Building cool scripts, apps, and games
for Android Smartphones

Practical

Android Projects

Lucas Jordan | Pieter Greyling

Apress:

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

VN

Apress®

iv

Contents at a Glance

Contentscccvvvmmimmmnsmn s ———=—S———_————_———_ v
About the AULROISccccmmimmmmisnmmsssnssssss s s s snn s ssnnnnnnns X
About the Technical REVIEWETcccussssmmssssnnsssssnssssassssssnsssssnsssssnsssssnsssssnnnsss xi
Acknowledgments..........cccuusmmmmsnmmmsssnsmsssnsmsssssmsssssssssnsssssnssssnssssnssssnnsnssnnnnns Xii
o U Xiii
Chapter 1: Android Fundamentals...........cccccmnsemmmsssmsmmsnsmsssnsssssssssssssssnsssssnnss 1
Chapter 2: Development Tools in Practiceccccccvnnsnssmmmsenmmnmnnsssssssssssnnnnns 49
Chapter 3: Roll Your Own Android Scripting Environment...........ccccceennnnns 105
Chapter 4: Embedding Lua in Android Applications........ccccciurerssssssssssnnnnnnas 155
Chapter 5: Introducing SL4A: The Scripting Layer for Androidcc.u.. 193
Chapter 6: Creating a GUI with HTML/JavaScript and AIRccccmennnnens 221
Chapter 7: Using REST with Facebook and Twittercccccirrersssssnnnnnnnnnnas 251
Chapter 8: Using the Google App Engine with Android............ccccosrmmmmnnnnnnns 275
Chapter 9: Game Development: GraphiCscccrrussssnsnssssssnsnssssssnssssssssnssssns 311
Chapter 10: Game Development: Animation..........ccccuussemmmmmnnmrssssssssssssnnnnns 341
Chapter 11: App INVeNntorccocieeeemmmmnnnnssssssssssssnssesssssssssssssssesssssssnssnnsnnnss 361
INAEX.uiiiiisnnnnnssssnnnnnnssssnnnmsssssnnnnsssssnnnnessssnnnnsssssnnnnessssnnnnessssnnnnessssnnnnessssnnnnsssss 387

Chapter

Android Fundamentals

The Android platform is a very exciting yet relatively new player in today’s mobile device
market. Beyond rating very highly in the number of cool features per device, Android-
enabled smartphones are currently enjoying the highest percentage sales growth rate in
the mobile industry.

According to Gartner Research,' worldwide sales of Android-based smartphones to end
users have jumped from the number 6 spot in 2009 to number 4 by the end of the first
quarter of 2010. This level of growth is expected to continue. In fact, Gartner has
predicted that Android will become the number 2 worldwide mobile operating system in
2010 and will challenge Symbian for the number 1 position by 2014.?

We want to share with you some of the enthusiasm we have for this truly remarkable
development platform. Throughout the course of this book, we will attempt to do this by
showing the wide range of opportunities available at your fingertips when you choose to
develop Android applications.

Perhaps you are reading this book in order to gain more background understanding of
the Android platform. Perhaps you plan to roll up your sleeves and join us in running and
playing with the projects in the emulator or your own device. We want to get you up and
running quickly and provide you with sufficient understanding of the Android platform
and Android Development Kit (ADK) development environment to have success with
your goals.

With those goals in mind, this chapter aims to be as practical an introduction to Android
development as possible. It also strives to cover a broad spectrum of required
conceptual and theoretical background material in a concise and to-the-point manner.

We will start with a short description of the Android platform and then jump straight into
coverage of the installation of the Android SDK and supporting development tools. To
fully round out our SDK setup study, we embark on a step-by-step test drive that

' From Gartner press release: http://www.gartner.com/it/page.jsp?id=1372013

2 From the Gartner press release: http://www.gartner.com/it/page.jsp?id=1434613

http://www.gartner.com/it/page.jsp?id=1372013
http://www.gartner.com/it/page.jsp?id=1434613

CHAPTER 1: Android Fundamentals

involves generating a bare-bones Android project and getting the resulting skeleton
Android application up and running in the Android emulator.

The next order of business will be a tour of the Android platform architecture. Here we
will describe the Android platform stack; Android component architecture; and Dalvik,
the Android runtime. With this knowledge in hand, we then cover working with the Java
IDEs Eclipse, NetBeans, and Intellid IDEA Community Edition; plus spend some time
learning how to equip them with Android programming capabilities via plugins.

This means we have a lot of ground to cover, so let's get started.

What Is Android?

In a nutshell, Android is an operating system targeted at mobile hardware such as
phones and other constrained computing devices such as netbooks and tablet
computers.

The concept and platform was the brainchild of Android Inc., a small startup company
from Palo Alto, California, that was acquired by Google in 2005. Its stated goal was to

create a small, stable, flexible, and easily upgraded operating system for handsets that
would be highly attractive for device manufacturers and telephony carriers.

Android platform releases 1.x through 2.x are aimed primarily at smartphone devices,
whereas it is reported that Android release 3.x will be the first operating platform
specifically designed with high-end support for tablet computers.

The Android platform was originally unveiled in November 2007. The unveiling coincided
with the announcement of the formation of the Open Handset Alliance, a group of
companies that share the goal of promoting open standards for mobile device platforms
such as Android.

In October 2008, Android was released under the Apache 2.0 open-source license.® This
and the flexible component-based design of the platform present innovative and cost-
effective opportunities for manufacturers and software developers alike. We aim to
showcase some of these distinguishing platform capabilities during the course of this
book.

Installing the Android SDK

We will start by installing the core Android SDK and tools. Our aim is to get the Android
emulator with our own simple application up and running on an Android Virtual Device
(AVD) as soon as possible. The experience gained will then serve as a basis for further
discussion.

8 http://source.android.com/source/licenses.html

http://source.android.com/source/licenses.html

CHAPTER 1: Android Fundamentals

The examples and commands you will be shown were run on a mixture of Ubuntu
GNU/Linux, Microsoft Windows, and Apple Mac OS X systems. All the tools, including
the JDK and the Android SDK toolset, behave in a similar, if not identical, manner across
the major supported computing platforms.

Java Development Kit (JDK)

To begin with, you should have a recent version of the Java SDK (JDK) installed on your
particular system. It can be obtained either from your operating system distribution
package install manager application or directly downloaded from the Internet.* We
assume that we do not need to go into the details for doing this. Suffice it to say that
JDK5 or upward should be fine. This writing is based on JDKB6.

CHECKING THE JDK VERSION: To confirm that a compatible version of the JDK is installed and
available to the environment, we usually do a quick check on the command line or console
terminal, as follows:

$ java -version

java version "1.6.0_ 18"

Open]DK Runtime Environment (IcedTea6 1.8.1) (6b18-1.8.1-Oubuntul)
Open]DK Server VM (build 16.0-b13, mixed mode)

$ javac -version

javac 1.6.0_18

If something goes wrong, you should consult the JDK configuration documentation for your
particular platform. We will not cover debugging Java installations here.

Android SDK and Target Platforms

Assuming that our Java platform is ready, we now need to download the Android SDK
starter package and use it to install our target Android platforms.

The Android SDK starter package can be downloaded from the official Google Android
SDK download site.® Select the download appropriate for your development platform.
The supported platforms currently include Windows, Mac OS X (Intel), and Linux (i386).

In the case of having downloaded an SDK starter package archive for Linux or Mac OS
X, unpack the downloaded archive into a directory of your choice.

4 https://jdk6.dev.java.net/
® http://developer.android.com/sdk/

https://jdk6.dev.java.net/
http://developer.android.com/sdk/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

VN

Apress®

CHAPTER 1: Android Fundamentals

SETTING THE PATH ON WINDOWS: From the desktop, right-click My Computer and click
Properties. Alternatively, from Control Panel, double-click System. Both options open the
System Properties dialog box. Now click the Advanced tab. In the Advanced section, click
the Environment Variables button. In the Environment Variables window, select the PATH
variable in the User- or System Variable section, depending on whether you want the setting
applied for all users or just yourself. Click the Edit button. Add or modify the path. Directories
are separated by a semicolon. Click OK when done.

For confirmation, issuing the following command on your development system will print
the current value of the system PATH variable to the terminal console window.

Linux and Mac OS X:
echo $PATH

Windows:
echo %PATH%

Android Platform API Levels

The API level targeted by your application is very important for reasons of device
compatibility and the software development- and maintenance lifetime of your
codebase. If it is not managed properly, the maintenance of your application could
potentially become a nightmare, especially if it is deployed to multiple Android devices
and operating platforms.

It is also a good idea to become familiar with the folder structures of the Android SDK
once it is installed. Again, this is especially valid if your applications will be built for
multiple Android hardware targets.

For a better understanding of the subject of APl levels, it is well worth the effort of
reviewing the documentation found on the official developer’s web site for Android API
levels.” The tie-in between API level numbers and their corresponding platforms are
clarified in Table 1-1, which was current at the time of writing.

"http://developer.android.com/guide/appendix/api-levels.html

http://developer.android.com/guide/appendix/api-levels.html

CHAPTER 1: Android Fundamentals

Table 1-1. Android Platform Versions and API Levels

Platform Version API Level

Android 2.3 9

Android 2.2 8

Android 2.1 7

Android 2.0.1 6

Android 2.0 5

Android 1.6 4

Android 1.5 3

Android 1.1 2

Android 1.0 1

Android Platform Setup

Here is a short list of dependencies for proceeding with the setup of SDK platforms:
B Android SDK starter package downloaded and unpacked.
B The JDK, ADK, and Ant tools are accessible on the environment path.
B We have a basic understanding of Android platform versions and API

levels.

B Last but not least, we should be connected to the Internet.

We can now install the SDK platform components using the Android SDK and AVD
Manager programs.

To start the SDK Manager on Linux or Mac OS X, execute the following command:

$ android

To start the SDK Manager on Windows, run the following program:

SDK Manager.exe

The main user interface of the Android SDK Manager on Linux should appear as in
Figure 1-1.

CHAPTER 1: Android Fundamentals

2 © ® Android SDK and AVD Manager

Virtual devices SDK Location: /home/pieter/pieter_app_sdk/google-android/android-sdk-linux_86

nstalled packages | packages available for.download
A J . o - -

ble packages

Available packages — & Android Repository
Settings + [| Android SDK Platform-tools, revision 1

About + [£) Documentation for Android SDK, API 9, revision 1
% SDK Platforr id 2.3, API 9, revision 1
W (2 Archive for any 0S
SDK Platform Android 2.2, API 8, revision 2
W SDK Platform Android 2.1, API 7, revision 2
“# SDK Platform Android 1.6, API 4, revision 3
SDK Platform Android 1.5, API 3, revision 4
~ @ & Samples for SDK API 9, revision 1
& L2 Archive for any OS
+ 1 & samples for SDK API 8, revision 1
+ [& Samples for SDK API 7, revision 1
Third party Add-ons
- @ Google Inc. add-ons (dI-ssl.google.com)
- & & Google APIs by Google Inc., Android API 9, revision 1
& L3 Archive for any OS
& Google APIs by Google Inc., Android API 8, revision 2
% Google APIs by Google Inc., Android API 7, revision 1
% Google APIs by Google Inc., Android API 4, revision 2
&% Google APIs by Google Inc., Android API 3, revision 3
@ @ Google Market Licensing package, revision 1
& L Archive for any OS
- [@ Samsung Electronics add-ons (innovator.samsungmobile.com)
i & GALAXY Tab bv Samsuna Electronics.. Android API 8. revision 1 Y
Description
Android SDK Platform 2.3_r1

Revision 1
D Add-on Site .| & Display updates only ﬁ Install Selected

Figure 1-1. The Android SDK and AVD Manager during initial SDK setup on Linux

+

WINDOWS USB DRIVER FOR ANDROID DEVICES: It is worth showing the equivalent Android
SDK and AVD Manager for the Windows platform (see Figure 1-2). It contains an important
addition, the Windows USB Driver package for Android devices. This will become necessary
when you develop, debug, and deploy directly in conjunction with a physical Android phone or
other Android hardware device attached via USB cable to a Windows computer.

CHAPTER 1: Android Fundamentals

¥ Android SDK and AVD Manager =10] x|
;’:‘él‘l'e‘ze"ices - SDK Location: C:_dev_\android-sdk-windows

i Packages avaiable for download |
Settings R Android Repository

About
= ‘i Android SDK Platform-tools, revision 1

=

P L& Archive for any OS
&[4 '# SDK Platform Android 2.3, API 9, revision 1
E & ¢ Archive for any OS
&[] "% SDK Platform Android 2.2, API 8, revision 2
&[] "% SDK Platform Android 2.1, API 7, revision 2
&[] "% SDK Platform Android 1.6, API 4, revision 3
&[] "' SDK Platform Android 1.5, API 3, revision 4
5[Samples for SDK AP 9, revision 1
: (& Archive for any 05
&[]) Samples for SDK API 8, revision 1
&[] Samples for SDK API 7, revision 1
= " Third party Add-ons
=) Do Google Inc. add-ons (dl-ssl.google.com)
2B 'i‘ Google APIs by Google Inc., Android API 9, revision 1
& 'ﬁ Google APIs by Google Inc., Android API 8, revision 2
& 'i‘} Google APIs by Google Inc., Android API 7, revision 1
& 'i; Google APIs by Google Inc., Android API 4, revision 2
&[] 'i; Google APIs by Google Inc., Android API 3, revision 3
&-[7] @ Google Usb Driver package, revision 4
. ML Archive for Windows
&[] 6 Google Market Licensing package, revision 1
[L Archive for any 05
::3 Da Samsung Electronics add-ons (innovator.samsungmobile.com)

Description
Android SDK Platform 2.3_r1

Add Add-on Site... | Delete fidd-on Site... | 7 Display updates only Reﬁ'ednl

Figure 1-2. The Android SDK and AVD Manager during initial SDK setup on Windows

Note that in both cases we have selected the Android 2.3 platform, API level 9, plus the
relevant additions such as documentation and SDK samples. Now click Install
Selected. The appropriate SDK resource bundles will now be downloaded and installed
into the SDK directory structure where we unpacked the SDK starter archive.

In order to maintain and update your SDK over time, an update session can be directly
initiated from the command line by executing the following commands:

B In aterminal session on Linux/Mac OS X:
$ android update sdk

B Besides the option of simply running SDK Manager.exe again, the same
can be achieved from the Windows command prompt with the
following:

C:\> android.bat update sdk

CHAPTER 1: Android Fundamentals

Again, we assume that the Android tools can be found on the system path. Further
information about managing your Android SDK installation can be found on the Android
Developers “Adding SDK Components” page.®

Extra Tools: Apache Ant

There are some development tools that no Java developer should do without. One such
an indispensable utility is Apache Ant, which is a build tool that is Java's rough
equivalent to make. make is traditionally used in C/C++ development environments. Ant
also differs from make in that it uses XML to specify build steps and actions.

The Android SDK extensively uses Ant for its compilation, build, and deployment
infrastructure. We will use it to test drive our core tools in the next section. So if it is not
already installed on your system, we recommend you grab a copy and install it. If
necessary, you can find installation instructions and more information about Ant on the
official Ant web site.®

SOME IDES ALREADY CONTAIN ANT: If you will be using an IDE exclusively, installing a stand-
alone instance of Apache Ant might not be necessary. IDEs such as Eclipse and NetBeans come
packaged with an Ant distribution that they invoke behind the scenes during the build process.

If you are planning to work through the examples that follow, ensure that Ant is on the
system environment path once it is installed.

Android SDK Test Drive

We will now take our SDK and platform installation for a comprehensive test drive to
complete the installation of runtime components and to confirm that everything was set
up correctly. We will also get to know the environment better. This is a central part of
this chapter and will form the basis of further subjects covered.

Initially, we will do the work from the terminal console, command line, or command
prompt, whichever terminology is appropriate for your system or personal preference.

1. Create an application project directory to work in and call it Hel1loAndroidSdk.
From within a parent- or home directory of your choice somewhere on your
system, issue the following commands:

On Linux or Mac OS X:

$ mkdir HelloAndroidSdk
$ cd HelloAndroidSdk

8 http://developer.android.com/sdk/adding-components.html
® http://ant.apache.org/

http://developer.android.com/sdk/adding-components.html
http://ant.apache.org/

CHAPTER 1: Android Fundamentals

On Windows:

C:\> md HelloAndroidSdk
C:\> cd HelloAndroidSdk

2. Next we will create a bare-bones Android application using the SDK tools, but
before we do that, let’s check the available platform targets. From now on, we will
only show the GNU/Linux bash shell version of the command because the
equivalents for the other platforms are identical in syntax. Issue the following
command:

$ android list targets

Based on the SDK selections installed earlier, the output should be similar to this
listing:

Available Android targets:
id: 1 or "android-9"
Name: Android 2.3
Type: Platform
API level: 9
Revision: 2
Skins: HVGA (default), QVGA, WQVGA400, WQVGA432, WVGA800, WVGA854

3. Now we will use the SDK tools to create a skeleton Android application targeting
the previous platform within this folder. Enter the following command code as a
single command line on the console:

$ android create project --target "android-9" --name MyAndroidSdkApp
--path ./MyAndroidSdkAppProject --activity MyAndroidSdkAppActivity
--package com.example.myandroid

NOTE: The --target "android-9" argument could also have read as follows: --target 1.

The successful completion of the command should result in output similar to this:

Created project directory: ./MyAndroidSdkAppProject

Created directory ./MyAndroidSdkAppProject/src/com/example/myandroid
Added file ./MyAndroidSdkAppProject/src/com/example/myandroid/«
MyAndroidSdkAppActivity.java

Created directory ./MyAndroidSdkAppProject/res

Created directory ./MyAndroidSdkAppProject/bin

Created directory ./MyAndroidSdkAppProject/libs

Created directory ./MyAndroidSdkAppProject/res/values

Added file ./MyAndroidSdkAppProject/res/values/strings.xml
Created directory ./MyAndroidSdkAppProject/res/layout

Added file ./MyAndroidSdkAppProject/res/layout/main.xml

Added file ./MyAndroidSdkAppProject/AndroidManifest.xml

Added file ./MyAndroidSdkAppProject/build.xml

The Android SDK has now generated the full source code and resource files to
build a complete and functional Android application.

CHAPTER 1: Android Fundamentals

A listing is shown in Figure 1-3 of the Java source code of one of the files,
MyAndroidSdkAppActivity.java, that was generated. This is the application’s main
entry point, a class that extends the Activity class.

ABOUT THE CODE: We will not go into the detailed coding aspects of Android programming in
this chapter. This chapter serves as the diving board used by the rest of the book to dive into the
details of coding Android applications.

4. Next, we want to build the generated source code into an executable application.
To do this, first enter the following into the new application directory:

$ cd MyAndroidSdkAppProject

Now issue the following command to instruct ant to build a debugging release of
the application project:

$ ant debug

This should result in ample output similar to the following:

Buildfile: /HelloAndroidSdk/MyAndroidSdkAppProject/build.xml
[setup] Android SDK Tools Revision 8
[setup] Project Target: Android 2.3
[setup] API level: 9 [setup] ...

BUILD SUCCESSFUL

Total time: 5 seconds

Assuming a successful build (as indicated by the message at the end of the
listing) the /MyAndroidSdkAppProject/bin directory should now be populated with
executable binaries. It should also contain debug versions of the application in the
form of Dalvik Virtual Machine (DVM)-compatible classes (classes.dex) and

Android application packages (MyAndroidSdkApp-debug.apk). We will cover them in
more detail later on in the chapter.

The project directory should look similar to Figure 1-3. Feel free to investigate the
project folder structures and the files that were created.

CHAPTER 1: Android Fundamentals

THE MANIFEST FILE: ANDROIDMANIFEST.XML: Another of the files that were generated in
the root of the project is called the AndroidManifest.xml file. This is a very special file in that
it defines and binds the application together. It is used by the Android SDK to declare essential
information about the application for the benefit of the Android runtime system. Among other
items, it identifies the application’s Java package that serves as its unique name to the system,
required permissions, components consumed and implemented, libraries to link against, and so
on. Also see the Android Developers site for the Manifest File."

[i File Browser ®
@«ave e €

— [bin
+ [classes
= classes.dex
— [gen
~ [com
- [example
— [myandroid
= Rjava

+ i libs
— [res
~ [layout
& main.xml
— [values
|& strings.xml
— [src
— [l com
- i@ example
— [myandroid
\&] AndroidManifest.xml
|1 build.properties
| build.xml
| default.properties
|1 local.properties

= MyAndroidSdkAppActivity.java 3%

1 package com.example.myandroid;
74

3 import android.app.Activity;

4 import android.os.Bundle;

S

6 public class MyAndroidSdkAppActivity extends Activity
7{

8 /** Called when the activity is first created. */
9 @override

10 public void onCreate(Bundle savedInstanceState)
11 {

12 super.onCreate(savedInstanceState);

13 setContentView(R.layout.main);

14 }

15}

Figure 1-3. Generated application directory and files

5. Of course, we are eager to launch our new application, but first we need a device
for it to run on. Because we will generally not use a physical device for ongoing
development, we require a virtual machine on which to run an emulation of the
Android runtime platform. The Android SDK takes care of both requirements.

" http://developer.android.com/guide/topics/manifest/manifest-intro.html

http://developer.android.com/guide/topics/manifest/manifest-intro.html

CHAPTER 1: Android Fundamentals

B An Android virtual machine is called an Android Virtual Device
(AVD), and multiple AVDs can be configured using the AVD
Manager to model your test- and production target device
configurations. Reference material can be found on the Android
Virtual Devices web site."

B The Android runtime platform emulation is provided in the
Android SDK and is simply called the Android emulator. The
emulator is the platform that will run our application. Complete
information is available Android emulator web site.'

6. To create an AVD, we will start the AVD Manager on the terminal command line
by issuing the following command:

$ android

This will launch the familiar Android SDK and AVD Manager (see Figure 1-4).

® © ® Android SDK and AVD Manager

\Virtual Devices List of existing Android Virtual Devices located at /nome/pieter/.android/avd
Installed Packages AVD.Name JargetiName Platiorm | APl Level
Available Packages) No AVDavailabia) _ =

Settings Delete
About Repair. \

~ A valid Android Virtual Device. -} A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details’ to see the error.

Figure 1-4. The Android SDK and AVD Manager with no AVDs

7. Our next task is to create an AVD. Clicking the New button opens the Create new
Android Virtual Device (AVD) form (see Figure 1-5).

" http://developer.android.com/guide/developing/tools/avd.html
2 http://developer.android.com/guide/developing/tools/emulator.html

http://developer.android.com/guide/developing/tools/avd.html
http://developer.android.com/guide/developing/tools/emulator.html

CHAPTER 1: Android Fundamentals

® Create new Android Virtual Device (AVD)

Name: l HelloAndroidSdkAVD]

SD Card:
@ Size: |32 m

" File: ‘B.’owse.,.‘
skin: L v

@ suitin: [BefauRENGR)

' Resolution: X

Hardware: ﬁ
[Li 211513 A—— 1)
Abstracted LCD density | 160

Delete.

Override the existing AVD with the same name

Figure 1-5. Creating a new AVD with the AVD Manager

Fill out the text fields on the form to create a new AVD called HelloAndroidSdkAVD
with a virtual SD card of 32MB in size. Then click the Create AVD button.

8. After an informational dialog telling us that the AVD was created successfully, we
should be taken back to the main Android SDK and AVD Manager form (see Figure
1-6). Here we should now see our new HelloAndroidSdkAVD in the list of AVDs
available to this instance of the Android SDK.

® © @ Android SDK and AVD Manager

\Virtual devices List of existing Android Virtual Devices located at /home/pieter/.android/avd
Installed packages
Available packages
Settings

About

|

=
(1]
o)
Y
4

~ A valid Android Virtual Device. -] A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details' to see the error.

Figure 1-6. The Android SDK and AVD Manager listing the new Virtual Device

CHAPTER 1: Android Fundamentals

9. Now that we have created our AVD, we can launch the emulator from the terminal
and instruct it to run on top of our HelloAndroidSdkAVD virtual AVD. Issue this
command on the console:

$ emulator -avd HelloAndroidSdkAVD

Because this is the first time we launch the emulator with our brand-new AVD, it
can take a little while for the startup to complete.

ANOTHER WAY TO LAUNCH THE EMULATOR/AVD COMBINATION: Launching the emulator
with our AVD can also be achieved directly from the AVD Manager graphical user interface (GUI)
application by selecting the AVD in the Virtual Devices list and clicking the Start button.

Once the emulator is up and running, we should see the Android platform startup
screen (see Figure 1-7). We now have a device to run our test application on.
This device is essentially a full implementation of the Android platform stack
including the DVM that, along with the AVD, provides us with a complete virtual
mobile device. Leave the emulator running or restart it for the next section.

® @ 5554:HelloAndroidSdkAVD

T PR [e P P T P R

ol —r
ALT ALT

Figure 1-7. The Android emulator running the new AVD

CHAPTER 1: Android Fundamentals

If you have not used an Android device before, now might be a good time to play
with the emulator to get comfortable with the user interface. Table 1-2 presents a
short list of handy emulator keys and the corresponding keyboard keys that will

be useful during development. See the Android Developers emulator site for a full

list.?

Table 1-2. Convenient Android Emulator Keyboard Keys

Device Key Keyboard Key
Home HOME

Menu F2 or PAGE UP
Back ESC

Search F5

Power F7

Orientation (portrait, landscape)
Full-screen emulator (on/off)
Trackball (on/off)

DPad left/up/right/down

DPad center

KEYPAD_9, CTRL+F12
ALT-ENTER

Fé

KEYPAD_4/8/6/2

KEYPAD_5

10. Our next step is to deploy the application package onto the emulator. With the
emulator running on the desktop, enter the following command on the console
terminal from within the MyAndroidSdkAppProject folder:

/MyAndroidSdkAppProject$ ant install

18 http://developer.android.com/guide/developing/tools/emulator.html

http://developer.android.com/guide/developing/tools/emulator.html

CHAPTER 1: Android Fundamentals

RUN THE EMULATOR IN A SEPARATE PROCESS: To run the emulator and still have access to
issue commands on the same terminal, use the following:

Linux/Mac 0S X: emulator -avd HelloAndroidSdkAVD &
On Windows: start emulator -avd HelloAndroidSdkAVD

The emulator is then launched in a separate operating system process, thus allowing us to
continue entering commands, such as the install instruction, on the original console.

Ant will attempt to update and rebuild your application if necessary and then run
the ant install step to deploy the package to the device.

The ant install process should connect with the deployment daemon and copy
the application package onto the emulator. The output should be something like
the following:

install:
[echo] Installing
[exec] pkg: /data/local/tmp/MyAndroi
[exec] Success
[exec] 828 KB/s (0 bytes in 13263.000s)
BUILD SUCCESSFUL
Total time: 9 seconds

IN CASE OF BUILD FAILED: The build and install might fail with the following output:

install:
[echo] Installing
[exec] error: device offline
[exec] * daemon not running. starting
[exec] * daemon started successfully *
BUILD FAILED

Make sure that you have only one instance of the emulator running, verify that it has completely
finished starting up and then run ant install again. The daemon should be properly started
up the next time round.

The daemon referred to is the Android Debug Bridge (simply called adb) and it
performs the actual installation initiated by the ant install build step. Issuing the
following adb command will list the devices currently running:

adb devices

List of devices attached
emulator-5554 device

CHAPTER 1: Android Fundamentals

The Android Debug Bridge is a core Android development tool that is worth
spending time learning about; you will certainly encounter it again in this book.
More information is available on the official Android Developers adb site.'

LEAVE THE EMULATOR RUNNING: It is often a good idea to just leave the emulator running in
its own session while you are developing. The process is identical to keeping a real phone
switched on during the whole time you might need it. This habit also pays when using an IDE
such as NetBeans or Eclipse.

11. With the emulator up and running, and the application now installed, we should
get the initial Android screen. Drag open the small lock on the left of the initial
Android platform startup screen (as seen in Figure 1-7); the Android Home screen
appears (see Figure 1-8).

s

»\ Cof
Eudi—— —
P = -
- s

Figure 1-8. The Android emulator open on the Home activity

12. Click the Launcher icon for the Application Launcher Activity (see Figure 1-9).

14 http://developer.android.com/guide/developing/tools/adb.html

http://developer.android.com/guide/developing/tools/adb.html

CHAPTER 1: Android Fundamentals

® 11:28

P) —

Browser Calculator Camera Clock

m R H e

Contacts Custom DevTools Downloads
Locale

R

Email Gallery Messaging Music

E7 e

N

1)
Figure 1-9. The Android Emulator open on the Launcher activity
13. Now click the icon for launching our installed test application (see Figure 1-10).

MyAndroidSdkAppActivity
Hello World, MyAndroidSdkAppAct

Figure 1-10. The Android emulator in the MyAndroidSdkAppActivity Activity

And there we have it! The MyAndroidSdkAppActivity application was run successfully
displaying a friendly hello message. That concludes our comprehensive test drive.

Test Drive Summary

It is important to recap our goals with the test drive section because they remain
relevant throughout the book:

CHAPTER 1: Android Fundamentals

B A primary goal was introducing the Android SDK core development
tools and environment. As with any development platform, having an
understanding and feeling comfortable with the core tool culture is
very valuable. This will enable the developer to drop down into these
tools for problem resolution and to build custom scripting or
automation tasks using these command-line tools that can
significantly boost productivity.

B We also wanted to see something running as quickly as possible. The
intent was to build confidence and a good foundational springboard.
Of course, it is also a lot more interesting and a lot more fun to take a
practical approach when learning something new.

B Another goal was to demonstrate that it is entirely possible to develop
for the Android platform without using a dedicated and monolithic IDE.
IDEs, though very useful as productivity- and source code project
management tools, can often obscure important details and limit an
understanding of core aspects of a platform. Obviously, we would still
need other tools such as a good programmer’s text editor to code
with. The Android SDK complements your personal development tools
of choice with a full suite of build, deployment, and debugging utilities.

More information about building Android applications with the out-of-the-box SDK
command-line tools is available on the official Android Developers “Developing In Other
IDEs” web site.'

Android Architecture and Background

This is not intended to be an in-depth coverage of the Android platform architecture. We
will try to provide a basic understanding of key Android platform concepts that will serve
as background and context for our practical projects. The official Android Developers
web site'® is a good reference for further study.

The Android architecture stack, at its highest level, is broadly made up of three layers:

B Exceptionally rich end-user functionality delivered via a core set of
state-of-the-art applications that are pluggable by design.

B Middleware services forming a loosely coupled, reusable, fully open,
and extensible component framework with supporting runtime
libraries.

B An open-source, highly stable, trusted, and high-performance
operating system that forms the foundation of the Android platform.

15 http://developer.android.com/guide/developing/other-ide.html

16 http://developer.android.com/guide/basics/what-is-android.html

http://developer.android.com/guide/developing/other-ide.html
http://developer.android.com/guide/basics/what-is-android.html

CHAPTER 1: Android Fundamentals

The Android Platform Stack

A breakdown of the layers and components that comprise the system architecture of the
Android platform is graphically depicted in Figure 1-11. We will briefly describe them

here.
'd N\
Androids Applications Layer
Android 3rd Party Your Own
Applications Applications Applications

N B

[Contacts] [Browser] [More...]
o /
>

Application Framework - A

Managers and Providers

Activities][Windows][Views]

Packages][Resources] Content...

Telephony][Location][Notifications]
/

NM—M—r—

N

Runtime Libraries

Surfaces] [Media]

Android Runtime

Core
Libraries
Dalvik VM

s | saw | w |

OpenGL/ES][FreeType]

SGL] [WebKit]

N (MM —r——

AN

Hardware Abstraction Layer —
GNU/Linux Kernel and Drivers

Process Management

Device Drivers — Display, Audio, Keypad, Camera...

[Memory Management][Power Management]
1 l

IPC Binder Driver][Other Functions...

Figure 1-11. The Android platform system architecture

The Hardware Abstraction Layer (HAL)

Hardware abstraction layers (HALs) are designed to protect operating platform
engineers and applications developers from the idiosyncrasies of a multitude of
hardware platforms delivered to the device market by almost equally numerous vendors.

The open-source Linux kernel and appropriate device drivers form the HAL for the
Android operating platform. It takes care of core system operations such as hardware
driver control, process management, networking, and power- and memory
management.

CHAPTER 1: Android Fundamentals

The C/C++ Runtime Libraries

The native C/C++ libraries run directly on the HAL kernel and provide core services to
applications and the Android runtime.

These services include graphics support (2D, 3D, SGL, OpenGL), display management,
video and audio media playback, structured data storage (SQLite), libc, built-in web
browser support via WebKit, and SSL for secure networking.

The Android Runtime

The DVM is the star of the Android applications runtime. Each DVM instance is hosted in
its own Linux kernel system process and takes advantage of system-level threading and
memory management. Its performance and memory characteristics are such that
Android can afford to allocate an instance of the DVM to each running application.

The DVM is supported by a core set of (Java) libraries and APlIs that are fully
documented, open, and available to software developers. Even though Java code is
written to target Dalvik using these libraries, this does not make the DVM a true Java
Virtual Machine (JVM). It merely supports a large part of standard Java augmented by
libraries and APlIs that are Android-specific.

Due to its unique and encompassing role in Android applications development, we will
investigate Dalvik in more detail in an upcoming section of this chapter.

The Application Framework

The Android Application Framework directly supports the development of applications. It
is the broad set of Java namespaces and classes with which we create our applications.

This framework encompasses a wide range of Android Managers and Providers that
abstract the supporting hardware and device resources and services. These include
everything from the user interface, to location awareness, acceleration detection,
camera, telephony, system notifications etc.

The Applications Layer

Android systems are generally delivered with a highly functional set of core applications
that provide the device user with an innovative set of tools. These tools allow the device
owner to both leverage and take advantage of the impressive capabilities of the Android
hardware platform and to mix and match applications to their taste and special
requirements.

The Android SDK supports developing against this high level of flexibility with the same
comprehensive set of APIs used by the platform developers themselves. In addition, the
open design of the platform allows developers to apply the SDK to reuse, extend, or
completely replace the provided core applications with their own creations.

CHAPTER 1: Android Fundamentals

All Android applications are treated equally by the system. Standard Android
applications are generally written in Java, and native code libraries can be loaded and
called via Java Native Interface (JNI) if needed.

Android Component Architecture

Android is a component-based platform. Applications are built up from loosely coupled,
reusable, extendable, and replaceable components that fall within well-defined roles. We
will briefly list the types of components here. The “Android Fundamentals” web site'”
provides a deeper treatment of the subject:

B Activities (Views). This is the application’s primary user interface
component. Every individual screen of an Android application is
derived from the Activity Java class (android.app.Activity'). They
are containers for Views (android.view.View').

B Services (Controllers). These are background components that
behave like UNIX daemons and Windows services. They run invisibly
and perform ongoing unattended processing.

B Content Providers (Models). Data Managers that are the
recommended form of inter-application data sharing.

B Intents. Inter-application messaging that can target a specific Service
or Activity. It can also be broadcast system-wide to advertise an
intended action or request an action to be performed.

B Broadcast Receivers. Listeners and consumers for Intents.
B Notifications. Visual or aural mechanisms for end-user notification.

B Widgets. Special visual components that extend the Home screen.

The Android Runtime: Dalvik Virtual Machine (DVM)

At the heart of the Android Java runtime platform sits the Dalvik Virtual Machine (DVM).
We have mentioned some aspects of the DVM previously. The central and unique role
that the DVM plays in the Android system justifies looking at it in a little more depth.
Furthermore, the positioning and peculiarities of the DVM in the world of JVMs also bear
closer scrutiny.

The DVM is Google's fully open-source implementation of the Java SE (JSE) VM. The
DVM was optimized by design for attaining the maximum possible performance for a

7 http://developer.android.com/guide/topics/fundamentals.html
18 http://developer.android.com/reference/android/app/Activity.html

1 http://developer.android.com/reference/android/view/View.html

http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/view/View.html

CHAPTER 1: Android Fundamentals

Java VM hosted on resource-restricted devices such as mobile phones. It strives to
maximize the well-known gains associated with programming in Java while minimizing
the penalties of operating a virtual machine in a constricted environment.

The following points regarding Android Java development and the DVM runtime
bytecode support are fundamental for Android software developers:

B Android is not JSE: The Android APl maximizes overlap with the JSE,
but there are differences. A notable example is in the GUI department.
Android implements its own graphical user interface API and does not
support JSE AWT and Swing at all.

B Android uses Standard Java Android supports development with the
full Java programming language. Even though some packages and
APIs of the JSE are not supported, use of the Java language is
generally unrestricted. For this reason, your Android Java code is
compiled with a standard, vanilla Java compiler, not a Google-specific
one.

® Dalvik runs (.dex) Dalvik Executables: Your Android code will be
compiled by the mainstream Java compiler you have come to love.
The resulting bytecode will also be the same familiar format. However,
perhaps surprisingly, the DVM does not run this bytecode. It does not
execute the standard .class and .jar files you might be used to.
Instead, the DVM runs its own form of bytecode compiled as .dex files
that are commonly packaged into .apk Android Package files. The
Android SDK includes a tool called “dx” that transforms standard
compiled class files into .dex files. Figure 1-12 has a graphical
representation of this process followed by an overview.

B Every application has its DVM: The DVM is, by design, highly
optimized in terms of performance and size. This allows (also by
design) each Android application to be hosted in its own instance of
the DVM. At the cost of a marginal amount of extra system resources,
this runtime architecture promotes higher application availability and
better security. For example, applications do not share memory and
are thus protected from the potential misbehavior and runtime failure
of other applications.

Development Android
Computer Platform
my.java my.class cla?g;..dex my.apk Dalvik
JDK: ADK: aapt. ADK: Virtual
javac dx . adb install |* Machine
apkbuilder JL

J

Figure 1-12. The path from a Java source file to a DVM executable package

CHAPTER 1: Android Fundamentals

The Path to DEX (and APK)

An overview of the steps required for creating a runnable Android package, as depicted
in Figure 1-12, is as follows:

B Life for an Android Java application starts with a programming text
editor and stock-standard Java source code that imports Android APIs
from the namespaces and libraries provided with the Android SDK.

B This code is compiled with a standard Java compiler (javac) from the
standard JDK. The result is a standard set of bytecode class files as
one would expect from a normal Java application.

B These class files are consumed by the Android SDK dx program that
converts and binds the set of class files into a DVM-compatible
classes.dex file. This binary consists of special bytecode meant to run
on the DVM. It does not run on the reference JVM.

B All class-, dex and resource files are then prepared, signed, and
zipped together as an Android application package (.apk) archive by
the aapt and apkbuilder utility programs.

B The .apk application package is then ready for deployment and
execution on an Android device. Packages can be installed either via
the ant install build step or using the adb install command.®

AN ANDROID BUILD FROM JAVA TO DEX TO APK

Tracing through the following build listing extract taken from our earlier “Android SDK Test Drive” section
should serve to complement the previous overview. Important names are in bold font, and some sections
have been condensed for brevity. It might be useful to refer to this listing later when we have covered
more ground and some concepts start to come together.

\MyAndroidSdkAppProject> ant debug
Buildfile: \MyAndroidSdkAppProject\build.xml

[setup] Android SDK Tools Revision 8
[setup] Project Target: Android 2.3
[setup] API level: 9
[setup
[setup] ------------------
[setup] Resolving library dependencies:
[setup] No library dependencies.
[setup
[setup] --------------"---

[setup]

[setup] WARNING: No minSdkVersion value set. Application will install on all«~
Android versions.

[setup]

2 http://developer.android.com/guide/developing/tools/adb.html#move

http://developer.android.com/guide/developing/tools/adb.html#move

CHAPTER 1: Android Fundamentals

[setup] Importing rules file: tools\ant\main_rules.xml

-debug-obfuscation-check:
-set-debug-mode:
-compile-tested-if-test:
-dirs:
[echo] Creating output directories if needed...
[mkdir] Created dir: \MyAndroidSdkAppProject\gen
[mkdir] Created dir: \MyAndroidSdkAppProject\bin\classes
-pre-build:
-resource-src:
[echo] Generating R.java / Manifest.java from the resources...
-aidl:
[echo] Compiling aidl files into Java classes...
-pre-compile:
compile:
[javac] \android-sdk-windows\tools\ant\ant_rules r3.xml:336: warning:«
"includeantruntime’ was not set, defaulting to build.sysclasspath=last; «
set to false for repeatable builds
[javac] Compiling 2 source files to \MyAndroidSdkAppProject\bin\classes
-post-compile:
-obfuscate:
-dex:
[echo] Converting compiled files and external libraries into«
\MyAndroidSdkAppProject\bin\classes.dex...
-package-resources:
[echo] Packaging resources
[aapt] Creating full resource package...
-package-debug-sign:
[apkbuilder] Creating MyAndroidSdkApp-debug-unaligned.apk and signing it with a debug«~
key...
debug:
[echo] Running zip align on final apk...
[echo] Debug Package: \MyAndroidSdkAppProject\bin\MyAndroidSdkApp-debug.apk
BUILD SUCCESSFUL

Dalvik and the Apache Harmony JVM

A significant part of the DVM was built with code from the Apache Harmony Java class
library. Apache Harmony is a full stack, open-source Java SE implementation that can
be used as an alternative JRE.

To quote from the Apache Harmony web site, the project has as its primary goal the
implementation of a complete Java SE, including virtual machine, class library areas,
and all related and common tooling.

The fact that Harmony is a full stack reimplementation of Java SE also has implications
for Android. Both platforms essentially attempted to create full and free JSE
implementations that are not bound to licensing anomalies that had historically plagued
Java. Harmony and the lion's share of the Android code fall under Apache License
Version 2.0. The notable exceptions in the case of Android are the Linux kernel patches
that are released under the GPLV2 license. However, the stated preferred license for
new Android derived code is Apache 2.0.

CHAPTER 1: Android Fundamentals

The relationship between Android Dalvik and Harmony might at some point in the future
lead to a reconciliation phase where compatible code contributions are merged from the
Android codebase back into Harmony. Regardless, this does highlight the often subtle
but powerful possibilities that the effective use of the open-source model creates for
those willing to embrace it.

One important aspect to remember is that although Apache Harmony aims to be a full
JSE implementation, as mentioned earlier, the Android implementation is not.

DALVIK COMES FROM DALVIK: For the curious (and we’re sure many of you are), the name
“Dalvik” apparently stems from the name of the fishing village, Dalvik, in the north of Iceland.
This is believed to have been the home of some ancestors of the DVM creator, Dan Bornstein.

Dalvik JVM Performance

With the Android 2.2 "Froyo" release and onward, the DVM includes a just-in-time
compiler. This is especially important for the future of the Android platform because
performance and perceived performance are of the utmost relevance for end-user
applications running on resource-restricted devices such as mobile phones.

The DVM architecture is register-machine-based as opposed to stack-machine-based.
Stack-machines are commonly used for virtual machines in general and for most JVMs
in particular. We will try to avoid the debate about virtual stack versus virtual register VM
performance. Suffice it to say that, theoretically, even though register-machine based
implementations tend to result in larger machine code; they also tend to execute faster
than stack machines after being loaded into memory. This is partly due to fewer
resulting VM instructions that need to be executed by the real machine to fetch and
perform the actual computation work, despite the larger overall code size.

Again, this has direct relevance for the execution profile of applications and services on
restricted devices. There are always trade-offs, especially when betting on factors such
as improved memory resource availability at relatively lower expense than processor
cost.

Using an Integrated Development Environment (IDE)

This section presents an overview of applying the Eclipse and NetBeans IDEs to your
Android development tasks. It gives resource references, shows how to install the
relevant supported plugins that will convert these Java IDEs into full-blown Android
development tools, and provides quickstart information on creating an Android project in
the respective IDE.

CHAPTER 1: Android Fundamentals

Working with Eclipse

From the moment the Android SDK was released, Eclipse has been the de facto
standard IDE for Android development and remains so to this day.

From our perspective, these are the main reasons for this:

B With the release of the Android SDK, Google immediately made
available the extensive Android Development Tools (ADT) plugin for
Eclipse. It has a clear head start.

B ADT is used and maintained by the Google Android platform
developers themselves.

B Eclipse enjoys huge Java development market penetration. This
applies to both open-source environments that build on Eclipse RCP
and commercial development suites from big vendors.

B Eclipse/ADT, like the Android SDK itself, is open source and available
free of charge.

These motivators combine to make choosing Eclipse for Android development a no-
brainer for most developers and organizations. Clearly, one (beneficial) side effect of this
situation is that there is a huge amount of official (and less than official) information
available for using Eclipse/ADT. It has also been covered almost by default in many
books and tutorial publications.

We are trying to present a comprehensive introduction to Android development in only
one chapter of this book. Considering this and the vast amount of Eclipse/ADT
information available, we will strive only to deliver an Eclipse/ADT quickstart plus
convenient references to additional information. We assume that the reader has, at the
very least, sufficient experience to know what Eclipse Update Sites are and how to
manage them in the IDE.

On the Web: Eclipse for Android Development

Official information and references for Eclipse and the Google ADT plugin for Eclipse can
be found at the following online locations:

Eclipse Home and Download Area

B http://www.eclipse.org
B http://www.eclipse.org/downloads/

Android Development Tools Plugin for Eclipse ADT
B http://developer.android.com/sdk/eclipse-adt.html
B http://developer.android.com/sdk/eclipse-adt.html#installing

http://www.eclipse.org
http://www.eclipse.org/downloads/
http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html#installing

CHAPTER 1: Android Fundamentals

Android Development in Eclipse with ADT

B http://developer.android.com/guide/developing/eclipse-adt.html

Official Google ADT Eclipse Update Site

B https://dl-ssl.google.com/android/eclipse/
B http://dl-ssl.google.com/android/eclipse/

If you do not have Eclipse on your system, go ahead with downloading and installing it.
The Eclipse version that the author uses (Eclipse 3.6.x Helios JEE) is displayed (using
the Help » About Eclipse menus) in Figure 1-13.

® @ About Eclipse

Eclipse Java EE IDE for Web Developers.

Version: Helios Service Release 1
Build id: 20100917-0705

(c) Copyright Eclipse contributors and others 2005, 2010. All rights
reserved.
Visit http://www.eclipse.org/webtools

SFEC s=e 9800

7 Gssleicopzaly -

Figure 1-13. Eclipse version

Quickstart: The Eclipse Android Development Tools (ADT)
Plugin

We will now cover the setup procedure for the Eclipse/ADT plugin.

Installing ADT

1. To install the Eclipse ADT plugin, go to the Eclipse Help » Install New Software menu
and click the Add (a New Software Site) button. This should display the dialog
shown in Figure 1-14.

http://developer.android.com/guide/developing/eclipse-adt.html
https://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/

CHAPTER 1: Android Fundamentals

Name: [[pg] Google Android Development | —
Location: [http:l/dl-ssl.google.com/android,leclipsel] ﬁ

® Cancel | Ok |

Figure 1-14. Add the ADT Eclipse software site.

2. Enter your own preferred Name and in the Location use either of the following
resource locators:

https://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/
Try the second URL if the former fails to connect. Click the OK button.

3. The Eclipse Available Software dialog shown in Figure 1-15 displays with the
ADT listed. Select all the tools and click Next or Finish. Continue with the setup
workflow until the installation is complete.

Available Software g M

Check the items that you wish to install.

Work with: [[pg] Google Android Development - https://dl-ssl.google.com/android/eclipse/ i ﬁ
Find more software by working with the "Available Software Sites" preferences.

[[;I/: filter text J]
@ % Android DDMS 8.0.1.v201012062107-82219
@ “% Android Development Tools 8.0.1.v201012062107-82219
& * Android Hierarchy Viewer 8.0.1.v201012062107-82219

Details
Features that add Android support to Eclipse for application developers. +

More.
& Show only the latest versions of available software | Hide items that are already installed
& Group items by category What is already installed?

& Contact all update sites during install to find required software

@ [oemec e S [

Figure 1-15. Eclipse Add ADT Available Software

https://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/

CHAPTER 1: Android Fundamentals

4. Now follow the Window » Preferences menus and select the Android entry in the
tree view on the left. The Android Preferences editor should now be visible, as in

Figure 1-16.
[type filter text 4| Android &y >
+ General
- Android Preferences
.~ Android | -
§ 775uild SDK Location: |/home/pieter/pieterfapp_sdk/googleandroid/android~sdk4Iinux786 | “
DDMS Note: The list of SDK Targets below is only reloaded once you hit ‘Apply' or 'OK".
Editors arget:Name: endo la AP
Launch Android 1.5 Android Open Source Project 15 3
Logeat Google APIs Google Inc. 15 3
Usage Stats Android 1.6 Android Open Source Project 1.6 4
bl Ant Google APIs Google Inc. 1.6 4
bl C/C++ \ Android 2.1-updatel Android Open Source Project 2.1-updatel 7
i) Data M.anagement Google APIs Google Inc. 2.1-updatel 7
il Dynamic Language Android 2.2 Android Open Source Project 22 8
& Help Google APIs Google Inc. 22 8
+ Install/Update A iroid 2.3 J id Open s Project 23 i)
& Java Google APIs Google Inc. 23 9
+ JavaEE
+ Java Persistence Standard Android platform 2.3
L - Restorepefous _aoply
[T | >
@ L Coneel

Figure 1-16. Eclipse ADT Android preferences

5. Use the Brows