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Abstract

In these notes I will discuss some recent developments at the inter-
face between finite geometry and coding theory. These developments,
are all based on the theory of quadratic forms over GF(2), and I have
included an introduction to this material. The particular topics are
bent functions and difference sets, multiply-resolved designs, codes
over Z4, and quantum error-correcting codes.

Some of the material here was discussed in the Combinatorics
Study Group at Queen Mary and Westfield College, London, over
the past year. This account is quite brief; a more detailed version will
be published elsewhere. Many of the participants of the study group
contributed to this presentation; to them I express my gratitude, but
especially to Harriet Pollatsek and Keldon Drudge.

1 Codes

There are many good accounts of coding theory, so this section will be brief.
See MacWilliams and Sloane [18] for more details.

Let A be an alphabet of ¢ symbols. A word of length n over A is simply
an n-tuple of elements of A (an element of A™). A code of length n over A



is a set of words (a subset of A™). A code of length n containing M words is
referred to as an (n, M) code.

The Hamming distance d(v, w) between two words v and w is the number
of coordinates in which v and w differ:

dlv,w)=1|{i:1<i<n,v #w}|

It satisfies the standard axioms for a metric on A". The minimum distance
of a code is the smallest distance between two distinct words in C. A code
of length n having M codewords and minimum distance d is referred to as
an (n, M, d) code.

The basic idea of coding theory is that, in a communication system,
messages are transmitted in the form of words over a fixed alphabet (in
practice, usually the binary alphabet {0,1}). During transmission, some
errors will occur, that is, some entries in the word will be changed by random
noise. The number of errors occurring is the Hamming distance between the
transmitted and received words.

Suppose that we can be reasonably confident that no more than e errors
occur during transmission. Then we use a code whose minimum distance d
satisfies d > 2e + 1. Now we transmit only words from the code C'. Suppose
that u is transmitted and v received. By assumption, d(u,v) < e. If «' is
another codeword, then d(u,u’) > d > 2e + 1. By the triangle inequality,
d(u',v) > e+ 1. Thus, we can recognise the transmitted word u, as the code-
word nearest to the received word. For this reason, a code whose minimum
distance d satisfies d > 2e + 1 is called an e-error-correcting code.

Thus, good error correction means large minimum distance. On the other
hand, fast transmission rate means many codewords. Increasing one of these
parameters tends to decrease the other. This tension is at the basis of coding
theory.

Usually, it is the case that the alphabet has the structure of a finite
field GF(g). In this case, the set of words is the n-dimensional vector space
GF(q)™, and we often require that the code C'is a vector subspace of GF(¢q)".
Such a code is called a linear code. A linear code of length n and dimension
k over GF(q) is referred to as a [n,k] code; it has ¢* codewords. If its
minimum distance is d, it is referred to as an [n, k, d] code. Almost always,
we will consider only linear codes.

The weight wt(v) of a word v is the number of non-zero coordinates of
v. The minimum weight of a linear code is the smallest weight of a nonzero



codeword. It is easy to see that
d(v,w) = wt(v — w),

and hence that the minimum distance and minimum weight of a linear code
are equal.

Two linear codes C' and C" are said to be equivalent if C' is obtained from
C by a combination of the two operations:

(a) multiply the coordinates by non-zero scalars (not necessarily all equal);
and

(b) permute the coordinates.

Equivalent codes have the same length, dimension, minimum weight, and
so on. Note that, over GF(2), operation (a) is trivial, and we only need
operation (b).

A linear [n, k] code C' can be specified in either of two ways:

e A generator matriz G is a k X n matrix whose row space is C'. Thus,
C = {2G : 2 € GF(g)*},

and every codeword has a unique representation in the form zG. This
is useful for encoding: if the messages to be transmitted are all k-tuples
over the field GF(g), then we can encode the message = as the codeword
xG.

e A parity check matriz H is a (n — k) X n matrix whose null space is C"
more precisely,

C ={veGF(q)" :vH" = 0}.

This is useful for decoding, specifically for syndrome decoding. The
syndrome of w € GF(q)™ is the (n — k)-tuple wH . Now, if C' corrects
e errors, and w has Hamming distance at most e from a codeword v, it
can be shown that the syndrome of w uniquely determines w — v, and
hence v.

If hy, ..., h, are the columns of the parity check matrix H of a code C,
then a word x = (1, ..., z,) belongs to C'if and only if z1hy+- - -+ 2,h, = 0,
that is, the entries in x are the coefficients in a linear dependence relation
between the columns of H. Thus, we have:



Proposition 1.1 A code C has minimum weight d or greater if and only if
any d — 1 columns of its parity check matriz are linearly independent.

There is a natural inner product defined on GF(¢)", namely the dot prod-

uct
n

Vew = Z V;W;.
i=1
If C is an [n, k] code, we define the dual code

Ct={veGF(¢)": (Vwe O)v-w=0};

it is an [n,n — k] code. Then a generator matrix for C' is a parity check
matrix for C, and vice versa.

Sometimes, in the case when ¢ is a square, so that the field GF(¢) admits
an automorphism o of order 2 given by 27 = 2v4, we will use instead the
Hermitian inner product

n
vow = Z vwy .
i=1

We now give a family of examples.

A l-error-correcting code should have minimum weight at least 3. By
Proposition 1.1, this is equivalent to requiring that no two columns of its
parity check matrix are linearly dependent. Thus, the columns should all be
non-zero, and should span distinct 1-dimensional subspaces of V = GF(g)*,
where k is the codimension of the code. Multiplying columns by non-zero
scalars, or permuting them, gives rise to an equivalent code. So linear 1-
error-correcting codes correspond in a natural way to sets of points in the
projective space PG(k — 1, q).

Many interesting codes can be obtained by choosing suitable subsets
(ovoids, unitals, etc.). But the simplest, and optimal, choice is to take all
the points of the projective space. The code thus obtained is the Hamming
code H(k,q) of length n = (¢* —1)/(¢ — 1) and dimension n — k over GF(q).
To reiterate: the parity check matrix of the Hamming code is the £ X n ma-
trix whose columns span the n one-dimensional subspaces of GF(q)*. It is a
[n,n — k, 3] code.

One further code we will need is the famous eztended binary Golay code.
This is a [24,12, 8] code over GF(2), and is the unique code (up to equiv-
alence) with this property. The octads, or sets of eight coordinates which
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support words of weight 8 in the code) are the blocks of the Steiner system
S(5,8,24) (or, in other terminology, the 5-(24,8, 1) design).

We discuss briefly some operations on codes. Let C' be a linear code.

e Puncturing C in a coordinate 7 is the process of deleting the 7th coor-
dinate from each codeword.

e Shortening C' in a coordinate 7 is the process of selecting those code-
words in C' which have entry 0 in the ¢th coordinate, and then deleting
this coordinate from all codewords.

o FExtending C, by an overall parity check, is the process consisting of
adding a new coordinate to each codeword, the entry in this coordinate
being minus the sum of the existing entries (so that the sum of all
coordinates in the extended code is zero). We denote the extension of
C by C.

e The direct sum of codes C; and Cs is the set of all words obtained by
concatenating a word of C'; with a word of Cs.

The weight enumerator of a linear code is an algebraic gadget to keep
track of the weights of codewords. If C' has length n, its weight enumerator

1S
n

Wel(z,y) = Z a;z" "'y’
i=0
where A; is the number of words of weight 7 in C. Note that W¢(1,0) = 1,
and We(1,1) = |C).

The weight enumerator has many important properties. For example,
the weight enumerator of the direct sum of C'; and C5 is the product of the
weight enumerators of C; and C5. For our purposes, the most important
result is MacWilliams’ Theorem:

Theorem 1.2 Let C be a linear code over GF(q), and C*+ its dual. Then

1
Wer(z,y) = ch(x +(q—1Vy,z—y).

We illustrate this theorem by calculating the weight enumerators of Ham-
ming codes. It is easier to find the weight enumerators of their duals:



Proposition 1.3 Let C be the q-ary Hamming code H(k,q) of length n =
(¢* —1)/(q — 1) and dimension n — k. Then every non-zero word of C* has

weight ¢"1.

We say that Ct is a constant-weight code.

Proof Let hq,...,h, be the columns of the parity check matrix H of C.
We claim that each word of C* has the form (f(hy),..., f(h,)), where f
belongs to the dual space of the k-dimensional space V' of column vectors
of length k; and every element of V* gives rise to a unique word of C*.
This holds because H is a generator matrix of C*, so the words of C* are
linear combinations of the rows of H. Now the ith row of H has the form
(€i(h1),...,€i(hy)), where e; is the ith dual basis vector. So the claim is
proved.

Now for any non-zero f € V*, the kernel of f has dimension k£ — 1, and so
contains (¢* ' —1)/(¢ — 1) one-dimensional subspaces, and so it vanishes at
this many of the columns of H. So the corresponding word of C* has weight

(" =1D/(g=1) = ("' =1)/(¢g—1) ="

It follows that the weight enumerator of C'* is

k—1
’

2@ =D/(=1) 4 (qk _ 1)$(q’°*1—1)/(q—1)yq

and so the weight enumerator of C' is

1 ] ]
* ((fﬂ + (g = Dy) @ VD 4 (¢F = 1)@+ (g - Dy) @ @D (g — )" ) '

Finally on this topic, we mention that the weight enumerator of the ex-
tended binary Golay code is

2% 4+ 7592%9° + 25762122 + 759281 4 4.

A code C is self-orthogonal if C C C*+, and is self-dual if C = C*. The
extended binary Golay code just mentioned is self-dual; other examples are
the extended binary Hamming code of length 8 (a [8, 4, 4] code with weight
enumerator z° + 14zy* + 4®), and the binary repetition code of length 2 (a
2,1, 2] code with weight enumerator x2 + y?).



Using MacWilliams” Theorem, we see that the weight enumerator of a
self-dual code C of length n over GF(q) satisfies

Welz,y) = #W(;(z + (g - Dy, — ). (1)

This gives a system of equations for the coefficients of W, but of course not
enough equations to determine it uniquely.

Gleason [13] found a simple description of all solutions of these equations,
using classical invariant theory. We describe his technique for self-dual binary
codes.

Let G be a finite group of 2 x 2 matrices over C. Let f(z,y) be a poly-
nomial of degree n. We say that f is an tnvariant of G if

flax + by, cx + dy) = f(z,y) for all (Z Z) €G.

Since the sum and product of invariants is invariant, the set of G-invariants
is a subalgebra of the algebra C[z,y| of all polynomials in 2 and y over C.
We denote this subalgebra by Clz,y]|“.

If f(x,y) is a G-invariant, then its homogeneous component of degree k
(the sum of all terms a;;z'y’ with i + j = k) is also G-invariant. So the
algebra C[z, y]¢ is graded, according to the following definition:

Let A = @,.,Ar be an algebra over C. We say that A is graded if
A;-A; C Ay for all 4,5 > 0. If dim(A4y) is finite for all £ > 0, then the
Hilbert series of A is the formal power series

> " dim(Ay)t",

k>0

Molien’s Theorem gives an explicit formula for the Hilbert series of C[z, y]¢

for any finite group G:

Theorem 1.4 Let G be a finite group of 2 x 2 matrices over C. Then the
Hilbert series of Clx,y]| is given by
1
— ) (det(I —tA))".
& o der(r — 1)

AeG



Now let C' be a self-dual binary code. Since all words in C' have even
weight, the weight enumerator of C' satisfies

Wel(x, —y) = Wel(z,y).

Also, since We(z,y) is homogeneous of degree n, we can rewrite Equation 1

as
T+Y T—Y
We | ——, ——— | = Wel(x,y).
c ( 2 2 ) c(z,y)
These two equations assert that the polynomial W is an invariant of the
group G = (A, As), where

we(b5) = (1 )

Now it is easily checked that
A% - A; - (A1A2)8 - I,

so G is a dihedral group of order 16. Now Molien’s Theorem, and some
calculation, shows that the Hilbert series of Clz, y]“ is

1
(1—#2)(1 —1t8)

. From this we see that the dimension of the nth homogeneous component is
equal to the number of ways of writing n as a sum of 2s and 8s.

We know some examples of self-dual codes: among them, the repetition
code of length 2 and the extended Hamming code of length 8, with weight
enumerators respectively

r(z,y) = 2+
h(z,y) = 2%+ 142y + 45

Moreover, any polynomial of the form 75/ is a weight enumerator (of the
direct sum of 7 copies of the repetition code and j copies of the extended
Hamming code). It can be shown that, for fixed n, these polynomials (with
2i + 8j = n) are linearly independent; thus they span the nth homogeneous
component of the algebra of invariants of G. This proves Gleason’s Theorem:



Theorem 1.5 A self-dual binary code has even length n = 2m, and its
weight enumerator has the form

[n/8]
Z aj(z? + y?) 8248 4 142yt + 4BY
=0

for some a; € Q, j € {0,...,|n/8]}.

The technique has other applications too. We give one of these. A self-
orthogonal binary code has the property that all its weights are even. Such
a code is called doubly even if all its weights are divisible by 4.

If C is a doubly even self-dual code, then the weight enumerator of C' is
invariant under the group G* = (A}, Ay), where A, is as before and

. 1 0
i (1)

It can be shown that G* is a group of order 192, and the Hilbert series of its

algebra of invariants is
1

(1—18)(1—t24)’
Now there exist doubly even self-dual codes which have lengths 8 and 24,
namely the extended Hamming code and the extended Golay code. The
weight enumerator of the extended Hamming code is given above. The weight
enumerator of the extended Golay code is

g(w,y) = v+ 759z16y8 + 2576x12y12 + 759x8y16 + y24.

Again, these two polynomials are independent, and we have Gleason’s second
theorem:

Theorem 1.6 A doubly even self-dual code has length n divisible by 8, say
n = 8m, and its weight enumerator has the form

[n/24] .
Z aj(xg + 14:174y4 + yS)(n—24j)/8 >
§=0

x (a2 4 75920y + 2576212y "% + 75928y16 + 424y

for some a; € Q, j € {0,...,|n/24]}.

Several further results of the same sort are given in Sloane’s survey [26].
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The final topic in this section concerns the covering radius of a code. This
is a parameter which is in a sense dual to the packing radius, the maximum
number of errors which can be corrected.

Let C be a code of length n over an alphabet A. The covering radius of
Cis

max min d(v, c).
vEA™ ccC

That is, it is the largest value of the distance from an arbitrary word to the
nearest codeword. Said otherwise, it is the smallest integer r such that the
spheres of radius r with centres at the codewords cover the whole of A™.

We saw that, if the number of errors is at most the packing radius, then
nearest-neighbour decoding correctly identifies the transmitted codeword.
The covering radius has a similar interpretation: if the number of errors
is greater than the covering radius, then nearest-neighbour decoding will
certainly give the wrong codeword.

We give one result on the covering radius of binary codes which will be
used in Section 5. We say that a code C' has strength s if, given any s
coordinate positions, all possible s-tuples over the alphabet occur the same
number of times in these positions. The mazimum strength is the largest
integer s for which the code has strength s.

Theorem 1.7 Let C be a code of length n over an alphabet A of size q and
v an arbitrary word in A".

(a) If C has strength 1, then the average distance of v from the words of C
isn(g—1)/q.

(b) If C has strength 2, then the variance of the distances of v from the
words of C is n(q —1)/q>

Proof (a) For1l <i <mn,letd;(c) =0 if v and c agree in the ith coordinate,
1 otherwise. Then

d(v,c) =Y di(c).
i=1
So the average distance from v to C'is
1 n
=) > di(e).
|C| i=1 ceC
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Now since C' has strength 1, for any i we have d;(C') = 0 for |C|/q words
c € C, and d;(c) = 1 for the remaining (¢ — 1)|C|/q. So the inner sum is
(¢ — 1)|C|/q, and the result follows.

(b) Similarly, we have

d(v,c)(d(v,c) = 1) =Y di(c)d;(c),

i#]
and if C has strength 2, then

> dile)d;(e) = (a = 1)*IC|/d*

ceC

Thus, the average value of d(v, ¢)(d(v,c) — 1) is equal to (¢ — 1)*n(n —1)/¢*.
Now simple manipulation gives the result.

Theorem 1.8 Let C' be a linear binary code of length n containing the all-1
word.

(a) The covering radius of C is at most n/2.

(b) If C' has mazimum strength at least 2, then its covering radius is at most

(n —/n)/2.

Proof (a) The hypothesis guarantees that C has strength at least 1. (For
this, the all-1 word is not necessary; it is enough to assume that the support
of C'is {1,...,n}.) Since the average distance from v to C is n/2, there is a
word of C' with distance at most n/2 from v.

(b) Suppose that the covering radius is n/2 — s. Since d(v,c + 1) =
n—d(v, c), all distances from v to C lie in the interval from n/2—s to n/2+s.
Since the variance of these distances is n/4, we must have s > /n/2.

Note that equality in (a) implies that d(v,c) = n/2 for all ¢ € C, while
equality in (b) implies that d(v,c) = (n £+ /n)/2 for all ¢ € C.

Exercise 1.1 (a) Show that, if C' is a linear binary code of odd minimum
weight d, then the minimum weight of C' is d + 1.

(b) Investigate how the dimension and minimum weight of codes change
under the operations of puncturing, shortening and extending.
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Exercise 1.2 If C; and C, are linear [nq, k1,d;] and [ng, ks, do] codes over
GF(q), prove that the direct sum C1&C5 is a linear [n;+ng, ki+ky, min{d;, ds }]
code.

Exercise 1.3 (a) Let C be a binary or ternary Hamming code (that is, over
GF(2) or GF(3)). Prove that C D C*; that is, C* is self-orthogonal.

(b) Let C be a Hamming code over GF(4). Prove that C O C* holds, if
C+ is calculated with respect to the Hermitian inner product.

Exercise 1.4 (a) Prove that, if all weights in a linear binary code C' are
divisible by 4, then C' is self-orthogonal.

(b) Prove that, if a linear binary code C' is self-orthogonal and is generated
by a set of words whose weights are divisible by 4, then C is doubly
even.

Exercise 1.5 Express the weight enumerator of the Golay code as a combi-
nation of r and h.

Exercise 1.6 Show that all doubly even self-dual codes of length 16 have
weight enumerator h2. Find two different examples of such codes.

Exercise 1.7 Can you find a more direct proof that a doubly-even self-dual
binary linear code has length divisible by 87

Exercise 1.8 Fill in the details of the proof of Theorem 1.7.

Exercise 1.9 What is the covering radius of the binary dual Hamming code
of length 77

Exercise 1.10 Let C' be an (n, M) code over an alphabet of size ¢, with
packing radius e and covering radius r. Prove that

n n

q <M< q

NGRSty [T
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2 Symplectic and quadratic forms

In this section, we describe some of the properties of symplectic and quadratic
forms over the field GF(2), and the geometries they define.

Let V be a vector space over a field F. A quadratic form on F is a
function @ : V — F which satisfies the conditions

(a) Q(A\v) = N?Q(v) forall A\ € F,ve V.
(b) The function B : V x V — F defined by
Qv +w) = Q(v) + Qw) + B(v, w)
is bilinear (that is, linear in each variable).

We express (b) by saying that the form B is obtained from @ by polari-
sation.

The form B defined in (b) is symmetric, that is, B(v,w) = B(w,v).
Now, if the characteristic of F' is not 2, then it follows from (a) and (b) that
Qv) = %B(v,v) for all v € V, so that () can be recovered from B: that is,
quadratic forms and symmetric bilinear forms carry the same information.
Things are very different in characteristic 2, however. We are interested in

this case, specifically F' = GF(2).
From now on, we assume that F' = GF(2).

Now we find that the form B is alternating, that is, B(v,v) = 0 for all
v € V. In general, an alternating bilinear form is skew-symmetric, that is,
B(v,w) = —B(w,v) for all z,y € V. Of course, in characteristic 2, this just
says that B is symmetric.

Clearly, ) cannot be recovered from B. Instead, we see that, if (); and
(22 both polarise to B, then () = Q1 — ()2 polarises to the zero form, that is,

Qv+ w) = Qv) + Q(w).
Also, because A2 = ) for all A € F, we have
Q(Av) = AQ(v).

Thus, @ is linear. Conversely, two quadratic forms differing by a linear
form polarise to the same bilinear form. So each alternating bilinear form
corresponds to a coset of the dual space of V' in the space of all quadratic
forms.

A bilinear form B is said to be non-degenerate if it has the properties
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(a) if B(v,w) =0 for all w € V then v = 0;
(b) if B(v,w) =0 for all v € V' then w = 0.

If B is skew-symmetric (or symmetric), then each of these conditions implies
the other, and we need only assume one. A non-degenerate alternating bi-
linear form on V exists if and only if V' has even dimension. For any such

form, there is a basis {v1,...,v,, wy,...,w,} for V such that
B(v;,v;) = 0 = B(w;, w,) for all 4, j,
B(v;,w;) =1 = —B(w;, v;) for all 4,
B(v;,w;) = 0= B(wj, v;) for i # j.

This is called a symplectic basis. A linear transformation of V' which preserves
the form B is called symplectic; the symplectic group is the group of all such
transformations.

A quadratic form on an m-dimensional vector space is non-singular if it
cannot be written as a form in fewer than m variables by any linear change
of variables.

Equivalently, the only subspace W with the property that () vanishes on
W and B(v,w) =0 for all v € V and w € W is the zero subspace. (Here B
is the bilinear form obtained by polarising ).) If the field has characteristic
different from 2, then () is non-singular if and only if B is non-degenerate;
but this is not true over Zs, as we will see. In the case of an even-dimensional
vector space over Zsy, we will see that a quadratic form () is non-singular if
and only if the bilinear form obtained by polarisation is non-singular.

Given a subspace U of V', we set

Ut ={z eV :B(x,u) =0 for all u € U}.
The non-singularity of B guarantees that
dim(U) + dim(U*) = dim V,

but unlike the Euclidean case it is not true in general that V = U @ U+,
since we may have U N U # {0}. A subspace U of V is said to be totally
isotropic if B vanishes identically on U, in other words, if U < U*.

A vector z is said to be singular for the quadratic form Q if Q(z) = 0. A
subspace U is totally singular if ) vanishes identically on U. By polarising
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the restriction of () to U, we see that a totally singular subspace is totally
isotropic; but the converse is not true. (Any 1-dimensional subspace is totally
isotropic, but the span of a non-singular vector is not totally singular.)
Here is a small example. Take a 2-dimensional vector space over Zs, with
typical vector (z1,22). The four quadratic forms 0, 2%, 22 and 2% + 22 =
(1 + x2)? are all singular, and are in fact equal to the four linear forms 0,
71, T9 and x; + 9. The other four forms z1@9, T175 + 22 = x1(T) + T2),
T1%o + x% = xo(x1 + x9), and xyz9 + x% + LE%, are non-singular, and polarise
to the bilinear form w1y, + x2y;. The first three are equivalent under linear
change of variable; each has value 0 at three of the four vectors and 1 at the

fourth. The last form takes the value 1 at all three non-zero variables.

Let @ be a quadratic form on V = Z7.

A subspace W of V' is anisotropic if, for all w € W, we have Q(w) = 0 if
and only if w = 0.

A hyperbolic plane is a subspace U = (e, f) with Q(e) = Q(f) = 0 and
B(e, f) =1 (So we have Q(ze +yf) = xy.)

Two quadratic forms (1 on V; and (), on V5 are equivalent if there is an
invertible linear map T : V; — V5 such that Qy(vT) = Q(v) for all v € V.

The next result gives the classification of non-singular quadratic forms.

Theorem 2.1 (a) An anisotropic space has dimension at most 2.
(b) Let Q be a quadratic form on V. Then
V=WelU,&---&U,,

where W is anisotropic, Uy, ..., U, are hyperbolic planes, and the sum-
mands are pairwise orthogonal.

(¢) If quadratic forms Q1, Qo on Vi, Vy give rise to decompositions

Vi = WieU1® - &U,,
Vo = W@ Uy @+ @ Uy,

as in (b), then Qi and Qs are equivalent if and only if r = s and

As a result we see that quadratic forms over Z, are determined up to
equivalence by two invariants, the number r of hyperbolic planes (which is
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called the Witt index), and the dimension of the anisotropic part. We say
that the form has type +1, 0 or —1 according as dim(W¥) = 0, 1 or 2. Note
that the bilinear form obtained by polarising () is non-degenerate if and only
if @ has non-zero type (that is, if and only if dim(V) is even).

Proof (a) If W is anisotropic, then the polarisation formula shows that
B(u,v) =1 for all distinct non-zero u,v € W. If u, v, w were linearly inde-
pendent, then

1 = B(u,v+w) = B(u,v) + B(u,w) =0,

a contradiction. So dim(W) < 2.

(b) The proof is by induction on dim(V'), the case where V' = {0} being
trivial. If V' is anisotropic, there is nothing to prove. So we may suppose that
there is a vector u € V with u # 0 and Q(u) = 0. Since @ is non-singular,
there is a vector v with B(u,v) = 1. Then Q(v) 4+ Q(u+wv) = 1, and so either
Q(v) =0or Q(u+wv) = 0. Thus, U; = (u, v) is a hyperbolic plane. Moreover,
dim(U;") = dim(V) — 2, and it is easily checked that the restriction of @ to
Ui is non-singular. By the induction hypothesis, Ui~ has a decomposition of
the type specified, and we are done.

(c) It is clear that the condition given is sufficient for equivalence; we must
show that it is necessary. It is also clear that equivalent quadratic forms are
defined on spaces of the same dimension; so we must prove that they have
the same Witt index. This follows immediately from the next lemma.

Lemma 2.2 The Witt index of a quadratic form is equal to the maximum
dimension of any totally singular subspace.

Proof Let

V=welU & ---oU,
where W is anisotropic, Uy, ..., U, are hyperbolic planes, and the summands
are pairwise orthogonal. Let U; = (u;,v;), where Q(u;) = Q(v;) = 0 and
B(uj,v;) = 1. Then X = (uy, ..., u,) is totally singular and has dimension 7.

We have to show that no larger totally singular subspace exists. This is
proved by induction on r; it is true when r = 0 (since then V' is anisotropic).
So let X be a totally isotropic subspace, with dim(S) = s > 0.

Choose a non-zero vector x € X. As in the proof of the theorem, we
can take x to lie in one of the hyperbolic planes, say U;. Now @ induces
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a non-singular quadratic form @ on V = (x)*/(x), and clearly this space
has Witt index 7 — 1; moreover, X/(x) is a totally singular subspace, with
dimension s — 1. By the inductive hypothesis, s —1 <r —1,s0 s < 7.

Finally, if X is maximal totally singular in V, then X is maximal totally
singular in V; in this case, the inductive hypothesis shows that s —1 =7 —1,
so that s = r, as required.

,From now on, we consider only non-singular quadratic forms on spaces
of even dimension. A form of type +1 in 2n variables is equivalent to

T1Tg + T3T4 + -+ -+ Top—1T2n,
while a form of type —1 is equivalent to
T1To + T3y + -+ + Tay g + Top_1Top + Ty

Theorem 2.3 For e = +1, let Q be a quadratic form of type € on a vector
space V' of even dimension 2n over Zy. Then there are 2"~ (2" + €) vectors

v €V such that Q(v) = 0.

Proof The proof is by induction on n. We begin with n = 1. On a 2-
dimensional space Z3, the quadratic form ;7o has Witt index 1 (so type
+1) and has three zeros (0,0), (1,0) and (0,1). The form z? + x1z9 + z3 has
Witt index 0 (the space is anisotropic), so type —1, and vanishes only at the
origin.

Now assume the result for n — 1. Write V = U & V', where U is a
hyperbolic plane and dim(V’) = 2(n — 1); the restriction of @) to V' has the
same type as @, say €. So @ has (2"72(2""! 4 ¢) zeros in V'. Since U and V'
are orthogonal, we have Q(u + w) = Q(u) + Q(w) for u € U, w € V'. Thus,
Q(u + w) = 0 if and only if either Q(u) = Q(w) = 0 or Q(u) = Q(w) = 1.
So there are

32072 ) 42722 — ) = 27727 4 )
zeros, as required.

This gives an alternative proof of Theorem 2.1(c), since the two types of
quadratic form on an even-dimensional vector space have different numbers
of zeros, and cannot be equivalent.

Finally, we count the number of maximal totally isotropic or totally sin-
gular subspaces.
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Theorem 2.4 (a) Let B be a symplectic form on a vector space V' of di-
mension 2n over Zo. Then the number of subspaces of V' of dimensionn
which are totally isotropic with respect to B is

n

[Je@ +0).

=1

(b) Let Q be a quadratic form of type +1 (that is, of Witt index n) on a
vector space V' of dimension 2n over Zs. Then the number of subspaces
of V' of dimension n which are totally singular with respect to Q) s

n—1

[]e +0.

1=0

Proof (a) The proof is by induction on n, the result being trivially true
when n = 0. Suppose that it holds for spaces of dimension 2(n — 1), and
let V" have dimension 2n. For any non-zero vector v € V, the space v*/(v)
has dimension 2(n — 1) and carries a symplectic form. By the induction
hypothesis, v lies in N = H;:ll(? + 1) totally isotropic n-spaces in V. Since
there are (2" +1)(2" — 1) non-zero vectors, and each totally isotropic n-space
contains (2" — 1) of them, double counting shows that the number of such
spaces is (2" 4+ 1) N, as required.

(b) The argument is similar. Assume the result for spaces of dimen-
sion 2(n — 1), and let V' have dimension 2n. By Theorem 2.3, the number
of non-zero singular vectors is (2" + 1)(2" — 1), and each totally singular
n-space contains 2" — 1 of them, so the induction works as in case (a).

Exercise 2.1 Let () be a quadratic form in 2n variables with Witt index n—
1. How many totally singular (n — 1)-subspaces are there for )7

3 Reed—Muller codes

This section gives a very brief account of Reed—Muller codes, which are very
closely connected with affine geometry over Zs.

Let V' be a vector space of dimension n over Z,. We identify V with Z7,
and write a typical vector as v = (z1,...,x,). We regard the 2" vectors in
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V' as being ordered in some way, say vy, Vs, ..., 0. Now nay binary word of
length N = 2", say (cq,...,c,), can be thought of as a function f from V' to
Zs (where f(v;) =¢; fori=1,... N).

Lemma 3.1 Any function from V to Zs can be represented as a polynomial
in the coordinates (xq, . .., xy,), in which no term contains a power of x; higher
than the first, for any 1.

Proof It is enough to show this for the function f =, given by

5@(@):{1 if v =a,

0 otherwise,

for a € V, since any function is a sum of functions of this form (specifically,

F=>_ fa)s..

acV

But, if a = (a4, ..., a,), then we have

where v = (xq,...,2,).

Corollary 3.2 The monomial functions fr on V are linearly independent

for I C{1,... ,n}, where
fiw) =] =
iel
forv=(x,...,2,).

Proof These 2" functions span the 2"-dimensional space of all functions
from V to Zs,.

For 0 < r < n, the rth order Reed—Muller code of length N = 2" is
spanned by the set of polynomial functions of degree at most r on V' = ZJ.
It is denoted by R(n,r).

The next result summarises the properties of Reed—Muller codes.
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Theorem 3.3 (a) R(n,r) is a

code.
(b) R(n,7)* =R(n,n —r—1).

Proof (i) The code has length N = 2" by definition, and dimension k =
> o (%) since this is the number of monomials of degree at most r.

(i) Next we prove part (b). Since
dim(R(n,r)) +dim(R(n,n —r — 1)) = 2",

it is enough to prove that these codes are orthogonal, and hence enough to
prove it for their spanning sets. Now, if f and f’ are monomials of degrees
at most r, n — r — 1 respectively, then there is a variable (say z,) occurring
in neither of them, and so the values of f and f’ are unaffected by changing
x, from 0 to 1. Thus, the intersection of the supports of f and f’ has even
cardinality, and so f - f' = 0.

(iii) Finally, we establish that R(n,r) has minimum weight 2"~ by in-
duction on r. This is true for » = 0 since R(n,0) consists of the all-0 and
all-1 words only. So assume the result for r» — 1.

Take f € R(n,r): we must show that the support of f has size at least
2"~". By the induction hypothesis, we may assume that f ¢ R(n,r —1). By
(b), there is a monomial of degree n—r not orthogonal to f; we may suppose
that it is xq - - - x,,_,.. Thus, if S is the support of f, and

A:{(1'1,...,1'”)Gv:l'lz"':xn—r:]-}a

then [SNA|is odd. Now A is an affine flat in V' of dimension r. So the union
of any two translates of A is an affine flat of dimension r + 1, and supports
a word in R(n,n —r — 1) = R(n,r)t; so [SN (AU (A +v))| is even for all
v & A. Thus, |SN (A + )| is odd for all v € V. In particular, S meets all
2”77 distinct translates of A, so |S| > 27", and we are done.

Corollary 3.4 The code R(n,n —2) is equivalent to the extended Hamming
code H(n,2) of length 2™.
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Proof If we puncture this code in one position, we obtain a [2" — 1,2" —
n — 1, 3] linear code. This code is equivalent to a Hamming code: for its
minimum weight is 3, so the columns of its parity check matrix are pairwise
linearly independent; and the number of columns is 2" — 1, so every non-zero
n-tuple occurs once.

The weight enumerator of R(n, 1) is

x2n + (2n+1 i 2)x2n—ly2n—1 + yzn‘

For this code contains the all-0 and all-1 words, and also the linear func-
tions and their complements (each of which have weight 2"~1). This code is
equivalent to the dual extended Hamming code.

Note that, if we shorten this code, we obtain the dual Hamming code,
which (as we have seen) is a constant-weight code.

We will be particularly interested in the second-order Reed-Muller code
R(n,2). Since 2? = x for all z € Z,, every linear function on V is quadratic,
and we have the following description:

R(n,2) ={Q + ¢ : Q a quadratic form on V, ¢ € Z,}.

Recall that two quadratic forms polarise to the same bilinear form if and
only if they differ by a linear form. This means that the cosets of R(n,1) in
R(n,2) are in one-to-one correspondence with the alternating bilinear forms
on V.

The weight enumerators of these codes are known. They are calculated
by the following series of steps:

e Choose m < (n/2). Count the number of subspaces W of V' of codi-
mension 2m.

e Count the number of symplectic forms (non-degenerate alternating bi-
linear forms) on the 2m-dimensional space V/W. Each such form ex-
tends uniquely to an alternating form on V' with radical W. Let B be
such a form.

e There are 2°™ quadratic forms on V which polarise to V' and are zero
on W. Such a form has weight 2"~ + €2"~™~1 Adding the all-1 word,
we obtain a word of weight 2"~! — ¢2"=™~1 So we obtain 22™ words of
each such weight.
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e Any other quadratic form which polarises to B induces a non-zero linear
form on W. Such a form has weight 27~!. We obtain 27! —22m+1 forms
of weight 271,

e Add the contributions from the last two steps, multiply by the factors
coming from the first two steps, and sum over m, to find the weight
enumerator of R(n,2)

Exercise 3.1 Show that the code obtained by shortening the extended Go-
lay code on the eight positions of an octad is equivalent to R(4, 1), while the
code obtained by puncturing on these positions is equivalent to R(4,2).

Exercise 3.2 Calculate the weight enumerator of R(5, 2)

(a) using the method outlined above;
(b) using Theorem 3.3 and Gleason’s Theorem (Theorem 1.6).

Exercise 3.3 Show that a coset of R(n,1) in R(n,2) contains words of at
most three different weights, and that only two weights occur if and only if
the bilinear form indexing the coset is non-degenerate.

(Such a coset is called a two-weight coset.)

Exercise 3.4 Prove that the blocks of the design D(C') formed by the words
of minimum weight in the second-order Reed-Muller code C' = R(2,n) are
the (n — 2)-dimensional affine flats in AG(n, 2). Deduce that D is a 3-design.

4 Self-dual codes

We now apply these results to the problem of counting self-dual and doubly
even self-dual binary codes.

A binary self-dual code C' of length n has the property that all its words
have even weight. This means that the all-1 word 1 is orthogonal to every
word in C, that is, C C (1)*. Since C is self-dual, 1 € C.

Now let W = (1)*, the even-weight subcode of GF(2)". Then z -2 = 0
for all z € W, so the dot product is an alternating bilinear form on W. It is
not non-degenerate, since 1 lies in its radical; but it induces a non-degenerate
bilinear form B on the (n — 2)-dimensional space V' = W/(1). Now a code
C containing 1 is self-orthogonal if and only if C' = C'//(1) is totally isotropic
for B; so C is self-dual if and only if C' is maximal totally isotropic. Thus,
from Theorem 2.4, we have:
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Theorem 4.1 The number of binary self-dual codes of length n = 2m is

m—1
(2 +1).

=1

,From this theorem, the numbers of binary self-dual codes of length 2, 4,
6, 8 is 1, 3, 15, 135 respectively.

For n < 8, the only self-dual codes are direct sums of copies of the rep-
etition code of length 2. The number of codes of this form is equal to the
number of partitions of the set of coordinates into subsets of size 2, which
is 1, 3, 15, 105 for n = 2, 4, 6, 8. So for n = 8, there are 30 further codes,
which as we shall see are all equivalent to the extended Hamming code of
length 8.

For any two binary words x and y, we have
wt(z 4+ y) = wt(z) + wt(y) — 2wt(z Ny).

Now wt(zNy) = (x-y) mod 2. So, if  has even weight, and n is divisible by
4, then we can set Q(z) = 3 wt(2) mod 2; we have Q(z) = Q(1 + ), so Q is
well-defined on V', and we have

Qr +y) =Q(r) + Qy) + B(z,y).

In other words, @) is a quadratic form on V' which polarises to B. Further-
more, a code C is doubly even if and only if C is totally singular (with
respect to @), and C is doubly even self-dual if and only if C' is maximal
totally singular of dimension n — 1.

Thus, from Theorem 2.4(b), we have:

Theorem 4.2 The number of doubly-even self-dual codes of length n = 2m
divisible by 8 is

m—2

[]e@+0.

1=0

This shows that there are indeed 30 doubly-even self-dual codes of length 8
(all equivalent to the extended Hamming code).
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Exercise 4.1 Verify that tthere are 30 codes of length 8 equivalent to the
extended Hamming code by showing that the automorphism group of the
code has index 30 in the symmetric group Ss.

Exercise 4.2 Count the number of binary words of length n with weight
divisible by 4. [Hint: Let a and b be the numbers of words which have weight
congruent to 0 or 2 mod 4 respectively. Then a + b = 2"~. Calculate a — b
by evaluating the real part of (1 +1)".]

Hence show that the quadratic form ¢ defined earlier has Witt index n—1
if n=0mod 8, and n — 2 if n = 4 mod 8.

This gives an alternative proof that doubly even self-dual codes must have
length divisible by 8.

Exercise 4.3 Classify doubly-even self-dual codes of length 16. Use Theo-
rem 4.2 to show that your classification is complete.

5 Bent functions

Let n be even, say n = 2m. The code R(n,1) has strength 3 (since, by
Theorem 3.3, its dual has minimum weight 4). By Theorem 1.8, its covering
radius is at most 227! — 2™~1  This bound is attained. For, if @) is a non-
singular quadratic form, then the distances from @ to words of R(n, 1) are
equal to the weights of words in the coset R(n, 1)+ @, and we have seen that
these weights are 22m~! £ 2m~1,

Let n = 2m, and let V = Z3. A function f : V — Z, is called a bent
function if its minimum distance from R(n, 1) is 2™~ — 2m~1,

As the name (coined by Rothaus [23]) suggests, a bent function is a
function which is at the greatest possible distance from the linear functions.

As we observed, a non-singular quadratic form is a bent function. In fact,
a quadratic form is a bent function if and only if it is non-singular; and there
are just two such functions up to equivalence.

Bent functions of higher degree exist: see the Exercises. The problem
of classifying bent functions appears to be hopeless. Various authors have
attacked this problem for reasonably small numbers of variables; see [19, 2].

Bent functions have a range of applications, both theoretical and prac-
tical. Here is one example. Let f be a bent function. Then R(n,1) + f is
a two-weight coset of R(n,1). (This follows from the remark following the
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proof of Theorem 1.8(b): the weights are 2?"~! 4+ 2™~1) Conversely, any
two-weight coset consists of bent functions.

Theorem 5.1 (a) Let B be the set of supports of all words which have
weight 2>~ —2m=1 in q two-weight coset of R(n,1). Then the structure
(V,B) is a 2-(22m,2%m—1 — gm=1 92m=2 _ om=1) degign.

(b) A design with the parameters given in (a) arises from a two-weight coset
of R(n,1) if and only if it has the following property: the symmetric
difference of any three blocks of the design is either a block or the com-
plement of a block.

Part (a) of this theorem appears in a number of places. Part (b) is due
to Kantor [16], who calls his condition the symmetric difference property.
See also [3] for another application of bent functions.

Exercise 5.1 Show that the function
T1To + T3Ty + *+* + Top—1Tom + T1T3* * - Tom—1

is a bent function.

6 Kerdock codes

We have seen that, if () is a quadratic form which polarises to a bilinear form
of rank 2m, then the weight of @) is 2" ! £ 27 ™! or 2" ! in particular, it
is at least 271 — gn-m-1
Let B be a set of alternating bilinear forms on V. Let K (B) denote the
set
{Q+c: Q" € B,ceZy}

of functions on V', where Q™ is the bilinear form obtained by polarising ).
Then K(B) is a

(N=2"M =2""|B|,d =2""" —2""""1)

code, where 2m is the minimum rank of the difference of two forms in B. In
particular, to make d as large as possible, we should require that n is even
and the difference of any two forms in B is non-degenerate. (We call such
a set B a non-degenerate set.) Furthermore, the code K (B) is linear if and
only if B is closed under addition.
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Lemma 6.1 A non-degenerate set of alternating bilinear forms on a 2m-
dimensional vector space has cardinality at most 2271,

Proof Each form can be represented by a skew-symmetric matrix with
zero diagonal: if {ej,...,e9n} is a basis for V|, the (i, j) entry of the matrix
representing B is B(e;, e;). Now, if B — B’ is non-degenerate, then the first
rows of the matrices representing B and B’ are unequal. Since there are at
most 22"~ possible first rows (remember that the diagonal entry is zero),
there are at most 22"~! forms in a non-degenerate set.

A Kerdock set is a non-degenerate set of bilinear forms on a 2m-dimensional
vector space V over Zs, having cardinality 22"~!, that is, attaining the upper
bound. A Kerdock code is a code of the form K(B), where B is a Kerdock
set. Thus, it is a (2%™,21m 22m~1 _ 9m~1) code.

It can be shown that, for m > 1, a Kerdock code must be non-linear.
(The largest additively closed non-singular set has cardinality 2™; we will
construct it in the next section. In the case m = 2, the unique example of a
Kerdock code is the Nordstrom—Robinson code, a (16,256, 6) code. The first
construction for all m was given by Kerdock [17]. A simplified construction
by Dillon, Dye and Kantor is presented in [8], Chapter 12.

Although Kerdock codes are non-linear, they have recently been “lin-
earised” in a remarkable way by Hammons et al. [15]. This is the subject of
the last section.

Since non-quadratic bent functions exist, it is natural to ask whether
‘Kerdock sets’ of higher degree can exist too. So far, no examples have been
found.

Exercise 6.1 Let O = {1,2,...,8} be an octad in the extended Golay code
Goy. Consider the set of words of Goy whose supports intersect O in one of
the following eight sets:

0,{1,2},{1,3},...,{1,8}.

Now restrict these words to the complement of O. Show that the result is a
(16,256, 6) code, and identify it with a Kerdock code.
Show that, if we use instead the set

0,{1,2},{1,3},{2,3},

we obtain a linear [16, 7, 6] code.
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7 Some resolved designs

Some infinite families of systems of linked symmetric BIBDs (or SLSDs,
for short) were constructed by Cameron and Seidel [9]. The smallest of
these systems was used by Preece and Cameron [21] to construct certain
resolvable designs (which they called fully-balanced hyper-graeco-latin Youden
‘squares’). For example, they gave a 6 x 16 rectangle, in which each cell
contains one letter from each of three alphabets of size 16, satisfying a number
of conditions, including;:

e No letter occurs more than once in each row or column of the rectangle.

e The sets of letters from each of the three alphabets in the columns of
the rectangle form a 2-(16, 6, 2) design.

e Each pair of alphabets carry a 2-(16, 6, 2) design, where two letters are
incident if they occur together in a cell of the rectangle.

e The number of columns containing a given pair of letters from distinct
alphabets is 1 if the two letters are incident, 3 otherwise.

In this section we construct an infinite sequence of such designs.

A symmetric balanced incomplete-block design (SBIBD) can, like any
incidence structure, be represented by a graph (its incidence graph or Levi
graph). The vertex set of the graph T' is the disjoint union of two sets X;
and X5, and each edge has one end in X; and the other in X5. If the design
is a 2-(v, k, A) design, the graph has the properties

o | Xi| =[Xs| =v;
e for {i,j} = {1,2}, any point in X, has exactly k neighbours in Xj;

e for {i,j} = {1,2}, any two points in X; have exactly A neighbours in
X;.

,From such a design, we obtain a resolved design with » = 2 classes of
blocks as follows: the treatments are the ¢ = vk edges of I'; for 1 = 1, 2, the
blocks in the ith class consist of the sets of edges on each of the vertices of
X; (so that there are v blocks of & in each class).

Any regular bipartite graph has a 1-factorisation, a partition of the edge
set into k classes of v edges each, where the edges of each class partition the
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vertices. (This follows from Hall’s Marriage Theorem.) This partition of the
edge set (treatment set) is orthogonal to the two block partitions. Using it,
we can represent the design by a Latin rectangle as follows. Number the
elements of X; from 1 to v for + = 1,2, and number the 1-factors from 1 to
k; then the (i,7) entry in the k X v rectangle is the number of the vertex in
X5 joined to the vertex j of X; by an edge of the 1-factor numbered 1.

In the case of a SBIBD arising from a difference set in a group A, we
have an action of A on the graph I' so that the orbits are X; and X, and
the action on each orbit is regular. In this case, A permutes the edges in k
orbits each of size v, forming the desired 1-factorisation.

A system of linked SBIBDs, or SLSD for short, can be represented by a
multipartite graph T with r classes X1, ..., X,, satisfying the conditions

e for any distinct ¢, j, the induced subgraph on X; U X is the incidence
graph of a SBIBD (with parts X; and X), having parameters 2-(v, k, \)
independent of ¢ and 7;

e there exist integers x and y such that, for any distinct ¢, 7, k, and any
vertices p; € X; and p; € X, the number of common neighbours of p;
and p; in X}, is equal to z if p; and p; are adjacent, and to y otherwise.

We cannot construct a resolved design from a SLSD unless an extra con-
dition holds. A full clique in a SLSD is a set of vertices, containing one from
each of the sets X;, whose vertices are pairwise adjacent. (So a full clique
contains r vertices.) A full clique cover is a set of full cliques with the prop-
erty that every edge is contained in exactly one full clique in the set. (So
the number of full cliques in a full clique cover is vk.) Now if we have a full
clique cover of a SLSD, we construct a design as follows: the treatments are
the ¢t = vk full cliques; for ¢ = 1, ..., r, the blocks in the 7th class are the sets
of full cliques in the cover containing each of the vertices in X;. Each of the
r block classes contains v blocks of size k.

A 1-factor is a set of v full cliques covering all vertices just once; a 1-
factorisation is a partition of the full cliques into 1-factors. (Thus, it is a
partition of the treatments into k sets of v, which is orthogonal to each block
partition.) I do not know whether 1-factorisations always exist. However,
if there is a group A of automorphisms whose orbits are Xi,..., X, and
which acts regularly on each orbit, then the orbits of A on full cliques form
a l-factorisation.
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If we have a 1-factorisation, then we can represent the design by a k x n
rectangle whose entries are (r — 1)-tuples, similarly to before. We number
the elements of each set X; from 1 to n, and the 1-factor from 1 to k; then
the (i, 7) entry of the rectangle is the (r — 1)-tuple (ls,...,[,), where [; is the
point of X; lying in a full clique of the ith 1-factor with the jth point of X;.
This is the representation used in [21].

The construction of the designs is based on properties of bilinear and
quadratic forms over F' = GF(2). Let B be any alternating bilinear form
on a 2n-dimensional vector space over F. The set Q(B) of quadratic forms
which polarise to B has 22" members. If () is one member of this set, then
all others can be obtained by adding linear forms to (). Suppose that B is
non-degenerate. Then any linear form can be written as L(z) = B(v, z) for
some vector v € V. So

Q(B)={Q(z) + B(v,z) :v e V}={Q(z +v)+Qv) :v eV}

Let X = {z € V : Q(z) = 0} be the set of zeros of ). Then the set of zeros
of Q(z)+ B(v, x) is obtained by translating X by v, and complementing this
set in V if Q(v) = 1. So any quadratic form in Q(B) has either N or 22" — N
zeros, for some N. We can take N = 227~1 4 €2"~! where € = £1; the form
Q has type € if it has 227! + ¢2"~! zeros (Theorem 2.3).

Now the set X of zeros of () is a difference set in the additive group of
the vector space V', and so gives rise to a symmetric BIBD, whose points are
the vectors in V' and whose blocks are the translates of X; as we have seen,
these are the zero sets of the quadratic forms in Q(B), complemented in the
case of forms of type opposite to that of B.

This design has a more symmetrical description, as follows. (The proof
that this is the same is an exercise, or is given in [9].) Let B; and By be two
alternating bilinear forms on V', whose difference By — Bs is non-degenerate.
Then the points and blocks of the SBIBD are the sets Q(B;) and Q(B2)
respectively; a point ); and block () are incident in the design D, if and
only if the form @; — Q2 (which is non-singular) has type e.

The design D, has v = 22" k =221 + 2" L and A\ =222 4 2" L,

Let V be a vector space of dimension 2n over the field F' = GF(2). Given
a non-degenerate set B of alternating bilinear forms and a value € = £1, we
define a SLSD S(B) as follows: the elements are the quadratic forms in the
sets Q(B) for B € B; forms ); € Q(B;) and Q; € Q(B;) are incident if
Qi — Q; has type €. It follows from the description of the designs that the
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first condition in the definition of a SLSD is satisfied; see [9] for a proof that
the second condition holds too.

The largest non-degenerate sets are the Kerdock sets; but these do not
have full clique covers in general. However, there is a construction which
produces sets of cardinality 27; it is these which we use.

Let K = GF(2"). There is a F-linear map from K onto F, the trace map,
given by

Tr(x) =z + 22+ 2%+ 4227
(Note that 22" = x for all z € K.)

Let V be a 2-dimensional vector space over K. By restricting scalars
from K to F, V becomes a 2n-dimensional vector space over F. If b is an
alternating bilinear form on V' as K-space, then B = Tr(b) is an alternating
bilinear form on V' as F-space; and B is non-degenerate if and only if b is.
Similarly, the traces of the quadratic forms (on the K-space V') polarising to
b are precisely the quadratic forms (on the F-space V') polarising to B.

Now take b to be any non-degenerate alternating bilinear form on the
K-space V' (for example, take b((x1,z2), (¥1,y2)) = T1y2 — T2y1). Then ab is
also a non-degenerate alternating bilinear form, for any non-zero a € K. We
have

Tr(ab) — Tr(agb) = Tr((aq — az)b)

for a; # ay. So the 2" forms
{Tr(ab) : a € K}

comprise a non-degenerate set of cardinality 2", and so give rise to a SLSD
with r = 2™,

We must now produce the full clique cover and its 1-factorisation. The
argument uses a little group theory.

The explicit form of b given in the last section is the determinant of the
120 Tt follows from this that the special linear group SL(2,2")

Y1 Y2
of 2 x 2 matrices of determinant 1 over K preserves b, and hence each of the

forms Tr(ab). Thus the product A -SL(2,2"), where A is the additive group
of V, acts on the SLSD, fixing each of the sets Xi,..., X,. (In fact it acts
doubly transitively on each X;.)

The subgroup fixing a point p; of X, is a complement to A in this product,
and so is isomorphic to SL(2,2"); it is transitive on the remaining points of

matrix
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X, and has two orbits on X; for all j # 7, namely, the points incident and
non-incident to p;. If p; € X; is a point incident with p;, then the stabiliser of
pi and p; is a dihedral group of order 2(2" —¢). Now all such dihedral groups
in our group A - SL(2,2") are conjugate (they are the normalisers of Sylow
p-subgroups, where p is a prime divisor of 2" — €); so this subgroup fixes one
point p; in each set X;. Moreover, these points p, are pairwise incident. For,
if p; and p,,, were not incident, their stabiliser would be a dihedral group of
order 2(2" + €); but this number does not divide 2(2" — ¢).

Now the set of all these points p; is a full clique. It is the unique full
clique containing p; and p; which is stabilised by a dihedral group of order
2(2" — €). So we have constructed a full clique cover.

Now the orbits of the group A on these full cliques form the required
1-factorisation, as we described earlier.

Exercise 7.1 Complete the proof that a non-degenerate set of alternating
bilinear forms gives rise to a SLSD.

8 Extraspecial 2-groups

An extraspecial 2-group is a 2-group whose centre, derived group, and Frattini
subgroup all coincide and have order 2. Such a group E has order 22" for
some n. If ((E) is the centre, then we can identify ((E) with the additive
group of F = Z,. Since squaring (the map e — €?) is a function from F
to ((E), the factor group E is elementary abelian of order 22", and can be
identified with the additive group of a 2n-dimensional vector space over F'.

Now the structure of the group can be defined in terms of the vector
space. Commutation (the map (e, f) — [e, f] = e”'f'ef) is a function
from E x E to ((E). Observing that [ez, f] = [e, fz] = le, f] for z € ((F),
we see that it induces a map from E x E to F. It is readily checked that this
map is a non-singular alternating bilinear form B. (This explains why |E| is
an even power of 2.) We also have that (ez)? = e? for z € ((F), so squaring
induces a quadratic form @ : E — F, which polarises to B.

The vector space E, with the bilinear form B and quadratic form Q,
determine the structure of the extraspecial group E. From the classification
of quadratic forms, we conclude that there are just two extraspecial groups
of order 2?"*! for any n (up to isomorphism).

A subgroup S of E is normal in E if and only if it contains ((FE). For
such a subgroup, S = S/((FE) is a subspace of E. If we start with S < E we
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could have the corresponding S < E containing ((F) or not, but normality
of S does not matter in what follows. The following are immediate:

(a) S is abelian if and only if S is totally isotropic;
(b) S is elementary abelian if and only if S is totally singular.

Consider the case n = 1. The quadratic form z;z5 corresponds to a
group generated by two elements of order 2 with product of order 4; this is
the dihedral group Dg. The form zx9 + 22 + 22 corresponds to a group in
which all six non-central elements have order 4; this is the quaternion group
(s. The singular forms correspond to groups which, while having a central
subgroup of order 2 with elementary abelian quotient, are not extraspecial;
22 corresponds to Cy x Cy, and 0 to Cy x Cy x C.

Two extraspecial 2-groups are isomorphic if and only if the correspond-
ing quadratic forms are equivalent. So our classification of quadratic forms
(Theorem 2.1) gives the following result:

Theorem 8.1 For each m > 1, there are (up to isomorphism) just two
extraspecial 2-groups of order 2*™+1,

The groups are determined by the quadratic forms. They can also be
described in a more group-theoretic manner as follows.

Let G1, Gy be groups, Z;, Z5 subgroups of ((G1) and ((Gs) respectively,
and 0 : Z; — Z5 an isomorphism. The central product G o G5 of G; and G
with respect to # is obtained from the direct product G; x G5 by identifying
each element z € Z; with its image z6 € Z,; in other words, it is the group

G10G2 = (G1 X GQ)/N,

where N = {(271,20) : z € Z,}.

Now if the quadratic forms (); and (2 on Vi and V5 give rise to groups
E, and E, as above, and we take 0 to be the unique isomorphism from ((E)
to ((Es), then the group associated with the form @ + Q9 on V; @ V5 is the
central product E; o Es.

Hence the two extraspecial groups of order 22m+!

can be written as

DgoDgo---0DgoDg  (m factors) and
DgoDgo---0DgoQg  (m factors).
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Exercise 8.1 Let () be a non-singular quadratic form on a space of odd
dimension V' over Z,. Show that () vanishes on half of the vectors in V.

Exercise 8.2 Let ) be a (possibly singular) quadratic form on a vector
space V of dimension 2n over Zs, which polarises to B. The radical of B is
defined to be the set

{veV:B(vw)=0forall weV}.
(a) Show that the radical has even dimension 2d.
(b) Show that the number of zeros of @) is
gn=1 | contd=1
for some € € {+1,0,—1}.
Exercise 8.3 Prove that the quadratic forms
T1X9 + T3T4
and

2 2 2 2
T] + X129 + X5 + T3 + T3T4 + Ty

are equivalent.
Deduce that Dg o Dg = Qg o Q)s.

9 Quantum computing

We give a brief review of the concept of public-key cryptography, the RSA
system (its most popular realisation), and the relevance a fast quantum algo-
rithm for factorising large integers would have for this system. No attempts
at rigorous definitions of complexity classes or proofs of the assertions will
be given.

In any cryptosystem, the plaintert to be transmitted is encrypted by
some algorithm depending on additional data called the key, to produce
ciphertert. The recipient uses another algorithm to recover the plaintext
from the ciphertext and key. The simplest example is the one-time pad, the
only provably secure cipher system. The plaintext is first encoded as a string
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of bits of length n, say aias...a,. The key consists of a string b1b,...b,
of n random bits, produced by some physical randomising process such as
tossing coins. The encryption algorithm is bitwise addition; so the ciphertext
is ¢1¢ . . . ¢p, where ¢; = a; + b; (addition mod 2). The decryption algorithm
in this case is identical to the encryption algorithm: add the key bitwise
(since ¢; + b; = a;). The ciphertext is itself a random string of bits, so an
interceptor without knowledge of the key is unable to gain any information.
(The security of this system was proved by Shannon.)

Note that both the sender and the recipient must have the key, which
must be kept secret from the interceptor. The key must either be shared on
a previous occasion, or conveyed by a channel which is known to be secure.

Public-key cryptography was invented by Diffie and Hellman in 1975. (In
fact, the same idea had been invented six years earlier by James Ellis, an em-
ployee of GCHQ, who was unable to publish it because of his employment.)
The idea is that the encryption algorithm and the key are made public, but
the decryption is so demanding of computational resources that this knowl-
edge is of no use to the interceptor. However, the recipient (who publishes
the key) has some additional information, the secret key, which makes the
decryption much easier.

More formally, let M be the set of plaintext messages, C' the set of cipher-
text messages, and K the set of keys. An encryption system consists of a pair
of functions, encryption e : M x K — C, and decryption d : C x K — M,
such that d(e(m, k), k) =m for allm € M and k € K. A public-key system
also has a set S of secret keys, and an inverse pair of functions p : S — K
and ¢ : K — S such that

e computation of e(m, k) and p(s) are easy;
e computation of d(c, k) and ¢(k) are difficult;

e if ¢(k) is known, then computation of d(c, k) is easy (in other words,
computation of d(c, p(s)) is easy).

Each user i of the system selects an element s; € S, computes k; = p(s;),
and publishes the result. If user ;7 wants to send a message m to user 7, she
looks up k; in the public directory, computes ¢ = e(m, k;), and transmits
this ciphertext. Now i computes d(m, ¢(s;)) = d(m, k;) = m. An interceptor
knows ¢ and k; but is faced with the difficult tasks of either computing
d(m, k;) directly or computing s; = q(k;).
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The RSA system works as follows. Each secret key consists of a pair p, q
of large prime numbers (of hundreds of bits), and an integer a coprime to
(p —1)(¢ — 1). From this, by Euclid’s algorithm, one computes b such that
ab=1 (mod (p —1)(¢ — 1)). Now the public key is the pair (N,a), where
N = pq. The encryption algorithm takes the message m, which is encoded
as an integer less than NV, and computes the ciphertext ¢ = m® mod N. The
possessor of the secret key can decrypt this by raising it to the power b mod
N, since

& =m® =m' = m mod N.

(We use the fact that ¢(N) = (p — 1)(¢ — 1), and Fermat’s Little Theorem
asserting that m?*™) =1 (mod N).

Of the interceptor’s two strategies, the second (calculating the secret key)
involves factorising N, so that b can also be calculated. It is thought that,
for most choices of secret key, the first strategy (decrypting using the public
key) is also equivalent to factorising N. An intermediate strategy would be
to find b such that m® = m (mod N) for all m. This amounts to finding
u such that m* = 1 (mod N), for then b can be found by the Euclidean
algorithm. But the smallest such u is the least common multiple of (p — 1)
and (¢ — 1); knowledge of this determines (p — 1)(¢ — 1) and hence p and gq.

So the security of the method depends on the assumption that factorising
large numbers is a hard problem.

In a dramatic recent development, Peter Shor gave a randomised algo-
rithm for factorising an integer in polynomial time on a quantum computer.
We give only a brief account of quantum computing: see [22] for more details.

Classically, a single bit of information can take either the value 0 or
1, which we regard as lying in the set Z,. By contrast, a quantum state
can be a superposition, or linear combination, of these two opposite states,
with complex coefficients. Accordingly, a qubit, or quantum bit, lives in a
2-dimensional Hilbert space (a vector space over the complex numbers with
Hermitian inner product). A state is a 1-dimensional subspace, which we
normally represent by a unit vector spanning it. So we take an orthonormal
basis of the space to consist of the two vectors ey and ey, corresponding to
the values zero and one of the qubit. An arbitrary state of the qubit is
represented by aeg + Be;, where |af? + |3]* = 1.

According to the usual interpretation of quantum mechanics, we cannot
observe the state directly. We can make a measurement, corresponding to a
Hermitian (self-adjoint) operator on the space. The result of the measure-
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ment will be an eigenvalue of the operator. This result is not deterministic;
different results will occur with appropriate probabilities. For example, we
could measure the qubit in our example. The measurement could correspond
to the operator of orthonormal projection onto the space spanned by e; (in

matrix form, {8 ﬂ ). The eigenvalues of this operator are 0 and 1, corre-

sponding to the eigenvectors eq and ey. If the system is in the state aeq+ ey,
then we obtain the result 0 with probability |«|?, and the result 1 with prob-
ability |3|?. However, the measurement changes the state of the system;
after the measurement, the system is in a state spanned by an eigenvector
corresponding to the eigenvalue obtained in the measurement. (If we find
the value 0 for the qubit, the system will be in the state eq, and information
about « and f3 is lost.)

Again, in the classical case, we can represent n bits by an n-tuple of which
each entry is zero or one, that is, an element of V' = Z7. Correspondingly,
an n-tuple of qubits lives in a complex Hilbert space having an orthonormal
basis corresponding to V. We write a typical vector in V' as v, and denote by
e, the corresponding basis vector of the 2"-dimensional Hilbert space C?".

Note that the Hilbert space is isomorphic to the tensor product of n
copies of the 2-dimensional Hilbert space in which a single qubit lives. If
v = (v1,vs,...,V,), where v; € Zy ={0,1} for i =1,2,...,n, then

€y = €y, Ry, - R €y, .
Why the tensor product? Peter Shor [25] says:

One of the fundamental principles of quantum mechanics is that
the joint quantum state space of two systems is the tensor product
of their individual state spaces.

The tensor product of two spaces is the ‘universal bilinear product’ of the
spaces. If {e1,...,en} and {f1,..., fn} are bases for the two spaces V and W,
then a basis for the tensor product V@ W consists of all symbols e; ® f;, for
i=1,...,mand j=1,...,n. (Note that dim(V @ W) = dim(V') - dim(W).)
Forv=37" aje; € Vand w=3}7"_ 3;f; € W, we set

VR W = ZZaiﬂj(ei X fj)

i=1 j=1
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Note that, in contrast to the case of a direct sum, not every vector in the
tensor product can be written as a pure tensor v ® w.

A remark on notation. We do not use Dirac’s bra and ket notation beloved
of physicists. However, we do have to keep straight several different vector
spaces carrying various forms: we already have an n-dimensional space V'
over Zs, and a 2"-dimensional complex Hilbert space. Shortly we will meet
a 2n-dimensional Z,-space E with a symplectic form! We will use v, a, b for
typical vectors of V; its standard basis will be {uq,...,u,} (where u; is a
vector with 1 in the ith position and 0 elsewhere), and the usual dot product
on V will be denoted by

n
a-b= Z Cljbj.
j=1

We do not give a special name to the Hilbert space. Its vectors have the
form ), ., a,e, where a, € C; the inner product of ) aye, and ) Bye, is
> By

The theoretical quantum computers which we will discuss will be built
from ‘quantum circuits’. A quantum circuit is built out of “logical quantum
wires,” each corresponding to one of the n qubits, and quantum gates, each
acting on one or two wires [25]. A quantum gate is a unitary transformation,
since all possible physical transformations of a quantum system are unitary.
Shor assumes that each gate acts on either one or two wires; that is, each
maps 1 qubit to 1 qubit or 2 qubits to 2 and acts as the identity on the
remaining qubits. The reason that we are able to restrict ourselves to one- or
two-bit gates is the fact that, as in classical first-order logic, a small number of
operations forms a ‘universal set’ up from which all possible operations can be
built. In the case of quantum computing, in the words of Shor [25], “CNOT
together with all quantum one-bit gates forms a universal set.” CNOT here
refers to the two-bit controlled not gate which takes the basis vector e, of
C' = C* ® C? t0 €(4,04y). It is clearly a unitary transformation, and is given
the name ‘controlled not” because the target bit y is negated or not according
as the controller bit x equals 1 or 0.

It is the two-qubit gates, and therefore CNOT in particular, which pro-
vides a quantum computer with its inherent parallelism. These gates are
intrinsically global: there is no way to describe them by restricting attention
to a single qubit. Because they accept as input the tensor product of super-
positions (linear combinations) of e, and e, they are the gates that makes
the computation quantum rather than classical.
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As we mentioned, Shor [25] found a probabilistic algorithm which runs
in polynomial time on a quantum computer. It depends on the following
observation. Suppose that we have computed the order of x mod N, the
smallest number ¢ such that z' = 1 (mod N). Suppose that ¢ is even, say
t = 2r. Then N divides 2* — 1 = (2" — 1)(z" + 1). If 2" is not congruent to
—1 mod N, then both 2" — 1 and x" + 1 have factors in common with N.
We can find the g.c.d.s of the pairs (N,z" — 1) and (N, 2" + 1) by Euclid’s
algorithm; then we know two different factors of N, and hence the complete
factorisation in the RSA case.

The basic idea of quantum computation is to exploit the inherent paral-
lelism of quantum systems. Suppose, for example, that we want to compute
2™ values f(0), f(1),..., f(2" — 1) of a function simultaneously. We repre-
sent the integer ¢ by the binary vector v € V = ZI which is its expression
in base 2. Now, if n qubit registers are available, we can load them with a
superposition of the states e,, for v € V', as follows: first load each register
with 0 (so that we have state eg); then apply the Hadamard transforma-

tion with matrix (1/v/2) [} _11] (corresponding to a 45° rotation of the

2-dimensional Hilbert space) to each qubit. The resulting state is

Now suppose that some quantum computation replaces e, by a state rep-
resenting f(i), where v represents the integer i. Then, by the linearity of
the Schrodinger equation, the same computation replaces the above super-
position by a superposition of the values f(i) for i = 0,...,2" — 1. In the
factorisation algorithm, we take f(i) = 2 (mod N), where 2" > N and x is
some chosen integer coprime to /N.

The last stage involves finding the period of f from the above superpo-
sition, which is done by use of the discrete Fourier transform. The Fourier
transform of f is concentrated on multiples of the period, so an observation
of the result will with high probability give a small multiple of the period.

Let us take as an example the current objective of quantum computing,
the factorisation of 15. We take z = 2. Suppose that we have 8 qubit registers
arranged in two banks of four, so that states of the system have the form

Z Ay (V @ W)

v,weV
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in the space C*" @ C?'. For convenience we write ¢; in place of e,, where
i is the integer in the range [0,15] whose base 2 representation is v. We
begin with the state ey ® eq (that is, all registers contain zero). Then by
applying a Hadamard transform to each of the first four qubits, we obtain

(up to normalisation) <Zi€[0 15] 61‘) ®eg. The crucial part of the computation

replaces e; ® ey with e; ® €yi 04 15- Apart from normalisation, the state is
now
(€0+€4+€8+€12)®€1+(61+€5+€9+613)®62+"' .

We extract the period 4 from the first four registers by a discrete Fourier
transform. Now we know that 15 divides (2 — 1) = (22— 1)(22 +1) = 3.5,
so the two factors of 15 are (15,3) = 3 and (15,5) = 5.

See Shor [24, 25] for further details.

10 Quantum codes

We see that quantum computing is a technology with very great potential
uses. What stands in the way of its implementation is the large error rate,
caused by the fact that a single bit or qubit is stored by a single electron,
instead of by billions of electrons as in a conventional computer. It is widely
believed that a quantum computer large enough for real applications will
have to be ‘fault-tolerant’, that is, error-correction must be built in so that
the errors introduced by the gates and wires can be corrected faster than
they occur. The theory of quantum error-correction will be outlined below;
it has not been implemented yet.

The evolution of a quantum system is described by a unitary transforma-
tion of the state space. We consider ‘errors’ to a single qubit represented by
the following unitary matrices:

0 1 ‘
X = [1 O} (bit error)

1 0
7 = [O _1] (phase error)

The effect of X is to interchange the basis vectors eg and e; (the zero and
one states of the qubit). The effect of Z is to change the relative phase of
the coefficients « and 8 of an arbitrary state (the argument of 5/a) by 180°.
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(The arguments of o and /3 have no absolute significance, so we could as well
use —Z, but the given choice is more convenient.)

Along with X and Z, we also allow the identity I (no error) and the
product Y = XZ = —ZX. (It is more usual in quantum mechanics to set
Y =iXZ; then X,Y, Z are the standard Pauli spin matrices. Note that X,
7 and iX 7 are Hermitian (or self-adjoint). However, Y = X7 is unitary,
and then everything can be written with real coefficients. A reason to use
Y = iX 7 is that then Y is conjugate to both X and Z, which means a
change of basis transforms any one to any other, and we can regard all three
non-trivial errors are equally likely. However, we shall see that the discrete
mathematics is the same whether we make this choice or the simpler real
choice, so in what follows, we use Y = X 7.)

There is a simple expression for the effect of X and Z on the basis {eg, €1 }.
We use the convention that (—1)® =1 and (—1)' = —1, where the exponent
is taken from the finite field Z,. Then we have, for v € Z,,

Xe, =ey4q, Ze, = (—1)'"e,.

Now we can apply these errors ‘coordinatewise’ to n qubits. If u; denotes
the jth basis vector for V' = ZZ, then the errors to the jth qubit act on the
2"-dimensional Hilbert space with basis {e, : v € V'} as

X(uj) ey = €ypu;,
Z(uy) : ewrs (—1)"e,
Then we can define X (a), Z(b) for any vectors a,b € V by
X(a): ey eprq,
Z(b) : e, > (—1)""e,.

Then {X(a) : a € V} and {Z(b) : b € V'} are groups of unitary transforma-
tions of C?" which are both isomorphic to the additive group of V. Together
they generate the group

E=(X(a),Z():a,beV)={x£X(a)Z(b) :a,b eV},

a group of order 2 - 27 . 27 = 220+l
We call E the group of allowable errors, or, for short, the error group. It
can also be written in the form

EFE={+A,® - -®A,: A, e{l,X,Y,Z} for j=1,...,n}.
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Why do we only consider these particular errors? A quantum code can
correct any one-qubit error if and only if it can correct the errors X (u;), Y (u;)
and Z(u;) for all j. This follows from the fact that the matrices I, XY, Z
span the 4-dimensional space of all 2 X 2 matrices: see [4, 9].

In our set-up, the error group

E={£X(a)Z():a,beV}

is an extraspecial 2-group of order 22"*!. Tts centre is ((E) = {£I}, and
E = E/((E) is a vector space over F. This is the third, and most important,
vector space with which we have to deal. (See Section 8.)

We use the notation (a|b) for the element of E which is the coset of ((E)
containing X (a)Z(b). (This coset is {X (a)Z(b), —X(a)Z(b)}.) We use x for

the bilinear form on E derived from commutation on F. In other words,
[X(a)Z(b), X (a)Z(¥)] = (=1) @O L.
A short calculation shows that
(a|b) x (d'|b)) =a-b' —d - b,

where - is the dot product on V. (Of course, we can replace the — sign by a
+ sign since the characteristic is 2.) Thus, two elements e, f € E commute
if and only if € f = 0.

The quadratic form will be denoted by @): that is,

(X(a)Z(1))* = (1)L,

Note that in fact Q(alb) = a1by + - - + a,b,. (If we had made the choice
Y = iXZ instead of Y = X7, we would need to enlarge our group E to
include il. As a consequence, E would have a larger center, ((E) = {(i)[ :
¢ =0,1,2,3}. Nonetheless, the factor group E/((E) would be “the same”
elementary abelian 2-group of order 22", and commutation on F would give
the same bilinear form on this version of E. However, we would lose the
quadratic form on F in this case since ¢ would not be well-defined on E.)

More on notation. The basis {(u;]0), (0u;) : j =1,...,n} is a symplectic
basis for E. We will reserve the symbol L for orthogonality in this space (with
respect to the form x). We also make another use of L, derived from this
one. If S is a subgroup of E, then we let S+ be the centraliser of S in E. (If

=  al . . .
S" = Cg(S), then S” = 5", so the notation is consistent.)
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To avoid confusion with orthogonality in E, we use a non-standard symbol
for orthogonality of vectors in V. For U C V we'll write Ut = {v € V : v-u =
0 for all u € U}.

We will use {...)y, {...)5, {...)c for the subspace of V', E or C?" respec-
tively, spanned by a set ...; and (...) (without adornment) will denote the
subgroup generated by .. ..

We are interested in abelian subgroups of E. Note that any set of mu-
tually commuting transformations on the Hilbert space C** which contains
the adjoints of all its elements is simultaneously diagonalisable, and has an
orthonormal basis consisting of eigenvectors. Said otherwise, the common
eigenspaces of the transformations in the set are mutually orthogonal. Any
abelian subgroup of E satisfies this.

Choose an abelian subgroup S of E. (Equivalently, choose a subspace S
of E for which S < gL.) Let dim(S) = n — k. As in the previous section, let
(2 be an eigenspace of S. Then the following hold.

(a) For s' € S+, ¢ € Q, we have 5'(¢q) € Q.

(b)Any e € E permutes the eigenspaces Q,; it fixes @) if and only if it lies
in S+; so £/S* permutes the eigenspaces regularly.

(c) The eigenspaces of S are in one-to-one correspondence with the char-
acters of S: an eigenspace @' determines a character y of S satisfying
s(q) = x(s)q for s € S and q € Q' with x(—1) = —1if —I € S; x thus
defines a character of S.

Now (c) implies that S has 2"~* eigenspaces, one for each character of .S;
since E/S+ permutes these regularly each must have the same dimension,
and since they form an orthogonal decomposition of C?*, this dimension must
be 2%,

Choose Q) to be the eigenspace corresponding to the trivial character.
Then we have, as in the example above:

(d) For s € S, ¢ € Q, we have s(q) = q.

Now () has dimension 2%, and is isomorphic to the space of k qubits, but
the embedding of () in the larger space ‘smears out’ the k qubits over the
space of n qubits. (This is exactly analogous to the situation in classical
error-correcting codes: there, V' = ZI is the space of n bits, and if G is a
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generator matrix for C' then C' = {zG : z € Z%} is a k-dimensional linear
code, which ‘smears out’ the k information bits of x over the space V.) So
@ will be our quantum error-correcting code.

In the classical case, a message consists of n bits, that is, it is a vector in
V. Errors are also vectors in V: we have ‘received word equals transmitted
word plus error’. The zero error has no effect. If we use a code C, then errors
in C are undetectable. There will be a set £ of so-called correctable errors.
They have the property that, if e, f € £ with e # f, then e — f ¢ C'\ {0},
that is, e — f is not an undetectable error. This means that we can detect
the addition of an error to a codeword, and we do not confuse the effects
of different errors (as long as they lie in £). The commonest situation is
that when C' has minimum weight at least d, when & consists of all words of
weight at most [(d — 1)/2].

Table 1 compares the situation in the classical and quantum cases.

‘ ‘ Classical ‘ Quantum ‘
Message n bits, in Z% =V n qubits, in C*"
Error group \Y E
e(z) =z+wv e(z) as before
Code C<V,dim(C)=k | Q <C¥", dim(Q) = 2"
Undetectable cC<V St<FE
errors
Errors with {0} <C S < St
no effect
Correctable ECV ECE
errors e,fe&= e,fe&=
e—f¢C\{0} fle¢g ST\ S

Table 1: Classical and quantum error correction

We now give the basic result of Calderbank, Rains, Shor and Sloane,
which is the quantum analogue of the observation on page 2.

Theorem 10.1 With the notation as above, assume that the minimal g-
weight of 5" \'S is d > 2e+ 1. Then Q corrects errors in e qubits.

Here, the quantum weight, or q-weight, of (a|b) € E (or, equivalently, of
+X(a)Z(b) € E) is the number of coordinates j in which either a; # 0 or
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b; # 0 (in other words, the number of qubits which have suffered a bit error,
a phase error, or both). The theorem asserts that, if £ is the set of elements
with g-weight at most |(d —1)/2], then we have e, f € £ = fle ¢ ST\ S.
We will use [[n, k, d]] to denote such a code; the double brackets to distinguish
it from a classical [n, k, d] binary code.

Suppose @ is an additive code, that is, () is the 41 eigenspace for S < F,
and & is the set of correctable errors for ). Here is how decoding works.
Suppose the codeword ¢ € @ is sent, but the received message is z = e(q) for
some e € £. If sq,...,5,_x are a set of generators for S, then by calculating
si(z) = x(sj)z for 1 < j < n — k (the syndrome of e) , we can identify
the character x and therefore the eigenspace @' containing z. We know @' =
f(Q) for some f € £, and we decode 2z to f~'(z) = f~'e(q). (Notice that this
decoding step does not require knowing e or ¢.) In order for this procedure
to lead us to the correct codeword ¢ it’s necessary that e(Q) = f(Q) for
e, f € € should imply f'e(q) = ¢. But that is exactly our condition on &:
f~'e cannot be in S\ S.

Now, the extra condition that distinct e and f in £ should produce inde-
pendent vectors e(q) and f(q) means that f(Q) = e(Q) implies f = e. We
will say that the code is non-degenerate (or pure) if it satisfies the stronger
condition that e, f € £ implies f~'e ¢ R \ {0}. So, in the special case of a
non-degenerate code, identifying the coset containing z actually identifies e
(rather than just enabling e to be corrected).

Following the theorem in the previous section, to obtain an additive code
mapping k qubits to n and correcting errors in | (d—1)/2| qubits, we need to
find a totally isotropic (n — k)-dimensional subspace S of the 2n-dimensional
binary space E with 5t \ S having minimum q-weight d. In this section we
construct a specific example of an [[8, 3, 4]] code adapted from [7] and [14].

To begin, we need a 5-dimensional subspace S < S of the 16-dimensional
binary space E, and we would like the minimal non-zero q-weight of vectors
in 5 to be 4.

Vectors in F have the form (a|b) for a,b € V, where V is a binary space
of dimension 8. We base our construction of S on the [8,4,4] extended
Hamming code Tﬁg = (3, 2), the self-dual code obtained by extending the
[7,4,3] Hamming code #(3,2) by adding a parity-check bit to each vector.
(We now use the hat notation for the usual dual code, to avoid confusion
with our overloaded overbar.)
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We construct Hs by specifying a 3x7 parity-check matriz H. The columns
of H will consist of all possible non-zero vectors in Z3 ~ GF(8). We do this
by choosing a generator o = a®+1 of the multiplicative group of GF(8), and
letting the columns of H be o, ... «a,1, (where za? + ya + z is written as
the column [z,y, 2]") giving

1 11
H=]1011
110

— = o

1
0
0

S = O
— o O

This construction of H makes it easy to see that Hj is a cyclic code: if
v = (v1,...,v7) is in Hg, so is its cyclic shift v' = (v,, v1,...,v,_1). From H
we easily obtain a generator matriz G for Hs—recall a code is the row space
of its generator matrix.

Gy =

O OO =
OO = O
O = O O
_ o O O
O = o= =
T )
—_ 0 = =

Since the vector 1 = (1,1,1,1,1,1,1) is in H3, we get another generator
matrix G; by adding 1 to each row of G.

G1:

_ ==

1
0
1
1

—_ 0 = =
O ==
—_ o oo
o O O
O = O O

We obtain the [8,4, 4] extended Hamming code H, by adding a parity check
bit to the front of each vector in Hj3 so that the resulting vector has even
H-weight. The minimum H-weight of nonzero vectors in H; is 3, and the
minimum H-weight is 4 for H3. Moreover, H; = %§

Finally, we're ready to describe a 5 x 16 generator matrix for S. Let a be
the last row of GG; and b be its ﬁrs’/c\. Let a; be the extension of a and b; be
the extension of b, two vectors in H3. Next ay is the extension of the cyclic
shift @', and by is the extension of ’. Similarly a; and b3 are extensions of a”
and b”. We take a4 = bs to be the 8-tuple 1 and a5 = b, to be the 8-tuple 0.
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The 5 x 16 matrix G(© has for its rows the vectors (a;|by), ..., (as|bs).

011101001]00111010
00111010]0001110°1
G9=100011101]010011T10
11111111]000000°0°0
000000O00] 11111111

The rows of g(o) are linearly independent, so its row space S is of dimension
5. Because Hs = Hj, we see that (a;|b;)* (a;]b;) = a;-b;+a;-b; = 0 for i, j =
1,...,5,50 8 < S". The dimension of 5" is 16 — 5 = 11, and so 5= SeT
for T of dimension 6. We can choose a basis {(a;[0), (0|b;) : 7 = 1,2,3} for
T, and from this we can see that the minimum g-weight of 5" is 4.

Our code Q is the +1 eigenspace of the subgroup S < E acting on the
28_dimensional complex vector space C? @ ...® C2?. The subspace @ is of
complex dimension 23; @ thus maps 3 qubits to 8 qubits and corrects errors
in F that affect 1 qubit.

We now return briefly to the general theory, to describe a theorem of
Calderbank et al. [6] which shows how to construct additive quantum codes
from certain self-orthogonal codes over GF(4). Recall that we have associated
a [[n, k, d]] additive quantum codes to a n— k-dimensional subspace S of F (a
2n-dimensional vector space over Z, = GF(2)) which is totally isotropic with
respect to a symplectic inner product and for which the g-weight of S+ \ S
is d.

In order to make the association with codes over GF(4), we construct
yet another vector space, an n-dimensional vector space F™ over the field
F = GF(4) We will write F as {0,1,w,w} where @ = w? = 1 + w. Note
that the cube of every non-zero element is equal to 1, since the multiplicative
group has order 3. Since w and w form a basis for F' as vector space over
GF(2), we can write any vector of F" as wa + wb, where a and b are vectors
of length n over GF(2). In other words, a,b € V. Now the map ¢ : E — F"
defined by

o((alb)) = wa + @b

is a bijection, and is an isomorphism of GF(2)-vector spaces (if we regard
F™ as a GF(2)-space by restricting scalars). Since wa; +wb; # 0 if and only
if either a; # 0 or b; # 0, we have a very important property of ¢: the
q-weight of a vector (a|b) € E is equal to the Hamming weight of its image
#((alb)) = wa +wb € F™.
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Let o be the Hermitian inner product on F",

n

vow = E VW,

j=1
There is a trace map Tr from F to GF(2) defined by
Tr(a) = a+a,

so that Tr(0) = Tr(1) = 0 and Tr(w) = Tr(w) = 1. The trace map is linear
over GF(2). Now the map (z,y) — Tr(x o y) takes pairs of vectors in F™ to
GF(2). We have:

Tr((wa + @b) o (wa' +@b')) =a -0 +da' - b= (alb) x (a'|V).

The proof of this fact is just calculation. Using the fact that the Hermitian
inner product is linear in the first variable and semilinear in the second, and
the fact that aob=a-b for a,b € GF(2)", we have

(wa+wb) o (wd' +wb')=a-d' +@a-b'+wb-a +b-V.

Taking the trace now gives the result (using the linearity of trace and the
fact that Tr(1) = 0 and Tr(w) = Tr(w) = 1).

Next we show that a subspace of F™ is totally isotropic (with respect to
o) if and only if the corresponding subspace of E is totally isotropic (with
respect to x). The forward implication is clear. So suppose that W < F"
is the image under ¢ of a totally isotropic subspace of E. This means that
Tr(x oy) = 0 for all z,y € W. Take x,y € W, and let 2 oy = . Then
Tr(a) = 0, and

Tr(wa) = Tr((wz) oy) =0

(since wx € W); it follows that a = 0.

To summarise: the space F", on restriction of scalars, becomes isomorphic
to E, by a map ¢ taking q-weight to Hamming weight; and subspace of F™
is the image of a totally isotropic subspace of E (with respect to ) if and
only if it is totally isotropic (with respect to o). Of course, not every totally
isotropic subspace of E corresponds to a subspace of . (The image under ¢
of a subspace of E is a GF(2)-subspace but not necessarily a GF(4)-subspace.)

These observations, together with Theorem 10.1, imply the following re-
sult of Calderbank et al. [6]:
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Theorem 10.2 If W is a totally isotropic (with respect to the hermitian
inner product) (-dimensional subspace of F™ such that WL\ W has mini-
mum Hamming weight d, then the above associates an additive [[n,n — 2, d]]
quantum code to W.

So, in order to construct good quantum error-correcting codes, we need
subspaces C of W such that C*+\ C has large minimum weight (where C* is
defined by the Hermitian inner product o. Examples can be obtained from
dual Hamming and BCH codes. We do not give details here.

11 Z,s-codes

We already noted the existence of Kerdock codes, which are non-linear (22", 24")
codes with weight enumerator
x22n + (24n . 22n+1)x22n—1+2n—1y22n—1_2n—1 + (22n+1 . 2)x22n—1y22n—1
+(24n N 22n+1)x22n71+2n71y22n71_2n71 + y22n‘

Moreover, these codes are distance-invariant; that is, the weight distribution
of u 4+ C' is the same as that of C for all u € C.

At about the same time, another family of non-linear binary codes, the
Preparata codes, were discovered. They are also distance-invariant, and their
weight enumerators are obtained from those of the Kerdock codes by applying
the MacWilliams transformation. Thus, the Kerdock and Preparata codes
behave formally like duals of each other. This strange formal duality was not
understood for a long time, until the paper of Hammons et al. [15] showed
that they arise from dual codes over Z4 by applying the so-called Gray map.

The Gray map takes elements of Z4 to pairs of elements of Z,, as follows:

0—00, 1—01, 2~11, 3~ 10.
Note that it is an isometry between the set Z, with the Lee metric

(so that d(x,y) is the number of places round the cycle separating = from
y) and Z3 with the Hamming metric. (More generally, a Gray code is a
Hamiltonian cycle in the n-dimensional cube; it is used for analog-to-digital
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conversion, since adjacent points in the cycle are represented by words dif-
fering in only one coordinate. We are interested in the case n = 2.)

The Gray map v can be extended to a map from Z7 to Z2", for any n.
It is non-linear, so that it will in general take a linear code in Z} (a subset
closed under addition) to a non-linear code in Z2". Hammons et al. showed
that the Kerdock and Preparata codes do indeed arise from linear codes over
Z, in this way; these linear codes are the Z, analogues of the dual Hamming
and Hamming codes.

In the remainder of this section we outline the construction of the binary
and quaternary codes and their connection with symplectic and orthogonal
geometry.

11.1 Orthogonal and symplectic geometry

Recall the definition of the error group E of isometries of a real vector space
RY, N = 2" m odd. Let V = GF(2)™"!, and let {e, : v € V} be
an orthonormal basis of RY. The isometry X (a) takes e, to e,., and Z(b)
takes e, to (—1)"%e, for a,b € V; X(a) describes “bit errors” in each qubit
for which the corresponding coordinate of a is nonzero, and Z(b) describes
“phase errors.” The error group for a system of m + 1 qubits is

E={(-1)'X(a)Z(b) : a,b € V,{ € Zy}.

Then E is an extraspecial 2-group of order 2 - 22(m+1),

From the group structure of E it follows that the quotient E = E/{(E) ~
GF(2)%™+1) has an orthogonal geometry. The quadratic form @ on E is given
by

& = (—1)9@7

b

and the corresponding symplectic form is given by

le, /1= (=)™,

where e and f are in F and € and f are their images in £. The abelian
subgroups

X(V)={X(a):aeV}and Z(V)={Z(b): be B}

give totally singular (m+1)-dimensional subspaces X (V) and Z(V) of E (that
is, subspaces on which ) vanishes identically). These totally singular spaces
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are also totally isotropic: the symplectic form vanishes identically on them.
In fact, every maximal totally singular subspace of E has dimension m + 1
and arises as the image of an elementary abelian subgroup of E. Similarly,
every maximal totally isotropic subspace of E also has dimension m + 1 and
arises as the image of an abelian subgroup of £. Thus, the quadratic form
has type +1 (or Witt index m+ 1), and the extraspecial group FE is a central
product of m + 1 copies of the dihedral group Dg (see Section 8.)

We don’t need the physics, but by way of motivation, recall from Sec-
tion 10 that we might alternatively have considered an error group consisting
of (Hermitian) symmetries of the complex space containing the qubits. In
our current setting we need to construct this complex geometry, but now we
do it entirely within the group E of symmetries of the real vector space.

First, we need a bit more notation. As before, let {uy,..., uy.1} be the
standard basis for V', and let V' = (uq, ..., up) ~ GF(2)™. Let

w= X (tums1)Z(umy1) € E,

so w? = —I. This element of order 4 will play the role of i in our construction
of a complex vectors space and a group of unitary transformations of it.
Let F' be the centraliser in E of w,

F=Cgw)={(-1)'X(a)Z(D) : @ tUms1 = b - Umy1, { € Ly}

Exercise 11.1 Show that if X (a)Z(b) is in F, then there are ’,0 € V' so
that either X (a)Z(b) = X (a')Z(b') or X (a)Z(b) = wX (a')Z(V').

By the previous exercise, an alternative description of F is
F={w'X(dYZW):d b € V' L},

which corresponds to the complex error group of the preceding chapter. It
is easily seen that F has order 4 - 22™ and that F = F/((F) ~ GF(2)?™.

Because w is of order 4, we may think of R+ Rw as C. As a consequence,
we may regard the 2-dimensional real space {e,, e,w) as a 1-dimensional com-
plex space. Under this identification, we can consider {e, : v € V'} as an
orthonormal basis of the complex unitary space CV', for N' = 2™ = (1/2)N,
and regard F as a subgroup of the unitary group U(CM").

Since the square of an element w?X (a’)Z(b') of F depends on £ as well as
on o’ and b, we cannot define a quadratic form on F. However, commutators
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depend only on cosets modulo ¢ (F), so F does have a symplectic geometry
given by the bilinear form € % f where e and f are preimages in F and

[e, /1= (-=1)*/1.

Caution: Our overbar notation is now ambiguous, since E and F are binary
spaces of dimensions 2(m + 1) and 2m respectively; however, context should
make clear which we intend.

Finally, following [5], we will need to construct two finite groups L <
O(RN) and L* < U(CM') normalizing E and F respectively for which L/E ~
O(2m+2,2) on E and Lf/F ~ Sp(2m,2) on F.

Exercise 11.2 Let z; = X (u;) and 2z, = Z(u;), j=1,...,m+ 1.

(a) Show that the images of these elements of E in E form a symplectic
basis of singular vectors, with {zZ; : j = 1,...,m + 1} a basis for the

maximal totally singular subspace X (V) and {Z;: j=1,...,m+1} a
basis for the maximal totally singular subspace Z(V).

(b) Show that {x;,2; : j = 1,...,m} are in F, and their images in F are
a symplectic basis with {Z; : j = 1,...,m} a basis for the maximal
totally isotropic subspace X (V') and {Z; : j = 1,...,m} a basis for the
maximal totally isotropic subspace Z (V).

In our constructions of L and Lf, we will be guided by the following
theorem.

Theorem 11.1 Let V' be a vector space of dimension 2n with an alternating
bilinear form and a quadratic form of Witt index n polarising to it. If V
is a sum of mazimal totally isotropic subspaces U and V', then Sp(V) =
(Sp(V)y, Sp(V)w). Further, if U and W are totally singular, then O(V) =
(OV)u, OV)w, T), where T is the orthogonal transformation interchanging
uy and vy and fixing the other vectors of a symplectic basis of singular vectors

{ug, ..., up,w, ..., w,} formed of bases of U and W.

The reference for this theorem in [5] is to 43.7 in [1]. Other useful ref-
erences include the introductory material on the classical groups in [12], the
“dictionary” translating between matrix and Lie theoretic descriptions of
classical groups in [10], and the explanatory material in [20].
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First we construct L. For an invertible binary (m + 1) x (m + 1) matrix
A, we want an element of O(RY) normalizing E and producing X (A4, A=)
on E. Choose A taking the basis vector e, of RN to e,4.

Exercise 11.3 Verify that A1 X (a)Z(b)A = £X (aA)Z(bA™T).

The description of the element of O(RY) producing Y (C) is more com-
plicated. Choose an (m + 1) x (m + 1) binary alternate matrix C. Define
an alternate bilinear form Bg on V' by Be(u,v) = uCv'. Let Q¢ be any
quadratic form polarising to B¢. Define an element D(C) € O(RY) by

D(C)(e,) = (—1)?¢We, for v € V.

Exercise 11.4 Verify that D(C)'X (a)Z(b)D(C) = £ X (a + aC)Z(b), and
that the map on E produced by D(C) is independent of the choice of the
quadratic form c¢.

Now O(V )y is generated by the X (A, A~") and the Y (C) for A invertible
and C' alternating.
As in Section 10.7, let H,, 1 be the tensor product H ® ... ® H, so

1 .
Hm+1(eb) = \/WZ(—l)b €y
ev

v

Then HmHX(V)HmJi: Z(V). And Hy,=1®...®1® H, normalizes F
and has the effect on F of interchanging z,, 1 and z,,,, and fixing the other
basis vectors. Now let

L=(A, D(C), Hpy1, Hy : A invertible, and C alternate (m+1) x (m+1))
Then we have L/E ~ O(E) as desired.

Exercise 11.5 Verify that L/E ~ O(E).

The description of L? is almost the same as that of L, except that the
basis vectors on which the transformations of Lf act are the e, for v' € V.
The difference is in the element of U(CM") producing what we’ll call Y’(C")
on F for C' a binary m x m symmetric matrix. Rather than using C’ to
define a quadratic form on V', we instead define a map T : Z]' — Z4 as
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follows. Given v' € Z™, choose v/ = (v, ..., V) € ZT with v/ = ¢’ (mod 2),
and let R
Ter(v') = Z Cjv5 +2 Z Clyvjv,
J J<k
where the Cj; are the entries of C’, and the arithmetic is done mod 4. Now
we define D'(C”) in U(CN') by

D'(C")(ey) = iTe™e, for o' € V.
Exercise 11.6 Verify that
D'(CY ' X(aZ{W)D'(C") = +X(d +dCYZ{).
Finally, let
LF = (A, D'(C"), H, : A invertible and C' symmetric m x m).

Exercise 11.7 Verify that L*/F ~ Sp(F).

11.2 Orthogonal spreads and binary Kerdock codes

In this section we concentrate on the orthogonal geometry of the 2(m + 1)-
dimensional GF(2) space E and use it to give a definition of a binary Kerdock
code of length N = 2™*!, Recall that we assume m is odd.

By Theorem 2.3, the space E contains

totally singular 1-spaces. Clearly, each maximal totally singular subspace of
E contains 2! — 1 singular 1-spaces.

If a set ¥ of 2™ + 1 maximal totally singular subspaces of E partitions
the set of all singular 1-spaces, we call ¥ an orthogonal spread for E.

Let A be an abelian subgroup of E so that A is a maximal totally singular
subspace of E. Let F(A) be the set of eigenspaces for A in RY. Recall from
the preceding chapter that F(A) is an orthogonal frame for RY —a family of
N mutually orthogonal 1-spaces. For an orthogonal spread ¥ of E, let

F(X) = Uges F(A),

a set of (2™ + 1) - 2™F1 1-spaces of RV.
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We defined a binary Kerdock code K(B) of length N = 2™ in terms
of a non-degenerate set B of alternate bilinear forms on a vector space V' of
even dimension m + 1. We will give an alternative description of the code
as a set KC(X) of vectors in ZY associated with an orthogonal spread X of F
and with the choice of a distinguished element W of 3.

First note that by replacing ¥ by a suitable image under L (which is
transitive on ordered pairs of such spaces since it induces O(V) on E), we
may assume that the two maximal totally singular spaces U = X (V') and
W = Z(V) are in ¥. By Proposition 9.5(a), each space A € ¥\ {W} has
the form A = UY (C) for a unique alternate (m + 1) x (m + 1) matrix C; in
other words, A = D(C)~'X(V)D(C). ;From Example 10.3, we know that

FXWV)) = {(Z(—l)"'”&) tbe V} :

veEV

from which it follows that

F(A) = {(Z(—l)b'”D(C)(ev» :b € V} :

veEV

Since D(C) takes e, to (—1)9¢(®e,, where Q¢ is a quadratic form on V
polarising to the alternate form Be (v, w) = vCw', we may write

F(A) = {(Z(—l)c”ev> tep=Qc(v)+b-v, be V} :

veV

Somewhat abuse notation and regard {e, : v € V'} as a basis for Z1 as
well as for RV.

Let 3 be an orthogonal spread of E. We say the following set K(X) of
vectors in ZY is a binary Kerdock code of length N = 2™+

KY) = {Z Co€y Z(—l)c”ev € .7:(2)} :

veV veV

(This notation suppresses the dependence on the distinguished element W =
Z(V)in X.)

Allowing for multiplication by (—1), we see that for each vector }_ . ¢, €,
in K£(X), we have ¢, = Q¢(v) +b- v+ € for fixed b € V and € € Z,. Thus

KE) = (B[ =1) - [V] - |Zo] = 27 - 271 - 2 = 22772,
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Now we connect the two descriptions of the binary Kerdock code. Distinct
elements A; and A, of £\ Z(V) correspond to alternating matrices C; and Cy
whose difference is invertible. In other words, the set of matrices C occurring
in the definition of KC(X) corresponds to a non-degenerate set of alternating
bilinear forms on V' of cardinality 2™. In fact, a Kerdock set of matrices
is a set of 2™ binary alternating (m + 1) x (m + 1) matrices such that the
difference of any two is invertible.

The set of quadratic forms polarising to the alternating form B¢ on V
is given by {Qc + ¢ : ¢ € V*}, for a fixed choice of Q¢, where V* is the
dual space of V. But we may take V* = {¢, : b € V'}, where ¢y(v) = b - v.
Finally, we identify the vector ), c,e, with the function on V' taking v to
¢, to complete the equivalence of the two definitions.

11.3 Symplectic spreads and quaternary Kerdock codes

Now we turn to the symplectic geometry of F' ~ Z2™ and use it to define a
Z4 Kerdock code which, we will show in the next section, maps via the Gray
map onto the binary Kerdock code of the previous section.

The space F has 22™ — 1 = (2™ + 1)(2™ — 1) 1-spaces, each of which is
totally isotropic (since v * v = 0 for every v € F). Each maximal totally
isotropic subspace of F has 2™ — 1 isotropic 1-spaces.

A set X' of 2™+ 1 maximal totally isotropic subspaces of F is a symplectic
spread if it partitions the set of all totally isotropic 1-spaces of F.

Choose an abelian subgroup A’ < F so that A’ is maximal totally isotropic,
and let Fc(A’) be the set of eigenspaces of A’; this set of N’ = 2™ complex
1-spaces forms a unitary frame for CV' — that is, it is a set of perpendicular
1-spaces with respect to the Hermitian form on CV'.

For a symplectic spread X', let

F&) =] FA),

Alex!

a set of 2™(2™ + 1) 1-spaces of CV'.
As in the previous section, without loss of generality, we may assume our

symplectic spread X' contains U’ = X (V) and W' = Z(V"). By Proposition
9.6, each A’ in X'\ {W'} has the form U'Y'(C") for a unique symmetric
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matrix C', and A’ = D'(C")~' X (V') D'(C") gives

F(4) = {< S ()P D(CYew) 11 € V'} .

v’ eV’

Now D'(C") takes ey to i’e'")e, . where

TC/(’U’) = Z C]’JU? + 2 Z C;k’l)j?)k € Zy.
J J<k

Using (—1)"" = (i%)¥", we may write

f(AI) = {< id”’evz> . dvl = TCI('UI) + 2bl . ’Ul, bl € V} .

v eV’

Somewhat abuse notation and regard {e, : v/ € V'} as a basis for Z}'" as
well as for CV'. B
Let ¥’ be an symplectic spread of F'. Let

K4(EI) = { Z dy €y : idv’ev/ S .,F(EI)} .

v eV’ v’ eV’

We call this set of vectors in ZY' a Z,-Kerdock code; it has length 2V =
(1/2)2N, N’ = 2™ m odd. (This notation suppresses the dependence on the
distinguished element W' = Z (V') in ¥'.) We don’t call this a quaternary
code because K4(X') is not always Zg-linear.

Allowing for multiplication by i, we see that for each vector ), i/ dysey
in K4(X'), we have dy = Ter(v') + 20 - o' + € for fixed V' € V' and € € Z,.
Thus

Ki(2)] = (1T = 1) - [V'| - |Za] = 27 - 27" - 4 = 2272,

We would like to relate the Z, code K4(X') to the Z, code K(X) of
the previous section. To do this, we will work in F to define a map from
symplectic spreads X' of F to orthogonal spreads ¥ of E.

Recall that w is in F, and write @ for the corresponding vector in E and
(w)* for the subspace of vectors orthogonal to @ with respect the symplectic
form on E. Let 1 be the natural map from E to E/(w). Since F is the
centraliser of w in F and (w) is the center of F, we can identify the 2m-
dimensional binary space F with n({@)*).

o6



We have symplectic bases
{Z, .., Tt 1, 215+ -+ Zmyi) Of B

and B

{x_la"'amaz_la"':%} of I
corresponding to the direct sums E = X (V)@ Z(V) and F = X (V)@ Z(V").
Given a maximal totally isotropic subspace f£ of I, there is a unique maximal
totally singular subspace A of E such that AN Z(V) = {0} and

(AN (@)’) =4

Moreover, if A7 = X (V')Y'(C"), then A = X (V)Y (C), where

[ ¢ +dE)TdEC) den)T
=[]

and the (n — 1)-tuple d(C") = (c{y,-.-,¢,_1,_1) consists of the diagonal
entries of C'.
Now, define ¥ by

S = {Z(V)} U {Z CANZW) = {0}, (AN @) =4 € z’} .
We call ¥ the lift of ¥'; note that ¥ is an orthogonal spread of E.

Exercise 11.8 Show that the 2™ totally singular m+ 1-spaces in ¥ intersect
pairwise in {0}, and therefore ¥ is an orthogonal spread of FE.

Let us summarize where we are so far. Starting with the symplectic spread
¥/ in the 2m-dimensional binary symplectic space F' ~ n({w)') we obtain
the Z4-Kerdock code K4(X') of length 2. The lift of ¥ is an orthogonal
spread ¥ in the 2(m + 1)-dimensional binary orthogonal space E, and from
it we obtain the binary Kerdock code IC(X) of length 2 - 2™. In the next
section, we show that the Gray map takes K,(X') to K(X).

Now we quote without proof the following theorem from [5].

Theorem 11.2 The Gray map sends K4(X') to K(X).
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