents.

 Now that you have the MongoRecord for Book in place, you can start to play around
with constructing and querying instances of Book:

scala> import sample.model.mongo._
import sample.model.mongo._

scala>Book.createRecord
.title("sample")
.authors(Authors(List(Author("tim","perrett"))))
.publisher(Publisher("Manning","")).save
res2: sample.model.mongo.Book = class sample.model.mongo.Book={...}

scala>Book.findAll
res3: List[sample.model.mongo.Book] = List(...)

scala>Book.find("title" -> "Lift in Action")
res21: net.liftweb.common.Box[sample.model.mongo.Book] = ...

You can see in this code snippet that it’s easy to query Mongo for specific data in a sim-
ple case, such as finding a book by a title, but when you have larger, more complex
queries, the syntax can become rather unwieldy. It’s at this point that it would be great
to add some more type-safety to the querying, as opposed to passing everything
around as strings. This is where the type-safe Rogue DSL comes in.

Embedded
authors listC

Publisher
definition

D

Author
definition

E

280 CHAPTER 11 Persistence with Record
If you’d like to use Rogue, be sure to add the dependency to your project definition
and run update from the SBT shell:

val rogue = "com.foursquare" %% "rogue" % "1.0.2"

When Rogue is present in your project, you can create queries simply by adding the
following import statement:

import com.foursquare.rogue.Rogue._

This then allows you to interact with Mongo using the DSL:

Book where (_.publishedInYeargte 1990) fetch()

Book where (_.title eqs "Lift in Action") limit(1) fetch()

This is the tip of the iceberg, and the abstraction can do a whole set of other things that
are somewhat out of the scope of this section. If you’d like to know more about Rogue,
check out the Foursquare engineering blog (http://engineering.foursquare.com/),
and particularly the entry on Rogue and type safety (http://mng.bz/R58g), or the
Foursquare repository on github.com: https://github.com/foursquare/rogue.

 In this section, you’ve seen the NoSQL support that Lift provides out of the box
through the Record abstraction. NoSQL through Record could feasibly take many
forms, but this section has primarily focused on CouchDB and MongoDB, showing you
how to leverage these exciting new technologies and still have the familiar Lift seman-
tics and integration with infrastructure like LiftScreen.

11.4 Summary
Phew! There were a lot of different topics in this chapter and a bunch of different
technologies. Broadly speaking, you’ve seen how Record can deliver an abstract
facade for building persistence systems that talk to many different backend data
stores, from relational databases right through to leading-edge NoSQL systems.

 The first section covered the general concept of Record, including the anatomy
of a generic Record instance. This exploration displayed the functionality that is
baked into anything that builds upon Record, irrespective of the persistence system
you wind up using. By default, each Record instance knows how to validate itself and
render the value contents to JSON, and it provides a selection of helper methods for

Going Rogue: type-safe Mongo queries
One of the largest Lift users in the world is Foursquare, and at the beginning of 2011
they open-sourced part of their Record-based abstraction for working with MongoDB.
This project was dubbed Rogue (https://github.com/foursquare/rogue).

Rouge provides a type-safe DSL for building complex queries right from within your
application, and it eliminates the need to work with the Mongo identifiers directly, or
to pass strings around. Using the DSL, you get fully type-safe interaction on all the
various parts of Mongo query constructs.

https://github.com/foursquare/rogue
http://engineering.foursquare.com
http://mng.bz/R58g
https://github.com/foursquare/rogue

281Summary
various operations. Each Record subtype you might make or work with implements
subtypes of Field. These fields are contextually rich in that they represent a strongly
typed value rather than simply working with the most basic type they can get away
with. These fields can also be optional, by mixing in the OptionalTypedField trait.
This then allows you to have a Box[T] value and eliminates the need to intrinsically
check for null values and so on.

 The next part of this chapter covered Record’s interoperation with relational data-
bases. Here Lift leverages a Scala library called Squeryl, which provides a type-safe DSL
for making SQL calls. Squeryl embraces SQL idioms, so you end up with code that
looks an awful lot like its raw SQL counterpart, but it’s type-checked, and if the code
compiles, the query will execute at runtime. Squeryl is a powerful and flexible library,
and when it’s coupled with Record you can use it from within your Lift applications in
a seamless manner.

 Finally, you learned about Lift’s support for NoSQL data stores, specifically
CouchDB and MongoDB. These systems offer a very different type of data storage
operation than traditional RDBMS, yet the Record facade you work with in your Lift
application is hardly different at all. In the case of CouchDB, you can run pretty com-
plicated MapReduce functions right from within your Scala code. When using the
MongoDB implementation, you can elect to use the standard Mongo query syntax or
to layer on top the Foursquare Rogue abstraction to make interacting with Mongo
type-safe and pretty.

 The next chapter will take a break from persistence within Lift and focus on the
increasingly important area of application internationalization. Lift has a range of fea-
tures that makes implementing multicultural applications straightforward.

Localization
In this age of globalization and the apparent consolidation of many cultures, it
may surprise you to know that there are still between 6,500 and 10,000 differ-
ent languages spoken in the world today. The exact figure isn’t known, but you
can be sure that our world has a large amount of linguistic diversity. Tradition-
ally, this has caused a large number of problems for software engineers because
these different languages often have cultural differences that are specific to a
certain locale.

 Take something as simple as a greeting in two English-speaking countries, like
Great Britain and Australia; the former would likely use Good afternoon and the latter
would likely use Good’ay. Strictly speaking, both countries are English-speaking, but
cultural differences lead to colloquialisms becoming commonplace and a subse-
quent divergence from the original dialect. As you might imagine, there’s an infinite
amount of variation in presentation styles and content, such as when comparing
Latin-based text to Arabic or Hebrew, which are both written right-to-left, and not

This chapter covers
■ Lift’s localization strategies
■ Configuring the locale calculator
■ Utilizing Java localization infrastructure
282

283Implementing localization
left-to-right. All these things and more combine to make writing software for the inter-
national market subtly difficult.

 Fortunately both the Java platform and Lift provide some great features to help
you make the best of this rather complex situation. The first section of this chapter
looks at how you can implement Lift’s localization helpers in your templates and
application code. Then, the second section covers how you actually obtain localized
content—where your code or template defines one of Lift’s localization helpers, and
where the content that ultimately replaces it comes from. There are three possible
options and they’re all illustrated with examples in section 12.2.

 First, though, let’s get into how you define localized content in your templates
and code.

12.1 Implementing localization
The Java platform as a whole has good support for localization and for working with
global systems that have large numbers of locale-specific, colloquial idioms. Because
the JVM has had a localization strategy for a long time, the design of the system is
largely oriented toward building desktop applications (such was the trend at the
time). Lift provides a system that builds on top of JVM’s robust localization infrastruc-
ture, specifically the Locale and ResourceBundle classes supplied with the standard
Java distribution, but it also adds several very useful facilities that make localizing web
applications much more flexible.

Lift’s localization strategy can be broken down into a couple of component parts:
resources and templates.

 Resources define locale-specific objects. These objects could be pretty much any
type you like, but the most common use case is a string that needs to be presented in

What is a locale?
If you’re new to localization, the term locale is one you’ll see thrown around a lot.
There are two aspects to localization: languages and countries. These two words
alone describe orthogonal parts of a culture, but locale defines the combination of
the two. For example, French is spoken both in France and in North Africa, but the
cultures aren’t the same. French spoken in France is assigned a locale of fr_FR,
whereas French spoken in Morocco is assigned a locale of fr_MA.

Strictly speaking, you can have a java.util.Locale instance that only represents
the language, but generally a locale is a unification of both aspects. It’s only useful
to represent a language as a locale if you want to group together countries that speak
the same language: such as American English, British English, and so on.

The language identifiers used by the Java locale infrastructure are the ISO 639-1
language codes, and the country codes are those in the ISO 3166-1 definitions.
These are international standards and are widely used in many different systems.

284 CHAPTER 12 Localization
several languages. Lift will look at the resource bundles it has available, and load the
appropriately localized string if it exists.

 The second element of Lift’s localization strategy is part of the template selection.
Once you’ve got the localized content, there are often still issues with presenting that
content. For example, German text is roughly 30 percent longer than English text for
the same content, and this can have fairly serious impacts on the visual presentation of
an application; ultimately, you need to find room for all this extra text. With this in
mind, Lift allows you to be smart about templating. Consider a page called index.html;
this would be fine for English, French, and Spanish, but perhaps you need to rearrange
some of your markup to make space for the longer German text. In this case, you could
simply have a secondary file called index_de_DE.html.

 Before implementing the localizations, you need to instruct Lift on how it should
determine which locale is the correct one to use for a request. This is done via the
localeCalculator property of LiftRules.

12.1.1 Implementing locale calculator

Out of the box, Lift will grab the locale from the Accept-Language header of the
incoming request. If a given request doesn’t specify this particular header, Lift will
assume the locale of the server to be the locale for this request. For example, if the
JVM of the container you’re running your application on has a locale of en_GB, and
the request has not specified a preferred language with the Accept-Language header,
the server will respond with the British English version.

NOTE Most browsers in use today make web requests with what are known as
accept headers. Their purpose is to indicate to the server application what
responses would best fit the user’s client. Accept headers exist for content
types and even language. The latter is specifically helpful for determining
what language the user speaks. For example, if the user has their browser lan-
guage set to French (fr_FR), you can be fairly sure they would prefer reading
content in French. You can read more about the Accept Language header in
RFC 2616: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

It’s also highly likely that you’ll want to provide users with some control over the locale,
and you may want the application to remember the user’s locale choice for the next
time they visit. To illustrate this, let’s assume you want to control the locale based on
the query parameter hl. This would mean that if a request was sent to /foo?hl=en_GB
or /bar?hl=fr-FR, the locale would be set to the value specified by the hl query param-
eter by parsing the string value and constructing a java.util.Locale instance.

 All requests that hit your Lift application are routed through Liftrules.locale-
Calculator, and this is where the parsing and construction of the locale will be done,
based on the information contained in the request. This means you could use query
parameters, cookies, and other factors to determine what the locale should be. In
your Boot class, implement the locale calculator as shown in the following listing.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

285Implementing localization
import java.util.Locale
import net.liftweb.http.LiftRules
import net.liftweb.common.Box
import net.liftweb.util.Helpers.tryo

LiftRules.localeCalculator = (request: Box[HTTPRequest]) => (for {
 r <- request
 p <- tryo(r.param("hl").head.split(Array('_','-')))
} yield p match {
 case Array(lang) => new Locale(lang)
 case Array(lang,country) => new Locale(lang,country)
}).openOr(Locale.getDefault))

LiftRules.localeCalculator takes a function from Box[HTTPRequest] => Locale,
and in this sample a for comprehension is used to extract the boxed request value to
the value r. Given that r is an HTTPRequest, you can call the param method to grab a
value from the query string. Because this method could fail if the value isn’t present,
it’s wrapped in the tryo control structure to capture the result as a Box[String].
Assuming the value of hl is of the format en_GB or en-GB, it’s then split into its two
component parts to instantiate a new Locale. Failing that, it will use the default locale
for your JVM by calling the Locale.getDefault method.

 You’d probably want to expand on this implementation to provide something a lot
more robust that saves the value into the session, a cookie, or some other place. You’ll
generally want to keep track of the locale rather than calculating it on every request
from scratch.

 There’s one important thing to be aware of with localeCalculator and the way in
which Lift handles requests. As each page view is made up of a selection of requests,
the function will, by default, execute for every request that makes up the page. If your
localeCalculator is doing anything but the default, it’s a good idea to memoize the
function execution. By adding a request-scoped memoize, you can ensure that your
locale calculation function is only executed once in the scope of a request; for every
other call on that value, the cached result will be given rather than incurring the over-
head of executing the function again.

NOTE You can find more information about memoization in the Wikipedia
article: http://en.wikipedia.org/wiki/Memoization.

The following listing shows the implementation that makes use of memoization.

import java.util.Locale
import net.liftweb.common.Box
import net.liftweb.util.Helpers.{tryo,randomString}
import net.liftweb.http.provider.HTTPRequest
import net.liftweb.http.{LiftRules,RequestMemoize}

Listing 12.1 Example localeCalculator configuration

Listing 12.2 Implementing memoization with localeCalculator

http://en.wikipedia.org/wiki/Memoization

286 CHAPTER 12 Localization
object localeMemo extends RequestMemoize[Int, Locale] {
 override protected def __nameSalt = randomString(20)
}

LiftRules.localeCalculator = (request: Box[HTTPRequest]) =>
 localeMemo(request.hashCode, (for {
 r <- request
 p <- tryo(r.param("hl").head.split(Array('_','-')))
 } yield p match {
 case Array(lang) => new Locale(lang)
 case Array(lang,country) => new Locale(lang,country)
 }).openOr(Locale.getDefault))
)

In order to apply the memoization, you need to import the RequestMemoize type and
set up a local object that extends it with two type parameters: a key type and a value
type B. The value type is Locale, and for simplicity sake it uses the instance hashCode
of the request as the key. This ensures that the locale is paired with the right request,
because each request will create a new HTTPRequest instance. Notice that in the actual
implementation of the locale calculator, the localeMemo object C is applied with two
parameters: the hashCode of the incoming request and a block that’s the same code
from listing 12.1. This second parameter is a call-by-name parameter, which means the
localeMemo object only executes it if it needs to.

TIP You may be wondering if it’s possible to access the calculated locale
value from other places in your application code, such as a snippet. Fortu-
nately, this is usually quite straightforward: if the location you’d like to obtain
the value from is within session scope, you can just call S.locale.

Now that Lift can determine the correct locale for each request, let’s do something
useful with this new information and load some localized content from both tem-
plates and your own code.

12.1.2 Localizing templates and code

Lift has a selection of ways to interact with localized content, depending upon where
and what you need to localize. Broadly speaking, these can be divided into two types:
localized templates and localized code.

LOCALIZED TEMPLATES

In the section introduction, we briefly touched upon the differences between lan-
guages and how, for example, English is a left-to-right text whereas Hebrew is written
right-to-left (RTL). These differences in language direction have an impact on how
the site looks and functions. Consider figure 12.1, which compares a page in Hebrew
and in English.

 Try as you might, there will usually come a point when simply using resource bun-
dles to swap content for given positions won’t cut it. Verbose European languages may

Memoization
object

B

Call-by-name
functionC

287Implementing localization
cause problems if you’re tight on space, or implementing RTL languages may push
things to the breaking point and then require some template alterations.

 It’s exactly these situations that Lift’s template localization is designed for. The
content itself is the same, but you want to change the way it’s being presented. This
may involve including a custom <head> or perhaps making some page-specific
changes to accommodate content in a better manner.

 When Lift receives a request and then goes looking for the template, it will also
include a set of locale-specific templates in that search as well. Suppose you have
index.html as your content file, but you want to make a special case for German. In
order to implement this, you’d have both an index.html and an index_de.html file
(or one that also specifies the country: index_de_DE.html).

 This is great for per-page corner cases in different locales, but you may be wonder-
ing about what you’d do for something more global, such as a surround. Well, the
same is true. Even if your content page has a call to surround that defines default, you
can have a default_iw_HL.html (where iw_HL is the locale code for Israeli Hebrew),
and that root surround would automatically be selected by Lift allowing you to use the
same content for the page, but apply a RTL styling.

 Finally, if you have content in a template that you want to localize, you have two
possible ways to implement the Lift Loc snippet:

<lift:loc locid="greeting">Greeting goes here</lift:loc>

or

<p class="lift:loc?locid=greeting">Greeting goes here</p>

Both of these versions of template markup indicate to Lift that the content of that node
should be replaced by resolving the locid as a key in the resource bundle system.

Figure 12.1 Comparing English and Hebrew localization

288 CHAPTER 12 Localization
LOCALIZED CODE

In order to localize your own code, you need some way of telling Lift that it must grab
this particular bit of content from the resource bundle rather than taking the literal
from the code, much in the same way that the Loc snippet does in templates. For this,
Lift provides a slightly odd-looking S.?method.

 Consider these examples:

import net.liftweb.http.S.{?,??}

?("mything")
?("salutation", title, lastName)
??("ajax.error")

These are three examples of obtaining localized resources from the defined bundles.
Notice that there are two methods in use here: ? and ??. The ? method is used for
obtaining your own resources, and then the ?? method is used to obtain resources
that come bundled as part of Lift. For the most part, you’ll usually implement the ?
method, but understanding the purpose of ?? is helpful if you see it in example code
or you wish to override parts of Lift’s functionality.

 The first example in the preceding code shows the most common use case.
Resource bundles that contain localized content always define a key to access the local-
ized item, so imagine you have a literal string in a resource bundle that’s accessible via
the key “mything”—this method will just return the value as it’s defined in that
resource bundle.

 The second example defines a formatted resource string where the value would
be something like “Dear %s%s”, where the %s is a placeholder for the variable argu-
ment list passed to the second parameter. In this case, given ?("Dear %s %s", "Mr",
"Perrett") the result would be “Dear Mr Perrett”. Such strategies can be used to
localize the majority of your server-side text, such as the names of buttons or other
generated content.

 The other item of code that you’ll likely want to localize is your sitemap location
declarations. Fortunately, this is simple enough. You can just adjust the definition to
use the i method on the Menu object:

Menu.i("Home") / "index"

With this definition, the sitemap builds upon the S.?method and uses the name of
the page (Home, in this example) as the key to resolve the resource.

 Because localization lookup is conducted using strings for keys, you may want to
handle the case where an appropriate translation doesn’t exist for a particular key. Lift
supplies a hook for this, which allows you to execute any function you please in the
event that a localization key isn’t found in any of the available resource bundles. Add
the following configuration to your application Boot:

LiftRules.localizationLookupFailureNotice = Full((key,locale) =>
 logger.warn("No %s text for %s".format(locale.getDisplayName, key)))

289Defining localized resources
These two lines instruct Lift to log a warning when a translation key isn’t present. In
this instance, the function just logs an error, but it could just as easily execute any
code you require.

 You have now seen how to configure Lift with a dynamic locale, and you’ve also
had an introduction to how you can implement localized resources from both tem-
plates and code. With this in mind, it’s time to go through the various options avail-
able for loading localized content from resource bundles. The next three sections
deal with these options and show you how to implement each option in turn. The first
option you’ll be looking at is Lift’s XML-based resource bundles.

12.2 Defining localized resources
Web applications present a rather different localization problem compared to desk-
top applications. The traditional Java view on localization is that you have a single per-
locale bundle that contains all your application resources, and for desktop builds this
often makes sense. But with web applications, this can become a little unwieldy, as it’s
not uncommon for web applications to have a moderately complex structure with lots
of nested folders and pages and even page fragments. Suddenly, the Java approach of
using a single properties bundle can become rather restrictive.

 Although Lift can still support the traditional Java resource bundles (covered in
section 12.2.2), Lift avoids their shortcomings and provides a richer method of local-
ization through UTF-8 XML resource files.

12.2.1 Using XML resources

XML resource bundles can be located in a variety of places, but they primarily allow
you to split the localized content up into logical sections: different bundles for each
page or a more traditional global bundle for all pages. For example, assuming that the
page URL is /some/thing, Lift will attempt to look for resources based upon S.locale
with the following search path in your WAR file:

1 webapp/some/_resources_thing
2 webapp/templates-hidden/some/_resources_thing
3 webapp/some/resources-hidden/_resources_thing
4 webapp/_resources
5 webapp/templates-hidden/_resources
6 webapp/resources-hidden/_resources

As you can see, there are quite a number of places Lift will search for resources. The
great thing here is that the first three locations provide you with page-specific
resource bundles, and the last three provide global locations for common elements.

 Now that you know where resources can be placed, consider the following listing,
which shows an example of the Lift resource XML.

290 CHAPTER 12 Localization
<?xml version="1.0"?>
<resources>
 <res name="greeting"
 lang="en"
 country="GB"
 default="true">Welcome!</res>
 <res name="greeting" lang="en" country="US">Howdy!</res>
 <res name="greeting" lang="fr">Bienvenue!</res>
 <res name="greeting" lang="de">Willkommen!</res>
 <res name="greeting" lang="it">Benvenuti!</res>
</resources>

Each res node (short for resource) has several possible attributes. The first is the name
attribute, which defines the key for the resource you want to localize. The important
difference here is that unlike many other localization systems, you can have the same
key in the same resource set multiple times, provided their country and lang
attributes define a different locale. In this example, you can see that there are three
generic language resources for the greeting key: French, German, and Italian. These
resources would be applied for any country that applies those languages. Conversely,
there are two English implementations: British English and American English. Notice
that the British English version also includes the default attribute, which essentially
tells Lift that in the event of only having the language part of the locale, it should
assume the proper British English.

 Using this resource XML is a very Lift-specific way of doing localization, and
although it’s more flexible than traditional Java localization techniques, it’s important
to understand how you can use Java properties files if you so wish. The next section
walks you through using Java properties files for localized resources.

12.2.2 Using Java properties resources

Because Lift runs on the JVM, it’s straightforward to utilize the existing infrastructure
for localizing your applications. Unlike the Lift XML resources, traditional properties
resource bundles can only contain content for a single locale. The result of this is
that you’ll most likely end up with a directory in src/main/resources/ that contains
several files:

■ lift_de.properties
■ lift_en_GB.properties
■ lift_en_US.properties
■ lift_it.properties

The main drawback here is that all application resources for a given locale must exist
in the same file, and that extended characters such as œ aren’t properly encoded by
default. This is due to Java properties bundles using ISO 8859-1 encoding and thus
requiring conversion to escaped format, such as \u0153. Fortunately this process can
be automated using tools like native2ascii but it’s something else you need to think

Listing 12.3 Example of Lift’s resource XML

291Defining localized resources
about. On the plus side, if you’re migrating from an existing Java application, your
localized files will still operate exactly as they did.

NOTE Native2Ascii can be found at http://download.oracle.com/javase/
1.4.2/docs/tooldocs/windows/native2ascii.html. There is also an SBT wrap-
per for native2ascii that autoconverts your raw text to escaped Uni-
code output. It can be found on GitHub: https://github.com/timperrett/
sbt-native2ascii-plugin.

By default, the resource base name that Lift uses to locate your resource bundles is
actually the word lift, meaning it will look for lift_en.properties, for example. You can
override this and provide the following configuration in your Boot class to customize
the resource base name:

LiftRules.resourceNames = "content" :: LiftRules.resourceNames

With this configuration, Lift will attempt to resolve resource bundles first with the
base name content and then secondly with lift.

 If neither Lift resource XML nor traditional Java properties localization methods
are to your liking, you can always implement your own resource bundle factory to, for
example, pull localized content from a database or any other kind of text store.

12.2.3 Using custom resource factories

Depending upon the type of application you’re building, there may come a point
when having all the resources externalized in static files isn’t quite enough, and you’d
like to plug in your own custom bundle factory. A bundle factory is a facility whereby
you can provide your own class implementation that extends java.util.Resource-
Bundle, which essentially gives you the ability to pull the localized content from any-
where you can reach with that code; it’s entirely up to you.

 In order to implement a custom resource bundle factory, construct something sim-
ilar to the following and yield your subtype of ResourceBundle:

LiftRules.resourceBundleFactories.append {
 case (key, locale) => // yield ResourceBundle
}

The partial function in this instance is passed a Tuple2, where the first element is the
resource key and the second element is the specified locale instance. You can con-
struct your own subtype of ResourceBundle in Scala and return it based upon this
lookup. How you’re actually storing the resource information will massively alter the
lookup implementation, such as if you were storing the text in a NoSQL store versus
using some kind of in-memory structure. The logic, however, would simply be to
search the backing store (whatever that may be) looking for a key and locale that
match the ones being passed to the partial function.

http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/native2ascii.html
https://github.com/timperrett/sbt-native2ascii-plugin
http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/native2ascii.html
https://github.com/timperrett/sbt-native2ascii-plugin

292 CHAPTER 12 Localization
12.3 Summary
In this chapter, you’ve seen how to ready your application for the global market by
leveraging Lift’s sophisticated localization system to provide content to users in the
manner to which they’re accustomed. This included instructions on how to config-
ure and optimize the locale calculator so your application can detect which locale it
should apply for any given request. In addition, we also looked at how to bundle
localized content and apply the content in both your template markup and applica-
tion code.

 The next chapter takes a look at a pair of subjects that are typically found in
larger enterprise systems: concurrent programming models and integration with
enterprise systems, making use of Lift’s integration with JPA persistence. In addition,
you’ll be broadly introduced to the Akka distribution and concurrency toolkit to get
a feel for how you could scale the backend of your Lift applications when building
the next Twitter!

Distributed messaging
and Java enterprise

 integration
The first part of this chapter is all about distributed and concurrent program-
ming. You’ll see how you can utilize Lift’s baked-in AMQP module to build reli-
able message-based workflows atop a friendly actor-based abstraction. In addition,
we’ll look at Akka, the concurrency toolkit and scalability runtime.

 This first section of the chapter will serve as an introduction to messaging. Mes-
saging is a much broader topic than we can cover in this book, but you’ll learn how
to leverage Lift’s support for AMQP and how to take advantage of the powerful
actor abstractions Akka provides, such as supervised and remote actors. These tech-
nologies are becoming increasingly popular in the Scala ecosystem, so it’s good to
have a grounding in them and an appreciation of the flexibility and power that
message-based systems provide.

 Continuing with the theme of application development on a larger enterprise
scale, section 13.2 is all about utilizing the Java Persistence API (JPA) persistence

This chapter covers
■ Using Lift’s AMQP support
■ Building distributed systems using Akka
■ Using Lift’s integration with the Java

Persistence API
293

294 CHAPTER 13 Distributed messaging and Java enterprise integration
framework from Java Enterprise Edition (JEE). JPA is much more complicated than
other persistence systems covered in this book, so this section focuses on the Lift wrap-
pers around this technology rather than offering a guide to JPA in general.

JPA is popular in the enterprise space because it’s a well-supported and proven
ORM, and many developers, particularly those coming from the Java ecosystem, may
want to continue to use an existing data access layer with Lift being only a part of a
broader Java application. This section demonstrates the Lift wrappers that give JPA
a more idiomatic Scala feel and that hide the typically mutable data structures
found in JPA, all while remaining fully compatible with their Java counterparts.
These abstractions are essentially a nice layer on top of the standard JPA infrastruc-
ture, and they aim to do two things: provide an API that will be far more familiar
to Scala programmers, and provide integration with Lift’s lifecycle for things such
as activating and shutting down the JPA session for each request scope. More on
this later.

 First, we’ll look at distributed programming and Lift’s actor-based abstraction
for AMQP.

13.1 Distributed programming
Today, applications have to deal with heavily write-orientated architectures and real-
time user interfaces, coupled with the infrastructure challenges of automatically scal-
ing in cloud-computing systems such as Amazon EC2. More and more demands are
being placed upon these systems, so understanding how to distribute parts of your
application and to design systems that are both resilient and lend themselves to easy
distribution is increasingly important.

 The Scala community is aware of this revolution. Its first step in making distributed
and concurrent applications easier to build and maintain was to simplify concurrency
patterns by implementing actor design patterns. The concept of actors and messaging
has spread, and it turns out that many parts of the well-established Java infrastructure
have a strong parity with actors. One of the strongest examples of this great fit is that
of messaging technologies such as AMQP (http://www.amqp.org/): Lift provides a
wrapper around messaging semantics atop the AMQ Protocol. This allows you to inter-
act with the AMQP server and clients by using the bang (!) method to send messages
to and from the AMQP broker.

 In the Scala ecosystem, another project that has been flourishing in recent
times is Akka (http://akka.io/). The Akka framework provides an extremely fast
and lightweight implementation of actors, and it has several features that make it
perfect for building fault-tolerant, highly scalable, and event-driven applications.
Fortunately, Akka can play perfectly with Lift, so it’s possible to build your applica-
tions with a robust, scalable backend while retaining all the rich interactivity pro-
vided by Lift.

 The first thing we’ll look at in this section is Lift’s actor-based abstraction for
interacting with AMQP. These wrappers allow you to send and receive messages from

http://www.amqp.org/):
http://akka.io

295Distributed programming
other pieces of AMQP-compatible infrastructure, all from within the actor implemen-
tation paradigm.

13.1.1 Messaging with AMQP

AMQP is an open standard for a robust messaging protocol that allows developers to
build applications that communicate reliably via a binary message format. Protocols
such as AMQP allow developers to split up independent parts of their application with
minimal coupling between components. A new component can replace another sim-
ply by adhering to the AMQP protocol and knowing how to handle the same incom-
ing messages.

AMQP and, in a more general sense, the paradigm of messaging, really become
useful when your application starts to grow. A properly designed system that makes
effective use of messaging can have highly decoupled components that are easier to
replace, easier to maintain, and easier to scale. Ultimately the idea is that this is
cheaper for the implementing business, and indeed this has been proven many times
in the enterprise space.

 There are, of course, complexities, and nothing is without problems: the choices
you make in the design of your system are critical to the success of the system, and
messaging is just one possible route. As always, you should analyze your use case
and do a comparative study on different technologies to see which will best fit your
needs for today, tomorrow, and next year; accepting additional complexity ahead of
time will often save you money in the long run.

AMQP SUPPORT IN LIFT

Lift’s AMQP support is provided by the client library of an AMQP implementation
called RabbitMQ (http://www.rabbitmq.com/). RabbitMQ is one of the most popular
implementations of AMQP available, and it’s used by many large enterprises in exceed-
ingly demanding scenarios.

 Before we get into too many details, it’s a good idea to have some familiarity
with the terminology used by message queues in general and specifically RabbitMQ.
Table 13.1 explains some common terms.

 RabbitMQ itself is implemented with the Erlang programming language, so the
message broker you’ll use is external to your application and must be installed and con-
figured before you can begin. The RabbitMQ brokers are usually available as an
installer package for your operating system, and they then require some minimal con-
figuration, but please refer to either the RabbitMQ installation instructions (http://
www.rabbitmq.com/install.html) or Alvaro Videla and Jason Williams’ RabbitMQ in
Action book, also available from Manning.

 Assuming you have a broker set up, you’ll need to add the lift-amqp dependency
to your project definition:

val amqp = "net.liftweb" %% "lift-amqp" % liftVersion

Once you have this in place, don’t forget to run reload and update from the SBT shell.

http://www.rabbitmq.com
http://www.rabbitmq.com/install.html
http://www.rabbitmq.com/install.html

296 CHAPTER 13 Distributed messaging and Java enterprise integration
Table 13.1 Common AMQP terms

Term Description

Virtual host A virtual host represents a set of exchanges and all subordinate objects.
Broadly speaking, virtual hosts are administrative
functions that allow for access control and general organization of the bro-
ker setup.

Exchange The exchange is really the most fundamental part of an AMQP setup.
It’s the central point to which all messages are communicated and they’re
then distributed to its queues. More often than not, your virtual host will
only have a handful of exchanges, and each exchange may have a selec-
tion of queues.
Upon creating an exchange, you must first decide whether the exchange
should be durable (whether it survives failure or reboot) and then select an
algorithm to use for the distribution of the messages it receives. You have
these options:

Direct This is the default type of exchange. Strings are used as
the routing key, so given a queue bound
to an exchange with the key test, only messages that are
posted with the key test will be routed to that queue.

Fanout No routing keys are used; every message received by that
exchange is routed out in a fanout fashion. What goes in,
must go out!

Topic Topic exchanges use the routing key as a
pattern. Imagine you have three queues: animal.dog, ani-
mal.horse, and machine.car; any message that has a
routing key of “animal.*” would route to the first two
queues, but not to the machine.car queue.

Queue In an exchange are queues. Upon creating a queue, you bind it to an
exchange. That is to say, any given queue is fed messages from a single
exchange. Messages sent to the queue are processed in a first-in first-out
(FIFO) manner if there’s only a single consumer.

Message The message is the thing sent to an exchange, and it consists of both a
header and a body; the latter is an opaque blob of binary data whereas the
former is a lightweight envelope containing routing and message metadata.
Messages will only be delivered to matching queues, and they will only be
delivered once. Messages can also be made to be durable so that in the
case of network failure or crash, you can be sure your messages will still get
through after recovery occurs.

Publisher A publisher creates messages to send to the exchange.

Consumer A consumer subscribes or feeds on the messages supplied by the queues of
any given exchange.

297Distributed programming
There are a couple of key concepts in Lift’s AMQP implementation, and architectur-
ally these can be visualized as in figure 13.1.

 In this figure, the first section at A represents the publishing application. Provided
that this application implements a subtype of AMQPSender, it could be in another pro-
cess or even on another server somewhere. After the message has been published to
the exchange, RabbitMQ internally routes the message (B) to the correct queue based
upon the routing key supplied in the message, and then it dispatches the message to
the relevant consumer (C). The receiver can be implemented in a separate process in
exactly the same way as the publisher.

AN AMQP EXAMPLE

In this section, you’ll construct rudimentary client and server components that com-
municate via AMQP. This example has been tested with a RabbitMQ broker and it
should work with any AMQP implementation on the broker side, but it may or may not
work with other AMQP implementations.

Figure 13.1 Structure of the various sending and receiving classes in the
AMQP abstraction

298 CHAPTER 13 Distributed messaging and Java enterprise integration
 In order to implement a publisher, you must implement a subtype of AMQPSender.
It’s important to do this so that the message you wish to send is properly serialized
before it’s sent over the wire.

TIP When dealing with serialization in Scala, it’s important to remember
that not all things can be serialized effectively. For example, the FunctionN
type series aren’t good candidates for serialization; try to stick to more primi-
tive values or even custom class types that you know how to properly serialize
as a contained entity.

The following listing shows an example sender that publishes string messages and uti-
lizes the StringAMQPSender that ships with Lift’s AMQP library.

import com.rabbitmq.client.{ConnectionFactory,ConnectionParameters}
import net.liftweb.amqp.{AMQPSender,StringAMQPSender,AMQPMessage}

object BasicStringSender {
 val params = new ConnectionParameters
 params.setUsername("guest")
 params.setPassword("guest")
 params.setVirtualHost("/")
 params.setRequestedHeartbeat(0)

 val factory = new ConnectionFactory(params)
 val amqp = new StringAMQPSender(factory,
 "yourhost", 5672, "mult", "example.demo")

 def salute = amqp ! AMQPMessage("hey there!")
}

In this example implementation, you can see that there are several things going on.
First the class defines the connection to the exchange and sets the relevant authenti-
cation credentials and some RabbitMQ-specific options B. Next, a connection is
forged with the RabbitMQ server upon the object’s creation C; a new instance of the
StringAMQPSender actor is created, complete with parameters containing information
about which virtual host and port this sender should connect to, what queue it should
use, and what the routing key should be. Last, but certainly not least, is the salute
method that sends an AMQPMessage to the exchange. Notice the use of the !method to
send the message D, just like a regular actor. Lift has abstracted away most of the
complexity so after the initial setup, the rest of your application code will only deal
with sending messages of a predefined type.

 Now that you have a method to produce and broadcast messages, you’ll also want
to implement something to consume those messages and do something useful. The
final part of figure 13.1 outlines the consumer (C), and the following listing shows an
implementation that can consume the string messages being sent by the producer
constructed in listing 13.1.

Listing 13.1 Implementing the publishing part of Lift’s AMQP module

Set RabbitMQ
connection
parameters

B

Connect to
exchange
and queue

C

Send messageD

299Distributed programming
import com.rabbitmq.client.{ConnectionFactory,ConnectionParameters,Channel}
import net.liftweb.amqp.{AMQPDispatcher,AMQPAddListener,
 AMQPMessage,SerializedConsumer}
import net.liftweb.actor.LiftActor

class ExampleAMQPDispatcher[T](
 queueName: String,
 factory: ConnectionFactory,
 host: String, port: Int)
 extends AMQPDispatcher[T](factory, host, port){

 override def configure(channel: Channel) {
 channel.exchangeDeclare("mult", "fanout", true)
 channel.queueDeclare(queueName, true)
 channel.queueBind(queueName, "mult", "example.*")
 channel.basicConsume(queueName, false,
 new SerializedConsumer(channel, this))
 }
}

class QueueListener(queueName: String){
 val params = new ConnectionParameters
 params.setUsername("guest")
 params.setPassword("guest")
 params.setVirtualHost("/")
 params.setRequestedHeartbeat(0)

 val factory = new ConnectionFactory(params)
 val amqp = new ExampleAMQPDispatcher[String](
 queueName, factory, "yourhost", 5672)

 class StringListener extends LiftActor {
 override def messageHandler = {
 case msg@AMQPMessage(contents: String) =>
 println("received: " + msg)
 msg
 }
 }
 amqp ! AMQPAddListener(new StringListener)
}

Implementing the consumer is a little bit more complicated than using the publisher.
There are two distinct aspects to it: the dispatcher and the listener.

 First, the dispatcher, which acts as the AMQP endpoint; like the publisher, it
defines which exchange it will be working with B. Critically, inside the dis-
patcher defines how messages should be deserialized; it’s highly likely you’ll want
to customize this implementation, but this example only deals with strings, so it’s
fine to use the defaults C.

QueueListener is the container class that creates the dispatcher for a given
queue D. This dispatcher is then sent an instance of a basic LiftActor (defined at E)
that knows how to handle AMQP messages of type string. Upon receiving such a
message, the actor will print a notice to the standard output.

Listing 13.2 Implementing the AMQP consumer

Endpoint
dispatcher

B

Message
deserializerC

Queue
listenerD

Receiving
actor

E

Listener registers
with dispatcherF

300 CHAPTER 13 Distributed messaging and Java enterprise integration
 Finally, in order to let the dispatcher know which actor will be dealing with these
incoming messages, you need to send the AMQPAddListener message to register this
handler with the queue dispatcher F.

 As mentioned in the introduction to this chapter, Lift isn’t the only project in the
Scala ecosystem to realize the power of actor semantics in general problem solving.
Akka takes the actor paradigm and really goes to town, adding in lots of useful features
such as fault-tolerance and remote actors. The next section shows you how to leverage
some of Akka’s toolchain and how to integrate that with your Lift application.

13.1.2 Messaging with Akka

The driving principle of Akka is to make concurrent programming easier by providing
a lightweight, actor-based concurrency model. This simplifies concurrency and makes
implementing parallelized execution much more maintainable. In addition, Akka
provides a whole host of features for building fault-tolerant applications as well as add-
on modules for a whole set of functionality, including systems integration, software
transaction memory, and even dataflow concurrency!

 In this section, we’ll give you an overview of Akka and show you how to pass a mes-
sage from an Akka backend into Lift, and then push that to the browser via Lift’s
CometActor. Akka actors implement something known as remote actors, which allow
messages to come from other processes much like AMQP, but with a more idiomatic
Scala feel. That’s the part of Akka that we’ll specifically explore in this section.

 As an example, we’ll set up a basic remote actor to illustrate sending a message from
a remote Akka actor to an Akka actor in your Lift application. Before we start, though,
you need to add the relevant dependencies and repositories to your project definition:

val actors = "se.scalablesolutions.akka" % "akka-actor" % "1.0"
val remote = "se.scalablesolutions.akka" % "akka-remote" % "1.0"

lazy val akkarepo = "akka.repo" at "http://akka.io/repository/"

Once this is in place, ensure that you reload and update from the SBT shell to down-
load the required dependencies.

 In this basic scenario, the first thing you need to do is set up a simplistic Akka actor
as shown in the following listing.

import akka.actor.Actor

class HelloWorldActor extends Actor {
 def receive = {
 case "Hello" => println("Message Received!")
 }
}

This implementation is probably the most straightforward actor you could create.
Import the Actor type from the Akka package, and implement a new class that mixes
in the Actor trait. Akka actors are different from both Lift actors and Scala actors in

Listing 13.3 Basic implementation using Akka actors

http://akka.io/repository

301Distributed programming
that they require you to implement the receive method to handle incoming mes-
sages. This particular example only handles the message “Hello”, to which it will print
a message to the standard output.

 For the sake of this example, this HelloWorldActor will serve as the server compo-
nent of the remote actor setup, so you need to initialize the actor when your applica-
tion boots up.

NOTE Akka actors differ from Lift actors in that they require explicit starting
and stopping; all actor references have both a start()and stop() method. If
you try to send a message to an Akka actor when it isn’t running, you’ll
receive a runtime exception, so when using Akka in conjunction with Lift, it
typically makes sense to start up your Akka actors within the Boot class.

Implement the following at the end of your Boot.boot method:

import akka.actor.Actor.{remote,actorOf}

remote.start("localhost", 2552)
remote.register("hello-service", actorOf[sample.actor.HelloWorldActor])

There are two things happening in this short snippet: first, a remote actor server is ini-
tialized on the localhost:2552 address, and then an actor service of a specific type is
registered, which in this case is the actor defined a moment ago in listing 13.3. In
short, this tells Akka that actors from a remote process will attempt to connect and
interact with this particular actor using the service handle hello-service.

 In order to call this particular actor remotely, you need to implement a client. To
keep the code simple, let’s define a static object that you can invoke from the console
window in another instance of SBT.

 The next listing shows the definition of this object.

object HelloWorldRemoteCaller {
 import akka.actor.Actor.remote
 private val actor = remote.actorFor("hello-service", "localhost", 2552)
 def welcome = actor ! "Hello"
}

Given the definition of the server initialization, this caller should be fairly intuitive.
The client essentially asks Akka to make a remote request to the hello-service on
localhost:2552 by first obtaining a reference to the service actor and then send-
ing the message “Hello”. Note that Akka adopts the familiar actor syntax of using
the ! method to communicate a message to an actor.

FAULT TOLERANCE THROUGH SUPERVISORS

When an actor is currently executing on a thread, it is more than likely running on a
different call stack or thread than the message sender, so in the event of an exception
occurring, the sender will not be aware that something went wrong. The only way of
figuring out what actually went wrong is by looking at the stack-trace. Akka takes an

Listing 13.4 Implementing a basic client for remote Akka actors

302 CHAPTER 13 Distributed messaging and Java enterprise integration
approach to failure that originated in the
telecoms industry, where extremely high
levels of service are required and thus a
huge level of fault-tolerance: embrace fail-
ure and let it crash. Initially, this may
sound a touch strange, but consider that
all applications at some point in time will
go wrong. This is a fact of life; planning for
that failure is what really matters. With this
concept of embracing failure, you can
build applications that can effectively
recover from problems and self-heal.

 From the technical standpoint, Akka
achieves this by implementing supervisor
hierarchies. The concept here is that in the
event of a failure or problem with one of
the child processes, the supervisor will
adopt a predefined recovery strategy and deal with the issue at hand. Out of the box,
there are two different strategies of recovery.

 The first recovery strategy is known as one for one and can be visualized as in fig-
ure 13.2.

 In the diagram, the actor with the dotted circle around it is being restarted after a
problem occurred; the other actor that’s also under supervision remains untouched
because it’s still operating within normal parameters.

 The second strategy (as you might imagine) is all for one, as visualized in figure 13.3.
 In an all for one scenario, if a particu-

lar actor under a particular supervisor has
a problem, all the actors under that super-
visor are restarted. This can be particularly
useful when you’re doing some process-
ing, and in the event of an error you need
to reset the state to a stable point across
the board.

NOTE The actor paradigm can be
applied to many parts of an applica-
tion, in nearly every problem domain.
Building applications entirely using
actors can make them more scalable
and more robust. This approach can
often avoid CPU hot spots that are typ-
ically found in traditional application
implementations.

Figure 13.2 Visualization of the one-for-one
restart strategy found in Akka supervisor
hierarchies

Figure 13.3 Visualization of the all-for-one
restart strategy

303Distributed programming
Let’s expand on the basic remote actor example from listing 13.4 to add supervision
and a slightly more interesting message-processing step that could feasibly cause an
error. In this case, the service will attempt to convert its incoming message to an Int
via the toInt method. This could feasibly explode if the string isn’t made up of
numeric characters, and it would throw an exception. The following listing shows the
modified caller and actor code.

import akka.actor.Actor

class IntTransformer extends Actor {
 def receive = {
 case (in: String) => println(in.toInt)
 }
}

object IntTransformerRemoteCaller {
 import akka.actor.Actor.remote
 private val actor = remote.actorFor("sample.actor.IntTransformer",
 "localhost", 2552)
 def send(msg: String) = actor ! msg
}

There are two main alterations here. First, the message-handling function has been
changed to something that could possibly explode B. In the event of receiving a
regular string that isn’t convertible to an integer, the result would be a java.lang
.NumberFormatException. Second, the send method simply passes the string param-
eter as the message to the actor C.

 None of these changes apply the supervision; that must be set in your Boot class
with the code shown in the following listing.

import akka.actor.Supervisor
import akka.config.Supervision.{SupervisorConfig,
 OneForOneStrategy, Supervise,Permanent}

Supervisor(
 SupervisorConfig(
 OneForOneStrategy(
 List(classOf[NumberFormatException]), 3, 1000),
 Supervise(
 actorOf[sample.actor.IntTransformer],
 Permanent, true
) ::Nil))

This small block of code instructs Akka to implement a supervisor for the defined
actors. In this case, it’s only looking after a single actor, but the principle is the same. First,
it defines the type of restart strategy to be used B, and you can also see that Number-
FormatException has been specified as a valid exception case on which to restart the

Listing 13.5 Int transformer server alterations

Listing 13.6 Implementing Akka supervisor hierarchies

Dangerous
action

B

Pass param
as msgC

Restart
strategy

B

Actor lifecycle
and remote flag

C

304 CHAPTER 13 Distributed messaging and Java enterprise integration
actor. This allows you to still have fall-through exceptions that won’t cause a restart if
there was, for example, some terminal error that really stopped the system from oper-
ating at all.

 Next, the code selects the lifecycle of restarts for this actor C. Permanent specifies
that this actor will always be restarted, no matter what. The other option is Temporary,
which means that the actor will be gracefully shut down and will execute all the way
through its lifecycle until it completes the postStop function.

 The third and final argument of Supervise specifies whether the actor can be
accessed as a remote actor service, so this must be set to true. Unlike before where
you had to register the name of the remote actor service, using the supervisor causes
Akka to automatically register the actor service as remote with the name of the fully
qualified actor class name as its service name.

 With this you have a fully functioning service that will recover after an unhandled
exception occurs and will continue to operate normally. The next step is to have Akka
pass messages back and forth with a Lift CometActor.

AKKA AND LIFT INTERACTION

So far, you’ve seen how you can essentially inject information into your application
using Akka actors and its remoting protocol. But Akka supports a much richer fea-
ture set than this, and when you start to model your application entirely with actors,
your frontend GUI can follow suit and also become fully event-driven. Back in chap-
ter 9 we discussed Lift’s awesome CometActor implementation that allows you to push
data to the browser without needing additional requests from the client to pull that
new data. This is an almost perfect fit with an event-driven application design, and
you can use it to automatically push the result from an Akka backend right through
to the client’s browser.

 In this section, you’ll see how to leverage an actor concept called futures. As the
name suggests, a Future is essentially a construct for saying, “In the future, you’ll
receive this value type as a message.” The benefit of such a construct is that you can
keep an asynchronous workflow without the need to explicitly pass caller references to
the message target, which can quickly become somewhat cumbersome. One of the
driving principals of actor designs is asynchronous messaging: having as little blocking
code as you feasibly can get away with.

 For this example, you’ll construct two parts: an Akka actor to handle an arbitrary
computation, and a Lift CometActor to collect input and display the asynchronous
response from the Future. Figure 13.4 visualizes this relationship.

 In the figure, you can see that the CometActor is presented to the user, who sup-
plies some values, which are then sent to the Akka actor for processing at A. Upon
sending this message, the CometActor understands that it will receive a response in
the future (more on this in a moment), so it sends the message asynchronously. When
the Akka actor has completed its processing, it responds to the CometActor, which in
turn pushes the result to the user.

305Distributed programming
NOTE You could also implement the exact same type of workflow with Lift-
Actors alone, because they too have the concept of futures, embodied by the
LAFuture type. The purpose of using Akka here is to demonstrate how you
can shunt information asynchronously through the different systems using
message-passing semantics, because Akka has a lot of things that Lift doesn’t
when it comes to heavy-duty backend processing. Thus, the problems each
project tackles are orthogonal, and understanding how you can interoperate
between the different systems can be useful.

With these concepts in mind, let’s explore some code. The example here will be a cal-
culator: it collects input on the frontend, hands it off to Akka for arithmetic process-
ing, and then receives the response.

 The next listing shows the Akka backend actor.

import akka.actor.Actor

sealed case class Compute(
 thiz: Double, that: Double, by: String)

class Calculator extends Actor {
 def receive = {
 case Compute(a,b,by) => {
 val result = by match {
 case "*" => a * b
 case "+" => a + b
 case "/" => a / b
 case _ =>
 println("Unknown type of maths!")
 0D
 }

Listing 13.7 Backend Akka implementation for calculator

Figure 13.4 Interoperation between a Lift CometActor and a backend Akka actor, including a
supervisor to handle failures

Input
container

B

CalculationC

306 CHAPTER 13 Distributed messaging and Java enterprise integration
 self.reply(result)
 }
 }
}

As you can see, the implementation here is a simple calculator that takes two Double
numbers from the incoming Compute message container B and applies a user-
selected operator C. The result is then sent as a Future[Double] by calling
self.reply(result) D. There’s a minimal amount of work going on here; in an
actual implementation, the Akka backend would likely be distributing or processing
work concurrently in order to play to its strengths.

TIP If you’re familiar with actor message passing and are wondering why I
didn’t wrap the operation signs in case objects, that was purely to avoid bloat
in the example. In practice, it’s a matter of style that makes no difference in
operation, but I encourage the use of properly typed messages in place of
arbitrary strings in your applications.

Irrespective of the actual work being conducted, the Akka backend will eventually
complete the task and respond to the CometActor, which will push the result to the
browser upon receiving the future response. The front-end CometActor is shown in
the following listing.

import scala.xml.{NodeSeq,Text}
import net.liftweb.common.{Box,Full,Empty}
import net.liftweb.util.Helpers._
import net.liftweb.http.{CometActor,SHtml}
import net.liftweb.http.js.JsCmds.{SetHtml,Noop}
import akka.actor.Actor.registry
import akka.dispatch.Future

class CalculatorDisplay extends CometActor {
 private var one, two = 0D
 private var operation: Box[String] = Empty

 def doubleInput(f: Double => Any) =
 SHtml.text("0.0", v => f(asDouble(v).openOr(0D)))

 def render =
 "#value_one" #> doubleInput(one = _) &
 "#value_two" #> doubleInput(two = _) &
 "#operation" #> SHtml.select(Seq("+","/","*")
 .map(x => (x -> x)), operation,
 v => operation = Full(v)) &
 "type=submit" #> SHtml.ajaxSubmit("Submit", () => {
 val future: Future[Double] =
 registry.actorFor[Calculator].get !!!
 Compute(one,two,operation.openOr("+"))
 future.onComplete(f => this ! f.result)

Listing 13.8 Implementing the CometActor for calculator

Future
replyD

Define internal
variables

B

Create input
fields

C

Send user input
to Akka actor

D

307Distributed programming
 Noop
 }) andThen SHtml.makeFormsAjax

 override def lowPriority = {
 case Some(value: Double) =>
 partialUpdate(SetHtml(
 "result", Text(value.toString)))
 }
}

This CometActor houses a simple interface for entering values and choosing the type
of mathematical operation you wish to carry out. The input values are held in private
variables B and are bound to the input elements C. This is all normal element bind-
ing, but the key difference here is that the Submit button actually takes the values,
wraps them up in a Compute instance, and sends it to the Akka actor D. The message
is sent by using the !!! method, which yields a Future[T], which in this case is
assigned to the value future.

 The Future isn’t the concrete value of the response you’re looking for in its own
right; rather, it’s an indication that you’ll eventually get the response you’re expect-
ing, and to that end you must specify what it needs to do when that response does
arrive. This is configured through the onComplete method, and as you can see, this
function simply forwards the resulting value to itself as a message, which is handled
and pushed to the browser E.

LIFT INTERACTION WITHOUT USING FUTURES

Although the use of futures yields a working solution, it’s not 100 percent ideal
because it means the response is being handled by something other than the main
messageHandler. When one Akka actor is communicating with another Akka actor,
the recipient of a message can implicitly resolve the sender, even when the message
was only sent with a single bang (!), by implicitly determining the ActorRef. But
because LiftActor doesn’t have anything to do with ActorRef, it’s seemingly impossi-
ble to leverage Akka’s reply semantics.

 Fortunately, there’s a solution, and it can make the CalculatorDisplay Comet-
Actor much neater by removing the future and implicitly telling the calculator where
it needs to respond. Consider the following listing.

trait AkkaCometActor extends CometActor {
 implicit val akkaProxy: Option[ActorRef] =
 Some(Actor.actorOf(new Actor{
 protected def receive = {
 case a => AkkaCometActor.this ! a
 }
 }))
 override def localSetup {
 super.localSetup
 akkaProxy.foreach(_.start)
 }

Listing 13.9 Implicit ActorRef bridge between CometActors and Akka actors

Push future
response

E

Create implicit
Akka proxy

B

Start proxy
on setupC

308 CHAPTER 13 Distributed messaging and Java enterprise integration
 override def localShutdown {
 super.localShutdown
 akkaProxy.foreach(_.stop)
 }
}

This trait essentially acts as an intermediary between the CometActor and the Akka
actor. First, this trait defines an implicit proxy actor that forwards messages from the
Akka actor to the CometActor B. When a message is sent to the Akka actor and Akka
looks for an implicitly supplied reference for the sender, it will find the akkaProxy
supplied here and use that as the place to respond to when the target calls
self.reply(...). When that proxy receives the reply for the Akka actor, it immedi-
ately forwards it to the CometActor, giving you the illusion of direct interaction
between Lift’s Comet infrastructure and the backend Akka setup. Finally, the local-
Setup and localShutdown methods hook into the CometActor lifecycle, so that the
Akka proxy actor is shut down explicitly when the CometActor is shut down by Lift,
which automatically happens when the user’s session expires or the defined Comet-
Actor’s lifespan is exceeded C and D.

 With this implicit magic in place, the CalculatorDisplay needs some minor
changes in order for the CometActor message handler to properly handle the message
that the Akka actor replies with. The changes are shown in the following listing.

class CalculatorDisplay extends AkkaCometActor {
 ...
 def render =
 ...
 "type=submit" #> SHtml.ajaxSubmit("Submit", () => {
 registry.actorFor[Calculator].map {
 _ ! Compute(one,two,operation.openOr("+"))
 } Noop
 }) andThen SHtml.makeFormsAjax

 override def lowPriority = {
 case value: Double =>
 partialUpdate(SetHtml("result", Text(value.toString)))
 }
}

The first change is to extend the new AkkaCometActor trait in place of the regular
CometActor B. Secondly, but most importantly, you need to remove the future !!!
call in place of a one-way ! method C. The ramification of this is that Akka will then
handle the response by way of its built-in reply semantics, letting you match on the
value type directly rather than using an Option[Double] D.

 The next section moves away from messaging to cover JEE persistence (JPA). If
you’re coming to Lift from other Java-based frameworks, or you have an existing
investment in JEE technologies, worry not! These are fully interoperable with Lift, and

Listing 13.10 Alterations to CalculatorDisplay with implicit actor bridge

Stop proxy on
teardownD

Extend
AkkaCometActorB

Remove
future

C

Remove
Option[T]D

309Integrating Lift into existing Java infrastructure
in the case of JPA, Lift provides wrappers around the classic Java API to give these tools
a more idiomatic Scala feel.

13.2 Integrating Lift into existing Java infrastructure
In previous chapters, you’ve seen several different persistence mechanisms that either
ship with Lift (Mapper) or have neat integration layers through Record (Squeryl and
others). With this in mind, you may be wondering what the purpose of discussing yet
another database access system is. Well, if you’re coming from the Java space and are
familiar with JPA and the general Enterprise JavaBeans 3 (EJB3) setup, understanding
how to work with Lift using this sort of system is important; particularly because many
enterprise users already have existing investments in EJB-based systems.

 Unlike the systems discussed in previous chapters, JPA makes fairly heavy use of
annotations to drive various aspects of entity definition, and it takes a rather different
approach to managing entity instances via its entity manager. We’ll be exploring this
in more detail later, but here are some top-level reasons why you may be interested in
using JPA:

■ JPA is fully interoperable with Java, so if you need Java code to call your entities,
you can do so in a toll-free manner.

■ JPA is generally very mature and it’s a well-documented technology online. As
such, advanced features such as second-level caching are well documented
with examples.

■ Given a larger database schema, JPA can often be a more robust choice, because
you can generally make more intelligent choices about how joins are imple-
mented and what the relationships are between different entities.

In addition to JPA, JEE also encompasses the Java Transaction API (JTA), which pro-
vides a general-purpose framework for constructing transactional semantics across
multiple X/Open XA resources. There’s a Lift module for working with JTA, but it’s
somewhat out of scope for this book.

13.2.1 JPA and Scala EntityManager

Lift’s JPA module depends upon a project called Scala JPA. This project provides an
abstraction upon the EntityManager class provided by JPA in order to provide an API
that’s much more comfortable for Scala programmers. Lift builds upon this work to
provide some additional integration that’s helpful when building web applications
that include JPA.

JPA and general Java persistence is a large topic that could easily fill entire books
(such as Debu Panda, Reza Rahman, and Derek Lane’s EJB 3 in Action), so this section
assumes you have a familiarity with the implementation of POJO entities. For readers
who aren’t directly familiar with JPA, see table 13.2 for a brief introduction to some
common terms.

310 CHAPTER 13 Distributed messaging and Java enterprise integration
In order to use JPA, you’ll need to specify the following dependencies in your project
class. In this case, the EntityManager implementation is coming from the Hiber-
nate project:

val jpa = "net.liftweb" %% "lift-jpa" % liftVersion
val hibernate = "org.hibernate"
 ➥% "hibernate-entitymanager" % "3.6.0.Final"
val hibernatevali = "org.hibernate"
 ➥% "hibernate-validator-annotation-processor" % "4.1.0.Final"

These dependencies will allow you to define entity classes, complete with annotations,
so that the JPA infrastructure can determine exactly what needs to happen, including
validation. With your project now ready to use JPA, let’s build a small application that
adopts the bookshop-style example used in both chapters 10 and 11 to demonstrate
some of the lift-jpa features.

 The following listing shows the implementation for two sample entities: Author
and Book.

import java.util.Date
import javax.persistence._
import javax.validation.constraints.Size

@Entity
class Book {

Table 13.2 Overview of common terms used in and around JPA

Term Description

POJO This stands for plain old Java object and is a common term in discus-
sions relating to JPA. You’ll be writing Scala, so the acronym doesn’t
hold true here, but you can read this term to mean a plain class that
doesn’t extend any specific class and that uses annotations to define
field metadata.

EntityManager The official definition is: “An EntityManager instance is associated
with a persistence context. A persistence context is a set of entity
instances in which for any persistent entity identity there is a unique
entity instance. Within the persistence context, the entity instances and
their lifecycle are managed. This interface defines the methods that are
used to interact with the persistence context”.
This essentially means that if you want to do anything with JPA enti-
ties in your application, you’ll require an EntityManager to interact
with them.

Attached and detached
objects

JPA entities have attached and detached modes. When an entity is
attached, it’s available in the live JPA session, and any model alterations
are persisted appropriately. A detached object can be interacted with in
the same way, but the changes aren’t reflected in the database—you
have to explicitly pull the entity back into the session via the
EntityManager’s merge method.

Listing 13.11 Implementing the Author and Book JPA entities with Scala

Main entity
annotation

B

311Integrating Lift into existing Java infrastructure
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 var id : Long = _

 @Size(min = 3, max = 60)
 @Column(unique = true, nullable = false)
 var title : String = ""

 @Temporal(TemporalType.DATE)
 @Column(nullable = true)
 var published : Date = new Date()

 @ManyToOne(optional = false)
 var author : Author = _
}

@Entity
class Author {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 var id : Long = _

 @Size(min = 3, max = 20)
 @Column(unique = true, nullable = false)
 var name : String = ""

 @OneToMany(mappedBy = "author", targetEntity = classOf[Book])
 var books : java.util.Set[Book] =
 new java.util.HashSet[Book]()
}

This listing defines the two entities this example will use. Notice how they’re regular
Scala classes that are accompanied by the JPA annotations. These annotations should
look pretty familiar if you’ve used JPA with Java before, but for the uninitiated, all enti-
ties must first be annotated with @Entity B, and then each field variable D must be
annotated with one of the many JPA annotations C, depending upon how it maps to
the database.

Oh no, annotations!
Annotations have somewhat of a tarnished history with Scala, because many people
really don’t like them and avoid their use entirely. In fact, until Scala 2.8 annota-
tions simply did not work properly within Scala.

Annotations are commonly used in Java because the language itself lacks more
sophisticated constructs that allow developers to write composable code. As such,
annotations are a convenient way to build generic functionality in Java.

With Scala being a much richer language, annotations aren’t found in idiomatic
Scala code, and their usage is usually reserved for Java interoperation only, as is
the case with JPA. If you find yourself wanting to use annotations in your normal
Scala code, you can likely factor it out into a set of composable functions or traits.

JPA field
annotations

C

Field varsD

312 CHAPTER 13 Distributed messaging and Java enterprise integration
Of particular interest in these annotations should be @Size. This is one of many
validation annotations that Hibernate (or your EJB3 implementation of choice)
provides. These validations will be automatically applied before persisting to the
database, and specialized exceptions will be thrown if their conditions aren’t
properly satisfied.

 Now that you have the entities in place, you need to ensure that you define a
persistence.xml file in src/main/resources/META-INF so that the JPA library knows
how to interact with your database. Your persistence.xml should look like the follow-
ing listing.

<?xml version="1.0"?>
<persistence>
 <persistence-unit name="chp13"
 transaction-type="RESOURCE_LOCAL">
 <properties>
 <property name="hibernate.connection.driver_class"
 value="org.h2.Driver"/>
 <property name="hibernate.connection.url"
 value="jdbc:h2:database/chp_13;FILE_LOCK=NO"/>
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.connection.username" value="sa"/>
 <property name="hibernate.connection.password" value=""/>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.hbm2ddl.auto" value="update"/>
 </properties>
 </persistence-unit>
</persistence>

This file defines the connection parameters and gives JPA the information it needs to
effectively determine how to construct queries using the right type of SQL dialect for
your database. The first configuration point of interest is the name attribute on the
<persistence-unit> element B. This is the name you’ll refer to from your code, so
use something meaningful.

 Next the XML file defines the type of database and connection string JPA will use
to establish that connection. This example is using the H2 database, so it specifies a
path to the database file on disk and defines the SQL dialect that it should use when
generating SQL queries. If your database requires security credentials, ensure these
are populated in the hibernate.connection.username and hibernate.connection
.password settings respectively C.

 The second part of configuring JPA is to define an orm.xml file. Developers often
argue that elements of entity definitions should not exist as inline code, but rather
should be externally configured. This is essentially the role of orm.xml, and you can
use it to define queries that each entity can execute and also to augment the definition

Listing 13.12 Configuring JPA with persistence.xml

Name of
persistence unit

B

Database
connection
settings

C

313Integrating Lift into existing Java infrastructure
that exists in the entity. This file must be created alongside persistence.xml in META-
INF, and it should look like the following listing.

<?xml version="1.0" encoding="UTF-8" ?>
<entity-mappings version="1.0"
 xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd">

 <package>sample.model</package>
 <entity class="Book">
 <named-query name="findBooksByAuthor">
 <query><![CDATA[
 from Book b
 where b.author.id = :id
 order by b.title
]]></query>
 </named-query>
 </entity>
 <entity class="Author">
 <named-query name="findAllAuthors">
 <query><![CDATA[from Author a order by a.name]]></query>
 </named-query>
 </entity>
</entity-mappings>

You can see that this file is a descriptor of the entities in your application. You can
define entities B and also the queries your application will make C. The JPA query
syntax is quite extensive, so we encourage you to check the online reference: http://
download.oracle.com/javaee/5/tutorial/doc/bnbtl.html. Also understand that these
queries are what are known as named queries—in the calling code you’ll look up the
query by its identifying name, such as findBooksByAuthor.

 As mentioned previously, it’s also possible to augment the entity information
defined in the entity. For example, let’s imagine you wanted to specify a name for a
given column. You could do something like this:

<entity name="Book">
 ...
 <attribute-override name="title">
 <column name="book_title" >
 </attribute-override>
</entity>

This would then change the name of the column in the database to be “book_title” as
opposed to “name”, which was defined in the entity code.

 With this setup done, your application should now be able to talk to the database.
But note that the implementation is lazy, in that it will only attempt to connect upon
the first call to the entity manager.

Listing 13.13 Augmenting entities with orm.xml

Entity packageB

Book entity
and query

C

http://java.sun.com/xml/ns/persistence/orm
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence/ormjava.sun.com/xml/ns/persistence/orm_1_0.xsd
http://download.oracle.com/javaee/5/tutorial/doc/bnbtl.html
http://download.oracle.com/javaee/5/tutorial/doc/bnbtl.html

314 CHAPTER 13 Distributed messaging and Java enterprise integration
OBJECTS AND THE ENTITY MANAGER

Now that you have your entities and queries defined, you’d like to start interacting
with them. For this you’ll require an entity manager, and Lift provides some neat
abstractions for this atop of the default Java infrastructure so that the concept feels
more native to Scala.

 In order to create an entity manager, define an object that extends the lift-jpa
type LocalEMF and extends RequestVarEM:

import org.scala_libs.jpa.LocalEMF
import net.liftweb.jpa.RequestVarEM

object Model extends LocalEMF("chp13") with RequestVarEM

Scala objects are lazily created, so again this will only connect to the database when
you touch it for the first time. Note that the LocalEMF class creates a connection from
your application to the database, but if you’d prefer to look up a data source via JNDI,
you can swap this class out for JndiEMF instead. Finally, the composed RequestVarEM is
important because it allows you to define this singleton for accessing the underlying
entity manager and keeps the JPA session live for each request, so you don’t have to do
any additional plumbing. As the name implies, the RequstVarEM is underpinned by
Lift’s RequestVar functionality, which keeps the entity manager request-scoped.

 The entity manager typically has two modes for interacting with JPA entities:
attached and detached. The entity manager monitors attached entity instances until
it’s instructed to flush these entities, when it will modify the underlying database with
the appropriate changes. The practical advantage of object detachment in Lift is that
you can obtain a reference to an entity object in the initial request cycle and make
changes, and then easily reattach it to the live JPA session in the next request, com-
plete with any changes you made. Objects can be explicitly attached to the JPA session
via entity manager methods like merge and persist, or they can be implicitly attached
using methods like find and getReference.

 Now that you have everything in place to start making queries, let’s make a sim-
ple listing and add an interface for adding Author entities to the database. The first
thing you need to add is a new class called Authors. This class will contain two snip-
pet methods that take care of the listing and adding of authors. The following list-
ing shows the implementation.

import scala.xml.{NodeSeq,Text}
import scala.collection.JavaConversions._
import javax.validation.ConstraintViolationException
import net.liftweb.common.{Failure,Empty,Full}
import net.liftweb.util.Helpers._
import net.liftweb.http.{RequestVar,SHtml,S}
import sample.model.{Book,Author,Model}

object Authors {
 object authorVar extends RequestVar(new Author)
}

Listing 13.14 Implementing the Author snippet

Define author
RequestVar

B

315Integrating Lift into existing Java infrastructure
class Authors {
 import Authors._
 def author = authorVar.is

 def list =
 "tr" #> Model.createNamedQuery[Author](
 ➥"findAllAuthors").getResultList.map { a =>
 ".name" #> a.name &
 ".books" #> SHtml.link("/jee/books/add",
 () => authorVar(a),
 Text("%s books (Add more)".format(
 ➥.books.size))) &
 ".edit" #> SHtml.link("add", () =>
 authorVar(a), Text("Edit"))
 }

 def add = {
 val current = author
 "type=hidden" #> SHtml.hidden(
 () => authorVar(current)) &
 "type=text" #> SHtml.text(author.name, author.name = _) &
 "type=submit" #> SHtml.onSubmitUnit(() =>
 tryo(Model.mergeAndFlush(author)) match {
 case Failure(msg,
 ➥ Full(err: ConstraintViolationException),_) =>
 S.error(err.getConstraintViolations
 .toList.flatMap(c =>
 <p>{c.getMessage}</p>))
 case _ => S.redirectTo("index")
 })
 }
}

The Authors class contains two snippets, list and add, and it contains a RequestVar
that’s shared for the class instance B. This RequestVar contains a new Author entity
instance, so that even if the Add page is loaded, it will always have a reference to an
Author that can subsequently be saved.

 Looking first at the list snippet, you can see that it details using the Model entity
manager to execute the predefined (named) query C from the orm.xml file cre-
ated earlier in this section. It retrieves a list of all the authors in the database by
using the Model.createNamedQuery method. Note the type parameter here, which
tells the entity manager what the return type of this method will be; JPA is largely
constructed of runtime operations, so it needs additional information about the
types involved. After returning a list, the list snippet iterates through each item in
the list, binding both a link to add books for this author and a link to edit this
author’s previously saved information D. In both cases, note that the function
bound to the link sets the current author value into the class RequestVar, author-
Var. This way, when the page reloads with the Edit screen, for example, the author’s
information is already prepopulated and the entity instance is attached to the live JPA
session, ready for editing.

Get all
authors

C

Bind linksD

Persist new
instance

E

316 CHAPTER 13 Distributed messaging and Java enterprise integration
 The add snippet should look like a fairly regular snippet method by now, but the
main thing to make note of is how the submit function calls Model.mergeAnd-
Flush(author)E. This is essentially telling the entity manager to take the changes
already made to the model and update them in the database; this could result in
either an update or insert operation in the underlying store.

 This section has shown you how you can make use of Lift’s integration with the
popular JPA libraries and infrastructure. Specifically, you’ve seen how to configure and
get up and running with JPA while making use of Lift’s wrappers around the rather
verbose JPA. This removes the Java-esque feel of its API and reduces what would typi-
cally be a set of method calls and try/catch statements into simple one-line calls.

13.3 Summary
In this chapter, you’ve seen how to leverage Lift’s integration of commonplace Java
enterprise technologies—specifically the Java Persistence API. You saw how Lift pro-
vides some idiomatic abstractions upon JPA, specifically related to its entity manager
and resolving the JPA sessions in the scope of any given request. Lift’s integration is
designed to provide Scala-like interfaces for well-known Java technology, so for the
most part JPA is left as is, in terms of querying and persistence semantics.

 Finally, this chapter covered distribution and messaging. Lift comes with an inte-
gration module for AMQP, which is based upon the actor-programming model. This
allows you to both publish and receive messages from the AMQP broker using the
familiar actor abstraction. Additionally, we touched upon the Akka service framework
and how you can make use of its robust distributed and concurrent programming
abstractions to push dynamic, event-driven data into your application and right
through to the browser.

 The next chapter covers testing, which includes leveraging Lift’s testing helpers to
mock requests and Lift’s stateful components, so that you can write test suites or spec-
ifications for your snippets. Additionally, TestKit also provides a mechanism for testing
your RESTful services with a live, sandboxed Jetty server.

Application testing
Testing is an important part of the modern application development lifecycle, and
testing web applications comes with its own unique problems. This chapter deals
with testing as an independent entity, away from the main development of an appli-
cation. Broadly speaking, you should really write tests iteratively, while you’re devel-
oping an application, to ensure that all the great new features you’re adding don’t
break any of the existing functionality. With that being said, testing is covered here
in one homogeneous block, so be sure to take what you learn in this chapter and
apply it within each iteration of your development cycle.

 With Scala being based on the JVM and sharing a great deal of common
ground with Java, you have a plethora of testing tools available to choose from.
Popular Java testing tools like JUnit (http://www.junit.org/) will still work with
your Scala code, but the first section of this chapter focuses on the testing tools
that have come from the Scala ecosystem and gives you an introduction to three
popular testing tools:

This chapter covers
■ Using Scala testing frameworks
■ Writing testable code
■ Using Lift’s TestKit
317

http://www.junit.org

318 CHAPTER 14 Application testing
■ ScalaTest—http://www.scalatest.org/
■ Specs—http://code.google.com/p/specs/
■ ScalaCheck—http://code.google.com/p/scalacheck/

In addition, the first section concludes with an introduction to generating code-
coverage reports from your SBT project to give you an indication as to what level of
untested code your application currently has.

 The next section deals with how to write nicely decoupled code by using proven
Scala programming practices, such as the Cake pattern, and it also covers some of
Lift’s utility constructs for creating scoped values.

 Finally, after you have a grounding in the various tools available to help facilitate
the testing process, and you have an appreciation for how to effectively write decou-
pled application code, you’ll see how to leverage the Lift TestKit, which allows you to
mock HTTP requests and conduct full integration tests on your RESTful services. As an
additional part of these integration tests, you’ll see how you can implement the web
application–testing tool Selenium (http://seleniumhq.org/).

 Before getting into these later topics, though, let’s first look at some of the Scala
testing frameworks available today.

14.1 Scala testing frameworks
There is a whole range of testing frameworks available to Scala developers today, from
well-known Java frameworks like JUnit and TestNG right through to new Scala tools
such as Specs. These tools are largely interoperable because Scala ultimately boils
down to Java bytecode. So much so, in fact, that you can even test your Java code with
a Scala testing tool like Specs!

 Each tool takes a slightly different approach, and in some aspects the prob-
lems they tackle are orthogonal. For example, ScalaTest and Specs are unit-testing
tools that allow you to work in a test-driven development (TDD) style or even a
behavior-driven development (BDD) style, whereas ScalaCheck primarily focuses on
property-driven development (PDD) by allowing the developer to specify a prop-
erty that defines behavior and ScalaCheck will generate arbitrary input in an
attempt to falsify that property assertion.

 You might be familiar with TDD and BDD testing approaches, so to begin with let’s
take a look at ScalaTest and then the Specs framework.

14.1.1 ScalaTest

ScalaTest is one of the older projects in the Scala ecosystem, and it’s a popular choice
for testing applications for several reasons:

■ It’s well maintained.
■ It has a comprehensive feature set that includes the ability organize tests

into suites.
■ It tests both Scala and Java code.

http://www.scalatest.org
http://code.google.com/p/specs
http://code.google.com/p/scalacheck
http://seleniumhq.org

319Scala testing frameworks
■ It facilitates several different styles of testing.
■ It has a convenient API.

To get started with ScalaTest, add the following to your SBT project definition:

val scalatest = "org.scalatest" % "scalatest" % "1.3" % "test"

Notice the % "test" appended to the end of the dependency declaration. This is
important because it ensures that SBT doesn’t package ScalaTest in your output JAR or
WAR file; essentially it’s a test-phase only dependency. As always, be sure to call reload
and update after adding the dependency.

 Now that you have ScalaTest available, let’s take a look at a fairly straightforward
test that utilizes a type known as FunSuite. The fun part of the name refers to function,
and a suite is what ScalaTest calls a group of tests. The most basic of test cases is shown
in the following listing. It simply checks that calling the tail method on a
List[String] returns all but the first element.

import org.scalatest.FunSuite

class BasicSuite extends FunSuite {
 val shared = List("a","b","c")
 test("that tail yields 'b' and 'c'"){
 assert(shared.tail === List("b","c"))
 }
}

This exceedingly basic test demonstrates some of the ScalaTest features. First, it
defines a shared fixture that all tests in this suite can access, which is simply a list
of letters.

NOTE The word fixture can have different connotations. In the context of this
chapter, a fixture is something that’s necessary for the test to complete its
work. That could be anything from a static value, to a file containing sample
data, right through to a database connection.

The suite itself has only a single test (as defined by the test(..) method) that checks
to see if the result of calling tail on the shared List[String] will result in
List("b","c"). The result is determined by using the assert method from Scala-
Test’s FunSuite to define the expected result.

 If you have any experience with a modern test framework (in any language), this
should be a familiar paradigm.

14.1.2 Scala Specs

Specs was originally inspired by the Ruby testing framework RSpec (http://rspec.info/),
and it differs from ScalaTest in that it primarily promotes a behavior-driven develop-
ment (BDD) style of testing that revolves around defining specifications that are read-
able by programmers and business folk alike.

Listing 14.1 Basic example of using ScalaTest’s FunSuite

http://rspec.info

320 CHAPTER 14 Application testing
 In order to add Specs to your project, you must add the following test dependency:

val specs = "org.scala-tools.testing" %% "specs" % "1.6.7.2" % "test"

Be sure to run reload and update from the SBT console before continuing.
 After SBT has downloaded the Specs dependencies, you can set to work creat-

ing your first specification, as defined in the following listing. This specification
defines a simple pair of tests that run some trivial operations on a string to validate
its behavior.

import org.specs._

class SpecsExample extends Specification {
 "hello world" should {
 "have 11 characters" in {
 "hello world".size must_== 11
 }
 "match 'h.* w.*'" in {
 "hello world" must be matching("h.* w.*")
 }
 }
}

The class extends Specification, which is the Specs trait that provides the value
matchers and syntactic sugar, such as the should keyword. All your Specs tests must
extend Specification.

 This particular specification defines a list of features that the string “hello world”
should exhibit. In a more realistic example, you would likely define features relevant
to your model or a specific unit of functionality rather than for a simple string. But
even though you’re only testing a string, note that there are two separate tests that
check first if the string has a size of 11 characters, and second whether the string
“hello world” matches the pattern h.* w.*. Take particular note of how this is applied:

"hello world" must be matching("h.* w.*")

It’s almost like regular English prose, and that’s the point. Even if you don’t know
much about the Specs library, you could still look at this line of code and make sense
of what it’s doing.

 These language constructs (must, must_==, be, matching, and so on) are known as
matchers. A matcher is a construct that compares two values to verify a particular con-
dition, and Specs supports many different matchers. For the most part, these match-
ers are composable, so you can combine them together however you see fit. Check
out the Specs documentation for the full list of default matchers and more specific
information on making your own: http://code.google.com/p/specs/wiki/Matchers
Guide#Be/Have_matchers.

 Now that you have a basic understanding of Specs and how to compose match-
ers, consider the more useful example in the next listing. It checks that passing

Listing 14.2 Implementing hello world with Specs

http://code.google.com/p/specs/wiki/MatchersGuide#Be/Have_matchers
http://code.google.com/p/specs/wiki/MatchersGuide#Be/Have_matchers

321Scala testing frameworks
null to the Option apply method properly returns None. Additionally, this test runs
operations before and after the specification by utilizing Specs’ beforeSpec and
afterSpec functions.

trait SetupAndTearDown {
 def construcEnvironment() =
 println("Construcing the environment!")
 def tearDownEnvironment() =
 println("Tearing down the environment!")
}

class AnotherExample extends Specification with SetupAndTearDown {
 construcEnvironment().beforeSpec
 "An Option" should {
 "Be None if supplied a null value" in {
 Option(null) must_== None
 }
 }
 tearDownEnvironment().afterSpec
}

In this example, Specs provides some useful hooks for executing actions before any
after specifications C and D, and additionally before and after each test. These
hooks are particularly useful when you need to run tests against an external system,
such as a database. The functions allow you to run arbitrary functions that, in this
example, only print messages to the console B, but later in section 14.3.2 you’ll see
how you can run tests against the database and create a freshly sandboxed in-memory
database before each test or specification.

 In addition to the features supplied by both Specs and ScalaTest, they both also
integrate nicely with another testing library called ScalaCheck. ScalaCheck provides
facilities for automatic test case generation.

14.1.3 ScalaCheck

In standard testing systems, you define the problem you want to test for, and then you
implement the test method itself. With ScalaCheck, this scenario is essentially
reversed: you define a property or behavior you wish to test and provide outer bounds
for that behavior. For example, you define a function that takes two parameters, and
ScalaCheck will randomly generate values for those parameters to ensure that the
property or behavior you defined in that function still holds true.

 Although ScalaCheck is a standalone project and can be used independently
from any other testing framework, it’s commonly used in conjunction with either
ScalaTest or Specs. The following listing shows an example of using Specs with its
ScalaCheck integration.

Listing 14.3 Wrapping the specification with before and after actions

Trait
definition

B

Before actionC

After actionD

322 CHAPTER 14 Application testing
import org.specs._
import org.scalacheck.Prop._

class ScalaCheckExample extends Specification with ScalaCheck {
 "Strings" should {
 "Start with" in {
 forAll {
 (a: String, b: String) => (a + b).startsWith(a)
 } must pass
 }
 }
}

This listing shows a specification that mixes in the ScalaCheck integration trait, which
is part of the Specs package. Notice that the test declaration uses the forAll keyword
imported from the ScalaCheck Prop object. The forAll method B essentially takes a
function that ScalaCheck will then execute with randomly generated parameters. You
can even set the number of tests that ScalaCheck will generate by using the set
method as shown:

forAll {
 (a: String, b: String) => (a + b).startsWith(a)
} must pass(set(minTestsOk -> 1000))

The addition of the minTestsOk tuple ensures that ScalaCheck generates 1,000 tests
before the test itself is satisfied. You can alter the parameters passed to the pass method
with a range of conditions to vary what ScalaCheck will actually pass to the method.

 Now that you know the basics of the testing frameworks, let’s look at how code-
coverage reports can provide an indication of just how much of your code base is cov-
ered by test cases.

14.1.4 Code coverage reports

After you’ve spent some time writing tests, it can be helpful to have your build tool
generate a report on the so-called coverage that your tests have achieved in your
project. If you have five classes, but your tests only cover three of them, you potentially
have a large hole in the completeness of your test suite. As your codebase grows, this
problem can also grow fairly quickly, so having an automated way to determine the
amount of test coverage your code has can be rather useful.

 There are many code-coverage tools in the Java ecosystem, such as Cobertura
(http://cobertura.sourceforge.net/), that were created specifically for Java. These
tools have a limited level of effectiveness with Scala, because during the compilation
phase, the Scala compiler creates a lot of anonymous classes if you’re using closures,
traits, and many of the other great language features. These anonymous classes
make it difficult for the Java-oriented tools to give you a true representation of the
coverage because they simply have no concept of what all these classes are for or
how they interoperate.

Listing 14.4 Implementing ScalaCheck with Specs

ScalaCheck
function

B

http://cobertura.sourceforge.net

323Scala testing frameworks
 At the end of 2010, however, a project called Scala Code Coverage Tool (SCCT,
http://mtkopone.github.com/scct/) was launched to create a Scala-specific coverage
tool. It was designed to be aware of these special classes and handle them properly,
giving you a much more accurate representation of code coverage.

NOTE It’s important to recognize that nearly all code-coverage tools can be
tricked. You should think of SCCT and other such tools as indicators of cover-
age; they only show you which lines of your codebase have been touched by
tests. The bottom line is that you’re only as good as the tests you write, and if
your tests cover all the code, but they’re bad tests, you still may well have a
broken application—you just won’t be aware of it until the client calls!

In order to use SCCT in your project, you must first add the SCCT plugin to your SBT
project. If you aren’t familiar with SBT plugins, ensure that you have a file called
Plugins.scala that resides in ${root}/project/plugins/Plugins.scala. This file should
then contain something like this:

import sbt._
class Plugins(info: ProjectInfo) extends PluginDefinition(info) {
 ...
 lazy val scctPlugin = "reaktor" % "sbt-scct-for-2.8" % "0.1-SNAPSHOT"
 val scctRepo = "scct" at "http://mtkopone.github.com/scct/maven-repo/"
}

The final thing you need to do is add the ScctProject trait to your project. This trait
delivers the actions that let you generate the coverage reports. Your project definition
should then look something like this:

import sbt._
import reaktor.scct.ScctProject
class ChapterFourteen(info: ProjectInfo)
 extends DefaultWebProject(info)
 with ScctProject

After adding these two things, restart SBT and you’ll notice that several JARs are down-
loaded. These are the SCCT JARs and their dependencies, and you should now have
two additional actions available on your project:

test-coverage
test-coverage-compile

These actions are provided by SCCT, and they allow you to generate code-coverage
reports that look similar to figure 14.1. The progress bars and percentages indicate
the level of coverage each class, object, or trait has in the project. Although code-
coverage reports aren’t foolproof, it will usually give you a pretty reasonable indica-
tion as to the level of testing your project has.

 In order to increase your chances of having strong coverage, the next section cov-
ers several things you can do when structuring your application to make it as testable
as possible.

http://mtkopone.github.com/scct
http://mtkopone.github.com/scct/maven-repo

324 CHAPTER 14 Application testing
14.2 Writing testable code
In the previous chapters, you saw how Lift’s sophisticated state handling can simplify
some of the most complex things developers have to contend. But although Lift
makes many common tasks easier and more secure, certain things become slightly
more difficult to unit test. This section covers some methodologies that will make test-
ing your code easier; it also takes an honest look at some aspects of Lift that are more
complex to unit test as a result of Lift’s stateful nature.

NOTE The purpose of illustrating these current testing difficulties is to give
you a full and frank picture of Lift. As time goes by, this situation will likely
improve, but at the time of writing there were several complexities with unit
testing code that’s tightly coupled to Lift’s state handling. More on this in sec-
tion 14.2.1.

Figure 14.1 Example of a SCCT coverage report. It details all the packages and their classes on the
left and provides a more detailed report on the right.

325Writing testable code
When writing application code, there are many things you can do in the Scala lan-
guage itself that can greatly improve the testability and separation of your code. This
separation can be exceedingly helpful because it allows you to both reuse chunks of
code and split different parts out into more manageable elements. Traits, implicit con-
versions, and higher-order functions are just some of the powerful tools that can make
this division possible and relatively pain-free to implement.

 Many developers today will be familiar with dependency injection (DI) frame-
works such as Google Guice (http://code.google.com/p/google-guice/). Although
these types of tools are exceedingly popular in the wider Java community, they have,
for the most part, found less traction in the Scala community. In idiomatic Scala
code, the preference has been to use a couple of different patterns of implementa-
tion to achieve the dependency wiring, as opposed to using runtime injection.

 Before getting into dependency injection, though, let’s start by looking at Lift’s
design and at what things can make writing particular unit tests more involved.

14.2.1 Complexities of testing state

When it comes to testing your Lift application, it’s important to understand how the
stateful components of Lift can play a critical role in determining how testable a par-
ticular unit of your application is. At the time of writing, in order to unit-test applica-
tion code that accesses Lift’s stateful components, it is necessary to mock the
incoming request so that the state mechanism is operational.

 For example, consider a snippet that directly calls S.paramor any of the other S
methods that access session- or request-specific thread-local data. These methods
require a properly initialized LiftSession to exist before they can be used. In order
to set up S properly, you need to mock the incoming request and engage some related
standard configuration by instantiating the application environment. Strictly speak-
ing, this is probably a bit too much infrastructure to be classified as a strict unit test.
This kind of global setup is more commonly associated with integration testing rather
than unit testing, but because its normally only a case of using a single mock request,
we’ll overlook this and refer to it as unit testing.

 The problem with requiring a properly initialized session is that you can’t just write
a standard unit test using Specs or one of the other testing tools covered in the first
section. Rather, you need to leverage one of the tools from Lift’s TestKit module that
will properly initialize the system prior to executing a test. Consider the following list-
ing, which defines a basic class that would be rather typical of an implementation
that’s tightly coupled with Lift’s state mechanism.

import scala.xml.{NodeSeq,Text}
import net.liftweb.http.S

class CookieList {
 def render(xhtml: NodeSeq): NodeSeq =

Listing 14.5 Example of a class that’s tightly coupled to Lift state

http://code.google.com/p/google-guice

326 CHAPTER 14 Application testing
 S.receivedCookies.flatMap(c => Text(c.name) ++
)
}

With a class such as this, it’s important to be aware that without a fully initialized ses-
sion context, S.receivedCookies will always be an empty List, meaning you’ll never
have anything to actually test for. As mentioned a moment ago, Lift’s TestKit can help
here by providing a testing construct known as WebSpec that initializes the S context
and allows you to execute operations that require sessions, request scope, and more.
By utilizing WebSpec, you can mock an incoming request that includes some cookies
and that then allows you to execute the page template and evaluate the response
using Scala’s built-in XML handling. It’s this XML handling that can sometimes be a lit-
tle verbose in your test implementation and add some accidental complexity to the
test. You can find examples of how to use WebSpec later in section 14.3.1.

 The takeaway from this example is that at the points where you couple your appli-
cation code tightly with Lift’s stateful components, like S and SHtml, you’re (at the
time of writing) not able to write standalone unit tests for those tightly coupled com-
ponents. Instead, you need to fall back on higher-level integration testing with Web-
Spec. This is a key point to understand, because it can impact the way your code is
designed. Depending upon your use case for a specific snippet or a set of snippets,
you may want to break standalone or reusable functionality out into common traits
that can be mixed into many classes, or you might want to delegate out to separate
objects for specific functionality.

 The purpose of splitting a snippet class might be to decouple the work of actually
validating user input and rendering the user input. This should give you more-testable
units of functionality and help reduce the amount of coupling between snippets,
models, and Lift itself. Consider figure 14.2.

 This diagram illustrates a snippet that typically makes heavy use of Lift’s stateful
components. The right side of the figure indicates the state-bound components
that can only have integration tests, and the left side illustrates some delegate
objects that can be both unit tested and integration tested.

 The next section covers a topic that many developers coming from Java will be
familiar with: dependency injection (DI). DI is often used to build loosely coupled

Figure 14.2 Delegating functionality
away from state-bound classes

327Writing testable code
components of application logic, which are typically more testable than tightly cou-
pled, procedural code.

14.2.2 Dependency injection

Dependency injection (DI) is popular among Java frameworks to provide so-called
inversion of control in dependent components. If you aren’t familiar with DI, just
think of it as a programming idiom that allows you to delay the coupling of compo-
nents until the last moment. This way, if you want to replace or simply maintain those
components at a later date, the code will be loosely coupled, so you can replace that
component without affecting the dependent components.

 In the Java ecosystem, implementing DI typically involves using an injection frame-
work such as Google Guice or a Spring IoC container. From a Lift perspective, there’s
nothing stopping you from using these kinds of frameworks, but typically you’ll see
users implementing patterns of Scala coding that service the need for dependency
injection by leveraging powerful language features. Two patterns that have become
fairly popular are the so-called Cake pattern, which takes an object-oriented approach
to DI, and the more functional style of DI: function currying. The aim with both patters
is to defer committing to an implementation of a component until the latest possible
point at compile time.

 In addition to these two general patterns, Lift has two types designed to assist with
DI called Injector and Factory. These types again take a different approach from DI
in that you can give them a function to perform a particular action, and then inject dif-
ferent functions at different scopes in your application, or replace the function
entirely for testing purposes.

 Before we cover these approaches in detail, it’s important to note the power that
can be delivered with relative simplicity by structuring your code into traits and orga-
nizing things so Lift can make intelligent decisions about what it actually needs to load.

 Consider a system in which you have a snippet, and the snippet calls into a legacy
service that’s really, really slow. It would kill development time to constantly wait for
this process, so you decide that it’s best to provide a stub class instead, while you get
the rest of the application working. Structuring a few traits and providing manual wir-
ing for the snippet creation can easily achieve what is shown in the following listing.

import scala.xml.{NodeSeq,Text}
import net.liftweb.http.{S,DispatchSnippet}

class Service extends DispatchSnippet {
 def dispatch = {
 case _ => render _
 }
 def render(xhtml: NodeSeq): NodeSeq = {
 fetch
 Text("Done!")
 }

Listing 14.6 Organizing code to assist with DI

Snippet
action

B

328 CHAPTER 14 Application testing
 protected def fetch { Thread.sleep(5000) }
}

class StubService extends Service {
 override def fetch = { }
}

trait Environment {
 def serviceSnippet: Service
}
object Development extends Environment {
 def serviceSnippet = new StubService
}
object Production extends Environment {
 def serviceSnippet = new Service
}

This example defines a simple snippet called Service with a snippet method B
that has a deliberately slow render method C. Next, there’s a StubService with-
out the delay that renders the fixed outcome to speed up development in this fic-
tional scenario D. The important step here is defined at E, which details a trait
called Environment. This trait acts as an interface that defines the snippets (and
feasibly other application components), which then have two separate implementa-
tions: Production and Development F. Each implementation carries the appropri-
ate instance of the snippet.

 This allows you to dynamically select the correct snippet by deploying something
similar to the following listing in your application Boot.

class Boot {
 def boot {
 ...
 val environment: Environment = Props.mode match {
 case Props.RunModes.Production => Production
 case _ => Development
 }
 LiftRules.snippetDispatch.append {
 case "service" => environment.serviceSnippet
 }
 }
}

Here it’s just a case of instantiating the Environment value with the correct implemen-
tation, as determined by pattern matching on Props.mode B. Props.mode is the
accessor supplied by the Lift util package, and it has its value determined by the sup-
plied run.mode JVM property. In this case, if run.mode=production, the Production
snippet instance will be served at C rather than the temporary stub. Although this is a
very simple pattern, it can quite effectively assist you in providing different implemen-
tations based upon the run mode.

Listing 14.7 Controlling snippet instantiation

Fake service
callC

Service stubD

Environment
definition

E

Specialized
environments

F

Control
implementation

B

Wire up
snippet

C

329Writing testable code
 More broadly speaking, one of the important things to note about this example is
the ability to control snippet instantiation. In this way, you can effectively use whatever
DI system or idiom you’d prefer. You can also provide data to the constructor of the
snippet, which should give you sufficient control to do whatever you’d like in terms of
DI for snippets.

 You’ve now seen a simple strategy for externalizing configurable items in your
Boot class. But although this can be simple and effective, there are some more sophis-
ticated patterns in the wider Scala ecosystem that can be applied to your code to
achieve a DI-style setup. The next three sections cover these differing techniques,
starting with the object-orientated Cake pattern, followed by the more functional style
of function currying, and concluding with a mechanism in Lift called injectors.

CAKE PATTERN

One of the most popular DI patterns within Scala is known as the Cake pattern, and it
first surfaced in a paper written by Martin Odersky, the creator of Scala. Since that
paper was written, the language itself has evolved and the idioms developers use have
progressed, but the general Cake pattern is very applicable and can greatly assist in
decoupling aspects of your implementation.

NOTE Martin Odersky and Matthias Zenger’s paper on the Cake pattern,
“Scalable Component Abstractions,” can be found at http://lamp.epfl.ch/
~odersky/papers/ScalableComponent.pdf. In addition, Jonas Bonér wrote a
rather excellent “Dependency Injection (DI)” blog post on the Cake pattern
as part of his Real-World Scala series: http://jonasboner.com/2008/10/06/
real-world-scala-dependency-injection-di.html.

To illustrate the use of the Cake pattern, we’ll build a simple book-management ser-
vice for a library. It will be able to request book details by ISBN number and also add
new books to the system.

NOTE This example loosely follows the Repository pattern of implementa-
tion. If you’re not familiar with this pattern, you can read more about it here:
http://martinfowler.com/eaaCatalog/repository.html

The first thing to do is define the interfaces for the service and the repository that
make up the service, as shown in the following listing.

trait BookRepository {
 def lookup(isbn: String): Option[Book]
 def add(book: Book): Unit
}

trait BookService {
 def lookupBook(isbn: String): Option[Book]
 def addBook(book: Book): Unit
}

Listing 14.8 Interface definitions for the book services

Data
repositoryB

Service
interfaceC

http://lamp.epfl.ch/~odersky/papers/ScalableComponent.pdf
http://jonasboner.com/2008/10/06/real-world-scala-dependency-injection-di.html
http://martinfowler.com/eaaCatalog/repository.html
http://lamp.epfl.ch/~odersky/papers/ScalableComponent.pdf
http://jonasboner.com/2008/10/06/real-world-scala-dependency-injection-di.html

330 CHAPTER 14 Application testing
These two traits form the basis of the Cake pattern; they outline the contract for data
access through the repository B and the contract for the domain service C. If you
aren’t familiar with these terms, think of the repository as a mediator between the
objects and the data storage abstraction.

TIP In these listings, the add functionally returns Unit. Although having ref-
erentially transparent functions is typically preferable, defining a method or
function as explicitly side-effecting is generally OK, provided you declare it as
side-effecting with the Unit return type. It is, however, frowned upon to exe-
cute side effects from your functions when the types state they’re referentially
transparent, so be sure to use the Unit return type if your functions cause
side-effects.

Consider the following listing, which defines the implementing components of these
interfaces and provides default implementations for the service and repository.

trait BookRepositoryComponent {
 def repository: BookRepository

 class DefaultBookRepository extends BookRepository {
 def lookup(isbn: String): Option[Book] =
 Library.books.find(_.isbn == isbn)
 def add(book: Book): Unit = {}
 }
}

trait BookServiceComponent { _: BookRepositoryComponent =>
 def service: BookService

 class DefaultBookService extends BookService {
 def lookupBook(isbn: String) = repository.lookup(isbn)
 def addBook(book: Book) = repository.add(book)
 }
}

These two components wrap up access to their particular interfaces in such a way that
they mark an abstract method for repository B and service D and then define default
implementations of both.

 The critical thing here is the self-type annotation C, which defines what’s known
as a self-type annotation. In practice, this self-type marks the dependency between
BookServiceComponent and BookRepositoryComponent. In addition, notice that each
component carries a default implementation, but neither has actually been instanti-
ated. The instantiation is saved until the latest possible moment and done at the
actual assembly site:

object BookServiceAssembly
 extends BookRepositoryComponent
 with BookServiceComponent {
 val repository = new DefaultBookRepository

Listing 14.9 Implementation of repository and service components

Define
repository

B

Define
dependant type

C

Define
service

D

331Writing testable code
 val service = new DefaultBookService
}

Only when the BookServiceAssembly is created does the dependency become con-
crete. In this way, your components are loosely coupled, and you could easily mix in
another type of service component when constructing the assembly, provided it con-
formed to the BookService interface definition. You could easily supply a different
implementation or perhaps mock objects for testing purposes.

 The Cake pattern is an object-orientated methodology for dependency injection
that uses the Scala type system to define dependencies. As Scala is a multi-paradigm
language, the same DI concept can also be implemented with a more functional
approach: function currying.

FUNCTION CURRYING

Scala provides a rich, expressive language to program in, and there are often many
ways to do the same thing. One of the really interesting things is the way you can mix
functional idioms right into your object-oriented code and benefit from both lan-
guage approaches.

 Let’s build on the trait definitions of the repository from listing 14.8 in the previ-
ous section and implement the service contract with functions. The following listing
shows the implementation.

trait BookService {
 val lookupBook: BookRepository => String => Option[Book] =
 repository => isbn => repository.lookup(isbn)
 val addBook: BookRepository => Book => Unit =
 repository => book => repository.add(book)
}

This service definition is quite different from the one defined in the Cake pattern
because it makes use of Scala functions. These functions can be partially applied so
that different implementations of the repository can be substituted without the
remainder of the function being aware. To illustrate this, consider the following:

object ExampleBookService extends BookService {
 val lookup = lookupBook(new DefaultBookRepository)
 val add = addBook(new DefaultBookRepository)
}

This ExampleBookService object partially applies the functions that are implemented
in the service interface, which then results in the two values being assigned their own
functions. The lookup value now has the type String => Option[Book] because the
first parameter has been curried. The result here is that the calling code is unaware of
the actual implementation of the repository; it just calls the straight function.

 Consider this example usage:

import ExampleBookService._
val book = lookup("1234")

Listing 14.10 Implementing the BookService using functions

332 CHAPTER 14 Application testing
The caller only has to supply the required parameter to service a response. If the repos-
itory is replaced or altered at a later date, none of the calling code has to change.

 The last type of dependency injection this section covers utilizes Lift’s Injector
and Factory types. They take a different route than the other two approaches you’ve
seen here.

FACTORY AND INJECTOR

In addition to the previous Scala idioms, Lift has two specific utility types to assist
with dependency injection: Injector and Factory. As Factory extends one of the
Injector subtypes, we’ll look first at the Injector definition.

Injector only defines an inject method that takes a single implicit parameter:

trait Injector {
 implicit def inject[T](implicit man: Manifest[T]): Box[T]
}

This trait allows you to define a type that supplies a boxed value for a given (or
inferred) type, which is determined by the Scala manifest.

TIP Manifests are a Scala feature that helps work around some of the prob-
lems with type erasure on the JVM. An introduction to manifests can be found
here: http://www.scala-blogs.org/2008/10/manifests-reified-types.html.

The result is boxed in case the Injector doesn’t know how to produce a value for that
type, in which case you’d receive Empty. In short, if the Injector knows how to pro-
duce type T, it will do so by using the appropriate function definition.

 The base Injector trait is missing quite a lot of functionality, so Lift provides
SimpleInjector (also from the util package), which gives you a practical implemen-
tation to work with from the start. Consider the usage of SimpleInjector shown in
the following listing.

import net.liftweb.util._
import net.liftweb.common._

class Service
object ServiceInjector extends SimpleInjector

ServiceInjector.registerInjection(() => new Service)

The last line in listing 14.11 defines the injector. In this case, it’s a simple extension of
the base type into a singleton object that then has registerInjection invoked with a
function instance being passed. The passed function is used to build the output value,
and can be called like this:

scala> ServiceInjector.inject[Service]
res3: Box[Service] = Full(Service@65fd1116)

Calling the inject method and specifying the type returns the correctly boxed value.
The compiler should also be able to infer that type if you specify the return type for a
value or method.

Listing 14.11 Example usage of SimpleInjector

http://www.scala-blogs.org/2008/10/manifests-reified-types.html

333Writing testable code
 It’s also possible to refactor ServiceInjector somewhat so that it returns the
naked Service instance, as opposed to the Box[Service]. The following example
shows the changes:

object ServiceInjector extends SimpleInjector {
val service = new Inject(() => new Service){}
}

The distinct difference here is the assignment of the service value in the MyInjector
definition. This allows you to the call the injector as shown:

scala> AnInjector.service.vend
res4: Service = Service@60eb407d

The final thing that injectors provide is the ability to override the value in a given
scope. The concept here is that you can supply a different implementation, such as a
mock for testing purposes. Here’s an example:

trait ServiceMock extends Service

ServiceInjector.service.doWith(new Service with ServiceMock {}){
 ServiceInjector.service.vend
}

Here the doWith method takes a parameter that’s of the same type as the value type of
the service, but the passed value is a Service that has ServiceMock mixed into the
instance. This allows you to arbitrarily redefine the value of service within the subor-
dinate block. The other injection utility, Factory, extends SimpleInjector, but with
some additional qualities. Unlike Injector, Factory resides in the Lift WebKit pack-
age and has access to the state of a request and session.

 The syntax for defining a Factory is rather similar to that of an Injector:

object ServiceInjector extends Factory {
 val service = new FactoryMaker(() => new Service){}
}

The primary difference is that the object extends Factory and uses FactoryMaker
rather than Injector as the inner class. Specifically, the difference comes when you
want to call the service FactoryMaker. In the same way that you can call doWith
on the injector (as in the previous example), each implementation of Factory-
Maker allows you to set a value scoped to the request, to the session, or globally.
Here’s an example:

ServiceInjector.service.request.set(
 (r: Req) => new Service with Extensions with MobileExtensions {})

ServiceInjector.service.session.set(
 (r: Req) => new Service with Extensions {})

These invocations set the function value into the factory for the specified scope. This
can be particularly helpful when setting configuration options. For example, consider
being able to change the values used for a specific session if the request was coming
from an iPhone.

334 CHAPTER 14 Application testing
 The next section covers how to conduct integration testing with Lift, including
how to make use of Lift’s TestKit and the specific helpers it provides for mocking Lift’s
stateful components.

14.3 Testing strategies
At the start of this chapter, you saw some unit tests for general Scala code that uti-
lized several different Scala testing frameworks. Then, in section 14.2.1, you learned
how Lift’s stateful nature, while it solves many problems, introduces some complex-
ity when it comes to writing tests. These tests are really looked upon as functional, or
integration, tests because they generally require the initialization of several pieces of
Lift infrastructure.

 With this in mind, the next few sections cover how to test different parts of your
Lift application and leverage Lift’s TestKit module to assist in this process.

14.3.1 Testing snippets

You’ve seen that tightly coupling your snippet code to Lift’s state mechanism can add
additional complexity when trying to test those units of functionality. In order to alle-
viate this problem, you can utilize some helpers from Lift’s TestKit. TestKit is a module
from the Lift Modules repository (https://github.com/lift/modules), and its primary
goal is assisting application tests that are accessing Lift’s state system. Additionally, it
provides a wrapper for some of the common operations users have to contend with
when writing tests for web applications. Specifically, this includes mocking of the
request and response cycle, and executing tests in the context of initialized stateful
components, like S and SHtml.

 Earlier, in listing 14.5, you saw a typical snippet definition that’s tied to Lift’s state
mechanism. In order to test such a snippet, you’d typically use a helper from TestKit
known as WebSpec in conjunction with Scala’s XML support. Consider listing 14.12,
which demonstrates a possible test implementation for the CookieList snippet test.
This test example uses a couple of things that are different from previous listings: the
CookieListSpec object extends both the Lift-specific WebSpec trait and a utility trait
called SetupAndTearDown, which looks like this:

trait SetupAndTearDown { _: WebSpec =>
 setup().beforeSpec
 def setup() =
 new bootstrap.liftweb.Boot().boot
 def destroy() =
 LiftRules.unloadHooks.toList.foreach(_())
 destroy().afterSpec
}

The purpose of this setup and teardown process is to initialize the Lift application
environment. Note that you only need to initialize the boot process once per test
phase, so in this case it’s simply attached to the spec.

https://github.com/lift/modules

335Testing strategies
import scala.xml.NodeSeq
import javax.servlet.http.Cookie
import net.liftweb.http.S
import net.liftweb.mockweb.WebSpec
import net.liftweb.mocks.MockHttpServletRequest

object CookieListSpec extends WebSpec with SetupAndTearDown {

 "CookieList Snippet" should {
 val cookieName = "thing"
 val r = new MockHttpServletRequest("/")
 r.cookies = List(new Cookie(cookieName, "value"))

 "List all cookies, separated by a break line"
 ➥withSFor(r) in {
 val xml = S.runTemplate(List("testkit","cookies"))
 openOr NodeSeq.Empty

 xml must \\(<div id="output">thing
</br></div>)
 }
 }

}

Within the should test block, the code first defines a mock incoming request using
the MockHttpServletRequest B. The purpose of this is to define some context that
can be passed to the withSFor(request) block C. The withSFor method comes from
WebSpec, and it’s a special Lift helper that when passed a mock request will initialize
Lift’s stateful components in the context of the block, allowing you to test snippets,
request parameters, and even session variables.

 Because there’s no actual request here, just a mock one, you need to execute the
snippet somehow. In this example, S.runTemplate is used to programmatically exe-
cute the whole template and associated snippets D, and then match on the output.
Be aware that this will execute all the snippets used by that template, just as if you
requested the page using that template in browser and looked at the generated HTML
source code: you would see markup that was the result of snippet execution. In the
context of this test case, the resulting markup from executing the template is then
assigned to the xml value. As XML in Scala is a NodeSeq type, it’s possible to use Specs’
built-in matchers for XML such as the \\ matcher D. Table 14.1 lists some of the com-
monly used XML matchers in Specs.

Listing 14.12 Example of using WebSpec to test CookieList snippet

Table 14.1 Commonly used XML matchers from the Specs framework

Matcher Description and usage

==/ Checks to see if two sequences of nodes are equal. It’s interchangeable with
the equalIgnoreSpace matcher.

<div>Thing</div> must ==/(
<div>Thing</div>)

Mock request
with cookie

B

Use withSForC

Execute
template

D

336 CHAPTER 14 Application testing
These XML matchers can be extremely useful for testing several parts of Lift, and
you’ll be using them again in the next section to test a REST service.

14.3.2 Testing web services

Many applications today have large and comprehensive web-based APIs that are
exposed via HTTP. As you saw in chapter 8, Lift makes the creation of these services
pretty straightforward. Helpfully, Lift TestKit also provides some good integration-
testing tools for working with these types of services.

 Consider the following definition of some simple services.

import net.liftweb.http.{ForbiddenResponse,OkResponse,SessionVar}
import net.liftweb.http.rest.RestHelper

object Authenticated extends SessionVar(false)

object Example extends RestHelper {
 val days = List("Monday","Tuesday","Wednesday","Thursday","Friday")
 serve {
 case "t" :: "services" :: "days" :: Nil Get _ =>
 <days>{days.flatMap(d => <day>{d}</day>)}</days>
 case "t" :: "services" :: "login" :: Nil Post _ =>
 Authenticated(true); OkResponse()
 case "t" :: "services" :: "secret" :: Nil Get _ =>
 if(Authenticated.is) OkResponse()
 else ForbiddenResponse("Its secret!")
 }
}

This listing defines a few simple services. First, there’s a straightforward XML service
that lists the days of the week, the next provides a pseudo-login service that sets a ses-
sion variable to affirm that the user is logged in B, and the third serves up some top-
secret content if you’ve previously authenticated C. This means that in order to

\ Finds immediate child nodes that match (XPath semantics).

<div>
</div> must \("br")

or

<div>
</div> must \(
)

\\ Finds matching nodes in a deep sequence of nodes (XPath semantics).

<div><p><a>Link</p></div> must \\("a")

or

<div><p><a>Link</p></div> must \\(<a>Link)

Listing 14.13 Definition of a basic HTTP service using RestHelper

Table 14.1 Commonly used XML matchers from the Specs framework (continued)

Matcher Description and usage

Days and
login service

B

“Secure”
service

C

337Testing strategies
access the third service, it will be necessary to first post to the second and then make a
GET request to the third.

 In order to do this, we’ll use the TestKit trait from Lift TestKit. This trait essen-
tially delivers a set of functionality around making requests, parsing responses, and
effectively handling errors. The first thing you need to do is define a Jetty server that
you can interact with programmatically from your tests. The following listing shows
one possible implementation that boots up Jetty and sets its path to the src directory
in the project tree.

import org.mortbay.jetty.{Server,Connector}
import org.mortbay.jetty.servlet.ServletHolder
import org.mortbay.jetty.webapp.WebAppContext
import org.mortbay.jetty.nio.SelectChannelConnector

object JettyTestServer {
 private val server: Server = {
 val svr = new Server
 val connector = new SelectChannelConnector
 connector.setMaxIdleTime(30000);

 val context = new WebAppContext
 context.setServer(svr)
 context.setContextPath("/")
 context.setWar("chapter-14/src/main/webapp")

 svr.setConnectors(Array(connector));
 svr.addHandler(context)
 svr
 }

 lazy val port = server.getConnectors.head.getLocalPort
 lazy val url = "http://localhost:" + port

 def baseUrl = url

 lazy val = server.start()

 def stop(){
 server.stop()
 server.join()
 }
}

The listing literally does the bare minimum and only provides a mechanism to start
the server B and then stop it C.

 At the time of writing, this utility was not built into Lift’s TestKit, but it may be
included in future versions of Lift. In the interim, simply define a trait that can
be mixed in to start and stop the Jetty server:

trait JettySetupAndTearDown {
 def setup() = JettyTestServer.start
 def destroy() = JettyTestServer.stop()
}

Listing 14.14 Implementing Jetty for testing purposes

StartupB

ShutdownC

http://localhost:

338 CHAPTER 14 Application testing
This simple trait lets you avoid putting the boilerplate start and stop code in every test
group you write.

 Now that you have the testing tools set up, let’s consider an actual test that uses
this Jetty instance to service requests back and forth with the TestKit helpers. The
next listing shows a basic test implementation for the list of days web service, created
in listing 14.13 and accessible at the URL /t/services/days.

import org.specs.Specification
import net.liftweb.http.testing.{TestKit,ReportFailure,HttpResponse}

class WebServiceSpec extends Specification
with JettySetupAndTearDown with TestKit {

 implicit val reportError = new ReportFailure {
 def fail(msg: String): Nothing =
 WebServiceSpec.this.fail(msg)
 }

 lazy val baseUrl = JettyTestServer.baseUrl

 "Example web service" should {
 "List the days of the week in order" in {
 for {
 days <- get("/t/services/days")
 !@ "Unable to get day list"
 xml <- days.xml
 } {
 xml must ==/(<days>
 <day>Monday</day><day>Tuesday</day>
 <day>Wednesday</day><day>Thursday</day>
 <day>Friday</day>
 </days>)
 }
 }
 }
}

This example constructs a specification that implements Lift’s TestKit trait B, which
imports the functions for making web requests and handling the responses. The
reportError value defines an implicit value that creates a ReportFailure instance C,
the purpose of which is to capture specific error messages from chained web requests
(more on this in a moment). You may notice that the definition returns the Scala type
Nothing; you’ll hardly ever see this because Nothing never returns control to the
caller, but in the context of testing, this is useful because it will fail the test immedi-
ately with the specified message.

 The main thrust of the listing is the for comprehension that makes use of the get
method from TestKit D. As you might imagine, this method makes a GET request to
the specified URL. TestKit supports the standard set of HTTP verbs (GET, PUT, POST,
and DELETE) via the same word in lowercase. These requests return a subtype of

Listing 14.15 Example usage of TestKit

Extend
TestKit

B

Provide
ReportFailure
implicit

C

Send
requests

D

Match
result

E

339Testing strategies
Response, which is a TestKit type. This type has a selection of methods that allow you
to assert the desired response; in this usage, the !@ means “receive a HTTP 200
response or report failure” (table 14.2 lists all of the available operators). Once you
have a response, it’s possible to extract the XML body as the second step of the for
comprehension. With the result in hand, you can once again use the Specs XML
matchers to assert the result E.

These matchers form the basis of testing in TestKit, so let’s look at a more robust
example. Consider a scenario whereby you need to chain requests in the same session,
perhaps to log in to a web service before making requests. This can also be achieved
with TestKit, as shown in the next listing.

"Gain access to secret stuff if they are logged in" in {
 for {
 auth <- post("/testkit/services/login") !@ "Unable to login!"
 resp <- auth.get("/testkit/services/secret") !@ "Not authenticated"
 }{
 resp must haveClass[HttpResponse]
 }
}

Table 14.2 Response matchers available in TestKit

Matcher Description and usage

!@ Checks the response for an HTTP 200 status, and if not it uses the error report
function to send the specified failure message.

get("/foo/bar") !@ "Unable to get day list"

! Tests that the server responded, where any response is valid. It’s also
overloaded with a second method signature that allows you to specify a given
status code.

get("/foo/bar") ! "The server responded"

or

get("/foo/bar") ! (403,
 "Access should fail with unauthorized status")

\\
and the reverse
!\\

Checks the response for an exact sequence of XML nodes anywhere in
the response.

get("/foo/bar") \\ (thing,
 "Missing XML nodes")

\
and the reverse
!\

Checks the response for a specific node sequence from the root node.

get("/foo/bar") \ (thing,
 "Missing XML nodes")

Listing 14.16 Making multiple HTTP calls in the same session

340 CHAPTER 14 Application testing
To keep this example concise, the listing is an extract from a broader specification
group that extends TestKit, but consider specifically the auth and resp generators
within the for comprehension. The initial request is made and assigned to the auth
value, which is then used to launch a second request by way of the auth.get call. The
key point here is that it’s possible to launch secondary requests from the result of an
initial request, which ensures that both requests are executed in the context of the
same session. In terms of the actual test result, simply checking the response to see if
it’s the correct type is fine because if either of the TestKit matchers fails, the test will
throw an exception and report a failed test to the user.

TestKit provides a fairly robust abstraction for testing web services that would oth-
erwise be rather difficult to test. The next section covers testing with Mapper, includ-
ing configuring tests to run against a disposable, in-memory database and autoloading
testing fixtures into your tables.

14.3.3 Testing with Mapper

During your application build, there will often be times when you need to test com-
ponents that actually interact with the database, to ensure things operate as expected.
During testing, you may want to run your application tests against a sandbox data-
base, so in this section we’ll look at how to configure Lift to use an in-memory H2
database purely for testing purposes. Moreover, because this database is in memory,
you’ll need to load up predefined fixture data in order to populate the table with
something meaningful.

 Lift automatically detects when it’s being run as part of the testing classloader and
enables its test mode by default. This allows you to automatically load different config-
urations or supply different components based upon that mode. This is particularly
useful when setting up the database, because you can dynamically supply different
connection information. Back in chapter 10 (section 10.1.1) you may remember con-
figuring the database using an external properties file. Well, Lift is clever enough to
load different properties files based upon different run modes, so simply by having
test.default.props and default.props, you can define a sandbox in-memory database
that should be used just for the test suites.

 This leaves you with two different files:

■ src/main/resources/default.props
db.class=org.h2.Driver
db.url=jdbc:h2:database/chapter_14;FILE_LOCK=NO

■ src/main/resources/test.default.props
db.class=org.h2.Driver
db.url=jdbc:h2:mem:sandbox;DB_CLOSE_DELAY=-1

Specifically note the different connection URLs. No code changes are required to the
database connection loading or Schemifier code in your Boot class.

 Now that Lift will forge different connections to different databases for testing and
development (or for any other mode, for that matter), you’ll want some mechanism

341Testing strategies
for loading a sample set of data into the database; these are known as fixtures. Con-
sider the following listing, which details an example of overriding the callback func-
tion available in Mapper to automatically populate a table with data.

import net.liftweb.mapper._
import net.liftweb.common.Full

class Book extends LongKeyedMapper[Book] with IdPK {
 def getSingleton = Book
 object title extends MappedString(this, 255)
}

object Book extends Book with LongKeyedMetaMapper[Book]{
 override def dbTableName = "books"
 override def dbAddTable = Full(populate _)
 private def populate {
 val titles =
 "Lift in Action" ::
 "Scala in Depth" ::
 "Scala in Action" ::
 "Hadoop in Action" :: Nil

 for(title <- titles)
 Book.create.title(title).save
 }
}

This listing defines a simple Mapper entity for storing books in a database. The impor-
tant thing to note here is the overridden method definition for dbAddTable B. This
method is invoked when Schemifier attempts to create a table for this entity, and you
can execute an arbitrary () => Unit function. Typically, this function is used for loading
fixture data into the table at hand, prior to any tests being executed C.

NOTE At the time of writing, there was no specific serialization format that
automatically loaded fixtures, but implementing your own file-based loading
is a fairly trivial exercise due to Scala’s native XML support.

The final piece of the testing puzzle that we haven’t yet addressed is working with
Comet and AJAX. The next section addresses these topics and demonstrates some
strategies for testing these rich interfaces.

14.3.4 Testing Comet and AJAX

Comet and AJAX are typically rather tricky aspects of any application to test because
these kinds of GUIs are heavily event-based. AJAX responds asynchronously to user
input, and Comet responds to server-based events. Either way, this can be a tricky
thing to get in the middle of and test. Plus, as mentioned earlier, Lift’s stateful nature
adds some complexity. For example, when generating forms or other user interactions
like AJAX, Lift will by default create elements that look like this:

<input class="text" name="F1268385771525JRDB3L" type="text" value="" />

Listing 14.17 Implementing the table-creation hooks in Mapper to load fixtures

Fixture
hook

B

Fixture
loading

C

342 CHAPTER 14 Application testing
In chapter 6, you may remember learning how Lift randomly generates these func-
tion-mapped opaque GUIDs for state-bound components on each and every request,
to combat hacking strategies like cross-site request forgery (CSRF). Although this is
critically important in production mode, it can be a bit of a nightmare when testing
your application—during testing, you don’t need the security aspects, but you do
require stability in the naming of components.

 Fortunately, when test mode is enabled, Lift will generate stable identifiers for
each and every state-bound component that the page needs to render. This trans-
forms the preceding element so it looks like this:

<input type="text" value=""
name="f00000000010000000_f6cbf1d075cb60f72e00095e5552f15c52edb785" />

This identifier then becomes fixed and persists over Jetty and JVM restarts so you can
essentially hardcode these values in your tests and be sure that they will remain con-
stant. This can be rather useful when conducting functional testing with Selenium.
Selenium (http://seleniumhq.org/) is a popular tool for automated function testing,
and it allows your application to interact with a programmatically controlled browser,
from which you can slurp feedback into your test’s specification.

 Tools such as Selenium can be exceedingly handy for programmatically testing
asynchronous or highly dynamic parts of your application, which would otherwise be
difficult to test. Broadly speaking, AJAX and Comet fall into this category, because
both have highly asynchronous workflows. For AJAX, it’s usually possible to break out
the function definition and unit test that in isolation to ensure the right response is
being generated, but this is only appropriate in some cases. For example, this
wouldn’t be appropriate if your function was causing some side effect elsewhere that
subsequently updated the page while returning Noop itself.

 In the case of Comet, testing the CometActor itself in an isolated unit test can be
very difficult because you will, at some point, update the browser directly or trade Java-
Script with the client. Simply put, determining whether the JavaScript code sent to the
client asynchronously is operating as expected, without having a sandbox environ-
ment in which to run that code, is very difficult. Thus, for these components, func-
tional testing with Selenium can be a good fit.

 In order to set up functional testing with Selenium, it’s necessary to provide
some testing utilities that build on the JettyTestServer you set up earlier in this
chapter. The first thing you need to do is add Selenium to your project definition,
as shown:

val sl = "org.seleniumhq.selenium" % "selenium" % "2.0b1" % "test"
val slsvr = "org.seleniumhq.selenium" %
 ➥ "selenium-server" % "2.0b1" % "test"

Don’t forget to reload and update from the SBT shell.

http://seleniumhq.org

343Testing strategies
 One the dependencies are in place, set up an object to contain the Selenium
server, as shown in the following listing.

import org.openqa.selenium.server.RemoteControlConfiguration
import org.openqa.selenium.server.SeleniumServer

object SeleniumTestServer {
 private val rc = new RemoteControlConfiguration
 rc.setPort(port)

 private val seleniumserver = new SeleniumServer(rc)
 lazy val port = System.getProperty(
 "selenium.server.port", "4444").toInt

 def start(){
 seleniumserver.boot()
 seleniumserver.start()
 seleniumserver.getPort()
 }
 def stop(){
 seleniumserver.stop()
 }
}

Broadly speaking this is a convenience wrapper around the boot and shutdown pro-
cess of Selenium server D. This server is booted up after the Jetty server and is
used to handle results communicated from the remote client B to the Selenium
server C.

 To make integration with the Specification straightforward, you can construct a
utility trait, as defined in the next listing, that will handle both boot up and shutdown
of the Selenium server and client.

import com.thoughtworks.selenium.DefaultSelenium

trait SeleniumSetupAndTearDown extends JettySetupAndTearDown {
 _: Specification =>

 override def setup(){
 super.setup()
 SeleniumTestServer.start()
 Thread.sleep(1000)
 SeleniumTestClient.start()
 }
 override def destroy(){
 SeleniumTestClient.stop()
 Thread.sleep(1000)
 SeleniumTestServer.stop()
 super.destroy()
 }

Listing 14.18 Selenium server utility

Listing 14.19 Convenience trait for working with Selenium

Create
remote client

B

Create
serverC

Boot and
shutdown

D

Server startup
and shutdown

B

344 CHAPTER 14 Application testing
 object SeleniumTestClient {
 lazy val browser = new DefaultSelenium("localhost",
 SeleniumTestServer.port, "*firefox",
 ➥ JettyTestServer.url+"/")

 def start(){
 browser.start()
 }
 def stop(){
 browser.stop()
 }
 }
}

This trait first specifies the actual startup and shutdown process of the Selenium
server and client B. The client is implemented C, and it uses Firefox as its slave
browser. These methods are to be called surrounding the start and finish of the
Specification implementation; notice how the trait extends JettyStartupAnd-
TearDown so that it will also start the Jetty server that runs the application.

 Second, the nested object SeleniumTestClient is designed to be imported into
the Specification scope to provide the caller with a convenient way to send instruc-
tions to the browser. With this in mind, consider the following listing, which imple-
ments this utility trait and makes calls to the browser to verify that a Lift AJAX button
replaces an element dynamically.

class SeleniumExampleSpec extends Specification
 with SeleniumSetupAndTearDown {
 "/testkit/ajax" should {
 import SeleniumTestClient._
 "replace the button with text when clicked" in {
 browser.open("/testkit/ajax")
 browser.click("clickme")

 browser.waitForCondition("""
 selenium.browserbot
 .getCurrentWindow().document
 .getElementById('ajax_button')
 .innerHTML == 'Clicked'""",
 "1000")
 browser.isTextPresent("Clicked") mustBe true
 }
 }
}

In this test implementation, note how the inner object SeleniumTestClient is
imported, which places the browser value in scope for the whole specification. Next,
it’s just a case of instructing the browser client what to do. In this specific example,
you want the browser to first open the appropriate URL and then click the button
with an ID of clickme. These steps are conducted by calling browser.open and

Listing 14.20 Implementing the Selenium test client

Browser
client

C

Open URL and
click button

B

Wait for
async update

C

345Summary
browser.click respectively B. This is the corresponding markup that you would be
interacting with via Selenium:

 <button onclick="liftAjax.lift_ajaxHandler(
 "F7600141090484VJ0VU=true", null, null, null); return false;"
 id="clickme">Hello</button>

Because clicking this link causes an AJAX request to be sent from the browser to the
server, a varying amount of time could pass before the server responds. The Sele-
nium solution here is to provide a snippet of JavaScript that can execute in the con-
text of the current browser test. This JavaScript is executed every second until the
predetermined timeout has passed or the condition has been satisfied C. In this
case, the snippet is simple and just returns a string with minimal processing, so the
response is fairly instant. Finally, a Specs matcher is used to verify the result of exe-
cuting the Selenium tests; simply checking that the text was properly replaced by call-
ing browser.isTextPresent and setting that this must be true is sufficient to satisfy
the test case.

 The same testing approach is generically applicable to Comet applications because
the asynchronous updating of pages is the same in principle, and it also typically hap-
pens in response to a user action. The only other point of consideration for Comet
would be the need to communicate messages to a given CometActor before running
the Selenium test.

14.4 Summary
This chapter has covered the basics of testing Lift applications and, more broadly,
Scala code in general. First, you heard about how the Scala ecosystem has fostered sev-
eral different testing frameworks that take different but complementary approaches to
testing. Starting with ScalaTest, you saw how to construct basic test (function) suites,
and that was followed by an exploration of the Specs BDD testing framework. Specs and
ScalaTest are equally popular, but the majority of this chapter leveraged the Specs
framework purely because it’s our personal preference. Specs also has rather nice inte-
gration with the property-driven development framework ScalaCheck. Specifically,
ScalaCheck can randomly generate function input to provide testing with arbitrary
random values. We also took a look at code-coverage reports.

 The second section explored some of the realistic complexities in testing highly
stateful applications and presented some possible routes for more effective, isolated
testing. You also saw several techniques for dependency injection in Scala. But this dis-
cussion was by no means 100 percent complete, and we highly recommend reading
Scala in Action by Nilanjan Raychaudhuri or Scala in Depth by Joshua D. Suereth for
more information on idiomatic dependency-injection patterns in Scala.

 The third section of the chapter covered techniques for implementing full-stack
integration and functional testing of your application. This included leveraging

346 CHAPTER 14 Application testing
some of Lift’s testing infrastructure from the supplementary Lift TestKit module.
These tests included creating mock requests and utilizing the WebSpec testing trait.
Additionally, you saw how to use the TestKit trait to test dispatch-based web ser-
vices with a real, live Jetty instance. This Jetty instance was then coupled with the
popular Selenium testing tool to cover the need to test asynchronous browser-based
workflows for Comet and AJAX.

 The next chapter covers deployment and scaling, touching on topics such as serv-
let containers, handling state during failover, Lift tools that can help your application
when it goes into the wild, and some recipes for implementing application monitor-
ing using the Ostrich toolkit from Twitter.

Deployment and scaling
In this book, you’ve seen a lot of different aspects of Lift and how they can affect
your development cycle. Hopefully you’ve learned enough to build an application
that you’d actually like to publish in the real world and expose to end users. For the
most part, Lift applications can be deployed in much the same way regular Java web
applications can. By default, this means packaging your application as a WAR file,
which can be done by pretty much any of the build tools commonly used in the
Scala and Java ecosystems. Moreover, with Scala and Lift being based on the JVM,
you can benefit from the many years of research, tuning, and overall improvement
in the platform, not to mention great security, protection from things like buffer
overflow attacks, and blistering performance even at very high load.

 Although there are many great servlet containers available, you can benefit
from having a better understanding of how to leverage particular servlet contain-
ers. To that end, the first thing covered in this chapter is how to choose a container.
This chapter presents some broad options, but we’ll focus on one main route of

This chapter covers
■ A guide to choosing a container
■ Deployment techniques and tools
■ Your deployment options
347

348 CHAPTER 15 Deployment and scaling
implementation that a lot of people use. Note that it’s by no means the only route
available to you with regard to choosing a system configuration.

 With a container in place, we’ll then explore Lift’s state-handling mechanism and
learn why stateful systems are ultimately more secure and more performant than their
stateless counterparts that use the so-called share nothing architecture. There are many
myths about the costs of deploying stateful applications, and we’ll show you how you
can build an extremely performant system based entirely upon an open source soft-
ware stack.

 Lift is an application framework that was built for use in the real world, and as such
there are a lot of pragmatic choices that have been distilled into common use compo-
nents. A selection of these can be particularly useful when taking your application
into production. You’ll see some of the techniques and tools that you should use when
deploying your applications to get the best out of Lift and the environment you have
available for hosting.

 Finally, we’ll look at the experiences of two of the largest Lift applications in the
world: the vibrant location-based social network Foursquare.com and the enter-
prise social collaboration service Novell Vibe. These users are running Lift in very
large installations and have had firsthand experience in developing and deploying
Lift applications.

 But the first thing you’ll need when taking your application to deployment is a
servlet container, so without further ado, let’s look at some of the things you should
consider before choosing a container.

15.1 Choosing a servlet container
Selecting a servlet container these days is often difficult because the difference
between products is small. There are many commercial and open source options;
both variants provide extremely professional software that’s good for development
and production environments alike. With such a competitive field, choosing a con-
tainer has become a somewhat religious affair (much like for build tools), and the vast
majority of functionality is inconsequentially different.

 From an application standpoint, Lift will run nearly identically in any container, be
it Tomcat (http://tomcat.apache.org/), Resin (http://www.caucho.com/products/
resin/), or another. So where’s the point of differentiation, you may be wondering?
Well, throughout the course of this book, we’ve talked a lot about real-time applica-
tions and using Comet-based page components. One of the things we haven’t talked a
great deal about is how Comet actually works under the hood, and what that means
for the container.

 Let’s assume that you’re running a Lift application complete with Comet in a
popular container such as Tomcat 6. For each Comet operation, Lift would essen-
tially be consuming a thread for that request. Both from a developer and user experi-
ence perspective, this is transparent. But consuming threads like this doesn’t scale,
because you’d eventually run out of threads. Fortunately, there’s a solution that some

http://tomcat.apache.org
http://www.caucho.com/products/resin
http://www.caucho.com/products/resin

349Choosing a servlet container
containers implement; this can be thought of as request suspension and it’s also some-
times referred to as continuations. Figure 15.1 illustrates the request-suspension process.

 In this process there’s usually a thread pool that’s used to service requests, and as
soon as the response is returned to the browser (A in the figure), and assuming the web
page has one or more Comet components, the request is suspended (at B) and the
thread that was servicing that request is returned to the pool. If that request requires
more data to be pushed to the browser, the request is resumed; again a thread is taken
from the pool to complete the servicing and it’s returned to the pool when the servic-
ing is complete. This is a far more efficient approach and scales inordinately better
than consuming a thread for the entire duration of the Comet request.

 At the time of writing, Jetty 6 (and later) features such a request-suspension API,
and the servlet 3.0 specification goes a step further to standardize asynchronous
response handling. Going forward, all the major containers will almost certainly sup-
port the servlet 3.0 specification, which will mean your Lift applications can ultimately
take advantage of effectively scaling Comet in any container.

NOTE You can read more about the servlet 3.0 specification at http://
jcp.org/aboutJava/communityprocess/final/jsr315/index.html.

In practice, this means that if you’re building a Comet-enabled application, you have to
think a little more carefully about exactly which container you’d like to use, because
there are positives and negatives for each. If your application leverages Lift’s awesome

Figure 15.1 Visualization of request suspension (or continuations) in the Jetty
container. The initial request is serviced, the request is suspended, and a thread
is pulled to service any subsequent response (push) operations on that request.
The thread doesn’t block indefinitely.

http://jcp.org/aboutJava/communityprocess/final/jsr315/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr315/index.html

350 CHAPTER 15 Deployment and scaling
Comet support, this will likely have a large bearing on the container you choose to
deploy with. At the time of writing, Lift’s Comet mechanism supports three different
Comet implementations:

■ Servlet 3.0–compatible containers
■ Jetty 6 continuations
■ Jetty 7 continuations

Lift will automatically detect whether it’s running in a compatible container, and if
not, it will fall back to a thread-consuming strategy, as mentioned earlier in this chap-
ter. If your application isn’t sporting any Comet components, any servlet container
should work.

 Table 15.1 provides a very broad comparison of three servlet containers: Jetty
(http://jetty.codehaus.org/jetty/), Tomcat (http://tomcat.apache.org/), and Win-
stone (http://winstone.sourceforge.net/). This table provides a rough guide for read-
ers who may not be familiar with the ecosystem. There are many factors to consider,
and here I focused on these:

■ Static file performance—This is important for web applications with a lot of imagery
or JavaScript. Here Jetty has a slight edge over Tomcat in that it uses a specialized
form of nonblocking I/O to instruct the host system to send the file at maximum
direct memory access speed without entering user or JVM memory space.

■ Memory footprint—Although RAM may be cheap, having a lightweight applica-
tion is still a consideration for many environments. Here, Winstone gives you a
super lightweight implementation because it only provides bare-bones servlet
support. With that being said, both Jetty and Tomcat can be stripped down to
be more lightweight than their defaults. If you need lightweight embedding,
either Winstone or Jetty are great choices.

■ Comet support—Jetty currently has the best support for Comet in Lift because of
its dedicated continuation API, so it will give you the best out-of-the-box experi-
ence with Comet. Moreover, at the time of writing, Jetty appears to be the most
popular container in the Lift community. Tomcat 7 provides a servlet 3.0 imple-
mentation and should provide good Comet support going forward. At the time
of writing, Tomcat 7 was in the final stages of beta, so more people might adopt
Tomcat with Lift applications as time passes.

■ Scalability—Both Jetty and Tomcat are proven in the enterprise space, and there
isn’t a huge amount to choose between them. Either would be a fine choice for
a production environment.

In addition to the containers listed in this table, there are also some online services that
take care of the whole deployment for you, meaning that you don’t have to worry about
server setup at all. Examples of such services are CloudBees (http://www.cloudbees
.com/), Amazon’s Elastic Beanstalk (http://aws.amazon.com/elasticbeanstalk/), and
Google App Engine (http://code.google.com/appengine/).

http://jetty.codehaus.org/jetty
http://tomcat.apache.org
http://winstone.sourceforge.net
http://www.cloudbees.com
http://www.cloudbees.com
http://aws.amazon.com/elasticbeanstalk
http://code.google.com/appengine

351Handling state
Now that you have a broad understanding of what your application can be deployed
into, let’s take a look at some of the specific problems common in web application
deployment, and subsequent solutions that both Lift and the Java platform provide.

15.2 Handling state
Effective state handling is one of the biggest problems in web application develop-
ment. The most common (but not only) state-related problem comes in the form of
session management. In many frameworks, including Ruby on Rails and Java Struts,
serializing the state into a persistent object and then referencing that persistent object
using a secure session token in the incoming request is how they manage session state.
This secure token might be encoded in the URL or in a cookie passed with each
request, but the object that stores that state is typically external to the application—it
could be a cookie, a hidden form field, Memcached (http://memcached.org/), or
anything else, even a database.

 The benefit of such an approach is that the server isn’t responsible for handling
the state between requests, so any backend server in a cluster can deal with any given
request and still have access to its state, because the application grabs it from an exter-
nal source. But although this approach sounds reasonable, it’s often abused, and the
sheer amount of serialized state that’s being handed around in any moderately com-
plex application becomes very unwieldy. It actually slows the whole process down,
because there’s so much deserialization, processing, mutation, and reserialization of
the same state. Moreover, when the state is global and any request to any web applica-
tion process in the cluster can mutate the session in any way, you’re presented with an
interesting concurrency problem. Imagine interacting with an application using mul-
tiple browser tabs, and the request in one tab is handled by server A while the second
tab is handled by server B; if they’re both operating on the same state at the same
time, which process is the right one to use? There’s an obvious race condition and
concurrency issue here, and a strategy such as this can be extremely hard to maintain
and very hard to debug when it becomes operationally problematic if the developers
did not provide for such scenarios.

 These different approaches to state handling are flawed for the reasons outlined,
and the all-too-often side effect is unwanted security holes in your application. That’s

Table 15.1 Some points on the merits of different servlet containers. These ratings are based partially
on product features and experience in the field. They should provide a loose direction in making a choice
for your environment.

Jetty 6+ Tomcat 7 Winstone

Static file performance ★★★★★ ★★★★✩ ★★★✩✩

Memory footprint ★★★★✩ ★★★✩✩ ★★★★★

Comet support ★★★★★ ★★★★★ ★✩✩✩✩

Scalability ★★★★★ ★★★★★ ★★★✩✩

http://memcached.org

352 CHAPTER 15 Deployment and scaling
why Lift chose a different route of implementation: it keeps all its state in process.
This is generally why Lift is referred to as a stateful framework. Throughout the course
of this book, you’ve interacted with Lift’s stateful functions and seen how Lift lever-
ages this stateful behavior to yield a superior feature set. A good example of such
behavior is Lift’s secure session-specific opaque GUIDs that all Lift form elements are
assigned dynamically. Strategies such as this make it impossible to attack the applica-
tion with cross-site request forgery (CSRF), for example. This is but one example, and
we touched on many of the other benefits in previous chapters.

 So where’s the catch? Well, being stateful essentially means that when the very
first request reaches the server from a new client, a session is created for them on
that specific server. Any subsequent requests must also reach that very same server in
order to access the session information. This scenario is cheerily referred to as sticky
sessions, because each request is stuck to a particular server in order to access its ses-
sion state.

15.2.1 Sticky session strategies

With the understanding that each request must reach the same server in order to be
consistently handled, you may be wondering how this is implemented in practice and
what it means operationally. There are typically two ways to handle this: a software
solution that may or may not be on multiple pieces of hardware, and a pure-hardware
solution that operates at the layer 4 network level via what are usually very expensive
pieces of equipment. The majority of deployments will use the software route, due to
cost or organizational restrictions, so this is what we’ll now explore.

 Broadly speaking, there are two solutions that are largely prevalent in the open
source software load-balancing space for web applications: HAProxy (http://haproxy
.1wt.eu/) and NGINX (http://wiki.nginx.org/Main), pronounced engine x. These two
products are both open source and completely free, they offer very sophisticated con-
figurations, and they’re implemented in lots of high-profile sites including Four-
square.com, WordPress.com, and Github.com. It’s also worth noting that if you opt for
cloud-based hosting, your service provider may have built-in support for stick session
load balancing, such as can be found with Amazon’s Elastic Load Balancing (http://
aws.amazon.com/elasticloadbalancing/).

HAPROXY

HAProxy is primarily a TCP and HTTP load balancer. It has proven to be very, very fast
and highly reliable even under extreme load. HAProxy has even been benchmarked
and reaches saturation around half a million requests per second. As you can no doubt
appreciate, this is far more than most applications would see in an entire day, let alone
per second. So it’s fast, scalable, and can be configured to have complete redundancy:
all the characteristics of a great production platform.

 With regard to sticky sessions, HAProxy comes equipped for this kind of workflow,
and it’s even possible to configure your system to perform seamless application
updates without the need for the ubiquitous “down for maintenance” page.

http://haproxy.1wt.eu
http://haproxy.1wt.eu
http://wiki.nginx.org/Main
http://aws.amazon.com/elasticloadbalancing
http://aws.amazon.com/elasticloadbalancing

353Handling state
Figure 15.2 shows a typical HAProxy deployment setup. The configuration detailed
here is a fairly typical proxying setup.

 Let’s take a look at the configuration needed to implement such a setup. HAProxy
takes all of its configuration options from a file called haproxy.cfg, which is typically
located in /etc/haproxy/, but this is system-specific and not an absolute rule. You can
achieve a simple setup as shown in the following listing.

global
 daemon
 maxconn 10000
 log 127.0.0.1 local4

defaults
 log global
 clitimeout 60000
 srvtimeout 30000
 contimeout 4000
 retries 3
 option redispatch
 option http-server-close
 option abortonclose
 option httplog

listen yourdomain_cluster 1.2.3.4:80
 mode http
 balance roundrobin
 capture cookie JSESSIONID len 34
 appsession JSESSIONID len 34 timeout 3h request-learn
 option forwardfor except 1.2.3.4

Listing 15.1 HAProxy configuration

Figure 15.2 A typical HAProxy deployment. Web traffic connects to HAProxy,
which in turn load-balances traffic to application servers inside the LAN.

Implement sticky
sessions

B

354 CHAPTER 15 Deployment and scaling
 server server1 10.1.1.2:80 cookie s1
 ➥ weight 1 maxconn 2000 check
 server server2 10.1.1.3:80 cookie s2
 ➥ weight 1 maxconn 2000 check
 server server3 10.1.1.4:80 cookie s3
 ➥ weight 1 maxconn 2000 check

listen lb1_stats [load balancer's public ip]:80
 mode http
 stats uri /
 stats auth username:password
 stats refresh 10s

This configuration essentially tells HAProxy that it will be dispatching requests to
three backend servers with the defined IP addresses C and that it should use the
JSESSIONID as an identifier to do the dispatching in a sticky manner B. The configu-
ration also instructs HAProxy to conduct a round-robin style of load balancing to
determine which server it should dispatch a new request to. There are a range of
options here, and detailing them is beyond the scope of this chapter, so I heartily rec-
ommend checking the HAProxy documentation for more information on this and
other parameters you can use to tune the setup for your particular requirements.

 So far, so good. There are, however, a couple of catches with HAProxy (aren’t there
always). At the time of writing, there was no support for SSL out of the box, so if this is
a hard requirement for your application or you wish to protect your users from session
hijacking and other security vulnerabilities, there are currently a couple of options:

■ Use Stunnel (http://www.stunnel.org/) to decode the incoming SSL and apply
an optional (but official) patch to HAProxy in order to support SSL handling in
a single software solution. (The patch can be found at http://haproxy.1wt.eu/
download/patches/stunnel-4.34-exceliance-aloha-unix-sockets.diff.)

■ Place another software component in front of HAProxy to handle the SSL
decoding, and hand off the request to HAProxy for load balancing and distribu-
tion to the backend.

These are only catches if you require SSL. Either way, HAProxy is a great tool, and
there is a whole raft of things that you can do with it that we won’t even begin to touch
on here.

HAProxy is a great product, but everyone likes to shop around and check out the
other options. Or perhaps you’d like to have a frontend for things like URI rewriting
or serving static files, so you need something more like a web server than a proxy. The
second project we’ll look at here is NGINX, a popular open source web server.

NGINX

Unlike HAProxy, NGINX is a web server, which means it does things other than just
proxying. There are a whole host of web servers available today, but NGINX is a fine
choice because it’s fast, reliable, and has a good selection of features. Out of the box,
it also supports sticky sessions, reverse proxying, and all the normal serving features
that one would expect to find in a web server, such as SSL decoding, rewriting, and file

The backend
containers

C

http://www.stunnel.org
http://haproxy.1wt.eu/download/patches/stunnel-4.34-exceliance-aloha-unix-sockets.diff
http://haproxy.1wt.eu/download/patches/stunnel-4.34-exceliance-aloha-unix-sockets.diff

355Handling state
serving. This only scratches the surface, however. A lot of plugins have been written by
the community that extend its feature set to a magnitude larger than could possibly be
covered here.

 You may be wondering why you shouldn’t just run NGINX as your primary proxy,
instead of complicating matters with HAProxy. Well, many people do run NGINX as
their frontend to the backend containers without any problems at all. We’ll be cover-
ing how to make these kinds of choices in section 15.3, and we’ll illustrate when it’s
sensible to opt for different routes.

 Getting back to NGINX, though, it’s very simple to configure, and it only requires a
few lines in /etc/nginx/nginx.conf to configure sticky sessions and reverse proxying.
The proxying and session affinity functionality is part of a module called NGINX HTTP
Upstream (http://wiki.nginx.org/NginxHttpUpstreamModule), so ensure that your
build of NGINX includes this module, or you’ll get errors upon trying to start the ser-
vice. The next listing shows an example entry in nginx.conf.

upstream backend {
 ip_hash;
 server 10.0.0.1:8080 weight=3;
 server 10.0.0.2:8080 max_fails=3 fail_timeout=30s;
 server 10.0.0.3:8080;
}

server {
 listen 80;

 server_name yourdomain.com;
 access_log /some/path/yourdomain.access.log main;

 location / {
 proxy_pass http://backend;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_read_timeout 700;
 proxy_set_header Host $http_host;
 proxy_set_header X-Forwarded-For
 ➥$proxy_add_x_forwarded_for;
 }
}

This is a bare-bones configuration and it’s the declaration for a single application that
has multiple backend servers. The first thing you’ll notice is that you define the clus-
ter of application servers that you’d like to delegate to B, ensuring that you enable
ip_hash. The ip_hash directive essentially creates a hash of the C-class IP address of
the incoming client and uses that to continually route their request to the same back-
end server, if it’s still active and fully available. It’s even possible to apply weighting
semantics and a selection of other parameters to fine-tune the behavior of delegation
to the backend servers if need be. Do check the NGINX documentation for more
information on that if it’s of interest to your deployment.

Listing 15.2 Configuring NGINX with proxying and session affinity

Define backend
cluster

B

Proxy incoming
requests

C

http://wiki.nginx.org/NginxHttpUpstreamModule
http://backend

356 CHAPTER 15 Deployment and scaling
 The next section defines the application location C, but because NGINX is hand-
ing everything off to be processed, you can simply specify the root URI (/). If you want
to do any other rewriting or request handling, you could either do it in this block or
define another location if applicable. Finally, within this block, NGINX proxies incom-
ing requests to the predefined backend cluster by way of the proxy_pass http://
backend directive. We’ve also defined some proxy flags here, but these are just for
example. In production, you’d likely want a more comprehensive set than what is
implemented here.

 Here you’ve seen two different open source projects that offer robust, performant
solutions for proxying requests to your Lift applications, complete with session affin-
ity. But despite your best efforts, many things can go wrong in production, and it’s
important to understand what the options are for managing your application state
when operational issues occur.

15.2.2 Distributing critical state

Earlier in this section, I outlined some of the problems with the state-handling strate-
gies implemented by other popular frameworks available today, one of which was ses-
sion distribution. When using session affinity, there is always the concern that the
server your session is located on may have some hardware failure, or become unavail-
able for some other reason. There are also situations where you may want a user to
remain logged in over a period of time, rather than having to log in on every single
visit to the site, irrespective of operational issues that may arise.

 Consider a fairly basic application with some simple state. Let’s assume that this
application requires a login, and during the lifetime of this session, the code refers to
this individual user by user ID. Imagine that the user conducts the login on server 1 of
this two-server cluster, but, unexpectedly, server 1 dies and the user’s subsequent
requests are routed through to server 2. But wait, the user’s session isn’t present here,
so what happens to the active login? By default, the user would have to log in once
more to become active in the scope of this new session. This is, of course, a less than
ideal situation—the user experience is suffering because of operational issues. There
are solutions for such a problem.

EXTENDED SESSIONS

The first strategy you’ll often see is called extended sessions, and it fits simple use cases
such as this. In essence, extended sessions provide you with a simplistic mechanism
for allowing the user to remain logged in irrespective of server restarts or other issues
that may arise. It manages this by saving a user identifier into a cookie and keeping a
database table of that state, which is persisted to the cookie.

 If you’re using Lift’s Mapper, there is a prototypical trait that you can use to speed
the process of implementing an extended session. We’ll look at an example that
assumes you’re using the ProtoUser traits covered earlier in chapter 3. This isn’t to say
you can’t use extended sessions with your own custom code, but this gives us a concise
example that uses plumbing code you’re already familiar with.

http://backend
http://backend

357Handling state
To get started with extended sessions, the first thing you’ll need to do is ensure
that you have lift-mapper on your project classpath. Second, we’ll assume that you
have a subtype of ProtoUser called User in order to model each person in this sys-
tem. The following listing shows the code required to implement the proto-trait for
extended sessions.

import net.liftweb.common.Box
import net.liftweb.mapper.{MetaProtoExtendedSession,ProtoExtendedSession}

object ExtendedSession
 extends ExtendedSession
 with MetaProtoExtendedSession[ExtendedSession]{
 override def dbTableName = "extended_sessions"
 def logUserIdIn(uid: String): Unit =
 User.logUserIdIn(uid)
 def recoverUserId: Box[String] = User.currentUserId
 type UserType = User
}

class ExtendedSession extends ProtoExtendedSession[ExtendedSession]{
 def getSingleton = ExtendedSession
}

The listing here shows a sample implementation of using the extended sessions by
implementing the Mapper traits MetaProtoExtendedSession and ProtoExtended-
Session respectively. This definition creates a table in the database called extended_
sessions, and it contains several different columns that relate to expiration timing of
the cookie and the ID of the user the particular cookie relates to.

 There are two methods you need to implement here: The first defines the function
that will be executed to log this particular user in B. As this sample assumes the User
type is an extension of ProtoUser, you can simply call logUserIdIn, which is supplied
by the proto trait, but there is nothing stopping you having any code you need here
that suits your setup. The second method is recoverUserId C, and it does pretty

Be aware of sidejacking
It seems appropriate at this point to illustrate the inherent dangers with saving
data to cookies that reside on the user’s machine and that are subsequently trans-
mitted with each request to the server. Unless this information is being communi-
cated with transport-level security, HTTPS (SSL) in this case, the cookies’ contents
are essentially open to packet sniffing and thus the so-called sidejacking or ses-
sion hijacking attack. During such an attack, the villain simply steals the cookie’s
contents and passes that in their request to the server. In this situation, the server
thinks that the attacker is the real user’s valid session.

In short, if you’re going to place anything in cookies related to users or sessions,
it’s best to do it over HTTPS if possible.

Listing 15.3 Extended sessions example

Log the
user in

B

Get the
current userC

358 CHAPTER 15 Deployment and scaling
much what you might imagine; it grabs the currently logged-in user identifier (from
the session, in this case). The recoverUserId function is ultimately wired into the
mechanism that executes functions early in the request lifecycle to automatically log
the user in.

 Add this to your Boot class to enable the extended session functionality:

LiftRules.earlyInStateful.append(
 ExtendedSession.testCookieEarlyInStateful)

In brief, this line tells Lift to test for the presence of an extended session cookie dur-
ing an early stage of the stateful request processing. If the cookie is found, the user is
automatically logged in.

TERRACOTTA

At the very beginning of this section, I did somewhat bash the notion of distributing
state, and it may seem that what I’m going to show you here contradicts that some-
what. The thing to remember here is that this strategy doesn’t distribute all applica-
tion state, only specific members that are defined by you for the purpose of failover,
application resilience, or consistent user experience in the event of unforeseen opera-
tional problems.

 By default, Lift has its own internal session map and doesn’t use the HTTPSession
that’s part of the regular javax.servlet setup. The upside of this is that Lift is, for the
most part, free of nondescript Object or Any types, and even items in the session can
be complex closures or other things that typically wouldn’t be acceptable items for
placing into the session. But the benefit of using the javax.servlet.HTTPSession
infrastructure is that it has been around for a long time, and many useful components
for building applications are layered on top of this infrastructure.

 One of the areas that has had a good level of investment and subsequent work over
the past years has been distributing the serializable contents of the HTTPSession, so
that state can be transparently utilized by several servers in a cluster. If, for example,
one of the servers dealing with a particular user’s session fails, the user is then com-
pletely unaware that their session is being serviced by another machine.

 Considering both of these useful qualities, Lift has a halfway house of compromise
called ContainerVar. In essence, this type gives you a strongly typed abstraction for
access to the generally untyped (or at least, Object typed) world of HTTPSession.
Moreover, because you’re leveraging HTTPSession, you can use any Java infrastructure
that could normally be applied to container sessions.

 There is, however, a trade-off. With the ultimate store being based upon HTTP-
Session, all the items you place into it that you wish to distribute must implement
java.io.Serializable or feature the @Serializable annotation. The upshot of this
is that you can’t store Scala functions or other complex types in ContainerVar imple-
mentations as they are simply not Serializable.

 With these points in mind, you may be wondering what the purpose of Container-
Var is when you already have SessionVar, RequestVar, and even TransientRequestVar.
You can think of ContainerVar as being at the same level or lifecycle as SessionVar. A

359Handling state
ContainerVar spans multiple requests in exactly the same way that a SessionVar does,
with the ultimate difference being that SessionVar can be populated with any type
and is stored with Lift’s internal session map (LiftSession), whereas ContainerVar
can only take serializable values and is stored in the container’s HTTPSession, and
thus can be distributed if the need arises.

We’ll now look at an example of distributing systems using an open source product called
Terracotta Web Sessions (http://terracotta.org/downloads/open-source/catalog).
Terracotta is a Java clustering solution, and this particular component is (as the name
suggest) a specialized HTTP session distribution system. It’s worth noting that there are
a plethora of clustering solutions out there; I’m demonstrating Terracotta here
because it’s one of the most popular solutions, but other perfectly good options would
be Hazelcast (http://www.hazelcast.com/), JGroups (http://www.jgroups.org/), and
Oracle Coherence (http://www.oracle.com/technetwork/middleware/coherence/
overview/index.html). It really is a matter of understanding your use case and using a
solution that works for you—open source or commercial.

 Before you continue, download the Terracotta open source version and make
sure you have two JAR files from the distribution named terracotta-session and terra-
cotta-toolkit-1.1-runtime placed in your lib directory at the top level of your SBT
project. At the time of writing, the Maven repository for Terracotta was (and had
been) down for some time, so if service has been resumed you can simply add these
add dependencies in your SBT project and have SBT download them for you. Either
way, the result is exactly the same: the Terracotta classes will be present on your
application classpath.

 The first change you need to make to your application is to add the Terracotta con-
figuration to your web.xml file. Ensure that your application uses javax.servlet 2.4 or

ContainerVar or SessionVar?
Before using a ContainerVar over a SessionVar, it’s a good idea to examine
your use case. When you need to store something in the session, your first port of
call should always be to use a SessionVar up to the point when your use case
demands otherwise.

Lift uses SessionVar and RequestVar internally, so don’t assume that you can
cluster the whole of LiftSession; you can’t.ContainerVar just gives you the flex-
ibility to choose what you want, when you need it, as opposed to being mandated
a particular route of session storage by Lift.

The closest feature Lift has to clustering the entire session is what is known as
migrated session mode. This mode is essentially a cut-down version of Lift ses-
sion, but it will stop you using the state-bound aspects of Lift, such as SHtml and
S. It’s availability versus functionality in this instance as Lift's function binding
uses LiftSession-based state to store closures in memory, so it wouldn’t be
physically possible to cluster the whole session yourself.

http://terracotta.org/downloads/open-source/catalog
http://www.hazelcast.com
http://www.jgroups.org
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html

360 CHAPTER 15 Deployment and scaling
greater as that’s what Terracotta requires; be aware that the default Lift templates are
targeted toward javax.servlet 2.3. The change is minimal but necessary. The following
listing demonstrates the required changes to the web.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 version="2.5"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <filter>
 <filter-name>terracotta-filter</filter-name>
 <filter-class>
 org.terracotta.session
 ➥.TerracottaJetty61xSessionFilter
 </filter-class>
 <init-param>
 <param-name>tcConfigUrl</param-name>
 <param-value>localhost:9510</param-value>
 </init-param>
 </filter>
 <filter>
 <filter-name>LiftFilter</filter-name>
 <display-name>Lift Filter</display-name>
 <description>The Filter that intercepts lift calls</description>
 <filter-class>net.liftweb.http.LiftFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>terracotta-filter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>ERROR</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <filter-mapping>
 <filter-name>LiftFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

</web-app>

Here you have what is a very stock Terracotta configuration alongside the default
Lift filter setup that you’re likely familiar with by now. First, this web.xml defines a
container-specific clustering implementation, which in this case will use Jetty B. Ter-
racotta supports a whole host of options by default, so check the manual if you’re
using a container other than Jetty. Next, the configuration defines the location of
the Terracotta server that will handle the session state C. It’s possible to configure
this in a fault-tolerant setup, but here you’ll likely just have the server included with

Listing 15.4 Web.xml configuration

Container-specific
session filter

B

Terracotta
server

C

Terracotta
filter config

D

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaeejava.sun.com/xml/ns/javaee/web-app_2_5.xsd

361Choosing a configuration
the Terracotta package download running locally, so it only points to a single, local
Terracotta server. During the application boot-up phase, it will look for this server
and continue to do so until it finds it, so ensure that your Terracotta server is run-
ning before starting the Jetty instance. Finally, the configuration details the stock fil-
ter mapping required to run Terracotta D; again, for more information on this,
check out the Terracotta manual.

 With the web.xml configuration in place, you can get around to using Container-
Var. Because it also extends the AnyVar trait, it has a near-identical API to RequestVar
and SessionVar, both of which you’ve already seen. Here’s an example:

class MySnippet extends DispatchSnippet {
 object WordHolder extends ContainerVar[String]("n/a")
 ...
}

Here you simply create an object that extends ContainerVar. The caveat is that the
parameterized type (String in this instance) must be serializable.

 What you don’t see in the preceding example is the full signature of ContainerVar
which looks like this:

abstract class ContainerVar[T](dflt: => T)(
 implicit containerSerializer: ContainerSerializer[T])
 extends AnyVar[T, ContainerVar[T]](dflt) with LazyLoggable { ... }

The important thing to note here is that the second parameter group is defined as an
implicit parameter of type ContainerSerializer. This serializer holds a set of implicit
conversions to effectively serialize and deserialize the specified type to an
Array[Byte], and the compiler selects the correct implicit to use at compile time.
There are no magic beans here; you’re essentially using ContainerVar as a Lift
abstraction to distribute particular parts of application state. This adds additional lev-
els of robustness to your application via proven Java web infrastructure.

 There are a lot of options in the wider Java ecosystem, both with regard to servlet
containers and clustering solutions. The question is: how do you choose which to use?
There are many factors that contribute to an answer to that question; some are tangi-
ble, but others are more a matter of taste or preference. In the next section, we’ll look
at some of the things you should consider, and I’ll supply suggestions and justifica-
tions for two different implementations that would work well.

15.3 Choosing a configuration
In the previous two sections, you’ve seen some discussion of Java servlet containers,
software load balancing, and sophisticated state-handling techniques that ensure your
application is resilient and provides a robust, seamless user experience even in the
face of server failure. But there are many choices in this field, and it can often be diffi-
cult to determine which configuration is right for you and your operation.

 We’ll outline two different scales of deployment configuration as a basic guide in
assisting you in choosing your own deployment setup. The two ends of the spectrum

362 CHAPTER 15 Deployment and scaling
we’ll discuss are first small, with a single server setup, and then a second, much larger
multiple server setup that handles redundancy and has more moving parts, but would
handle far more load. By no means is either of these the de facto way to deploy Lift
applications. There are many, many ways to handle deployment, and it’s a fiercely
debated subject in many organizations. To that end, bear in mind that these are just
guidelines and not the panacea of deployment setup.

15.3.1 Single server

If your project is a small to medium-sized application, you’ll likely be surprised at
just how far you can take a single machine. The JVM is 64-bit compatible and can
run with large quantities of RAM assigned to it, giving lots of space to store the in-
process information needed for things like SessionVar and SHtml bind functions.
With the large-capacity cloud computing offered by the likes of Amazon EC2 (http://
aws.amazon.com/ec2/), it’s relatively cheap to acquire machines with 17, 34, or
even 68 GB of memory. Such an installation could feasibly support a fairly steady vol-
ume of traffic daily.

 Given a single server setup and the use of a managed cloud, such as EC2, it would
make most sense to run a simple configuration using NGINX and Jetty. Figure 15.3
details this simple setup.

 In this configuration, you can simply configure your virtual hosts in NGINX on
the frontend, and host the Lift application in Jetty and proxy to it from NGINX
using a direct proxy. In practice, this means that the configuration would be the
same as in listing 15.2, except that rather than having a proxy rule of proxy_pass
http://backend; it would be something like proxy_pass http://127.0.0.1:9090/
to simply relay the traffic to the alternate localhost port.

 Why choose NGINX in this configuration? Well, it’s a full web server unlike
HAProxy, and it can give you some flexibility that you may want. For example, the abil-
ity to host other sites or technologies alongside Lift is a complementary feature, as is

Figure 15.3 A simple single-server
setup with NGINX fronting a Jetty
instance

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://backend
http://127.0.0.1:9090

363Choosing a configuration
rewriting or static file serving. When you only have a single server to play with, it can
be preferable to trade a degree of extreme performance that you likely won’t miss for
more flexibility.

15.3.2 Multiple servers

Moving to the other end of the spectrum, let’s imagine we’re running a large opera-
tion that requires three instances of Lift, load-balancing, and seamless upgrades. Obvi-
ously, this is a very different scenario, and the demands on the technology would be
different. The configuration detailed in figure 15.4 shows one possible solution.

 This setup is obviously far more complex and has many more moving parts than
the single-server setup, but it could service a magnitude more traffic and be resilient
in the case of failure. In the figure, the two frontend servers A and B include NGINX
for HTTP decoding (SSL) and any facilities you may require, and HAProxy for load-
balancing. These servers could feasibly be located in separate availability zones

Figure 15.4 A more-sophisticated setup using multiple backend servers and redundant frontend
request handling and load-balancing

364 CHAPTER 15 Deployment and scaling
around the world, such as server A in west coast USA and server B in east coast USA.1

Both frontend servers could dispatch to the bevy of backend servers, which, once
again, could feasibly be distributed around the world. This would give you a scenario
whereby you’d have near-zero downtime in the event of a failure, either at the ISP
level or at the application server level. In the event of a Jetty server going down,
HAProxy would simply route your request to one of the other available nodes, and in
the event of a systemic failure at hosting location A, site B would continue service with
limited capacity.

 The two examples shown here represent different ends of the deployment spec-
trum and service rather different application types. It should go without saying that
there are many, many different ways to set up your environment; the point of illustrat-
ing these two configurations is to understand that Lift can scale in any number of
ways, right up to servicing massively redundant applications that require high avail-
ability. Moreover, Lift also comes with a selection of facilities that can help when pre-
paring your codebase for production. The Scala ecosystem similarly has some great
tools to assist you. The next section looks at these tools and techniques.

15.4 Deployment tools and techniques
Going into production is likely one of the biggest steps your application will ever
undertake, and it can be a daunting process. There are often many unexpected chal-
lenges that appear from out of the blue, and there are also problems that plague all
applications and that still need solving. Yes, deployment can be a troubling and stress-
ful time.

 To minimize the stress of taking your Lift applications into production, this section
looks at both tools and techniques that can hopefully assist in your deployment and
save you some angst. This includes monitoring and dealing with your application once
it has successfully been deployed. As you may or may not know, Twitter is a large user
of Scala, and they released a lot of their code under open source projects. One of
these projects is called Ostrich, and it’s used for monitoring and collecting statistics
on your application. You’ll see how you can implement Ostrich in your own applica-
tion and leverage its statistical reporting interface.

 Before that, though, we’ll explore some of the built-in Lift components and items
of functionality that can be useful when nearing production. This includes built-in
snippets and coding techniques that can save you CPU cycles.

15.4.1 Built-in assistance

Lift, unfortunately, can’t help you a great deal with things that were not dealt with
effectively during the development cycle, but it can help ease the pain of prepar-
ing for deployment and help with solving commonly occurring problems. In this
section, you’ll see how Lift can help you prepare and provide infrastructure to alter

1 In order to actually achieve this, you’d also need to employ the services of dynamic DNS or Amazon’s Elastic
Load Balancing. This is a regular network issue, though, so it’s somewhat beyond the scope of this book.

365Deployment tools and techniques
behavior between environments, and provide assistance in solving common prob-
lems faced by applications in the wild. The first component we’ll be looking at is
environment run modes.

PROPERTIES AND RUN MODES

Traditionally, one of the things that can be tricky with deploying applications is the
configuration difference between development, testing, staging, and production sys-
tems. You often see people either hacking together custom scripts or following deploy-
ment procedures by hand to ensure they change all the configuration values relevant
to that particular environment.

 Lift has a solution for this problem. Part of the lift-util package is an object called
Props. This object has a few functions, and one of those is to determine Lift’s run
mode. What’s a run mode you might ask? Well, Lift uses these different modes to pro-
vide different implementations and functionality for different parts of the develop-
ment cycle. For example, if you were using convention-based snippets that are
resolved via reflection, and Lift was unable to determine the class you wanted, Lift
would display, when you’re running in development mode, a rather helpful box on
the page where the snippet should be located, and it would inform you that the snip-
pet you wanted was unable to be found. In production mode, however, no such mes-
sage would be displayed to the user.

 You can access the run mode in your application code simply by calling

import net.liftweb.util.Props
val m = Props.mode

In this example, m is assigned a value type of the Props.RunModes enumeration. There
are a bevy of convenience methods defined on Props to access the run mode, so check
out the documentation for more specific information.

 The run mode itself must be set early in the application boot phase, so much so
that it’s generally supplied as a system property via the –Drun.mode=production style
parameter to the JVM of the container. If you were running your application in an
environment where you didn’t have access to the system-level properties, you’d need
to ensure that you have a filter in front of the LiftFilter to set the run mode explic-
itly using System.setProperty. This is somewhat crude, though, so it’s typically pref-
erable to set the run mode as a JVM startup argument where possible.

TEMPLATE CACHING

When running in production mode, Lift makes a whole set of optimizations and alter-
ations to the way it operates. One of these is the caching of page templates.

 During development, each template is loaded, parsed, and processed for each
request. This allows you to make running changes to the application and see immedi-
ate feedback, but obviously you don’t want to change your code in production, so this
is needless overhead. To that end, Lift implements a template cache so that the HTML
templates themselves are only loaded on the first request, and then each subsequent
request pulls the template markup from a predefined cache that can hold up to 500
templates inside an in-memory LRU cache.

366 CHAPTER 15 Deployment and scaling
 If you wish to override the default template-caching behavior, simply do the
following:

LiftRules.templateCache = Full(InMemoryCache(100))

Any caching implementation you wish to use must extend net.liftweb.util.Template-
Cache. The rest is up to you!

CLIENT CONTENT EXPIRY

When rolling out different versions of your web application, it can sometimes be a
struggle ensuring that the client browser has the latest version of all your static con-
tent, like CSS and JavaScript. This can often cause problems in that when you make
visual changes, the user’s browser may be using a cached version from when they pre-
viously browsed the site. To them, at least, the user experience may be damaged.

 This problem can be neatly sidestepped by making use of the with-resource-id
snippet that’s built into Lift and that you can use in your templates. Any time you want
to reference static files, simply surround them as shown:

<lift:with-resource-id>
 <script type="text/javascript src="/path/to/file.js"></script>
</lift:with-resource-id>

The result here is that file.js would have a GUID appended to the end of its URI. This
GUID is calculated once per application boot, so every time you roll out a new ver-
sion of your application, you can be sure that the end user always sees the latest
version. In addition, if you are deploying your application into a clustered environ-
ment, you’ll want to alter the logic that generates these identifiers so that it’s consis-
tent across that version or deployment, perhaps using the build number or hash. The
logic for the resource ID generation can be customized via the LiftRules.attach-
ResourceId hook.

EXCEPTION HANDLERS

In production, you’ll likely want to give some kind of “oops, something went wrong”
message in the very unlikely event that your application throws an exception. Fortu-
nately, Lift provides a hook for this—all exceptions that occur bubble up through
LiftRules.exceptionHandler. This allows you to intercept the error and handle it
specifically, logging particular parts of the request if it was a certain exception type,
for example.

 Implementing your own exception handler is simple:

LiftRules.exceptionHandler.prepend {
 case (Props.RunModes.Production, _, exception) =>
 RedirectResponse("/error")
}

In this example, the code simply returns a RedirectResponse, but as you can return
any LiftResponse subtype, you could flush a template to the browser, or pretty much
do anything you like.

367Deployment tools and techniques
15.4.2 Monitoring

Once your application is in production, it can often be tricky to keep track of specific
operations or to get live metrics from the system about how well it’s performing or
what operations are being used a lot. For example, perhaps you want to know how
many people are logged in at any one time, or perhaps you’d like to take a particular
measurement about how long requests are taking to process. These types of metrics
can be really helpful as an application grows and there are more moving parts.

 Twitter runs quite a number of large-scale Scala systems to handle the fire hose of
140 million+ tweets per day; monitoring has become an important function for them.
Helpfully, Twitter has released a lot of their in-house projects as open source efforts,
so that others can also benefit from them.

 Ostrich is one such project (https://github.com/twitter/ostrich). Ostrich provides
additional reporting facilities over and above what is offered by normal Java Manage-
ment Extensions (JMX) that allow you to conduct three types of operations, as
detailed in table 15.2.

Now that you know what’s possible with Ostrich, let’s put this into practice and look at
how to implement Ostrich in your application to start collecting stats. The first thing
you need to do is add the twitter repository and dependency to your project defini-
tion, as shown:

val ostrich = "com.twitter" % "ostrich" % "4.1.0" % "compile"
val twitterRepo = "twitter-repo" at "http://maven.twttr.com/"

Don’t forget to call reload and update if you’re already running the SBT shell so that
SBT recompiles the project and downloads Ostrich.

Table 15.2 The different Ostrich metric types

Metric type Description

Counters A counter is something that never decreases its numeric value; it’s a
forever-increasing amount. Things that a counter could be applied to
would be, for example, births. Every time a baby is born, the value will
increase; it’s not possible for someone to be unborn, so the value could
never go down.

Gauges Imagine yourself checking the oil in a car. You’d use a dipstick to get
an indication of the oil level at that precise moment. If you checked it
again the following day, the reading would likely be different. This is a
gauge: a one-off reading of a specific thing at a specific time.

Metrics These typically measure the time it takes for n operation to occur. In the
case of a web application, you may want to measure the duration of a
particular resource request whose speed you were concerned about.

Labels A key/value pair that’s normally used to indicate the state of a specific
system. For example, webservice=offline.

https://github.com/twitter/ostrich
http://maven.twttr.com

368 CHAPTER 15 Deployment and scaling
 The next thing you need to do is alter your application Boot class so that during
the application startup, the Ostrich server is also started and registered. Likewise,
when your application shuts down, you need to close the Ostrich server gracefully.
The next listing shows the alteration to Boot.

class Boot {
 import com.twitter.ostrich._,

 admin.{RuntimeEnvironment},
 admin.config.{StatsConfig,AdminServiceConfig,TimeSeriesCollectorConfig}

 object OstrichWebAdmin extends AdminServiceConfig {
 httpPort = 9990
 statsNodes = new StatsConfig {
 reporters = new TimeSeriesCollectorConfig :: Nil
 } :: Nil
 lazy val service =
 super.apply()(new RuntimeEnvironment(this))
 }

 def boot {
 ...
 OstrichWebAdmin.service

 LiftRules.unloadHooks.append(
 () => OstrichWebAdmin.service.foreach(_.shutdown))
 ...
 }
}

First you need to define an Ostrich configuration object that specifies the settings
Ostrich needs to run B. There is a whole range of possible options here, but in this
example, the configuration defines the port number on which Ostrich’s HTTP inter-
face will run. This will allow you to get text, JSON, and graph representations of the
collected data. Next, the Boot class calls the lazy value defined in the configuration
object, which causes the Ostrich service to load C. This same service value is used
again to shut down the service when the Lift application closes D, ensuring a graceful
shutdown of Ostrich.

 Now that you have Ostrich set up and running in your Lift application, you’ll prob-
ably want to start collecting some statistical data. The most common type of metric
you’re likely to use is a counter. Let’s assume you have a situation in which you want to
record the number of times that an event takes place. This is a fit with the counter style
of metric outlined in table 15.2. All you need to do is define an identifier for this event
and do the following:

import com.twitter.ostrich.stats.Stats
Stats.incr("nameOfThisCounter")

This becomes exceedingly useful when you want to monitor specific aspects of your
system, because you can just load up the monitoring graphs to check out what’s going

Listing 15.5 Ostrich initialization code in the Boot class

Configure
Ostrich

B

Start
Ostrich

C

Close Ostrich
on shutdown

D

369Deployment tools and techniques
on and get the high-level overview of what those metrics look like. In fact, all of the
Ostrich metrics can be accessed via the HTTP port you defined in the configuration
object, and you can get that information as either a range of graphs or as raw data.
Figure 15.5 shows an example of the graph detailing request duration, which you can
see for yourself at http://127.0.0.1:9990/graph/?g=metric:request_duration.

 In addition to these nice graphs, Ostrich also exposes all its data in JSON for-
mat, so if you have a cluster of machines, you could feasibly have a cluster monitor
that consumes individual node data from each Ostrich instance, and then aggre-
gates that with a tool such as Ganglia (http://ganglia.sourceforge.net/). Ostrich
essentially gives you a standardized interface from which to collate analytical infor-
mation from your applications.

 The following subsections detail the specific types of Ostrich metrics and show how
to implement them in your Lift applications, complete with working examples.

USING GAUGES

It’s often useful to gain a snapshot of part of your application, monitoring specific parts
of your app to take a one-time specific reading of an aspect. For example, you might
like to know at any given time how many active sessions an instance is dealing with.

 Lift has an object called SessionMaster that deals with the session setup and tear-
down, and it provides a hook called sessionWatchers. This hook allows you to supply
your own actor object that will be notified every 10 seconds with an updated list of ses-
sions. You can supply a listener actor here to pipe that information to Ostrich as a
gauge. The following listing defines a basic listener.

import net.liftweb.actor.LiftActor
import net.liftweb.http.SessionWatcherInfo

Listing 15.6 Example SessionMonitor implementation

Figure 15.5 Example of an Ostrich graph

http://127.0.0.1:9990/graph/?g=metric:request_duration
http://ganglia.sourceforge.net

370 CHAPTER 15 Deployment and scaling
object SessionMonitor extends LiftActor {

 private var sessionSize = 0
 protected def messageHandler = {
 case SessionWatcherInfo(sessions) =>
 sessionSize = sessions.size
 }
 def count = sessionSize
}

Here we simply create a singleton object that implements LiftActor. This is a Lift-
specific implementation of the actor paradigm and requires no start call to be sent,
like the actors in the Scala standard library do; simply reference the object, and the
actor will do the right thing.

 Because this object is extending LiftActor, you need to implement the message-
Handler method to define the function that should execute upon receiving the
SessionWatcherInfo instance from the SessionMaster hook. The first parameter
being extracted within the messageHandler (called sessions) is a map of live sessions.
In this example, you simply want to get the size of that map and save it to an internal
variable called sessionSize, so you ask the session map for its size B so that whenever
the gauge is asked for the number of sessions, there will always be an answer, even if it’s
a few seconds out of date.

 Now that you have this implementation for the listener, you need to wire it up to
the SessionMaster so that it receives notifications from Lift about the number of ses-
sions and also implements the Ostrich gauge to collect the results. You simply need to
do the following in your Boot class:

SessionMaster.sessionWatchers =
 SessionMonitor :: SessionMaster.sessionWatchers

Stats.makeGauge("current_session_count"){
 SessionMonitor.count.toDouble
}

The first definition prepends the SessionMonitor actor to the list of actors that the
SessionMaster will notify with the list of sessions, whereas the latter definition config-
ures the gauge measurement. Whenever the gauge is requested from the monitoring
application, Ostrich will ask SessionMonitor to return the count.

METRICS

The last type of metric Ostrich supports is what is known as a metric. Metrics are col-
lected as aggregates, and they include the number of operations performed, sum,
maximum, and minimum, all of which are useful for determining the standard devia-
tion of a particular activity’s results.

 In a web application, you may want to record the duration of a particular resource
request. Like the session hook, there are also facilities to hook into request timing.
The following listing shows a simple request timer.

Update
session count

B

371Case studies
import com.twitter.ostrich._, stats.Stats, admin.Service

object RequestTimer extends Service {
 object startTime extends RequestVar(0L)

 def beginServicing(session: LiftSession, req: Req){
 startTime(Helpers.millis)
 }

 def endServicing(session: LiftSession, req: Req,
 response: Box[LiftResponse]){
 val delta = Helpers.millis - startTime.is
 Stats.addMetric("request_duration", delta.toInt)
 }
 override def start(){}
 override def shutdown(){}
 override def quiesce(){}
}

This listing defines a simple object that has two methods: beginServicing and end-
Servicing. These methods will be wired into the LiftSession.onBeginServicing
and LiftSession.onEndServicing hooks respectively. The implementation here is
rather simple: you assign a timer value into a RequestVar when the request starts pro-
cessing, and then, in the endServicing method, the value held in the startTime vari-
able is subtracted from the new time, which yields the duration delta. This data is then
piped to Ostrich via the Stats.addMetric method.

 The only thing remaining is to once again wire this into your application Boot
as shown:

LiftSession.onBeginServicing = RequestTimer.beginServicing _ ::
 LiftSession.onBeginServicing

LiftSession.onEndServicing = RequestTimer.endServicing _ ::
 LiftSession.onEndServicing

This is nearly identical to the SessionMaster example in that LiftSession hooks
define a list of executable functions that are called at the appropriate lifecycle stages
of a request.

 This concludes the section on tooling. You’ve seen many different things that you
can use to both ease your deployment and gain critical application information when
you actually get into the wild. With this in mind, you’ll now learn about some of the
real-life Lift users who run large-scale deployments in commercial environments.

15.5 Case studies
When evaluating new technology, it’s common for people to look for others who have
also adopted before them, to learn from their experiences and gain a better handle
on whether or not a particular tool or system is going to be the right fit for them or
their business. To that end, you’ll now see two separate case studies: one from Four-
square.com and the other from Novell Vibe. Both of these are high-profile Lift users

Listing 15.7 Calculating request duration

372 CHAPTER 15 Deployment and scaling
that operate in distinctly different spaces yet have found Lift to be a robust, reliable
platform that boosted their overall productivity.

 If you’re either an existing Lift user, or are just getting to know Lift and are think-
ing about taking it into production for the first time, the following two subsections will
give you a small glimpse into what others are doing in production and the levels of
traffic they’re handling with relative ease.

15.5.1 Foursquare

Foursquare is a new mobile application that makes cities easier to discover and more
interesting to explore. Think of it as a social city guide and a game that challenges its
users to experience new things, and rewards them for doing so. In order to tell friends
when you’re at a particular location, Foursquare lets users check in to a place and
track the history of where they’ve been and who they’ve been there with.

 More recently, Foursquare has done deals with large brands like GAP and Safeway
to offer customized offers based upon both your loyalty card history and your check-in
behavior. For example, if you had achieved the Gym Rat badge in the Foursquare
game, Safeway might offer you a bonus on energy drinks, and deliver a set a coupons
specifically for you to use at the Safeway checkout.

 At the time of writing, Foursquare has a user base of approximately 12 million,
and is growing that figure rapidly. In that user base, there are roughly 3 million
check-ins daily, and from the second quarter of 2010 to the second quarter of 2011,
there were just short of half a billion check-ins overall. By the time you read this, it’s
likely that these figures will have grown considerably, but understand that Four-
square serves all this traffic on approximately 30 frontend Lift servers and some-
where in the region of 50 MongoDB instances. Of the 30 Lift instances, 10 of those
support the main website, Foursquare.com, and 20 service the Foursquare API, which
all the mobile clients interact with and where the majority of the request load is
located. Foursquare is a highly stateful application, but there have been no material
issues in actually operating this in a heavily loaded site over time.

 Infrastructure-wise, Foursquare is running with a pair of redundant NGINX servers
up front for SSL decoding, and HAProxy as a middle tier that proxies requests to the
backend Lift application servers that are all based upon Jetty. This entire operation
exists in the Amazon EC2 cloud, so adding servers is a really trivial exercise and can be
done at the flick of a switch.

15.5.2 Novell Vibe

During the second half of 2010, Novel launched a collaborative authoring environ-
ment called Vibe (http://www.novell.com/products/vibe-cloud/). Vibe can be both a
cloud-based product delivered as a service, or an on-premises installation; either way,
the goal is to transform engaging with your business’s customers, sales channels, and
partners into one slick and unified process. Vibe combines social messaging, real-time
collaboration, and content sharing to deliver a one-stop shop that allows you to break

http://www.novell.com/products/vibe-cloud

373Summary
free of departmental restrictions and form virtual cross-function teams that are ulti-
mately more effective.

 Vibe itself is split between its frontend Lift application servers and a backend that
handles state and persistence. Each Lift application server is completely self-
contained, and no state sharing is done at all. Novell has a bevy of backend servers
that communicate back and forth with the Lift instances via Advanced Message Queu-
ing Protocol (AMQP) messages. When the frontend requires the backend to do some-
thing, it sends an asynchronous message, and after the change has been made, the
backend broadcasts asynchronous messages back to all frontend Lift servers to ensure
consistency across all nodes, even if they suffer a machine failure.

 The architecture of Vibe is heavily based around message-passing concurrency and
actor design patterns. As such, Novell reports that it hasn’t seen any CPU hotspots dur-
ing the deployment and scaling of their system; it has essentially scaled linearly over
all the CPU cores in the hardware. Novell also runs their own cloud infrastructure to
host the Vibe service, and unlike Foursquare use all hardware load-balancing rather
than a software solution. Overall, Lift has made it easy for the Vibe team to create very
sophisticated user interfaces that are backed by a robust, durable enterprise-grade
solution. At the time of writing, Novell was serving several thousand users with mini-
mal impact on their cluster.

15.6 Summary
This chapter provided a broad introduction to the world of servlet containers, and it
explored how to choose a platform that will give you the best out-of-the-box experi-
ence when using all of Lift’s advanced features. Right now, Jetty is the servlet con-
tainer of choice, and we would certainly recommend it for getting started with your
first Lift production environment. You also saw how you could successfully support
sticky sessions using two different software proxy platforms: HAProxy and NGINX.
HAProxy is an extremely high-performance TCP/HTTP proxy. It only supports proxy-
ing, unlike NGINX, which is a full-featured high-performance web-server that includes
proxy and load-balancing modules. These tools both have their pros and cons, so it’s a
case of choosing the right tool or software stack for the job.

 You’ve also seen how Lift supports large-scale applications and provides a robust
abstraction for distributing critical application state by both serializing data into
cookies and using proven Java infrastructure to cluster the underlying servlet ses-
sion. It’s important to understand the limitations of the servlet session, however, and
use Java clustering for key pieces of state while using the type-safety and flexibility of
the Lift session for your regular session-scoped values. With the ContainerVar
abstraction, you’re free to use any clustering technology you want, but in this chapter
you saw how easy it was to apply the Terracotta configuration to the existing web.xml,
and everything else was seamlessly wired up. Next, we discussed how to navigate
through the vast array of deployment choices, depending upon the size and scalability
required in your application. Right from a simple, single-server setup through to a

374 CHAPTER 15 Deployment and scaling
clustered multiple-server configuration, Lift is easy to deploy and leverages proven
Java infrastructure throughout.

 This chapter also showed you that Lift provides some helpful tools to make your
application respond differently based upon its system run mode. When the applica-
tion is running in production mode, Lift internally makes a set of optimizations both
for performance and end-user experience. In production mode, Lift won’t display
missing snippet errors or stack traces to the end user, and you can simply append an
exception handler to customize the user experience. The other tool you saw here was
the Ostrich monitoring system from Twitter. Monitoring can be an extremely power-
ful tool for collecting statistical and operational information from your applications at
runtime. Using Ostrich, you’ve seen how you can accumulate metrics over time using
counters, obtain snapshot dipsticks using gauges, and build service timers to collect
and aggregate metrics about the duration of function execution.

 Deployment is difficult. This is an unfortunate fact and the real takeaway from this
chapter is that there is no single way to deploy Lift into production. There are lots of
factors, many of which will influence your choices in choosing a software stack. The
best thing you can do is use the advice here as part of your information-gathering pro-
cess, and make your own informed choices. Some of the patterns outlined here are in
use in production sites and they’re known to be reliable, but ultimately every environ-
ment and application is different. Be pragmatic, write lots of unit and functional tests
to make sure your code is as good as it can be, and ensure you do effective monitoring
from the start of production deployment. Employ these techniques on top of some of
the guides outlined here, and you won’t go far wrong.

 Finally, thanks for sticking with me throughout this book! It’s been a long journey,
and I hope that you’ve found it both interesting and informative. You’ve built several
small applications throughout the course, covering everything from basic snippets
right through to awesome interactive features like Comet and AJAX. Lift is an amaz-
ingly powerful toolkit, and it will take time for you to master it fully, but stick with it
and you’ll be rewarded with stable, secure applications that are hugely interactive and
that your users love.

appendix A
Introduction to Scala

Scala is a powerful combination of both object oriented and functional program-
ming approaches, and its language constructs can often seem somewhat terse to
newcomers. This appendix aims to give you a rough guide to Scala and serve as
enough background for you to make full use of this book. Understand that this is
only a top-level view of Scala features and it can’t cover anywhere near all of Scala’s
capabilities. For a more detailed introduction to the broader language, I suggest
picking up a copy of Nilanjan Raychaudhuri’s Scala in Action, also from Manning.

 As a language, Scala only has a few core features. The vast majority of features
are implemented as libraries, which results in a language that has a very tight core.
The following sections cover this core of features that are then used to build the
rest of the standard library.

A.1 Variables, values, and immutability
Scala uses a range of mechanisms to allocate objects in memory, and if you’ve pro-
grammed in nearly any other language, you’ll be familiar with the concept of a vari-
able. It’s an item that you typically assign something (like a string) to, and then
reference (and possibly mutate) at a later stage in your program.

 To create variables in Scala you can do the following:

var thing = "sdfdsf"
var another: Int = 1234

This provides a means to create a variable, which can be mutated later in your
application code.

 Additionally, notice that the thing variable does not have an explicit type anno-
tation: Scala is clever enough to infer the type based upon the assigned content. In
this case, it can determine that it must use a String type. Scala can infer the types
of values in nearly all situations, but there are times when explicit annotation can
375

376 APPENDIX A Introduction to Scala
either assist the compiler by removing type ambiguity or simply act as documentation
for other programmers reading your code, if it’s not immediately clear what a particu-
lar line does.

 Assigning content to variables is not a commonly used idiom within Scala pro-
grams, except for purely internal state. By using variables that are anything other than
internal state, you are prone to threading and locking issues when you introduce any
level of concurrency. Don’t worry too much at the moment about the specifics of
this reasoning; just understand that when making assignments within your code, it
is usually preferable to use the val keyword and create an immutable value. Consider
the following:

scala> val abc = 1234
abc: Int = 1234

scala> abc = 6789
<console>:6: error: reassignment to val
 abc = 6789

Any attempt to reassign the value results in a compile-time error stating that you can’t
reassign immutable values. Broadly speaking, you should always try to use the val key-
word and only fall back to using var when there is absolutely no other choice.

 This idea of immutability runs deep within Scala and functional programming lan-
guages in general. This is the most basic example of its usage within assignment, but
in the next section you’ll see how to construct immutable classes and how you can
leverage the language support for such structures.

A.2 Classes, methods, traits, and functions
Like many languages, Scala exhibits fairly typical constructs such as classes and methods.
These classes and methods operate nearly identically to those found in Java, for exam-
ple, but with some additional sugar to make their use slightly nicer. Although having
sugar for regular constructs is convenient, Scala also exhibits traits and functions.
These are language features that really allow you to build highly reusable pieces of
code and they’re not found in many programming languages. The following sections
cover these four Scala constructs and show you some basic usage principles, starting
with the likely familiar class paradigm.

A.2.1 Classes

As Scala exhibits both object oriented and functional qualities, you can happily con-
struct classes and B extends A semantics. These classes can have instance variables,
methods, and everything else that is common in object-oriented code.

 Consider the following class definition:

class Foo(bar: Int){
 def whatever =
 if(bar > 3) "Awesome" else "Amazing"
}

377Classes, methods, traits, and functions
This simple class Foo has a single constructor argument that takes an integer “value.”
The constructor argument, bar, is accessible for all the methods or properties of that
class but it isn’t accessible for external callers: it is essentially not public.

 If you wanted to make the bar property publicly available, the definition would
need to add the val keyword before the constructor argument:

class Foo(val bar: Int){ ... }

This modification then allows the following interaction:

scala> class Foo(val bar: Int)
defined class Foo

scala> new Foo(123).bar
res0: Int = 123

By creating an instance of the class, an external caller can reference the bar property
by name to obtain its value. Being defined as val, this property is immutable.

 In addition to allowing you to define normal classes, Scala also supports single-
tons as language constructs. These are created by way of the object keyword. Con-
sider the following:

object Thing {
 def now = new java.util.Date().toString
}

The object keyword defines a lazy singleton object that won’t be instantiated until it’s
touched by calling code. Because the Thing object is a singleton that Scala is managing
for you, when you call the object, you can invoke it like a static member with some-
thing like this:

scala> Thing.now
res1: java.lang.String = Sat Mar 26 15:23:49 GMT 2011

Objects can also be used to encapsulate other components of functionality, but that’s
beyond the scope of this quick overview.

NOTE It is typically idiomatic within Scala to give methods that have zero
arguments no trailing parenthesis if the function is referentially transparent.
For example Thing.foo is fine given a referentially transparent method, but if
the method has side effects it would be idiomatic to write Thing.foo().

For more information on advanced Scala topics, you may find Joshua D. Suereth’s
Scala in Depth useful.

 Finally, both objects and classes can have the case modifier applied to their defini-
tion to create what are known as case classes. Consider this example:

case class Foo(bar: Int, whiz: String)

By applying this keyword to the class definition, the Scala compiler will add certain
conveniences to that class, such as providing a factory function that negates the need

378 APPENDIX A Introduction to Scala
to create instances with the new keyword. Additionally all the constructor arguments
are automatically made available as immutable properties of that instance:

scala> val x = Foo(123,"Sample")
x: Foo = Foo(123,Sample)

scala> x.bar
res4: Int = 123

scala> x.whiz
res5: String = Sample

On top of these helpful conveniences, case classes also provide you with friendly and
predictable implementations of the toString, equals, and hashCode methods. This
means you can do handy comparisons of case class instances and receive sensible rep-
resentations of instances when calling toString.

A.2.2 Traits

In addition to defining a single line of class inheritance, Scala also supports polymor-
phism or multiple-inheritance via a construct known as traits. These traits allow you to
break up your logic into defined blocks of functionality that can be composed together.

 Consider the following example that models the components of sporting events:

trait Discipline { ... }
trait Run extends Discipline { ... }
trait Cycle extends Discipline { ... }
trait Swim extends Discipline { ... }

trait Competition { ... }

case class Triathalon(name: String) extends Competition
 with Run
 with Cycle
 with Swim

With a model of traits configured such as this, it’s possible to create instances that
compose together the desired functionality. If some change was required for all run-
ning events, you would only need to make a single change to events that included the
Run trait, and the change would be immediately propagated.

 In addition, you can define the required composition for each trait without
explicitly extending the trait itself. It’s essentially like telling the compiler “when
this trait gets used, it must also be composed with trait ABC.” This is done via a
self-type notation:

trait ABC { self: XYZ =>
 ...
}

In this example, the trait ABC can only ever be composed into another class when
the XYZ type is also present in the mix. This is a powerful idiom within Scala that
you don’t need to fully understand now, but as your system grows it can become
exceedingly helpful.

Compose traits
together

379Classes, methods, traits, and functions
A.2.3 Methods

Methods are defined upon classes by using the def keyword, and in this case the
resulting type is again inferred by the compiler to be a string. Class methods in Scala
don’t need to be explicitly wrapped in curly braces unless the method requires some
kind of internal assignment, because all control structures within Scala return a con-
crete type. Consider the following two method definitions:

def whatever =
 if(bar > 3) "Awesome" else "Amazing"

def another {
 if(bar > 3) "Awesome" else "Amazing"
}

These two method implementations look exceedingly similar, and the unfamiliar eye
might assume that they do the same thing. In fact, whatever returns a String whereas
another returns a special Scala type called Unit. The reason for this is that the defini-
tion of another lacks the equals sign (=) after the method name and immediately
wraps the whole method in curly braces; this makes Scala assume that the method is
side-effecting and thus returns nothing directly useful. If you’re coming from other
statically typed languages, you can think of the Unit type as being analogous to the
void construct.

 Methods can also take arguments in exactly the same way that Java methods can,
but within Scala it’s also possible have multiple argument groups. This can be useful,
because it allows you to make flexible APIs that can have both arguments and pseudo-
blocks. Here’s an example of the definition:

scala> def whatever(n: Int)(s: String) = "%s %s".format(n.toString, s)
whatever: (n: Int)(s: String)String

And here’s an example of its usage:

scala> whatever(123){
 | "asda"
 | }
res10: String = 123 asda

These argument groups are separate, but both are available in the definition of the
method body, so when you call the method you can pass arguments as either a single
normal argument or as a block. You can even mix styles together to create whatever
API suits your requirements.

 The final thing to note about methods is that your operators can be called any-
thing you want, even using Unicode operators. These operators can be called either
directly or with what is known as infix notation. For example, calling the + operator
with two integers and infix notation would give the familiar: 2 + 2. But in Scala, the
same method call can be written as 2.+(2). For the most part, you’ll use the dot nota-
tion to invoke methods, but often within Lift you’ll see infix notation when using List
types. For example, List(1,2,3) is the exact same thing as 1 :: 2 :: 3 :: Nil, where
the :: (cons) operator builds a list of the integer values.

380 APPENDIX A Introduction to Scala
A.2.4 Functions

With the blend of object oriented and functional styles, Scala sports the concept of
general functions. That is to say, a specific instance of a function can be passed
around and is in and of itself a specific type. Functions are first-class values in Scala,
which essentially means that you can create generic functions that take A and
return B. Such a relationship is typically expressed as A => B and is referred to as a
lambda function.

 Consider the following example:

scala> val f = (s: String) => s.toLowerCase
f: (String) => java.lang.String = <function1>

scala> f("SOMeThInG")
res8: java.lang.String = something

Here, a function that takes a String and returns a String is assigned as the value f
and has the type Function1. With this function defined, it’s possible to pass a single
argument to f and treat the value function like you would any other method; the only
difference being that the function is itself an instance rather than being contained
within a class.

 In essence, this is the basis of all functional programming within Scala: functions
can be any type to any type, and functions can even take other functions as arguments,
resulting in what are known as higher-order functions. Functions themselves can have
zero or more arguments and will have their appropriate type automatically applied
by the compiler. For example, String => String would be equivalent to saying
Function1[String,String].

 The benefit of all this function madness is that you can conveniently encapsulate a
piece of logic and only care about the type-level interfaces, essentially allowing parts
of your system to replace whole bits of functionality simply by passing another func-
tion that returns the same type but gets to the output via a different means.

 This description really only scratches the surface of what is possible with function-
based programming in Scala, but functions are heavily used within Lift for all manner
of purposes, so it’s helpful to have a reasonable understanding of the concept.

A.3 Collections
By default, Scala provides a whole set of immutable data structures for modeling col-
lections, and of those List[T] is a commonly used type within Lift. These collections
all support a variety of common operations, irrespective of the implementing type.
Consider table A.1, which lists commonly used collection functions.

 Scala collections have a wide range of operations, and the methods listed here are
just a few that will help you get up to speed with the examples in this book. For more
detailed information on particular use cases or other possible methods, see the online
Scala API documentation: http://www.scala-lang.org/api/.

http://www.scala-lang.org/api

381Collections
Table A.1 Common collection functions

Operation Description

map Many collections implement the map function, which takes a function
of type A => B. The following example maps a list of integers and
multiplies each integer by 2, resulting in a new List[Int] that has
values exactly double that of the starting list.

List(1,2,3,4).map(_ * 2)

Results in

List[Int] = List(2, 4, 6, 8)

flatMap Like map, flatMap applies the given function to every element
within the collection, but rather than returning type B, the function
must return a subtype of scala.collection.Traversable. In
lay terms, this means that given a List[List[T]], for example,
flatMap flattens the lists into a single list.

List(List(1,2,3), List(4,5,6))
 .flatMap(identity)

Results in

List[Int] = List(1, 2, 3, 4, 5, 6)

In this example, identity just provides a function of A => A. It does not
modify the value it’s passed, so in this case utilizing identity with
flatMap just passes the value through into the resulting
List[Int].

filter As the name implies, this method filters the collection based upon
the predicate function passed to it. In the following example, the
function checks to see if the element is less than 2, meaning that
the result only includes elements for which the predicate evaluates
to true.

List(1,2,3,4).filter(_ <= 2)

Results in

List[Int] = List(1, 2)

foldLeft, foldRight
and
reduceLeft,
reduceRight

It’s common to want to reduce (or fold) the contents of a collection.
Scala has several methods for this: foldLeft collapses the collec-
tion left to right, and foldRight does the opposite. The difference
between folding and reduction is that fold methods require a seed ele-
ment or value from which to start the execution.

List(1,2,3,4).reduceLeft(_ + _)

Results in

Int = 10

List(1,2,3,4).foldLeft(0)(_ + _)

Results in

Int = 10

382 APPENDIX A Introduction to Scala
A.4 Pattern matching
Scala has a general pattern-matching facility that allows you to match on general data
types and execute particular functions based on the result of the match. Consider the
following example:

def matcher(x: Any): Any = x match {
 case 1 => "one"
 case "two" => 2
 case x: Int => "scala.Int"
}

This example defines a method that accepts a general input value and then uses the
match keyword to start the sequence of matching cases defined by the case keyword.
The first two cases are examples of matching on concrete values, whereas the third
case matches on the type of the input value.

A.5 Implicits
Another powerful feature of Scala is known as implicits. Let’s first look at the notion of
something being implicit and consider what this actually means. The dictionary defi-
nition of implicit is implied though not plainly expressed, and this pretty much matches
the Scala meaning: you are not explicitly applying something in your code; rather, the
compiler is applying it for you. The invocation or conversion is not explicit; rather, it
is implicit.

 Implicits come in two primary forms: implicit conversions and implicit parameters.
Let’s look at implicit conversions first.

 Consider a method that returns type A, but your code only yields type B. By default,
this would be a compile-time error that would need manual resolution to make sure
that your code properly returns type A. But let’s assume that the following implicit
conversion was within scope:

implicit def convertBtoA(in: B): A = in.someConversionMethod

By having the special implicit keyword before the method definition, you are telling
the compiler that if it expects an A, but only has a B, it can automatically use this
method to convert between the two types. While this may not seem that useful, such
techniques can allow you to automatically convert between types without any addi-
tional noise in the code itself.

 Consider this more concrete example:

scala> val regex = "/foo".r
regex: scala.util.matching.Regex = /foo

Here the .r method does not exist on java.lang.String, so an implicit conversion
that’s available as part of scala.Predef and that’s in scope by default within all Scala
code, converts the regular java.lang.String to a scala.collection.immutable
.StringLike that has the predefined r method, which in turn creates the regular
expression instance.

383Implicits
 These kinds of practices can be extremely useful when creating DSLs and other
utilities to remove clutter from your API.

 The second type of implicit functionality within Scala is implicit parameters. Earlier
in section A.2.3, you saw how to define methods with multiple argument groups, and
it’s possible to define one of these groups as implicit so that the value is automati-
cally applied as an argument by the compiler. Consider the following example:

scala> implicit val sneeky: Int = 1234
sneeky: Int = 1234

scala> def thing(implicit numbers: Int) = "Sneeky: "+numbers.toString
thing: (implicit numbers: Int)String

scala> thing
res9: String = Sneeky: 1234

The first line in this example defines an implicit value of 1234. The fact that it’s
marked implicit at this point doesn’t really do anything; you can still directly reference
the value and use it however you would normally. The second this example details is
the definition of a method that has an implicit parameter group of type Int. It’s important
to note that, in this example, the parameter group only has one value, but it could just
as easily have multiple values and still only require the single implicit keyword. In
exactly the same way as the value can be interacted with directly, this method could also
interact with it, despite the implicit declaration. Finally, the thing method is invoked
with zero parameters and the compiler automatically chooses the implicit value
sneeky, thus satisfying the need for the argument.

 The implicit functionality within Scala is exceedingly powerful and can be used to
build some flexible and clutter-free APIs. On the other hand, implicit conversions can
also make an API too confusing or seemingly work like magic. Learning to wield
implicits effectively can take some time, but the effort of learning the correct balance
within your own application domain will be well worth it.

appendix B
Configuring an IDE

Throughout this book, the code and explanations have assumed you’re using the
base level of tooling required to actually work with Lift. Specifically, this means a
build tool and a text editor. While this can be a very effective environment for
power users or those who prefer a no-frills development workflow, many peo-
ple prefer to use an integrated development environment (IDE) to centralize
their working.

 At the time of writing, there was a range of IDEs available for Scala coding, and
this appendix will show you how to take a base SBT project and set it up to work
with two of the most popular IDEs: JetBrains IntelliJ and Eclipse.

 The following two sections assume that you have set up a fresh SBT project by
creating a new directory, running SBT, and answering the initial startup questions.
Because tooling support is typically provided by external companies, the details of
these (and other) tools may have changed or improved significantly by the time
you read this. Nevertheless, this appendix should provide you with a working base
from which you can get up and running.

B.1 IntelliJ
JetBrains IntelliJ (http://www.jetbrains.com/idea/) is a popular IDE with support
for many different languages, including Scala. Since the 2.7.x Scala releases, IntelliJ
has had the best Scala support of any editor, and it continues to have great lan-
guage support and be popular among the Scala community. To get started, you just
need to install the Scala plugin, which is available via the IntelliJ plugin installation
menu, as displayed in figure B.1.

 The IntelliJ Scala plugin provides the relevant language support, such as
color coding and code completion, so it’s important to make sure you set this up
before continuing.
384

http://www.jetbrains.com/idea

385IntelliJ
TIP In addition to the Scala language plugin for IntelliJ, there’s also a plugin
to support the SBT build tool directly within the IntelliJ interface. Using it
isn’t mandatory by any means, but if you’d prefer not to keep switching
between a terminal window and the IDE, this can be a nice addition.

Given the popularity of IntelliJ, the community has created an SBT plugin to automat-
ically generate the right IntelliJ project configurations for you (https://github.com/
mpeltonen/sbt-idea/tree/sbt-0.7). Load up the SBT shell in a terminal window and
issue the following commands:

> *sbtIdeaRepo at http://mpeltonen.github.com/maven/
> *idea is com.github.mpeltonen sbt-idea-processor 0.4.0
... run other commands
> update
> idea

This command generates project .iml files that are correctly configured with the right
dependencies and so on. Any time you need to add or alter dependencies in the SBT
project file, you can just invoke the idea command again from the SBT shell.

 After opening the project directory within IntelliJ, the IDE will take a few moments
to generate the appropriate metadata it needs for the dependencies and classpath,

Figure B.1 Install the IntelliJ Scala plugin

https://github.com/mpeltonen/sbt-idea/tree/sbt-0.7
https://github.com/mpeltonen/sbt-idea/tree/sbt-0.7
http://mpeltonen.github.com/maven

386 APPENDIX B Configuring an IDE
but when that finishes, you’ll have access to all the project code with full IDE support,
as shown in figure B.2.

B.2 Eclipse
Another very popular IDE is Eclipse (http://www.eclipse.org/), and many users who
are familiar with Eclipse from the Java space may want to continue using it when they
transition into the Scala world. Broadly speaking, the Scala support within Eclipse is
fairly good, but unlike IntelliJ, the support is completely provided by the community
through the Scala IDE project: http://www.scala-ide.org/. The project site has all the
relevant instructions on how to install the Scala language support into Eclipse; check
the site directly for the most up-to-date information.

 With the language support in place, you’ll need to import your SBT project into
Eclipse. Helpfully, the community has provided an automated way to do this via an
SBT plugin (https://github.com/musk/SbtEclipsify/tree/0.8.0), which requires just
a bit of configuration to use. First, add the plugin definition to a file called project/
plugins/Plugins.scala:

import sbt._

class Plugins(info: ProjectInfo) extends PluginDefinition(info) {
 lazy val eclipse = "de.element34" % "sbt-eclipsify" % "0.7.0"
 ...
}

Figure B.2 A new SBT project, complete with code completion

http://www.eclipse.org
http://www.scala-ide.org
https://github.com/musk/SbtEclipsify/tree/0.8.0

387Eclipse
With this in place, you now need to add the plugin trait to your project definition so
that the eclipse action is available to you within the SBT shell:

import sbt._

class LiftProject(info: ProjectInfo)
 extends DefaultWebProject(info)
 with de.element34.sbteclipsify.Eclipsify {
 ...
}

If you already have the SBT shell running, call the reload command so that SBT
fetches the appropriate dependencies. After a short moment, the JARs will be down-
loaded and you can invoke the eclipse command from the SBT shell. You can then
do a File > Import within the Eclipse IDE and add the project to your workspace. The
result should be as displayed in figure B.3.

 Upon adding the project to Eclipse, there will be a brief moment while the meta-
data is generated, and that’s it.

 There are a range of options available to tweak how the Eclipse project files are
generated by the SBT plugin, and I advise checking the documentation if the default
behavior is not what you were expecting.

Figure B.3 Successfully imported SBT project into Eclipse IDE.

appendix C
Options and boxes

If you have any experience with any other programming language, you’ll no doubt
have seen code that does some guard-style operation, like this:

if (thing != null)
{
 thing.whatever();
}

The purpose is to prevent one from calling the whatever() method on someob-
ject when it is null; otherwise the method would explode with a NullPointer-
Exception at runtime because null is not a proper object instance. This style of
programming can add a lot of noise to your code, and Scala has a solution for this:
the Option type.

 Scala abstracts the whole idea of a value being something or nothing, so rather
than having to continually create guards within your code, you wrap your type with
an Option and then, when you want to do something with that value, you pass the
Option instance a function that’s only executed if the value is something.

 Let’s illustrate that with an example:

scala> Option[String]("Tim").map(_.toLowerCase)
res1: Option[java.lang.String] = Some(tim)

Option is a generic type constructor, so you either need to specify the contained
type or let Scala infer it. In this case, the content is of type String. The preceding
example defines a new Option[String] instance with an explicit value of "Tim",
and it defines a function to be executed in the event that it contains a value. As
"Tim" is being explicitly passed to the apply method of the Option type, the result is
Some("tim"). Some is a subtype of Option, and it’s used to represent options that
have a value, which means it is something.

 Suppose the value "Tim" was not hardcoded, but was passed from somewhere
else in the system and could feasibly be a null value. You still want to execute the
388

389Options and boxes
function if the value exists, so let’s simulate this by explicitly passing null to the
Option type’s apply method:

scala> Option[String](null).map(_.toLowerCase)
res2: Option[java.lang.String] = None

Notice that the definition is exactly the same as before, but the value is explicitly
null. The function definition is the same, but it doesn’t explode with a NullPointer-
Exception because the function is never executed. Option is clever enough to real-
ize that the value is null, so it returns the strongly typed representation of a non-
value: None.

 These two examples are explicit, but trivial. Consider something more likely to crop
up within your application. Perhaps you query the database for a value, but the value
you’re looking for may not exist. In that case, it would be a lot better to receive a prop-
erly represented result in the form of None than it would be to simply receive null.

 Appendix A (section A.2) describes some of the actions typically associated with
collections and data structures within Scala, covering the map and flatMap functions
found in most Scala collections. Option also sports these methods, and by virtue of
map and flatMap it’s possible to use what is known as a for-comprehension as some nice
syntactic sugar for interacting with collection types. Because Option is also a collection
type, using for-comprehensions allows you to chain options together, so that they only
fall through to the next function if the value is something. Consider the following:

scala> for {
 a <- Some(10)
 b <- Some(5)
 } yield a * b
res: Option[Int] = Some(50)

Here, two integers wrapped with options are multiplied together, and the resulting
value is also encased within a Some instance. This is fairly logical behavior, but what
happens if one of the values is None? Here’s an example:

scala> val one = Some(10)
one: Some[Int] = Some(10)

scala> val two: Option[Int] = None
two: Option[Int] = None

scala> for {
 | a <- one
 | b <- two
 | } yield a * b
res3: Option[Int] = None

In this case, because one of the values is None, the result of the comprehension is itself
None. This turns out to be pretty useful when building applications, because it means
you can safely provide a sensible default value if one is applicable.

 The Option type includes a method called getOrElse, which you can use to pro-
vide a default, like so:

390 APPENDIX C Options and boxes
scala> res3 getOrElse 0
res8: Int = 0

This is just one convenience provided by Option types. Thus far, the examples in this
appendix have only covered the scala.Option type, which is by no means exclusive
to Lift.

 Lift has a very similar type called Box, where the equivalent to None is Empty, and
the equivalent to Some is Full; Box also has the concept of Failure. The purpose of
this structure is to capture both the fact that the Box is Empty and provide information
about why that Box is Empty.

NOTE If you have previous experience with Scala, you may be wondering
what the purpose of this is, considering the similarities this has to
Either[Option[A], Exception]. This is a point of debate, but broadly speak-
ing the concepts can be thought of as similar in the sense that you have a data
structure that could hold a value or an error.

Let’s look at a few examples of how Lift uses Box and how you can utilize the Fail-
ure aspect in your code. Consider this example that loads a product from a Map-
per model:

import net.liftweb._, http.S, common.{Box,Full,Empty,Failure}

for {
 id <- S.param("pid") ?~ "Product ID not present in request"
 product <- Product.find(id) ?~ "Product does not exist"
} yield product

In order to use the Box functionality, be sure to import the appropriate types as in the
first line of this code. The goal here is to use information from the incoming request
to load a model record from the database. As these things may not exist at runtime, it
makes sense to give them the optional functionality supplied by Box. Otherwise, if the
request didn’t contain the appropriate request parameter, there would be no way to
know which record should be loaded from the database.

 The for-comprehension is a neat construct for this kind of problem, and the
example demonstrates that you can obtain the request parameter as a Box[String]
by using the S.param method. As you saw earlier with the Option type within for-
comprehensions, when the values are None or Empty, the Empty result just falls
through to the yield value. The ramification of this is that if the request parameter
doesn’t exist, the whole expression gracefully falls through and returns Empty.

 Presently the small preceding example above could have mostly been achieved by
using the Option type, but the real Box-only feature here is the ?~ method. This
strange looking symbol essentially tells Box to generate a Failure instance that con-
tains the supplied friendly error message in the event that the value is Empty. Here’s
an explicit example of this in action:

scala> val x: Box[String] = Empty
x: net.liftweb.common.Box[String] = Empty

391Options and boxes
scala> x ?~ "Oops, your value is empty"
res12: Box[String] = Failure(Oops, your value is empty,Empty,Empty)

Here the Empty is automatically converted to Failure and it provides the appropriate
error message. This idiom is heavily prevalent within Lift, and it’s something you’ll see
a lot in both application code and the internal Lift code.

 The astute reader will notice that the Failure instance has two additional
parameters, both of which are defined as Empty. The Failure class takes two addi-
tional parameters:

■ A Throwable instance if the boxed value is Empty due to an exception being
thrown at runtime.

■ A chain of nested failures. In the case that this failure is part of a stack of possi-
ble failing scenarios, you might want to nest (or aggregate) those failures for
later processing.

Depending upon your particular use case, you may use these properties or you may
just happily ignore them. Also note that it isn’t common to create your own instances
of Failure; more likely you would be pattern-match against a value that could possibly
be a Failure, and you might want to extract the error information.

 It can take time to really understand how to properly leverage the Option and Box
structures, but the investment in time will make your applications more robust, more
predictable, and free of all those noisy guards.

index
Symbols

<< operator 146
! method 298
? form=post attribute 116
? method 288
?? method 288
?~ method 390
#> symbol 115

A

abstractions
HTTP 161
JavaScript language 189–193

basic commands 190–192
JSON handling 192–193

AcceptedResponse type 177
Accept-Language header 284
Access control 140
ACID (atomicity, consistency,

isolation, durability) 274
Active Record pattern 46
actor usage 209
ActorPing function 210, 217
ActorRef 307
actors 74, 208–209
administration section, for auc-

tion application 41–43
Advanced Message Queue Proto-

col. See AMQP
afterCreate 90
afterSave 246–248
afterSpec function 321, 334

AJAX (Asynchronous Javascript
and XML) 188–203

basic 194–197
JavaScript language

abstractions 189–193
basic commands 190–192
JSON handling 192–193

sophisticated 197–199
testing 341–346
using JSON forms

with 200–202
with LiftScreen

mechanism 202–203
AJAX bidding interface, for auc-

tion details page 68–74
ajaxEditable 195
ajaxForm 72, 215
Akka actors 301
Akka toolkit, messaging

with 300–309
fault tolerance through

supervisors 301–304
Lift project interaction with

Akka toolkit 304–307
AkkaCometActor 307–308
AlertJsCmd 190
allTemplateNodeSeq 133
AMQP (Advanced Message

Queue Protocol) module
example of 297–300
support for 295–297

AMQP terms 296
AMQPAddListener 299–300
AMQPMessage 298–299
AMQPSender 297–298
annotations 311

AnyVar 129–130, 361
application lifecycle 162–166

bootloader class 164
ResourceServer

object 163–164
shutdown process 165–166

application models, Comet.
See Comet application
model

argument groups 379, 383
asDouble 205–206, 306
AsInt helper 174
AskName 213, 215
Asynchronous Javascript and

XML. See AJAX
atomicity, consistency, isolation,

durability. See ACID
attributes, of snippets 120–121
auction application 37–103

auction catalog for 61–65
auction details page 66–82

AJAX bidding
interface 68–74

Comet
implementation 74–82

URLs for 66–68
basket 91–93
checkout 93–98
data models 46–50

connecting to
database 49–50

schema definition 46–49
order creation 84–91

attributing auctions to
customers 87–91

data models for 84–87
393

INDEX394
auction application (continued)
page flow for 40–43

administration 41–43
auction detail and

bidding 41
checkout 41
global elements 40
home page 40

PayPal payments 99–102
Buy Now button for 102
environment setup 99–102

scaffolding 50–57
CRUD generation 53–57
prototype traits 50–53

templates 43–46
design workflow for 43
structure of 43–46

validation 57–59
definitions 58
displaying field

errors 58–59
Auction class 48–49, 57–58, 68,

72, 75, 89
Auction model 61, 75
auction/supplier

relationship 57
AuctionHelpers 64, 67–68,

75–76, 91–92
AuctionInstanceHelpers 75–76,

79, 81
AuctionMachine 88–90
AuctionServer object 76–77
AuctionUpdater 78–81
authentication

parameters 150–153
external security

models 152–153
HttpAuthProtected 151–152
Test and Testaccess 150–151

Author class 279
AuthorBooks 234
AutoComplete widget 137–138

B

backslash method 193
BadResponse type 177
bang (!) method 209, 294
BASE (Basically Available,

Soft-state, Eventual
consistency) 274

BaseField 263
BaseForeignKey 233

Basically Available, Soft-state,
Eventual consistency.
See BASE

BDD (behavior-driven
development) 318–319

before_filter 148
beforeSave 246–248, 253
beforeSpec function 321, 334
beginServicing 371
behavior-driven development.

See BDD
BigDecimal 263
BinaryField class 262–263
BinaryTypedField 262
binding snippet 115, 191
bookstore

with MongoDB data
store 278–280

with Squeryl project 268–272
CRUD statements 270–271
querying

statements 271–272
Bookstore Schema 271
BooleanField 263
Boot class 45, 66, 101–102,

111–113, 128, 164–165, 237,
267–268, 270, 275–276, 301,
334

booting application 29–30
Box type 70, 388–391
browser.click method 344–345
browser.isTextPresent

method 344–345
browser.open method 344
build tool 20
bulkDelete_!! method 245
Buy Now button, for PayPal

payments 102
BuyNowSnippet 96–97, 102
By class 239
By parameter 239
ByList type 239
ByRef type 240
BySql type 240

C

caching templates 365–366
Cake pattern 329–331
calculators, locale 284–286
Call expression 192
callbacks, lifecycle 247–248
CDATA block 191
Checkout screen 97

checkout, for auction
application 41, 93–98

class and companion object
idiom 48

classes, Scala language 376–378
clients, content expiry 366
Cobertura 322
code coverage reports, and

testing 322–323
code, localized 288–289
collections, Scala language 380
Comet 14, 74, 207–208

actors 208–209
basic 209–211
for auction details

page 74–82
support for 212–221
testing 341–346

CometActor 74, 77–80,
210–211, 342

community 10
compact method 193
compile scope 28
configurations 361–364

multiple servers 363–364
single server 362–363

confirmScreen_? method 136
connecting, to database 49–50
connectivity, database 224–227
console type 237
consumer 296
containers, servlet 348–351
ContainerSerializer 361
ContainerVar 358–359, 361, 373
content embedding, and partial

templates 110
content expiry, client 366
contents value 92
continuous compilation

mode 30
control-affecting

parameters 148
Cookies 130–131, 334–335
CouchDB 260, 274–276
CouchMetaRecord types 275
CouchRecord 275, 277
CPU hot spots 302
CreatedUpdated 47–48, 85–86,

229–230, 245–246
critical state 356–361

extended sessions 356–358
Terracotta Web

Sessions 358–361
CRUD generation 53–57
CRUD interface 60–61

INDEX 395
CRUD statements 270–271
CRUDify 37, 39, 42, 50, 53–57,

60, 90
CSRF (cross-site request

forgery) 342
CSS class 114, 118
CSS file 164
CSS styling 56
CSS-style transformers 68, 97,

114–120
Customer class 51–52, 80, 86–87
Customer model 86
Customer.currentUser 70, 79,

85, 91, 94, 96

D

data 237–238
querying 238–244
updating and

deleting 244–245
data definition language. See DDL
data models 46–50

connecting to database 49–50
for order creation 84–87
schema definition 46–49

data stores
CouchDB 274–276
MongoDB 276–278

databases
connecting to 49–50
relational 266–272
setting up 224–237

defining Mapper
instance 227–232

installation and
connectivity 224–227

relationships 232–235
schema creation and

control 235–237
DateTimeField 263
DB object 243–244
DB.addLogFunc

method 251–252
DB.defineConnectionManager

49–50, 227, 267
DB.runQuery method 244, 258
DB.use 252–254, 268, 270
dbColumnName 57, 85–86, 88,

236
DBLogEntry 251–252
DBVendor class 49–50, 226–227
DDL (data definition

language) 267
DecimalField 263

declarations, DocType 111–112
DefaultConnectionIdentifier

49–50, 253–254, 267–268,
270

DefaultWebProject 27, 323
delete_! method 244
deleteCookie 131
dependency injection. See DI
deployment 347–374

case studies 371–373
Foursquare application 372
Novell Vibe

environment 372–373
configurations 361–364

multiple servers 363–364
single server 362–363

handling state 351–361
distributing

critical 356–361
sticky session

strategies 352–356
servlet containers 348–351
tools and techniques

for 364–371
built-in assistance 364–366
monitoring 367–371

details page, for auctions 66–82
AJAX bidding

interface 68–74
Comet

implementation 74–82
URLs for 66–68

Details snippet 68, 76, 78
DI (dependency injection), and

testing 327–334
and Factory type 332–334
and Injector type 332–334
Cake pattern 329–331
using functions 331–332

dispatch guards 181–182
dispatch method 64
dispatch snippets 121–123
dispatching

HTTP, and web
services 174–185

methods 121–123
DispatchLocSnippets

parameter 149
DispatchSnippet 63–64,

122–124, 129–130, 361
distributed

programming 293–316
JEE integration 309–316
messaging

with Akka toolkit 300–309

with AMQP module
295–300

DocType declarations, and
markup validation 111–112

domain-specific language.
See DSL

double percent symbol 27
Double value 264
DoubleField 264
Driver class 267
DSL (domain-specific

language) 142, 176–179

E

eager evaluation, and attributes
of snippets 120–121

EAR (Enterprise Archives) 27
EarlyResponse parameter 150
eclipse command 387
Eclipse IDE 386–387
Either construct 127
EJB3 (Enterprise JavaBeans 3)

309
EmailField 264
embedded documents 278
embedding content, and partial

templates 110
Empty state 69
endServicing 371
Enterprise Archives. See EAR
Enterprise JavaBeans 3. See EJB3
EntityManager class 310
entity-relationship diagram. See

ERD
EnumField 264
ERD (entity-relationship-

diagram) 46, 83–84
eventual consistency 274
exception handlers 366
exchange 296
expiry, client content 366
extended sessions 356–358
Extensible Markup Language.

See XML
external security

models 152–153

F

factories, custom resource 291
Factory type 327, 332–333
FactoryMaker 111, 333
FadeIn 196
Failure type 69, 72, 390–391

INDEX396
fault tolerance, through
supervisors 301–304

fictionalCount 121
field method 132
field types, custom 134–135
fields

mapped, custom 254–258
Record system 262–265

FIFO (first-in first-out) 296
filter function 381
filter predicate 181
filtering resource 180
FilterOrValidate 133
find method 239
findAll 61–62, 239–242, 277, 279
findAllByInsecureSql 242–243
findBooksByAuthor 313
findComet 80
first-in first-out. See FIFO
flavor field 133
for keyword 70
ForbiddenResponse type 177
for-comprehension 389–390
FormBuilderLocator 133–134
forms 131–136

JSON, using AJAX
with 200–202

LiftScreen
mechanism 132–135

Wizard system 135–136
Foursquare application, case

study 372
Foursquare engineering

blog 280
frameworks, for testing 318–323

and code coverage
reports 322–323

Scala Specs 319–321
ScalaCheck 321–322
ScalaTest 318–319

Full state 69
Functional Programming 4
functions, Scala language 380
FunSuite type 319
futures, Lift project interaction

with Akka toolkit 307–309

G

Game actor 213, 217
gauges 369–370
getOrElse method 389–390
getReference 314
getSingleton 47, 51, 85–86,

229–230, 255, 357

global elements, for auction
application 40

graphical user interface. See GUI
Gravatar widget 138–139
green screen experiences 187
guards, dispatch 181–182

H

H2 database 226, 267
handlers, exception 366
HAProxy software 352–354
hashCode 286
head element, resources

of 110–111
hello-service 301
Helpers 63, 79, 206, 211, 263
Helpers object 31–32, 115
hidden fields 266
Hidden parameter 65, 102,

146–148
HideIfNoKids parameter 148
higher-order functions 380
highPriority 81, 210
home page, for auction

application 40
HTML tags 93
HTML5 standard, support

for 112–113
HTMLProperties 113
HTTP (Hypertext Transfer

Protocol)
dispatching and web

services 174–185
HTTP dispatch

DSL 176–179
REST service 179–185

lifecycles
application 162–166
request 166–170

pipeline 161–170
HTTP abstraction 161
lifecycles 162–170

URL rewriting 170–174
advanced 173–174
defining RewritePF partial

function 171–173
HTTP interface 368
HTTP request pipeline 166
HttpAuthProtected

parameter 150–152
HttpBasicAuthentication 152
HTTPContext 130
HTTPCookie type 130–131
HttpDigestAuthentication 152

HTTPRequest type 66, 130, 162,
167, 172, 285–286

HTTPSession 358–359
Hypertext Transfer Protocol.

See HTTP

I

IBM DB2 database 267
IDEs (Integrated Development

Environments),
configuring 384–387

Eclipse IDE 386–387
IntelliJ IDE 384–386

IdPK 47–48, 85–86, 229–230,
245–246

If / Unless parameter 150
IHaveValidatedThisSQL

type 240, 242–243
immutability, Scala

language 375–376
Implicits, Scala language 32,

382–383
In parameter 242
infix notation 379
infix operation pattern 179
Injector type 327, 332–333
InRaw parameter 242
INSERT procedure 247
Instant Payment Notification.

See IPN
Integrated Development

Environments. See ISEs
IntelliJ IDE 384–386
interfaces, Mapper. See Mapper

interface
InternalServerErrorResponse

type 177
IntField 264
IPN (Instant Payment

Notification) 99
isAsLocale method 264

J

JAR file 21, 25–26, 164, 359
Java language, properties

of 290–291
Java Persistence API. See JPA
JavaScript language,

abstractions 189–193
basic commands 190–192
JSON handling 192–193

INDEX 397
JavaScript Object Notation. See
JSON

javax.http.servlet.HttpSession
128

javax.servlet.Filter 161
javax.servlet.HTTPSession 358
JE object 192
JEE (Java Enterprise Edition),

integration 309–316
jettyPort 29
jetty-run 53
JettyStartupAndTearDown 344
JettyTestServer 337–338, 342,

344
jlift.js file 201
JNDI connection 227
JndiEMF 314
JPA (Java Persistence API)

module 309–316
JqJsCmds.FadeOut 79, 221
JRE (Java Runtime Edition) 21
JRebel 30
JSArtifacts 189–190, 196, 221
JsCmds object 72–73, 189, 191,

198
JSESSIONID 353–354
JsExp 189
JSON (JavaScript Object Nota-

tion)
creation 193, 276–277
forms, using AJAX

with 200–202
handling 192–193

JsonResponse type 177
JsRaw 192
JValue 193, 256
JVM property 328

K

KeyedRecord 269–270

L

LAFuture type 305
lazy loading, and parallel

execution 124–125
LazyLoad 125
LazyLoggable 251–252, 361
level attribute 145
li attribute 144
li_item attribute 144
lib_managed directory 26
lifecycle callbacks 247–248

lifecycles, HTTP
application lifecycle 162–166
request lifecycle 166–170

Lift WebKit
forms 131–136

LiftScreen mechanism 132,
134–135

Wizard system 135–136
managing state 128–131

cookies 130–131
request and

session 128–130
snippets 114–125

CSS transformers 114–120
eager evaluation and attri-

butes of 120–121
lazy loading and parallel

execution 124–125
method

dispatching 121–123
stateless vs.

stateful 123–124
templates 108–114

content embedding and
partial 110

displaying messages 113
DocType declarations and

markup
validation 111–112

head element
resources 110–111

HTML5 standard
support 112–113

surrounds 108–110
views 125–128
widgets 137–139

AutoComplete 137–138
Gravatar 138–139

Lift Webkit 14
<lift:bind /> element 34
<lift:tail /> snippet 35
LiftActor 80, 209–210, 216–217,

299, 369–370
LiftFilter 360, 365
LiftResponse 150, 170, 174–178,

366
LiftRules 127, 171, 175
LiftRules.addToPackages 79,

121, 127–128, 170
LiftRules.appendGlobalForm-

Builder 133–135
LiftRules.attachResourceId 111,

366
LiftRules.cometCreation 211
LiftRules.DispatchPF 177

LiftRules.docType 111
LiftRules.exceptionHandler 366
LiftRules.httpAuthProtected-

Resource 168
LiftRules.jsArtifacts 190,

196–197
LiftRules.localeCalculator 28

4–286
LiftRules.onBeginProcessing

168
LiftRules.templateCache 110,

366
LiftRules.unloadHooks 49, 166,

227, 267, 334, 368
LiftScreen mechanism 132–135

and Wizard system 265–266
custom field types 134–135
Mapper interface integration

with 250–251
using AJAX with 202–203

LiftScreen object 133
LiftServlet 165
LiftSession 128, 325, 359, 371
LiftView class 127–128, 170
LiftView type 127
lift-wizard 135–136
Lifty project 25
Like parameter 242
linkToSelf attribute 145
Listings snippet 61–62
loading spinner 196
Loc class 153
Loc implementation 153–158
Loc.Link 155
locale calculator 284–286
Locale.getDefault

method 285–286
LocaleField 264
LocalEMF class 314
localization 282–292

defining localized
resources 289–291
custom resource

factories 291
Java language

properties 290–291
XML 289–290

implementing 283–289
locale calculator 284–286
localized code 288–289
localized

templates 286–287
localSetup 214–215, 307–308
localShutdown 214–215, 308

INDEX398
locations
menus and 141–146
parameters of 146–153

authentication 150–153
default 147–150

LocGroup 55, 65, 102, 150
LocParam class 55
LoggedIn 151
loggedInTest 73–74
logging queries 251–252
long polling 208
LongField 264
LongKeyedMapper 47–48,

85–86, 229–230, 245–246
LongKeyedMetaMapper 85–86,

229–230, 234, 248, 253, 341
LongMappedMapper 85–86,

233–234, 236, 238, 241, 249
lowPriority 79–80, 210–211,

307–308

M

makeFormsAjax 72, 119, 198,
307–308

many-to-many relationship 232,
234–235, 238, 246, 258

mapped fields, custom 254–258
MappedBirthYear type 231
MappedBoolean 57–58
MappedCountry type 231
MappedDate 230
MappedDateTime type 230
MappedEmail 47, 58, 230–231,

246, 249
MappedEnum 85, 230–231, 249
MappedField type 48, 58, 231,

236, 241, 255–256, 261
MappedForeign type 233
MappedForeignKey 233
MappedGender type 231
MappedLocale type 231
MappedLongForeignKey 88
MappedManyToMany 234–235,

258
MappedOneToMany 47–49, 85,

233, 241, 245
MappedPassword type 231
MappedPostalCode 58, 93, 232
MappedPostalCode type 232
MappedSplitString 255
MappedString 47–48, 57–58,

229–231, 246–247
MappedText 47, 57, 229–230
MappedTimeZone type 232

Mapper class 48, 53, 56–57, 64,
86

Mapper instance,
defining 227–232

Mapper interface 223–258
advanced 251–258

custom mapped
fields 254–258

query logging 251–252
transactions 252–254

interacting with 237–251
data 237–238
display

functionality 248–251
lifecycle callbacks 247–248
validation 246–247

setting up database 224–237
defining Mapper

instance 227–232
installation and

connectivity 224–227
relationships 232–235
schema creation and

control 235–237
Mapper models 93, 116
Mapper, testing with 340–341
MapperPaginatorSnippet

class 63–64
MapperRules 236
MapReduce interface 274
markup validation, DocType

declarations and 111–112
MaxRows parameter 242
mediumPriority 210, 219
Memoization object 286
Menu object 288
menus, and locations 141–146
message broker 295
messageHandler 77, 209–211,

216–217, 299, 370
messages, displaying 113
messaging

with Akka toolkit 300–309
fault tolerance through

supervisors 301–304
Lift project interaction

with 304–307
with AMQP module 295–300

example of 297–300
support for 295–297

Meta object 229
MetaMapper 228, 234
MetaMegaProtoUser 51, 73, 86
MetaProtoExtendedSession 357
MetaProtoStateMachine 87–88

MetaPublisher 229
MetaRecord[T] 261
methods

dispatching 121–123
Scala language 379

Metric type 367
metrics 370–371
Microsoft SQL Server

database 267
Model.createNamedQuery

method 315
Model.mergeAndFlush(author)

315–316
modeling 182
models 53
Model-View-Controller 6
MongoDB data store 276–280
MongoJsonObjectListField 279
MongoMetaRecord 277–279
MongoRecord 277–279
monitoring 367–371

gauges 369–370
metrics 370–371

multiple servers
configuration 363–364

MySQL database 227, 267

N

net.liftweb.http.Bootable 164
net.liftweb.http.Generic-

Validator 112
NGINX software 354–356
NodeResponse 176
nonrelational systems 260
NoSQL database 276
NoSQL movement 260
NoSQL stores, Record system

for 273–280
bookstore with MongoDB

data store 278–280
support for 273–278

NotByRef type 240
NotFoundResponse type 177
notification utility method 71
Novell Vibe environment, case

study 372–373

O

object keyword 377
object-oriented. See OO
OkResponse type 177
onComplete 306–307

INDEX 399
OneToMany 47–48, 85, 93, 233,
238, 258, 311

one-to-many
relationship 232–233

Option type 388–391
OptionalStringField 263
OptionalTypedField 281
Oracle database 267
Order class 84–85
order creation 84–91

attributing auctions to
customers 87–91

data models for 84–87
Order model 93–94
OrderAuction class 49, 84–86,

90, 92
OrderBy 47, 49, 61–63,

154–155, 241–242
OrderBySql parameter 242
OrderStatus 85–86, 90, 100–101
OrderSummary 95–96, 102
ORM (object-relational

mapping) 39, 224
orm.xml file 312
outer_tag attribute 145
OwnedField 263

P

page flow, for auction
application 40–43

administration 41–43
auction detail and bidding 41
checkout 41
global elements 40
home page 40

parallel execution, lazy loading
and 124–125

param method 285
parameters, of

locations 146–153
authentication

parameters 150–153
default parameters 147–150

ParsePath method 66, 154,
171–174

partial templates, content
embedding and 110

partialUpdate 79, 81, 210–211,
219–220, 307–308

participatingIn 79–80
PasswordField 264
pattern matching, Scala

language 382
Payment Data Transfer. See PDT

PayPal integration 99–102
PayPal payments 99–102

Buy Now button for 102
environment setup 99–102

PayPal sandbox 101
PDD (property-driven

development) 318
PDT (Payment Data

Transfer) 99
PermRedirectResponse

type 177
persistence, with Mapper inter-

face. See Mapper interface
persistence, with Record system.

See Record system
persistence.xml file 312
PlainTextResponse type 177
PostalCodeField 264
PostgreSQL database 226
postStop function 304
PreCache parameter 243
predicate function 381
processing chain 167
programming, distributed. See

distributed messaging
project directory, in SBT 27–28
Project.scala file 25
Prop object 322
property-driven development.

See PDD
Props object, and run

modes 365
Props.RunModes 328, 365–366
ProtoExtendedSession 357
ProtoStateMachine 50, 82,

87–89
prototype traits,

scaffolding 50–53
ProtoUser 50–53, 55, 87,

356–357
provided scope 28
push data 304

Q

queries
logging 251–252
of data 238–244

Query parameter 241–242
querying

statements 271–272
with Squeryl project 266–268

QueryParam 49, 241–242
queues 296

R

RabbitMQ 295
RDBMS (relational database

management system) 223
Record class 263, 275
Record instance 261
Record system 259

for NoSQL stores 273–280
bookstore with MongoDB

data store 278–280
support for 273–278

for relational
databases 266–272

functionality 260–266
common Record system

fields 262–265
integration with LiftScreen

mechanism and Wizard
system 265–266

RedirectResponse 147, 150–151,
366

registerInjection 332
relational database manage-

ment system. See RDBMS
relational databases, Record sys-

tem for 266–272
relationships 232–235

many-to-many 234–235
one-to-many 233

reload command 26, 387
rendering, menus 143–146
replaceWith 116, 210, 219
Representational State Transfer.

See REST
Req instance 179
request lifecycle 166–170

early functions 167–168
template resolution 170
validation and

execution 168–169
RequestMemoize type 285–286
requests, and session

state 128–130
RequestVar object 128–129
RequestVarEM 314
reRender 215, 219–220
resource factories, custom 291
Resource Orientated Architec-

ture. See ROA
ResourceBundle 283, 291
resources, localized 289–291
ResourceServer object 163–164
response matchers 339
Response type 177

INDEX400
REST (Representational State
Transfer) service

advancedmultiformat 182
basic 179–182

RestHelper 176, 178–180,
185–186, 336

RewritePF 171–173
RewritePF partial

function 171–173
RewriteRequest object 66
RewriteRequest type 172
RewriteResponse object 66, 154,

171–174
rewriting URLs 170–174

advanced rewriting 173–174
defining RewritePF partial

function 171–173
right-to-left. See RTL
ROA (Resource Orientated

Architecture) 175
rock-paper-scissors

game 212–216, 219–220
RTL (right-to-left) 286
Run command 220
run modes 165, 365
runtime scope 28

S

S.? method 288
S.addAround(DB.buildLoan-

Wrapper) 49, 267
S.attr method 121
S.deleteCookie(cookieName)

130–131
S.error 71–72, 95, 113, 250,

315
S.locale 286, 289
S.notice 71–72, 113, 132–133,

136, 202, 250
S.param method 68, 147,

172–173, 325, 390
S.runTemplate 220, 335
S.warning 71–72, 113
saveMe method, Mapper 238
SBT (Simple Build Tool) 20

booting application 29–30
creating project 23–26
overview 21–23
project directory 27–28
src directory 28–29
using snippets in 31–33

sbt command 22–23
SBT console shell 209

SBT downloads page 21
SBT prompts 24
scaffolding 50–57

CRUD generation 53–57
prototype traits 50–53

Scala class 31, 123, 137, 210,
229, 311

Scala Code Coverage Tool. See
SCCT

Scala JPA project 309–316
Scala language 375–383

classes 376–378
collections 380
functions 380
implicits 382–383
methods 379
pattern matching 382
traits 378
variables, values, and

immutability 375–376
Scala Specs, frameworks for

testing 319–321
ScalaCheck, frameworks for

testing 321–322
ScalaTest, frameworks for

testing 318–319
scaling, deployment and. See

deployment
SCCT (Scala Code Coverage

Tool) 323
Schedule utility 80
schema definition, for data

models 46–49
schemas, creation and control

of 235–237
Schemifier object 46, 49, 235,

237, 258, 340–341
Screen type 136
ScreenVar 94–95, 250, 265
screenWrap, Mapper 52–53
Script class 190
security models,

external 152–153
Selenium 343–344
self.reply method 306, 308
server-push style

programming 188
servers

multiple servers
configuration 363–364

single server
configuration 362–363

servlet containers 348–351
ServletRequest 162

session state, requests
and 128–130

SessionMaster 369–371
SessionMonitor 369–370
sessions, extended 356–358
SessionVar 128–131, 358–359,

361–362
SessionWatcherInfo 369–370
SetHtml method 197–200,

210–211, 306–308
shared state 158
SHtml object 72, 114–115, 119,

156, 166, 195, 200
SHtml.ajaxEditable

control 195–196
SHtml.ajaxSubmit 72, 198–199,

306, 308
SHtml.ajaxText 205
SHtml.button 220
SHtml.password 134
SHtml.select 134–135, 306
SHtml.text 71–72, 115, 129, 196,

198, 215, 315
shutdown process 165–166
Simple Build Tool. See SBT
SiteMap feature

customising 153–159
Loc implementation

153–158
use cases for 158–159

locations
menus and 141–146
parameters of 146–153

snippets 114–125
CSS transformers 114–120
eager evaluation and

attributes of 120–121
lazy loading and parallel

execution 124–125
method dispatching

121–123
stateless vs. stateful

123–124
splash.html 44
SQL statement 223, 235, 237,

240, 242, 244, 266
Squeryl project

bookstore with 268–272
CRUD statements 270–271
querying statements

271–272
connecting and querying

with 266–268
StandardDBVendor 50,

225–226

INDEX 401
StartAt parameter 242
startTime 371
state 351–361

distributing critical 356–361
extended sessions 356–358
Terracotta Web

Sessions 358–361
managing 128–131

cookies 130–131
request and session

state 128–130
sticky session

strategies 352–356
HAProxy software 352–354
NGINX software 354–356

state machine 87
stateful components,

testing 325–327
stateful processes 166
stateful snippets, stateless snip-

pets vs. 123–124
StatefulSnippet 67–68, 71,

123–124, 129
stateless processes 166
stateless snippets, vs. stateful

snippets 123–124
Static file 350–351
Stats.addMetric method 371
sticky session strategies 352–356

HAProxy software 352–354
NGINX software 354–356

stores, NoSQL. See NoSQL stores
StringAMQPSender 298
StringField 261, 263–264,

269–270, 275, 277–278
structure, of templates 43–46
Submit button 72, 115, 307
supervisors, fault tolerance

through 301–304
surround method 287
surrounds 108–110
symbols 147
System.setProperty 365

T

table method 268
TDD (test-driven

development) 318
Team 10
template caching 365–366
Template parameter 149
template surround 33
TemplateFinder 149, 170

templates 43–46, 108–114
content embedding and

partial 110
design workflow for 43
displaying messages 113
DocType declarations and

markup validation 111–112
head element

resources 110–111
HTML5 standard

support 112–113
localized 286–287
overview 33–35
resolution of 170
structure of 43–46
surrounds 108–110

Terracotta Web
Sessions 358–361

Test location
parameter 150–151

test.default.props 340
Testaccess location

parameter 150–151
TestAccess parameter 150–151
TestCond 73, 91, 93
test-driven development. See

TDD
testing 317–346

AJAX 341–346
and dependency

injection 327–334
and Factory type 332–334
and Injector type 332–334
Cake pattern 329–331
using functions 331–332

Comet 341–346
frameworks for 318–323

and code coverage
reports 322–323

Scala Specs 319–321
ScalaCheck 321–322
ScalaTest 318–319

snippets 334–336
stateful components 325–327
web services 336–340
with Mapper 340–341

TestKit 317–318, 325–326,
336–340

TextareaField 265
TimeSpan 79–80, 90
TimeZoneField 265
Title parameter 149
toForm 134, 155, 249–250, 256,

265–266

top attribute 145
traits, Scala language 378
transactions, Mapper interface

support for 252–254
transformation modifiers 117
transformers, CSS 114–120
TransientRequestVar 358
try/catch statements 316
TypedField 263

U

UI control 134
unapply functionality 171,

173
UnauthorizedResponse

type 177
Uniform Resource Locators. See

URLs
Unless class 147–148
update command 26
UPDATE procedure 247
Update state 247
updatedAt 48, 229, 236–237
updateOrder 100–101
URL parameter 146, 172
URLs (Uniform Resource

Locators)
for auction details page

66–68
rewriting 170–174

advanced 173–174
defining RewritePF partial

function 171–173
User type 357
userRoles 152
util package 328, 332

V

val keyword 376–377
validation 57–59, 246–247,

262
and execution 168–169
definitions 58
displaying field errors

58–59
markup, DocType declara-

tions and 111–112
Validation state 247
validSelectValues 57, 249
valMinLength 246
ValueCell 204–206

INDEX402
values, Scala language 375–376
VARCHAR type 256
variables, Scala language

375–376
Vibe environment,

Novell 372–373
View First 6, 8
view-affecting parameter 148
viewDispatch 127
views 125–128
virtual host 296

W

WAR (Web Application
Archives) 27

WAR file 289, 319, 347
Web Application Archives. See

WAR

web services
HTTP dispatching and

174–185
DSL 176–179
REST service 179–185

testing 336–340
web.xml file 27
webapp directory 164
webapp/templates-hidden

directory 133
WEB-INF directory 27
WebKit, Lift. See Lift WebKit
WebSpec 326, 334–335, 346
where() method 272
wide.html 44
widgets 137–139

AutoComplete 137–138
Gravatar 138–139

wiki 158
wiki.html template 157

WikiEntry class 153–156
wildcard syntax 142
wiring 203–207
WiringUI object 204–206
with-resource-id 111, 366
withSFor method 335
Wizard system, LiftScreen

mechanism and 135–136,
265–266

X

XHTML templates 43
XML (Extensible Markup

Language) 289–290
XmlGet type 178, 180–181,

185
XmlResponse type 177

Timothy Perrett

L
ift is a Scala-based web framework designed for extremely
interactive and engaging web applications. It’s highly scal-
able, production-ready, and will run in any servlet container.

And Lift ’s convention-over-confi guration approach lets you
avoid needless work.

Lift in Action is a step-by-step exploration of the Lift framework.
It moves through the subject quickly using carefully craft ed,
well-explained examples that make you comfortable from the
start. You’ll follow an entertaining Travel Auction application
that covers the core concepts and shows up architectural and
development strategies. Handy appendixes off er a Scala crash
course and guidance for setting up a good coding environment.

What’s Inside
● Complete coverage of the Lift framework
● Security, maintainability, and performance
● Integration and scaling
● Covers Lift 2.x

Th is book is written for developers who are new to both Scala
and Lift and covers just enough Scala to get you started.

Timothy Perrett is a member of the Lift core team and a Scala
developer specializing in integration and automation systems,
for both manufacturing and marketing workfl ows.

For access to the book’s forum and a free eBook for owners of this
book, go to manning.com/LiftinAction

$49.99 / Can $52.99 [INCLUDING eBOOK]

Lift IN ACTION

SCALA/WEB DEVELOPMENT

M A N N I N G

SEE INSERT

“Th e best guide for building
 secure, scalable, and real-
 time web applications using
 Scala and Lift .” —Guillaume Belrose
 Quantel Ltd

“Rejoice, would-be Lift
 programmers, ... fi nally
 an approachable resource
 to turn to.”
 —Ted Neward
 Neward & Associates

“If you’re building web
 apps with Lift , you need
 this book.”
 —John C. Tyler, PROS Pricing

“Great reference book for
 Lift and Scala!”
 —Tom Jensen
 Chocolate Sprocket

	Lift in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book?
	Code conventions and examples
	Author Online

	about the author
	about the cover illustration
	Part 1 — Getting started
	Introducing Lift
	1.1 What is Scala?
	1.2 What is Lift?
	1.2.1 Lift design goals
	1.2.2 View-first design
	1.2.3 Community and team

	1.3 Lift features
	1.3.1 Lift Core and Lift Web
	1.3.2 Lift Persistence
	1.3.3 Lift Modules

	1.4 Summary

	Hello Lift
	2.1 Getting started with SBT
	2.2 Your first Lift application
	2.2.1 Creating the project
	2.2.2 Inspecting the project
	2.2.3 Booting the application

	2.3 Snippets and templating overview
	2.3.1 Snippets
	2.3.2 Templating overview

	2.4 Summary

	Part 2 — Application tutorial
	The auction application
	3.1 Application requirements
	3.1.1 Frontend
	3.1.2 Administration

	3.2 Template structure
	3.2.1 Design workflow
	3.2.2 Template setup

	3.3 Data models
	3.3.1 Schema definition
	3.3.2 Connecting to the database

	3.4 Scaffolding
	3.4.1 Prototype traits
	3.4.2 CRUD generation

	3.5 Validation
	3.5.1 Definitions
	3.5.2 Displaying field errors

	3.6 Summary

	Customers, auctions, and bidding
	4.1 Building an auction catalog
	4.1.1 Listing auctions
	4.1.2 Adding to SiteMap

	4.2 Displaying auctions
	4.2.1 Auction detail URLs
	4.2.2 The AJAX bidding interface
	4.2.3 Real-time bidding

	4.3 Summary

	Shopping basket and checkout
	5.1 Order creation
	5.1.1 Order models
	5.1.2 Attributing auctions to customers

	5.2 Implementing the basket and checkout process
	5.2.1 Implementing the basket
	5.2.2 Implementing the checkout

	5.3 Collecting payment with PayPal
	5.3.1 Environment setup
	5.3.2 The Buy Now button

	5.4 Summary

	Part 3 — Lift in detail
	Common tasks with Lift WebKit
	6.1 Templates, snippets, and views
	6.1.1 Templates
	6.1.2 Snippets
	6.1.3 Views

	6.2 Managing state
	6.2.1 Request and session state
	6.2.2 Cookies

	6.3 Forms with LiftScreen and Wizard
	6.3.1 LiftScreen
	6.3.2 Wizard

	6.4 Widgets
	6.4.1 AutoComplete widget
	6.4.2 Gravatar widget

	6.5 Summary

	SiteMap and access control
	7.1 Menus and locations
	7.1.1 Understanding and implementing locations
	7.1.2 Rendering menus

	7.2 Location parameters
	7.2.1 Default location parameters
	7.2.2 Authentication parameters

	7.3 Customizing SiteMap
	7.3.1 Creating a custom Loc
	7.3.2 When to customize SiteMap?

	7.4 Summary

	HTTP in Lift
	8.1 HTTP pipeline
	8.1.1 HTTP abstraction
	8.1.2 Application lifecycle
	8.1.3 Request lifecycle

	8.2 URL rewriting
	8.2.1 Defining a RewritePF
	8.2.2 Advanced rewriting

	8.3 Dispatching and web services
	8.3.1 Using the HTTP dispatch DSL
	8.3.2 Basic REST service
	8.3.3 Advanced multiformat REST service

	8.4 Summary

	AJAX, wiring, and Comet
	9.1 AJAX
	9.1.1 JavaScript abstractions
	9.1.2 AJAX 101
	9.1.3 Sophisticated AJAX
	9.1.4 Using JSON forms with AJAX
	9.1.5 AJAX with LiftScreen

	9.2 Wiring
	9.2.1 Formula wiring

	9.3 Comet
	9.3.1 What are actors?
	9.3.2 Basic Comet usage
	9.3.3 Comet-based rock-paper-scissors

	9.4 Summary

	Persistence with Mapper
	10.1 Setting up a database
	10.1.1 Installation and connectivity
	10.1.2 Defining Mappers
	10.1.3 Relationships
	10.1.4 Schema creation and control

	10.2 Interacting with Mapper
	10.2.1 Creating data
	10.2.2 Querying data
	10.2.3 Updating and deleting data
	10.2.4 Validation and lifecycle callbacks
	10.2.5 Display functionality

	10.3 Advanced Mapper
	10.3.1 Query logging
	10.3.2 Transactions
	10.3.3 Custom mapped fields

	10.4 Summary

	Persistence with Record
	11.1 Common Record functionality
	11.1.1 Common Record fields
	11.1.2 Integration with LiftScreen and Wizard

	11.2 Record for relational databases
	11.2.1 Connecting and querying with Squeryl
	11.2.2 A bookstore with Squeryl

	11.3 Record for NoSQL stores
	11.3.1 NoSQL support in Lift
	11.3.2 Bookstore with MongoDB

	11.4 Summary

	Localization
	12.1 Implementing localization
	12.1.1 Implementing locale calculator
	12.1.2 Localizing templates and code

	12.2 Defining localized resources
	12.2.1 Using XML resources
	12.2.2 Using Java properties resources
	12.2.3 Using custom resource factories

	12.3 Summary

	Distributed messaging and Java enterprise integration
	13.1 Distributed programming
	13.1.1 Messaging with AMQP
	13.1.2 Messaging with Akka

	13.2 Integrating Lift into existing Java infrastructure
	13.2.1 JPA and Scala EntityManager

	13.3 Summary

	Application testing
	14.1 Scala testing frameworks
	14.1.1 ScalaTest
	14.1.2 Scala Specs
	14.1.3 ScalaCheck
	14.1.4 Code coverage reports

	14.2 Writing testable code
	14.2.1 Complexities of testing state
	14.2.2 Dependency injection

	14.3 Testing strategies
	14.3.1 Testing snippets
	14.3.2 Testing web services
	14.3.3 Testing with Mapper
	14.3.4 Testing Comet and AJAX

	14.4 Summary

	Deployment and scaling
	15.1 Choosing a servlet container
	15.2 Handling state
	15.2.1 Sticky session strategies
	15.2.2 Distributing critical state

	15.3 Choosing a configuration
	15.3.1 Single server
	15.3.2 Multiple servers

	15.4 Deployment tools and techniques
	15.4.1 Built-in assistance
	15.4.2 Monitoring

	15.5 Case studies
	15.5.1 Foursquare
	15.5.2 Novell Vibe

	15.6 Summary

	appendix A: Introduction to Scala
	A.1 Variables, values, and immutability
	A.2 Classes, methods, traits, and functions
	A.2.1 Classes
	A.2.2 Traits
	A.2.3 Methods
	A.2.4 Functions

	A.3 Collections
	A.4 Pattern matching
	A.5 Implicits

	appendix B: Configuring an IDE
	B.1 IntelliJ
	B.2 Eclipse

	appendix C: Options and boxes
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back cover

