26

A sense of style

I mplementing the object-oriented method requires paying attention to many details ©
style, which a less ambitious approach might consider trifles.

26.1 COSMETICS MATTERS!

Although the rules appearing hereafter are not as fundamental as the principles of obje
oriented software construction covered in earlier chapters, it would be foolish to dismis
them as just “cosmetics”. Good software is good in the langkn the small, in its high-
level architecture and in its low-level details. True, quality in the details does not
guarantee quality of the whole; but sloppiness in the details usually indicates tha
something more serious is wrong too. (If you cannot get the cosmetics right, why shoul
your customers believe that you can master the truly difficult aspects?) A seriou:
engineering process requires doaerythingright: the grandiose and the mundane.

So you should not neglect the relevance of such seemingly humble details as te.
layout and choice of names. True, it may seem surprising to move on, without lowerin
our level of attention, from the mathematical notion of sufficient completeness in formal
specifications (in the chapter on abstract data types) to whether a semicolon should |
preceded by a space (in the present chapter). The explanation is simply that both isst
deserve our care, in the same way that when you write quality O-O software both th
design and the realization will require your attention.

We can take a cue from the notion of style in its literary sense. Although the first
determinant of good writing is the author’s basic ability to tell a story and devise a
coherent structure, no text is successful until everything works: every paragraph, evel
sentence and every word.

Applying the rules in practice

Some of the rules of this chapter can be checked or, better yet, enforced from the start
software tools. Tools will not do everything, however, and there is no substitute for cart
in writing every piece of the software.

876 A SENSE OF STYLE§26.1

There is often a temptation to postpone the application of the rules, writing things
casually at first and thinking “I will clean up everything later on; | do not even know how
much of this will eventually be discarded”. This is not the recommended way. Once you
get used to the rules, they do not add any significant delay to the initial writing of the
software; even without special tools, it is always more costly to fix the text later than to
write it properly from the start. And given the pressure on software developers, there is
ever a risk that you will forget or not find the time to clean things up. Then someone who
is asked later to take up your work will waste more time than it would have cost you to
write the proper header comments, devise the right feature names, apply the proper layout.
That someone may be you.

Terseness and explicitness

Software styles have oscillated between the terse and the verbose. In programming
languages, the two extremes are perhaps APL and Cobol. The contrast between the
Fortran-C-C++ line and the Algol-Pascal-Ada tradition — not just the languages
themselves, but the styles they have bred — is almost as stark.

What matters for us is clarity and, more generally, quality. Extreme forms of
terseness and verbosity can both work against these goals. Cryptic C programs are
unfortunately not limited to the famous “obfuscated C” and “Obfuscated C++" contests;
but the almost equally famoDIVIDE DAYS BY 7 GIVING WEEkof Cobol is a waste
of everyone’s attention.

The style that follows from this chapter’s rules is a particular mix of Algol-like
explicitness (although not, it is hoped, verbosity) and telegram-style terseness. It never
begrudges keystrokes, even lines, when they truly help make the software readable; for
example, you will find rules that enjoin using clear identifiers based on full words, not
abbreviations, as it is foolish to save a few letters by calling a fedisp (ambiguous)
rather thardisplay (clear and precise), or a cleACCNT (unpronounceable) rather than
ACCOUNT. There is no tax on keystrokes. But at the same time when it comes to
eliminating waste and unneeded redundancies the rules below are as pitiless as the
recommendations of a General Accounting Office Special Commission on Improving
Government. They limit header comments to indispensable words, getting rid of all the
non-essential “the” and other such amenities; they proscribe over-qualification of feature
names (as inaccount balanc in a classACCOUNT, where balance is perfectly
sufficient); against dominant mores, they permit the grouping of related components of a
complex construct on a single line, afrom i := linvariant i <= nuntil i = nloop; and
so on.

This combination of terseness and explicitness is what you should seek in your own
texts. Do not waste space, as exaggerated size will in the end mean exaggerated
complexity; but do not hesitate to use space when it is necessary to enhance clarity.

Also remember, if like many people you are concerned about how much smaller the
text of an object-oriented implementation will be than the text of a comparable C, Pascal,
Ada or Fortran program, that the only interesting answer will appear at the level of a

§26.1 COSMETICS MATTERS! 877

significant system or subsystem. If you express a basic algorithm — at the level
Quicksort, say, or Euclid’s algorithm — in C and in the notation of this book, expect tr
O-0 version to be at least as large. In many cases, if you apply the principles thoroug!
it will be larger, since it will include assertions and more type information. Yet in ISE’;
experience of looking at medium-scale systems we have sometimes found (without be
able to give a general law, as the circumstances vary considerably) the object-orien
solution to be several times smaller. Why? This is not due to terseness at the “micro” le
but to systemwide application of the architectural techniques of the O-O method:

* Genericity is one of the key factors. We have found C programs that repeat
essentially the same C code many times to handle different types. With a gene
class — or for that matter a generic Ada package — you immediately get rid of th
redundancy. It is disturbing in this respect to see that Java, a recent O-O langu
based on C, does not support genericity.

« Inheritance is also fundamental in gathering commonalities and removing duplicatiot
* Dynamic binding replaces many complex decision structures by much shorter cal

» Assertions and the associated idea of Design by Contract avoid redundant el
checking, a principal source of bloat.

* The exception mechanism gets rid of some error code.

If you are concerned with source size, make sure to concentrate on these architect
aspects. You should also be terse in expressing algorithms, but never skimp on keystre
at the expense of clarity.

The role of convention

Most rules define a single permissible form, with no variants. The few exceptions inclu
font use, which is governed by external considerations (what looks good in a book m
not be visible on overhead transparencies), and semicolons, for which there exist f
opposite schools with equally forceful arguments (although we will have a few univers
rules anyway). In all other cases, in line with the introductory methodology chapter
exhortations against wishy-washiness, the rules leave about as much room to doubt
past due reminder from the Internal Revenue Service.

The rules are rooted in a careful analysis of what works and what works less we
resulting from many years of observation; some of the rationale will appear in tt
discussion. Even so, some rules may appear arbitrary at first, and indeed in a few case
decision is a matter of taste, so that reasonable persons working from the sa
assumptions may disagree. If you object to one of the recommended conventions,
should define your own, provided you explain it in detail and document it explicitly; bu
do think carefully before making such a decision, so obvious are the advantages of abic
by a universal set of rules that have been systematically applied to thousands of cla.
over more than ten years, and that many people know and understand.

878 A SENSE OF STYLE§26.1

As noted in an earlier chapter (in the more general context of design princithe comment was in
many of the style rules were originally developed for libraries, and then found theirthe introduction to
into ordinary software development. In object technology, of course, all softwahaPter23.
developed under the assumption that even if it is not reusablemight eventually be
made reusable, so it is natural to apply the same style rules right from the start.

Self-practice

Like the design rules of the preceding chapters, the style rules which follow have been
carefully applied to the many examples of this book. The reasons are obvious: one should
practice what one preaches; and, more fundamentally, the rules do support clarity of
thought and expression, which can only be good for a detailed presentation of the object-
oriented method.

The only exceptions are a few occasional departures from the rules on software text
layout. These rules do not hesitate to spread texts over many lines, for example by
requiring that every assertion clause have its own label. Lines are not a scarce resource on
computer screens; it has been observed that with the computer age we are reversing the
direction of the next-to-last revolution in written communication, the switch from papyrus
rolls to page-structured books. But this text is definitely a book, structured into pages, and
a constant application of the layout-related rules would have made it even bigger than itis.

The cases of self-dispensation affect only two or three layout-related rules, and will
be noted in their presentation below. Any exception only occurs after the first few
examples of a construct in the book have applied the rules scrupulously.

Such exceptions are only justified for a paper presentation. Actual software texts
should apply the rules literally.

Discipline and creativity

It would be a mistake to protest against the rules of this chapter (and others) on the grounds
that they limit developer creativity. A consistent style favors rather than hampers
creativity by channeling it to where it matters. A large part of the effort of producing
software is spent reading existing software and making others read what is being written.
Individual vagaries benefit no one; common conventions help everyone.

Some of the software engineering literature of the nineteen-seventies propo Sentence in italics
the idea of “egoless programming”: developing software so that it does not “Eggal:#é?éggﬂor'
anything of its authors’ personality, thereby making developers interchangeable. Alorganization ang
to system design, this goal is clearly undesirable, even if some managers may sonManpower Planning;
long for it (as in this extract of a programming management book quoted by Barry BcPetrocell, 1974,
“...the programme['s] creative instincts should be totally dul to insure uniform and gﬂggzs;f[goce’mn"l
understandable programmin, to which Boehm comments: “Given what we know abc1981, . 67-.

programmers and their growth motivation, such advice is a clear recipe for disaster~).

What quality software requiresegoful designwith egoless expressic.n

§26.2 CHOOSING THE RIGHT NAMES 879

More than style standards, what would seem to require justification is the curre
situation of software development, with its almost total lack of style standards. In no ott
discipline that demands to be called “engineering” is there such room for such bro
personal variations of whim and fancy. To become more professional, softwa
development needs to regulate itself.

26.2 CHOOSING THE RIGHT NAMES

The first aspect that we need to regulate is the choice of names. Feature name:
particular, will be strictly controlled for everyone’s benefit.

General rules

What matters most is the namesclasse andfeatures which will be used extensively by
the authors of classes that rely on yours.

For feature and class names, use full words, not abbreviations, unless |
abbreviations are widely accepted in the application domain. In aPART describing
parts in an inventory control system, cnumbe, notnurr, the feature (query) giving the
part number. Typing is cheap; software maintenance is expensive. An abbreviation s
asuse in a Geographical Information Systemcoptein a flight control system, having
gained an independent status as a word of its own, is of course acceptable. In additic
few standard abbreviations have gained recognition over the years, sPART for
PARTIALINn class names suchPART _COMPARABL describing objects equipped with
a partial order relation.

In choosing names, aim for clarity. Do not hesitate to use several words connec
by underscores, as ANNUAL_RAT]/, a class name, early premiur, a feature name.

Although modern languages do not place Amjt on the length of identifiers, and
treat all letters as significant, name length should remain reasonable. Here the rule is
the same for classes and for features. Class names are input only occasionally (in c
headers, type declarations, inheritance clauses and a few other cases) and should de:
an abstraction as completely as possible, PRODUCT QUANTITY INDEX
EVALUATORmay be fine. For features, there is seldom a need for more than two
possibly three underscore-connected words. In particdo not overqualify feature
name. If a feature name appears too long, it is usually because itis overqualified:

Composite Feature Name rule

Do not include in a feature name the name of the underlying |data
abstraction (which should serve as the class name).

The feature giving the part number in clPARTshould be called junumbe, not
part_numbe. Such over-qualification is a typical beginner’'s mistake; the resulting name

880 A SENSE OF STYLE§26.2

obscure rather than illuminate the text. Remember that every use of the feature will
unambiguously indicate the class, aspartl.numberwhere partl must have been
declared with a certain typPAR1or a descendant.

For composite names, it is better to avoid the style, popularized by Smalltalk and also
used in such libraries as the X Window System, of joining several words together and
starting the internal ones with an upper-case letter,yearlyPremiur. Instead, separate
components with underscores, asyearly_premiur. The use of internal upper-case
letters is ugly; it conflicts with the conventions of ordinary language; and it leads to cryptic
names, hence to possible errors (comraLongAndRatherUnreadableldentifiwith
an_even_longer_but_perfectly _clear_choice_of r)ame

Sometimes, every instance of a certain class contains a field representing an instance
of another class. This suggests using the class name also as attribute name. You may for
example have defined a cleRATEand, in classACCOUNT, need one attribute of type
RATE, for which it seems natural to use the nerate — in lower case, according to the
rules on letter case stated below. Although you should try to find a more specific name,
you may, if this fails, just declare the featurerate: RATE. The rules on identifier choice
explicitly permit assigning the same name to a feature and a class. Avoid the style of
prefixing the name witfthe, as inthe rat¢, which only adds noise.

Local entities and routine arguments

The emphasis on clear, spelled-out names applies to features and classes. Local entities
and arguments of a routine only have a local scope, so they do not need to be as evocative.
Names that carry too much meaning might almost decrease the software’s readability by
giving undue weight to ancillary elements. So it is appropriate to declare local entities
(here in routines cTWO_WAY LIS in the Base libraries) as

move(i: INTEGEF) is
-- Move cursoli positions, oiafter if i is too large.
local
c: CURSOF counte: INTEGEF, p: like FIRST_ELEMENT

removeis
-- Remove current item; move cursor to right neighboiafter if none).
local
suc, prec, remover like first_element

If succ and pred had been features they would have been cesuccessc and
predecesst. It is also common to use the nannew for a local entity representing a new
object to be created by a routine, «other for an argument representing an object of the
same type as the current one, as in the declaraticclone in GENERAL:

frozen clone(other: GENERA): like otter is...

§26.2 CHOOSING THE RIGHT NAMES 881

The example ¢
was on pag64E€.

Letter case

Letter case is not significant in our notation, as it is too dangerous to let two almc
identical identifiers denote different things. But strongly recommended guidelines he
make class texts consistent and readable:

» Class names appear in all upper ciPOINT, LINKED_LIST, PRICING_MODEL.
Formal generic parameters too, usually with just one leGler:

+« Names of non-constant attributes, routines other than once functions, local entit
and routine arguments appear in all lower cbalance, deposi, sucg, i.

« Constant attributes have their first letter in upper case and the rest in lower ca
Pi: INTEGERIs 3.141592652; Welcome_messa: STRINGis "Welcom!". This
applies to unigue values, which are constant integers.

« The same convention applies to once functions, the equivalent of constants for n
basic typesError_window, lo. Our first example, the complex numti, remained
in lower case for compatibility with mathematical conventions.

This takes care of developer-chosen names. For reserved words, we distinguish
categoriesKeyword: such asdo andclassplay a strictly syntactic role; they are written
in lower case, and will appear in boldface (see below) in printed texts. /eserved
words are not keywords because they carry an associated semanitiesy with an initial
upper case since they are similar to constants, they inCurrent, Resul, Precurso,
True andFalse.

Grammatical categories

Precise rules also govern the grammatical category of the words from which identifiers
derived. In some languages, these rules can be applied without any hesitation; in Engl
as noted in an earlier chapter, they will leave more flexibility.

See the Class Name The rule for class names has already been given: you should always use a nour

rule on page727.

in ACCOUN?7, possibly qualified as ILONG_TERM_SAVINGS ACCOU, except for
the case of deferred classes describing a structural property, which may use an adje
as inNUMERICor REDEEMABLI.

Routine names should faithfully reflect the Command-Query separation principle:

e Procedures (commands) should be verbs in the infinitive or imperative, possik
with complementsmake, move, deposi, set_colo.

« Attributes and functions (queries) should never be imperative or infinitive verb:
never call a querget_valuy, but justvalue. Non-boolean query names should be
nouns, such anumbe, possibly qualified as irlast month balanc Boolean
gueries should use adjectives, afull. In English, because of possible confusions
between adjectives and vertempt, for example, could mean “is this empty?” or

882 A SENSE OF STYLE§26.2

“empty this!”), a frequent convention for boolean queries isis_form, atinis_
empty.

Standard names

You will have noted, throughout this book, the recurrence of a few basic names, such as
putanditem. They are an important part of the method.

Many classes will need features representing operations of a few basic kinds: insert
an element into a structure, replace the value of an element, access a designate...element
Rather than devising specific names for the variants of these operations in every class, it
is preferable to apply a standard terminology throughout.

Here are the principal standard names. We can start with creation procedures, for
which the recommendedmakefor the most common creation procedure of a class. Non-
vanilla creation procedures may be calmake some_qualificatio, for examplemake
polar andmake_cartesia foraPOINT or COMPLEX class.

For commands the most common names are:

extend Add an element. Standard

| Roo] I . command
replace eplace an element. names
force Like put but may work in more cases; for examput

for arrays has a precondition to require the index tp be
within bounds, buforce has no precondition and will
resize the array if necessary.

remove Remove an (unspecified) element.
prune Remove a specific element.
wipe_out Remove all elements.

For non-boolean queries (attributes or functions):

item The basic query for accessing an elemenARRAY, Standard
the element at a given index; STACK classes, the names for non-
stack top; rQUEUECclasses, the oldest element; and so boolean
on. queries

infix "@" A synonym foritem in a few cases, notabARRA.

count Number of usable elements in a structure.

capacity Physical size allocated to a bounded structure, measured

in number of potential elements. The invariant shquld
include0 <= countand count<= capacity.

§26.2 CHOOSING THE RIGHT NAMES 883

For boolean queries:

Standard empty Is the structure devoid of elements?
names for - -
full Is there no more room in the representation to [add
boolean N .
. elements? (Normally the samecount= capacit.)
gueries
has Is a certain element present? (The basic membefship
test.)
extendible Can an element be added? (May serve as a precondition
to extent.)
prunable Can an element be removed? (May serve as a

precondition tcremove andprune.)

readable Is there an accessible element? (May servel as
precondition tciterr andremovt.)

writable Is it possible to change an element? (May variolisly
serve as precondition exten, replace, putetc.)

A few name choices which may seem strange at first are justified by consideratio
of clarity and consistency. For examgprune goes with prunable and extendwith
extendibl; delete andadc might seem more natural, but thaideletableands. addable
would carry the wrong connotation, since the question is not whs can be deleted or
added but whether we can add elements to it or delete elements from it. Thprunébs
andexten(, with the associated queries, convey the intended meaning.

The benefits of consistent naming

The set of names sketched above is one of the elements that most visibly contribute tc
distinctive style of software construction developed from the principles of this book.

Is the concern for consistency going too far? One could fear that confusion cot
result from routines that bear the same name but internally do something different. |
exampleiterr for a stack will return the top element, and for an array will return an elemet
corresponding to the index specified by the client.

With a systematic approach to O-O software construction, using static typing al
Design by Contract, this fear is not justified. To learn about a feature, a client author c
rely on four kinds of property, all present in the short form of the enclosing class:

F1 « Its name.

F2 « Its signature (number and type of arguments if a routine, type of result if a query’
F3 ¢ Its precondition and postcondition if any.

F4 « Its header comment.

A routine also has a body, but that is not part of what client authors are supposed to use.

884 A SENSE OF STYLE§26.3

Three of these elements will differ for the variants of a basic operation. For example
in the short form of clasSTACKyou may find the feature

put(x: G)
-- Pushx on top.
require
writable: not full
ensure
not_empt: not empty
pusher item= x

whereas its namesake will appeaARRAYas

put(x: G;i: INTEGEF)
-- Replace bx the entry of indesi
require
not_too_sma: i >= lower
not_too_larg: i <= upper
ensure
replacec item(i) = x

The signatures are different (one variant takes an index, the other does not); the
preconditions are different; the postconditions are different; and the header comments are
different. Using the same narput, far from creating confusion, draws the reader’s attention
to the common role of these routines: both provide the basic element change mechanism.

This consistency has turned out to be one of the most attractive aspects of the method
and in particular of the libraries. New users take to it quickly; then, when exploring a new
class which follows the standard style, they feel immediately at home and can zero in on
the features that they rd.e

26.3 USING CONSTANTS

Many algorithms will rely on constants. As was noted in an early chapter of this book,
constants are widely known for the detestable practice of changing their values; we should
prepare ourselves against the consequences of such fickleness.

Manifest and symbolic constants

The basic rule is that uses of constants should not explicitly rely on the value:

Symbolic Constant principle

Do not use a manifest constant, other than the zero elements off basic
operations, in any construct other than a symbolic constant declaration.

§26.3 USING CONSTANTS 885

In this principle, emanifest constan is a constant given explicitly by its value, as
in 50 (integer constant) c"Cannot find fil¢' (string constant). The principle bars using
instructions of the form

population_arraymake(1, 50)
or
print ("Cannot find fil¢") -- See mitigating comment below about this case

Instead, you should declare the corresponding constant attributes, and then, in
bodies of the routines that need the values, denote them through the attribute names:

US state_cou: INTEGERis 50
File_not_foun: STRINGis "Cannot find fil¢

population_arraymake(1, state_cournt

print (file_not_foun)

The advantage is obvious: if a new state is added, or the message needs tc
changed, you have only have to update one easy-to-locate declaration.

The use 01 together wittstate counin the first instruction is not a violation of the
principle, since its prohibition applies to manifest constaother than zero elements of
basic operation”. These zero elements, which you may use in manifest form, include th
integersO and1 (zero elements of addition and multiplication), the real nurQ.0, the
null character writtel'%0', the empty strin"". Using a symbolic constaOneevery time
you need to refer to the lower bound of an array (1 using the default convention) wol
lead to an unsustainable style — pedantic, and in fact less readable because o
verbosity. Sometimes, Freud is supposed to have said, a cigar is just a cigar; someti
Oneis just 1.

Some other timel is just a system parameter that happens to have the value one today
but could become 4,652 later — its role as addition’s zero element being irrelevant. Then
it should be declared as a symbolic constant, iProcessor _cour INTEGERis 1in a
system that supports multiple processors and is initially applied to one processor.

The Symbolic Constant principle may be judged too harsh in the case of simy
manifest strings used just once, sucl'Cannot find fil¢* above. Some readers may want
to add this case to the exception already stated in the principle (replacing the qualificat
by “other than manifest string constants used only once in the sami, and zero
elements of basic operatic”). This book has indeed employed a few manifest constant:
in simple examples. Such a relaxation of the rule is acceptable, but in the long run i
probably preferable to stick to the rule as originally given even if the result for strin
constants looks a little pedantic at times. One of the principal uses of string constants, &
all, is for messages to be output to users; when a successful system initially written for
home market undergoes internationalization, it will be that much less translation work
all the user-visible message strings (at least any of them that actually appear in
software text) have been put in symbolic constant declarations.

886 A SENSE OF STYLE§26.4

Where to put constant declarations

If you need more than a handful of local constant attributes in a class, you have probably
uncovered a data abstraction — a certain concept characterized by a number of numeric
or character parameters.

It is desirable, then, to group the constant declarations into a class, which cansee* Facility inher-
as ancestor to any class needing the constants (although some O-O designers prefédtance’, page 83-.
the client relation in this case). An example in the Base libraries is theASCI|, which
declares constant attributes for the different characters in the ASCII character s¢
associated properties.

26.4 HEADER COMMENTS AND INDEXING CLAUSES

Although the formal elements of a class text should give as much as possible of the
information about a class, they must be accompanied by informal explanations. Header
comments of routines and feature clause answer this need together with the indexing
clause of each class.

Routine header comments: an exercise in corporate downsizing

Like those New York street signs that read “Don’t ethink of parking here!”, the sign
at the entrance of your software department should warn “Don’t even think of writing a
routine without a header comment”. The header comment, coming just afis for a
routine, expresses its purpose concisely; it will be kept by the short and flat-short forms:
distance_to_origi: REALIs
-- Distance to point (0, 0)
local
origin: POINT
do
I origin
Result:= distance(origin)
end

Note the indentation: one step further than the start of the routine body, so that the
comment stands out.

Header comments should be informative, clear, and terse. They have a whole style
of their own, which we can learn by looking at an initially imperfect example and improve
it step by step. In a claCIRCLE we might start with

§26.4 HEADER COMMENTS AND INDEXING CLAUSES 887

Warninc: not the
recommended style
for header com-
ment!

Not the recom-
mended sty.e

Not ye...

Still not it...

Almost ther, but
not quite...

tangent_frorr(p: POINT): LINEis
-- Return the tangent line to the current circle going through the point
-- if the point is outside of the current circle.
require
outside_circl: not has(p)

There are many things wrong here. First, the comment for a query, as here, sho
not start with “Return tr...” or “Compute th...”, or in general use a verbal form; this
would go against the Command-Query Separation principle. Simply name what the qu
returns, typically using a qualified noun for a non-boolean query (we will see below wh
to use for a boolean query and a command). Here we get:

-- The tangent line to the current circle going through the fpyint
-- if the pointp is outside of the current circle

Since the comment is not a sentence but simply a qualified noun, the final peri
disappears. Next we can get rid of the auxiliary words, espethe, where they are not
required for understandability. Telegram-like style is desirable for comments. (Rememt
that readers in search of literary frills can always choose Proust novels instead.)

--Tangent line to current circle from poip;t
-- if point p is outside current circle

The next mistake is to have included, in the second line, the condition for the routine
applicability; the preconditiornot has(p), which will be retained in the short form where
it appears just after the header comment, expresses this condition clearly &
unambiguously. There is no need to paraphrase it: this could lead to confiisihe
informal phrasing seems to contradict the formal precondition, or even to errors (a comn
oversight is a precondition of the forx >= 0 with a comment statincapplicable only to
positive x”, rather than non-negativ”); and there is always a risk that during the
software’s evolution the precondition will be updated but not the comment. Our examg
becomes:

-- Tangent line to current circle from pop.t

Yet another mistake is to have used the wiline to refer to the result arpoint to
refer to the argument: this information is immediately obvious from the declared type
LINE andPOINT. With a typed notation we can rely on the formal type declarations —
which again will appear in the short form — to express such properties; repeating thern
the informal text brings nothing. So:

-- Tangent to current circle frop.

The mistakes of repeating type information and of duplicating the precondition
requirements point to the same general rule: in writing header comnassume the
reader is competent in the fundamentals of the techn; do not include information that
is obvious from the immediately adjacent short form text. This does not mean, of cour

888 A SENSE OF STYLE§26.4

that you should never specify a type; the earlier exar-- Distance to point (0,, could
be ambiguous without the wopoint.

When you need to refer to the current object represented by a class, use phrasing such
ascurrent circl, current numbe and so on as above, rather than referring explicitly to the
entity Current. In many cases, however, you can avoid mentioning the current object
altogether, since it is clear to everyone who can read a class text that features apply to the
current object. Here, for example, we just need

-- Tangent fromp. This is i.

At this stage — three words, starting from twenty-two, an 87% reduction that would
make the toughest Wall Street exponent of corporate downsizing jealous — it seems hard
to get terser and we can leave our comment alone.

A few more general guidelines. We have noted the uselessneReturn the...” in
queries; other noise words and phrases to be avoided in routines of all kinds iiThisde “
routine compute...”, “This routine returr...”; just say what the routine does, not that it
does it. Instead of

-- This routine records the last outgoing call.
write
-- Record outgoing call.

As illustrated by this example, header comments for commands (procedures) should
be in the imperative or infinitive (the same in English), in the style of marching orders.
They should end with a period. For boolean-valued queries, the comment should always
be in the form of a question, terminated by a question mark:

has(v: G): BOOLEANis
-- Doesv appear in list?

A convention governs the use of software entities — attributes, arguments —
appearing in comments. In typeset texts such as the above they will appear in italics (more
on font conventions below); in the source text they should always appear between an
opening quote (“backquote”) and a closing quote; the original text for the example is then:

-- Does ‘v’ appear in list?

Tools such as theshort class abstracter will recognize this convention when
generating typeset output. Note that the two quotes should be diff'v’, not'v’.

Be consistent. If a function of a class has the comiLength of strin,, a routine of
the same class should not <Update width of strinif it affects the same property.

All these guidelines apply to routines. Because an exported attribute should be
externally indistinguishable from argumentless functions — remember the Uniform
Access principle — it should also have a comment, which will appear on the line
following the attribute’s declaration, with the same indentation as for functions:

§26.4 HEADER COMMENTS AND INDEXING CLAUSES 889

coun: INTEGER
-- Number of students in course

For secret attributes a comment is desirable too but the rule is less strict.

Feature clause header comments

As you will remember, a class may have any humber of feature clauses:

indexing
classLINKED_LIST[G] inherit ... creation

feature -- Initialization
makeis ...

feature -- Access
item: Gis ...

feature -- Status report
before. BOOLEAN:S ...

feature -- Status setting

feature -- Element change
put_left(v: G)is ...

feature -- Removal
removeis ...

feature { NONE} -- Implementation
first_elemer: LINKABLE[G].

end-- classLINKED _LIST

One of the purposes of having several feature clauses is to allow different feature:
have different export privileges; in this example everything is generally available exce
the secret features in the last clause. But another consequence of this convention is
you could, and should, group features by categories. A comment on the same line as
keyword feature should characterize the category. Such comments are, like heac
comments of routines, recognized an preserved by documentation tools shortas

“ Operands and Eighteen categories and the corresponding comments have been standardized fo
options”, page 76¢. Base libraries, so that every feature (out of about 2000 in all) belongs to one of them. -
example above illustrates some of the most important catecStatus repo corresponds
to options (set by features in tiStatus settincategory, not included in the example).
Secret and selectively exported features appear irlmplementationcategory. These
standard categories always appear in the same order, which the tools know (through a

890 A SENSE OF STYLE§26.4

editable list) and will preserve or reinstate in their output. Within each category, the tools
list the features alphabetically for ease of retrieval.

The categories cover a wide range of application domains, although for special areas
you may need to add your own categories.

Indexing clauses

Similar to header comments but slightly more formal are indexing clauses, appearindexing clauses

the beginning of a class: were previewed in
“ A note about com-
indexing ponent indexin”,
page 7:3

descriptior: "Sequential lisi, in chained representati‘'n
name: "Sequenc", "List"

content: GENERIC

representatio: chained

date: "$Date: 96/1C/20 12:21:03 §"

revisior: "$Revisiol: 2.4¢"

classLINKED_LIST[G] inherit

Indexing clauses proceed from the same Self-Documentation principle that he Self-Documenta-
to built-in assertions and header comments: include as much as possible cion’, page 5-
documentation in the software itself. For properties that do not directly appear il
formal text, you may include indexing entries, all of the form

indexing_terr: indexing_valu2indexing_valu, ...

where theindexing_termris an identifier and eacindexing_valu is some basic element

such as a string, an integer and so on. Entries can indicate alternative names under which
potential client authors might search for the clename), contents typecontent),
implementation choices representatio), revision control information, author
information, and anything else that may facilitate understanding the class and retrieving it
through keyword-based search tools — tools that support reuse and enable software
developers to find their way through a potentially rich set of reusable components.

Both the indexing terms and the indexing values are free-form, but the posmore details in
choices should be standardized for each project. A set of standard choices has bedM 1994a.
throughout the Base libraries; the above example illustrates six of the most common
kinds. Every class must havedescriptior entry, introducing aindex_valuea string
describing the role of the class, always expressed in terms of the instanSequential
lists..., not “this class describes sequential lists”, or “sequential list”, or “the notion of
sequential list” etc.). Most significant class texts in this book — but not short examples
illustrating a specific point — include tldescriptior entry.

§26.5 TEXT LAYOUT AND PRESENTATION 891

Non-header comments

The preceding rules on comments applied to standardized comments, appearing
specific places — feature declarations and beginning of feature clauses — and playir
special role for class documentation.

As in all forms of software development, there is also a need for comments with
routine bodies, to provide further explanations

Another use of comments, although frequent in the practice of software development,

does not figure much in software engineering and programming methodology textbooks.

| am referring here to the technique of transforming some part of the code into comments,
either because it does not work, or because it is not ready yet. This practice is clearly a
substitute for better tools and techniques of configuration management. It has enriched the
language with a new verb forrcomment ol, whose potential, surprisingly enough, has

not yet been picked up by hip journalists, even though the non-technical applications seem
attractive and indeed endless: “The last elections have enabled Conccomment out

the President”, “Letterman wcommented ol of the Academy Awards”, and so on.

Every comment should be of a level of abstraction higher than the code it documer
A famous counter-example -- Increas i by 1 commenting the instructioin:= 1 + 1.
Although not always that extreme, the practice of writing comments that paraphrase
code instead of summarizing its effect is still common.

Low-level languages cry for ample commenting. It is a good rule of thumb, fo
example, that for each line of C there should be a comment line; not a negative reflect
on C, but a consequence that in modern software development the role of C is
encapsulate machine-oriented and operating-system-level operations, which are tricky
nature and require a heavy explanatory apparatus. In the O-O part, non-header comn
will appear much more sparsely; they remain useful when you need to explain so
delicate operation or foresee possible confusion. In its constant effort to favor prevent
over cure, the method decreases the need for comments through a modular style thaty
small, understandable routines, and through its assertion mechanisms: preconditions
postconditions of routines, to express their semantics formally; class invacheck
instructions to express properties expected to hold at certain stages; the systematic nau
conventions introduced earlier in this chapter. More generally, the secret of cle:
understandable software is not adding comments after the fact but devising coherent
stable system structures riglrom the tart.

26.5 TEXT LAYOUT AND PRESENTATION

The next set of rules affects how we should physically write our software texts on paj
— real, or simulated on a screen. More than any others, they prompt cries of “Cosmetic:
but such cosmetics should be as important to software developers as Christian Dior’s
to his customers. They play no little role in determining how quicklyaedrately your
software will be understood by its readers — maintainers, reusers, customers.

892 A SENSE OF STYLE§26.5

Layout

The recommended layout of texts results from the general form of the syntax of our
notation, which is roughly what is known as an “operator grammar”, meaning that a class
text is a sequence of symbols alternating between “operators” and “operands”. An
operator is a fixed language symbol, such as a keyvdo etc.) or a separator (semicolon,
comma...); an operand is a programmer-chosen symbol (identifier or constant).

Based on this property, the textual layout of the notation followscomb-like
structure introduced by Ada; the idea is that a syntactically meaningful part of a class,
such as an instruction or an expression, should either:

 Fit on a line together with a preceding and succeeding operators.

* Be indented just by itself on one or more lines — organized so as to observe the same
rules recursively.

- The comb-like
structure of
software texts

A1

o
-

[] Operand

Operator
e (keyword,

I separator etc.)

Each branch of the comb is a sequence of alternating operators and operands; it
should normally begin and end with an operator. In the space between two branches you
find either a single operand or, recursively, a similar comb-like structure.

As an example, depending on the size of its constitia, b andc, you may spread
out a conditional instruction as

if cthen aelsebend

or

§26.5 TEXT LAYOUT AND PRESENTATION 893

or

if cthen
a
elsebend
You would not, however, use a line containing jiistor c end, since they include

an operand together with something else, and are missing an ending operator in the
case and a starting operator in the second.

Similarly, you may start a class, after theexing clause, with

classC inherit -- [1]
or

classC feature --[2]
or

class --[3]

C

feature
but not

classC -- [4]

feature

because the first line would violate the rule. Fofiisand[2] are used in this book for
small illustrative classes; since most practical classes have one or more fabéled
clauses, they should in the absence ofhaerit clause use form3] (rather thari2]):
class
C
feature -- Initialization

feature -- Access
etc.

894 A SENSE OF STYLE§26.5

Height and width

Like most modern languages, our notation does not attach any particular significance to
line separations except to terminate comments, so that you can include two or more
instructions (or two or more declarations) on a single line, separated by semicolons:

count:=count + 7 forth

This style is for some reason not very popular (and many tools for estimating
software size still measulines rather than syntactical units); most developers seem to
prefer having one instruction per line. It is indeed not desirable to pack texts very tightly;
but in some cases a group of two or three short, closely related instructions can be more
readable if they all appear on one line.

In this area it is best to defer to your judgment and good taste. If you do apply intra-
line grouping, make sure that it remains moderate, and consistent with the logical relations
between instructions. The Semicolon Style principle seen later in this chapter requires any
same-line instructions to be separated by a semicolon.

For obvious reasons of space, this book makes a fair use of intra-line grouping,
consistent with these guidelines. It also avoids splitting multi-line instructions into more
lines than necessary; on this point one can recommend the book’s style for general use:
there is really no reason to spfrom i:= 1 invariant i <= n until i = n loop or
if a=Dbthen. Whatever your personal taste, do observe the Comb structure.

Indenting details

The comb structure uses indentation, achieved through tab charinot spaces, which
are messy, error-prone, and not reader-parameterizable).

Here are the indentation levels for the basic kinds of construct, illustrated by the
example on the facing page:

* Level 0: the keywords introducing the primitive clauses of a class. This includes
indexing (beginning of an indexing clauseclass (beginning of the class body),
feature (beginning of a feature clause, except if on the same liclas?), invariant
(beginning of an invariant clause, not yet seen) and theend of a class.

e Level 1: beginning of a feature declaration; indexing entries; invariant clauses.

* Level 2: the keywords starting the successive clauses of a routine. This includes
require, local, do, once, ensure, rescue, end.

» Level 3: the header comment for a routine or (for consistency) attribute; declarations
of local entities in a routine; first-level instructions of a routine.

Within a routine body there may be further indentation due to the nesting of control
structures. For example the earif athen ... instruction contains two branches, each of
them indented. These branches could themselves contain loops or conditional instructions,
leading to further nesting (although the style of object-oriented software construction
developed in this book leads to simple routines, seldom reaching high levels of nesting).

A checkinstruction is indented, together with the justifying comment that normally
follows it, one level to the right of the instruction that it guards.

§26.5 TEXT LAYOUT AND PRESENTATION

895

A layout
example

Note: this class
has no useful
semantics!

indexing
descriptior: "Example for formatin"
class EXAMPLEinherit
MY_PARENT
redefine f1, f2 end
MY_OTHER_PARENT
rename
glasold g,g2asold g2
redefine
gl
select
g2
end
creation
make
feature -- Initialization
makeis
-- Do something.
require
some_conditio: correct(x)
local
my_entit: MY_TYPE
do
if athen
b; c
else
other_routine
checkmax2> max1 + x " zend
-- Because of the postconditionother_routine.
new_value:= old_value/ (max2 — max)L
end
end

feature -- Access
my_attribute SOME_TYPE
-- Explanation of its role (aligned with comment make)

... Other feature declarations and feature cla...es
invariant

upper_boun: x<=y
end -- classEXAMPLE

Note the trailer comment after tlend of the class, a systematic convention.

896 A SENSE OF STYLE§26.5

Spaces

White space contributes as much to the effect produced by a software text as silence to the
effect of a musical piece.

The general rule, for simplicity and ease of remembering, is to follow as closely as
possible the practice of standard written language. By default we will assume this
language to be English, although it may be appropriate to adapt the conventions to the
slightly different rules of other languages.

Here are some of the consequences. You will useaeesp

« Before an opening parenthesis, but not af (x) (notf(x), the C style, of(x)).

» After a closing parenthesunles: the next character is a punctuation sign such as a
period or semicolon; but not before. Henproc1(x); x := f1 (x) + {2 (y)

« After a comma but not beforg (x, v, 2).
« After the two dash signs that start a comm-- A commen!

Similarly, the default rule for semicolons is to use a space after but not before:

p1; p2(x); p3(y, 2

Here, however, some people prefer, even for English-based software texts, the
French style of including a space both before and after, which makes the semicolon stand
out and emphasizes the symmetry between the components before and after it:

pl; p2(x); p3(y, 2

Choose either style, but then use it consistently. (This book uses the English style.)
English and French styles have the same difference for colons as for semicolons; since,
however, the software notation only uses colons for declarations, in which the two parts
— the entity being declared and its type — not play a symmetric role, it seems
preferable to stick to the English style, ayour entit: YOUR_TYP.Z

Spaces should appear before and after arithmetic operatorsa + b. (For space
reasons, this book has omitted the spaces in a few cases, all of ttn+1.)m

For periods the notation departs from the conventions of ordinary written language
since it uses periods for a special construct, as originally introduced by Simula. As you
know, a.r means: apply featurr to the object attached a. In this case there is a space
neither before nor after the period. To avoid any confusion, this book makes the period
bigger, as illustratec.: rather than just

There is another use of the period: as decimal point in real numbers, <3.14.as
Here, to avoid any confusion, the period is not made any bigger.

Some European languages use a comma rather than a period as the separator between
integral and fractional parts of numbers. Here the conflictis irreconcilable, as in English the
comma serves to separate parts of big numbers, as in “300,000 dollars”, where other
languages would use a space. The committee discussions for Algol 60 almost collapsed
when some continental members refused to bow to the majority’s choice of the period; the

§26.5 TEXT LAYOUT AND PRESENTATION 897

stalemate was resolved when someone suggested distinguishing between a reference
language, fixed, and representation languages, parameterizable. (In retrospect, not such a
great idea, at least not if you ever have to compile the same program in two different
countries!) Today, few people would make this a point of contention, as the spread of
digital watches and calculators built for world markets have accustomed almost everyone
to alternate between competing cantions.

Precedence and parentheses

The precedence conventions of the notation conform to tradition and to the “Principle
Least Surprise” to avoid errors and ambiguities.

Do not hesitate, however, to add parentheses for clarity; for example you may wr
(a=(b + ¢)) implies (u/=v) even though the meaning of that expression would be the san
if all parentheses were removed. The examples in this book have systematically o\
parenthesized expressions, in particular assertions, risking heavineert unertainty.

The War of the Semicolons

Two clans inhabit the computing world, and the hatred between them is as ferocious &
is ancient. The Separatists, following Algol 60 and Pascal, fight for the recognition of tl
semicolon as a separator between instructions; the Terminatists, rallied behind

contrasting flags of PL/I, C and Ada, want to put a semicolon behind every instruction.

Each side’'s arguments are endlessly relayed by its propaganda machine. -
Terminatists worship uniformity: if every instruction is terminated by the same marker, r
one ever has to ask the question “do | need a semicolon here?” (the answer in Termin
languages is always yes, and anyone who forgets a semicolon is immediately beheade
high treason). They do not want to have to add or remove a semicolon because
instruction has been moved from one syntactical location to another, for example if it}
been brought into a conditional instruction or taken out of it.

The Separatists praise the elegance of their convention and its compatibility wi
mathematical practices. They sdo instruction?; instruction?; instructioni.end as the
natural counterpart f (argument, argument, argument). Who in his right mind, they
ask, would prefef (argument, argument, argument.,) with a superfluous final comma?
They contend, furthermore, that the Terminatists are just a front for the Compilists, a cr
people whose only goal is to make life easy for compiler writers, even if that mea
making it hard for application developers.

The Separatists constantly have to fight against innuendo, for example t
contention that Separatist languages 'preven you from including extra semicolons.
Again and again they must repeat the truth: that every Separatist language worthy of
name, beginning with the venerated Patriarch of the tribe, Algol 60, has supported
notion of empty instruction, permitting all of

898 A SENSE OF STYLE§26.5

a; b, c

a, b c

yan b c
to be equally valid, and to mean exactly the same thing, as they only differ by the extra
empty instructions of the last two variants, which any decent compiléerdigcard
anyway. They like to point out how much more tolerant this convention makes them:
whereas their fanatical neighbors will use any missing semicolon as an excuse for renewed

attacks, the Separatists will gladly accept as many extra semicolons as a Terminatist
transfuge may still, out of habit, drop into an outwardly Separatist text.

Modern propaganda needs science and statistics, so the Terminatists have thThe article is a
experimental study, cited everywhere (in particular as the justification for the Termistudy by Gannon
convention of the Ada language): a 1975 measurement of the errors made by two %gnﬂg??g?s.]
of 25 programmers each, using languages that, among other distinguishing traits,
semicolons differently. The results show the Separatist style causing almost ten times as
many errors! Starting to feel the heat of incessant enemy broadcasts, the Separatist
leadership turned for help to the author of the present book, who remembered a long-
forgotten principlequoting is goo, but reading is bett. So he fearlessly went back to
the original article and discovered that the Separatist language used in the comparison —

a mini-language meant only for “teaching students the concepts of asynchronous
processes” — treats an extra semicolon after the final instruction of a compound, as in
begina; b; end, as an error! No real Separatist language, as noted above, has ever had such
a rule, which would be absurd in any circumstance (as an extra semicolon is obviously
harmless), and is even more so in the context of the article’s experimensome of the
subjects apparently had Terminatexperience from PL/l and so would have been
naturally prone to add a few semicolons here and there. It then seems likely, although the
article gives no data on this point, that many of the semicolon errors were a result of such
normally harmless additions — enough to disqualify the experiment, once and for all, as
a meaningful basis for defending Terminatism over Separatism.

On some of the other issues it studies, the article is hot marred by such flaws in its test
languages, so that it still makes good reading for people interested in language design.

All this shows, however, that it is dangerous to take sides in such a sensitive debate,
especially for someone who takes pride in having friends in both camps. The solution
adopted by the notation of this book is radical:

Semicolon Syntax rule

Semicolons, as markers to delimit instructions, declarations or assgrtion
clauses, are optional in almost all the positions where they may appeatr in the
notation of this book.

ExerciseE26.2,
“Almost” because of a few rare cases, not encountered in this book, in which omitting the page 902

semicolon would cause a syntactical ambiguity.

§26.5 TEXT LAYOUT AND PRESENTATION 899

The Semicolon Syntax rule means you can choose your style:
« Terminatist: every instruction, declaration or assertion clause ends with a semicol

« Separatist: semicolons appear between successive elements but not, for exarnr
after the last declaration offeature or local clause.

* Moderately Separatist: like the Separatist style, but not worrying about ext
semicolons that may appear as a result of habit or of elements being moved from «
context to another.

« Discardist: no semicolons at all (except as per the Semicolon Style principle belov

This is one of the areas where it is preferable to let each user of the notation foll
his own inclination, as the choice cannot cause serious damage. But do stick, at I
across a class and preferably across an entire library or application, to the style that
have chosen (although this will not mean much for the Moderately Separatist style, whi
is by definition lax), and observe the following principle:

Semicolon Style principle

If you elect to include semicolons as terminators (Terminatist style), do so
for all applicable elements.

If you elect to forego semicolons, use them only when syntactically
unavoidable, or to separate elements that appear on the same line.

The second clause governs elements that appear two or more to a line, as in
found:= found + J; forth
which should always include the semicolon; omitting it would make the line quite confusin

Just for once, this discussion Ino advice here, letting you decide which of the four
styles you prefer. Since the earliest version of the notation required semicolons — in ot
words, it had not yet been tuned to support the Semicolon Syntax rule — the first editi
of this book used a Separatist style. For the present one | dabbled into a few experime
after polling a sizable group of co-workers and experienced users of the notation, | foL
(apart from a handful of Terminatists) an almost equal number of Discardists al
Separatists. Some of the Discardists were very forceful, in particular a university profes
who said that the main reason his students loved the notation is that they do not n
semicolons — a comment which any future language designer, with or without grandic
plans, should find instructive or at least sobering.

You should defer to your own taste as long as it is consistent and respects
Semicolon Style principle. (As to this book: for a while | stuck to the original Separati
style, more out of habit than of real commitment; then, hearing the approach of the th
millenium and its call to start a new life free of antique superstitions, | removed all t
semicolons over a single night of utter debauchery.)

900 A SENSE OF STYLE§26.6

Assertions

You should label assertion clauses to make the text more readable:

require
not too_sma: index>= lower

This convention also helps produce useful information during testing and debuSee* Monitoring
since, as you will remember, the assertion label will be included in the run-time meassertions at run
produced if you have enabled monitoring of assertions and one of them gets violate' ™ * Pa9¢ 39-

This convention will spread an assertion across as many lines as it has clauses. As a
consequence, it is one of the rules to which the present book has made a few exceptions,
again in the interest of saving space. When collapsing several clauses on one line, you
should actually remove the labels for readability:

require
index>= lower, index<= upper

In normal circumstances, that is to say for software texts rather than a printed
textbook, better stick to the official rule and have one labeled clause per line.

26.6 FONTS

In typesesoftware texts, the following conventions, used throughout this book and related
publications, are recommended.

Basic font rules

Print software elements (class names, feature names, ¢...)) in italics to distinguish

them from non-software text elements. This facilitates their inclusion in sentences of the
non-software text, such as “We can see that the femumberis a query, not an
attribute”. (The worcnumbe denotes the name of the feature; you do not want to mislead
your reader into believing that you are talking about the number of features!)

Keywords, such aclass, feature, invariant and the like, appear boldface.

This was also the convention of the first edition of this book. At some stage it seemed
preferable to ustboldface italics which blends more nicely with italics. What was
esthetically pleasing, however, turned out to hamper quality; some readers complained
that the keywords did not stand out clearly enough, hence the return to the original
convention. This is a regrettable case of fickler[M 1994a and a handful of books by
other authors show the intermediate convention.

Keywords play a purely syntactic role: they have no semantics of their own but
delimit those elements, such as feature and class names, that do carry a semantic value. As
noted earlier in this chapter, there are also a few non-keyword reserved words, such as
CurrentandResul, which have a denotation of their own — expressions or entities. They
are written in non-bold italics, with an initial upper-case letter.

§26.6 FONTS

901

Following the tradition of mathematics, symbols — colons and semicc;ns
brackets[], parenthese(), braces{}, question and exclamation mar?! and so on —
should always appear in roman (straight), even when they separate text in italics. L
keywords, they are purely syntactic elements.

Comments appear in roman. This avoids any ambiguity when a feature name
which, according to the principles seen earlier, will normally be a word from ordinar
language — or an argument name appears in a comment; the feature name will be in ite
and hence will stand out. For example:

accelerate(s: SPEEL; t: REAL) is
-- Bring speed tisin at mosit seconds.

set_numbe(n: INTEGEF) is
-- Maken the new value cnumbe.

In the software text itself, where no font variations are possible, such occurrences
formal elements in comments should follow a specific convention already mention:
earlier: they will appear preceded by a back g‘ and followed by a normal quo’¢, as in

-- Make‘n’ the new value o‘number’.

(Remember that you must use two different quote characters for opening a
closing.) Tools that process class texts and can produce typeset output, short and
flat, know this convention and so can make sure the quoted elements are printed in ital

Other font conventions

The preceding font conventions work well for a book, an article or a Web page. Sor
contexts, however, may call for different approaches. In particular, elements in ple
italics, and sometimes even bold italics, are not always readable when projected o
projection screen, especially if what you are projecting is the output of a laptop compu
with a relatively small display.

In such cases | have come to using the following conventions:
» Use non-italics boldface for everything, as this projects best.

* Choose a wide enough font, suctrBookman (for which boldface may be called
“demibold”).

* Instead of italics versus roman versus bold, use color to distinguish the vario
elements: keywords in black; comments in red; the rest (entities, feature nam
expressior...) in blue. More colors can be used to highlight special elements.

These conventions seem to work well, although there is always room f¢
improvement, and new media will undoubtedly prompt new conventions.

902 A SENSE OF STYLE§26.7

Color

The particularly attentive reader may by now have come to notice another convention used
by this book: for added clarity, all formal elements — software texts or text extracts, but
also mathematical elements — appezcolor. This technique, which of course cannot be
presented as a general requirement, enhances the f the rule: seen so ir on fcnt usage.

26.7 BIBLIOGRAPHICAL NOTES

[Waldén 1995]is the source of the idea of showing by example that even a longer
separated by undersco identifier is easier to read than cinternalUpperCase
identifier.

[Gannon 197% is an experimental study of the effect of various language design
choices on error rates.

The rules on standard feature names were first present{fM 1990b] and are
developed in detail i[M 1994a.

| received important comments from Richard Wiener on students’ appreciation of
the optionality of semicolons, and from Kim Waldén on the respective merits of bold
italics and plain bold.

EXERCISES

E26.1 Header comment style

Rewrite the following header comments in the proper style:

reorder(s: SUPPLIEF; t: TIME) is
-- Reorders the current part from supplier s, to be delivered
-- on time t; this routine will only work it is a time in the future.
require
not_in_pas: t >= Now

next _reorder_dat TIME is
-- Yields the next time at which the current part is scheduled
-- to be reordered.

E26.2 Semicolon ambiguity

Can you think of a case in which omitting a semicolon between two instructions or assertions
could cause syntactic ambiguity, or at least confuse a simple-minded pHint : a feature
call can have as its target a parenthesized edon, as in(vectorl + vector). coun.)

	26 26 A sense of style
	26.1 COSMETICS MATTERS!
	Applying the rules in practice
	Terseness and explicitness
	The role of convention
	Self-practice
	Discipline and creativity

	26.2 CHOOSING THE RIGHT NAMES
	General rules
	Composite Feature Name rule

	Local entities and routine arguments
	Letter case
	Grammatical categories
	Standard names
	Standard command names
	Standard names for non- boolean queries
	Standard names for boolean queries

	The benefits of consistent naming

	26.3 USING CONSTANTS
	Manifest and symbolic constants
	Symbolic Constant principle

	Where to put constant declarations

	26.4 HEADER COMMENTS AND INDEXING CLAUSES
	Routine header comments: an exercise in corporate ...
	Feature clause header comments
	Indexing clauses
	Non-header comments

	26.5 TEXT LAYOUT AND PRESENTATION
	Layout
	The comb-like structure of software texts

	Height and width
	Indenting details
	A layout example
	Note: this class has no useful semantics!

	Spaces
	Precedence and parentheses
	The War of the Semicolons
	Semicolon Syntax rule
	Semicolon Style principle

	Assertions

	26.6 FONTS
	Basic font rules
	Other font conventions
	Color

	26.7 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E26.1 Header comment style
	E26.2 Semicolon ambiguity

