

Django 1.1 Testing and
Debugging

Building rigorously tested and bug-free Django
applications

Karen M. Tracey

 BIRMINGHAM - MUMBAI

Django 1.1 Testing and Debugging

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2010

Production Reference: 1120410

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-56-6

www.packtpub.com

Cover Image by Raj Kataria (rajkataria17@gmail.com)

Credits

Author
Karen M. Tracey

Reviewer
Benjamin A. Slavin

Acquisition Editor
Steven Wilding

Development Editor
Neha Patwari

Technical Editor
Conrad Sardinha

Indexers
Hemangini Bari

Rekha Nair

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Priya Mukherji

Project Coordinator
Leena Purkait

Proofreader
Aaron Nash

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Karen has a PhD in Electrical/Computer Engineering from the University of Notre
Dame. Her research there focused on distributed operating systems, which led
to work in an industry centered on communications protocols and middleware.
Outside of work she has an interest in puzzles, which led her to take up crossword
construction. She has published nearly 100 puzzles in the New York Times, the
Los Angeles Times syndicate, the New York Sun, and USA Today. She amassed a
database of thousands of puzzles to aid in constructing and cluing her own puzzles.
The desire to put a web frontend on this database is what led her to Django. She
was impressed by the framework and its community, and became an active
core framework contributor. Karen is one of the most prolific posters on the
django-users mailing list. Her experience in helping hundreds of people there
guided her in choosing the best and most useful material to include in this book.

Many thanks to Steven Wilding and the entire Packt Publishing team
for making this book possible.

I’d also like to thank the Django community. The community is too
large to name everyone individually, but Jacob Kaplan-Moss, Adrian
Holovaty, Malcolm Tredinnick, and Russell Keith-Magee deserve
special mention. I very much appreciate the tremendous amount of
work you all have done to create an excellent framework and foster a
helpful and welcoming community.

Finally thanks to my parents, brothers, and many friends who
supported me throughout the writing process. Your encouraging
words have been very helpful and much appreciated.

About the Reviewer

BEN SLAVIN is an entrepreneur, technology strategist, and developer, focused
on high performance web applications. He has been using Django to build scalable,
reliable websites and applications since 2006. As a Director of Technology and a
CTO, Ben has successfully integrated Django into multiple businesses’ operations,
reducing technology costs and improving productivity.

Residing in Washington, DC, Ben has built and operates the Heliograph Network,
designed to improve the performance and reliability of web applications. You can
find him online at http://benslavin.net.

In memory of Mello and Haley

Table of Contents
Preface	 1
Chapter 1: Django Testing Overview	 9

Getting started: Creating a new application	 10
Understanding the sample unit test	 10
Understanding the sample doctest	 11
Running the sample tests	 12
Breaking things on purpose	 15
Test errors versus test failures	 20
Command line options for running tests	 23

Verbosity	 24
Settings	 27
Pythonpath	 27
Traceback	 27
Noinput	 27
Version	 28

Summary	 28
Chapter 2: Does This Code Work? Doctests in Depth	 29

The Survey application models	 29
Testing the Survey model	 31

Testing Survey model creation	 31
Is that test useful?	 34
Developing a custom Survey save method	 35
Deciding what to test	 39
Some pros and cons of doctests so far	 40

Additional doctest caveats	 44
Beware of environmental dependence	 44
Beware of database dependence	 47

Table of Contents

[ii]

Beware of test interdependence	 52
Beware of Unicode	 57

Summary	 62
Chapter 3: Testing 1, 2, 3: Basic Unit Testing	 63

Unit tests for the Survey save override method	 63
Pros of the unit test version	 65
Cons of the unit test version	 69

Revisiting the doctest caveats	 69
Environmental dependence	 70
Database dependence	 70
Test interdependence	 75
Unicode	 75

Providing data for unit tests	 76
Providing data in test fixtures	 76

Example test that needs test data	 76
Using the admin application to create test data	 78

Writing the function itself	 83
Writing a test that uses the test data	 85
Extracting the test data from the database	 86
Getting the test data loaded during the test run	 87

Creating data during test set up	 92
Summary	 96

Chapter 4: Getting Fancier: Django Unit Test Extensions	 97
Organizing tests	 98
Creating the survey application home page	 101

Defining the survey application URLs	 102
Developing views to serve pages	 104
Creating templates for pages	 106
Testing the survey home page	 110

Creating the survey detail pages	 117
Refining the survey detail view	 117
Templates for the survey detail pages	 118
Basic testing of the survey detail pages	 119

Customizing the admin add and change survey pages	 122
Developing a custom survey form	 122
Configuring admin to use the custom form	 123
Testing the admin customization	 124

Additional test support	 130
Supporting additional HTTP methods	 130
Maintaining persistent state	 130
E-mail services	 130

Table of Contents

[iii]

Providing test-specific URL configuration	 131
Response context and template information	 131

Testing transactional behavior	 132
Chapter 5: Filling in the Blanks: Integrating Django and
Other Test Tools	 135

Problems of integration	 136
Specifying an alternative test runner	 138
Creating a new management command	 141

How much of the code are we testing?	 144
Using coverage standalone	 145
Integrating coverage into a Django project	 149

The twill web browsing and testing tool	 153
Using the twill command line program	 155
Using twill in a TestCase	 159

Summary	 167
Chapter 6: Django Debugging Overview	 169

Django debug settings	 170
The DEBUG and TEMPLATE_DEBUG settings	 170
The TEMPLATE_STRING_IF_INVALID setting	 171

Debug error pages	 172
Database query history	 176
Debug support in the development server	 179
Handling problems in production	 182

Creating general error pages	 183
Reporting production error information	 183

Internal server error notifications	 184
Page not found notifications	 185

Summary	 187
Chapter 7: When the Wheels Fall Off: Understanding a
Django Debug Page	 189

Starting the Survey voting implementation	 190
Creating test data for voting	 191
Defining a question form for voting	 192
Debug page #1: TypeError at /	 195

Elements of the debug page	 196
Basic error information	 197
Traceback	 198
Request information	 203

GET	 203
POST	 203
FILES	 203

Table of Contents

[iv]

COOKIES	 203
META	 204

Settings	 204
Understanding and fixing the TypeError	 205
Handling multiple Survey questions	 209

Creating the data for multiple questions	 209
Coding support for multiple questions	 210
Debug page #2: TemplateSyntaxError at /1/	 211
Understanding and fixing the TemplateSyntaxError	 212

Recording Survey responses	 213
Coding support for recording Survey responses	 214
Debug page #3: NoReverseMatch at /1/	 218
Understanding and fixing the NoReverseMatch exception	 219
Debug page #4: TemplateDoesNotExist at /thanks/1/	 221
Understanding and fixing TemplateDoesNotExist	 223

Handling invalid Survey submissions	 224
Coding custom error message and placement	 226
Debug page #5: Another TemplateSyntaxError	 229
Fixing the second TemplateSyntaxError	 232

Summary	 233
Chapter 8: When Problems Hide: Getting More Information	 235

Tracking SQL queries for a request	 236
Settings for accessing query history in templates	 236
SQL queries for the home page	 237
Packaging the template query display for reuse	 243
Testing the repackaged template code	 247
SQL queries for the active Survey form display page	 252
SQL queries for posting survey answers	 255

The Django Debug Toolbar	 256
Installing the Django Debug Toolbar	 257
Debug toolbar appearance	 258
The SQL panel	 260
The Time panel	 263
The Settings panel	 264
The HTTP Headers panel	 264
The Request Vars panel	 265
The Templates panel	 266
The Signals panel	 267
The Logging panel	 268
Redirect handling by the debug toolbar	 268

Table of Contents

[�]

Tracking internal code state	 273
Resist the urge to sprinkle prints	 273
Simple logging configuring for development	 275
Deciding what to log	 277
Decorators to log function entry and exit	 277
Applying the decorators to the Survey code	 280
Logging in the debug toolbar	 282

Summary	 284
Chapter 9: When You Don't Even Know What to Log:
Using Debuggers	 285

Implementing the Survey results display	 285
Results display using pygooglechart	 288
Getting started with the debugger	 293

The list command	 295
The where command	 296
The args command	 300
The whatis command	 300
The print and pp commands	 300

Debugging the pygooglechart results display	 301
The step and next commands	 301
The continue command	 307
The jump command	 307
The break command	 309
The clear command	 310

Fixing the pygooglechart results display	 312
The up and down commands	 312
The return command	 316

Results display using matplotlib	 319
Improving the matplotlib approach	 324

Setting up static file serving	 325
Dynamically generating image files	 327
Dealing with race conditions	 329
Using the debugger to force race situations	 334

Notes on using graphical debuggers	 344
Summary	 345

Chapter 10: When All Else Fails: Getting Outside Help	 347
Tracking down a problem in Django	 348

Revisiting the Chapter 7 voting form	 348
Is the right code actually running?	 350
Is the code correct as per the documentation?	 351

Table of Contents

[vi]

Searching for a matching problem report	 354
Another way to search for a matching problem report	 359
Determining the release that contains a fix	 363
What if a fix hasn't been released yet?	 365
What if a fix hasn't been committed yet?	 366
What if a ticket has been closed without a fix?	 367

Tracking down unreported problems	 368
Where to ask questions	 369
Tips on asking questions that will get good answers	 370
Opening a new ticket to report a problem	 372

Summary	 374
Chapter 11: When it's Time to Go Live: Moving to Production	 375

Developing an Apache/mod_wsgi configuration	 376
Creating the WSGI script for the marketr project	 378
Creating an Apache VirtualHost for the marketr project	 379
Activating the new Apache configuration	 380
Debugging the new Apache configuration	 383
Configuring Apache to serve static files	 391

Testing multithreaded behavior	 396
Generating load with siege	 397
Load testing the results recording code	 399
Fixing the results recording code	 404
Additional load testing notes	 406

Using Apache/mod_wsgi during development	 407
Summary	 409

Index	 411

Preface
Bugs are a time consuming burden during software development. Django's built-in
test framework and debugging support help lessen this burden. This book will teach
you quick and efficient techniques for using Django and Python tools to eradicate
bugs and ensure your Django application works correctly.

This book will walk you step-by-step through the development of a complete sample
Django application. You will learn how best to test and debug models, views, URL
configuration, templates, and template tags. This book will help you integrate with
and make use of the rich external environment of testing and debugging tools for
Python and Django applications.

This book starts with a basic overview of testing. It will highlight areas to look out
for while testing. You will learn about the different kinds of tests available, the pros
and cons of each, and details of test extensions provided by Django that simplify
the task of testing Django applications. You will see an illustration of how external
tools that provide even more sophisticated testing features can be integrated into
Django's framework.

On the debugging front, the book illustrates how to interpret the extensive
debugging information provided by Django's debug error pages, and how to
utilize logging and other external tools to learn what code is doing.

This book is a step-by-step guide to running tests using Django's test support and
making best use of Django and Python debugging tools.

Preface

[�]

What this book covers
In Chapter 1, Django Testing Overview, we begin development of a sample Django
survey application. The example tests automatically generated by Django are
described and run. All of the options available for running tests are covered.

In Chapter 2, Does This Code Work? Doctests in Depth, the models used by the sample
application are developed. Using doctests to test models is illustrated by example.
The pros and cons of doctests are discussed. Specific caveats for using doctests with
Django applications are presented.

In Chapter 3, Testing 1, 2, 3: Basic Unit Testing, the doctests implemented in the
previous chapter are re-implemented as unit tests and assessed in light of the pros,
cons, and caveats of doctests discussed in the previous chapter. Additional tests are
developed that need to make use of test data. Using fixture files to load such data is
demonstrated. In addition, some tests where fixture files are inappropriate for test
data are developed.

In Chapter 4, Getting Fancier: Django Unit Test Extensions, we begin to write the
views that serve up web pages for the application. The number of tests is starting
to become significant, so this chapter begins by showing how to replace use of a
single tests.py file for tests with a tests directory, so that tests may be kept
well-organized. Then, tests for views are developed that illustrate how unit test
extensions provided by Django simplify the task of testing web applications. Testing
form behavior is demonstrated by development of a test for an admin customization
made in this chapter.

Chapter 5, Filling in the Blanks: Integrating Django and Other Test Tools, shows how
Django supports integration of other test tools into its framework. Two examples are
presented. The first illustrates how an add-on application can be used to generate
test coverage information while the second demonstrates how use of the twill test
tool (which allows for much easier testing of form behavior) can be integrated into
Django application tests.

Chapter 6, Django Debugging Overview, provides an introduction to the topic of
debugging Django applications. All of the settings relevant for debugging are
described. Debug error pages are introduced. The database query history
maintained by Django when debugging is turned on is described, as well as
features of the development server that aid in debugging. Finally, the handling
of errors that occur during production (when debug is off) is detailed, and all the
settings necessary to ensure that information about such errors is captured and sent
to the appropriate people are mentioned.

Preface

[�]

In Chapter 7, When the Wheels Fall Off: Understanding a Django Debug Page,
development of the sample application continues, making some typical mistakes
along the way. These mistakes result in Django debug pages. All of the information
available on these pages is described, and guidance on what pieces are likely most
helpful to look at in what situations is given. Several different kinds of debug pages
are encountered and discussed in depth.

Chapter 8, When Problems Hide: Getting More Information, focuses on how to get more
information about how code is behaving in cases where a problem doesn't result in
a debug error page. It walks through the development of a template tag to embed
the query history for a view in the rendered page, and then shows how the Django
debug toolbar can be used to get the same information, in addition to much more.
Finally, some logging utilities are developed.

Chapter 9, When You Don't Even Know What to Log: Using Debuggers, walks through
examples of using the Python debugger (pdb) to track down what is going wrong in
cases where no debug page appears and even logging isn't helpful. All of the most
useful pdb commands are illustrated by example. In addition, we see how pdb can
be used to ensure correct code behavior for code that is subject to multi-process
race conditions.

Chapter 10, When All Else Fails: Getting Outside Help, describes what to do when
none of the techniques covered so far have solved a problem. Possibly, it is a bug
in external code: tips are given on how to search to see if others have experienced
the same and if there are any fixes available. Possibly it's a bug in our code or a
misunderstanding about how some things work; avenues for asking questions
and tips on writing good questions are included.

In Chapter 11, When it's Time to Go Live: Moving to Production, we move the sample
application into production, using Apache and mod_wsgi instead of the development
server. Several of the most common problems encountered during this step are
covered. In addition, the option of using Apache with mod_wsgi during
development is discussed.

What you need for this book
You will need a computer running a Django 1.1 release—the latest 1.1.X release is
recommended. You will also need an editor to edit code files and a web browser.
You may choose to use whatever operating system, editing, and browsing tools
you are most comfortable with, so long as you choose an operating system that
can run Django. For more information on Django's requirements, consult
http://docs.djangoproject.com/en/1.1/intro/install/.

Preface

[�]

For your reference, the example console output and screenshots in this book are all
taken from a machine running:

Ubuntu 8.10
Python 2.5.2
Django 1.1 (early in the book) and 1.1.1 (later in the book)
Firefox 3.5.7

You can use any database supported by Django. For illustration purposes, different
databases (SQLite, MySQL, PostgreSQL) are used at different points in the book. You
will likely prefer to choose one to use throughout.

Additional software is used at specific points in the book. Wherever a software
package is introduced, notes on where to obtain it for installation are included.
For your reference, the following is a list of additional software packages and the
versions used in the book:

Chapter 5, Filling in the Blanks: Integrating Django and Other Test Tools, uses:
coverage 3.2
django_coverage 1.0.1
twill 0.9 (and latest development level)

Chapter 8, When Problems Hide: Getting More Information, uses:
django-debug-toolbar 0.8.0

Chapter 9, When You Don't Even Know What to Log: Using Debuggers, uses:
pygooglechart 0.2.0
matplotlib 0.98.3

Chapter 11, When it's Time to Go Live: Moving to Production, uses:
Apache 2.2
mod_wsgi 2.3
siege 2.6.6

Note that you do not need to have any of these additional packages installed when
you start working through this book, they can each be added at the specific point
where you want to start using them. The versions listed are those used for the output
shown in the book; it is expected that later versions will work as well, though the
output produced may be slightly different if you use a newer version.

•

•

•

•

•

°

°

°

•

°

•

°

°

•

°

°

°

Preface

[�]

Who this book is for
If you are a Django application developer who wants to create robust applications
quickly that work well and are easy to maintain in the long term, this book is for
you. This book is the right pick if you want to be smartly tutored to make best
use of Django's rich testing and debugging support and make development an
effortless task.

Basic knowledge of Python, Django, and the overall structure of a database-driven
web application is assumed. However, the code samples are fully explained so that
even beginners who are new to the area can learn a great deal from this book. If you
are new to Django, it is recommended that you work through the online Django
tutorial before beginning this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Now we have the basic skeleton of a
Django project and application: A settings.py file, a urls.py file, the manage.py
utility, and a survey directory containing .py files for models, views, and tests."

A block of code is set as follows:

__test__ = {"doctest": """
Another way to test that 1 + 1 is equal to 2.

>>> 1 + 1 == 2
True
"""}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

urlpatterns = patterns('',
 # Example:
 # (r'^marketr/', include('marketr.foo.urls')),

 # Uncomment the admin/doc line below and add
 # 'django.contrib.admindocs'
 # to INSTALLED_APPS to enable admin documentation:
 # (r'^admin/doc/', include('django.contrib.admindocs.urls')),

Preface

[�]

 # Uncomment the next line to enable the admin:
 (r'^admin/', include(admin.site.urls)),
 (r'', include('survey.urls')),
)

Any command-line input or output is written as follows:

kmt@lbox:/dj_projects$ django-admin.py startproject marketr

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "This
drop-down box contains a full list of the ticket attributes we could search on,
such as Reporter, Owner, Status, and Component."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Preface

[�]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/7566_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Django Testing Overview
How do you know when code you have written is working as intended? Well, you
test it. But how? For a web application, you can test the code by manually bringing
up the pages of your application in a web browser and verifying that they are
correct. This involves more than a quick glance to see whether they have the
correct content, as you must also ensure, for example, that all the links work and
that any forms work properly. As you can imagine, this sort of manual testing
quickly becomes impossible to rely on as an application grows beyond a few
simple pages. For any non-trivial application, automated testing is essential.

Automated testing of Django applications makes use of the fundamental test support
built-in to the Python language: doctests and unit tests. When you create a new
Django application with manage.py startapp, one of the generated files contains a
sample doctest and unit test, intended to jump-start your own test writing. In this
chapter, we will begin our study of testing Django applications. Specifically, we will:

Examine in detail the contents of the sample tests.py file, reviewing the
fundamentals of Python's test support as we do so
See how to use Django utilities to run the tests contained in tests.py
Learn how to interpret the output of the tests, both when the tests succeed
and when they fail
Review the effects of the various command-line options that can be used
when testing

•

•

•

•

Django Testing Overview

[10]

Getting started: Creating a new
application
Let's get started by creating a new Django project and application. Just so we have
something consistent to work with throughout this book, let's assume we are setting
out to create a new market-research type website. At this point, we don't need to
decide much about this site except some names for the Django project and at least
one application that it will include. As market_research is a bit long, let's shorten
that to marketr for the project name. We can use django-admin.py to create a new
Django project:

kmt@lbox:/dj_projects$ django-admin.py startproject marketr

Then, from within the new marketr directory, we can create a new Django
application using the manage.py utility. One of the core applications for our
market research project will be a survey application, so we will start by creating it:

kmt@lbox:/dj_projects/marketr$ python manage.py startapp survey

Now we have the basic skeleton of a Django project and application: a settings.py
file, a urls.py file, the manage.py utility, and a survey directory containing .py
files for models, views, and tests. There is nothing of substance placed in the
auto-generated models and views files, but in the tests.py file there are two
sample tests: one unit test and one doctest. We will examine each in detail next.

Understanding the sample unit test
The unit test is the first test contained in tests.py, which begins:

"""
This file demonstrates two different styles of tests (one doctest and
one unittest). These will both pass when you run "manage.py test".

Replace these with more appropriate tests for your application.
"""

from django.test import TestCase

class SimpleTest(TestCase):
 def test_basic_addition(self):
 """
 Tests that 1 + 1 always equals 2.
 """
 self.failUnlessEqual(1 + 1, 2)

Chapter 1

[11]

The unit test starts by importing TestCase from django.test. The django.test.
TestCase class is based on Python's unittest.TestCase, so it provides everything
from the underlying Python unittest.TestCase plus features useful for testing
Django applications. These Django extensions to unittest.TestCase will be
covered in detail in Chapter 3, Testing 1, 2, 3: Basic Unit Testing and Chapter 4, Getting
Fancier: Django Unit Test Extensions. The sample unit test here doesn't actually need
any of that support, but it does not hurt to base the sample test case on the Django
class anyway.

The sample unit test then declares a SimpleTest class based on Django's TestCase,
and defines a test method named test_basic_addition within that class. That
method contains a single statement:

self.failUnlessEqual(1 + 1, 2)

As you might expect, that statement will cause the test case to report a failure unless
the two provided arguments are equal. As coded, we'd expect that test to succeed.
We'll verify that later in this chapter, when we get to actually running the tests. But
first, let's take a closer look at the sample doctest.

Understanding the sample doctest
The doctest portion of the sample tests.py is:

__test__ = {"doctest": """
Another way to test that 1 + 1 is equal to 2.

>>> 1 + 1 == 2
True
"""}

That looks a bit more mysterious than the unit test half. For the sample doctest,
a special variable, __test__, is declared. This variable is set to be a dictionary
containing one key, doctest. This key is set to a string value that resembles a
docstring containing a comment followed by what looks like a snippet from an
interactive Python shell session.

The part that looks like an interactive Python shell session is what makes up the
doctest. That is, lines that start with >>> will be executed (minus the >>> prefix)
during the test, and the actual output produced will be compared to the expected
output found in the doctest below the line that starts with >>>. If any actual output
fails to match the expected output, the test fails. For this sample test, we would expect
entering 1 + 1 == 2 in an interactive Python shell session to result in the interpreter
producing the output True, so again it looks like this sample test should pass.

Django Testing Overview

[12]

Note that doctests do not have to be defined by using this special __test__
dictionary. In fact, Python's doctest test runner looks for doctests within all the
docstrings found in the file. In Python, a docstring is a string literal that is the first
statement in a module, function, class, or method definition. Given that, you'd expect
snippets from an interactive Python shell session found in the comment at the very
top of this tests.py file to also be run as a doctest. This is another thing we can
experiment with once we start running these tests, which we'll do next.

Running the sample tests
The comment at the top of the sample tests.py file states that the two tests: will
both pass when you run "manage.py test". So let's see what happens if we try that:

kmt@lbox:/dj_projects/marketr$ python manage.py test

Creating test database...

Traceback (most recent call last):

 File "manage.py", line 11, in <module>

 execute_manager(settings)

 File "/usr/lib/python2.5/site-packages/django/core/management/__init__
.py", line 362, in execute_manager

 utility.execute()

 File "/usr/lib/python2.5/site-packages/django/core/management/__init__
.py", line 303, in execute

 self.fetch_command(subcommand).run_from_argv(self.argv)

 File "/usr/lib/python2.5/site-packages/django/core/management/base.py",
line 195, in run_from_argv

 self.execute(*args, **options.__dict__)

 File "/usr/lib/python2.5/site-packages/django/core/management/base.py",
line 222, in execute

 output = self.handle(*args, **options)

 File "/usr/lib/python2.5/site-packages/django/core/management/commands/
test.py", line 23, in handle

 failures = test_runner(test_labels, verbosity=verbosity, interactive=
interactive)

 File "/usr/lib/python2.5/site-packages/django/test/simple.py", line
191, in run_tests

 connection.creation.create_test_db(verbosity, autoclobber=not
interactive)

 File "/usr/lib/python2.5/site-packages/django/db/backends/creation.py",
line 327, in create_test_db

Chapter 1

[13]

 test_database_name = self._create_test_db(verbosity, autoclobber)

 File "/usr/lib/python2.5/site-packages/django/db/backends/creation.py",
line 363, in _create_test_db

 cursor = self.connection.cursor()

 File "/usr/lib/python2.5/site-packages/django/db/backends/dummy/base.
py", line 15, in complain

 raise ImproperlyConfigured, "You haven't set the DATABASE_ENGINE
setting yet."

django.core.exceptions.ImproperlyConfigured: You haven't set the
DATABASE_ENGINE setting yet.

Oops, we seem to have gotten ahead of ourselves here. We created our new Django
project and application, but never edited the settings file to specify any database
information. Clearly we need to do that in order to run the tests.

But will the tests use the production database we specify in settings.py? That
could be worrisome, since we might at some point code something in our tests that
we wouldn't necessarily want to do to our production data. Fortunately, it's not a
problem. The Django test runner creates an entirely new database for running the
tests, uses it for the duration of the tests, and deletes it at the end of the test run. The
name of this database is test_ followed by DATABASE_NAME specified in settings.
py. So running tests will not interfere with production data.

In order to run the sample tests.py file, we need to first set appropriate values
for DATABASE_ENGINE, DATABASE_NAME, and whatever else may be required for the
database we are using in settings.py. Now would also be a good time to add our
survey application and django.contrib.admin to INSTALLED_APPS, as we will
need both of those as we proceed. Once those changes have been made to settings.
py, manage.py test works better:

kmt@lbox:/dj_projects/marketr$ python manage.py test

Creating test database...

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table django_admin_log

Installing index for auth.Permission model

Installing index for auth.Message model

Django Testing Overview

[14]

Installing index for admin.LogEntry model

...................................

--

Ran 35 tests in 2.012s

OK

Destroying test database...

That looks good. But what exactly got tested? Towards the end it says Ran 35 tests,
so there were certainly more tests run than the two tests in our simple tests.py file.
The other 33 tests are from the other applications listed by default in settings.py:
auth, content types, sessions, and sites. These Django "contrib" applications ship with
their own tests, and by default, manage.py test runs the tests for all applications
listed in INSTALLED_APPS.

Note that if you do not add django.contrib.admin to the
INSTALLED_APPS list in settings.py, then manage.py test may
report some test failures. With Django 1.1, some of the tests for django.
contrib.auth rely on django.contrib.admin also being included
in INSTALLED_APPS in order for the tests to pass. That inter-dependence
may be fixed in the future, but for now it is easiest to avoid the possible
errors by including django.contrib.admin in INTALLED_APPS from
the start. We will want to use it soon enough anyway.

It is possible to run just the tests for certain applications. To do this, specify the
application names on the command line. For example, to run only the survey
application tests:

kmt@lbox:/dj_projects/marketr$ python manage.py test survey

Creating test database...

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table django_admin_log

Installing index for auth.Permission model

Installing index for auth.Message model

Installing index for admin.LogEntry model

..

Chapter 1

[15]

--

Ran 2 tests in 0.039s

OK

Destroying test database...

There—Ran 2 tests looks right for our sample tests.py file. But what about all
those messages about tables being created and indexes being installed? Why were
the tables for these applications created when their tests were not going to be run?
The reason for this is that the test runner does not know what dependencies may
exist between the application(s) that are going to be tested and others listed in
INSTALLED_APPS that are not going to be tested.

For example, our survey application could have a model with a ForeignKey to the
django.contrib.auth User model, and tests for the survey application may rely
on being able to add and query User entries. This would not work if the test runner
neglected to create tables for the applications excluded from testing. Therefore, the
test runner creates the tables for all applications listed in INSTALLED_APPS, even
those for which tests are not going to be run.

We now know how to run tests, how to limit the testing to just the application(s)
we are interested in, and what a successful test run looks like. But, what about test
failures? We're likely to encounter a fair number of those in real work, so it would
be good to make sure we understand the test output when they occur. In the next
section, then, we will introduce some deliberate breakage so that we can explore
what failures look like and ensure that when we encounter real ones, we will
know how to properly interpret what the test run is reporting.

Breaking things on purpose
Let's start by introducing a single, simple failure. Change the unit test to expect that
adding 1 + 1 will result in 3 instead of 2. That is, change the single statement in the
unit test to be: self.failUnlessEqual(1 + 1, 3).

Now when we run the tests, we will get a failure:

kmt@lbox:/dj_projects/marketr$ python manage.py test

Creating test database...

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Django Testing Overview

[16]

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table django_admin_log

Installing index for auth.Permission model

Installing index for auth.Message model

Installing index for admin.LogEntry model

...........................F.......

==

FAIL: test_basic_addition (survey.tests.SimpleTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests.py", line 15, in test_basic_
addition

 self.failUnlessEqual(1 + 1, 3)

AssertionError: 2 != 3

--

Ran 35 tests in 2.759s

FAILED (failures=1)

Destroying test database...

That looks pretty straightforward. The failure has produced a block of output
starting with a line of equal signs and then the specifics of the test that has failed.
The failing method is identified, as well as the class containing it. There is a
Traceback that shows the exact line of code that has generated the failure,
and the AssertionError shows details of the cause of the failure.

Notice the line above the equal signs—it contains a bunch of dots and one F. What
does that mean? This is a line we overlooked in the earlier test output listings. If you
go back and look at them now, you'll see there has always been a line with some
number of dots after the last Installing index message. This line is generated as
the tests are run, and what is printed depends on the test results. F means a test has
failed, dot means a test passed. When there are enough tests that they take a while
to run, this real-time progress update can be useful to get a sense of how the run is
going while it is in progress.

Finally at the end of the test output, we see FAILED (failures=1) instead of the OK
we had seen previously. Any test failures make the overall test run outcome a failure
instead of a success.

Chapter 1

[17]

Next, let's see what a failing doctest looks like. If we restore the unit test back to its
original form and change the doctest to expect the Python interpreter to respond
True to 1 + 1 == 3, running the tests (restricting the tests to only the survey
application this time) will then produce this output:

kmt@lbox:/dj_projects/marketr$ python manage.py test survey

Creating test database...

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table django_admin_log

Installing index for auth.Permission model

Installing index for auth.Message model

Installing index for admin.LogEntry model

.F

==

FAIL: Doctest: survey.tests.__test__.doctest

--

Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py", line
2180, in runTest

 raise self.failureException(self.format_failure(new.getvalue()))

AssertionError: Failed doctest test for survey.tests.__test__.doctest

 File "/dj_projects/marketr/survey/tests.py", line unknown line number,
in doctest

--

File "/dj_projects/marketr/survey/tests.py", line ?, in survey.tests.__
test__.doctest

Failed example:

 1 + 1 == 3

Expected:

 True

Got:

Django Testing Overview

[18]

 False

--

Ran 2 tests in 0.054s

FAILED (failures=1)

Destroying test database...

The output from the failing doctest is a little more verbose and a bit less
straightforward to interpret than the unit test failure. The failing doctest is identified
as survey.tests.__test__.doctest—this means the key doctest in the __test__
dictionary defined within the survey/tests.py file. The Traceback portion of the
output is not as useful as it was in the unit test case as the AssertionError simply
notes that the doctest failed. Fortunately, details of what caused the failure are then
provided, and you can see the content of the line that caused the failure, what output
was expected, and what output was actually produced by executing the failing line.

Note, though, that the test runner does not pinpoint the line number within tests.
py where the failure occurred. It reports unknown line number and line ? in
different portions of the output. Is this a general problem with doctests or perhaps a
result of the way in which this particular doctest is defined, as part of the __test__
dictionary? We can answer that question by putting a test in the docstring at the top
of tests.py. Let's restore the sample doctest to its original state and change the top
of the file to look like this:

"""

This file demonstrates two different styles of tests (one doctest and
one unittest). These will both pass when you run "manage.py test".

Replace these with more appropriate tests for your application.

>>> 1 + 1 == 3

True

"""

Then when we run the tests we get:
kmt@lbox:/dj_projects/marketr$ python manage.py test survey

Creating test database...

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Chapter 1

[19]

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table django_admin_log

Installing index for auth.Permission model

Installing index for auth.Message model

Installing index for admin.LogEntry model

.F.

==

FAIL: Doctest: survey.tests

--

Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py", line
2180, in runTest

 raise self.failureException(self.format_failure(new.getvalue()))

AssertionError: Failed doctest test for survey.tests

 File "/dj_projects/marketr/survey/tests.py", line 0, in tests

--

File "/dj_projects/marketr/survey/tests.py", line 7, in survey.tests

Failed example:

 1 + 1 == 3

Expected:

 True

Got:

 False

--

Ran 3 tests in 0.052s

FAILED (failures=1)

Destroying test database...

Django Testing Overview

[20]

Here line numbers are provided. The Traceback portion apparently identifies the
line above the line where the docstring containing the failing test line begins (the
docstring starts on line 1 while the traceback reports line 0). The detailed failure
output identifies the actual line in the file that causes the failure, in this case line 7.

The inability to pinpoint line numbers is thus a side-effect of defining the doctest
within the __test__ dictionary. While it doesn't cause much of a problem here, as it
is trivial to see what line is causing the problem in our simple test, it's something to
keep in mind when writing more substantial doctests to be placed in the __test__
dictionary. If multiple lines in the test are identical and one of them causes a failure,
it may be difficult to identify which exact line is causing the problem, as the failure
output won't identify the specific line number where the failure occurred.

So far all of the mistakes we have introduced into the sample tests have involved
expected output not matching actual results. These are reported as test failures.
In addition to test failures, we may sometimes encounter test errors. These are
described next.

Test errors versus test failures
To see what a test error looks like, let's remove the failing doctest introduced in the
previous section and introduce a different kind of mistake into our sample unit test.
Let's assume that instead of wanting to test that 1 + 1 equals the literal 2, we want to
test that it equals the result of a function, sum_args, that is supposed to return the
sum of its arguments. But we're going to make a mistake and forget to import that
function. So change self.failUnlessEqual to:

self.failUnlessEqual(1 + 1, sum_args(1, 1))

Now when the tests are run we see:

kmt@lbox:/dj_projects/marketr$ python manage.py test survey

Creating test database...

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table django_admin_log

Installing index for auth.Permission model

Installing index for auth.Message model

Chapter 1

[21]

Installing index for admin.LogEntry model

E.

==

ERROR: test_basic_addition (survey.tests.SimpleTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests.py", line 15, in test_basic_
addition

 self.failUnlessEqual(1 + 1, sum_args(1, 1))

NameError: global name 'sum_args' is not defined

--

Ran 2 tests in 0.041s

FAILED (errors=1)

Destroying test database...

The test runner encountered an exception before it even got to the point where it
could compare 1 + 1 to the return value of sum_args, as sum_args was not imported.
In this case, the error is in the test itself, but it would still have been reported as an
error, not a failure, if the code in sum_args was what caused a problem. Failures
mean actual results didn't match what was expected, whereas errors mean some
other problem (exception) was encountered during the test run. Errors may imply
a mistake in the test itself, but don't necessarily have to imply that.

Note that a similar error made in a doctest is reported as a failure, not an error. For
example, we can change the doctest 1 + 1 line to:

>>> 1 + 1 == sum_args(1, 1)

If we then run the tests, the output will be:

kmt@lbox:/dj_projects/marketr$ python manage.py test survey

Creating test database...

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Django Testing Overview

[22]

Creating table django_site

Creating table django_admin_log

Installing index for auth.Permission model

Installing index for auth.Message model

Installing index for admin.LogEntry model

EF

==

ERROR: test_basic_addition (survey.tests.SimpleTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests.py", line 15, in test_basic_
addition

 self.failUnlessEqual(1 + 1, sum_args(1, 1))

NameError: global name 'sum_args' is not defined

==

FAIL: Doctest: survey.tests.__test__.doctest

--

Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py", line
2180, in runTest

 raise self.failureException(self.format_failure(new.getvalue()))

AssertionError: Failed doctest test for survey.tests.__test__.doctest

 File "/dj_projects/marketr/survey/tests.py", line unknown line number,
in doctest

--

File "/dj_projects/marketr/survey/tests.py", line ?, in survey.tests.__
test__.doctest

Failed example:

 1 + 1 == sum_args(1, 1)

Exception raised:

 Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py",
line 1267, in __run

 compileflags, 1) in test.globs

 File "<doctest survey.tests.__test__.doctest[0]>", line 1, in
<module>

Chapter 1

[23]

 1 + 1 == sum_args(1, 1)

 NameError: name 'sum_args' is not defined

--

Ran 2 tests in 0.044s

FAILED (failures=1, errors=1)

Destroying test database...

Thus, the error versus failure distinction made for unit tests does not necessarily
apply to doctests. So, if your tests include doctests, the summary of failure and
error counts printed at the end doesn't necessarily reflect how many tests produced
unexpected results (unit test failure count) or had some other error (unit test error
count). However, in any case, neither failures nor errors are desired. The ultimate
goal is to have zero for both, so if the difference between them is a bit fuzzy at
times that's not such a big deal. It can be useful though, to understand under
what circumstances one is reported instead of the other.

We have now seen how to run tests, and what the results look like for both overall
success and a few failures and errors. Next we will examine the various command
line options supported by the manage.py test command.

Command line options for running tests
Beyond specifying the exact applications to test on the command line, what other
options are there for controlling the behavior of manage.py test? The easiest way
to find out is to try running the command with the option --help:

kmt@lbox:/dj_projects/marketr$ python manage.py test --help

Usage: manage.py test [options] [appname ...]

Runs the test suite for the specified applications, or the entire site if
no apps are specified.

Options:

 -v VERBOSITY, --verbosity=VERBOSITY

 Verbosity level; 0=minimal output, 1=normal output,

 2=all output

Django Testing Overview

[24]

 --settings=SETTINGS The Python path to a settings module, e.g.

 "myproject.settings.main". If this isn't
 provided, the

 DJANGO_SETTINGS_MODULE environment variable will

 be used.

 --pythonpath=PYTHONPATH

 A directory to add to the Python path, e.g.

 "/home/djangoprojects/myproject".

 --traceback Print traceback on exception

 --noinput Tells Django to NOT prompt the user for input of

 any kind.

 --version show program's version number and exit

 -h, --help show this help message and exit

Let's consider each of these in turn (excepting help, as we've already seen what
it does):

Verbosity
Verbosity is a numeric value between 0 and 2. It controls how much output the
tests produce. The default value is 1, so the output we have seen so far corresponds
to specifying -v 1 or --verbosity=1. Setting verbosity to 0 suppresses all of the
messages about creating the test database and tables, but not summary, failure, or
error information. If we correct the last doctest failure introduced in the previous
section and re-run the tests specifying -v0, we will see:

kmt@lbox:/dj_projects/marketr$ python manage.py test survey -v0

==

ERROR: test_basic_addition (survey.tests.SimpleTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests.py", line 15, in test_basic_
addition

 self.failUnlessEqual(1 + 1, sum_args(1, 1))

NameError: global name 'sum_args' is not defined

--

Ran 2 tests in 0.008s

FAILED (errors=1)

Chapter 1

[25]

Setting verbosity to 2 produces a great deal more output. If we fix this remaining
error and run the tests with verbosity set to its highest level, we will see:

kmt@lbox:/dj_projects/marketr$ python manage.py test survey --verbosity=2

Creating test database...

Processing auth.Permission model

Creating table auth_permission

Processing auth.Group model

Creating table auth_group

[...more snipped...]

Creating many-to-many tables for auth.Group model

Creating many-to-many tables for auth.User model

Running post-sync handlers for application auth

Adding permission 'auth | permission | Can add permission'

Adding permission 'auth | permission | Can change permission'

[...more snipped...]

No custom SQL for auth.Permission model

No custom SQL for auth.Group model

[...more snipped...]

Installing index for auth.Permission model

Installing index for auth.Message model

Installing index for admin.LogEntry model

Loading 'initial_data' fixtures...

Checking '/usr/lib/python2.5/site-packages/django/contrib/auth/fixtures'
for fixtures...

Trying '/usr/lib/python2.5/site-packages/django/contrib/auth/fixtures'
for initial_data.xml fixture 'initial_data'...

No xml fixture 'initial_data' in '/usr/lib/python2.5/site-packages/
django/contrib/auth/fixtures'.

[....much more snipped...]

Django Testing Overview

[26]

No fixtures found.

test_basic_addition (survey.tests.SimpleTest) ... ok

Doctest: survey.tests.__test__.doctest ... ok

--

Ran 2 tests in 0.004s

OK

Destroying test database...

As you can see, at this level of verbosity the command reports in excruciating
detail all of what it is doing to set up the test database. In addition to the creation of
database tables and indexes that we saw earlier, we now see that the database setup
phase includes:

1.	 Running post-syncdb signal handlers. The django.contrib.auth
application, for example, uses this signal to automatically add permissions
for models as each application is installed. Thus you see messages about
permissions being created as the post-syncdb signal is sent for each
application listed in INSTALLED_APPS.

2.	 Running custom SQL for each model that has been created in the database.
Based on the output, it does not look like any of the applications in
INSTALLED_APPS use custom SQL.

3.	 Loading initial_data fixtures. Initial data fixtures are a way to
automatically pre-populate the database with some constant data. None of
the applications we have listed in INSTALLED_APPS make use of this feature,
but a great deal of output is produced as the test runner looks for initial data
fixtures, which may be found under any of several different names. There are
messages for each possible file that is checked and for whether anything was
found. This output might come in handy at some point if we run into trouble
with the test runner finding an initial data fixture (we'll cover fixtures in
detail in Chapter 3), but for now this output is not very interesting.

Once the test runner finishes initializing the database, it settles down to running
the tests. At verbosity level 2, the line of dots, Fs, and Es we saw previously is
replaced by a more detailed report of each test as it is run. The name of the test is
printed, followed by three dots, then the test result, which will either be ok, ERROR,
or FAIL. If there are any errors or failures, the detailed information about why they
occurred will be printed at the end of the test run. So as you watch a long test run
proceeding with verbosity set to 2, you will be able to see what tests are running into
problems, but you will not get the details of the reasons why they occurred until the
run completes.

Chapter 1

[27]

Settings
You can pass the settings option to the test command to specify a settings file to use
instead of the project default one. This can come in handy if you want to run tests
using a database that's different from the one you normally use (either for speed of
testing or to verify your code runs correctly on different databases), for example.

Note the help text for this option states that the DJANGO_SETTINGS_MODULE
environment variable will be used to locate the settings file if the settings option is
not specified on the command line. This is only accurate when the test command
is being run via the django-admin.py utility. When using manage.py test, the
manage.py utility takes care of setting this environment variable to specify the
settings.py file in the current directory.

Pythonpath
This option allows you to append an additional directory to the Python path used
during the test run. It's primarily of use when using django-admin.py, where it is
often necessary to add the project path to the standard Python path. The manage.py
utility takes care of adding the project path to the Python path, so this option is not
generally needed when using manage.py test.

Traceback
This option is not actually used by the test command. It is inherited as one of the
default options supported by all django-admin.py (and manage.py) commands,
but the test command never checks for it. Thus you can specify it, but it will have
no effect.

Noinput
This option causes the test runner to not prompt for user input, which raises the
question: When would the test runner require user input? We haven't encountered
that so far. The test runner prompts for input during the test database creation if a
database with the test database name already exists. For example, if you hit Ctrl + C
during a test run, the test database may not be destroyed and you may encounter a
message like this the next time you attempt to run tests:
kmt@lbox:/dj_projects/marketr$ python manage.py test

Creating test database...

Got an error creating the test database: (1007, "Can't create database
'test_marketr'; database exists")

Type 'yes' if you would like to try deleting the test database 'test_
marketr', or 'no' to cancel:

Django Testing Overview

[28]

If --noinput is passed on the command line, the prompt is not printed and the test
runner proceeds as if the user had entered 'yes' in response. This is useful if you
want to run the tests from an unattended script and ensure that the script does not
hang while waiting for user input that will never be entered.

Version
This option reports the version of Django in use and then exits. Thus when using
--version with manage.py or django-admin.py, you do not actually need to
specify a subcommand such as test. In fact, due to a bug in the way Django
processes command options, at the time of writing this book, if you do specify
both --version and a subcommand, the version will get printed twice. That will
likely get fixed at some point.

Summary
The overview of Django testing is now complete. In this chapter, we:

Looked in detail at the sample tests.py file generated when a new Django
application is created
Learned how to run the provided sample tests
Experimented with introducing deliberate mistakes into the tests in order
to see and understand what information is provided when tests fail or
encounter errors
Finally, we examined all of the command line options that may be used with
manage.py test

We will continue to build on this knowledge in the next chapter, as we focus on
doctests in depth.

•

•

•

•

Does This Code Work?
Doctests in Depth

In the first chapter, we learned how to run the sample tests created by manage.py
startapp. Although we used a Django utility to run the tests, there was nothing
specific to Django about the sample tests themselves. In this chapter, we will start
getting into details of how to write tests for a Django application. We will:

Begin writing the market research project created in the first chapter by
developing some basic models that will be used by the project
Experiment with adding doctests to one of the models
Begin to learn the kinds of tests that are useful, and the kinds that just add
clutter to the code
Discover some of the advantages and disadvantages of doctests

While the previous chapter mentioned both doctests and unit tests, the focus for this
chapter will be on doctests exclusively. Developing unit tests for Django applications
will be the focus of Chapter 3, Testing 1, 2, 3: Basic Unit Testing and Chapter 4, Getting
Fancier: Django Unit Test Extensions.

The Survey application models
A common place to start development of a new Django application is with the
models: the basic building blocks of data that are going to be manipulated and stored
by the application. A cornerstone model for our example market research survey
application will be the Survey model.

•

•

•

•

Does This Code Work? Doctests in Depth

[30]

A Survey is going to be similar to the Django tutorial Poll model, except that:

Where the tutorial Poll only contains one question, a Survey will have
multiple questions.
A Survey will have a title for reference purposes. For the tutorial Poll, a
single question could be used for this.
A Survey will only be open for responses for a limited (and variable,
depending on the Survey instance) time. While the Poll model has a
pub_date field, it is not used for anything other than ordering Polls on the
index page. Thus, Survey will need two date fields where Poll has only one,
and the Survey date fields will be used more than the Poll pub_date field
is used.

Given just these few simple requirements for Survey, we can start developing a
Django model for it. Specifically, we can capture those requirements in code by
adding the following to the auto-generated models.py file for our survey application:

class Survey(models.Model):
 title = models.CharField(max_length=60)
 opens = models.DateField()
 closes = models.DateField()

Note that since a Survey may have several questions, it does not have a question
field. Instead there is a separate model, Question, to hold questions along with the
Survey instance they are related to:

class Question(models.Model):
 question = models.CharField(max_length=200)
 survey = models.ForeignKey(Survey)

The final model we need (at least to start with) is one to hold the possible answers
to each question, and to track how many times each answer is chosen by a survey
respondent. This model, Answer, is much like the tutorial Choice model, except it is
related to a Question, not a Poll:

class Answer(models.Model):
 answer = models.CharField(max_length=200)
 question = models.ForeignKey(Question)
 votes = models.IntegerField(default=0)

•

•

•

Chapter 2

[31]

Testing the Survey model
If you are at all like me, at this point you might want to start verifying that what
you've got so far is correct. True, there is not much code yet, but particularly when
just starting out on a project I like to make sure, early and often, that what I've got
so far is valid. So, how do we start testing at this point? First, we can verify that
we've got no syntax errors by running manage.py syncdb, which will also let us start
experimenting with these models in a Python shell. Let's do that. Since this is the first
time we've run syncdb for this project, we'll get messages about creating tables for
the other applications listed in INSTALLED_APPS, and we'll be asked if we want to
create a superuser, which we may as well go ahead and do also.

Testing Survey model creation
Now, what might we do with these models to test them in a Python shell? Really,
not much beyond creating each, perhaps verifying that if we don't specify one of the
fields we get an error, or the correct default value is assigned, and verifying whether
we can traverse the relationships between the models. If we focus first on the Survey
model and what we might do in order to test the creation of it, a Python shell session
for that might look something like this:

kmt@lbox:/dj_projects/marketr$ python manage.py shell

Python 2.5.2 (r252:60911, Oct 5 2008, 19:24:49)

[GCC 4.3.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

(InteractiveConsole)

>>> from survey.models import Survey

>>> import datetime

>>> t = 'First!'

>>> d = datetime.date.today()

>>> s = Survey.objects.create(title=t, opens=d, closes=d)

>>>

Here we started by importing our Survey model and the Python datetime module,
then created a variable t to hold a title string and a variable d to hold a date value,
and used those values to create a Survey instance. No error was reported, so that
looks good.

Does This Code Work? Doctests in Depth

[32]

If we then wanted to verify whether we'd get an error if we tried to create a Survey
with no close date, we would proceed with:

>>> s = Survey.objects.create(title=t, opens=d, closes=None)

 File "<console>", line 1, in <module>

 File "/usr/lib/python2.5/site-packages/django/db/models/manager.py",
line 126, in create

 return self.get_query_set().create(**kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py", line
315, in create

 obj.save(force_insert=True)

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py", line
410, in save

 self.save_base(force_insert=force_insert, force_update=force_update)

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py", line
495, in save_base

 result = manager._insert(values, return_id=update_pk)

 File "/usr/lib/python2.5/site-packages/django/db/models/manager.py",
line 177, in _insert

 return insert_query(self.model, values, **kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py", line
1087, in insert_query

 return query.execute_sql(return_id)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/subqueries.
py", line 320, in execute_sql

 cursor = super(InsertQuery, self).execute_sql(None)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/query.py",
line 2369, in execute_sql

 cursor.execute(sql, params)

 File "/usr/lib/python2.5/site-packages/django/db/backends/util.py",
line 19, in execute

 return self.cursor.execute(sql, params)

 File "/usr/lib/python2.5/site-packages/django/db/backends/sqlite3/base.
py", line 193, in execute

 return Database.Cursor.execute(self, query, params)

IntegrityError: survey_survey.closes may not be NULL

Chapter 2

[33]

Here all we did differently with the Survey instance creation attempt was specify
None for the closes value instead of passing in our date variable d. The result was
an error ending in a message reporting an IntegrityError, since the closes column
of the survey table cannot be null. This confirms our expectation of what should
happen, so all is good so far. We could then perform similar tests for the other fields,
and see identical tracebacks reporting an IntegrityError for the other columns.

If we wanted to, we could then make these tests a permanent part of our model
definition by cutting-and-pasting them from our shell session directly in our
survey/models.py file, like so:

import datetime
from django.db import models

class Survey(models.Model):
 """
 >>> t = 'First!'
 >>> d = datetime.date.today()
 >>> s = Survey.objects.create(title=t, opens=d, closes=d)
 >>> s = Survey.objects.create(title=t, opens=d, closes=None)
 Traceback (most recent call last):
 ...
 IntegrityError: survey_survey.closes may not be NULL
 >>> s = Survey.objects.create(title=t, opens=None, closes=d)
 Traceback (most recent call last):
 ...
 IntegrityError: survey_survey.opens may not be NULL
 >>> s = Survey.objects.create(title=None, opens=d, closes=d)
 Traceback (most recent call last):
 ...
 IntegrityError: survey_survey.title may not be NULL
 """
 title = models.CharField(max_length=60)
 opens = models.DateField()
 closes = models.DateField()

You probably noticed that the results shown are not a direct cut-and-paste from the
shell session. Differences include:

The import datetime was moved out of the doctest and made part of the
code in the models.py file. This wasn't strictly necessary—it would have
worked fine as part of the doctest, but it is not necessary in the doctest if
the import is in the main code. As the code in models.py will likely need to
use datetime functions later on, putting the import in the main code now
reduces duplication and clutter later, when the main code needs the import.

•

Does This Code Work? Doctests in Depth

[34]

The call stack portion of the tracebacks, that is everything except the first
and last lines, were removed and replaced with lines containing three dots.
This too was not strictly necessary and was done simply to remove clutter
and highlight the important bits of the result. The doctest runner ignores the
contents of the call stack (if present in the expected output) when deciding on
test success or failure. So you can leave a call stack in the test if it has some
explanatory value. However, for the most part, it is best to remove call
stacks since they produce a lot of clutter without providing much in the
way of useful information.

If we now run manage.py test survey -v2, the tail end of the output will be:

No fixtures found.

test_basic_addition (survey.tests.SimpleTest) ... ok

Doctest: survey.models.Survey ... ok

Doctest: survey.tests.__test__.doctest ... ok

--

Ran 3 tests in 0.030s

OK

Destroying test database...

We've still got our sample tests in tests.py running, and now we can also see our
survey.models.Survey doctest listed as being run, and passing.

Is that test useful?
But wait; is that test we just added useful? What is it actually testing? Nothing really,
beyond verifying that basic Django functions work as advertised. It tests whether
we can create an instance of a model we've defined, and that the fields we specified
as required in the model definition are in fact required in the associated database
table. It seems that this test is testing the underlying Django code more than our
application. Testing Django itself is not necessary in our application: Django has its
own test suite we can run if we want to test it (though it is pretty safe to assume basic
functions work correctly in any released version of Django).

It could be argued that this test validates that the correct and intended options have
been specified for each field in the model, and so it is a test of the application and
not just the underlying Django functions. However, testing things that are obvious
by inspection (to anyone with a basic knowledge of Django) strikes me as going a bit
overboard. This is not a test I would generally include in a project I was writing.

•

Chapter 2

[35]

That is not to say I would not try out things like this in a Python shell during
development: I would, and I do. But not everything experimented with in the shell
during development needs to become a permanent test in the application. The kinds
of tests you want to include in the application are those that exercise behavior that is
unique to the application. So let's start developing some survey application code and
experiment with testing it in the Python shell. When we have the code working, we
can assess what tests from the shell session are useful to keep.

Developing a custom Survey save method
To begin writing some application-specific code, consider that for the Survey model
we may want to allow for the closes field to assume a default value of a week after
opens, if closes is not specified when the model instance is created. We cannot use the
Django model field default option for this, as the value we want to assign is dependent
on another field in the model. Therefore, we would typically do this by overriding the
model's save method. A first attempt at implementing this might be:

import datetime
from django.db import models

class Survey(models.Model):
 title = models.CharField(max_length=60)
 opens = models.DateField()
 closes = models.DateField()

 def save(self, **kwargs):
 if not self.pk and not self.closes:
 self.closes = self.opens + datetime.timedelta(7)
 super(Survey, self).save(**kwargs)

That is, in the case where save is called and the model instance does not have a
primary key assigned yet (and so this is the first save to the database), and closes
has not been specified, we assign closes a value that is a week later than opens
before calling the superclass save method. We could then test if this works properly
by experimenting in a Python shell:

kmt@lbox:/dj_projects/marketr$ python manage.py shell

Python 2.5.2 (r252:60911, Oct 5 2008, 19:24:49)

[GCC 4.3.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

(InteractiveConsole)

>>> from survey.models import Survey

>>> import datetime

Does This Code Work? Doctests in Depth

[36]

>>> t = "New Year's Resolutions"

>>> sd = datetime.date(2009, 12, 28)

>>> s = Survey.objects.create(title=t, opens=sd)

>>> s.closes

datetime.date(2010, 1, 4)

>>>

This is very similar to our earlier tests except we chose a specific date to assign to
opens rather than using today's date, and after creating the Survey instance without
specifying a value for closes, we checked the value that was assigned to it. The
value displayed is a week later than opens, so that looks good.

Note the choice of an opens date where the week-later value would be in the next
month and year was deliberate. Testing boundary values is always a good idea and
a good habit to get into, even when (as here) there is nothing in the code we are
writing that is responsible for getting the answer right for the boundary case.

Next we might want to make sure that if we do specify a value for closes, it is
honored and not overridden by a week-later default date:

>>> s = Survey.objects.create(title=t, opens=sd, closes=sd)

>>> s.opens

datetime.date(2009, 12, 28)

>>> s.closes

datetime.date(2009, 12, 28)

>>>

All looks good there, opens and closes are displayed as having the same value, as
we specified on the create call. We can also verify that if we reset closes to None
after the model has already been saved, and try to save again, we'll get an error.
Resetting closes to None on an existing model instance would be an error in the
code that does that. So what we are testing here is that our save method override
does not hide that error by quietly re-assigning a value to closes. In our shell
session, we proceed like so and see:

>>> s.closes = None

>>> s.save()

Traceback (most recent call last):

 File "<console>", line 1, in <module>

 File "/dj_projects/marketr/survey/models.py", line 12, in save

 super(Survey, self).save(**kwargs)

Chapter 2

[37]

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py", line
410, in save

 self.save_base(force_insert=force_insert, force_update=force_update)

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py", line
474, in save_base

 rows = manager.filter(pk=pk_val)._update(values)

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py", line
444, in _update

 return query.execute_sql(None)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/subqueries.
py", line 120, in execute_sql

 cursor = super(UpdateQuery, self).execute_sql(result_type)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/query.py",
line 2369, in execute_sql

 cursor.execute(sql, params)

 File "/usr/lib/python2.5/site-packages/django/db/backends/util.py",
line 19, in execute

 return self.cursor.execute(sql, params)

 File "/usr/lib/python2.5/site-packages/django/db/backends/sqlite3/base.
py", line 193, in execute

 return Database.Cursor.execute(self, query, params)

IntegrityError: survey_survey.closes may not be NULL

>>>

Again, that looks good since it is the result we expect. Finally, since we have inserted
some of our own code into the basic model save processing, we should verify that we
have not broken anything for the other expected failure cases where no title or no
opens field is specified on create. If we do that, we will see that the case of no title
specified works correctly (we get the expected IntegrityError on the database title
column), but if neither opens nor closes is specified we get an unexpected error:

>>> s = Survey.objects.create(title=t)

Traceback (most recent call last):

 File "<console>", line 1, in <module>

 File "/usr/lib/python2.5/site-packages/django/db/models/manager.py",
line 126, in create

 return self.get_query_set().create(**kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py", line
315, in create

 obj.save(force_insert=True)

Does This Code Work? Doctests in Depth

[38]

 File "/dj_projects/marketr/survey/models.py", line 11, in save

 self.closes = self.opens + datetime.timedelta(7)

TypeError: unsupported operand type(s) for +: 'NoneType' and 'datetime.
timedelta'

>>>

Here we have traded a reasonably clear error message reporting that we have left
a required value unspecified for a rather more obscure message complaining about
unsupported operand types—that's not good. The problem is we did not check if
opens had a value before attempting to use it in our save method override. In order
to get the correct (clearer) error for this case, our save method should be modified to
look like this:

 def save(self, **kwargs):
 if not self.pk and self.opens and not self.closes:
 self.closes = self.opens + datetime.timedelta(7)
 super(Survey, self).save(**kwargs)

That is, we should not attempt to set closes if opens has not been specified. Rather,
in this case we forward the save call directly to the superclass and let the normal
error path report the problem. Then, when we try to create a Survey without
specifying an opens or closes value, we will see:

>>> s = Survey.objects.create(title=t)

Traceback (most recent call last):

 File "<console>", line 1, in <module>

 File "/usr/lib/python2.5/site-packages/django/db/models/manager.py",
line 126, in create

 return self.get_query_set().create(**kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py", line
315, in create

 obj.save(force_insert=True)

 File "/dj_projects/marketr/survey/models.py", line 12, in save

 super(Survey, self).save(**kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py", line
410, in save

 self.save_base(force_insert=force_insert, force_update=force_update)

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py", line
495, in save_base

 result = manager._insert(values, return_id=update_pk)

 File "/usr/lib/python2.5/site-packages/django/db/models/manager.py",
line 177, in _insert

Chapter 2

[39]

 return insert_query(self.model, values, **kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py", line
1087, in insert_query

 return query.execute_sql(return_id)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/subqueries.
py", line 320, in execute_sql

 cursor = super(InsertQuery, self).execute_sql(None)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/query.py",
line 2369, in execute_sql

 cursor.execute(sql, params)

 File "/usr/lib/python2.5/site-packages/django/db/backends/util.py",
line 19, in execute

 return self.cursor.execute(sql, params)

 File "/usr/lib/python2.5/site-packages/django/db/backends/sqlite3/base.
py", line 193, in execute

 return Database.Cursor.execute(self, query, params)

IntegrityError: survey_survey.opens may not be NULL

>>>

That is much better, since the reported error directly indicates what the problem is.

Deciding what to test
At this point we are reasonably certain our save override is working the way we
intended. Of all the tests we ran in the Python shell for verification purposes, which
ones make sense to include in the code permanently? The answer to that question
involves a judgment call, and reasonable people may have different answers.
Personally, I would tend to include:

All tests involving the parameter(s) directly affected by the code
Any tests that I ran across while doing initial testing of the code that did not
work in the original version of the code I had written

So, my save override function, including doctests with comments to explain them,
might look something like this:

 def save(self, **kwargs):
 """
 save override to allow for Survey instances to be created
 without explicitly specifying a closes date. If not
 specified, closes will be set to 7 days after opens.

•

•

Does This Code Work? Doctests in Depth

[40]

 >>> t = "New Year's Resolutions"
 >>> sd = datetime.date(2009, 12, 28)
 >>> s = Survey.objects.create(title=t, opens=sd)
 >>> s.closes
 datetime.date(2010, 1, 4)

 If closes is specified, it will be honored and not auto-set.

 >>> s = Survey.objects.create(title=t, opens=sd, closes=sd)
 >>> s.closes
 datetime.date(2009, 12, 28)

 Any changes to closes after initial creation need to be
 explicit. Changing closes to None on an existing instance will
 not result in closes being reset to 7 days after opens.

 >>> s.closes = None
 >>> s.save()
 Traceback (most recent call last):
 ...
 IntegrityError: survey_survey.closes may not be NULL

 Making the mistake of specifying neither opens nor closes
 results in the expected IntegrityError for opens, not any
 exception in the code here.

 >>> s = Survey.objects.create(title=t)
 Traceback (most recent call last):
 ...
 IntegrityError: survey_survey.opens may not be NULL
 """
 if not self.pk and self.opens and not self.closes:
 self.closes = self.opens + datetime.timedelta(7)
 super(Survey, self).save(**kwargs)

Some pros and cons of doctests so far
Even with the experience of just this one example method we have studied, we can
begin to see some of the pros and cons of doctests. Clearly, it is easy to re-use work
done in Python shell sessions (work that is likely already being done as part of
coding) for permanent test purposes. This makes it both more likely that tests will
be written for the code, and that the tests themselves will not need to be debugged.
Those are two nice advantages of doctests.

Chapter 2

[41]

A third is that doctests provide unambiguous documentation of how the code is
expected to behave. Prose descriptions can be fuzzy while code examples in the
form of tests are impossible to misinterpret. Furthermore, the fact that the tests are
part of the docstrings makes them accessible to all Python tools that use docstrings
to auto-generate help and documentation.

Including tests here helps to make this documentation complete. For example, the
behavior after resetting closes to None is one where the intended behavior might
not be obvious—an equally valid design would have been to say that in this case
closes would be reset to a week-later date during save. This sort of detail can
easily be forgotten when writing documentation. Thus having the intended
behavior spelled out in a doctest is helpful, as it is then automatically documented.

However, this tests-doubling-as-documentation feature also has a down side:
some of the testing you may want to include may not really be appropriate
as documentation, and you may wind up with an overwhelming amount of
documentation for rather simple code. Consider the save override case we
developed. It has four lines of code and a more than 30 line docstring. That ratio may
be appropriate for some complicated functions with many parameters, or parameters
that interact in non-obvious ways, but nearly ten times as much documentation as
code seems excessive for this straightforward method.

Let's consider the individual tests in save, focusing on their usefulness as
documentation:

The first test, which shows creating a Survey with title and opens but
no closes, and verifies that the correct value is assigned to closes after
creation, is an example of what the save override allows a caller to do. This is
the specific call pattern enabled by the added code, and is therefore useful as
documentation, even though it largely duplicates the prose description.
The second test, which shows that closes is honored if specified, is not
particularly useful as documentation. Any programmer would expect that if
closes is specified, it should be honored. This behavior may be good to test,
but is not necessary to document.
The third test, which illustrates the expected behavior of save after resetting
closes to None on an existing Survey instance, is useful as documentation,
for the previously-mentioned reasons.
The fourth and final test illustrates that the added code will not cause an
unexpected exception to be generated in the error case where neither opens
nor closes is specified. This is another example of something that is good to
test, but not necessary to document, as the right behavior is obvious.

•

•

•

•

Does This Code Work? Doctests in Depth

[42]

Having half of our docstring classified as not useful for documentation purposes is
not good. People tend to stop reading when they encounter obvious, redundant, or
unhelpful information. We can address this problem without giving up some of the
advantages of doctests by moving such tests from the docstring method into our
tests.py file. If we take this approach, we might change the __test__ dictionary
in tests.py to look like this:

__test__ = {"survey_save": """

Tests for the Survey save override method.

>>> import datetime
>>> from survey.models import Survey
>>> t = "New Year's Resolutions"
>>> sd = datetime.date(2009, 12, 28)

If closes is specified, it will be honored and not auto-set.

>>> s = Survey.objects.create(title=t, opens=sd, closes=sd)
>>> s.closes
datetime.date(2009, 12, 28)

Making the mistake of specifying neither opens nor closes results
in the expected IntegrityError for opens, not any exception in the
save override code itself.

>>> s = Survey.objects.create(title=t)
Traceback (most recent call last):
 ...
IntegrityError: survey_survey.opens may not be NULL
"""}

Here we changed the key for the test from the generic doctest to survey_save, so
that the reported test name in any test output will give a hint as to what is being
tested. Then we just moved the "non-documentation" tests (along with some of the
variable setup code that now needs to be in both places) from our save override
docstring into the key value here, adding a general comment at the top noting what
the tests are for.

What remains in the docstring for the save method itself are the tests that do have
some value as documentation:

 def save(self, **kwargs):
 """
 save override to allow for Survey instances to be created
 without explicitly specifying a closes date. If not
 specified, closes will be set to 7 days after opens.

Chapter 2

[43]

 >>> t = "New Year's Resolutions"
 >>> sd = datetime.date(2009, 12, 28)
 >>> s = Survey.objects.create(title=t, opens=sd)
 >>> s.closes
 datetime.date(2010, 1, 4)

 Any changes to closes after initial creation need to be
 explicit. Changing closes to None on an existing instance will
 not result in closes being reset to 7 days after opens.

 >>> s.closes = None
 >>> s.save()
 Traceback (most recent call last):
 ...
 IntegrityError: survey_survey.closes may not be NULL

 """
 if not self.pk and self.opens and not self.closes:
 self.closes = self.opens + datetime.timedelta(7)
 super(Survey, self).save(**kwargs)

That is certainly a much more manageable docstring for the function, and is no
longer likely to overwhelm someone typing help(Survey.save) in a Python shell.

This approach, though, does also have its down side. The tests for the code are no
longer all in one place, making it hard to know or easily determine how completely
the code is tested. Anyone who ran across the test in tests.py, without knowing
there were additional tests in the method's docstring, might well wonder why only
these two edge cases were tested and why a straightforward test of the basic function
added was omitted.

Also, when adding tests, it may not be clear (especially to programmers new to the
project) where exactly the new tests should go. So even if a project starts out with
a nice clean split of "tests that make for good documentation" in the docstring tests
and "tests that are necessary but not good documentation" in the tests.py file, this
distinction may easily become blurred over time.

Does This Code Work? Doctests in Depth

[44]

Test choice and placement thus involves a tradeoff. There is not necessarily a "right"
answer for every project. Adopting a consistent approach, though, is best. When
choosing that approach, each project team should take into account the answers to
questions such as:

What is the expected audience for auto-generated docstring-based
documentation?
If other documentation exists (or is being written) that is expected to be the
main source for "consumers" of the code, then it may not be a problem to
have doctests that do not serve the documentation function very well.
How many people will likely be working on the code?
If it is a relatively small and constant number, it may not be much of an
issue to get everyone to remember about tests split between two places. For
a larger project or if there is high developer turnover, educating developers
about this sort of split may become more of an issue and it may be harder to
maintain consistent code.

Additional doctest caveats
Doctests have some additional disadvantages that we haven't necessarily run into
or noticed yet. Some of these are just things we need to watch out for if we want to
make sure our doctests will work properly in a wide variety of environments and
as code surrounding our code changes. Others are more serious issues that are most
easily solved by switching to unit tests instead of doctests for at least the affected
tests. In this section, we will list many of the additional doctest issues to watch out
for, and give guidance on what to do to avoid or overcome them.

Beware of environmental dependence
It is very easy for doctests to be unintentionally dependent on implementation
details of code other than the code that is actually being tested. We have some
of this already in the save override tests, though we have not tripped over it yet.
The dependence we have is actually a very specific form of environmental
dependence—database dependence. As database dependence is a fairly big
issue on its own, it will be discussed in detail in the next section. However,
we'll first cover some other minor environmental dependencies we might
easily run into and see how to avoid including them in our tests.

•

•

Chapter 2

[45]

An extremely common form of environmental dependence that creeps into doctests
is relying on the printed representation of objects. For example, a __unicode__
method is a common method to be implemented in a model class first. It was
omitted from the earlier Survey model discussion since it wasn't necessary at that
time, but in reality we probably would have implemented __unicode__ before the
save override. A first pass at a __unicode__ method for Survey may have looked
something like this:

 def __unicode__(self):
 return u'%s (Opens %s, closes %s)' % (self.title, self.opens,
 self.closes)

Here we have decided that the printed representation of a Survey instance will
consist of the title value followed by a parenthesized note about when this survey
opens and closes. Given that method definition, our shell session for testing the
proper setting of closes when it is not specified during creation may have looked
something like this:

>>> from survey.models import Survey

>>> import datetime

>>> sd = datetime.date(2009, 12, 28)

>>> t = "New Year's Resolutions"

>>> s = Survey.objects.create(title=t, opens=sd)

>>> s

<Survey: New Year's Resolutions (Opens 2009-12-28, closes 2010-01-04)>

>>>

That is, instead of specifically checking the value assigned to closes, we may have
just displayed the printed representation of the created instance, since it includes
the closes value. When experimenting in a shell session, it's natural to perform
checking this way rather than interrogating the attribute in question directly. For one
thing, it's shorter (s is a good bit easier to type than s.closes). In addition, it often
displays more information than the specific piece we may be testing, which is helpful
when we are experimenting.

Does This Code Work? Doctests in Depth

[46]

However, if we had cut and pasted directly from that shell session into our
save override doctest, we would have made that doctest dependent on the
implementation details of __unicode__. We might subsequently decide we didn't
want to include all of that information in the printable representation of a Survey,
or even just that it would look better if the "o" in "Opens" was not capitalized. So we
make a minor change to the __unicode__ method implementation and suddenly a
doctest for an unrelated method begins to fail:

==

FAIL: Doctest: survey.models.Survey.save

--

Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py", line
2189, in runTest

 raise self.failureException(self.format_failure(new.getvalue()))

AssertionError: Failed doctest test for survey.models.Survey.save

 File "/dj_projects/marketr/survey/models.py", line 9, in save

--

File "/dj_projects/marketr/survey/models.py", line 32, in survey.models.
Survey.save

Failed example:

 s

Expected:

 <Survey: New Year's Resolutions (Opens 2009-12-28, closes 2010-01-
04)>

Got:

 <Survey: New Year's Resolutions (opens 2009-12-28, closes 2010-01-
04)>

--

Ran 3 tests in 0.076s

FAILED (failures=1)

Destroying test database...

Chapter 2

[47]

Thus when creating doctests from shell sessions, it's good to carefully consider
whether the session relied on implementation details of any code other than that
specifically being tested, and if so make adjustments to remove the dependence. In
this case, using s.closes to test what value has been assigned to closes removes
the dependence on how the Survey model __unicode__ method happens to
be implemented.

There are many other cases of environmental dependence that may arise in
doctests, including:

Any test that relies on the printed representation of a file path can run
afoul of the fact that on Unix-based operating systems path components
are separated by a forward slash where Windows uses a backslash. If you
need to include doctests that rely on file path values, it may be necessary to
use a utility function to normalize file path representations across different
operating systems.
Any test that relies on dictionary keys being printed in a specific order
can run afoul of the fact that this order may be different for different
operating systems or Python implementations. Thus to make such tests
robust across different platforms, it may be necessary to specifically
interrogate dictionary key values instead of simply printing the entire
dictionary contents, or use a utility function that applies a consistent
order to the keys for the printed representation.

There is nothing particularly specific to Django about these kinds of environmental
dependence issues that often arise in doctests. There is, however, one type of
environmental dependence that is particularly likely to arise in a Django
application: database dependence. This issue is discussed next.

Beware of database dependence
The Django object-relational manager (ORM) goes through considerable trouble to
shield application code from differences in the underlying databases. However, it is
not feasible for Django to make all of the different supported databases look exactly
the same under all circumstances. Thus it is possible to observe database-specific
differences at the application level. These differences may then easily find their way
into doctests, making the tests dependent on a specific database backend in order
to pass.

•

•

Does This Code Work? Doctests in Depth

[48]

This sort of dependence is already present in the save override tests developed
earlier in this chapter. Because SQLite is the easiest database to use (since it requires
no installation or configuration), so far the example code and tests have been
developed using a setting of DATABASE_ENGINE = 'sqlite3' in settings.py. If we
switch to using MySQL (DATABASE_ENGINE = 'mysql') for the database instead,
and attempt to run our survey application tests, we will see failures. There are two
failures, but we will first focus only on the last one in the test output:

==

FAIL: Doctest: survey.tests.__test__.survey_save

--

Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py", line
2189, in runTest

 raise self.failureException(self.format_failure(new.getvalue()))

AssertionError: Failed doctest test for survey.tests.__test__.survey_save

 File "/dj_projects/marketr/survey/tests.py", line unknown line number,
in survey_save

--

File "/dj_projects/marketr/survey/tests.py", line ?, in survey.tests.__
test__.survey_save

Failed example:

 s = Survey.objects.create(title=t)

Expected:

 Traceback (most recent call last):

 ...

 IntegrityError: survey_survey.opens may not be NULL

Got:

 Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py",
line 1274, in __run

 compileflags, 1) in test.globs

 File "<doctest survey.tests.__test__.survey_save[6]>", line 1, in
<module>

 s = Survey.objects.create(title=t)

 File "/usr/lib/python2.5/site-packages/django/db/models/manager.
py", line 126, in create

 return self.get_query_set().create(**kwargs)

Chapter 2

[49]

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py",
line 315, in create

 obj.save(force_insert=True)

 File "/dj_projects/marketr/survey/models.py", line 34, in save

 super(Survey, self).save(**kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py",
line 410, in save

 self.save_base(force_insert=force_insert, force_update=force_
update)

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py",
line 495, in save_base

 result = manager._insert(values, return_id=update_pk)

 File "/usr/lib/python2.5/site-packages/django/db/models/manager.
py", line 177, in _insert

 return insert_query(self.model, values, **kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py",
line 1087, in insert_query

 return query.execute_sql(return_id)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/
subqueries.py", line 320, in execute_sql

 cursor = super(InsertQuery, self).execute_sql(None)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/query.
py", line 2369, in execute_sql

 cursor.execute(sql, params)

 File "/usr/lib/python2.5/site-packages/django/db/backends/mysql/
base.py", line 89, in execute

 raise Database.IntegrityError(tuple(e))

 IntegrityError: (1048, "Column 'opens' cannot be null")

--

Ran 3 tests in 0.434s

FAILED (failures=2)

Destroying test database...

Does This Code Work? Doctests in Depth

[50]

What's the problem here? For the save call in the doctest in tests.py where
no value for opens was specified, an IntegrityError was expected, and an
IntegrityError was produced, but the details of the IntegrityError message
are different. The SQLite database returns:

 IntegrityError: survey_survey.opens may not be NULL

MySQL says the same thing somewhat differently:

 IntegrityError: (1048, "Column 'opens' cannot be null")

There are two simple ways to fix this. One is to use the doctest directive
IGNORE_EXCEPTION_DETAIL on the failing test. With this option, the doctest
runner will only consider the type of exception (in this case, IntegrityError)
when determining whether the expected result matches the actual result. So
differences in the exact exception messages produced by the different databases
will not cause the test to fail.

Doctest directives are specified for individual tests by placing them as comments on
the line containing the test. The comment starts with doctest: and is followed by
one or more directive names preceded either by + to turn the option on or – to turn
the option off. So in this case, we would change the failing test line in tests.py
to be (note that though this line wraps to a second line on this page, it needs to be
kept on a single line in the test):

>>> s = Survey.objects.create(title=t) # doctest: +IGNORE_EXCEPTION_
DETAIL

The other way to fix this is to replace the detailed message portion of the expected
output in the test with three dots, which is an ellipsis marker. That is, change the test
to be:

>>> s = Survey.objects.create(title=t)
Traceback (most recent call last):
 ...
IntegrityError: ...

This is an alternate way to tell the doctest runner to ignore the specifics of the
exception message. It relies on the doctest option ELLIPSIS being enabled for the
doctest run. While this option is not enabled by default by Python, it is enabled by
the doctest runner that Django uses, so you do not need to do anything in your test
code to enable use of ellipsis markers in expected output. Also note that ELLIPSIS
is not specific to exception message details; it's a more general method that lets you
indicate portions of doctest output that may differ from run to run without resulting
in test failure.

Chapter 2

[51]

If you read the Python documentation for ELLIPSIS, you may notice that
it was introduced in Python 2.4. You may expect, then, if you are running
Python 2.3 (which is still supported by Django 1.1), that you would not
be able to use the ellipsis marker technique in your Django application's
doctests. However, Django 1.0 and 1.1 ship with a customized doctest
runner that is used when you run your application's doctests. This
customized runner is based on the doctest module that is shipped with
Python 2.4. Thus you can use doctest options, such as ELLIPSIS, from
Python 2.4 even if you are running an earlier Python version.
Note, though, the flip side of Django using its own customized doctest
runner: if you are running a more recent Python version than 2.4, you
cannot use doctest options added later than 2.4 in your application's
doctests. For example, Python added the SKIP option in Python 2.5. Until
Django updates the version of its customized doctest module, you will
not be able to use this new option in your Django application doctests.

Recall that there were two test failures and we only looked at the output from one
(the other most likely scrolled off the screen too quickly to read). Given what the one
failure we examined was, though, we might expect the other one would be the same,
since we have a very similar test for an IntegrityError in the doctest in models.py:

 >>> s.closes = None
 >>> s.save()
 Traceback (most recent call last):
 ...
 IntegrityError: survey_survey.closes may not be NULL

This will certainly also need to be fixed to ignore the exception detail, so we may
as well do both at the same time and perhaps correct both test failures. And in fact,
when we run the tests again after changing both expected IntegrityErrors to
include an ellipsis marker instead of a specific error message, the tests all pass.

Does This Code Work? Doctests in Depth

[52]

Note that for some configurations of MySQL, this second test failure
will not be corrected by ignoring the exception details. Specifically, if the
MySQL server is configured to run in "non-strict" mode, attempting to
update a row to contain a NULL value in a column declared as NOT NULL
does not raise an error. Rather, the value is set to the implicit default
value for the column's type and a warning is issued.
Most likely if you are using MySQL, you will want to configure it to run
in "strict mode". However, if for some reason you cannot, and you need
to have a test like this in your application, and you need the test to pass
on multiple databases, you would have to account for that difference in
database behavior in your test. It can be done, but it is much more easily
done in a unit test than a doctest, so we will not cover how to fix the
doctest for this case.

Now that we have gotten our tests to pass on two different database backends, we
may think we are set and would likely get a clean test run on all databases that
Django supports. We'd be wrong, as we will discover when we attempt to run these
same tests using PostgreSQL as the database. The database difference we encounter
with PostgreSQL highlights the next item to beware of when writing doctests, and is
covered in the next section.

Beware of test interdependence
We get a very curious result if we now try running our tests using PostgreSQL as the
database (specify DATABASE_ENGINE = 'postgresql_psycopg2' in settings.py).
From the tail end of the output of manage.py test survey -v2, we see:

No fixtures found.

test_basic_addition (survey.tests.SimpleTest) ... ok

Doctest: survey.models.Survey.save ... ok

Doctest: survey.tests.__test__.survey_save ... FAIL

The sample unit test we still have in tests.py runs and passes, then the doctest
from models.py also passes, but the doctest we added to tests.py fails. The failure
details are:

==

FAIL: Doctest: survey.tests.__test__.survey_save

--

Traceback (most recent call last):

Chapter 2

[53]

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py", line
2189, in runTest

 raise self.failureException(self.format_failure(new.getvalue()))

AssertionError: Failed doctest test for survey.tests.__test__.survey_save

 File "/dj_projects/marketr/survey/tests.py", line unknown line number,
in survey_save

--

File "/dj_projects/marketr/survey/tests.py", line ?, in survey.tests.__
test__.survey_save

Failed example:

 s = Survey.objects.create(title=t, opens=sd, closes=sd)

Exception raised:

 Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py",
line 1274, in __run

 compileflags, 1) in test.globs

 File "<doctest survey.tests.__test__.survey_save[4]>", line 1, in
<module>

 s = Survey.objects.create(title=t, opens=sd, closes=sd)

 File "/usr/lib/python2.5/site-packages/django/db/models/manager.
py", line 126, in create

 return self.get_query_set().create(**kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py",
line 315, in create

 obj.save(force_insert=True)

 File "/dj_projects/marketr/survey/models.py", line 34, in save

 super(Survey, self).save(**kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py",
line 410, in save

 self.save_base(force_insert=force_insert, force_update=force_
update)

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py",
line 495, in save_base

 result = manager._insert(values, return_id=update_pk)

 File "/usr/lib/python2.5/site-packages/django/db/models/manager.
py", line 177, in _insert

 return insert_query(self.model, values, **kwargs)

Does This Code Work? Doctests in Depth

[54]

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py",
line 1087, in insert_query

 return query.execute_sql(return_id)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/
subqueries.py", line 320, in execute_sql

 cursor = super(InsertQuery, self).execute_sql(None)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/query.
py", line 2369, in execute_sql

 cursor.execute(sql, params)

 InternalError: current transaction is aborted, commands ignored until
end of transaction block

--

File "/dj_projects/marketr/survey/tests.py", line ?, in survey.tests.__
test__.survey_save

Failed example:

 s.closes

Exception raised:

 Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py",
line 1274, in __run

 compileflags, 1) in test.globs

 File "<doctest survey.tests.__test__.survey_save[5]>", line 1, in
<module>

 s.closes

 NameError: name 's' is not defined

--

Ran 3 tests in 0.807s

FAILED (failures=1)

Destroying test database...

Chapter 2

[55]

This time we need to examine the reported errors in order as the second error is
resulting from the first. Such chaining of errors is common, so it is good to keep in
mind that while it may be tempting to start by looking at the last failure, since it is
the easiest one to see at the end of the test run, that may not be the most productive
route. If it isn't immediately obvious what is causing the last failure, it's usually best
to start at the beginning and figure out what is causing the first failure. The reason
for subsequent failures may then become obvious. For reference, the beginning of the
test that is failing is:

>>> import datetime
>>> from survey.models import Survey
>>> t = "New Year's Resolutions"
>>> sd = datetime.date(2009, 12, 28)

If closes is specified, it will be honored and not auto-set.

>>> s = Survey.objects.create(title=t, opens=sd, closes=sd)
>>> s.closes
datetime.date(2009, 12, 28)

Thus, based on the test output, the very first attempt to access the database—that is
the attempt to create a Survey instance—in this test results in an error:

InternalError: current transaction is aborted, commands ignored until end
of transaction block

Then the next line of the test also results in an error as it uses the variable s that was
supposed to be assigned in the previous line. However, that line did not complete
execution, so the variable s is not defined when the test attempts to use it. So the
second error makes sense given the first, but why did the first database access in this
test result in an error?

In order to understand the explanation for that, we have to look back at the test that
ran immediately preceding this one. We can see from the test output that the test
immediately preceding this one was the doctest in models.py. The end of that test is:

 >>> s.closes = None
 >>> s.save()
 Traceback (most recent call last):
 ...
 IntegrityError: ...
 """

Does This Code Work? Doctests in Depth

[56]

The last thing that test did was something that was expected to raise a database
error. A side-effect of this, on PostgreSQL, is that the database connection enters a
state where the only commands it will allow are ones that end the transaction block.
So this test ended leaving the database connection in a broken state, and it was still
broken when the next doctest began running, causing the next doctest to fail as soon
as it attempted any database access.

This problem illustrates that there is no database isolation between doctests. What
one doctest does to the database can be observed by subsequent ones that run. This
includes problems such as the one seen here, in addition to creation, updates, or
deletion of rows in the database tables. This particular problem can be solved by
adding a call to rollback the current transaction following the code that deliberately
caused a database error:

 >>> s.closes = None
 >>> s.save()
 Traceback (most recent call last):
 ...
 IntegrityError: ...
 >>> from django.db import transaction
 >>> transaction.rollback()
 """

This will allow the tests to pass on PostgreSQL and will be harmless on the other
database backends. Thus one way to deal with no database isolation in doctests
is to code them so that they clean up after themselves. That may be an acceptable
approach for problems such as this one, but if a test has added, modified, or deleted
objects in the database, it may be difficult to put everything back the way it was
originally at the end.

A second approach is to reset the database to a known state on entry to every
doctest. Django does not do this for you, but you can do it manually by calling
the management command to synchronize the database. I would not recommend
this approach in general because it becomes extremely time-consuming as your
application grows.

A third approach is to make doctests reasonably tolerant of database state, so that
they will be likely to run properly regardless of whether other tests may or may not
have run before them. Techniques to use here include:

Create all objects needed by the test in the test itself. That is, do not rely on
the existence of objects created by any previously-run tests since that test
may change, or be removed, or the order in which tests run may change at
some time.

•

Chapter 2

[57]

When creating objects, guard against collisions with similar objects that may
be created by other tests. For example, if a test needs to create a User instance
with the is_superuser field set to True in order to test certain behavior for
users that have that attribute, it might seem natural to give the User instance
a username of "superuser". However, if two doctests did that, then whichever
one was unlucky enough to run second would encounter an error because
the username field of the User model is declared to be unique, so the second
attempt to create a User with this username would fail. Thus it is best to use
values for unique fields in shared models that are unlikely to have been used
by other tests.

All of these approaches and techniques have their disadvantages. For this particular
issue, unit tests are a much better solution, as they automatically provide database
isolation without incurring a performance cost to reset the database (so long as you
run them on a database that supports transactions). Thus if you start encountering a
lot of test interdependence issues with doctests, I'd strongly suggest considering unit
tests as a solution instead of relying on any of the approaches listed here.

Beware of Unicode
The final issue we will cover in doctest caveats is Unicode. If you have done
much work with Django (or even just Python) using data from languages with
character sets broader than English, you've likely run into UnicodeDecodeError
or UnicodeEncodeError once or twice. As a result, you may have gotten into the
habit of routinely including some non-ASCII characters in your tests to ensure that
everything is going to work properly for all languages, not just English. That's a
good habit, but unfortunately testing with Unicode values in doctests has some
unexpected glitches that need to be overcome.

The previously mentioned __unicode__ method of Survey would be a likely place
we would want to test for proper behavior in the face of non-ASCII characters. A first
pass at a test for this might be:

 def __unicode__(self):
 """
 >>> t = u'¿Como está usted?'
 >>> sd = datetime.date(2009, 12, 28)
 >>> s = Survey.objects.create(title=t, opens=sd)
 >>> print s
 ¿Como está usted? (opens 2009-12-28, closes 2010-01-04)
 """
 return u'%s (opens %s, closes %s)' % (self.title, self.opens,
 self.closes)

•

Does This Code Work? Doctests in Depth

[58]

This test is similar to many of the save override tests in that it first creates a Survey
instance. The significant parameter in this case is the title, which is specified as a
Unicode literal string and contains non-ASCII characters. After the Survey instance
is created, a call is made to print it in order to verify that the non-ASCII characters
are displayed correctly in the printed representation of the instance, and that no
Unicode exceptions are raised.

How well does this test work? Not so well. Attempting to run the survey tests after
adding that code will result in an error:

kmt@lbox:/dj_projects/marketr$ python manage.py test survey

Traceback (most recent call last):

 File "manage.py", line 11, in <module>

 execute_manager(settings)

 File "/usr/lib/python2.5/site-packages/django/core/management/__init__
.py", line 362, in execute_manager

 utility.execute()

 File "/usr/lib/python2.5/site-packages/django/core/management/__init__
.py", line 303, in execute

 self.fetch_command(subcommand).run_from_argv(self.argv)

 File "/usr/lib/python2.5/site-packages/django/core/management/base.py",
line 195, in run_from_argv

 self.execute(*args, **options.__dict__)

 File "/usr/lib/python2.5/site-packages/django/core/management/base.py",
line 222, in execute

 output = self.handle(*args, **options)

 File "/usr/lib/python2.5/site-packages/django/core/management/commands/
test.py", line 23, in handle

 failures = test_runner(test_labels, verbosity=verbosity, interactive=
interactive)

 File "/usr/lib/python2.5/site-packages/django/test/simple.py", line
178, in run_tests

 app = get_app(label)

 File "/usr/lib/python2.5/site-packages/django/db/models/loading.py",
line 114, in get_app

 self._populate()

 File "/usr/lib/python2.5/site-packages/django/db/models/loading.py",
line 58, in _populate

 self.load_app(app_name, True)

 File "/usr/lib/python2.5/site-packages/django/db/models/loading.py",
line 74, in load_app

Chapter 2

[59]

 models = import_module('.models', app_name)

 File "/usr/lib/python2.5/site-packages/django/utils/importlib.py", line
35, in import_module

 __import__(name)

 File "/dj_projects/marketr/survey/models.py", line 40

SyntaxError: Non-ASCII character '\xc2' in file /dj_projects/marketr/
survey/models.py on line 41, but no encoding declared; see http://www.
python.org/peps/pep-0263.html for details

This one is easy to fix; we simply forgot to declare the encoding for our Python
source file. To do that, we need to add a comment line to the top of the file specifying
the encoding used by the file. Let's assume we are using UTF-8 encoding, so we
should add the following as the first line of our models.py file:

-*- encoding: utf-8 -*-

Now will the new test work? Not yet, we still get a failure:

==

FAIL: Doctest: survey.models.Survey.__unicode__

--

Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py", line
2180, in runTest

 raise self.failureException(self.format_failure(new.getvalue()))

AssertionError: Failed doctest test for survey.models.Survey.__unicode__

 File "/dj_projects/marketr/survey/models.py", line 39, in __unicode__

--

File "/dj_projects/marketr/survey/models.py", line 44, in survey.models.
Survey.__unicode__

Failed example:

 print s

Expected:

 ¿Como está usted? (opens 2009-12-28, closes 2010-01-04)

Got:

 Â¿Como estÃ¡ usted? (opens 2009-12-28, closes 2010-01-04)

--

Ran 4 tests in 0.084s

FAILED (failures=1)

Destroying test database...

Does This Code Work? Doctests in Depth

[60]

This one is a bit puzzling. Though we specified the title as a Unicode literal string
u'¿Como está usted?' in our test, it is apparently coming back as Â¿Como estÃ¡
usted? when printed. Data corruption like this is a telltale sign that the wrong
encoding has been used at some point to transform a bytestring into a Unicode
string. In fact the specific nature of the corruption here, where each non-ASCII
character in the original string has been replaced by two (or more) characters in
the corrupted version, is the characteristic of a string which is actually encoded in
UTF-8 being interpreted as if it were encoded in ISO-8859-1 (also called Latin-1).
But how could that happen here, as we specified UTF-8 as our Python file encoding
declaration? Why would this string be interpreted using any other encoding?

At this point, we might go and carefully read the web page referenced in the first
error message we got, and learn that the encoding declaration we have added only
has an effect on how Unicode literal strings are constructed by the Python interpreter
from the source file. We may then notice that though our title is a Unicode literal
string, the doctest it is contained in is not. So perhaps this odd result is because we
neglected to make the docstring containing the doctest a Unicode literal. Our next
version of the test, then, might be to specify the whole docstring as a Unicode literal.

Unfortunately this too would be unsuccessful, due to problems with Unicode literal
docstrings. First the doctest runner cannot correctly compare expected output (now
Unicode, since the docstring itself is a Unicode literal) with actual output that is a
bytestring containing non-ASCII characters. Such a bytestring must be converted
to Unicode in order to perform the comparison. Python will automatically perform
this conversion when necessary, but the problem is that it does not know the actual
encoding of the bytestring it is converting. Thus it assumes ASCII, and fails to
perform the conversion if the bytestring contains any non-ASCII characters.

This failure in conversion will lead to an assumed failure of the comparison
involving the bytestring, which in turn will lead to the test being reported as failing.
Even if the expected and received outputs were identical, if only the right encoding
were assumed for the bytestring, there is no way to get the proper encoding to be
used, so the test will fail. For the Survey model __unicode__ doctest, this problem
will cause the test to fail when attempting to compare the actual output of print s
(which will be a UTF-8 encoded bytestring) to the expected output.

A second problem with Unicode literal docstrings involves reporting of output
that contains non-ASCII characters, such as this failure that will occur with the
Survey model __unicode__ doctest. The doctest runner will attempt to display a
message showing the expected and received outputs. However, it will run into the
same problem as encountered during the comparison when it attempts to combine
the expected and received outputs into a single message for display. Thus instead
of generating a message that would at least reveal where the test is running into
trouble, the doctest runner itself generates a UnicodeDecodeError.

Chapter 2

[61]

There is an open Python issue in Python's bug tracker that reports these problems:
http://bugs.python.org/issue1293741. Until it is fixed, it is probably best to
avoid using Unicode literal docstrings for doctests.

Is there any way, then, to include some testing of non-ASCII data in doctests? Yes,
it is possible. The key to making such tests work is to avoid using Unicode literals
within the docstring. Instead, explicitly decode strings to Unicode objects.
For example:

 def __unicode__(self):
 """
 >>> t = '¿Como está usted?'.decode('utf-8')
 >>> sd = datetime.date(2009, 12, 28)
 >>> s = Survey.objects.create(title=t, opens=sd)
 >>> print s
 ¿Como está usted? (opens 2009-12-28, closes 2010-01-04)
 """
 return u'%s (opens %s, closes %s)' % (self.title, self.opens,
 self.closes)

That is, replace the Unicode literal title string with a bytestring that is explicitly
decoded using UTF-8 to create a Unicode string.

Does that work? Running manage.py test survey -v2 now, we see the following at
the tail end of the output:

No fixtures found.

test_basic_addition (survey.tests.SimpleTest) ... ok

Doctest: survey.models.Survey.__unicode__ ... ok

Doctest: survey.models.Survey.save ... ok

Doctest: survey.tests.__test__.survey_save ... ok

--

Ran 4 tests in 0.046s

OK

Destroying test database...

Success! It is possible, then, to correctly test with non-ASCII data in doctests. Some
care must simply be taken to avoid running into existing problems related to using
Unicode literal docstrings or embedding Unicode literal strings within a doctest.

Does This Code Work? Doctests in Depth

[62]

Summary
Our exploration of doctests for Django applications is now complete. In this
chapter, we:

Began to develop some models for our Django survey application
Experimented with adding doctests to one of these models—the
Survey model
Learned what sorts of doctests are useful and which simply add clutter to
the code
Experienced some of the advantages of doctests, namely the easy re-use of
Python shell session work and convenient use of doctests as documentation
Ran afoul of many of the disadvantages of doctests, and learned how to
avoid or overcome them

In the next chapter, we will begin to explore unit tests. While unit tests may not offer
some of the easy re-use features of doctests, they also do not suffer from many of
the disadvantages of doctests. Furthermore, the overall unit test framework allows
Django to provide convenient support specifically useful for web applications, which
will be covered in detail in Chapter 4.

•

•

•

•

•

Testing 1, 2, 3: Basic
Unit Testing

In the previous chapter, we began learning about testing Django applications by
writing some doctests for the Survey model. In the process, we experienced some
of the advantages and disadvantages of doctests. When discussing some of the
disadvantages, unit tests were mentioned as an alternative test approach that avoids
some doctest pitfalls. In this chapter, we will start to learn about unit tests in detail.
Specifically, we will:

Re-implement the Survey doctests as unit tests
Assess how the equivalent unit test version compares to the doctests in terms
of ease of implementation and susceptibility to the doctest caveats discussed
in the previous chapter
Begin learning some of the additional capabilities of unit tests as we extend
the existing tests to cover additional functions

Unit tests for the Survey save override
method
Recall in the previous chapter that we ultimately implemented four individual tests
of the Survey save override function:

A straightforward test of the added capability, which verifies that if closes
is not specified when a Survey is created, it is auto-set to a week after opens
A test that verifies that this auto-set operation is not performed if closes is
explicitly specified during creation

•

•

•

•

•

Testing 1, 2, 3: Basic Unit Testing

[64]

A test that verifies that closes is only auto-set if its value is missing during
initial creation, not while saving an existing instance
A test that verifies that the save override function does not introduce an
unexpected exception in the error case where neither opens nor closes is
specified during creation

To implement these as unit tests instead of doctests, create a TestCase within the
suvery/tests.py file, replacing the sample SimpleTest. Within the new TestCase
class, define each individual test as a separate test method in that TestCase, like so:

import datetime
from django.test import TestCase
from django.db import IntegrityError
from survey.models import Survey

class SurveySaveTest(TestCase):
 t = "New Year's Resolutions"
 sd = datetime.date(2009, 12, 28)

 def testClosesAutoset(self):
 s = Survey.objects.create(title=self.t, opens=self.sd)
 self.assertEqual(s.closes, datetime.date(2010, 1, 4))

 def testClosesHonored(self):
 s = Survey.objects.create(title=self.t, opens=self.sd,
 closes=self.sd)
 self.assertEqual(s.closes, self.sd)

 def testClosesReset(self):
 s = Survey.objects.create(title=self.t, opens=self.sd)
 s.closes = None
 self.assertRaises(IntegrityError, s.save)

 def testTitleOnly(self):
 self.assertRaises(IntegrityError, Survey.objects.create,
 title=self.t)

This is more difficult to implement than the doctest version, isn't it? It is not possible
to use a direct cut-and-paste from a shell session, and there is a fair amount of code
overhead—code that does not appear anywhere in the shell session—that needs to be
added. We can still use cut-and-paste from our shell session as a starting point, but
we must edit the code after pasting it, in order to turn the pasted code into a proper
unit test. Though not difficult, this can be tedious.

•

•

Chapter 3

[65]

Most of the extra work consists of choosing names for the individual test methods,
minor editing of cut-and-pasted code to refer to class variables such as t and sd
correctly, and creating the appropriate test assertions to verify the expected result.
The first of these requires the most brainpower (choosing good names can be hard),
the second is trivial, and the third is fairly mechanical. For example, in a shell session
where we had:

>>> s.closes

datetime.date(2010, 1, 4)

>>>

In the unit test, we instead have an assertEqual:

self.assertEqual(s.closes, datetime.date(2010, 1, 4))

Expected exceptions are similar, but use assertRaises. For example, where in a
shell session we had:

>>> s = Survey.objects.create(title=t)

Traceback (most recent call last):

 [traceback details snipped]

IntegrityError: survey_survey.opens may not be NULL

>>>

In the unit test, this is:

self.assertRaises(IntegrityError, Survey.objects.create, title=self.t)

Note we do not actually call the create routine in our unit test code, but rather
leave that up to the code within assertRaises. The first parameter passed to
assertRaises is the expected exception, followed by the callable expected to raise
the exception, followed by any parameters that need to be passed to the callable
when calling it.

Pros of the unit test version
What do we get from this additional work? Right off the bat, we get a little more
feedback from the test runner, when running at the highest verbosity level. For the
doctest version, the output of manage.py test survey -v2 was simply:

Doctest: survey.models.Survey.save ... ok

Testing 1, 2, 3: Basic Unit Testing

[66]

For the unit test version, we get individual results reported for each test method:

testClosesAutoset (survey.tests.SurveySaveTest) ... ok

testClosesHonored (survey.tests.SurveySaveTest) ... ok

testClosesReset (survey.tests.SurveySaveTest) ... ok

testTitleOnly (survey.tests.SurveySaveTest) ... ok

If we take a little more effort and provide single-line docstrings for our test methods,
we can get even more descriptive results from the test runner. For example, if we
add docstrings like so:

class SurveySaveTest(TestCase):
 """Tests for the Survey save override method"""
 t = "New Year's Resolutions"
 sd = datetime.date(2009, 12, 28)

 def testClosesAutoset(self):
 """Verify closes is autoset correctly"""
 s = Survey.objects.create(title=self.t, opens=self.sd)
 self.assertEqual(s.closes, datetime.date(2010, 1, 4))

 def testClosesHonored(self):
 """Verify closes is honored if specified"""
 s = Survey.objects.create(title=self.t, opens=self.sd,
 closes=self.sd)
 self.assertEqual(s.closes, self.sd)

 def testClosesReset(self):
 """Verify closes is only autoset during initial create"""
 s = Survey.objects.create(title=self.t, opens=self.sd)
 s.closes = None
 self.assertRaises(IntegrityError, s.save)

 def testTitleOnly(self):
 """Verify correct exception is raised in error case"""
 self.assertRaises(IntegrityError, Survey.objects.create,
 title=self.t)

The test runner output for this test will then be:

Verify closes is autoset correctly ... ok

Verify closes is honored if specified ... ok

Verify closes is only autoset during initial create ... ok

Verify correct exception is raised in error case ... ok

Chapter 3

[67]

This additional descriptive detail may not be that important when all tests
pass, but when they fail, it can be very helpful as a clue to what the test is
trying to accomplish.

For example, let's assume we have broken the save override method by neglecting to
add seven days to opens, so that if closes is not specified, it is auto-set to the same
value as opens. With the doctest version of the test, the failure would be reported as:

==

FAIL: Doctest: survey.models.Survey.save

--

Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/django/test/_doctest.py", line
2180, in runTest

 raise self.failureException(self.format_failure(new.getvalue()))

AssertionError: Failed doctest test for survey.models.Survey.save

 File "/dj_projects/marketr/survey/models.py", line 10, in save

--

File "/dj_projects/marketr/survey/models.py", line 19, in survey.models.
Survey.save

Failed example:

 s.closes

Expected:

 datetime.date(2010, 1, 4)

Got:

 datetime.date(2009, 12, 28)

That doesn't give much information on what has gone wrong, and you really
have to go read the full test code to see what is even being tested. The same failure
reported by the unit test is a bit more descriptive, as the FAIL header includes the test
docstring, so we immediately know the problem has something to do with closes
being auto-set:

==

FAIL: Verify closes is autoset correctly

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests.py", line 20, in
testClosesAutoset

 self.assertEqual(s.closes, datetime.date(2010, 1, 4))

AssertionError: datetime.date(2009, 12, 28) != datetime.date(2010, 1, 4)

Testing 1, 2, 3: Basic Unit Testing

[68]

We can take this one step further and make the error message a bit friendlier by
specifying our own error message on the call to assertEqual:

 def testClosesAutoset(self):
 """Verify closes is autoset correctly"""
 s = Survey.objects.create(title=self.t, opens=self.sd)
 self.assertEqual(s.closes, datetime.date(2010, 1, 4),
 "closes not autoset to 7 days after opens, expected %s, "
 "actually %s" %
 (datetime.date(2010, 1, 4), s.closes))

The reported failure would then be:

==

FAIL: Verify closes is autoset correctly

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests.py", line 22, in
testClosesAutoset

 (datetime.date(2010, 1, 4), s.closes))

AssertionError: closes not autoset to 7 days after opens, expected 2010-
01-04, actually 2009-12-28

In this case, the custom error message may not be much more useful than the default
one, since what the save override is supposed to do here is quite simple. However,
such custom error messages can be valuable for more complicated test assertions to
help explain what is being tested, and the "why" behind the expected result.

Another benefit of unit tests is that they allow for more selective test execution
than doctests. On the manage.py test command line, one or more unit tests to
be executed can be identified by TestCase name. You can even specify that only
particular methods in a TestCase should be run. For example:

python manage.py test survey.SurveySaveTest.testClosesAutoset

Here we are indicating that we only want to run the testClosesAutoset test
method in the SurveySaveTest unit test found in the survey application. Being able
to run just a single method or a single test case is a very convenient time saver when
developing tests.

Chapter 3

[69]

Cons of the unit test version
Has anything been lost by switching to unit tests? A bit. First, there is the ease of
implementation that has already been mentioned: unit tests require more work to
implement than doctests. Though generally not difficult work, it can be tedious.
It is also work where errors can be made, resulting in a need to debug the test
code. This increased implementation burden can serve to discourage writing
comprehensive tests.

We've also lost the nice property of having tests right there with the code. This was
mentioned in the previous chapter as one negative effect of moving some doctests
out of docstrings and into the __test__ dictionary in tests.py. The effect is worse
with unit tests since all unit tests are usually kept in files separate from the code
being tested. Thus there are usually no tests to be seen right near the code, which
again may discourage writing tests. With unit tests, unless a methodology such as
a test-driven development is employed, the "out of sight, out of mind" effect may
easily result in test-writing becoming an afterthought.

Finally, we've lost the built-in documentation of the doctest version. This is more
than just the potential for automatically-generated documentation from docstrings.
Doctests are often more readable than unit tests, where extraneous code that is just
test overhead can obscure what the test is intending to test. Note though, that using
unit tests does not imply that you have to throw away doctests; it is perfectly fine to
use both kinds of tests in your application. Each has their strengths, thus for many
projects it is probably best to have a good mixture of unit tests and doctests rather
than relying on a single type for all testing.

Revisiting the doctest caveats
In the previous chapter, we developed a list of things to watch out for when
writing doctests. When discussing these, unit tests were sometimes mentioned as
an alternative that did not suffer from the same problems. But are unit tests really
immune to these problems, or do they just make the problems easier to avoid or
address? In this section, we revisit the doctest caveats and consider how susceptible
unit tests are to the same or similar issues.

Testing 1, 2, 3: Basic Unit Testing

[70]

Environmental dependence
The first doctest caveat discussed was environmental dependence: relying on the
implementation details of code other than the code actually being tested. Though
this type of dependence can happen with unit tests, it is less likely to occur. This is
because a very common way for this type of dependence to creep into doctests is due
to reliance on the printed representation of objects, as they are displayed in a Python
shell session. Unit tests are far removed from the Python shell. It requires some
coding effort to get an object's printed representation in a unit test, thus it is rare
for this form of environmental dependence to creep into a unit test.

One common form of environmental dependence mentioned in Chapter 2 that also
afflicts unit tests involves file pathnames. Unit tests, just as doctests, need to take care
that differences in file pathname conventions across operating systems do not cause
bogus test failures when a test is run on an operating system different from the one
where it was originally written. Thus, though unit tests are less prone to the problem
of environmental dependence, they are not entirely immune.

Database dependence
Database dependence is a specific form of environmental dependence that is
particularly common for Django applications to encounter. In the doctests, we saw
that the initial implementation of the tests was dependent on the specifics of the
message that accompanied an IntegrityError. In order to make the doctests pass
on multiple different databases, we needed to modify the initial tests to ignore the
details of this message.

We do not have this same problem with the unit test version. The assertRaises
used to check for an expected exception already does not consider the exception
message detail. For example:

self.assertRaises(IntegrityError, s.save)

There are no message specifics included there, so we don't need to do anything to
ignore differences in messages from different database implementations.

In addition, unit tests make it easier to deal with even more wide-reaching
differences than message details. It was noted in the previous chapter that for some
configurations of MySQL, ignoring the message detail is not enough to allow all the
tests to pass. The test that has a problem here is the one that ensures closes is only
auto-set during initial model creation. The unit test version of this test is:

def testClosesReset(self):
 """Verify closes is only autoset during initial create"""

Chapter 3

[71]

 s = Survey.objects.create(title=self.t, opens=self.sd)
 s.closes = None
 self.assertRaises(IntegrityError, s.save)

This test fails if it is run on a MySQL server that is running in non-strict mode. In this
mode, MySQL does not raise an IntegrityError on an attempt to update a row to
contain a NULL value in a column declared to be NOT NULL. Rather, the value is set to
an implicit default value, and a warning is issued. Thus, we see a test error when we
run this test on a MySQL server configured to run in non-strict mode:

==

ERROR: Verify closes is only autoset during initial create

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests.py", line 35, in
testClosesReset

 self.assertRaises(IntegrityError, s.save)

 File "/usr/lib/python2.5/unittest.py", line 320, in failUnlessRaises

 callableObj(*args, **kwargs)

 File "/dj_projects/marketr/survey/models.py", line 38, in save

 super(Survey, self).save(**kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py", line
410, in save

 self.save_base(force_insert=force_insert, force_update=force_update)

 File "/usr/lib/python2.5/site-packages/django/db/models/base.py", line
474, in save_base

 rows = manager.filter(pk=pk_val)._update(values)

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py", line
444, in _update

 return query.execute_sql(None)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/subqueries.
py", line 120, in execute_sql

 cursor = super(UpdateQuery, self).execute_sql(result_type)

 File "/usr/lib/python2.5/site-packages/django/db/models/sql/query.py",
line 2369, in execute_sql

 cursor.execute(sql, params)

 File "/usr/lib/python2.5/site-packages/django/db/backends/mysql/base.
py", line 84, in execute

 return self.cursor.execute(query, args)

Testing 1, 2, 3: Basic Unit Testing

[72]

 File "/var/lib/python-support/python2.5/MySQLdb/cursors.py", line 168,
in execute

 if not self._defer_warnings: self._warning_check()

 File "/var/lib/python-support/python2.5/MySQLdb/cursors.py", line 82,
in _warning_check

 warn(w[-1], self.Warning, 3)

 File "/usr/lib/python2.5/warnings.py", line 62, in warn

 globals)

 File "/usr/lib/python2.5/warnings.py", line 102, in warn_explicit

 raise message

Warning: Column 'closes' cannot be null

Here we see that the warning issued by MySQL causes a simple Exception to be
raised, not an IntegrityError, so the test reports an error.

There is also an additional wrinkle to consider here: This behavior of raising an
Exception when MySQL issues a warning is dependent on the Django DEBUG
setting. MySQL warnings are turned into raised Exceptions only when DEBUG is
True (as it was for the previously run test). If we set DEBUG to False in settings.py,
we see yet a different form of test failure:

==

FAIL: Verify closes is only autoset during initial create

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests.py", line 35, in
testClosesReset

 self.assertRaises(IntegrityError, s.save)

AssertionError: IntegrityError not raised

In this case, MySQL allowed the save, and since DEBUG was not turned on Django
did not transform the warning issued by MySQL into an Exception, so the save
simply worked.

At this point, we may seriously question whether it is even worth the effort to get
this test to run properly in all these different situations, given the wildly divergent
observed behaviors. Perhaps we should just require that if the code is run on
MySQL, the server must be configured to run in strict mode. Then the test would
be fine as it is, since the previous failures would both signal a server configuration
problem. However, let's assume we do need to support running on MySQL, yet we
cannot impose any particular configuration requirement on MySQL, and we still
need to verify whether our code is behaving properly for this test. How do we
do that?

Chapter 3

[73]

Note what we are attempting to verify in this test is that our code does not auto-set
closes to some value during save if it has been reset to None after initial creation. At
first, it seemed that this was easily done by just checking for an IntegrityError on
an attempted save. However, we've found a database configuration where we don't
get an IntegrityError. Also, depending on the DEBUG setting, we may not get any
error reported at all, even if our code behaves properly and leaves closes set to
None during an attempted save. Can we write the test so that it reports the proper
result—that is, whether our code behaves properly—in all these situations?

The answer is yes, so long as we can determine in our test code what database is in
use, how it is configured, and what the DEBUG setting is. Then all we need to do is
change the expected results based on the environment the test is running in. In fact,
we can test for all these things with a bit of work:

 def testClosesReset(self):
 """Verify closes is only autoset during initial create"""
 s = Survey.objects.create(title=self.t, opens=self.sd)
 s.closes = None

 strict = True
 debug = False
 from django.conf import settings
 if settings.DATABASE_ENGINE == 'mysql':
 from django.db import connection
 c = connection.cursor()
 c.execute('SELECT @@SESSION.sql_mode')
 mode = c.fetchone()[0]
 if 'STRICT' not in mode:
 strict = False;
 from django.utils import importlib
 debug = importlib.import_module(
 settings.SETTINGS_MODULE).DEBUG

 if strict:
 self.assertRaises(IntegrityError, s.save)
 elif debug:
 self.assertRaises(Exception, s.save)
 else:
 s.save()
 self.assertEqual(s.closes, None)

Testing 1, 2, 3: Basic Unit Testing

[74]

The test code starts by assuming that we are running on a database that is operating
in strict mode, and set the local variable strict to True. We also assume DEBUG is
False and set a local variable to reflect that. Then, if the database in use is MySQL
(determined by checking the value of settings.DATABASE_ENGINE), we need to
perform some further checking to see how it is configured. Consulting the MySQL
documentation shows that the way to do this is to SELECT the session's sql_mode
variable. If the returned value contains the string STRICT, then MySQL is operating
in strict mode, otherwise it is not. We issue this query and obtain the result using
Django's support for sending raw SQL to the database. If we determine that MySQL is
not configured to run in strict mode, we update our local variable strict to be False.

If we get to the point where we set strict to False, that is also when the DEBUG
value in settings becomes important, since it is in this case that MySQL will issue
a warning instead of raising an IntegrityError for the case we are testing here.
If DEBUG is True in the settings file, then warnings from MySQL will be turned
into Exceptions by Django's MySQL backend. This is done by the backend using
Python's warnings module. When the backend is loaded, if DEBUG is True, then a
warnings.filterwarnings call is issued to force all database warnings to be
turned into Exceptions.

Unfortunately, at some point after the database backend is loaded and before our test
code runs, the test runner will change the in-memory settings so that DEBUG is set to
False. This is done so that the behavior of test code matches as closely as possible
what will happen in production. However, it means that we cannot just test the
value of settings.DEBUG during the test to see if DEBUG was True when the database
backend was loaded. Rather, we have to re-load the settings module and check the
value in the newly loaded version. We do this using the import_module function of
django.utils.importlib (this is a function from Python 2.7 that was backported
to be used by Django 1.1).

Finally, we know what to look for when we run our test code. If we have determined
that we are running a database operating in strict mode, we assert that attempting to
save our model instance with closes set to None should raise an IntegrityError.
Else, if we are running in non-strict mode, but DEBUG is True in the settings file, then
the attempted save should result in an Exception being raised. Otherwise the save
should work, and we test the correct behavior of our code by ensuring that closes is
still set to None even after the model instance has been saved.

All of that may seem like rather a lot of trouble to go through for a pretty minor test,
but it illustrates how unit tests can be written to accommodate significant differences
in expected behavior in different environments. Doing the same for the doctest
version is not so straightforward. Thus, while unit tests clearly do not eliminate the
problem of dealing with database dependence in the tests, they make it easier to
write tests that account for such differences.

Chapter 3

[75]

Test interdependence
The next doctest caveat encountered in the last chapter was test interdependence.
When the doctests were run on PostgreSQL, an error was encountered in the test
following the first one that intentionally triggered a database error, since that error
caused the database connection to enter a state where it would accept no further
commands, except ones that terminated the transaction. The fix for that was to
remember to "clean up" after the intentionally triggered error by including
a transaction rollback after any test step that causes such an error.

Django unit tests do not suffer from this problem. The Django test case class,
django.test.TestCase, ensures that the database is reset to a clean state before
each test method is called. Thus, even though the testClosesReset method ends
by attempting a model save that triggers an IntegrityError, no error is seen by the
next test method that runs, because the database connection is reset in the interim
by the django.test.TestCase code. It is not just this error situation that is cleaned
up, either. Any database rows that are added, deleted, or modified by a test case
method are reset to their original states before the next method is run. (Note that on
most databases, the test runner can use a transaction rollback call to accomplish this
very efficiently.) Thus Django unit test methods are fully isolated from any database
changes that may have been performed by tests that ran before them.

Unicode
The final doctest caveat discussed in the previous chapter concerned using
Unicode literals within doctests. These were observed to not work properly, due to
underlying open issues in Python related to Unicode docstrings and Unicode literals
within docstrings.

Unit tests do not have this problem. A straightforward unit test for the behavior of
the Survey model __unicode__ method works:

class SurveyUnicodeTest(TestCase):
 def testUnicode(self):
 t = u'¿Como está usted?'
 sd = datetime.date(2009, 12, 28)
 s = Survey.objects.create(title=t, opens=sd)
 self.assertEqual(unicode(s),
 u'¿Como está usted? (opens 2009-12-28, closes 2010-01-04)')

Testing 1, 2, 3: Basic Unit Testing

[76]

Note that it is necessary to add the encoding declaration to the top of survey/
tests.py, just as we did in the previous chapter for survey/models.py, but it is
not necessary to do any manual decoding of bytestring literals to construct Unicode
objects as needed to be done in the doctest version. We just need to set our variables
as we normally would, create the Survey instance, and assert that the result of
calling unicode on that instance produces the string we expect. Thus testing with
non-ASCII data is much more straightforward when using unit tests than it is
with doctests.

Providing data for unit tests
Besides not suffering from some of the disadvantages of doctests, unit tests provide
some additional useful features for Django applications. One of these features is
the ability to load the database with test data prior to the test run. There are a few
different ways this can be done; each is discussed in detail in the following sections.

Providing data in test fixtures
The first way to provide test data for unit tests is to load them from files, called
fixtures. We will cover this method by first developing an example test that can
benefit from pre-loaded test data, then showing how to create a fixture file, and
finally describing how to ensure that the fixture file is loaded as part of the test.

Example test that needs test data
Before jumping into the details of how to provide a test with pre-loaded data, it
would help to have an example of a test that could use this feature. So far our simple
tests have gotten by pretty easily by just creating the data they need as they go along.
However, as we begin to test more advanced functions, we quickly run into cases
were it would become burdensome for the test itself to have to create all of the data
needed for a good test.

For example, consider the Question model:

 class Question(models.Model):
 question = models.CharField(max_length=200)
 survey = models.ForeignKey(Survey)

 def __unicode__(self):
 return u'%s: %s' % (self.survey, self.question)

Chapter 3

[77]

(Note that we have added a __unicode__ method to this model. This will come in
handy later in the chapter when we begin to use the admin interface to create some
survey application data.)

Recall that the allowed answers for a given Question instance are stored in a
separate model, Answer, which is linked to Question using a ForeignKey:

class Answer(models.Model):
 answer = models.CharField(max_length=200)
 question = models.ForeignKey(Question)
 votes = models.IntegerField(default=0)

This Answer model also tracks how many times each answer has been chosen, in
its votes field. (We have not added a __unicode__ method to this model yet, since
given the way we will configure admin later in the chapter, it is not yet needed.)

Now, when analyzing survey results, one of the things we will want to know about
a given Question is which of its Answers was chosen most often. That is, one of
the functions that a Question model will need to support is one which returns the
"winning answer" for that Question. If we think about this a bit, we realize there
may not be a single winning answer. There could be a tie with multiple answers
getting the same number of votes. So, this winning answer method should be
flexible enough to return more than one answer. Similarly, if there were no responses
to the question, it would be better to return no winning answers than the whole set
of allowed answers, none of which were ever chosen. Since this method (let's call
it winning_answers) may return zero, one, or more results, it's probably best for
consistency's sake for it to always return something like a list.

Before even starting to implement this function, then, we have a sense of the
different situations it will need to handle, and what sort of test data will be useful to
have in place when developing the function itself and tests for it. A good test of this
routine will require at least three different questions, each with a set of answers:

One question that has a clear winner among the answers, that is one answer
with more votes than all of the others, so that winning_answers returns a
single answer
One question that has a tie among the answers, so that winning_answers
returns multiple answers
One question that gets no responses at all, so that winning_answers returns
no answers

•

•

•

Testing 1, 2, 3: Basic Unit Testing

[78]

In addition, we should test with a Question that has no answers linked to it. This is
an edge case, certainly, but we should ensure that the winning_answers function
operates properly even when it seems that the data hasn't been fully set up for
analysis of which answer was most popular. So, really there should be four
questions in the test data, three with a set of answers and one with no answers.

Using the admin application to create test data
Creating four questions, three with several answers, in a shell session or even a
program is pretty tedious, so let's use the Django admin application instead. Back in
the first chapter we included django.contrib.admin in INSTALLED_APPS, so it is
already loaded. Also, when we ran manage.py syncdb, the tables needed for admin
were created. However, we still need to un-comment the admin-related lines in our
urls.py file. When we do that urls.py should look like this:

from django.conf.urls.defaults import *

Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 # Example:
 # (r'^marketr/', include('marketr.foo.urls')),

 # Uncomment the admin/doc line below and add
 # 'django.contrib.admindocs'
 # to INSTALLED_APPS to enable admin documentation:
 # (r'^admin/doc/', include('django.contrib.admindocs.urls')),

 # Uncomment the next line to enable the admin:
 (r'^admin/', include(admin.site.urls)),
)

Chapter 3

[79]

Finally, we need to provide some admin definitions for our survey application
models, and register them with the admin application so that we can edit our models
in the admin. Thus, we need to create a survey/admin.py file that looks something
like this:

from django.contrib import admin
from survey.models import Survey, Question, Answer

class QuestionsInline(admin.TabularInline):
 model = Question
 extra = 4

class AnswersInline(admin.TabularInline):
 model = Answer

class SurveyAdmin(admin.ModelAdmin):
 inlines = [QuestionsInline]

class QuestionAdmin(admin.ModelAdmin):
 inlines = [AnswersInline]

admin.site.register(Survey, SurveyAdmin)
admin.site.register(Question, QuestionAdmin)

Here we have mostly used the admin defaults for everything, except that we have
defined and specified some admin inline classes to make it easier to edit multiple
things on a single page. The way we have set up the inlines here allows us to edit
Questions on the same page as the Survey they belong to, and similarly edit
Answers on the same page as the Questions they are associated with. We've also
specified that we want four extra empty Questions when they appear inline. The
default for this value is three, but we know we want to set up four questions and we
might as well set things up so we can add all four at one time.

Testing 1, 2, 3: Basic Unit Testing

[80]

Now, we can start the development server by running python manage.py runserver
in a command prompt, and access the admin application by navigating to http://
localhost:8000/admin/ from a browser on the same machine. After logging in as
the superuser we created back in the first chapter, we'll be shown the admin main
page. From there, we can click on the link to add a Survey. The Add survey page
will let us create a survey with our four Questions:

Chapter 3

[81]

Here we've assigned our Question instances question values that are not so much
questions as indications of what we are going to use each one to test. Notice this
page also reflects a slight change made to the Survey model: blank=True has been
added to the closes field specification. Without this change, admin would require a
value to be specified here for closes. With this change, the admin application allows
the field to be left blank, so that the automatic assignment done by the save override
method can be used.

Once we have saved this survey, we can navigate to the change page for the first
question, Clear Winner, and add some answers:

Testing 1, 2, 3: Basic Unit Testing

[82]

Thus, we set up the Clear Winner question to have one answer (Max Votes) that
has more votes than all of the other answers. Similarly, we can set up the 2-Way Tie
question to have two answers that have the same number of votes:

Chapter 3

[83]

And finally, we set up the answers for No Responses so that we can test the situation
where none of the answers to a Question have received any votes:

We do not need to do anything further with the No Answers question since that one
is going to be used to test the case where the answer set for the question is empty, as
it is when it is first created.

Writing the function itself
Now that we have our database set up with test data, we can experiment in the shell
with the best way to implement the winning_answers function. As a result, we
might come up with something like:

from django.db.models import Max

class Question(models.Model):
 question = models.CharField(max_length=200)
 survey = models.ForeignKey(Survey)

Testing 1, 2, 3: Basic Unit Testing

[84]

 def winning_answers(self):
 rv = []
 max_votes = self.answer_set.aggregate(Max('votes')).values()[0]
 if max_votes and max_votes > 0:
 rv = self.answer_set.filter(votes=max_votes)
 return rv

The method starts by initializing a local variable rv (return value) to an empty list.
Then, it uses the aggregation Max function to retrieve the maximum value for votes
that exists in the set of Answer instances associated with this Question instance. That
one line of code does several things in order to come up with the answer, so it may
bear some more explanation. To see how it works, take a look at what each piece in
turn returns in a shell session:

>>> from survey.models import Question

>>> q = Question.objects.get(question='Clear Winner')

>>> from django.db.models import Max

>>> q.answer_set.aggregate(Max('votes'))

{'votes__max': 8}

Here we see that applying the aggregate function Max to the votes field of the
answer_set associated with a given Question returns a dictionary containing a
single key-value pair. We're only interested in the value, so we retrieve just the
values from the dictionary using .values():

>>> q.answer_set.aggregate(Max('votes')).values()

[8]

However, values() returns a list and we want the single item in the list, so we
retrieve it by requesting the item at index zero in the list:

>>> q.answer_set.aggregate(Max('votes')).values()[0]

8

Next the code tests for whether max_votes exists and if it is greater than zero (at
least one answer was chosen at least once). If so, rv is reset to be the set of answers
filtered down to only those that have that maximum number of votes.

Chapter 3

[85]

But when would max_votes not exist, since it was just set in the previous line? This
can happen in the edge case where there are no answers linked to a question. In
that case, the aggregate Max function is going to return None for the maximum
votes value, not zero:

>>> q = Question.objects.get(question='No Answers')

>>> q.answer_set.aggregate(Max('votes'))

{'votes__max': None}

Thus in this edge case, max_votes may be set to None, so it's best to test for that and
avoid trying to compare None to 0. While that comparison will actually work and
return what seems like a sensible answer (None is not greater than 0) in Python 2.x,
the attempted comparison will return a TypeError beginning with Python 3.0. It's
wise to avoid such comparisons now so as to limit problems if and when the code
needs to be ported to run under Python 3.

Finally, the function returns rv, at this point hopefully set to the correct value. (Yes,
there's a bug in this function. It's more entertaining to write tests that catch bugs now
and then.)

Writing a test that uses the test data
Now that we have an implementation of winning_answers, and data to test it with,
we can start writing our test for the winning_answers method. We might start by
adding the following test to tests.py, testing the case where there is a clear winner
among the answers:

from survey.models import Question
class QuestionWinningAnswersTest(TestCase):
 def testClearWinner(self):
 q = Question.objects.get(question='Clear Winner')
 wa_qs = q.winning_answers()
 self.assertEqual(wa_qs.count(), 1)
 winner = wa_qs[0]
 self.assertEqual(winner.answer, 'Max Votes')

The test starts by retrieving the Question that has its question value set to 'Clear
Winner'. Then, it calls winning_answers on that Question instance to retrieve the
query set of answers for the question that received the most number of votes. Since
this question is supposed to have a single winner, the test asserts that there is one
element in the returned query set. It then does some further checking by retrieving
the winning answer itself and verifying that its answer value is 'Max Votes'. If all
that succeeds, we can be pretty sure that winning_answers returns the correct result
for the case where there is a single "winner" among the answers.

Testing 1, 2, 3: Basic Unit Testing

[86]

Extracting the test data from the database
Now, how do we run that test against the test data we loaded via the admin
application into our database? When we run the tests, they are not going to use our
production database, but rather create and use an initially empty test database. This
is where fixtures come in. Fixtures are just files containing data that can be loaded
into the database.

The first task, then, is to extract the test data that we loaded into our
production database into a fixture file. We can do this by using the
manage.py dumpdata command:

python manage.py dumpdata survey --indent 4 >test_winning_answers.json

Beyond the dumpdata command itself, the various things specified there are:

survey: This limits the dumped data to the survey application. By default,
dumpdata will output data for all installed applications, but the winning
answers test does not need data from any application other than survey, so
we can limit the fixture file to contain only data from the survey application.
--indent 4: This makes the data output easier to read and edit. By default,
dumpdata will output the data all on a single line, which is difficult to deal
with if you ever need to examine or edit the result. Specifying indent
4 makes dumpdata format the data on multiple lines, with four-space
indentation making the hierarchy of structures clear. (You can specify
whatever number you like for the indent value, it does not have to be 4.)
>test_winning_answers.json: This redirects the output from the command
to a file. The default output format for dumpdata is JSON, so we use .json
as the file extension so that when the fixture is loaded its format will be
interpreted correctly.

When dumpdata completes, we will have a test_winning_answers.json file, which
contains a serialized version of our test data. Besides loading it as part of our test
(which will be covered next), what might we do with this or any fixture file?

First, we can load fixtures using the manage.py loaddata command. Thus dumpdata
and loaddata together provide a way to move data from one database to another.
Second, we might have or write programs that process the serialized data in some
way: it can sometimes be easier to perform analysis on data contained in a flat
file instead of a database. Finally, the manage.py testserver command supports
loading fixtures (specified on the command line) into a test database and then
running the development server. This can come in handy in situations where you'd
like to experiment with how a real server behaves given this test data, instead of
being limited to the results of the tests written to use the data.

•

•

•

Chapter 3

[87]

Getting the test data loaded during the test run
Returning to our task at hand: how do we get this fixture we just created loaded when
running the tests? An easy way to do this is to rename it to initial_data.json and
place it in a fixtures subdirectory of our survey application directory. If we do that
and run the tests, we will see that the fixture file is loaded, and our test for the clear
winner case runs successfully:

kmt@lbox:/dj_projects/marketr$ python manage.py test survey

Creating test database...

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table django_admin_log

Creating table survey_survey

Creating table survey_question

Creating table survey_answer

Installing index for auth.Permission model

Installing index for auth.Message model

Installing index for admin.LogEntry model

Installing index for survey.Question model

Installing index for survey.Answer model

Installing json fixture 'initial_data' from '/dj_projects/marketr/survey/
fixtures'.

Installed 13 object(s) from 1 fixture(s)

.........

--

Ran 9 tests in 0.079s

OK

Destroying test database...

Testing 1, 2, 3: Basic Unit Testing

[88]

However, that is not really the right way to get this particular fixture data
loaded. Initial data fixtures are meant for constant application data that should
always be there as part of the application, and this data does not fall into that
category. Rather, it is specific to this particular test, and needs to be loaded only for
this test. To do that, place it in the survey/fixtures directory with the original
name, test_winning_answers.json. Then, update the test case code to specify that
this fixture should be loaded for this test by including the file name in a fixtures
class attribute of the test case:

class QuestionWinningAnswersTest(TestCase):

 fixtures = ['test_winning_answers.json']

 def testClearWinner(self):
 q = Question.objects.get(question='Clear Winner')
 wa_qs = q.winning_answers()
 self.assertEqual(wa_qs.count(), 1)
 winner = wa_qs[0]
 self.assertEqual(winner.answer, 'Max Votes')

Note that manage.py test, at least as of Django 1.1, does not provide as much
feedback for the loading of test fixtures specified this way as it does for loading
initial data fixtures. In the previous test output, where the fixture was loaded as
initial data, there are messages about the initial data fixture being loaded and 13
objects being installed. There are no messages like that when the fixture is loaded
as part of the TestCase.

Furthermore there is no error indication if you make a mistake and specify the
wrong filename in your TestCase fixtures value. For example, if you mistakenly
leave the ending s off of test_winning_answers, the only indication of the problem
will be that the test case fails:

kmt@lbox:/dj_projects/marketr$ python manage.py test survey

Creating test database...

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table django_admin_log

Chapter 3

[89]

Creating table survey_survey

Creating table survey_question

Creating table survey_answer

Installing index for auth.Permission model

Installing index for auth.Message model

Installing index for admin.LogEntry model

Installing index for survey.Question model

Installing index for survey.Answer model

E........

==

ERROR: testClearWinner (survey.tests.QuestionWinningAnswersTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests.py", line 67, in
testClearWinner

 q = Question.objects.get(question='Clear Winner')

 File "/usr/lib/python2.5/site-packages/django/db/models/manager.py",
line 120, in get

 return self.get_query_set().get(*args, **kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/models/query.py", line
305, in get

 % self.model._meta.object_name)

DoesNotExist: Question matching query does not exist.

--

Ran 9 tests in 0.066s

FAILED (errors=1)

Destroying test database...

Possibly the diagnostics provided for this error case may be improved in the future,
but in the meantime it's best to keep in mind that mysterious errors such as that
DoesNotExist above are likely due to the proper test fixture not being loaded
rather than some error in the test code or the code being tested.

Testing 1, 2, 3: Basic Unit Testing

[90]

Now that we've got the test fixture loaded and the first test method working
properly, we can add the tests for the three other cases: the one where there is a
two-way tie among the answers, the one where no responses were received to a
question, and the one where no answers are linked to a question. These can be
written to be very similar to the existing method that tests the clear winner case:

 def testTwoWayTie(self):
 q = Question.objects.get(question='2-Way Tie')
 wa_qs = q.winning_answers()
 self.assertEqual(wa_qs.count(), 2)
 for winner in wa_qs:
 self.assert_(winner.answer.startswith('Max Votes'))

 def testNoResponses(self):
 q = Question.objects.get(question='No Responses')
 wa_qs = q.winning_answers()
 self.assertEqual(wa_qs.count(), 0)

 def testNoAnswers(self):
 q = Question.objects.get(question='No Answers')
 wa_qs = q.winning_answers()
 self.assertEqual(wa_qs.count(), 0)

Differences are in the names of the Questions retrieved from the database, and
how the specific results are tested. In the case of the 2-Way Tie, the test verifies that
winning_answers returns two answers, and that both have answer values that start
with 'Max Votes'. In the case of no responses, and no answers, all the tests have to
do is verify that there are no items in the query set returned by winning_answers.

If we now run the tests, we will find the bug that was mentioned earlier, since our
last two tests fail:

==

ERROR: testNoAnswers (survey.tests.QuestionWinningAnswersTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests.py", line 88, in testNoAnswers

 self.assertEqual(wa_qs.count(), 0)

TypeError: count() takes exactly one argument (0 given)

==

ERROR: testNoResponses (survey.tests.QuestionWinningAnswersTest)

--

Chapter 3

[91]

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests.py", line 83, in
testNoResponses

 self.assertEqual(wa_qs.count(), 0)

TypeError: count() takes exactly one argument (0 given)

The problem here is that winning_answers is inconsistent in what it returns:

def winning_answers(self):
 rv = []
 max_votes = self.answer_set.aggregate(Max('votes')).values()[0]
 if max_votes and max_votes > 0:
 rv = self.answer_set.filter(votes=max_votes)
 return rv

The return value rv is initialized to a list in the first line of the function, but then
when it is set in the case where there are answers that received votes, it is set to be
the return value from a filter call, which returns a QuerySet, not a list. The
test methods, since they use count() with no arguments on the return value of
winning_answers, are expecting a QuerySet.

Which is more appropriate for winning_answers to return: a list or a QuerySet?
Probably a QuerySet. The caller may only be interested in the count of answers in
the set and not the specific answers, so it may not be necessary to retrieve the actual
answers from the database. If winning_answers consistently returns a list, it would
have to force the answers to be read from the database in order to put them in a list.
Thus, it's probably more efficient to always return a QuerySet and let the caller's
requirements dictate what ultimately needs to be read from the database. (Given
the small number of items we'd expect to be in this set, there is probably little to no
efficiency to be gained here, but it is still a good habit to get into in order to consider
such things when designing interfaces.)

A way to fix winning_answers to always return a QuerySet is to use the none()
method applied to the answer_set, which will return an empty QuerySet:

def winning_answers(self):
 max_votes = self.answer_set.aggregate(Max('votes')).values()[0]
 if max_votes and max_votes > 0:
 rv = self.answer_set.filter(votes=max_votes)
 else:
 rv = self.answer_set.none()
 return rv

Testing 1, 2, 3: Basic Unit Testing

[92]

After making this change, the complete QuestionWinningAnswersTest TestCase
runs successfully.

Creating data during test set up
While test fixtures are very convenient, they are sometimes not the right tool for the
job. Specifically, since the fixture files contain fixed, hard-coded values for all model
data, fixtures are sometimes not flexible enough for all tests.

As an example, let's return to the Survey model and consider some methods we
are likely to want it to support. Recall that a survey has both, an opens and a
closes date, so at any point in time a particular Survey instance may be considered
"completed", "active", or "upcoming", depending on where the current date falls in
relation to the survey's opens and closes dates. It will be useful to have easy access
to these different categories of surveys. The typical way to support this in Django
is to create a special model Manager for Survey that implements methods to return
appropriately-filtered query sets. Such a Manager might look like this:

import datetime
from django.db import models

class SurveyManager(models.Manager):
 def completed(self):
 return self.filter(closes__lt=datetime.date.today())
 def active(self):
 return self.filter(opens__lte=datetime.date.today()).\
 filter(closes__gte=datetime.date.today())
 def upcoming(self):
 return self.filter(opens__gt=datetime.date.today())

This manager implements three methods:

completed: This returns a QuerySet of Survey filtered down to only those
with closes values earlier than today. These are surveys that are closed to
any more responses.
active: This returns a QuerySet of Survey filtered down to only those with
opens values earlier or equal to today, and closes later than or equal to
today. These are surveys that are open to receiving responses.
upcoming: This returns a QuerySet of Survey filtered down to only those
with opens values later than today. These are surveys that are not yet open
to responses.

•

•

•

Chapter 3

[93]

To make this custom manager the default for the Survey model, assign an instance of
it to the value of the Survey objects attribute:

 class Survey(models.Model):
 title = models.CharField(max_length=60)
 opens = models.DateField()
 closes = models.DateField(blank=True)

 objects = SurveyManager()

Why might we have difficulty testing these methods using fixture data? The problem
arises due to the fact that the methods rely on the moving target of today's date. It's
not actually a problem for testing completed, as we can set up test data for surveys
with closes dates in the past, and those closes dates will continue to be in the past
no matter how much further forward in time we travel.

It is, however, a problem for active and upcoming, since eventually, even if we
choose closes (and, for upcoming, opens) dates far in the future, today's date will
(barring universal catastrophe) at some point catch up with those far-future dates.
When that happens, the tests will start to fail. Now, we may expect that there is no
way our software will still be running in that far-future time. (Or we may simply
hope that we are no longer responsible for maintaining it then.) But that's not really
a good approach. It would be much better to use a technique that doesn't result in
time-bombs in the tests.

If we don't want to use a test fixture file with hard-coded dates to test these routines,
what is the alternative? What we can do instead is much like what we were doing
earlier: create the data dynamically in the test case. As noted earlier, this might
be somewhat tedious, but note we do not have to re-create the data for each test
method. Unit tests provide a hook method, setUp, which we can use to implement
any common pre-test initialization. The test machinery will ensure that our setUp
routine is run prior to each of our test methods. Thus setUp is a good place to put
code that dynamically creates fixture-like data for our tests.

In a test for the custom Survey manager, then, we might have a setUp routine that
looks like this:

class SurveyManagerTest(TestCase):
 def setUp(self):
 today = datetime.date.today()
 oneday = datetime.timedelta(1)
 yesterday = today - oneday
 tomorrow = today + oneday
 Survey.objects.all().delete()

Testing 1, 2, 3: Basic Unit Testing

[94]

 Survey.objects.create(title="Yesterday", opens=yesterday,
 closes=yesterday)
 Survey.objects.create(title="Today", opens=today,
 closes=today)
 Survey.objects.create(title="Tomorrow", opens=tomorrow,
 closes=tomorrow)

This method creates three Surveys: one that opened and closed yesterday, one that
opens and closes today, and one that opens and closes tomorrow. Before it creates
these, it deletes all Survey objects that are in the database. Thus, each test method
in the SurveyManagerTest can rely on there being exactly three Surveys in the
database, one in each of the three states.

Why does the test first delete all Survey objects? There should not be any Surveys in
the database yet, right? That call is there just in case at some future point, the survey
application acquires an initial data fixture that includes one or more Surveys. If such
a fixture existed, it would be loaded during test initialization, and would break these
tests that rely on there being exactly three Surveys in the database. Thus, it is safest
for setUp here to ensure that the only Surveys in the database are the ones it creates.

A test for the Survey manager completed function might then be:

 def testCompleted(self):
 self.assertEqual(Survey.objects.completed().count(), 1)
 completed_survey = Survey.objects.get(title="Yesterday")
 self.assertEqual(Survey.objects.completed()[0],
 completed_survey)

 today = datetime.date.today()
 completed_survey.closes = today
 completed_survey.save()
 self.assertEqual(Survey.objects.completed().count(), 0)

The test first asserts that on entry there is one completed Survey in the database.
It then verifies that the one Survey returned by the completed function is in
fact that actual survey it expects to be completed, that is the one with title set to
"Yesterday". The test then goes a step further and modifies that completed Survey
so that its closes date no longer qualifies it as completed, and saves that change
to the database. When that has been done, the test asserts that there are now zero
completed Surveys in the database.

Chapter 3

[95]

Testing with that routine verifies that the test works, so a similar test for active
surveys might be written as:

 def testActive(self):
 self.assertEqual(Survey.objects.active().count(), 1)
 active_survey = Survey.objects.get(title="Today")
 self.assertEqual(Survey.objects.active()[0], active_survey)
 yesterday = datetime.date.today() - datetime.timedelta(1)
 active_survey.opens = active_survey.closes = yesterday
 active_survey.save()
 self.assertEqual(Survey.objects.active().count(), 0)

This is very much like the test for completed. It asserts that there is one active
Survey on entry, retrieves the active Survey and verifies that it is the one expected
to be active, modifies it so that it no longer qualifies as active (by making it qualify
as closed), saves the modification, and finally verifies that active then returns that
there are no active Surveys.

Similarly, a test for upcoming surveys might be:

 def testUpcoming(self):
 self.assertEqual(Survey.objects.upcoming().count(), 1)
 upcoming_survey = Survey.objects.get(title="Tomorrow")
 self.assertEqual(Survey.objects.upcoming()[0],
 upcoming_survey)
 yesterday = datetime.date.today() - datetime.timedelta(1)
 upcoming_survey.opens = yesterday
 upcoming_survey.save()
 self.assertEqual(Survey.objects.upcoming().count(), 0)

But won't all those tests interfere with each other? For example, the test for
completed makes the "Yesterday" survey appear to be active, and the test for
active makes the "Today" survey appear to be closed. It seems that whichever one
runs first is going to make a change that will interfere with the correct operation of
the other test.

In fact, though, the tests don't interfere with each other, because the database is reset
and the test case setUp method is re-run before each test method is run. So setUp
is not run once per TestCase, but rather once per test method within the TestCase.
Running the tests shows that all of these tests pass, even though each updates the
database in a way that would interfere with the others, if the changes it made were
seen by the others:

testActive (survey.tests.SurveyManagerTest) ... ok
testCompleted (survey.tests.SurveyManagerTest) ... ok
testUpcoming (survey.tests.SurveyManagerTest) ... ok

Testing 1, 2, 3: Basic Unit Testing

[96]

There is a companion method to setUp, called tearDown that can be used to perform
any cleaning up after test methods. In this case it isn't necessary, since the default
Django operation of resetting the database between test method executions takes care
of un-doing the database changes made by the test methods. The tearDown routine is
useful for cleaning up any non-database changes (such as temporary file creation, for
example) that may be done by the tests.

Summary
We have now covered the basics of unit testing Django applications. In this
chapter, we:

Converted the previously-written doctests for the Survey model to unit
tests, which allowed us to directly compare the pros and cons of each
test approach
Revisited the doctest caveats from the previous chapter and examined to
what extent (if any) unit tests are susceptible to the same issues
Began to learn some of the additional features available with unit tests; in
particular, features related to loading test data

In the next chapter, we will start investigating even more advanced features that are
available to Django unit tests.

•

•

•

Getting Fancier:
Django Unit Test Extensions

In the last chapter, we started learning how to use unit tests to test Django
applications. This included learning about some Django-specific support, such as
how to get test data loaded from fixture files into the database for a particular test.
So far, though, our testing focus has been on small building blocks that make up
the application. We have not yet begun to write code to serve up web pages for our
application, nor considered how we will test whether the pages are served properly
and contain the correct content. The Django TestCase class provides support that is
useful for this broader kind of testing, which will be the focus of this chapter. In this
chapter, we will:

First learn how to use a tests directory for our Django application tests
instead of a single tests.py file. This will allow us to organize the tests
logically instead of having all sorts of different tests mixed up in a single
huge file.
Develop some web pages for the survey application. For each, we will
write unit tests to verify their correct operation, learning the specifics of
the TestCase support for testing Django applications along the way.
Experiment with adding custom validation to the Survey model in the admin
application, and see how to test such customization.
Briefly discuss some aspects of Django's test support that we don't run across
in our example tests.
Finally, we will learn under what conditions it may be necessary to use an
alternate unit test class, TransactionTestCase. This class does not perform
as well as TestCase, but it supports testing some database transaction
behavior that is not possible with TestCase.

•

•

•

•

•

Getting Fancier: Django Unit Test Extensions

[98]

Organizing tests
Before we set out to write code (and tests) for serving web pages from the survey
application, let's consider the tests we have so far. If we run manage.py test
survey -v2 and examine the tail end of the output, we can see that we've already
accumulated over a dozen individual tests:

No fixtures found.

testClearWinner (survey.tests.QuestionWinningAnswersTest) ... ok

testNoAnswers (survey.tests.QuestionWinningAnswersTest) ... ok

testNoResponses (survey.tests.QuestionWinningAnswersTest) ... ok

testTwoWayTie (survey.tests.QuestionWinningAnswersTest) ... ok

testActive (survey.tests.SurveyManagerTest) ... ok

testCompleted (survey.tests.SurveyManagerTest) ... ok

testUpcoming (survey.tests.SurveyManagerTest) ... ok

Verify closes is autoset correctly ... ok

Verify closes is honored if specified ... ok

Verify closes is only autoset during initial create ... ok

Verify correct exception is raised in error case ... ok

testUnicode (survey.tests.SurveyUnicodeTest) ... ok

Doctest: survey.models.Survey.__unicode__ ... ok

Doctest: survey.models.Survey.save ... ok

Doctest: survey.tests.__test__.survey_save ... ok

--

Ran 15 tests in 0.810s

OK

Destroying test database...

Two of those, namely the two doctests with labels that start with survey.models.
Survey, are from the survey/models.py file. The remaining 13 tests are all in the
survey/tests.py file, which has grown to around 150 lines. Those numbers are not
that big, but if you consider that we have barely started writing this application, it
is clear that continuing to simply add to tests.py will soon result in an unwieldy
test file. Since we are about to start moving on from building and testing the survey
models to building and testing the code that serves web pages, now would be a good
time to come up with a better organization for tests than a single file.

Chapter 4

[99]

Fortunately, this is not hard to do. Nothing in Django requires that the tests all
reside in a single file; they simply need to be in a Python module named tests. So,
we can create a subdirectory within survey named tests, and move our existing
tests.py file into it. Since the tests in this file focus on testing the application's
models, let's also rename it model_tests.py. We should also delete the tests.pyc
file from marketr/survey since leaving stray .pyc files around after Python code
reorganization can often cause confusion. Finally we need to create an __init__.py
file inside the tests directory, so that Python will recognize it as a module.

Is that all? Not quite. Django uses unittest.TestLoader.LoadTestsFromModule
to find and automatically load all of the TestCase classes in the tests module.
However, we have now moved all of the TestCase classes into a submodule of tests,
named model_tests. In order for LoadTestsFromModule to find them, we need
to make them visible in the parent tests module, which we can do by adding an
import for model_tests to the __init__.py file in survey/tests:

from model_tests import *

Now are we set? Almost. If we run manage.py test survey -v2 now, we will see
that the output reports 14 tests run, whereas the run prior to the reorganization
reported 15 tests run:

No fixtures found.

testClearWinner (survey.tests.model_tests.QuestionWinningAnswersTest) ...
ok

testNoAnswers (survey.tests.model_tests.QuestionWinningAnswersTest) ... ok

testNoResponses (survey.tests.model_tests.QuestionWinningAnswersTest) ...
ok

testTwoWayTie (survey.tests.model_tests.QuestionWinningAnswersTest) ... ok

testActive (survey.tests.model_tests.SurveyManagerTest) ... ok

testCompleted (survey.tests.model_tests.SurveyManagerTest) ... ok

testUpcoming (survey.tests.model_tests.SurveyManagerTest) ... ok

Verify closes is autoset correctly ... ok

Verify closes is honored if specified ... ok

Verify closes is only autoset during initial create ... ok

Verify correct exception is raised in error case ... ok

testUnicode (survey.tests.model_tests.SurveyUnicodeTest) ... ok

Doctest: survey.models.Survey.__unicode__ ... ok

Doctest: survey.models.Survey.save ... ok

--

Ran 14 tests in 0.760s

OK

Destroying test database...

Getting Fancier: Django Unit Test Extensions

[100]

Which test is missing? The very last test from the earlier run, that is the doctest in the
__test__ dictionary that had been in tests.py. Because __test__ starts with an
underscore (signaling it is a private attribute), it is not imported by from model_tests
import *. The privacy implied by the naming is not enforced by Python, so we could
add an explicit import for __test__ as well to survey/tests/__init__.py:

from model_tests import __test__
from model_tests import *

If we did that and ran the tests again, we would see that we were back to having 15
tests. However that is a poor solution, since it is not extensible to multiple files in the
tests directory. If we add another file to our tests directory, say view_tests.py,
and simply replicate the imports used for model_tests.py, we will have:

from model_tests import __test__
from model_tests import *
from view_tests import __test__
from view_tests import *

This will not cause any errors, but it also does not quite work. The second import of
__test__ completely replaces the first, so the doctests contained in model_tests.py
are lost if we do this.

It would be easy enough to devise an approach that would be extensible to
multiple files, perhaps by creating our own naming convention for doctests defined
within individual test files. Then, code in __init__.py could create the __test__
dictionary for the overall tests module by combining dictionaries from the
individual test files that defined doctests. But for the purposes of the examples we
are going to be studying here, that is unnecessarily complicated, since the additional
tests we will be adding are all unit tests, not doctests.

In fact the doctests now in model_tests.py have also been re-implemented as unit
tests, so they are redundant as tests and could safely be dropped. However, they
do serve to point out an issue with doctests that will arise if you decide to move
away from the single-file tests.py approach in your own projects. We can keep
the doctests we already have by simply moving the __test__ dictionary definition
from the model_tests.py file to the survey/tests/__init__.py file. Then, if we
decide additional doctests (beyond ones in models.py) would be useful, we can
either simply add to this dictionary in survey/tests/__init__.py or come up with
a more sophisticated approach to allow splitting out doctests as well as unit tests into
different files.

Chapter 4

[101]

Note that it is not necessary to limit the tests directory tree to a single level. We
could create a subdirectory for model tests, and one for views, and further subdivide
these tests into individual files. Using the approach we have started with here, all
that needs to be done is to include the proper imports in the various __init__.py
files so that the test cases are visible at the top level of the tests package. How
deep to make the tree and how small to make the individual test files are matters of
personal preference. We will stick to a single level for now.

Finally, note that you can take full control of what tests make up your application's
test suite by defining a suite() function in the models and/or tests module for
the application. The Django test runner looks for such a function in each of these
modules, and if suite() exists, it is called to create the test suite. If provided, the
suite() function must return an object suitable for passing as an argument to
unittest.TestSuite.addTest (for example, a unittest.TestSuite).

Creating the survey application home
page
It is now time to turn our attention to building some web pages for the survey
application. The first page to consider is the home page, which will be the starting
point for general users doing anything with surveys. Ultimately, we would likely
plan for this page to have many different elements, such as a standard header
and footer, also maybe a sidebar or two for news and feedback. We'd plan to
develop comprehensive stylesheets to give the application a pretty and consistent
appearance. But all of that is beside the point of what we want to focus on right now,
which is the main content of the home page.

The primary function of the home page will be to provide a snapshot overview of
the current state of surveys, and to provide links, where appropriate, to allow users
to see details on individual surveys. The home page will show surveys grouped into
three categories:

First, there will be a list of currently open surveys. Each survey in this list
will have a link for users to follow if they want to participate in the survey.
Second, there will be a list of recently completed surveys. Each of these will
also have a link to follow, but this link will bring up a page that allows users
to see the survey results.
Third, there will be a list of surveys that will be opening soon. Surveys in this
list will not have links since users cannot participate yet, nor are there results
to be seen.

•

•

•

Getting Fancier: Django Unit Test Extensions

[102]

In order to build and test this home page we need to do four things:

1.	 First, we need to define the URLs that will be used to access the home page
and any pages it links to, and define in the urls.py file how these URLs
should map to the view code that will serve the pages.

2.	 Second, we need to implement the view code for serving the pages identified
in step 1.

3.	 Third, we need to define the Django templates that will be used to render the
responses generated in step 2.

4.	 Finally, we need to write tests for each page.

The following sections will focus on each of these steps in turn.

Defining the survey application URLs
From the description of the survey home page, it sounds like we may have two or
three different URLs to define. Certainly there is the home page itself, which is most
naturally placed at the root of the survey application's URL tree. We can define this
by creating a urls.py file within the survey directory:

from django.conf.urls.defaults import *

urlpatterns = patterns('survey.views',
 url(r'^$', 'home', name='survey_home'),
)

Here we have specified that a request for the empty (root) URL should be handled by
the home function in the survey.views module. Further we have given this URL the
name survey_home, which we can use to refer to this URL from other code. Always
using named URLs is good practice, as it allows for changing the actual URLs by
simply changing the urls.py file and no other code.

Besides the home page, there are also the pages linked from the home page to
consider. First there are the pages linked from the list of active surveys, which allow
users to participate in a survey. Second are the pages linked from the list of recently
completed surveys, which allow users to see the results. You might ask, should these
be covered by one or two URLs?

Chapter 4

[103]

While it sounds like these may need different URLs, since the pages will show very
different content, in a sense that they are both showing the same thing—the details
for a particular survey. It is just that the current state of the survey will influence
what its details page displays. Thus, we can choose to put the logic for deciding
what exactly to display, based on survey state, into the view that handles displaying
details for a survey. Then we can cover both of these types of pages with a single
URL pattern. Taking this approach, the survey/urls.py file becomes:

from django.conf.urls.defaults import *

urlpatterns = patterns('survey.views',
 url(r'^$', 'home', name='survey_home'),
 url(r'^(?P<pk>\d+)/$', 'survey_detail', name='survey_detail'),
)

Here we have taken the approach of placing the primary key of the survey in the
URL. Any URL which consists of a single path component containing one or more
digits (the primary key) will be mapped to the survey_detail function in the
survey.views module. This function will receive the primary key path component
as an argument, pk, in addition to the standard request argument. Finally, this URL
has been given the name survey_detail.

Those two URL patterns are enough to define the survey application pages we have
considered so far. However, we still need to hook them into our project's overall URL
configuration. To do this, edit the project's root urls.py file and add a line for the
survey URLs. The urlpatterns variable in urls.py will then be defined like so:

urlpatterns = patterns('',
 # Example:
 # (r'^marketr/', include('marketr.foo.urls')),

 # Uncomment the admin/doc line below and add
 # 'django.contrib.admindocs'
 # to INSTALLED_APPS to enable admin documentation:
 # (r'^admin/doc/', include('django.contrib.admindocs.urls')),

 # Uncomment the next line to enable the admin:
 (r'^admin/', include(admin.site.urls)),
 (r'', include('survey.urls')),

)

Getting Fancier: Django Unit Test Extensions

[104]

The last line we have added here specifies an empty URL pattern, r''. All matching
URLs will be tested against the patterns found in the urls.py file contained in the
survey module. The pattern r'' will match every URL, and no part of the URL
will be removed as already matched when it is tested against the URL patterns in
survey/urls.py, so this essentially mounts the survey urls.py file at the root of
the project's URL tree.

Developing views to serve pages
Now that we have defined our URLs and specified the view functions that should be
called to serve them, it is time to start writing these functions. Or, perhaps we should
start with the templates for these pages? Both need to be done and they are dependent
on each other. The data returned by views is dependent on what the templates need,
while the specifics of how the templates are written are dependent on the naming and
structure of the data provided by the views. Thus, it can be hard to know which to
start with, and it is sometimes necessary to alternate between them.

However, we have to start somewhere, and we will start with the views. In fact,
whenever you add a reference to a view in a urls.py file, it is a good idea to
immediately write at least a minimal implementation of that view. For example, for
the two views we just added to survey/urls.py, we might immediately place the
following in survey/views.py:

from django.http import HttpResponse

def home(request):
 return HttpResponse("This is the home page.")

def survey_detail(request, pk):
 return HttpResponse("This is the survey detail page for survey, "
 "with pk=%s" % pk)

These views both simply return an HttpResponse describing what the page is
supposed to display. Creating placeholder views like this ensures that the overall
URL pattern configuration for the project remains valid. Keeping this configuration
valid is important because any attempt to perform a reverse URL mapping (from the
name back to the actual URL) will result in an exception if there is any error (such
as reference to a non-existent function) in any part of the URL pattern configuration.
Thus, an invalid URL configuration can easily seem to break other perfectly
innocent code.

Chapter 4

[105]

The admin application, for example, needs to use reverse URL mapping to generate
links on its pages. Thus an invalid URL pattern configuration can result in an
exception being raised when a user attempts to access an admin page, even though
there is no error in the admin code itself. This kind of exception can be very hard
to debug since at first glance it seems that the problem is caused by code that is
entirely separate from where the actual error is. Thus, even if you prefer to work
on writing templates before view functions, it is best to always immediately
provide at least a bare minimum implementation for any view you add to
your URL pattern configuration.

We can go a step beyond the bare minimum, though, at least for the home page
view. As previously described, the home page will display three different lists of
surveys: active, recently completed, and opening soon. It is unlikely that the template
will need that data to be structured in any way more complicated than a simple list
(or QuerySet), so the view for the home page is straightforward to write:

import datetime
from django.shortcuts import render_to_response
from survey.models import Survey

def home(request):
 today = datetime.date.today()
 active = Survey.objects.active()
 completed = Survey.objects.completed().filter(closes__gte=today-
 datetime.timedelta(14))
 upcoming = Survey.objects.upcoming().filter(
 opens__lte=today+datetime.timedelta(7))
 return render_to_response('survey/home.html',
 {'active_surveys': active,
 'completed_surveys': completed,
 'upcoming_surveys': upcoming,
 })

This view sets three variables to be QuerySets containing the appropriate subsets
of the Surveys in the database. The recently completed set is limited to surveys that
have closed in the last two weeks, and the opening soon set is limited to those that
will open in the next week. The view then calls the render_to_response shortcut
to render the survey/home.html template passing along a context dictionary
containing the three Survey subsets in the active_surveys, completed_surveys,
and upcoming_surveys context variables.

Getting Fancier: Django Unit Test Extensions

[106]

At this point, we can either proceed to replace the placeholder survey_detail view
implementation with some real code, or we could get started on some templates.
Writing the second view does not get us any closer to testing out the first one we've
written, though, so moving on to the templates is better. The placeholder content for
the second view will do fine for now.

Creating templates for pages
To get started with writing templates for the survey application, first create a
templates directory under survey, and then a survey directory under templates.
Placing the templates under a templates directory in the application directory
allows them to be automatically found by the app_directories template loader,
which is enabled by default. Further, placing the templates in a survey directory
under templates minimizes the chance of name conflicts with templates used by
other applications.

Now, what templates do we need to create? The one named in the home view is
survey/home.html. We could create just that one file and make it a full standalone
HTTP document. But that would be unrealistic. Django provides a convenient
template inheritance mechanism to allow for re-use of common page elements
and selective override of defined blocks. At a minimum, we probably want to use
a common base template that defines the overall document structure and block
components, and then implements the individual page templates as child templates
that extend the base template.

Here's a minimal base.html template we can use to start with:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>{% block title %}Survey Central{% endblock %}</title>
</head>
<body>
{% block content %}{% endblock %}
</body>
</html>

This document provides the overall HTML structure tags and defines just two
blocks: title and content. The title block has default content of Survey Central
that may be overridden by child templates, or left as is. The content block is initially
empty, so child templates are expected to always provide something to fill in the
body of the page.

Chapter 4

[107]

Given that base template, we can write our home.html template as a child template
that extends base.html and provides the content for the block content. We
know that the home view is supplying three context variables (active_surveys,
completed_surveys, and upcoming_surveys) containing the data that should be
displayed. An initial implementation of the home.html template might look like this:

{% extends "survey/base.html" %}
{% block content %}
<h1>Welcome to Survey Central</h1>

{% if active_surveys %}
<p>Take a survey now!</p>

{% for survey in active_surveys %}
{{ survey.title }}

{% endfor %}

{% endif %}

{% if completed_surveys %}
<p>See how your opinions compared to those of others!</p>

{% for survey in completed_surveys %}
{{ survey.title }}

{% endfor %}

{% endif %}

{% if upcoming_surveys %}
<p>Come back soon to share your opinion!</p>

{% for survey in upcoming_surveys %}
{{ survey.title }} opens {{ survey.opens }}
{% endfor %}

{% endif %}
{% endblock content %}

Getting Fancier: Django Unit Test Extensions

[108]

That may look a little intimidating, but it is straightforward. The template starts by
specifying that it extends the survey/base.html template. It then proceeds to define
what should be placed in the block content defined in base.html. The first element
is a first-level heading Welcome to Survey Central. Then, if the active_surveys
context variable is not empty, the heading is followed by a paragraph inviting
people to take a survey, followed by a list of the active surveys. Each item in the list
is specified as a link where the link target value is obtained by calling the Survey's
get_absolute_url method (which we have not implemented yet). The visible text
for each link is set to the title value of Survey.

A nearly identical paragraph and list is displayed for the completed_surveys, if
there are any. Finally, the upcoming_surveys are handled similarly, except in their
case no links are generated. Rather, the survey titles are listed along with the date
when each survey will open.

Now, what is the get_absolute_url method used to generate the links to the active
and completed surveys? This is a standard model method we can implement to
provide the URL for a model instance on our site. In addition to using it in our own
code, the admin application uses it, if it is implemented by a model, to provide a
View on site link on the change page for model instances.

Recall that in our urls.py file we named the URL for survey details survey_detail
and that this view takes one argument, pk, which is the primary key of the Survey
instance to display details about. Knowing that, we can implement this
get_absolute_url method in the Survey model:

 def get_absolute_url(self):
 from django.core.urlresolvers import reverse
 return reverse('survey_detail', args=(self.pk,))

This method uses the reverse function provided by django.core.urlresolvers to
construct the actual URL that will map to the URL named survey_detail with an
argument value of the model instance's primary key value.

Alternatively, we could use the convenient models.permalink decorator and avoid
having to remember where the reverse function needs to be imported from:

 @models.permalink
 def get_absolute_url(self):
 return ('survey_detail', (self.pk,))

Chapter 4

[109]

This is equivalent to the first way of implementing get_absolute_url. This way
simply hides the details of calling the reverse function, as that is done by the
models.permalink code.

Now that we have created the home page view and the templates it uses, and
implemented all of the model methods called from those templates, we can actually
test the view. Ensure that the development server is running (or start it again with
manage.py runserver), and then from a browser on the same machine, go to
http://localhost:8000/. This should (assuming it has been less than a week
since the Winning Answers Test from the last chapter was created) bring up
a page that lists that survey as one that can be taken:

If it has been longer than a week since that survey was created, it should show up
under a paragraph that invites you to See how your opinions compared to those of
others! instead. If it has been more than three weeks, the survey should not show up
at all, in which case you may want to go back to the admin application and change
its closes date so that it appears on the home page.

Getting Fancier: Django Unit Test Extensions

[110]

That Winning Answers Test text is a link, which can be followed to verify that
the get_absolute_url method for Survey is working, and further that the URL
configuration we have set up is valid. Since we still have only the placeholder view
implementation of the survey detail view, clicking the Winning Answers Test link
will bring up a page that looks like this:

Not overly impressive, perhaps, but it does verify that the various pieces we have in
place so far are working.

Of course, since we've only got one Survey in the database, we've only verified one
part of the view and template. For a full test, we should also verify that the surveys
in all three categories appear properly. In addition, we should verify that surveys in
the database that should not appear either because they are too old or too far in the
future do not in fact appear on the home page.

We might do all that now by manually adding surveys in the admin application and
manually checking the contents of the home page as we make changes. However,
what we really want to learn is how to write a test to verify that what we have now
is correct and, more importantly, to allow us to verify that it remains correct as we
continue to develop the application. Therefore, writing such a test is what we will
focus on next.

Testing the survey home page
Before we think about how to write the test itself, let's consider the data the test
will need and the best way to get that data into the database for the test. This test
is going to be much like the SurveyManagerTest from the previous chapter, since
determining correct behavior will depend on the relationship of the current date to
dates contained in the test data. Therefore, using a fixture file for this data is not a
good idea; it will be better to dynamically add the data in the test's setUp method.

Chapter 4

[111]

We will begin, then, by writing a setUp method to create an appropriate set of data
for testing the home page. Since we have moved on to testing the application's views,
let's put it in a new file, survey/tests/view_tests.py. When we create that file,
we need to also remember to add an import line for the new file (from view_tests
import *) to the __init__.py file in survey/tests, so that the tests in it will be
found by the test runner.

Here is a setUp method for our home page test:

import datetime
from django.test import TestCase
from survey.models import Survey

class SurveyHomeTest(TestCase):
 def setUp(self):
 today = datetime.date.today()
 Survey.objects.all().delete()
 d = today - datetime.timedelta(15)
 Survey.objects.create(title="Too Old", opens=d, closes=d)
 d += datetime.timedelta(1)
 Survey.objects.create(title="Completed 1", opens=d, closes=d)
 d = today - datetime.timedelta(1)
 Survey.objects.create(title="Completed 2", opens=d, closes=d)
 Survey.objects.create(title="Active 1", opens=d)
 Survey.objects.create(title="Active 2", opens=today)
 d = today + datetime.timedelta(1)
 Survey.objects.create(title="Upcoming 1", opens=d)
 d += datetime.timedelta(6)
 Survey.objects.create(title="Upcoming 2", opens=d)
 d += datetime.timedelta(1)
 Survey.objects.create(title="Too Far Out", opens=d)

This method starts by stashing today's date in a local variable today. It then deletes
all existing Surveys in the database, just in case there are any loaded by initial data
fixtures that could interfere with the proper execution of the test methods in this test
case. It then creates eight Surveys: three completed, two active, and three upcoming.

Getting Fancier: Django Unit Test Extensions

[112]

The closing dates for the completed surveys are specifically set so as to test the
boundaries of the window for what should appear on the home page. The oldest
closing date is set just one day too far in the past (15 days) to be listed on the home
page. The other two are set to the extreme edges of the window for what should
appear as completed on the home page. The opens date for upcoming surveys is
set similarly to test the limits of that window. One upcoming survey opens just one
day too far in the future to appear on the home page while the other two open at
the limits of the window for what should be shown as upcoming on the home page.
Finally, there are two active surveys, one that opened yesterday and one that opened
today, each with a default closing date seven days later, so both still open.

Now that we have a setUp routine to create test data, how do we write a test to
check the contents of the home page? Django provides a class, django.test.Client,
to help out here. An instance of this Client class acts like a web browser and can
be used to request pages and examine the responses returned. Each django.test.
TestCase class is automatically assigned a Client class instance that can be accessed
using self.client.

To see how to use the test Client, let's examine the beginnings of a test for the
survey application home page:

 def testHome(self):
 from django.core.urlresolvers import reverse
 response = self.client.get(reverse('survey_home'))
 self.assertEqual(response.status_code, 200)

Here we have defined a testHome method within the SurveyHomeTest. This
method uses the get method of the test's client class instance to retrieve the survey
home page (again using reverse to determine the correct URL so as to ensure all
URL configuration information is isolated in urls.py). The return value of get is
the django.http.HttpResponse object returned by the view called to serve the
requested page, annotated with some additional information to facilitate testing. The
last line of the test verifies that the request was served successfully by ensuring that
the status_code attribute of the returned response is 200 (HTTP OK).

Note that the get method supplied by the test Client supports more than the
single URL parameter we are passing here. In addition, it supports two keyword
arguments, data and follow, which default to an empty dictionary and False
respectively. Finally, any number of extra keyword arguments may also
be supplied.

Chapter 4

[113]

The data dictionary, if non-empty, is used to construct a query string for the request.
For example, consider a get method such as this:

response = self.client.get('/survey/',
 data={'pk': 4, 'type': 'results'})

The URL created for processing this request would be
/survey/?pk=4&type=results.

Note you can also include a query string in the URL path passed to get. So an
equivalent call would be:

response = self.client.get('/survey/?pk=4&type=results')

If both a data dictionary and a query string in the URL path are provided, the data
dictionary is used for processing the request and the query string in the URL path
is ignored.

The follow argument to get can be set to True in order to instruct the test client to
follow redirects in the response. If it does so, a redirect_chain attribute will be
set on the returned response. This attribute will be a list describing the intermediate
URLs visited before the end of the redirect chain. Each element in the list will be a
tuple containing the intermediate URL path and the status code that prompted it to
be retrieved.

Finally, any extra keyword arguments can be used to set arbitrary HTTP header
values in the request. For example:

response = self.client.get('/', HTTP_USER_AGENT='Tester')

This call will set the HTTP_USER_AGENT header in the request to Tester.

Returning to our own test, which supplies only the URL path argument, we can
run it now with manage.py test survey.SurveyHomeTest and verify that so far
everything looks good. We can retrieve the home page and the response comes back
with a successful status code. But what about testing the contents of the page? We'd
like to make sure that the various surveys that should appear are appearing, and
further that the two surveys in the database that should not appear on the page
are not listed.

The actual page content returned is stored in the content attribute of the response.
We can examine this directly, but the Django TestCase class also provides two
methods to check whether or not certain text appears in the response. These
methods are named assertContains and assertNotContains.

Getting Fancier: Django Unit Test Extensions

[114]

To use the assertContains method we pass in the response and the text we are
looking for. We can also optionally specify a count of the number of times that text
should appear. If we specify count, the text must appear exactly that many times in
the response. If we do not specify count, assertContains simply checks that the
text appears at least once. Finally, we may specify the status_code that the response
should have. If we do not specify this, then assertContains verifies that the status
code is 200.

The assertNotContains method takes the same arguments as assertContains
with the exception of count. It verifies that the passed text does not appear in the
response content.

We can use these two methods to verify that the home page contains two instances
each of Completed, Active, and Upcoming, and that it does not contain either Too
Old or Too Far Out. Furthermore, since these methods check the status code, we
can remove that check from our own test code. Thus the test method becomes:

 def testHome(self):
 from django.core.urlresolvers import reverse
 response = self.client.get(reverse('survey_home'))
 self.assertContains(response, "Completed", count=2)
 self.assertContains(response, "Active", count=2)
 self.assertContains(response, "Upcoming", count=2)
 self.assertNotContains(response, "Too Old")
 self.assertNotContains(response, "Too Far Out")

If we try running this version, we will see that it works. However, it is not as
specific as we might like it to be. Namely, it does not verify that the listed surveys
are appearing in the right places on the page. This test as it is right now would pass
with all of the listed surveys appearing under the paragraph Take a survey now!, for
example. How can we verify that each is appearing in the appropriate list?

One approach would be to manually examine response.content, find where each
of the expected strings is located, and ensure that they all appear in the expected
order. However, that would make the test very dependent on the exact layout of
the page. We might in the future decide to reorder the presentation of the lists and
this test could then break, even though each survey was still being listed in the
correct category.

Chapter 4

[115]

What we really want to do is verify that the surveys are contained in the appropriate
context variables passed to the template. We can in fact test this, since the response
returned by client.get is annotated with the context used to render the template.
Thus, we can check the completed survey list, for example, like so:

 completed = response.context['completed_surveys']
 self.assertEqual(len(completed), 2)
 for survey in completed:
 self.failUnless(survey.title.startswith("Completed"))

This code retrieves the completed_surveys context variable from the response
context, verifies it has 2 items in it, and further verifies that each of the items has a
title that starts with the string Completed. If we run that code, we'll see it works for
checking the completed surveys. We can then either duplicate that block two more
times and tweak it appropriately to check the active and upcoming surveys, or we
can get a little fancier and write something more like this:

 context_vars = ['completed_surveys', 'active_surveys',
 'upcoming_surveys']
 title_starts = ['Completed', 'Active', 'Upcoming']
 for context_var, title_start in zip(context_vars,
 title_starts):
 surveys = response.context[context_var]
 self.assertEqual(len(surveys), 2)
 for survey in surveys:
 self.failUnless(survey.title.startswith(title_start))

Here we have avoided duplicating, essentially, the same block of code three
times with just minor differences by constructing a list of things to check and then
iterating through that list. Thus, we only have the code block appearing once, but
it is looped through three times, once for each of the context variables we want to
check. This is a common technique used to avoid duplicating code that is almost
identical multiple times.

Note that when this sort of technique is used in tests, though, it is a good idea to take
the effort to include specific messages in the assertion checks. In the original version
of the code, which tested the completed list directly, if there was an error such as
too many surveys in that list, a test failure would produce a reasonably descriptive
error report:

FAIL: testHome (survey.tests.view_tests.SurveyHomeTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests/view_tests.py", line 29, in
testHome

Getting Fancier: Django Unit Test Extensions

[116]

 self.assertEqual(len(completed), 2)

AssertionError: 3 != 2

--

There the code that is failing includes the string completed so it is clear which list is
having a problem. With a more generalized version of the code, this report becomes
much less helpful:

FAIL: testHome (survey.tests.view_tests.SurveyHomeTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests/view_tests.py", line 35, in
testHome

 self.assertEqual(len(surveys), 2)

AssertionError: 3 != 2

--

The poor programmer encountering that failure report would have no way of
knowing which of the three lists had too many items. By providing a specific error
message with the assertion, however, this can be made clear. So a better version of
the full test method with descriptive errors would be:

 def testHome(self):
 from django.core.urlresolvers import reverse
 response = self.client.get(reverse('survey_home'))
 self.assertNotContains(response, "Too Old")
 self.assertNotContains(response, "Too Far Out")
 context_vars = ['completed_surveys', 'active_surveys',
 'upcoming_surveys']
 title_starts = ['Completed', 'Active', 'Upcoming']
 for context_var, title_start in zip(context_vars,
 title_starts):
 surveys = response.context[context_var]
 self.assertEqual(len(surveys), 2,
 "Expected 2 %s, found %d instead" %
 (context_var, len(surveys)))
 for survey in surveys:
 self.failUnless(survey.title.startswith(title_start),
 "%s title %s does not start with %s" %
 (context_var, survey.title, title_start))

Chapter 4

[117]

Now if there is a failure during the checks in the generalized code, the error message
is specific enough to indicate where the problem is:

FAIL: testHome (survey.tests.view_tests.SurveyHomeTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests/view_tests.py", line 36, in
testHome

 (context_var, len(surveys)))

AssertionError: Expected 2 completed_surveys, found 3 instead

--

We now have a reasonably complete test for our survey home page, or at least as
much of it as we have implemented so far. It is time to turn our attention to the
survey detail pages, which we will cover next.

Creating the survey detail pages
The second URL mapping we added to our project's URL configuration was for the
survey detail pages. Implementing this view is a little more complicated than the
home page view since quite different data will need to be presented depending on
the state of the requested survey. If the survey is completed, we need to display
the results. If the survey is active, we need to display a form allowing the user to
participate in the survey. If the survey is upcoming, we don't want the survey to
be visible at all.

To do all of that at once, without testing along the way to verify we are headed in
the right direction, would be asking for trouble. It's best to break the task down
into smaller pieces and test as we go. We'll take the first step in that direction in
the following sections.

Refining the survey detail view
The first thing to do is to replace the simple placeholder view for the survey detail
page with a view that determines the requested survey's state and routes the request
appropriately. For example:

import datetime
from django.shortcuts import render_to_response, get_object_or_404
from django.http import Http404
from survey.models import Survey

Getting Fancier: Django Unit Test Extensions

[118]

def survey_detail(request, pk):
 survey = get_object_or_404(Survey, pk=pk)
 today = datetime.date.today()
 if survey.closes < today:
 return display_completed_survey(request, survey)
 elif survey.opens > today:
 raise Http404
 else:
 return display_active_survey(request, survey)

This survey_detail view uses the get_object_or_404 shortcut to retrieve the
requested Survey from the database. The shortcut will automatically raise an
Http404 exception if the requested survey does not exist, so the following code
does not have to account for that case. The view then checks the closes date on
the returned Survey instance. If it closed before today, the request is sent on to a
function named display_completed_survey. Otherwise, if the survey has not
yet opened, an Http404 exception is raised. Finally, if neither of those conditions
hold, the survey must be active so the request is routed to a function named
display_active_survey.

To start out with, we will implement the two new functions very simply. They will
not do any of the real work required for their case, but they will each use a different
template when rendering their response:

def display_completed_survey(request, survey):
 return render_to_response('survey/completed_survey.html',
 {'survey': survey})

def display_active_survey(request, survey):
 return render_to_response('survey/active_survey.html',
 {'survey': survey})

With just that much code, we can proceed to test whether surveys in different states
are being routed correctly. First though, we need to create the two new templates
that the view code has introduced.

Templates for the survey detail pages
The two new templates are named survey/completed_survey.html and survey/
active_survey.html. Create them under the survey/templates directory. To start
out with, they can be very simple. For example, completed_survey.html may be:

{% extends "survey/base.html" %}
{% block content %}
<h1>Survey results for {{ survey.title }}</h1>
{% endblock content %}

Chapter 4

[119]

Similarly, active_survey.html could be:

{% extends "survey/base.html" %}
{% block content %}
<h1>Survey questions for {{ survey.title }}</h1>
{% endblock content %}

Each of these extends the survey/base.html template and provides minimal but
descriptive content for the content block. In each case, all that will be displayed is
a first-level header identifying the survey by title and whether the page is showing
results or questions.

Basic testing of the survey detail pages
Now consider how we can test whether the routing code in survey_detail is
working correctly. Again, we are going to need test data containing at least one
survey in each of the three states. We have that with the test data we created in the
setUp method of SurveyHomeTest. However, adding methods to the home page test
case that actually tests survey detail page views would be confusing. Duplicating
very similar setUp code is also not very attractive.

Fortunately, we do not need to do either. What we can do is move the existing
setUp code into a more general test case, say SurveyTest, and then base both
SurveyHomeTest and our new SurveyDetailTest on this new SurveyTest. In this
way, both the home page test and the detail page test will have the same data created
in the database by the base SurveyTest setUp method. Furthermore, any additional
tests that need similar data could also inherit from SurveyTest.

Given we have the test data in place, what can we do to test what we have
implemented so far of the detail view? The case of an upcoming survey is easy
enough, since it should simply return an HTTP 404 (NOT FOUND) page. Thus,
we can start by creating a method for that case in our SurveyDetailTest:

from django.core.urlresolvers import reverse
class SurveyDetailTest(SurveyTest):
 def testUpcoming(self):
 survey = Survey.objects.get(title='Upcoming 1')
 response = self.client.get(reverse('survey_detail',
 args=(survey.pk,)))
 self.assertEqual(response.status_code, 404)

Getting Fancier: Django Unit Test Extensions

[120]

The testUpcoming method retrieves one of the upcoming surveys from the database,
and uses the test client to request the page containing details on that survey. Again
we use reverse to construct the appropriate URL for the details page, passing in
the primary key of the survey we are requesting as the single argument in the args
tuple. Correct handling of this request is tested by ensuring that the status_code of
the response is 404. If we run this test now, we will see:

ERROR: testUpcoming (survey.tests.view_tests.SurveyDetailTest)
--
Traceback (most recent call last):
 File "/dj_projects/marketr/survey/tests/view_tests.py", line 45, in
testUpcoming
 response = self.client.get(reverse('survey_detail', args=(survey.
pk,)))
 File "/usr/lib/python2.5/site-packages/django/test/client.py", line
281, in get
 response = self.request(**r)
 File "/usr/lib/python2.5/site-packages/django/core/handlers/base.py",
line 119, in get_response
 return callback(request, **param_dict)
 File "/usr/lib/python2.5/site-packages/django/views/defaults.py", line
13, in page_not_found
 t = loader.get_template(template_name) # You need to create a 404.
html template.
 File "/usr/lib/python2.5/site-packages/django/template/loader.py", line
81, in get_template
 source, origin = find_template_source(template_name)
 File "/usr/lib/python2.5/site-packages/django/template/loader.py", line
74, in find_template_source
 raise TemplateDoesNotExist, name
TemplateDoesNotExist: 404.html

Oops. In order for the survey_detail view to successfully raise an Http404 and
have that result in a "page not found" response, a 404.html template must exist in
the project. We have not yet created one, so this test generates an error. To fix this,
we can create a simple survey/templates/404.html file containing:

{% extends "survey/base.html" %}
{% block content %}
<h1>Page Not Found</h1>
<p>The requested page was not found on this site.</p>
{% endblock content %}

At the same time, we should also create a survey/templates/500.html file in order
to avoid any similar unhelpful errors in cases where a server error is encountered.
A simple 500.html file to use for now would be much like this 404.html file,
with the text changed to indicate the problem is a server error, and not a page
not found situation.

Chapter 4

[121]

With the 404.html template in place, we can attempt to run this test again and this
time, it will pass.

What about testing the pages for completed and active surveys? We could write tests
that check response.content for the header text we have placed in each of their
respective templates. However, that text may not remain the same as we continue
development—at this point that is just placeholder text. It would be better to verify
that the correct templates were used to render each of these responses. The TestCase
class has a method for that: assertTemplateUsed. Thus, we can write tests for these
cases that are likely to continue to work properly in the long-run, like so:

 def testCompleted(self):
 survey = Survey.objects.get(title='Too Old')
 response = self.client.get(reverse('survey_detail',
 args=(survey.pk,)))
 self.assertTemplateUsed(response,
 'survey/completed_survey.html')

 def testActive(self):
 survey = Survey.objects.get(title='Active 1')
 response = self.client.get(reverse('survey_detail',
 args=(survey.pk,)))
 self.assertTemplateUsed(response,
 'survey/active_survey.html')

Each of these test methods retrieves a survey from the appropriate category and
requests the detail page for that survey. So far, the only test done on the responses is
to check that the expected template was used to render the response. Again, we can
run these tests now and verify that they pass.

In addition to assertTemplateUsed, there is an assertTemplateNotUsed method
provided by TestCase. It takes the same arguments as assertTempalteUsed. As
you might expect, it verifies that the specified template was not used to render
the response.

At this point, we are going to take a break from implementing survey application
pages. The next unit test topic to cover is how to test pages that accept user input.
We don't have any of those in the survey application yet, but the Django admin
application does. Thus, the task of testing an admin customization provides a
quicker route to learning how to test such pages, since we'll need to write less
custom code before developing the test. In addition to this, learning how to test
admin customizations is useful in its own right.

Getting Fancier: Django Unit Test Extensions

[122]

Customizing the admin add and change
survey pages
We've already seen how the Django admin application provides a convenient way
to examine and manipulate data in our database. In the previous chapter, we set up
the admin with some simple customizations to allow editing Questions inline with
Surveys and Answers inline with Questions. Besides those inline customizations,
however, we made no changes to the admin defaults.

One additional change that would be good to make to the admin is to ensure that
Survey opens and closes dates are valid. Clearly for this application, it makes no
sense to have an opens date that is later than closes, but there is no way for the
admin to know that. In this section, we will customize the admin to enforce our
application requirement on the relationship between opens and closes. We will
also develop a test for this customization.

Developing a custom survey form
The first step in implementing this admin customization is to implement a form for
Survey that includes custom validation. For example:

from django import forms
class SurveyForm(forms.ModelForm):
 class Meta:
 model = Survey
 def clean(self):
 opens = self.cleaned_data.get('opens')
 closes = self.cleaned_data.get('closes')
 if opens and closes and opens > closes:
 raise forms.ValidationError("Opens date cannot come, "
 "after closes date.")
 return self.cleaned_data

This is a standard ModelForm for the Survey model. Since the validation we want to
perform involves multiple fields on the form, the best place to put it is in the overall
form clean method. The method here retrieves the opens and closes values from
the form's cleaned_data dictionary. Then, if they have both been provided, it checks
to see if opens is later than closes. If so, a ValidationError is raised, otherwise
everything is OK, so the existing cleaned_data dictionary is returned unmodified
from clean.

As we are going to be using this form for the admin and do not presently anticipate
the need to use it anywhere else, we can put this form definition in the existing
survey/admin.py file.

Chapter 4

[123]

Configuring admin to use the custom form
The next step is to tell the admin to use this form instead of a default ModelForm
for the Survey model. To do this, change the SurveyAdmin definition in
survey/admin.py to be:

class SurveyAdmin(admin.ModelAdmin):
 form = SurveyForm
 inlines = [QuestionsInline]

By specifying the form attribute, we tell the admin to use our custom form for both
adding and editing Survey instances. We can quickly verify that this works by using
the admin to edit our existing Winning Answers Test survey and attempting to
change its closes date to something earlier than opens. If we do so, we will see
the error reported like this:

Getting Fancier: Django Unit Test Extensions

[124]

It's good that we have been able to manually validate that our customization is
working, but what we really want is an automated test. That will be covered next.

Testing the admin customization
How do we write a test for this admin customization? There are at least a couple of
things different about testing the behavior of pressing one of the Save buttons on
an admin page than what we've tested so far. First, we need to issue an HTTP POST
method, not a GET, to make the request. The test Client provides a post method for
this, similar to get. For post, though, we will need to specify the form data values to
be included with the request. We provide these as a dictionary of key / value pairs
where the keys are the names of the form fields. Since we know the ModelForm the
admin is using, we know that the key values here are the names of the model's fields.

We'll start with writing a test for the admin add survey page, since for that case we
do not need to have any pre-existing data in the database. Let's create a new file for
testing admin views, named admin_tests.py, in the tests directory. Also, remember
to add from admin_tests import * to the tests/__init__.py file so that these tests
are found when we run tests.

An initial attempt to implement a test of the admin application's use of our
customized Survey form might look like this:

import datetime
from django.test import TestCase
from django.core.urlresolvers import reverse

class AdminSurveyTest(TestCase):
 def testAddSurveyError(self):
 post_data = {
 'title': u'Time Traveling',
 'opens': datetime.date.today(),
 'closes': datetime.date.today() - datetime.timedelta(1),
 }
 response = self.client.post(
 reverse('admin:survey_survey_add'), post_data)
 self.assertContains(response,
 "Opens date cannot come after closes date.")

Chapter 4

[125]

Here we have a test method, testAddSurveyError, which creates a post_data
dictionary with title, opens, and closes values for the Survey ModelForm. We
use the test client to post that dictionary to the admin Survey add page for the
survey application (using reverse on the documented name for that admin view).
We expect that the returned response should contain the error message from our
custom ModelForm, since we have specified an opens date that is later than the
closes date. We use assertContains to check that the expected error message
is found in the response.

Note that as was the case with get, our first test that is using post is only using
a subset of the arguments that could be supplied to that method. In addition to
the URL path and the data dictionary, post accepts a content_type keyword
argument. This argument defaults to a value that results in the client sending
mutlipart/form-data. In addition to content_type, post also supports
the same follow and extra keyword arguments, with the same defaults
and processing behavior, as get.

Does our first attempt at an admin customization test work? Unfortunately, no. If we
run it with manage.py test survey.AdminSurveyTest, we will see this failure:

FAIL: testAddSurveyError (survey.tests.admin_tests.AdminSurveyTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests/admin_tests.py", line 13, in
testAddSurveyError

 self.assertContains(response, "Opens date cannot come after closes
date.")

 File "/usr/lib/python2.5/site-packages/django/test/testcases.py", line
345, in assertContains

 "Couldn't find '%s' in response" % text)

AssertionError: Couldn't find 'Opens date cannot come after closes date.'
in response

--

What might be wrong? It's hard to say without seeing what is actually contained in
the returned response. Realizing that, we may be tempted to include the text of the
response in the error message. However, responses tend to be quite long (as they
are generally complete web pages) and including them in test failure output usually
adds more noise than anything else. Thus it is usually better to make a temporary
change to the test case to print the response, for example, in order to figure out what
might be going on.

Getting Fancier: Django Unit Test Extensions

[126]

If we do that in this case, we will see that the returned response begins (after some
standard HTML boilerplate):

<title>Log in | Django site admin</title>

Oh, right, we forgot that the admin requires a logged-in user for access. We did not
do anything in our test case to set up and log in a user, so when the test attempts to
access an admin page, the admin code simply returns a login page.

Our test, then, will first need to create a user, as the test database is initially empty.
That user will need appropriate permissions to access the admin, and must be logged
in before attempting to do anything with the admin application. This sort of thing is
appropriate for a test setUp routine:

import datetime
from django.test import TestCase
from django.contrib.auth.models import User
from django.core.urlresolvers import reverse

class AdminSurveyTest(TestCase):
 def setUp(self):
 self.username = 'survey_admin'
 self.pw = 'pwpwpw'
 self.user = User.objects.create_user(self.username, '',
 self.pw)
 self.user.is_staff= True
 self.user.is_superuser = True
 self.user.save()
 self.assertTrue(self.client.login(username=self.username,
 password=self.pw),
 "Logging in user %s, pw %s failed." %
 (self.username, self.pw))

Here the setUp routine uses the create_user method provided by the standard
django.contrib.auth User model to create a user named survey_admin. After
creating the user, setUp sets its is_staff and is_superuser attributes to True and
saves the user again to the database. This will allow the newly created user to access
all pages in the admin application.

Finally, setUp attempts to log the new user in using the test Client login method.
This method will return True if it is successful. Here, setUp asserts that login does
return True. If it does not, the assertion will provide a specific indication of where
things went wrong. This should be more helpful than simply continuing the test if
the login call fails.

Chapter 4

[127]

The Client login method has a companion method, logout. We should use it in a
tearDown method after we have used login in setUp:

 def tearDown(self):
 self.client.logout()

Now does our test work? No, but it does get farther. This time the error report is:

ERROR: testAddSurveyError (survey.tests.admin_tests.AdminSurveyTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests/admin_tests.py", line 26, in
testAddSurveyError

 response = self.client.post(reverse('admin:survey_survey_add'), post_
data)

 File "/usr/lib/python2.5/site-packages/django/test/client.py", line
313, in post

 response = self.request(**r)

 File "/usr/lib/python2.5/site-packages/django/core/handlers/base.py",
line 92, in get_response

 response = callback(request, *callback_args, **callback_kwargs)

 File "/usr/lib/python2.5/site-packages/django/contrib/admin/options.
py", line 226, in wrapper

 return self.admin_site.admin_view(view)(*args, **kwargs)

 File "/usr/lib/python2.5/site-packages/django/views/decorators/cache.
py", line 44, in _wrapped_view_func

 response = view_func(request, *args, **kwargs)

 File "/usr/lib/python2.5/site-packages/django/contrib/admin/sites.py",
line 186, in inner

 return view(request, *args, **kwargs)

 File "/usr/lib/python2.5/site-packages/django/db/transaction.py", line
240, in _commit_on_success

 res = func(*args, **kw)

 File "/usr/lib/python2.5/site-packages/django/contrib/admin/options.
py", line 731, in add_view

 prefix=prefix)

 File "/usr/lib/python2.5/site-packages/django/forms/models.py", line
724, in __init__

 queryset=qs)

 File "/usr/lib/python2.5/site-packages/django/forms/models.py", line
459, in __init__

 super(BaseModelFormSet, self).__init__(**defaults)

 File "/usr/lib/python2.5/site-packages/django/forms/formsets.py", line
44, in __init__

Getting Fancier: Django Unit Test Extensions

[128]

 self._construct_forms()

 File "/usr/lib/python2.5/site-packages/django/forms/formsets.py", line
87, in _construct_forms

 for i in xrange(self.total_form_count()):

 File "/usr/lib/python2.5/site-packages/django/forms/models.py", line
734, in total_form_count

 return super(BaseInlineFormSet, self).total_form_count()

 File "/usr/lib/python2.5/site-packages/django/forms/formsets.py", line
66, in total_form_count

 return self.management_form.cleaned_data[TOTAL_FORM_COUNT]

 File "/usr/lib/python2.5/site-packages/django/forms/formsets.py", line
54, in _management_form

 raise ValidationError('ManagementForm data is missing or has been
tampered with')

ValidationError: [u'ManagementForm data is missing or has been tampered
with']

--

That may be a little confusing at first, but searching the Django documentation for
ManagementForm quickly shows that it is something required when formsets are
being used. Since, as part of our admin customization, we specified that Questions
appear inline on a Survey page, the admin page for Survey contains a formset for
Questions. However, we did not provide the required ManagementForm values in
our post_data dictionary. The two values required are TOTAL_FORMS and INITIAL_
FORMS for the question_set. Since we do not want to test any of the admin handling
of the inlines here, we can just set these values to 0 in our data dictionary:

 def testAddSurveyError(self):
 post_data = {
 'title': u'Time Traveling',
 'opens': datetime.date.today(),
 'closes': datetime.date.today() - datetime.timedelta(1),
 'question_set-TOTAL_FORMS': u'0',
 'question_set-INITIAL_FORMS': u'0',
 }
 response = self.client.post(
 reverse('admin:survey_survey_add'), post_data)
 self.assertContains(response,
 "Opens date cannot come after closes date.")

Now does this test work? Yes, if we run manage.py test survey.
AdminSurveyTest.testAddSurveyError we will see that the test runs successfully.

Chapter 4

[129]

Note that TestCase provides a more specific assertion than assertContains to check
for form errors, named assertFormError. The parameters to assertFormError are
the response, the name of the form in the template context, the name of the field to
check for errors (or None if the error is a non-field error), and the error string (or a
list of error strings) to check for. However, it is not possible to use assertFormError
when testing admin pages because the admin does not provide the form directly
in the context. Instead, the context contains a wrapper object that contains the
actual form. Thus, we cannot change this particular test to use the more specific
assertFormError method.

Are we done testing our admin customization? Almost. Since the same form is used
for both add and change actions in admin, it is not necessary to test the change page
as well. However, it would be good to add a test that includes valid data and ensure
that nothing has been broken for that case.

It is easy enough to add a test method that builds a data dictionary containing valid
data and posts that to the admin add view. But what should it test for in response?
The admin code does not return a simple 200 OK response after successfully
completing some action requested by the POST. Rather, it redirects to a different
page, so that an attempt to reload the page resulting from the POST request does not
result in another attempt to POST the same data. In the case of adding an object, the
admin will redirect to the change list page for the added model. TestCase provides
an assertRedirects method to test this sort of behavior. We can use this method
like so:

 def testAddSurveyOK(self):
 post_data = {
 'title': u'Time Traveling',
 'opens': datetime.date.today(),
 'closes': datetime.date.today(),
 'question_set-TOTAL_FORMS': u'0',
 'question_set-INITIAL_FORMS': u'0',
 }
 response = self.client.post(
 reverse('admin:survey_survey_add'), post_data)
 self.assertRedirects(response,
 reverse('admin:survey_survey_changelist'))

This testAddSurveyOK method sets up a valid data dictionary for a Survey,
specifying opens and closes dates that are the same. It then posts that data to the
admin add survey page, and saves the response. Finally, it asserts that the response
should redirect to the admin survey application change list page for the Survey
model. Two additional, optional parameters to assertRedirects are status_code
and target_status_code. These default to 302 and 200 respectively, so we did not
need to specify them here since those are the codes we expect in this case.

Getting Fancier: Django Unit Test Extensions

[130]

Additional test support
The tests that we have developed in this chapter provide a reasonably broad
overview of how to use the test support provided by Django's TestCase and test
Client class. However, the examples neither cover every detail of what these
classes provide, nor every detail of the additional data available in the annotated
response objects returned by the Client. In this section, we briefly mention some
additional features of TestCase, Client, and the additional data available with
response objects. We will not develop examples that use all of these features; they
are mentioned here so that if you encounter a need for this type of support, you
will know that it exists. The Django documentation provides full details on all of
these topics.

Supporting additional HTTP methods
Our example tests only needed to use the HTTP GET and POST methods. The test
Client class also provides methods to issue HTTP HEAD, OPTIONS, PUT, and
DELETE requests. These methods are named head, options, put, and delete
respectively. Each supports the same follow and extra arguments as get
and post. In addition, put supports the same content_type argument as post.

Maintaining persistent state
The test Client maintains two attributes that maintain persistent state across
request / response cycles: cookies and session. The cookies attribute is a Python
SimpleCookie object containing any cookies that have been received with responses.
The session attribute is a dictionary-like object containing session data.

E-mail services
Some views in a web application may create and send mail. When testing, we do not
want such mail to actually be sent, but it is good to be able to verify that the code
being tested generated and attempted to send the mail. The TestCase class supports
this by replacing the standard Python SMTPConnection class (in the context of the
running tests only) with a custom class that does not send the mail, but rather stores
it in django.core.mail.outbox. Thus, test code can check the contents of this
outbox in order to verify whether the code being tested attempted to send the
expected mail.

Chapter 4

[131]

Providing test-specific URL configuration
In the examples developed in this chapter, we were careful to make the tests
independent of the specifics of the URL configuration in use by always using named
URLs and using reverse to map these symbolic names back to URL path values.
This is a good technique, but it may not be sufficient in all circumstances.

Consider that you are developing a reusable application with optional views that
a particular installation of the application may or may not choose to deploy. For
testing such an application, you cannot rely on the optional views actually being
contained in the project's URL configuration, but you would still like to be able to
include tests for them. To support this, the TestCase class allows an instance to set
a urls attribute. If this attribute is set, the TestCase will use the URL configuration
contained in the specified module instead of the project's URL configuration.

Response context and template information
In testing the survey home page, we examined values in the response context
attribute using simple dictionary-style access. For example:

completed = response.context['completed_surveys']

While this works, it glosses over some complexity involved in considering the
context used to render a response. Recall that we set up our project to have a
two-level hierarchy of templates. The base.html template is extended by each of
the individual page templates. Each template used to render a response has its own
associated context, so the context attribute of a response is not a simple dictionary,
but rather a list of the contexts used for rendering each of the templates. In fact, it is
something called django.test.utils.ContextList, which contains a number of
django.template.context.Context objects.

This ContextList object supports dictionary-style access for simplicity, and searches
for the specified key in each of the contexts it contains. We made use of that simple
style of access in the examples earlier in this chapter. However, if you ever have the
need to get more specific about which template context you want to check something
in, the response context attribute supports that as well, as you can also index
by number into a ContextList and retrieve the full context associated with a
particular template.

In addition, the responses returned by the test Client have a template attribute
that is a list of the templates used to render the response. We did not need to use
this attribute directly because we used the assertTemplateUsed method provided
by TestCase.

Getting Fancier: Django Unit Test Extensions

[132]

Testing transactional behavior
The final topic to discuss in this chapter involves testing transactional
behavior. If it is ever necessary to do this, there is an alternative test case class,
TransactionTestCase, that should be used instead of TestCase.

What does testing transactional behavior mean? Suppose you have a view that
makes a series of database updates, all within a single database transaction. Further,
suppose you need to test a case where at least one of the updates works, but is
followed by a failure that should result in the entire set of updates being rolled back
instead of committed. To test this sort of behavior, you might try to verify in the test
code that one of the updates that initially worked is not visible in the database when
the response is received. To successfully run this sort of test code, you will need to
use TransactionTestCase instead of TestCase.

The reason for this is that TestCase internally uses transaction rollback to reset the
database to a clean state in between calling test methods. In order for this rollback
approach of cleaning up between test methods to work, the code under test must
not be allowed to issue any database commit or rollback operations itself. Thus,
TestCase intercepts any such calls and simply returns without actually forwarding
them on to the database. Your test code, then, will be unable to verify that updates
which should have been rolled back were rolled back, since they will not have been
when running under TestCase.

TransactionTestCase does not use rollback between test methods to reset the
database. Rather it truncates and re-creates all the tables. This is much slower
than the rollback method, but it does allow test code to verify that any database
transaction behavior expected from the code under test was performed successfully.

Chapter 4

[133]

Summary
We have now come to the end of discussing Django's unit test extensions to support
testing web applications. In this chapter, we:

Learned how to organize unit tests into separate files instead of placing
everything into a single tests.py file
Began to develop views for the survey application, and learned how to use
Django's unit test extensions to test these views
Saw how to customize the admin interface by providing custom validation
for one of our models, and learned how to test that admin customization
Briefly discussed some unit test extensions provided by Django that we did
not encounter in any of our example tests
Learned when it might be necessary to use TransactionTestCase instead of
TestCase for a test

While we have covered a lot of ground in learning how to test a Django application,
there are many aspects to testing a web application that we have not even touched
on yet. Some of these are more appropriately tested using tools other than Django
itself. The next chapter will explore some of these additional web application testing
requirements and show how external tools can be integrated with Django's testing
support in order to meet these requirements.

•

•

•

•

•

Filling in the Blanks:
Integrating Django and

Other Test Tools
Previous chapters have discussed the built-in application test support that comes
with Django 1.1. We first learned how to use doctests to test the building blocks
of our application, and then covered the basics of unit tests. In addition, we saw
how functions provided by django.test.TestCase and django.test.Client
aid in testing Django applications. Through examples, we learned how to use these
functions to test more complete pieces of our application, such as the contents of
pages it serves and its form handling behavior.

Django alone, however, does not provide everything one might want for test
support. Django is, after all, a web application framework, not a test framework. It
doesn't, for example, provide any test coverage information, which is essential for
developing comprehensive test suites, nor does it provide any support for testing
client-side behavior, since Django is purely a server-side framework. Other tools
exist that fill in these gaps, but often it is desirable to integrate these other tools
with Django rather than using several entirely different tool sets to build a full
application test suite.

In some cases even when Django does support a function, some other tool may
be preferred. For example, if you already have experience with a Python test
framework such as nose, which provides a very flexible test discovery mechanism
and a powerful test plugin architecture, you may find Django's test runner rather
limiting. Similarly, if you are familiar with the twill web testing tool, you may find
using Django's test Client cumbersome for testing form behavior in comparison
with twill.

Filling in the Blanks: Integrating Django and Other Test Tools

[136]

In this chapter, we will investigate integration of Django with other testing tools.
Integration can sometimes be accomplished through the use of standard Python unit
test extension mechanisms, but sometimes more is required. Both situations will be
covered in this chapter. Specifically, we will:

Discuss the issues involved in integration, and learn about the hooks Django
provides for integrating other tools into its test structure.
Look into answering the question: How much of our code is being executed
by our tests? We will see how we can answer this question both without
making any changes to our Django test setup and by utilizing the hooks
discussed earlier.
Explore the twill tool, and see how to use it instead of the Django test
Client in our Django application tests. For this integration, we do not need
to use any Django hooks for integration, we simply need to use Python's unit
test hooks for test set up and tear down.

Problems of integration
Why is integration of Django testing with other tools even an issue? Consider the
case of wanting to use the nose test framework. It provides its own command,
nosetests, to find and run tests in a project tree. However, attempting to run
nosetests, instead of manage.py test, in a Django project tree quickly reveals
a problem:

kmt@lbox:/dj_projects/marketr$ nosetests

E

==

ERROR: Failure: ImportError (Settings cannot be imported, because
environment variable DJANGO_SETTINGS_MODULE is undefined.)

--

Traceback (most recent call last):

 File "/usr/lib/python2.5/site-packages/nose-0.11.1-py2.5.egg/nose/
loader.py", line 379, in loadTestsFromName

 addr.filename, addr.module)

 File "/usr/lib/python2.5/site-packages/nose-0.11.1-py2.5.egg/nose/
importer.py", line 39, in importFromPath

 return self.importFromDir(dir_path, fqname)

 File "/usr/lib/python2.5/site-packages/nose-0.11.1-py2.5.egg/nose/
importer.py", line 86, in importFromDir

 mod = load_module(part_fqname, fh, filename, desc)

•

•

•

Chapter 5

[137]

 File "/dj_projects/marketr/survey/tests/__init__.py", line 1, in
<module>

 from model_tests import *

 File "/dj_projects/marketr/survey/tests/model_tests.py", line 2, in
<module>

 from django.test import TestCase

 File "/usr/lib/python2.5/site-packages/django/test/__init__.py", line
5, in <module>

 from django.test.client import Client

 File "/usr/lib/python2.5/site-packages/django/test/client.py", line 24,
in <module>

 from django.db import transaction, close_connection

 File "/usr/lib/python2.5/site-packages/django/db/__init__.py", line 10,
in <module>

 if not settings.DATABASE_ENGINE:

 File "/usr/lib/python2.5/site-packages/django/utils/functional.py",
line 269, in __getattr__

 self._setup()

 File "/usr/lib/python2.5/site-packages/django/conf/__init__.py", line
38, in _setup

 raise ImportError("Settings cannot be imported, because environment
variable %s is undefined." % ENVIRONMENT_VARIABLE)

ImportError: Settings cannot be imported, because environment variable
DJANGO_SETTINGS_MODULE is undefined.

--

Ran 1 test in 0.007s

FAILED (errors=1)

The problem here is that some environmental setup done by manage.py test is
missing. Specifically, setting up the environment so that the appropriate settings
are found when Django code is called, hasn't been done. This particular error could
be fixed by setting the DJANGO_SETTINGS_MODULE environment variable before
running nosetests, but nosetests would not get much farther, since there is
more that is missing.

Filling in the Blanks: Integrating Django and Other Test Tools

[138]

The next problem that would be encountered would result from tests that
need to use the database. Creating the test database is done by support code
called by manage.py test before any of the tests are run. The nosetests command
knows nothing about the need for a test database, so when run under nosetests,
Django test cases that require a database will fail since the database won't exist.
This problem cannot be solved by simply setting an environment variable before
running nosetests.

There are two approaches that can be taken to address integration issues like these.
First, if the other tool provides hooks for adding functionality, they can be used to do
things such as setting up the environment and creating the test database before the
tests are run. This approach integrates Django tests into the other tool. Alternatively,
hooks provided by Django can be used to integrate the other tool into Django testing.

The first option is outside the scope of this book, so it won't be discussed in any
detail. However, for the particular case of nose, its plugin architecture certainly
supports adding the necessary function to get Django tests running under nose.
There are existing nose plugins that can be used to allow Django application tests
to run successfully when called from nosetests. If this is an approach you want to
take for your own testing, you probably want to search the web for existing solutions
before building your own nose plugin to accomplish this.

The second option is what we will focus on in this section: the hooks that Django
provides to allow for pulling other functions in to the normal path of Django testing.
There are two hooks that may be used here. First, Django allows specification of
an alternative test runner. Details of specifying this, the responsibilities of the test
runner, and the interface it must support will be described first. Second, Django
allows applications to provide entirely new management commands. Thus, it is
possible to augment manage.py test with another command, which might support
different options, and does whatever is necessary to integrate another tool into the
testing path. Details on doing this will also be discussed.

Specifying an alternative test runner
Django uses the TEST_RUNNER setting to decide what code to call in order to run tests.
By default, the value of TEST_RUNNER is 'django.test.simple.run_tests'. We
can look at the declaration and docstring for that routine to see what interface
it must support:

def run_tests(test_labels, verbosity=1, interactive=True,
 extra_tests=[]):
 """
 Run the unit tests for all the test labels in the provided list.
 Labels must be of the form:

Chapter 5

[139]

 - app.TestClass.test_method
 Run a single specific test method
 - app.TestClass
 Run all the test methods in a given class
 - app
 Search for doctests and unittests in the named application.

 When looking for tests, the test runner will look in the models
 and tests modules for the application.

 A list of 'extra' tests may also be provided; these tests
 will be added to the test suite.

 Returns the number of tests that failed.
 """

The test_labels, verbosity, and interactive arguments are clearly going to
come straight from the manage.py test command line. The extra_tests argument
is a bit mysterious, as there is no supported manage.py test argument that might
correspond to that. In fact, when called from manage.py test, extra_tests will
never be specified. This argument is used by the runtests.py program that Django
uses to run its own test suite. Unless you are going to write a test runner that
will be used to run Django's own tests, you probably don't need to worry about
extra_tests. However, a custom runner should implement the defined behavior
of including extra_tests among those run.

What exactly does a test runner need to do? This question is most easily answered
by looking at the existing django.test.simple.run_tests code and seeing what it
does. Briefly, without going through the routine line by line, it:

Sets up the test environment by calling django.test.utils.setup_test_
environment. This is a documented method that a custom test runner
should call as well. It does things to ensure, for example, that the responses
generated by the test client have the context and templates attributes
mentioned in the previous chapter.
Sets DEBUG to False.
Builds a unittest.TestSuite containing all of the tests discovered under
the specified test_labels. Django's simple test runner searches only in the
models and tests modules for tests.
Creates the test database by calling connection.creation.create_
test_db. This is another routine that is documented in the Django test
documentation for use by alternative test runners.

•

•

•

•

Filling in the Blanks: Integrating Django and Other Test Tools

[140]

Runs the tests.
Destroys the test database by calling
connection.creation.destroy_test_db.
Cleans up the test environment by calling
django.test.utils.teardown_test_environment.
Returns the sum of the test failures and errors.

Note that Django 1.2 adds support for a class-based approach to
specifying an alternative test runner. While Django 1.2 continues to
support the function-based approach used earlier and described here,
using function-based alternative test runners will be deprecated in the
future. The class-based approach simplifies the task of making a small
change to the test running behavior. Instead of needing to re-implement
(and often largely duplicate) the existing django.tests.simple.
run_tests function, you can implement an alternative test runner class
that inherits from the default class and simply overrides whatever specific
methods are necessary to accomplish the desired alternative behavior.

It is reasonably straightforward, then, to write a test runner. However, in replacing
just the test runner, we are limited by the arguments and options supported by the
manage.py test command. If our runner supports some option that isn't supported
by manage.py test, there is no obvious way to get that option passed through from
the command line to our test runner. Instead, manage.py test will reject any option it
doesn't know about.

There is a way to get around this. Django uses the Python optparse module to parse
options from command lines. Placing a bare – or –- on the command line causes
optparse to halt processing the command line, so options specified after a bare
– or –-won't be seen by the regular Django code doing the parsing. They will still
be accessible to our test runner in sys.argv, though, so they could be retrieved and
passed on to whatever tool we are integrating with.

This method works, but the existence of such options will be well-hidden from users,
since the standard Django help for the test command knows nothing of them. By
using this technique, we extend the interface supported by manage.py test without
having any way to obviously publish the extensions we have made, as part of the
built-in help for the test command.

Thus, a better alternative to specifying a custom test runner may be to supply an
entirely new management command. When creating a new command, we can define
it to take whatever options we like, and supply the help text that should be displayed
for each new option when the user requests help for the command. This approach is
discussed next.

•

•

•

•

Chapter 5

[141]

Creating a new management command
Providing a new management command is simple. Django looks for management
commands in a management.commands package in each installed application's
directory. Any Python module found in an installed application's management.
commands package is automatically available to specify as a command to manage.py.

So, to create a custom test command, say survey_test, for our survey application,
we create a management subdirectory under survey, and a commands directory under
management. We put __init__.py files in both of those directories so that Python
will recognize them as modules. Then, we put the implementation for the
survey_test command in a file named survey_test.py.

What would need to go in survey_test.py? Documentation on implementing
management commands is scant as of Django 1.1. All it states is that the file
must define a class named Command that extends django.core.management.
base.BaseCommand. Beyond that, it recommends consulting some of the existing
management commands to see what to do. Since we are looking to provide an
enhanced test command, the easiest thing to do is probably copy the implementation
of the test command (found in django/core/management/commands/test.py) to
our survey_test.py file.

Looking at that file, we see that a management command implementation contains
two main parts. First, after the necessary imports and class declaration, some
attributes are defined for the class. These control things such as what options it
supports and what help should be displayed for the command:

from django.core.management.base import BaseCommand
from optparse import make_option
import sys

class Command(BaseCommand):
 option_list = BaseCommand.option_list + (
 make_option('--noinput', action='store_false',
 dest='interactive', default=True,
 help='Tells Django to NOT prompt the user for '
 'input of any kind.'),
)
 help = 'Runs the test suite for the specified applications, or '\
 'the entire site if no apps are specified.'
 args = '[appname ...]'

 requires_model_validation = False

Filling in the Blanks: Integrating Django and Other Test Tools

[142]

Note that while BaseCommand is not documented in the official Django 1.1
documentation, it does have an extensive docstring, so the exact purpose of each
of these attributes (option_list, help, args, requires_model_validation) can
be found by consulting the source or using the Python shell's help function. Even
without checking the docstring, we can see that Python's standard optparse module
is used to build the option string, so extending option_list to include additional
arguments is straightforward. For example, if we wanted to add a –-cover option
to turn on generation of test coverage data, we could change the option_list
specification to be:

 option_list = BaseCommand.option_list + (
 make_option('--noinput', action='store_false',
 dest='interactive', default=True,
 help='Tells Django to NOT prompt the user for '
 'input of any kind.'),
 make_option('--cover', action='store_true',
 dest='coverage', default=False,
 help='Tells Django to generate test coverage data.'),
)

Here we have added support for specifying –-cover on the command line. If
specified, it will cause the value of the coverage option to be True. If not specified,
this new option will default to False. Along with adding support for the option, we
have the ability to add help text for it.

The declaration section of the Command implementation is followed by a
handle function definition. This is the code that will be called to implement
our survey_test command. The existing code from the test command is:

 def handle(self, *test_labels, **options):
 from django.conf import settings
 from django.test.utils import get_runner

 verbosity = int(options.get('verbosity', 1))
 interactive = options.get('interactive', True)
 test_runner = get_runner(settings)

 failures = test_runner(test_labels, verbosity=verbosity,
 interactive=interactive)
 if failures:
 sys.exit(failures)

As you can see, this performs a very straightforward retrieval of passed options, uses
a utility function to find the correct test runner to call, and simply calls the runner
with the passed options. When the runner returns, if there were any failures, the
program exits with a system exit code set to the number of failures.

Chapter 5

[143]

We can replace the last four lines with code that retrieves our new option and prints
out whether it has been specified:

 coverage = options.get('coverage', False)
 print 'Here we do our own thing instead of calling the test '\
 'runner.'
 if coverage:
 print 'Our new cover option HAS been specified.'
 else:
 print 'Our new cover option HAS NOT been specified.'

Now, we can try running our survey_test command to verify that it is found and
can accept our new option:

kmt@lbox:/dj_projects/marketr$ python manage.py survey_test --cover

Here we do our own thing instead of calling the test runner.

Our new cover option HAS been specified.

We can also verify that if we do not pass --cover on the command line, it defaults
to False:

kmt@lbox:/dj_projects/marketr$ python manage.py survey_test

Here we do our own thing instead of calling the test runner.

Our new cover option HAS NOT been specified.

Finally, we can see that help for our option is included in the help response for the
new command:

kmt@lbox:/dj_projects/marketr$ python manage.py survey_test --help

Usage: manage.py survey_test [options] [appname ...]

Runs the test suite for the specified applications, or the entire site if
no apps are specified.

Options:

 -v VERBOSITY, --verbosity=VERBOSITY

 Verbosity level; 0=minimal output, 1=normal output,

 2=all output

 --settings=SETTINGS The Python path to a settings module, e.g.

 "myproject.settings.main". If this isn't
 provided, the

 DJANGO_SETTINGS_MODULE environment variable will
 be used.

Filling in the Blanks: Integrating Django and Other Test Tools

[144]

 --pythonpath=PYTHONPATH

 A directory to add to the Python path, e.g.

 "/home/djangoprojects/myproject".

 --traceback Print traceback on exception

 --noinput Tells Django to NOT prompt the user for input of
 any kind.

 --cover Tells Django to generate test coverage data.

 --version show program's version number and exit

 -h, --help show this help message and exit

Note that all of the other options displayed in the help message that were not
specified in our option_list are inherited from BaseCommand. In some cases,
(for example, the settings and pythonpath arguments) appropriate handling
of the argument is done for us before they are called; in others (verbosity, for
example) we are expected to honor the documented behavior of the option in
our implementation.

Adding a new management command was easy! Of course, we didn't actually
implement running tests and generating coverage data, since we do not know any
way to do that yet. There are existing packages that provide this support, and we
will see in the next section how they can be used to do exactly this.

For now, we might as well delete the survey/management tree created here. It was
a useful exercise to experiment with seeing how to add management commands.
However in reality, if we were to provide a customized test command to add
function such as recording coverage data, it would be a bad approach to tie that
function directly to our survey application. A test command that records coverage
data would be better implemented in an independent application.

How much of the code are we testing?
When writing tests, the goal is to test everything. Although we can try to be vigilant
and manually ensure that we have a test for every line of our code, that's a very
hard goal to meet without some automated analysis to verify what lines of code are
executed by our tests. For Python code, Ned Batchelder's coverage module is an
excellent tool for determining what lines of code are being executed. In this section,
we see how to use coverage, first as a standalone utility and then integrated into our
Django project.

Chapter 5

[145]

Using coverage standalone
Before using coverage, it must first be installed, since it's neither included with
Python nor Django 1.1. If you are using Linux, your distribution package manager
may have coverage available to be installed on your system. Alternatively, the latest
version of coverage can always be found at its web page on the Python Package
Index (PyPI), http://pypi.python.org/pypi/coverage. The version of coverage
used here is 3.2.

Once installed, we can use the coverage command with the run subcommand to run
our tests and record coverage data:

kmt@lbox:/dj_projects/marketr$ coverage run manage.py test survey

Creating test database...

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table django_admin_log

Creating table survey_survey

Creating table survey_question

Creating table survey_answer

Installing index for auth.Permission model

Installing index for auth.Message model

Installing index for admin.LogEntry model

Installing index for survey.Question model

Installing index for survey.Answer model

.....................

--

Ran 21 tests in 11.361s

OK

Destroying test database...

Filling in the Blanks: Integrating Django and Other Test Tools

[146]

As you see, the output from the test runner looks completely normal. The coverage
module does not affect the program's output; it simply stores the coverage data in a
file named .coverage.

The data stored in .coverage can be formatted as a report using the report
subcommand of coverage:
kmt@lbox:/dj_projects/marketr$ coverage report

Name Stmts Exec Cover

/usr/share/pyshared/mod_python/__init__ 2 2 100%

/usr/share/pyshared/mod_python/util 330 1 0%

/usr/share/pyshared/mx/TextTools/Constants/Sets 42 42 100%

/usr/share/pyshared/mx/TextTools/Constants/TagTables 12 12 100%

/usr/share/pyshared/mx/TextTools/Constants/__init__ 1 1 100%

/usr/share/pyshared/mx/TextTools/TextTools 259 47 18%

/usr/share/pyshared/mx/TextTools/__init__ 27 18 66%

/usr/share/pyshared/mx/TextTools/mxTextTools/__init__ 12 9 75%

/usr/share/pyshared/mx/__init__ 2 2 100%

/usr/share/pyshared/pysqlite2/__init__ 1 1 100%

/usr/share/pyshared/pysqlite2/dbapi2 41 26 63%

/usr/share/python-support/python-simplejson/simplejson/__init__ 75 20 26%

/usr/share/python-support/python-simplejson/simplejson/decoder 208 116 55%

/usr/share/python-support/python-simplejson/simplejson/encoder 215 40 18%

/usr/share/python-support/python-simplejson/simplejson/scanner 51 46 90%

__init__ 1 1 100%

manage 9 5 55%

settings 23 23 100%

survey/__init__ 1 1 100%

survey/admin 24 24 100%

survey/models 38 37 97%

survey/tests/__init__ 4 4 100%

survey/tests/admin_tests 23 23 100%

survey/tests/model_tests 98 86 87%

survey/tests/view_tests 47 47 100%

survey/urls 2 2 100%

survey/views 22 22 100%

urls 4 4 100%

TOTAL 1575 663 42%

Chapter 5

[147]

That's a bit more than we actually want. We only care about coverage of our own
code, so for a start, everything reported for modules located under /usr is not
interesting. The --omit option to coverage report can be used to omit modules that
start with particular paths. Additionally, the -m option can be used to get coverage
to report on the lines that were not executed (missing) during the run:

kmt@lbox:/dj_projects/marketr$ coverage report --omit /usr -m

Name Stmts Exec Cover Missing

--

__init__ 1 1 100%

manage 9 5 55% 5-8

settings 23 23 100%

survey/__init__ 1 1 100%

survey/admin 24 24 100%

survey/models 38 37 97% 66

survey/tests/__init__ 4 4 100%

survey/tests/admin_tests 23 23 100%

survey/tests/model_tests 98 86 87% 35-42, 47-51

survey/tests/view_tests 47 47 100%

survey/urls 2 2 100%

survey/views 23 23 100%

urls 4 4 100%

--

TOTAL 297 280 94%

That's much more manageable. Not surprisingly, since we have been developing
tests for each bit of code discussed, just about everything is showing as covered.
What's missing? If you look at lines 5 to 8 of manage.py, they handle the case where
the import of settings.py raises an ImportError. Since that leg of code is not
taken for a successful run, they were not executed and come up missing in the
coverage report.

Similarly, the lines mentioned in model_tests (35 to 42, 47 to 51) are from
alternative execution paths of the testClosesReset method, which contains
this code starting at line 34:

 if settings.DATABASE_ENGINE == 'mysql':
 from django.db import connection
 c = connection.cursor()
 c.execute('SELECT @@SESSION.sql_mode')
 mode = c.fetchone()[0]
 if 'STRICT' not in mode:

Filling in the Blanks: Integrating Django and Other Test Tools

[148]

 strict = False;
 from django.utils import importlib
 debug = importlib.import_module(
 settings.SETTINGS_MODULE).DEBUG

 if strict:
 self.assertRaises(IntegrityError, s.save)
 elif debug:
 self.assertRaises(Exception, s.save)
 else:
 s.save()
 self.assertEqual(s.closes, None)

Lines 35 to 42 were not executed because the database used for this run was SQLite,
not MySQL. Then, in any single test run, only one leg of the if strict/elif debug/
else block will execute, so the other legs will show up as not covered. (In this
particular case, the if strict leg was the one taken.)

The remaining line noted as missing is line 66 in survey/models.py. This is the
__unicode__ method implementation for the Question model, which we neglected
to write a test for. We can put doing that on our to-do list.

Although this last one is a valid indication of a missing test, neither the missing lines
in manage.py nor the missing lines in our test code are really things we care about,
as they are not reporting missing coverage for our application code. (Actually, if we
are thorough, we would probably want to ensure that several runs of our test code
with different settings did result in full test code execution, but let's assume we are
only interested in coverage of our application code for now.) The coverage module
supports a couple of different ways of excluding code from reports. One possibility
is to annotate source lines with a # pgrama no cover directive to tell coverage to
exclude them from coverage consideration.

Alternatively, coverage provides a Python API that supports specifying regular
expressions for code constructs that should be automatically excluded, and also for
limiting the modules included in reports. This Python API is more powerful than
what is available through the command line, and more convenient than manually
annotating source with # pragma directives. We might, then, start looking into how
to write some coverage utility scripts to easily generate coverage reports for the tests
of our application code.

Before embarking on that task, though, we might wonder if anyone has already
done the same and provided a ready-to-use utility that integrates coverage with the
Django test support. Some searching on the Web shows that the answer is yes—there
are several blog postings discussing the subject, and at least one project packaged as
a Django application. Use of this package is discussed next.

Chapter 5

[149]

Integrating coverage into a Django project
George Song and Mikhail Korobov provide a Django application named django_
coverage that supports integrating coverage into testing for a Django project. Like
the base coverage package, django_coverage can be found on PyPI: http://pypi.
python.org/pypi/django-coverage. The version used here is 1.0.1.

The django_coverage package offers integration of coverage with Django using
both of the methods previously discussed. First, it provides a test runner that can be
specified in settings.py:

TEST_RUNNER = 'django_coverage.coverage_runner.run_tests'

Using this option, every time you run manage.py test, coverage information will
be generated.

Alternatively, django_coverage can be included in INSTALLED_APPS. When this
approach is used, the django_coverage application provides a new management
command, named test_coverage. The test_coverage command can be used
instead of test to run tests and generate coverage information. Since generating
coverage information does make the tests run a bit more slowly, the second option
is what we will use here. That way, we can choose to run tests without coverage
data when we are interested in fast execution and not concerned with checking
on coverage.

Beyond listing django_coverage in INSTALLED_APPS, nothing needs to be done
to set up django_coverage to run with our project. It comes with a sample
settings.py file that shows the settings it supports, all with default options and
comments describing what they do. We can override any of the default settings
provided in django_coverage/settings.py by specifying our preferred value
in our own settings file.

We will start, though, by using all the default settings values provided. When we
run python manage.py test_coverage survey, we will get coverage information
displayed at the end of the test output:

--

Ran 21 tests in 10.040s

OK

Destroying test database...

Name Stmts Exec Cover Missing

survey.admin 21 21 100%

Filling in the Blanks: Integrating Django and Other Test Tools

[150]

survey.models 30 30 100%

survey.views 18 18 100%

TOTAL 69 69 100%

The following packages or modules were excluded: survey.__init__ survey.
tests survey.urls

There were problems with the following packages or modules: survey.
templates survey.fixtures

That is a bit curious. Recall that the coverage package reported in the previous
section that one line of code in survey.models was not exercised by tests—the
__unicode__ method of the Question model. This report, though, shows 100%
coverage for survey.models. Looking closely at the two reports, we can see that the
statements that count for the listed modules are all lower in the django_coverage
report than they were in the coverage report.

This difference is due to the default value of the COVERAGE_CODE_EXCLUDES setting
used by django_coverage. The default value of this setting causes all import lines,
all __unicode__ method definitions, and all get_absolute_url method definitions
to be excluded from consideration. These default exclusions account for the
differences seen here between the two reports. If we don't like this default behavior,
we can supply our own alternate setting, but for now, we will leave it as it is.

Furthermore, some modules listed by coverage are completely missing from the
django_coverage report. These too are the result of a default setting value (in this
case, COVERAGE_MODULE_EXCLUDES) and there is a message in the output noting
which modules have been excluded due to this setting. As you can see, the __init_
_, tests, and urls modules inside survey were all automatically excluded from
coverage consideration.

However, templates and fixtures are not excluded by default, and that caused
a problem as they are not actually Python modules, so they cannot be imported.
To get rid of the message about problems loading these, we can specify a value for
COVERAGE_MODULE_EXCLUDES in our own settings.py file and include these two.
Adding them to the default list, we have:

COVERAGE_MODULE_EXCLUDES = ['tests$', 'settings$', 'urls$',
 'common.views.test', '__init__', 'django',
 'migrations', 'fixtures$', 'templates$']

If we run the test_coverage command again after making this change, we will see
that the message about problems loading some modules is gone.

Chapter 5

[151]

The summary information displayed with the test output is useful, but even better
are the HTML reports django_coverage can generate. To get these, we must specify
a value for the COVERAGE_REPORT_HTML_OUTPUT_DIR setting, which is None by
default. So, we can create a coverage_html directory in /dj_projects/marketr
and specify it in settings.py:

COVERAGE_REPORT_HTML_OUTPUT_DIR = '/dj_projects/marketr/coverage_html'

The HTML reports are not particularly interesting when code coverage comes in at
100 percent. Hence, to see the full usefulness of the reports, let's run just a single test,
say the admin test for trying to add a Survey with a closes date that is earlier than
its opens date:

python manage.py test_coverage survey.AdminSurveyTest.testAddSurveyError

This time, since we have specified a directory for HTML coverage reports, instead of
getting the summary coverage information at the end of the test run, we see:

Ran 1 test in 0.337s

OK

Destroying test database...

HTML reports were output to '/dj_projects/marketr/coverage_html'

Then, we can use a web browser to load the index.html file that has been placed in
the coverage_html directory. It will look something like this:

Filling in the Blanks: Integrating Django and Other Test Tools

[152]

Since we ran just a single test, we only got partial coverage of our code. The %
covered values in the HTML report are color-coded to reflect how well covered each
module is. Green is good, yellow is fair, and red is poor. In this case, since we ran
one of the admin tests, only survey.admin is colored green, and it is not 100 percent.
To see what was missed in that module, we can click on the survey.admin link:

Chapter 5

[153]

Reports like this provide a very convenient way to determine the parts of our
application code that are covered by testing and the parts that are not. Lines not
executed are highlighted in red. Here, we only ran the test that exercises the error
path through the SurveyFrom clean method, so the successful code path through
that method comes up in red. In addition, the color coding of the import lines
indicates that they were excluded. This is due to the default COVERAGE_CODE_
EXCLUDES setting. Finally, the six empty lines in the file were ignored (lines with
comments would also be ignored).

Using a tool like coverage is essential for ensuring that a test suite is doing its job.
It is likely that in the future, Django will provide some integrated code coverage
support. But in the meantime, as we have seen, it is not difficult to integrate
coverage as an add-on to our projects. In the case of django_coverage, it provides
options for using either of the ways of extending Django discussed earlier. The next
integration task we will discuss requires neither, but rather needs only the standard
Python hooks into unit test set up and tear down.

The twill web browsing and testing tool
twill is a Python package that supports command-line interaction with web sites,
primarily for testing purposes. Like the coverage and django_coverage packages,
twill can be found on PyPI: http://pypi.python.org/pypi/twill. While twill
offers a command-line tool for interactive use, the commands it provides are also
available from a Python API, meaning it is possible to use twill from within a
Django TestCase. When we do this, we essentially replace use of the Django test
Client with an alternative twill implementation.

Note that the latest official release of twill available on PyPI (0.9 at
the time of this writing) is quite old. The latest development release is
available at http://darcs.idyll.org/~t/projects/twill-
latest.tar.gz. Output from the latest development release as of
January 2010 is what is shown in this section. The code included here was
also tested with the official 0.9 release. Everything works using the older
twill code, but the error output from twill is slightly less helpful and
there is some twill output that cannot be suppressed when running as
part of a Django TestCase. Thus, I'd recommend the latest development
release over the 0.9 release.

Filling in the Blanks: Integrating Django and Other Test Tools

[154]

Why would we want to use twill instead of the Django test Client? To understand
the motivation for using twill instead of the Django test Client, let's revisit the
admin customization test from the last chapter. Recall that we provided a custom
form for adding and editing Survey objects. This form has a clean method that
raises a ValidationError on any attempt to save a Survey with an opens date later
than its closes date. The test to ensure that ValidationError is raised when it
should be looks like this:

 def testAddSurveyError(self):
 post_data = {
 'title': u'Time Traveling',
 'opens': datetime.date.today(),
 'closes': datetime.date.today() - datetime.timedelta(1),
 'question_set-TOTAL_FORMS': u'0',
 'question_set-INITIAL_FORMS': u'0',
 }
 response = self.client.post(
 reverse('admin:survey_survey_add'), post_data)
 self.assertContains(response,
 "Opens date cannot come after closes date.")

Notice that this test sends a POST to the server containing a dictionary of POST data
without ever having issued a GET for the page. This caused a problem at first: recall
that we did not initially include the question_set-TOTAL_FORMS and question_
set-INITIAL_FORMS values in the POST dictionary. We were focused on testing the
Survey part of the form on the page and did not realize the formset used by admin
to display Questions in line with Surveys required these other values. When we
found they were needed, we somewhat cavalierly set their values to 0 and hoped
that would be acceptable for what we wanted to test.

A better approach would have been to first get the survey add page. The response
would include a form with a set of initial values that could be used as the basis for
the dictionary to post back. Before issuing the post request, we would change only
the values necessary for our test (title, opens, and closes). Thus, when we did
issue the post call, any other form values that the server had provided initially in
the form would be sent back unchanged. We would not have to make up additional
values for parts of the form that our test did not intend to change.

Besides being a more realistic server interaction scenario, this approach also ensures
that the server is responding correctly to the GET request. Testing the GET path isn't
necessary in this particular case since the additional validation we added to admin
doesn't affect how it responds to a GET of the page. However, for one of our own
views that provides a form in the response, we would want to test the response to
get as well as post.

Chapter 5

[155]

So why didn't we write the test that way? The test Client supports get as well as
post; we certainly could start off by retrieving the page containing the form. The
problem is that the returned response is HTML, and the Django test Client doesn't
provide any utility functions to parse the HTML form and turn it into something we
can easily manipulate. There is no straightforward way for Django to just take the
response, change a few values in the form, and post it back to the server. The twill
package, on the other hand, makes this easy.

In the following sections, we will re-implement the AdminSurveyTest using twill.
First, we'll see how to use its command line tool and then transfer what we learn into
a Django TestCase.

Using the twill command line program
The twill package includes a shell script, named twill-sh, to allow command-line
testing. This is a convenient way to do some initial testing and figure out what the
test case code will need to do. From the shell program, we can use the go command
to visit a page. Once we've visited a page, we can use the showforms command to
see what forms are on the page, and what fields and initial values the forms contain.
Since we are going to use twill to re-implement the AdminSurveyTest, let's see
what visiting the Survey add page for our test server produces:

kmt@lbox:~$ twill-sh

 -= Welcome to twill! =-

current page: *empty page*

>> go http://localhost:8000/admin/survey/survey/add/

==> at http://localhost:8000/admin/survey/survey/add/

current page: http://localhost:8000/admin/survey/survey/add/

>> showforms

Form #1

__Name__________________ __Type___ __ID________ __Value____________

1 username text id_username

2 password password id_password

3 this_is_the_login_form hidden (None) 1

4 1 None submit (None) Log in

current page: http://localhost:8000/admin/survey/survey/add/

>>

Filling in the Blanks: Integrating Django and Other Test Tools

[156]

Clearly, we didn't actually get to the survey add page. Since we aren't logged
in, the server responded with a login page. We can fill the login form using the
formvalue command:

>> formvalue 1 username kmt

current page: http://localhost:8000/admin/survey/survey/add/

>> formvalue 1 password secret

current page: http://localhost:8000/admin/survey/survey/add/

>>

The arguments to formvalue are first the form number, then the field name, and
then the value we want to set for that field. Once we have filled the username and
password in the form, we can submit the form:

>> submit

Note: submit is using submit button: name="None", value="Log in"

current page: http://localhost:8000/admin/survey/survey/add/

Note the submit command optionally also accepts the name of the submit button to
use. In the case where there is only one (as here), or if using the first submit button
on the form is acceptable, we can simply use submit with no argument. Now that we
have logged in, we can use showforms again to see if we have now really retrieved a
Survey add page:

>> showforms

Form #1

__Name__________________ __Type___ __ID________ __Value____________

1 title text id_title

2 opens text id_opens

3 closes text id_closes

4 question_set-TOTAL_FORMS hidden id_quest ... 4

5 question_set-INITIAL ... hidden id_quest ... 0

6 question_set-0-id hidden id_quest ...

7 question_set-0-survey hidden id_quest ...

8 question_set-0-question text id_quest ...

9 question_set-1-id hidden id_quest ...

10 question_set-1-survey hidden id_quest ...

11 question_set-1-question text id_quest ...

Chapter 5

[157]

12 question_set-2-id hidden id_quest ...

13 question_set-2-survey hidden id_quest ...

14 question_set-2-question text id_quest ...

15 question_set-3-id hidden id_quest ...

16 question_set-3-survey hidden id_quest ...

17 question_set-3-question text id_quest ...

18 1 _save submit (None) Save

19 2 _addanother submit (None) Save and add
another

20 3 _continue submit (None) Save and continue
editing

current page: http://localhost:8000/admin/survey/survey/add/

>>

That looks more like a Survey add page. And indeed, our setting of question_set-
TOTAL_FORMS to 0 in our first test case is unrealistic, since the server actually serves
up a form with that set to 4. But it worked. This means that we did not have to
manufacture values for the four inline questions, so it is not a fatal flaw. However,
with twill we can take the more realistic path of leaving all those values as-is and
just changing the fields we are interested in, again using the formvalue command:

>> formvalue 1 title 'Time Traveling'

current page: http://localhost:8000/admin/survey/survey/add/

>> formvalue 1 opens 2009-08-15

current page: http://localhost:8000/admin/survey/survey/add/

>> formvalue 1 closes 2009-08-01

current page: http://localhost:8000/admin/survey/survey/add/

When we submit that form, we expect the server to respond with the same
form re-displayed and the ValidationError message text from our custom
clean method. We can verify that the text is on the returned page using the
find command:

>> submit

Note: submit is using submit button: name="_save", value="Save"

current page: http://localhost:8000/admin/survey/survey/add/

>> find "Opens date cannot come after closes date."

current page: http://localhost:8000/admin/survey/survey/add/

>>

Filling in the Blanks: Integrating Django and Other Test Tools

[158]

That response to find may not make it immediately obvious whether it worked or
not. Let's see what it does with something that is most likely not on the page:

>> find "lalalala I don't hear you"

ERROR: no match to 'lalalala I don't hear you'

current page: http://localhost:8000/admin/survey/survey/add/

>>

OK, since twill clearly complains when the text is not found, the first find must
have succeeded in locating the expected validation error text on the page. Now, we
can use showforms again to see that indeed the server has sent back the form we
submitted. Note that the initial values are what we submitted, not empty as they
were when we first retrieved the page:

>> showforms

Form #1

__Name__________________ __Type___ __ID________ __Value________________

1 title text id_title Time Traveling

2 opens text id_opens 2009-08-15

3 closes text id_closes 2009-08-01

4 question_set-TOTAL_FORMS hidden id_quest ... 4

5 question_set-INITIAL ... hidden id_quest ... 0

6 question_set-0-id hidden id_quest ...

7 question_set-0-survey hidden id_quest ...

8 question_set-0-question text id_quest ...

9 question_set-1-id hidden id_quest ...

10 question_set-1-survey hidden id_quest ...

11 question_set-1-question text id_quest ...

12 question_set-2-id hidden id_quest ...

13 question_set-2-survey hidden id_quest ...

14 question_set-2-question text id_quest ...

15 question_set-3-id hidden id_quest ...

16 question_set-3-survey hidden id_quest ...

17 question_set-3-question text id_quest ...

18 1 _save submit (None) Save

Chapter 5

[159]

19 2 _addanother submit (None) Save and add another

20 3 _continue submit (None) Save and continue editing

current page: http://localhost:8000/admin/survey/survey/add/

>>

At this point, we can simply adjust one of the dates in order to make the form valid
and try submitting it again:

>> formvalue 1 opens 2009-07-15

current page: http://localhost:8000/admin/survey/survey/add/

>> submit

Note: submit is using submit button: name="_save", value="Save"

current page: http://localhost:8000/admin/survey/survey/

>>

Notice the current page has changed to be the survey changelist page (there is no
longer an add at the end of the URL path). This is a clue that the Survey add worked
this time, as the server redirects to the changelist page on a successful save. There is
a twill command to display the HTML contents of a page, named show. It can be
useful to see which page has been returned when you've got a display window you
can scroll back through. However, HTML pages aren't very useful when reproduced
on paper, so it's not shown here.

There are also many more useful commands that twill provides that are beyond the
scope of what we are covering now. The discussion here is intended to simply give
a taste of what twill provides and show how to use it in a Django test case. This
second task will be covered next.

Using twill in a TestCase
What do we need to do to take what we've done in the twill-sh program and turn
it into a TestCase? First, we will need to use twill's Python API in the test code.
The twill commands we used from within twill-sh are available in the twill.
commands module. Additionally, twill provides a browser object (accessible via
twill.get_browser()) that may be more appropriate to call from Python. The
browser object version of a command may return a value, for example, instead of
printing something on the screen. However, the browser object does not support all
of the commands in twill.commands directly, thus it is common to use a mixture

Filling in the Blanks: Integrating Django and Other Test Tools

[160]

of twill.commands methods and browser methods. Mixing the usage is fine since
the code in twill.commands internally operates on the same browser instance
returned from twill.get_browser().

Second, for test code purposes, we'd like to instruct twill to interact with
our Django server application code directly, instead of sending requests to an
actual server. It's fine when using the twill-sh code to test against our running
development server, but we don't want to have a server running in order for our
tests to pass. The Django test Client does this automatically since it was written
specifically to be used from test code.

With twill, we must call its add_wsgi_intercept method to tell it to route requests
for a particular host and port directly to a WSGI application instead of sending
the requests out on the network. Django provides a class that supports the WSGI
application interface (named WSGIHandler) in django.core.handlers.wsgi.
Thus, in our setup code for using twill in tests, we can include code like this:

from django.core.handlers.wsgi import WSGIHandler
import twill
TWILL_TEST_HOST = 'twilltest'
twill.add_wsgi_intercept(TWILL_TEST_HOST, 80, WSGIHandler)

This tells twill that a WSGIHandler instance should be used for the handling of any
requests that are bound for the host named twilltest on the regular HTTP port, 80.
The actual hostname and port used here are not important; they must simply match
the host name and port that our test code tries to access.

This brings us to the third thing we must consider in our test code. The URLs
we use with the Django test Client have no hostname or port components as the
test Client does not perform any routing based on that information, but it rather
just sends the request directly to our application code. The twill interface, on the
other hand, does expect host (and optionally port) components in the URLs passed
to it. Thus, we need to build URLs that are correct for twill and will be routed
appropriately by it. Since we are generally using Django's reverse to create our
URLs during testing, a utility function that takes a named URL and returns the
result of reversing it into a form that will be handled properly by twill will
come in handy:

def reverse_for_twill(named_url):
 return 'http://' + TWILL_TEST_HOST + reverse(named_url)

Note that since we used the default HTTP port in the add_wsgi_intercept call, we
do not need to include the port number in the URLs.

Chapter 5

[161]

One thing to note about using the WSGIHandler application interface for testing is
that this interface, by default, suppresses any exceptions raised during processing
of a request. This is the same interface that is used, for example, by the mod_wsgi
module when running under Apache. It would be unacceptable in such an
environment for WSGIHandler to expose exceptions to its caller, thus it catches
all exceptions and turns them into server error (HTTP 500) responses.

Although suppressing exceptions is the correct behavior in a production
environment, it is not very useful for testing. The server error response generated
instead of the exception is completely unhelpful in determining where the problem
originated. Thus, this behavior is likely to make it very hard to diagnose test failures
in cases where the code under test raises an exception.

To fix this problem, Django has a setting, DEBUG_PROPAGATE_EXCEPTIONS, which
can be set to True to tell the WSGIHandler interface to allow exceptions to propagate
up. This setting is False by default and should never be set to True in a production
environment. Our twill test setup code, however, should set it to True so that if
an exception is raised during request processing, it will be seen when the test is run
instead of being replaced by a generic server error response.

One final wrinkle involved with using Django's WSGIHandler interface for testing
concerns maintaining a single database connection for multiple web page requests
made by a single test. Ordinarily, each request (GET or POST of a page) uses its own
newly-established database connection. At the end of the processing for a successful
request, any open transaction on the database connection is committed and the
database connection is closed.

However, as noted at the end of Chapter 4, Getting Fancier: Django Unit Test
Extensions, the TestCase code prevents any database commits issued by the code
under test from actually reaching the database. Thus, when testing the database
will not see the commit normally present at the end of a request, but instead will
just see the connection closed. Some databases, such as PostgreSQL and MySQL
with the InnoDB storage engine, will automatically rollback the open transaction in
this situation. This will cause problems for tests that need to issue multiple requests
and have database updates made by earlier requests be accessible to later requests.
For example, any test that requires a login will run into trouble since the login
information is stored in the django_session database table.

One way to fix this would be to use a TransactionTestCase instead of a TestCase
as the base class for all of our tests that use twill. With a TransactionTestCase,
the commit that normally happens at the end of request processing will be sent to
the database as usual. However, the process of resetting the database to a clean state
between each test is much slower for a TransactionTestCase than TestCase, so
this approach could considerably slow down our tests.

Filling in the Blanks: Integrating Django and Other Test Tools

[162]

An alternative solution is to prevent the closing of the database connection at the end
of request processing. That way there is nothing to trigger the database to rollback
any updates in the middle of a test. We can accomplish this by disconnecting the
close_connection signal handler from the request_finished signal as part of the
test setUp method. This is not a very clean solution, but it is worth the performance
gain (and it is also what the test Client does to overcome the same problem).

Let's start, then, by writing a twill version of the setUp method for the
AdminSurveyTest. The test Client version from the previous chapter is:

class AdminSurveyTest(TestCase):
 def setUp(self):
 self.username = 'survey_admin'
 self.pw = 'pwpwpw'
 self.user = User.objects.create_user(self.username, '', "
 "self.pw)
 self.user.is_staff= True
 self.user.is_superuser = True
 self.user.save()
 self.assertTrue(self.client.login(username=self.username,
 password=self.pw),
 "Logging in user %s, pw %s failed." %
 (self.username, self.pw))

The twill version will need to do the same user creation steps, but something
different for login. Instead of duplicating the user creation code, we will factor that
out into a common base class (called AdminTest) for the AdminSurveyTest and the
twill version AdminSurveyTwillTest. For logging into the twill version, we can
fill in and submit the login form that will be returned if we attempt to go to any
admin page before logging in. Thus, the twill version of setUp might look like this:

from django.db import close_connection
from django.core import signals
from django.core.handlers.wsgi import WSGIHandler
from django.conf import settings
import twill

class AdminSurveyTwillTest(AdminTest):
 def setUp(self):
 super(AdminSurveyTwillTest, self).setUp()
 self.old_propagate = settings.DEBUG_PROPAGATE_EXCEPTIONS
 settings.DEBUG_PROPAGATE_EXCEPTIONS = True
 signals.request_finished.disconnect(close_connection)
 twill.add_wsgi_intercept(TWILL_TEST_HOST, 80, WSGIHandler)
 self.browser = twill.get_browser()

Chapter 5

[163]

 self.browser.go(reverse_for_twill('admin:index'))
 twill.commands.formvalue(1, 'username', self.username)
 twill.commands.formvalue(1, 'password', self.pw)
 self.browser.submit()
 twill.commands.find('Welcome')

This setUp first calls the superclass setUp to create the admin user, and then saves
the existing DEBUG_PROPAGATE_EXCEPTIONS setting before setting that to True. It
then disconnects the close_connection signal handler from the request_finished
signal. Next, it calls twill.add_wsgi_intercept to set up twill to route requests
for the twilltest host to Django's WSGIHandler. For convenient access, it stashes
the twill browser object in self.browser. It then uses the previously mentioned
reverse_for_twill utility function to create the appropriate URL for the admin
index page, and calls the browser go method to retrieve that page.

The returned page should have a single form containing username and password
fields. These are set to the values for the user created by the superclass setUp using
the formvalue command, and the form is submitted using the browser submit
method. The result should be the admin index page, if the login works. That page
will have the string Welcome on it, so the last thing this setUp routine does is verify
that text is found on the page, so that if the login failed an error is raised at the point
the problem was encountered rather than later.

When we write setUp, we should also write the companion tearDown method to
undo the effects of setUp:

 def tearDown(self):
 self.browser.go(reverse_for_twill('admin:logout'))
 twill.remove_wsgi_intercept(TWILL_TEST_HOST, 80)
 signals.request_finished.connect(close_connection)
 settings.DEBUG_PROPAGATE_EXCEPTIONS = self.old_propagate

Here, we go to the admin logout page to log out from the admin site, call remove_
wsgi_intercept to remove the special routing for the host named twilltest,
reconnect the normal close_connection signal handler to the request_finished
signal, and lastly restore the old value of DEBUG_PROPAGATE_EXCEPTIONS.

A twill version of the test case routine that checks for the error case of closes being
earlier than opens would then be:

 def testAddSurveyError(self):
 self.browser.go(reverse_for_twill('admin:survey_survey_add'))
 twill.commands.formvalue(1, 'title', 'Time Traveling')
 twill.commands.formvalue(1, 'opens',
 str(datetime.date.today()))

Filling in the Blanks: Integrating Django and Other Test Tools

[164]

 twill.commands.formvalue(1, 'closes',
 str(datetime.date.today()-datetime.timedelta(1)))
 self.browser.submit()
 twill.commands.url(reverse_for_twill(
 'admin:survey_survey_add'))
 twill.commands.find("Opens date cannot come after closes "
 "date.")

Unlike the test Client version, here we start by visiting the admin Survey add page.
We expect the response to contain a single form, and set the values in it for title,
opens, and closes. We don't care about anything else that may be in the form and
leave it unchanged. We then submit the form.

We expect that in the error case (which this should be, given that we made closes
one day before opens) the admin will redisplay the same page with an error
message. We test for this by first using the twill url command to test that the
current URL is still the Survey add page URL. We then also use the twill find
command to verify that the expected error message is found on the page. (It's
probably only necessary to perform one of those checks, but it doesn't hurt to
do both. Hence, both are included here for illustration purposes.)

If we now run this test with python manage.py test survey.
AdminSurveyTwillTest, we will see that it works, but twill is a bit chatty, even
when using the Python API. At the end of the test output, we will see:

Installing index for survey.Answer model

==> at http://twilltest/admin/

Note: submit is using submit button: name="None", value="Log in"

==> at http://twilltest/admin/survey/survey/add/

Note: submit is using submit button: name="_save", value="Save"

==> at http://twilltest/admin/logout/

.

--

Ran 1 test in 0.845s

OK

Destroying test database...

Chapter 5

[165]

We'd rather not have output from twill cluttering up our test output, so we'd
like to redirect this output elsewhere. Luckily, twill provides a routine for this,
set_output. So, we can add the following to our setUp method:

 twill.set_output(StringIO())

Place this prior to any twill commands that print output, and remember to include
from StringIO import StringIO among the imports before referencing StringIO.
We should also undo this in our tearDown routine by calling twill.commands.
reset_output() there. That will restore the twill default behavior of sending
output to the screen. After making those changes, if we run the test again, we
will see that it passes, and the twill output is no longer present.

The last piece to write, then, is the test case for adding a Survey with dates that do
not trigger the validation error. It might look like this:

 def testAddSurveyOK(self):
 self.browser.go(reverse_for_twill('admin:survey_survey_add'))
 twill.commands.formvalue(1, 'title', 'Not Time Traveling')
 twill.commands.formvalue(1, 'opens',
 str(datetime.date.today()))
 twill.commands.formvalue(1, 'closes',
 str(datetime.date.today()))
 self.browser.submit()
 twill.commands.url(reverse_for_twill(
 'admin:survey_survey_changelist'))

This is much like the previous test except we attempt to verify that we are redirected
to the admin changelist page on the expected successful submit. If we run this test,
it will pass, but it is actually not correct. That is, it will not fail if in fact the admin
re-displays the add page instead of redirecting to the changelist page. Thus, if we
have broken something and caused submits that should be successful to fail, this
test won't catch that.

To see this, change the closes date in this test case to be one day before opens. This
will trigger an error as it does in the testAddSurveyError method. However, if we
run the test with that change, it will still pass.

The reason for this is that the twill url command takes a regular expression as its
argument. It isn't checking for an exact match of the passed argument with the actual
URL, but rather that the actual URL matches the regular expression passed to the url
command. The changelist URL that we are passing into the url method is:

http://twilltest/admin/survey/survey/

Filling in the Blanks: Integrating Django and Other Test Tools

[166]

The URL for the add page that will be re-displayed in case of an error on submit
will be:

http://twilltest/admin/survey/survey/add/

An attempt to match the add page URL with the changelist page URL will be
successful, since the changelist URL is contained within the add page URL. Thus,
the twill url command will not raise an error as we want it to. To fix this, we must
indicate in the regular expression we pass into url that we require the actual URL to
end as the value we are passing in ends, by including an end of string marker on the
value we pass:

twill.commands.url(reverse_for_twill(
 'admin:survey_survey_changelist') + '$')

We could also include a string marker at the beginning, but that isn't actually
required to fix this particular problem. If we make that change and leave in the
incorrect closes date setting, we will see that this test case now does fail as it
should when the server re-displays the add page, instead of successfully
processing the submit:

==

ERROR: testAddSurveyOK (survey.tests.admin_tests.AdminSurveyTwillTest)

--

Traceback (most recent call last):

 File "/dj_projects/marketr/survey/tests/admin_tests.py", line 91, in
testAddSurveyOK

 twill.commands.url(reverse_for_twill('admin:survey_survey_
changelist') + '$')

 File "/usr/lib/python2.5/site-packages/twill/commands.py", line 178, in
url

 """ % (current_url, should_be,))

TwillAssertionError: current url is 'http://twilltest/admin/survey/
survey/add/';

does not match 'http://twilltest/admin/survey/survey/$'

--

Ran 2 tests in 1.349s

FAILED (errors=1)

Destroying test database...

Chapter 5

[167]

Once we verify the test does fail in the case where the server does not respond as we
expect, we can restore the closes date setting to be acceptable for saving and again
the tests will pass. One lesson here is to be careful when using the url command that
twill provides. A second lesson is to always attempt to verify that a test will report
failure when appropriate. When focusing on writing tests that pass, we can often
forget to verify that tests will properly fail when they should.

We've now got working twill-based versions of our admin customization tests.
Achieving that was not exactly easy—the need for some of the setUp code, for
example, is not necessarily immediately obvious. However, once in place it can be
easily reused by tests that require more sophisticated form manipulation than we
needed here. Form manipulation is a weak point of Django's test framework, and it
is unlikely that it will be addressed in Django by the addition of functions that would
duplicate functions already available in external tools. It is more likely that in the
future, Django will offer more easy integration with twill or another tool like it.
Therefore, investing in learning how to use a tool like twill is likely a good use
of time.

Summary
This brings us to the end of discussing the testing of Django applications. In this
chapter, we focused on how to fill in any gaps of testing functions within Django by
integrating with other test tools. It is impossible to cover the specifics of integrating
with every tool out there, but we learned the general mechanisms available and
discussed a couple of examples in detail. This provides a solid foundation for
understanding how to accomplish the task in general.

As Django continues to develop, such gaps may become fewer, but it is unlikely
that Django will ever be able to provide everything that everyone wants in terms
of testing support. In some cases, Python's class inheritance structure and unit test
extension mechanisms allow for straightforward integration of other test tools into
Django test cases. In other cases, this is not sufficient. Thus, it is helpful that Django
also provides hooks for adding additional functionality. In this chapter, we:

Learned what hooks Django provides for adding test functions
Saw an example of how these hooks can be used, specifically in the case of
adding code coverage reporting
Also explored an example where using these hooks was not necessary—
when integrating the use of the twill test tool into our Django test cases

In the next chapter, we will move from testing to debugging, and begin to learn what
facilities Django provides to aid in debugging our Django applications.

•

•

•

Django Debugging Overview
The best test suite in the world won't save you from having to debug problems.
Tests simply report whether code is working correctly. When there is a problem in
the code, found either via a failing test or some other means, debugging is necessary
to figure out what exactly has gone wrong. A good test suite, run regularly, can
certainly help in debugging. The specifics of the error message from the failure, the
aggregate information provided by what tests pass versus what tests fail, in addition
to the knowledge of what code change introduced the problem, can all provide
important clues for debugging. Sometimes those clues are enough to figure out
what has gone wrong and how to fix it, but often it is necessary to perform
additional debugging.

This chapter introduces Django's debugging support. It provides an overview of
topics that will be covered in greater depth in subsequent chapters. Specifically, this
chapter will:

List the Django settings that control the collection and presentation of
debugging information, and briefly describe the effects of enabling debug
Illustrate the results of running with debug enabled in the case of serious
code failure
Describe the database query history that is collected with debug enabled, and
show how to access it
Discuss features of the development server that help in debugging
Describe how errors are handled during production, when debug is off, and
how to ensure that information about such errors is reported appropriately

•

•

•

•

•

Django Debugging Overview

[170]

Django debug settings
Django has a number of settings that control the collection and presentation of debug
information. The primary one is named DEBUG; it broadly controls whether the server
operates in development (if DEBUG is True) or production mode.

In development mode, the end-user is expected to be a site developer. Thus, if an
error arises during processing of a request, it is useful to include specific technical
information about the error in the response sent to the web browser. This is not
useful in production mode, when the user is expected to be simply a general
site user.

This section describes three Django settings that are useful for debugging during
development. Additional settings are used during production to control what errors
should be reported, and where error reports should be sent. These additional settings
will be discussed in the section on handling problems in production.

The DEBUG and TEMPLATE_DEBUG settings
DEBUG is the main debug setting. One of the most obvious effects of setting this
to True is that Django will generate fancy error page responses in the case of
serious code problems, such as exceptions raised during processing of a request. If
TEMPLATE_DEBUG is also True, and the exception raised is related to a template error,
then the fancy error page will also include information about where in the template
the error occurred.

The default value for both of these settings is False, but the settings.py file created
by manage.py startproject turns both of them on by including these lines at the
top of the file:

DEBUG = True
TEMPLATE_DEBUG = DEBUG

Note that setting TEMPLATE_DEBUG to True when DEBUG is False isn't useful. The
additional information collected with TEMPLATE_DEBUG turned on will never be
displayed if the fancy error pages, controlled by the DEBUG setting, are not displayed.
Similarly, setting TEMPLATE_DEBUG to False when DEBUG is True isn't very useful.
In this case, for template errors, the fancy debug page will be lacking helpful
information. Thus, it makes sense to keep these settings tied to each other,
as previously shown.

Chapter 6

[171]

Details on the fancy error pages and when they are generated will be covered in the
next section. Besides generating these special pages, turning DEBUG on has several
other effects. Specifically, when DEBUG is on:

A record is kept of all queries sent to the database. Details of what is
recorded and how to access it will be covered in a subsequent section.
For the MySQL database backend, warnings issued by the database will
be turned into Python Exceptions. These MySQL warnings may indicate
a serious problem, but a warning (which only results in a message printed
to stderr) may pass unnoticed. Since most development is done with
DEBUG turned on, raising exceptions for MySQL warnings then ensures
that the developer is aware of the possible issue. We ran into this behavior
back in Chapter 3, Testing 1, 2, 3: Basic Unit Testing, when we saw that the
testClosesReset unit test produced different results depending on the
DEBUG setting and the MySQL server configuration.
The admin application performs extensive validation of the configuration
of all registered models and raises an ImproperlyConfigured exception
on the first attempt to access any admin page if an error is found in
the configuration. This extensive validation is fairly expensive and not
something you'd generally want done during production server start-up,
when the admin configuration likely has not changed since the last
start-up. When running with DEBUG on, though, it is possible that the
admin configuration has changed, and thus it is useful and worth the cost
to do the explicit validation and provide a specific error message about what
is wrong if a problem is detected.
Finally, there are several places in Django code where an error will
occur while DEBUG is on, and the generated response will contain specific
information about the cause of the error, whereas when DEBUG is off the
generated response will be a generic error page.

The TEMPLATE_STRING_IF_INVALID setting
A third setting that can be useful for debugging during development is
TEMPLATE_STRING_IF_INVALID. The default value for this setting is the empty
string. This setting is used to control what gets inserted into a template in place
of a reference to an invalid (for example, non-existent in the template context)
variable. The default value of an empty string results in nothing visible taking
the place of such invalid references, which can make them hard to notice. Setting
TEMPLATE_STRING_IF_INVALID to some value can make tracking down such
invalid references easier.

•

•

•

•

Django Debugging Overview

[172]

However, some code that ships with Django (the admin application, in particular),
relies on the default behavior of invalid references being replaced with an empty
string. Running code like this with a non-empty TEMPLATE_STRING_IF_INVALID
setting can produce unexpected results, so this setting is only useful when you
are specifically trying to track down something like a misspelled template
variable in code that always ensures that variables, even empty ones, are set
in the template context.

Debug error pages
With DEBUG on, Django generates fancy debug error pages in two circumstances:

When a django.http.Http404 exception is raised
When any other exception is raised and not handled by the regular view
processing code

In the latter case, the debug page contains a tremendous amount of information
about the error, the request that caused it, and the environment at the time it
occurred. Deciphering this page and making best use of the information it presents
will be covered in the next chapter. The debug pages for Http404 exceptions are
considerably simpler and will be covered here.

To see examples of the Http404 debug pages, consider the survey_detail view
from Chapter 4:

def survey_detail(request, pk):
 survey = get_object_or_404(Survey, pk=pk)
 today = datetime.date.today()
 if survey.closes < today:
 return display_completed_survey(request, survey)
 elif survey.opens > today:
 raise Http404
 else:
 return display_active_survey(request, survey)

•

•

Chapter 6

[173]

There are two cases where this view may raise an Http404 exception: when the
requested survey is not found in the database, and when it is found but has not yet
opened. Thus, we can see the debug 404 page by attempting to access the survey
detail for a survey that does not exist, say survey number 24. The result will be
as follows:

Notice there is a message in the middle of the page that describes the cause of the
page not found response: No Survey matches the given query. This message was
generated automatically by the get_object_or_404 function. By contrast, the bare
raise Http404 in the case where the survey is found but not yet open does not
look like it will have any descriptive message. To confirm this, add a survey that
has an opens date in the future, and try to access its detail page. The result will be
something like the following:

Django Debugging Overview

[174]

That is not a very helpful debug page, since it lacks any information about what
was being searched for and why it could not be displayed. To make this page more
useful, include a message when raising the Http404 exception. For example:

 raise Http404("%s does not open until %s; it is only %s" %
 (survey.title, survey.opens, today))

Then an attempt to access this page will be a little more helpful:

Note that the error message supplied with the Http404 exception is only displayed
on the debug 404 page; it would not appear on a standard 404 page. So you can make
such messages as descriptive as you like and not worry that they will leak private or
sensitive information to general users.

Another thing to note is that a debug 404 page is only generated when an Http404
exception is raised. If you manually construct an HttpResponse with a 404 status
code, it will be returned, not the debug 404 page. Consider this code:

 return HttpResponse("%s does not open until %s; it is only %s" %
 (survey.title, survey.opens, today), status=404)

Chapter 6

[175]

If that code were used in place of the raise Http404 variant, then the browser will
simply display the passed message:

Without the prominent Page not found message and distinctive error page
formatting, this page isn't even obviously an error report. Note also that some
browsers by default will replace the server-provided content with a supposedly
"friendly" error page that tends to be even less informative. Thus, it is both easier
and more useful to use the Http404 exception instead of manually building
HttpResponse objects with status code 404.

A final example of the debug 404 page that is very useful is the one that is generated
when URL resolution fails. For example, if we add an extra space before the survey
number in the URL, the debug 404 page generated will be as follows:

Django Debugging Overview

[176]

The message on this page includes all of the information necessary to figure out why
URL resolution failed. It includes the current URL, the name of the base URLConf
used for resolution, and all patterns that were tried, in order, for matching.

If you do any significant amount of Django application programming, it's highly
likely that at some time this page will appear and you will be convinced that one
of the listed patterns should match the given URL. You would be wrong. Do not
waste energy trying to figure out how Django could be so broken. Rather, trust the
error message, and focus your energies on figuring out why the pattern you think
should match doesn't in fact match. Look carefully at each element of the pattern
and compare it to the actual element in the current URL: there will be something
that doesn't match.

In this case, you might think the third listed pattern should match the current URL.
The first element in the pattern is the capture of the primary key value, and the
actual URL value does contain a number that could be a primary key. However, the
capture is done using the pattern \d+. An attempt to match this against the actual
URL characters—a space followed by 2—fails because \d only matches numeric
digits and the space character is not a numeric digit. There will always be something
like this to explain why the URL resolution failed.

The next chapter will include many more examples of common errors that result in
debug pages, and will delve into all of the information available on these pages. For
now, we will leave the subject of debug pages and learn about accessing the history
of database queries that is maintained when DEBUG is on.

Database query history
When DEBUG is True, Django maintains a history of all SQL commands sent to the
database. This history is kept in a list, named queries, located in the django.
db.connection module. The easiest way to see what is kept in this list is to
examine it from a shell session:

>>> from django.db import connection

>>> connection.queries

[]

>>> from survey.models import Survey

>>> Survey.objects.count()

2

>>> connection.queries

[{'time': '0.002', 'sql': u'SELECT COUNT(*) FROM "survey_survey"'}]

>>>

Chapter 6

[177]

Here we see that queries is initially empty at the beginning of the shell session. We
then retrieve a count of the number of Survey objects in the database, which comes
back as 2. When we again display the contents of queries, we see that there is now
one query in the queries list. Each element in the list is a dictionary containing two
keys: time and sql. The value of time is how long, in seconds, the query took to
execute. The value of sql is the actual SQL query that was sent to the database.

One thing to note about the SQL contained in connection.queries: it does not
include quoting of query parameters. For example, consider the SQL shown for a
query on Surveys with titles that start with Christmas:

>>> Survey.objects.filter(title__startswith='Christmas')

[<Survey: Christmas Wish List (opens 2009-11-26, closes 2009-12-31)>]

>>> print connection.queries[-1]['sql']

SELECT "survey_survey"."id", "survey_survey"."title",
"survey_survey"."opens", "survey_survey"."closes"
FROM "survey_survey" WHERE "survey_survey"."title"
LIKE Christmas% ESCAPE '\' LIMIT 21

>>>

In the displayed SQL, Christmas% would need to be quoted in order for the SQL
to be valid. However, we see here it is not quoted when stored in connection.
queries. The reason is because Django does not actually pass the query in this
form to the database backend. Rather, Django passes parameterized queries. That
is, the passed query string contains parameter placeholders, and parameter values
are passed separately. It is up to the database backend, then, to perform parameter
substitution and proper quoting.

For the debug information placed in connection.queries, Django does parameter
substitution, but it does not attempt to do the quoting, as that varies from backend to
backend. So do not be concerned by the lack of parameter quoting in connection.
queries: it does not imply that parameters are not quoted correctly when they are
actually sent to the database. It does mean, though, that the SQL from connection.
queries cannot be successfully cut and pasted directly into a database shell
program. If you want to use the SQL form connection.queries in a database
shell, you will need to supply the missing parameter quoting.

You might have noticed and may be curious about the LIMIT 21 included in the
previous SQL. The QuerySet requested did not include a limit, so why did the SQL
include a limit? This is a feature of the QuerySet repr method, which is what the
Python shell calls to display the value returned by the Survey.objects.filter call.

Django Debugging Overview

[178]

A QuerySet may have many elements, and displaying the entire set, if it is quite
large, is not particularly useful in Python shell sessions, for example. Therefore,
QuerySet repr displays a maximum of 20 items. If there are more, repr will add an
ellipsis to the end to indicate that the display is incomplete. Thus, the SQL resulting
from a call to repr on a QuerySet will limit the result to 21 items, which is enough to
determine if an ellipsis is needed to indicate that the printed result is incomplete.

Any time you see LIMIT 21 included in a database query, that is a signal the query
was likely the result of a call to repr. Since repr is not frequently called from
application code, such queries are likely resulting from other code (such as the
Python shell, here, or a graphical debugger variable display window) that may be
automatically displaying the value of a QuerySet variable. Keeping this in mind can
help reduce confusion when trying to figure out why some queries are appearing in
connection.queries.

There is one f﻿inal item to note about connection.queries: despite the name, it is
not limited to just SQL queries. All SQL statements sent to the database, including
updates and inserts, are stored in connection.queries. For example, if we create a
new Survey from the shell session, we will see the resulting SQL INSERT stored in
connection.queries:

>>> import datetime

>>> Survey.objects.create(title='Football Favorites',opens=datetime.date.
today())

<Survey: Football Favorites (opens 2009-09-24, closes 2009-10-01)>

>>> print connection.queries[-1]['sql']

INSERT INTO "survey_survey" ("title", "opens", "closes") VALUES (Football
Favorites, 2009-09-24, 2009-10-01)

>>>

Here we have been accessing connection.queries from a shell session. Often,
however, it may be useful to see what it contains after a request has been processed.
That is, we might want to know what database traffic was generated during the
creation of a page. Recreating the calling of a view function from within a Python
shell and then manually examining connection.queries is not particularly
convenient, however. Therefore, Django provides a context processor, django.core.
contextprocessors.debug, that provides convenient access to the data stored in
connection.queries from a template. In Chapter 8, When Problems Hide: Getting
More Information, we will see how we can use this context processor to include
information from connection.queries in our generated pages.

Chapter 6

[179]

Debug support in the development server
The development server, which we have been using since Chapter 3, has several
characteristics which aid in debugging. First, it provides a console that allows for
easy reporting, during development, of what is going on in Django application code.
The development server itself reports general information about its operation to the
console. For example, typical output from the development server looks like this:

kmt@lbox:/dj_projects/marketr$ python manage.py runserver

Validating models...

0 errors found

Django version 1.1, using settings 'marketr.settings'

Development server is running at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

[25/Sep/2009 07:51:24] "GET / HTTP/1.1" 200 480

[25/Sep/2009 07:51:27] "GET /survey/1/ HTTP/1.1" 200 280

[25/Sep/2009 07:51:33] "GET /survey/888/ HTTP/1.1" 404 1704

As you can see, the development server starts out by explicitly validating
models. If any errors are found they will be prominently reported during
server start-up, and will prevent the server from entering its request processing
loop. This helps to ensure that any erroneous model changes made during
development are noticed quickly.

The server then reports the level of Django that is running, the settings file in use,
and the host address and port it is listening on. The first of these, in particular, is
very useful when you have multiple Django versions installed and are switching
between them. For example, if you have the latest release installed in site-packages
but also have an SVN checkout of current trunk that you use by explicitly setting
PYTHONPATH, you can use the version reported by the development server to confirm
(or not) that you are in fact using the version you intend to be using at the moment.

Django Debugging Overview

[180]

The final start-up message notes that you can terminate the server by pressing
Ctrl-C. The server then enters its request processing loop and will proceed to
report information on each request that it handles. The information printed for
each request is:

The date and time the request was processed, in square brackets
The request itself, which includes the HTTP method (for example, GET or
POST), the path, and the HTTP version specified by the client, all enclosed
in quotes
The HTTP status code returned
The number of bytes in the returned response

In the previous example output, we can see that the server has responded to three
GET requests, all specifying an HTTP version of 1.1. First for the root URL /, which
resulted in an HTTP 200 (OK) status code with a 480 byte response. The request for
/survey/1/ was similarly processed successfully and produced a 280 byte response,
but /survey/888/ resulted in a 404 HTTP status with a 1704 byte response. The
404 status was returned because no survey with primary key 888 existed in the
database. Simply being able to see what requests, exactly, are being received by the
development server, and what is being returned in response, often comes in handy.

There are some requests handled by the development server that are not shown
on the console. First, requests for admin media files (that is, CSS, JavaScript, and
images) are not logged. If you look at the HTML source for an admin page, you
will see it does include links to CSS files in its <head> section. For example:

<head>
<title>Site administration | Django site admin</title>
<link rel="stylesheet" type="text/css" href="/media/css/base.css" />
<link rel="stylesheet" type="text/css" href="/media/css/dashboard.css"
/>

A web browser receiving this document will proceed to retrieve
/media/css/base.css and /media/css/dashboard.css from the same
server that produced the original page. The development server will receive
and automatically serve these files, but it does not log that activity. Specifically,
it will serve but not log requests for URLs that begin with the ADMIN_MEDIA_PREFIX
setting. (This setting's default value is /media/).

The second request that will not get logged by the development server is any
request for /favicon.ico. This is a file automatically requested by many web
browsers in order to associate an icon with a bookmarked page or to display an icon
in the address bar. There is no point in cluttering up the output of the development
server with requests for this file, so it is never logged.

•

•

•

•

Chapter 6

[181]

Often when debugging a problem, the very basic information logged automatically
by the development server will not be sufficient to figure out what is going on. When
this happens, you may add logging to your application code. Assuming you route
the log output you add to stdout or stderr, it will appear on the console of the
development server along with the normal development server output.

Note that some production deployment environments do not allow sending output
to stdout. In such environments, a mistakenly leftover debugging print statement in
the application code could cause a server failure in production. To avoid this, always
route debug print statements to stderr instead of stdout.

Also note that the request logging done by the development server happens at the
very end of the request processing. The logged information includes the size of the
response, so the response has been completely generated before this line appears.
Thus, any logging added in application view functions, for example, will appear
before the single line logged by the development server. Don't get confused and
think that prints from a view function are referring to the work done to service the
request logged above them. More specifics on adding logging to application code
will be discussed in Chapter 8.

A second feature of the development server that is useful when developing and
debugging code is that it automatically notices when source code changes on disk
and re-starts itself, so that it is always running current code. You can tell when
this happens because when it restarts, it will again print the start-up messages.
For example, consider this output:

kmt@lbox:/dj_projects/marketr$ python manage.py runserver

Validating models...

0 errors found

Django version 1.1, using settings 'marketr.settings'

Development server is running at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

[25/Sep/2009 07:51:24] "GET / HTTP/1.1" 200 480

[25/Sep/2009 07:51:27] "GET /survey/1/ HTTP/1.1" 200 280

[25/Sep/2009 07:51:33] "GET /survey/888/ HTTP/1.1" 404 1704

Validating models...

0 errors found

Django version 1.1, using settings 'marketr.settings'

Development server is running at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

[25/Sep/2009 08:20:15] "GET /admin/ HTTP/1.1" 200 7256

Django Debugging Overview

[182]

Here some code change was made that resulted in the development server restarting
itself between the handling of the GET /survey/888/ and the GET /admin/ request.

While this automatic restart behavior is convenient, it can sometimes run into
trouble. This most frequently happens when code is edited and saved with an error.
Sometimes, but not always, loading the erroneous file causes the development server
to fail to notice subsequent changes in the file. Thus, the corrected version may not
be automatically loaded even when the error is noticed and fixed. If it seems like the
development server is not reloading when it should, it is a good idea to manually
stop and restart it.

This automatic reloading feature of the development server can be turned off by
passing the --noreload option to runserver. You likely will not often want to
specify this when running the development server on its own, but if you are running
it under a debugger, you may need to specify this option in order for debugger
breakpoints to be properly recognized. This is a final feature of the development
server that makes it useful for debugging: it is easy to run under a debugger.
Details on this will be covered in Chapter 9, When You Don't Even Know What
to Log: Using Debuggers.

Handling problems in production
In an ideal world, all code problems would be found during development, and
nothing would ever go wrong when the code was in production. However, despite
best efforts, this ideal is rarely achieved in reality. We must prepare for the case
where something will go seriously wrong while the code is running in production
mode, and arrange to do something sensible when it happens.

What's involved in doing something sensible? First some response must still be
returned to the client that sent the request that resulted in the error. But the response
should just be a general error indication, bare of the specific internal details found in
the fancy debug error pages produced when DEBUG is active. At best, a Django debug
error page might confuse a general web user, but at worst information gleaned from
it might be used by some malicious user to attempt to break the site. Thus, the public
response produced for a request that causes an error should be a generic error page.

The specific details of such errors, though, should still be made available to site
administrators so that the problems can be analyzed and fixed. Django accomplishes
this by e-mailing details of errors encountered when DEBUG is False to a list of e-mail
addresses specified in settings.py. The information included in the e-mail is not
as extensive as what would be found on a debug page, but it is often enough to get
started on recreating and fixing the problem.

Chapter 6

[183]

This section discusses the steps needed to handle errors encountered during
production. First, what needs to be done to return generic error pages is described,
and then the settings necessary to specify where to send more detailed error
information are discussed.

Creating general error pages
As with the fancy error pages, there are two types of general error pages: one to
report that a page does not exist on the site, and one to report that some internal
server error occurred during processing of the request. Django provides default
handlers for these error cases that automatically load and render templates named
404.html and 500.html respectively. A project that relies on the default handling of
these errors must provide templates with these names to be loaded and rendered. No
defaults for these files are created by manage.py startproject.

When the 404.html template it rendered, it is passed a RequestContext in which
a variable named request_path has been set to the value of the URL path that
caused the Http404 exception to be raised. The 404.html template, then, can use the
request_path value and the other variables set by context processors to tailor the
specific response generated.

The 500.html template, on the other hand, is rendered with an empty context.
When a internal server error occurs, something has gone seriously wrong with the
server code. Attempting to process a RequestContext through context processors
might well cause yet another exception to be raised. To attempt to ensure that the
response will be generated without any further errors, then, the 500.html template
is rendered with an empty context. This means that the 500.html template cannot
rely on any context variables that are ordinarily set by context processors.

It is possible to override the default error handling by providing custom error
handlers for either one or both of these error situations. The Django documentation
provides full details on how to do this; it is not covered here as the default handlers
are fine for the vast majority of situations.

Reporting production error information
Though it is good to avoid presenting detailed technical error information to general
users, it is not good to lose such information entirely. Django supports notifying
site administrators when errors are encountered in production. Settings related to
these notifications are discussed in this section. Chapter 11, When it's Time to Go Live:
Moving to Production, provides more guidance on the task of moving to production
and solving some common problems that are encountered along the way.

Django Debugging Overview

[184]

Internal server error notifications
When a server error occurs, Django sends an e-mail containing details of the
request that generated the error and the traceback from the error to all of the e-mail
addresses listed in the ADMINS setting. ADMINS is a list of tuples containing names and
e-mail addresses. The value set by manage.py startproject is:

ADMINS = (
 # ('Your Name', 'your_email@domain.com'),
)

The commented line shows the format you should use for adding values to
this setting.

There is no setting to control whether server error notifications should be sent:
Django will always attempt to send these notifications. However, if you really do
not want e-mail notifications generated for internal server errors, you can leave the
ADMINS setting empty. This is not a recommended practice, though, as you will not
have any idea, unless your users complain to you, that your site is experiencing
difficulty.

Django uses Python's SMTP support to send e-mail. In order for this to work,
Django must be configured properly to communicate with an SMTP server.
There are several settings that control sending mail which you may need to
customize for your installation:

EMAIL_HOST is the name of the host running the SMTP server. The default
value for this setting is localhost, so if there is no SMTP server running
on the same machine as the Django server, this will need to be set to a host
running an SMTP server that can be used to send mail.
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD together may be used to
authenticate to the SMTP server. Both are set to an empty string by default. If
either is set to the empty string, then Django does not attempt to authenticate
to the SMTP server. If you are using a server that requires authentication,
you will need to set these to valid values for the SMTP server in use.
EMAIL_USE_TLS specifies whether to use a secure (Transport Layer Security)
connection to the SMTP server. The default value is False. If you are using
an SMTP server that requires a secure connection, you will need to set this
to True.
EMAIL_PORT specifies the port to connect to. The default value is the default
SMTP port, 25. If your SMTP server is listening on a different port (typical
when EMAIL_USE_TLS is True), you must specify it here.

•

•

•

•

Chapter 6

[185]

SERVER_EMAIL is the e-mail address that will be used as the From address on
the sent mail. The default value is root@localhost. Some e-mail providers
refuse to accept mail that uses this default From address, so it is a good idea
to set this to a value that is a valid From address for the e-mail server you
are using.
EMAIL_SUBJECT_PREFIX is a string that will be placed at the start of the
Subject for the e-mail. The default value is [Django]. You might want to
customize this to be something that is site-specific, so administrators that
support multiple sites will be able to tell from a glance at the e-mail subject
which site encountered the error.

Once you have set all of the values you believe are correct for the SMTP server
you are using, it is a good idea to verify that mail is successfully sent. To do this,
set ADMINS to include your own e-mail address. Then set DEBUG=False and do
something that will cause a server error. One easy way to accomplish this is to
rename the 404.html template to something else and then attempt to access the
server specifying a URL that will cause an Http404 exception to be raised.

For example, attempt to access the detail page for a survey that does not exist or
has an opens date in the future. This attempt should result in an e-mail getting sent
to you. The subject will start with your server's EMAIL_SUBJECT_PREFIX and will
include the URL path of the request that generated the error. The text of the e-mail
will contain the traceback from the error followed by the details of the request that
caused it.

Page not found notifications
Page not found errors are considerably less serious than server errors. In fact, they
may not indicate errors in the code at all, since they can result from users incorrectly
typing addresses in the browser address bar. If, however, they are the result of users
attempting to follow links, you might want to know about that. This second case is
termed a broken link and can usually be distinguished from the first by the presence
of an HTTP Referer [sic] header in the request. Django supports sending e-mail
notifications when it detects a user attempting to access a nonexistent page via a
broken link.

Unlike internal server error notifications, sending broken link notifications is
optional. The setting that controls whether Django sends e-mail notifications for
broken links is SEND_BROKEN_LINK_EMAILS. The default value for this setting
is False; you will need to set it to True if you want Django to generate these
e-mails. In addition, the common middleware (django.middleware.common.
CommonMiddleware) must be enabled in order for broken link e-mails to be sent.
This middleware is enabled by default.

•

•

Django Debugging Overview

[186]

The e-mails generated by this setting are sent to the e-mail addresses found in the
MANAGERS setting. Thus, you can send these notifications to a different set of people
than the server error e-mails. If, however, you want to send these to the same set
of people who receive the server error e-mails, simply set MANAGERS = ADMINS in
settings.py after ADMINS has been set.

Except for the e-mail recipients, all of the same e-mail settings will be used for
sending broken link e-mails as are used for server error e-mails. So if you have
verified that server error e-mails are successfully sent, broken link e-mails will
also be successful.

Broken link e-mail notifications are only useful so long as reports of legitimate
problems are not drowned in a sea of reports related to the activity of web crawlers,
bots, and malicious people probing the site bent on mischief. To help ensure that
the notifications sent are related to valid problems, there are a couple of additional
settings that can be used to limit the URL paths reported as broken links. These are
IGNORABLE_404_STARTS and IGNORABLE_404_ENDS. A broken link e-mail is only sent
for request pages that do not start with IGNORABLE_404_STARTS and do not end with
IGNORABLE_404_ENDS.

The default value for IGNORABLE_404_STARTS is:

('/cgi-bin/', '/_vti_bin', '/_vti_inf')

The default value for IGNORABLE_404_ENDS is:

('mail.pl', 'mailform.pl', 'mail.cgi', 'mailform.cgi', 'favicon.ico',
'.php')

You can add to these as necessary to ensure that the e-mails generated for broken
links are reporting actual problems.

Chapter 6

[187]

Summary
We have now completed the overview of debugging support in Django. In this
chapter, many topics were introduced that will be covered in greater depth in
subsequent chapters. Specifically, we have:

Learned about the Django settings that control the collection and
presentation of debug information
Seen how when debug is turned on, special error pages are produced that
help with the task of debugging problems
Learned about the history of database queries that is maintained when
debugging is turned on, and saw how to access it
Discussed several features of the development server that are helpful
when debugging
Described how errors are handled in production, and the settings related to
ensuring that helpful debug information is routed to the correct people

The next chapter will proceed to delve into the details of Django debug pages.

•

•

•

•

•

When the Wheels Fall Off:
Understanding a Django

Debug Page
Just about the last thing you want when your code is running in production is for
it to encounter an error so severe that the only message that can be returned to the
client is "We're sorry, the server has encountered an error, please try again later."
During development, however, these server error situations are among the best of
the bad outcomes. They generally indicate an exception has been raised, and when
that happens there is a wealth of information available to figure out what has gone
wrong. When DEBUG is on, this information is returned, in the form of a Django
debug page, as the response to the request that caused the error. In this chapter, we
will learn how to understand and make use of the information provided by a Django
debug page.

Specifically, in this chapter we will:

Continue development of the example survey application, making some
typical mistakes along the way
See how these mistakes manifest themselves in the form of Django
debug pages
Learn what information is provided on these debug pages
For each mistake, dig into the information available on the resulting debug
page to see how it can be used to understand the error and determine how to
fix it

•

•

•

•

When the Wheels Fall Off: Understanding a Django Debug Page

[190]

Starting the Survey voting
implementation
In Chapter 4, Getting Fancier: Django Unit Test Extensions, we began developing code
to serve pages for the survey application. We implemented the home page view.
This view generates a page that lists both active and recently closed surveys and
provides links, as appropriate, to either take an active survey or display results
from a closed survey. Both of these kinds of links route to the same view function,
survey_detail, which further routes the request based on the state of the Survey
for which details have been requested:

def survey_detail(request, pk):
 survey = get_object_or_404(Survey, pk=pk)
 today = datetime.date.today()
 if survey.closes < today:
 return display_completed_survey(request, survey)
 elif survey.opens > today:
 raise Http404("%s does not open until %s; it is only %s" %
 (survey.title, survey.opens, today))
 else:
 return display_active_survey(request, survey)

We did not then, however, write the code to actually display an active Survey or
display results from a Survey. Rather we created placeholder views and templates
that simply state what the pages are eventually intended to show. For example, the
display_active_survey function was left simply as:

def display_active_survey(request, survey):
 return render_to_response('survey/active_survey.html',
 {'survey': survey})

The template it references, active_survey.html, contains:
{% extends "survey/base.html" %}
{% block content %}
<h1>Survey questions for {{ survey.title }}</h1>
{% endblock content %}

We will now pick up where we left off here and start replacing this placeholder view
and template with real code that handles displaying an active Survey.

What's involved in doing this? First, when a request comes in to display an active
survey, we want to return a page that displays the list of questions in the Survey,
each with their associated possible answers. Furthermore, we want to present these
in a manner so that the user can participate in the Survey, and submit their chosen
answers for the questions. Thus, we will need to present the question and answer
data in an HTML form, and also have code on the server that handles receiving,
validating, recording, and responding to posted Survey responses.

Chapter 7

[191]

All of that is a lot to tackle at once. What is the smallest piece we can implement first
that will allow us to start experimenting and verifying that we are moving in the
right direction? We'll start with the display of a form that allows users to see a single
question and choose from among its associated answers. First, though, let's get our
development database set up with some reasonable test data to work with.

Creating test data for voting
As it's been a while since we were working with these models, we may no longer
have any active surveys. Let's start with a clean slate by running manage.py
reset survey. Then, ensure the development server is running and use the admin
application to create a new Survey, Question, and Answers. This is the Survey that
will be used in the upcoming examples:

When the Wheels Fall Off: Understanding a Django Debug Page

[192]

The Answers defined for the one Question in this Survey are:

That's enough to get started with. We can come back later and add more data
as necessary. Now, we will move on to developing the form used to display a
Question and choose one of its answers.

Defining a question form for voting
The Django forms package provides a convenient framework for creating,
displaying, validating, and processing HTML form data. Within the forms package,
the ModelForm class is often useful for automatically building forms that represent
models. We might initially think that using a ModelForm would come in handy for
our task here, but a ModelForm would not provide what we need. Recall that the
survey application Question model contains these fields:

class Question(models.Model):
 question = models.CharField(max_length=200)
 survey = models.ForeignKey(Survey)

Chapter 7

[193]

Further, the Answer model is:

class Answer(models.Model):
 answer = models.CharField(max_length=200)
 question = models.ForeignKey(Question)
 votes = models.IntegerField(default=0)

A ModelForm contains HTML input fields for each field defined in the model. Thus,
a ModelForm for the Question model would consist of a text input allowing the user
to change the content of the question field, and a selection box allowing the user to
select which Survey instance this Question is associated with. That's not at all what
we want. Nor is a ModelForm built from the Answer model what we are looking for.

Rather, we want a form that will display the text of the question field (but not
allow the user to change that text), along with all of the Answer instances associated
with the Question instance, in a manner that allows the user to select exactly one
of the listed answers. That sounds like an HTML radio input group where the
individual radio button values are defined by the set of Answers associated with
the Question instance.

We can create a custom form to represent this, using the basic form field and widget
classes provided by Django. Let's create a new file, survey/forms.py, and put in it
an initial attempt at implementing the form that will be used to display a Question
and its associated answers:

from django import forms
class QuestionVoteForm(forms.Form):
 answer = forms.ModelChoiceField(widget=forms.RadioSelect)

 def __init__(self, question, *args, **kwargs):
 super(QuestionVoteForm, self).__init__(*args, **kwargs)
 self.fields['answer'].queryset = question.answer_set.all()

This form is named QuestionVoteForm and has only one field, answer, which is a
ModelChoiceField. This type of field allows selection from a set of choices defined
by a QuerySet, specified by its queryset attribute. Since the correct set of answers
for this field will depend on the specific Question instance for which the form is
built, we omit specifying a queryset on the field declaration and set it later, in the
__init__ routine. We do, however, specify in the field declaration that we want to
use a RadioSelect widget for display, instead of the default Select widget (which
presents the choices in an HTML select drop-down box).

When the Wheels Fall Off: Understanding a Django Debug Page

[194]

Following the declaration for the single answer field, the form defines an override for
the __init__ method. This __init__ requires that a question argument be passed
in when creating an instance of the form. After first calling the __init__ superclass
with whatever other arguments may have been provided, the passed question is
used to set the queryset attribute for the answer field to be the set of answers that
are associated with this Question instance.

In order to see if this form displays as intended, we need to create one of these forms
in the display_active_survey function and pass it to the template for display. For
now, we do not want to worry about displaying a list of questions; we'll just pick one
to pass to the template. So, we can change display_active_survey to be:

from survey.forms import QuestionVoteForm
def display_active_survey(request, survey):
 qvf = QuestionVoteForm(survey.question_set.all()[0])
 return render_to_response('survey/active_survey.html',
 {'survey': survey, 'qvf': qvf})

Now this function creates an instance of a QuestionVoteForm for the first question
in the set of questions for the specified survey, and passes that form along to the
template for rendering as the context variable qvf.

We also need to modify the template to display the passed form. To do this, change
the active_survey.html template to be:

{% extends "survey/base.html" %}
{% block content %}
<h1>{{ survey.title }}</h1>
<form method="post" action=".">
<div>
{{ qvf.as_p }}
<button type="submit">Submit</button>
</div>
</form>
{% endblock content %}

Here we have added the necessary HTML elements to surround the Django form
and make it a valid HTML form. We've used the form as_p method for display, just
because it is easy. Long-term, we will likely replace that with custom output, but
displaying the form in an HTML paragraph element will do for the present.

Now, we are hopefully at a point where we can test and see whether our
QuestionVoteForm displays what we want it to. We will try that next.

Chapter 7

[195]

Debug page #1: TypeError at /
In order to see how the QuestionVoteForm is looking so far, we can first go to the
survey home page and from there we should be able to click on the link for the one
active survey we have, and see how the question and answer choices are displayed.
How well does that work? Not so well. With the code changes we have made, we
can no longer even display the home page. Instead, attempting to access it produces
a debug page:

When the Wheels Fall Off: Understanding a Django Debug Page

[196]

Yikes, that looks bad. Before we dig into the details of what the page is showing, let's
try to understand what has happened here. We added a new form, and we changed
the view used to display active surveys so that it creates one of the newly-defined
forms. We also changed the template used by that view. But we did not change the
home page view at all. So how could it now be broken?

The answer is that the home page view itself is not broken, but something else is.
That broken something else is preventing the home page view from even being
called. Note that in order to call the home page view, the module that contains it
(survey.views) must be imported without error. Thus, survey.views itself and
anything it references when it is imported must be error-free. Even if nothing in the
home page view, or even all of survey.views, is broken, an error may be raised
on an attempt to call the home page view if an error has been introduced into any
module imported as a result of importing survey.views.

The point is that changes made in one place may cause initially surprising breakage
in what seems to be an entirely unrelated area. In fact, the other area is not entirely
unrelated, but is somehow (usually via a chain of imports) connected to the area
where the change was made. It is important in cases like this to focus attention
on the right place in order to find and fix the error.

In this case, for example, staring blankly at the home page view code, because that
is the code we were attempting to run, and trying to figure out what is wrong with
it, would be fruitless. That is not where the problem is. Rather, we need to put aside
any preconceived ideas we have about what code might have been running at the
time of the error, and use the debug information presented to figure out what code
was actually running. It can also be instructive to figure out why one bit of code ends
up running when we were trying to run something else entirely, although it is not
always necessary to do that in order to fix the problem at hand.

Elements of the debug page
Now let's turn our attention to the debug page we've encountered. There is quite
a lot of information on it, split into four parts (only the first and beginning of the
second are visible in the screenshot). In this section, we focus on what information,
in general, is included in each part of the debug page, noting the values we see on
this page simply as examples. Later in the chapter, we will see how the specific
information presented on this debug page can be used to fix the error we have made.

Chapter 7

[197]

Basic error information
The very top part of the debug page contains basic error information. Both the page
title and the first line of the page body state the type of exception encountered, and
the URL path contained in the request that triggered the exception. In our case, the
type of exception is a TypeError, and the URL path is /. So, we see TypeError at / as
the first line on the page.

The second line contains the exception value. This is usually a specific description of
what caused the error. In this case, we see __init__() takes at least 2 non-keyword
arguments (1 given).

Following the exception value is a list of nine items:

Request Method: The HTTP method specified in the request. In this case,
it is GET.
Request URL: The full URL of the request. In this case it is
http://localhost:8000/. The path part of this is a repeat of the path
reported on the first line.
Exception Type: This is a repeat of the exception type included on the
first line.
Exception Value: This is a repeat of the exception value included on the
second line.
Exception Location: The line of code where the exception occurred. In this
case, it is /dj_projects/marketr/survey/forms.py in QuestionVoteForm,
line 3.
Python Executable: The Python executable running at the time of the error.
In this case, it is /usr/bin/python. This information is usually only interesting
if you are doing something like testing with different Python versions.
Python Version: This identifies the version of Python that is running. Again,
this will often be uninteresting unless you are testing with different Python
versions. However, it can be a very useful bit of information when looking at
problems reported by other people, if there is any suspicion that the problem
may be dependent on the Python version.
Python Path: The full Python path in effect. This is most often useful when
the exception type relates to an error importing something. It can also come
in handy when multiple versions of an add-on package have been installed
in different places. This, plus an incorrect path specification, can cause an
unexpected version to be used, which might lead to an error. Having the full
Python path in use available helps in tracking down what is going on in this
type of situation.

•

•

•

•

•

•

•

•

When the Wheels Fall Off: Understanding a Django Debug Page

[198]

Server time: This shows the date, time, and time zone at the server
when the exception occurred. This can be useful for any views that
return time-dependent results.

The exception type, exception value, and exception location are the first things to
look at when presented with a debug page. These three items reveal what went
wrong, why, and where it happened. Often, that is all you will need to know in order
to fix the problem. Sometimes though, this basic information alone is not enough to
understand and fix the error. In such situations, it may be helpful to know how the
code got to where it ultimately ran into trouble. For that, the next part of the debug
page is useful.

Traceback
The traceback portion of the debug page shows how the thread of control got to
where it encountered the error. At the top, it starts with the outermost level of the
code that was running to process the request, showing where it called the next level
down, then where the next call was made, ultimately ending at the bottom with
the line of code that caused the exception. Thus, it is often the very bottom of the
traceback (not visible in the screenshot) that is most interesting, though at times
the path taken by the code to get there is the key to understanding and fixing
what went wrong.

For each call level shown in the traceback, there are three pieces of information
displayed: first the line of code is identified, then it is shown, and then there is a
line with a triangle and the text Local vars.

For example, the first bit of information for the top level in the traceback on
this debug page identifies the line of code as /usr/lib/python2.5/site-packages/
django/core/handlers/base.py in get_response. This shows the file containing the
code and the name of the function (or method or class) within that file where the
code was executing.

Next is a line with a darker background that shows: 83. request.path_info). That
looks a little odd. The number on the left is the line number within the file, and on
the right are the contents of that line. In this case the call statement spans multiple
lines, and we're seeing only the last line of the call, which is not very informative.
All we can tell is that request.path_info is being passed as the last argument to
something. It might be nice to see the other lines of code around this line, which
would make it clearer what was being called. In fact we can do that, just by
clicking on the line:

•

Chapter 7

[199]

Aha! Now, we can see that something named resolver.resolve was being called
and passed request.path_info. Clearly the code at this level is starting with the
requested path and trying to determine what code should be called to handle the
current request.

Clicking again anywhere within the displayed code will toggle the display of the
surrounding code context back to the hidden state, so that only one line is displayed.
Often, it's not necessary to see the surrounding code in the traceback, which is why
it is hidden initially. But when it is helpful to see more, it is convenient that more
context is just a click away.

When the Wheels Fall Off: Understanding a Django Debug Page

[200]

Local variables are contained in the third block of information displayed for each
level of the traceback. These too are initially hidden, since they can take up quite a lot
of space and clutter the page if they are displayed, making it hard to see at a glance
what the flow of control was. Clicking on any Local vars line expands the block to
show the list of local variables at that level and the value for each. For example:

We do not need to fully understand the Django code running here in order to guess
based on the names and values for the variables shown, that the code is trying to
look up the view that handles displaying the home page. Clicking again on the
Local vars line toggles the block back to being hidden.

Chapter 7

[201]

There is one final very useful feature of the traceback section of the debug page.
Right next to the Traceback heading is a link: Switch to copy-and-paste view.
Clicking that link changes the traceback display into one that can be usefully copied
and pasted elsewhere. For example on this page, clicking that link produces a text
box that contains:

Environment:

Request Method: GET

Request URL: http://localhost:8000/

Django Version: 1.1

Python Version: 2.5.2

Installed Applications:

['django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.sites',

 'django.contrib.admin',

 'survey',

 'django_coverage']

Installed Middleware:

('django.middleware.common.CommonMiddleware',

 'django.contrib.sessions.middleware.SessionMiddleware',

 'django.contrib.auth.middleware.AuthenticationMiddleware')

Traceback:

File "/usr/lib/python2.5/site-packages/django/core/handlers/base.py" in
get_response

 83. request.path_info)

File "/usr/lib/python2.5/site-packages/django/core/urlresolvers.py" in
resolve

 218. sub_match = pattern.resolve(new_path)

File "/usr/lib/python2.5/site-packages/django/core/urlresolvers.py" in
resolve

 218. sub_match = pattern.resolve(new_path)

File "/usr/lib/python2.5/site-packages/django/core/urlresolvers.py" in
resolve

When the Wheels Fall Off: Understanding a Django Debug Page

[202]

 125. return self.callback, args, kwargs

File "/usr/lib/python2.5/site-packages/django/core/urlresolvers.py" in
_get_callback

 131. self._callback = get_callable(self._callback_str)

File "/usr/lib/python2.5/site-packages/django/utils/functional.py" in
wrapper

 130. result = func(*args)

File "/usr/lib/python2.5/site-packages/django/core/urlresolvers.py" in
get_callable

 58. lookup_view = getattr(import_module(mod_name),
func_name)

File "/usr/lib/python2.5/site-packages/django/utils/importlib.py" in
import_module

 35. __import__(name)

File "/dj_projects/marketr/survey/views.py" in <module>

 24. from survey.forms import QuestionVoteForm

File "/dj_projects/marketr/survey/forms.py" in <module>

 2. class QuestionVoteForm(forms.Form):

File "/dj_projects/marketr/survey/forms.py" in QuestionVoteForm

 3. answer = forms.ModelChoiceField(widget=forms.RadioSelect)

Exception Type: TypeError at /

Exception Value: __init__() takes at least 2 non-keyword arguments (1
given)

As you can see, this block of information contains both the basic traceback plus some
other useful information pulled from other sections on the debug page. It is far less
complete than what is available on the full debug page, but it is often enough to get
help from others when solving a problem. If you find you cannot solve a problem
yourself and want to ask others for help, it is this information that you want to
provide to others, not a screenshot of the debug page.

In fact, the cut-and-paste view itself has a button at the bottom: Share this
traceback on a public Web site. If you press that button, the cut-and-paste version
of the traceback information will be posted to the dpaste.com site, and you will
be taken to that site where you can either record the assigned URL for reference or
delete the entry.

Chapter 7

[203]

Clearly this button will only work if your computer is connected to the Internet and
can reach dpaste.com. If you try it and don't have connectivity to that site, you'll
get an error reported by your browser that it is unable to connect to dpaste.com.
Pressing the back button will return you to the debug page. Chapter 10, When All
Else Fails: Getting Outside Help, will go into more detail on techniques for getting
additional help with intractable problems.

When clicked, the Switch to copy-and-paste view link is automatically replaced by
another link: Switch back to interactive view. Thus, it is easy to toggle between the
two forms of the traceback information.

Request information
Following the traceback information section on the debug page is detailed request
information. Often you will not need to look at this section at all, but when an error
is triggered by some odd characteristic of the request being processed, this section
can be invaluable. It is split into five subsections, each described below.

GET
This section contains a list of all the keys and their values in the request.GET
dictionary. Alternatively, if the request had no GET data, the string No GET
data is displayed.

POST
This section contains a list of all the keys and their values in the request.POST
dictionary. Alternatively, if the request had no POST data, the string No POST
data is displayed.

FILES
This section contains a list of all the keys and their values in the request.FILES
dictionary. Note that the displayed information here is just the file name uploaded,
not the actual file data (which could be quite large). Alternatively, if no file data was
uploaded with the request, the string No FILES data is displayed.

COOKIES
This section contains any cookies sent by the browser with the request. For example,
if the contrib.sessions application is listed in INSTALLED_APPS, you will see
the sessionid cookie that it uses listed here. Alternatively, if the browser did not
include any cookies with the request, the string No cookies data is displayed.

When the Wheels Fall Off: Understanding a Django Debug Page

[204]

META
This section contains a list of all the keys and their values in the request.META
dictionary. This dictionary contains all of the HTTP request headers, in addition to
other variables that have nothing to do with HTTP.

For example, if you look at the contents of this section as reported when you
are running the development server, you will see it lists all of the environment
variables that were exported in the environment of the command prompt where the
development server is running. That is because this dictionary is initially set to the
value of the Python os.environ dictionary, and then additional values are added.
Thus, there can be a lot of extraneous information listed here, but if you ever need
to check up on the value of an HTTP header, for example, you can find it in here.

Settings
The final part of the debug page is an exhaustive list of the settings in effect at the
time of the error. This is another section that you may rarely need to look at, but
when you do it, is very helpful to have it listed.

Two items from this section: the installed applications, and the installed
middleware, are included in the cut-and-paste version of the debug information
mentioned earlier, since they are often helpful to know when analyzing problems
posted by others.

If you glance through this section of the debug page, you may notice that the values
of some settings are not actually reported, but rather a string of asterisks is listed
instead. This is a way of hiding information that should not be casually exposed to
any users who may see a debug page. The hiding technique is applied to any setting
that has the string PASSWORD or SECRET in its name.

Note that this hiding technique is applied only to the values as they are reported
in the settings section of the debug page. It does not imply that it is safe to run
with DEBUG enabled for a production site. It is still possible to retrieve sensitive
information from a debug page. For example, this would be the case if the value of a
password setting is stored in a local variable, as will be typical when it is being used
to set up a connection to the database or mail server. If an exception is raised during
the connection attempt, the password value can be retrieved from the local variable
information in the traceback section of the page.

We've now finished with the general description of the information available on a
debug page. Next, we will see how to use the specific information on the page we
have encountered in order to track down and fix the error in the code.

Chapter 7

[205]

Understanding and fixing the TypeError
What went wrong that led to the debug page we've encountered here? In this case,
the basic error information is enough to identify and fix the problem. We have a
TypeError reported, with an exception value of __init__() takes at least 2 non-
keyword arguments (1 given). Furthermore, the location of the code that caused
the error is /dj_projects/marketr/survey/forms.py in QuestionVoteForm, line 3.
Looking at that line we see:

 answer = forms.ModelChoiceField(widget=forms.RadioSelect)

We have not specified all of the necessary arguments to create a ModelChoiceField.
If you are new to Python, the specifics of the error message may be a bit confusing,
as that line of code doesn't reference anything named __init__ nor does it appear
to pass any non-keyword arguments, yet the message says one was given. The
explanation for that is that __init__ is the method called by Python when an object
is created, and it, like all object instance methods, automatically receives a reference
to itself as its first positional argument.

Thus the one non-keyword argument that has been supplied is self. What is
missing? Checking the documentation, we find that queryset is a required argument
for a ModelChoiceField. We omitted it because the correct value is not known at the
time the field is declared, but only when an instance of the form containing the field
is created. We cannot just leave it out though, so we need to specify something as the
queryset value when the field is declared. What should it be? As it is going to be
reset as soon as any instance of the form is created, None will probably do. So let's try
changing that line to:

 answer = forms.ModelChoiceField(widget=forms.RadioSelect,
 queryset=None)

Does that work? Yes, if we click the browser reload page button we now get the
survey home page:

When the Wheels Fall Off: Understanding a Django Debug Page

[206]

Again, if you are new to Python the fact that the fix worked might seem a bit
confusing. The error message says that at least two non-keyword arguments are
needed, but we did not add a non-keyword argument with the fix. The message
makes it sounds like the only correct fix might be to supply the queryset value
as a non-keyword argument:

 answer = forms.ModelChoiceField(None, widget=forms.RadioSelect)

Clearly that's not the case, though, since the alternative fix shown above does
work. The explanation for this is that the message is not referring to how many
non-keyword arguments are specified by the caller, but rather how many are
specified in the declaration of the target method (that is the __init__ method
of ModelChoiceField in this case). The caller is free to pass arguments using
keyword syntax, even if they are not listed as keyword arguments in the method
declaration, and the Python interpreter will match them up correctly. Thus, the first
fix works fine.

Now that we have the home page working again, we can get back to seeing whether
we are able to create and display our new QuestionVoteForm. To do that, click on
the link to the Television Trends survey. The result will be:

While it is nice not to get a debug page, that's not quite what we are looking for.
There are a few problems here.

Chapter 7

[207]

First, the heading for the list of answers is Answer, yet we want that to
be the question text. The value displayed here is the label assigned to the
ModelChoiceField. The default label for any form field is the name of the field,
capitalized and with a colon following. We did not override that default when we
declared the ModelChoiceField answer, so we see Answer displayed. The fix is to
manually set the label attribute for the field. Like the queryset attribute, the correct
value for a particular form instance is only known when the form is created, so we
do this by adding this line to the form's __init__ method:

 self.fields['answer'].label = question.question

Second, the list of answers includes an empty first choice, shown as a list of
dashes. This default behavior is helpful for select drop-down boxes to ensure that
the user is forced to choose a valid value. However, it is unnecessary when using
a radio input group since with radio inputs, we do not need to have any of the
radio buttons initially selected when the form is displayed. Thus, we don't need
the empty choice. We can get rid of it by specifying empty_label=None in our
ModelChoiceField declaration.

Third, all the choices listed are displayed as Answer object instead of the actual
answer text. By default, the value displayed here is whatever is returned by the
model instance's __unicode__ method. Since we have not yet implemented a
__unicode__ method for the Answer model, we simply get Answer object
displayed. One fix is to implement a __unicode__ method in Answer that
returns the answer field value:

class Answer(models.Model):
 answer = models.CharField(max_length=200)
 question = models.ForeignKey(Question)
 votes = models.IntegerField(default=0)

 def __unicode__(self):
 return self.answer

Note that if we wanted the Answer model's __unicode__ method to return
something else, we could accommodate that also. The way to do that would be to
subclass ModelChoiceField and provide an override for the label_from_instance
method. This is the method called to display the value of the choice in the list, and
the default implementation uses the textual representation of the instance. So, we
could take that approach if we needed to display something other than the model's
default textual representation in the choice list, but for our purposes simply having
the Answer model's __unicode__ method return the answer text will work fine.

When the Wheels Fall Off: Understanding a Django Debug Page

[208]

Fourth, the answer choices are displayed as an unordered list, and that list is being
displayed with bullets, which is a bit ugly. There are various ways of fixing this—by
either adding a CSS style specification or by changing the way the choice list is
rendered. However, the bullets are not a functional problem and getting rid of them
doesn't further our task of learning about the Django debug page, so for now we will
let them be.

The fixes previously made to the QuestionVoteForm, result in code that now looks
like this:

class QuestionVoteForm(forms.Form):
 answer = forms.ModelChoiceField(widget=forms.RadioSelect,
 queryset=None, empty_label=None)

 def __init__(self, question, *args, **kwargs):
 super(QuestionVoteForm, self).__init__(*args, **kwargs)
 self.fields['answer'].queryset = question.answer_set.all()
 self.fields['answer'].label = question.question

With that form, and the implementation of a __unicode__ method in the Answer
model, reloading our survey detail page produces a result that looks better:

We've now got a form that displays reasonably well and are ready to move on to the
next step in implementing survey voting.

Chapter 7

[209]

Handling multiple Survey questions
We have the display of a single question form working, what's left to do? First, we
need to handle the display of however many questions that are associated with
a survey, instead of just a single question. Second, we need to handle receiving,
validating, and processing the results. We'll focus on the first task in this section.

Creating the data for multiple questions
Before writing the code to handle multiple questions, let's add another question
to our test survey so that we'll be able to see the new code work. The upcoming
examples will display this additional question:

When the Wheels Fall Off: Understanding a Django Debug Page

[210]

Coding support for multiple questions
Next, change the view to create a list of QuestionVoteForms and pass this list in the
template context:

def display_active_survey(request, survey):
 qforms = []
 for i, q in enumerate(survey.question_set.all()):
 if q.answer_set.count() > 1:
 qforms.append(QuestionVoteForm(q, prefix=i))
 return render_to_response('survey/active_survey.html',
 {'survey': survey, 'qforms': qforms})

Here we start with an empty list named qforms. Then, we loop through all questions
in the set associated with the passed survey and create a form for each question that
has more than one answer associated with it. (A Question that has fewer than two
answers is probably a set-up error. Since it's best to avoid presenting a general user
with a question for which they cannot actually choose an answer, we opt here to just
leave such questions out of the display for an active Survey.)

Notice that we added passing a prefix argument on the form creation, and set
the value to the position of the current question in the full set of questions for the
survey. This gives each form instance a unique prefix value. The prefix value, if
present in a form, is used when id and name attributes are generated for the HTML
form elements. Specifying a unique prefix is necessary to ensure that the generated
HTML is valid when there are multiple forms of the same type on a page, as there
will be for the case we are implementing here.

Finally, each QuestionVoteForm created is appended to the qforms list, and at
the end of the function the qforms list is passed in the context to be rendered in
the template.

The last step, then, is to change the template to support displaying multiple
questions instead of just one. To do this, we might change the active_survey.html
template like so:

{% extends "survey/base.html" %}
{% block content %}
<h1>{{ survey.title }}</h1>
<form method="post" action=".">
<div>
{% for qform in qforms %}
 {{ qform.as_p }}
<button type="submit">Submit</button>
</div>
</form>
{% endblock content %}

Chapter 7

[211]

The only change from the previous version is to replace {{ qvf.as_p }}, which
displays a single form, with a {% for %} block that loops through the list of forms in
the qforms context variable. Each form is displayed in turn, again still using the as_p
convenience method.

Debug page #2: TemplateSyntaxError at /1/
How well does that work? Not so well. If we attempt to reload the page displaying
the questions for this survey, we will see:

When the Wheels Fall Off: Understanding a Django Debug Page

[212]

We've made a mistake, and triggered a slightly different debug page. Instead of the
basic exception information being followed immediately by the traceback section,
we see a Template error section. This section is included for exceptions of type
TemplateSyntaxError, when TEMPLATE_DEBUG is True. It displays some context
from the template that caused the exception, and highlights the line identified as
causing the error. Usually for a TemplateSyntaxError, the problem is found in the
template itself, not the code that is attempting to render the template (which will
be what is shown in the traceback section), so it is helpful for the debug page to
prominently display the template contents.

Understanding and fixing the
TemplateSyntaxError
In this case, the line identified as causing the error may be somewhat puzzling. The
{% endblock content %} line hasn't changed since the previous, working, version
of the template; it is certainly not an invalid block tag. Why is the template engine
now reporting that it is invalid? The answer is that template syntax errors, like
many syntax errors reported in programming languages, are sometimes misleading
when they attempt to point out where the error is. The point identified as in error is
actually where an error was recognized, when in fact the error may have occurred
somewhat earlier.

This misleading identification often happens when something required is left out.
The parser continues on processing the input, but eventually reaches something
not allowed given the current state. At that point, the place where the missing bit
should have been may be several lines away. That is what has happened here. The
{% endblock content %} is reported as being invalid because it is not allowed, given
that the template has a still-open {% for %} tag.

In making the template changes for supporting multiple questions, we added a
{% for %} tag, but neglected to close it. The Django template language is not Python,
it does not consider indentation significant. Thus, it does not consider the {% for
%} block terminated by a return to the previous indentation level. Rather, we must
explicitly close the new {% for %} block with an {% endfor %}:

{% extends "survey/base.html" %}
{% block content %}
<h1>{{ survey.title }}</h1>
<form method="post" action=".">
<div>
{% for qform in qforms %}
 {{ qform.as_p }}
{% endfor %}
<button type="submit">Submit</button>

Chapter 7

[213]

</div>
</form>
{% endblock content %}

Once we make that change, we can reload the page and see that we do now have
multiple questions displayed on the page:

With the display of multiple questions working, we can move on to adding the code
to process submitted responses.

Recording Survey responses
We've already got test data we can use to exercise processing survey responses,
so we do not need to add any data to our development database for the next step.
Furthermore, nothing needs to be changed in the template to support submitting
responses. It already includes a submit button in the HTML form, and specifies that
the form data should be submitted as an HTTP POST when the form is submitted.
Right now the Submit button will work, in that it can be pressed and no error will
occur, but the only result will be that the page is re-displayed. This is because the
view code does not attempt to distinguish between a GET and a POST, and just treats
all requests as though they were GET requests. Thus, it is the view code we need to
change to add support for handling POST requests as well as GET requests.

When the Wheels Fall Off: Understanding a Django Debug Page

[214]

Coding support for recording Survey
responses
The view code, then, needs to change to check what method is specified in the
request. The handling of a GET request should stay the same. If the request is a
POST, however, then the QuestionVoteForms should be constructed using the
submitted POST data. These can then be validated, and if all of the responses are
valid (meaning, in this case, that the user selected a choice for each question), then
the votes can be recorded and an appropriate response sent to the user. If there
are any validation errors, the constructed forms should be re-displayed with
error messages. An initial implementation of this is:

def display_active_survey(request, survey):
 if request.method == 'POST':
 data = request.POST
 else:
 data = None

 qforms = []
 for i, q in enumerate(survey.question_set.all()):
 if q.answer_set.count() > 1:
 qforms.append(QuestionVoteForm(q, prefix=i, data=data))

 if request.method == 'POST':
 chosen_answers = []
 for qf in qforms:
 if not qf.is_valid():
 break;
 chosen_answers.append(qf.cleaned_data['answer'])
 else:
 from django.http import HttpResponse
 response = ""
 for answer in chosen_answers:
 answer.votes += 1
 response += "Votes for %s is now %d
" % (
 answer.answer, answer.votes)
 answer.save()
 return HttpResponse(response)

 return render_to_response('survey/active_survey.html',
 {'survey': survey, 'qforms': qforms})

Chapter 7

[215]

Here we start by setting the local variable data to either the request.POST
dictionary, if the request method is POST, or None. We will use this during form
construction, and it must be None (not an empty dictionary) in order to create
unbound forms, which are what we need for the initial display when a user gets
the page.

We then build the list of qforms as before. The only difference here is that we pass
in the data argument so that the created forms will be bound to the posted data in
the case where the request is a POST. Binding the data to the forms allows us to later
check if the submitted data is valid.

We then have a new block of code to handle the case where the request is a
POST. We create an empty list to hold the chosen answers and then loop through the
forms checking if each is valid. If any are not, we immediately break out of the for
loop. This will have the effect of skipping the else clause associated with the loop
(since that is executed only if the list of items in the for loop is exhausted). Thus, as
soon as an invalid form is encountered, this routine will skip down to the return
render_to_response line, which will result in the page being re-displayed with
error annotations on the invalid forms.

But wait—we break out of the for loop as soon as the first invalid form is found. If
there is more than one invalid form, don't we want to display errors on all forms,
not just the first? The answer is yes, we do, but we do not need to explicitly call
is_valid in the view in order to accomplish that. When the form is rendered in
the template, if it is bound and has not yet been validated, is_valid will be called
before its values are rendered. Thus, errors in any of the forms will be displayed in
the template, regardless of whether is_valid is explicitly called by the view code.

If all the forms are valid, the for loop will exhaust its list, and the else clause on
the for loop will run. Here we want to record the votes and return an appropriate
response to the user. We've done the first, by incrementing the vote count for each
chosen answer instance. For the second, though, we've implemented a development
version that builds a response indicating what the current vote values are for all of
the questions. This is not what we want general users to see, but we can use it as a
quick verification that the answer recording code is doing what we expect.

When the Wheels Fall Off: Understanding a Django Debug Page

[216]

If we now choose Drama and Hardly any: I already watch too much TV! as
answers and submit the form, we see:

That looks good: there's no debug page and the vote values are correct for what was
chosen, so the vote recording code is working. We can now replace the development
version of the generated response with one appropriate for general users.

Best practice in responding to a successful POST request is to redirect to some
other page, so that a user pressing the browser's reload button does not result in the
posted data being re-submitted and re-processed. To do this, we can change the else
block to be:

 else:
 from django.http import HttpResponseRedirect
 from django.core.urlresolvers import reverse
 for answer in chosen_answers:
 answer.votes += 1
 answer.save()
 return HttpResponseRedirect(
 reverse('survey_thanks', args=(survey.pk,)))

Chapter 7

[217]

Note the imports have been included here only to show what needs to be imported;
ordinarily these would be placed at the top of the file rather than nested deep
within a function like this. Instead of building a response noting all of the new
answer vote values, this code now sends an HTTP redirect. As always, to avoid
hard-coding URL configuration anywhere outside of the actual urls.py files, we
have used reverse here to generate the URL path corresponding to a new named
URL pattern, survey_thanks. We pass along the survey's primary key value as an
argument so that the page generated in response can be tailored to reflect the survey
that was submitted.

Before that reverse call can work, we need to add a new pattern named
survey_thanks to our survey/urls.py file. We might add it like so, so that
the full urlpatterns in survey/urls.py is:

urlpatterns = patterns('survey.views',
 url(r'^$', 'home', name='survey_home'),
 url(r'^(?P<pk>\d+)/$', 'survey_detail', name='survey_detail'),
 url(r'^thanks/(?P<pk>\d+/)$', 'survey_thanks',
 name='survey_thanks'),
)

The added survey_thanks pattern is much like the survey_detail pattern, except
the associated URL path has the string thanks before the segment containing the
survey's primary key value.

In addition, we will need to add a survey_thanks view function to
survey/views.py:

def survey_thanks(request, pk):
 survey = get_object_or_404(Survey, pk=pk)
 return render_to_response('survey/thanks.html',
 {'survey': survey})

This view looks up the specified survey using get_object_or_404. If a matching
survey does not exist, then an Http404 error will be raised and a page not found
response will be returned. If the survey is found, then a new template, survey/
thanks.html will be used to render a response. The survey is passed in the context
to the template allowing a tailored response reflecting the survey that was submitted.

When the Wheels Fall Off: Understanding a Django Debug Page

[218]

Debug page #3: NoReverseMatch at /1/
Before writing the new template, let's check to see if redirect works, as all it needs is
the changes to survey/urls.py and the view implementation. What happens if we
submit a response with the new redirect code in views.py? Not what we might
have hoped:

Chapter 7

[219]

NoReverseMatch exceptions can be among the most frustrating ones to debug.
Unlike when forward matching fails, the debug page does not provide a list of
patterns tried and the order in which matching was attempted. This may sometimes
lead us to think the proper pattern wasn't even considered. Rest assured, it was.
The problem is not that the appropriate pattern wasn't considered, it was that it
didn't match.

Understanding and fixing the
NoReverseMatch exception
How do you figure out why a pattern expected to match is not matching? Guessing
what might be wrong and making changes based on those guesses has a chance
of working, but is also likely to make things worse. A better approach is to be
methodical and check things one by one, which usually leads to discovery of the
source of the problem. The following is a sequence of things to check. We'll go
through this sequence and consider how it applies to our pattern where reverse
is unexpectedly failing:

 url(r'^thanks/(?P<pk>\d+/)$', 'survey_thanks',
 name='survey_thanks'),

First, verify that the name identified in the exception matches the name in the URL
pattern specification. In this case, the exception cites survey_thanks, and the URL
pattern we expect to match has name='survey_thanks' specified, so those match.

Note that if the URL pattern omits the name argument, and the patterns call it is an
argument to specifies a view prefix, then the caller of reverse must also include
the view prefix when specifying the name to reverse. In this case, for example, if we
did not specify a name for the survey_thanks view, then a successful reverse call
would need to specify survey.views.survey_thanks as the name to reverse, since
survey.views is specified as the patterns prefix in survey/urls.py.

Second, make sure that the number of arguments listed in the exception message
matches the number of regular expression groups in the URL pattern. In this case,
there is one argument listed by the exception, 1L, and one regular expression group,
(?P<pk>\d+/), so the numbers match.

Third, if the exception shows keyword arguments were specified, verify that the
regular expression groups are named. Further, verify that the names of the groups
match the names of the keyword arguments. In this case, keyword arguments were
not specified on the reverse call, so there is nothing to check for this step.

When the Wheels Fall Off: Understanding a Django Debug Page

[220]

Note that it is not necessary to ensure non-named groups are used in the URL
pattern when positional arguments are shown in the exception, because it is
possible for positional arguments to be matched to named groups in a URL
pattern. Thus, there is no problem when, as in our case, the URL pattern uses
named groups while the reverse caller specifies positional arguments.

Fourth, for each argument, verify that the string representation of the actual
argument value listed in the exception matches the associated regular expression
group from the URL pattern. Note that the values shown in the exception are the
results of calling repr on the arguments, thus they may not exactly match the
string representation of the argument. Here, for example, the exception reports the
argument value as 1L, signifying a Python long integer value (the value is a long
integer because that is what MySQL, the database in use for this example, always
returns for integer values). The L suffix is used to make the type in the repr clear,
but it does not appear in the string representation of the value, which is simply 1.

Thus for our example, the string representation of the argument shown in the
exception message is 1. Does that match the associated regular expression group in
the URL pattern? Recall that the group is (?P<pk>\d+/). The enclosing parentheses
identify the fact that it is a group. The ?P<pk> assigns the group the name pk. The
remainder, \d+/, is then the regular expression we are trying to match with 1. These
don't match. The regular expression is specifying one of more digits followed by a
slash, yet the actual value we have is a single numeric digit, without a trailing slash.
We made a typo here and included the slash inside the group instead of following it.
The correct specification for our new survey_thanks view is:

 url(r'^thanks/(?P<pk>\d+)/$', 'survey_thanks',
 name='survey_thanks'),

It is very easy for typos like this to creep into URL pattern specifications, as the
pattern specifications tend to be long and full of punctuation characters with special
meaning. Breaking them down into component pieces and verifying that each piece
is correct will save you a great deal of hassle. If, however, that does not work, and
you get to a point where all of the bits look right but still you get a NoReverseMatch
exception, it might be time to tackle the problem from the other direction.

Start with the simplest part of the overall pattern, and verify that reverse for that
works. You might, for example, get rid of all arguments from the reverse call and all
groups from the URL pattern specification, and verify that you can reverse the URL
by name. Then add back one argument and its associated pattern group in the URL
specification, and verify if that works. Continue until you hit an error. Then change
back to trying the simplest version in addition to just the argument that caused the
error. If that works, then there is some problem with combining that argument with
the others in the overall pattern, which is a clue, so you can start investigating what
might cause that.

Chapter 7

[221]

This approach is a general debugging technique that can be applied whenever
you encounter a mysterious problem in a complicated set of code. First, back off to
something very simple that works. Then add things back, one by one, until things
fail again. You've now identified one piece that is involved in the failure, and you
can start investigating whether it is that piece alone that is a problem or if it works
in isolation but only causes a problem when combined with other pieces.

Debug page #4: TemplateDoesNotExist at
/thanks/1/
For now, let's return to our example. Now that we have fixed the reverse problem,
does the redirect to our survey thanks page work? Not quite. If we again attempt to
submit our survey results, we see:

When the Wheels Fall Off: Understanding a Django Debug Page

[222]

This one is self-explanatory; in tracking down the NoReverseMatch error we forgot
we still had not gotten around to writing the template for the new view. The fix will
be easy, but there is something to note about this debug page first: the section titled
Template-loader postmortem. This is another optional section, like the Template
error section included with TemplateSyntaxError debug pages, that provides
additional information helpful for determining the exact cause of the error.

The Template-loader postmortem section, specifically, lists all of the template
loaders that were tried in attempting to locate the template. For each loader,
it then lists the full file names searched for by that loader, and the outcome.

On this page we can see that the filesystem template loader was called first. But
no files are listed as tried by that loader. The filesystem loader is included in our
settings.py file, since it is the first listed in TEMPLATE_LOADERS in the settings.
py file generated by django-admin.py startproject, and we have not changed
that setting. It looks in all the directories specified in the settings TEMPLATE_DIRS
value. However, TEMPLATE_DIRS is empty by default, and we have not changed that
setting either, so the filesystem loader had no place to look in order to try and find
survey/thanks.html.

The second loader tried was the app_directories loader. This is the one we have
been relying on so far to load the templates for our survey application. It loads
templates from a templates directory under each application directory. The debug
page shows that it attempted to find the survey/thanks.html file first under the
admin application's templates directory and then under the survey application's
templates directory. The result of searching for the specified file is placed in
parentheses after the file name; in both cases here we see File does not exist,
which is no surprise.

Sometimes this message will state File exists, which can be a little confusing. If the
file exists, and the loader could see it exists, why didn't the loader load it? This often
occurs when running under a web server such as Apache, and the problem is that
the web server process does not have the necessary permissions to read the file. The
fix in that case is to make the file readable by the web server process. Dealing with
production-time issues such as this will be discussed in more detail in Chapter 11,
When it's Time to Go Live: Moving to Production.

Chapter 7

[223]

Understanding and fixing
TemplateDoesNotExist
The fix in our case is simple, and we do not really even need to look closely at
the error message to know what needs to be done, but note that this section gives
everything needed in order to track down TemplateDoesNotExist errors. You
will know what loader you are relying on to load the template. If that loader is not
shown in the Template-loader postmortem, then the problem is likely an incorrect
TEMPLATE_LOADERS setting in settings.py.

If the loader is listed, but does not list attempting to load the expected file, then the
next step is to figure out why. This step is loader-dependent, since each loader has
its own rules for where to look for template files. The app_directories loader,
for example, looks under a templates directory for each application listed in
INSTALLED_APPS. Thus ensuring the application is in INSTALLED_APPS and has a
templates directory would be two things to check when it is the app_directories
loader that isn't searching for the file as expected.

If the loader is listed and the expected file is listed as attempted, then the problem is
hinted at by whatever is listed as the status for the file by the loader. File does not
exist is a clear status with an easy fix. If File does not exist appears unexpectedly,
double and triple check the filename. Cutting-and-pasting from the debug page into
a command prompt and attempting to display the file may be useful here, as it may
help clarify what is different about the name of the file the loader is trying to load
compared to the name of the file that actually exists. Other status messages, such as
File exists, may not be as direct but still hint at the nature of the problem and point
towards a direction to look in order to fix the problem.

For our example case, the fix is simple: create the survey/thanks.html template
file we forgot to create earlier. This template returns a basic page with a message
thanking the user for participating in the survey:

{% extends "survey/base.html" %}
{% block content %}
<h1>Thanks</h1>
<p>Thanks for completing our {{ survey.title }} survey. Come back
soon and check out the full results!</p>
{% endblock content %}

When the Wheels Fall Off: Understanding a Django Debug Page

[224]

With this template in place under the survey/templates directory, we are now able
to submit a survey without error. Instead we see:

Good! Are we now done with displaying a survey and processing results? Not
quite. We have not yet tested to see what happens if an invalid survey response is
submitted. We will try that next.

Handling invalid Survey submissions
We've already coded the view that handles survey submission to re-display the page
with errors instead of processing the results, if any errors are found in the submitted
forms. On the display side, since we are using the as_p convenience method for
displaying the form, it will take care of displaying any errors in the forms. So, we
should have no code or template changes to make in order to see what happens
when an invalid survey is submitted.

What would make a survey submission invalid? The only likely error case for our
QuestionVoteForm is if no answer is chosen. What happens, then, if we attempt to
submit a survey with missing answers? If we try it, we see that the result is not ideal:

Chapter 7

[225]

There are at least two problems here. First, the placement of the error messages,
above the survey questions, is confusing. It is hard to know what the first error
message on the page is referring to, and the second error looks like it is associated
with the first question. It would be better to move the error messages closer to where
the selection is actually made, such as between the question and answer choice list.

When the Wheels Fall Off: Understanding a Django Debug Page

[226]

Second, the text of the error message is not very good for this particular form.
Technically the list of answer choices is a single form field, but to a general user the
word field in reference to a list of choices sounds odd. We will correct both of these
errors next.

Coding custom error message and placement
Changing the error message is easy, since Django provides a hook for this. To
override the value of the error message issued when a required field is not supplied,
we can specify the message we would like as the value for the required key in an
error_messages dictionary we pass as an argument in the field declaration. Thus,
this new definition for the answer field in QuestionVoteForm will change the error
message to Please select an answer below:

class QuestionVoteForm(forms.Form):
 answer = forms.ModelChoiceField(widget=forms.RadioSelect,
 queryset=None,
 empty_label=None,
 error_messages={'required':
 'Please select an answer below:'})

Changing the placement of the error message requires changing the template.
Instead of using the as_p convenience method, we will try displaying the label for
the answer field, errors for the answer field, and then the answer field itself, which
displays the choices. The {% for %} block that displays the survey forms in the
survey/active_survey.html template then becomes:

{% for qform in qforms %}
 {{ qform.answer.label }}
 {{ qform.answer.errors }}
 {{ qform.answer }}
{% endfor %}

Chapter 7

[227]

How does that work? Better than before. If we try submitting invalid forms now,
we see:

While the error message itself is improved, and the placement is better, the exact
form of the display is not ideal. By default, the errors are shown as an HTML
unordered list. We could use CSS styling to remove the bullet that is appearing
(as we will eventually do for the list of choices), but Django also provides an easy
way to implement custom error display, so we could try that instead.

When the Wheels Fall Off: Understanding a Django Debug Page

[228]

To override the error message display, we can specify an alternate error_class
attribute for QuestionVoteForm, and in that class, implement a __unicode__
method that returns the error messages with our desired formatting. An initial
implementation of this change to QuestionVoteForm and the new class might be:

class QuestionVoteForm(forms.Form):
 answer = forms.ModelChoiceField(widget=forms.RadioSelect,
 queryset=None,
 empty_label=None,
 error_messages={'required':
 'Please select an answer below:'})

 def __init__(self, question, *args, **kwargs):
 super(QuestionVoteForm, self).__init__(*args, **kwargs)
 self.fields['answer'].queryset = question.answer_set.all()
 self.fields['answer'].label = question.question
 self.error_class = PlainErrorList

from django.forms.util import ErrorList
class PlainErrorList(ErrorList):
 def __unicode__(self):
 return u'%s' % ' '.join([e for e in sefl])

The only change to QuestionVoteForm is the addition of setting its error_class
attribute to PlainErrorList in its __init__ method. The PlainErrorList class
is based on the django.form.util.ErrorList class and simply overrides
the __unicode__ method to return the errors as a string with no special HTML
formatting. The implementation here makes use of the fact that the base ErrorList
class inherits from list, so iterating over the instance itself returns the individual
errors in turn. These are then joined together with spaces in between, and the whole
string is returned.

Note that we're only expecting there to ever be one error here, but just in case we are
wrong in that assumption, it is safest to code for multiple errors existing. Although
our assumption may never be wrong in this case, it's possible we might decide to
re-use this custom error class in other situations where the single possible error
expectation doesn't hold. If we code to our assumption and simply return the first
error in the list, this may result in confusing error displays in some situations where
there are multiple errors, since we will have prevented reporting all but the first
error. If and when we get to that point, we may also find that formatting a list of
errors with just spaces intervening is not a good presentation, but we can deal with
that later. First, we'd like to simply verify that our customization of the error list
display is used.

Chapter 7

[229]

Debug page #5: Another TemplateSyntaxError
What happens if we try submitting an invalid survey now that we have our custom
error class specified? An attempt to submit an invalid survey now returns:

When the Wheels Fall Off: Understanding a Django Debug Page

[230]

Oops, we have made another error. The exception value displayed on the second line
makes it pretty clear that we've mistyped self as sefl, and since the code changes
we just made only affected five lines in total, we don't have far to look in order to
find the typo. But let's take a closer look at this page, since it looks a little different
than the other TemplateSyntaxError we encountered.

What is different about this page compared to the other TemplateSyntaxError?
Actually, there is nothing structurally different; it contains all the same sections with
the same contents. The notable difference is that the exception value is not a single
line, but is rather a multi-line message containing an Original Traceback. What is
that? If we take a look at the traceback section of the debug page, we see it is rather
long, repetitive, and uninformative. The end portion, which is usually the most
interesting part of a traceback, is:

Chapter 7

[231]

Every line of code cited in that traceback is Django code, not our application code.
Yet, we can be pretty sure the problem here was not caused by the Django template
processing code, but rather by the change we just made to QuestionVoteForm.
What's going on?

What has happened here is that an exception was raised during the rendering
of a template. Exceptions during rendering are caught and turned into
TemplateSyntaxErrors. The bulk of the stack trace for the exception will likely
not be interesting or helpful in terms of solving the problem. What will be more
informative is the stack trace from the original exception, before it was caught
and turned into a TemplateSyntaxError. This stack trace is made available as the
Original Traceback portion of the exception value for the TemplateSyntaxError
which is ultimately raised.

A nice aspect of this behavior is that the significant part of what is likely a very long
traceback is highlighted at the top of the debug page. An unfortunate aspect is that
the significant part of the traceback is no longer available in the traceback section
itself, thus the special features of the traceback section of the debug page are not
available for it. It is not possible to expand the context around the lines identified
in the original traceback, nor to see the local variables at each level of the original
traceback. These limitations will not cause any difficulty in solving this particular
problem, but can be annoying for more obscure errors.

Note that Python 2.6 introduced a change to the base Exception
class that causes the Original Traceback information mentioned
here to be omitted in the display of the TemplateSyntaxError
exception value. Thus, if you are using Python 2.6 and Django 1.1.1,
you will not see the Original Traceback included on the debug
page. This will likely be corrected in newer versions of Django,
since losing the information in the Original Traceback makes it
quite hard to debug the error. The fix for this problem may also
address some of the annoyances previously noted, related to
TemplateSyntaxErrors wrapping other exceptions.

When the Wheels Fall Off: Understanding a Django Debug Page

[232]

Fixing the second TemplateSyntaxError
Fixing this second TemplateSyntaxError is straightforward: simply correct the sefl
typo on the line noted in the original traceback. When we do that and again try to
submit an invalid survey, we see in response:

That is not a debug page, so that is good. Furthermore, the error messages are no
longer appearing as HTML unordered lists, which was our goal for this change, so
that is good. Their exact placement may not quite be exactly what we want, and we
may want to add some CSS styling so that they stand out more prominently, but for
now they will do.

Chapter 7

[233]

Summary
We have now completed the implementation of survey voting, and the in-depth
coverage of Django debug pages. In this chapter, we:

Set out to replace the placeholder view and template for display of an active
Survey with a real implementation
Made some typical mistakes during implementation, which led to us being
presented with five different Django debug pages
On encountering the first debug page, learned about all of the different
sections of debug pages and what information is included in each
For each debug page encountered, used the information presented to locate
and correct the coding error

In the next chapter, we will proceed to learn techniques for gathering debug
information even when the code is not causing a debug page to be displayed.

•

•

•

•

When Problems Hide: Getting
More Information

Sometimes code does not trigger a debug page to be displayed, but it also does
not produce the correct results. In fact even when code does seem to be working
correctly, at least in terms of the visible results shown in the browser, behind the
scenes it may be doing unexpected things that could lead to trouble down the road.
For example, if a page requires many (or very time-consuming) SQL queries, then
it may seem to be working fine during development but then quickly cause server
overload in a production environment.

It's good practice, then, to get into the habit of checking up on how code is behaving,
even when external results are not showing any problems. First, this practice can
reveal hidden problems that are best known about sooner rather than later. Second,
knowing what the normal code path looks like is very valuable when tracking down
where things have gone wrong when a problem does crop up.

This chapter focuses on ways to get more information about what Django application
code is doing. Specifically, in this chapter we will:

Develop template code that can be used to include information about all
of the SQL queries needed to render a page in the page itself
Learn how to use the Django Debug Toolbar for gathering similar
information, and more
Discuss techniques for adding logging to Django application code

•

•

•

When Problems Hide: Getting More Information

[236]

Tracking SQL queries for a request
For a typical Django application, database interactions are of key importance.
Ensuring that the database queries being made are correct helps to ensure that the
application results are correct. Further, ensuring that the database queries produced
for the application are efficient helps to make sure that the application will be able to
support the desired number of concurrent users.

Django provides support in this area by making the database query history available
for examination. Chapter 6, Django Debugging Overview, introduced this history and
showed how it could be accessed from a Python shell session. This type of access is
useful to see the SQL that is issued as a result of calling a particular model method.
However, it is not helpful in learning about the bigger picture of what SQL queries
are made during the processing of a particular request.

This section will show how to include information about the SQL queries needed for
production of a page in the page itself. We will alter our existing survey application
templates to include query information, and examine the query history for some of
the existing survey application views. Though we are not aware of any problems
with the existing views, we may learn something in the process of verifying that
they issue the queries we expect.

Settings for accessing query history in
templates
Before the query history can be accessed from a template, we need to ensure some
required settings are configured properly. Three settings are needed in order for
the SQL query information to be available in a template. First, the debug context
processor, django.core.context_processors.debug, must be included in the
TEMPLATE_CONTEXT_PROCESSORS setting. This context processor is included in
the default value for TEMPLATE_CONTEXT_PROCESSORS. We have not changed that
setting; therefore we do not need to do anything to enable this context processor in
our project.

Second, the IP address of the machine sending the request must be listed in the
INTERNAL_IPS setting. This is not a setting we have used before, and it is empty by
default, so we will need to add it to the settings file. When testing using the same
machine as where the development server runs, setting INTERNAL_IPS to include
the loopback address is sufficient:

Addresses for internal machines that can see potentially sensitive
information such as the query history for a request.
INTERNAL_IPS = ('127.0.0.1',)

Chapter 8

[237]

If you also test from other machines, you will need to include their IP addresses in
this setting as well.

Third and finally, DEBUG must be True in order for the SQL query history to be
available in templates.

When those three settings conditions are met, the SQL query history may be
available in templates via a template variable named sql_queries. This variable
contains a list of dictionaries. Each dictionary contains two keys: sql and time. The
value for sql is the SQL query itself, and the value for time is the number of seconds
the query took to execute.

Note that the sql_queries context variable is set by the debug context
processor. Context processors are only called during template rendering when a
RequestContext is used to render the template. Up until now, we have not used
RequestContexts in our survey application views, since they were not necessary
for the code so far. But in order to access the query history from the template, we
will need to start using RequestContexts. Therefore, in addition to modifying the
templates, we will need to change the view code slightly in order to include query
history in the generated pages for the survey application.

SQL queries for the home page
Let's start by seeing what queries are issued in order to generate the survey
application home page. Recall that the home page view code is:

def home(request):
 today = datetime.date.today()
 active = Survey.objects.active()
 completed = Survey.objects.completed().filter(closes__gte=today-
 datetime.timedelta(14))
 upcoming = Survey.objects.upcoming().filter(
 opens__lte=today+datetime.timedelta(7))
 return render_to_response('survey/home.html',
 {'active_surveys': active,
 'completed_surveys': completed,
 'upcoming_surveys': upcoming,
 })

When Problems Hide: Getting More Information

[238]

There are three QuerySets rendered in the template, so we would expect to see that
this view generates three SQL queries. In order to check that, we must first change
the view to use a RequestContext:

from django.template import RequestContext
def home(request):
 today = datetime.date.today()
 active = Survey.objects.active()
 completed = Survey.objects.completed().filter(closes__gte=today-
 datetime.timedelta(14))
 upcoming = Survey.objects.upcoming().filter(
 opens__lte=today+datetime.timedelta(7))
 return render_to_response('survey/home.html',
 {'active_surveys': active,
 'completed_surveys': completed,
 'upcoming_surveys': upcoming,},
 RequestContext(request))

The only change here is to add the RequestContext(request) as a third parameter
to render_to_response, after adding an import for it earlier in the file. When we
make this change, we may as well also change the render_to_response lines for the
other views to use RequestContexts as well. That way when we get to the point of
examining the SQL queries for each, we will not get tripped up by having forgotten
to make this small change.

Second, we'll need to display the information from sql_queries somewhere in our
survey/home.html template. But where? We don't necessarily want this information
displayed in the browser along with the genuine application data, since that could
get confusing. One way to include it in the response but not have it be automatically
visible on the browser page is to put it in an HTML comment. Then the browser will
not display it on the page, but it can be seen by viewing the HTML source for the
displayed page.

As a first attempt at implementing this, we might change the top of
survey/home.html to look like this:

{% extends "survey/base.html" %}
{% block content %}
<!--
{{ sql_queries|length }} queries
{% for qdict in sql_queries %}
{{ qdict.sql }} ({{ qdict.time }} seconds)
{% endfor %}
-->

Chapter 8

[239]

This template code prints out the contents of sql_queries within an HTML
comment at the very beginning of the content block supplied by survey/home.
html. First, the number of queries is noted by filtering the list through the length
filter. Then the code iterates through each dictionary in the sql_queries list and
displays sql, followed by a note in parentheses about the time taken for each query.

How well does that work? If we try it out by retrieving the survey home page (after
ensuring the development server is running), and use the browser's menu item
for viewing the HTML source for the page, we might see that the comment block
contains something like:

<!--

1 queries

SELECT `django_session`.`session_key`, `django_session`.`session_data`,
`django_session`.`expire_date` FROM `django_session` WHERE (`django_
session`.`session_key` = d538f13c423c2fe1e7f8d8147b0f6887 AND `django_
session`.`expire_date` > 2009-10-24 17:24:49) (0.001 seconds)

-->

Note that the exact number of queries displayed here will depend on
the version of Django you are running. This result is from Django 1.1.1;
later versions of Django may not show any queries displayed here.
Furthermore, the history of the browser's interaction with the site will
affect the queries issued. This result is from a browser that had been used
to access the admin application, and the last interaction with the admin
application was to log out. You may see additional queries if the browser
had been used to access the admin application but the user had not
logged out. Finally, the database in use can also affect the specific queries
issued and their exact formatting. This result is from a MySQL database.

That's not exactly what we expected. First, a minor annoyance, but 1 queries is
wrong, it should be 1 query. Perhaps that wouldn't annoy you, particularly just in
internal or debug information, but it would annoy me. I would change the template
code that displays the query count to use correct pluralization:

{% with sql_queries|length as qcount %}
{{ qcount }} quer{{ qcount|pluralize:"y,ies" }}
{% endwith %}

When Problems Hide: Getting More Information

[240]

Here, since the template needs to use the length result multiple times, it is first
cached in the qcount variable by using a {% with %} block. Then it is displayed, and
it is used as the variable input to the pluralize filter that will put the correct letters
on the end of quer depending on the qcount value. Now the comment block will
show 0 queries, 1 query, 2 queries, and so on.

With that minor annoyance out of the way, we can concentrate on the next,
larger, issue, which is that the displayed query is not a query we were expecting.
Furthermore, the three queries we were expecting, to retrieve the lists of completed,
active, and upcoming surveys, are nowhere to be seen. What's going on? We'll take
each of these in turn.

The query that is shown is accessing the django_session table. This table is used
by the django.contrib.sessions application. Even though the survey application
does not use this application, it is listed in our INSTALLED_APPS, since it is included
in the settings.py file that startproject generates. Also, the middleware that the
sessions application uses is listed in MIDDLEWARE_CLASSES.

The sessions application stores the session identifier in a cookie, named sessionid
by default, that is sent to the browser as soon as any application uses a session. The
browser will return the cookie in all requests to the same server. If the cookie is
present in a request, the session middleware will use it to retrieve the session data.
This is the query we see previously listed: the session middleware is retrieving the
data for the session identified by the session cookie sent by the browser.

But the survey application does not use sessions, so how did the browser get a session
cookie in the first place? The answer is that the admin application uses sessions, and
this browser had previously been used to access the admin application. At that time,
the sessionid cookie was set in a response, and the browser faithfully returns it on all
subsequent requests. Thus, it seems likely that this django_session table query is due
to a sessionid cookie set as a side-effect of using the admin application.

Can we confirm that? If we find and delete the cookie from the browser and reload
the page, we should see that this SQL query is no longer listed. Without the cookie
in the request, whatever code was triggering access to the session data won't have
anything to look up. And since the survey application does not use sessions, none of
its responses should include a new session cookie, which would cause subsequent
requests to include a session lookup. Is this reasoning correct? If we try it, we will
see that the comment block changes to:

<!--

0 queries

-->

Chapter 8

[241]

Thus, we seem to have confirmed, to some extent, what happened to cause a
django_session table query during processing of a survey application response. We
did not track down what exact code accessed the session identified by the cookie—it
could have been middleware or a context processor, but we probably don't need
to know the details. It's enough to keep in mind that there are other applications
running in our project besides the one we are working on, and they may cause
database interactions independent of our own code. If we observe behavior which
looks like it might cause a problem for our code, we can investigate further, but for
this particular case we will just avoid using the admin application for now, as we
would like to focus attention on the queries our own code is generating.

Now that we understand the query that was listed, what about the expected ones
that were not listed? The missing queries are due to a combination of the lazy
evaluation property of QuerySets and the exact placement of the comment block
that lists the contents of sql_queries. We put the comment block at the top of the
content block in the home page, to make it easy to find the SQL query information
when looking at the page source. The template is rendered after the three QuerySets
are created by the view, so it might seem that the comment placed at the top should
show the SQL queries for the three QuerySets.

However, QuerySets are lazy; simply creating a QuerySet does not immediately cause
interaction with the database. Rather, sending the SQL to the database is delayed until
the QuerySet results are actually accessed. For the survey home page, that does not
happen until the parts of the template that loop through each QuerySet are rendered.
Those parts are all below where we placed the sql_queries information, so the
corresponding SQL queries had not yet been issued. The fix for this is to move the
placement of the comment block to the very bottom of the content block.

When we do that we should also fix two other issues with the query display. First,
notice that the query displayed above has > shown instead of the > symbol that
would actually have been in the query sent to the database. Furthermore, if the
database in use is one (such as PostgreSQL) that uses straight quotes instead of back
quotes for quoting, all of the back quotes in the query would be shown as ".
This is due to Django's automatic escaping of HTML markup characters. This is
unnecessary and hard to read in our HTML comment, so we can suppress it by
sending the sql query value through the safe filter.

Second, the query is very long. In order to avoid needing to scroll to the right in
order to see the entire query, we can also filter the sql value through wordwrap to
introduce some line breaks and make the output more readable.

When Problems Hide: Getting More Information

[242]

To make these changes, remove the added comment block from the top of the
content block in the survey/home.html template and instead change the bottom
of this template to be:

{% endif %}
<!--
{% with sql_queries|length as qcount %}
{{ qcount }} quer{{ qcount|pluralize:"y,ies" }}
{% endwith %}
{% for qdict in sql_queries %}
{{ qdict.sql|safe|wordwrap:60 }} ({{ qdict.time }} seconds)
{% endfor %}
-->
{% endblock content %}

Now, if we again reload the survey home page and view the source for the returned
page, we will see the queries listed in a comment at the bottom:

<!--

3 queries

SELECT `survey_survey`.`id`, `survey_survey`.`title`,

`survey_survey`.`opens`, `survey_survey`.`closes` FROM

`survey_survey` WHERE (`survey_survey`.`opens` <= 2009-10-25

 AND `survey_survey`.`closes` >= 2009-10-25) (0.000 seconds)

SELECT `survey_survey`.`id`, `survey_survey`.`title`,

`survey_survey`.`opens`, `survey_survey`.`closes` FROM

`survey_survey` WHERE (`survey_survey`.`closes` < 2009-10-25

 AND `survey_survey`.`closes` >= 2009-10-11) (0.000 seconds)

SELECT `survey_survey`.`id`, `survey_survey`.`title`,

`survey_survey`.`opens`, `survey_survey`.`closes` FROM

`survey_survey` WHERE (`survey_survey`.`opens` > 2009-10-25

AND `survey_survey`.`opens` <= 2009-11-01) (0.000 seconds)

-->

That is good, those look like exactly what we expect to see for queries for the home
page. Now that we seem to have some working template code to show queries, we
will consider packaging up this snippet so that it can easily be reused elsewhere.

Chapter 8

[243]

Packaging the template query display for
reuse
We've now got a small block of template code that we can put in any template to
easily see what SQL queries were needed to produce a page. However, it is not so
small that it can be easily re-typed whenever it might come in handy. Therefore,
it would be good to package it up in a form where it can be conveniently included
wherever and whenever it might be needed. The Django template {% include %} tag
makes this easy to do.

Where should the snippet go? Note that this template snippet is completely general
and not in any way tied to the survey application. While it would be easy to simply
include it among the survey templates, putting it there will make it harder to reuse
for future projects. A better approach is to put it in an independent application.

Creating an entirely new application just for this one snippet may seem a bit
extreme. However, it is common during development to create small utility functions
or template snippets that don't really belong in the main application. So it is likely
during development of a real project that there would be other such things that
should logically be placed somewhere besides the main application. It's helpful to
have someplace else to put them.

Let's create a new Django application, then, to hold any general utility code that does
not logically belong within the survey application:

kmt@lbox:/dj_projects/marketr$ python manage.py startapp gen_utils

Since its purpose is to hold general utility code, we've named the new application
gen_utils. It can serve as a place to put any non-survey-specific code that seems
like it might be potentially re-usable elsewhere. Note that as time goes on and more
and more stuff accumulates in an application like this, it may become apparent that
some subset of it would be useful to package into its own independent, self-contained
application with a more descriptive name than gen_utils. But for now it is enough to
start with one place to put utility code that is not really tied to the survey application.

When Problems Hide: Getting More Information

[244]

Next, we can create a templates directory within gen_utils, and a gen_utils
directory under templates, and create a file, showqueries.html, to hold the
template snippet:

{% if sql_queries %}<!--
{% with sql_queries|length as qcount %}
{{ qcount }} quer{{ qcount|pluralize:"y,ies" }}
{% endwith %}
{% for qdict in sql_queries %}
{{ qdict.sql|safe|wordwrap:60 }} ({{ qdict.time }} seconds)
{% endfor %}
-->{% endif %}

We've made one change here from the previous code placed directly in the
survey/home.html template, which is to place the entire HTML comment block
inside an {% if sql_qureies %} block. If the sql_queries variable has not been
included in the template context, then there is no reason to produce the comment
at all.

As part of packaging code for reuse, it's also good practice to double-check and
make sure that the code is truly reusable and not going to fail in odd ways if given
unexpected or unusual input. Taking a look at that snippet, is there anything that
might be found in an arbitrary sql_queries input that could cause a problem?

The answer is yes. If a SQL query value contains the HTML end-of-comment
delimiter, then the comment block will be terminated early. This could result in the
browser rendering what was intended to be a comment as part of the page content
displayed to the user. To see this, we can try inserting a model filter call that
includes the HTML end-of-comment delimiter into the home page view code,
and see what the browser shows.

But what is the HTML end-of-comment delimiter? You might guess that it is -->,
but in fact it is just the two dashes in a row. Technically, the <! and > are defined as
the beginning and end of markup declaration, while the dashes mark the beginning
and end of the comment. Thus, a query that contains two dashes in a row should
trigger the behavior we are worried about here. To test this, add this line of code to
the home view:

 Survey.objects.filter(title__contains='--').count()

Note nothing has to be done with the results of the call; the added code must simply
ensure that the query containing the two dashes is actually sent to the database.
This added line does that by retrieving the count of results matching the pattern
containing two dashes. With that added line in the home view, Firefox will display
the survey home page like so:

Chapter 8

[245]

The two dashes in a row in a SQL query value caused Firefox to prematurely
terminate the comment block, and data we had intended to be still inside the
comment has appeared in the browser page. In order to avoid this, we need to
ensure that two dashes in a row never appear in the SQL query values included in
the comment block.

A quick glance through the built-in Django filters doesn't reveal any that could be
used to replace a string of two dashes with something else. The cut filter could
be used to remove them, but simply removing them would make the sql value
misleading as there would be no indication that the characters had been removed
from the string. Therefore, it seems we will need to develop a custom filter for this.

We will put the custom filter in the gen_utils application. Filters and
template tags must be placed in a templatetags module in an application,
so we must first create the templatetags directory. Then, we can put an
implementation for a replace_dashes filter into a file named gentags.py
within gen_utils/templatetags:

from django import template

register = template.Library()

@register.filter
def replace_dashes(value):
 return value.replace('--','~~double-dash~~')
replace_dashes.is_safe = True

When Problems Hide: Getting More Information

[246]

The bulk of this code is the standard boilerplate import, register assignment, and
@register.filter decoration needed to register the replace_dashes function
so that it is available for use as a filter. The function itself simply replaces any
occurrences of a pair of dashes in a string with ~~double-dash~~ instead. Since there
is no way to escape the dashes so that they will not be interpreted as the end of the
comment yet still appear as dashes, we replace them with a string describing what
had been there. The last line marks the replace_dashes filter as safe, meaning it
does not introduce any HTML markup characters that would need to be escaped in
its output.

We also need to change the template snippet in gen_utils/showqueries.html to
load and use this filter for display of the SQL query values:

{% if sql_queries %}<!--
{% with sql_queries|length as qcount %}
{{ qcount }} quer{{ qcount|pluralize:"y,ies" }}
{% endwith %}
{% load gentags %}
{% for qdict in sql_queries %}
{{ qdict.sql|safe|replace_dashes|wordwrap:60 }} ({{ qdict.time }}
seconds)
{% endfor %}
-->{% endif %}

The only changes here are the addition of the {% load gentags %} line and the
addition of replace_dashes in the sequence of filters applied to qdict.sql.

Finally, we can remove the comment snippet from the survey/home.html template.
Instead, we will put the new general snippet in the survey/base.html template, so
this becomes:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>{% block title %}Survey Central{% endblock %}</title>
</head>
<body>
{% block content %}{% endblock %}
</body>
{% include "gen_utils/showqueries.html" %}
</html>

Chapter 8

[247]

Placing {% include %} in the base template will cause every template that inherits
from base to automatically have the comment block added, assuming that the
other conditions of DEBUG being turned on, the requesting IP address being listed
in INTERNAL_IPS, and the response being rendered with a RequestContext, are
met. We'd likely want to remove this before putting the application in a production
environment, but during development it can come in handy to have easy automatic
access to the SQL queries used to generate any page.

Testing the repackaged template code
How well does the repackaged version of the code work? If we try to reload our
survey home page now, we will find that we have forgotten a couple of things. The
first attempt brings up a Django debug page:

When Problems Hide: Getting More Information

[248]

This is an instance of one of the special debug pages mentioned in the last
chapter. It is a TemplateSyntaxError resulting from an exception being
raised during rendering. The original exception was caught and turned into
a TemplateSyntaxError, and the original traceback is shown as part of the
exception value. Looking at that, we can see that the original exception was
TemplateDoesNotExist. For some reason, the gen_utils/showqueries.html
template file was not found by the template loader.

Paging further down on the debug page received here, we learn why the template
engine behavior of wrapping original exceptions in a TemplateSyntaxError can
sometimes be aggravating. Because the exception that was ultimately raised was
a TemplateSyntaxError, not a TemplateDoesNotExist, this debug page does
not have the template loader postmortem that would detail exactly what template
loaders were tried, and what files they attempted to load while searching for
gen_utils/showqueries.html. So, we've lost some helpful debug information
due to the way TemplateSyntaxError exceptions are used to wrap others.

If we needed to, we could force production of the template loader postmortem
for this template file by attempting to render it directly from a view, instead of by
including it in another template. So we could, with a little work, get the information
that has unfortunately not been included in this particular debug page.

But in this case it is not necessary, since the reason for the exception is not
particularly obscure: we didn't do anything to ensure that the templates in the
new gen_utils application would be found. We did not include gen_utils
in INSTALLED_APPS so that its templates directory would be searched by the
application template loader, nor did we put the path to the gen_utils templates
directory into the TEMPLATE_DIRS setting. We need to do one of these things in order
to have the new template file found. Since gen_utils also now has a filter, and in
order for that to be loaded gen_utils will need to be in INSTALLED_APPS, we will fix
the TemplateDoesNotExist exception by including gen_utils in INSTALLED_APPS.

Once we make that change, does the new code work? Not quite. Attempting to
reload the page now brings up a different debug page:

Chapter 8

[249]

This one is a little more mysterious. The displayed template is gen_utils/
showqueries.html, so we have gotten farther than in the previous case. But for
some reason, the attempt to {% load gentags %} is failing. The error message states:

'gentags' is not a valid tag library: Could not load template library from
django.templatetags.gentags, No module named gentags.

When Problems Hide: Getting More Information

[250]

This is one of the rare cases where you do not want to entirely believe what the error
message seems to be saying. It seems to be implying that the problem is that there is
no gentags.py file in django.templatetags. A natural next thought may be that
it is required to place custom template tag and filter libraries inside Django's own
source tree. However, that would be a very odd requirement and the documentation
clearly contradicts it, since it states that custom tags and filters should be placed in
the application's templatetags directory. Are we supposed to use something other
than a plain {% load %} tag to force Django to search beyond its own templatetags
directory for a tag library?

No, in this case the error is just misleading. Although django.templatetags is
the only module named in the error message, in fact the Django code attempted
to load gentags from a templatetags directory under each application listed in
INSTALLED_APPS. So the question is not why did Django fail to look for gentags
under the gen_utils/templatetags directory, but why did an attempt to load
gentags from genutils.templatetags fail?

We can attempt to answer that question by trying the same code that Django is
running during {% load %} from a Python shell session:

kmt@lbox:/dj_projects/marketr$ python manage.py shell

Python 2.5.2 (r252:60911, Oct 5 2008, 19:24:49)

[GCC 4.3.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

(InteractiveConsole)

>>> from gen_utils.templatetags import gentags

Traceback (most recent call last):

 File "<console>", line 1, in <module>

ImportError: No module named templatetags

>>>

Sure enough, an attempt to import gentags from gen_utils.templatetags is
failing. Python claims the templatetags module does not exist. But the directory
certainly exists, and gentags.py exists, so what is missing? The answer is an
__init__.py file in that directory to make Python recognize it as a module. Creating
that file and re-trying the import from the shell shows that the import will now work.

However, attempting to simply reload the page in a browser causes the same debug
page to be re-displayed. This is also one of the rare cases where the development
server needs to be manually stopped and re-started in order for it to pick up on the
changes made. That done, we can finally re-load the survey home page and see:

Chapter 8

[251]

We're back to the page being served without an exception being raised, and there is
no more stray debug information from the sql_queries being included in an HTML
comment. If we look further, at the HTML source for the page, we will see something
like the following at the bottom:

<!--

4 queries

SELECT COUNT(*) FROM `survey_survey` WHERE

`survey_survey`.`title` LIKE BINARY %~~double-dash~~% (0.015 seconds)

SELECT `survey_survey`.`id`, `survey_survey`.`title`,

`survey_survey`.`opens`, `survey_survey`.`closes` FROM

`survey_survey` WHERE (`survey_survey`.`opens` <= 2009-11-01

 AND `survey_survey`.`closes` >= 2009-11-01) (0.001 seconds)

SELECT `survey_survey`.`id`, `survey_survey`.`title`,

`survey_survey`.`opens`, `survey_survey`.`closes` FROM

`survey_survey` WHERE (`survey_survey`.`closes` < 2009-11-01

 AND `survey_survey`.`closes` >= 2009-10-18) (0.000 seconds)

When Problems Hide: Getting More Information

[252]

SELECT `survey_survey`.`id`, `survey_survey`.`title`,

`survey_survey`.`opens`, `survey_survey`.`closes` FROM

`survey_survey` WHERE (`survey_survey`.`opens` > 2009-11-01

AND `survey_survey`.`opens` <= 2009-11-08) (0.000 seconds)

-->

That looks good. The replace_dashes filter successfully got rid of the two dashes
in a row, so the browser no longer thinks the comment block was terminated before
it was intended to be. Now we can move on to checking the SQL queries needed to
produce the other survey pages.

SQL queries for the active Survey form
display page
Clicking on the link to the one active survey brings up the active survey page for
that survey:

Looking at the source for this page, we see that six SQL queries were needed to
produce it:

Chapter 8

[253]

<!--

6 queries

SELECT `survey_survey`.`id`, `survey_survey`.`title`,

`survey_survey`.`opens`, `survey_survey`.`closes` FROM

`survey_survey` WHERE `survey_survey`.`id` = 1 (0.000 seconds)

SELECT `survey_question`.`id`, `survey_question`.`question`,

`survey_question`.`survey_id` FROM `survey_question` WHERE

`survey_question`.`survey_id` = 1 (0.000 seconds)

SELECT COUNT(*) FROM `survey_answer` WHERE

`survey_answer`.`question_id` = 1 (0.001 seconds)

SELECT COUNT(*) FROM `survey_answer` WHERE

`survey_answer`.`question_id` = 2 (0.001 seconds)

SELECT `survey_answer`.`id`, `survey_answer`.`answer`,

`survey_answer`.`question_id`, `survey_answer`.`votes` FROM

`survey_answer` WHERE `survey_answer`.`question_id` = 1 (0.024 seconds)

SELECT `survey_answer`.`id`, `survey_answer`.`answer`,

`survey_answer`.`question_id`, `survey_answer`.`votes` FROM

`survey_answer` WHERE `survey_answer`.`question_id` = 2 (0.001 seconds)

-->

Can we match up those queries to the code used to produce the page? Yes, in this
case it is reasonably straightforward to see where each query comes from. The very
first query is looking up a survey based on its primary key, and corresponds to the
get_object_or_404 call in the very first line in the survey_detail view:

def survey_detail(request, pk):
 survey = get_object_or_404(Survey, pk=pk)

Since this is an active survey, the thread of control then proceeds to the
display_active_survey function, which contains the following code to build
the forms for the page:

 qforms = []
 for i, q in enumerate(survey.question_set.all()):
 if q.answer_set.count() > 1:
 qforms.append(QuestionVoteForm(q, prefix=i, data=data))

When Problems Hide: Getting More Information

[254]

The call to enumerate(survey.question_set.all()) is responsible for the
second SQL query for this page, which retrieves all of the questions for the survey
being displayed. The call to q.answer_set.count() within the for loop explains
the third and fourth SQL queries, which retrieve the count of answers for each
question in the survey.

The last two queries, then, retrieve the set of answers for each question in the survey.
We might first think that these queries are issued when the QuestionVoteForm
for each question in the survey is created. The __init__ routine for a
QuestionVoteForm contains this line, to initialize the set of answers for the question:

 self.fields['answer'].queryset = question.answer_set.all()

However, that line of code does not result in a call to the database. It simply sets the
queryset attribute for the form's answer field to a QuerySet value. Since QuerySets
are lazy, this does not cause a database hit. This is confirmed by the fact that both
queries that request COUNT(*) are issued before the queries that retrieve the actual
answer information. If the creation of QuestionVoteForm caused the retrieval of the
answer information, then the last two queries would not be last, but rather would
be interleaved with the COUNT(*) queries. The trigger for issuing the queries that
retrieve the answer information, then, is the rendering of the answer values in the
survey/active_survey.html template.

If we were focused on optimization, at this point we might try to see if we could
reduce the number of queries needed for this page. Retrieving the count of answers
and then the answer information itself in two separate queries seems inefficient
compared to simply retrieving the answer information and deriving the count
based on the returned information. It seems like we could produce this page
with four queries instead of six.

However, since we are focused on understanding the current behavior as an aid to
debugging, we are not going to divert into an optimization discussion here. Even
if we were developing a real project, at this point in development it would not be a
good time to work on such optimizations. The inefficiency here is not so bad as to
be termed a bug, so it is best just to note it as a possible thing to look at in the future,
when a full picture of the overall performance of the application can be determined.
At that point the inefficiencies that are the most expensive are the ones that will be
worth taking the time to investigate improving.

Chapter 8

[255]

SQL queries for posting survey answers
If we now choose some answers for the survey questions and press the Submit
button, we get the Thanks page in response:

Looking at the source for this page, we find a single SQL query, to retrieve a survey
given the primary key:

<!--

1 query

SELECT `survey_survey`.`id`, `survey_survey`.`title`,

`survey_survey`.`opens`, `survey_survey`.`closes` FROM

`survey_survey` WHERE `survey_survey`.`id` = 1 (0.001 seconds)

-->

The line of code associated with that query is obvious; it is the get_object_or_404
in the survey_thanks view:

def survey_thanks(request, pk):
 survey = get_object_or_404(Survey, pk=pk)
 return render_to_response('survey/thanks.html',
 {'survey': survey },
 RequestContext(request))

When Problems Hide: Getting More Information

[256]

But what about all the SQL queries involved in processing the form data when it
was submitted? Long before the survey_thanks view was called, display_active_
survey must have run in order to receive the posted form data and update the
database for the selected answers. Yet we don't see any of the SQL queries needed
for that among the queries shown for the thanks page.

The reason for this is because the display_active_survey function, in the case
where the form processing is successful and the database is updated, does not render
a template directly but rather returns an HttpResponseRedirect. The web browser,
on receiving the HTTP redirect response, automatically fetches the location identified
in the redirect.

Thus, there are two full request/response cycles that take place in between pressing
the Submit button on the browser and seeing the thanks page appear. The thanks
page itself can show the SQL queries that were executed during its (the second)
request/response cycle, but it cannot show any of the ones that happened in the
first request/response cycle.

That's disappointing. At this point, we've gone to a fair amount of trouble
developing what seemed at first like it was going to be a quite simple little bit
of utility code. Now, we find that it is not going to work for some of the most
interesting views in an application—the ones that actually update the database.
What do we do?

We certainly don't want to just give up on seeing the SQL queries for pages
that successfully process posted data. But nor do we want to spend much more
development effort on this utility code. Although we have learned a few things
along the way, we've started to stray a bit too much from our main application.
Fortunately, we don't need to do either of these. Instead, we can simply install and
start using an already-developed general debugging tool for Django applications,
the Django Debug Toolbar. This tool is the focus of the next section.

The Django Debug Toolbar
Rob Hudson's Django Debug Toolbar is a very useful general purpose debugging
tool for Django applications. As with the code we developed earlier in this chapter,
it lets you see the SQL queries that were needed to produce a page. However,
as we will see, it also goes far beyond that, providing easy access to much more
information about the SQL queries and other aspects of request processing.
Furthermore, the debug toolbar has a far more advanced way of displaying the
information than simply embedding it in HTML comments. The capabilities are
best shown by example, so we will immediately proceed with installing the toolbar.

Chapter 8

[257]

Installing the Django Debug Toolbar
The toolbar can be found on the Python package index site: http://pypi.python.
org/pypi/django-debug-toolbar. Once installed, activating the debug toolbar
in a Django project is accomplished with the addition of just a couple of settings.

First, the debug toolbar middleware, debug_toolbar.middleware.
DebugToolbarMiddleware, must be added to the MIDDLEWARE_CLASSES setting.
The documentation for the toolbar notes that it should be placed after any other
middleware that encodes the response content, so it is best to place it last in the
middleware sequence.

Second, the debug_toolbar application needs to be added to INSTALLED_APPS. The
debug_toolbar application uses Django templates to render its information, thus
it needs to be listed in INSTALLED_APPS so that its templates will be found by the
application template loader.

Third, the debug toolbar requires that the requesting IP address be listed in
INTERNAL_IPS. Since we already made this settings change earlier in the chapter,
nothing needs to be done now for this.

Finally, the debug toolbar is displayed only when DEBUG is True. We've been running
with debug turned on, so again we don't have to make any changes here. Note also
that the debug toolbar allows you to customize under what conditions the debug
toolbar is displayed. It's possible, then, to set things up so that the toolbar will be
displayed for requesting IP addresses not in INTERNAL_IPS or when debug is not
turned on, but for our purposes the default configuration is fine so we will not
change anything.

One thing that is not required is for the application itself to use a RequestContext in
order for things such as the SQL query information to be available in the toolbar. The
debug toolbar runs as middleware, and thus is not dependent on the application using
a RequestContext in order for it to generate its information. Thus, the changes made
to the survey views to specify RequestContexts on render_to_response calls would
not have been needed if we started off first with the Django Debug Toolbar.

When Problems Hide: Getting More Information

[258]

Debug toolbar appearance
Once the debug toolbar is added to the middleware and installed applications
settings, we can see what it looks like by simply visiting any page in the survey
application. Let's start with the home page. The returned page should now look
something like this:

Note this screenshot shows the appearance of the 0.8.0 version of the debug toolbar.
Earlier versions looked considerably different, so if your results do not look like this
you may be using a different version than 0.8.0. The version that you have will most
likely be newer than what was available when this was written, and there may be
additional toolbar panels or functions that are not covered here.

As you can see, the debug toolbar appears on the right-hand side of the browser
window. It consists of a series of panels that can be individually enabled or disabled
by changing the toolbar configuration. The ones shown here are the ones that are
enabled by default.

Chapter 8

[259]

Before taking a closer look at some of the individual panels, notice that the toolbar
contains an option to hide it at the top. If Hide is selected, the toolbar reduces itself
to a small tab-like indication to show that it is present:

This can be very useful for cases where the expanded version of the toolbar
obscures application content on the page. All of the information provided by the
toolbar is still accessible, after clicking again on the DjDT tab; it is just out of the
way for the moment.

Most of the panels will provide detailed information when they are clicked. A
few also provide summary information in the main toolbar display. As of debug
toolbar version 0.8.0, the first panel listed, Django Version, only provides summary
information. There is no more detailed information available by clicking on it. As
you can see in the screenshot, Django 1.1.1 is the version in use here.

Note that the current latest source version of the debug toolbar already provides
more information for this panel than the 0.8.0 release. Since 0.8.0, this panel has been
renamed to Versions, and can be clicked to provide more details. These additional
details include version information for the toolbar itself and for any other installed
Django applications that provide version information.

The other three panels that show summary information are the Time, SQL, and
Logging panels. Thus, we can see at a glance from the first appearance of the page
that 60 milliseconds of CPU time were used to produce this page (111 milliseconds
total elapsed time), that the page required four queries, which took 1.95 milliseconds,
and that zero messages were logged during the request.

When Problems Hide: Getting More Information

[260]

In the following sections, we will dig into exactly what information is provided by
each of the panels when clicked. We'll start first with the SQL panel, since it is one of
the most interesting and provides the same information (in addition to a lot more)
that we worked earlier in this chapter to access on our own.

The SQL panel
If we click on the SQL section of the debug toolbar, the page will change to:

At a glance, this is a much nicer display of the SQL queries for the page than
what we came up with earlier. The queries themselves are highlighted so that
SQL keywords stand out, making them easier to read. Also, since they are not
embedded inside an HTML comment, their content does not need to be altered
in any way—there was no need to change the content of the query containing the
double dash in order to avoid it causing display problems. (Now would probably
be a good time to remove that added query, before we forget why we added it.)

Chapter 8

[261]

Notice also that the times listed for each query are more specific than what was
available in Django's default query history. The debug toolbar replaces Django's
query recording with its own, and provides timings in units of milliseconds instead
of seconds.

The display also includes a graphical representation of how long each query took, in
the form of horizontal bars that appear above each query. This representation makes
it easy to see when there are one or more queries that are much more expensive than
the others. In fact, if a query takes an excessive amount of time, its bar will be colored
red. In this case, there is not a great deal of difference in the query times, and none
took particularly long, so all the bars are of similar length, and are colored gray.

Digging deeper, some of the information we had to manually figure out earlier in
this chapter is just a click away on this SQL query display. Specifically, the answer to
the question of what line of our code triggered a particular SQL query to be issued.
Each of the displayed queries has a Toggle Stacktrace option, which when clicked
will show the stack trace associated with the query:

When Problems Hide: Getting More Information

[262]

Here we can see that all queries are made by the home method in the survey views.
py file. Note that the toolbar filters out levels in the stack trace that are within Django
itself, which explains why each of these has only one level shown. The first query is
triggered by Line 61, which contains the filter call added to test what will happen
if a query containing two dashes in a row was logged. The remaining queries are
all attributed to Line 66, which is the last line of the render_to_response call in
the home view. These queries, as we figured out earlier, are all made during the
rendering of the template. (Your line numbers may vary from those shown here,
depending on where in the file various functions were placed.)

Finally, this SQL query display makes available information that we had not even
gotten around to wanting yet. Under the Action column are links to SELECT,
EXPLAIN, and PROFILE each query. Clicking on the SELECT link shows what
the database returns when the query is actually executed. For example:

Similarly, clicking on EXPLAIN and PROFILE displays what the database reports
when asked to explain or profile the selected query, respectively. The exact display,
and how to interpret the results, will differ from database to database. (In fact, the
PROFILE option is not available with all databases—it happens to be supported

Chapter 8

[263]

by the database in use here, MySQL.) Interpreting the results from EXPLAIN and
PROFILE is beyond the scope of what's covered here, but it is useful to know that if
you ever need to dig deep into the performance characteristics of a query, the debug
toolbar makes it easy to do so.

We've now gotten a couple of pages deep into the SQL query display. How do we
get back to the actual application page? Clicking on the circled >> at the upper-right
of the main page display will return to the previous SQL query page, and the circled
>> will turn into a circled X. Clicking the circled X on any panel detail page closes
the details and returns to displaying the application data. Alternatively, clicking
again on the panel area on the toolbar for the currently displayed panel will have the
same effect as clicking on the circled symbol in the display area. Finally, if you prefer
using the keyboard to the mouse, pressing Esc has the same effect as clicking the
circled symbol.

Now that we have completely explored the SQL panel, let's take a brief look at each
of the other panels provided by the debug toolbar.

The Time panel
Clicking on the Time panel brings up more detailed information on where time was
spent during production of the page:

When Problems Hide: Getting More Information

[264]

The total CPU time is split between user and system time, the total elapsed (wall
clock) time is listed, and the number of voluntary and involuntary context switches
are displayed. For a page that is taking too long to generate, these additional details
about where the time is being spent can help point towards a cause.

Note that the detailed information provided by this panel comes from the Python
resource module. This is a Unix-specific Python module that is not available on
non-Unix-type systems. Thus on Windows, for example, the debug toolbar time
panel will only show summary information, and no further details will be available.

The Settings panel
Clicking on Settings brings up a scrollable display of all the settings in effect. The
code used to create this display is identical to the code used to display the settings on
a Django debug page, so the display here will be identical to what you would see on
a debug page.

The HTTP Headers panel
Clicking on HTTP Headers brings up a display of all the HTTP headers for
the request:

Chapter 8

[265]

This is a subset of the information available in the META section of a debug page.
As mentioned in the previous chapter, the request.META dictionary contains all of
the HTTP headers for a request in addition to other information that has nothing to
do with the request, since request.META is initially copied from the os.environ
dictionary. The debug toolbar has chosen to filter the displayed information to
include only information pertinent to the HTTP request, as shown in the screenshot.

The Request Vars panel
Clicking on Request Vars brings up a display of cookies, session variables, GET
variables, and POST data for the request. Since the survey application home page
doesn't have any information to display for any of those, the Request Vars display
for it is not very interesting. Instead, here is an example from the admin application,
which does use a session, and so it actually has something to display:

Here you can see the sessionid cookie that was set as a result of the admin
application using the django.contrib.sessions application, and you can also
see the individual session variables that have been set in the session.

When Problems Hide: Getting More Information

[266]

The Templates panel
Clicking on Templates brings up a display of information about template processing
for the request. Returning to the survey home page as an example:

The Template paths section lists the paths specified in the TEMPLATE_DIRS setting;
since we have not added anything to that setting, it is empty.

The Templates section shows all of the templates rendered for the response. Each
template is listed, showing the name specified by the application for rendering first.
Clicking on this name will bring up a display of the actual template file contents.
Under the application-specified name is the full file path for the template. Finally,
each template also has a Toggle Context link that can be used to see the details of
the context used by each of the rendered templates.

Chapter 8

[267]

The Context processors section shows all of the installed context processors. Under
each is a Toggle Context link that when clicked will show the context variables that
the associated context processor adds to the context.

Note that the context processors are listed regardless of whether the application
used a RequestContext to render the response. Thus, their being listed on this
page does not imply that the variables they set were added to the context for this
particular response.

The Signals panel
Clicking on Signals brings up a display of the signal configuration:

All of the defined Django signals are listed. For each, the arguments provided are
shown along with the receivers that have been connected to the signal.

When Problems Hide: Getting More Information

[268]

Note that this display does not indicate anything about what signals were actually
triggered during the production of the current page. It simply shows how the signals
are configured.

The Logging panel
Finally, the Logging panel shows any messages sent via Python's logging module
during the course of the request processing. Since we have not yet investigated using
logging in the survey application, and since as of Django 1.1, Django itself does not
use the Python logging module, there is nothing for us to see on this panel yet.

Redirect handling by the debug toolbar
Now recall the reason we started investigating the debug toolbar: we found that our
original approach to tracking SQL queries for a page did not work for pages that
returned an HTTP redirect instead of rendering a template. How does the debug
toolbar handle this better? To see this, click on the Television Trends link on the
home page, select answers for the two questions, and press Submit. The result will be:

Chapter 8

[269]

This page shows an example of why it is sometimes necessary to use the Hide option
on the toolbar, since the toolbar itself obscures part of the message on the page.
Hiding the toolbar shows that the full message is:

The Django Debug Toolbar has intercepted a redirect to the above URL for debug
viewing purposes. You can click the above link to continue with the redirect as
normal. If you'd like to disable this feature, set the DEBUG_TOOLBAR_CONFIG
dictionary's key INTERCEPT_REDIRECTS to False.

What the debug toolbar has done here is intercepted the redirect request and
replaced it with a rendered response containing a link to the location specified in
the original redirect. The toolbar itself is still in place and available to investigate
whatever information we might like to see about the processing of the request that
generated the redirect. For example, we can click on the SQL section and see:

When Problems Hide: Getting More Information

[270]

These are the SQL queries that were needed to process the inbound posted form.
Not surprisingly, the first four are exactly the same as what we saw for generating
the form in the first place, since the same code path is initially followed for both GET
and POST requests.

It is only after those queries are issued that the display_active_survey view
has different code paths for GET and POST. Specifically, in the case of a POST,
the code is:

 if request.method == 'POST':
 chosen_answers = []
 for qf in qforms:
 if not qf.is_valid():
 break;
 chosen_answers.append(qf.cleaned_data['answer'])
 else:
 for answer in chosen_answers:
 answer.votes += 1
 answer.save()
 return HttpResponseRedirect(
 reverse('survey_thanks', args=(survey.pk,)))

The fifth and sixth queries listed on this page are retrieving the specific answer
instances that were selected on the submitted form. Unlike the GET case, where all
answers for a given question were being retrieved in the fifth and sixth queries, these
queries specify an answer id in the SQL WHERE clause as well as a question id. In
the POST case, it is not necessary to retrieve all answers for a question; it is sufficient
to retrieve only the one that was chosen.

Toggling the stack trace for these queries shows that they are resulting from the if
not qf.is_valid() line of code. This makes sense, since in addition to validating
the input, the is_valid method normalizes the posted data before placing it in the
form's cleaned_data attribute. In the case of a ModelChoiceField, the normalized
value is the chosen model object instance, so it is necessary for the validation code to
retrieve the chosen object from the database.

Chapter 8

[271]

After both submitted forms are found to be valid, the else leg of this code runs.
Here, the vote count for each chosen answer is incremented, and the updated answer
instance is saved to the database. This code, then, must be responsible for the final
four queries previously shown. This can be confirmed by checking the stack trace for
those four queries: all point to the answer.save() line of code.

But why are four SQL statements, two SELECT and two UPDATE, needed to save
two answers to the database? The UPDATE statements are self-explanatory, but the
SELECT statements that precede them are a bit curious. In each case, the constant 1 is
selected from the survey_answer table with a WHERE clause specifying a primary
key value that matches the survey that is in the process of being saved. What is the
intent of this query?

What the Django code is doing here is attempting to determine if the answer being
saved already exists in the database or if it is new. Django can tell by whether any
results are returned from the SELECT if it needs to use an UPDATE or an INSERT
when saving the model instance to the database. Selecting the constant value is more
efficient than actually retrieving the result when the only information needed is
whether the result exists.

You might think the Django code should know, just based on the fact that the
primary key value is already set for the model instance, that the instance reflects data
that is already in the database. However, Django models can use manually-assigned
primary key values, so the fact that the primary key value has been assigned does
not guarantee the model has already been saved to the database. Therefore, there is
an extra SELECT to determine the model status before saving the data.

The survey application code, though, certainly knows that all of the answer instances
it is saving when processing a survey response are already saved in the database.
When saving, the survey code can indicate that the instance must be saved via an
UPDATE and not an INSERT by specifying force_update on the save call:

 answer.save(force_update=True)

When Problems Hide: Getting More Information

[272]

If we make that change and try submitting another survey, we see that the SELECT
queries have been eliminated from processing for this case, reducing the total
number of queries needed from 10 to 8:

(Yes, I realize that earlier I said now was not the time for making optimizations, yet
here I went ahead and made one. This one was just too easy to pass up.)

We have now covered all of the panels displayed by default by the Django Debug
Toolbar, and seen how its default handling of returned redirects allows investigation
of the processing that led up to the redirect. It is a very flexible tool: it supports
adding panels, changing what panels are displayed, changing when the toolbar
is displayed, and configuration of various other options. Discussing all of this is
beyond the scope of what is covered here. Hopefully what has been covered gives
you a taste for the power of this tool. If you are interested in learning more details on
how to configure it, the README linked from its home page is a good place to start.

Chapter 8

[273]

For now we will leave the Django Debug Toolbar and continue with a discussion
of how to track the internal state of our application code through logging. For this
we will want to first see how the logging appears without the toolbar, so at this
point we should comment out the toolbar middleware in settings.py. (Note that
it is not necessary to remove the debug_toolbar listing from INSTALLED_APPS,
since this is only necessary for the application template loader to find templates
specified by the middleware.)

Tracking internal code state
Sometimes even all of the information available from a tool like the Django Debug
Toolbar is not enough to figure out what is going wrong to produce incorrect
results during processing of a request. The problem probably lies somewhere in the
application code, but from visual inspection we just cannot figure out what is wrong.
To solve the problem we need to get more information about the internal state of
the application code. Perhaps we need to see what the flow of control is through the
functions in the application, or see what values are calculated for some intermediate
results that ultimately cause the code to go down a wrong path.

How do we get this kind of information? One way is to run the code under a
debugger, and actually step through it line by line to see what it is doing. This
approach will be covered in detail in the next chapter. It is very powerful, but can be
time-consuming and is not practical in all situations. For example, it is difficult to use
for problems that crop up only during production.

Another way is to get the code to report, or log, what it is doing. This is the approach
that will be covered in this section. This approach does not provide access to the
full range of information that would be available under a debugger, but with good
choices of what to log, it can provide enough clues to solve many problems. It can
also be used more easily for production-only problems than the approach of running
under a debugger.

Resist the urge to sprinkle prints
When running under the development server, the output from print appears on the
console, so it is easily accessible. Thus, when faced with some Django application
code that is misbehaving during development, it is tempting to simply start adding
ad-hoc print statements at key points in an attempt to figure out what is going on
inside the code. While very tempting, it is usually a bad idea.

When Problems Hide: Getting More Information

[274]

Why is it a bad idea? First, the problem rarely becomes obvious with just one or two
print statements. It may seem at first that if we just know if the code gets to here
or there, all will be clear. But it isn't, and we wind up adding more and more print
statements, perhaps printing out values of variables, and both the code itself and the
development server console become a mess of ad-hoc debug information.

Then, once the problem is solved, all of those print statements need to be removed.
We generally don't want them cluttering up either the code or the console with
their output. Removing them all is a nuisance, but necessary, since some production
environments disallow access to sys.stdout. Thus, a stray print left over from
development debugging can cause a server error during production.

Then, when the same or a similar problem comes up again, and it was solved in the
past by the "sprinkle print" method, virtually all of the work done before may need
to be re-done again in order to figure out what is wrong this time. The previous
experience might give us a better idea of what print statements to put where, but
if we've already deleted them after solving the first problem, a fair amount of work
may be involved in re-doing essentially the same thing for the next variant of the
problem that arises. This is a waste of effort.

This sequence highlights a few main problems with the "sprinkle print" method
of development debugging. First, the developer needs to decide, right at the point
where the print is added, under what conditions it should be produced and
where the output should go. It's possible to bracket added print statements with
conditionals such as if settings.DEBUG, which might allow the added debugging
support to remain in the code long-term, but this is a nuisance and adds clutter to
the code, so it tends not to be done. It's also possible to specify in the print that the
output should be routed someplace other than the default of sys.stdout, but again
that is more work and tends not to be done.

These problems lead to sprinkled print statements that are immediately removed
when a problem is solved, leaving the code in a state where by default it reports
nothing about its operation. Then when the next problem occurs, the developer
has to start all over again with adding reporting of debug information.

A far better approach is to use some disciplined logging throughout development,
so that by default, at least when DEBUG is turned on, the code reports something
about what it is doing. If it does so, then it is quite possible that no additional
debug information needs to be collected in order to solve problems that crop up.
Furthermore, use of a logging facility allows for the configuration of under what
conditions messages should be output, and where they should go, to be separated
from the actual logging statements.

Chapter 8

[275]

Simple logging configuring for development
A preferred alternative to print statements for debugging, then, is to use the
python logging module. The actual logging calls are as easy to make as they are
with print. For example, a print to track calls into display_active_survey
might look like this:

def display_active_survey(request, survey):
 print 'display_active_survey called for a %s of survey '\
 'with pk %s' % (request.method, survey.pk)

Here the print reports the function that has been called; along with the
request.method and the primary key of the survey it has been passed. On the
development server console, the output for getting an active survey page would be:

Django version 1.1.1, using settings 'marketr.settings'

Development server is running at http://0.0.0.0:8000/

Quit the server with CONTROL-C.

display_active_survey called for a GET of survey with pk 1

[04/Nov/2009 19:14:10] "GET /1/ HTTP/1.1" 200 2197

The equivalent call, only using Python logging, might be:

import logging
def display_active_survey(request, survey):
 logging.debug('display_active_survey called for a %s of '
 'survey with pk %s', request.method, survey.pk)

Here the logging.debug call is used to specify that the passed string is a debug-
level message. The concept of levels allows the calling code to assign a measure of
importance to the message without actually making any decisions about whether the
message should be output in the current circumstances. Rather, that decision is made
by the logging facility, based on the currently set threshold level for logging.

The Python logging module provides a set of convenience methods for logging
messages with the default defined levels. These are, in increasing order of level:
debug, info, warning, error, and critical. Thus, this logging.debug message
will only be output if the logging module's level threshold has been set to include
debug-level messages.

When Problems Hide: Getting More Information

[276]

The only problem with using this logging.debug statement in place of a print
is that by default the logging module level threshold is set to warning. Thus,
only warning, error, and critical messages are output by default. We need
to configure the logging module to output debug-level statements in order for
this message to appear on the console. An easy way to do this is to add a call to
logging.basicConfig in the settings.py file. We can make the call contingent
on DEBUG being turned on:

import logging
if DEBUG:
 logging.basicConfig(level=logging.DEBUG)

With that code added to settings.py, and the logging.debug call in the
display_active_survey function, the development console will now show
the message when the display_active_survey function is entered:

Django version 1.1.1, using settings 'marketr.settings'

Development server is running at http://0.0.0.0:8000/

Quit the server with CONTROL-C.

DEBUG:root:display_active_survey called for a GET of survey with pk 1

[04/Nov/2009 19:24:14] "GET /1/ HTTP/1.1" 200 2197

Note that the DEBUG:root: prefix on the message is a result of the default formatting
applied to logged messages. DEBUG indicates the level associated with the message
and root identifies the logger that was used to log the message. Since the logging.
debug call does not specify any particular logger, the default of root was used.

Other parameters to logging.basicConfig could be used to change the formatting
of the message, but full coverage of all the features of Python logging is beyond the
scope of what we need to cover here. For our purposes, the default formatting will
be fine.

Another thing that can be specified in the logging configuration is where
the messages should be routed. We did not do so here, since the default of
sys.stderr is sufficient for development debugging purposes.

Chapter 8

[277]

Deciding what to log
By switching from print to logging, we've removed the need for the developer
adding the logging to decide under exactly what conditions the logged information
should be produced, and where exactly it should go. The developer simply needs to
identify the level of importance associated with the message, and then the logging
facility itself will decide what to do with the logged information. The next question,
then, is what should be logged?

In general, it is hard to know what information will be most useful to log when
writing code. As developers we might make some guesses, but until we get some
experience with the code as it actually runs, it is hard to be sure. Yet, as previously
mentioned, it can be very helpful for code to have some built-in reporting of basic
information about what it is doing. Thus, it is good to have some guidelines to
follow for logging that should be included by default when initially writing code.

One such guideline might be to log entry and exit to all "significant" functions. The
entry log message should include the values for any key parameters, and the exit
log message should give some indication of what the function returned. With just
this type of entry and exit logging (assuming a reasonably good split of code into
manageable functions), we'll be able to get a pretty clear picture of the flow of
control through the code.

Manually adding entry and exit logging, however, is a nuisance. It can also add clutter
to the code. In reality, it is unlikely that a guideline to log all significant function entries
and exits will be happily followed, unless it is much easier to do than adding the type
of logging message previously noted for entry to display_active_survey.

Fortunately, Python provides facilities to make it easy to do exactly what we
are looking for here. Functions can be wrapped in other functions, allowing the
wrapping function to do things such as log entry and exit, with parameter and return
information. Furthermore, the Python decorator syntax allows such wrapping to be
accomplished with minimal added code clutter. In the next section, we will develop
some simple logging wrappers for use with our existing survey application code.

Decorators to log function entry and exit
One disadvantage of using general-purpose wrappers instead of embedding
entry/exit logging in the functions themselves is that it makes it more difficult
to accomplish fine-grained control over what parameter and return information
is logged. It is easy to write a general wrapper that logs all parameters, or no
parameters, but it is difficult to impossible to write one that logs some subset
of the parameters, for example.

When Problems Hide: Getting More Information

[278]

Why not just log all parameters? The problem with this is that some often-used
parameters in Django applications, such as request objects, have a very verbose
representation. Logging their full values would produce too much output. It's better to
start with a general-purpose wrapping logger that does not log any parameter values,
in addition to maybe one or more special-purpose ones that can be used for functions
with predictable parameters to log key information in those parameters.

For example, a special-purpose wrapper for logging entry and exit to view
functions is likely worthwhile. A view always gets an HttpRequest object as its first
parameter. While logging the full object is not helpful, logging the request method is
both short and useful. Furthermore, since additional parameters to the view function
come from the requested URL, they are probably not too verbose to log as well.

What about return values—should they be logged? Probably not in general for a
Django application, which will often have functions that return HttpResponse objects.
These are generally too large to be helpful when logged. However, it is typically useful
to log at least some information about return values, such as their type.

We've come up with two wrappers, then, to start with. The first, which will be
named log_call, will log the entry to and exit from a function. No entry parameter
information will be logged by log_call, but it will log the type of result it returns.
The second wrapper will be more specialized, and will be used for wrapping view
functions. This one will be named log_view. It will log the request method and
any additional parameters passed to the wrapped view, as well as the type of its
return value.

Where should this code go? Again, it is not tied in any way to the survey application,
so it makes sense to put it in gen_utils. We'll create a file in gen_utils then, named
logutils.py, that can hold any general logging utility code. We'll start with an
implementation of the log_call wrapper previously described:

import logging

class LoggingDecorator(object):
 def __init__(self, f):
 self.f = f

class log_call(LoggingDecorator):
 def __call__(self, *args, **kwargs):
 f = self.f
 logging.debug("%s called", f.__name__)
 rv = f(*args, **kwargs)
 logging.debug("%s returned type %s", f.__name__, type(rv))
 return rv

Chapter 8

[279]

This implementation uses the class-based style of writing wrapping functions. Using
this style, the wrapper is defined as a class that implements __init__ and __call__
methods. The __init__ method is called at the time the wrapper is created, and
is passed the function it is wrapping. The __call__ method is called when the
wrapped function is actually called. The __call__ implementation is responsible for
doing whatever the wrapping function requires, calling the wrapped function, and
returning its result.

Here the implementation is split into two classes: the base LoggingDecorator
that implements __init__, and then log_call, which inherits __init__ from
LoggingDecorator and implements __call__. The reason for this split is so that we
can share the common __init__ for multiple logging wrappers. All the __init__
does is save a reference to the wrapped function to be used later when __call__ is
called.

The log_call __call__ implementation, then, first logs a message that the function
was called. The name of the wrapped function can be found in its __name__ attribute.
The wrapped function is then called, and its return value is saved in rv. A second
message is logged noting the type returned by the called function. Finally, the value
returned by the wrapped function is returned.

The log_view wrapper is very similar to log_call, differing only in the details of
what it logs:

class log_view(LoggingDecorator):
 def __call__(self, *args, **kwargs):
 f = self.f
 logging.debug("%s called with method %s, kwargs %s",
 f.__name__, args[0].method, kwargs)
 rv = f(*args, **kwargs)
 logging.debug("%s returned type %s", f.__name__, type(rv))
 return rv

Here the first logged message includes, in addition to the name of the wrapped
function, the method attribute of the first positional argument and the keyword
arguments passed to the wrapped function. This wrapper, since it is intended to
be used for wrapping view functions, assumes the first positional argument is an
HttpRequest object, which has a method attribute.

When Problems Hide: Getting More Information

[280]

Further, this code assumes all other arguments will be passed as keyword
arguments. We know that this will be the case for the survey application code, since
all of the survey URL patterns specify named groups. A more general view wrapper
would need to log args (except the first one, an HttpRequest object) as well, if it
wanted to support non-named groups used in the URL pattern configuration. For the
survey application, this would just result in logging information that is always the
same, so it has been omitted here.

Applying the decorators to the Survey code
Now let's add these decorators to the survey view functions and see what some
typical output from browsing looks like. Adding the decorators is easy. First, in
views.py, add an import for the decorators near the top of the file:

from gen_utils.logutils import log_view, log_call

Then, for all functions that are actually views, add @log_view above the function
definition. (This syntax assumes the Python version in use is 2.4 or higher.) For
example, for the home page, view definition becomes:

@log_view
def home(request):

Do the same for survey_detail and survey_thanks. For the utility functions
display_active_survey and display_completed_survey, use @log_call
instead. For example:

@log_call
def display_active_survey(request, survey):

Now when we browse around the survey site, we will have messages logged on the
console that track basic information about what code is being called. For example,
we might see:

DEBUG:root:home called with method GET, kwargs {}

DEBUG:root:home returned type <class 'django.http.HttpResponse'>

[05/Nov/2009 10:46:48] "GET / HTTP/1.1" 200 1184

This shows that the home page view was called, and returned an HttpResponse.
Following the survey application's logged messages, we see the normal printout
from the development server noting that a GET for / returned a response with code
200 (HTTP OK) and containing 1184 bytes. Next, we might see:

DEBUG:root:survey_detail called with method GET, kwargs {'pk': u'1'}

DEBUG:root:display_active_survey called

DEBUG:root:display_active_survey returned type <class 'django.http.

Chapter 8

[281]

HttpResponse'>

DEBUG:root:survey_detail returned type <class 'django.http.HttpResponse'>

[05/Nov/2009 10:46:49] "GET /1/ HTTP/1.1" 200 2197

This shows the survey_detail view being called with a GET, likely from a link
on the home page returned by the previous response. Further, we can see that the
particular survey requested has a primary key of 1. The next log message reveals
that this must be an active survey, since display_active_survey is called. It returns
an HttpResponse, as does the survey_detail view, and again the last survey log
message is followed by Django's own printout summarizing the request and
its outcome.

Next, we might see:

DEBUG:root:survey_detail called with method POST, kwargs {'pk': u'1'}

DEBUG:root:display_active_survey called

DEBUG:root:display_active_survey returned type <class 'django.http.
HttpResponse'>

DEBUG:root:survey_detail returned type <class 'django.http.HttpResponse'>

[05/Nov/2009 10:46:52] "POST /1/ HTTP/1.1" 200 2466

Again this looks like a natural progression from the previous response: a POST for
the same survey that was retrieved by the previous request. The POST indicates that
the user is submitting a survey response. However, the return type of HttpResponse
that is logged indicates that there is some problem with the submission. (We know
an HttpResponse to a POST only occurs when a form is found to be invalid in
display_active_survey.)

This might be a place where we would want to add additional logging beyond the
entry/exit information, to track the specific reasons why a posted form was deemed
invalid. In its current form, all we can know is that the returned response, since it was
slightly larger than the original (2466 versus 2197 bytes), likely included an error
annotation noting what needed to be fixed on the form in order for it to be valid.

Next, we might see:

DEBUG:root:survey_detail called with method POST, kwargs {'pk': u'1'}

DEBUG:root:display_active_survey called

DEBUG:root:display_active_survey returned type <class 'django.http.
HttpResponseRedirect'>

DEBUG:root:survey_detail returned type <class 'django.http.
HttpResponseRedirect'>

[05/Nov/2009 10:46:56] "POST /1/ HTTP/1.1" 302 0

When Problems Hide: Getting More Information

[282]

This starts out as a repeat of the previous request, a POST to the survey_detail view
for the survey with primary key 1. However, this time an HttpResponseRedirect is
returned, indicating that the user must have corrected whatever problem existed in
the first submission.

Following this, we would likely see:

DEBUG:root:survey_thanks called with method GET, kwargs {'pk': u'1'}

DEBUG:root:survey_thanks returned type <class 'django.http.HttpResponse'>

[05/Nov/2009 10:46:56] "GET /thanks/1/ HTTP/1.1" 200 544

This shows the request that the browser will automatically make on receiving
the redirect returned by the previous request. We see the survey_thanks view
logging a GET for the same survey as all the previous requests, and an HttpResponse
being returned.

Thus, we can see how with very little effort we can add some basic logging that
provides a general overview of the flow of control through our Django application
code. Note that the logging decorators defined here are not perfect. For example,
they don't support decoration of methods instead of functions, they impose some
overhead even when no logging is desired, and they have some side-effects resulting
from turning functions into classes.

All of these drawbacks can be overcome with some care in the development of the
wrappers. However, the details of that are beyond the scope of what we can cover
here. The ones presented here have the advantage of being reasonably simple to
understand, and functional enough to hopefully demonstrate the usefulness of
having an easy built-in logging mechanism to see the flow of control, along with
perhaps some key parameters, through the code.

Logging in the debug toolbar
Recall that we skipped over any examination of the debug toolbar's logging panel
since we had no logging in the survey application code. Let's return now to the
debug toolbar and see how the added logging appears there.

First, though, let's add an additional log message to note what causes a POST request
for an active survey to fail. As mentioned in this previous section, this could be
useful to know. So, in the display_active_survey function add a logging call
after a form is found to be invalid:

 for qf in qforms:
 if not qf.is_valid():
 logging.debug("form failed validation: %r", qf.errors)
 break;

Chapter 8

[283]

(Note it will also be necessary to add an import logging before use of logging.)
With that additional log message, we should be able to get specific information
about why a particular survey submission was considered invalid.

Now re-activate the debug toolbar by un-commenting its middleware in
settings.py, browse to an active survey page, and attempt to force production
of that log message by submitting an incomplete survey. When the response is
returned, clicking on the toolbar's Logging panel will bring up a page that looks
like this:

When Problems Hide: Getting More Information

[284]

On this page, we can see that in addition to the messages themselves and their
assigned levels, the toolbar also reports the date and time they were logged in
addition to the location in the code where they were generated. Since most of these
log messages are coming from the wrapping functions, the location information
here is not particularly useful. However, the newly added log message is correctly
matched to where it appears in the code. Indeed the logged message makes it clear
that the problem with the form was a missing choice for an answer.

Summary
We have now reached the end of discussing techniques for getting more information
about how Django application code is running. In this chapter, we:

Developed some template utility code to track what SQL requests are made
during production of a page
Learned that creating re-usable general utility code can turn into more work
than it might first seem to require
Learned how the Django Debug Toolbar can be used to get the same
information as in our home-grown code in addition to more information,
with much less effort
Discussed the usefulness of applying a general logging framework during
code development, as opposed to relying on the ad-hoc "sprinkle print"
method of debugging problems

With the use of these tools and techniques, we are able to glean a great deal of
information about the working of our code. Having a good understanding of
how the code behaves when it is working properly makes it much easier to debug
problems when they occur. Furthermore, checking on exactly what the code is
doing even when it seems, from all outward appearances, to be working correctly,
may reveal hidden issues that could become big problems as the code moves from
development to production.

Sometimes, however, even all of the information available by using these techniques
is insufficient to solve a problem at hand. In those cases, the next step may be to run
the code under a debugger. This is the topic of the next chapter.

•

•

•

•

When You Don't Even
Know What to Log: Using

Debuggers
For many problems encountered during development, a debugger is the most
efficient tool to use to help figure out what is going on. A debugger lets you see
exactly what the code is doing, step by step if necessary. It lets you see, and change,
the values of variables along the way. With a debugger, you can even test out
potential code fixes before making changes to the source code.

This chapter focuses on using debuggers to help debug during development of
Django applications. Specifically, in this chapter we will:

Continue development of the survey application, seeing how the Python
debugger, pdb, can be used to help figure out any problems that arise
Learn how to use the debugger to verify correct operation of code that is
subject to multi-process race conditions
Briefly discuss the use of graphical debuggers for debugging
Django applications

Implementing the Survey results display
The survey application has one major piece that still remains to be implemented:
display of the results for a completed survey. What form should this display take?
A text-only tally of votes received for each answer for each question in the survey
would be easy enough to write, but not very good at communicating results. A
graphical representation of the results, such as a pie chart, would be far more
effecting in conveying the breakdown of votes.

•

•

•

When You Don’t Even Know What to Log: Using Debuggers

[286]

In this chapter, we will explore a couple of different approaches to implementing a
survey results view that incorporates pie charts to display vote distributions. Along
the way we'll encounter some difficulties, and see how the Python debugger can be
used to help figure out what is going wrong.

Before starting on the implementation of code to display survey results, let's set
up some test data to use in testing out the results as we go along. We can use the
existing Television Trends survey and simply adjust its data to reflect what we want
to test. First, we need to change its closes date to be in the last two weeks, so that it
will display as a completed survey instead of an active one.

Second, we need to set the votes counts for the question answers to ensure we test
any special cases we want to cover. This Survey has two questions, thus we can use
it to test both the case where there is a single clear winner among the answers and
the case where there is a tie.

We can use the admin application to set up a tie for the winner on the first question:

Chapter 9

[287]

Here we have set Comedy and Drama to be in a two-way tie for the winning answer.
The total number of votes (5) has been kept low for simplicity. It will be easy to
verify that the pie charts look correct when the wedges are supposed to contain
amounts such as one and two fifths of the total.

For the second question, we can set up the data so that there is a single clear winner:

For this question, our results display should list only Hardly any: I already watch
too much TV! as the single winning answer.

When You Don’t Even Know What to Log: Using Debuggers

[288]

Results display using pygooglechart
Once we've decided we want to create pie charts, the next question is: how do we
do that? Chart creation is not built into the Python language. There are, however,
several add-on libraries that provide this function. We'll start by experimenting with
one of the simplest alternatives, pygooglechart, which is a Python wrapper around
the Google chart API.

The pygooglechart package is available on the Python Package Index site,
http://pypi.python.org/pypi/pygooglechart. Information on the underlying
Google chart API can be found at http://code.google.com/apis/chart/. The
version of pygooglechart used in this chapter is 0.2.0.

One reason using pygooglechart is very simple, for a web application, is that the
result of constructing a chart is simply a URL that can be used to fetch the chart
image. There is no need to generate or serve an image file from our application.
Rather, all of the work can be pushed off to the Google chart API, and our
application simply includes HTML img tags that refer to images served
by Google.

Let's start, then, with the template for displaying results of a survey. The current
implementation of this template, survey/completed_survey.html, does nothing
more than print a header noting the title of the survey:

{% extends "survey/base.html" %}
{% block content %}
<h1>Survey results for {{ survey.title }}</h1>
{% endblock content %}

We want to change this now, and add template code that loops through the
questions in the survey and prints out the results for each. Recall that the Question
model has a method (implemented in Chapter 3, Testing 1, 2, 3: Basic Unit Testing) that
returns the winning answers:

class Question(models.Model):
 question = models.CharField(max_length=200)
 survey = models.ForeignKey(Survey)

 def winning_answers(self):
 max_votes = self.answer_set.aggregate(Max('votes')).values()[0]
 if max_votes and max_votes > 0:
 rv = self.answer_set.filter(votes=max_votes)
 else:
 rv = self.answer_set.none()
 return rv

Chapter 9

[289]

In the template, then, we can use this method to access the winning answer
(or answers, in the case of a tie). For each Question in the Survey, we will print
out the question text, a list of the winning answers, and a pie chart showing a
breakdown of the votes for each Answer. Template code that does this is:

{% extends "survey/base.html" %}
{% block content %}
<h1>Survey results for {{ survey.title }}</h1>
{% for q in survey.question_set.all %}
{% with q.winning_answers as winners %}
{% if winners %}
<h2>{{ q.question }}</h2>
<p>Winner{{ winners|length|pluralize }}:</p>

{% for answer in winners %}
{{ answer.answer }}
{% endfor %}

<p></p>
{% endif %}
{% endwith %}
{% endfor %}
{% endblock content %}

Here we have added a {% for %} block which loops through the questions in
the passed survey. For each, the list of winning answers is retrieved using the
winning_answers method and cached in the winners template variable. Then,
if there is anything in winners, the following items are displayed:

The question text, as a level two heading.
A heading paragraph for the winners list that is properly pluralized
depending on the length of winners.
A text list of the winning answers formatted as an unordered list.
An embedded image that will be the pie chart breakdown of answer
votes. The URL for this image is retrieved using a routine that needs to be
implemented on the Question model: get_piechart_url.

Note that the display of this entire list of items is protected by an {% if winners %}
block to guard against the edge case of attempting to display results for a Question
that received no answers. That may be unlikely but it's best to never display likely
odd-looking output for edge cases to users, so at the template level here we simply
avoid showing anything at all in this case.

•

•

•

•

When You Don’t Even Know What to Log: Using Debuggers

[290]

Next, we need to implement the get_piechart_url method for the Question
model. After some reading up on the pygooglechart API, an initial implementation
might be:

 def get_piechart_url(self):
 from pygooglechart import PieChart3D
 answer_set = self.answer_set.all()
 chart = PieChart3D(500, 230)
 chart.set_data([a.votes for a in answer_set])
 chart.set_pie_labels([a.answer for a in answer_set])
 return chart.get_url()

This code retrieves the set of answers associated with the Question and caches it
in the local variable answer_set. (This is done because the set is iterated through
multiple times in the following code and caching it in a local variable ensures the
data is fetched from the database only once.) Then, the pygooglechart API is called
to create a three-dimensional pie chart, chart, which will be 500 pixels wide and 230
pixels high. Then, data values are set for the pie chart wedges: these data values are
the votes count for each answer in the set. Next, labels are set for each of the wedges
to be the answer values. Finally, the method returns the URL for the constructed
chart, using the get_url method.

How well does that work? When we navigate to the survey application home page,
the Television Trends survey should now (since its closes date has been set to have
already passed) be listed under the heading that indicates we can see its results:

Chapter 9

[291]

Clicking on the Television Trends link now brings up a completed survey
results page:

That's not quite right. While the text displays of winning answer lists look fine, the
pie charts are not appearing. Rather, the browser is displaying the alternate text
defined for the image, Pie Chart, which means something went wrong in retrieving
the specified image.

Looking at the HTML source for the page, we see that both paragraphs containing
the image tags look like this:

<p></p>

When You Don’t Even Know What to Log: Using Debuggers

[292]

Somehow, the get_piechart_url method returned an empty string instead of
a value. We might first add some logging to get_piechart_url to try to figure
out why:

 def get_piechart_url(self):
 from pygooglechart import PieChart3D
 import logging
 logging.debug('get_piechart_url called for pk=%d', self.pk)
 answer_set = self.answer_set.all()
 chart = PieChart3D(500, 230)
 chart.set_data([a.votes for a in answer_set])
 chart.set_pie_labels([a.answer for a in answer_set])
 logging.debug('get_piechart_url returning: %s',
 chart.get_url())
 return chart.get_url()

We've added a log statement on entry noting the primary key of the Question
instance, and a log statement prior to exit logging what the method is about to
return. However, reloading the page with the logging included produces
confusing output on the server console:

DEBUG:root:survey_detail called with method GET, kwargs {'pk': u'1'}

DEBUG:root:display_completed_survey called

DEBUG:root:get_piechart_url called for pk=1

DEBUG:root:get_piechart_url called for pk=2

DEBUG:root:display_completed_survey returned type <class 'django.http.
HttpResponse'>

DEBUG:root:survey_detail returned type <class 'django.http.HttpResponse'>

[14/Nov/2009 11:29:08] "GET /1/ HTTP/1.1" 200 2573

We can see that survey_detail called display_completed_survey and
get_piechart_url was called twice, but there are no messages showing what
it was returning either time. What happened? There's no branching in the code
between the two logging.debug calls, so how could one get executed and the
other skipped?

We could try adding more logging calls, interspersed between each line of code.
However, while that may reveal how far execution proceeds in the method
before unexpectedly leaving, it won't provide any clue as to why execution stops
proceeding to the next line. It is also a nuisance to add logging after every line of
code, even for methods as small as this one. For problems like this, a debugger
is a much more efficient way to figure out what is going on.

Chapter 9

[293]

Getting started with the debugger
A debugger is a powerful development tool that allows us to see what code is doing
as it runs. When a program is run under the control of a debugger, the user is able
to pause execution, examine and change the value of variables, flexibly continue
execution to the next line or other explicitly set "breakpoints", and more. Python has
a built-in debugger named pdb which provides a user interface that is essentially
an augmented Python shell. In addition to normal shell commands, pdb supports
various debugger-specific commands, many of which we will experiment with in
this chapter as we debug the survey results display code.

How, then, do we use pdb to help figure out what is going on here? We'd like to
enter the debugger and step through the code to see what is happening. The first
task, breaking into the debugger, can be accomplished by adding import pdb; pdb.
set_trace() wherever we'd like the debugger to get control. The set_trace()
call sets an explicit breakpoint in our program where execution will pause under
debugger control so we can investigate what the current state is and control how
the code proceeds. Thus, we can change the get_piechart_url method like so to
invoke the debugger on entry:

 def get_piechart_url(self):
 from pygooglechart import PieChart3D
 import logging
 import pdb; pdb.set_trace()
 logging.debug('get_piechart_url called for pk=%d', self.pk)
 answer_set = self.answer_set.all()
 chart = PieChart3D(500, 230)
 chart.set_data([a.votes for a in answer_set])
 chart.set_pie_labels([a.answer for a in answer_set])
 logging.debug('get_piechart_url returning: %s',
 chart.get_url())
 return chart.get_url()

When You Don’t Even Know What to Log: Using Debuggers

[294]

Now, when we reload the survey results page, the browser will appear to hang while
it tries to load the page:

When we switch to the window containing the runserver console, we see:

DEBUG:root:survey_detail called with method GET, kwargs {'pk': u'1'}

DEBUG:root:display_completed_survey called

> /dj_projects/marketr/survey/models.py(71)get_piechart_url()

-> logging.debug('get_piechart_url called for pk=%d', self.pk)

(Pdb)

Chapter 9

[295]

Here we see that another call to the survey_detail view has been made, which
forwarded the request to the display_completed_survey function. Then, the
debugger was entered, due to the pdb.set_trace() call placed in get_piechart_
url. On entry, the debugger prints out two lines identifying the location of the next
line of code that is to be executed, and the contents of that line. So we can see that
we are on line 71 of the survey/models.py file, in the get_piechart_url method,
about to issue the call to log entry to the method. After the two lines noting where
execution stopped, the debugger prints its prompt, (Pdb), and waits for user input.

Before proceeding to step through the code and see what's happening as the code
runs, let's see what we can learn about where we are and the present state of things.
Pdb supports many commands and not all will be covered here, rather just the
ones that are most commonly useful will be demonstrated. We'll start with a few
that are helpful in getting context for where the code is, how it got there, and what
arguments were passed to the current function.

The list command
For example, if the single line of context provided on entry to the debugger is not
sufficient, more of the surrounding code can be seen by using the list command.
This command, like most pdb commands, can be abbreviated to its initial letter.
Using it here we see:

(Pdb) l

 66

 67 def get_piechart_url(self):

 68 from pygooglechart import PieChart3D

 69 import logging

 70 import pdb; pdb.set_trace()

 71 -> logging.debug('get_piechart_url called for pk=%d',
 self.pk)

 72 answer_set = self.answer_set.all()

 73 chart = PieChart3D(500, 230)

 74 chart.set_data([a.votes for a in answer_set])

 75 chart.set_pie_labels([a.answer for a in answer_set])

 76 logging.debug('get_piechart_url returning: %s',

(Pdb)

 77 chart.get_url())

 78 return chart.get_url()

 79

When You Don’t Even Know What to Log: Using Debuggers

[296]

 80 class Answer(models.Model):

 81 answer = models.CharField(max_length=200)

 82 question = models.ForeignKey(Question)

 83 votes = models.IntegerField(default=0)

 84

 85 def __unicode__(self):

 86 return self.answer

 87

(Pdb)

Here we see that the response to the list command first displayed five lines above
the current line of execution, then the current line of execution (noted by a -> prefix),
then five lines following the current line. At the (Pdb) prompt, an empty line was
then entered, which causes the last entered command to be repeated. In the case of
list, repeating the command results in the display of 11 additional lines following
the last ones that were displayed.

Arguments can be passed to list to specify exactly what lines to display, for
example l 1,5 will display the first five lines in the current file:

(Pdb) l 1,5

 1 # -*- encoding: utf-8 -*-

 2

 3 import datetime

 4 from django.db import models

 5 from django.db.models import Max

(Pdb)

The list command is most useful, though, for seeing the lines of code right around
where execution is currently stopped. If more context is needed, I find it easier
to have the file open in an editor in a separate window than to try to get a more
complete picture of the file using list with arguments.

The where command
The where command, which can be shorted to w, prints the current stack trace. In this
case, there is no particular mystery about how the code got to where it is, but it can
still be instructive to examine the details.

Chapter 9

[297]

The get_piechart_url method is called during template rendering, which means
it will have a long stack trace due to the recursive way in which template nodes are
rendered. The length of the response and the density of what gets printed out may
seem overwhelming at first, but by ignoring a lot of the details and just focusing on
the names of the files and functions you can get a good idea of the overall code flow.
For example, at the start of the response, the where command here is:

(Pdb) w

 /usr/lib/python2.5/site-packages/django/core/management/commands/
runserver.py(60)inner_run()

-> run(addr, int(port), handler)

 /usr/lib/python2.5/site-packages/django/core/servers/basehttp.
py(698)run()

-> httpd.serve_forever()

 /usr/lib/python2.5/SocketServer.py(201)serve_forever()

-> self.handle_request()

 /usr/lib/python2.5/SocketServer.py(222)handle_request()

-> self.process_request(request, client_address)

 /usr/lib/python2.5/SocketServer.py(241)process_request()

-> self.finish_request(request, client_address)

 /usr/lib/python2.5/SocketServer.py(254)finish_request()

-> self.RequestHandlerClass(request, client_address, self)

 /usr/lib/python2.5/site-packages/django/core/servers/basehttp.py(560)__
init__()

-> BaseHTTPRequestHandler.__init__(self, *args, **kwargs)

 /usr/lib/python2.5/SocketServer.py(522)__init__()

-> self.handle()

 /usr/lib/python2.5/site-packages/django/core/servers/basehttp.
py(605)handle()

-> handler.run(self.server.get_app())

 /usr/lib/python2.5/site-packages/django/core/servers/basehttp.
py(279)run()

-> self.result = application(self.environ, self.start_response)

 /usr/lib/python2.5/site-packages/django/core/servers/basehttp.py(651)__
call__()

-> return self.application(environ, start_response)

 /usr/lib/python2.5/site-packages/django/core/handlers/wsgi.py(241)__
call__()

When You Don’t Even Know What to Log: Using Debuggers

[298]

-> response = self.get_response(request)

 /usr/lib/python2.5/site-packages/django/core/handlers/base.py(92)get_
response()

-> response = callback(request, *callback_args, **callback_kwargs)

We may not be entirely sure what all of this code is doing, but with names like
serve_forever(), handle_request(), process_request(), finish_request(),
and get_response(), it seems likely that this is all part of a standard server
request-processing loop. In particular, get_response() sounds like the code is
getting close to the point where the real work of producing a response for the
request will be done. Next, we see:

 /dj_projects/marketr/gen_utils/logutils.py(21)__call__()

-> rv = f(*args, **kwargs)

 /dj_projects/marketr/survey/views.py(30)survey_detail()

-> return display_completed_survey(request, survey)

 /dj_projects/marketr/gen_utils/logutils.py(11)__call__()

-> rv = f(*args, **kwargs)

 /dj_projects/marketr/survey/views.py(40)display_completed_survey()

-> RequestContext(request))

Indeed, in the get_response function, at the point where it invokes callback(), the
code transitions from Django code (files in /usr/lib/python2.5/site-packages/
django) to our own code in /dj_projects. We then see that we have introduced our
own noise into the tracebacks with the logging wrapper functions—the references to
__call__ in logutils.py.

These don't convey much information other than that the function calls being made
are being logged. But ignoring the noise, we can still see that survey_detail was
called, which in turned called display_completed_survey, which ran to the point
where it is about to return (the last displayed line is the end of the multi-line call
to render_to_response in display_completed_survey). The call to render_to_
response transitions back into Django code:

 /usr/lib/python2.5/site-packages/django/shortcuts/__init__
.py(20)render_to_response()

-> return HttpResponse(loader.render_to_string(*args, **kwargs),
**httpresponse_kwargs)

 /usr/lib/python2.5/site-packages/django/template/loader.py(108)render_
to_string()

-> return t.render(context_instance)

 /usr/lib/python2.5/site-packages/django/template/__init__
.py(178)render()

Chapter 9

[299]

-> return self.nodelist.render(context)

 /usr/lib/python2.5/site-packages/django/template/__init__
.py(779)render()

-> bits.append(self.render_node(node, context))

 /usr/lib/python2.5/site-packages/django/template/debug.py(71)render_
node()

-> result = node.render(context)

 /usr/lib/python2.5/site-packages/django/template/loader_tags.
py(97)render()

-> return compiled_parent.render(context)

What we can glean from this, and from the following render() and render_
node() calls, is that the Django code is processing through rendering the template.
Eventually, a few calls that are a bit different start appearing:

 /usr/lib/python2.5/site-packages/django/template/debug.py(87)render()

-> output = force_unicode(self.filter_expression.resolve(context))

 /usr/lib/python2.5/site-packages/django/template/__init__
.py(546)resolve()

-> obj = self.var.resolve(context)

 /usr/lib/python2.5/site-packages/django/template/__init__
.py(687)resolve()

-> value = self._resolve_lookup(context)

 /usr/lib/python2.5/site-packages/django/template/__init__.py(722)_
resolve_lookup()

-> current = current()

> /dj_projects/marketr/survey/models.py(71)get_piechart_url()

-> logging.debug('get_piechart_url called for pk=%d', self.pk)

(Pdb)

During rendering, the code finally got to the point where it needed to render the
value of the {{ q.get_piechart_url }} in the template. Ultimately that got routed
to a call to the Question model's get_piechart_url method, where we had placed
the call to enter the debugger, and that is where we are now.

When You Don’t Even Know What to Log: Using Debuggers

[300]

The args command
The args command, abbreviated as a, can be used to see the values of the arguments
passed to the currently executing function:

(Pdb) a

self = Television Trends (opens 2009-09-10, closes 2009-11-10): What is
your favorite type of TV show?

(Pdb)

The whatis command
The whatis command displays the type of its argument. For example:

(Pdb) whatis self

<class 'survey.models.Question'>

(Pdb)

Recall pdb also behaves like a Python shell session, so the same result can be
obtained by taking the type of self:

(Pdb) type(self)

<class 'survey.models.Question'>

(Pdb)

We can also interrogate individual attributes of variables, which can be helpful.
Here the value of self displayed for the args command includes all of the
individual attributes for this model, excepting its primary key value. We can
find out what it is:

(Pdb) self.pk

1L

(Pdb)

The print and pp commands
The print command, abbreviated as p, prints the representation of a variable:

(Pdb) p self

<Question: Television Trends (opens 2009-09-10, closes 2009-11-10): What
is your favorite type of TV show?>

(Pdb)

Chapter 9

[301]

For large data structures, the output of print may be hard to read if it ends up
spilling across line boundaries. The alternative pp command pretty-prints the output
using the Python pprint module. This can result in output that is more easily read.
For example:

(Pdb) p locals()

{'PieChart3D': <class 'pygooglechart.PieChart3D'>, 'self': <Question:
Television Trends (opens 2009-09-10, closes 2009-11-10): What is your
favorite type of TV show?>, 'logging': <module 'logging' from '/usr/lib/
python2.5/logging/__init__.pyc'>, 'pdb': <module 'pdb' from '/usr/lib/
python2.5/pdb.pyc'>}

Contrast that print output to the pp output:

(Pdb) pp locals()

{'PieChart3D': <class 'pygooglechart.PieChart3D'>,

 'logging': <module 'logging' from '/usr/lib/python2.5/logging/__init__
.pyc'>,

 'pdb': <module 'pdb' from '/usr/lib/python2.5/pdb.pyc'>,

 'self': <Question: Television Trends (opens 2009-09-10, closes 2009-11-
10): What is your favorite type of TV show?>}

(Pdb)

Debugging the pygooglechart results
display
At this point we know the code is at the beginning of processing in the
get_piechart_url method, and the current value of self indicates that the
Question instance we have been called for is the question that asks What is
your favorite type of TV show? That's good to know, but what we'd really like
to understand is what happens as execution continues.

The step and next commands
What we'd like to do now is instruct the debugger to continue execution, but keep
the debugger active. There are two commands typically used here: step (abbreviated
as s) and next (abbreviated as n).

When You Don’t Even Know What to Log: Using Debuggers

[302]

The step command begins execution of the current line and returns to the debugger
at the first available opportunity. The next command also begins execution of the
current line, but it does not return to the debugger until the next line in the current
function is about to be executed. Thus, if the current line contains a function or
method call, step is used to step into that function and trace through it, while next
is used to execute the called function in its entirety and only return to the debugger
when it is complete.

For where we are now, next is the command we'd want to use, since we do not
particularly want to step into the logging code and trace through what it does:

(Pdb) n

DEBUG:root:get_piechart_url called for pk=1

> /dj_projects/marketr/survey/models.py(72)get_piechart_url()

-> answer_set = self.answer_set.all()

(Pdb)

Here, next caused execution of the logging.debug call, resulting in the logged
message getting printed to the console. Then the debugger stopped again, right
before execution of the next line in the current function. Entering nothing causes the
next command to be executed again, causing answer_set to be assigned the value of
self.answer_set.all(). We can see the result using the print command:

(Pdb)

> /dj_projects/marketr/survey/models.py(73)get_piechart_url()

-> chart = PieChart3D(500, 230)

(Pdb) p answer_set

[<Answer: Comedy>, <Answer: Drama>, <Answer: Reality>]

(Pdb)

So far everything looks fine, so we continue on:

(Pdb) n

> /dj_projects/marketr/survey/models.py(74)get_piechart_url()

-> chart.set_data([a.votes for a in answer_set])

(Pdb)

AttributeError: "'PieChart3D' object has no attribute 'set_data'"

> /dj_projects/marketr/survey/models.py(74)get_piechart_url()

-> chart.set_data([a.votes for a in answer_set])

(Pdb)

Chapter 9

[303]

There's a problem: the call to set_data on chart raised an attribute error with
a message indicating that the chart has no such attribute. We made a mistake in
implementing this routine. While many of the pygooglechart methods start
with set_, the call to set the data for the chart is actually named add_data. So the
attempt to specify the data for the chart has failed. But why didn't we see that error
reflected as a debug page returned instead of just an empty string returned from
get_piechart_url? We can get the answer to that question by continuing on
tracing through the code as it runs:

(Pdb)

--Return--

> /dj_projects/marketr/survey/models.py(74)get_piechart_url()->None

-> chart.set_data([a.votes for a in answer_set])

This shows that the get_piechart_url method is returning None at the point in
the code where the AttributeError was raised. Since we did not enclose the code
in get_piechart_url in a try/except block, the error is being propagated up the
call stack.

(Pdb)

AttributeError: "'PieChart3D' object has no attribute 'set_data'"

> /usr/lib/python2.5/site-packages/django/template/__init__.py(722)_
resolve_lookup()

-> current = current()

(Pdb)

> /usr/lib/python2.5/site-packages/django/template/__init__.py(723)_
resolve_lookup()

-> except TypeError: # arguments *were* required

(Pdb)

> /usr/lib/python2.5/site-packages/django/template/__init__.py(727)_
resolve_lookup()

-> except Exception, e:

When You Don’t Even Know What to Log: Using Debuggers

[304]

Here we see that the code which called get_piechart_url was enclosed in a
try/except block, and the except clauses are being tested for a match against
the actual exception raised. The first clause, except TypeError, did not match
AttributeError. The second one, except Exception, does match, since
AttributeError is derived from the base Exception class. Thus, the code should
proceed to run whatever code is in this except clause. Remember we can use the
list command to see what that is:

(Pdb) l

722 current = current()

723 except TypeError: # arguments *were* required

724 # GOTCHA: This will also catch any TypeError

725 # raised in the function itself.

726 current = settings.TEMPLATE_STRING_IF_INVALID
invalid method call

727 -> except Exception, e:

728 if getattr(e, 'silent_variable_failure', Fal
se):

729 current = settings.TEMPLATE_STRING_IF_
INVALID

730 else:

731 raise

732 except (TypeError, AttributeError):

These except clauses appear to be testing for special cases where the raised
exception will be suppressed and the result produced will be set to the value of
settings.TEMPLATE_STRING_IF_INVALID. That gives a hint of how this exception is
ultimately not reflected in a debug page, though it may not happen immediately in
the except clause that is about to be executed:

(Pdb) n

> /usr/lib/python2.5/site-packages/django/template/__init__.py(728)_
resolve_lookup()

-> if getattr(e, 'silent_variable_failure', False):

(Pdb)

> /usr/lib/python2.5/site-packages/django/template/__init__.py(731)_
resolve_lookup()

-> raise

Chapter 9

[305]

Indeed, at this point the code is proceeding to re-raise the exception, only to have it
be immediately caught again:

(Pdb) n

> /usr/lib/python2.5/site-packages/django/template/__init__.py(732)_
resolve_lookup()

-> except (TypeError, AttributeError):

The list command at this point shows what this except clause will do:

(Pdb) l

727 except Exception, e:

728 if getattr(e, 'silent_variable_fa
ilure', False):

729 current = settings.TEMPLATE_S
TRING_IF_INVALID

730 else:

731 raise

732 -> except (TypeError, AttributeError):

733 try: # list-index lookup

734 current = current[int(bit)]

735 except (IndexError, # list index out of range

736 ValueError, # invalid literal for int
()

737 KeyError, # current is a dict witho
ut `int(bit)` key

(Pdb)

738 TypeError, # unsubscriptable object

739):

740 raise VariableDoesNotExist("Failed lookup
for key [%s] in %r", (bit, current)) # missing attribute

741 except Exception, e:

742 if getattr(e, 'silent_variable_failure', Fals
e):

743 current = settings.TEMPLATE_STRING_IF_INV
ALID

744 else:

745 raise

746

747 return current

748

(Pdb)

When You Don’t Even Know What to Log: Using Debuggers

[306]

Here it helps to recall exactly how constructs such as {{ q.get_piechart_url }} are
handled during template rendering. Django template processing attempts to resolve
the value on the right-hand side of the dot using these four methods, in order:

Dictionary lookup
Attribute lookup
Method call
List-index lookup

We entered the debugger right in the middle of the method call attempt, after
the first two options failed. The code that attempted the method call does not
distinguish between an AttributeError resulting from the method not existing
and an AttributeError raised by a called method, so the next step is going to be
to attempt a list-index lookup. This too is going to fail:

(Pdb) n

> /usr/lib/python2.5/site-packages/django/template/__init__.py(733)_
resolve_lookup()

-> try: # list-index lookup

(Pdb)

> /usr/lib/python2.5/site-packages/django/template/__init__.py(734)_
resolve_lookup()

-> current = current[int(bit)]

(Pdb)

ValueError: "invalid literal for int() with base 10: 'get_piechart_url'"

> /usr/lib/python2.5/site-packages/django/template/__init__.py(734)_
resolve_lookup()

-> current = current[int(bit)]

Specifically, the list-index lookup attempt raises a ValueError, which we can
see from the previous code is going to be treated specially and turned into a
VariableDoesNotExist exception. We could continue tracing through the code, but
at this point it is pretty clear what is going to happen. Invalid variables are turned
into whatever is assigned to the TEMPLATE_STRING_IF_INVALID setting. Since the
survey project has this setting set to the default of the empty string, an empty string
is the ultimate result of the rendering of {{ q.get_piechart_url }}.

•

•

•

•

Chapter 9

[307]

The continue command
At this point, we know what the problem is, how the problem resulted in an empty
string in the template instead of a debug page, and we are ready to go fix the code.
We can use the continue command, abbreviated as c, to tell the debugger to exit and
let program execution continue normally. When we do that here we see:

(Pdb) c

> /dj_projects/marketr/survey/models.py(71)get_piechart_url()

-> logging.debug('get_piechart_url called for pk=%d', self.pk)

(Pdb)

What happened? We are right back where we started. The reason is because
there are two questions in the survey, and the template loops over them. The
get_piechart_url method is called once for each question. When we exited
the debugger after figuring out what happened with the first question, template
processing continued and soon enough it again called get_piechart_url, where
again the pdb.set_trace() call resulted in entry to the debugger. We can confirm
this by seeing that self now refers to the second question in the survey:

(Pdb) self

<Question: Television Trends (opens 2009-09-10, closes 2009-11-10): How
many new shows will you try this Fall?>

(Pdb)

We could just continue again and proceed to fix our Python source file, but this
actually presents an opportunity to play with some additional debugger commands,
so we will do that.

The jump command
First, use next to proceed to the line of code where the wrong method is about to be
called on chart:

(Pdb) n

DEBUG:root:get_piechart_url called for pk=2

> /dj_projects/marketr/survey/models.py(72)get_piechart_url()

-> answer_set = self.answer_set.all()

(Pdb) n

> /dj_projects/marketr/survey/models.py(73)get_piechart_url()

-> chart = PieChart3D(700, 230)

(Pdb) n

When You Don’t Even Know What to Log: Using Debuggers

[308]

> /dj_projects/marketr/survey/models.py(74)get_piechart_url()

-> chart.set_data([a.votes for a in answer_set])

(Pdb)

Now, manually issue the call that should be there instead, chart.add_data:

(Pdb) chart.add_data([a.votes for a in answer_set])

0

(Pdb)

That call returned 0, which is much better than raising an attribute error. Now we
want to jump over the erroneous line of code. We can see that set_data call is on
line 74 of models.py; we want to skip line 74 and instead go straight to line 75. We
do this with the jump command, which can be shortened to j:

(Pdb) j 75

> /dj_projects/marketr/survey/models.py(75)get_piechart_url()

-> chart.set_pie_labels([a.answer for a in answer_set])

(Pdb)

That seems to have worked. We can proceed through with next to confirm we're
moving along without error in the code:

(Pdb) n

> /dj_projects/marketr/survey/models.py(75)get_piechart_url()

-> chart.set_pie_labels([a.answer for a in answer_set])

(Pdb) n

> /dj_projects/marketr/survey/models.py(75)get_piechart_url()

-> chart.set_pie_labels([a.answer for a in answer_set])

(Pdb)

Except we don't seem to be moving along, we seem to be stuck on one line. We're
not though. Notice that line includes a list comprehension: [a.answer for a in
answer_set]. The next command will avoid tracing through called functions, but it
does not do the same for list comprehensions. The line containing the comprehension
is going to appear to be executed once for every item added to the list by the
comprehension. This can get tedious, especially for long lists. In this case, the list is
only three elements long, since there are only three answers in the set, so we could
easily just keep hitting enter to get past it. However, there is also a way to get
around this, which we may as well learn next.

Chapter 9

[309]

The break command
The break command, which can be shortened to b, sets a breakpoint on the specified
line. Since next isn't getting us past line 75 as quickly as we would like, we can set
a breakpoint on line 76 and use continue to get through the list comprehension on
line 75 in one step:

(Pdb) b 76

Breakpoint 1 at /dj_projects/marketr/survey/models.py:76

(Pdb) c

> /dj_projects/marketr/survey/models.py(76)get_piechart_url()

-> logging.debug('get_piechart_url returning: %s', chart.get_url())

(Pdb)

This can come in handy for getting past other looping constructs besides list
comprehensions, or for quickly moving forward in code when you get to a point
where you don't need to trace through each line, but you do want to stop a bit
further on and see the state of things.

The break command issued without arguments prints out a list of the currently set
breakpoints, and how many times they have been hit:

(Pdb) b

Num Type Disp Enb Where

1 breakpoint keep yes at /dj_projects/marketr/survey/models.py:76

 breakpoint already hit 1 time

(Pdb)

Notice the breakpoint resulting from pdb.set_trace() isn't included here, this
display just shows breakpoints set via the break command.

The break command also supports other arguments besides a simple line
number. You can specify a function name or a line in another file. In addition, you
can also specify a condition that must be met for the breakpoint to be triggered.
None of these more advanced options are covered in detail here. The Python
documentation, however, provides full details.

When You Don’t Even Know What to Log: Using Debuggers

[310]

The clear command
After setting a breakpoint, there may come a time when you want to clear it. This
is done by the clear command, which can be shorted to cl (not c, since that is
continue):

(Pdb) cl 1

Deleted breakpoint 1

(Pdb)

Now the debugger will no longer stop on line 76 of models.py. At this point, we've
probably seen enough of the various debugger commands, and can just enter c to let
the code continue on:

(Pdb) c

DEBUG:root:get_piechart_url returning: http://chart.apis.google.com/chart
?cht=p3&chs=700x230&chd=s:9UU&chl=Hardly%20any%3A%20I%20already%20watch%2
0too%20much%20TV%21|Maybe%203-5|I%27m%20a%20TV%20fiend%2C%20I%27ll%20try%
20them%20all%20at%20least%20once%21

DEBUG:root:display_completed_survey returned type <class 'django.http.
HttpResponse'>

DEBUG:root:survey_detail returned type <class 'django.http.HttpResponse'>

[14/Nov/2009 18:03:38] "GET /1/ HTTP/1.1" 200 2989

There we see the code continued processing, logging the return value from
get_piechart_url, and exit from display_completed_survey and survey_detail.
Ultimately, a 2989 byte response was returned for this request. Switching back to
the web browser window, we see the browser waited all that time for a response.
Furthermore, our manual calling of the correct method and jumping over the wrong
one did work. The browser shows it was able to successfully retrieve the pie chart for
the second question:

Chapter 9

[311]

Unfortunately, although the figure was produced without error, there is a bit of a
problem with the labels being too long to fit properly. To fix this, we can try using a
legend instead of labels. We'll do that, and make the change of replacing set_data
with add_data, next.

When You Don’t Even Know What to Log: Using Debuggers

[312]

Fixing the pygooglechart results display
We seem close to having a working implementation of pie charts for our results
display. We can update the get_piechart_url method to look like this:

 def get_piechart_url(self):
 import pdb; pdb.set_trace()
 answer_set = self.answer_set.all()
 chart = PieChart3D(500, 230)
 chart.add_data([a.votes for a in answer_set])
 chart.set_legend([a.answer for a in answer_set])
 return chart.get_url()

The changes from the previous version are first removal of the logging calls (since
they weren't particularly helpful) and also removal of the import of logging. The
import for PieChart3D has been moved to the top of the file, with the other imports.
The erroneous call to chart.set_data has been replaced with the correct chart.
add_data. Finally, the call to chart.set_pie_labels had been replaced by chart.
set_legend, in hopes that when the answers are arranged as a legend, they will be
able to fit on the chart without spilling off the edges.

How well does that work? If we reload the browser page, the browser again appears
to hang, because the get_piechart_url method still has the pdb.set_trace() call
that breaks into the debugger. We might have removed that along with the other
changes, in hopeful belief that the new version of the code is surely going to work,
but often such hopes are dashed and we find ourselves having to re-add the call to
figure out what is going wrong next. In this case, there are also a few more debugger
commands to experiment with, which we'll do next.

The up and down commands
When we switch to the runserver console window, we again find the code sitting at
the beginning of get_piechart_url:

DEBUG:root:survey_detail called with method GET, kwargs {'pk': u'1'}
DEBUG:root:display_completed_survey called
> /dj_projects/marketr/survey/models.py(71)get_piechart_url()
-> answer_set = self.answer_set.all()
(Pdb)

We could just continue and see how the new code behaves, but there are a few
debugger commands we have not experimented with, so let's do that first. One is
the step command, which was mentioned previously, but never used since we have
exclusively used next for stepping through the code. If we try step a few times here,
we see:

Chapter 9

[313]

(Pdb) s

--Call--

> /usr/lib/python2.5/site-packages/django/db/models/fields/related.
py(319)__get__()

-> def __get__(self, instance, instance_type=None):

(Pdb)

> /usr/lib/python2.5/site-packages/django/db/models/fields/related.
py(320)__get__()

-> if instance is None:

(Pdb)

> /usr/lib/python2.5/site-packages/django/db/models/fields/related.
py(323)__get__()

-> return self.create_manager(instance,

(Pdb)

> /usr/lib/python2.5/site-packages/django/db/models/fields/related.
py(324)__get__()

-> self.related.model._default_manager.__class__)

(Pdb)

--Call--

> /usr/lib/python2.5/site-packages/django/db/models/fields/related.
py(346)create_manager()

-> def create_manager(self, instance, superclass):

(Pdb)

> /usr/lib/python2.5/site-packages/django/db/models/fields/related.
py(350)create_manager()

-> rel_field = self.related.field

(Pdb)

Here we have single-stepped six times and as a result are now nested a couple of
call levels deep into the Django code. We did it intentionally, and it's often a useful
way of learning more about how Django (or other support library) code works. But
it is also quite common when debugging to mistakenly start single-stepping through
support library code when we really only wanted to be single-stepping through our
own code. We then find ourselves suddenly nested possibly a few levels deep in
completely unfamiliar code, and we want to get back to stepping through the code
we are developing.

When You Don’t Even Know What to Log: Using Debuggers

[314]

One way to accomplish this is with the up command, which can be shortened to u.
The up command moves the current stack frame up one level in the call chain:

(Pdb) u

> /usr/lib/python2.5/site-packages/django/db/models/fields/related.
py(324)__get__()

-> self.related.model._default_manager.__class__)

(Pdb) u

> /dj_projects/marketr/survey/models.py(71)get_piechart_url()

-> answer_set = self.answer_set.all()

(Pdb) u

> /usr/lib/python2.5/site-packages/django/template/__init__.py(722)_
resolve_lookup()

-> current = current()

(Pdb)

Here we have moved up three levels. The original current stack frame was
the one for the call to create_manager. The first up command switched the
current stack frame to the one for __get__, the next switched to get_piechart_url,
and the third went all the way back to the caller of get_piechart_url, _resolve_
lookup. Switching the current stack frame does not execute any code, it just
changes the context for commands. For example, now with the current stack
frame for _resolve_lookup being current, we can examine variables that exist
in that frame:

(Pdb) whatis current

Function get_piechart_url

(Pdb)

Also, list now will show us the code associated with the current stack frame:

(Pdb) l

717 if callable(current):

718 if getattr(current, 'alters_data', False):

719 current = settings.TEMPLATE_STRING_IF
_INVALID

720 else:

721 try: # method call (assuming no args
required)

722 -> current = current()

Chapter 9

[315]

723 except TypeError: # arguments *were*
required

724 # GOTCHA: This will also catch
any TypeError

725 # raised in the function itself.

726 current = settings.TEMPLATE_STRIN
G_IF_INVALID # invalid method call

727 except Exception, e:

(Pdb)

If we have switched stack frames and wonder where the current stack frame is
relative to where the current execution point is, the where command shows that. In
this case, the end of the where command output looks like this:

 /usr/lib/python2.5/site-packages/django/template/__init__
.py(687)resolve()

-> value = self._resolve_lookup(context)

> /usr/lib/python2.5/site-packages/django/template/__init__.py(722)_
resolve_lookup()

-> current = current()

 /dj_projects/marketr/survey/models.py(71)get_piechart_url()

-> answer_set = self.answer_set.all()

 /usr/lib/python2.5/site-packages/django/db/models/fields/related.
py(324)__get__()

-> self.related.model._default_manager.__class__)

 /usr/lib/python2.5/site-packages/django/db/models/fields/related.
py(350)create_manager()

-> rel_field = self.related.field

(Pdb)

The last line listed is always the current execution point, while the current stack
frame is indicated by the > in the first column. Here, it indicates that the current
stack frame is the one for _resolve_lookup.

In this case we moved up one stack frame further than we really wanted to. To get
back to our own code, we need to move back down one level. This is done by using
the down command (which can be shortened to d):

(Pdb) d

> /dj_projects/marketr/survey/models.py(71)get_piechart_url()

-> answer_set = self.answer_set.all()

(Pdb)

When You Don’t Even Know What to Log: Using Debuggers

[316]

Now, if we want to continue running up to the next line from here, we can use the
next command:

(Pdb) n

> /dj_projects/marketr/survey/models.py(72)get_piechart_url()

-> chart = PieChart3D(500, 230)

(Pdb)

Now we are back in familiar territory, and can continue with debugging our
own code.

The return command
A second way to accomplish the same thing is to use the return command, which
can be shortened to r. This command continues execution until the current function
returns, and then the debugger is entered again. To see it in action, let's step into the
PieChart3D call:

(Pdb) s

--Call--

> /var/lib/python-support/python2.5/pygooglechart.py(820)__init__()

-> def __init__(self, *args, **kwargs):

(Pdb)

> /var/lib/python-support/python2.5/pygooglechart.py(821)__init__()

-> assert(type(self) != PieChart) # This is an abstract class

(Pdb)

> /var/lib/python-support/python2.5/pygooglechart.py(822)__init__()

-> Chart.__init__(self, *args, **kwargs)

(Pdb)

We've taken a couple of steps into the method, but have made only one call, so a
single return should get us back to our survey code:

(Pdb) r

--Return--

> /var/lib/python-support/python2.5/pygooglechart.py(823)__init__()->None

-> self.pie_labels = []

(Pdb)

Chapter 9

[317]

This method apparently does not have an explicit return line, so the line of code
displayed is the last line in the method. The ->None in the output shows what the
method is returning. If we step from here:

(Pdb) s

> /dj_projects/marketr/survey/models.py(73)get_piechart_url()

-> chart.add_data([a.votes for a in answer_set])

(Pdb)

We are now back to the next line of code after the call to create the pie chart.
From here, we can use return to see what the get_piechart_url method is
going to return:

(Pdb) r

--Return--

> /dj_projects/marketr/survey/models.py(75)get_piechart_url()->'http://
chart...Drama|Reality'

-> return chart.get_url()

(Pdb)

That looks good; the function ran to completion and is returning a value. Also,
it seems that pdb shortens the displayed return values if they are long, since the
displayed value doesn't look quite right. We can confirm this with either of the
print commands, which show that the actual value is a good bit longer:

(Pdb) pp chart.get_url()

'http://chart.apis.google.com/chart?cht=p3&chs=500x230&chd=s:99f&chdl=Com
edy|Drama|Reality'

(Pdb)

At this point, it looks like all is working fine, so we may as well use continue to let
the program keep running, then continue again when the debugger is entered for
the second pie chart:

(Pdb) c

> /dj_projects/marketr/survey/models.py(71)get_piechart_url()

-> answer_set = self.answer_set.all()

(Pdb) c

DEBUG:root:display_completed_survey returned type <class 'django.http.
HttpResponse'>

DEBUG:root:survey_detail returned type <class 'django.http.HttpResponse'>

[15/Nov/2009 11:48:07] "GET /1/ HTTP/1.1" 200 3280

When You Don’t Even Know What to Log: Using Debuggers

[318]

That all looks good. What does the browser show? Switching to its window, we see
the following:

Chapter 9

[319]

That's better than before. Switching from labels to a legend has solved the problem of
the answer text spilling off the figure. However, it's a little disconcerting for the pie
charts themselves to be so different in size, depending on the length of the answers.
Also, it might be nice if the pie chart wedges could be labeled with the percentage of
the total that each represents.

Researching more on the Google chart API doesn't reveal any way to control the
legend placement to perhaps keep the pie sizes the same, nor how to annotate the
wedges with information like the percentage of total. While reasonably simple and
straightforward to use, this API does not offer a lot in terms of customizing the
charts that are generated. Thus, we might want to investigate other alternatives
for generating charts, which we'll do next.

We'll keep the current implementation of get_piechart_url, though, since
at this point we don't know that we are going to really switch to an alternative.
Before moving on to the next thing, it makes sense to remove the import
pdb; pdb.set_trace() in that function. The routine is working now, and
if we do return to using it at a later point, it will be better if it runs to completion
without user intervention instead of breaking into the debugger.

Results display using matplotlib
The matplotlib library provides another alternative for generating charts from
Python. It can be found on the Python Package Index site, http://pypi.python.
org/pypi/matplotlib. The version of matplotlib used in this chapter is 0.98.3.

With matplotlib, our application cannot simply construct a URL and push the task
of generating and serving the image data off to another host. Instead, we need to
write a view that will generate and serve the image data. After some investigation
of the matplotlib APIs, an initial implementation (in survey/views.py) might be:

from django.http import HttpResponse
from survey.models import Question
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as \
 FigureCanvas

@log_view
def answer_piechart(request, pk):
 q = get_object_or_404(Question, pk=pk)
 answer_set = q.answer_set.all()
 x = [a.votes for a in answer_set]
 labels = [a.answer for a in answer_set]

When You Don’t Even Know What to Log: Using Debuggers

[320]

 fig = Figure()
 axes = fig.add_subplot(1, 1, 1)
 patches, texts, autotexts = axes.pie(x, autopct="%.0f%%")
 legend = fig.legend(patches, labels, 'lower left')

 canvas = FigureCanvas(fig)
 response = HttpResponse(content_type='image/png')
 canvas.print_png(response)
 return response

That is a bit more complicated than the pygooglechart version. First, we need two
imports from matplotlib: the basic Figure class, and an appropriate backend that
can be used to render figures. Here, we have chosen the agg (Anti-Grain Geometry)
backend, since it supports rendering to PNG format.

Within the answer_piechart view, the first four lines are straightforward. The
Question instance is retrieved from the primary key value passed to the view. The
answer set for that question is cached in the local variable answer_set. Then two
arrays of data are created from the answer set: x contains the vote count values for
each answer and labels contains the answer text values.

Next, a basic matplotlib Figure is created. A matplotlib Figure supports having
multiple subplots contained in it. For the simple case where the Figure holds a
single plot, add_sublot still needs to be called to create the subplot and return an
Axes instance that can be used to draw on the plot. The arguments to add_subplot
are the number of rows and columns in the subplot grid, then the number of the plot
being added to the Figure. The arguments 1, 1, 1 here indicate the single subplot in
a 1 x 1 grid.

The pie method is then invoked on the returned subplot axes to generate a pie
chart figure. The first argument x is the array of data values for the pie wedges. The
autopct keyword argument is used to specify a format string for annotating each
pie wedge with its percentage of the total. The value %.0f%% specifies that the float
percentage values should be formatted with zero digits after the decimal point,
followed by a percent sign.

The pie method returns three data sequences. The first of these, patches, describes
the pie wedges and needs to be passed to the figure's legend method for creating
a legend to match the wedges to their associated answer values. Here we have
specified that the legend should be placed in the lower left corner of the figure.

Chapter 9

[321]

The other two sequences returned by pie describe the text labels (which will be
blank here since labels were not specified when pie was called) and autopct
annotations for the wedges. The code here does not need to use these sequences
for anything.

With the legend in place, the figure is complete. A canvas for it is created using
the previously imported agg backend FigureCanvas. An HttpResponse with
content type image/png is created, and the image is written in PNG format to the
response using the print_png method. Finally, the answer_piechart view returns
this response.

With the view code done, we need to update the survey/urls.py file to include a
mapping that will route requests to that view:

urlpatterns = patterns('survey.views',
 url(r'^$', 'home', name='survey_home'),
 url(r'^(?P<pk>\d+)/$', 'survey_detail', name='survey_detail'),
 url(r'^thanks/(?P<pk>\d+)/$', 'survey_thanks',
 name='survey_thanks'),
 url(r'^piechart/(?P<pk>\d+)\.png/$', 'answer_piechart',
 name='survey_answer_piechart'),
)

Here we have added the last pattern. This pattern matches URL paths that start
with piechart/, followed by one or more digits (the primary key), ending with
.png. These URLs are routed to the survey.views.answer_piechart view,
passing the captured primary key value as a parameter. The pattern is named
survey_answer_piechart.

The final piece needed to switch to using matplotlib instead of pygooglechart is to
update the survey/completed_survey.html template to generate URLs using this
pattern. The only change needed is to update the line containing the img tag:

<p><img src="{% url survey_answer_piechart q.pk %}" alt="Pie
Chart"/></p>

Here we have replaced the call to the question's get_piechart_url method with a
url template tag referencing the new pattern just added.

When You Don’t Even Know What to Log: Using Debuggers

[322]

How does that work? Reasonably well. We did not specify a size for the figures,
and the default size from matplotlib is a bit larger than what we had specified for
pygooglechart, so we cannot see the whole page without scrolling. However, each
individual figure looks pretty good. For example, the first one appears like so:

Chapter 9

[323]

And the second looks like this:

When You Don’t Even Know What to Log: Using Debuggers

[324]

The matplotlib API supports much more customization than we have used here.
The size of the figure could be changed, as could placement of the pie, colors of
the wedge pieces, and font's properties for the text. The pie wedge for the winning
answer could be emphasized by exploding it out from the rest of the pie. However,
all of those items are cosmetic and beyond the scope of what we will cover here. To
get back to the subject of debugging, we will turn our attention in the next section to
removing some wasteful duplicate processing that was just introduced as a result of
switching to matplotlib.

Improving the matplotlib approach
Consider what happens now when the page for a completed survey is
requested by a browser. For each question in the survey, the returned completed
survey page has an embedded image that, when fetched, will trigger a call to
the answer_piechart view. That view dynamically generates an image and is
computationally expensive. In fact, depending on your hardware, if you try stepping
through that view you may be able to observe appreciable pauses when stepping
over some of the matplotlib calls.

Now consider what happens when many different users request the same completed
survey page. That will trigger many calls into the computationally expensive
answer_piechart view. Ultimately, all of the users will be served the exact same
data, since results are not displayed until the survey is closed, so the underlying vote
counts used to create the pie chart will not be changing. Yet answer_piechart will
be called over and over to re-do the same considerable amount of work to produce
the exact same result. This is a wasteful use of our server capacity.

How can we eliminate this waste? There are (at least) three possible approaches:

Introduce caching, and cache the results of the answer_piechart view.
Set up some external process that pre-computes all of the pie charts for a
survey when it closes and saves them on disk somewhere. Change the img
tags in the completed survey response template to refer to these static files
instead of a view that dynamically generates the images.
Dynamically generate the pie charts for a completed survey when the first
request for it comes in, and save them to disk somewhere. This is essentially
the same as the second approach, in that the img tags in the completed
survey response will now refer to static files, but the computation of the
charts is moved from some external process into the web server.

•

•

•

Chapter 9

[325]

Each of these approaches has pros and cons. The one we are going to pursue is the
last, simply because it offers the most opportunity to learn a couple of new things.
Specifically, in implementing this third approach we will see how to set up the
development server to serve static files, and we will see how pdb can be used to
ensure that code operates properly in the face of multi-process race conditions.

Setting up static file serving
So far in the development of the survey application we have concentrated entirely
on serving dynamic content. While dynamic content is certainly the focus of Django
applications, in reality even the most dynamic of applications will have some data
that needs to be served from files. Here with the survey application we have run into
a case where we want to serve image files from disk. Most applications will also have
CSS and possibly JavaScript files that are better served directly from disk rather than
through Django view code.

Django is a framework for serving dynamic content. Although it does not directly
support serving data from files, there are a couple of settings that facilitate
incorporating some static files into a project. These are MEDIA_ROOT and MEDIA_URL.

MEDIA_ROOT is a file system path—the path to the directory that holds the static
files for the project. It is used by Django internally as the base path for saving files
uploaded to a model containing a FileField. For the survey application, we will
use it as the base path for saving dynamically-generated pie chart image files.

The default value for this setting is an empty string, so we need to set it to something
else now that we want to use it:

MEDIA_ROOT = '/dj_projects/marketr/site_media/'

Here we have set MEDIA_ROOT to point to a site_media directory (which we must
create) under our main marketr project directory.

MEDIA_URL, which also defaults to an empty string, is the base URL path for referring
to static files. It is used by Django internally to general the url attribute of a file
referenced by a FileField model.

In addition, the django.core.context_processors.media context processor makes
the value of this setting available in templates by setting MEDIA_URL in the template
context. This context processor is enabled by default, so any templates rendered with
a RequestContext have access to MEDIA_URL.

Let's set MEDIA_URL in settings.py as follows:

MEDIA_URL = '/site_media/'

When You Don’t Even Know What to Log: Using Debuggers

[326]

Note that one value that should not be used for MEDIA_URL is '/media/'. This is
the default setting for ADMIN_MEDIA_PREFIX, which defines the root URL for static
files used by the admin. Trying to place two different trees of static files in the same
place in the URL hierarchy does not work, and is most easily avoided by setting
MEDIA_URL to something other than '/media/'.

Note that though these settings are defined in terms that establish a mapping from
URL paths to files on disk, nothing in Django will automatically serve files based on
that mapping. During URL resolution, Django does not test to see if the requested
URL starts with MEDIA_URL and if so, serve up the corresponding file found under
MEDIA_ROOT. Rather, Django assumes that URLs referring to static files on disk will
be served by the web server directly and not routed through Django code at all.

However, so far during development we have not been using any web server
other than Django's own development server. If we want to continue using the
development server, we need to somehow get it to serve the image files created by
the survey application. How do we do that?

Django does provide a static file serving capability, specifically for use during
development. To use it, we need to update the project's urls.py file to route requests
for URLs that start with 'site_media/' to Django's static file serving view. Thus, we
need to change the urls.py file to contain:

from django.conf.urls.defaults import *

Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()

from django.conf import settings

urlpatterns = patterns('',
 # Example:
 # (r'^marketr/', include('marketr.foo.urls')),

 # Uncomment the admin/doc line below and add
 # 'django.contrib.admindocs'
 # to INSTALLED_APPS to enable admin documentation:
 # (r'^admin/doc/', include('django.contrib.admindocs.urls')),

 # Uncomment the next line to enable the admin:
 (r'^admin/', include(admin.site.urls)),
 (r'^site_media/(.*)$', 'django.views.static.serve',
 {'document_root': settings.MEDIA_ROOT, 'show_indexes': True}),
 (r'', include('survey.urls')),
)

Chapter 9

[327]

The first change here from the previous version is the addition of the import of
settings from django.conf. Second is the addition of the pattern referring to URLs
that start with site_media/. These URLs are routed to django.views.static.
serve. Two parameters are passed to this view: document_root and show_indexes.
For document_root, the MEDIA_ROOT setting is specified, which means that the
static server will look for the requested files under MEDIA_ROOT. True is specified for
show_indexes, which means that the static server will return a list of files when the
requested URL refers to a directory instead of a file.

Dynamically generating image files
Now that we have set everything up for serving image files from disk, we can start
to make the code changes necessary for this approach. First, we should remove the
piechart pattern from the survey/urls.py file, as it is no longer needed.

Second, we can update the display_completed_survey function in views.py to
include code that ensures the pie chart image files for each question in the survey
have been generated before returning the completed survey response:

@log_call
def display_completed_survey(request, survey):
 for q in survey.question_set.all():
 q.check_piechart()
 return render_to_response('survey/completed_survey.html',
 {'survey': survey},
 RequestContext(request))

Here we have added the for loop that loops through all of the questions in the
survey. For each, it calls a new method on the question, check_piechart. This
routine will be responsible for ensuring that the pie chart file exists, creating it
if necessary.

Next, we can move on to the survey/models.py file and update the Question model
to include an implementation of check_piechart and anything else that might be
needed to support the new approach. What else might be needed? For referencing
the pie chart URL from a template, it would be convenient if the Question model
supported returning the path to the pie chart file relative to MEDIA_URL. Thus, we
need two new methods in the Question model:

from survey import pie_utils
class Question(models.Model):
 [… other code unchanged ...]

 @property
 def piechart_path(self):

When You Don’t Even Know What to Log: Using Debuggers

[328]

 if self.pk and self.survey.closes < datetime.date.today():
 return pie_utils.PIE_PATH + '%d.png' % self.pk
 else:
 raise AttributeError

 def check_piechart(self):
 pie_utils.make_pie_if_necessary(self.piechart_path,
 self.answer_set.all())

Here we have opted not to include a lot of file checking and creation code directly
in survey/models.py, but rather to factor that work out into a new independent
module in survey/pie_utils.py. The two routines implemented here, then,
can be kept very simple.

piechart_path, which is implemented as a read-only property, returns the path
for the pie chart. This value can be combined with the MEDIA_URL setting to create
a URL path, or with the MEDIA_ROOT setting to create a file system path. Since
in the long-term we would expect to have more files than just pie chart images in
the tree, it's not appropriate to put the pie charts in the root of this tree. Thus, the
pie_utils.PIE_PATH value is used to carve out a subtree within the static file
tree to hold the pie charts.

Note that this routine is implemented to raise an AttributeError if the model
instance has not yet been saved to the database, or if it references a survey that has
not yet closed. In these situations, the pie chart file should not exist, so any attempt
to reference it should trigger an error.

The check_piechart method is implemented to forward the call to the pie_utils
make_pie_if_necessary function. This function takes two parameters: the path for
the pie chart, and the set of answers for the question.

Before we move on to the implementation of the pie_utils module, we can make a
simple update to the survey/completed_survey.html template. The line containing
the img tag needs to be changed to use the Question model's piechart_path when
creating the URL that references the pie chart image:

<p><img src="{{ MEDIA_URL }}{{ q.piechart_path }}"
alt="Pie Chart"/></p>

Here, piechart_path is combined with MEDIA_URL (available in the template
since display_completed_survey specifies a RequestContext when calling
render_to_response) to build the full URL for the image.

Chapter 9

[329]

Finally, we need to implement the survey/pie_utils.py code. This module must
define a value for PIE_PATH, and implement the make_pie_if_necessary function.
The first task is trivial and accomplished with something like the following:

import os
from django.conf import settings
PIE_PATH = 'piecharts/'
if not os.path.exists(settings.MEDIA_ROOT + PIE_PATH):
 os.mkdir(settings.MEDIA_ROOT + PIE_PATH)

This code defines a value for PIE_PATH and ensures that the resulting subdirectory
under the project's MEDIA_ROOT exists, creating it if necessary. With this code and
the previously noted setting for MEDIA_ROOT, the pie chart image files for the survey
application will be placed in /dj_projects/marketr/site-media/piecharts/.

The second piece needed to complete the pie_utils module, an implementation of
the make_pie_if_necessary function, may also seem quite simple at first glance.
If the file already exists, make_pie_if_necessary does not need to do anything,
otherwise it needs to create the file. However, things get more complicated when
you consider that the deployment environment for this code will eventually be a
potentially multi-process multi-threaded web server. This introduces the
opportunity for race conditions, which we'll discuss next.

Dealing with race conditions
A naïve implementation of the make_pie_if_necessary module might be:

def make_pie_if_necessary(rel_path, answer_set):
 fname = settings.MEDIA_ROOT + rel_path
 if not os.path.exists(fname):
 create_piechart(fname, answer_set)

Here make_pie_if_necessary creates the full file path by combining the passed
relative path with the settings MEDIA_ROOT value. Then, if that file does not exist, it
calls create_piechart, passing along the filename and the answer set, to create the
pie chart file. This routine could be implemented like so:

from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as \
 FigureCanvas

def create_piechart(f, answer_set):
 x = [a.votes for a in answer_set]
 labels = [a.answer for a in answer_set]

When You Don’t Even Know What to Log: Using Debuggers

[330]

 fig = Figure()
 axes = fig.add_subplot(1, 1, 1)
 patches, texts, autotexts = axes.pie(x, autopct="%.0f%%")
 legend = fig.legend(patches, labels, 'lower left')

 canvas = FigureCanvas(fig)
 canvas.print_png(f)

This code is essentially what was in the original matplotlib implementation in the
answer_piechart view, modified to account for the fact that the answer set has been
passed directly, as has the file to which the image data should be written.

This implementation of make_pie_if_necessary, when tested with the
development server, would work fine. It might even seem to work fine in a
lightly loaded production environment. However, if you consider a heavily
loaded production environment, with a multi-process web server where requests
for the same page may be arriving nearly simultaneously, a potential problem
emerges. There is nothing to prevent multiple nearly-simultaneous calls to
make_pie_if_necessary from resulting in multiple nearly-simultaneous
calls to canvas.print_png to create the same file.

It's clear how this could happen on a multi-processor machine, since it's easy to see
how two simultaneous requests might get dispatched to different processors and
result in the same code running simultaneously on each. Both processes check to
see if the file exists, both find it does not, and both embark on creating it.

The same situation can also occur even on a single-processor machine, with
preemptive scheduling by the operating system. One process may check to see
if the file exists, find it does not, and start down the path of creating it. However,
before this code actually gets to the point of creating the file, the operating
system's preemptive scheduler suspends it and lets the process handling the
second nearly-simultaneous request run. This process also fails to find the file
when it checks, and also starts down the path of creating it.

What would be the end result if this were to happen? Would it be that bad? Perhaps
not. Possibly one process would do its job of creating and writing the file, and then
the second one would do its work, overwriting the results from the first. There
would have been some duplicate work done, but the end result might be fine:
a file on disk containing the PNG image of the pie chart.

Chapter 9

[331]

However, is there any guarantee that the work of the two nearly simultaneous calls
would be serialized like that? No. The matplotlib API doesn't provide any such
guarantee. Without digging into the implementation it's hard to be sure, but it seems
likely that the task of writing out an image file may be split into several different
individual write calls. This affords ample opportunity for random interleaving of
calls from different processes that reference the same file to result in a corrupt
image file ultimately written out to disk.

To prevent this, we need to change the make_pie_if_necessary function to use an
atomic method of checking for the file's existence and create it if necessary:

import errno
def make_pie_if_necessary(rel_path, answer_set):
 fname = settings.MEDIA_ROOT + rel_path
 try:
 fd = os.open(fname, os.O_WRONLY | os.O_CREAT | os.O_EXCL)
 try:
 f = os.fdopen(fd, 'wb')
 create_piechart(f, answer_set)
 finally:
 f.close()
 except OSError, e:
 if e.errno == errno.EEXIST:
 pass
 else:
 raise

This code uses a combination of flags passed to the os.open routine to atomically
create the file. os.O_WRONLY specifies that the file is open for writing only,
os.O_CREAT specifies that the file should be created if it does not exist, and
os.O_EXCL, in combination with os.O_CREAT, specifies that an error should be
raised if the file exists. Even if multiple processes simultaneously issue this
os.open call, the underlying implementation guarantees that only one will be
successful, and an error will be raised for the others. Thus, only one process will
proceed with the code that creates the pie chart.

Note that when running on Windows, os.O_BINARY also needs to be included in
the set of flags passed into os.open. Without that flag, Python will treat the file data
as text and automatically insert carriage return characters whenever a linefeed is
encountered in the data written to the file. This behavior will result in corrupt PNG
image files that cannot be displayed.

When You Don’t Even Know What to Log: Using Debuggers

[332]

One wrinkle introduced by this change is that the file descriptor returned by
os.open cannot be passed to matplotlib as a target file for the PNG data. The
matplotlib library accepts filenames, or Python file-like objects, but it does not
support a file descriptor as returned by os.open. Thus, the code here converts the
file descriptor to a Python file object using os.fdopen, and passes the returned file
to the create_piechart routine.

In the case where the os.open call raises an OSError, the exception's errno attribute
is tested against errno.EEXIST. This is the specific error that will be raised when the
file already exists, and should not be reflected up as an error but rather should be
ignored. Any other errors are reflected to the caller of make_pie_if_necessary.

These changes ensure that the image file will be created only once, which is good.
However, there's another potential problem. Consider what happens now with
multiple simultaneous requests. Only one will proceed down the path of creating the
file. All the others will see that the file already exists and simply proceed to send a
response referencing it.

But note that the file existence does not guarantee that the image data has been
written to it: there is a fair amount of processing to be done first to create the
image, before it is written to the file. Is there any guarantee that this processing will
complete before any requests for the file are received and processed? No. Depending
on how fast clients are and how slow the image generation is, it's possible for a
request for the file to arrive and be processed before the image data is actually
written to the file.

Is this likely to happen? Probably not. What would be the effect if it did? Probably
nothing terrible. Likely the browser would display a partial image or the Pie Chart
alternate text for the image. The user might try re-loading the page to see if it
worked better the second time, and by then the image file would probably be
served correctly.

Given the seemingly slim chances of this situation arising, and its fairly minor effect,
we might choose not to fix this particular problem. However, in some situations
it may be necessary to ensure that the file not only exists but also contains data. It
might be worthwhile to investigate fixing this potential problem. One approach is
to modify make_pie_if_necessary as follows:

import fcntl
def make_pie_if_necessary(rel_path, answer_set):
 fname = settings.MEDIA_ROOT + rel_path
 try:
 fd = os.open(fname, os.O_WRONLY | os.O_CREAT | os.O_EXCL)
 try:
 f = os.fdopen(fd, 'wb')

Chapter 9

[333]

 fcntl.flock(f, fcntl.LOCK_EX)
 create_piechart(f, answer_set)
 finally:
 fcntl.flock(f, fcntl.LOCK_UN)
 f.close()
 except OSError, e:
 if e.errno == errno.EEXIST:
 wait_for_data(fname)
 else:
 raise

Here the first change is to obtain an exclusive lock on the file, using fcntl.flock,
before calling create_piechart. (Note that fcntl is a Unix-only Python module.
Thus, this code will not work on Windows. There are add-on packages to get file
locking capabilities in Windows, but specifics of using any of them are beyond the
scope of what will be covered here.) Second, this file lock is released before the file
is closed after create_piechart returns. Third, in the case where the file is found
to already exist, instead of immediately returning, a new wait_for_data function is
called. The implementation of wait_for_data is:

import time
def wait_for_data(fname):
 try:
 fd = os.open(fname, os.O_RDONLY)
 empty = True
 while empty:
 fcntl.flock(fd, fcntl.LOCK_SH)
 st = os.fstat(fd)
 if st.st_size > 0:
 empty = False
 fcntl.flock(fd, fcntl.LOCK_UN)
 if empty:
 time.sleep(.5)
 finally:
 if fd:
 os.close(fd)

When You Don’t Even Know What to Log: Using Debuggers

[334]

This code, given a filename, first opens the file for reading. It then assumes the file is
empty and enters a loop that will continue as long as the file remains empty. In the
loop, the code obtains a shared lock on the file, and then calls os.fstat to determine
the file's size. If the returned size is non-zero, then emtpy is set to False, which
will terminate the loop at the end of this iteration. Before that, though, the file lock
is released, and if the file is in fact empty, the code sleeps for half a second before
proceeding with the next iteration of the loop. The sleep is intended to give the other
process, presumably busy trying to create and write the data, time to finish its work.
Before returning, the file is closed (if it was ever successfully opened).

That all looks OK, and seems to work well enough when we try it out, testing it in a
browser. However, it is hard to be sure, just based on visual inspection of code like
this, that it is completely correct. Using a debugger here to artificially create the kind
of race conditions we are trying to guard against, can be helpful. We'll do this next.

Using the debugger to force race situations
It is not possible to force race conditions using the development server alone: it is
single-threaded and single-process. However, we can use the development server
in combination with a manage.py shell session, with debugger breakpoints and
single-stepping, to force any combination of multi-process interleaved execution
that we want to test out.

For example, we can insert a breakpoint near the top of the make_pie_if_necessary
function:

def make_pie_if_necessary(rel_path, answer_set):
 fname = settings.MEDIA_ROOT + rel_path
 try:
 import pdb; pdb.set_trace()
 fd = os.open(fname, os.O_WRONLY | os.O_CREAT | os.O_EXCL)

Now, we need to delete any already-generated image files from disk, so that when
this function is first entered it will go down the path of trying to create a file:

rm /dj_projects/marketr/site_media/piecharts/*

Next, we ensure the development server is running, and from a browser, re-load the
results page for the Television Trends survey. The browser will appear to hang, and
in the development server console we will see the debugger entered:

> /dj_projects/marketr/survey/pie_utils.py(13)make_pie_if_necessary()

-> fd = os.open(fname, os.O_WRONLY | os.O_CREAT | os.O_EXCL)

(Pdb)

Chapter 9

[335]

If we use next to step over this call, we will see:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(14)make_pie_if_necessary()

-> try:

(Pdb)

Execution proceeded to the next line of code, so the os.open call was successful. This
thread is now frozen at the point where the file has been created, but no data has
been written to it. We want to verify that another process calling the same function
will correctly proceed to wait for the file data to be written before continuing. To test
this, we can start a manage.py shell in a separate window, manually retrieve the
appropriate question, and call its check_piechart method:

kmt@lbox:/dj_projects/marketr$ python manage.py shell

Python 2.5.2 (r252:60911, Oct 5 2008, 19:24:49)

[GCC 4.3.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

(InteractiveConsole)

>>> from survey.models import Question

>>> q = Question.objects.get(pk=1)

>>> q.check_piechart()

> /dj_projects/marketr/survey/pie_utils.py(13)make_pie_if_necessary()

-> fd = os.open(fname, os.O_WRONLY | os.O_CREAT | os.O_EXCL)

(Pdb)

The breakpoint in make_pie_if_necessary has again stopped execution right
before the call to open the file. In this case when we use next to step over the call,
we should see the code take a different path, since the file already exists:

(Pdb) n

OSError: (17, 'File exists', '/dj_projects/marketr/site_media/
piecharts/1.png')

> /dj_projects/marketr/survey/pie_utils.py(13)make_pie_if_necessary()

-> fd = os.open(fname, os.O_WRONLY | os.O_CREAT | os.O_EXCL)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(21)make_pie_if_necessary()

-> except OSError, e:

(Pdb) n

When You Don’t Even Know What to Log: Using Debuggers

[336]

> /dj_projects/marketr/survey/pie_utils.py(22)make_pie_if_necessary()

-> if e.errno == errno.EEXIST:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(23)make_pie_if_necessary()

-> wait_for_data(fname)

(Pdb)

That looks good. Stepping through the code we see that os.open raised an OSError
with errno attribute errno.EEXIST, as expected. The shell thread, then, will proceed
to wait for the file to have data. If we step into that routine, we can see if it runs as
we expect:

(Pdb) s

--Call--

> /dj_projects/marketr/survey/pie_utils.py(43)wait_for_data()

-> def wait_for_data(fname):

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(44)wait_for_data()

-> try:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(45)wait_for_data()

-> fd = os.open(fname, os.O_RDONLY)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(46)wait_for_data()

-> empty = True

(Pdb)

At this point, we've done the preliminary processing in this routine. The file is now
open and empty has been initialized to True. We're ready to enter the first iteration
of the loop. What should happen? Since the other thread of control is still blocked
before it has even obtained the exclusive lock on the file, this thread should be able
to obtain a shared lock on the file, test the file size, and end up sleeping for half a
second since the file is empty. Stepping through, we see that is indeed what happens:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(47)wait_for_data()

-> while empty:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(48)wait_for_data()

-> fcntl.flock(fd, fcntl.LOCK_SH)

Chapter 9

[337]

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(49)wait_for_data()

-> st = os.fstat(fd)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(50)wait_for_data()

-> if st.st_size > 0:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(52)wait_for_data()

-> fcntl.flock(fd, fcntl.LOCK_UN)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(53)wait_for_data()

-> if empty:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(54)wait_for_data()

-> time.sleep(.5)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(47)wait_for_data()

-> while empty:

(Pdb)

The fcntl.flock to lock the file returned immediately since the file is not yet locked
by the other thread. This code found the file size to be zero, proceeded to sleep for
half a second, and is now beginning a second iteration of the loop. Let's step
it forward to a point where it has again obtained a shared lock on the file:

> /dj_projects/marketr/survey/pie_utils.py(48)wait_for_data()

-> fcntl.flock(fd, fcntl.LOCK_SH)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(49)wait_for_data()

-> st = os.fstat(fd)

(Pdb)

We will now leave this thread frozen here, return to the development server thread,
and attempt to move forward in it:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(15)make_pie_if_necessary()

-> f = os.fdopen(fd, 'wb')

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(16)make_pie_if_necessary()

-> fcntl.flock(f, fcntl.LOCK_EX)

(Pdb) n

When You Don’t Even Know What to Log: Using Debuggers

[338]

This code was not able to proceed very far. It did convert the file descriptor into a
Python file object, but the next call is to get an exclusive lock on the file, and that call
has been blocked—there is no (Pdb) prompt in response to the final n command, so
execution has stopped somewhere inside the call. That's good, since a call to obtain
an exclusive lock should not return until the other thread releases its lock.

We can switch back to that thread and move it forward to the point where it releases
the lock:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(50)wait_for_data()

-> if st.st_size > 0:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(52)wait_for_data()

-> fcntl.flock(fd, fcntl.LOCK_UN)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(53)wait_for_data()

-> if empty:

(Pdb)

Immediately when we stepped over the call to release the lock, the development
server console returned to the (Pdb) prompt:
> /dj_projects/marketr/survey/pie_utils.py(17)make_pie_if_necessary()

-> create_piechart(f, answer_set)

(Pdb)

This thread now has an exclusive lock on the file, and if we keep it frozen at this
point, we should see that the other thread will be blocked on its next attempt to
obtain a shared lock:
(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(54)wait_for_data()

-> time.sleep(.5)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(47)wait_for_data()

-> while empty:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(48)wait_for_data()

-> fcntl.flock(fd, fcntl.LOCK_SH)

(Pdb) n

Chapter 9

[339]

That looks good, this thread has been blocked. It should now not be able to obtain
the lock until the development server thread releases it, at which point the file will
have data. Let's move the development server thread forward:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(19)make_pie_if_necessary()

-> fcntl.flock(f, fcntl.LOCK_UN)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(20)make_pie_if_necessary()

-> f.close()

(Pdb)

Here we stepped over the call to create the pie chart, and the call to unlock the file.
At that point, the shell thread stopped blocking:

> /dj_projects/marketr/survey/pie_utils.py(49)wait_for_data()

-> st = os.fstat(fd)

(Pdb)

This thread should now see that the file has data:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(50)wait_for_data()

-> if st.st_size > 0:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(51)wait_for_data()

-> empty = False

(Pdb)

That looks good; the code is setting empty to False, which should trigger the end of
the loop once the task of releasing the shared lock is finished:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(52)wait_for_data()

-> fcntl.flock(fd, fcntl.LOCK_UN)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(53)wait_for_data()

-> if empty:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(47)wait_for_data()

-> while empty:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(56)wait_for_data()

-> if fd:

When You Don’t Even Know What to Log: Using Debuggers

[340]

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(57)wait_for_data()

-> os.close(fd)

(Pdb) n

--Return--

> /dj_projects/marketr/survey/pie_utils.py(57)wait_for_data()->None

-> os.close(fd)

(Pdb)

Indeed, the code proceeded to exit the loop, close the file, and return. We can enter c
to continue here, and get back the regular shell prompt. At this point we can also let
the development server continue, and it will re-enter the debugger for processing of
the second pie chart:

(Pdb) c

> /dj_projects/marketr/survey/pie_utils.py(13)make_pie_if_necessary()

-> fd = os.open(fname, os.O_WRONLY | os.O_CREAT | os.O_EXCL)

(Pdb)

Are we done or is there anything else we might want to test at this point? All
seemed to look good, but one thing you might have noticed tracing through the
code was that the second thread that was waiting on the file data was allowed to
proceed before the first thread actually closed the file. Might that be a problem? In
the absence of explicit calls to flush data to disk, it's possible that data is buffered in
memory, and won't actually get written until the file is closed. Depending on how
long that takes, the other thread that proceeded under the assumption that the file
was now all set for reading might run into trouble, because in fact not all of the data
is available on disk for reading by a separate thread.

Can we test that situation? Yes, we can use this second request by the development
server to see if there might be a problem. In this case, we leave the development
server blocked before the call to create the file, and from the shell session we
proceed to retrieve the second question and call its check_piechart method:

>>> q = Question.objects.get(pk=2)

>>> q.check_piechart()

> /dj_projects/marketr/survey/pie_utils.py(13)make_pie_if_necessary()

-> fd = os.open(fname, os.O_WRONLY | os.O_CREAT | os.O_EXCL)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(14)make_pie_if_necessary()

-> try:

(Pdb) n

Chapter 9

[341]

> /dj_projects/marketr/survey/pie_utils.py(15)make_pie_if_necessary()

-> f = os.fdopen(fd, 'wb')

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(16)make_pie_if_necessary()

-> fcntl.flock(f, fcntl.LOCK_EX)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(17)make_pie_if_necessary()

-> create_piechart(f, answer_set)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(19)make_pie_if_necessary()

-> fcntl.flock(f, fcntl.LOCK_UN)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(20)make_pie_if_necessary()

-> f.close()

(Pdb)

Here we've moved along in the shell session all the way through locking the file,
creating the pie chart, and unlocking the file. We've not yet closed the file. Now if we
move forward in the development server, it will see that the file exists and has data:

(Pdb) n

OSError: (17, 'File exists', '/dj_projects/marketr/site_media/
piecharts/2.png')

> /dj_projects/marketr/survey/pie_utils.py(13)make_pie_if_necessary()

-> fd = os.open(fname, os.O_WRONLY | os.O_CREAT | os.O_EXCL)

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(21)make_pie_if_necessary()

-> except OSError, e:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(22)make_pie_if_necessary()

-> if e.errno == errno.EEXIST:

(Pdb) n

> /dj_projects/marketr/survey/pie_utils.py(23)make_pie_if_necessary()

-> wait_for_data(fname)

(Pdb) n

--Return--

> /dj_projects/marketr/survey/pie_utils.py(23)make_pie_if_necessary()-
>None

-> wait_for_data(fname)

(Pdb) n

--Return--

(Pdb)

When You Don’t Even Know What to Log: Using Debuggers

[342]

That looks good; the code in this case took the right path. But if we continue from
here, still without giving the shell thread a chance to close the file, will the browser's
subsequent request for this image file be served successfully? We can test it out by
entering c here, and checking what the browser shows for the second pie chart. It
seems we do have a problem:

Chapter 9

[343]

Either we've broken the code that generates the pie chart, or that's the result of
serving an image file that has not yet been completely written to the disk. The latter
seems more likely. How do we fix this? We can change the make_pie_if_necessary
function to flush the data to disk before releasing the exclusive lock:

def make_pie_if_necessary(rel_path, answer_set):
 fname = settings.MEDIA_ROOT + rel_path
 try:
 import pdb; pdb.set_trace()
 fd = os.open(fname, os.O_WRONLY | os.O_CREAT | os.O_EXCL)
 try:
 f = os.fdopen(fd, 'wb')
 fcntl.flock(f, fcntl.LOCK_EX)
 create_piechart(f, answer_set)
 finally:
 f.flush()
 os.fsync(f.fileno())
 fcntl.flock(f, fcntl.LOCK_UN)
 f.close()
 except OSError, e:
 if e.errno == errno.EEXIST:
 wait_for_data(fname)
 else:
 raise

Consulting the Python documentation shows both a flush of the file and a call to
os.fsync, for it is needed to ensure that all the file data is actually written to disk,
so we have added both of those before the call to unlock the file.

Does that work? Testing it means again deleting the image files and again forcing the
race condition we are looking to exercise. The detailed output isn't included here, but
indeed if we force a new shell session to be the thread that creates the second image
file, halt it before it closes the file, and let the development server thread proceed to
send the completed survey response page and then serve the image files, we see a
complete second image in the browser. So adding the calls to flush and os.fsync
does appear to fix the problem.

This exercise has demonstrated how hard it can be to write code that correctly
handles race conditions. Unfortunately, such race conditions often cannot be
avoided in web applications, which will generally be deployed in multi-threaded,
multi-process web servers. The debugger is a valuable tool for ensuring that code
written to deal with these conditions works as intended.

When You Don’t Even Know What to Log: Using Debuggers

[344]

Notes on using graphical debuggers
In this chapter, we have focused exclusively on use of the Python command-line
debugger, pdb. Graphical integrated development environments such as Eclipse,
NetBeans, and Komodo also provide debuggers that can be used for Django
application code (though some require installation of particular plugins to support
development of Python code). The details of setting up and using any of these
environments is beyond the scope of what is covered here, but some general
notes on using graphical debuggers for Django applications will be included next.

First, there are some definite advantages to using a graphical debugger. Usually, a
graphical debugger will provide individual window panes that show the currently
executing source code, the program stack trace, local variables, and program output.
This can make it easy to quickly get an overall sense of the state of the program. It
tends to be harder to do this in pdb, where you must run individual commands to
get the same information, and be able to keep the results in mind after they scroll off
the screen.

A second advantage to graphical debuggers is that you can generally set breakpoints
simply by selecting the line of code in the debugger and choosing a menu item.
Thus, you can easily debug without changing the source to include explicit breaks
into the debugger.

One requirement for breakpoints in graphical debuggers to work, though, is that
the runserver command used to start the development server in the debugger
must specify the --noreload option. Without this option, the development server
reloads itself automatically when it detects that running code has changed on disk.
This reload mechanism interferes with the method used by graphical debuggers to
trigger breakpoints activating the debugger, so it must be disabled by specifying
--noreload when running the server.

A downside of this of course, is that the development server running in the
integrated development environment will not automatically reload when code
changes are made. If you have gotten used to the automatic reload feature when
running from a simple command line, it can be hard to remember the need to
manually restart the server after making code changes.

Another thing to watch out for when using a graphical debugger is the debugger
itself triggering unexpected behavior. In order to produce the display of local
variables, for example, the debugger must interrogate their values. For local variables
that are QuerySets, this may mean that the debugger causes database interactions
that the application itself would never initiate. Thus the debugger, in attempting to
display the value of local variables, can trigger evaluation of QuerySets at points
where the application itself does not.

Chapter 9

[345]

QuerySets are just one example of how the debugger can inject unexpected
behavior. Essentially the debugger may need to run a lot of code behind the scenes
in order to do its work, and that behind the scenes work may have side-effects.
These side-effects may or may not interfere with the task of debugging the
application code. If they do (generally signaled by unexpected results that occur only
when run under the debugger), it may be more productive to switch to a different
debugging technique rather than trying to figure out what exactly is going on behind
the scenes with the debugger.

Summary
This brings us to the end of discussing the use of debuggers when developing
Django application code. In this chapter, we:

Implemented the display of survey results using pygooglechart to create
pie charts. When we ran into some trouble along the way, we saw how the
Python debugger, pdb, could be used to help figure out what was going
wrong. We experimented with many of the most useful pdb commands. We
learned the commands used to see the context of the code that is running,
examine and change the values of variables, and flexibly control the
execution of the code as it proceeds in the debugger.
Re-implemented the display of survey results using the matplotlib library.
For this alternative implementation, we ended up needing to write code that
was vulnerable to multi-process race conditions. Here we saw how pdb can
be used to help verify correct behavior of this type of code, since it allows us
to force problematic race conditions to occur, and then verify that the code
behaves properly for such cases.
Finally, some pros and cons of using graphical debuggers for Django
application code were discussed.

In the next chapter, we will learn what to do when we encounter problems during
development that none of the debugging techniques discussed so far seem to help
in fixing.

•

•

•

When All Else Fails:
Getting Outside Help

Sometimes we run into problems that do not seem to be caused by our own code.
Though following the documentation to the best of our understanding, the results
we are getting don't match what we expect. One of the benefits of building on open
source code such as Django is that we can delve into its code and figure out exactly
where things are going wrong. However, that may not be the best use of our time.

Most often a better first step in tracking down such problems is to consult
community resources. Perhaps someone else has already encountered the
problem we are facing and found a fix or workaround. If so, we can likely save
a lot of time by taking advantage of their experience rather than finding our own
solution to the problem.

This chapter describes the Django community resources and illustrates how to use
them. Specifically, in this chapter we will:

Walk through the discovery of a bug that existed in the Django 1.1 release
and caused a problem for some of the survey application code
See how the resources available on the Django website can be used to
research the problem
Discuss the best way to proceed based on the results of the research, for both
this problem specifically and problems in general
Learn what other avenues for getting help exist, and how best to make use
of them

•

•

•

•

When All Else Fails: Getting Outside Help

[348]

Tracking down a problem in Django
This book has been written using the latest available Django release at the time of
writing. Early on that was Django 1.1. Then, during the course of writing, Django
1.1.1 was released and everything written after that release date used Django 1.1.1.
The three 1s in that release number are the major, minor, and micro release numbers.
(A missing micro number, as in Django 1.1, is an implied 0.) Django 1.1.1, since it has
an explicit micro number, is called a micro release. The only changes made in micro
releases are bug fixes, thus micro releases are 100 percent backwards compatible
with the previous release. While a change in a major or minor version number may
involve some backwards-incompatible changes that require code adjustments,
the only difference you will see in updating to a new micro release is fewer bugs.
Therefore, it is always recommended to run the latest micro release for the major.
minor version you are using.

Despite this advice and compatibility guarantee, it's sometimes tempting to not
upgrade to the latest available release. Upgrading requires some (likely small, but
non-zero) amount of work. In addition, there's always the common-sense axiom:
if it isn't broken, don't fix it. If you're not actually experiencing any problems, why
upgrade?

I had exactly these thoughts when Django 1.1.1 was released. That release happened
to occur right during the middle of writing Chapter 7, When the Wheels Fall Off:
Understanding a Django Debug Page, a chapter full of screenshots and console displays
showing tracebacks that included Django code. If I changed the Django code base right
in the middle of writing that chapter, even by just a micro release, who knew what
subtle differences might be introduced in early compared to late-chapter tracebacks?
Such differences could cause confusion for eagle-eyed readers.

If I did upgrade mid-chapter, it would be safest to re-do all the examples from the
beginning to ensure they were consistent. That was an unattractive option since it was
both a fair amount of work and error-prone. Thus my initial inclination when Django
1.1.1 was released was to delay upgrading until at least the next chapter break.

However, in the end I found I did have to upgrade in the middle of the chapter,
because I ran into a Django bug that was fixed by the 1.1.1 release. The following
sections describe encountering the bug and show how it can be tracked down to a
problem that had been fixed in Django 1.1.1.

Revisiting the Chapter 7 voting form
Recall in Chapter 7 we implemented the code to display an active survey. This
includes a form to allow a user to choose answers for each question in the survey.
One of the final changes made to the form code involved customizing the error
format. The final code for the QuestionVoteForm looks like this:

Chapter 10

[349]

class QuestionVoteForm(forms.Form):
 answer = forms.ModelChoiceField(widget=forms.RadioSelect,
 queryset=None,
 empty_label=None,
 error_messages={'required': 'Please select an answer below:'})

 def __init__(self, question, *args, **kwargs):
 super(QuestionVoteForm, self).__init__(*args, **kwargs)
 self.fields['answer'].queryset = question.answer_set.all()
 self.fields['answer'].label = question.question
 self.error_class = PlainErrorList

from django.forms.util import ErrorList
class PlainErrorList(ErrorList):
 def __unicode__(self):
 return u'%s' % ' '.join([e for e in self])

The inclusion of the PlainErrorList class, and setting the form instance's
error_class attribute to it during __init__, is intended to change the display of an
error for a question from an HTML unordered list (the default behavior) to a simple
string. However, when running this code under Django 1.1, and forcing an error
situation by attempting to submit a survey with both questions unanswered, the
result displayed is:

When All Else Fails: Getting Outside Help

[350]

The inclusion of the bullets to the left of the two error messages shows that the error
lists are still being formatted as HTML unordered lists. This can also be confirmed
by checking the HTML source for the page, which includes the following snippet for
each error message:

<ul class="errorlist">Please select an answer below:

It seems that setting the error_class attribute is not having any effect. How can we
best track down a problem like this?

Is the right code actually running?
First, we need to make sure the code that is running is actually the code we think
is running. In this case, when I encountered the problem I could see that the
development server had restarted after the code changes to add the PlainErrorList
class and the setting of the error_class attribute, so I was pretty sure the right
code was running. Still, inserting an import pdb; pdb.set_trace() right before the
error_class assignment allowed me to confirm the code was there and doing what
I expected:

> /dj_projects/marketr/survey/forms.py(14)__init__()

-> self.error_class = PlainErrorList

(Pdb) self.error_class

<class 'django.forms.util.ErrorList'>

(Pdb) s

--Return--

> /dj_projects/marketr/survey/forms.py(14)__init__()->None

-> self.error_class = PlainErrorList

(Pdb) self.error_class

<class 'survey.forms.PlainErrorList'>

(Pdb) c

Here we can see that on entry to the debugger, before our assignment of
PlainErrorList to error_class, this attribute had the value django.forms.util.
ErrorList. Stepping through the assignment shows that the __init__ method is
then about to return, and checking the value of the error_class attribute again
shows that indeed the value has been changed to our customized PlainErrorList.
That all looks good. At the very end of the form creation code, the error_class
attribute has been set to the customized class. Why isn't it being used?

Chapter 10

[351]

Is the code correct as per the documentation?
The next step (after removing the added breakpoint) is to double-check the
documentation. Though it seems unlikely, perhaps there is something else required
to use a custom error class? After rechecking the documentation, there doesn't seem
to be. The full documentation on customizing the error class is simply:

There are a couple of slight differences between what the provided example does
and what the QuestionVoteForm does. First, the provided example passes the error
class as an argument on form creation, and thus it is passed to the form's superclass
__init__. The QuestionVoteForm, on the other hand, manually sets error_class
after the superclass __init__ runs.

When All Else Fails: Getting Outside Help

[352]

This seems unlikely to be the cause of the problem, since over-riding values in a
subclass __init__ routine, as we have done with QuestoinVoteForm, is a very
common idiom. We can check, though, to see if this slight difference causes a
problem by attempting the demonstration of use of the custom error_class
setting, as shown in the documentation in a Python shell, for the QuestionVoteForm:

kmt@lbox:/dj_projects/marketr$ python manage.py shell

Python 2.5.2 (r252:60911, Oct 5 2008, 19:24:49)

[GCC 4.3.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

(InteractiveConsole)

>>> from survey.forms import QuestionVoteForm

>>> from survey.models import Question

>>> qvf = QuestionVoteForm(Question.objects.get(pk=1), data={})

Here we have created a form instance, qvf, for the question with primary key 1
in the database. By passing in an empty data dictionary, we have forced the error
condition of a form submitted with no answer value. The documentation shows that
using the form's as_p method to display this form should show the error formatted
using the form's custom error class. We can check whether that happens for the
QuestionVoteForm:

>>> qvf.as_p()

u'Please select an answer below:\n<p><label for="id_answer_0">What is your
favorite type of TV show?</label> \n<label for="id_answer_0"><input
type="radio" id="id_answer_0" value="1" name="answer" /> Comedy</label></
li>\n<label for="id_answer_1"><input type="radio" id="id_answer_
1" value="2" name="answer" /> Drama</label>\n<label for="id_
answer_2"><input type="radio" id="id_answer_2" value="3" name="answer" />
Reality</label>\n</p>'

>>>

There we see that the as_p method does indeed use the custom error class: there is
no HTML unordered list wrapped around the error message. So the error class is
being set, and is used when the form is displayed using a routine like as_p.

Chapter 10

[353]

This leads to the second difference between what the documentation shows and
what the survey application code actually does. The survey/active_survey.html
template does not use as_p to display the form. Rather, it individually prints the
label for the answer field, errors for the answer field, and then the answer field itself:

{% extends "survey/base.html" %}
{% block content %}
<h1>{{ survey.title }}</h1>
<form method="post" action=".">
<div>
{% for qform in qforms %}
 {{ qform.answer.label }}
 {{ qform.answer.errors }}
 {{ qform.answer }}
{% endfor %}
<button type="submit">Submit</button>
</div>
</form>
{% endblock content %}

Should that cause the custom error class to not be used for display? You wouldn't
think so. Though the documentation only shows the custom error class used
with as_p, there is no mention there that the custom error class is only used by
the convenience display methods such as as_p. Such a restriction would be very
limiting, since the convenience form display methods are frequently not appropriate
for a non-trivial form.

It seems clear that the intent of the error_class attribute is to override the error
display regardless of the exact way in which a form is output, but it doesn't seem
to be working. This is the point where we may begin to strongly suspect a bug in
Django instead of some error or misunderstanding of usage in the application code.

When All Else Fails: Getting Outside Help

[354]

Searching for a matching problem report
The next step, then, is to visit the Django website to see if anyone has reported a
problem using error_class. Choosing the Code link from the main Django project
page (rightmost of the links across the top of the page) brings up the main page for
Django's code tracker:

The Django project uses Trac, which provides an easy-to-use web-based interface
for tracking bugs and feature requests. With Trac, bugs and feature requests are
reported and tracked in tickets. Specifics of the way in which the Django project
has configured Trac, and thus the meaning of the various ticket attribute values,
can be found in the Django documentation page on contributing. Specifically, the
diagram and descriptions found here: http://docs.djangoproject.com/en/dev/
internals/contributing/#ticket-triage are very helpful in understanding all
of the information associated with a ticket.

Chapter 10

[355]

What we want to do now is search the Django project tickets for reported problems
with the use of error_class. One way to do that is to select the View Tickets tab
and construct an appropriate search. When View Tickets is first selected, by default
it will show a page listing all non-closed tickets. For example:

The criteria used to generate the report are shown in the box labeled Filters. Here
we see that the report includes all tickets with any status that is not closed, since
that is the only Status choice that is not checked. In order to get a report that is more
useful for what we are trying to research, we need to modify the search criteria in the
Filters box.

When All Else Fails: Getting Outside Help

[356]

First, we can remove the constraint on the ticket status. We are interested in all
reports related to error_class, regardless of ticket status. We can remove the
existing constraint on status by clicking the box with a minus sign on the extreme
right side of the line that contains the constraint.

Second, we need to add a filter for the search constraint we want to apply. To do this,
we select an appropriate choice from the Add filter drop-down box. This drop-down
box contains a full list of the ticket attributes we could search on, such as Reporter,
Owner, Status, and Component. Most of these attributes are not relevant for the
search we are currently interested in. The one in the list most likely to find what we
are looking for is Summary.

The ticket summary is the brief description of the problem. We could hope that this
summary would include the string error_class for any reports of the problem we
have run into with using it. Adding a single filter on Summary with a specification
that it contains the string error_class will thus hopefully find any relevant tickets.
Clicking on the Update button to refresh the search results given the new criteria
then shows the following:

Chapter 10

[357]

There have been three tickets opened that contain error_class (or error class) in
the summary. Two have been closed, one is still open (status new). Of the three, based
on the displayed summary, the top one sounds like it might be the problem we are
seeing with error_class, while the other two do not sound particularly relevant.

We can get more details on a listed problem by clicking on the ticket number or
summary, both of which are links to view the full ticket details. Looking at the full
details will allow us to verify that it is really the same as what we are seeing, and find
out more details on when and why it was closed. In this case, we see the following:

When All Else Fails: Getting Outside Help

[358]

This ticket has a fairly long history—two years between when it was opened and the
last activity. The short guide for reproducing the problem does make it sound like
exactly the same problem we are seeing with error_class. The resolution of fixed
listed after the ticket number near the top sounds encouraging, but unfortunately
this ticket has no details on what code change was made, and when, to fix the
problem. Scrolling all the way down to the tail end of the various comments
added to the ticket history, we see that the last few updates are as follows:

In August of 2009 user peter2108 was interested in helping move the ticket along
by providing patches, including tests, to fix the problem (reading through the full
history, the lack of tests in the originally-provided patches was one reason this ticket
was open for a long time). Then, on October 16, 2009, peter2108 closed the ticket with
a resolution of fixed.

It may not be obvious at first, but this way of closing a ticket is not typical for a ticket
that required a Django code change. Normally, when the code change is committed
to the Django SVN repository, the ticket number is included in the commit message
and the corresponding ticket is automatically updated with a comment including the
commit message and a link to the changeset. This automatic process also closes the
ticket with a resolution of fixed. This makes it very easy to see exactly what code was
changed to fix the problem and when the code change was made.

Chapter 10

[359]

Sometimes that automatic process fails to run properly, and usually someone will
notice when that happens and manually close the ticket, noting which code update
fixed the problem. But that's not what happened here either. Rather it looks like
peter2108, who was interested in seeing the bug fixed, simply noticed that the
problem had gone away at some point and closed the ticket as fixed.

We could guess, based on the fact that the same user who was interested in getting
the problem fixed in August closed the ticket as fixed in October, that the fix went
into the code base sometime between August 28 and October 16. What we'd like,
though, is to know for sure when exactly the fix was made, so we could know for
sure whether we should already have it in the code we are running, or if updating to
the latest release would fix the problem, or if the fix is available only in a version of
code pulled directly from the SVN repository.

Looking back at the other two tickets that mention error_class in the
summary, neither of them are helpful in determining when exactly this problem
with error_class was fixed, since they describe different problems entirely.
How, then, can we locate the information about when exactly the problem we are
encountering was fixed? For this case, it turns out that the View Tickets type of
search is not broad enough to get us the information we are looking for. Fortunately,
there's an alternate way of searching the Django tracker that we can use to find the
missing information.

Another way to search for a matching
problem report
This alternative way of searching is found by clicking on the Search tab instead of
the View Tickets tab. This brings up a page with a single text entry box and three
check boxes to control where to search: Tickets, Changesets, and Wiki.

This page provides a much broader and less targeted way of searching. In addition
to searching ticket data, changesets and Wiki articles are searched by default as well.
Even when those options are turned off, the ticket search alone is broader than what
is possible under View Tickets. The ticket search from this page covers all of the
ticket comments and updates, which cannot be searched under View Tickets.

A plus side of using this page to search is it may find relevant results that cannot
be found using a View Tickets search. A downside of using this page to search is it
may find an overwhelming number of irrelevant results, depending on exactly what
search terms are entered in the textbox. If that happens you can further limit the
results shown by entering more words that must be matched in the textbox, which
can help. In this case, though, searching on a string as uncommon as error_class is
not likely to produce an overwhelming number of results.

When All Else Fails: Getting Outside Help

[360]

To proceed, then, entering error_class in the textbox and clicking on the Search
button leads to the following:

This search does produce more results than the View Tickets search—twelve instead
of three. The first result listed, ticket #12001, is the same as the still-open ticket found
by the previous search. The other results from the previous search are also contained
in the full list, only further down. But first we can see a result that is a changeset,
[11498], which mentions error_class in the commit message, and its associated
ticket #10968. This ticket did not show up in the original search we tried because,
though it includes reference to error_class in the full description, the string
error_class is not in the ticket summary.

Chapter 10

[361]

Clicking through to the details of ticket #10968 shows that it is a duplicate report of
the same problem we have encountered and that was reported in the other ticket
we found, #6138. Ordinarily when duplicates like this are opened, they are quickly
closed as duplicates with a reference to the existing ticket that describes the problem.

However, if nobody realizes a new ticket is a duplicate, then the duplicate ticket may
turn out to be the one referenced when the fix is checked into the code base. That's
apparently what happened in this case. We can see in the last update to this new
ticket the automatically-generated comment added when the fix was committed to
the SVN repository:

When All Else Fails: Getting Outside Help

[362]

The changeset number in that comment is a link to a detailed description of the
changeset. Clicking on it, we see the following:

Chapter 10

[363]

Here we can see all the detailed information related to this code change: when it was
made, who made it, the commit message, the files that were changed (or added or
deleted), the specific lines in the files that were changed, and what those changes
were. Most of this information is more than we really need to know for the problem
we are researching now, but it can come in handy at times. For this problem, what
we'd like to know is: what released level of code contains this fix? We'll consider that
question next.

Determining the release that contains a fix
For the particular case we are looking at, we can tell, simply based on dates, that the
first release containing the fix should be Django 1.1.1. A quick check of the web log
on the Django project home page shows that Django 1.1 was released on July 29, 2009
and Django 1.1.1 was released on October 9, 2009. All bug fixes made between those
dates should be included in the 1.1.1 release, thus a fix made on September 11, 2009
should be in Django 1.1.1.

Sometimes things may not be so clear. For example, we might be unsure if a code
change made on the same day as a release was included in the release or happened
just after the release. Alternatively, we might be unsure if a change was classified as
a bug fix or a new feature. For such cases, we can check on the revision number of
the release and compare it to the revision we are interested in.

When All Else Fails: Getting Outside Help

[364]

Django uses the standard subversion practice of tagging released versions; the
tagged release versions can be found under root/django/tags/releases. We can
navigate down this path by first selecting the Browse Code tab and then selecting
each path component in turn. Navigating in this way to the 1.1.1 release and clicking
on Revision Log in the upper-right corner brings up the following page:

This shows that the 1.1.1 tagged release version was created by copying the 1.1.X
release branch. The changeset that created the tag is [11612], higher than the
changeset we are interested in (11498), so we'd expect the fix we are concerned
with to be in the 1.1.X release.

Chapter 10

[365]

But wait a minute. Looking at the details of changeset 11498, the files changed were
on trunk (django/trunk/django/forms/forms.py, for example), not the 1.1.X
release branch django/branches/releases/1.1.X. If the release was created by
copying the 1.1.X branch but the fix was only made to trunk, is it really included in
the 1.1.1 release?

The answer is yes. Clicking through the link on this page to the 1.1.X release branch,
selecting Revision Log for it, and scrolling down to the bottom shows that the 1.1.X
release branch was created as a copy of trunk at revision 11500, two revisions past
the revision 11498 we are interested in. Thus, when the 1.1.X branch was initially
created, it contained the fix we are looking for.

You might wonder why the 1.1.X branch was not created until sometime after
September 11, 2009 when the 1.1 release went out in late July. The reason is because
once the release branch is created, bug fixes have to be applied in two different places:
trunk and the latest release branch. This is slightly more work than having to apply
them in only one place (trunk). Creation of the release branch is thus generally delayed
for some period of time after a release to allow bug fixes to be made more easily.

This delayed creation of the release branch means that during the time it does not
exist, no changes related to new features can be made to trunk, since the release
branch must contain only bug fixes, and no new features. That's generally not a
problem, though, since right after a release there is little feature work being done.
Everyone involved usually needs some time to take a breather and first decide what
features might go into the next release. Once some feature work for the next release
gets close to needing to be checked in, then the release branch for the previous
release is created. From then on, feature work gets checked into trunk while bug
fixes get checked in to both trunk and the release branch.

What if a fix hasn't been released yet?
Here we were lucky enough to run into a problem that had already been fixed,
and the fix was already available in an officially released version. In any case of a
problem like this that is encountered, it should be an easy choice to simply update to
the latest micro release to get the fix. As mentioned earlier, it is always recommended
to install the latest micro release for the particular major.minor version in use.

But what if the fix we wanted was made sometime after the latest available release?
What should we do then? The easy technical answer is to simply check out the latest
level of either trunk or the release branch that contains the fix, and run with that
code. If the release branch, in particular, is used, there should be no concern about
picking up any code instabilities, since the only changes that go into the release
branch are bug fixes.

When All Else Fails: Getting Outside Help

[366]

This easy technical answer may, however, run afoul of local policies regarding
running only "release level" code. If you are working in an environment with such
policies, you may have some additional hurdles to overcome in order to use fixes
that have not yet been made available in an official version. The best course to
take will likely be determined by factors such as the exact policies you are dealing
with, the severity of the problem you have encountered, and the ability to find a
workaround in your own code.

What if a fix hasn't been committed yet?
Sometimes when researching a problem the results will show that the problem has
been reported, but not yet fixed. How best to proceed then will likely depend on
how interested you are in getting involved and contributing to Django, and how
close the matching problem report is to being fixed. Details of how to get involved
in contributing to Django are beyond the scope of what is covered here, but this
section provides some broad guidelines for how to proceed based on your level of
interest. If you are interested in contributing, the Django website has details of how
to contribute, available at: http://docs.djangoproject.com/en/dev/internals/
contributing/.

If you are not interested in experimenting with code that has not yet been committed
to the code base, there will likely not be much you can do besides wait for a fix
to be committed. The exception to this would be for problems that are not well
understood. In that case, you may be able to provide specific details of the case
where you are running into the problem that can help others better understand
the problem and develop a fix.

If you are willing to experiment with uncommitted code, you'll likely be able to
find a workable solution to the problem you've encountered more quickly. In the
best case, you may find that the ticket matching the problem you have encountered
already has a working patch attached. It's possible and all you need to do is
download it and apply it to your copy of the Django code to resolve the problem.

You'll then have to decide whether you are able to, and comfortable with, deploying
your application with a version of Django that has some "custom" fixes applied. If
not, you might like to help out in getting the working patch checked into the code
base by seeing if there is anything missing (such as tests) that needs to be included
before the fix is checked in and if so, supplying the missing bits. In some cases,
though, there is nothing missing and all that is needed is time for the fix to make
its way into the code base.

Chapter 10

[367]

If you find a matching ticket with a patch that you try, but it doesn't fix the
problem you are experiencing, that is valuable information that would be useful to
post to the ticket. You might want to be sure first, though, that your problem is really
the same as the one in the ticket you have found. If it's really a slightly different
problem, then it might be more appropriate to open a new ticket for the somewhat
different problem.

When in doubt, you can always post information in what you think is the matching
ticket about the problem you are seeing and how the existing patch doesn't seem to
fix it. Someone else following the ticket might then be able to provide feedback on
whether your problem is the same and the existing patch is indeed not quite right or
whether you are really dealing with a different problem.

In the worst case, you may find a ticket reporting the same problem as you are
experiencing but no attached patch to try. That's not very helpful to you, but offers
you the most opportunity to contribute. If you have the time and are so inclined, you
can delve into the Django code and see if you can come up with a patch that you can
post to the ticket to help get the problem fixed.

What if a ticket has been closed without a fix?
Sometimes when researching a problem the results will turn up with a matching
report (or multiple reports) that have been closed without any fix being made.
There are three different resolutions that might be used in cases like this: invalid,
worksforme, and wontfix. How best to proceed will depend on the specifics of the
problem report and the resolution used to close the matching problem ticket.

First, the invalid resolution is pretty broad. A ticket might be closed as invalid for
many different reasons, including:

The described problem is not a problem at all but rather some error in the
reporter's code or misunderstanding about how some feature is supposed
to work.
The described problem is too vague. For example, if a ticket is opened that
provides just an error traceback but no information on how to trigger the
traceback, there is not much anyone can do to help track down and fix the
problem, so it might well be closed as invalid.
The described problem is indeed a problem, but the root cause is some code
other than Django. If there is nothing that can be done in Django code to fix
the problem, the ticket will likely be closed as invalid.

•

•

•

When All Else Fails: Getting Outside Help

[368]

In cases where you find a matching ticket that has been closed as invalid, you should
read the comment that was made when the ticket was closed. In cases where the
ticket was closed due to lack of information about the problem, and you can provide
some of the missing data needed to make progress on fixing the problem, it may be
appropriate to re-open the ticket. Otherwise, if you don't understand the explanation
for closing, or don't agree with the reason for closing, it's best to start a discussion on
one of the mailing lists (discussed in the next section) to get some more feedback on
how best to proceed to fix the problem you are encountering.

The worksforme resolution is pretty straightforward; it indicates that the person who
closed the ticket could not reproduce the reported problem. It, like invalid, may be
used when the original problem report does not really contain enough information
to recreate the problem. The missing information may be specifics of the code used
to cause the problem, or specifics of the environment (operating system, Python
version, deployment specifics) where the problem occurs. If you are able to recreate
a problem that has been closed worksforme, and can supply the missing details that
would allow someone else to do the same, you should feel free to re-open the ticket
and provide that information.

The wontfix resolution is also straightforward. Usually only core committers will
close tickets wontfix, and that indicates that a decision has been made by the core
team to not fix that particular problem (which will usually be a feature request, not a
bug). If you disagree with a wontfix decision or believe that not all of the appropriate
information was considered in making the decision, you will not make any forward
progress on changing anyone's mind by simply re-opening the ticket. Rather, you
will need to bring the issue up on the django-developers mailing list and see if
you can get enough consensus from the wider development community to get
the wontfix decision reversed.

Tracking down unreported problems
Sometimes when researching a problem no matching reports will turn up. How
best to proceed then likely depends on how sure you are that the problem you are
encountering is a bug in Django. If you are really sure the problem lies in Django,
you can proceed directly to opening a new ticket to report it. If you are not so sure,
it is best to get some feedback from the community first. The following sections will
describe where to ask questions, present some tips on asking good questions, and
describe how to open a new ticket.

Chapter 10

[369]

Where to ask questions
Clicking on the Community link on any Django website page brings up the following:

The left side of this page provides links to articles in blogs written by people
who discuss Django. While reading such entries is a good way to learn about the
community of people using Django, it is the right side of this page that we are
interested in right now. Here we see links to ways to interact directly with other
members of the Django community.

First in the list is a link to the #django IRC channel. (IRC stands for Internet Relay
Chat.) This option provides a chat-type interface to talk to other Django users
interactively. This is a good choice for times when you'd like very quick feedback on
whatever you'd like to ask about or discuss. It can be difficult, though, to follow a
detailed coding discussion in a chat interface. For cases like that, one of the mailing
lists is likely a better alternative.

When All Else Fails: Getting Outside Help

[370]

There are two mailing lists, shown next: django-users and django-developers.
The first is for discussions about using Django, the second is for discussions about
developing Django itself. If you have encountered a problem that you think, but are
not sure, is a problem in Django, django-users is the correct place to post a question
about the issue. Members of the Django core development team read and respond to
questions on the user's list and will provide feedback on whether the problem should
be opened as a ticket or taken to the developer's list for further discussion.

Both of the mailing lists are hosted as Google groups. Each of the group names
previously shown is actually a link that you can click to go directly to the Google
groups page for the group. From there you can see the list of recent discussions in
the group, and read any topics that might be of interest. Google groups also provide
a search function, but unfortunately this function does not always work correctly, so
searching in the group from the group's page may not produce helpful results.

If you decide you want to post to one of the groups, you will first need to join it. This
helps to cut down on spam posted to the groups, since would-be spammers must
first join. There are, however, plenty of would-be spammers that do join and attempt
to send spam to the lists. Thus, there is also an additional anti-spam measure in
place: posts sent by new members are sent through moderation.

This anti-spam measure means that the first post you send to either of these lists
may take some time to appear, since it must be manually approved by one of the
volunteer moderators. Usually this will not take very long, but it could take up
to a few hours. Typically, once a first obviously legitimate post is received from a
user, their status is updated to indicate their posts do not need to be moderated, so
subsequent posts will appear in the group immediately.

Tips on asking questions that will get good
answers
Once you decide to post a question, the next task will be to compose a question in a
way that will most likely produce some helpful answers. This section presents some
guidance on how to do that.

First, be specific about what you are doing. If you have some code that isn't behaving
as you expect, include the code verbatim rather than describing in prose what the
code does. Often, it is the detailed specifics of the actual code in use that is key to
understanding a problem, and those specifics are easily lost in a prose description
of the code.

Chapter 10

[371]

However, if the code is too lengthy or too wide to be read easily in an e-mail
interface that will automatically wrap long lines, it's likely best not to include it in
a post. Ideally in a situation like this you would be able to cut the code necessary to
recreate the problem down to a manageable size that can be read easily in an e-mail,
and post that.

Note that if you do this, it's a good idea to first verify that the cut-down version of
the code is both correct (does not have any syntax errors, for example) and exhibits
the problem you are asking about. Otherwise, the only responses you get may
simply report that the posted code either doesn't work at all or doesn't show the
behavior you describe.

If you cannot cut the necessary code down to a manageable size, either because you
do not have the time or because cutting it down makes the problem go away, you
might try posting the code on some place like dpaste.com and just including a link to
it in your question. It is really in your best interest, though, to keep the code needed
to demonstrate the problem as short as possible. As the code you post or point to
gets longer and longer, fewer and fewer people on the mailing list will take the time
to try to understand the problem and help guide you towards a solution.

In addition to being specific about the code you are using, be specific about what
you are doing to trigger the errant behavior. Are you observing a problem when
you visit one of your own application URLs? When you do something in the admin
application? When you try something from a manage.py shell? It may seem obvious
to you, but it really helps others to recreate the problem if you spell out what you
are doing.

Second, be specific about what happens and what you expected to happen instead.
"It doesn't work" is not specific. Nor is "it dies", nor "it gives me an error message".
Give specifics of what "doesn't work" looks like. A browser page that displays X
when you expected Y? An error message that states XYZ? A traceback? In this last
case, do include the full traceback in the question, since that provides valuable
debugging clues for people who might try to help.

Third, if you mention in the question that your expected behavior is based on
what the documentation says, be specific about what documentation, exactly,
you are referring to. Django has extensive documentation, including both guide
and reference information. Someone reading your question and searching the
documentation for what you are referencing may easily find a completely different
section and have a hard time following what you are saying. If you provide a
specific link to the documentation in question, then misunderstandings are less
likely to occur.

When All Else Fails: Getting Outside Help

[372]

A common theme running through all these tips, as you've likely noticed, is: be
specific. Yes it takes more work to provide specifics. But a specific question is far
more likely to get helpful answers than an imprecise and vague question. If you leave
out the specifics, once in a blue moon someone may post an answer that guides you
towards a solution. It's far more likely, though, that a vague question will get either no
responses, responses asking for specifics, or responses that send you down an entirely
wrong path because the responder completely misunderstood the question.

Opening a new ticket to report a problem
If you run into a problem that appears to be an unreported and unfixed bug in
Django code, the next step is to open a ticket for it. The process for this is pretty
self-explanatory when you select the New Ticket tab after clicking on Code from
the Django home page:

Chapter 10

[373]

Please do read through the Read this first list. Much of the information in that
list has been covered earlier in this chapter, but not all. In particular, the last item
notes how to mark up submitted code snippets or tracebacks so that they will be
formatted properly. The note includes the one type of mark up most frequently left
out and also points to the full documentation on how text can be specially formatted.
Note that you can check how the formatting will look by selecting the Preview
button at the bottom—it's always a good idea to try previewing a submission
before pressing Submit.

Note that the Django Trac installation does allow anonymous ticket submissions and
updates. However, it also uses the Akismet spam-filtering service, and this service
does sometimes reject non-spam submissions. As noted in the big yellow box, the
easiest way to avoid this is to register for an account (that text on the page is a link
to a page where you can register).

The two most important bits to fill out when opening a new ticket are the short
summary and full description. In the short summary, try to include key terms that
will make the new ticket show up in likely searches by people encountering the same
problem. In the full description, all the advice from the previous section about being
specific applies again. If you are opening a ticket after the discussion on one of the
mailing lists came to the conclusion that a ticket is a good idea, it's helpful to include
a link to that discussion in the problem. However, it is also good to include the basic
information about the problem in the ticket description itself as well.

In the information in Ticket Properties, you likely don't need to change anything
from the default values, excepting Version (if you are using a version other than
the one displayed) and Has patch (if you are going to attach a patch that fixes the
problem). You can try to guess the correct Component from the list and include
some appropriate Keywords, but it's not necessary.

Similarly, you can set the Milestone to the next release, though that won't really
make it any more likely that someone will tackle the problem sooner rather than
later. That field is typically only closely watched towards the very tail end of a
release to note which bugs absolutely must be fixed before release.

Once you submit a ticket, if you used a login that included an e-mail address, or
specified an e-mail address in the field labeled Your email or username, updates
to the ticket will automatically be e-mailed to the e-mail address specified. So if
someone adds a comment to the ticket, you will be notified. An annoying exception
to this is the automatically-generated update resulting from a commit to the code
base: this does not generate e-mail to the ticket reporter. So, you won't necessarily get
notified when the ticket is closed as fixed, but rather will have to check back on its
status from the website manually.

When All Else Fails: Getting Outside Help

[374]

Summary
We've now come to the end of discussion of what to do when none of the other
debugging techniques covered previously have succeeded in solving some problem.
In this chapter, we:

Encountered a bug that existed in Django 1.1 and caused some of the survey
application code to not behave as desired
Walked through the verification process of tracking down the problem to
Django instead of the survey code
Saw how searching in the Django code tracker revealed the problem was a
bug that had been fixed in Django 1.1.1, which provided an easy solution to
the problem
Discussed options for how to proceed when problems are tracked down
to bugs with fixes that are either not yet available or not available in
official releases
Described the various community resources that exist for asking questions
about behavior that seems puzzling, but doesn't seem to have been reported
as a bug
Discussed tips for writing questions so that they get the desired
helpful responses
Described the process of opening a new ticket to report a problem in
Django code

In the next chapter, we will advance to the final stage in developing a Django
application: moving to production.

•

•

•

•

•

•

•

When it's Time to Go Live:
Moving to Production

The final topic we will cover on the subject of testing and debugging Django
applications is the move to production. When the application code is all written,
fully tested and debugged, it is time to set up a production web server and make the
application accessible to real users. Since the application has been fully tested and
debugged during development, this should be straightforward, right? Unfortunately,
not always. There are a number of differences between a production web server
environment and the Django development server environment. These differences
can cause problems during the move to production. In this chapter, we will see what
some of these differences are, what types of problems they can cause, and how to
overcome them. Specifically, we will:

Configure an Apache web server with mod_wsgi to run the sample
marketr project.
Encounter a number of issues during development of the Apache
configuration. For each, we will see how to diagnose and address
the problem.
Perform functional stress testing of the application running under Apache to
ensure that it operates correctly under load.
Fix any code errors revealed by the functional stress testing.
Discuss the possibility of using Apache with mod_wsgi during development.

•

•

•

•

•

When it's Time to Go Live: Moving to Production

[376]

Developing an Apache/mod_wsgi
configuration
Ordinarily, the move to production will involve running the code on a machine other
than the ones it has been developed on. The production server might be dedicated
hardware or resources obtained from a hosting provider. In either case, it is typically
entirely separate from the machines used by developers when writing the code. The
production server needs to have any of the pre-requisite packages installed (Django
and matplotlib, for example, for our sample project). In addition a copy of the
application project code, generally extracted from a version control system,
needs to be placed on the production server.

For the sake of simplicity in this chapter, though, we are going to configure a
production web server on the same machine where we have been developing
the code. This will allow us to skip over some of the complexity involved in a real
move to production while still experiencing many of the issues that may arise during
production deployment. For the most part the issues we will skip over in doing this
are not Django-specific, but rather are common issues that need to be dealt with
whenever moving any kind of application from development into production.
The issues we will encounter will tend to be more Django-specific.

The example deployment environment that will be developed is Apache with
mod_wsgi, which is the current recommended environment for deploying Django
applications. WSGI stands for Web Server Gateway Interface. WSGI is a Python
standard specification that defines an interface between web servers (Apache,
for example) and web applications or frameworks written in Python (Django,
for example).

The base Apache web server does not support WSGI. However, Apache's modular
structure allows such support to be provided by a plug-in module. Thus, the web
server side support for WSGI is provided by mod_wsgi, an Apache module written
and actively maintained by Graham Dumpleton. Django itself does implement the
application side of the WSGI specification. Thus, there is no need for any additional
adapter module between mod_wsgi and Django.

Chapter 11

[377]

Prior to the development of mod_wsgi, the mod_python module for
Apache was the recommended deployment environment for Django.
Though mod_python is still available and even still in wide use, its
most recent release was over three years ago. The current source code
needs a patch in order to compile with the latest Apache 2.2.X release.
Going forward, more extensive changes will be needed due to changes
in Apache APIs, but there are no active mod_python developers to
make such changes. Given the current moribund state of mod_python
development, I believe it is now a poor choice for Django application
deployment. Therefore, specifics of configuring it are not covered here.
If for some reason you must use mod_python, many of the issues
encountered in this chapter with mod_wsgi apply to mod_python as
well, and the specifics of configuring mod_python are still included in
the Django documentation.

Both Apache and mod_wsgi are readily obtained and easily installed on a variety of
different platforms. Details of installation for these will not be covered. As a general
guide, using your machine's regular package management service to install these
packages is likely the easiest path. If that isn't possible, details of downloading and
installing Apache can be found on the Web at http://httpd.apache.org/ and
the same information for mod_wsgi can be found at http://code.google.com/p/
modwsgi/.

The machine used to develop the sample configuration shown in this chapter
is running Ubuntu, a Debian-based version of Linux. This flavor of Linux has
developed a particular structure for Apache configuration that may not match the
structure used on your own machine. The configuration structure, however, is not
significant. Rather it is the Apache directives contained in the configuration that are
important. If your machine does not follow the Debian structure, you may simply
place the directives shown here in the main Apache configuration file, usually
named httpd.conf.

There are two pieces to the configuration for a WSGI client application running
under Apache with mod_wsgi. First, there is a Python WSGI script that sets up the
environment for and identifies the WSGI client application that will handle requests.
Second, there are the Apache configuration directives that control the operation of
mod_wsgi and direct requests for particular URL paths to mod_wsgi. Creating each
of these for the Django marketr project will be discussed next.

When it's Time to Go Live: Moving to Production

[378]

Creating the WSGI script for the marketr
project
The WSGI script for a Django project has three responsibilities. First, it must set the
Python path to include any paths that are needed by the Django project but are not
on the regular system path. In our case, the path to the martketr project itself will
need to be added to the Python path. All of the other pre-requisite code used by
the project has been installed so that it is automatically found under the Python
site-packages directory.

Second, the WSGI script must set the DJANGO_SETTINGS_MODULE variable in the
environment to point to the appropriate settings module. In our case, it will need
to be set to point to the settings.py file in /dj_projects/marketr.

Third, the WSGI script must set the variable application to an instance of a
callable that implements the WSGI interface. For Django, this interface is provided by
django.core.handlers.wsgi.WSGIHandler, so the script for the marketr project
may simply set application to an instance of that class. There is nothing specific
to the marketr project here—this piece of the WSGI script will be the same for all
Django projects.

Where should this script go? It might seem natural to place it directly in
/dj_projects/marketr, along with the settings.py and urls.py files, since they
are all project-level files. However, as mentioned in the mod_wsgi documentation,
this would be a poor choice. Apache will need to be configured to allow access to
files in the directory containing the WSGI script. Thus, it is best to keep the WSGI
script in a directory separate from any code files that should not be accessible to
website users. (The directory containing settings.py, in particular, should never
be configured to be accessible to website clients, since it may contain sensitive
information such as the database password.)

Therefore, we will create a new directory inside /dj_projects/marketr named
apache, to hold all of the files related to running the project under Apache. Under
the apache directory, we'll create a wsgi directory to hold the WSGI script for
the marketr project, which we will name marketr.wsgi. Based on the three
responsibilities previously noted for this script, a first pass at implementing
this /dj_projects/marketr/apache/wsgi/marketr.wsgi script might be:

import os, sys

sys.path = ['/dj_projects/marketr',] + sys.path
os.environ['DJANGO_SETTINGS_MODULE'] = 'marketr.settings'

import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

Chapter 11

[379]

This code adds the marketr project directory at the front of the Python system path,
sets the DJANGO_SETTINGS_MODULE environment variable to marketr.settings, and
sets application to be an instance of the Django-provided callable that implements
the WSGI application interface. When mod_wsgi is called to respond for a URL
path that has been mapped to this script, it will call the appropriate Django code
with an environment correctly set so that Django will be able to handle the request.
The next step, then, is to develop the Apache configuration that will route requests
appropriately to mod_wsgi and this script.

Creating an Apache VirtualHost for the
marketr project
In order to isolate the Django project from anything else that you might already
be using Apache for, we will use an Apache VirtualHost tied to port 8080 for the
Django configuration. The following directives instruct Apache to listen for requests
on port 8080 and define a virtual host to handle those requests:

Listen 8080
<VirtualHost *:8080>
 WSGIScriptAlias / /dj_projects/marketr/apache/wsgi/marketr.wsgi
 WSGIDaemonProcess marketr
 WSGIProcessGroup marketr

 # Possible values include: debug, info, notice, warn, error, crit,
 # alert, emerg.
 LogLevel debug

 ErrorLog /dj_projects/marketr/apache/logs/error.log
 CustomLog /dj_projects/marketr/apache/logs/access.log combined
</VirtualHost>

Note that this is in no way a complete Apache configuration, but is rather what needs
to be added to an existing (or the shipped sample) configuration to support handling
requests for the marketr project directed at port 8080. Inside the VirtualHost
container are three directives that control the behavior of mod_wsgi, and three that
will affect how logging is handled for this virtual host.

The first directive, WSGIScriptAlias, is straightforward. It maps all requests
matching its first argument, /, to the WSGI script specified in its second argument,
/dj_projects/marketr/apache/wsgi/marketr.wsgi. The effect of this directive
will be to have all requests for this virtual host routed to the marketr WSGI script
defined in the previous section.

When it's Time to Go Live: Moving to Production

[380]

The next two directives, WSGIDaemonProcess and WSGIProcessGroup, instruct
mod_wsgi to route requests for this virtual host to an independent group of
processes, distinct from the normal Apache child processes used to service requests.
This is referred to as running mod_wsgi in daemon mode. By contrast, having
mod_wsgi use the normal Apache child processes is referred to as running in
embedded mode.

Generally running in daemon mode is preferable (see the mod_wsgi documentation
for full details as to why), but this mode is not supported when running Apache on
Windows. Thus, if you are using a Windows machine for your Apache server, you
will need to omit these two directives from your configuration.

In the directives shown, the WSGIDaemonProcess directive defines a process group
named marketr. This directive supports several additional arguments that can be
used to control, for example, the number of processes in the group, the number of
threads in each process, and the user and group for the processes. None of those
arguments have been specified here so mod_wsgi will use its default values. The
WSGIProcessGroup directive names the previously-defined marketr group as the
one to use for handling requests for this virtual host.

The next directive, LogLevel debug, sets logging to its most verbose setting. A more
typical setting for production would be warn, but when just getting started setting
something up, it is frequently useful to have the code log as much information as
possible, so we will use debug here.

The final two directives, ErrorLog and CustomLog, define error and access logs for
this virtual host, distinct from the main Apache error and access logs. This can be
convenient to isolate log information related to the new project from any other traffic
Apache may be handling. In this case, we have directed Apache to place the logs in a
logs directory under the /dj_projects/marketr/apache directory.

Activating the new Apache configuration
Where should the configuration directives from the previous section be placed? As
noted earlier, the answer depends on the specifics of how Apache is configured on
your machine. For an Apache configuration that consists of a single httpd.conf file,
you may simply place the directives at the end of that file. Although that may also
work for more structured configurations, it is better to avoid confusion and use the
provided structure. Thus, this section will describe how to integrate the definitions
previously listed into a Debian-based configuration, since that is the type of machine
being used for the example project.

Chapter 11

[381]

For a Debian-based Apache configuration, the Listen directive should be placed in
/etc/apache2/ports.conf. The VirtualHost directive, and all it contains, should
be placed in a file under /etc/apache2/sites-available. For this example,
though, the virtual host configuration has been placed in a file /dj_projects/
marketr/apache/conf/marketr so that the /dj_projects directory can contain
complete configuration information for the project. We can make this file also appear
in the sites-available directory by creating a symbolic link for it:

kmt@lbox:/etc/apache2/sites-available$ sudo ln -s /dj_projects/marketr/
apache/conf/marketr

Note that general users cannot create or modify files under /etc/apache2/sites-
available, so the sudo command is needed to perform the requested command as a
superuser. This is necessary for all commands that modify the Apache configuration
or control its operation.

Once the file containing the virtual host configuration is in place in sites-
available, the a2ensite command can be used to enable the new site:

kmt@lbox:/etc/apache2/sites-available$ sudo a2ensite marketr

Enabling site marketr.

Run '/etc/init.d/apache2 reload' to activate new configuration!

The a2ensite command creates a symbolic link in the /etc/apache2/sites-
enabled directory to the specified file in the sites-available directory. There is
a companion command, a2dissite, that disables a site by removing the symbolic
link for it in sites-enabled. (Note that you can also manage the symbolic links
manually and not use these commands, if you prefer.)

As noted by the output of a2ensite, it is necessary to reload Apache in order for the
new site configuration to take effect. In this case, since a Listen directive was added, a
full restart of Apache is required. That is done by running the /etc/init.d/apache2
command and specifying restart as an argument. When we try that, the response is
as follows:

When it's Time to Go Live: Moving to Production

[382]

The [fail] on the right-hand side of the screen does not look good. Something
apparently went wrong during restart, but what? The answer is not found in the
output of the command used to restart Apache, which only reports success or failure.
Rather, the Apache error log contains details of the reason for the failure. Further,
for a failure related to server start-up, it will likely be the main Apache error log that
contains the detailed information, not a site-specific error log. On this machine, the
main Apache error logfile is /var/log/apache2/error.log. Looking at the end of
that file, we find the following:

(2)No such file or directory: apache2: could not open error log file /
dj_projects/marketr/apache/logs/error.log.

Unable to open logs

The problem is that the new virtual host configuration specified a directory for the
error logfile that does not exist. Apache will not automatically create the specified
directory, thus we need to create it manually. Doing that and again attempting to
restart Apache produces a better result:

[OK] certainly looks better than [fail]; apparently this time Apache was able to
start successfully. We've now gotten to the point where we have a valid Apache
configuration, but there may still be some work to do to get a working
configuration, as we will see next.

Chapter 11

[383]

Debugging the new Apache configuration
The next test is to see whether Apache will successfully process a request directed
to the new virtual host's port. To do that, let's try to retrieve the project root (home)
page from a web browser. The result does not look good:

What might be wrong now? In this case, the main Apache error log is silent on the
reason for the error. Rather, it is the error log configured for the marketr virtual site
that provides an indication of the problem. Checking that file, we see that the full
content of /dj_projects/marketr/apache/logs/error.log is now:

[Mon Dec 21 17:59:01 2009] [info] mod_wsgi (pid=18106): Attach
interpreter ''.

[Mon Dec 21 17:59:01 2009] [info] mod_wsgi (pid=18106): Enable monitor
thread in process 'marketr'.

[Mon Dec 21 17:59:01 2009] [debug] mod_wsgi.c(8301): mod_wsgi
(pid=18106): Deadlock timeout is 300.

[Mon Dec 21 17:59:01 2009] [debug] mod_wsgi.c(8304): mod_wsgi
(pid=18106): Inactivity timeout is 0.

[Mon Dec 21 17:59:01 2009] [info] mod_wsgi (pid=18106): Enable deadlock
thread in process 'marketr'.

[Mon Dec 21 17:59:01 2009] [debug] mod_wsgi.c(8449): mod_wsgi
(pid=18106): Starting 15 threads in daemon process 'marketr'.

[Mon Dec 21 17:59:01 2009] [debug] mod_wsgi.c(8455): mod_wsgi
(pid=18106): Starting thread 1 in daemon process 'marketr'.

When it's Time to Go Live: Moving to Production

[384]

[Mon Dec 21 17:59:01 2009] [debug] mod_wsgi.c(8455): mod_wsgi
(pid=18106): Starting thread 2 in daemon process 'marketr'.

[… identical messages for threads 3 through 13 deleted …]

(pid=18106): Starting thread 14 in daemon process 'marketr'.

[Mon Dec 21 17:59:01 2009] [debug] mod_wsgi.c(8455): mod_wsgi
(pid=18106): Starting thread 15 in daemon process 'marketr'.

[Mon Dec 21 17:59:45 2009] [error] [client 127.0.0.1] client denied by
server configuration: /dj_projects/marketr/apache/wsgi/marketr.wsgi

Except for the last one, none of these messages indicate a problem. Rather they are
informational and debug level messages logged by mod_wsgi, as requested by the
setting of LogLevel debug in the virtual host configuration. These messages show
mod_wsgi reporting on various values (deadlock timeout, inactivity timeout) it is
using, and show that mod_wsgi started 15 threads in the daemon process marketr.
All looks good until the last line, which is an error level message.

The specifics of this last message are not much more helpful than the bare Forbidden
displayed by the web browser. The message does indicate that the marketr.wsgi
script is involved, and that the request is denied by server configuration. In this
case, the problem is not that the file does not exist, but rather that the server has
been configured to not allow access to it.

The cause of this specific problem lies elsewhere in the Apache configuration on
this machine, and this is a problem you may or may not encounter depending on
your overall Apache configuration. The problem is that this machine's Apache
configuration has been set up to deny access to files in all directories except those
that are explicitly enabled for access. This type of configuration is good from a
security standpoint, but it does make configuration a bit more tedious. In this case,
what is needed is a Directory block that allows access to files in the directory
containing the marketr.wsgi script:

 <Directory /dj_projects/marketr/apache/wsgi>
 Order allow,deny
 Allow from all
 </Directory>

The details of Apache's three-pass access control system is beyond the scope of this
book; if you are interested, the Apache documentation describes the process in detail.
For our purposes, it is sufficient to note that this Directory block allows all clients to
access files in /dj_projets/marketr/apache/wsgi, which should be acceptable and
enough to get past the Forbidden initially returned by the browser for the marketr
project's home page.

Chapter 11

[385]

The Directory block should be placed inside the VirtualHost block for the
marketr project. Changing the configuration requires an Apache restart, after which
we can try again to access the project home page. This time we see the following:

The good news is we got past the Forbidden error. The bad news is we did not get
much farther. Again the page returned to the browser is of little use in debugging the
problem, rather the site's error log is where details of the problem are recorded. This
time at the end of the file we find:

[Mon Dec 21 18:05:43 2009] [debug] mod_wsgi.c(8455): mod_wsgi
(pid=18441): Starting thread 15 in daemon process 'marketr'.

[Mon Dec 21 18:05:49 2009] [info] mod_wsgi (pid=18441): Create
interpreter 'localhost.localdomain:8080|'.

[Mon Dec 21 18:05:49 2009] [info] [client 127.0.0.1] mod_wsgi (pid=18441,
process='marketr', application='localhost.localdomain:8080|'): Loading
WSGI script '/dj_projects/marketr/apache/wsgi/marketr.wsgi'.

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] mod_wsgi
(pid=18441): Exception occurred processing WSGI script '/dj_projects/
marketr/apache/wsgi/marketr.wsgi'.

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] Traceback (most
recent call last):

When it's Time to Go Live: Moving to Production

[386]

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] File "/usr/lib/
python2.5/site-packages/django/core/handlers/wsgi.py", line 230, in __
call__

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] self.load_
middleware()

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] File "/usr/lib/
python2.5/site-packages/django/core/handlers/base.py", line 33, in load_
middleware

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] for middleware_
path in settings.MIDDLEWARE_CLASSES:

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] File "/usr/lib/
python2.5/site-packages/django/utils/functional.py", line 269, in __
getattr__

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] self._setup()

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] File "/usr/lib/
python2.5/site-packages/django/conf/__init__.py", line 40, in _setup

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] self._wrapped =
Settings(settings_module)

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] File "/usr/lib/
python2.5/site-packages/django/conf/__init__.py", line 75, in __init__

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] raise
ImportError, "Could not import settings '%s' (Is it on sys.path? Does it
have syntax errors?): %s" % (self.SETTINGS_MODULE, e)

[Mon Dec 21 18:05:49 2009] [error] [client 127.0.0.1] ImportError: Could
not import settings 'marketr.settings' (Is it on sys.path? Does it have
syntax errors?): No module named marketr.settings

Clearly, the marketr.wsgi script did get used this time, since the traceback shows
that Django code has been called. But the environment was not set up entirely
correctly, since Django is unable to import the specified marketr.settings settings
module. This is a commonly-encountered error that is almost always due to one
of two things: either the Python path has not been set properly, or the user that
the Apache process runs as does not have read access to the settings file (and the
directory that contains it).

In this case, a quick check of the permissions on the /dj_projects/marketr
directory and its files show that they are readable by all:

kmt@lbox:/dj_projects/marketr$ ls -la

total 56

drwxr-xr-x 7 kmt kmt 4096 2009-12-21 18:42 .

drwxr-Sr-x 3 kmt kmt 4096 2009-12-20 09:46 ..

drwxr-xr-x 5 kmt kmt 4096 2009-12-21 17:58 apache

Chapter 11

[387]

drwxr-xr-x 2 kmt kmt 4096 2009-11-22 11:40 coverage_html

drwxr-xr-x 4 kmt kmt 4096 2009-12-20 09:50 gen_utils

-rw-r--r-- 1 kmt kmt 0 2009-11-22 11:40 __init__.py

-rw-r--r-- 1 kmt kmt 130 2009-12-20 09:49 __init__.pyc

-rwxr-xr-x 1 kmt kmt 546 2009-11-22 11:40 manage.py

-rwxr--r-- 1 kmt kmt 5800 2009-12-20 09:50 settings.py

-rw-r--r-- 1 kmt kmt 2675 2009-12-20 09:50 settings.pyc

drwxr-xr-x 3 kmt kmt 4096 2009-12-20 09:50 site_media

drwxr-xr-x 5 kmt kmt 4096 2009-12-20 19:42 survey

-rwxr--r-- 1 kmt kmt 734 2009-11-22 11:40 urls.py

-rw-r--r-- 1 kmt kmt 619 2009-12-20 09:50 urls.pyc

Thus, it does not seem likely the problem is related to the ability of the web server
process to access the settings.py file. Note, however, if you are running a version
of Linux that uses the security-enhanced kernel (SELinux kernel), the permissions
information displayed by ls -l may be misleading. This kernel has a complex file
access control structure that requires additional configuration (beyond the scope of
this book) in order to allow the web server process to access files outside of its own
designated area.

In this case, though, the machine is not running the SELinux kernel and the
permissions information shows that any process can read the settings.py file.
The problem, then, is likely in the path setting. Recall that the path and settings
specification in the marketr.wsgi script is:

sys.path = ['/dj_projects/marketr',] + sys.path
os.environ['DJANGO_SETTINGS_MODULE'] = 'marketr.settings'

That path does not work to import a settings file specified as marketr.settings
because the marketr part has been duplicated in both the path and the module
specification. Python, in trying to find the module and using the first element
on the path, will attempt to find a file named /dj_projects/marketr/marketr/
settings.py. This will fail since the actual file is /dj_projects/marketr/
settings.py. Unless /dj_projects alone is on sys.path, Python will not
be able to load marketr.settings.

One fix, then, is to include /dj_projects in the path setting:

sys.path = ['/dj_projects/marketr', '/dj_projects',] + sys.path

When it's Time to Go Live: Moving to Production

[388]

It seems a bit odd, though, to need to add two different items to the path for a single
project. Are both really necessary? The first is necessary because throughout the
survey application code, for example, we used imports of the form:

from survey.models import Survey
from survey.forms import QuestionVoteForm

Since marketr is not included in those imports, it must be included in an element
of the Python path. When running the development server, the /dj_projects/
marketr directory is the current path, which is automatically included in the Python
path, so these imports work. When running under Apache, /dj_projects/marketr
must be included on the path for these imports to work.

Alternatively, we could change all the imports in both the survey and gen_utils
applications to use the form:

from marketr.survey.models import Survey
from marketr.survey.forms import QuestionVoteForm

This approach, however, ties these applications tightly to the marketr project,
making it harder to re-use them outside of that one project. I feel it is better practice
to make applications independent and not include in their imports the name of the
containing project.

What about /dj_projects—does that really need to be included in the path?
Could we eliminate needing to have it in the path by specifying the settings module
as simply settings instead of marketr.settings? Yes, that would get us past
this particular error, but we would quickly hit another similar error when the
ROOT_URLCONF value in the settings file was processed. ROOT_URLCONF also
includes marketr in its specification:

ROOT_URLCONF = 'marketr.urls'

We could change that as well, and hope it is the last one, but it is probably easier to
just include /dj_projects in the path when running under the web server.

You might wonder how /dj_projects was included in the path when running
under the development server, since the parent of the current directory is not
generally included in the Python path the way the current directory is. The answer
is that the setup code for the development server places the parent of the project
directory in the Python path. This can be helpful to people new to Python when
starting out, but often causes confusion in the long run, since it is somewhat
surprising behavior to anyone who is not new to Python.

Chapter 11

[389]

To proceed from this point, however, we will just include /dj_projects as well as
/dj_projects/marketr in the Python path, as previously shown. Note that when
running mod_wsgi in daemon mode, it is not necessary to reload or restart Apache
to get it to pick up changes to the WSGI script. Changing the WSGI script itself is
sufficient to cause mod_wsgi to automatically restart its daemon processes. Thus, all
we need to do is save the modified file and again try to access the project home page.
This time we see the following:

When it's Time to Go Live: Moving to Production

[390]

Again, we have good news and bad news. We certainly got further, and the Django
code is working well enough to return a debug page, which is encouraging and
easier to deal with than having to go search in the Apache error logs for the problem.
Unfortunately, the fact that we got a debug page and not the project home page
means there is still more that is not quite right in the environment when running
under the web server.

This time the exception information indicates that the matplotlib code needs write
access to a directory for its configuration data. It apparently tried to create a directory
named /var/www/.matplotlib, and that failed. The message suggests that if an
environment variable named MPLCONFIGDIR is set to point to a writable directory,
we may get past this problem. We can certainly set this environment variable in the
marketr.wsgi script, just as the DJANGO_SETTINGS_MODULE environment variable
is set:

os.environ['DJANGO_SETTINGS_MODULE'] = 'marketr.settings'
os.environ['MPLCONFIGDIR'] = '/dj_projects/marketr/apache/.matplotlib'

We also need to create the directory specified there and make it writeable by the
web server process. The easiest way to do this is to simply change the owner of
the directory to the user the web server process runs as, which on this machine
is www-data:

kmt@lbox:/dj_projects/marketr/apache$ mkdir .matplotlib

kmt@lbox:/dj_projects/marketr/apache$ sudo chown www-data .matplotlib/

Alternatively, the WSGIDaemonProcess directive in the virtual host configuration
could be changed to specify a different user. But the only user that would have write
access, by default, to directories under /dj_projects would be my own user, kmt,
and I would prefer not to have a web server process running with write access to
all of my own files. Thus, it is easier to simply let the web server continue to run as
www-data and explicitly give it permission to access directories as necessary. Note
that if you are using SQLite as your database, you will also need to set permissions
on the database file so that the Apache process can read and write it.

Have we got past the last problem yet? Saving the changed marketr.wsgi file and
retrying the project home page brings up the following:

Chapter 11

[391]

Success at last, of a sort. There are no surveys displayed on the home page because
enough time has passed that the one closed survey we had been working with has
now been closed for too long to be listed. Thus, there is not much of interest to see
on the home page. The next natural step in testing is to go to the admin application
and change the closes date on the survey so that it will appear on the home page.
Attempting to do this reveals some configuration we have not yet set up, which will
be discussed next.

Configuring Apache to serve static files
Attempting to access the admin application running under Apache, we get:

When it's Time to Go Live: Moving to Production

[392]

That looks a lot like our sample project pages, bare of any custom styling. But the
admin application, unlike our sample project, does have stylesheets it uses, which
were correctly loaded when running under the development server. That was done
by special-purpose code in the development server. When running under Apache,
we need to configure it (or some other web server) to serve the admin application's
static files.

How do we do that? All of the admin's static files will be referenced using the same
prefix, specified by ADMIN_MEDIA_PREFIX in settings.py. The default value for this
setting is /media/. Thus, we need to instruct Apache to serve files with this prefix
directly from the admin's media directory tree, instead of routing the request to
mod_wsgi and our Django project code.

The Apache directives to accomplish this are (note that though the Alias and
Directory lines below are split due to page width constraints, these need to be
placed on single lines in the Apache configuration file):

Alias /media /usr/lib/python2.5/site-packages/django/contrib/admin/
media/
<Directory /usr/lib/python2.5/site-packages/django/contrib/admin/
media>
 Order allow,deny
 Allow from all
</Directory>

The first directive, Alias, sets up a mapping from URL paths that start with /media
to the actual files which are located (on this machine) under /usr/lib/python2.5/
site-packages/django/contrib/admin/media/. The following Directory block
instructs Apache to allow all clients to access files in the directory where the admin
media is located. Like the Directory block for the marketr.wsgi script, this is only
needed if your Apache configuration has been set up to deny access to all directories
by default.

These directives should be placed in the VirtualHost block for the marketr
project virtual host. Apache then needs to be reloaded to recognize the configuration
changes. Reloading the admin page in the browser then brings up a page with
the correct custom styling:

Chapter 11

[393]

Note, though, it is not only admin that has static files. In Chapter 9, When You Don't
Even Know What to Log: Using Debuggers, we added some use of static files into the
marketr project. Specifically, the image files generated by matplotlib to show survey
results are served as static files. These files, unlike the admin media files, were not
automatically served by the development server, so we had to add an entry for them
in the marketr project urls.py file, specifying that they be served by the Django
static server view:

 (r'^site_media/(.*)$', 'django.views.static.serve',
 {'document_root': settings.MEDIA_ROOT, 'show_indexes': True}),

This configuration would still work to serve the files under Apache, but the static
server is not recommended for use in production. Besides being a very inefficient
way to serve static files, the static server code has not been audited for security.
Thus, for production, this URL pattern should be removed from the urls.py file
and Apache (or another server) should be configured to serve these files directly.

When it's Time to Go Live: Moving to Production

[394]

The directives to get Apache to serve these files are:

 Alias /site_media /dj_projects/marketr/site_media
 <Directory /dj_projects/marketr/site_media>
 Order allow,deny
 Allow from all
 </Directory>

These are nearly identical to the directives needed for the admin media files, only
modified to specify the URL path prefix used for the site media files, and the actual
location of those files.

Is that all? Not quite. Unlike the admin media files, the image files used by the
marketr project are actually generated on-demand by the marketr project code.
If we delete the existing image files and attempt to access the detail page for the
completed survey, we will get an error when the web server process attempts to
create one of the image files, as the following shows:

Chapter 11

[395]

To fix this, the web server code will need write access to the directory containing
the files. This can be done by changing the owner of the directory /dj_projects/
marketr/site_media /piecharts to www-data, as was done for the matplotlib
configuration directory. After we make that change, attempting to reload the
survey detail page shows that the web server is now able to create the image files,
as the following shows:

We have now got the project up and running under Apache. Next, we will consider
whether there are any additional potential problems we might run into as a result of
differences between the development and production web server environments.

When it's Time to Go Live: Moving to Production

[396]

Testing multithreaded behavior
In the previous section, we encountered a few environmental differences between
running under the development server and running under Apache. Some of these
(for example, file permissions and Python path differences) caused problems that
had to be overcome before we could get the project functioning properly under
Apache. One difference we observed, but have not yet encountered a problem
with, is multithreading.

When we checked the error log in the previous section we could see that
mod_wsgi had started one process with 15 threads, each ready to handle an
incoming request. Multiple requests that arrive at the server nearly simultaneously,
then, will be dispatched to different threads for handling, and the steps of their
execution may be arbitrarily interleaved in real time. This can never happen with
the development server, which is strictly single threaded, ensuring each request is
fully processed before processing of the next one is started. It also never happens
with any of the test tools covered in the first five chapters, since they too all test
in a single-threaded manner.

In Chapter 9 we already noted the need to keep in mind potential multithreading
issues. In that chapter, we wrote the code to generate the image files for the display
of survey results. The images are generated on-demand when the first request to
display the survey is received after the survey has closed. Generating the image and
writing it to disk took a perceptible amount of time, and it was fairly obvious that the
code needed to properly handle the case where a second request was received for the
survey results, but the processing of the first request had not yet completed.

In that chapter, we learned how we could use breakpoints in the debugger to force
multiple threads to execute in a particular sequence. In this way, we saw how
we could test to ensure that the code behaved properly in whatever worst-case
interleaved execution scenarios might arise in a multithreaded environment.

But it is not only operations that take a significant amount of time, such as generating
images or writing files, that we need to be concerned with. Under a heavy request
load in a multithreaded environment, even the processing of requests that are
generally quite quick may get interrupted and interleaved with processing from
other requests being handled at the same time. On a multiprocessor machine, it's not
even necessary for one request to be interrupted: a second request could be running
on a second processor truly simultaneously.

Chapter 11

[397]

Is there any code in the marketr project that might not function properly in a
multithreaded environment? Possibly. Generally, the first code to consider for
potential multithreading problems is any code that updates data. For the survey
application, there is one view that updates data on the server: the one that receives
and records posted survey results.

Are we sure the survey results recording code will function properly when it is
run in a multithreaded environment where many copies of it may be running
simultaneously? Since we have not tested it, no, we can't be sure. But now that we
have the code running in a multithreaded environment, we can try testing it and
see the outcome.

Generating load with siege
Having the code available for testing in a multithreaded environment is only half
of what is needed to effectively test multithreaded behavior. The other half is some
way of generating many simultaneous requests for the server to process. There are a
number of different tools that can be used for this. The one we will use here is called
siege, a freely available command line tool written by Jeffrey Fulmer. Information
on downloading and installing siege can be found at http://www.joedog.org/
index/siege-home.

Once installed, siege is very easy to use. The simplest way to call it is to pass a URL
on the command line. It will start up several threads and continuously request the
passed URL. As it runs, it displays what it is doing and key information about the
responses it is receiving. For example:

kmt@lbox:/dj_projects/marketr$ siege http://localhost:8080/

** SIEGE 2.66

** Preparing 15 concurrent users for battle.

The server is now under siege...

HTTP/1.1 200 0.06 secs: 986 bytes ==> /

HTTP/1.1 200 0.04 secs: 986 bytes ==> /

HTTP/1.1 200 0.04 secs: 986 bytes ==> /

HTTP/1.1 200 0.02 secs: 986 bytes ==> /

HTTP/1.1 200 0.03 secs: 986 bytes ==> /

HTTP/1.1 200 0.03 secs: 986 bytes ==> /

HTTP/1.1 200 0.03 secs: 986 bytes ==> /

HTTP/1.1 200 0.03 secs: 986 bytes ==> /

HTTP/1.1 200 0.04 secs: 986 bytes ==> /

When it's Time to Go Live: Moving to Production

[398]

Here we see siege called to continuously request the project home page. During
startup, it reports its version and prints out how many threads it will be using to
make simultaneous requests. The default, as seen here, is 15; the -c (for concurrent)
command line switch could be used to change that. Siege then prints out
information about each request it sends. For each, it prints the protocol used (here
all HTTP/1.1), the response code received (200), how long it took for the response to
arrive (between .02 and .06 seconds), how many bytes in the response (986), and
finally the URL path for the request.

By default siege will keep running until interrupted by Ctrl-C. When interrupted, it
will stop generating load and report statistics on the results. For example:

HTTP/1.1 200 0.11 secs: 986 bytes ==> /

HTTP/1.1 200 0.47 secs: 986 bytes ==> /

^C

Lifting the server siege... done.

Transactions: 719 hits

Availability: 100.00 %

Elapsed time: 35.02 secs

Data transferred: 0.68 MB

Response time: 0.21 secs

Transaction rate: 20.53 trans/sec

Throughput: 0.02 MB/sec

Concurrency: 4.24

Successful transactions: 719

Failed transactions: 0

Longest transaction: 0.79

Shortest transaction: 0.02

The tool made slightly over 700 requests and all received responses, as indicated
by the report of 100 percent availability and 0 failed transactions. The performance
numbers reported are interesting, but since we are presently running on a
development machine with debug still turned on, it is a little early to be reading
much into performance numbers. What we really want to check is whether the code
that processes survey responses behaves correctly when called in a multithreaded
environment under heavy load. We will consider how to do that next.

Chapter 11

[399]

Load testing the results recording code
How can we use siege to test the code that records survey answers? First, we need
a survey in the database that is still open and thus will accept posted responses. The
easiest way to do this is to use the admin application and change the closes date
on the existing Television Trends survey to be some time in the future. At the same
time, we can change the answer counts for all of the answers in the survey to be 0,
which will make it easy to tell if all of the responses we generate with siege are
processed correctly.

Next we need to determine what URL to specify to siege to get it to POST valid data
for the survey's form. The easiest way to do this is to bring up the page that displays
the survey form in a browser and check the HTML source to see what the form fields
are named and what the valid values for each are. In this case, the source HTML for
the form displayed when we retrieve http://localhost:8080/1/ is:

<form method="post" action=".">

<div>

 What is your favorite type of TV show?

<label for="id_answer_0"><input type="radio" id="id_answer_0"
value="1" name="answer" /> Comedy</label>

<label for="id_answer_1"><input type="radio" id="id_answer_1"
value="2" name="answer" /> Drama</label>

<label for="id_answer_2"><input type="radio" id="id_answer_2"
value="3" name="answer" /> Reality</label>

 How many new shows will you try this Fall?

<label for="id_1-answer_0"><input type="radio" id="id_1-answer_0"
value="4" name="1-answer" /> Hardly any: I already watch too much TV!</
label>

<label for="id_1-answer_1"><input type="radio" id="id_1-answer_1"
value="5" name="1-answer" /> Maybe 3-5</label>

When it's Time to Go Live: Moving to Production

[400]

<label for="id_1-answer_2"><input type="radio" id="id_1-answer_2"
value="6" name="1-answer" /> I'm a TV fiend, I'll try them all at
least once!</label>

<button type="submit">Submit</button>

</div>

</form>

The form has two radio group inputs, one named answer and one named 1-answer.
Valid choices for answer are 1, 2, and 3. Valid choices for 1-answer are 4, 5, and 6.
Thus, we want to instruct siege to POST to http://localhost:8080/1/ a value
between 1 and 3 for answer and between 4 and 6 for 1-answer. The way to do
this, arbitrarily choosing the first choice for both questions, is to specify the URL as
"http://localhost:8080/1/ POST answer=1&1-answer=4". Note that the quotes
around this URL are needed when passing it as a parameter on the command line
due to the spaces and & in it.

In order to get a predictable number of requests generated, we can specify
the -r command line switch, specifying the number of test repetitions. If we leave
the default number of concurrent threads at 15 and specify 5 repetitions, at the end of
the test we should see that the two chosen answers each have 5*15, or 75 votes. Let's
try it:

kmt@lbox:/dj_projects/marketr$ siege -r 5 "http://localhost:8080/1/ POST
answer=1&1-answer=4"

** SIEGE 2.66

** Preparing 15 concurrent users for battle.

The server is now under siege...

HTTP/1.1 302 0.12 secs: 0 bytes ==> /1/

HTTP/1.1 302 0.19 secs: 0 bytes ==> /1/

HTTP/1.1 200 0.02 secs: 543 bytes ==> /thanks/1/

HTTP/1.1 302 0.15 secs: 0 bytes ==> /1/

HTTP/1.1 302 0.19 secs: 0 bytes ==> /1/

HTTP/1.1 302 0.37 secs: 0 bytes ==> /1/

HTTP/1.1 200 0.02 secs: 543 bytes ==> /thanks/1/

HTTP/1.1 302 0.30 secs: 0 bytes ==> /1/

Chapter 11

[401]

Here the output is a bit different from the first example. The survey application
response to a successful POST of a survey response is an HTTP redirect (status 302).
The siege tool, like a browser, responds to the received redirect by requesting the
location specified in the redirect response. The previous output, then, is showing that
the POST requests are succeeding, and then the subsequent redirects to the thanks
page for the survey are also succeeding.

The tail end of the output for this test run is:

HTTP/1.1 302 0.03 secs: 0 bytes ==> /1/

HTTP/1.1 200 0.02 secs: 543 bytes ==> /thanks/1/

HTTP/1.1 200 0.01 secs: 543 bytes ==> /thanks/1/

done.

Transactions: 150 hits

Availability: 100.00 %

Elapsed time: 9.04 secs

Data transferred: 0.04 MB

Response time: 0.11 secs

Transaction rate: 16.59 trans/sec

Throughput: 0.00 MB/sec

Concurrency: 1.85

Successful transactions: 150

Failed transactions: 0

Longest transaction: 0.56

Shortest transaction: 0.01

That looks good. The total number of transactions is twice the number of posts
requested, indicating that all of the POST requests returned a redirect, so they
were all successfully processed. From the client side, then, it appears that the
test ran successfully.

When it's Time to Go Live: Moving to Production

[402]

But do the vote counts on the server match up to what we expect? Answers 1
(Comedy) and 4 (Hardly any: I already watch too much TV!) were each posted 75
times, so we expect that they each have 75 votes while all of the other answers have
none. Checking the vote count for the first question in the admin application, we see
the following:

Chapter 11

[403]

Similarly, checking the second question we see the following:

That's not good. While the votes values that were supposed to be 0 are all indeed
0, the two votes values that were supposed to be 75 are instead 40 and 34. Based
on the results sent to the client, the server appeared to process all of the requests
successfully. Yet clearly many of the votes were not actually recorded. How did that
happen? The answer lies in the code that attempts to record posted survey responses,
which we will check next.

When it's Time to Go Live: Moving to Production

[404]

Fixing the results recording code
Recall that the code which records posted survey answers is in the
display_active_survey function in survey/views.py. This code processes
both GET and POST requests. In the case of a POST, the code to validate
and record the submitted values is:

 if request.method == 'POST':
 chosen_answers = []
 for qf in qforms:
 if not qf.is_valid():
 logging.debug("form failed validation: %r", qf.errors)
 break;
 chosen_answers.append(qf.cleaned_data['answer'])
 else:
 for answer in chosen_answers:
 answer.votes += 1
 answer.save(force_update=True)
 return HttpResponseRedirect(reverse('survey_thanks',
 args=(survey.pk,)))

This code runs fine and behaves properly when a single thread runs through it
at a time. However, if multiple threads (from the same or different processes) are
running through it simultaneously, all trying to increment votes value for the same
answers, this code is likely to lose votes. The problem is that retrieving the current
votes value, incrementing it, and saving the new value is not atomic. Rather it is
done in three distinct steps that may be interleaved with the same steps done by
another thread simultaneously.

Consider two threads running concurrently, both attempting to record a vote for the
Answer with primary key value 1. (For simplicity, we will assume there is only one
question in the survey.) The first thread enters this code and runs through the for
qf in qforms loop validating the forms. It is during this loop that the current votes
value for the chosen answer will be read from the database. Let's say the value that
the first thread reads for the votes value for answer with primary key 1 is 5.

Now, before this first thread is able to finish its work and save an incremented
value of 6 for the votes field to the database, a second thread (either through
pre-emptive scheduling or multiprocessor execution) enters the for qf in qforms
loop. The posted form data this second thread is working with also specifies a vote
for the answer with primary key 1. This second thread also reads a current value of
5 for the votes value for this answer. Now we have a problem: two threads, both
intending to increment the votes value for the same answer, both read the same
existing value, and both will increment that value and save the result. Together the
two threads will only cause the votes count to be incremented by one: one of the
votes will effectively be lost.

Chapter 11

[405]

How do we fix this problem? For this simple case of incrementing (or performing
some other arithmetic operation on) an existing field's value in the database, it is
reasonably easy to avoid the problem. We can slightly change the code in the for
answer in chosen_answers loop to use a Django F expression to describe the
desired result for votes instead of giving it an explicit numerical value. The
changed code looks like this:

 for answer in chosen_answers:
 from django.db.models import F
 answer.votes = F('votes') + 1
 answer.save(force_update=True)

Use of an F expression in the value for votes will cause Django to construct an
UPDATE SQL statement of the form:

UPDATE `survey_answer` SET `answer` = Comedy, `question_id` = 1, `votes`
= `survey_answer`.`votes` + 1 WHERE `survey_answer`.`id` = 1

This type of UPDATE statement pushes the responsibility of ensuring that the
increment operation is atomic onto the database server. That is generally where you
want to place such responsibility, since that is exactly what database servers are
supposed to do both correctly and efficiently.

If we now save this change to the code, reset all the vote counts to 0, and re-run the
siege test, the problem will hopefully be gone. Only it is not! Checking the votes
values again after running the test shows the same behavior: for the two answers
that should have values of 75, one value is 43 and the other 39. Why didn't the code
change fix the problem?

The problem in this case is that the code change was not seen by the running web
server process. When running under Apache with mod_wsgi, changes to the Django
application code will not automatically cause a reload of the processes that handle
requests. Thus, the existing running processes will continue to use the old code.
When running in daemon mode, touching the WSGI script will trigger a reload on
receipt of the next request. Alternatively, restarting Apache will ensure the new code
is loaded. As we will see later in the chapter, it is also possible to code the WSGI
script to automatically restart the daemon process when a code change is detected.

For now, since the existing WSGI script does not monitor for source code changes,
and since we are running in daemon mode, touching the WSGI script is the easiest
way to get the application code change loaded. If we do that, again use the admin
application to reset the vote counts to 0, and again try the siege test, we see that
when the test finishes the votes for the two chosen answers are indeed the correct
value, 75.

When it's Time to Go Live: Moving to Production

[406]

Additional load testing notes
While we have successfully found and fixed a multithreading problem with the code
that receives and records survey results, we have not done enough testing to ensure
that the remainder of the application will behave properly in a typical production
environment. A full test would involve load testing all views, both in isolation and
in combination with each other, and ensures that the server responds correctly.
Constructing such a test is beyond the scope of this book, but some notes about
the process are included here.

First, for the problem we did find we were fortunate that a very simple code change,
namely use of an F expression, was available to easily make the database update
atomic. For other situations, Django may or may not provide a simple API to help
ensure atomicity of updates. For creating objects, for example, Django does have
an atomic get_or_create function. For more complicated situations, such as ones
involving updating several values in different objects, there may not be a simple
Django API to use to ensure atomicity.

In these cases, it will be necessary to use database support for maintaining data
consistency. Some databases provide transactions to help with this, and Django in
turn provides an API that allows an application to control transactional behavior.
Other databases don't support transactions but do provide lower-level support,
such as the ability to lock tables. Django does not provide an API for table locking,
but it does allow applications to construct and execute arbitrary (raw) SQL, so an
application can still use such functions. The disadvantage of using the raw SQL API
is that the application will generally not be portable to a different database.

When setting out to create a new application, then, careful consideration should
be given to the kinds of database updates the application will need to perform. If
possible, it is best to structure the data so that simple atomic APIs can be used for
all updates. If that is not possible, then use of database transactions or lower-level
locking support may be required. The range of options available may be restricted
by the database in use (if it is predetermined), and likewise the choice of specific
technique used for ensuring data consistency may limit the databases on which
the application will ultimately be able to run correctly.

Chapter 11

[407]

Second, while careful consideration and coding will help to ensure no multithreading
surprises like the one bug we uncovered, explicit testing for problems like this
is a good idea. Unfortunately, it is not something supported by the testing tools
covered in the first five chapters, which all focus on verifying correct single-threaded
behavior. Thus, some additional work will generally be required to augment the unit
testing suite with additional tests that ensure correct behavior (and possibly some
minimum level of performance) in a production environment under load. It may not
be practical to expect individual developers to routinely run these additional tests,
but having them available, and running them before placing any code updates into
production, will save headaches in the long run.

Using Apache/mod_wsgi during
development
As described throughout this chapter, the switch from using the Django
development server to a production server such as Apache with mod_wsgi may
run into various snags along the way. Some are easily overcome, others may
require more effort. It is often inconvenient to encounter such difficulties late in the
development cycle, when there is typically very little time available for making code
changes. One way to make the transition smoother is to use a production server
configuration during development. This is an idea worth some serious consideration.

One possible objection to using a production server (namely Apache with mod_wsgi)
during development is that installing and properly configuring Apache is difficult.
Asking individual developers to do this is asking too much of them. Installation,
however, is not generally difficult—and most development machines today are
easily capable of running Apache without causing any performance impact for
other activities.

Configuring Apache can indeed be daunting, since there are many configuration
directives and optional modules to consider. However, it is not necessary to become
an expert in Apache configuration in order to successfully take a shipped default
configuration and modify it to support running a Django application. The result may
not be finely tuned for great performance under heavy load, but such tuning is not
required for use of the configuration during development testing.

A second objection to using Apache during development may be that it is
relatively inconvenient, compared to the development server. The console of the
development server provides an easy way to check on what is going on; needing to
consult the Apache log files is a bit of a nuisance in comparison. This is true but a
very minor inconvenience.

When it's Time to Go Live: Moving to Production

[408]

A more serious inconvenience is the need to be sure the running web server
processes are restarted in order to pick up code changes during development. It is
very easy to get used to the development server's automatic restart, and forget the
need to do something (even if it is as simple as touching the WSGI script file) to
ensure that the web server is using the latest code.

However, it is in fact possible to set up the WSGI script for a Django project to
behave in the same way as the development server. That is, the WSGI script can start
up a code monitoring thread that checks for changed Python source files and triggers
an automatic reload when necessary. Details of this can be found at http://code.
google.com/p/modwsgi/wiki/ReloadingSourceCode. Using the code included on
that page, an Apache with mod_wsgi configuration can be almost as convenient for
development as the Django development server.

One remaining convenience of the development server that has not yet been covered
is the ability to easily put breakpoints in code and drop into the Python debugger.
Even this is possible when running under Apache, but for this Apache does need
to be started in a special mode from a console session, so that it has a console to
allow the debugger to interact with the user. Details of doing this can be found
at http://code.google.com/p/modwsgi/wiki/DebuggingTechniques.

In summary, it is quite possible to get nearly all the convenience of the Django
development server from an Apache/mod_wsgi setup. Using such a configuration
during development can help to ease the eventual transition to production, and can
be well worth the additional early effort of installing and configuring Apache with
mod_wsgi on a development machine.

Chapter 11

[409]

Summary
We have now reached the end of discussing the move to production for a Django
application. In this chapter, we:

Developed a configuration to support running the marketr project under
Apache with mod_wsgi.
Encountered a number of problems getting the project running under
Apache. For each, we saw how to diagnose and fix the issue.
Considered what additional testing could be done in the new environment,
given its ability to run multiple threads concurrently.
Developed a test for the code that records posted survey responses, and
observed that the code did not operate correctly under heavy load in the
production environment.
Fixed the problem found in the results recording code, and discussed
other techniques that may be needed to fix more complex multithreading
problems.
Discussed the possibility of using Apache and mod_wsgi during
development. This configuration can be made nearly as convenient for
development as the Django development server, and use of the production
setup during development can help reduce the number of problems
encountered during the eventual move to production.

•

•

•

•

•

•

Index
Symbols
--help option 23
--noinput option 28
--noreload option 344
--verbosity option 24
--version option 28
__call__ method 279
__init__.py file 250
__init__ method 279
__unicode__ method 45, 207

A
a2dissite command 381
a2ensite command 381
active method 92
admin customization

about 122
admin, configuring 123
custom survey form, developing 122
testing 124-129

answer_piechart view 324
answer field 194
Apache/mod_wsgi

configuration, developing 376
using, during development 407, 408

Apache/mod_wsgi configuration
about 376, 377
Apache configuration, to server static files

392-395
Apache VirtualHost, creating 379
Django WSGI script 378
new configuration, activating 380, 382
new configuration, debugging 383-391

args command 300

as_p method 194
assertContains method 114
assertFormError method 129
assertNotContains method 114
assertRedirects method 129
assertTemplateNotUsed method 121
automated testing 9

B
basic error information, debug page

about 197
exception value 197

break command 309

C
check_piechart method 340
cleaned_data attribute 270
clear command 310
client class instance 112
Client login method 127
command line options

--help option 23
Noinput 27
Pythonpath 27
setting options 27
Traceback 27
verbosity 24-26
verbosity, database setup phase 26
version 28

comment block 241
completed function 94
content attribute 113
content block 241
continue command 307

[412]

cornerstone model 29
count() 91
coverage

integrating, into Django project 149-153
using, as standalone utility 145-148

create_user method 126

D
database dependence, doctest issues

about 47-51
fixing 50

database query history 176-178
data providing, unit tests

admin application, using 78-82
example test 76, 77
in text fixtures 76

datetime module 31
debug error pages 172-176
debugger

args command 300
getting started 293, 295
list command 295, 296
pp command 301
print command 300, 301
set_trace() call 293
whatis command 300
where command 296-299

debug page
about 195
elements 196
TypeError at / 195

DEBUG setting 170
debug support, in development server

179-182
display_active_survey function 190, 194,

253, 256, 282
display_completed_survey function 295,

327
Django

problems, tracking 348
unreported problems, tracking 368

django.db.connection module 176
django.test.TestCase class 11
Django application

creating 10
Django Debug Toolbar 256
SQL queries, tracking 236

Django community resources
using 347

Django debug settings
about 170
DEBUG 170, 171
TEMPLATE_DEBUG 170, 171
TEMPLATE_STRING_IF_INVALID 171

Django Debug Toolbar
about 256
appearance 258, 259
HTTP Headers panel 264, 265
installing 257
logging panel 268
redirect handling 268-272
request Vars panel 265
settings panel 264
signals panel 267
SQL panel 260-263
templates panel 266
time panel 263, 264

Django object-relational manager 47
Django testing

command line options 23
issues, of integration 136, 137
new application, creating 10
sample doctest 11
sample unit test 10
test errors, versus test failures 20

doctest
about 44
advantages 40-43
disadvantages 40-44

doctest caveats
database dependence 70-74
environmental dependence 70
revisiting 69
test interdependence 75
Unicode 75

down command 315

E
elements, debug page

basic error information 197
request information 203
settings 204
traceback 198

[413]

EMAIL_SUBJECT_PREFIX 185
environmental dependence, doctest issues

about 44, 47
cases 47
fixing 45

error_class 360
error_class attribute 228
error handling, in production

about 182
general error pages, creating 183
internal server error notifications 184, 185
page not found notifications 185
production error information, reporting

183

F
formvalue command 157

G
gentags.py 245
get_absolute_url method 150
get_or_create function 406
get_piechart_url method 290-292
get_response() function 298
get method 112
graphical debuggers

advantages 344
downside 344
QuerySets 345

H
Http404 exception 174
httpd.conf file 380
HttpRequest object 278
HttpResponse 321
HttpResponse object 175

I
installing

Django Debug Toolbar 257
INTERNAL_IPS setting 236
internal code state

debug toolbar, logging in 282-284
decorators, applying to survey code

280-282

internal code statetracking 273
log_call wrapper, implementing 278
logging module, using 275, 276
log information, deciding 277
print statements 274
return values, logging 278
sprinkle print method 274

internal server error notifications
about 184
settings, for email sending 184

Internet Relay Chat. See IRC
IRC 369
issues, doctest

database dependence 47
environmental dependence 44
test interdependence 52
Unicode 57

issues, of integration
about 136
alternative test runner, specifying 138-140
new management command, creating

141-144

J
jump command 308

L
label_from_instance method 207
list command 295
log_view wrapper 279

M
make_pie_if_necessary function 343
manage.py test survey -v2

running 98, 99
manage.py utility 10
market_research 10
matplotlib

approaches, improving 324
result, displaying 319-321, 324

matplotlib, approaches
image files, generating dynamically

327, 328
race conditions, dealing with 329-333

[414]

race conditions forcing, debugger used
334-343

static file serving, setting up 325, 326
method attribute 279
mod_python 377
mod_wsgi module 160
ModelChoiceField 193, 207
ModelForm class 192
multiple survey questions

coding support 210
data, creating 209
handling 209
TemplateSyntaxError 212
TemplateSyntaxError, debug page #2 211

multithreaded environment
additional load testing nodes 406, 407
load generation, siege used 398
recording code results, fixing 404, 405
recording code results, testing 399-403
siege 397
testing 396

N
next command 308
none() method 91
NoReverseMatch exception

about 219
fixing 220

O
optparse module 142

P
page not found notifications 185
pdb.set_trace() call 312
pie method 320
pluralize filter 240
post method 124
pp command 301
print_png method

using 321
problems, tracking

documentation, double-checking 351, 352
fix, not committed 366
fix, unreleased 365

fix containing release, determining 363,
364, 365

in Django 348
invalid ticket, closing 367
matching problem report, alternative search

359-363
matching problem report, searching for

354-359
right code, determining 350

pygooglechart
initial implementation 290
result, displaying 288-292
results display, debugging 301

pygooglechart results display
break command 309
clear command 310, 311
continue command 307
down command, using 315
fixing 312-319
jump command 308
next command 302-306
print command, using 302
return command, using 316-319
step command 302-306
up command, using 314
where command 315

Q
q.answer_set.count() 254
QuerySet 91
queryset attribute 193
QuerySet repr method 177
QuerySets 345
QuestionVoteForm 193

R
RadioSelect widget 193
redirect_chain attribute 113
replace_dashes function 246
RequestContext

RequestContextusing 238
request information, debug page

about 203
COOKIES 203
FILES 203
GET 203

[415]

META 204
POST 203

response context attribute 131
result, displaying

matplotlib, using 319-324
pygooglechart, using 288-292

return command 316
runserver command 344

S
sample doctest 11
sample unit test

about 10, 11
running 12-15
running, failure 15-19
test failures 20

settings, debug page 204
settings.py file 10, 283, 387
setUp method 95, 165
simpleTest class 11
SMTPConnection class 130
sprinkle print method 274
SQL queries, tracking

about 236
active survey page 252, 254
for home page 237-242
query history accessing, settings 236, 237
repackaged template code, testing 247-252
survey answers, posting 255, 256
template query, packaging 243-246

status_code attribute 112
step command 302
sudo command 381
survey_detail function 190
survey_detail view 118
survey_test command 143
survey application home page

creating 101
function 101
prerequisites 102
survey application URLs, defining 102-104
templates, creating for pages 110
testing 110-117
views, developing to serve pages 104-106

survey application models 29, 30

survey detail pages
creating 117
survey detail view, refining 117, 118
templates 118
testing 119-121

SurveyDetailTest 119
survey directory 10
SurveyFrom clean method 153
SurveyHomeTest 119
survey model

custom survey save method, developing
35-38

test, verifying 34
testing 31

survey model creation
testing 31, 33

survey responses, recording
about 213
coding support 214-216
NoReverseMatch, debug page #3 218, 219
TemplateDoesNotExist, debug page #4

221, 222
survey results display

implementing 285-287
Survey save override function

unit tests 63
survey submissions, handling

about 224-226
custom error message, coding 226-228
error message placement, coding 226-228
TemplateSyntaxError, debug page #5

229-231
SurveyTest setUp method 119
survey voting implementation

about 190
debug page #1 195
question form, defining 192, 193
test data, creating 191, 192

T
tearDown method 127, 163
TEMPLATE_CONTEXT_PROCESSORS

setting 236
TEMPLATE_DEBUG setting 170
TEMPLATE_STRING_IF_INVALID setting

171

[416]

TemplateDoesNotExist
about 221-223
fixing 223

TemplateSyntaxError 248
about 212
fixing 212, 213, 232

testAddSurveyError method 165
testAddSurveyOK method 129
TestCase 161
TestCase class 113
testClosesReset method 147
test errors

versus test failures 20-23
test failures

about 15-20
versus test errors 20-23

testHome method 112
test interdependence, doctest issues

about 52, 55, 57
fixing 52

tests.py file 10
test support

about 130
additional HTTP methods, supporting 130
e-mail services 130
persistent state, maintaining 130
response context 131
template information 131
test-specific URL configuration, providing

131
testUpcoming method 120
Toggle Stacktrace option 261
traceback information, debug page 198-202
Traceback portion 20
transactional behavior

testing 132
TransactionTestCase 132, 161
twill

about 153
benefits 154
using, in TestCase 159-167

twill.commands module 159
twill command line program

using 155-159
TypeError

about 205
fixing 206-208

U
Unicode, doctest issues

about 57-61
fixing 59

unittest.TestCase 11
unit tests

data, creating during test set up 92-95
data, providing in text fixtures 76
data providing, ways 76
organizing 98-100
test, writing 85
test data, extracting from database 86
test data, loading 87-91
winning_answers function, implementing

83
unit tests, Survey save override function

implementing 64
unit test version, Survey save override

function
advantages 65, 67
disadvantages 69

unreported problems, tracking
about 369
Community link 369
new ticket, creating 372, 373
questions help, locating 369, 370
question tips 370, 371

upcoming method 92
up command 314
urls.py file 10, 393
urls attribute 131

W
Web Server Gateway Interface. See WSGI
whatis command 300
where command 297, 315
winning_answers function, unit tests

implementing 83, 84
WSGI 376

Thank you for buying
Django 1.1 Testing and
Debugging

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Django 1.1 Testing and Debugging, Packt will have given
some of the money received to the Django project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Django 1.0 Template Development
ISBN: 978-1-847195-70-8 Paperback: 272 pages

A practical guide to Django template development
with custom tags, filters, multiple templates, caching,
and more

1.	 Dive into Django’s template system and build
your own template

2.	 Learn to use built-in tags and filters in
Django 1.0

3.	 Practical tips for project setup and template
structure

Django 1.0 Website Development
ISBN: 978-1-847196-78-1 Paperback: 272 pages

Build powerful web applications, quickly and cleanly,
with the Django application framework

1.	 Teaches everything you need to create a
complete Web 2.0-style web application with
Django 1.0

2.	 Learn rapid development and clean,
pragmatic design

3.	 No knowledge of Django required

4.	 Packed with examples and screenshots for
better understanding

Please check www.PacktPub.com for information on our titles

Python Testing: Beginner’s Guide
ISBN: 978-1-847198-84-6 Paperback: 256 pages

An easy and convenient approach to testing your
powerful Python projects

1.	 Covers everything you need to test your code
in Python

2.	 Easiest and enjoyable approach to learn
Python testing

3.	 Write, execute, and understand the result of
tests in the unit test framework

4.	 Packed with step-by-step examples and clear
explanations

Expert Python Programming
ISBN: 978-1-847194-94-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1.	 Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions

2.	 Apply object-oriented principles, design
patterns, and advanced syntax tricks

3.	 Manage your code with distributed
version control

4.	 Profile and optimize your code

Please check www.PacktPub.com for information on our titles

Matplotlib for Python Developers
ISBN: 978-1-847197-90-0 Paperback: 308 pages

Build remarkable publication-quality plots the
easy way

1.	 Create high quality 2D plots by using
Matplotlib productively

2.	 Incremental introduction to Matplotlib, from
the ground up to advanced levels

3.	 Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as web sites to utilize them
in Python applications

4.	 Deploy Matplotlib in web applications and
expose it on the Web using popular web
frameworks such as Pylons and Django

Practical Plone 3: A Beginner’s
Guide to Building Powerful
Websites
ISBN: 978-1-847191-78-6 Paperback: 592 pages

1.	 Get a Plone-based website up and running
quickly without dealing with code

2.	 Beginner’s guide with easy-to-follow
instructions and screenshots

3.	 Learn how to make the best use of Plone’s out-
of-the-box features

4.	 Customize security, look-and-feel, and many
other aspects of Plone

Please check www.PacktPub.com for information on our titles

Grok 1.0 Web Development
ISBN: 978-1-847197-48-1 Paperback: 308 pages

Create flexible, agile web applications using the
power of Grok—a Python web framework

1.	 Develop efficient and powerful web
applications and web sites from start to finish
using Grok, which is based on Zope 3

2.	 Integrate your applications or web sites with
relational databases easily

3.	 Extend your applications using the power of
the Zope Toolkit

4.	 Easy-to-follow and packed with practical,
working code with clear explanations

Learning Website Development
with Django
ISBN: 978-1-847193-35-3 Paperback: 264 pages

A beginner’s tutorial to building web applications,
quickly and cleanly, with the Django application
framework

1.	 Create a complete Web 2.0-style web
application with Django

2.	 Learn rapid development and clean,
pragmatic design

3.	 Build a social bookmarking application

4.	 No knowledge of Django required

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: Django Testing Overview
	Getting started: Creating a new application
	Understanding the sample unit test
	Understanding the sample doctest
	Running the sample tests
	Breaking things on purpose
	Test errors versus test failures
	Command line options for running tests
	Verbosity
	Settings
	Pythonpath
	Traceback
	Noinput
	Version

	Summary

	Chapter 2: Does This Code Work? Doctests in Depth
	The Survey application models
	Testing the Survey model
	Testing Survey model creation
	Is that test useful?
	Developing a custom Survey save method
	Deciding what to test
	Some pros and cons of doctests so far

	Additional doctest caveats
	Beware of environmental dependence
	Beware of database dependence
	Beware of test interdependence
	Beware of Unicode

	Summary

	Chapter 3: Testing 1, 2, 3: Basic Unit Testing
	Unit tests for the Survey save override method
	Pros of the unit test version
	Cons of the unit test version

	Revisiting the doctest caveats
	Environmental dependence
	Database dependence
	Test interdependence
	Unicode

	Providing data for unit tests
	Providing data in test fixtures
	Example test that needs test data
	Using the admin application to create test data

	Writing the function itself
	Writing a test that uses the test data
	Extracting the test data from the database
	Getting the test data loaded during the test run

	Creating data during test set up

	Summary

	Chapter 4: Getting Fancier: Django Unit Test Extensions
	Organizing tests
	Creating the survey application home page
	Defining the survey application URLs
	Developing views to serve pages
	Creating templates for pages
	Testing the survey home page

	Creating the survey detail pages
	Refining the survey detail view
	Templates for the survey detail pages
	Basic testing of the survey detail pages

	Customizing the admin add and change survey pages
	Developing a custom survey form
	Configuring admin to use the custom form
	Testing the admin customization

	Additional test support
	Supporting additional HTTP methods
	Maintaining persistent state
	E-mail services
	Providing test-specific URL configuration
	Response context and template information

	Testing transactional behavior

	Chapter 5: Filling in the Blanks: Integrating Django and Other Test Tools
	Problems of integration
	Specifying an alternative test runner
	Creating a new management command

	How much of the code are we testing?
	Using coverage standalone
	Integrating coverage into a Django project

	The twill web browsing and testing tool
	Using the twill command line program
	Using twill in a TestCase

	Summary

	Chapter 6: Django Debugging Overview
	Django debug settings
	The DEBUG and TEMPLATE_DEBUG settings
	The TEMPLATE_STRING_IF_INVALID setting

	Debug error pages
	Database query history
	Debug support in the development server
	Handling problems in production
	Creating general error pages
	Reporting production error information
	Internal server error notifications
	Page not found notifications

	Summary

	Chapter 7: When the Wheels Fall Off: Understanding a Django Debug Page
	Starting the Survey voting implementation
	Creating test data for voting
	Defining a question form for voting
	Debug page #1: TypeError at /

	Elements of the debug page
	Basic error information
	Traceback
	Request information
	GET
	POST
	FILES
	COOKIES
	META

	Settings

	Understanding and fixing the TypeError
	Handling multiple Survey questions
	Creating the data for multiple questions
	Coding support for multiple questions
	Debug page #2: TemplateSyntaxError at /1/
	Understanding and fixing the TemplateSyntaxError

	Recording Survey responses
	Coding support for recording Survey responses
	Debug page #3: NoReverseMatch at /1/
	Understanding and fixing the NoReverseMatch exception
	Debug page #4: TemplateDoesNotExist at /thanks/1/
	Understanding and fixing TemplateDoesNotExist

	Handling invalid Survey submissions
	Coding custom error message and placement
	Debug page #5: Another TemplateSyntaxError
	Fixing the second TemplateSyntaxError

	Summary

	Chapter 8: When Problems Hide: Getting More Information
	Tracking SQL queries for a request
	Settings for accessing query history in templates
	SQL queries for the home page
	Packaging the template query display for reuse
	Testing the repackaged template code
	SQL queries for the active Survey form display page
	SQL queries for posting survey answers

	The Django Debug Toolbar
	Installing the Django Debug Toolbar
	Debug toolbar appearance
	The SQL panel
	The Time panel
	The Settings panel
	The HTTP Headers panel
	The Request Vars panel
	The Templates panel
	The Signals panel
	The Logging panel
	Redirect handling by the debug toolbar

	Tracking internal code state
	Resist the urge to sprinkle prints
	Simple logging configuring for development
	Deciding what to log
	Decorators to log function entry and exit
	Applying the decorators to the Survey code
	Logging in the debug toolbar

	Summary

	Chapter 9: When You Don't Even Know What to Log: Using Debuggers
	Implementing the Survey results display
	Results display using pygooglechart
	Getting started with the debugger
	The list command
	The where command
	The args command
	The whatis command
	The print and pp commands

	Debugging the pygooglechart results display
	The step and next commands
	The continue command
	The jump command
	The break command
	The clear command

	Fixing the pygooglechart results display
	The up and down commands
	The return command

	Results display using matplotlib
	Improving the matplotlib approach
	Setting up static file serving
	Dynamically generating image files
	Dealing with race conditions
	Using the debugger to force race situations

	Notes on using graphical debuggers
	Summary

	Chapter 10: When All Else Fails: Getting Outside Help
	Tracking down a problem in Django
	Revisiting the Chapter 7 voting form
	Is the right code actually running?
	Is the code correct as per the documentation?
	Searching for a matching problem report
	Another way to search for a matching problem report
	Determining the release that contains a fix
	What if a fix hasn't been released yet?
	What if a fix hasn't been committed yet?
	What if a ticket has been closed without a fix?

	Tracking down unreported problems
	Where to ask questions
	Tips on asking questions that will get good answers
	Opening a new ticket to report a problem

	Summary

	Chapter 11: When it's Time to Go Live: Moving to Production
	Developing an Apache/mod_wsgi configuration
	Creating the WSGI script for the marketr project
	Creating an Apache VirtualHost for the marketr project
	Activating the new Apache configuration
	Debugging the new Apache configuration
	Configuring Apache to serve static files

	Testing multithreaded behavior
	Generating load with siege
	Load testing the results recording code
	Fixing the results recording code
	Additional load testing notes

	Using Apache/mod_wsgi during development
	Summary

	Index

