

Table of Contents
 Advanced Animation with DirectX..1

Introduction...4

 Part One: Preparations...7

 Chapter 1: Preparing for the Book..8
 Overview...8
 Installing the DirectX SDK...8
 Choosing the Debug or Retail Libraries...10
 Configuring Your Compiler..11

 Setting the DirectX SDK Directories...11
 Linking to the DirectX Libraries..12
 Setting the Default char State...14

 Using the Book's Helper Code..15
 Using the Helper Objects...15
 Checking Out the Helper Functions...21

 Moving On with the Book..34

 Part Two: Animation Basics...36

 Chapter 2: Timing in Animation and Movement...37
 Using Time−Based Motion...37
 Reading Time in Windows...37
 Animating with Time..38
 Moving with Time..41

 Moving along Paths..41
 Creating an .X Path Parser...48
 Creating In−Game Cinematic Sequences...53

 Check Out the Demos...54
 TimedAnim..54
 TimedMovement..55
 Route..55
 Cinematic..56

 Chapter 3: Using the .X File Format..58
 Working with .X Templates and Data Objects...58

 Defining Templates..61
 Creating Data Objects from Templates..63
 Embedding Data Objects and Template Restrictions...64
 Working with the DirectX Standard Templates...65

 Accessing .X Files..66
 Registering Custom and Standard Templates..66
 Opening an .X File...67
 Enumerating Data Objects..68
 Retrieving Data from a Data Object...72
 Constructing an .X Parser Class...75

 Loading Meshes from .X..79
 Loading Meshes Using D3DX...79
 Loading Meshes with Your .X Parser..82

i

Table of Contents
 Chapter 3: Using the .X File Format

 Loading Skinned Meshes...83
 Loading Frame Hierarchies from .X...84
 Loading Animations from .X..86
 Loading Custom Data from .X..86
 Check Out the Demos...88

 ParseFrame...88
 ParseMesh..88

 Part Three: Skeletal Animation..90

 Chapter 4: Working with Skeletal Animation..91
 Overview...91
 Taking on Skeletal Animation..91
 Using Skeletal Structures and Bone Hierarchies..92

 Loading Hierarchies from .X..93
 Modifying Bone Orientation..95
 Updating the Hierarchy..96

 Working with Skinned Meshes...97
 Loading Skinned Meshes from .X..100
 Creating a Secondary Mesh Container...101
 Mapping Bones to Frames..102
 Manipulating the Skinned Mesh...103
 Updating the Skinned Mesh...104
 Rendering the Skinned Mesh...106

 Check Out the Demo...106

 Chapter 5: Using Key−Framed Skeletal Animation...108
 Using Key−Framed Skeletal Animation Sets...108
 Using Keys in Animation...109
 Working with the Four Key Types...110
 Reading Animation Data from .X Files..112
 Matching Animations to Bones..119
 Updating Animations..121
 Obtaining Skeletal Mesh Data from Alternative Sources...122
 Check Out the Demos...123

 Chapter 6: Blending Skeletal Animations...125
 Overview...125
 Blending Skeletal Animations..125
 Combining Transformations...126
 Enhancing Skeletal Animation Objects..127
 Check Out the Demo...132

 Chapter 7: Implementing Rag Doll Animation...134
 Overview...134
 Creating Dolls from Characters..134
 Working with Rigid−Body Physics..137

 Creating a Rigid Body..138
 Positioning and Orienting Your Rigid Bodies...140

ii

Table of Contents
 Chapter 7: Implementing Rag Doll Animation

 Processing the Motion of Rigid Bodies..143
 Using Forces to Create Motion..150
 Connecting Rigid Bodies with Springs..151
 Providing Collision Detection and Response...154

 Creating a Rag Doll Animation System...160
 Defining the Rigid Body State...160
 Containing Bones...161
 Creating the Rag Doll Controller Class..162
 Building Bone Data..165
 Computing the Bone Bounding Box..166
 Setting the Forces...169
 Integrating the Bones..170
 Processing Collisions...172
 Enforcing Bone−to−Bone Connections...174
 Rebuilding the Hierarchy...175

 Check Out the Demo...176

 Part Four: Morphing Animation..178

 Chapter 8: Working with Morphing Animation...179
 Morphing in Action..179

 Defining Source and Target Meshes..180
 Morphing the Meshes...180

 Building a Morphed Mesh through Manipulation..182
 Drawing Morphed Meshes..185

 Dissecting the Subsets..185
 Creating a Morphing Vertex Shader..187

 Check Out the Demos...190

 Chapter 9: Using Key−Framed Morphing Animation...192
 Using Morphing Animation Sets..192
 Creating .X Morphing Animation Templates...192
 Loading Morphing Animation Data..194
 Rendering the Morphing Mesh...198
 Obtaining Morphing Mesh Data from Alternative Sources..201
 Check Out the Demos...202

 Chapter 10: Blending Morphing Animations..204
 Blending Morphing Animations...204

 Using a Base Mesh in Blended Morphing Animation...205
 Calculating the Differences..205
 Blending the Differences..207
 Building a Blending Morph Vertex Shader..208
 Using the Blending Morph Vertex Shader...213

 Check Out the Demos...215

 Chapter 11: Morphing Facial Animation..216
 The Basics of Facial Animation..216

 Blended Morphing Back in Action..216

iii

Table of Contents
 Chapter 11: Morphing Facial Animation

 Using Phonemes for Speech...218
 Building Facial Meshes..220

 Creating the Base Mesh..220
 Creating Facial Expressions...221
 Creating Viseme Meshes..223

 Creating Animation Sequences...225
 Automating Basic Features..225
 Building Phoneme Sequences..226
 Using an .X Parser for Sequences..233

 Playing Facial Sequences with Sound..237
 Using DirectShow for Sound...238
 Synchronizing Animation with Sound...239
 Looping Sound Playback..240

 Check Out the Demo...241

 Part Five: Miscellaneous Animation..243

 Chapter 12: Using Particles in Animation...244
 Working with Particles...244

 Starting with the Basics..245
 Drawing Particles with Quad Polygons..246
 Working with Point Sprites..250
 Improving Particle Rendering with Vertex Shaders...253

 Bringing Your Particles to Life...260
 Moving Particles Using Velocity...261
 Using Intelligence in Processing..262
 Creating and Destroying Particles..263
 Drawing Your Particles..264

 Controlling Particles with Class...267
 Using the Emitter in Your Project..270
 Creating Particle Engines in Vertex Shaders..270
 Check Out the Demos...271

 Chapter 13: Simulating Cloth and Soft Body Mesh Animation..273
 Simulating Cloth in Your Projects..273

 Defining Cloth Points and Springs...274
 Obtaining Cloth Data from Meshes..275
 Applying Force to Create Motion..278
 Rebuilding and Rendering the Cloth Mesh..286
 Restoring the Original Mesh..287
 Adding More Springs...288

 Loading Mass and Spring Data from .X...289
 Building an .X Parser for Cloth Data...290

 Working with Collision Detection and Response...292
 Defining Collision Objects...292
 Detecting and Responding to Collisions..295

 Creating a Cloth Mesh Class..298
 Using Soft Body Meshes..307

 Reverting a Soft Body Mesh..307

iv

Table of Contents
 Chapter 13: Simulating Cloth and Soft Body Mesh Animation

 Creating a Soft Body Mesh Class...308
 Check Out the Demos...309

 Chapter 14: Using Animated Textures..311
 Using Texture Animation in Your Project..311
 Working with Texture Transformations...311

 Creating a Texture Transformation..311
 Setting Texture Transformation Matrices..313
 Using Texture Transformations in Your Project..314

 Using Video Media Files for Textures..314
 Importing Video with DirectShow...315
 Creating a Custom Filter..316
 Working with the Custom Filter...322
 Creating an Animated Texture Manager..328
 Applying Animated Media Textures..329

 Check Out the Demos...331
 Wrapping Up Advanced Animation...332

 Part Six: Appendixes...333

 Appendix A: Web and Book References..334
 Web Sites to Check Out..334
 Recommended Reading..336

 Appendix B: What's on the CD..337
 Overview...337
 DirectX 9.0 SDK...337
 GoldWave Demo..337
 Paint Shop Pro Trial Version..337
 TrueSpace Demo...338
 Microsoft Agent and LISET...338

List of Figures..339
 Chapter 1: Preparing for the Book..339
 Chapter 2: Timing in Animation and Movement..339
 Chapter 3: Using the .X File Format...340
 Chapter 4: Working with Skeletal Animation..340
 Chapter 5: Using Key−Framed Skeletal Animation...340
 Chapter 6: Blending Skeletal Animations..340
 Chapter 7: Implementing Rag Doll Animation...340
 Chapter 8: Working with Morphing Animation...341
 Chapter 9: Using Key−Framed Morphing Animation..341
 Chapter 10: Blending Morphing Animations...341
 Chapter 11: Morphing Facial Animation..342
 Chapter 12: Using Particles in Animation..342
 Chapter 13: Simulating Cloth and Soft Body Mesh Animation...342
 Chapter 14: Using Animated Textures...343

v

Table of Contents
List of Tables...344

 Chapter 3: Using the .X File Format...344
 Chapter 10: Blending Morphing Animations...344
 Chapter 11: Morphing Facial Animation..344

List of Sidebars..345
 Chapter 1: Preparing for the Book..345
 Chapter 2: Timing in Animation and Movement..345
 Chapter 3: Using the .X File Format...345
 Chapter 4: Working with Skeletal Animation..345
 Chapter 5: Using Key−Framed Skeletal Animation...345
 Chapter 6: Blending Skeletal Animations..345
 Chapter 7: Implementing Rag Doll Animation...345
 Chapter 8: Working with Morphing Animation...345
 Chapter 9: Using Key−Framed Morphing Animation..346
 Chapter 10: Blending Morphing Animations...346
 Chapter 11: Morphing Facial Animation..346
 Chapter 12: Using Particles in Animation..346
 Chapter 13: Simulating Cloth and Soft Body Mesh Animation...346
 Chapter 14: Using Animated Textures...346

vi

Advanced Animation with DirectX
Jim Adams
PREMIER PRESS
GAME DEVELOPMENT

Copyright © 2003 Premier Press, a division of Course Technology.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system
without written permission from Premier Press, except for the inclusion of brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of Premier Press and may not be used without
written permission.

Publisher: Stacy L. Hiquet

Senior Marketing Manager: Martine Edwards

Marketing Manager: Heather Hurley

Associate Marketing Manager: Kristin Eisenzopf

Manager of Editorial Services: Heather Talbot

Acquisitions Editor: Emi Smith

Project Editor/Copy Editor: Cathleen D. Snyder

Retail Market Coordinator: Sarah Dubois

Interior Layout: Scribe Tribe

Cover Designer: Mike Tanamachi

CD−ROM Producer: Brandon Penticuff

Indexer: Kelly Talbot

Proofreader: Jenny Davidson

DirectDraw, DirectMusic, DirectPlay, DirectSound, DirectX, Microsoft, Visual C++, Visual Studio,
Windows, Xbox, and/or other Microsoft products are either registered trademarks or trademarks of Microsoft
Corporation in the U.S. and/or other countries. Gas Powered Games and Dungeon Siege are the exclusive
trademarks of Gas Powered Games Corp. All other trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate software
manufacturer's technical support line or Web site for assistance.

1

Premier Press and the author have attempted throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources, Premier Press, or others,
the Publisher does not guarantee the accuracy, adequacy, or completeness of any information and is not
responsible for any errors or omissions or the results obtained from use of such information. Readers should
be particularly aware of the fact that the Internet is an everchanging entity. Some facts may have changed
since this book went to press.

1−59200−037−1

Library of Congress Catalog Card Number: 2002116166
Printed in the United States of America
03 04 05 06 07 BH 10 9 8 7 6 5 4 3 2 1

Premier Press, a division of Course Technology
25 Thomson Place
Boston, MA 02210

To Jeff, my dearly departed and greatly missed brother
this one's for you!

And to the rest of my family and friends
thanks for being a part of my life!

Acknowledgments

Writing a book is no easy feat. Many hours have gone into the meticulous writing, editing, layout, and
printing of this fine book you hold in your hands. The dedication and patience of each and every person
involved was greatly appreciated during the book's development. To those people, I'd like to say thank you!

First and foremost, I'd like to thank my family for giving me support. To 2E, my lovely wife, for having the
patience to let me write another book (Mrs. T pity the fool that don't let me write my book). To Michael and
John, my kids, for being there with me. To my mother, Pam; brothers John, Jeff, and Jason; my sister Jennifer;
and my nephew Jordanthanks for your support. To Bill and Doris Fong, thanks for all you have done for me.
To my buddy, Jeff Young, for offering to help wrap this baby up and to Richard Young, for providing me
with the book's Web space.

To those of you on the publisher sideEmi Smith, Cathleen Snyder, André LaMothe, and Brandon
Penticuffthanks for the chance to work with you again. Emi, your neverending patience on a book that was
long overdue is astounding. To Cathleen, I'd like to thank you for keeping the editing process running
smoothly. And finally to André, for helping to create such a wonderful series of books. I don't want to forget
Brandonthanks for putting together the CDROM so quickly!

To those companies that have helped the gaming community at large with their cool productsto Caligari, for
making trueSpace and the ohsocool Facial Animator; to discreet and their 3D Studio Max modeling program;
to Curious Labs, with their awesome Poser humanfigure designer; and to Microsoft, for creating the
eversouseful DirectX.

And last but not least, I'd like to thank you, the readers, for buying this book!

 Advanced Animation with DirectX

2

About the Author

JIM ADAMS started his programming career at the ripe young age of 9, when his curiosity and imagination
grabbed hold and never let go. Twentyone years later, at the (overripe!) age of 30, Jim still finds himself
enthralled in current game−programming techniques such as those in this book. Not one to let anything bog
him down, Jim still finds time to raise a family, write a book or two, and help his wife on the rare occasion.

Between his writing and programming, you can find Jim moderating the DirectX forum on the Internet's top
gameprogramming Web site, http://www.GameDev.net. Make sure to stop by and give him a ring!

Letter from the Series Editor

Welcome to Advanced Animation with DirectX®. This book is all about 3D animation techniques used to
develop highend AAA titles such as Unreal, Doom III, and other games with fully articulated 3D models
featuring skeletal and facial animation. The material in this book has never been published before, for the
most part. You can find hints of it on the Internet, in articles, and in other books on robotics, but there isn't
another game book about advanced animation available. For the author of this book, Jim Adams, and I, the
goal of this book was to really show advanced animation techniques along with the fundamental physics
needed to implement them. Of course, the second anyone says "physics" or "math," chills may run down your
spine, but Jim has tried to use physics models and explanations in a game programmer's language.

There are some amazing things covered in this book about which I am very excited, such as "rag doll"
physics. A good example of this technique is found in Unreal Tournament; when you frag an opponent, his
body falls limp and the force of the weapon blast throws it like, well, a rag doll!

The book also covers cloth animation and spring modeling. Using these techniques, you can create everything
from cloth to soft bodies to springy objects that deform and return to their original shape when forces are
applied to them.

Finally, two of the coolest things in the book are facial animation and lipsyncing techniques. This is
something that very few games have or will have for quite some time. Again, Jim gets you up and running
with the technology in no time.

In conclusion, this is definitely an advanced book, and serious material. If you are new to game programming
you will still get something out of it, but I suggest that you should be very comfortable with 3D concepts,
math, and some high school physics before you delve into this madness. Nevertheless, after you get through it,
you will have an edge on 90% of the game developers out there, who haven't even begun to master these
techniques.

Sincerely,

André LaMothe

Game Development Series Editor

 Advanced Animation with DirectX

3

Introduction
So you're ready to progress beyond the basics. Having already tackled drawing polygons and meshes,
blending textures, manipulating vertex buffers, and tinkering with vertex shaders, what's next for an aspiring
game programmer like you to learn? Well, you've come to the right place if you're ready to move on beyond
the basics.

Welcome to Advanced Animation with DirectX® ! This book is your guide to getting past the basics of
DirectX graphics and into the bigger world of advanced animation! Take the information you already know
and learn how to expand it into a vast array of various eyepopping graphical effects.

Keep your highschool textbooks at school, however, because this book won't bore you with pages of theories
and algorithms. Instead, you'll see realworld examples of some of the hottest animation techniques used today.
Jampacked with easy to understand concepts, fully commented code, and cool demos, this book makes
learning the advanced stuff simple and fun!

What This Book Is About

As you can tell from the table of contents (you did check it out, didn't you?), this book has been developed
with intermediate to advanced programmers in mind. There are no beginner sections (well, almost no beginner
sections)it's all hardcore theory and programming from the get go!

This means there is no room wasted on teaching basic concepts, such as initializing Direct3D or using
Windows message pumps, so you need to know a little something about Direct3D in general before you go
on. Whoa! Don't put the book down just yet. I'm talking about the extreme basics, such as initializing
Direct3D, using materials and textures, and handling vertex buffers. If you know all that, then you are
definitely ready to move on to the advanced stuff, and this book is the place to start!

Why You Should Read This Book

That is the milliondollar questionWhy read this book? Let's face it, gaming technologies are evolving faster
than most of us can keep up with. Today is one thing, and tomorrow introduces techniques that'll blow your
socks off. Within these pages, you'll find information on advanced animation techniques that you can use in
your own projects, and then your game will be the one that blows people's socks off!

What type of advanced animation techniques am I discussing? Well, my friend, read on to see what this book
has to offer.

What's in This Book?

In this book you'll find 14 chapters full of advanced animation goodies. Each chapter concentrates on a single
animation technique; aside from the first few informational chapters, the book is completely modular,
meaning you can skip the chapters that don't interest you and get right to the topics that do.

Of course, I know you're really interested in every chapter in this book, so why don't you take a moment and
see what you're about to get yourself into. The following list summarizes each chapter.

Chapter 1: Preparing for the Book. Prepare yourself, because this book gets right to the point of
using DirectX to create awesome animations in your programs! This chapter will help you install
DirectX and set up your compiler to use it, and then get you programming right off the bat by using a

•

4

library of objects and functions created to hasten your development. This chapter is a mustread before
you journey into the rest of the book.
Chapter 2: Timing in Animation and Movement. Timing is an important aspect of animation, and
this chapter provides a primer of what to expect throughout the rest of the book. See how to make
your meshes animate and move over time.

•

Chapter 3: Using the .X File Format. Getting your mesh data into your project is quite an endeavor.
The information in this chapter will give you a firm grasp of using Microsoft's proprietary 3D
graphics storage format, .X, in your game projects. Learn how to store and retrieve 3D mesh
information, as well as how to use .X to contain custom data related to your game project.

•

Chapter 4: Working with Skeletal Animation. Probably the most technically advanced realtime
animation technique used today is skeletal animation. This chapter tackles the subject by showing you
how to get started using this popular technique to manipulate meshes based on an underlying set of
bones.

•

Chapter 5: Using KeyFramed Skeletal Animation. One of the most popular animation techniques
is using keyframed animation sets (created with popular 3D modeling packages such as discreet's 3D
Studio Max or Caligari's trueSpace) in your projects. This chapter will show you how o take the
key−framed skeletal animation informaion (stored in .X files) and use it to animate your meshes
onscreen.

•

Chapter 6: Blending Skeletal Animations. Tired of your key−framed animations being so static?
I'm talking about animations that never change! How about mixing things up by blending multiple
animation sets to create new and unique animations in your game?

•

Chapter 7: Implementing Rag Doll Animation. Here it is; I know you've been waiting for it. See
how to create your very own rag doll animation sequences, with limbs flailing and bodies flyingit's all
in this chapter. Leave your physics books at home, kids; this book gives it to you in a straightforward
and easytounderstand manner.

•

Chapter 8: Working with Morphing Animation. Skeletal animation be damnedmorphing animation
still has a rightful place in the world of advanced animation! See how you can use a simple animation
technique to get those meshes morphing in your own projects.

•

Chapter 9: Using KeyFramed Morphing Animation. Even morphing animation needs to be
sequenced, right? See how to define and create your own series of keyframed animation objects and
apply them to your morphing animation techniques! You'll even get to extend the usefulness of .X by
creating your own morphing keyframe templates!

•

Chapter 10: Blending Morphing Animations. Once again, blending rears its eversohelpful head,
this time for combining various blending animations together to create new and unique animations
during run time!

•

Chapter 11: Morphing Facial Animation. They walk, they jump, and yesthey even talk! Your
game's characters really come to life when you use the facial animation techniques shown in this
chapter. If you don't know what facial animation can do for you, check out a game such as Electronic
Art's Medal of Honor: Frontline or Interplay's Baldur's Gate: Dark Alliance.

•

Chapter 12: Using Particles in Animation. What game nowadays doesn't have flashy, smoking,
zinging blobs of graphical pixels that we call particles? Yours, you say? Well, no worriesthis chapter
will show you how to effectively add particle animation into your game and get those flashy blobs of
particles flying around in no time.

•

Chapter 13: Simulating Cloth and Soft Body Mesh Animation. Close your eyes and imagine your
game's hero wearing a silky cape that reaches the ground and flutters with every small gust of wind.
Using cloth simulation, you can give your hero a cape, clothes, and much more than you ever
imagined. Top it off with the use of soft body meshes that deform to the slightest touch, and you have
yourself some fine advanced animation techniques!

•

Chapter 14: Using Animated Textures. I'm saving the best for last. This chapter will show you how
to animate the textures you use to paint your 3D world. Animated fire, flowing water, and so much
more is possible using animated textures, and this chapter will show you how!

•

Introduction

5

Whew! There are some major topics in here, all for your eyes only! As I wrote this book, I couldn't help but
wonder what type of applications you'll apply these techniques to. I can envision some incredible games using
the various techniques, and I can tell that you're just the person for the job. After you read this book (if you're
like me, that means reading it at least six times), I believe you'll find some useful ways to apply your
newfound knowledge to your game projects.

I know you're anxious to get going, so let me once again say welcome, and thank you for buying my book. I
hope it helps you learn some of the concepts and techniques currently used in 3D animation. Have fun, and
enjoy!

Introduction

6

Part One: Preparations
Chapter 1: Preparing for the Book

7

Chapter 1: Preparing for the Book

Overview

Alpha and Omega−the beginning and the end. To all things there is a beginning, and in this book, this chapter
represents the start of a grand journey into the world of advanced animation. Behind you is the power of
Microsoft's DirectX SDK; in front of you lies a long and winding road, filled with uncertainty. Before you set
off, however, there are a number of things you need to do to ensure that your experience is a joyous one.

This chapter contains information that will help you prepare yourself for the topics and code in the book, from
installing the DirectX SDK to understanding how to use a series of helper functions to speed up your
development time. Before you delve into this book, I highly recommend you give this chapter a full read and
take your time setting up DirectX and your compiler. After this chapter, you should be ready to start your epic
journey!

By the end of this book, you'll have found that the world of advanced animation is only as difficult or as easy
as you make it. With the knowledge you already possess and this book at your side, I'm sure it will be easy for
you!

Installing the DirectX SDK

Welcome to the grand world of DirectX programming! If you haven't already done so, install the Microsoft
DirectX Software Development Kit (DX SDK) before you delve into the text and code in this book. If you're
new to the DirectX installation process, don't worry−it's all been streamlined so that you don't need to do
much more than click a few buttons. As for you veteran DirectX coders, you should still take a quick gander
at the installation guidelines here in case there's something you haven't seen.

At the time of this book's printing, Microsoft's DirectX SDK version 9 has been released. It's always best to
remove any past installations of the DirectX SDK before you install the newest one. Don't worry−you're not
losing any precious code because each new version of the DirectX SDK comes jam−packed with each
previous release's code intact! That's right, with DirectX 9 (and subsequent DirectX releases), you have
complete access to every component ever made in DirectX, from the oldest DirectDraw surface object to the
newest 3D−accelerated device objects! Don't fret, DirectX 8 users−your version 8 code will still work with
version 9, since version 9 contains all previous versions' objects.

For DirectX 8 users, the upgrade from the DirectX 8 SDK to the DirectX 9 SDK may seem a little shocking,
but once you get around the fluff, you'll realize that not much has changed. It's just that the DirectX 9 SDK
adds a couple of new features over version 8.

Microsoft has packed the DirectX SDK into a single, easy−to−execute installation package, which by a matter
of chance (and good planning) you'll find on this book's CD−ROM. The installation process for DirectX has
remained the same over the last few versions, so if you've installed it before, you already know what's
involved. With DirectX 9, the installation screen (shown in Figures 1.1 and 1.2) has changed only slightly in
appearance−the basic installation steps remain the same throughout all versions to date.

8

Figure 1.1: The DirectX 9 SDK introduction screen gives you a few options−most importantly the installation
option for the DirectX 9 SDK.

Figure 1.2: Clicking on Install DirectX 9.0 SDK will eventually lead you to the InstallShield Wizard, where
you can decide which of the SDK components to install.
To make things easier, the fine folks at Premier Press have created a menu on the CD interface so you can
easily locate programs. It just so happens that one of those programs is the DirectX SDK. To access the menu
(if it didn't appear automatically when you inserted the CD−ROM), click on the Start button and select Run.
Type D:\start_here.html (where D is your CD−ROM drive letter) in the text box and click the OK button.
You will be presented with the Premier Press license agreement. Please read the agreement, and if you agree
to the terms, click I Agree to continue. The CD−ROM's main interface will appear, at which point you can
locate and click the Install DirectX SDK option.

Once you're at the Microsoft DirectX 9.0 SDK − InstallShield Wizard dialog box, you get to decide which
components to include with your installation. If you're a new user you should click Next to install the default
components. Veteran users may want to tweak the settings a bit to fit the installation to their exact needs.
Either way, make sure to click Next and follow the onscreen directions to complete your DirectX 9.0 SDK
installation. Before you know it, you'll be ready to start working with the SDK!

 Chapter 1: Preparing for the Book

9

Choosing the Debug or Retail Libraries

Another important part of using the DirectX SDK is selecting the developer run−time libraries you'll be using.
These libraries are different from the end−user run−time libraries; they allow you to choose whether to use the
debug or retail libraries.

Developers use the debug run−time libraries to help track bugs in their projects. The debug libraries provide
helpful messages during compile time and perform special operations during execution. For instance,
DirectSound fills sound buffers with static sound so you can hear it while testing for valid buffers.

When you are developing your game project, it is recommended that you use the debug run−time libraries,
switching to the retail run−times to perform the final tests on your games. To switch between the two
run−time libraries, open the Control Panel and select the DirectX icon. The DirectX Properties dialog box will
appear, as shown in Figure 1.3.

Figure 1.3: The DirectX system properties give you a multitude of options. In this case, the Direct3D tab has
been selected, and you can see that the debug libraries are in use at the highest debug output level.
In Figure 1.3, you can see that I've clicked on the Direct3D tab. In this tab, you can select a run−time library
to use in the Debug/Retail D3D Runtime section. You can choose either Use Debug Version of Direct3D or
Use Retail Version of Direct3D. I recommend sticking with Use Debug Version of Direct3D whenever
possible.

However, if you decide to use the debug libraries, be warned that your programs may not operate at peak
efficiency. The debug libraries are made for debugging your DirectX applications; certain features are put in
place that purposely alter the way DirectX works. For example, the debug libraries will spew debug
information about every DirectX interface, how it's used, and how it's freed. Every little nuance is logged, thus
slowing down your application's execution.

 Choosing the Debug or Retail Libraries

10

To adjust the number of these debug messages Direct3D will pass to your debugger, you can adjust the slider
bar in the Debug Output Level portion of the Direct3D properties. The higher the debug level, the more
messages you'll receive. I recommend sliding the bar all the way to the right so you get every debug message
during your project's development. Again, you'll slow down the execution of your program, but in the end
you'll get to see everything that is happening behind the scenes. When your project is ready for retail, quickly
change the libraries that you're using in the DirectX control panel.

When you have set the run−time library and debug level, click the OK button to close the DirectX Properties
dialog box.

Configuring Your Compiler

After you've installed the DirectX SDK, you need to prepare your compiler to work with the book's code and
demos. Even though the DirectX SDK installation program does a good job of setting up some of the compiler
options for you, I want to go over every setting that you'll need to configure.

Setting the DirectX SDK Directories

The first (and most important) setting is for the DirectX SDK installation directories. Your compiler needs to
know where to find the DirectX include and library files. Typically, the DirectX SDK installation program
will insert the SDK directories into Microsoft's Visual C/ C++ compiler for you, but you might need to add
these directories yourself at some point.

To add the directories in MSVC version 6, open your compiler and click Tools. Select Options from the list
and click the Directories tab. The Options dialog box will open, as shown in Figure 1.4.

Figure 1.4: The Options dialog box displays a list of directories that Visual C/C++ searches for header and
library files.
Visual Studio .NET users need to click on Tools, and then select the Projects folder in the Options dialog box.
From there, select the VC++ Directories to open up the directory list on the right side of the Options dialog
box (as shown in Figure 1.5).

 Configuring Your Compiler

11

Figure 1.5: Selecting VC++ Directories will bring up the directory list on the right side of the dialog box in
Visual Studio .NET.
With either compiler, you'll notice the directories listed that your compiler searches for various libraries and
include files. Notice the Show Directories For drop−down menu. You should start by setting the header file
directory for the DirectX SDK, so select Include Files from the drop−down menu.

Next, click the New button (the little hatched box to the left of the red X). The focus will be shifted to a new
line in the Directories section of the dialog box. Click on the ellipsis button to the right of the text cursor to
open the Choose Directory dialog box. Locate the DirectX header file installation directory and click OK.

Now you need to set the DirectX SDK library directory, so click on the Show Directories For drop−down
menu again and select Library Files. Repeat the process of clicking on the New button and locating the library
directory of your DirectX SDK installation directory. When you finish, your compiler will be ready to use the
DirectX directories for compiling.

Linking to the DirectX Libraries

After you've set the DirectX installation directories, the next important step is to link the libraries that you'll
be using in your project. Note that linking files is project−specific, so make sure you have your game project
open before you continue.

For MSVC 6, click on Project and select Settings. Click on the Link tab. The Project Settings Link properties
will appear, as shown in Figure 1.6.

 Linking to the DirectX Libraries

12

Figure 1.6: The Project Settings Link properties allow you to specify exactly which library files to link to your
application.
For Visual Studio .NET, open your project and then highlight it in the Solution Explorer (as shown in Figure
1.7). Next, click on Project and then Properties to open the project's Property Pages dialog box. In the folder
display, select the Linker folder and click on Input. On the right of the Property Pages dialog box, you'll see
your project's link settings (as shown in Figure 1.8).

Figure 1.7: Visual Studio .NET lists all files and projects in use in the Solution Explorer.

Figure 1.8: The project's Property Pages dialog box is where you are allowed to modify your linker settings,

 Linking to the DirectX Libraries

13

among other things.
For this book, I only use the Direct3D, D3DX, and DirectShow libraries, so those are the only libraries you
need to add to the link process (aside from the standard application libraries already listed in the
Object/Library Modules box). To add the required libraries, add the following text to the Object/Library
Modules text box (for MSVC 6) or the Additional Dependencies text box (for VS.NET):

d3d9.lib d3dx9.lib d3dxof.lib dxguid.lib winmm.lib

If you are using DirectShow to create animated textures, you need to add either strmbasd.lib or strmbase.lib to
the Object/Library Modules text box. Consult Chapter 14, "Using Animated Textures," for the specifics on
using DirectShow libraries in your projects.

At this point, you're ready to finish up by setting your compiler's default char state.

Setting the Default char State

Being an old−school programmer, I tend to follow the old ways, especially when it comes to dealing with the
default state of the char data type. As its default setting, the Visual C/C++ compiler expands all char data
types to signed char types. I don't know about you, but I use unsigned char data types more often
than signed char types, so setting this default unsigned state is a priority.

To set the default state of the char data type to unsigned char in Visual C/C++ 6, select Project and
then Settings. Click on the C/C++ tab (as shown in Figure 1.9), select General from the Category drop−down
menu, and append /J to the end of the Project Options text. Click OK and you'll be set to use unsigned
char as the default state whenever you specify a char variable.

Figure 1.9: The Project Settings dialog box allows you to add specific compiler commands in the Project
Options text box, as well as change a multitude of other compiler options.
Visual Studio .NET users need to select the project in the Solution Explorer and click Project, Properties. In
the folder list, select the C/C++ folder and click on Command Line. In the Additional Options text box, type
/J

And that wraps it up for setting up DirectX and your compiler! Now for you DirectX pros, I'm sure the
installation is a breeze, and once you've gone through the process, you'll be ready to start coding in no time
flat.

 Setting the Default char State

14

Whoa, hold it there, partner! Before you move on, let's take a moment to discuss something that is extremely
important when it comes to some serious program development−creating a reusable library of helper functions
to speed up your development. I've developed an entire set of functions that will help you skip the mundane
DirectX work, such as initializing the display modes and loading/rendering meshes.

Let's take a closer look at these helper functions I've created, how they're used throughout the book, and how
you can use them in your own projects.

Using the Book's Helper Code

Since this is an advanced book, I assume you are at least proficient with DirectX. I'm talking proficient
enough to understand how Direct3D works in relation to the rendering pipeline, using vertex buffers, textures,
and regular meshes−you know, the ultimate basics of getting anything done with Direct3D.

To help speed up development time and reduce time spent on the mundane repetitive code, I have created a
small set of functions and objects that are used throughout this book. These functions help you deal with those
Direct3D features you are likely to use the most, such as initializing Direct3D and loading and rendering
meshes.

Along with the functions, I've also created a set of objects that extend the usefulness of certain D3DX objects.
These objects are extended versions of the DirectX 9 D3DX objects D3DXFRAME and
D3DXMESHCONTAINER, as well as some that can help you parse .X files in your own projects.

So not to make a short story longer than it has to be, let's get right to the point and see what functions and
objects are at your disposal, starting with the helper objects.

Using the Helper Objects

As I previously mentioned, I've created a series of objects that extend the usefulness of the D3DXFRAME and
D3DXMESHCONTAINER objects that come as part of the D3DX library. If you are not familiar with those
objects, then let me give you a quick overview.

The D3DXFRAME object helps form a hierarchy of reference frames. These reference frames are used to
connect a series of meshes together, with each frame having its own transformation to apply to the mesh
connected to it. In this way of using frames to point to meshes, you can minimize the number of meshes used
because you can reference meshes instead of having to reload them.

For example, imagine you have a car that consists of a body and four wheels. The body and wheel form two
meshes. These two meshes are used in conjunction with five frames (one for the body and four for the tires).
When rendering, each frame's transformation is used to position and render the mesh that the frame uses. That
means one frame transforms and renders the body once, while the other frames transform and render the tire
mesh four times.

As for the D3DXMESHCONTAINER object, it is used to contain a mesh as well as to link to a series of other
meshes (using a linked list). Why not just use the ID3DXBaseMesh object instead, you ask? Well, there's
more to D3DXMESHCONTAINER than you might expect. First, you can store any type of mesh, whether it's
regular, skinned, or progressive. Second, the D3DXMESHCONTAINER object holds material and effect data.

For complete information on the D3DXFRAME and D3DXMESHCONTAINER objects, please consult the
DirectX SDK documents. For now, let's see how I've managed to extend the usefulness of those two objects

 Using the Book's Helper Code

15

(both of which are defined in the \common\Direct3D.h source file of this book's CD−ROM), starting with
D3DXFRAME.

Extending D3DXFRAME

By itself, the D3DXFRAME object is very useful, but unfortunately it lacks a few very essential tidbits of
information, namely data for containing transformations when animating meshes, functions to handle the
animation data, and a default constructor and destructor.

To correct these omissions, I have created an extended version of D3DXFRAME, which I call
D3DXFRAME_EX. This new object adds a total of two D3DXMATRIX objects and six functions to the mix.
The two matrix objects contain the original transformation of the frame (before any animation transformations
are applied) and the combined transformation from all parent frames to which the frame is connected (in the
hierarchy).

Here's how I defined the D3DXFRAME_EX structure along with the two matrix objects:

struct D3DXFRAME_EX : D3DXFRAME
{
 D3DXMATRIX matCombined; // Combined matrix
 D3DXMATRIX matOriginal; // Original transformation

You'll learn about these two matrix objects and how to work with them later on in the book. For now, let's
just move on to the functions, starting with the constructor. The constructor has the job of clearing out the
structure's data (including the original data from the base D3DXFRAME object).

D3DXFRAME_EX()
{
 Name = NULL;
 pMeshContainer = NULL;
 pFrameSibling = pFrameFirstChild = NULL;
 D3DXMatrixIdentity(&matCombined);
 D3DXMatrixIdentity(&matOriginal);
 D3DXMatrixIdentity(&TransformationMatrix);
}

On the flip side, the destructor has the job of freeing the data used by the D3DXFRAME_EX object.

~D3DXFRAME_EX()
{
 delete [] Name; Name = NULL;
 delete pFrameSibling; pFrameSibling = NULL;
 delete pFrameFirstChild; pFrameFirstChild = NULL;
}

As you can see, the constructor and destructor are pretty typical in the way those things normally go−initialize
the object's data and free the resources when done. What comes next are a handful of functions that help you
search for a specific frame in the hierarchy, reset the animation matrices to their original states, update the
hierarchy after modifying a transformation, and count the number of frames in the hierarchy.

The first function, Find, is used to find a specific frame in the hierarchy and return a pointer to it. If you're
not aware of this, each D3DXFRAME object (and the derived D3DXFRAME_EX object) has a Name data
buffer, which you're free to fill in with whatever text you find appropriate. Typically, frames are named after
bones that define the hierarchy (as I will discuss in Chapter 4, "Working with Skeletal Animation").

Using the Helper Objects

16

To find a specific frame (and retrieve a pointer to the frame's object), just call the Find function, specifying
the name of the frame you wish to find as the one and only parameter.

// Function to scan hierarchy for matching frame name
D3DXFRAME_EX *Find(const char *FrameName)
{
 D3DXFRAME_EX *pFrame, *pFramePtr;

 // Return this frame instance if name matched
 if(Name && FrameName && !strcmp(FrameName, Name))
 return this;

 // Scan siblings
if((pFramePtr = (D3DXFRAME_EX*)pFrameSibling)){

 if((pFrame = pFramePtr−>Find(FrameName)))
 return pFrame;
 }

 // Scan children
 if((pFramePtr = (D3DXFRAME_EX*)pFrameFirstChild)) {
 if((pFrame = pFramePtr−>Find(FrameName)))
 return pFrame;
 }

 // Return none found
 return NULL;
}

The Find function compares the name you passed to the current frame's name; if they match, the pointer to
the frame is returned. If no match is found, then the linked list is scanned for matches using a recursive call to
Find.

Next in the line of added functions is Reset, which scans through the entire frame hierarchy (which, by the
way, is a linked list of child and sibling objects). For each frame found, it copies the original transformation to
the current transformation. Here's the code:

// Reset transformation matrices to originals
void Reset()
{
 // Copy original matrix
 TransformationMatrix = matOriginal;

 // Reset sibling frames
 D3DXFRAME_EX *pFramePtr;
 if((pFramePtr = (D3DXFRAME_EX*)pFrameSibling))
 pFramePtr−>Reset();

 // Reset child frames
 if((pFramePtr = (D3DXFRAME_EX*)pFrameFirstChild))
 pFramePtr−>Reset();
}

Typically, you call Reset to restore the frame hierarchy's transformation back to what it was when you
created or loaded the frames. Again, the entire frame hierarchy is explained better in Chapter 4 And not to
keep you confused, but the next function in the list is UpdateHierarchy, which has the job of rebuilding
the entire frame hierarchy's list of transformations after any one of those transformations has been altered.

Using the Helper Objects

17

Rebuilding the hierarchy is essential to making sure the mesh is rebuilt or rendered correctly after you have
updated an animation. Again, skeletal animation stuff here−just consult Chapter 4 for more information. For
now, let's just check out the code, which takes an optional transformation matrix to apply to the root frame of
the hierarchy.

// Function to combine matrices in frame hiearchy
void UpdateHierarchy(D3DXMATRIX *matTransformation = NULL)
{
 D3DXFRAME_EX *pFramePtr;
 D3DXMATRIX matIdentity;

 // Use an identity matrix if none passed
 if(!matTransformation) {
 D3DXMatrixIdentity(&matIdentity);
 matTransformation = &matIdentity;
 }

 // Combine matrices w/supplied transformation matrix
 matCombined = TransformationMatrix * (*matTransformation);

 // Combine w/sibling frames
 if((pFramePtr = (D3DXFRAME_EX*)pFrameSibling))
 pFramePtr−>UpdateHierarchy(matTransformation);

 // Combine w/child frames
 if((pFramePtr = (D3DXFRAME_EX*)pFrameFirstChild))
 pFramePtr−>UpdateHierarchy(&matCombined);
}

The simplicity of the UpdateHierarchy code is pretty neat when you think about it. Explained better in
later chapters, the UpdateHierarchy function transforms the frames by their own transformation matrix
(stored in matTransformation) by a matrix that is passed as the optional parameter of the function. This
way, a frame inherits the transformation of its parent frame in the hierarchy, meaning that each transformation
applied winds its way down the entire hierarchy.

Last, with the D3DXFRAME_EX object you have the Count function, which helps you by counting the
number of frames contained within the hierarchy. This is accomplished using a recursive call of the Count
function for each frame contained in the linked list. For each frame found in the list, a counter variable (that
you provide as the parameter) is incremented. Check out the Count code to see what I mean.

void Count(DWORD *Num)
{
 // Error checking
 if(!Num)
 return;

 // Increase count of frames
(*Num)+=1;

 // Process sibling frames
 D3DXFRAME_EX *pFrame;
 if((pFrame=(D3DXFRAME_EX*)pFrameSibling))
 pFrame−>Count(Num);

 // Process child frames
 if((pFrame=(D3DXFRAME_EX*)pFrameFirstChild))
 pFrame−>Count(Num);
 }

Using the Helper Objects

18

};

And that pretty much wraps up the D3DXFRAME_EX object. If you're used to using the D3DXFRAME object
(and you should be if you're a DX9 user), then everything I've just shown you should be pretty easy to
understand.

Moving on, let me now introduce you to the next helper object that I've created to extend the usefulness of the
D3DXMESHCONTAINER object.

Extending D3DXMESHCONTAINER

Whereas you might be used to using the ID3DXMesh object to contain your mesh data, you may have found
it a pain to store the mesh's material and effects data separately. Not only that, but what about using the other
D3DX mesh objects, such as ID3DXPMesh and ID3DXSkinMesh? Why not just create a single mesh
object that represents all mesh types and contains all material data along with it?

In fact, there is such an object−it's called D3DXMESHCONTAINER! The D3DXMESHCONTAINER object
stores a pointer to your mesh data (regardless of the mesh type used) and all material and effects data. It also
contains pointers to your mesh's adjacency buffer and skinned mesh data object. And as if that wasn't enough,
the D3DXMESHCONTAINER contains pointers to form a linked list of mesh objects.

What could I possibly do to extend the usefulness of the already nifty D3DXMESHCONTAINER, you ask?
Well, for one thing, D3DXMESHCONTAINER has no default constructor or destructor. Also, textures data is
missing−there's only a buffer that contains the names of the textures to use for the mesh. Last, there's no
support for storing skinned mesh animation data.

No problem, because extending the D3DXMESHCONTAINER is simple! The new version, which I call
D3DXMESHCONTAINER_EX, adds a total of four data objects and three functions. The data objects include
an array of texture objects, a skinned mesh object (to store an animated skinned mesh), and two arrays of
matrix objects.

Here's how I defined the D3DXMESHCONTAINER_EX object, as well as declaring the four variables I
mentioned:

struct D3DXMESHCONTAINER_EX : D3DXMESHCONTAINER
{
 IDirect3DTexture9 **pTextures;
 ID3DXMesh *pSkinMesh;

 D3DXMATRIX **ppFrameMatrices;
 D3DXMATRIX *pBoneMatrices;

The pTextures array of pointers contains the texture objects used to render the mesh. I build the
pTextures array up by first loading a mesh and then querying the texture buffer
(D3DXMESHCONTAINER::pMaterials) for the file names of the textures to use.

As for pSkinMesh, you only use it when you are using a skinned mesh (which I will discuss in Chapter 4
through 7). You see, when loading a skinned mesh, the actual mesh data is stored in
D3DXMESHCONTAINER::MeshData::pMesh. The only problem is, you need another mesh container to
store the skinned mesh as it is animated. That is the purpose of pSkinMesh.

Using the Helper Objects

19

Last, you'll find ppFrameMatrices and pBoneMatrices. Not to drag it out, but these are also used for
skinned meshes, and these matrix objects are explained in Chapter 4. Just so it makes sense at this point, a
skinned mesh animates by attaching the vertices of the mesh to an underlying hierarchy of bones. As the
bones move, so do the vertices. ppFrameMatrices and pBoneMatrices are used to map the vertices to
the bones.

Aside from the variables in D3DXMESHCONTAINER_EX, there are also a few functions. The first two are the
constructor and destructor:

D3DXMESHCONTAINER_EX()
{
 Name = NULL;
 MeshData.pMesh = NULL;
 pMaterials = NULL;
 pEffects = NULL;
 NumMaterials = 0;
 pAdjacency = NULL;
 pSkinInfo = NULL;
 pNextMeshContainer = NULL;
 pTextures = NULL;
 pSkinMesh = NULL;
 ppFrameMatrices = NULL;
 pBoneMatrices = NULL;
}

~D3DXMESHCONTAINER_EX()
{
 if(pTextures && NumMaterials) {
 for(DWORD i=0;i<NumMaterials;i++)

ReleaseCOM(pTextures[i]);
 }
 delete [] pTextures; pTextures = NULL;
 NumMaterials = 0;

 delete [] Name; Name = NULL;
 delete [] pMaterials; pMaterials = NULL;
 delete pEffects; pEffects = NULL;

 delete [] pAdjacency; pAdjacency = NULL;
 delete [] ppFrameMatrices; ppFrameMatrices = NULL;
 delete [] pBoneMatrices; pBoneMatrices = NULL;

 ReleaseCOM(MeshData.pMesh);
 ReleaseCOM(pSkinInfo);
 ReleaseCOM(pSkinMesh);

 delete pNextMeshContainer; pNextMeshContainer = NULL;
}

The constructor and destructor have the task of initializing the data to a known state and releasing the data
used by the object, respectively. You'll notice the use of the ReleaseCOM macro, which I'll describe to you
in the upcoming section, "Checking Out the Helper Functions." Basically, ReleaseCOM is a macro that
safely releases a COM interface and sets the interface pointer to NULL.

The third function in D3DXMESHCONTAINER_EX is Find, which lets you scan the linked list of meshes for
a specifically named mesh, much like D3DXFRAME_EX::Find. A quick string compare is used to check the
names, and a recursive call to Find is used to scan the entire linked list.

Using the Helper Objects

20

D3DXMESHCONTAINER_EX *Find(char *MeshName)
{
 D3DXMESHCONTAINER_EX *pMesh, *pMeshPtr;

 // Return this mesh instance if name matched
 if(Name && MeshName && !strcmp(MeshName, Name))
 return this;

 // Scan next in list
 if((pMeshPtr = (D3DXMESHCONTAINER_EX*)pNextMeshContainer)) {
 if((pMesh = pMeshPtr−>Find(MeshName)))
 return pMesh;
 }

 // Return none found
 return NULL;
 }
};

And that does it for the helper objects! The D3DXFRAME_EX and D3DXMESHCONTAINER_EX objects are
extremely helpful when it comes to dealing with Direct3D; as such, you should spend as much time as you
can getting used to these two objects. I think you'll find them very useful in your own projects.

Aside from the helper objects, there are a number of helper functions that I'd like to introduce to you, which
should help you alleviate the mundane tasks common to most Direct3D−related projects.

Checking Out the Helper Functions

The helper functions that I decided to implement for this book are few in number, but they represent the
majority of code that you're likely to use in all your projects. These functions perform tasks including
releasing COM interfaces, initializing Direct3D, loading meshes and vertex shaders, updating skinned meshes,
and rendering meshes using standard methods and vertex shaders.

Let me start at the top of the list with a function (or rather, a macro) that you can use to safely release your
COM interfaces.

Releasing COM Interfaces

Starting off the batch of helper functions (which are stored in the \common\Direct3D.cpp file of this book's
CD−ROM) is the macro ReleaseCOM, which you can use to safely release COM interfaces in your project,
even if those objects are not valid (NULL pointers).

#define ReleaseCOM(x) { if(x!=NULL) x−>Release(); x=NULL; }

ReleaseCOM takes one parameter, which is the pointer to the COM interface you want to safely release. For
example, the following bit of code demonstrates how to load and release a texture object using the
ReleaseCOM macro:

IDirect3DTexture9 *pTexture = NULL;
D3DXCreateTextureFromFile(pDevice, "texture.bmp", &pTexture);
ReleaseCOM(pTexture);

In this code, the ReleaseCOM macro will release the IDirect3DTexture9 interface and set the
pTexture pointer back to NULL. Even if the texture failed to load and pTexture is NULL, calling

 Checking Out the Helper Functions

21

ReleaseCOM has no adverse effects.

Going along, the next helper function aids you by initializing Direct3D.

Initializing Direct3D

Next in line for the helper functions is InitD3D, which you use to initialize Direct3D and create a 3D device
and display window. I tried to keep the code as simple as possible, performing the typical initialization code
you would use in any Direct3D application, but in order to make the function work with all the demos in this
book, I had to add a couple little extras.

To start with, the InitD3D function uses five parameters (and a standard COM HRESULT return code), as
shown here in the function prototype:

HRESULT InitD3D(IDirect3D9 **ppD3D,
 IDirect3DDevice9 **ppD3DDevice,
 HWND hWnd,
 BOOL ForceWindowed = FALSE,
 BOOL MultiThreaded = FALSE);

As I show you the function's code, you'll gain an understanding of what each parameter does. Starting off,
there are a few variables that are used throughout the InitD3D function:

HRESULT InitD3D(IDirect3D9 **ppD3D,
 IDirect3DDevice9 **ppD3DDevice,
 HWND hWnd,
 BOOL ForceWindowed,
 BOOL MultiThreaded)
{
 IDirect3D9 *pD3D = NULL;
 IDirect3DDevice9 *pD3DDevice = NULL;
 HRESULT hr;

In this code bit you see the local IDirect3D9 and IDirect3DDevice9 objects used to initialize
Direct3D and the 3D device. These variables later are stored in the ppD3D and ppD3DDevice objects you
pass to the InitD3D function. Finally, there is an HRESULT variable that contains the return code of any
Direct3D calls made. If any call returns an error (as determined by the FAILED macro), the result code is
returned to the caller of the InitD3D function.

The very first thing the InitD3D function does is make sure you have passed valid pointers to your Direct3D
object, 3D device object, and window handle. Failing to do so forces InitD3D to return an error code. From
there, Direct3DCreate9 is called to create the Direct3D interface and store the resulting pointer in the
ppD3D pointer (supplied by you when you called InitD3D).

// Error checking
 if(!ppD3D || !ppD3DDevice || !hWnd)
 return E_FAIL;

 // Initialize Direct3D
 if((pD3D = Direct3DCreate9(D3D_SDK_VERSION)) == NULL)
 return E_FAIL;
 *ppD3D = pD3D;

So far, nothing out of the ordinary. What's coming up, however, might throw you for a loop. The demo

Checking Out the Helper Functions

22

programs on this book's CD−ROM give you the option of running in a window or full−screen. Sometimes
programs must run in a window, so to make sure the demo runs in a window, there is a ForceWindowed
flag in the InitD3D prototype. When the flag is set to FALSE, the user is asked if he would like to use a
full−screen video mode. If ForceWindowed is set to TRUE, the user is not asked to run in full−screen
mode, and the InitD3D function assumes windowed mode was selected.

The following bit of code will examine the ForceWindowed flag; if it is set to FALSE, the function will
display a message and wait for the user to select whether or not they want to use full−screen mode. If the
ForceWindowed flag is set to TRUE, or if the user chooses to use windowed mode, Mode is set to IDNO;
otherwise, Mode is set to IDYES, meaning that the application is to run in full−screen mode.

 // Ask if user wants to run windowed or fullscreen
 // or force windowed if flagged to do such
 int Mode;
 if(ForceWindowed == TRUE)
 Mode = IDNO;
 else
 Mode = MessageBox(hWnd, \
 "Use fullscreen mode? (640x480x16)", \
 "Initialize D3D", \
 MB_YESNO | MB_ICONQUESTION);

Now, if the user chooses to use a full−screen video mode (I use 640×480×16), then the appropriate
presentation parameters are set using the standard methods, as seen in the DX SDK samples.

 // Set the video (depending on windowed mode or fullscreen)
 D3DPRESENT_PARAMETERS d3dpp;
 ZeroMemory(&d3dpp, sizeof(d3dpp));

 // Setup video settings based on choice of fullscreen or not
 if(Mode == IDYES) {

 //
 // Setup fullscreen format (set to your own if you prefer)
 //
 DWORD Width = 640;
 DWORD Height = 480;
 D3DFORMAT Format = D3DFMT_R5G6B5;

 // Set the presentation parameters (use fullscreen)
 d3dpp.BackBufferWidth = Width;
 d3dpp.BackBufferHeight = Height;
 d3dpp.BackBufferFormat = Format;
 d3dpp.SwapEffect = D3DSWAPEFFECT_FLIP;
 d3dpp.Windowed = FALSE;
 d3dpp.EnableAutoDepthStencil = TRUE;
 d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
 d3dpp.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT;
 d3dpp.PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT;
 } else {

If the user chooses to use the windowed video mode, or if the ForceWindowed flag was set to TRUE, then
a windowed mode is used instead of full−screen. Before setting up the appropriate presentation data as you
did in full−screen mode, the client area of the window is resized to 640×480. From there, you set up the
presentation parameters as you normally do for a windowed mode application.

 //

Checking Out the Helper Functions

23

 // Setup windowed format (set to your own dimensions below)
 //

 // Get the client and window dimensions
 RECT ClientRect, WndRect;
 GetClientRect(hWnd, &ClientRect);
 GetWindowRect(hWnd, &WndRect);

 // Set the width and height (set your dimensions here)
 DWORD DesiredWidth = 640;
 DWORD DesiredHeight = 480;
 DWORD Width = (WndRect.right − WndRect.left) + \
 (DesiredWidth − ClientRect.right);
 DWORD Height = (WndRect.bottom − WndRect.top) + \
 (DesiredHeight − ClientRect.bottom);

 // Set the window's dimensions
 MoveWindow(hWnd, WndRect.left, WndRect.top, \
 Width, Height, TRUE);

 // Get the desktop format
 D3DDISPLAYMODE d3ddm;
 pD3D−>GetAdapterDisplayMode(D3DADAPTER_DEFAULT, &d3ddm);

 // Set the presentation parameters (use windowed)
 d3dpp.BackBufferWidth = DesiredWidth;
 d3dpp.BackBufferHeight = DesiredHeight;
 d3dpp.BackBufferFormat = d3ddm.Format;
 d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
 d3dpp.Windowed = TRUE;
 d3dpp.EnableAutoDepthStencil = TRUE;
 d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
 d3dpp.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT;
 d3dpp.PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT;
}

At this point, you're ready to initialize the 3D device using the IDirect3D::CreateDevice function. In
the following code, CreateDevice is called, specifying the
D3DCREATE_MIXED_VERTEXPROCESSING flag, as well as the D3DCREATE_MULTITHREADED flag if
you set MultiThreaded to TRUE in your call to InitD3D.

 // Create the 3−D device
 DWORD Flags= D3DCREATE_MIXED_VERTEXPROCESSING;
 if(MultiThreaded == TRUE)
 Flags |= D3DCREATE_MULTITHREADED;
 if(FAILED(hr = pD3D−>CreateDevice(
 D3DADAPTER_DEFAULT,
 D3DDEVTYPE_HAL, hWnd, Flags,
 &d3dpp, &pD3DDevice)))
 return hr;
 // Store the 3−D device object pointer
 *ppD3DDevice = pD3DDevice;

At the end of the last code bit, you can see that I've stored the resulting 3D device pointer in ppD3DDevice,
which you passed to InitD3D. From here on out, things are pretty simple−you set your projection
transformation matrix using D3DXMatrixPerspectiveFovLH to compute the transformations and
IDirect3DDevice9::SetTransform to set it.

Checking Out the Helper Functions

24

 // Set the perspective projection
 float Aspect = (float)d3dpp.BackBufferWidth / (float)d3dpp.BackBufferHeight;
 D3DXMATRIX matProjection;
 D3DXMatrixPerspectiveFovLH(&matProjection, D3DX_PI/4.0f, Aspect, 1.0f, 10000.0f);
 pD3DDevice−>SetTransform(D3DTS_PROJECTION, &matProjection);

Finally, in the InitD3D function, you set your default lighting, z−buffer, and alpha states. Here I'm disabling
lighting, alpha blending, and alpha testing, while enabling z−buffering. Also, the default texture states are set
to use modulation, and the texture samplings are set to linear min/magnification.

 // Set the default render states
 pD3DDevice−>SetRenderState(D3DRS_LIGHTING, FALSE);
 pD3DDevice−>SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE);
 pD3DDevice−>SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
 pD3DDevice−>SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);

 // Set the default texture stage states
 pD3DDevice−>SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
 pD3DDevice−>etTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);
 pD3DDevice−>etTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);

 // Set the default texture filters
 pD3DDevice−>SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
 pD3DDevice−>SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);

 return S_OK;
}

Now that you've seen the code, how about learning how to put the InitD3D function to use? I tried to make
InitD3D as easy as possible to use, so the following bit of code should work for the majority of your
programs.

// Declare the 3−D device and Direct3D objects you'll be using
IDirect3D9 *pD3D = NULL;
IDirect3DDevice9 *pD3DDevice = NULL;

// Initialize the video mode, asking the user if they wish
// to use fullscreen or not.
InitD3D(&pD3D, &pD3DDevice, hWnd);

As you go through the code for the demos in this book, you'll see how the majority of them use the previously
shown code to initialize Direct3D. Only one application uses multi−threading, and another forces windowed
mode. You'll get a feel for using InitD3D fairly quickly.

Let's move on to the next helper function, one that helps you load your vertex shaders and set up your vertex
declaration.

Loading Vertex Shaders

Moving on in the list of helper functions, you'll find LoadVertexShader. That's right, with all the vertex
shader action going on in this book, you'll use this function to help you load your vertex shaders, as well as
prepare your vertex shader declarations.

Take a peek at the LoadVertexShader function prototype:

HRESULT LoadVertexShader(

Checking Out the Helper Functions

25

 IDirect3DVertexShader9 **ppShader,
 IDirect3DDevice9 *pDevice,
 char *Filename,
 D3DVERTEXELEMENT9 *pElements = NULL,
 IDirect3DVertexDeclaration9 **ppDecl = NULL);

The actual code to the LoadVertexShader function is short, so instead of breaking it up to explain it, I'll
give it to you all at once.

HRESULT LoadVertexShader(IDirect3DVertexShader9 **ppShader,
 IDirect3DDevice9 *pDevice,
 char *Filename,
 D3DVERTEXELEMENT9 *pElements,
 IDirect3DVertexDeclaration9 **ppDecl)
{
 HRESULT hr;

 // Error checking
 if(!ppShader || !pDevice || !Filename)

return E_FAIL;

 // Load and assemble the shader
 ID3DXBuffer *pCode;
 if(FAILED(hr=D3DXAssembleShaderFromFile(Filename, NULL, \
 NULL, 0, \
 &pCode, NULL)))
 return hr;
 if(FAILED(hr=pDevice−>CreateVertexShader(\
 (DWORD*)pCode−>GetBufferPointer(), ppShader)))
 return hr;
 pCode−>Release();

 // Create the declaration interface if needed
 if(pElements && ppDecl)
 pDevice−>CreateVertexDeclaration(pElements, ppDecl);

 // Return success
 return S_OK;
}

After first checking to make sure the parameters you have passed to the LoadVertexShader function are
valid, execution continues by loading and assembling the vertex shader via a call to
D3DXAssembleShaderFromFile. Using the D3DXBUFFER object returned from that function call, you
then use the IDirect3DDevice::CreateVertexShader function to create your vertex shader object
(to which the pointer is stored in the ppShader object you passed to LoadVertexShader).

Finishing up LoadVertexShader, you'll see the call to CreateVertexDeclaration, which you use
to create an IDirect3DVertexDeclaration9 interface from the supplied array of vertex elements
(pElements in the LoadVertexShader prototype). The vertex declaration object pointer is then stored
in the ppDecl pointer you provide.

To use LoadVertexShader, pass it a pointer to an IDirect3DVertexShader9 object you want to
create, along with a valid IDirect3DDevice9 object and file name of the vertex shader file. The last two
parameters (pElements and ppDecl) are optional. By passing a valid D3DVERTEXELEMENT9 array and
the IDirect3DVertexDeclaration9 object pointer, you can prepare your vertex declarations for use
with the vertex shader being loaded.

Checking Out the Helper Functions

26

Here's a small example of using LoadVertexShader. First, I declare an array of vertex elements that are
used to create the vertex declaration object.

// Declare the vertex shader declaration elements
D3DVERTEXELEMENT9 Elements[] =
{
 { 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, \
 D3DDECLUSAGE_POSITION, 0 },
 { 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, \

D3DDECLUSAGE_NORMAL, 0 },
 { 0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, \
 D3DDECLUSAGE_TEXCOORD, 0 },
 D3DDECL_END()
};

Then I instance the vertex shader and vertex declaration objects and call LoadVertexShader.

// Instance objects
IDirect3DVertexShader9 *pShader = NULL;
IDirect3DVertexDeclaration9 *pDecl = NULL;

// Load the vertex shader and create declaration interface
LoadVertexShader(&pShader, pDevice, \
 "Shader.vsh", \
 &Elements, &pDecl);

As you can see, it's a quick and simple function that gets the job done. From here on out, you can set the
vertex shader (represented by pShader) using the IDirect3DDevice9::SetVertexShader
function. To set the vertex declaration (represented by pDecl), you would call
IDirect3DDevice9::SetVertexDeclaration.

pD3DDevice−>SetFVF(NULL); // Clear FVF usages
pD3DDevice−>SetVertexShader(pShader);
pD3DDevice−>SetVertexDeclaration(pDecl);

Okay, enough of initializing and loading vertex shaders, let's move on to the cool stuff, like loading and
rendering meshes.

Loading Meshes

The first of the mesh−related helper functions is LoadMesh. Actually there are three versions of the
LoadMesh function. The first version is used to load a mesh from an .X file using the
D3DXLoadMeshFromX function. That means all meshes contained within the .X file are compressed into a
single mesh object, which is subsequently stored in a D3DXMESHCONTAINER_EX object.

All iterations of the LoadMesh function contain pointers to a valid 3D device object, the directory path to
where your meshes' textures are stored, and the mesh loading flags and optional flexible vertex format that the
LoadMesh functions use to clone the meshes after loading. That means you can force your loaded meshes to
use specific vertex formats!

Here's the prototype of the first LoadMesh function:

HRESULT LoadMesh(D3DXMESHCONTAINER_EX **ppMesh,
 IDirect3DDevice9 *pDevice,
 char *Filename,

Checking Out the Helper Functions

27

 char *TexturePath = ".\\",
 DWORD NewFVF = 0,
 DWORD LoadFlags = D3DXMESH_SYSTEMMEM);

The first LoadMesh function takes a pointer to a D3DXMESHCONTAINER_EX object pointer that you want
to use for storing the loaded mesh data. Notice I said pointer to a pointer. The LoadMesh function will
allocate the appropriate objects for you and store the pointers in the pointer you pass to LoadMesh. This is
similar to the way the InitD3D function stores the Direct3D and 3D device object pointers.

Also, you must pass a valid 3D device object to the LoadMesh function (as the pDevice pointer)−you use
this device object to create the mesh container and texture buffers. The mesh that you want to load is specified
as Filename, and the directory in which your textures are located is specified in TexturePath. This
texture directory path is prefixed to any texture file names as they are loaded.

Finally, there are NewFVF and LoadFlags. You use the NewFVF parameter to force the mesh being loaded
to use a specific FVF. For instance, if you only wanted to use 3D coordinates and normals, then you would set
NewFVF to (D3DFVF_XYZ|D3DFVF_NORMAL). The LoadMesh function will use CloneMeshFVF to
clone the mesh using the specific FVF you specified.

The LoadFlags parameter is used to set the mesh loading flags as specified by the D3DXLoadMeshFromX
function in the DX SDK documents. The default value for this parameter is D3DXMESH_SYSTEMMEM,
meaning that the mesh is loaded into system memory (as opposed to hardware memory).

Instead of showing you the entire code for the LoadMesh function, I'll just skim over the most important
parts. For the full code, consult the code from the book−look in Direct3D.cpp for the first LoadMesh
function listed.

Typical of most mesh−loading functions that you may already be using, the first LoadMesh function uses the
D3DXLoadMeshFromX function, as shown here:

 // Load the mesh using D3DX routines
 ID3DXBuffer *MaterialBuffer = NULL, *AdjacencyBuffer = NULL;
 DWORD NumMaterials;
 if(FAILED(hr=D3DXLoadMeshFromX(Filename, TempLoadFlags, \
 pDevice, &AdjacencyBuffer, \
 &MaterialBuffer, NULL, \
 &NumMaterials, &pLoadMesh)))
 return hr;

A couple of notes on the parameters for D3DXLoadMeshFromX:

Filename specifies the file name of the .X file to load.♦
pDevice is your 3D device object.♦
AdjacencyBuffer is the ID3DXBUFFER object that will contain the face adjacency data.♦
MaterialBuffer stores the material data (with NumMaterials holding the number of meshes
loaded).

♦

pLoadMesh will store the ID3DXMesh object loaded.♦

Not mentioned in the previous list is TempLoadFlags, which are the flags used to load the mesh. If you are
using a new FVF (as specified in NewFVF), then the mesh is forced into system memory using the
D3DXMESH_SYSMEMORY flag (to allow the cloning to succeed); otherwise, the mesh is loaded using the
flags you specify in the LoadFlags parameters of the call to LoadMesh.

Checking Out the Helper Functions

28

Speaking of cloning the mesh, if you do specify a non−zero value in NewFVF, the LoadMesh function will
attempt to clone the mesh using the FVF specified. If successful, it will replace the pLoadMesh pointer with
the newly cloned mesh. Here's a small code snippet that demonstrates this cloning feature:

 // Convert to new FVF first as needed
 if(NewFVF) {
 ID3DXMesh *pTempMesh;

 // Use CloneMeshFVF to convert mesh
 if(FAILED(hr=pLoadMesh−>CloneMeshFVF(LoadFlags, NewFVF, pDevice, &pTempMesh))) {
 ReleaseCOM(AdjacencyBuffer);
 ReleaseCOM(MaterialBuffer);
 ReleaseCOM(pLoadMesh);
 return hr;
 }

 // Free prior mesh and store new pointer
 ReleaseCOM(pLoadMesh);
 pLoadMesh = pTempMesh; pTempMesh = NULL;
 }

Now, aside from the typical material−loading function calls that you should already be familiar with when
loading meshes with D3DX, there are two more important aspects to the first LoadMesh function−allocating
the D3DXMESHCONTAINER_EX structure (and filling it with the necessary data) and optimizing the mesh's
faces.

Remember that earlier in this chapter I mentioned that the D3DXMESHCONTAINER_EX structure contains a
variety of information about a single mesh, including the mesh's name, mesh object pointer, type of mesh
(such as regular, skinned, or progressive), face adjacency data, and material and texture data. The following
code demonstrates allocating the D3DXMESHCONTAINER_EX object and setting the appropriate data:

 // Allocate a D3DXMESHCONTAINER_EX structure
 D3DXMESHCONTAINER_EX *pMesh = new D3DXMESHCONTAINER_EX();
 *ppMesh = pMesh;

 // Store mesh name (filename), type, and mesh pointer
 pMesh−>Name = strdup(Filename);
 pMesh−>MeshData.Type = D3DXMESHTYPE_MESH;
 pMesh−>MeshData.pMesh = pLoadMesh; pLoadMesh = NULL;

 // Store adjacency buffer
 DWORD AdjSize = AdjacencyBuffer−>GetBufferSize();

if(AdjSize) {
 pMesh−>pAdjacency = new DWORD[AdjSize];
 memcpy(pMesh−>pAdjacency, \
 AdjacencyBuffer−>GetBufferPointer(), AdjSize);
 }
 ReleaseCOM(AdjacencyBuffer);

At this point, the material data is loaded into the D3DXMESHCONTAINER_EX object. (I'll skip the code
because it's basic stuff.) Again, consult the full source code and you'll see that I'm merely loading the
materials and texture using the techniques you've seen a million times in the DX SDK demos.

As for the optimization of the mesh's faces that I mentioned, this is an important step that ensures the mesh's
face data is readily available to you when you want to render the mesh's polygons manually (instead of calling
DrawSubset). Chapter 8, "Working with Morphing Animation," details using mesh face data, so for now I'll

Checking Out the Helper Functions

29

just show you the function call that optimizes the faces for you.

 // Optimize the mesh for better attribute access
 pMesh−>MeshData.pMesh−>OptimizeInplace(\
 D3DXMESHOPT_ATTRSORT, NULL, NULL, NULL, NULL);

And that's it for the first LoadMesh function! Let's check out how to use it. Suppose you want to load a mesh
(from a file called Mesh.x) using the LoadMesh function just shown. To demonstrate the ability to specify a
new FVF, specify that you want to use XYZ components, normals, and texture coordinates for your mesh.
Also, suppose your textures are in a subdirectory called \textures. As for the mesh loading flags, leave those
alone to allow the mesh to load into system memory (as per the default flag shown in the prototype). Here's
the code:

// Instance the mesh object
D3DXMESHCONTAINER_EX *Mesh = NULL;

// Load a mesh − notice the pointer to the mesh object
LoadMesh(&Mesh, pD3DDevice, "Mesh.x", "..\\Textures\\", \
 (D3DFVF_XYZ|D3DFVF_NORMAL|D3DFVF_TEX1));

Once the mesh has been loaded, you can access the mesh object via the Mesh−>MeshData.pMesh object
pointer. Also, material data is stored in Mesh−>pMaterials, and texture data is stored in
Mesh−>pTextures. The number of materials a mesh uses is stored in Mesh−>>NumMaterials. To
render a loaded mesh, you can use the following code:

// pMesh = pointer to D3DXMESHCONTAINER_EX object

// Go through all material subsets
for(DWORD i=0;i<pMesh−>NumMaterials;i++) {

 // Set material and texture
 pD3DDevice−>SetMaterial(&pMesh−>pMaterials[i].MatD3D);

pD3DDevice−>SetTexture(0, pMesh−>pTextures[i]);

 // Draw the mesh subset
 pDrawMesh−>DrawSubset(i);
}

The second LoadMesh function used in this book is much like the first, except that instead of loading an
entire .X file into one D3DXMESHCONTAINER_EX object, you are able to load a single mesh object (using
the D3DXLoadSkinMeshFromXof function) as pointed to by a IDirectXFileDataObject object
(used while parsing an .X file). Here's the prototype:

HRESULT LoadMesh(D3DXMESHCONTAINER_EX **ppMesh,
 IDirect3DDevice9 *pDevice,
 IDirectXFileData *pDataObj,
 char *TexturePath = ".\\",
 DWORD NewFVF = 0,
 DWORD LoadFlags = D3DXMESH_SYSTEMMEM);

You'll notice that the pDataObj parameter is here instead of the Filename parameter used by the first
LoadMesh function. The pDataObj parameter is of the type IDirectXFileData, which is an object
that represents the currently enumerated data object inside an .X file. If you're not familiar with .X file data
objects, you might want to check out Chapter 3, "Using the .X File Format."

Checking Out the Helper Functions

30

Calling the second LoadMesh function is the same as calling the first (with the exception of providing a
pointer to the enumerated data object), so I'll skip over using the second LoadMesh function and leave that
for later in the book. For now, let's move on to the next version of the LoadMesh function.

Note You'll notice that I mentioned using the D3DXLoadSkinMeshFromXof function (instead of using
D3DXLoadMeshFromXof), which loads a skinned mesh data object from the .X file data object you
specify. The reason why is that D3DXLoadSkinMeshFromXof loads both regular meshes (those
without skinning data) and skinned meshes for you, returning a valid pointer to an ID3DXMesh object
either way. You'll read about skinned mesh objects in Chapter 4.

The third and final version of the LoadMesh function is the most advanced. It allows you to load all meshes
and frames from an .X file at once. The meshes are stored in a linked list (pointed to by the root
D3DXMESHCONTAINER_EX object you pass to LoadMesh), and by a hierarchy of D3DXFRAME_EX
objects (also pointed to by the root object you pass to LoadMesh).

Here's the prototype for the third LoadMesh function:

HRESULT LoadMesh(D3DXMESHCONTAINER_EX **ppMesh,
 D3DXFRAME_EX **ppFrame,
 IDirect3DDevice9 *pDevice,
 char *Filename,
 char *TexturePath = ".\\",
 DWORD NewFVF = 0,
 DWORD LoadFlags = D3DXMESH_SYSTEMMEM);

Okay, this third function is going to take a little explaining. First there's the function's usage. Much like the
first LoadMesh function, you need to specify a file name of the .X file from which you are loading the data,
as well as a pointer to your 3D device, texture storage path, optional FVF override flags, and optional mesh
storage flags. Also, there's the D3DXMESHCONTAINER_EX pointer, which ends up containing a linked list of
meshes once it is loaded.

New to the LoadMesh function (from previous iterations of it) is the D3DXFRAME_EX pointer, which is
similar to the D3DXMESHCONTAINER_EX object except that instead of storing a linked list of meshes, it is
filled with the frame data from the .X file you are loading.

To call the third LoadMesh function, specify the loading parameters much as you did for the first
LoadMesh function. This time, however, add in the D3DXFRAME_EX object pointer:

// Root mesh and frame objects that are being loaded
D3DXMESHCONTAINER_EX *pMesh = NULL;
D3DXFRAME_EX *pFrame = NULL;

// Load the meshes and frames from Mesh.x
LoadMesh(&pMesh, &pFrame, pD3DDevice, "Mesh.x");

When it is complete, the pMesh pointer will contain a pointer to the root mesh object (in a linked list of mesh
objects), and pFrame will point to the root frame in the hierarchy. To learn more about hierarchies, check out
Chapter 4.

You can also use the third LoadMesh function to load a series of meshes from an .X file, without dealing
with any frames. Do this by specifying a NULL value for the frame pointer. On the flip side, you can also
force LoadMesh to skip loading any of the meshes by setting the mesh pointer to NULL in your call to
LoadMesh.

Checking Out the Helper Functions

31

This ability to decide which components to load (the meshes and/or the frames) makes the third iteration of
LoadMesh the most useful, as well as the most difficult to understand. In fact, it's really too difficult to
explain at this point. You see, the third LoadMesh function uses a custom .X parser created using the
techniques I will show you in Chapter 3.

Basically, the custom .X parser is scanning the .X file you specify for specific mesh and frame−related data.
As these data bits are found, the parser decides what to do−load the mesh using the second LoadMesh
function (loading via an IDirectXFileData object) or load a frame (and its transformation matrix, if
found). Either way, if the data is used, an appropriate structure is allocated (either
D3DXMESHCONTAINER_EX or D3DXFRAME_EX) and linked to the appropriate linked list of objects. The
pointer to these linked lists is returned to you via the LoadMesh parameters you specify (as previously
detailed).

Once you've read up on using frames and custom .X file parsers later in the book, you'll find that the third
LoadMesh function is pretty simple, and once again, it should become one of your most used mesh−loading
helper functions.

And that wraps up the mesh−loading helper functions! After you've gone to the trouble of loading these
meshes, it comes time to render them to the display, but first you need to update the vertex data if you are
using skinned meshes. The next helper function makes updating skinned meshes (a topic you'll read about in
Chapter 4) easy as pie. Take a look.

Updating Skinned Meshes

A skinned mesh works like this: Each vertex is attached to an imaginary bone (which is specified by a frame
object). As these frames move, so do the vertices attached to them. To update the coordinates of the vertices
as the bones move, you need to call a special function that takes the source vertex data, transforms it
according to the bones' transformations, and stores the results in a second mesh object. This special function is
called ID3DXSkinInfo::UpdateSkinnedMesh.

Whenever you load a mesh using the D3DXLoadSkinMeshFromXof function (which is what the second
LoadMesh function does), you get a pointer to an ID3DXSkinInfo object. This object contains the
information about which vertices are attached to which bones. This way, the object knows which
transformations to apply to the vertices.

To update the vertices, you must first lock the mesh's vertex buffer (which contains the source vertex
coordinates), as well as the destination mesh's vertex buffer. The destination mesh will receive the updated
vertices as they are transformed. Once locked, you need to call UpdateSkinnedMesh, also specifying a
series of transformation matrices (stored as D3DXMATRIX objects) that represent the various bone
transformations.

This will all make sense when you get around to working with skeletal meshes in Chapter 4. For now, just
check out the UpdateMesh helper function code to see how it updates the skinned meshes for you.

HRESULT UpdateMesh(D3DXMESHCONTAINER_EX *pMesh)
{
 // Error checking
 if(!pMesh)
 return E_FAIL;
 if(!pMesh−>MeshData.pMesh || !pMesh−>pSkinMesh || !pMesh−>pSkinInfo)
 return E_FAIL;
 if(!pMesh−>pBoneMatrices || !pMesh−>ppFrameMatrices)

Checking Out the Helper Functions

32

 return E_FAIL;

 // Copy the bone matrices over (must have been combined before call DrawMesh)
for(DWORD i=0;i<pMesh−>pSkinInfo−>GetNumBones();i++) {

 // Start with bone offset matrix
 pMesh−>pBoneMatrices[i] = (*pMesh−>pSkinInfo−>GetBoneOffsetMatrix(i));

Aside from the typical error−checking code, the UpdateMesh function starts by looping through each bone
contained within the ID3DXSkinInfo object (stored in the D3DXMESHCONTAINER_EX object you've
already loaded). For each bone, the original transformation matrix from the .X file is grabbed and stored in an
array of matrices used in the call to UpdateSkinnedMesh.

From here the bone's transformation, as stored in the bone's respective frame object, is applied to the
transformation matrix. This process continues until all transformation matrices are set up.

 // Apply frame transformation
 if(pMesh−>ppFrameMatrices[i])
 pMesh−>pBoneMatrices[i] *= (*pMesh−>ppFrameMatrices[i]);
 }

At this point, you are ready to lock the vertex buffers and call the UpdateSkinnedMesh function.

 // Lock the meshes' vertex buffers
 void *SrcPtr, *DestPtr;
 pMesh−>MeshData.pMesh−>LockVertexBuffer(D3DLOCK_READONLY, \
 (void**)&SrcPtr);
 pMesh−>pSkinMesh−>LockVertexBuffer(0, (void**)&DestPtr);

 // Update the skinned mesh using provided transformations
 pMesh−>pSkinInfo−>UpdateSkinnedMesh(pMesh−>pBoneMatrices, \
 NULL, SrcPtr, DestPtr);

The function is finished by unlocking the buffers and returning a success code.

 // Unlock the meshes vertex buffers
 pMesh−>pSkinMesh−>UnlockVertexBuffer();
 pMesh−>MeshData.pMesh−>UnlockVertexBuffer();

 // Return success
 return S_OK;
}

I kind of flew over the specifics, but this really won't make much sense until you've read Chapter 4. After you
have read that chapter, you'll find that the UpdateMesh function comes in handy for getting those skinned
meshes updated and ready to render!

And once again speaking of rendering, it is finally time to see the helper functions I created to get those
meshes on screen!

Drawing Meshes

Now that you have your meshes loaded and you've updated those skinned meshes that needed updating, it is
time to throw some pixels at the display and show off those meshes! In total, I have created four
mesh−rendering functions to help you in your projects, and I depend on these four functions to render the
meshes in this book.

Checking Out the Helper Functions

33

Here are the prototypes for the four mesh−rendering functions used in this book:

// Draw the first mesh in a linked list of objects
HRESULT DrawMesh(D3DXMESHCONTAINER_EX *pMesh);

// Draw the first mesh in a linked list of objects
// using the specified vertex shader and declaration
HRESULT DrawMesh(D3DXMESHCONTAINER_EX *pMesh,
 IDirect3DVertexShader9 *pShader,
 IDirect3DVertexDeclaration9 *pDecl);

// Draw all meshes in a linked list of objects
HRESULT DrawMeshes(D3DXMESHCONTAINER_EX *pMesh);

// Draw all meshes in a linked list of objects
// using the specified vertex shader and declaration
HRESULT DrawMeshes(D3DXMESHCONTAINER_EX *pMesh,
 IDirect3DVertexShader9 *pShader,
 IDirect3DVertexDeclaration9 *pDecl);

You'll see that the mesh−drawing functions are very similar in nature. The first two are used to render a single
mesh that is stored in the D3DXMESHCONTAINER_EX object specified. I say single mesh because the mesh
object might contain a linked list of mesh objects that are loaded. If you want to render a specific mesh, then
use the first DrawMesh function.

I won't list the code for the DrawMesh functions here because they are pretty simple stuff. In the "Loading
Meshes" section earlier, I showed you a quick code snippet that demonstrates rendering a mesh stored in a
D3DXMESHCONTAINER_EX object. The DrawMesh functions duplicate this code with one exception−alpha
blending is taken into consideration. That's right; if a material being used specifies an alpha value other than
1, then alpha blending is enabled. This way, you can specify portions of a mesh to use alpha blending by
merely changing the material information. Also, if a D3DXMESHCONTAINER_EX object contains a skinned
mesh, that mesh is rendered instead of the regular mesh.

As for the second DrawMesh function, it skips using the DrawSubset function and uses its own function to
render subsets of polygon faces, using the vertex shader and vertex declaration you specify. This second
function is extremely useful if you are using vertex shaders to render your meshes.

The remaining two DrawMesh functions duplicate the exact features of the first two, except that all meshes
in the linked list of mesh objects are rendered. Once again, feel free to peruse the full source code for the
DrawMesh functions, as well as all the functions discussed in this chapter, on the CD−ROM. As you read the
book and check out the demo programs I created, you'll see how I've managed to put these four functions to
good use.

Moving On with the Book

Whew! That's a lot to digest−installing DirectX, setting up your compiler, and dealing with the helper
code−how are you possibly going to remember all this before moving on? Just take everything one step at a
time, my friend, and you'll be fine.

As I mentioned, the helper functions don't really do anything except duplicate what you most likely have done
a thousand times before. If you feel more comfortable, I would recommend changing the helper functions to
suit your needs. For example, if you've already got your own series of helper functions, just map them right
over to those used by this book's demos. Either that or just rewrite the functions. I'm sure you're just dying to

 Moving On with the Book

34

add that nifty code that displays an entire list of video modes from which the users can pick in the demos,
right?

If you get stuck, just turn back to this chapter as a quick reference guide to using the helper code, and if you're
really stuck, just fire off an e−mail to me. I'm more than happy to help out when I can!

Programs on the CD

In the \common directory of this book's CD−ROM, you'll find the helper code source files that were discussed
in this chapter. These files include

Direct3D.cpp/.h. These two files are used in nearly every project in this book. The Direct3D.cpp file
contains functions to initialize Direct3D, load meshes and vertex shaders, and render meshes. The
Direct3D.h file includes a couple objects used to contain frame hierarchies and mesh data (both
regular and skinned meshes).

♦

XFile.cpp/.h. Also included with every project in the book, this pair of files is used to include the
rmxftmpl.h and rmxfguid.h files in your projects. Why not include those files directly, you ask?
Because it generates compiler errors if you try, so add the XFile.cpp file to your project and include
XFile.h file in your source code instead!

♦

XParser.cpp/.h. Also used throughout the book, these two files are useful when parsing .X files in
your projects. Together, these files define a base class object that you can derive to fit any .X parsing
needs. Consult Chapter 3 for details on using .X files and the classes defined in these source files.

♦

 Moving On with the Book

35

Part Two: Animation Basics
Chapter 2: Timing in Animation and Movement
Chapter 3: Using the .X File Format

36

Chapter 2: Timing in Animation and Movement
Games are packed with movement. Characters running here, bullets flying there−basically there's a slew of
objects moving about your game world. The smooth motion of these objects is a very important aspect that
can't be overlooked. Have you ever thought about the use of movement and animation based on time? Using
time−based motion is hot, and to keep up with the rest of the world you must fully understand how it can help
your game project. In fact, you need to understand not only using time−based motion, but also motion in
general. Do you think only characters move about in your game? Nope, your in−game cinematic cameras
need your guidance as well. This chapter will show you how to use time−based motion in your projects.

Using Time−Based Motion

Although it might not seem important at first, timing plays a crucial role in your game projects. I'm not talking
about the time of day; rather, I'm referring to down−to−the−millisecond timing of animation. This sort of
precise timing is required for smooth animation and movement of objects in your project. Although it is a
basic topic, it is one that all game programmers should understand quite well.

When it comes to moving your meshes, time−based motion is the best of the bunch. Throughout this book, I
use time−based motion mainly to control the speed of the various animations. In this chapter, I want to
explain this use of time (for animation and in movement) in better detail.

The whole basis of using time−based motion is simple−movement and animation always take the same
amount of time to perform on any system, regardless of the computer's actual speed. For example, a 2−GHz
system processing a 20−second animation will undoubtedly do so quickly and produce a very smooth motion,
whereas the same animation running on a 500−MHz system will be choppy but will still maintain the
20−second animation length.

More than likely, the slower computer will drop specific frames of the animation to keep up with the speed of
the faster computer. Therein lies the secret−slower computers can drop more frames and still maintain a
somewhat reasonable representation of the actual motion.

Okay, I think you're starting to get the idea. As simple as the techniques sound, time−based animation and
movement remain a slight mystery to fledgling game programmers. Even though this book is about using
advanced animation techniques, time−based motion is something you should fully understand. For that
reason, I want to introduce (or re−introduce) you to the world of time−based motion. I'll start with a brief look
at reading time in Windows.

Reading Time in Windows

The easiest method of reading time in Windows is by using the timeGetTime function. This function does
not take any parameters. As the following code demonstrates, timeGetTime only returns the number of
milliseconds that have passed since Windows was started.

DWORD TimeSinceStarted = timeGetTime();

What good does this do you? Typically, you call the timeGetTime function once per frame that your game
processes. For each frame, you then subtract the time from the last frame processed to obtain the number of
milliseconds that have elapsed since your last frame. You can use this elapsed time to compute your
time−based motion.

37

Storing the time of the last frame update is as easy as using a static variable. At the beginning of your frame's
update function, insert a static variable that stores the current time.

void FrameUpdate()
{
 static DWORD LastTime = timeGetTime();

At the end of the FrameUpdate function, you can then store the current time in LastTime.

LastTime = timeGetTime();

In this manner (storing the current time at the end of your frame's update function), you have managed to store
the time at which the frame update ended. During the next call to FrameUpdate, the LastTime variable
will still contain the time at which the last frame update ended. Using this time value, you can calculate the
amount of time that has elapsed since you last called FrameUpdate by subtracting LastTime from the
current time.

DWORD ElapsedTime = timeGetTime() − LastTime;

It's this elapsed time and time of the last frame update that you'll use the most throughout this book. Now
what about those instances when you want to calculate the number of elapsed milliseconds based on a specific
time, such as when an animation starts, instead of counting the elapsed time or when the FrameUpdate
function was first called?

Just as you used a static variable to store the last frame's update time, you can store the time at which the
function was first called. Using that static variable, you can determine how many milliseconds have passed
since the function was first called.

void FrameUpdate()
{
 static DWORD StartTime = timeGetTime();
 DWORD ElapsedTime = timeGetTime() − StartTime;

 // ElapsedTime is the number of milliseconds that has passed
 // since you first called FrameUpdate.
}

In the same way the previous bit of code tracked the total amount of time that has passed since the first call to
the FrameUpdate function, you can embed the starting time of an animation inside your data structures.
You'll get to see this concept demonstrated later on in Chapter 5, "Using Key−Framed Skeletal Animation."

If you read ahead in the book, you're probably already familiar with using time−based animation. All of the
animation demos that come with this book are timed in milliseconds. Combined with key frames, time−based
animation is a perfect solution for creating smooth animation. Read on to take a closer look at using
time−based animation.

Animating with Time

In the olden days, games were made to animate graphics based on every frame processed. To ensure that the
animations always ran at the same speed, those games sometimes limited the number of frames per second
that could be processed. Of course, those old games were made for computers that couldn't easily process
more than 20 to 30 frames per second, so it was safe to assume that limiting the number of frames per second

 Animating with Time

38

would never surpass that 20 or 30 frames per second mark.

But that was then, and this is now. Modern computers can run circles around their ancestors, and limiting the
number of frames to control animation is a definite no−no in this day and age. You need to base the speed of
animation on the amount of time that has elapsed since the start of the animation sequence. Doing so is no
problem because you already know that you can record the time when the animation started. Additionally, for
each frame to update, you can read the current time and subtract the starting animation time. The result is a
time value to use as an offset to your animation sequence.

Suppose you are using time−based key frames in your animation engine. You can use a simple key−frame
structure that stores the time and a transformation matrix to use, such as this:

 typedef struct sKeyframe {
 DWORD Time;
 D3DMATRIX matTransformation;
 } sKeyframe;

As is typical for key frames, you can store an array of matrices, each with its own unique time. These
structures are stored in chronological order, with the lower time values first. Therefore, you can create a small
sequence of transformations to orient an object over time (see Figure 2.1).

Figure 2.1: Key frames track the orientation of the cube. Each key frame is spaced 400 milliseconds from the
next, and interpolation is used to calculate the in−between orientations.
To replicate the key frames shown in Figure 2.1, I've constructed the following array:

sKeyframe Keyframes[4] = {
 { 0, 1.00000f, 0.00000f, 0.00000f, 0.00000f,
 0.00000f, 1.00000f, 0.00000f, 0.00000f,
 0.00000f, 0.00000f, 1.00000f, 0.00000f,
 0.00000f, 0.00000f, 0.00000f, 1.00000f; },
 { 400, 0.000796f, 1.00000f, 0.00000f, 0.00000f,
 −1.00000f, 0.000796f, 0.00000f, 0.00000f,
 0.00000f, 0.00000f, 1.00000f, 0.00000f,
 50.00000f, 0.00000f, 0.00000f, 1.00000f; },
 { 800, −0.99999f, 0.001593f, 0.00000f, 0.00000f,
 −0.001593f, −0.99999f, 0.00000f, 0.00000f,
 0.00000f, 0.00000f, 1.00000f, 0.00000f,
 25.00000f, 25.00000f, 0.00000f, 1.00000f; },

 Animating with Time

39

 { 1200, 1.00000f, 0.00000f, 0.00000f, 0.00000f,
 0.00000f, 1.00000f, 0.00000f, 0.00000f,
 0.00000f, 0.00000f, 1.00000f, 0.00000f,
 0.00000f, 0.00000f, 0.00000f, 1.00000f; }
 };

Now comes the fun part. Using the timing methods you read about previously, you can record the time at
which the animation started. And, for each frame to update the animation, you can calculate the elapsed time
since the animation started (using that as an offset to the key frames). Create a simple frame update function
that will determine which transformation to use depending on the elapsed time since the update function was
first called.

void FrameUpdate()
{
 static DWORD StartTime = timeGetTime();
 DWORD Elapsed = timeGetTime() − StartTime;

With the elapsed time now in hand, you can scan the key frames to look for the two between which the time
value lies. For example, if the current time is 60 milliseconds, the animation is somewhere between key frame
#0 (at 0 milliseconds) and key frame #1 (at 400 milliseconds). A quick scan through the key frames
determines which to use based on the elapsed time.

DWORD Keyframe = 0; // Start at 1st keyframe
for(DWORD i=0;i<4;i++) {
 // If time is greater or equal to a
 // key−frame's time then update the
 // keyframe to use
 if(Time >= Keyframes[i].Time)
 Keyframe = i;
}

At the end of the loop, the Keyframe variable will hold the first of the two key frames between which the
animation time lies. If Keyframe isn't the last key frame in the array (in which there are four key frames),
then you can add 1 to Keyframe to obtain the second key frame. If Keyframe is the last key frame in the
array, you can use the same key−frame value in your calculations.

Using a second variable to store the next key frame in line is perfect. Remember that if Keyframe is the last
key frame in the array, you need to set this new key frame to the same value.

DWORD Keyframe2 = (Keyframe==3) ? Keyframe:Keyframe + 1;

Now you need to grab the time values and calculate a scalar based on the time difference of the keys and the
position of the key frame between the keys.

 DWORD TimeDiff = Keyframes[Keyframe2].Time −
 Keyframes[Keyframe].Time;
 // Make sure there's a time difference to
 // avoid divide−by−zero errors later on.
 if(!TimeDiff)
 TimeDiff=1;
 float Scalar = (Time − Keyframes[Keyframe].Time)/TimeDiff;

You now have the scalar value (which ranges from 0 to 1) used to interpolate the transformation matrices of
the keys. To make it easy to deal with the transformation matrices, those matrices are cast to a D3DXMATRIX
type so that D3DX does the hard work for you.

 Animating with Time

40

// Calculate the difference in transformations
D3DXMATRIX matInt = \
 D3DXMATRIX(Keyframes[Keyframe2].matTransformation) − \
 D3DXMATRIX(Keyframes[Keyframe].matTransformation);
 matInt *= Scalar; // Scale the difference

// Add scaled transformation matrix back to 1st keyframe matrix
matInt += D3DXMATRIX(Keyframes[Keyframe].matTransformation);

At this point, you have the proper animated transformation matrix to use stored in matInt. To see your hard
work come to life, set matInt as the world transformation and render your animated mesh.

As you can see, using time−based animation is pretty simple. Even if you don't use key frames in your
animation, you can still rely on these methods of using time in your own code. Now that you've seen how easy
it is to use time−based animation, take a look at how easy it is to use time−based movement.

Moving with Time

Time−based motion doesn't just apply to animation. Movement is also a major part of your game, and basing
movement on time guarantees that all systems will run your game consistently, regardless of how fast or how
slow they are.

The most common use for time−based movement is when you want to move an object a set distance over a
period of time. For example, suppose a player moves his joystick to the right, so your game responds by
moving the on−screen game character to the right a little bit−let's say 64 units over a period of one second,
which equates to 0.064 units of movement per millisecond.

Using a small function, you can calculate the number of units (as a floating−point value) to move an object
based on the elapsed time between frames.

float CalcMovement(DWORD ElapsedTime, float PixelsPerSec)
{
 return (PixelsPerSec / 1000.0f * (float)ElapsedTime);
}

As you can see in the CalculateMovement function, you are using the following calculation:

PixelsPerSec / 1000.0f * ElapsedTime;

The PixelsPerSec variable contains the number of units you want to move over the period of a second.
The 1000.0 value means 1000 milliseconds. Basically, you're breaking down the number of units to move per
millisecond. Finally, you need to multiply by ElapsedTime to calculate the total movement to apply.

This sort of movement based on time is very basic, but it should not be overlooked. Knowledge of this
function of time−based movement is essential to using more advanced features, such as smoothly moving
objects along a pre−determined path.

Moving along Paths

As you read in the previous section, time−based movement is determined by taking the distance to travel,
dividing it by 1,000, and multiplying the result by the elapsed time. In that section, I used an example in
which a player pressed right on the joystick, and his character moved right a set amount of units. But what

 Moving with Time

41

about those times when you want an object to move without user intervention? For instance, suppose a player
pushes a button and bullets fly out of the big gun he is carrying. Those bullets travel along a set path at a set
speed. You can set a velocity for each of those bullets, negating the need to use paths, but what about those
super−bullets in your game that can swoop through parts of your level, perhaps along a pre−set path?

Those special instances require you to set up the coordinates of the travel paths in advance, and to do some
quick calculations to determine where an object can be placed inside those paths. And what about moving
objects such as characters, power−ups, and platforms? You guessed it−using paths is the perfect solution for
all your movement needs!

I am going to discuss two of the most frequently used types of paths−straight and curved. I will start by
explaining how to use straight paths.

Following Straight Paths

A straight path is just that−straight. The path moves from the starting point to the ending point with no breaks
or turns. Generally, you define a straight line using a pair of coordinates−the starting point and the ending
point. To follow a straight path, you only need to walk along the line from Point A to Point B.

To move an object along a straight path, you must calculate the coordinates of a point along the line using
some simple formulas. For instance, as Figure 2.2 illustrates, to calculate a point at the midpoint of the line
using a scalar value (ranging from 0 to 1), you calculate the difference in the endpoint's coordinates, multiply
by the scalar value, and add the result to the starting point's coordinates.

Figure 2.2: You can find a point on the path by using a scalar value that represents the percentage of the total
length of the path, with 0 being the start and 1 being the end of the path.
// Define starting and ending points of straight path
// Scalar = position to calculate (0 to 1)
D3DXVECTOR3 vecStart = D3DXVECTOR3(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 vecEnd = D3DXVECTOR3(10.0f, 20.0f, 30.0f);
D3DXVECTOR3 vecPos = (vecEnd − vecStart) * Scalar + vecStart;

If you were to set Scalar to 0.5, then vecPos would contain the coordinates 5.0, 10.0, 15.0, which happen
to be the midpoint of the path. Now suppose you don't want to use a scalar value. What about using 3D units
instead? For example, instead of using a scalar value of 0.5, suppose you want to know the coordinates of a
point that is 32 units from the starting coordinates.

To calculate the coordinates using 3D units as a measurement, calculate the length of the path using the
D3DXVec3Length function, and then divide the position you want to use by the resulting value to obtain a
scalar value to use in the previous calculations.

For example, to find the coordinates of the point that is 32 units into the path defined previously, you can use
the following code:

// Pos = position (in 3−D units) of point in path to calculate
// Define starting and ending points of straight path
D3DXVECTOR3 vecStart = D3DXVECTOR3(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 vecEnd = D3DXVECTOR3(10.0f, 20.0f, 30.0f);

// Get the length of the path
float Length = D3DXVec3Length(&(vecEnd−vecStart));

Moving along Paths

42

// Calculate the scalar by dividing pos by length
float Scalar = Pos / Length;

// Use scalar to calculate coordinates
D3DXVECTOR3 vecPos = (vecEnd − vecStart) * Scalar + vecStart;

Now that you can calculate the exact position of any point along the path, you can use this knowledge to move
an object along the path. Following the time−based theory of movement, suppose you want to move an object
from one point to another over a period of 1,000 milliseconds. The following code (processed once per frame)
will accomplish this, continuously looping back from the end to the start of the path in an endless cycle.

// vecPoints[2] = path's starting and ending coordinate vectors
// Every frame, use the following code to position an object
// along the straight path based on the current time.
float Scalar = (float)(timeGetTime() % 1001) / 1000.0f; \
D3DXVECTOR3 vecPos = (vecPoints[1] − vecPoints[0]) *
 Scalar + vecPoints[0];
// Use vecPos.x, vecPos.y, and vecPos.z coordinates for object

Walking Curved Paths

In your game, the paths need not be so straight. You can have your objects move along a nice, curvy path,
such as when a character walks around in a circle. Trying to define a smooth circular path using straight lines
is nearly impossible, so you must develop a second type of path−one that can handle curves. Not just any type
of curve, however. Remember that this is advanced animation−we're going for the big leagues here, and that
major hitter you want is a cubic Bezier curve! As Figure 2.3 illustrates, a cubic Bezier curve uses four control
points (two end points and two midpoints) to define the various aspects of the curve.

Figure 2.3: A cubic Bezier curve uses four points to determine the direction of the path as it moves from
beginning to end.
As you can see, a cubic Bezier curve is not a typical curve−it can bend and twist in a myriad of curved shapes.
By manipulating the four control points you can create some really useful paths to use in your projects. The
way a cubic Bezier curve works is fairly easy in theory, but a little difficult to implement.

To understand the theory behind a cubic Bezier curve, take a look at Figure 2.4, which shows how the curve is
drawn using the four control points.

Moving along Paths

43

Figure 2.4: You define a cubic Bezier curve by connecting the four points and dividing the lines connecting
the points by a set amount. Each division is numbered for later reference.
The purpose of dividing the lines that connect the curve's points is both for visual aid and to serve as the
curve's granularity (or smoothness). The more additional divisions you add to each line, the smoother the
resulting curve will look. To actually see the curve that the points create, you need to connect the divisions on
either side of the line, as you can see in Figure 2.5

Figure 2.5: You can see a cubic Bezier curve by highlighting the newly connected lines created by joining the
numbered divisions.
Although it's cool to draw the curve in the manner I just showed you, it won't make much sense to your
computer, nor will it help you figure out the coordinates of a point in the curve. What you need to do is come
up with a way to calculate the exact coordinates of any point along the curve. That way, you can do anything
you want with the coordinates, from drawing curves to calculating the coordinates where you want to position
an object along the curve path! The formula to calculate the coordinates along the curve is

C(s) = P0 * (1 s)3 + P1 * 3 * s * (1 s)2 + P2 * 3 * s2 * (1 s) + P3 * s
3

In the formula, the control points are defined as P0, P1, P2, and P3, which represent the starting point, first
midpoint, second midpoint, and ending point, respectively. The resulting coordinates along the curve are
defined as C(s), where s is a scalar value (or a time value) ranging from 0 to 1 that determines the position
along the curve for which the coordinates should be calculated.

A value of s=0 designates the starting point, whereas a value of s=1 designates the ending point. Any value of
s from 0 to 1 designates a point between the two end points. Therefore, to calculate the midpoint of the curve,

Moving along Paths

44

you would specify s=0.5. The one−quarter position of the curve would be s=0.25, and so on.

To make things easy, you can create a function that takes the four control points (as vector objects) and a
scalar value as parameters. The function will return another vector object that contains the coordinates of the
point along the curve as specified by the four points and the scalar value. Call the function
CubicBezierCurve, and use the following prototype to define it.

void CubicBezierCurve(D3DXVECTOR3 *vecPoint1, // Start point
 D3DXVECTOR3 *vecPoint2, // Midpoint 1
 D3DXVECTOR3 *vecPoint3, // Midpoint 2
 D3DXVECTOR3 *vecPoint4, // End point
 float Scalar,
 D3DXVECTOR3 *vecOut)
{

Now get ready for this−you're going to recreate the cubic Bezier curve formula in program code by replacing
the appropriate variables with the control point vectors and the scalar value.

// C(s) =
*vecOut = \
 // P0 * (1 − s)3 +
 (*vecPoint1)*(1.0f−Scalar)*(1.0f−Scalar)*(1.0f−Scalar) + \
 // P1 * 3 * s * (1 − s)2 +
 (*vecPoint2)*3.0f*Scalar*(1.0f−Scalar)*(1.0f−Scalar) + \
 // P2 * 3 * s2 * (1 − s) +
 (*vecPoint3)*3.0f*Scalar*Scalar*(1.0f−Scalar) + \
 // P3 * s3
 (*vecPoint4)*Scalar*Scalar*Scalar;
}

That's it! Yep, from now on you can calculate the coordinates along a cubic Bezier curve by passing the four
control points' coordinates, a scalar, and a returning vector object. For example, going back to the sample
curve, you can use the following function call to CubicBezierCurve to find the parametric midpoint:

D3DXVECTOR3 vecPos;
CubicBezierCurve(&D3DXVECTOR3(−50.0f, 25.0f, 0.0f), \
 &D3DXVECTOR3(0.0f, 50.0f, 0.0f), \
 &D3DXVECTOR3(50.0f, 0.0f, 0.0f), \
 &D3DXVECTOR3(25.0f, −50.0f, 0.0f) , \
 0.5f, &vecPos);

Getting back to the point, you can use the return coordinates from the CubicBezierCurve function
(contained in the vecPos vector object) as the coordinates in which to place an object in the game. By slowly
changing the scalar value from 0 to 1 (over a specified amount of time), you move the object from the start of
the path to the end. For instance, to travel a curved path over a period of 1,000 milliseconds, you can use the
following code:

// vecPoints[4] = Starting, midpoint 1, midpoint 2, and end points
// Every frame, use the following code to position an object
// along the curve based on the current time.
D3DXVECTOR3 vecPos;
float Scalar = (float)(timeGetTime() % 1001) / 1000.0f;
CubicBezierCurve(&vecPoints[0], &vecPoints[1], \
 &vecPoints[2], &vecPoints[3], \
 Scalar, &vecPos);
// Use vecPos.x, vecPos.y, and vecPos.z coordinates for object

Moving along Paths

45

That's cool, but having to deal with a scalar value is a little unorthodox when you need to work with actual 3D
unit measurements. I mean, how are you supposed to know which scalar value to use when you want to move
an object 50 units along the curved path? Isn't there a way to calculate the length of the curve and use that,
much like you did with straight lines?

Strangely enough, no. There is no easy way to calculate the length of a Bezier curve. However, you can
approximate the length using a few simple calculations. Assuming the four control points of the curve are
denoted as p0, p1, p2, and p3, you can add the lengths between the points p0 and p1, p1 and p2, and
p2 and p3, divide the result in half, and add the length between points p0 and p3 (also divided in half). In
code, those calculations would look like this:

// p[4] = four control points' coordinate vectors
float Length01 = D3DXVec3Length(&(p[1]−p[0]));
float Length12 = D3DXVec3Length(&(p[2]−p[1]));
float Length23 = D3DXVec3Length(&(p[3]−p[2]));
float Length03 = D3DXVec3Length(&(p[3]−p[0]));
float CurveLength = (Length01+Length12+Length23) * 0.5f + \
 Length03 * 0.5f;

The CurveLength variable will therefore contain the estimated length of the curve. You'll use the
CurveLength value much like you did in the straight−path calculations to convert the unit length to a scalar
value to calculate the exact coordinates along the curve.

// Pos = position in curve (from 0−CurveLength)
float Scalar = Pos / CurveLength;
CubicBezierCurve(&vecPoints[0], &vecPoints[1], \
 &vecPoints[2], &vecPoints[3], \
 Scalar, &vecPos);

As you can see, cubic Bezier curves aren't too difficult to use. The formulas are pretty basic, and I'd rather
leave it up to the math textbooks to go into the details of the calculations (or a fine book like Kelly Dempski's
Focus On Curves and Surfaces−see Appendix A, "Book and Web References," for details). For now, I'm only
interested in making it work for your game project. Speaking of that, let's see what you can do with your
newfound knowledge of using straight and curved paths to create routes.

Defining Routes

A path by its lonesome self does you little good; there are times when you need to string together a series of
paths that an object must follow. I'm talking about complex paths that are both straight and curved. In fact,
we're no longer discussing paths; we've moved on to the advanced topic of routes!

As you can see in Figure 2.6, a route is a series of paths that are commonly connected from endpoint to
endpoint.

Moving along Paths

46

Figure 2.6: You can create a complex route using a series of straight and curved paths. As you can see here,
paths do not need to be connected to complete a route.
As you have probably surmised, you can define a route using an array of path objects. By creating a generic
path structure, you can store information for both straight and curved paths in one structure. The secret is to
look for commonalities and expand on those. For example, the straight and curved paths both have starting
and ending points. Therefore, you can define two sets of coordinates that represent the starting and ending
coordinates inside your generic path structure, as follows:

typedef struct {
 D3DXVECTOR3 vecStart, vecEnd;
} sPath;

The only real difference between the two path types is that the curved paths have two additional control
points. Adding another two vector objects to your budding sPath structure will work just fine for holding the
control point coordinates.

typedef struct {
 D3DXVECTOR3 vecStart, vecEnd;
 D3DXVECTOR3 vecPoint1, vecPoint2;
} sPath;

Now the only thing missing is a flag in the sPath structure to determine which type of path is
defined−straight or curved. Include a DWORD variable and an enum declaration to determine which type of
path is defined.

enum { PATH_STRAIGHT = 0, PATH_CURVED };
typedef struct {
 DWORD Type;
 D3DXVECTOR3 vecStart, vecEnd;
 D3DXVECTOR3 vecPoint1, vecPoint2;
} sPath;

From here on, you only need to store a PATH_STRAIGHT value or a PATH_CURVED value in the
sPath::Type variable to determine the use of the contained data−either for a straight path with starting and
ending points or for a curved path with starting, ending, and two mid−path control points.

Allocating an array of sPath structures is easy, and filling that array with your path's data (such as the data
shown in Figure 2.7) is as simple as the following code demonstrates.

Moving along Paths

47

Figure 2.7: A combination of two straight paths and a curved path form a complex route.
sPath Path[3] = {
 { PATH_STRAIGHT, D3DXVECTOR3(−50.0f, 0.0f, 0.0f), \
 D3DXVECTOR3(−50.0f, 0.0f, 25.0f), \
 D3DXVECTOR3(0.0f, 0.0f, 0.0f), \
 D3DXVECTOR3(0.0f, 0.0f, 0.0f) }, \
 { PATH_CURVED, D3DXVECTOR3(−50.0f, 0.0f, 25.0f), \
 D3DXVECTOR3(0.0f, 0.0f, 50.0f), \
 D3DXVECTOR3(50.0f, 0.0f, 0.0f), \
 D3DXVECTOR3(25.0f, 0.0f, −50.0f) }, \
 { PATH_STRAIGHT, D3DXVECTOR3(25.0f, 0.0f, −50.0f), \
 D3DXVECTOR3(−50.0f, 0.0f, 0.0f), \
 D3DXVECTOR3(0.0f, 0.0f, 0.0f), \
 D3DXVECTOR3(0.0f, 0.0f, 0.0f) } \
 };

Of course, you really shouldn't hand−code routes into your project; it's best to use an external source such as
an .X file to contain your route data.

Creating an .X Path Parser

The easiest place from which to obtain your path data is−you guessed it−an .X file! That's right, you can
construct a couple simple templates to use with a custom .X parser to obtain the paths you want to use for
your project. You can even construct routes from your path templates to make things easier!

You can duplicate the generic path structure you developed in the previous section to use as a template in your
.X files. This generic path template will contain four vectors−the first two being the starting and ending
coordinates of the path (for either a straight or curved path), and the last two being the handles' coordinates
(for curved paths). Take a look at the single template definition you can use.

// {F8569BED−53B6−4923−AF0B−59A09271D556}
// DEFINE_GUID(Path,
// 0xf8569bed, 0x53b6, 0x4923,
// 0xaf, 0xb, 0x59, 0xa0, 0x92, 0x71, 0xd5, 0x56);

 Creating an .X Path Parser

48

template Path {
 <F8569BED−53B6−4923−AF0B−59A09271D556>
 DWORD Type; // 0=straight, 1=curved
 Vector Start; // Start point
 Vector Point1; // Midpoint 1
 Vector Point2; // Midpoint 2
 Vector End; // End point
}

After you've defined your .X file Path template, you can instance as many times as you need in your data
files. To load those paths, you should create a route template (called Route) that allows you to define
multiple path data objects. This route template merely contains an array of Path data objects, as you can see
here:

// {18AA1C92−16AB−47a3−B002−6178F9D2D12F}
// DEFINE_GUID(Route,
// 0x18aa1c92, 0x16ab, 0x47a3,
// 0xb0, 0x2, 0x61, 0x78, 0xf9, 0xd2, 0xd1, 0x2f);
template Route {

<18AA1C92−16AB−47a3−B002−6178F9D2D12F>
 DWORD NumPaths;
 array Path Paths[NumPaths];
}

For an example of using the Route template, take a look at how the route defined in the previous section
would look in an .X file.

Route MyRoute {
 3; // 3 paths
 0; // Straight path type
 −50.0, 0.0, 0.0;
 0.0, 0.0, 0.0;
 0.0, 0.0, 0.0;
 −50.0, 0.0, 25.0;,
1; // Curved path type
 −50.0, 0.0, 25.0;
 0.0, 0.0, 50.0;
 50.0, 0.0, 0.0;
 25.0, 0.0, −50.0;,
 0; // Straight path type
 25.0, 0.0, −50.0;
 0.0, 0.0, 0.0;
 0.0, 0.0, 0.0;
 −50.0, 0.0, 0.0;;
}

You can access the route data objects from your .X files by using a custom .X parser. This parser only needs
to look for Route objects. When it finds one, it will allocate an array of sPath structures and read in the
data. The route data itself is kept inside a linked list of structures so that you can load multiple routes. This
route data uses the following class:

class cRoute
{
 public:
 DWORD m_NumPaths; // # paths in list
 sPath *m_Paths; // List of paths
 cRoute *m_Next; // Next route in linked list

 Creating an .X Path Parser

49

 public:
 cRoute() { m_Paths = NULL; m_Next = NULL; }
 ~cRoute() { delete [] m_Paths; delete m_Next; }
};

The sPath structure also needs to be spruced up a bit. You need to add the length of each path to its
respective structure, as well as to the starting position of the path in the series of paths. This is a simple
process. The length, as you saw in the previous few sections, is only a floating−point number, and the starting
position of the path is the combination of the lengths of all prior paths in the list. Your new sPath structure
should look like this:

typedef struct {
 DWORD Type;
 D3DXVECTOR3 vecStart, vecEnd;
 D3DXVECTOR3 vecPoint1, vecPoint2;
 float Start; // Starting position
 float Length; // Length of path
} sPath;

The reason to include the length and starting position of the path in the sPath structure is really a matter of
speed. By pre−computing the length values loading the path data, you can quickly access that data (the length
and starting position) when you are determining the path in which an object is located based on its distance
into the route.

I know it sounds strange, but think of it like this−the starting positions and lengths of each path are like key
frames; instead of measuring time, you are measuring the lengths of the paths. By taking the position of an
object in the route (say 516 units), you can scan through the list of paths and see the path within which the
object lies.

Suppose the route uses six paths, and the fourth path starts at 400 units. The fourth path is 128 units long,
meaning that it covers the lengths from 400 to 528 units. The object at 516 units is located in the fourth path;
by subtracting the object's position (516) from the ending position of the path (528), you can discover the
offset in the path that you can use as a scalar value to calculate the object's coordinates along the path. In this
case, that position would be 528−516, or 12 units, and the scalar value would be 12/128, or 0.09375.

Enough talk, let's get to some code! The following class, cXRouteParser, is derived from the cXParser
class, meaning that you have access to the data−object parsing code. All you want to do with the
cXRouteParser class is scan for Route data objects and load the appropriate path data into a newly
allocated Route class that is linked to a list of routes.

Check out the cXRouteParser declaration, which contains the root Route class pointer and six functions
(three of which contain code inline to the class).

class cXRouteParser : public cXParser
{
 protected:
 BOOL ParseTemplate(IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference);

 public:
cRoute *m_Route;

 public:

 Creating an .X Path Parser

50

 cXRouteParser() { m_Route = NULL; }
 ~ cXRouteParser () { Free(); }
 void Free() { delete m_Route; m_Route = NULL; }
 void Load(char *Filename);
 void Locate(DWORD Distance, D3DXVECTOR3 *vecPos);
 };

The most important function of cXRouteParser is the template data object parser, of course. I'll show you
the parser function in a moment. The Load function merely sets up the call to Parse, which in turn loads all
your Route templates into the linked list. The Locate function calculates the position along the route's path
that you can use to position an object. Again, I'll get to the Locate function in a moment. For now, I want to
get back to the ParseTemplate function.

The ParseTemplate function only scans for one template data object−Route. Once it is found, a
cRoute class and the path structures are allocated, and the data is loaded. The cRoute class is linked in the
list of loaded routes, and the parsing of the .X file continues. Here's what the ParseTemplate function
code looks like:

BOOL cXRouteParser::ParseTemplate(IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference)
{
 const GUID *Type = GetTemplateGUID(pDataObj);

 // Only process Route data objects
 if(*Type == Route) {
 // Get pointer to data
 DWORD *DataPtr = (DWORD*)GetTemplateData(pDataObj, NULL);

 // Allocate and link in a route
 cRoute *Route = new cRoute();
 Route−>m_Next = m_Route;
 m_Route = Route;

 // Get # paths in route and allocate list
 Route−>m_NumPaths = *DataPtr++;
 Route−>m_Paths = new sPath[Route−>m_NumPaths];

 // Get path data
 for(DWORD i=0;i<Route−>m_NumPaths;i++) {

// Get path type
 Route−>m_Paths[i].Type = *DataPtr++;

 // Get vectors
 D3DXVECTOR3 *vecPtr = (D3DXVECTOR3*)DataPtr;
 DataPtr+=12; // skip ptr ahead
 Route−>m_Paths[i].vecStart = *vecPtr++;
 Route−>m_Paths[i].vecPoint1 = *vecPtr++;
 Route−>m_Paths[i].vecPoint2 = *vecPtr++;
 Route−>m_Paths[i].vecEnd = *vecPtr++;

 // Calculate path length based on type
 if(Route−>m_Paths[i].Type == PATH_STRAIGHT) {
 Route−>m_Paths[i].Length = D3DXVec3Length(\
 &(Route−>m_Paths[i].vecEnd − \
 Route−>m_Paths[i].vecStart));
 } else {

 Creating an .X Path Parser

51

 float Length01 = D3DXVec3Length(\
 &(Route−>m_Paths[i].vecPoint1 − \
 Route−>m_Paths[i].vecStart));
 float Length12 = D3DXVec3Length(\
 &(Route−>m_Paths[i].vecPoint2 − \
 Route−>m_Paths[i].vecPoint1));
 float Length23 = D3DXVec3Length(\
 &(Route−>m_Paths[i].vecEnd − \
 Route−>m_Paths[i].vecPoint2));
 float Length03 = D3DXVec3Length(\
 &(Route−>m_Paths[i].vecEnd − \
 Route−>m_Paths[i].vecStart));
 Route−>m_Paths[i].Length = (Length01+Length12+ \
 Length23)*0.5f+Length03*0.5f;
 }
 // Store starting position of path
 if(i)
 Route−>m_Paths[i].Start = Route−>m_Paths[i−1].Start + \
 Route−>m_Paths[i−1].Length;
 else
 Route−>m_Paths[i].Start = 0.0f;
 }
 }

 // Parse child templates
 return ParseChildTemplates(pDataObj, Depth, Data, Reference);
}

As usual, you don't call ParseTemplate directly−it's up to your cXRouteParser::Load function to
call Parse, which in turn calls ParseTemplate. Knowing this, take a look at the Load function (which
takes the file name of the .X file to parse as the only parameter).

void cXRouteParser::Load(char *Filename)
{
 Free(); // Free loaded routes
 Parse(Filename);
}

Short and sweet, just how I like them! The Load function is really just a gateway to ensure that prior route
data is freed and the Parse function is called. There's not much more to it!

Now that you've defined the templates, created your custom class, and loaded the route data, it's time to start
moving those objects! It's time to get back to the cXRouteParser::Locate function. You might have
noticed that the function prototype for Locate only specifies a floating−point value and a vector object. I
want to keep this simple, so I'm only going to scan the first route in the linked list to position an object.

Tip To scan multiple routes inside the Locate function, you might want to retain each Route object's
instance name, which you'll use in the function call to Locate to match which route to scan.

By taking the current time and the distance (in 3D units) that an object can move, you can iterate through each
path in your route to determine exactly which path an object would be on at a specific time. From there, you
can calculate exactly how far between the beginning and end of that path the object lies and correctly position
your object.

Suppose you have an object that is moving at 200 units per second, which is 0.2 units per millisecond.
Multiply the distance per second by the total time along the path to obtain the object's location within the

 Creating an .X Path Parser

52

route. You'll use this total distance inside the route as the Distance parameter in the call to Locate.

The Locate function takes the distance you provided and scans through each path contained in the route.
Remember, you've already calculated the starting position and length for each path, so this is merely a check
to see whether the object's distance is greater than the start of the path and less than the distance of the path.
Take a look at Locate's code to see what I mean.

void cXRouteParser::Locate(float Distance, D3DXVECTOR3 *vecPos)
{
 // Scan through first route class in list
 cRoute *Route = m_Route;
 if(!Route)
 return;

 // Scan through each path in route
 for(DWORD i=0;i<Route−>m_NumPaths;i++) {

// See if distance falls into current path
 if(Distance >= Route−>m_Paths[i].Start && \
 Distance < Route−>m_Paths[i].Start + \
 Route−>m_Paths[i].Length) {
 // Distance is within current path, use that
 // Get offset into path using start
 Distance −= Route−>m_Paths[i].Start;

 // Calculate the scalar value to use
 float Scalar = (float)Distance/Route−>m_Paths[i].Length;

 // Calculate coordinate based on path type
 if(Route−>m_Paths[i].Type == PATH_STRAIGHT) {
 *vecPos = (Route−>m_Paths[i].vecEnd − \
 Route−>m_Paths[i].vecStart) * \
 Scalar + Route−>m_Paths[i].vecStart;
 } else {
 CubicBezierCurve(&Route−>m_Paths[i].vecStart, \
 &Route−>m_Paths[i].vecPoint1, \
 &Route−>m_Paths[i].vecPoint2, \
 &Route−>m_Paths[i].vecEnd, \
 Scalar, vecPos);
 }
 }
 }
}

There you have it−a perfect method of using routes in your own game projects! Check out the Route demo for
this chapter to see routes in action. (See the end of this chapter for more information.) The Route demo slowly
moves an object along a path at a set speed, which is based on time.

Although routes are cool for moving your game's characters and other assorted objects, how about a use for
routes that will blow your socks off? One of the greatest uses of routes is to control in−game cameras to create
cinematic sequences.

Creating In−Game Cinematic Sequences

Using time−based animation is crucial to achieving smooth playback, but what good could using time−based
movement possibly do? Sure, moving a few objects around a set path is neat, but is that all you can do? The
answer is a resounding no! There's much more you can do with time−based movement, including creating

 Creating In−Game Cinematic Sequences

53

in−game cinematic sequences, like those from games such as Silicon Knights' Eternal Darkness: Sanity's
Requiem In Eternal Darkness, the player is treated to animation sequences that play out using the game's 3D
engine.

Typically, the game's camera shifts focus from the player's point of view to capture the scene from another
view that shows the player and some other character confronting each other and advancing the story line.

To use a cinematic camera, you can rely on the techniques you read about earlier in this chapter, and you can
use the pre−calculated animation sequences you will see in Chapter 3 As Figure 2.8 illustrates, it's only a
matter of plotting out the path that your camera will follow over time. Mix that with a complete
pre−calculated animation, and you've got yourself a complete in−game cinematic engine!

Figure 2.8: Just like a movie, the camera follows a predetermined path, showing the pre−calculated animation
from different angles. The angles are determined by setting a path for both the camera and the camera's target
location (where the camera is looking).
Rather than reiterate what you already saw in this chapter, I'll leave it up to you to check out the Cinematic
demo, which shows a small cinematic sequence. In a nutshell, the demo merely loads a series of keys (using
the .X path parser class) that represent the paths the camera follows. In every frame, the position of the camera
is calculated using the keys, and the viewport is oriented. Then the pre−calculated animation is updated and
the entire scene is rendered.

Check Out the Demos

This chapter introduced you to animating based on time using key−frame data structures, as well as moving
along paths and routes over time. On the CD−ROM, you'll find four demo programs that illustrate what
you've read in this chapter. For exact information on these demos' locations, check out the end of this chapter.
The next few sections show you what each demo does.

TimedAnim

The TimedAnim demo, as illustrated in Figure 2.9, demonstrates how key−framed animation structures can
be used to animate objects (such as the nifty robot) over time. This demo runs continuously until you close the
program.

 Check Out the Demos

54

Figure 2.9: Key−framed animation in action! The robot rotates and moves according to the transformation key
frames set in the demo source.

TimedMovement

Timed movement is just as important as timed animation, and the TimedMovement demo shows you how to
pull it off. Figure 2.10 shows the TimedMovement demo in action. This demo runs continuously until you
close the program.

Figure 2.10: The TimedMovement demo shows you how to move a series of robots up and down straight and
curved paths over time.
The TimedMovement demo (as well as the following Route and Cinematic demos) demonstrates how to point
objects in the direction in which they are traveling by determining the vector in which an object moved since
its last update. With that movement vector, you can calculate an angle to orient your meshes to point in the
proper direction while moving.

Route

The Route demo (seen in Figure 2.11) shows how to string together a series of straight and curved paths to
create complex routes along which you can move your objects. This program continues until you exit the
application.

 TimedMovement

55

Figure 2.11: Take command of your robot by laying down complex routes in which to travel around your
worlds. Here, the robot demonstrates the use of straight and curved paths.

Cinematic

Rounding out the list of demos for this chapter is Cinematic. As shown in Figure 2.12, you get to see how
complex routes can be applied to cameras in order to traverse a 3D scene in real time. This technique of
moving a camera is perfect to use for an in−game cinematic system.

Figure 2.12: The cinematic camera demo adds a moving camera to the Route demo.
Programs on the CD

The CD−ROM contains four demo programs that illustrate the animation techniques you learned in this
chapter. These four programs, located in the Chapter 2 directory of the enclosed disc, are

TimedAnim. This project shows you how to use time−based animation with key frames, as shown in
this chapter. It is located at \BookCode\Chap02\TimedAnim.

♦

TimedMovement. This demo shows you how straight and curved paths are used to move objects
around your 3D world. It is located at \BookCode\Chap02\TimedMovement.

♦

Route. This demo shows the route parser class in action by slowly moving an object around a route. It
is located at \BookCode\Chap02\Route.

♦

 Cinematic

56

Cinematic. This is an in−game cinematic sequence, complete with a route−following camera and
pre−calculated animations. It is located at \BookCode\Chap02\Cinematic.

♦

 Cinematic

57

Chapter 3: Using the .X File Format
Your 3D meshes need a place to liverather, you need a place to store your 3D mesh data (not to mention all
that other data your game project requires). What's a developer to do−develop his own file format or go with a
third−party format? With so many popular formats out there, it's an easy choice to make, but what about the
restrictions some formats impose? Why can't you just use somebody else's file format and configure it to work
the way you want?

That somebody else is none other than Microsoft, and the format to use is .X! Now uncross those eyes,
mister−those .X files are really easy to use once you understand them, and this chapter will teach you what
you need to know.

Working with .X Templates and Data Objects

If you haven't already, I invite you to take a look at one of those mysterious .X files that comes packaged with
the DirectX SDK (located in the \Samples\Multimedia\Media directory of your DirectX install). Go on, I dare
you. More than likely, you'll be greeted with something like this:

xof 0302txt 0032

template Header {
 <3D82AB43−62DA−11cf−AB39−0020AF71E433>
 DWORD major;
 DWORD minor;
 DWORD flags;
}

template Frame {
 <3D82AB46−62DA−11cf−AB39−0020AF71E433>
 [FrameTransformMatrix]
 [Mesh]
}

Header {
 1;
 0;
 1;
}

Frame Scene_Root {
 FrameTransformMatrix {
 1.000000, 0.000000, 0.000000, 0.000000,
 0.000000, 1.000000, 0.000000, 0.000000,
 0.000000, 0.000000, 1.000000, 0.000000,
 0.000000, 0.000000, 0.000000, 1.000000;;
 }
 Frame Pyramid_Frame {
 FrameTransformMatrix {
 1.000000, 0.000000, 0.000000, 0.000000,
 0.000000, 1.000000, 0.000000, 0.000000,
 0.000000, 0.000000, 1.000000, 0.000000,
 0.000000, 0.000000, 0.000000, 1.000000;;
 }
 Mesh PyramidMesh {
 5;
 0.00000;10.00000;0.00000;,

58

 −10.00000;0.00000;10.00000;,
 10.00000;0.00000;10.00000;,
 −10.00000;0.00000;−10.00000;,
 10.00000;0.00000;−10.00000;;
 6;
 3;0,1,2;,
 3;0,2,3;,
 3;0,3,4;,
 3;0,4,1;,
 3;2,1,4;,
 3;2,4,3;;
 MeshMaterialList {
 1;
 6;
 0,0,0,0,0,0;;
 Material Material0 {
 1.000000; 1.000000; 1.000000; 1.000000;;
 0.000000;
 0.050000; 0.050000; 0.050000;;
 0.000000; 0.000000; 0.000000;;

}
 }
 }
 }
}

Scary looking, isn't it? Actually, you can break down every .X file into a small handful of easy−to−manage
components, which makes the files easy to understand and process. Let me explain what I mean. Every .X file
starts with a small header, which in the preceding example looks like this:

xof 0302txt 0032

This small blurb of text informs programs that load the file that it is indeed an .X file. (The xof portion
signifies an .X file.) It also informs programs that the file uses the DirectX .X file version 3.2 templates
(represented by the 0302 text). Following the version number is txt, which signifies that all of the following
.X data is stored in a text format as opposed to a binary format. The line of text ends with 0032, which
defines the number of bits reserved for floating−point values (0032 for 32−bit or 0064 for 64−bit).

Note Binary, a second .X file storage format, is useful for compacting data into a format that is
unreadable by humans. I won't discuss the binary format in this book; however, the techniques
used to process .X files in this chapter still apply to binary .X files, so don't worry about missing
out on any good stuff!

After the file header there are a slew of data chunks, referred to as templates and data objects. You can tell the
difference between a template and a data object because all templates begin with the word template. As
you can see from the .X file code, templates look much like a C structure definition. Data objects are instances
of those templates.

You use templates to define the information that data objects contain in the .X file. (A template defines the
layout of a data object.) Each template can contain any type of data defined by a small set of data types, and
any combination of data types can be used inside a template. A data object is merely an instance of a template.
You can think of a template much like a C++ class−they both define the data that an instance of the object can
contain.

 Chapter 3: Using the .X File Format

59

Taking another look at the example .X file, you can see that the first template you'll encounter is Header,
which is the template's class name. The Header template contains three DWORD values (as well as a large
number called a GUID, which is enclosed in angle brackets), which you set when you create a data object
from the template. Creating data objects is much like instancing a class or structure. In the previous .X file
code, the instancing of the Header template looks like this:

Header {
 1; // major
 0; // minor
 1; // flags
}

Notice that you must define every variable contained in the Header template in your data object, and in the
same order. You might be wondering about that large number (the template's GUID) defined in the template,
however. What does that have to do with instancing your template? Nothing, actually, because DirectX uses
that large number to identify templates as they are loaded. I'll get back to the template GUID (Globally
Unique Identification Number) in a moment.

Tip Much like C/C++, you can also use the handy // operator to signify comments in your .X
file.

The next template you'll see in the .X file is Frame. This is a special template−it doesn't define any data
types, but it does reference other template classes. The other template classes, enclosed in square brackets, are
named FrameTransformMatrix and Mesh. Using this manner of referencing other templates from
within a template, you can create a hierarchy of data objects.

Also, by declaring additional templates within another template, you are creating a set of template restrictions,
which enable you to create templates that only allow specific data objects to be embedded within another data
object. In this case, only the data objects of the type FrameTransformMatrix and Mesh can be
embedded in a Frame data object. You'll read more about template restrictions later in this chapter. For now,
move on to examining the rest of the .X file.

Following the template definitions (which should also be at the beginning of the .X file) are the data objects.
These are declared much like C data structures would be−you instance the structure by its template class
name, followed by the data object's instance name. The instance name is optional, however, so don't worry if
you come across some data objects that are missing it.

In the .X file you're examining, the first data object has an instance name of Scene_Root. The
Scene_Root object is of the template class type Frame. You've already seen the Frame template defined.
Looking back to that template definition, you can see that there is no data to store, but there are two optional
data objects you can embed in Frame−FrameTransformMatrix and Mesh.

Just by a matter of luck, both a FrameTransformMatrix and a Mesh data object are embedded in
Scene_Root. Missing from the .X file, however, are the template definitions for
FrameTransformMatrix and Mesh. How are you supposed to know what data those objects contain?
Well, an .X file doesn't have to define every template with the file itself−you can define those template
definitions inside your program!

You'll get to see how to define these templates within your programs later in this chapter. For now, let's get
back to the example. A data object of the template class type FrameTransformMatrix is embedded in
the Scene_Root data object. This data object contains floating−point values that represent a transformation
matrix. After that data object there is another data object of the template class type Mesh, which contains

 Chapter 3: Using the .X File Format

60

information about a mesh.

Okay, enough of this example−I'm sure you're getting the gist of it. As you can see, templates are completely
user−defined, meaning that you can create any type of template to contain any type of data. Want to contain
raw sound data in an .X file? How about storing heartbeat−sensor readings? Using .X, you can store sound
data, heartbeat readings, and any other type of data you want!

Defining Templates

Since an .X file's open−ended design is so, well, open−ended, you must predefine each template that you
intend to use for DirectX to understand how to access the template's data. Typically templates are defined
inside an .X file, although you can define them from within your program (as I mentioned earlier).

You define a template (contained in an .X file) by assigning it a unique class name preceded by the word
template, as I have done in the following line of text. (Notice the opening bracket, which signifies the start
of the template's definition.)

template ContactEntry {

Cool−now you've started the declaration of a template that you will use to store a person's contact
information. We're calling the template class ContactEntry, as you can see from the code. Even though
you have assigned your template a unique class name, you need to go one step further and also assign it a
unique identification number−a GUID.

When you get around to reading an .X file into your program, you'll only have access to the GUIDs of each
template, not the class names. The class names are important only to your .X file data objects; you want your
program to differentiate those data objects by their template GUIDs.

To define a GUID for your template, fire up the guidgen.exe program that comes with your Microsoft Visual
C/C++ compiler installation (located in the \Common\Tools directory of your MSVC installation). After
you've found and executed the guidgen.exe file, you'll be presented with a small dialog box, shown in Figure
3.1.

Figure 3.1: The guidgen.exe's Create GUID dialog box allows you to create a unique identification number in

 Defining Templates

61

various formats.
As you can see in Figure 3.1, the Create GUID dialog box allows you to choose the format of the GUID you
want to create. In this case you'll use format #2, DEFINE_GUID(). Select the option and click the Copy
button.

Now a completely unique identification number is on the Clipboard, waiting for you to paste it into your code.
Go back to the .X file you are creating and paste the contents of the Clipboard into your template declaration.

template ContactEntry {
// {4C9D055B−C64D−4bfe−A7D9−981F507E45FF}
DEFINE_GUID(<<name>>,
0x4c9d055b, 0xc64d, 0x4bfe, 0xa7, 0xd9, 0x98, \
0x1f, 0x50, 0x7e, 0x45, 0xff);

Whoops! That's a little too much text for the template, so you need to cut out the DEFINE_GUID macro stuff
and paste that into your project's source code. Yes, that's right−every template you define requires a matching
GUID definition (via the DEFINE_GUID macro, for example) inside your code. This means you need to
include the initguid.h file in your code and use DEFINE_GUID, as I have done here.

#include "initguid.h"
// At beginning of source code file − add DEFINE_GUIDs
DEFINE_GUID(ContactEntry, \
 0x4c9d055b, 0xc64d, 0x4bfe, 0xa7, 0xd9, 0x98, \
 0x1f, 0x50, 0x7e, 0x45, 0xff);

Notice that in the DEFINE_GUID macro, I've replaced the <<name>> text with the actual class name of the
template I am defining. In this case, I am using ContactEntry as a macro name. From this point on, the
ContactName macro will contain a pointer to my template's GUID (which must match the template's GUID
in the .X file).

Getting back to the ContactEntry template, you also need to remove the comment tag from the pasted text
and change the GUID's brackets to angle brackets, as I have done here:

template ContactEntry {
 <4C9D055B−C64D−4bfe−A7D9−981F507E45FF>

Now you're ready to move on and define the template's data. Templates are much like C structures and
classes; they contain variables and pointers to other templates, as well as access restrictions. The types of
variables you can use are much like the ones you use in C. Table 3.1 shows you the data types at your disposal
for defining templates, as well as matching C/C++ data types.

Table 3.1: .X Template Data Types

Data TypeDescription

WORD 16−bit value (short)

DWORD 32−bit value (32−bit int or long)

FLOAT IEEE float value (float)

DOUBLE 64−bit floating−point value (double)

 Defining Templates

62

CHAR 8−bit signed value (signed char)

UCHAR 8−bit unsigned value (unsigned char)

BYTE 8−bit unsigned value (unsigned char)

STRING A NULL−terminated string (char[]))

array Signifies an array of following data type to follow ([])

Much like C/C++ variable declarations, you follow the data type keyword with an instance name and finish
with a semicolon (signifying the end of the variable declaration).

DWORD Value;

In Table 3.1, you'll notice the array keyword, which defines an array of data types. To define an array, you
specify the array keyword followed by the data type, instance name, and array size (enclosed in square
brackets). For example, to declare an array of 20 STRING data types, you could use

array STRING Text[20];

Note The cool thing about arrays is that you can use another data type to define the array size, as I have done
here:

DWORD ArraySize
; array STRING Names[ArraySize];

Now you need to go back to the ContactEntry template and define a person's name, phone number, and
age. The three variables−two strings (name and phone number) and one numerical value (age)−can be defined
in the ContactEntry template as follows.

template ContactEntry {
 <4C9D055B−C64D−4bfe−A7D9−981F507E45FF>
 STRING Name; // The contact's name
 STRING PhoneNumber; // The contact's phone number
 DWORD Age; // The contact's age
}

Cool! You finish your template definition with a closing bracket, and you're ready to go.

Creating Data Objects from Templates

After you have defined a template, you can begin creating data objects and defining their data. Data objects
are defined by their respective template class types and an optional instance name. You can use this instance
name to later reference the data object inside the .X file or from within your project (a feature you'll read
about later in this chapter).

Moving on with the example, take the ContactEntry template and create a data object from it. This data
object will contain a person's name, phone number, and age.

ContactEntry JimsEntry {
 "Jim Adams";
 "(800) 555−1212";
 30;
}

Notice that I've declared the data object's instance name as JimsEntry. From now on, I can reference this
data object by using the name enclosed in brackets, like this:

 Creating Data Objects from Templates

63

{JimsEntry}

Referencing a data object in this manner is called data referencing, or referencing (as if you couldn't guess!),
and it allows you to point one data object to another. For example, an animation sequence template
(AnimationSet) requires you to reference a Frame data object for the sequence's embedded objects.

You can also use referencing to duplicate an object's data without having to retype it. This is useful when you
are creating a few identical Mesh data objects in an .X file, with each Mesh object being oriented differently
inside various Frame objects.

Embedding Data Objects and Template Restrictions

Data referencing has one caveat−the template restrictions set in place must allow you to use a reference. That
might not make sense at first, but you can't use a data reference without the proper restrictions. An .X file
represents an entire hierarchy of data objects, which can only be siblings or children of other objects. Thus,
data objects embedded in other objects need the proper restrictions to be referenced or instanced.

For example, consider the following three template declarations:

template ClosedTemplate {
 <4C9D055B−C64D−4bfe−A7D9−981F507E45FF>
 DWORD ClosedData;
}
template OpenTemplate {
 <4C9D055B−C64D−4bff−A7D9−981F507E45FF>
 DWORD OpenData;

[...]
}
template RestrictedTemplate {
 <4C9D055B−C64D−4c00−A7D9−981F507E45FF>
 DWORD RestrictedData;
 [ClosedTemplate]
 [OpenTemplate]
}

They are pretty standard template declarations, except for the lines that contain square brackets. The
information inside those square brackets is important. The first template, ClosedTemplate, doesn't have
square brackets, so it is considered a closed template. You can only instance and define the ClosedData
value inside ClosedTemplate.

The OpenTemplate, however, contains the [] line, which signifies that it is an open template. An open
template allows any data object to be embedded in place of the [] line. For example, you can instance
OpenTemplate, define the OpenData variable, and then embed an instance of ClosedTemplate
within the OpenTemplate.

RestrictedTemplate has two lines of bracket text. Restricting templates only allow data objects of those
template types listed; in this case, those templates are ClosedTemplate and OpenTemplate. Attempts
to embed any other data object other than the two listed will fail (causing the parse to fail).

Whew−you might have to reread this section a few times to fully understand the ability to embed and restrict
templates within other templates. Once you have a firm grasp on embedding and restricting, it's time to move
on and learn about DirectX's pre−defined standard templates, which are packaged with the DirectX SDK.

 Embedding Data Objects and Template Restrictions

64

Working with the DirectX Standard Templates

Now that you've worked your way through templates and data objects, you can move up a step and see what
you can do with them in your project. If you've taken the time to play around with the DirectX SDK, you'll
notice that .X is widely used for containing mesh information. To that end, Microsoft has packaged DirectX
with a number of templates, which I call the DirectX standard templates. These templates are used to contain
all mesh−related data.

The standard templates are useful because they define almost every aspect of 3D meshes, so take a moment to
study them here. I won't go into an incredible amount of detail regarding the standard templates in general
because the DirectX SDK contains a plethora of information for them, but I'll give you the lowdown for each
template.

The standard templates, shown in Table 3.2, each have a matching GUID macro that you use to determine
which data object is which in your program. These macros are defined (using DEFINE_GUID) inside a
special file named rmxfguid.h. The standard templates' GUID macros are easy to remember because you
just prefix the template's name with D3DRM_TID. For instance, the Animation template is defined by the
macro D3DRM_TIDAnimation.

Table 3.2: DirectX .X Standard Templates

Template Name Description

Animation Defines animation data for a single frame.

AnimationKey Defines a single key frame for the parent animation template.

AnimationOptions Contains animation playback information.

AnimationSet Contains a collection of animation templates.

Boolean Holds a Boolean value.

Boolean2d Holds two Boolean values.

ColorRGB Contains red, green, and blue color values.

ColorRGBA Contains red, green, blue, and alpha color values.

Coords2d Defines two coordinate values.

FloatKeys Contains an array of floating−point values.

FrameTransformMatrix Holds the transformation matrix for a parent Frame template.

Frame A frame−of−reference template that defines a hierarchy.

Header The .X file header that contains version numbers.

IndexedColor Contains an indexed color value.

Material Contains material color values.

Matrix4x4 Holds a 4x4 homogenous matrix container.

Mesh Contains a single mesh's data.

MeshFace Holds a mesh's face data.

MeshFaceWraps Contains the texture wrapping for mesh faces.

MeshMaterialList Contains the material for face−mapping values.

 Working with the DirectX Standard Templates

65

MeshNormals Holds normals used for mesh data.

MeshTextureCoords Holds texture coordinates used for mesh data.

MeshVertexColors Holds vertex color information used for mesh vertices.

Patch Defines a control patch.

PatchMesh Contains a patch mesh (much like the Mesh template).

Quaternion Holds a quaternion value.

SkinWeights Contains an array of weight values mapped to a mesh's vertices. Used in
skinned meshes.

TextureFilename Contains the texture file name to use for a material.

TimedFloatKeys Contains an array of FloatKeys templates.

Vector Holds a 3D coordinate value.

VertexDuplicationIndices Informs you which vertices are duplicates of other vertices.

XSkinMeshHeader Used by skinned meshes to define the number of bones contained in a
mesh.

You can see that there are quite a few templates−too many to discuss in this book. Thank−fully, however,
you'll find that you only need to deal with a handful of the standard templates while parsing .X files. You'll
pick up on which standard templates I'm speaking of as you go through the rest of this book. For now, let's get
a move on so you can see how to access .X files in your own projects.

Accessing .X Files

Regardless of the version of DirectX you are using (either DirectX 8 or 9), the methods you use to access .X
files are the same. In fact, the interfaces have not changed names between the two newest versions of DirectX
(8 and 9), making it possible for you to quickly port your version 8 code to the newer version 9 (and vice
versa if you want).

The first step to accessing any .X file is to create an IDirectXFile interface. You need to call the
DirectXFileCreate function, as shown in the following bit of code:

IDirectXFile *pDXFile = NULL;
HRESULT Result = DirectXFileCreate(&pDXFile);

As you can see from the previous lines of code, the DirectXFileCreate function takes one
parameter−the pointer to an IDirectXFile interface. You can quickly determine whether the function has
succeeded in creating a valid, IDirectXFile interface by using the SUCCEEDED or FAILED macro on the
return code from the DirectXFileCreate call.

Once you've successfully created the IDirectXFile interface, you can optionally register any templates
you'll be using (such as the DirectX standard templates) and create an enumeration interface that weeds
through the top−level data objects within your .X files.

Registering Custom and Standard Templates

To save storage space and improve your data security, the .X interfaces allow you to remove all template
definitions from .X files and embed them into your executable. This means that instead of the .X files defining
templates, your program has to do it. Don't worry−it's not as difficult as it sounds. As you'll see in a moment,
Microsoft has taken the liberty of doing the hard work by defining the standard templates inside a couple
include files, making everything as simple as possible.

 Accessing .X Files

66

To register the standard templates (or any template, for that matter) from within your program, you'll need to
call upon the IDirectXFile::RegisterTemplates function.

HRESULT IDirectXFile::RegisterTemplates(
 LPVOID pvData, // buffer containing template definitions
 DWORD cbSize); // # of bytes of data

The pvData parameter is merely a data buffer that contains the template definitions in the exact format
you'd see in an .X file. For example, you can define a template data buffer like this:

char *Templates = "
 "xof 0303txt 0032 \
 template CustomTemplate { \
 <4c944580−9e9a−11cf−ab43−0120af71e433> \
 DWORD Length; \
 array DWORD Values[Length]; \
 }";

Note Notice that the template definition in Templates uses the backslash character to represent a new
line, and that the first line of text is a standard .X file header.

Going back to RegisterTemplates, the cbSize parameter represents the size of the template data
buffer, which you can determine in this case by using the strlen of the Templates buffer. Put together,
you can register the templates defined in Templates using the following code:

pFile−>RegisterTemplates(Templates, strlen(Templates));

Now let's get back to the topic at hand−registering the standard templates. You've seen
RegisterTemplates at work. In order to register the standard templates, you need to include two
additional files in your project−rmxftmpl.h and rmxfguid.h. These two files define the template
definitions and GUIDs of the standard templates, respectively.

Tip To remember rmxftmpl.h and rmxfguid.h, just remember that rmxf stands for retained mode
x−file, tmpl means template, and guid means globally unique identifier.

Inside the rmxftmpl.h file, you'll find the D3DRM_XTEMPLATES template data buffer and the
D3DRM_XTEMPLATE_BYTES macro. These are used in the call to RegisterTemplates to register the
standard templates, as you can see here:

pFile−>RegisterTemplates(D3DRM_XTEMPLATES, \
 D3DRM_XTEMPLATE_BYTES);

That's right; just by calling the above bit of code, you have successfully registered the standard templates, and
you're ready to move on! A word of advice before you do: Once you begin using the .X format for your own
custom templates and data, don't forget that using RegisterTemplates works perfectly for registering
your own custom template definitions!

Opening an .X File

After you've created an IDirectXFile interface and registered the templates you'll be using, you need to
open the .X file and begin enumerating the data objects within it. The process of opening the .X file and
creating an enumeration object occurs in one call to the IDirectXFile::CreateEnumObject function.

HRESULT IDirectXfile::CreateEnumObject(

 Opening an .X File

67

 LPVOID pvSource, // .X filename
 DXFILELOADOPTIONS dwLoadOptions, // Load options
 LPDIRECTXFILEENUMOBJECT* ppEnumObj); // Enum interface

When you call the CreateEnumObject function, specify the file name of the .X file to load as pvSource
and the interface you'll be using as ppEnumObj. As for dwLoadOptions, you should specify the value
DXFILELOAD_FROMFILE, which tells DirectX to load the file from disk. Other possible values for
dwLoadOptions are DXFILELOAD_FROMRESOURCE, DXFILELOAD_FROMMEMORY, and
DXFILELOAD_FROMURL. These values tell DirectX to load the .X file from a resource, memory buffer, or
network URL, respectively. Yep, that's right−you can load .X files directly over the Internet!

Tip To load an .X file from the Internet using a URL, specify the complete network path in
pvSource.To load from a resource or memory location, just specify the resource handle or
memory pointer (both cast as LPVOID) in pvSource.

Continue the example and create an enumeration object for the .X file. The following code will create an
enumeration object used to parse a file from a disk.

// Filename = filename to load ("test.x" for example)
IDirectXFileEnumObject *pEnum;
pFile−>CreateEnumObject((LPVOID)Filename, \
 DXFILELOAD_FROMFILE, &pEnum);

From the code's comments, you can see that Filename points to a valid file name−in this case, test.x.
Once successfully called, the CreateEnumObject gives you a valid enumeration object (only one is
required per open .X file), ready to do all your enumeration dirty work.

Enumerating Data Objects

At this point, you have opened your .X file and registered the templates you'll be using (such as the DirectX
standard templates). The enumeration object has been created, and you are now ready to pull data from the .X
file.

In its current state, the IDirectXFileEnumObject object you created points to the first data object in the
file, which is typically the Header object. All top−level data objects are siblings of the Header object (or
the first object in the file). Each data object you read might contain embedded objects (child objects) or
references to other data objects; you can query for both of these.

The enumerator object itself doesn't handle a data object's data. Rather, you need to obtain a data object
interface, called IDirectXFileData, to access the data. To obtain an IDirectXFileData interface,
you need to call the IDirectXFileEnumObject::GetNextDataObject function.

HRESULT IDirectXFileEnumObject::GetNextDataObject(\
 LPDIRECTXFILEDATA* ppDataObj);

With only one parameter, the GetNextDataObject is a breeze to use. You just need to instance an
IDirectXFileData object and use it in your call to GetNextDataObject.

IDirectXFileData *pData;
HRESULT hr = pEnum−>GetNextDataObject(&pData);

Notice how I'm saving the return value of the GetNextDataObject call? If the return code is an error

 Enumerating Data Objects

68

(which you can check by using the FAILED macro), it signifies that the enumeration is complete. If the call to
GetNextDataObject is successful, then you have yourself a spiffy new interface for accessing the data
object's data!

Before you get into working with the object's data, let's finish the discussion on enumeration. So far, you've
been able to enumerate the first data object in a file and retrieve its data interface. What do you do when you
want to go to the next data object in the .X file or query for embedded data objects?

Once you're finished with a data interface, you need to free it to go to the next data object. Simply calling
IDirectXFileData::Release will free the data interface, and repeating the call to
IDirectXFileEnumObject::GetNextDataObject will get the next enumerated sibling (top−level)
data object for you. You can wrap the entire enumeration of siblings (grabbing their respective data interfaces)
into a code bite such as this one:

while(SUCCEEDED(pEnum−>GetNextDataObject(&pData))) {
 // Do something with pData data object

 // Free the data interface in order to continue
 pData−>Release();
}

All that's left is to add the ability to query for child (lower−level) data objects, and to allow those child objects
to be enumerated and accessed. To query for a child data object, you use the
IDirectXFileData::GetNextObject function to first see whether a data object contains any
embedded objects.

HRESULT IDirectXFileData::GetNextObject(\
 LPDIRECTXFILEOBJECT* ppChildObj);

This is another simple function with only one parameter−the pointer to an IDirectXFileObject
interface. If the call to GetNextObject is successful, then you need to process the child data object. Once
you've done that, you can free it (by calling Release) and continue calling GetNextObject until it
returns an error code, which signifies that no more child objects remain.

You can wrap the continuous calling of GetNextObject into a small loop, as I have done here.

IDirectXFileObject *pObject;

while(SUCCEEDED(pData−>GetNextObject(&pObject))) {
 // A child data object exists, need to query for it

 // Free file object interface
 pObject−>Release();
}

Once you have a valid IDirectFileObject interface (after the call to GetNextObject), you can
quickly determine which child data object it is currently enumerating (using the techniques coming up in the
next section). There's a slight snag, however. A data object can either be referenced or instanced, and the way
you access the object varies a bit depending on which type it is.

For instanced objects (those defined normally in an .X file), you can query the IDirectXFileObject for
an IDirectXFileData interface.

IDirectXFileData *pSubData;

 Enumerating Data Objects

69

// Check if child object is instanced (fails if not)
if(SUCCEEDED(pObject−>QueryInterface(\
 IID_IDirectXFileData, (void**)&pSubData))) {

 // Child data object exists, do something with it.

 // Free data object
 pSubData−>Release();
}

You saw the IDirectXFileData object in action earlier in this chapter. Using what you've just learned,
you can query a child data object's IDirectXFileData object for its own embedded child objects.

As for referenced data objects, you need to first query for the IDirectXFileDataReference object and
resolve the reference into an IDirectXFileData object. The following code will query and resolve the
referenced data object for you.

Tip If an instanced data object does not exist when you query for it, the call to
QueryInterface will fail. This is a quick way to tell the type of the data object. The
same goes for referenced objects−the query will fail, meaning the object is not referenced.

IDirectXFileDataReference *pRef;
IDirectXFileData *pSubData;

// Check if the data object is referenced (fails if not)
if(SUCCEEDED(pSubObj−>QueryInterface(\
 IID_IDirectXFileDataReference, \
 (void**)&pRef))) {

 // A data object reference exists. Resolve the reference
 pRef−>Resolve(&pSubData);

 // Do something with data object

 // Release the interfaces used
 pRef−>Release();
 pSubData−>Release();
}

Would you believe me if I told you that the hardest part is over? Enumerating the data objects and child
objects is simple, and if that's as hard as it gets, then you're in for an easy ride! To make your programming
job much easier, I suggest wrapping up the entire enumeration of data objects into two simple functions.

The first function (called Parse) will open an .X file, create the enumeration object, and enumerate all
top−level data objects. The function will then take each enumerated object and pass it to the second function
(ParseObject), which will process the data object data based on its template type and scan for embedded
child data objects. The ParseObject function will call itself using any child objects it finds, thus
processing a child's embedded objects.

The code for the Parse function follows.

// Need to include rmxftmpl.h and rmxfguid.h
BOOL Parse(char *Filename)
{
 IDirectXFile *pFile = NULL;

 Enumerating Data Objects

70

 IDirectXFileEnumObject *pEnum = NULL;
 IDirectXFileData *pData = NULL;

 // Create the enumeration object, return on error
 if(FAILED(DirectXFileCreate(&pFile)))
 return FALSE;

 // Register the standard templates, return on error
 if(FAILED(pFile−>RegisterTemplates(\
 (LPVOID)D3DRM_XTEMPLATES, D3DRM_XTEMPLATE_BYTES)))
 return FALSE;

 // Create the enumeration object, return on error
 if(FAILED(pDXFile−>CreateEnumObject((LPVOID)Filename, \

DXFILELOAD_FROMFILE, \
 &pEnum))) {
 pFile−>Release();
 return FALSE;
 }

 // Loop through all top−level data objects
 while(SUCCEEDED(pEnum−>GetNextDataObject(&pData))) {
 // Parse the data object by calling ParseObject
 ParseObject(pData);

 // Release the data object
 pData−>Release();
 }

 // Release used COM objects
 pEnum−>Release();
 pFile−>Release();
 return TRUE;
}

The Parse function doesn't hold back any punches, and it certainly isn't overly complicated. I have already
explained everything in the function, so there's no need to recap here. Instead, move on to the ParseObject
function, which takes a data object and queries it for child objects.

void ParseObject(IDirectXFileData *pData)
{
 IDirectXFileObject *pObject = NULL;
 IDirectXFileData *pSubData = NULL;
 IDirectXFileDataReference *pRef = NULL;

 // Scan for embedded objects
 while(SUCCEEDED(pData−>GetNextObject(&pObject))) {
 // Look for referenced objects
 if(SUCCEEDED(pObject−>QueryInterface(\
 IID_IDirectXFileDataReference, (void**)&pRef))) {

 // Resolve the data object
 pRef−>Resolve(&pSubData);

 // Parse the object by calling ParseObject
 ParseObject(pSubData);

 // Free interfaces
pSubData−>Release();

 pRef−>Release();

 Enumerating Data Objects

71

 }

 // Look for instanced objects
 if(SUCCEEDED(pObject−>QueryInterface(\
 IID_IDirectXFileData, (void**)&pSubData))) {

 // Parse the object by calling ParseObject
 ParseObject(pSubData);

 // Free the object interface
 pSubData−>Release();
 }

 // Free the interface for next object to use
 pObject−>Release();
 }
}

Again, the ParseObject function doesn't contain anything new. The one thing you'll notice about Parse
and ParseObject is that they don't really do anything except enumerate every data object in an .X file.
When it comes time to work with an object's data, what do you do?

Retrieving Data from a Data Object

Remember that data objects are containers for data, and if you're going to the trouble to enumerate data
objects, it's a safe bet that you're after the data in each one. Once you've got a valid IDirectXFileData
object that points at an enumerated data object, you can retrieve the object's instance name, template GUID,
and data using a trio of functions. The first function, IDirectXFileData::GetName, retrieves the name
of the data object instance.

HRESULT IDirectXFileData::GetName(
 LPSTR pstrNameBuf, // Name buffer
 LPDWORD pdwBufLen); // Size of name buffer

The GetName function takes two parameters−a pointer to a buffer that contains the name and a pointer to a
variable that contains the name buffer's size (in bytes). Before you obtain a name from the GetName
function, you first have to obtain the name's data size by specifying a NULL value for pstrNameBuf and
supplying a value DWORD pointer for pdwBufLen.

// pData = pre−loaded IDirectXFileData object
// Get size of name, in bytes
DWORD Size;
pData−>GetName(NULL, &Size);

Once you've got the size of the name buffer, you can allocate an appropriate buffer and read in the name.

// Allocate name buffer and get name
char *Name = new char[Size];
pData−>GetName(Name, &Size);

While having the data object's instance name helps, you really need the GUID of the object's template to
distinguish which template an object uses. To retrieve the GUID of the object's template, you use the
IDirectXFileData::GetType function.

HRESULT IDirectXFileData::GetType(

 Retrieving Data from a Data Object

72

 const GUID ** ppguid);

With only one parameter to use−a pointer to a const GUID pointer−you can call the GetType function using
the following code:

const GUID *TemplateGUID = NULL;
pData−>GetType(&TemplateGUID);

Now that you have the GUID, you can compare it to a list of internal GUIDs (such as those from the standard
templates or from your custom templates) and process the data appropriately. For instance, to check whether a
data object's type matches that of the MeshNormals standard template, you can use the following code:

// TemplateGUID = template's GUID to check
if(*TemplateGUID == TID_D3DRMMeshNormals) {
 // Process MeshNormals template
}

Of course, knowing the object's template GUID can only get you so far. The real trick is to get at the data
object's data. No problem! With one more simple function call at your disposal, your .X file parsing abilities
will be nearly complete! The last function you use to access an object's data is GetData.

HRESULT IDirectXFileData::GetData(
 LPCSTR szMember, // Set to NULL
 DWORD *pcbSize, // Size of data
 void **ppvData); // Data pointer

To use the GetData function, you need to provide a pointer to access the data object's data buffer and a
DWORD variable to contain the buffer's size (in bytes). Here's a snippet of code that shows how you can use
GetData to obtain a pointer to the object's data and its size.

char *DataPtr;
DWORD DataSize;
pData−>GetData(NULL, &DataSize, (void**)&DataPtr);

The pointer to the data buffer now points to a block of contiguous memory that is structured just like the data
object's template definition. You can access the data as a large buffer or, if you want to be crafty, you can
create a structure to match the template's definition for easier access. For example, suppose you have
enumerated the ColorRGBA standard template, which is defined as follows:

template ColorRGBA {
 <35FF44E0−6C7C−11cf−8F52−0040333594A3>
 FLOAT red;
 FLOAT green;
 FLOAT blue;
 FLOAT alpha;
}

To access the red, green, blue, and alpha values, you can grab the data pointer and cast it to a
float data type.

DWORD DataSize;
float *DataPtr;
pData−>GetData(NULL, &DataSize, (void**)&DataPtr);
float red = *DataPtr++;
float green = *DataPtr++;

 Retrieving Data from a Data Object

73

float blue = *DataPtr++;
float alpha = *DataPtr++;

While this approach is fine and dandy, you can process the object's data much easier by using a matching C
structure.

typedef struct {
 float red, green, blue, alpha;
} sColorRGBA;
sColorRGBA *Color;
DWORD DataSize;
pData−>GetData(NULL, &DataSize,
(void**)&Color);

Note Notice that the template's GUID or class name is not part of the data retrieved using
IDirectXFileData: :GetData.

Once it is complete, the preceding code gives you the ability to access the colors using the structure instance.

float red = Color−>red;
float blue = Color−>blue;
float green = Color−>green;
float alpha = Color−>alpha;

Accessing single variables is easy, but what about strings and arrays? Arrays, being the easier of the two, are
stored contiguously in memory, meaning that you can just increase the memory pointer that contains the
object's data. For example, the following code shows you how to access the array of float values stored in a
data object of the template type FloatKeys.

// Get the object's data size & pointer
DWORD DataSize;
DWORD *DataPtr;
pData−>GetData(NULL, &DataSize, (void**)&DataPtr);

// The FloatKeys template has a DWORD value 1st that
// defines how many float values are in the array
DWORD NumKeys = *DataPtr++;

// Next, an array of float values follows
for(DWORD i=0;i<NumKeys;i++) {
 float fValue = *(FLOAT*)DataPtr++;

Accessing arrays wasn't too difficult, so how about accessing strings? Again, it's an easy chore because strings
are stored as pointers to a text buffer, which you can access much like I do in the following code. (I'm using
the TextureFilename template as an example; it stores the name of a file to use for a texture.)

// Get the data pointer & size
DWORD DataSize;
DWORD *DataPtr;
pData−>GetData(NULL, &DataSize, (void**)&DataPtr);

// Now, access the filename text buffer
char *StringPtr = (char*)*DataPtr;
MessageBox(NULL, StringPtr, "Texture Filename", MB_OK);

With a simple cast to a char pointer, you were able to display the file name contained in the
TextureFilename template. Now I know you've got to be banging your forehead and yelling, "Why didn't

 Retrieving Data from a Data Object

74

I see how easy this was before?" Whoa, down boy! I didn't immediately realize just how easy it was to work
with .X files either. Now that the secret is out, nothing can stop you from using .X files almost exclusively in
your own projects. All you need is a way to wrap up all of this .X parser functionality into a class, making it
even easier to work with .X.

Constructing an .X Parser Class

So, you want to create a class to handle all aspects of parsing .X files, eh? Sounds great to me! In this .X file
parser class, you can wrap up the Parse and ParseObject functions you saw earlier in this chapter, in the
"Enumerating Data Objects" section. Use the code from those two functions and write the parser class to
allow yourself to override the data object parsing functions, which will allow you to scan for specific objects.

Start the parser class with a simple definition and go from there.

class cXParser
{
 protected:

// Function called for every template found
 virtual BOOL ParseObject(\
 IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference)
 {
 return ParseChildObjects(pDataObj, Depth, \
 Data, Reference);
 }

 // Function called to enumerate child templates
 BOOL ParseChildObjects(IDirectXFileData *pDataObj, \
 DWORD Depth, void **Data, \
 BOOL ForceReference = FALSE);

 public:
 // Function to start parsing an .X file
 BOOL Parse(char *Filename, void **Data = NULL);
};

Whoa! I know I said you should start with a simple definition, not what I've just shown here! Bear with me
friends, because you'll quickly realize just how simple this class is going to be. So far, you have three
functions in your new cXParser .X file parser class. You use these three functions (ParseObject,
ParseChildObjects, and Parse) to process a single data object, scan for embedded child objects, and
parse an entire file, respectively.

cXParser::Parse, which is the easiest of the functions, merely duplicates the code in the Parse
function you used earlier in this chapter. I'll leave out the code here, but if you look at the code from the
CD−ROM (check out \BookCode\Common\XParser.cpp and XParser.h), you'll notice the addition of a
supposed data pointer and a couple lines of code that call two unknown functions, BeginParse and
EndParse. I'll talk about these two functions in a moment; for now, just ignore them.

The second function, ParseObject, is your .X parser's workhorse. ParseObject is called for every
single data object found in an .X file. You need to override the ParseObject function (a virtual function)
for it to do something useful. As you can see from the ParseObject function prototype, there's a lot going
on that'll need some explanation.

 Constructing an .X Parser Class

75

The first parameter for ParseObject is an IDirectXFileData object which, as you saw earlier in this
chapter, represents the data object that is currently being enumerated. Inside your overridden function, you
can access the object's data via the pDataObj pointer.

The second parameter, pParentDataObj (also an IDirectXFileData object), represents the parent
(higher−level object) of the current data object that is being enumerated. This is provided in case you want to
see whether the current object is a child of another object.

The Depth parameter measures the depth of the object in the hierarchy. The highest−level data objects are at
a depth of 0, whereas child objects have their parent's depth plus one. As an example, I have shown a few
Frame objects here, with their respective depths listed.

Frame RootFrame { // Depth = 0
 Frame ChildofRoot { // Depth = 1
 Frame ChildofChild { // Depth = 2
 }
 }
 Frame SiblingofRootChild { // Depth = 1
 }
}
Frame RootSibling { // Depth = 0
}

Data is the fourth parameter of ParseObject. It is a user−defined data pointer (or rather, a pointer to a
data pointer) that you use to pass information to your parser functions. For example, you can create a data
structure to contain all of the information you need.

typedef struct sDATA {
 long NumObjects;
 sDATA() { NumObjects = 0; }
} sDATA:

Note The depth of a data object is extremely useful for sorting hierarchies, such as frame hierarchies used in
skeletal animation.

To pass an sDATA structure to your parsing functions, you instance it and use it during a call to
cXParser::Parse, as shown here:

sDATA Data;
cXParser Parser;
Parser.Parse("test.x", (void**)&Data);

From then on, every time ParseObject is called you can cast an appropriate pointer to access your data
structure.

BOOL cXParser::ParseObject(IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference)
{
 cDATA *DataPtr = (sDATA*)*Data;
 DataPtr−>NumObjects++; // Increase object count

 return ParseChildObjects(pDataObj,Depth,Data,Reference);
}

 Constructing an .X Parser Class

76

I know I'm getting ahead of myself again by showing you some sample code for cXParser, so let's jump
back to the fifth (and last) parameter for ParseObject−Reference. The Reference Boolean variable
determines whether the data object being enumerated is referenced or instanced. You can use the
Reference variable to determine whether you want to load a referenced object's data or wait for the object
to be instanced. This is useful when it comes time to load animation data, which needs data object references
rather than actual object instances.

Whew! With the ParseObject function set aside, you're left with the last of the trio of cXParser
functions−ParseChildObjects. Thankfully, the ParseChildObjects function is easy−it merely
enumerates any child data objects of the object you pass it. Typically, you call ParseChildObjects at the
end of your ParseObject function, as I did in the last code bit.

You can see that you need to pass the current IDirectXFileData object, data object depth, data pointer,
and reference flag to ParseChildObjects because it is responsible for increasing the depth and setting
the parent data object as needed for the next call to ParseObject. If you don't want to parse any child data
objects, however, you can skip the call to ParseChildObjects and return a TRUE or FALSE value.
(TRUE forces enumeration to continue, whereas FALSE stops it.) You'll see examples of the ParseObject
and ParseChildObjects functions throughout this book.

Now that the basics are in place, you need to expand on your parser class a bit. How about adding some
functions to retrieve a data object's name, GUID, and data pointer, as well as inserting a couple of functions
that are called before and after an .X file is parsed? Take a look at the following code to see what your new
parser class should look like.

class cXParser
{
 protected:
 // Functions called when parsing begins and end
 virtual BOOL BeginParse(void **Data) { return TRUE; }
 virtual BOOL EndParse(void **Data) { return TRUE; }

 // Function called for every data object found
 virtual BOOL ParseObject(\
 IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference)
 {
 return ParseChildObjects(pDataObj, Depth, \
 Data, Reference);
 }

 // Function called to enumerate child objects
 BOOL ParseChildObjects(IDirectXFileData *pDataObj, \
 DWORD Depth, void **Data, \
 BOOL ForceReference = FALSE);

 public:
 // Function to start parsing an .X file
 BOOL Parse(char *Filename, void **Data = NULL);

 // Functions to help retrieve data object information
 const GUID *GetObjectGUID(IDirectXFileData *pDataObj);
 char *GetObjectName(IDirectXFileData *pDataObj);
 void *GetObjectData(IDirectXFileData *pDataObj,DWORD *Size);
};

 Constructing an .X Parser Class

77

You can see the addition of the BeginParse, EndParse, GetObjectGUID, GetObjectName,
and GetObjectData functions in cXParser. You've already seen the code for the three Get functions−it's
the virtual BeginParse and EndParse functions that are unknown.

In their current form, both BeginParse and EndParse return TRUE values, which signify a successful
function call. It's your job to override these two functions in a derived class so that you can perform any
operations prior to and following a file parse. For instance, you might want to initialize any data or provide a
data pointer inside your BeginParse function and clean up any used resources inside the EndParse
function.

Both the BeginParse and EndParse functions are called directly from the Parse function−you merely
need to override them and write the code for them. You'll see these two functions in use throughout the book
and in the upcoming "Loading Frame Hierarchies from .X" section in this chapter.

As for the three Get functions, you use those by passing a valid IDirectXFileData object; in return,
you'll get the name in a newly−allocated data buffer, a pointer to the template's GUID, or a pointer to the
object's data buffer and data size value. For example, here's some code that calls the three functions to get and
access an object's data:

// pData = pre−loaded data object
char *Name = pParser−>GetObjectName(pData);
const GUID *Type = pParser−>GetObjectGUID(pData);
DWORD Size;
char *Ptr = (char*)pParser−>GetObjectData(pData, &Size);

// Do something with data and free up resource when done
delete [] Name;

As I was saying, using your brand−new cXParser class is going to be really simple. Throughout the
remainder of this chapter and the rest of this book, you'll come to rely on the cXParser class to parse .X
files for you. Advanced readers might want to take it upon themselves to modify the parser class to fit their
individual needs. I personally find the class very useful in its current form.

As a quick test of your new cXParser class, let's see just how to derive and use it. Suppose you want to
parse .X files for all Mesh data objects and display each one's name in a message box. Here's the code for the
parser that will do just that:

class cParser : public cXParser
{
 public:
 cParser() { Parse("test.x"); }
 BOOL ParseObject(IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference)
 {
 if(*GetObjectGUID(pDataObj) == TID_D3DRMMesh) {
 char *Name = GetObjectName(pDataObj);
 MessageBox(NULL, Name, "Mesh template", MB_OK);
 delete [] Name;
 }
 return ParseChildObjects(pDataObj,Depth,Data,Reference);
 }
};
cParser Parser; // Instancing this will run the parser

 Constructing an .X Parser Class

78

Now tell me that wasn't easy! Enough basics, let's get into using .X files for something useful, such as 3D
mesh data.

Loading Meshes from .X

Now that you've got a firm grip on how the .X file format works, consider how Microsoft first intended for
you to use it−to contain 3D mesh information for your games. The D3DX library comes with a number of
functions you can use to load mesh data from an .X file. With the addition of the .X parser developed in this
chapter, you have even more options available to you. Check out just how easy it is to work with D3DX to
load mesh data.

Loading Meshes Using D3DX

The D3DX library defines the handy ID3DXMesh object that contains and renders 3D meshes for you.
Although you can use your own custom mesh storage containers, I find sticking to the ID3DXMesh object
perfectly sensible. That's the object I'll use for the rest of this chapter (with the exception of the also−handy
ID3DXSkinMesh object, which you'll see in a moment).

The fastest way to load mesh data using D3DX is to call on the D3DXLoadMeshFromX and
D3DXLoadMeshFromXof functions. Both of these meshes will take the data contained within an .X file and
convert it to an ID3DXMesh object. The D3DXLoadMeshFromX file loads an entire .X file at once
(compressing all meshes into a single output mesh), whereas the D3DXLoadMeshFromXof function loads a
single mesh pointed at by an IDirectXFileData object.

The D3DXLoadMeshFromX function provides a file name to load, some flags to control loading aspects, a
3D device pointer, pointers to buffers for containing material data, and some miscellaneous data pointers that
you can ignore for now. Take a look at the prototype for D3DXLoadMeshFromX.

HRESULT D3DXLoadMeshFromX(
 LPSTR pFilename, // Filename of .X file to load
 DWORD Options, // Loading options
 LPDIRECT3DDEVICE9 pDevice, // 3D device pointer
 LPD3DXBUFFER* ppAdjacency, // Set to NULL
 LPD3DXBUFFER* ppMaterials, // Buffer for materials
 LPD3DXBUFFER* ppEffectInstances, // Not used here − NULL
 PDWORD pNumMaterials, // # materials loaded
 LPD3DXMESH* ppMesh); // Pointer to mesh interface

The comments I've shown are pretty self−explanatory, so to speed things up take a look at
D3DXLoadMeshFromX in action and go from there. First, you need to instance an ID3DXMesh object.

ID3DXMesh *Mesh = NULL;

From there, suppose you want to load the .X file called test.x. Simple enough−you just need to specify the
file name in the call to D3DXLoadMeshFromX but wait! What's with the Options parameter? You use it to
tell D3DX how to load the mesh−into system memory or video memory, using write−only memory, and so
on. A flag represents each option. Table 3.3 lists some of the most common macros.

 Loading Meshes from .X

79

Table 3.3: D3DXLoadMeshFromX Option Flags

Macro Description

D3DXMESH_32BIT Uses 32−bit indices (not always supported).

D3DXMESH_USEHWONLY Uses hardware processing only. Use this only for devices that are
definitely hardware accelerated.

D3DXMESH_SYSTEMMEM Forces the mesh to be stored in system memory.

D3DXMESH_WRITEONLY Sets a mesh's data as write−only, thus allowing Direct3D to find the
best location to store the mesh data (typically in video memory).

D3DXMESH_DYNAMIC Uses dynamic buffers (for meshes that change during run time).

D3DXMESH_SOFTWAREPROCESSINGForces the use of software vertex processing, which is used in place
of the hardware transform and lighting engine.

From Table 3.3, you can see there are really not many options for loading meshes. In fact, I recommend using
only D3DXMESH_SYSTEMMEM or D3DXMESH_WRITEONLY The first option, D3DXMESH_SYSTEMMEM,
forces your mesh's data to be stored in system memory, making access to the mesh data faster for both read
and write operations.

Specifying D3DXMESH_DYNAMIC means you are going to change the mesh data periodically. It's best to
specify this flag if you plan to periodically change the mesh's data (such as vertices) in any way during run
time.

If speed is your need, then I suggest using the D3DXMESH_WRITEONLY flag, which tells D3DX to use
memory that will not allow read access. Most often that means you will use video memory because it is
usually (but not always) write−only. If you're not going to read a mesh's vertex data, then I suggest using this
flag.

Tip If you're not using system memory or write−only access, what's left to use? Just specify a value of 0 for
Options in the call to D3DXLoadMeshFromX, and you'll be fine.

Getting back to the parameters of D3DXLoadMeshFromX, you'll see the pointer to a 3D device interface. No
problem−you should have one of those hanging around in your project! Next is the ID3DXBUFFER pointer,
ppAdjacency. Set that to NULL−you won't be using it here.

The next three parameters, ppMaterials, ppEffectInstance, and pNumMaterials, contain the
mesh's material information, such as material color values and texture file names, as well as effects data. If
you're using DirectX 8, you can safely exclude the ppEffectInstance reference−it doesn't exist in that
version. If you're using DirectX 9, you can set ppEffectInstance to NULL because you don't require
any effects information.

The ppMaterials pointer points to an ID3DXBuffer interface, which is merely a container for data.
pNumMaterials is a pointer to a DWORD variable that will contain the number of materials in a mesh that
was loaded. You'll see how to use material information in a moment.

Finishing up with D3DXLoadMeshFromX, you see the actual ID3DXMesh object pointer−ppMesh. This is
the interface you supply to contain your newly loaded mesh data. And there you have it! Now put all of this
stuff together into a working example of loading a mesh.

Load a mesh, again called test.x, using write−only memory. After you've instanced the mesh object
pointer, you need to instance an ID3DXBuffer object to contain material data and a DWORD variable to

 Loading Meshes from .X

80

contain the number of materials.

ID3DXBuffer *pMaterials = NULL;
DWORD NumMaterials;

From here, call D3DXLoadMeshFromX.

// pDevice = pointer to a valid IDirect3DDevice9 object
D3DXLoadMeshFromX("test.x", D3DXMESH_WRITEONLY, pDevice, \
 NULL, &pMaterials, NULL, &NumMaterials, &Mesh);

Great! If everything went as expected, D3DXLoadMeshFromX will return a success code, and your mesh
will have been loaded in the ID3DXMesh interface Mesh! Of course, every single mesh contained in the .X
file was crunched into a single mesh object, so how about those times when you want access to each
separately−defined mesh in the file?

This is where the D3DXLoadMeshFromXof file comes in. You use the D3DXLoadMeshFromXof
function in conjunction with your .X parser to load mesh data from an enumerated Mesh object. Just take a
look at the D3DXLoadMeshFromXof function prototype to see what this entails.

HRESULT D3DXLoadMeshFromXof(
 LPDIRECTXFILEDATA pXofObjMesh,
 DWORD Options,
 LPD3DXBUFFER* ppMaterials,
 LPD3DXBUFFER* ppEffectInstances,
 PDWORD pNumMaterials,
 LPD3DXMESH* ppMesh);

Now wait a sec! D3DXLoadMeshFromXof looks almost exactly like D3DXLoadMeshFromX! The only
difference is the first parameter; instead of a pointer to an .X file name to load, D3DXLoadMeshFromXof
has a pointer to an IDirectXFileData object. By providing the pointer to a currently enumerated
IDirectXFileData object, D3DX will take over and load all of the appropriate mesh data for you! And
since every other parameter is the same as in D3DXLoadMeshFromX, you'll have no trouble using
D3DXLoadMeshFromXof in your .X parser class!

Now hang on to your horses for just a bit, because you'll see how to use D3DXLoadMeshFromXof in your
parser class later in this chapter, in the "Loading Meshes with Your .X Parser" section.

Regardless of which function you use to load the mesh data (D3DXLoadMeshFromX or
D3DXLoadMeshFromXof), all you have left to do is process the material information once a mesh has been
loaded into an ID3DXMesh object.

To process the material information, you need to retrieve a pointer to the material's ID3DXBuffer's data
buffer (used in the call to D3DXLoadMeshFromX or D3DXLoadMeshFromXof) and cast it to a
D3DXMATERIAL type. From there, iterate all materials, using the number of materials set in
NumMaterials as your index. Then you need to instance an array of D3DMATERIAL9 structures and
IDirect3DTexture9 interfaces to contain the mesh's material data. Use the following code to process the
material information:

// Objects to hold material and texture data
D3DMATERIAL9 *Materials = NULL;
IDirect3DTexture9 *Textures = NULL;

// Get a pointer to the material data

 Loading Meshes from .X

81

D3DXMATERIAL *pMat;
pMat = (D3DXMATERIAL*)pMaterials−>GetBufferPointer();

// Allocate material storage space
if(NumMaterials) {
Materials = new D3DMATERIAL9[NumMaterials];
Textures = new IDirect3DTexture9*[NumMaterials];

// Iterate through all loaded materials
for(DWORD i=0;i<NumMaterials;i++) {
 // Copy over the material information
 Materials[i] = pMat[i].MatD3D;
 // Copy diffuse color over to ambient color
 Materials[i].Ambient = Materials[i].Diffuse;

 // Load a texture if one is specified
 Textures[i] = NULL;
 if(pMat[i].pTextureFilename) {
 D3DXCreateTextureFromFile(pDevice, \
 pMat[i].pTextureFilename, &Textures[i]);
 }
 }
} else {
 // Allocate a default material if none were loaded
 Materials = new D3DMATERIAL9[1];
 Textures = new IDirect3DTexture9*[1];

 // Set a default white material and no texture
 Textures[0] = NULL;
 ZeroMemory(&Materials[0], sizeof(D3DMATERIAL9));
 Materials[0].Diffuse.r = Materials[0].Ambient.r = 1.0f;
 Materials[0].Diffuse.g = Materials[0].Ambient.g = 1.0f;
 Materials[0].Diffuse.b = Materials[0].Ambient.b = 1.0f;
 Materials[0].Diffuse.a = Materials[0].Ambient.a = 1.0f;
}
// Free material data buffer
pMaterials−>Release();

You can see in the preceding code that I added a case to check whether no materials were loaded, in which
case you need to create a default material to use. Once those materials are loaded, you're ready to begin using
the mesh interface to render. Chapter 1 showed you how to use the mesh interface to render graphics. For
now, you can move forward by jumping back to a topic I pushed aside earlier−loading meshes using your .X
parser.

Loading Meshes with Your .X Parser

Just as I promised, it's time to check out how to merge the mesh−loading functions into your .X parser class.
Since you're going to be accessing the mesh data objects directly, you need to use the
D3DXLoadMeshFromXof function to load mesh data. That means you need to parse each data object, and
look for Mesh objects as you go. Start by deriving a parser class with which to work.

class cXMeshParser : public cXParser
{
 public:
 ID3DXMesh *m_Mesh;

 public:

 Loading Meshes with Your .X Parser

82

 cXMeshParser() { m_Mesh = NULL; }
 ~cXMeshParser() { if(m_Mesh) m_Mesh−>Release(); }

 BOOL ParseObject(IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference);
};

As you can see from the class declaration, I'm only declaring one mesh object. If you want more, you need to
create a linked list (or another type of list) to contain the mesh objects. I'll leave that up to you because for
now I just want to demonstrate using the D3DXLoadMeshFromXof function.

Override the ParseObject function, allowing it to scan for Mesh objects.

BOOL cXMeshParser::ParseObject(\
 IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference)
{
 // Skip reference objects
 if(Reference == TRUE)
 return TRUE;

 // Make sure object being parsed is Mesh
 if(*GetObjectGUID(pDataObj) == D3DRM_TIDMesh) {
 // It's a mesh, use D3DXLoadMeshFromXof to load it
 ID3DXBuffer *Materials;
 DWORD NumMaterials;
 D3DXLoadMeshFromXof(pDataObj, 0, pDevice, NULL, \
 &Materials, NULL, &NumMaterials, &m_Mesh);

 // Finish by processing material information

 // return FALSE to stop parsing
 return FALSE;
 }
 // Parse child objects
 return ParseChildObjects(pDataObj,Depth,Data,Reference);
}

There you have it! With one quick call, you've loaded a mesh from a Mesh data object! If you think that's
cool, I've got something new for you−skinned meshes. That's right; those nifty skinned meshes you read about
in Chapter 2 are just as easy to work with as standard meshes. Read on to see how to load skinned mesh data
from .X files.

Loading Skinned Meshes

As I mentioned in Chapter 1, a skinned mesh contains a hierarchy of bones (a skeletal structure) that you can
use to deform the mesh to which the bones are attached. Although Chapter 1 detailed the use of skinned
meshes, I left the question of loading skinned mesh data for this chapter because you can only load skinned
mesh data using an .X parser class. Lucky for you, you're prepared!

Loading skinned meshes from .X files is just like loading regular meshes. By enumerating the data objects,
you can determine which ones to load skinned mesh data from and put the data into an ID3DXSkinMesh

 Loading Skinned Meshes

83

object.

The surprising thing here is that a skinned mesh's data is contained in the same Mesh objects as a regular
mesh! If it's the same data object, how could you possibly know the difference between a skinned mesh and a
regular mesh?

The only way to determine whether a Mesh data object contains skinned mesh data is to use the
D3DXLoadSkinMeshFromXof function to load the mesh into an ID3DXSkinMesh object. After the
mesh data is loaded, you can query the newly created skinned mesh object to see whether it contains bone
information (which is contained in special data objects embedded within the Mesh object). If bone
information exists, the mesh is skinned. If no bones exist, the mesh is regular and can be converted to an
ID3DXMesh object.

I'm starting to get ahead of myself, so jump back to the whole ID3DXSkinMesh and
D3DXLoadSkinMeshFromXof thing. Much like regular meshes, you must instance an ID3DXSkinMesh
object.

ID3DXSkinMesh *SkinMesh = NULL;

Inside your ParseObject function, you need to change the D3DXLoadSkinMeshFromXof call. Instead
of calling D3DXLoadMeshFromXof this time, use D3DXLoadSkinMeshFromXof.

HRESULT D3DXLoadSkinMeshFromXof(
 LPDIRECTXFILEDATA pXofObjMesh,
 DWORD Options,

LPDIRECT3DDEVICE9 pDevice,
 LPD3DXBUFFER* ppAdjacency,
 LPD3DXBUFFER* ppMaterials,
 LPD3DXBUFFER* ppEffectInstances,
 DWORD* pMatOut,
 LPD3DXSKINMESH* ppMesh);

Note DirectX 8 users can cut out the LPD3DXBUFFER* ppEffectInstances
line from the call to D3DXLoadSkinMeshFromXof.

I know you've got to be saying that D3DXLoadSkinMeshFromXof looks almost exactly like
D3DXLoadMeshFromXof, and you're right! Loading the skinned mesh using
D3DXLoadSkinMeshFromXof looks something like this:

D3DXLoadSkinMeshFromXof(pDataObj, 0, pDevice, NULL, \
 &Materials, NULL, &NumMaterials, &SkinMesh);

Once you have called D3DXLoadSkinMeshFromXof using a valid Mesh object, you'll have a cool new
ID3DXSkinMesh object at your disposal.

Loading Frame Hierarchies from .X

Skeletal animation systems require a frame hierarchy (which represents the bone structure) to orient each bone
during rendering. The .X file format defines a frame−of−reference data template that you can use to define
your bone hierarchy. This template, Frame, is merely a placeholder of sorts. It allows any type of data object
to be embedded in it so you can reference the instanced Frame object by its assigned instance name and
allow all contained objects to be addressed as well.

 Loading Frame Hierarchies from .X

84

Building a frame hierarchy involves parsing an .X file, in which you link each Frame object to another. The
relationship is very important−a Frame object can either be a sibling or a child to another Frame object, and
it can have an unlimited number of siblings and/or child objects linked to it.

In DirectX 9, you have access to a special DirectX structure called D3DXFRAME to contain each frame in your
hierarchy. I introduced you to this structure in Chapter 1. In this section, you'll use D3DXFRAME to contain a
frame hierarchy.

The exact way you parse and build your Frame objects is really up to you. You can use the D3DX library to
help, or you can parse/build the hierarchy yourself using your custom .X parser. Which is better for you?
Whereas the D3DX library is great to use, I find the methods of using the library to load a frame hierarchy
overly complicated, with no less than two interfaces to use and an entire memory−handling class of your own
to be written. Why bother when you can load a frame hierarchy using one small .X parser class you created?

Instead, load up your trusty .X parser (which you developed earlier in this chapter, in the "Constructing an .X
Parser Class" section) and derive a version that scans for Frame data objects. I'll start you off by showing you
the derived class you can use.

class cXFrameParser : public cXParser
{
 public:
 // declare an extended version of D3DXFRAME
 // that contains a constructor and destructor
 struct D3DXFRAME_EX : public D3DXFRAME {
 D3DXFRAME_EX()
 {
 Name = NULL;
 pFrameSibling = NULL; pFrameFirstChild = NULL;
 }
 ~D3DXFRAME_EX()
 {
 delete [] Name;
 delete pFrameFirstChild;
 delete pFrameSibling;
 }
 } D3DXFRAME_EX;

 // Instance the root frame of the hierarchy
 D3DXFRAME_EX *m_RootFrame;

 public:
 cXFrameParser() { m_RootFrame = NULL; }
 ~cXFrameParser() { delete m_RootFrame; }

 BOOL BeginParse(void **Data)
 {
 // Clear hierarchy
 delete m_RootFrame; m_RootFrame = NULL;
 }

 BOOL ParseObject(IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference)
 {
 // Skip reference frames
 if(Reference == TRUE)

 Loading Frame Hierarchies from .X

85

 return TRUE;

 // Make sure template being parsed is a frame
 if(*GetObjectGUID(pDataObj) == TID_D3DRMFrame) {

 // Allocate a frame structure
D3DXFRAME_EX *Frame = new D3DXFRAME_EX();

 // Get frame name (assign one if none found)
 if((Frame−>Name = GetObjectName(pDataObj)) == NULL)
 Frame−>Name = strdup("No Name");

 // Link frame structure into list
 if(Data == NULL) {
 // Link as sibling of root
 Frame−>pFrameSibling = m_RootFrame;
 m_RootFrame = Frame;
 Data = (void**)&m_RootFrame;
 } else {
 // Link as child of supplied frame
 D3DXFRAME_EX *FramePtr = (D3DXFAME_EX*)*Data;
 Frame−>pFrameSibling = FramePtr−>pFrameFirstChild;
 FramePtr−>pFrameFirstChild = Frame;
 Data = (void**)&Frame;
 }
 }
 return ParseChildObjects(pDataObj,Depth,Data,Reference);
};
cXFrameParser Parser;
Parser.Parse("frames.x");
// Parser.m_RootFrame now points to root frame of hierarchy

There you have it. Once the cXFrameParser::Parse function is complete, you'll have a self−contained
frame hierarchy ready to use in your project. To better understand the use of this class, check out the
ParseFrame demo on this book's CD−ROM. (See the end of this chapter for more information.) The
ParseFrame demo loads an .X file of your choice and displays the frame hierarchy inside a list box.

Throughout the remainder of this book, you'll see how you can put a frame hierarchy to good use in your
animation techniques.

Loading Animations from .X

Although a basic concept such as animation data certainly deserves a spot here, I want to delay the discussion
of loading animation data until the chapters on working with precalculated animation, because it fits better
with the flow of the book. Animation data can be any format (just like any data), but in the remaining chapters
of this book, you'll see how you can develop your own set of animation templates to use for your projects.
Don't worry, you're almost there; just don't give up yet!

Loading Custom Data from .X

As I've expressed throughout this chapter, the .X file format is completely open−ended; there is no limit to
the type of data you can store. With that in mind, you can create any type of data storage you want, and
accessing that data will be just as easy as accessing the mesh and frame data we've already covered.

 Loading Animations from .X

86

Jump back to your ContactEntry template and see just how to parse an .X file and display every instance
of ContactEntry. Again, a single small derived class of cXParser will work perfectly here.

// First declare the ContactEntry GUID
#include "initguid.h"
DEFINE_GUID(ContactEntry, \
 0x4c9d055b, 0xc64d, 0x4bfe, 0xa7, 0xd9, 0x98, \
 0x1f, 0x50, 0x7e, 0x45, 0xff);

// Now, define the .X parser class
class cXContactParser : public cXParser
{
 public:
 BOOL ParseObject(IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference)
 {
 // Skip reference objects
 if(Reference == TRUE)
 return TRUE;

 // Make sure object being parsed is ContactEntry
 if(*GetObjectGUID(pDataObj) == CONTACTENTRY) {
 // Get the data pointer and size
 DWORD DataSize;
 DWORD *DataPtr;
 DataPtr = (DWORD*)GetObjectData(pDataObj, &DataSize);
 // Get name from object data
 char *Name = (char*)*DataPtr++;
 // Get phone # from object data
 char *PhoneNum = (char*)*DataPtr++;
 // Get age from object data
 DWORD Age = *DataPtr++;

 // Display contact information
 char Text[1024];
 sprintf(Text, "Name: %s\r\nPhone #: %s\r\nAge: %lu", \
 Name, PhoneNum, Age);
 MessageBox(NULL, Text, "Contact", MB_OK);
 }
 return ParseChildObjects(pDataObj,Depth,Data,Reference);
 }
};
cXContactParser Parser;
Parser.Parse("contacts.x");

With a single call to cXContactParser::Parse, you're treated to a list of people's names, phone
numbers, and ages−all contained in the contacts.x file! Now wasn't that easy? See, you don't have to be afraid
of the .X file format. I personally use .X to store as much custom data as I can.

I suggest that you reread this chapter a few times before you move on; get a grasp on the concept of creating
your own templates and accessing the data objects' data. Throughout the rest of this book, you will rely on the
.X format to store custom data related to each animation topic, so I want you to feel comfortable with .X.

 Loading Animations from .X

87

Check Out the Demos

In this chapter you got to check out what .X is all about, from creating your own templates to using those
templates to create data objects that hold your game's vital data. To help demonstrate the usefulness of .X and
how to use the code presented in this chapter, I have included two demonstration programs (ParseFrame and
ParseMesh) on this book's CD−ROM. Check out what each demo does.

ParseFrame

The first demo for this chapter is ParseFrame, which uses the information on loading a frame hierarchy from
an .X file. As shown in Figure 3.2, the ParseFrame demo has a button labeled Select .X File. Click that button,
locate an .X file to load, and click Open.

Figure 3.2: The ParseFrame demo's dialog box contains two controls−a button you click to load an .X file and
a list box that displays the frame hierarchy.
After selecting an .X file to load and clicking Open, you'll be treated to a display of the frame hierarchy
contained within the file. In Figure 3.2, the frame hierarchy shown is from the Tiny.x file located in your
DirectX SDK's \samples\media directory. To make things easier to understand, the frames are indented by
their level in the hierarchy.

ParseMesh

The second demo in the Chapter 3 directory is ParseMesh. Much like the ParseFrame demo program,
ParseMesh contains a button (shown in Figure 3.3) that you click to locate and open an .X file.

 Check Out the Demos

88

Figure 3.3: After locating and opening an .X file, you are shown some vital data on each mesh contained in
that file.
As opposed to the frame−hierarchy listing the ParseFrame demo produced, the ParseMesh demo lists
information about the meshes it finds in the .X file you opened. This data includes the type of mesh (standard
or skinned), the number of vertices, the number of faces, and (when applicable) the number of bones. You can
use this handy demo program as an example for your own .X file, to make sure all the meshes contain the
proper information.

Programs on the CD

In the Chapter 3 directory, you'll find two projects that demonstrate the use of the .X parsing class developed
in this chapter. These two projects are

ParseFrame. This is a demo program that uses the cXParser class to load and create a frame
hierarchy from an .X file. It is located at \BookCode\Chap03\ParseFrame.

♦

ParseMesh. You can use this program to load and display information about meshes (regular and
skinned). It is located at \BookCode\Chap03\ParseMesh.

♦

 Check Out the Demos

89

Part Three: Skeletal Animation
Chapter 4: Working with Skeletal Animation
Chapter 5: Using Key−Framed Skeletal Animation
Chapter 6: Blending Skeletal Animations
Chapter 7: Implementing Rag Doll Animation

90

Chapter 4: Working with Skeletal Animation

Overview

As the darkness envelops my character, I can't help but let out a slight chuckle. "Those fools will never see it
coming," I say to myself. As I push up on the joystick, my character slowly crawls forward. Coming to a
corner, I press a button and suddenly he scales the wall and sits in wait for his prey. Waiting in silent
anticipation, my character slowly checks his night−vision goggles, weapon, and other fancy gadgets he
brought along for his devious endeavors.

All of these animations are happening in real time, so there's no jumping or breaking as the character changes
his actions. From running to crawling to climbing walls and nonchalantly checking his gear, all of the
animations are fluid and blend from one to another. In my mind I can see perfectly how the character's
underlying skeletal structure is bending and moving to match every one of his moves. The character's mesh
conforms to the bones perfectly with every nuance shown, from the ripples of his muscles to the creases in his
camouflage suit.

You can create these animation features (and much more) using what's known as skeletal animation−quite
possibly the most awesome animation technique you can use in your projects. This technique is definitely
easier to work with than it first appears. With games such as Tom Clancy's Splinter Cell showing the world
just what skeletal animation can do, this is one topic you definitely don't want to skip. This chapter will show
you how to get started. From working with skeletal structures to dealing with skinned meshes, it's all here.

Taking on Skeletal Animation

Skeletal animation−two words that bring to mind thoughts of B−rate horror movies in which the dead have
risen from the grave to stalk the living. However, those two words mean something entirely different to
programmers. If you're like me, this topic gives you more tingles down your spine than any cheesy horror
movie ever could.

Skeletal animation is quickly becoming the animation technique of choice for programmers because it is quick
to process and it produces incredible results. You can animate every detail of a character using skeletal
animation. It gives you control of every aspect of the character's body, from the wrinkles in his skin to the
bulges in his muscles. You can use every joint, bone, and muscle to deform the shape of your character's
meshes.

Think of skeletal animation like this: Your body (or at least your skin) is a mesh, complete with an
underlying set of bones. As your muscles push, pull, and twist your bones, your body changes shape to match.
Instead of thinking of the muscles changing the shape of your body, think of the bones altering the rotation of
each body part.

If you lift your arm your shoulder rotates, which in turn causes your entire arm to rotate and your skin to
change shape. Your body (the mesh) changes shape to accommodate the changes in the bones. Skeletal
animation works the same way. As the underlying skeletal structure changes orientation from the rotating of
the joints, the overlaid mesh (appropriately called a skinned mesh) changes form to match.

As you can see, there are two separate entities to deal with when you are working with skeletal animation−the
skeletal structure and the skinned mesh. Take a closer look at each entity in more detail to see how they work
in unison, starting with the skeletal structure.

91

Using Skeletal Structures and Bone Hierarchies

The skeletal structure, as you can imagine, is a series of connected bones that form a hierarchy (a bone
hierarchy, to be exact). One bone, called the root bone, forms the pivotal point for the entire skeletal structure.
All other bones are attached to the root bone, either as child or sibling bones.

The word "bone" refers to a frame−of−reference object (a frame object, which is represented in DirectX by
the D3DXFRAME structure or a Frame template inside .X files). If you were to examine the D3DXFRAME
structure, you would indeed find the linked list pointers (D3DXFRAME::pFrameSibling and
D3DXFRAME::pFrameFirstChild) that form the hierarchy. The pFrameSibling pointer links one
bone to another on the same level in the hierarchy, whereas the pFrameFirstChild pointer links one bone
to another as a child bone, which is one level lower in the hierarchy.

Generally, you would use a 3D−modeling package to create these skeletal structures for your projects.
Exporting the bone hierarchy in the form of an .X file is a perfect example. Microsoft has released exporters
for 3D Studio Max and Maya that allow you to export skeletal and animation data into .X files, and many
modeling programs have the same exporting capabilities. I'll assume you have a program that will export these
hierarchies to an .X file for you.

You'll find a number of things inside an .X file that contains skeletal animation data. First (and most important
at this point), you'll find a hierarchy of Frame templates, which is your bone hierarchy in disguise. If you
were to take a simple skeletal structure like the one shown in Figure 4.1, you'd have the resulting frame
hierarchy detailed in the same figure.

Figure 4.1: The skeletal structure on the left is represented by the hierarchy on the right. Notice the usage of
the D3DXFRAME pointers to form a linked list of sibling and child frames.
You should find a standard Mesh data object embedded in the Frame data object hierarchy. The Mesh data
object contains information about your skeletal animation object and the bones used in your skeletal structure.
That's right−the Frame data object and the Mesh object both contain information about your skeletal
structure! Whereas the Frame objects define the actual hierarchy, the Mesh object defines which frames
represent the bones.

For now, however, the importance of the bone data is irrelevant. Because the bones depend on the frame
hierarchy, it's important to concentrate solely on the frames at this point. You simply need to load the
hierarchy (from an .X file, for example) and set it up for later use. Read on to see how to load hierarchies from
.X.

 Using Skeletal Structures and Bone Hierarchies

92

Loading Hierarchies from .X

Not to beat a dead horse (why would I do a horrible thing like that?), but I want to quickly review how to load
a frame hierarchy from an .X file. Even though Chapter 3 detailed using .X files and loading frame
hierarchies, I want to go over the topics here using specific structures to contain the hierarchy.

For your frame hierarchy you should use the D3DXFRAME structure (or the D3DXFRAME_EX structure shown
in Chapter 1). As I mentioned earlier in this chapter, the D3DXFRAME structure (or the derived
D3DXFRAME_EX structure) contains two pointers that you use to create the frame
hierarchy−pFrameSibling and pFrameFirstChild. Your job is to link each frame you load from an
.X file using those two pointers.

Starting with a root frame object, begin iterating every data object from an .X file you specify. When you
encounter a Frame object, link it either as a sibling or a child of the previous frame. Continue through the .X
file until you have loaded all frames. For this example, use the D3DXFRAME_EX structure to contain the
frames in the hierarchy.

Since Chapter 3 contained much more information on parsing .X files, I'm going to take it easy on the
explanatory text for this portion. Basically, you'll open an .X file for access, and then iterate every data object
in the file. For each Frame object you find, you need to create a matching D3DXFRAME (or
D3DXFRAME_EX) object and link it to a hierarchy of frames.

To process an .X file, you can construct a class to handle the majority of the work for you. You simply
instance the class's ParseObject function, which gives you access to each data object's data. Again,
Chapter 3 explained the use of this class in full detail, so I'll leave it at that.

For now, take a look at the ParseObject function that is called for each data object that is enumerated.

BOOL cXFrameParser::ParseObject(
 IDirectXFileData *pDataObj,
 IDirectXFileData *pParentDataObj,
 DWORD Depth,
 void **Data, BOOL Reference)
{
 const GUID *Type = GetObjectGUID(pDataObj);

 // If the object type is a Frame (non−referenced),
 // then add that frame to the hierarchy.
 if(*Type == TID_D3DRMFrame && Reference == FALSE) {

 // Allocate a frame container
 D3DXFRAME_EX *pFrame = new D3DXFRAME_EX();

 // Get the frame's name (if any)
 pFrame−>Name = GetObjectName(pDataObj);

 // Link frame into hierarchy
 if(Data == NULL) {
 // Link as sibling of root
 pFrame−>pFrameSibling = m_RootFrame;
 m_RootFrame = pFrame; pFrame = NULL;
 Data = (void**)&m_RootFrame;
 } else {
 // Link as child of supplied frame
 D3DXFRAME_EX *pFramePtr = (D3DXFRAME_EX*)*Data;

 Loading Hierarchies from .X

93

 pFrame−>pFrameSibling = pFramePtr−>pFrameFirstChild;
 pFramePtr−>pFrameFirstChild = pFrame; pFrame = NULL;
 Data = (void**)&pFramePtr−>pFrameFirstChild;
 }
 }

 // Load a frame transformation matrix
 if(*Type==TID_D3DRMFrameTransformMatrix && Reference==FALSE) {
 D3DXFRAME_EX *Frame = (D3DXFRAME_EX*)*Data;
 if(Frame) {

Frame−>TransformationMatrix = *(D3DXMATRIX*) \
 GetObjectData(pDataObj, NULL);
 Frame−>matOriginal = Frame−>TransformationMatrix;
 }
 }

 // Parse child objects
 return ParseChildObjects(pDataObj, Depth, Data, Reference);
}

If you haven't read Chapter 3 yet (shame on you if you didn't!), some of the preceding code is going to look a
little confusing. Basically, the ParseObject function is called for each data object that is enumerated.
Inside the ParseObject function, you check the currently enumerated object's type (using the object's
template GUID). If that type is a Frame, then you allocate a frame structure and load the frame's name into it.

Next, you link the frame into the hierarchy of frames, which is where things look a little strange. The
cXFrameParser class maintains two pointers−one for the root frame object that is being built up
(m_RootFrame, a member of the class), and one for a data object (Data) that is passed to each call of
ParseObject. The data pointer keeps track of the last frame data object that was loaded.

As you begin parsing the .X file, the data pointer Data is set to NULL, meaning that it doesn't point to any
frame object being loaded. When you load a frame object into a frame structure, you are checking that data
pointer to see whether it points to another frame structure. If it doesn't, it is assumed that the current frame is a
sibling of the root. If the data pointer does point to another frame, it is assumed that the currently enumerated
frame is a child of the frame to which the data pointer points.

Knowing whether the currently enumerated frame is a sibling or a child is a factor when you are creating the
hierarchy. Sibling frames are linked to each other using the pFrameSibling pointer of the D3DXFRAME
structure, whereas child frames are linked using pFrameFirstChild. Once a frame has been loaded, the
data pointer is adjusted to point at the new frame or back to the sibling frame. In the end, all frames become
linked either as siblings or children.

One more thing that you'll notice in the ParseObject function is the code to load a frame's transformation
matrix (represented by the FrameTransformMatrix template). A FrameTransformMatrix object is
typically embedded in a Frame data object. This FrameTransformMatrix object defines the initial
orientation of the Frame being loaded.

For skeletal animation, this frame transformation matrix defines the initial pose of your skeletal structure. For
example, a standard skeletal structure might be posed with the body standing erect and the arms extended.
However, suppose all of your animations are based on the character standing in a different pose, perhaps with
his arms dropped down to his sides and with his legs slightly bent. Instead of reorienting all the vertices or
bones to match that pose before saving the .X file in your 3D modeling program, you can change the frame
transformations. From that point forward, all motions of the bones will be relative to that pose. This becomes
more apparent as you try to manipulate the bone orientations and during animation, so I'll leave the topic

 Loading Hierarchies from .X

94

alone for the moment. Just know that inside each frame structure you are loading, there is space to store an
initial transformation matrix (in the D3DXFRAME::TransformationMatrix object).

After all is said and done, your frame hierarchy will be loaded. Of course, the root frame is stored in the
m_RootFrame linked list of D3DXFRAME_EX objects inside the frame−loading class. It's your job to grab
that pointer and assign it to one you'll use in your program. After you've done that, you can start messing
around with the orientation of the bones.

Modifying Bone Orientation

After you have loaded the bone hierarchy, you can manipulate it. To modify the orientation of a bone, you
first need to locate its respective frame structure by creating a function that recursively searches the frames for
a specific bone name. Once it is found, a pointer to the frame is provided so you can directly access the
frame's transformation matrix. The recursive search function might look something like this:

Note You can apply any transformation to any bone in the hierarchy, but it's recommended that you only work
with rotations. Why only rotations? Think of it this way−when you bend your elbow, it rotates. How
would you explain it if you translated your elbow instead? That would make your elbow pop off your
arm−something you definitely don't want!

If you are trying to move the entire mesh through the world, just translate the root bone; all other bones
will inherit that transformation. Better yet, use the world transformation to move the skinned mesh
object through the 3D world.

D3DXFRAME_EX *FindFrame(D3DXFRAME_EX *Frame, char *Name)
{
 // Only match non−NULL names
 if(Frame && Frame−>Name && Name) {
 // Return frame pointer if matching name found
 if(!strcmp(Frame−>Name, Name))
 return Frame;
 }

 // Try to find matching name in sibling frames
 if(Frame && Frame−>pFrameSibling) {
 D3DXFRAME_EX *FramePtr = \
 FindFrame((D3DXFRAME_EX*)Frame−>pFrameSibling, \
 Name);
 if(FramePtr)
 return FramePtr;

}

 // Try to find matching name in child frames
 if(Frame && Frame−>pFrameFirstChild) {
 D3DXFRAME_EX *FramePtr = \
 FindFrame((D3DXFRAME_EX*)Frame−>pFrameFirstChild, \
 Name);
 if(FramePtr)
 return FramePtr;
 }

 // No matches found, return NULL
 return NULL;
}

 Modifying Bone Orientation

95

Suppose you want to find a bone called "Leg" using the FindFrame function. You simply provide the name
of the bone to find and a pointer to your root frame, as shown here:

// pRootframe = D3DXFRAME_EX root frame pointer
D3DXFRAME_EX *Frame = FindFrame(pRootFrame, "Leg");
if(Frame) {
 // Do something with frame, like changing the
 // D3DXFRAME_EX::TransformationMatrix to something
 // you want. For here, let's rotate the bone a little
 D3DXMatrixRotationY(&Frame−>TransformationMatrix, 1.57f);
}

Updating the Hierarchy

Once you've modified the bone transformations, you need to update the entire hierarchy so you can use it later
for rendering. Even if you haven't modified the bone transformations, you still need to update the hierarchy
because you need to set certain variables before rendering.

During the hierarchy update, you must combine each successive transformation down through the hierarchy.
Starting at the root, you apply the bone's transformation matrix to the frame's combined transformation matrix.
The bone's transformation matrix is passed to any siblings of the root to be combined as well. From there, the
combined transformation matrix you just calculated is passed to each child of the root. This process
propagates itself throughout the hierarchy.

Although it is hard to understand at first, you can think of the process this way: Take the skeletal structure in
Figure 4.2, start at the root, and multiply it by a transformation matrix that positions the root in the world.

Figure 4.2: The simple skeletal structure on the left uses the bone transformations on the right to orient the
frames.
As you can see in Figure 4.2, the combined transformation from the root is passed to all of its child bones,
which in turn are combined. The results are passed to the child bones of those bones. However, trying to
compute the transformation matrices in the manner shown is very difficult, so other means are necessary.

The easiest way to update your frame hierarchy is to create a recursive function that combines the frame's
transformation with a provided transformation matrix. From there, the transformation matrix is passed to the
frame's siblings, and the combined matrix is passed to the frame's child frames. Take a look at the function in
question.

void UpdateHierarchy(D3DXFRAME_EX *Frame, \
 D3DXMATRIX matTransformation = NULL)
{
 D3DXFRAME_EX *pFramePtr;
 D3DXMATRIX matIdentity;

 // Use an identity matrix if none passed
 if(!matTransformation) {

 Updating the Hierarchy

96

 D3DXMatrixIdentity(&matIdentity);
 matTransformation = &matIdentity;
 }

 // Combine matrices w/supplied transformation matrix
 matCombined = TransformationMatrix * (*matTransformation);

 // Combine w/sibling frames
 if((pFramePtr = (D3DXFRAME_EX*)pFrameSibling))
 pFramePtr−>UpdateHierarchy(matTransformation);

 // Combine w/child frames
 if((pFramePtr = (D3DXFRAME_EX*)pFrameFirstChild))
 pFramePtr−>UpdateHierarchy(&matCombined);
}

As you can see, the UpdateHierarchy function takes a D3DXFRAME_EX object as the first
parameter−this is the current frame being processed. You only need to call UpdateHierarchy once, to
provide a pointer to your root frame; the function will recursively call itself for each frame.

Notice the second parameter of UpdateHierarchy−matTransformation. The
matTransformation parameter is the transformation matrix to apply to the frame's transformation. By
default, the matTransformation pointer is NULL, meaning that an identity matrix is used during the call
to UpdateHierarchy. After a frame's matrix is combined with the provided transformation, the resulting
transformation is passed to the child frames by setting matTransformation during the next call.

Note If you've already read Chapter I (which you probably have), then you'll notice the UpdateHierarchy
function has been encapsulated in the D3DXFRAME_EX class itself, so instead of calling
UpdateHierachy with the root frame as the parameter, you can use the root frame's
::UpdateHierarchy member function! Refer back to Chapter I for further information on this
member function.

As I just mentioned, you only need to call the UpdateHierarchy function using your root frame. Don't
provide a transformation matrix as the second parameter−this should be left up to the recursive calls. If you do
provide a transformation matrix with the root frame, you'll be moving the entire mesh using that
transformation matrix. That's the same as setting the world transformation matrix to position and orient the
mesh to render.

// pRootFrame = D3DXFRAME_EX root frame object
UpdateHierarchy(pRootFrame);

Now that you have a little understanding of the skeletal structure and how to work with bone hierarchies, it's
time to move on to the second piece of the animation puzzle−the overlaid skinned mesh that deforms to match
the orientation of the bone hierarchy.

Working with Skinned Meshes

In the first half of this chapter, you learned how to manipulate a hierarchy of bones that forms the basis of
skeletal animation. That's all fine and dandy, but playing with imaginary bones isn't going to cut the mustard.
Your game's players need to see all your hard work in the form of rendered meshes, which is where skinned
meshes come in.

 Working with Skinned Meshes

97

Skinned meshes are almost like the standard meshes with which you are already familiar. Using a
D3DXMESHCONTAINER_EX object (as you saw in Chapter 1), you can store your mesh's data, from the
vertices and indices to the materials and texture data, all wrapped up in one convenient ID3DXMesh object.
As for the actual skinned mesh data, that information is contained in a special object called
ID3DXSkinInfo.

I'll skip the ID3DXSkinInfo introductions for the moment and instead explain what makes a skinned mesh
unique to other meshes. A skinned mesh deforms to match the orientation of the underlying skeletal structure.
As the bones twist and turn, so do the mesh's vertices. The mesh−s vertices make the skinned mesh unique.
You'll be dealing with the changing positions of the vertices when it comes to skinned meshes.

Take a look at Figure 4.3, which shows a skeleton surrounded by a simplistic mesh.

Figure 4.3: When connected to a skeletal structure, a mesh is mapped in such a way that each vertex is
connected to the bones.
In Figure 4.3, each vertex is connected to a bone. As a bone moves, so do the vertices that are attached to it.
For example, if you were to rotate the bone 45 degrees about the x−axis, the attached vertices would rotate 45
degrees as well, with the bone's joint acting as the pivot point or the origin of the rotation.

Now take a closer look at Figure 4.3, and you'll see that a couple vertices are attached to more than one bone.
That's right−you're not limited to attaching a vertex to a single bone. In fact, you can connect a vertex to as
many bones as you want with DirectX, using the methods you learn in this book. Whenever one of the bones
to which the vertex is attached moves, the vertex inherits a percentage of the motion. For example, if a bone
rotates 60 degrees about the z−axis, an attached vertex may inherit only 25 percent of the motion, meaning the
vertex will rotate only 15 degrees about the z−axis.

The exact percentage of motion the vertex inherits is called the vertex weight. Each vertex in the skinned
mesh is assigned one vertex weight per bone to which it is attached. Those weights are typically 1.0 for
vertices that are attached to only one bone, meaning that the vertex inherits the full motion of the bone. The
weights are divided among the bones for vertices attached to multiple bones, and are usually calculated by
taking into consideration the vertex's distance from each bone. (Most 3D modeling programs will graciously
calculate this for you.) For example, suppose a vertex is attached to two bones, meaning that both weights are
set to 0.5. The vertex will inherit 50 percent of the motion from each bone. Notice that the total of all weights

 Working with Skinned Meshes

98

summed must always equal 1.

The purpose of using skin weights is quite ingenious. By allowing certain bones to influence specific vertices,
you can have awesome effects such as wrinkling skin, bulging muscles, and stretching clothes−all in real time
as your characters animate!

The way DirectX treats the vertex weights is quite simple. After you've loaded a mesh to use as your skinned
mesh and you've loaded the vertex weights (also called skin weights), you can transform the vertices to match
the bones' orientations using the following steps.

Iterate all vertices. For each vertex, proceed to Step 2.1.
For each bone to which the current vertex is connected, get the bone transformation.2.
For each bone transformation, multiply the matrix by the vertex's weight and apply the result to a
combined transformation for the vertex.

3.

Repeat Step 3 for each bone connected, and repeat Steps 2 through 4 for each vertex. When you're
finished, apply the combined transformation matrix to the specific vertex being iterated (from Step 1).

4.

How exactly do you obtain these skin weights? With the help of the ID3DXSkinInfo object I mentioned
earlier, you can load the weights from an .X file. The skin weights are stored within a Mesh data object,
usually at the end of the Mesh object's data.

For each bone in your skeletal structure, there is a matching SkinWeights data object. Inside the
SkinWeights object is the name of the bone, followed by a number of vertices attached to it. A skinned
mesh header determines the number of bones to which each vertex in the mesh can be connected. If some of
the vertices are attached to two bones, then all vertices must be attached to two bones. To get around the
oddity of having vertices that connect to different numbers of bones, you can assign a weight of 0 to the
second bone.

As I mentioned, the SkinWeights object includes the number of vertices that are connected to the bone. It
lists an array of vertex index numbers. After the array of vertex indices, there is an array of vertex weight
values. Finally, there is an inversed bone transformation to help you orient the vertices around the bone's joint.

Take a look at this sample SkinWeights template data object:

SkinWeights {
 "Bip01_R_UpperArm";
 4;
 0, 3449, 3429, 1738;
 0.605239, 0.605239, 0.605239, 0.979129;
 −0.941743, −0.646748, 0.574719, 0.000000,
 −0.283133, −0.461979, −0.983825, 0.000000,
 0.923060, −1.114919, 0.257891, 0.000000,
 −65.499557, 30.497688, 12.852692, 1.000000;;
}

In this data object, a bone called Bip01_R_UpperArm is used. There are four vertices attached to the bone,
and the vertex indices are 0, 3449, 3429, and 1738. Vertex 0 has a weight of 0.605239, vertex 1 has a
weight of 0.605239, and so on. A transformation matrix aligns the vertices listed around the bone's joint. This
matrix is very important. Without it, the vertices will rotate around the origin of the world instead of the
bone's joint.

Thankfully, you don't have to deal directly with the SkinWeights templates. The data is handled for you

 Working with Skinned Meshes

99

while you are loading the skinned mesh from an .X file using the D3DX helper functions.

Loading Skinned Meshes from .X

Loading a skinned mesh from an .X file is much like loading a standard mesh. Using a custom .X parser, you
must enumerate your .X file objects using ParseObject. When it comes to processing a Mesh object,
instead of calling the D3DXLoadMeshFromXof function to load the mesh data, you call the
D3DXLoadSkinMeshFromXof function, which takes one additional parameter−a pointer to an
ID3DXSkinInfo object. Check out the D3DXLoadSkinMeshFromXof prototype to see what I mean.

HRESULT D3DXLoadSkinMeshFromXof(
 IDirectXFileData *pXofObjMesh, // .X file data object
 DWORD Options, // Load options
 IDirect3DDevice9 *pDevice, // 3−D device in use
 ID3DXBuffer **ppAdjacency, // Adjacency buffer object
 ID3DXBuffer **ppMaterials, // Material buffer object
 ID3DXBuffer **ppEffectInstances, // Effects instance object
 DWORD *pMatOut, // # of materials
 ID3DXSkinInfo **ppSkinInfo, // SKIN INFO OBJECT!!!
 ID3DXMesh **ppMesh); // Loaded mesh object

When you are ready to load a mesh from an enumerated Mesh template, call the
D3DXLoadSkinMeshFromXof function instead of calling D3DXLoadMeshFromXof. Make sure to
supply an ID3DXSkinInfo object where it is shown in the prototype. Whether or not the Mesh template
contains a skinned mesh doesn't matter−the D3DXLoadSkinMeshFromXof function will load regular and
skinned meshes without a hitch. Here's an example:

// Define the mesh and skinned mesh info objects
ID3DXMesh *pMesh;
ID3DXSkinInfo *pSkinInfo;

// Define buffers to hold the material data and adjacency data
ID3DXBuffer *pMaterialBuffer = NULL, *pAdjacencyBuffer = NULL;

// DWORD to hold the number of materials being loaded DWORD NumMaterials;

// Load the skinned mesh from IDirectXFileDataObject pDataObj
D3DXLoadSkinMeshFromXof(pDataObj, D3DXMESH_SYSTEMMEM, \
 pDevice, &pAdjacencyBuffer, \
 &pMaterialBuffer, NULL, \
 &NumMaterials, &pSkinInfo, &pMesh);

Just because you used the D3DXLoadSkinnedMeshFromXof function, that doesn't mean a skinned mesh
was loaded. First you need to check the pSkinInfo object. If it's set to NULL, then a skinned mesh wasn't
loaded. If it's a valid object (non−NULL), then you need to check whether any bones exist.

The easiest way to see whether bones exist is to call ID3DXSkinInfo::GetNumBones. The
GetNumBones function will return the number of bones loaded from the Mesh template. If the number is 0,
then there are no bones, and you can free the ID3DXSkinInfo object (using Release). If bones do exist,
then you can continue using the skinned mesh.

Check out this example, which tests whether a skinned mesh was loaded. If so, the example checks to see
whether the mesh contains any bones.

// Set a flag is there's a skinned mesh and bones to use

 Loading Skinned Meshes from .X

100

BOOL SkinnedMesh = FALSE;
if(pSkinInfo && pSkinInfo−>GetNumBones())
 SkinnedMesh = TRUE;
else {
 // Free the skinned mesh info data object
 if(pSkinInfo) {
 pSkinInfo−>Release();
 pSkinInfo = NULL;
 }
}

If the SkinnedMesh flag is set to TRUE, then the pSkinInfo object is valid and you're ready to work with
the skinned mesh. The next step is to create another mesh object that will contain the actual deforming mesh
as you change the bones' orientations.

Creating a Secondary Mesh Container

After you create the skinned mesh, you need to create a second mesh container. Why, you ask? Well, the
skinned mesh object you loaded from the D3DXLoadSkinMeshFromXof function is sort of the base of
reference for your mesh's vertex data. Since these vertices are in the right positions to match the orientations
of the bones, it would mess up things quite a bit if you started altering those positions.

Let's leave things well enough alone and instead create a second mesh object (an ID3DXMesh object) that
contains an exact duplicate of the skinned mesh. You need to read the vertex data from the skinned mesh data,
apply the various bone transformations, and write the resulting vertex data to this duplicate mesh container
(which I call the secondary mesh or secondary mesh container) that you use to render. Makes sense, doesn't
it?

As I mentioned, the secondary mesh is an identical match to the skinned mesh; everything from the number of
vertices to the indices needed is the same. The easiest way to duplicate the skinned mesh object is to use the
ID3DXMesh::CloseMeshFVF function.

HRESULT ID3DXMesh::CloneMeshFVF(
 DWORD Options, // Mesh attribute flags
 DWORD FVF, // FVF to use for cloning
 IDirect3DDevice9 *pDevice, // 3−D device in use
 ID3DXMesh *ppCloneMesh); // Secondary mesh object

The Options parameter of CloneMeshFVF is just like the one from the calls to D3DXLoadMeshFromX,
D3DXLoadMeshFromXof, and D3DXLoadSkinMeshFromXof, so take your pick. I tend to set
Options flags to 0, but feel free to change it.

As for the FVF parameter, you only need to supply the FVF from the skinned mesh object using the skinned
mesh's GetFVF function. Also, don't forget to supply the valid IDirect3DDevice9 object you are using,
as well as a pointer to an ID3DXMesh object that will be your secondary mesh container.

Here's a bit of code that demonstrates cloning a skinned mesh to create your secondary mesh:

// pSkinMesh = ID3DXMesh object
ID3DXMesh *pMesh; // Secondary mesh container
pSkinMesh−>CloneMeshFVF(0, pMesh−>GetFVF(), pDevice, &pMesh);

All this talk of cloning reminds me of Star Wars Episode II: Attack of the Clones. Good thing your cloned
secondary meshes aren't going to try to take over the universeor are they? Well heck, those clones aren't going

 Creating a Secondary Mesh Container

101

anywhere without a little effort, so let's get back to work and see what's next in line.

After you've created the secondary mesh container, it's time to map your bones to the frame hierarchy. Why
didn't we do this previously, when I was discussing bones and frames? Easy−the bone data was loaded until
you called D3DXLoadSkinMeshFromXof!

Mapping Bones to Frames

If you peruse an .X file, you might notice some similarities between the Frame data objects and the
SkinWeights objects. For every bone in your skeletal structure, there is a matching SkinWeights object
embedded inside a Mesh object that contains the name of a Frame object (or a reference to a Frame object).
That's right−each bone is named after its corresponding Frame data object!

After you load your skinned mesh, you need to connect each bone to its corresponding frame. This is simply a
matter of iterating all bones, getting the name of each, and searching the list of frames for a match. Each
matching frame pointer is stored in a special bone structure of your design.

For this book, I embedded the bone−mapping data in the D3DXMESHCONTAINER_EX structure detailed in
Chapter 1. The D3DXMESHCONTAINER_EX structure (created especially for this book and detailed as
follows) adds an array of texture objects, a secondary mesh container object, and the bone−mapping data to
the D3DXMESHCONTAINER structure.

struct D3DXMESHCONTAINER_EX : D3DXMESHCONTAINER
{
 IDirect3DTexture9 **pTextures;
 ID3DXMesh *pSkinMesh;

 D3DXMATRIX **ppFrameMatrices;
 D3DXMATRIX *pBoneMatrices;

 // .. extra data and functions to follow
};

For this chapter, the important variables are ppFrameMatrices and pBoneMatrices. The
pBoneMatrices array contains the transformations from your bone hierarchy; one transformation matrix is
applied to each vertex belonging to the appropriate bone. The only problem is, the transformations from your
bones are not stored in an array; they're stored as a hodgepodge of single transformations spread throughout
the hierarchy.

The D3DXMESHCONTAINER_EX structure provides a pointer to each bone transformation matrix contained
within the hierarchy of D3DXFRAME_EX objects inside an array of pointers (ppFrameMatrices). Using
these pointers, you can pull each bone transformation and place it into the pBoneMatrices array you'll
create and use during the call to update your skinned mesh.

You can create the array of pointers and the array of matrices after you load the bone hierarchy by taking the
number of bones from the hierarchy and allocating an array of D3DXMATRIX pointers and D3DXMATRIX
objects, like this:

// pSkinInfo = skinned mesh object

// Get the number of bones in the hierarchy
DWORD NumBones = pSkinInfo−>GetNumBones();

 Mapping Bones to Frames

102

// Allocate an array of D3DXMATRIX pointers to point
// to each bones' transformation.
D3DXMATRIX *ppFrameMatrices = new D3DXMATRIX*[NumBones];

// Allocate an array of D3DXMATRIX matrix objects
// to contain the actual transformations used to update
// the skinned mesh.
D3DXMATRIX *pBoneMatrices = new D3DXMATRIX[NumBones];

After you load your skinned mesh, you can set up the pointers to each bone transformation by querying the
skinned mesh info object for each bone name. Using that, you can scan the list of frames for a match. For each
matched bone, set the pointer to that frame's transformation matrix. When all bones and frames are matched
up, you can then iterate the entire list and copy the matrices to the pBoneMatrices array.

First let me show you how to match up the bones and frames. Remember that earlier in this chapter I
mentioned that the bones are named after the frames. Using the ID3DXSkinInfo::GetBoneName
function, you can obtain the name of the bone and frame to match.

// Go through each bone and grab the name of each to work with
for(DWORD i=0;i<pSkinInfo−>GetNumBones();i++) {

 // Get the bone name
 const char *BoneName = pSkinInfo−>GetBoneName(i);

When you have the bone's name, you can scan through the list of frames in the hierarchy to look for a match.
To do so, you use the recursive FindFrame function developed in the "Modifying Bone Orientation" section
earlier in this chapter, as follows.

 // pRootFrame = D3DXFAME_EX root frame object

 // Find matching name in frames
 D3DXFRAME_EX *pFrame = pRootFrame−>Find(BoneName);

If a frame with the name provided by the bone is found, you can link to the frame's combined transformation
matrix. If no match is found, then the link is set to NULL.

 // Match frame to bone
 if(pFrame)
 pMesh−>ppFrameMatrices[i] = &pFrame−>matCombined;
 else
 pMesh−>ppFrameMatrices[i] = NULL;
}

You might not understand the exact reasons for mapping the bones to the frame at this moment, but it will
make more sense when you get into manipulating the skinned mesh and rebuilding the mesh to render it. For
now, take each step in stride, and start by learning how to manipulate the skinned mesh.

Manipulating the Skinned Mesh

Now nothing is stopping you from twisting up that skeletal structure and going crazy. Just make sure it's your
mesh's imaginary skeletal structure you're manipulating and not your own−I just hate it when I accidentally
manipulate my bones into a pose I can't get out of for an hour! Kidding aside, you can now alter the frame
orientations in your frame hierarchy. It's those frames that represent your bones.

 Manipulating the Skinned Mesh

103

Speaking of altering the frame orientations, be aware that you should only rotate your bones; you should never
translate them. Scaling is acceptable, but be careful−remember that all transformations propagate throughout
the hierarchy. If you were to scale your character's upper arm, the lower arm would be scaled as well.

I covered changing the orientations of the various bones earlier in this chapter, in the "Modifying Bone
Orientation" section, so I won't rehash anything here. After you've loaded the skeletal structure and skinned
mesh, feel free to start working with the bone transformations using those techniques covered earlier. When
you're ready, you can update the skinned mesh and prepare it for rendering.

Updating the Skinned Mesh

When your skeletal structure is in the pose you desire, it's time to update (or rebuild) the skinned mesh to
match. Before you rebuild the skinned mesh, you must make sure you have constructed the secondary mesh
container and updated the frame hierarchy. To review how to construct the mesh container, consult the
"Creating a Secondary Mesh Container" section earlier in this chapter. To refresh your memory about how to
update the frame hierarchy, review the "Updating the Hierarchy" section earlier in this chapter. After you're
sure of these two things, you can continue.

To update the skinned mesh, you must first lock the vertex buffers of the skinned mesh and the secondary
mesh. This is critical because DirectX will pull the vertex data from the skinned mesh object, apply the bone
transformations, and write the resulting vertex data to the secondary mesh object.

First, though, you need to copy the transformations from the frames to the array of matrices
(pBoneMatrices) stored in the mesh container. At the same time, you have to combine the transformations
with the bones' inversed transformations. The inversed bone transformations are responsible for moving the
mesh's vertices to the origin of the mesh before you apply the actual transformation. To better understand this,
take a look at Figure 4.4

Figure 4.4: Vertices only rotate around their source mesh's origin. Before you apply the bone transformation,
you must build a transformation that orients the vertices around the mesh's origin.
The mesh in Figure 4.4 is composed of three bones (frames) and a number of vertices. To apply a
transformation to any frame, you must move the vertices belonging to the frame to the origin and then apply
the transformations.

You move the vertices around the origin of the mesh before you apply a transformation because a rotation
matrix simply rotates vertices around an origin. If you were to rotate a vertex belonging to any bone, the
vertex would rotate around the origin of the mesh instead of the bone's joint. For example, if your body was a
mesh and you bent your elbow, the vertices constructing your arm's mesh would rotate around your elbow, not
the center of your body. After the vertices are moved to the center of the mesh, the transformation is applied
(thus rotating the vertices to match the rotation of the bone) and finally translated into position.

Normally, these inversed bone transformations are stored in the .X file by the 3D modeler used to create the
meshes. If you don't have access to this information from an .X file, you can compute it yourself by first

 Updating the Skinned Mesh

104

updating the frame hierarchy, and then inverting each frame's combined transformation using the
D3DXMatrixInverse function. Here's a quick example.

// pRoot = root D3DXFRAME_EX object
// pMesh = D3DXMESHCONTAINER_EX object w/mesh data

// Update the frame hierarchy
pRoot−>UpdateHierarchy();

// Go through each bone and calculate the inverse
for(DWORD i=0;i<NumBones;i++) {
 // Grab the transformation using the bone matrix
 D3DXMATRIX matBone = (*pMesh−>ppFrameMatrices);
 // Invert the matrix
 D3DXMatrixInverse(&matBone, NULL, &matBone);

 // Store the inversed bone transformation somewhere
}

Instead of going through all the trouble of calculating the inversed bone transformations yourself, however,
you can rely on the skinned mesh object to supply that information. By calling
ID3DXSkinInfo::GetBoneOffsetMatrix, you'll get the inversed bone transformation matrix pointer.
Multiply this matrix by a frame transformation matrix, and you're set!

Using what you just learned, iterate through all the bones, grab the inversed bone transformation, combine it
with the frame transformation, and store the result in the pBoneMatrices array.

for(DWORD i=0;i<pSkinInfo−>GetNumBones();i++) {

 // Set the inversed bone transformation
 pMesh−>pBoneMatrices[i]=(*pSkinInfo−>GetBoneOffsetMatrix(i));

 // Apply frame transformation
 if(pMesh−>ppFrameMatrices[i])
 pMesh−>pBoneMatrices[i] *= (*pMesh−>ppFrameMatrices[i]);
}

Now that you've copied the bones' transformations into the pBoneMatrices array, you can move on to
updating the skinned mesh by first locking the vertex buffers for the skinned mesh and the secondary mesh.

// pSkinMesh = skinned mesh container
// pMesh = secondary mesh container

// Lock the meshes' vertex buffers
void *SrcPtr, *DestPtr; pSkinMesh−>LockVertexBuffer(D3DLOCK_READONLY,(void**)&SrcPtr);
pMesh−>LockVertexBuffer(0, (void**)&DestPtr);

After you lock the vertex buffers, you need to perform a call to
ID3DXSkinInfo::UpdateSkinnedMesh to apply all the bones' transformations to the vertices and
write the resulting data to the secondary mesh container. To finish, you simply unlock the vertex buffers, and
you're ready to render!

// pSkinInfo = skinned mesh info object

// Update the skinned mesh using provided transformations
pSkinInfo−>UpdateSkinnedMesh(pBoneMatrices, NULL, \
 SrcPtr, DestPtr);

 Updating the Skinned Mesh

105

// Unlock the meshes vertex buffers
pSkinMesh−>UnlockVertexBuffer();
pMesh−>UnlockVertexBuffer();

Rendering the Skinned Mesh

Now comes the good part−rendering your secondary mesh and showing the world what it's like to play with
powerthe power of skeletal animation and skinned meshes, that is. You only need to depend on the typical
mesh−rendering functions to render the secondary mesh. Loop through each material, set the material and
texture, and call the ID3DXMesh::DrawSubset function. Loop and continue until all of the subsets have
been drawn.

If you are using the D3DXMESHCONTAINER_EX object from Chapter 1, this code should work perfectly for
you to render the secondary mesh.

// pMesh = D3DXMESHCONTAINER_EX object w/material data
// pMeshToDraw = secondary mesh pointer to render
for(DWORD i=0;i<pMesh−>NumMaterials;i++) {

 // Set material and texture
 pD3DDevice−>SetMaterial(&pMesh−>pMaterials[i].MatD3D);
 pD3DDevice−>SetTexture(0, pMesh−>pTextures[i]);

 // Draw the mesh subset
 pMeshToDraw−>DrawSubset(i);
}

That wraps up skeletal animation basics! In the next few chapters, you'll learn how to put your newfound
skeletal animation techniques to work with pre−computer key−frame animations, animation blending, and rag
doll animation techniques. Have fun!

Check Out the Demo

Not so fast, buster! You want to know about this chapter's demonstration program on the CD−ROM, don't
you? As shown in Figure 4.5, the SkeletalAnim mesh demonstrates what you learned in this chapter by
loading a skinned mesh (the Tiny.x mesh provided in the DirectX SDK samples) and rendering it to the
display.

 Rendering the Skinned Mesh

106

Figure 4.5: Meet Tiny, Microsoft's woman of skeletal meshes. She is constructed from a single mesh and an
underlying hierarchy of invisible bones.

Programs on the CD

In the Chapter 4 directory for this book, you'll find a single project that demonstrates how to work with
skeletal animation.

SkeletalAnim. This demo program demonstrates the use of skeletal structures and skinned meshes. It
is located at \BookCode\Chap04\SkeletalAnim.

♦

 Rendering the Skinned Mesh

107

Chapter 5: Using Key−Framed Skeletal Animation
Precalculated key−frame animations are the life−blood of today's game engines. With little work, an animator
can design a complete animation sequence inside a popular 3D modeler and export the animation data to a
format readily usable by the game engine. Without any extra effort, you can change or modify those
animations without rewriting the game code.

I'm know you've seen quite a few of these games, and I know that you want to have the same ability to play
these key−framed animations back in your own games. This chapter is just what you need!

Using Key−Framed Skeletal Animation Sets

If you have explored the DirectX SDK samples, you might have come across a little demo called
SkinnedMesh, which shows you how to use a pre−calculated key−frame animation stored in an .X file to
animate an on−screen character. The problem is, that sample's code is so convoluted and hard to understand
that it'll make your head spin. With no real documentation of how to use .X file animation data, the skinned
mesh animation sample remains full of mystery.

In Chapter 4, you saw how to work with skeletal−based meshes, called skinned meshes, which adhere to an
underlying hierarchy of bones (a skeletal structure). The vertices of the skinned mesh are attached to those
bones, and they move as the bones do. Basically, animation is achieved by slowly applying a set of
transformations to the hierarchy of bones and letting the vertices follow along with the movements.

The sequence of these animation transformations is called a key frame. You use key frames to define both the
transformation and the time of the transformation to use in the animation sequence. Where do you get the
transformations you use to apply the movements to those bones? There are many file formats at your disposal,
but to keep on the DirectX route, I'll be concentrating on using .X files.

If you take a look at the SkinnedMesh demo's .X file (Tiny.x) from the DirectX SDK, you'll notice that along
with the typical Frame and Mesh templates, there is an AnimationSet template with a number of
embedded Animation and AnimationKey objects. It's from these animation data objects that you obtain
the transformations used to animate your skinned mesh's bone hierarchy. Take a closer look at some of these
animation objects within an .X file to see what I mean.

AnimationSet Walk {
 Animation {
 {Bip01}
 AnimationKey {
 4;
 3;
 0; 16; 1.00000, 0.00000, 0.00000, 0.00000,
 0.00000, 1.00000, 0.00000, 0.00000,
 0.00000, 0.00000, 1.00000, 0.00000,
 0.00000, 0.00000, 0.00000, 1.00000;;,
 1000; 16; 1.00000, 0.00000, 0.00000, 0.00000,
 0.00000, 1.00000, 0.00000, 0.00000,
 0.00000, 0.00000, 1.00000, 0.00000,
 0.00000, 0.00000, 0.00000, 1.00000;;,
 2000; 16; 1.00000, 0.00000, 0.00000, 0.00000,
 0.00000, 1.00000, 0.00000, 0.00000,
 0.00000, 0.00000, 1.00000, 0.00000,
 0.00000, 0.00000, 0.00000, 1.00000;;;
 }

108

}
Animation {
 {Bip01_LeftArm}
 AnimationKey {
 0;
 1;
 0; 4; 1.00000, 0.000000, 0.00000, 0.000000;;;
 }
AnimationKey {
 1;
 1;
 0; 4; 1.000000, 1.00000, 1.000000;;;
 }
AnimationKey {
 2;
 1;
 0; 3; 0.000000, 0.00000, 0.000000;;;
 }
 }
}

What you're looking at is a simple animation that works with two bones. Each animation is defined inside an
AnimationSet data object; in the previous instance, this animation has been assigned the name Walk.
Two Animation objects that contain the various keys of animation for each bone are embedded in this
AnimationSet object. Keys?! What the heck am I talking about? Well, my friend, let me take a moment to
explain the concept of keys in animation.

Using Keys in Animation

A key, short for an animation key, is a timeline marker that signifies a change in a bone's position and/or
orientation. An animation that uses keys is called a key−framed animation. The reasons for using keys are
quite significant, with the most important one being memory conservation.

You see, an animation is a series of movements (bone movements, in this case) over a set period of time.
During this animation, your bone hierarchy is modified to convey the motion in the animation. Trying to store
every bone's position and orientation for every millisecond of animation is impossible; there's just too much
data to store it effectively. Instead, you can space out the movements over a longer period of time (every
second or two)or better yet, whenever a major change in each bone's position or orientation takes place. For
example, imagine your armrather, imagine the arm illustrated in Figure 5.1 .

Figure 5.1: A bone's animation over a period of time; a key marks the extent of each movement
The bones that construct the arm in Figure 5.1 are pointing straight out at the start of the animation. Over
time, the bones bend at the imaginary elbow, come to a rest, and then bend at a different angle. So there are
three major changes in the bones' orientationstraight (the default position), slightly bent, and a major bend in
the joint. These three changes are the three keys in the animation.

 Using Keys in Animation

109

Now, instead of storing the orientation of the bones every millisecond, store those three keys and the exact
time (in milliseconds) that the bones would reach the appropriate orientation. In this example, suppose the arm
animation starts at 0 milliseconds, reaches the first key (half−bent) at 500 milliseconds, and reaches the last
key (fully bent) at 1,200 milliseconds.

Here's where using key frames comes in handy. Suppose you want to calculate the orientation of the bones at
a specific timesay, at 648 milliseconds. That time just so happens to fall between the second and third keys
(148 milliseconds past the second key). Now, assume that the two transformation matrices represent the
orientations of each bone in the animation.

D3DXMATRIX matKey1, matKey2;

By taking each key and interpolating the values between them, you can come up with a transformation to use
at any time between the keys. In this example, at 648 milliseconds in the animation, you can interpolate the
transformations as follows:

// Get the difference in the matrices
D3DXMATRIX matTransformation = matKey2 − MatKey1;

// Get keys' times
float Key1Time = 500.0f;
float Key2Time = 1200.0f;

// Get the time difference of the keys
float TimeDiff = Key2Time − Key1Time;

// Get the scalar from animation time and time difference
float Scalar = (648.0f − Key1Time) / TimeDiff;

// Calculate the interpolated transformation matrix
matTransformation *= Scalar;
matTransformation += matKey1;

And there you have it! The matTransformation matrix now holds the interpolated transformation that
you would apply to the bone in question to perfectly synchronize it to the animation! To increase precision,
you can use translation, rotation, and scaling values instead of transformation matrices during the
interpolation. I'll get back to doing just that in a bit, but for now let's get back to the Animation template
with which you'll be dealing.

For every bone in your hierarchy, there should be a matching Animation object. Immediately following the
Animation object declaration, you'll see a referenced data object name. This is the name of the bone that
has its animation data defined using the preceding AnimationKey objects. This means that in the previous
example, the two bones, Bip01 and Bip01_LeftArm, are being animated.

One or more AnimationKey objects follow the data object reference. The AnimationKey objects define
the keys of the animation a bone uses, which can include translation, rotation, scale, or transformation keys.
Take a closer look at each key type and how you store its information in the objects.

Working with the Four Key Types

Currently, there are four types of keys you can use in your animation sets, each signified by a value ranging
from 0 to 4 that is listed in the .X file following the frame reference inside an AnimationKey template.
These four keys and their respective values are

 Working with the Four Key Types

110

Rotational keys (type 0). These are quaternion rotational values, stored using four componentsw,
x, y, and z.

♦

Scaling keys (type 1). You can also use this type of key to animate scaling values. A scale key uses
three components that represent the x, y, and z scaling values to use.

♦

Translation keys (type 2). These keys specify a position in 3D space using three components that
represent the x, y, and z coordinates. You can easily store these three values as a vector.

♦

Transformation matrix keys (type 4). You can use this key to compound all transformations into
matrices. This key uses 16 floats that represent a homogenous 4x4 transformation matrix that
transforms a bone.

♦

So getting back to the previous Animation data objects, you can see that the very first AnimationKey
object (which affects the Bip01 bone) defines a transformation matrix key (represented by the value 4), as
shown here:

{Bip01}
 AnimationKey {
 4;
 3;
 0; 16; 1.00000, 0.00000, 0.00000, 0.00000,
 0.00000, 1.00000, 0.00000, 0.00000,
 0.00000, 0.00000, 1.00000, 0.00000,
 0.00000, 0.00000, 0.00000, 1.00000;;,
 1000; 16; 1.00000, 0.00000, 0.00000, 0.00000,
 0.00000, 1.00000, 0.00000, 0.00000,
 0.00000, 0.00000, 1.00000, 0.00000,
 0.00000, 0.00000, 0.00000, 1.00000;;,
 2000; 16; 1.00000, 0.00000, 0.00000, 0.00000,
 0.00000, 1.00000, 0.00000, 0.00000,
 0.00000, 0.00000, 1.00000, 0.00000,
 0.00000, 0.00000, 0.00000, 1.00000;;;
 }

As for the second AnimationKey object (which affects the Bip01_LeftArm bone), there are three keys
in usetranslation (value 2), scaling (value 1), and rotation (value 0).

{Bip01_LeftArm}
AnimationKey {
 0;
1;
 0; 4; 1.00000, 0.000000, 0.00000, 0.000000;;;
}
AnimationKey {
 1;
 1;
 0; 4; 1.000000, 1.00000, 1.000000;;;
}
AnimationKey {
 2;
 1;
 0; 3; 0.000000, 0.00000, 0.000000;;;
}

As you may have surmised by now, you can have any number of AnimationKey objects per Animation
object, with each AnimationKey object using one specific key type. Following the key's type value
(0=rotational, 1=scaling, 2=position, 4=matrix) is the number of keys to use in the animation sequence for that
specific bone. In the first bone's set (Bip01) there are three matrix type keys defined, whereas the remaining

 Working with the Four Key Types

111

AnimationKey objects (that affect the Bip01_LeftArm bone) use only one key for each of the
remaining transformation types (rotation, scaling, and position).

Next comes the key data. The first value for each key is the time value, which is specified using an arbitrary
value that you choose (such as seconds, milliseconds, frames, or any other form of measurement you wish to
use). In my examples, I always specify time as milliseconds. A number that defines how many key values are
to follow comes after the time value. Take the following key data, for example:

AnimationKey {
 2; // Key type
 1; // # of keys
 0; // Key time
 3; // # of values to follow for key's data
 10.00000, 20.00000, 30.00000;;; // key's data }

The first value, 2, means the key is used to contain translation animation keys. The 1 means there is one key
to follow. The first and only key is located at time 0. The value 3 follows the time, which means that three
more values (10, 20, and 30) are to follow. The three values represent the coordinates to use for that time
in the animation.

Going back to the earlier example, you can see that the first animation key (the transformation matrix key) has
three matrices that are used at times 0, 1000, and 2000. At those exact times during the animation, you
will set the transformation matrix for the Bip01 bone.

For the time values between keys, you need to interpolate the matrices to come up with the correct
transformations. In fact, you can interpolate all key types to get the correct values to use between keys. The
easiest way to interpolate is to use the transformation matrix, scaling, translation, or rotation values from the
animation keys, divide by the time between two keys, and multiply the result based on the time into the key.
You saw me use linear interpolation for a transformation matrix in the previous section. Before long, I'll show
you how to interpolate translation, scaling, and rotation values as well.

That's basically it for the AnimationKey! You just need to read in each key contained within your
AnimationKey data objects and apply it to the proper bone transformations using the interpolated matrices
over time.

Okay, enough of the animation templates, data objects, keys, and interpolation for now; we'll get back to that
stuff in a bit. For now, let's get your hands into some real code and see how to load the animation data into
your game. Then I'll get back to showing you how to work with the actual data.

Reading Animation Data from .X Files

In Chapter 3, you learned how to load meshes and frame hierarchies from an .X file, as well as how to use
frame hierarchies to deform (modify) the mesh while rendering. This chapter's purpose is to teach you how to
read in the animation data contained in an .X file so you can play back key−framed animations.

The first step to reading in the animation data is to look at the templates you'll be using and build a couple
classes to contain the data from those templates' data objects. First, here are the templates that you'll be
working with, along with their declarations:

template AnimationKey {
 <10DD46A8−775B−11cf−8F52−0040333594A3>
 DWORD keyType;

 Reading Animation Data from .X Files

112

 DWORD nKeys;
 array TimedFloatKeys keys[nKeys];
}

template Animation {
 <3D82AB4F−62DA−11cf−AB39−0020AF71E433>
 [AnimationKey]
 [AnimationOptions]
 [...]
}

template AnimationSet {
 <3D82AB50−62DA−11cf−AB39−0020AF71E433>
 [Animation]
}

At the top of the list you have AnimationKey, which stores the type of animation key data, the number of
key values to follow, and the key data itself, which is stored in an array of TimedFloatKey objects that
store the time and an array of floating−point values in the form Time:NumValues:Values.

Data objects of the Animation template class type can store an AnimationKey object and an
AnimationOptions object. Notice that the Animation template is left open because it needs a frame
data object reference to match the animation key to a bone.

Last, there's the AnimationSet template, which only contains Animation objects. You can store any
number of animations within an animation set; typically, you'll have one animation for each bone.

Note The AnimationOptions template, while not used in this book, is highly useful if
you want your artists to specify playback options. Inside the AnimationOptions
template, you'll find two variablesopenclosed and positionquality.If
openclosed is set to 0, then the animation in which the object is embedded doesn't
loop; a value of 1 means the animation loops. As for positionquality, setting it to
a value of 0 means to use spline positions, whereas a value of 1 means to use linear
positions. Typically, you'd set positionquality to 1.

You'll want to use some custom classes to store your animation data; those classes will pretty much mirror the
Animation templates' data exactly. First, you want a class that contains the values of the various key
typesscaling, translation, rotation, and transformation. The first two types, scaling and translation, both use a
vector, so one class will suffice.

class cAnimationVectorKey
{
 public:
 float m_Time;
 D3DXVECTOR3 m_vecKey;
};

Note You can find the animation classes discussed in this section (along with the complete source code to a
skeletal animation system) on the book's CD−ROM. Look at the end of this chapter for more
information on the BoneAnim demo program.

Rotation keys use a quaternion (a four−dimensional vector).

class cAnimationQuaternionKey
{
 public:

 Reading Animation Data from .X Files

113

 float m_Time;
 D3DXQUATERNION m_quatKey;
};

Last, the transformation key uses a 4x4 homogenous matrix.

class cAnimationMatrixKey
{
 public:
 float m_Time;
 D3DXMATRIX m_matKey;
};

So far, so good. Remember that each bone in your animation has its own list of keys to use, which is the
purpose of the Animation template. For each bone in your hierarchy, there is a matching Animation data
object. Your matching animation class will therefore contain the name of the bone to which it is connected,
the number of keys for each type (translation, scaling, rotation, and transformation), a linked list data pointer,
and a pointer to the bone (or frame) structure you're using in your hierarchy. Also, you need to include a
constructor and destructor that clear out the class's data.

class cAnimation
{
 public:
 char *m_Name; // Bone's name
 D3DXFRAME *m_Bone; // Pointer to bone
 cAnimation *m_Next; // Next animation object in list

 // # each key type and array of each type's keys
 DWORD m_NumTranslationKeys;
 cAnimationVectorKey *m_TranslationKeys;
 DWORD m_NumScaleKeys;
 cAnimationVectorKey *m_ScaleKeys;
 DWORD m_NumRotationKeys;
 cAnimationQuaternionKey *m_RotationKeys;
 DWORD m_NumMatrixKeys;
 cAnimationMatrixKey *m_MatrixKeys;

 public:
 cAnimation();
 ~cAnimation();
};

Finally, the AnimationSet template contains the Animation objects for an entire bone hierarchy. At this
point, all your animation set class needs to do is track an array of cAnimation classes (remember that each
bone in the hierarchy has a matching cAnimation class), as well as the length of the complete animation.

class cAnimationSet
{
 public:
 char *m_Name; // Name of animation
 DWORD m_Length; // Length of animation
 cAnimationSet *m_Next; // Next set in linked list
 DWORD m_NumAnimations;
 cAnimation *m_Animations;

 public:
 cAnimationSet();
 ~cAnimationSet();

 Reading Animation Data from .X Files

114

};

Assuming you want more than one animation set loaded at once, you can even create a class that contains an
array (or rather, a linked list) of cAnimationSet classes, which means that you can access a whole slew of
animations with one interface! This class, called cAnimationCollection, is also derived from the
cXParser class developed in Chapter 2, so you can parse .X files directly from the class in which you'll be
storing the animations.

Here's the class declaration for cAnimationCollection:

class cAnimationCollection : public cXParser
{
 public:
 DWORD m_NumAnimationSets;
 cAnimationSet *m_AnimationSets;

 protected:
 // Parse an .X file object
 BOOL ParseObject(IDirectXFileData *pDataObj,
 IDirectXFileData *pParentDataObj,
 DWORD Depth,
 void **Data, BOOL Reference);

 // Find a frame by name
 D3DXFRAME *FindFrame(D3DXFRAME *Frame, char *Name);

 public:
 cAnimationCollection();
 ~cAnimationCollection();

 BOOL Load(char *Filename);
 void Free();

 void Map(D3DXFRAME *RootFrame);
 void Update(char *AnimationSetName, DWORD Time);
};

The details of each function in the cAnimationCollection class are not very important at this point so
I'll get back to them in a bit. At this point, all you're interested in is reading in that animation data from an .X
file. The custom .X parser contained in the cAnimationCollection class does just thatit loads the data
from the Animation objects' data into the dizzying array of objects you've just seen.

For every AnimationSet object you encounter in the .X file being parsed, you need to allocate a
cAnimationSet class and add it to the linked list of animation sets already loaded. The most current
cAnimationSet object is stored at the start of the linked list, which makes it easy to determine which
animation−set data you are currently using.

From here, you can appropriately parse the Animation objects. If you were to keep the most current
cAnimationSet object at the start of your linked list, every following Animation object that you parse
would belong to that animation−set object. The same goes for the AnimationKey objectstheir data would
belong to the first cAnimation object in the linked list.

I will skip the constructors and destructors for all the different classes because you only need them to clear
and release each class's data. You're only interested in a couple functions, the first being
cAnimationCollection::ParseObject, which deals with each animation object being parsed from

 Reading Animation Data from .X Files

115

an .X file.

The ParseObject function starts by checking whether the currently enumerated object is an
AnimationSet. If it is, a new cAnimationSet object is allocated and linked to the list of objects, while
the animation−set object is simultaneously named for further reference.

BOOL cAnimationCollection::ParseObject(\
 IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference)
{
 const GUID *Type = GetObjectGUID(pDataObj);
 DWORD i;

 // Check if object is AnimationSet type
 if(*Type == TID_D3DRMAnimationSet) {

 // Create and link in a cAnimationSet object
 cAnimationSet *AnimSet = new cAnimationSet();
 AnimSet−>m_Next = m_AnimationSets;
 m_AnimationSets = AnimSet;

 // Increase # of animation sets
 m_NumAnimationSets++;

 // Set animation set name (set a default one if none)
 if(!(AnimSet−>m_Name = GetObjectName(pDataObj)))
 AnimSet−>m_Name = strdup("NoName");
}

As you can see, nothing special goes on with the animation set objectsyou're merely allocating an object that
will eventually hold the upcoming Animation data objects. Speaking of which, you want to parse the
Animation objects next.

// Check if object is Animation type
if(*Type == TID_D3DRMAnimation && m_AnimationSets) {

 // Add a cAnimation class to top−level cAnimationSet
 cAnimation *Anim = new cAnimation();
 Anim−>m_Next = m_AnimationSets−>m_Animations;
 m_AnimationSets−>m_Animations = Anim;

 // Increase # of animations
 m_AnimationSets−>m_NumAnimations++;
}

Again, nothing special going on there. In the preceding code, you're simply ensuring that there's a
cAnimationSet object allocated at the start of the linked list. If there is, you can allocate and link a
cAnimation object to the list in the cAnimationSet object.

While we're on the topic of the cAnimation object, the next bit of code retrieves the name of the frame
instance located within the Animation object.

// Check if a frame reference inside animation object
if(*Type == TID_D3DRMFrame && Reference == TRUE && \
 m_AnimationSets && \

 Reading Animation Data from .X Files

116

 m_AnimationSets−>m_Animations) {

// Make sure parent object is an Animation object
if(pParentDataObj && *GetObjectGUID(pParentDataObj) == \
 TID_D3DRMAnimation) {

// Get name of frame and store it as animation
if(!(m_AnimationSets−>m_Animations−>m_Name = \
 GetObjectName(pDataObj)))
m_AnimationSets−>m_Animations−>m_Name=strdup("NoName");
}
}

You can see in this code that only referenced frame objects are allowed in the Animation object, a fact that
you can verify by checking the parent object's template GUID. Whew! So far this code is pretty easy, isn't it?
Well, I don't want to burst your bubble, but the hardest is yet to come! In fact, the most difficult part of
loading animation data from an .X file is loading the key data. Don't let me scare you away, though; the key
data is nothing more than a time value and an array of values that represent the key data.

The remaining code in the ParseObject function checks to see which type of key data an
AnimationKey object holds. Depending on the type of data, the code branches off and reads the data into
the specific key objects (m_RotationKeys, m_TranslationKeys, m_ScaleKeys, and
m_MatrixKeys) inside the current cAnimation object. Take a closer look to see how simple this code
really is.

// Check if object is AnimationKey type
if(*Type == TID_D3DRMAnimationKey && m_AnimationSets && \
 m_AnimationSets−>m_Animations) {

// Get a pointer to top−level animation object
cAnimation *Anim = m_AnimationSets−>m_Animations;

// Get a data pointer
DWORD *DataPtr = (DWORD*)GetObjectData(pDataObj, NULL);

// Get key type
DWORD Type = *DataPtr++;

// Get # of keys to follow
DWORD NumKeys = *DataPtr++;

In addition to checking to see whether there are valid cAnimationSet and cAnimation objects at the
start of the linked list of objects, the preceding code gets a pointer to the key data and pulls out the key type
value and the number of keys to follow. Using the key type, the code then branches off to allocate the
key−frame objects and load in the key data.

 // Branch based on key type
 switch(Type) {
 case 0: // Rotation
 delete [] Anim−>m_RotationKeys;
 Anim−>m_NumRotationKeys = NumKeys;
 Anim−>m_RotationKeys = new \
 cAnimationQuaternionKey[NumKeys];

 for(i=0;i<NumKeys;i++) {
 // Get time
 Anim−>m_RotationKeys[i].m_Time = *DataPtr++;

 Reading Animation Data from .X Files

117

 if(Anim−>m_RotationKeys[i].m_Time > \
 m_AnimationSets−>m_Length)
 m_AnimationSets−>m_Length = \
 Anim−>m_RotationKeys[i].m_Time;

 // Skip # keys to follow (should be 4)
 DataPtr++;

 // Get rotational values
 float *fPtr = (float*)DataPtr;
 Anim−>m_RotationKeys[i].m_quatKey.w = *fPtr++;
 Anim−>m_RotationKeys[i].m_quatKey.x = *fPtr++;
 Anim−>m_RotationKeys[i].m_quatKey.y = *fPtr++;
 Anim−>m_RotationKeys[i].m_quatKey.z = *fPtr++;
 DataPtr+=4;
 }
 break;

You'll recall from earlier in this chapter that rotation keys use quaternion values. These values are stored in w,
x, y, z order; to make sure you use the proper values, you must read them into the key's quaternion object
appropriately.

Next comes the code to load in the scaling and translation keys, which both use vectors to store the x−, y−,
and z−axis information.

 case 1: // Scaling
 delete [] Anim−>m_ScaleKeys;
 Anim−>m_NumScaleKeys = NumKeys;
 Anim−>m_ScaleKeys = new cAnimationVectorKey[NumKeys];
 for(i=0;i<NumKeys;i++) {
 // Get time
 Anim−>m_ScaleKeys[i].m_Time = *DataPtr++;
 if(Anim−>m_ScaleKeys[i].m_Time > \
 m_AnimationSets−>m_Length)
 m_AnimationSets−>m_Length = \
 Anim−>m_ScaleKeys[i].m_Time;

 // Skip # keys to follow (should be 3)
 DataPtr++;

 // Get scale values
 D3DXVECTOR3 *vecPtr = (D3DXVECTOR3*)DataPtr;
 Anim−>m_ScaleKeys[i].m_vecKey = *vecPtr;
 DataPtr+=3;
 }
 break;

 case 2: // Translation
 delete [] Anim−>m_TranslationKeys;
 Anim−>m_NumTranslationKeys = NumKeys;
 Anim−>m_TranslationKeys = new \
 cAnimationVectorKey[NumKeys];

 for(i=0;i<NumKeys;i++) {
 // Get time
 Anim−>m_TranslationKeys[i].m_Time = *DataPtr++;
 if(Anim−>m_TranslationKeys[i].m_Time > \
 m_AnimationSets−>m_Length)
 m_AnimationSets−>m_Length = \
 Anim−>m_TranslationKeys[i].m_Time;

 Reading Animation Data from .X Files

118

 // Skip # keys to follow (should be 3)
 DataPtr++;

 // Get translation values
 D3DXVECTOR3 *vecPtr = (D3DXVECTOR3*)DataPtr;
 Anim−>m_TranslationKeys[i].m_vecKey = *vecPtr;
 DataPtr+=3;
 }
 break;

Last is the code to read an array of transformation matrix keys.

 case 4: // Transformation matrix
 delete [] Anim−>m_MatrixKeys;
 Anim−>m_NumMatrixKeys = NumKeys;
 Anim−>m_MatrixKeys = new cAnimationMatrixKey[NumKeys];
 for(i=0;i<NumKeys;i++) {
 // Get time
 Anim−>m_MatrixKeys[i].m_Time = *DataPtr++;
 if(Anim−>m_MatrixKeys[i].m_Time > \
 m_AnimationSets−>m_Length)
 m_AnimationSets−>m_Length = \
 Anim−>m_MatrixKeys[i].m_Time;

 // Skip # keys to follow (should be 16)
 DataPtr++;

 // Get matrix values
 D3DXMATRIX *mPtr = (D3DXMATRIX *)DataPtr;
 Anim−>m_MatrixKeys[i].m_matKey = *mPtr;
 DataPtr += 16;
 }
 break;
 }
 }

Okay now, take a quick breather and look back at what you've just accomplished. So far, you've processed
every AnimationSet, Animation, and AnimationKey object (not to mention referenced Frame
objects that contain the bones' names), plus you've loaded the key objects full of the animation data. You're
almost ready to start animating!

Almost is right; there is one small step leftmatching the animation objects to their respective bone objects.

Matching Animations to Bones

After you've loaded the animation data, you need to map the animation classes to their respective bones in the
bone hierarchy. Mapping the hierarchies is important because whenever an animation is updated, you need a
quick way to access the bone's transformations. By mapping, you create an easier method of accessing the
bones.

In this instance, the bone hierarchy will be represented in a D3DXFRAME hierarchy. If you're using DirectX 8,
you might notice that you don't have access to the D3DXFRAME object; it's a structure specific to DirectX 9.
Don't fret, however; the Direct3D helper code used by all the demos in this book compensates for the missing
structure by creating a mock version of D3DXFRAME you can use. You can check out the mock D3DXFRAME
structure in Direct3D.h in this chapter's directory on the CD−ROM.

 Matching Animations to Bones

119

Inside the D3DXFRAME structure, there are two linked list pointers that you'll use to help construct the
hierarchy. From the root D3DXFRAME structure you are using, you can access child objects through the
D3DXFRAME::pFrameFirstChild pointer and sibling objects through the
D3DXFRAME::pFrameSibling pointer.

The next function in cAnimationCollection to which you want to pay attention is Map. You use the
Map function to map the animation structure's m_Bone pointer to a frame in the frame hierarchy that shares
the same name.

The Map function scans through every cAnimationSet object and iterates every cAnimation object
contained in each of the animation set objects. The name of each cAnimation object is compared to each of
the frame's names; if a match is found, the cAnimation::m_Bone pointer is set to the frame's address.

The Map function takes the hierarchy's root frame parameter.

void cAnimationCollection::Map(D3DXFRAME *RootFrame)
{
 // Go through each animation set
 cAnimationSet *AnimSet = m_AnimationSets;
 while(AnimSet != NULL) {

 // Go through each animation object
 cAnimation *Anim = AnimSet−>m_Animations;
 while(Anim != NULL) {

 // Go through all frames and look for match
 Anim−>m_Bone = FindFrame(RootFrame, Anim−>m_Name);

 // Go to next animation object
 Anim = Anim−>m_Next;
 }

 // Go to next animation set object
 AnimSet = AnimSet−>m_Next;
 }
}

Whereas the Map function only scans through each of the cAnimationSet and cAnimation objects, the
FindFrame function recursively works through the frame hierarchy to look for a match to the name you
provide. When it finds a matching name, the FindFrame function returns the pointer to the specific frame.
Take a look at the FindFrame code on which the Map function depends.

D3DXFRAME *cAnimationCollection::FindFrame(D3DXFRAME *Frame, char *Name)
{
 D3DXFRAME *FramePtr;

 // Return NULL if no frame
 if(!Frame)
 return NULL;

 // Return current frame if no name used
 if(!Name)
 return Frame;

 // Process child frames
 if((FramePtr = FindFrame(Frame−>pFrameFirstChild, Name)))
 return FramePtr;

 Matching Animations to Bones

120

 // Process sibling frames
 if((FramePtr = FindFrame(Frame−>pFrameSibling, Name)))
 return FramePtr;

 // Nothing found
 return NULL;
}

Again, take a deep breath. The animation data has been loaded, and you've mapped the animation objects to
the bone hierarchy. All that's left to do is update the animation and set the transformation matrices for the
bones.

Updating Animations

After you've matched the animation classes to the bone hierarchy, you can begin animating your meshes! All
you have to do is scan the animation keys for each bone, applying the interpolated transformations to each
bone's transformation before rendering. This is merely a matter of iterating through each animation class and
its keys to find the proper key values to use.

Going back to the cAnimationCollection class, you can see that one function will do all that for you.
By supplying the cAnimationCollection::Update function with the name of the animation set you
want to use, as well as the time in the animation, all of the transformation matrices in your entire mapped bone
hierarchy will be set and ready for rendering.

Take a closer look at the Update function to see how you can update your animation data.

void cAnimationCollection::Update(char *AnimationSetName, \
 DWORD Time)
{
 cAnimationSet *AnimSet = m_AnimationSets;
 DWORD i, Key, Key2;

 // Look for matching animation set name if used
 if(AnimationSetName) {

 // Find matching animation set name
 while(AnimSet != NULL) {

 // Break when match found
 if(!stricmp(AnimSet−>m_Name, AnimationSetName))
 break;

 // Go to next animation set object
 AnimSet = AnimSet−>m_Next;
 }
 }
 // Return no set found
 if(AnimSet == NULL)
 return;

The Update function starts by scanning the list of animation sets loaded into the linked list. If you instead
supply a NULL value for AnimationSetName, Update will merely use the first animation set in the list
(which happens to be the last set loaded). If no matching sets are found using the name you specified, the
function returns without further delay.

 Updating Animations

121

Once a matching animation set is found, however, the code continues by scanning each cAnimation object
in it. For each animation object, the entire list of keys (translation, scaling, rotation, and transformation) is
searched, and the time you specify is checked to see which key to use.

After you've found the proper key to use, the values (rotation, scaling, translation, or transformation) are
interpolated, and a final transformation matrix is computed. This final transformation matrix is then stored in
the mapped bone (as pointed to by the m_Bone pointer).

You've already seen how to scan a list of keys to look for the ones between which a specific time falls, so I'll
skip the code here. I'll leave it to you to check out the exact code on the book's CD−ROM; consult the end of
this chapter for more information on the BoneAnim demo.

Once you've calculated the transformations to apply to each bone from the animation data, you can jump right
back into the game and render the mesh using the techniques you learned in Chapter 1. Remember, you must
apply the transformation matrices for each bone to the appropriate vertices in the mesh, and the best way to do
so is to use a vertex shader. Consult Chapter 1 for more information on drawing skeletal−based meshes if you
need help.

Obtaining Skeletal Mesh Data from Alternative Sources

Microsoft's .X file format is not the only kid on the block when it comes to mesh and animation data storage.
As ease of use and simplicity go, there are two other formats that tend to be perfect mediums for your mesh
and animation datachUmbaLum sOft's Milkshape 3D .MS3D format and id Software's Quake 2 .MD2 format.

The Milkshape .MS3D file format is somewhat like a binary .X, except that an .MD3D file only stores a
single mesh and bone hierarchy. In fact, the .MS3D file format is extremely linear in that it doesn't use
templates; rather, it uses a pre−defined series of structures stored one after another in the file.

The Quake 2 .MD2 file format is merely a bunch of meshes thrown together in a single file. Each mesh
represents a single frame of animation from a series of animation sets. Whereas .MS3D files contain skeletal
animations, the .MD2 format contains only morphing animation sets.

Note Morphing mesh animations is another awesome topic covered elsewhere in this book, so I
thought I'd just mention the dual functionality of the MeshConv program here. For now, you
can ignore any mention of morphing animation and get right to the topic at handconverting
skeletal−based key−framed animation sets from .MS3D to .X.

So, for skeletal−based animations you can use .MS3D files, and for morphing animations you can use .MD2
files. Exactly how do you use those files? Information on the formats is widely available. Check out the book
Focus On 3D Models (Premier Press, 2002) or Web sites like http://www.gamedev.net or
http://nehe.gamedev.net.

The CD−ROM includes a program called MeshConv, which you can use to convert .MS3D and .MD2 files
into .X files. After you execute the program, you are presented with the MeshConv dialog box, shown in
Figure 5.2.

 Obtaining Skeletal Mesh Data from Alternative Sources

122

Figure 5.2: The MeshConv dialog box contains two buttons you can click on to convert .MS3D and .MD2
files to .X.
Don't let the lack of controls in the MeshConv program scare youit does a great job of converting all .MS3D
and .MD2 files into .X files using the layout and templates you've seen throughout this chapter. The .MS3D
files will be saved using a frame hierarchy and a single AnimationSet object, whereas .MD2 files will be
saved using a series of Mesh objects and a MorphAnimationSet object that contains the names of the
meshes to use in succession for morphing animation.

Note The CD−ROM includes the completely commented source code for the MeshConv program.
Check the end of this chapter for more information on the various programs and their locations.

To convert a file (whether it is an .MS3D or an .MD2 file) into an .X file, click on the appropriate button in
the MeshConv dialog box. The Open File dialog box will appear. This dialog box allows you to navigate your
drives and locate the file you want to convert to .X format. Select an appropriate file to convert and click
Open.

Next, the Save .X File dialog box will appear. You can use this dialog box to locate and select an .X file name
into which you want to save the mesh and animation data. Enter a file name and click Save. After a moment,
you should see a message box informing you that the conversion was successful.

Now you are ready to use your .X file with one of the classes you developed earlier in this chapter, either for
skeletal−based animation sets or morphing animation sets. The skeletal−based animation set uses a single
source mesh that is deformed (shaped) by the bone hierarchy; review this chapter and Chapter 2 for more
information on using skinned meshes.

For morphing animations (from .MD2), you'll have a series of Mesh objects that contain every target
morphing mesh used in the source file. A single MorphAnimationSet object will help you load animation
data into your project using the classes and techniques you've studied in this chapter.

For an example of how to work with the .X files you created using the MeshConv program, check out the
demo programs included for this chapter. That's rightboth the BoneAnim and MorphAnim demos used
converted .MS3D and .MD2 files to demonstrate skeletal and morphing animation. Check out those demos,
and have fun!

Check Out the Demos

In this chapter, you learned how to load animation sets and use that data to animate your on−screen meshes.
To better demonstrate these animation concepts, I have created a program (SkeletalAnim) that shows your
favorite lady of skeletal−based animation, Microsoft's Tiny (from the DirectX SDK samples), doing what she
does bestwalking around! When you run the demo application, you'll be greeted with a scene like the one

 Check Out the Demos

123

shown in Figure 5.3.

Figure 5.3: Tiny on the move in the SkeletalAnim demo! This demo shows you how to use skeletal−based
animated meshes.

Programs on the CD

In the Chapter 5 directory on this book's CD−ROM, you'll find the following two demos to peruse and use for
your own game projects.

MeshConv.You can use this utility program to convert your .MS3D and .MD2 files to .X files. The
source code is fully commented and shows the format of those two file types. It is located at
\BookCode\Chap05\MeshConv.

♦

SkeletalAnim.This program demonstrates how to read and use skeletal key−framed animations. It is
located at \BookCode\Chap05\SkeletalAnim.

♦

 Check Out the Demos

124

Chapter 6: Blending Skeletal Animations

Overview

In Chapter 5, "Using Key−Framed Skeletal Animation," you saw how you could take a series of
pre−designed animation sequences and insert them into your game project. That's cool; the only problem is
that those animations were so static. That's right, the animations never changed and will always remain the
same no matter how many times you play them. What if there was a way to make your animations a bit more
dynamic?

Well, in fact, with a little bit of extra work you can combine a series of those bland repeating animations into
a set of new dynamic animations; animations that are unique every time you play them. For example, combine
your game character's walking animation with his separate punching animation to make your character walk
and punch at the same time!

That's right, by combining (or blending, as it is known) the motions of the various animations, you can create
literally hundreds of new animations from your pre−calculated key−frame animation sets. This chapter is here
to show you how to blend those animations.

Blending Skeletal Animations

As I mentioned in this chapter's introduction, you would normally use a series of pre−calculated key−framed
animations in your game projects. You create these animations using 3D modeling programs such as discreet's
3DStudio Max or Caligari's trueSpace. Although they served their purpose quite nicely, those pre−created
animation sequences did lack one major aspectuniqueness. Once an animation, always an animationmeaning
that the animations are the same, regardless of how many times you play them.

Moving into a more dynamic world of animation, the technique of animation blending has become more than
a buzzword. What's thatyou don't know what animation blending is? Animation blending is the ability to take
separate animations and blend, or rather combine, them to create a new animation.

For instance, as Figure 6.1 shows, you can blend an animation of your character walking and another
animation of him waving his arm to create an animation of him walking and waving his arm at the same time!

125

Figure 6.1: Even though the two animations shown on the left are separately defined, you can combine them
into one unique animation, as shown on the right.
You don't have to stop with only blending two animations, you could go on to combine three, four, or even ten
different animations into one unique animation! With each new animation you add, the possibilities of
blending increase exponentially. With only a small set of animations at your disposal, you could literally
create hundreds of new animations using animation blending.

Now, I won't lie to youthe theory and implementation of animation blending is extremely,
excruciatinglysimple. That's right; animation blending is one of those things that makes you wonder why the
heck you weren't doing it earlier. It's that easy! It all has to do with the way you combine the various
transformations of the skeletal structure's bones.

Combining Transformations

As you saw in Chapter 4 and 5, your skeletal animations are merely series of transformation matrices applied
to the bones of your mesh's skeletal structure. These transformations include translations, scaling, and
rotations. For the most part, the transformations are rotations. The bones rotate at the joint; only the root bone
is typically allowed to translate around the world, and even then that's best left up to the world transformation
(rather than directly translating the bones themselves). Those points aside, the transformations create the
animation.

As you can see in Figure 6.2, you can create new poses by adding various transformations to the existing
transformations of the skeletal structure. For example, to make the skeleton's arm move, add a rotational
transformation matrix to the arm bone transformation. Slowly increasing the rotational value added to the
bone transformation creates smooth animation.

 Combining Transformations

126

Figure 6.2: The skeleton's default pose (on the left) has an associated set of transformation matrices; when
combined with animation set transformation matrices, these will create new poses.
You can see that you achieve animation by combining (through matrix concoction) or directly storing a set of
animation transformations with your skeleton's transformation matrices. To smoothly animate a mesh, you can
use linear interpolation to scale the animation set's transformation matrices over time.

So at the most basic level, you are dealing with transformation matrices to create animation; there's one
transformation matrix to apply for each bone in the mesh. The pre−calculated key−frame animation set is the
source of the transformation matrices that are applied to the bone's transformation.

Think about thisinstead of taking that single transformation matrix from your animation set (from a matrix
key frame or combined from a series of position, translation, and rotation key frames), why couldn't you just
take a series of transformations that affect the same bone from multiple animation sets and combine them?
After all, you're using matrix concoction to combine multiple transformations, so why not just throw in a few
more transformations from multiple animations while you're at it?

Whoa! You caught me thereyou can't just concoct the matrices and expect the transformations to come out
correctly. Think of it: Matrix concoction is non−commutative, meaning that the order in which you multiply
the various transformations is crucial. If you were to multiply two transformations that both were rotated and
then translated, you would end up with a final transformation that rotates, translates, rotates, and finally
translates. That's obviously too much transformation data for a single bone that typically rotates and then
translates.

To correct this problem, you need to add the transformations instead of multiplying them. So, for instance, the
previous two transformations that rotate and then translate would combine into a transformation that only
rotates and then translates (as opposed to rotating, translating, rotating, and finally translating). Adding
transformations is perfectly acceptable!

Adding two matrices (represented by D3DXMATRIX objects) is as simple as the following line of code:

D3DXMATRIX matResult = Matrix1 + Matrix2;

From there on, you can use the matResult matrix for your transformations; rest assured, it represents the
combined transformations of Matrix1 and Matrix2. To combine more animation transformations, just add
another matrix to matResult and continue until you have combined all the transformations you want to use.

Now that you know this information, you can begin combining the various transformations of separate
animation sets. To make things easier, you can even extend the animation objects you developed in Chapter 5.

Enhancing Skeletal Animation Objects

Now that you've seen how simple it is to blend multiple skeletal animations, why not take this new knowledge
and add on to the skeletal animation objects and code that you saw in Chapter 5? Sounds like a great idea; by
adding a single function to the cAnimationCollection class, you can be on your way to blending
animations like the pros.

In fact, rather than messing with the code from cAnimationCollection, just derive a new class that
handles blended animations. This new derived class, cBlendedAnimationCollection, is defined as
follows:

class cBlendedAnimationCollection : public cAnimationCollection

 Enhancing Skeletal Animation Objects

127

{
 public:
 void Blend(char *AnimationSetName,
 DWORD Time, BOOL Loop,
 float Blend = 1.0f);
};

Wow, that's a small class! The one and only function declared in cBlendedAnimationCollection is
Blend, which is meant to take over the cAnimationCollection::Update function. Why not just
derive a new Update function, you ask? Well, with cBlendedAnimationCollection, you can use the
regular animation sets you used in Chapter 5, as well as your (soon to be) newly developed blended animation
sets.

Take a close look at the Blend function to see what's going on, and then I'll show you how to put your new
class to good use.

void cBlendedAnimationCollection::Blend(\
 char *AnimationSetName, \
 DWORD Time, BOOL Loop, \
 float Blend)
{

The Blend function prototype takes four parameters, the first of which is AnimationSetName. When
calling Blend, you need to set AnimationSetName to the name of the animation set you are going to
blend into the animation. Remember from Chapter 5 that each animation set in your source .X file has a
unique animation name (as defined by the AnimationSet data object's instance name). You must set
AnimationSetName to a matching name from the .X file.

I'll get back to the animation sets in a bit. For now, I want to get back to the Blend prototype. The second
parameter of Blend is Time, which represents the time in the animation that you are using to blend the
animation. If you have an animation that is 1000 milliseconds in length, then Time can be any value from 0
to 999. Specifying a value larger than the animation's length forces the Blend function to use the last key
frame in the list to blend the animation.

What about looping the animation? Well, that's the purpose of the third parameter, Loop. If you set Loop to
FALSE, then your animations will refuse to update if you try to update using a time value that is greater than
the length of the animation. However, if you set Loop to TRUE, the Blend function bounds−checks the time
value (Time) to always fall within the range of the animation's time.

The previous paragraph may not make perfect sense at first, so to help you understand, imagine the following
function:

void UpdateAnimation(DWORD Elapsed)
{
 static DWORD AnimationTime = 0; // Animation time

 // Call Blend, using AnimationTime as the time in the animation
 AnimationBlend.Blend("Walk", AnimationTime, FALSE, 1.0f);

 // Update the time of the animation
 AnimationTime += ELapsed;
}

In the UpdateAnimation function, you are tracking the animation time via a static variable. Every time

 Enhancing Skeletal Animation Objects

128

UpdateAnimation is called, the Blend function is used to blend in an animation called Walk, using a
time value specified as AnimationTime. Assuming the Walk animation is 1000 milliseconds in length and
the elapsed time between calls to UpdateAnimation is 50 ms, you can see tell that the animation would
reach its end after 20 calls to the function. This means after you call UpdateAnimation 20 times, the
animation will stop (because you set Loop to FALSE).

Going back and changing the Loop value to TRUE forces Blend to bounds−check the timing value and
make sure it always uses a valid timing value. When I say bounds−check, I mean to use a modulus
calculation. I'll show you how to use the modulus calculation in a moment; for now I want to get back to the
fourth and final parameter.

The last parameter is Blend, which is a floating−point value that represents a scalar value used to modify the
blended transformation matrix before it is applied to the skeletal structure. For example, if you are blending a
walking animation, but you only want 50 percent of the transformation to be applied, then you would set
Blend to 0.5.

Okay, that's enough for the parameters; let's get into the function code! If you've perused the
cAnimationCollection::Update function, you'll notice that the majority of code in the Blend
function is the same. Starting off, you'll find a bit of code that scans the linked list of animation sets to find the
one that matches the name you provided as AnimationSetName.

cAnimationSet *AnimSet = m_AnimationSets;

// Look for matching animation set name if used
if(AnimationSetName) {

 // Find matching animation set name
 while(AnimSet != NULL) {

 // Break when match found
 if(!stricmp(AnimSet−>m_Name, AnimationSetName))
 break;

 // Go to next animation set object
 AnimSet = AnimSet−>m_Next;
 }
 }

 // Return no set found
 if(AnimSet == NULL)
 return;

If you set AnimationSetName to NULL, then Blend will use the first animation set in the linked list of
animation sets. If you specified a name in AnimationSetName and none was found in the linked list, then
Blend will return without any further ado.

Now that you have a pointer to the appropriate animation set object, you can bounds−check the time
according to the value set in Time and the looping flag Loop.

 // Bounds time to animation length
 if(Time > AnimSet−>m_Length)
 Time = (Loop==TRUE)?Time % \
 (AnimSet−>m_Length+1):AnimSet−>m_Length;

 Enhancing Skeletal Animation Objects

129

Quite an ingenious little bit of code, the previous tidbit does one of two things, depending on the Loop flag. If
Loop is set to FALSE, then Time is checked against the length of the animation
(AnimSet−>m_Length). If Time is greater than the length of the animation, then Time is set to the
length of the animation, thus locking it at the last millisecond (and later on, the last key frame) of the
animation. If you set Loop to TRUE, then a modulus calculation forces Time to always lie within the range
of the animation's length (from 0 to AnimSet−>m_Length).

After you have calculated the appropriate Time to use for the animation, it is time to scan the list of bones in
your skeletal structure. For each bone, you are going to track the combined transformations from the
appropriate key frames. For each key frame found in the animation, you need to add (not multiply) the
transformation to the skeletal structure's transformations.

 // Go through each animation
 cAnimation *Anim = AnimSet−>m_Animations;
 while(Anim) {

 //Only process if it's attached to a bone
 if(Anim−>m_Bone) {

 // Reset transformation
 D3DXMATRIX matAnimation;
 D3DXMatrixIdentity(&matAnimation);

 // Apply various matrices to transformation

From here, scan each key frame (depending on the type of keys used) and calculate the transformation to
apply to your skeletal structure. For the sake of space, I'm only going to list the code that scans matrix keys.

 // Matrix
 if(Anim−>m_NumMatrixKeys && Anim−>m_MatrixKeys) {
 // Loop for matching matrix key
 DWORD Key1 = 0, Key2 = 0;
 for(DWORD i=0;i<Anim−>m_NumMatrixKeys;i++) {
 if(Time >= Anim−>m_MatrixKeys[i].m_Time)
 Key1 = i;
 }

 // Get 2nd key number
 Key2 = (Key1>=(Anim−>m_NumMatrixKeys−1))?Key1:Key1+1;

 // Get difference in keys' times
 DWORD TimeDiff = Anim−>m_MatrixKeys[Key2].m_Time−
 Anim−>m_MatrixKeys[Key1].m_Time;
 if(!TimeDiff)
 TimeDiff = 1;

 // Calculate a scalar value to use
 float Scalar = (float)(Time − \
 Anim−>m_MatrixKeys[Key1].m_Time) / (float)TimeDiff;

 // Calculate interpolated matrix
 D3DXMATRIX matDiff;
 matDiff = Anim−>m_MatrixKeys[Key2].m_matKey − \
 Anim−>m_MatrixKeys[Key1].m_matKey;

 matDiff *= Scalar;
 matDiff += Anim−>m_MatrixKeys[Key1].m_matKey;

 Enhancing Skeletal Animation Objects

130

 // Combine with transformation
 matAnimation *= matDiff;
 }

I discussed the code just shown in Chapter 5, so I won't explain it again here. Basically, the code is searching
the key frames and calculating an appropriate transformation to use. This transformation is stored in
matAnimation.

From this point on, things take a decidedly different course than the cAnimationCollection::Update
function code. Instead of storing the transformation matrix (matAnimation) in the skeletal structure's frame
object, you will calculate the difference in the transformation from matAnimation to the skeletal structure's
initial transformation (stored in matOriginal when the skeletal structure was loaded). This difference in
transformation values is scaled using the floating−point Blend value you provided, and the resulting
transformation is then added (not multiplied, as you do with concoction) to the skeletal structure's frame
transformation. This ensures that the transformations are properly blended at the appropriate blending values.

After that, the next bone's key frames are scanned, and the loop continues until all bones have been processed.

 // Get the difference in transformations
 D3DXMATRIX matDiff = matAnimation − Anim−>m_Bone−>matOriginal;

 // Adjust by blending amount
 matDiff *= Blend;

 // Add to transformation matrix
 Anim−>m_Bone−>TransformationMatrix += matDiff;
 }
 // Go to next animation
 Anim = Anim−>m_Next;
 }
}

Congratulations, you've just completed your Blend function'! Let's put this puppy to work! Suppose you
have a mesh and frame hierarchy already loaded, and you want to load a series of animations from an .X file.
Suppose this .X file (called Anims.x) has four animation setsStand,Walk, Wave, and Shoot. That's two
animations for the legs and two for the arms and torso. Here's a bit of code to load the animation sets:

// pFrame = root frame in frame hierarchy
cBlendedAnimationSet BlendedAnims;
BlendedAnims.Load("Anims.x");

// Map animations frame hierarchy
BlendedAnims.Map(pFrame);

Now that you have an animation collection loaded, you can begin blending the animations before updating
and rendering your skinned mesh. Suppose you want to blend the Walk and Shoot animations, both using
100 percent of the transformations. To start, you must reset your frame hierarchy's transformations to their
original states. This means you need to copy the D3DXFRAME_EX::matOriginal transformation into the
D3DXFRAME_EX::TransformationMatrix transformation. This is very important because it serves as
a base to which your animation set transformations are added during the blending operation.

Note The D3DXFRAME_EX object is an extended version of Direct3D's D3DXFRAME object. You
can read about D3DXFRAME_EX in Chapter 1.

 Enhancing Skeletal Animation Objects

131

// Use D3DXFRAME_EX::Reset to reset transformations
pFrame−>Reset();

Once the transformations have been reset to their original states, you can blend your animation sets.

// AnimationTime = time of animation, which is the
// elapsed time since start of the animation

// Blend in the walk animation
BlendedAnims.Blend("Walk", AnimationTime, TRUE, 1.0f);

// Blend in the shoot animation
BlendedAnims.Blend("Shoot", AnimationTime, TRUE, 1.0f);

Once you've blended all the animation sets you're going to use, you need to update your frame hierarchy,
which is then used to update your skinned mesh.

// Update the frame hierarchy
pFrame−>UpdateHierarchy();

After you have updated the hierarchy (the transformation matrices have been combined and the results are
stored in D3DXFRAME_EX::matCombined), you can update your skinned mesh and render away! I won't
go into more detail here; I'll leave it up to you to check out the blended animation demo on the CD−ROM to
see how the helper functions and objects developed in Chapter 1 are put to good use in your blended
animation techniques.

Check Out the Demo

Although this chapter only has one demo to tout, it sure is a whopper! Demonstrating the technique of blended
animation, the SkeletalAnimBlend demo program (see Figure 6.3) shows off Microsoft's Tiny character in all
her blended glory!

Figure 6.3: Explore your newfound blended skeletal animation techniques by choosing which animations to
blend in real time.
I edited the Tiny.x file to split her animation up into multiple sets. There are animation sets for each of her
arms and legs, as well as an animation set for her body. Pressing any of the keys displayed on the screen
toggles the blending of the appropriate animation set. For instance, hitting 1 toggles the blending of her left

 Check Out the Demo

132

arm animation sequence. When enabled, the left arm animation has Tiny swinging her arm in sequence with
her step. When disabled, her left arm hangs limp.

To really illustrate the power of blending, suppose you add a new animation set to the Tiny.x file that has
Tiny waving her arm as opposed to swinging it back and forth. You only need to turn off blending of the
swinging animation and blend in the waving animation to create a new and totally unique animation!

Programs on the CD

In the Chapter 6 directory of this book's CD−ROM, you'll find a single project that demonstrates the use of
skeletal animation blending. This project is

SkinAnimBlend. This project demonstrates how to blend multiple animations to create a new unique
animation. It is located at \BookCode\Chap06\SkeletalAnimBlend.

♦

 Check Out the Demo

133

Chapter 7: Implementing Rag Doll Animation

Overview

Hiding atop a ledge on the east side of the compound, I lie waiting to catch sight of my unwary foe. My
trigger finger twitches anxiously, awaiting its only course of action. I can see it now−at any moment my
enemy will step out from a door below and I'll strike. My bazooka shell will blast him and send his virtual
body flying through the air, bouncing off the stone walls of the compound's barracks. My plan is perfect.
Little do I know that my opponent is just as sneaky as I am. I hear his sinister laugh, and I look over just in
time to see his grenade plunk down right beside me. I guess I'll be the one whose imaginary body bounces off
the walls tonight. What the heck, there's always the next game!

A typical moment from a typical first person shooter game; there's nothing special about this story except for
the part about the characters bouncing around as a result of the impact from the game's various weapons.
Effects such as these unique death sequences are possible through the use of a technique known as rag doll
animation, in which you turn your characters into flimsy pieces of digital stitch work. As your characters are
flung back, they embark on a short, yet completely unique, series of motions−bouncing off obstacles with
limbs flailing, as if you took an actual rag doll and flung it across a room!

Games such as Epic Games'Unreal Tournament 2003 use rag doll animation for all characters' death
sequences, and believe me, if you haven't seen this effect, you are definitely missing out. If you want to use
rag doll animation in your own game, you're in luck−it's all here in this chapter!

Creating Dolls from Characters

Rag doll animation is the new fad in advanced animation. Just as the name implies, it is akin to picking up an
object (a character in your game, for example) and flinging it around, with its appendages flailing as if it were
a limp rag doll. Imagine taking a life−sized stuffed doll and throwing it up in the air. Its arms and legs would
twist around, and if the body hit a hard object, it would react and bounce in even more disturbing ways.

This is where rag doll animation gets its appeal−by creating totally unique animations every time you run
through the simulation. You can apply factors such as collisions, gravity, wind, and any other force to your
bouncy, flailing characters, thus changing the way they are flung about.

Games such as Unreal Tournament 2003 demonstrate what a great technique such as rag doll animation can
do for a game. Nothing is cooler than blasting your opponent's character with a rocket launcher and having the
body flung around like a pile of limp noodles. That's one animation technique you'll certainly want for your
own game, and if you keep reading, you'll definitely learn about it.

The whole concept of rag doll animation is pretty simple. Take a single character from your game as an
example to see what's going on. This character (imagine he looks like the character in Figure 7.1) is
constructed from a skinned mesh and a series of bones that form a skeletal structure. No problem here−you
learned all about skinned meshes and skeletal structures in Chapter 4.

134

Figure 7.1: You can split a sample character, complete with a skeletal structure and skinned mesh, into a
series of individual components.
Imagine surrounding each bone (and each vertex belonging to each bone) in Figure 7.1 with a box−a
bounding box, to be exact. (Even though it seems odd to work with boxes instead of the actual skeletal
structure or mesh, it will begin to make sense as you go along.) You see, it's these boxes that you really care
about; they represent the parts of the character's body that can twist, turn, and flop around in your rag doll
animation.

Figure 7.2 shows you what the sample character would look like if he were represented using only the
bounding boxes.

Figure 7.2: The sample character's bones and vertices have been replaced by bounding boxes, with each box
encompassing the area occupied by the bones and vertices.

 Chapter 7: Implementing Rag Doll Animation

135

It's your job to process and track the motion of these boxes (rather than the bones and vertices) as they move
during the animation. You are free to move and rotate each box as you see fit. Since the boxes represent your
character's bones, each bone in the skeletal structure moves as each box does (even if that motion causes the
bones to drift apart, breaking the bone−to−bone connections, which I'll talk about in a moment).

How do your bones move to match the motion of the boxes? They inherit the same transformations as the
bounding boxes that move around your 3D world. So basically, whenever a box moves, the bone moves to
match. (It's almost as if the bones don't exist, since you only work with the boxes during simulation.)

It should be slowly starting to make sense why I picked boxes to represent the bones and their vertices. You
can represent each bone and its vertices by just eight points (the corners of the bounding box), rather than by
an unknown (and most likely high) number of vertices in the mesh. Also, the math involved in tracking the
motion of the boxes is much simpler than the math for tracking the motion of each bone and vertex.

Now assume you have taken the pains to construct this collection of boxes that represent your bones and
vertices. As you can see in Figure 7.3, each box completely encloses its respective bone's vertices and
bone−to−bone connection points. These boxes are transformed to match their respective bones' positions and
orientations.

Figure 7.3: Each bounding box surrounds a bone's vertices and bone−to−bone connection points.
After these boxes are created and positioned around the 3D mesh, you can start moving them. Suppose you
want your character's arms to flail wildly. Add a little force to a couple of the boxes, and they will begin to
move. As the boxes move, so do the bones that each box represents.

These boxes are truly separate entities at this point; they don't share the bone−to−bone connections that exist
in your skeletal structure (the same connections that hold your skeletal structure together in a recognizable

 Chapter 7: Implementing Rag Doll Animation

136

form). In a way, this is perfect because you can manipulate directly the character's skeletal structure using the
boxes' transformations in place of the bones' combined transformations. This means you don't have to
combine each bone's local transformation with its parent's transformation to orient all bones correctly−just
copy the box's transformations and you're all set!

The only problem is these boxes can drift away from one another, literally tearing your characters apart. There
must be some way to enforce the bone−to−bone connections using your bounding boxes, thus holding your
characters together at the joints (and saving you from a macabre scene of limbs flying in different directions).

In fact, there are a number of ways to make sure your bounding boxes remain connected at the exact points
where their respective bones join one another. The method I'll show you in this chapter uses springs to pull the
bounding boxes back together every time one of them moves. In Figure 7.4, you can see a couple
out−of−control bounding boxes that are flying about the scene and tearing the poor character apart. Between
each box, you can see some springs that are used to bring those limbs back together.

Figure 7.4: A series of springs helps you bring the separated boxes back into shape.
After you move the boxes and use the springs to restore the connection points, it's up to you to copy the boxes'
orientations into the bone hierarchy, update your skinned mesh, and render away. See how easy it is!

It's easy in theory, of course−it's the implementation that's tough. Everything you just read is in fact a huge
physics problem−how do you track the orientation, movement, and collisions of those boxes? By using
rigid−body physics, that's how!

Working with Rigid−Body Physics

As you just read, your characters' bodies can be split into boxes that represent the various bones that make up
their skeletal structures. You want to be able to track the orientations of these boxes as you move them around
during the animation, and you also want to able to copy those orientations back to their original bones.

Okay, okay, so what does this have to do with so−called rigid−body physics? Well, the rigid−body part means
that your meshes are considered solid objects−the boxes that represent the bones never change shape and
never penetrate the area of another object. Therefore, the bounding boxes that represent your bones are rigid
bodies.

The study of rigid−body physics (also commonly referred to as rigid−body dynamics) tracks the motion of
those solid objects, including the effects of forces such as gravity and friction on them. Collision also plays a
huge part because those solid objects that represent your characters' bodies need to bounce off one another as
well as the surrounding terrain.

 Working with Rigid−Body Physics

137

Before you go trudging off to your bookcase to grab your high−school physics textbook, let me tell you now
that using rigid−body physics isn't really as hard as it seems. Sure, there are a lot of formulas and calculations
that would give even your math teacher nightmares, but once they are broken down, you'll wonder why you
ever worried.

In fact, I'll take all this rigid−body physics stuff step by step so it will make sense to you, starting with the
creation of a rigid−body object.

Creating a Rigid Body

Rigid−body physics is the system of tracking the motion and collision of solid objects. To keep things as
simple as possible at this point, you can think of those solid objects as three−dimensional bounding boxes that
enclose each of your skeletal structure's bones. Thinking in 3D terms, you might think of the boxes as being
composed of eight points (one in each corner).

The points are analogous to vertices, the box analogous to a mesh. Using a simple transformation (rotation
and translation), you can position the box and its eight corner points anywhere in your 3D world. The box and
its corner points each have their own role in this rigid−body system. The box itself represents the points as a
whole−what affects the box affects the points. So if you move the box, the points move with it−you don't have
to worry about the exact positions of the points inside the box.

As for the points, they not only help determine a bounding box's size, they also help with collision detection.
You see, if one of those points is penetrating another object's space, then you can say those objects are
colliding, and you need to handle it. This makes it much easier to perform collision detection; instead of
checking every vertex in your mesh to see whether it hits an object, you check whether a point from the
bounding box does. I'll get back to collision detection in a bit; for now, I want to get back to defining a rigid
body.

As I mentioned, each bounding box is composed of eight points. To determine the location of these eight
points, you need to completely surround each bone (and its vertices and bone−to−bone connection points) in
your skeletal structure with a box. I'll do that later in this chapter, once we start using rigid−body physics in
the animations; for now, just assume you have a box specified by a width, depth, and height of your choice.

As Figure 7.5 shows, the center of this box is considered its origin. The dimensions of the box range from
−width/2, −height/2, −depth/2 to +width/2, +height/2, +depth/2. Using these values (the dimensions), you can
calculate the coordinates of your bounding box.

 Creating a Rigid Body

138

Figure 7.5: A box (which represents a rigid body) is defined by positioning eight points around its origin. The
positions of these points are determined by halving the body's width, height, and depth.
To store these eight points, you can use two sets of eight D3DXVECTOR3 objects. The first eight objects will
store the coordinates of the box in local space, much like your vertex buffers do for your meshes.

D3DXVECTOR3 vecLocalPoints[8];

The second set of eight points will store the coordinates of the points as they move around in the world space.

D3DXVECTOR3 vecWorldPoints[8];

You can think of the second set of coordinates as the transformed coordinates, whereas the first set is the
untransformed coordinates. Whenever you move a rigid body, you take the coordinates from the first set of
points, transform them, and store the resulting coordinates in the second set of points. Again, this is just like
you would normally do when you're working with the vertices of a mesh.

At this point, you only need to store the eight coordinates of the rigid body's corners in the
vecLocalPoints array of vector objects (using the body's dimensions, width, depth, and height).

// Width, Height, Depth = 3 float's with body's dimensions
// Note that all dimensions are specified in Meters

// Store the body's dimensions in a vector
D3DXVECTOR3 vecSize = D3DXVECTOR3(Width, Height, Depth);

// Store the dimensions halved in a vector object
D3DXVECTOR3 vecHalf = vecSize * 0.5f;

// Store the coordinates of the corners
vecLocalPoints[0]=D3DXVECTOR3(−vecHalf.x, vecHalf.y,−vecHalf.z);
vecLocalPoints[1]=D3DXVECTOR3(−vecHalf.x, vecHalf.y, vecHalf.z);
vecLocalPoints[2]=D3DXVECTOR3(vecHalf.x, vecHalf.y, vecHalf.z);
vecLocalPoints[3]=D3DXVECTOR3(vecHalf.x, vecHalf.y,−vecHalf.z);
vecLocalPoints[4]=D3DXVECTOR3(−vecHalf.x,−vecHalf.y,−vecHalf.z);
vecLocalPoints[5]=D3DXVECTOR3(−vecHalf.x,−vecHalf.y, vecHalf.z);
vecLocalPoints[6]=D3DXVECTOR3(vecHalf.x,−vecHalf.y, vecHalf.z);

 Creating a Rigid Body

139

vecLocalPoints[7]=D3DXVECTOR3(vecHalf.x,−vecHalf.y,−vecHalf.z);

Not only do a box's dimensions affect its size, they also affect its mass. Oh yes, a rigid body has mass−it's
this mass that affects its movements. Objects with greater mass require more force to move, whereas objects
with less mass take less force to move. I'll get into using mass in your calculations in a bit; for now, I want to
show you how to determine the mass of an object.

You can use any method you want to calculate a box's mass, but to keep it simple I'll use the box's
dimensions. To calculate the mass of a box, I use the product of the lengths of each dimension (stored in the
vecSize vector from the previous code bit), as in the following bit of code:

Note You'll notice from the code's comments that I'm specifying my 3D units in meters (as opposed
to using generic measurements, which you may be used to). You shouldn't have to worry
about this fact when it comes to your meshes, however, because the calculations will work out
fine without you having to worry about conversions to other measurement systems.

float Mass = vecSize.x * vecSize.y * vecSize.z;

Once you have calculated the dimensions and mass of the box, you can position and orient it within your 3D
world.

Positioning and Orienting Your Rigid Bodies

When you've created a bounding box from your rigid body, it is time to position it in your world. A body's
position is defined using a vector object that represents the 3D coordinates of the rigid body. Like a mesh,
these coordinates represent the center of the rigid body−the body's origin.

As for the rotation of the object, you can represent it using one of three things−a set of Euler angles (x, y, and
z rotational values), a rotational transformation matrix, or a quaternion. Although I know this might make a
few of you cringe, I'm choosing a quaternion to represent the body's rotation. Bottom line: Quaternions are
numerically stable and easier to work with than the other methods.

For those of you who just hated hearing that last bit, let me give you a brief breakdown of how a quaternion
works. A quaternion (or to be more exact, a unit quaternion) is a set of four component values that define a
vector and scalar. The vector components are defined as x, y, z, and w. The x, y, z trio can be described as v;
the w can be described as s. So, the two ways to define a quaternion are

 q = [s, v]
 q = [w, [x, y, z]]

In Direct3D, a quaternion is stored in a D3DXQUATERNION object, which uses the x, y, z, w convention.

typedef struct D3DXQUATERNION {
 FLOAT x;
 FLOAT y;
 FLOAT z;
 FLOAT w;
} D3DXQUATERNION;

As you can see in Figure 7.6, the x, y, z components define a directional vector. This directional vector, v,
represents a rotational axis.

 Positioning and Orienting Your Rigid Bodies

140

Figure 7.6: The vector component (v = x, y, z) of a quaternion defines the rotational axis.
The angle of rotation, specified in radians, is actually stored in the quaternion components (w, x, y, z) using
the following calculations:

 q = [w = cos(/2), xyz = sin(/2)xyz]

In English, this calculation breaks down to the w component containing the cosine of the angle of rotation (
divided by two) and the normalized x,y,z vector scaled by the sine of the angle (divided by two). In code, this
breaks down to:

q = [cos(Angle/2.0f), normalized(x,y,z)*sin(Angle/2.0f)]

To put this in other terms, suppose you want to create a quaternion that represents a rotation of 45 degrees
(0.785 radians) around the y−axis. You create a vector that points upward in the direction of the positive
y−axis, and you set the magnitude of this vector to the sine of half the angle. You then set the w component to
the cosine of half the angle.

// Instance a quaternion to use
D3DXQUATERNION quatRotation;

// Create a vector that represents the axis of rotation
D3DXVECTOR3 vecAxis = D3DXVECTOR3(0.0f, 1.0f, 0.0f);

// Normalize the vector in order to set its magnitude
D3DXVec3Normalize(&vecAxis, &vecAxis);

// Scale the vector to the sine of half the angle
vecAxis *= (float)sin(0.785 / 2.0f);

// Store the vector in the quaternion
quatRotation.x = vecAxis.x;
quatRotation.y = vecAxis.y;
quatRotation.z = vecAxis.z;

// Compute the w component using the cosine of half the angle
quatRotation.w = (float)cos(0.785f / 2.0f);

A unit quaternion, such as the one you are going to use, has the constraint (x2 + y2 + z2 + w2 = 1) placed on it,
meaning that the sum of all squared components must equal one. If the sum does not equal one, then the
quaternion is not of unit length, and henceforth it must be normalized before you can use it. With Direct3D,
normalizing a quaternion is easy using the D3DXQuaternionNormalize function. For example, to
normalize a quaternion stored as quatOrientation, you can use the following bit of code:

D3DXQuaternionNormalize(&quatOrientation, &quatOrientation);

 Positioning and Orienting Your Rigid Bodies

141

So where is all this quaternion stuff leading? Now that you've defined the axis and angle of rotation, you can
use the quaternion to transform your rigid body's points. That's right; the quaternion takes the place of your
everyday transformation matrix and Euler angles! Well, sort of.

Because Direct3D really doesn't work with quaternion transformations (yet!), you need to convert the
quaternion to a rotational transformation matrix, which Direct3D can use. You can perform this conversion
using the D3DXMatrixRotationQuaternion function, as demonstrated here. (Notice how I'm
transposing the resulting matrix because quaternions are right−handed, and I'm using left−handed
transformations in this book.)

// quatOrientation = Quaternion w/rotational values set
D3DXMATRIX matOrientation;
D3DXMatrixRotationQuaternion(&matOrientation, \
 &quatOrientation);

// Convert transformation matrix to left−handed
D3DXMatrixTranspose(&matOrientation, &matOrientation);

Why did I go to the trouble of showing you the secrets of unit quaternions if you're eventually going to work
with a rotation transformation matrix? The transformation matrix is really a secondary object that is used to
transform your rigid body's bounding−box points (among a couple other things). By secondary, I mean that
while the orientation of the body is maintained with a quaternion, the matrix does the transformation work.

So here we are, back to where we started, only now you know how quaternions work and that you'll use them
to represent the orientation of your rigid bodies. After you've calculated the quaternion you want to use to
orient your rigid body and stored the world−space coordinates in the position vector, you can transform your
rigid body's local points into 3D world−space coordinates.

// vecLocalPoints[] = array of body points in local space
// vecWorldPoints[] = array of body points in world space
// quatOrientation = quaternion containing rotation of body
// vecPosition = position of rigid body

// Create a transformation matrix from quaternion
D3DXMATRIX matOrientation;
D3DXMatrixRotationQuaternion(&matOrientation, \
 &quatOrientation);

// Go through each of the eight points and transform them
for(DWORD i=0;i<8;i++) {

 // Orient point using transformation matrix
 D3DXVec3Transform(&vecWorldPoints[i], \
 &vecLocalPoints[i], \
 &matOrientation);

 // Translate point using vector
 vecWorldPoints[i] += vecPosition;
}

Each point is now oriented properly in world space, according to the 3D position coordinates and rotation
values that you have specified. Although this is all neat and exciting, there really isn't anything going on−the
body is just sitting still. You need to start shaking that puppy up and making it move!

 Positioning and Orienting Your Rigid Bodies

142

Processing the Motion of Rigid Bodies

Motion of a rigid body takes two forms−linear movement and angular rotation. Linear movement is when your
body moves in a straight line in any direction, and angular rotation is when your rigid body rotates around its
axis. Simple, isn't it?

All motion is the result of forces applied to the rigid body. If you apply a force to the body, it can produce
linear movement and/or angular rotation as a result. Linear movement is easy to calculate; just move the body
in the direction of the force. Rotation is somewhat similar−apply a force, and the body rotates in response.
The direction and amount of rotation to apply depend on where you apply the force.

Take a closer look at each type of motion.

Moving Rigid Bodies

Linear movement is the result of an object being pushed or pulled in a single direction. As various forces are
applied, the direction can change and the speed of the object's movement can be altered. It all depends on the
forces applied to the body. To make thing easier on you, all forces that affect a rigid body are combined,
giving you only one force to work with.

Forces themselves are stored as vector objects (D3DXVECTOR3), which define the direction and the amount
of force applied (the magnitude). For our purposes, forces represent an acceleration value of sorts that you
want to apply to an object with a mass of 1. What about objects with a mass other than 1, or what about forces
that always accelerate objects at the same rate regardless of their mass? You can turn to Newton's second law
of motion to help you out here.

 F = ma

Newton's second law states that the amount of force (F) you must apply to achieve a specific acceleration (a)
depends on the mass (m) of the object. For example, suppose you want to define gravity as a force that
accelerates all objects 9.8 m/s2 in the negative y−axis, regardless of the object's mass. Using Newton's second
law, you have to multiply mass (m) by acceleration (a) to obtain force. Therefore, to define gravity using an
object's mass value stored in the variable Mass, you can use the following bit of code:

D3DXVECTOR3 vecGravity = D3DXVECTOR3(0.0f, −9.8f, 0.0f) * Mass;

What about using forces that accelerate objects without compensating for their mass? For instance, you can
declare the following implied force, which accelerates objects with a mass of 1 5.0 m/s2 in the positive x−axis:

D3DXVECTOR3 vecImplied = D3DXVECTOR3(5.0f, 0.0f, 0.0f);

If you tried to apply the implied force to an object with a mass of 2, you would only achieve an acceleration of
2.5 m/s2 in the positive x−axis. How did I come up with 2.5 m/s2? Easy−just flip the F=ma calculation:

 a = F/m

When you get around to computing the acceleration to apply to an object's velocity, you need to divide your
force vector by the mass of the object. Since force was 5.0 m/s2 and mass was 2, then a = 5/2.

To summarize: All forces you set represent the acceleration of an object with a mass of 1. If you want to make
sure the acceleration is constant regardless of the object's mass, you multiply the force vector by the object's

 Processing the Motion of Rigid Bodies

143

mass.

Moving on in the example, you now have to force the vectors (gravity and an implied force) that you want to
use to move an object.

D3DXVECTOR3 vecGravity = D3DXVECTOR3(0.0f, −9.8f, 0.0f) * Mass;
D3DXVECTOR3 vecImplied = D3DXVECTOR3(5.0f, 0.0f, 0.0f);

Before you apply the two forces to any body, combine them into one net force.

D3DXVECTOR3 vecForce = vecGravity + vecImplied;

You want to work with this combined force. Later in this chapter you'll read about the various forces and how
to calculate them. For now, just assume you've gone through the trouble to compile the forces into one vector
object.

As I mentioned earlier, applying force to any point on a body will cause it to move. You really don't need to
know where on the body this force is applied because the body will move in the direction of that force
regardless (or decelerate as a result of an opposing force).

So, using the two forces that were combined into one, you can linearly move your rigid body by directly
applying the force to the body's position vector. Suppose that a rigid body's position is stored in a vector
called vecPosition.

// Add force vector to position vector
vecPosition += vecForce;

I know that some of you are going to take notice and stop me here. What about all that acceleration stuff I
talked about earlier? Now that I mention it, what about taking time and velocity into consideration? I know I
mentioned physics in there somewhere, so it's about time I straightened things out.

An object has a linear velocity, which is the speed and direction that the object moves. Forces represent an
acceleration factor of sorts. The magnitude of the forces represents the amount of acceleration; whereas the
direction of the vector determines the direction in which the force is applied. Since objects have mass, you
must scale accordingly these forces (or rather, the net force to be applied) to create a "real" acceleration value.
That way, objects with greater mass don't accelerate as much as objects with less mass. Remember F=ma and
a=F/m?

Going back to the gravity vector, you can see that you definitely want an acceleration of 9.8 m/s2, regardless
of the object's mass. This means scaling the force by the object's mass to compensate for a=F/m, which would
have scaled the gravity force into something other than the constant acceleration of 9.8 m/s2. As for the
implied force (5.0 m/s2), it will be scaled accordingly to a=F/m, so if your object doesn't have a mass of 1, the
acceleration will be something other than 5.0 m/s2.

So, going back to the issue of applying force to a rigid body, you divide the net force by the mass and add the
result to the linear velocity of a rigid body. Wait a second−I forgot to mention time! Not only do you scale the
force by the mass, you must also multiply the resulting vector (which now represents acceleration) by the
amount of time the acceleration was applied. You then apply this time−based linear velocity to the body to
make it move (or slow down, depending on the direction the forces are applied).

Store velocity in a vector called vecVelocity and mass in floating−point variable Mass. The acceleration
doesn't require a variable because you're working it directly into the velocity in conjunction with the mass.

 Processing the Motion of Rigid Bodies

144

Also, you need to factor in time again (also stored as a floating−point variable, Time), which states how
much velocity has built up over a period of time (measured in seconds) and how much velocity has been
applied to the position of the body.

// vecVelocity = D3DXVECTOR3 object
// Mass = float variable
// vecForce = D3DXVECTOR3 object w/force to apply

// Scale force (which represents acceleration) by mass
// and add directly to velocity
vecVelocity += Time * (vecForce / Mass);

// Add velocity to position
vecPosition += Time * vecVelocity;

To recap what I've said so far: Combine all forces that you want to apply to a body into one net force vector.
Scale this force vector by an object's mass, multiply it by the amount of time passed, and add the resulting
vector to the object's velocity vector. Multiply the velocity by the same amount of time passed, and add the
result to your position vector. Voila−linear movement!

Now it's time to graduate to the field of rotational motion.

Rotating Rigid Bodies

Much like linear movements, rotational motion uses velocity, acceleration, and momentum to determine the
direction and speed your rigid body rotates. Unlike linear movement, which uses linear forces to determine the
direction of movement, rotational forces use what's called angular torque (or just torque, for short) to
determine how an object rotates according to the force applied. Torque, also defined as a vector, directly
affects the angular velocity, which in turn affects the angular momentum.

The mass of an object affects how much of the velocity is applied to actually move the body, and it is also
taken into consideration when you are rotating an object. This introduces the topic of inertia. Inertia
determines the amount of force applied to rotate an object about its axes to the point at which the force is
applied.

That's right; the same force that caused linear movement also causes angular rotation. The only difference
here is the points where the various forces are applied to the body matter. As you are adding the various forces
affecting your rigid body, you need to keep track of where those forces are applied and how they change your
body's axis of rotation.

For example, push on one corner of the body and it spins in one direction; push another corner and the body
spins in another direction. How do you know in which direction and how fast the body is spinning?
Remember earlier in this chapter I talked about using quaternions for rotation? Well, guess what−you'll use
quaternions to track the direction and angle of the objects! It will blow your mind when you see how handy a
quaternion is here.

Assume you want to apply a force to your rigid body−a linear force that creates a torque. This torque is a
directional vector as well, which, instead of pointing in the direction of movement, actually points in the
direction of the angular axis (much like quaternions use angular axis vectors to orient objects). As you begin
adding various forces, the torque vector might change direction, thus changing the axis as well. It works out
great because the total amount of torque (the net torque) affecting the body is just a combination of all torque
affecting the body, just like with linear forces.

Processing the Motion of Rigid Bodies

145

So the question is, how do you convert force to torque? Take a look at Figure 7.7, which shows a simple rigid
body. The arrow designates the linear force being applied to a point on the rigid body.

Figure 7.7: The force being applied affects not only linear movement, but also angular motion.
Of course the rigid body shown in Figure 7.7 is going to move in the same direction as the force vector being
applied, but what about the rotation? It's definitely going to rotate because the force is hitting an off−center
point on the body.

To calculate the torque vector, calculate a cross product between the linear force vector and a vector between
the body's center and point where the force is being applied. This cross product just so happens to point in the
direction of the rotation axis, just like your quaternions! Check out Figure 7.8 to see what I mean. Using the
same rigid body as in Figure 7.7, I'm creating a cross product that defines the axis of rotation around which
the object will spin.

Figure 7.8: The force vector and the vector from the center to the point of application are used to compute a
cross product that designates your axis of rotation.
Now that you know the axis of rotation, how do you know how much force to apply to make the body spin?
Much like the mass of your object determined the amount of force applied to actually move the object, the
body's inertia determines the amount of torque applied to make it rotate.

The inertia is actually split into three components, one for each axis of rotation (x, y, and z). These three
components are called inertia scalars, and they are used to define three more values, which are referred to as
the moments of inertia.

These moment of inertia values are analogous to your body's mass−the greater the value, the less torque
applied to the body. The lower the mass of the rigid body, the more torque applied.

The values of your inertia scalars and moments of inertia are dependent on the shape and size of your rigid
body. We've already decided to go with bounding boxes to represent your rigid bodies, which means you only

Processing the Motion of Rigid Bodies

146

need to worry about the width, depth, and height of the body. Since you're using a vector object (vecSize)
to store the size of a rigid body, you can say the x component is width, the y component is height, and the z
component is depth.

Using these three components (x, y, and z) as well as the mass of the object (Mass), you can define your
inertia scalars as follows:

// X−axis inertia scalar
float xs = vecSize.x * vecSize.x;

// Y−axis inertia scalar
float ys = vecSize.y * vecSize.y;

// Z−axis inertia scalar
float zs = vecSize.z * vecSize.z;

You then compute the moment of inertia values using the three scalars you just created. These moment of
inertia scalars represent the extents of your body along each axis, scaled by the mass of your body. For
example, the moment of inertia for the x−axis is the combination of the y and z inertia scalars, multiplied by
the mass of your body. Here's how to compute these three moment of inertia values:

// Ixx = moment of inertia for x−axis
float Ixx = Mass * (ys + zs);

// Ixx = moment of inertia for x−axis
float Iyy = Mass * (xs + zs);

// Ixx = moment of inertia for x−axis
float Izz = Mass * (xs + yz);

A collection of three moment of inertia tensors is known as a moment of inertia tensor, or an inertia tensor for
short. The inertia tensor is made up using a 3x3 matrix, which takes the following form:

Ixx 0 0
 0 Iyy 0
 0 0 Izz

While the inertia tensor is an important aspect in determining how much torque to apply, you'll actually want
to use the inverse of the inertia tensor (for reasons I'll cover in a moment). The inverse of the inertia tensor
takes the following form:

1/Ixx 0 0
 0 1/Iyy 0
 0 0 1/Izz

You know all this inertia stuff is building up to something, don't you? Of course you do! After you have
combined all the torque vectors affecting a body into one net torque vector, you add the resulting torque
vector to the angular momentum of your object (taking time into consideration as well). This angular
momentum value, just like torque, is specified in world coordinates. Unfortunately, you can't use world
coordinates−you must convert them to coordinates local to the body.

This is one of the reasons I had you create an inverse inertia tensor matrix. You see, you must specify angular
velocity in body space. (In other words, the body must rotate around its own origin, not the world's origin.) To
convert from the coordinates of the angular momentum (which are in world coordinates) to the coordinates of

Processing the Motion of Rigid Bodies

147

the angular velocity (which are in body−space coordinates) and factor in the moments of inertia, you need to
multiply the inverse inertia tensor by the orientation of your rigid body. You then multiply the resulting
matrix by the transposed orientation of your rigid body, giving you a transformation that factors the
world−and body−space conversions and the moments of inertia. With this final matrix, you can transform
your angular momentum to an angular velocity vector.

You then use this angular velocity to compute the amount of rotation to apply to the rigid body. Much like
linear velocity is scaled by a time factor to compute the total amount of velocity built up over time, angular
momentum is scaled as well. The converted−to−angular velocity vector is scaled by time and applied to the
angular rotation values of your quaternion (which represent the rotation of your body).

Okay, I've gone long enough without some code, so let me show you how to create the inverse inertia tensor
matrix you'll be using, and how to use it to get your rigid body spinning.

// vecSize = vector w/size of rigid body's bounding box
// Mass = mass of body

// Compute the inertia scalars
float xScalar = vecSize.x * vecSize.x;
float yScalar = vecSize.y * vecSize.y;
float zScalar = vecSize.z * vecSize.z;

// Instance a matrix object and compute inverse inertia tensor
D3DXMATRIX matInvInertiaTensor;
D3DXMatrixIdentity(&matInvInertiaTensor);
matInvInertiaTensor._11 = 1.0f / (Mass * (yScalar + zScalar));
matInvInertiaTensor._22 = 1.0f / (Mass * (xScalar + zScalar));
matInvInertiaTensor._33 = 1.0f / (Mass * (xScalar + yScalar));

Now suppose you have a vector with your body's 3D coordinates and a quaternion that represents your rigid
body's orientation. The first order of business is to apply a force to one of the points. How about applying a
vector force of 10, 0, 40 to point 5 of the rigid body. Something to note first: This point is specified in world
coordinates, so you'll use the position vector from the vecWorldPoints array in the following
calculations.

// vecForce = vector w/force to apply (10,0,40 in this case)
// vecMomentum = angular momentum of body
// quatOrientation = quaternion w/orientation of object
// matInvInertiaTensor = inverse inertia tensor matrix

// Get the coordinates where force is applied (point 5)
D3DXVECTOR3 vecPos = vecWorldPoints[5];

// Compute a vector from point to center of body
D3DXVECTOR3 vecPtoC = vecPos − vecPosition;

// Calculate the cross product of the force vector
// and the vecPtoC vector. This vector is the torque.
D3DXVECTOR3 vecTorque;
D3DXVec3Cross(&vecTorque, &vecPtoC, &vecForce);

// Add torque to angular momentum
vecMomentum += vecTorque;

// Create a rotational transformation matrix from quaternion
D3DXMATRIX matOrientation;
D3DXMatrixRotationQuaternion(&matOrientation, \

Processing the Motion of Rigid Bodies

148

 &quatOrientation);

// Transpose transform to make it left−handed
D3DXMatrixTranspose(&matOrientation, &matOrientation);

// Create a matrix to convert from world space to
// body space. This is used to calculate the angular velocity
D3DXMATRIX matConversion, matTransposedOrientation;
D3DXMatrixTranspose(&matTransposedOrientation, &matOrientation);
matConversion = matOrientation * \
 matInvInertiaTensor * \
 matTransposedOrientation;

You now have a transformation that converts from the angular momentum to angular velocity. You can apply
this conversion (or rather, transformation) to the momentum to obtain the velocity as follows:

// Use conversion matrix to convert momentum to velocity
D3DXVec3TransformCoord(&vecAngularVelocity, \
 &vecMomentum, &matConversion);

Getting back to working with time in the preceding equations, you need to multiply the torque applied to the
momentum by the amount of time passed.

vecMomentum += (Time * vecTorque);

Using the momentum you just computed, calculate the angular velocity using that long block of code you just
saw. With this angular velocity, you can then calculate the orientation, which is also scaled by time.

// Scale angular velocity by amount of time elapsed
D3DXVECTOR3 vecVelocity = Time * vecAngularVelocity;

// Apply velocity to orientation
quatOrientation.w −= 0.5f *
 (quatOrientation.x * vecVelocity.x +
 quatOrientation.y * vecVelocity.y +
 quatOrientation.z * vecVelocity.z);
quatOrientation.x += 0.5f *
 (quatOrientation.w * vecVelocity.x −
 quatOrientation.z * vecVelocity.y +
 quatOrientation.y * vecVelocity.z);
quatOrientation.y += 0.5f *
 (quatOrientation.z * vecVelocity.x +
 quatOrientation.w * vecVelocity.y −
 quatOrientation.x * vecVelocity.z);
quatOrientation.z += 0.5f *
 (quatOrientation.x * vecVelocity.y −
 quatOrientation.y * vecVelocity.x +
 quatOrientation.w * vecVelocity.z);

I'm computing orientation by factoring in the timed−based velocity. Remember that the velocity was
computed from the momentum, and the momentum was computed from the torque. Torque contained a
rotation axis, just like your quaternions, so the two go hand−in−hand. Basically, you're multiplying the
velocity and the quaternion, and then cutting the resulting quaternion in half, as shown here:

 q1 = ½ vt q

Processing the Motion of Rigid Bodies

149

Finally, you have managed to apply force to your rigid body, and you can calculate the angle and axis of
rotation. You now have enough information to move and rotate your rigid bodies!

Okay, I'll admit that I was a little fast and loose in this section. My reasons were justified−I didn't want to bog
you down with mounds of formulas and calculations. The field of rigid−body physics has been around a long
time, and the resources are there for you to read. I think that more people don't use rigid−body physics
because the math is so darn confusing. I want anybody to be able to understand the basics of rigid−body
dynamics without having to go and grab a math textbook. Because of this, I skipped a lot of formulas that
advanced readers might want to check out. As I mentioned, this field has been around a while now, and
several great papers and articles have been written about it. A particularly helpful series of articles are Chris
Hecker's Behind the Screen series on physics. You can check out those articles at Chris' home page, at
http://www.d6.com/users/checker.

With that confession out of my system and out of the way, now comes the fun part−creating a bunch of forces
to apply to your rigid bodies to make them move.

Using Forces to Create Motion

You should now be able to track the movement and rotation of a rigid body quite easily. It's when outside
forces start affecting the movement that things get hairy. To keep things as simple as possible, I'm going to
limit the forces affecting a rigid body to applied force, air resistance, gravity, and spring.

An applied force is one that you directly apply, such as the force from an explosion, a character pushing an
object, or any type of force that doesn't apply to the other forces mentioned. As you can imagine, gravity pulls
objects downward (or upward, if you want), whereas air resistance slows the motion of a rigid body as it
moves. Spring force is used to connect rigid bodies to one another or to specific locations in your 3D world.

As I mentioned in the last two sections, your forces are stored in vector objects. Each force defines a direction
of force to apply, as well as the amount of force to apply. This amount of force is stored as an acceleration
value (in meters per second for an object with a mass of 1). For angular rotation, this value is the amount of
radians per second. The magnitude of the force vector determines the amount of force. So for gravity, which
accelerates objects around 9.8 m/s2 in the negative y−axis (down), and taking mass into consideration, you can
create a vector as follows:

D3DXVECTOR3 vecGravity = D3DXVECTOR3(0.0f, −9.8f, 0.0) * Mass;

How about an applied force, for example one that accelerates bodies (with a mass of 1) 10 meters per second
in the positive x−axis?

D3DXVECTOR3 vecApplied = D3DXVECTOR3(10.0f, 0.0f, 0.0f);

And air resistance, how is that calculated? Air resistance isn't really a force that you directly define like the
others; rather, it's created from another force. What I mean is that air resistance is an opposing force that is
calculated by multiplying a body's velocity by a small amount (a negative amount, to be exact). To simulate
air resistance in your rigid−body system, you can create two vectors that represent damping forces. These
forces are used to slow the motion created by your linear velocity and angular momentum.

Assuming your rigid body's velocity is stored in a vector called vecVelocity and the angular momentum
is stored in a vector called vecMomentum, you can create two vectors (a force and torque) to use.

D3DXVECTOR3 vecLinearDamping = vecVelocity * LinearDamping;

 Using Forces to Create Motion

150

D3DXVECTOR3 vecAngularDamping = vecMomentum * AngularDamping;

LinearDamping and AngularDamping are floating−point variables that are negative in value. The
higher the value, the more air resistance your bodies encounter and the more they slow down. Typical values
that I use for LinearDamping and AngularDamping are 0.5 and 0.4, respectively.

Once you've computed two vectors that represent forces that oppose your linear and angular movement, you
can apply them much as you did previously. In fact, you can just add the vecLinearDamping and
vecAngularDamping vectors to your net force and torque vectors.

Hmm, you know what? I somehow managed to skip explaining spring forces. This wasn't an error; rather, I
wanted to put off spring forces until this point, so I could better explain them. Springs connect your rigid
bodies to one another, making sure the bodies that represent your character's bones stick to one another at the
appropriate spots.

Connecting Rigid Bodies with Springs

Simulating the motion of a rigid body and the forces to apply is fairly simple once you understand the basic
concepts. It's when you have multiple bodies connected to one another that things can get a little hairy. Each
change in the orientation of a rigid body can force a change in other things. If you have many rigid bodies
connected to one another, it could mean a ton of movements caused by a single motion to process.

Since I'm on the subject, these interconnected rigid bodies represent your rag doll character. You know the
tune−the hand bone's connected to the arm bone, the arm bone's connected to the. Well, you get the idea.
Each rigid body is connected to another body the same way each bone in your skeletal−based mesh is
connected to its parent bone (except for the root bone, that is).

Whereas the skeletal structure connects bones via a frame hierarchy, your rigid bodies have no such luxury;
those bodies are free, flying throughout your world during simulation. Something needs to hold them together,
and that something is springs.

As you can see in Figure 7.9, you create a spring for each point where two bones in your source skeletal
structure connect.

Figure 7.9: Springs connect a number of rigid bodies at the bone joint positions.
When your start moving your rigid bodies, you need to calculate the force that each spring exerts to maintain
the overall shape of the body structure. Springs merely create forces that move each object in the appropriate
direction. Unlike the forces you read about earlier, these springs need to bring the rigid bodies back together
immediately, as opposed to over a period of time. This is a matter of directly modifying each body's position
and angular momentum.

 Connecting Rigid Bodies with Springs

151

First things first, you need to know where these bones connect to one another. When you create each
bounding box, you also need to add a point that determines where the box joins the box that represents the
parent bone. You also add another point that represents the offset from the parent bone's center to where the
bodies are connected. Figure 7.10 illustrates these two points.

Figure 7.10: Each bone is defined by the size of its bounding box and the point where the bone connects to its
parent bone.
Remember earlier in this chapter, when you defined eight vectors to represent the corners of the rigid body?
There were two sets of eight vertices−one that defined in local coordinates and another that defined the same
points transformed into world coordinates. Now you need to add two more points to this list.

The first point is the offset from the center of the bone to the point where the bone meets its parent bone. This
point, called the joint offset point (or just the joint offset, for short), represents one end of the spring you are
going to create to rejoin your rigid bodies after moving them.

The second point is the offset from the center of the bone's parent to the point where the bone meets the parent
bone. This second point, called the parent offset point (or just the parent offset, for short), uses the
transformation of the parent bone to orientate it, as opposed to using the bone's transformation (as you learned
earlier). The second point represents the other end of the spring you are creating to rejoin the bones.

Because the second point you are adding uses the parent bone's transformation, it really doesn't need to be
stored in the set of local−space vectors; it only needs to be stored in the set of transformation vectors. So that
gives you two new sets of vectors to define.

D3DXVECTOR3 vecLocalPoints[9];
D3DXVECTOR3 vecWorldPoints[10];

You've already seen how to store the coordinates of the corner points in the vectors, so I'll cut to the chase and
show you how to store the joint offset and parent offset vector values. Point number 8 will represent the joint
offset coordinates, and point number 9 will represent the parent offset coordinates.

The joint offset vector is stored in a D3DXVECTOR3 object called vecJointOffset, whereas the parent
offset vector is stored in a D3DXVECTOR3 object called vecParentOffset. The first thing to do is store
the joint vector offset in the appropriate local space vector.

vecLocalPoints[8] = vecJointOffset;

You can now transform the nine points from local space to world space, as you did previously. From that
point forward, point 8 will contain the world−space coordinates of where the bone joins to its parent.

 Connecting Rigid Bodies with Springs

152

As for the parent offset vector, you have to place it into one of the vecWorldPoints vectors. You use the
transformation of the bone's parent to do this. If you have the orientation of the bone's parent stored as a
transformation matrix called matParentOrientation and the position of the bone's parent stored as
vecParentPosition, you can calculate the coordinates of the transformed point as follows:

D3DXVec3TransformCoord(&vecWorldPoints[9], \
 &vecParentOffset, \
 &matParentOrientation);
vecWorldPoints[9] += vecParentPosition;

Now that you've transformed the points into world−space coordinates, you can use those to create a spring,
such as the one shown in Figure 7.11.

Figure 7.11: You create a spring vector by joining the joint offset point and the parent offset point. Both
points are specified in world coordinates.

// vecPosition = position of body

// Get the position of the joint offset in world coordinates
D3DXVECTOR3 vecBonePos = vecWorldPoints[8];

// Get the vector from the point to the center of the body
// This is used to calculate the torque
D3DXVECTOR3 vecPtoC = vecPosition − vecBonePos;

// Get the position of the parent offset in world coordinates
D3DXVECTOR3 vecParentPos = vecWorldPoints[9];

// Calculate a spring vector from joint to parent offset points
D3DXVECTOR3 vecSpring = vecBonePos − vecParentPos;

The vecSpring vector now contains the difference in coordinates, which you can use to move the bone to
connect to its parent. To emulate a real person, only a child bone will move to attach to the parent bone. (As
an example, your arm would follow the movement of your chest.) So the root bone (which should present the
character's chest or center of mass) will move, and all attached bones will scramble to stay connected to it

 Connecting Rigid Bodies with Springs

153

(instead of the root bone moving to stay connected to the child bones).

Since you're only going to move the bone itself to reconnect it to its parent bone, you can add the
vecSpring vector directly to the vector containing your body's position (thus ignoring spring constants).
Also, you can calculate a cross product from the point's center to the joint offset position and the spring vector
to alter the angular momentum of the bone, thus rotating it to the proper orientation to ensure the points of
connection touch.

vecPosition += vecSpring;
D3DXVECTOR3 vecCross;
D3DXVec3Cross(&vecCross, &vecBtoC, &vecSpring);
vecAngularMoment += vecCross;

Now that the momentum has changed, you can transform it by the inverse inertia tensor of the bone and store
the result in the angular velocity vector.

D3DXVECTOR3 vec
D3DXVec3TransformCoord(&vecAngularVelocity, \
 &vecAngularMomentum, \
 &matInvWorldInertiaTensor);

With all this talk about the joint offset and parent offset vectors, I forgot to mention where you actually get
those vector values. When you get around to calculating the size of the bounding box, you need to consider
the coordinates of the bone and the parent bone in world space.

The vector from the center of the bounding box to the coordinates of the bone is the joint offset. The offset
from the parent's bone coordinates (which are transformed by the inverse of the bone's transformation) to the
bone's coordinates is the parent offset vector. You'll learn more about this a bit later. For now, you've learned
how to apply forces to your linear velocity and angular momentum, and how to force the bones to reconnect to
one another. What's next? Process collisions, that's what!

Providing Collision Detection and Response

Because your rigid bodies are considered solid objects, they never change shape or penetrate the area of
another object. Colliding with another object means the rigid body needs to react accordingly and change its
movement and rotation as a result of the collision. This means you need to come up with a way to detect when
one of your rigid bodies collides with another object, and how you'll process that collision accordingly. Take a
close look at collision detection, and then we'll move on from there.

Testing for Collisions

Remember when I mentioned that using eight points for your rigid bodies is useful for more than just saving
memory? If you haven't already guessed, those points help with collision detection as well! Because your rigid
bodies are made up of eight points, you simply need to check each of those points to see if it penetrates
another object. If one of the points does penetrate another object, you can adjust the motion of the rigid body
to deflect away from the colliding object.

Of course, there are a number of other ways to detect collisions, usually involving face−to−point,
point−to−point, and face−to−face collision checks, but I'm trying to keep things simple so your rag doll
animations will be fast, which means simple point−to−plane and point−in−sphere distance checks will suffice.

 Providing Collision Detection and Response

154

In other words, for each of the eight points in a rigid body, you perform a quick check to see whether that
point has passed through a plane (using a dot−product) or penetrated a sphere's radius (using a distance
check). Each of these two checks are trivial; for a plane, you take each point's coordinates and perform a
dot−product using the plane's normal and distance parameters.

// vecPos = D3DXVECTOR3 w/point's coordinates
// Plane = D3DXPLANE w/plane's data (normal and distance)

// Construct a vector from plane's data
D3DXVECTOR3 vecPlane = D3DXVECTOR3(Plane.a, Plane.b, Plane.c);

// Perform a dot product to get distance of point from plane
float Dist = D3DXVec3Dot(&vecPos, &vecPlane) + Plane.d;

Because the d parameter of the D3DXPLANE structure represents the distance of the plane from the origin,
you can determine the distance from the point to the plane by adding that distance to the dot−product of the
point's coordinates and the plane's normal, as I just showed you. If this distance value is equal to or less then
0, then the point is colliding with the plane.

Actually, the point is colliding with the plane if the distance is 0, and the point is penetrating the plane if the
distance is less than 0. What's the different between colliding and penetrating? Well, you can have two types
of collisions when you are working with rigid bodies−touching collisions and penetration collisions. A
touching collision is one in which an object is just touching (within a tolerance) another object. This is when
the objects would bounce off one another. A penetrating collision is one in which an object is embedded
inside another object−clearly the result of the objects not bouncing off one another in time.

You are looking for touching collisions because you need to process a rebounding motion from them. For
bodies that penetrate another object, you have two options−backtrack the motion of the body to find the exact
moment of collision (not penetration), or push the body outside the space of the object and continue as if the
point had merely collided (not penetrated).

As you can tell, backtracking time is the most accurate method. Unfortunately, once things really start
bouncing around, things can slow down to a crawl while your system tries to find the exact moment of
collision. While accuracy is something you want, it doesn't work out too well when speed is the key factor.
For that reason, I'm only going to show you how to resolve collisions by pushing the penetrating points
outside the area of the colliding object and continuing as if the point never penetrated.

Getting back to the task at hand, a simple distance check is all you need to determine whether a point is
colliding with a sphere. Not just any distance check, however, because most distance checks perform a
square−root operation. To speed things up, you can skip the square−root operation and instead work with
squared values, including the distance of the point from the center of the sphere and the sphere's radius.

Let me give you an example. The position of the point is stored in vecPos, and the sphere's coordinates are
stored in vecSphere. The radius of the sphere is stored in Radius. To check whether the point is within
the sphere's radius, you can use the following code:

// vecPos = position of point to check
// vecSphere = coordinates of sphere's center
// Radius = float w/sphere's radius

// Get a vector from point to sphere's center
D3DXVECTOR3 vecDiff = vecSphere − vecPos;

// Get the squared distance from point to sphere

 Providing Collision Detection and Response

155

float Dist = vecDiff.x * vecDiff.x +
 vecDiff.y * vecDiff.y +
 vecDiff.z * vecDiff.z;

// Check if distance <= Radius of sphere squared
if(Dist < (Radius * Radius)) {
 // Point is within sphere!
}

As the code demonstrates, you are creating a vector from the sphere's center to the point in question. The
squared distance of this vector is compared to the squared radius of the sphere. If the distance is less than or
equal to the radius, then the point is inside the sphere.

After you've determined a point is penetrating an object (a sphere or plane), you need to push it outside of the
object and then compute how the point rebounds off the object's surface. To push the point outside the plane
or sphere, you need to take the object's normal (the normal of the plane or the normalized vector from the
sphere's center to the point) and scale it according to how far the point has to be pushed out.

For a plane, the normal is stored in the a, b, and c components of the plane structure. Because these
components are already normalized, you only need to scale the vector by the dot−product value you calculated
to determine whether the point is colliding with the plane.

// Plane = plane structure to work with
// Dot = dot product of point's vector and plane normal
// vecPosition = position of point
D3DXVECTOR vecNormal = D3DXVECTOR3(Plane.a,
 Plane.b,
 Plane.c);

// Scale the normal by the dot product
vecNormal *= Dot;

// Add the scaled vector to the point's position
vecPosition += vecNormal;

To push a point outside a sphere, you need to calculate the difference between the radius of the sphere and the
distance of the point from the center of the sphere. This means you need to compute the square root of the
distance value you've already calculated when checking for penetration. In the following code, you calculate
the square root of the distance and use the sphere's radius to compute the amount to scale the vector you
created from the sphere's center to the point.

// vecDiff = vector from point to sphere
// Radius = radius of sphere
// Dist = squared distance from point to sphere's center

// Normalize the vector
D3DXVec3Normalize(&vecDiff, &vecDiff);

// Get the real distance value by calculating the
// square root of the Dist variable
Dist = (float)sqrt(Dist);
// Subtract new Dist value from Radius to get
// distance to push point outside sphere
float ToPush = Radius − Dist;

// Scale normalized vector using ToPush
vecDiff *= ToPush;

 Providing Collision Detection and Response

156

// Add the scaled vector to point's position
vecPosition += vecDiff;

So now that you know how to perform a distance check against planes and spheres, and you can use the
results of this test to tell whether an object has collided with another object (and push it outside the object if it
penetrates too far), what's left to do? Well, you have to bounce the point off the object's surface.

Reacting to Collisions

As you can tell, collision detection is a somewhat trivial task at this point−you're more interested in the
collision response. Once you've determined that a rigid body has collided with another object, you need to
figure out how that collision has affected the motion of your object.

Just like other forces (such as gravity and springs) alter the motion of your rigid bodies, so does collision
response. Like a spring force, collision response creates a force that instantaneously alters your body's
position and rotation.

That's right, Luke; you're going to ignore the force for now and instead work with impulse! Much like the
dark side of the force (I hope I'm not wasting metaphors on non−Star Wars fans), impulse is sort of the fast
lane to power. Instead of taking the long and slow road of applying force to an object and having it slowly
move in response to a collision, impulse immediately moves an object away from the point of collision.

Calculating this impulse power is just like calculating a force to apply. For collisions, the calculation involves
determining the speed at which the point is approaching the collision object's surface and using the surface's
normal, calculating how much of an impulse force is acting against the motion of the rigid body.

You've already got the normal of the surface off which the body was bouncing, and the speed the body is
traveling is a combination of the linear and angular velocities. All that's left to determine is how much of that
velocity is used to create a rebounding force. Using what's called the coefficient of restitution, you can scale
the colliding object's normal by a specific amount based on the colliding point's velocity, and then use the
resulting vector as the force to rebound a rigid body.

The coefficient of restitution is a scalar value that determines how much bounce a body has when colliding
with an object (actually, how much power is dissipated during the collision).

The lower the coefficient value used, the less a body bounces off an object. The higher the value, the more
bounce. In fact, your bodies can even gain energy when bouncing off objects if the coefficient is greater than
1. The coefficient of restitution is stored as a floating−point variable, which I'll refer to as Coefficient.

Things are going to get crazy because the formulas involved in calculating the amount of velocity applied to
bounce the point are a bit involved. As I previously mentioned, you first need to calculate the velocity of the
point using the body's linear and angular velocities. To do this, create two vectors−one that represents a vector
from the center of the body to the point of collision and one that represents the linear velocity added to the
cross product of the previous vector and the angular velocity.

// vecPosition = coordinates of rigid body
// vecPointPos = coordinates of colliding point
// vecCollisionNormal = normal of colliding object

// Get vector from center of body to point of collision
D3DXVECTOR3 vecPtoP = vecPosition − vecPointPos;

Providing Collision Detection and Response

157

// Get cross product from vecPtoP to angular velocity.
D3DXVECTOR3 vecCross;
D3DXVec3Cross(&vecCross, &vecAngularVelocity, &vecPtoP);

// Add the two vectors to get the point's velocity
D3DXVECTOR3 vecPointVelocity = vecLinearVelocity + vecCross;

You now have the velocity vector of the colliding point stored in vecPointVelocity. Using this vector,
you compute an impulse force that is applied directly to the rigid body's position and angular momentum. To
calculate the impulse force, you must first calculate an impulse numerator and denominator to scale the
colliding object's normal. To keep this following bit of code readable, I'm going to use two functions called
DotProduct and CrossProduct that work inline with the code to calculate the dot−product of two
vectors and the cross product, respectively.

// Calculate the impulse numerator
real ImpulseNumerator = DotProduct(vecPointVelocity, \
 vecCollisionNormal) * \
 −(1.0f + Coefficient);

real ImpulseDenominator = (1.0f / Mass) + \
 DotProduct(CrossProduct(matInvWorldInertiaTensor * \
 CrossProduct(vecPtoP, vecCollisionNormal), \
 vecPtoP), CollisionNormal);

As if you couldn't tell, the ImpulseNumerator and ImpulseDenominator calculations are extremely
complicated. Although I want to devote the time and space to fully explaining them, I just can't bear to do so.
Entire papers have been written on these two calculations, and I'll leave it up to these readily accessible papers
to better explain them. To check out one such paper, written by Chris Hecker for Game Developer magazine,
go to Chris's homepage at http://www.d6.com/users/checker and download his Collision Response paper.

For now, just apply these two values to your collision normal to calculate an impulse vector used to bounce
the colliding point off the object the point hit.

D3DXVECTOR3 vecImpulse = vecCollisionNormal * \
 (ImpulseNumerator/ImpulseDenominator);

You now have the vector that represents the opposing force to apply to the colliding body. You can add this
velocity vector, vecImpulse, directly to the linear velocity and angular momentum of your rigid body.

// Add forces to running total
vecLinearVelocity += vecImpulse;

// Calculate cross product to create torque vector
D3DXVECTOR3 vecCross;
D3DXVec3Cross(&vecCross, &vecPtoP, &vecImpulse);
vecAngularMomentum += vecCross;

However, there's one problem that I didn't mention. What about points that hit the same collision object at the
same time? If you process the points one at a time and adjust their positions and rotation according to the
collisions, you'll find that bodies parallel to a collision object will bounce off in unrealistic ways.

To compensate for this fact, you should process every point of the rigid body first, keeping track of all
impulse forces to apply to the linear velocity and angular momentum. After you've worked through all the
points, you can average the impulse vectors by the number of collisions detected and add the results to the
velocity and momentum.

Providing Collision Detection and Response

158

Storing Collision Object Data

With all this talk about collision objects, I failed to mention how you are going to store the various bits of
information that define these objects. Since I'm keeping it simple and working only with planes and spheres,
you can create a couple of classes that contain a single collision object and an array of objects, respectively.

The first object, which contains the information about a single collision object, is called
cCollisionObject.

class cCollisionObject {
 public:
 DWORD m_Type; // Type of object

 D3DXVECTOR3 m_vecPos; // Sphere coordinates
 float m_Radius; // Sphere radius
 D3DXPLANE m_Plane; // Plane values

 cCollisionObject *m_Next; // Next in linked list

 public:
 cCollisionObject() { m_Next = NULL; }
 ~cCollisionObject() { delete m_Next; m_Next = NULL; }
};

You will read about collision objects in much greater detail in Chapter 13, "Simulating Cloth and Soft Body
Mesh Animation." Why am I waiting that long to explain collision objects, you ask? Well, thanks to the
modern miracle of copy editing (and my ever−changing mind), I moved around some information. I won't let
that stop you from checking out how to store collision objects, however, so let's quickly go over this class.

Inside the cCollisionObject class, you can see a D3DXPLANE object that defines a plane, whereas a
vector object and a floating−point value define a sphere's position and radius. Essentially, the
cCollisionObject class can contain information about a plane or a sphere. That's the reason for the
m_Type variable, which defines the object defined in the class−either COLLISION_SPHERE if the data
defines a sphere, or COLLISION_PLANE if the data defines a plane.

The m_Next pointer points to the next collision object in the list of collision objects loaded. That's right; the
collision objects are stored using a linked list. For that reason, I included a constructor and destructor that
handle the initialization and release of the linked list pointer.

Speaking of more than one collision object, I'd like to introduce the second collision object
class−cCollision.

class cCollision {
 public:
 DWORD m_NumObjects; // # of objects
 cCollisionObject *m_Objects; // Object list

 public:
 cCollision();
 ~cCollision();

 void Free();
 void AddSphere(D3DXVECTOR3 *vecPos, float Radius);
 void AddPlane(D3DXPLANE *PlaneParam);
};

Providing Collision Detection and Response

159

The cCollision class maintains the linked list of collision objects. You can add objects using the
AddSphere and AddPlane functions, or you can clear out the linked list by calling Free. The parameters
to the AddSphere and AddPlane functions are fairly evident; you specify the center and radius of a sphere
to add, or the parameters of a plane to add to the linked list.

You can skip to Chapter 13 to check out more detailed information about collision objects, or you can check
out the source code on this book's CD−ROM (located in the Collision.cpp and Collision.h files in the Chapter
7 directory).

For now, let me demonstrate how to create a plane and a sphere object to use during your simulation.

// Instance a collision collection object
cCollision Collision;

// Add a ground plane at origin of world
Collision.AddPlane(&D3DXPLANE(0.0f, 1.0f, 0.0f, 0.0f));

// Add a sphere at 0,10,40 with a radius of 20
Collision.AddSphere(&D3DXVECTOR3(0.0f, 10.0f, 40.0f), 20.0f);

Well, my friend, I do believe you've learned everything you need to know to create your own rag doll
animation system! I'm going to hit top speed for the remainder of this chapter, showing you how to take what
you've learned up to this point and apply it to a series of classes you'll use in your rag doll animation system.
Make sure you fully understand everything you've read up to this point because things are going to move
quickly!

Creating a Rag Doll Animation System

Now that you've learned the inner secrets of rigid body physics, what is left to do? Create your own rag doll
animation system, that's what! A rag doll is nothing more than a series of linked rigid bodies that are
constructed from your character's bones. By creating a series of classes to contain these rigid bodies and a
class to control their motion, you can have your very own rag doll animation system up and running in no
time!

But I want to take this whole rag doll animation system bit by bit, starting with how to define the state of a
single rigid body.

Defining the Rigid Body State

Earlier in this chapter you learned how you can define a rigid body using a series of vectors that define the
body's position, orientation, velocity, momentum, and so on. These vectors define the current state of a rigid
body, which you can store in a structure as follows:

class cRagdollBoneState
{
 public:
 D3DXVECTOR3 m_vecPosition; // Position
 D3DXQUATERNION m_quatOrientation; // Orientation
 D3DXMATRIX m_matOrientation; // Orientation

 D3DXVECTOR3 m_vecAngularMomentum; // Angular momentum

 D3DXVECTOR3 m_vecLinearVelocity; // Linear velocity

 Creating a Rag Doll Animation System

160

 D3DXVECTOR3 m_vecAngularVelocity; // Angular velocity

 // Transformed points, including connection−to−parent
 // position and parent−to−bone offset
 D3DXVECTOR3 m_vecPoints[10];

 // Body's inverse world moment of inertia tensor matrix
 D3DXMATRIX m_matInvWorldInertiaTensor;
};

Aptly named, cRagdollBoneState stores the position, orientation (quaternion and matrix), linear
velocity, angular velocity, and momentum, as well as the inverse inertia tensor (in world coordinates) and the
transformed points. These transformed points include the offset from the rigid body to the parent body and the
offset from the parent's body to the current body.

As you process your simulation, the state of the bone is updated according to the forces applied. For the
remaining information about your bones, such as the size, mass, and so on, you can define a second class to
contain the pertinent information.

Containing Bones

The remaining bone data, such as the bone's source frame, size, mass, coefficient of restitution, force, and
torque (just to name a few things), is stored in another class. This class, cRagdollBone, is defined as
follows:

class cRagdollBone
{
 public:
 // Frame that this bone is connected to
 D3DXFRAME_EX *m_Frame;

 // Size of bounding box
 D3DXVECTOR3 m_vecSize;

 // Mass and 1/Mass (one−over−mass)
 float m_Mass;

 // Coefficient of restitution value
 // 0 = no bounce
 // 1 = 'super' bounce
 // >1 = gain power in bounce

float m_Coefficient;

 cRagdollBone *m_ParentBone; // Pointer to parent bone

 // Connection−to−parent offset and
 // parent−to−bone offset
 D3DXVECTOR3 m_vecJointOffset;
 D3DXVECTOR3 m_vecParentOffset;

 // Linear force and angular momentum
 D3DXVECTOR3 m_vecForce;
 D3DXVECTOR3 m_vecTorque;

 // Original orientation of bone
 D3DXQUATERNION m_quatOrientation;

 // Rate of resolution (0−1) to resolve slerp interpolation

 Containing Bones

161

 // This is used to make bones return to their initial
 // orientation relative to its parent.
 float m_ResolutionRate;

 // Body's inverse moment of inertia tensor matrix
 D3DXMATRIX m_matInvInertiaTensor;

 // Points (in body space) that form bounding box
 // and connection−to−parent offset position
 D3DXVECTOR3 m_vecPoints[9];

 // Bone state
 cRagdollBoneState m_State;
};

The comments for each of the class' members are pretty self−explanatory, and you've read about most of the
data in this chapter. The only things with which you might not be familiar are the quaternion value stored
here, the resolution rate, and the way the points and bone state are used.

The quaternion (m_quatOrientation) stored in cRagdollBone represents the relative difference in
rotation from the parent bone. This is useful for maintaining the overall shape of the character when it
undergoes simulation. Instead of having to painstakingly define the extent that each bone can rotate in relation
to its parent, you can force the orientation of each bone to be restored to its original orientation. I'll show you
how to do this in a bit; for now, I want to get back to the cRagdollBone class.

You can see in cRagdollBone that I've embedded a state class, which represents the state of the bone as it
undergoes simulation. There are also nine points defined, which represent the local coordinates of each corner
point, as well as the point where the bone connects to its parent.

Okay, I'm skipping a lot of details here, but I'll get back to the cRagdollBone class in a bit. For now, I
want to show you how a collection of these bone classes is maintained by a class that controls all aspects of
your rag doll animation.

Creating the Rag Doll Controller Class

The third and final class you'll use to control your rag doll animation system is a big one, so I'm going to show
it to you bit by bit. To begin, you have a pointer to the frame hierarchy used to create the rigid bodies in your
simulation. Also, you have the number of bones in your bone hierarchy and an array of cRagdollBone
class objects to contain the information about each bone.

class cRagdoll
{
 protected:
 D3DXFRAME_EX *m_pFrame; // Frame hierarchy root

 DWORD m_NumBones; // # bones
 cRagdollBone *m_Bones; // Bone list

So far this class doesn't look so intimidating, so what's the big fuss? Believe me, there's a lot more to come.
Next in line are the protected functions.

 protected:
 // Function to compute a cross product inline
 D3DXVECTOR3 CrossProduct(D3DXVECTOR3 *v1, D3DXVECTOR3 *v2);

 Creating the Rag Doll Controller Class

162

 // Function to multiply a vector by a 3x3 matrix
 // and add an optional translation vector
 D3DXVECTOR3 Transform(D3DXVECTOR3 *vecSrc,
 D3DXMATRIX *matSrc,
 D3DXVECTOR3 *vecTranslate = NULL);

 // Get a frame's bone bounding box size and joint offset
 void GetBoundingBoxSize(D3DXFRAME_EX *pFrame,
 D3DXMESHCONTAINER_EX *pMesh,
 D3DXVECTOR3 *vecSize,
 D3DXVECTOR3 *vecJointOffset);

 // Build a bone and set its data
 void BuildBoneData(DWORD *BoneNum,
 D3DXFRAME_EX *Frame,
 D3DXMESHCONTAINER_EX *pMesh,
 cRagdollBone *ParentBone = NULL);

 // Set gravity, damping, and joint forces
 void SetForces(DWORD BoneNum,
 D3DXVECTOR3 *vecGravity,
 float LinearDamping,
 float AngularDamping);

 // Integrate bone motion for a time slice
 void Integrate(DWORD BoneNum, float Elapsed);

 // Process collisions
 DWORD ProcessCollisions(DWORD BoneNum,
 cCollision *pCollision,
 D3DXMATRIX *matCollision);

 // Process bone connections
 void ProcessConnections(DWORD BoneNum);

 // Transform the state's points
 void TransformPoints(DWORD BoneNum);

Things are really starting to stack up, with nine protected functions to sift through. To start, there are two
functions (CrossProduct and Transform) that you use to compute a cross product and transform a
vector using a transformation matrix and an optional translation vector. Why not just use the D3DX functions,
you ask? Well, the CrossProduct and Transform functions use D3DX to work their magic, but I wanted
to be able to calculate the cross product and transform vectors inline with other code, as the following bit of
code demonstrates:

D3DXVECTOR3 vecResult = Transform(&CrossProduct(&vec1, \
 &vec2), \
 &matTransform);

You use the third protected function, GetBoundingBoxSize, to calculate the bounding−box size for a
bone. This bounding box encases all vertices attached to the bone, as well as the points where a bone connects
to its parent and child bones (if any). The next function is SetForces, which you call to set up the initial
forces for a bone−gravity and linear and angular damping.

Next in the list of functions is Integrate, which processes the force and torque applied to the bone,
updates the velocities and momentum, and moves the rigid body's points into their new positions based on the
body's motion. Then you have ProcessCollisions (which handles your collision detection and

 Creating the Rag Doll Controller Class

163

response), ProcessConnections (which ensures all bones are connected to one another at the joints), and
TransformPoints (which transforms your local points into world−space coordinates using the orientation
and position of the bone, as stored in the bone's state class object m_State).

You will find the full source code to the cRagdoll class, as well as the other classes defined here, in the
Ragdoll.cpp and Ragdoll.h files on this book's CD−ROM. The functions shown so far duplicate everything
you've read in this chapter, so there's no need to explain the code here. Well, except for the
GetBoundingBoxSize and Integrate functions. I'll get back to those functions in a bit; for now, I
want to keep things rolling by showing you the rest of the functions in the cRagdoll class.

 public:
 cRagdoll();
 ~cRagdoll();

 // Create ragdoll from supplied frame hierarchy pointer
 BOOL Create(D3DXFRAME_EX *Frame,
 D3DXMESHCONTAINER_EX *Mesh,
 D3DXMATRIX *matInitialTransformation = NULL);

 // Free ragdoll data
 void Free();

 // Resolve the ragdoll using gravity and damping
 void Resolve(float Elapsed,
 float LinearDamping = −0.04f,
 float AngularDamping = −0.01f,
 D3DXVECTOR3 *vecGravity = &D3DXVECTOR3(0.0f, −9.8f, 0.0f),
 cCollision *pCollision = NULL,
 D3DXMATRIX *matCollision = NULL);
 // Rebuild the frame hierarchy
 void RebuildHierarchy();

 // Functions to get the number of bones and
 // retrieve a pointer to a specific bone
 DWORD GetNumBones();
 cRagdollBone *GetBone(DWORD BoneNum);
};

Aside from the class's constructor and destructor functions, which are used to clear out and release the class's
data, there are six functions for you to tackle. You use the first function, Create, to set up the rag doll class's
data. This entails iterating through each bone in the frame hierarchy provided and creating a rigid body bone
object (a cRagdollBone object) for each. These bones are then transformed to match the position and
orientation of each frame. Once you have created them, you can free the rag doll data by calling Free.

In between your calls to Create and Free, the function you'll deal with most is Resolve. The Resolve
function takes the number of seconds to process, the amount of linear and angular damping to apply, the
gravity vector to use, and a pointer to an array of collision objects used to check for collisions.

After you've resolved a portion of your simulation using the Resolve function, you call
RebuildHierarchy to update your frame hierarchy. After you update your frame hierarchy, you can
update your skinned mesh and render away!

The last two functions tell you how many bones are contained in the rigid body and allow you to grab a
pointer to a specific bone. These two functions are handy if you want to directly access a bone to obtain its
position or velocity.

 Creating the Rag Doll Controller Class

164

Now that you've seen the three classes you're going to be working with, take a closer look at the functions you
haven't read about in this chapter, starting with the function that builds the data pertinent to each bone in your
mesh's frame hierarchy.

Building Bone Data

I don't want to beat a dead horse, so I'm only going to touch on those bits of bone data I haven't already
discussed. Aside from a bone's position and orientation, the rate of rotation resolution determines how hard
your mesh tries to maintain its initial shape over time. The lower the rate of resolution, the more your body
can contort. The higher the resolution, the more resistant your mesh becomes to contortion.

I'll talk about this resolution rate in a bit; for now, I want to talk about other things, such as calculating the
initial orientation of each bone, the size of each bone's bounding box, a bone's local points that form the
corners of the rigid body's bounding box, the coefficient of restitution, and parent offset vectors.

You've already read about most of these variables, but I haven't mentioned anything about calculating the
bounding−box size or the initial orientation of each bone. I'll start with how to calculate the beginning
orientation.

Remember way back in the "Positioning and Orienting Your Rigid Bodies" section, when I told you that you
can use a quaternion to represent your rigid body's orientation? If you are using a frame hierarchy as the
source for building your rag doll's bones, you have to convert from a transformation matrix to a quaternion
transformation. How the heck do you do that?

Here comes D3DX to the rescue! Using the frame's combined transformation matrix, you can call the
D3DXQuaternionRotationMatrix function, which conveniently converts a transformation matrix to a
quaternion transformation! For example, suppose you have a frame pointed to by the D3DXFRAME_EX
pointer pFrame. To create the quaternion, use the following code bit:

// pFrame = pointer to frame
// quatOrientation = resulting quaternion
D3DXQuaternionRotationMatrix(&quatOrientation, \
 &m_Frame−>matCombined);
D3DXQuaternionInverse(&quatOrientation, &quatOrientation);

You'll notice that while converting the transformation matrix to a quaternion, I added a call to
D3DXQuaternionInverse, which inverses the quaternion values. The reason why is that quaternions are
defined using a right−handed system. Since we're using a left−handed system with Direct3D, this quaternion
needs to be appropriately converted (inversed).

Now that you have an initial orientation to work with, you can compute the size of your bone's bounding box;
create a bunch of points to represent the corners of the bounding box and connection points (the points that
connect the bone to its parent); set the mass and coefficient of restitution; and create the inverse inertia tensor.
The source code I'm talking about is located in the cRagdoll::Create function. Please consult the
heavily commented source code to see how to set the appropriate data during creation of the rag doll's bones.

For now, let me explain how to calculate the size of your bounding boxes.

 Building Bone Data

165

Computing the Bone Bounding Box

When creating the rigid body bone class object that represents each bone, the first thing you need to do is grab
the bone's inverse transformation matrix using the skinned mesh's
ID3DXSkinInfo::GetBoneOffsetMatrix function. This inverse bone transformation matrix takes
your skinned mesh's vertices and orients them around the mesh's origin (as opposed to the frame's origin).

Remember back in Chapter 4, when I explained how the vertices in your skinned mesh must be located about
the mesh's origin to be properly rotated around the bone's origin? The whole process of transforming vertices
consisted of applying the inverse transformation followed by the bone's rotation and translation
transformations combined with the frame's parent transformation.

Once you have a bone's inverse transformation matrix, you can iterate through each vertex that is attached to
the bone. What you're going to do is transform those vertices using the bone's inverse transformation. Using
the coordinates of these newly transformed vertices, you can compute the extents of your bounding box
(which will eventually enclose each vertex and bone−to−bone connection point).

The cRagdoll::GetBoundBoxSize function calculates this bounding box. The function takes a pointer
to a frame structure (which represents the bone), as well as two vectors that will contain the size of the
bounding box and the offset from the bounding box's center to the point where the bone connects to the parent
bone.

void cRagdoll::GetBoundingBoxSize(D3DXFRAME_EX *pFrame,
 D3DXVECTOR3 *vecSize,
 D3DXVECTOR3 *vecJointOffset)
{

I'll explain the size and offset vectors in a bit. For now, start your GetBoundingBoxSize function by
creating and clearing out a couple of vectors that contain the coordinates of your bounding box's extents and
will eventually be used to create the eight corner points of your rigid body.

 // Set default min and max coordinates
 D3DXVECTOR3 vecMin = D3DXVECTOR3(0.0f, 0.0f, 0.0f);
 D3DXVECTOR3 vecMax = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

The first order of business in GetBoundingBoxSize is to find the bone that matches the frame's name.
This bone, or rather the skinned mesh bone interface object (ID3DXSkinInfo), queries which vertices are
connected to the bone.

 // Only process bone vertices if there is a bone to work with
 if(pFrame−>Name) {

 // Get a pointer to ID3DXSkinInfo interface for
 // easier handling.
 ID3DXSkinInfo *pSkin = pMesh−>pSkinInfo;

 // Search for a bone by same name as frame
 DWORD BoneNum = −1;
 for(DWORD i=0;i<pSkin−>GetNumBones();i++) {
 if(!strcmp(pSkin−>GetBoneName(i), pFrame−>Name)) {
 BoneNum = i;
 break;
 }

 Computing the Bone Bounding Box

166

 }

 // Process vertices if a bone was found
 if(BoneNum != −1) {

After you've found an ID3DXSkinInfo for the bone in question, you query it for the number of vertices
attached and allocate an array of DWORD and float values to hold the vertex indices and weights.

 // Get the number of vertices attached
 DWORD NumVertices = pSkin−>GetNumBoneInfluences(BoneNum);
 if(NumVertices) {

 // Get the bone influences
 DWORD *Vertices = new DWORD[NumVertices];
 float *Weights = new float[NumVertices];
 pSkin−>GetBoneInfluence(BoneNum, Vertices, Weights);

Now that the vertex indices are stored in the Vertices buffer (which you accomplished by calling
GetBoneInfluence), you can begin iterating through each vertex, transforming the vertices by the bone's
inverse transformation and using the transformed vertices to calculate the size of the bounding box.

 // Get stride of vertex data
 DWORD Stride = D3DXGetFVFVertexSize(\
 pMesh−>MeshData.pMesh−>GetFVF());

 // Get bone's offset inversed transformation matrix
 D3DXMATRIX *matInvBone = \
 pSkin−>GetBoneOffsetMatrix(BoneNum);

 // Lock vertex buffer and go through all of
 // the vertices that are connected to bone
 char *pVertices;
 pMesh−>MeshData.pMesh−>LockVertexBuffer(\
 D3DLOCK_READONLY, (void**)&pVertices);
 for(i=0;i<NumVertices;i++) {

 // Get pointer to vertex coordinates
 D3DXVECTOR3 *vecPtr = \
 (D3DXVECTOR3*)(pVertices+Vertices[i]*Stride);

 // Transform vertex by bone offset transformation
 D3DXVECTOR3 vecPos;
 D3DXVec3TransformCoord(&vecPos, vecPtr, matInvBone);

 // Get min/max values
 vecMin.x = min(vecMin.x, vecPos.x);
 vecMin.y = min(vecMin.y, vecPos.y);
 vecMin.z = min(vecMin.z, vecPos.z);

 vecMax.x = max(vecMax.x, vecPos.x);
 vecMax.y = max(vecMax.y, vecPos.y);
 vecMax.z = max(vecMax.z, vecPos.z);

 }
 pMesh−>MeshData.pMesh−>UnlockVertexBuffer();

 // Free resource
 delete [] Vertices;
 delete [] Weights;

 Computing the Bone Bounding Box

167

 }
 }
}

At the end of this bit of code, you'll have the extents of the bounding box stored in the two vectors (vecMin
and vecMax) you instanced at the beginning of the function. The array of vertex indices is freed (as well as
the vertex weights), and processing continues by factoring in the point where the bone connects to its parent
and child bones.

 // Factor in child bone connection points to size
 if(pFrame−>pFrameFirstChild) {

 // Get the bone's inverse transformation to
 // position child connections.
 D3DXMATRIX matInvFrame;
 D3DXMatrixInverse(&matInvFrame,NULL,&pFrame−>matCombined);

 // Go through all child frames connected to this frame
 D3DXFRAME_EX *pFrameChild = \
 (D3DXFRAME_EX*)pFrame−>pFrameFirstChild;
 while(pFrameChild) {
 // Get the frame's vertex coordinates and transform it
 D3DXVECTOR3 vecPos;
 vecPos = D3DXVECTOR3(pFrameChild−>matCombined._41,
 pFrameChild−>matCombined._42,
 pFrameChild−>matCombined._43);
 D3DXVec3TransformCoord(&vecPos, &vecPos, &matInvFrame);

 // Get min/max values
 vecMin.x = min(vecMin.x, vecPos.x);
 vecMin.y = min(vecMin.y, vecPos.y);
 vecMin.z = min(vecMin.z, vecPos.z);

 vecMax.x = max(vecMax.x, vecPos.x);
 vecMax.y = max(vecMax.y, vecPos.y);
 vecMax.z = max(vecMax.z, vecPos.z);

 // Go to next child bone
 pFrameChild = (D3DXFRAME_EX*)pFrameChild−>pFrameSibling;
 }
 }

To factor in the connection points, you basically grab the world−space coordinates of the connected bones and
transform them by the bone's inverse transformation. These coordinates are then compared to the coordinates
stored in the vecMin and vecMax vectors.

You can now finish the function by storing the size of the box. If the box is too small, set the size to a
minimum amount (as defined by the MINIMUM_BONE_SIZE macro, which is set to 1.0).

 // Set the bounding box size
 vecSize−>x = (float)fabs(vecMax.x − vecMin.x);
 vecSize−>y = (float)fabs(vecMax.y − vecMin.y);
 vecSize−>z = (float)fabs(vecMax.z − vecMin.z);

 // Make sure each bone has a minimal size
 if(vecSize−>x < MINIMUM_BONE_SIZE) {
 vecSize−>x = MINIMUM_BONE_SIZE;
 vecMax.x = MINIMUM_BONE_SIZE*0.5f;

 Computing the Bone Bounding Box

168

 }
 if(vecSize−>y < MINIMUM_BONE_SIZE) {
 vecSize−>y = MINIMUM_BONE_SIZE;
 vecMax.y = MINIMUM_BONE_SIZE*0.5f;
 }

 if(vecSize−>z < MINIMUM_BONE_SIZE) {
 vecSize−>z = MINIMUM_BONE_SIZE;

vecMax.z = MINIMUM_BONE_SIZE*0.5f;
 }

 // Set the bone's offset to center based on half the size
 // of the bounding box and the max position
 (*vecJointOffset) = ((*vecSize) * 0.5f) − vecMax;
}

At the very end of the function, you finally encounter the vecJointOffset vector object that I mentioned
when you started creating the GetBoundingBoxSize function. Because a rigid body bone can be any size,
and you track the bone by its center coordinates, you need to create an extra point that represents the point in
the bounding box where the bone connects to its parent. This is the joint offset vector. You'll read more about
the joint offset vector when you enforce the bone−to−bone connections.

Now that you've computed the bounding−box size and set the various bones' data, you can set the various
forces and resolve the motion of your bones.

Setting the Forces

For any applied forces you want to use (which I'll leave up to you), you must handle gravity and damping. In
the cRagdoll class, I defined a function that clears out a single bone's force and torque vectors and then
applies gravity and damping forces.

void cRagdoll::SetForces(DWORD BoneNum,
 D3DXVECTOR3 *vecGravity,
 float LinearDamping,
 float AngularDamping)
{
 // Get a pointer to the bone for easier handling
 cRagdollBone *Bone = &m_Bones[BoneNum];

 // Get pointer to the current state for easier handling
 cRagdollBoneState *BCState = &Bone−>m_State;

 // Set gravity and clear torque
 Bone−>m_vecForce = ((*vecGravity) * Bone−>m_Mass);
 Bone−>m_vecTorque = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

 // Apply damping on force and torque
 Bone−>m_vecForce += (BCState−>m_vecLinearVelocity * \
 LinearDamping);

 Bone−>m_vecTorque += (BCState−>m_vecAngularVelocity * \
 AngularDamping);
}

You read about gravity and damping forces earlier in this chapter, so I shouldn't need to explain anything
here. You'll notice that I'm scaling the gravity vector by the mass of the bone. Remember that this is necessary
so that gravity will pull all objects with the same force when you later scale the forces due to mass.

 Setting the Forces

169

Once you have set these forces, you can resolve (integrate) the motion of the specified bone.

Integrating the Bones

Once you have set the bone's force and torque, you can use those vectors to resolve the motion of your
rigid−body bone. You'll notice that up to this point I've been working with a single bone at a time. It is
perfectly fine to move the bones one by one and eventually join them before you render the mesh.

Back in the "Processing the Motion of Rigid Bodies" section, you saw how to apply the force and torque
vectors to the linear velocity and angular momentum to create motion. In the cRagdoll::Resolve
function, I duplicate what you read in that section.

You'll notice that the position, orientation, velocity, and momentum values are stored in a bone state class
object, cRagdollBoneState. These vectors are used during resolution. To call Integrate, you need to
specify which bone to resolve, as well as the time to resolve (how much time has elapsed).

void cRagdoll::Integrate(DWORD BoneNum, float Elapsed)
{
 // Get pointer to bone
 cRagdollBone *Bone = &m_Bones[BoneNum];

 // Get pointers to states for easier handling
 cRagdollBoneState *State = &Bone−>m_State;

After you get a pointer to the bone class object (as well as a pointer to the bone's state object), you can
calculate the new position of the bone based on the linear velocity, the change in angular movement based on
the torque, and the change in linear velocity based on the amount of force (scaled by the mass of the object).

 // Integrate position
 State−>m_vecPosition += (Elapsed*State−>m_vecLinearVelocity);

 // Integrate angular momentum
 State−>m_vecAngularMomentum += (Elapsed * Bone−>m_vecTorque);

 // Integrate linear velocity
 State−>m_vecLinearVelocity += Elapsed * Bone−>m_vecForce / \
 Bone−>m_Mass;

You now compute the new orientation (stored in the quaternion) using the angular velocity multiplied by the
amount of time passed.

// Integrate quaternion orientation
 D3DXVECTOR3 vecVelocity = Elapsed * State−>m_vecAngularVelocity;
 State−>m_quatOrientation.w −= 0.5f *
 (State−>m_quatOrientation.x * vecVelocity.x +
 State−>m_quatOrientation.y * vecVelocity.y +
 State−>m_quatOrientation.z * vecVelocity.z);
 State−>m_quatOrientation.x += 0.5f *
 (State−>m_quatOrientation.w * vecVelocity.x −
 State−>m_quatOrientation.z * vecVelocity.y +
 State−>m_quatOrientation.y * vecVelocity.z);
 State−>m_quatOrientation.y += 0.5f *
 (State−>m_quatOrientation.z * vecVelocity.x +
 State−>m_quatOrientation.w * vecVelocity.y −
 State−>m_quatOrientation.x * vecVelocity.z);

 Integrating the Bones

170

 State−>m_quatOrientation.z += 0.5f *
 (State−>m_quatOrientation.x * vecVelocity.y −
 State−>m_quatOrientation.y * vecVelocity.x +
 State−>m_quatOrientation.w * vecVelocity.z);

 // Normalize the quaternion (creates a unit quaternion)
 D3DXQuaternionNormalize(&State−>m_quatOrientation,
 &State−>m_quatOrientation);

Up to this point, I haven't addressed how you're going to stop your rag doll mesh's bones from contorting out
of control. Think about it−because your bones are rigid bodies, they can rotate in any direction by any
amount, which can cause your characters' heads to rotate through their chest, for instance. This is why I
introduced the use of a rotation resolution factor in the declaration of each rag doll bone object.

After you've resolved the new orientation of a bone, you need to slowly bring it back to its initial orientation.
You can accomplish this by pre−computing the difference in orientation from the bone to its parent. Using
this pre−computed difference, you then compute the orientation that the bone should try to match.

The higher the rate of resolution you set, the faster the bone will try to match its initial orientation relative to
its parent's orientation. To reorient the bone and match its initial orientation, you can slerp (spherically
interpolate) from the bone's current orientation to the initial orientation relative to the parent's orientation. The
amount of interpolation is−you guessed it−the amount you set in the resolution rate variable. Higher values
force the bone not to rotate, whereas lower values make the bone slowly (or never) return to its initial
orientation.

 // Force rotation resolution
 if(BoneNum && Bone−>m_ResolutionRate != 0.0f) {

 // Slerp from current orientation to beginning orientation
 D3DXQUATERNION quatOrientation = \
 Bone−>m_ParentBone−>m_State.m_quatOrientation * \
 Bone−>m_quatOrientation;
 D3DXQuaternionSlerp(&State−>m_quatOrientation, \
 &State−>m_quatOrientation, \
 &quatOrientation, \
 Bone−>m_ResolutionRate);
}

Moving on, the remaining code in the Integrate function creates a transformation matrix that later
transforms your rigid body bones' points and creates the angular velocity. Because you're working with
left−handed coordinate systems, you must transpose the transformation matrix after you create it, using
D3DXMatrixRotationQuaternion. This step was discussed earlier in this chapter.

 // Compute the new matrix−based orientation transformation
 // based on the quaternion just computed
 D3DXMatrixRotationQuaternion(&State−>m_matOrientation,
 &State−>m_quatOrientation);
 D3DXMatrixTranspose(&State−>m_matOrientation,
 &State−>m_matOrientation);

 // Calculate the integrated inverse world inertia tensor
 D3DXMATRIX matTransposedOrientation;
 D3DXMatrixTranspose(&matTransposedOrientation, &State−>m_matOrientation);
 State−>m_matInvWorldInertiaTensor = State−>m_matOrientation *
 Bone−>m_matInvInertiaTensor *
 matTransposedOrientation;

 Integrating the Bones

171

 // Calculate new angular velocity
 State−>m_vecAngularVelocity = Transform(&State−>m_vecAngularMomentum,
 &State−>m_matInvWorldInertiaTensor);
}

At this point, your bone's motion has been resolved, and it is time to process any collisions.

Processing Collisions

You'll recall from earlier in this chapter that collisions are handled by checking each of the rigid−body bone's
points against a list of collision objects. If a point is located within a collision object's space, then the point is
pushed out and the impulse vectors are averaged between all collisions so that the body is rebounded off the
surface of the object in a realistic manner. This is the purpose of the ProcessCollisions function.

I won't list the full code for the ProcessCollisions function code here; rather, I'll just lightly touch on
it. The ProcessCollisions function starts off with its function prototype, which takes the bone number
you are checking, as well as a pointer to the root collision object to check for collisions.

BOOL cRagdoll::ProcessCollisions(DWORD BoneNum, \
 cCollision *pCollision)
{
 // Error checking
 if(!pCollision || !pCollision−>m_NumObjects || \
 !pCollision−>m_Objects)
 return TRUE;

 // Get a pointer to the bone for easier handling
 cRagdollBone *Bone = &m_Bones[BoneNum];

 // Get a pointer to the state for easier handling
 cRagdollBoneState *State = &Bone−>m_State;

 // Keep count of number of collisions
 DWORD CollisionCount = 0;

 // Keep tally of collision forces
 D3DXVECTOR3 vecLinearVelocity = D3DXVECTOR3(0.0f,0.0f,0.0f);
 D3DXVECTOR3 vecAngularMomentum = D3DXVECTOR3(0.0f,0.0f,0.0f);

So ProcessCollisions starts off by getting a pointer to the bone object and a pointer to the bone's state
object. From there, you must keep track of the number of collisions detected (to later average out the motions)
and define two vectors that define the built−up impulses to move and rotate the bone according to any
collisions.

Moving on in the code, you start scanning through the eight points of the bone's rigid−body object. For each
point, you also scan through each collision object. Before you check for any point−to−object collisions, you
need to define a flag that determines three things: whether the point collided with the object, the normal of the
object, and the distance the point penetrates into the object.

// Go through all bone vertices looking for a collision
 for(DWORD i=0;i<8;i++) {

 // Loop through all collision objects
 cCollisionObject *pObj = pCollision−>m_Objects;
 while(pObj) {

 Processing Collisions

172

 // Flag if a collision was detected
 BOOL Collision = FALSE;

 // Normal of collision object
 D3DXVECTOR3 vecCollisionNormal;

 // Distance to push point out of collision object
 float CollisionDistance = 0.0f;

 // Process sphere collision object
 if(pObj−>m_Type == COLLISION_SPHERE) {

I'm going to cut the code off here because you've already seen how to compute whether a collision occurs,
how to compute the normal, and how to calculate the distance in which the point penetrates the object. If you
browse the full source code, you'll see that I'm checking for point−to−sphere collisions and point−to−plane
collisions.

Once you have performed the collision detection, you should have the Collision flag set to TRUE if there
was a collision or FALSE if there was no collision. If the flag is TRUE, then the point is pushed outside the
object, and the proper impulse vectors are computed.

 // Process a collision if detected
 if(Collision == TRUE) {

 // Push the object onto the collision object's surface
 State−>m_vecPosition += (vecCollisionNormal * \
 CollisionDistance);

 // Get the point's position and velocity
 D3DXVECTOR3 vecPtoP = State−>m_vecPosition − \
 State−>m_vecPoints[i];
 D3DXVECTOR3 vecPtoPVelocity = \
 State−>m_vecLinearVelocity + \
 CrossProduct(&State−>m_vecAngularVelocity, \
 &vecPtoP); \

 // Get the point's speed relative to the surface
 float PointSpeed = D3DXVec3Dot(&vecCollisionNormal, \
 &vecPtoPVelocity);

 // Increase number of collisions
 CollisionCount++;

 // Calculate the impulse force based on the coefficient
 // of restitution, the speed of the point, and the
 // normal of the colliding object.
 float ImpulseForce = PointSpeed * \
 (−(1.0f + Bone−>m_Coefficient));
 float ImpulseDamping = (1.0f / Bone−>m_Mass) + \
 D3DXVec3Dot(&CrossProduct(\
 &Transform(&CrossProduct(&vecPtoP, \
 &vecCollisionNormal), \
 &State−>m_matInvWorldInertiaTensor), \
 &vecPtoP), &vecCollisionNormal);
 D3DXVECTOR3 vecImpulse = vecCollisionNormal * \
 (ImpulseForce/ImpulseDamping);

 // Add forces to running total
 vecLinearVelocity += vecImpulse;

 Processing Collisions

173

vecAngularMomentum += CrossProduct(&vecPtoP, &vecImpulse);
 }

Following the last bit of code, the rest of the collision objects are checked and the remaining points are
processed. In the end, if any collisions were detected, the ProcessCollisions function averages the
impulse vectors and applies them to the linear velocity and angular momentum.

 // Was there any collisions
 if(CollisionCount) {

 // Add averaged forces to integrated state
 State−>m_vecLinearVelocity += ((vecLinearVelocity / \
 Bone−>m_Mass) / (float)CollisionCount);
 State−>m_vecAngularMomentum += (vecAngularMomentum / \
 (float)CollisionCount);

 // Calculate angular velocity
 State−>m_vecAngularVelocity = Transform(\
 &State−>m_vecAngularMomentum, \
 &State−>m_matInvWorldInertiaTensor);
}

The next function I want to show you will help you enforce the bone−to−bone connections by pulling the
bones back together to enforce the shape of your rag doll character.

Enforcing Bone−to−Bone Connections

After you have resolved all your forces and handled the collisions, there's one final step to perform before you
rebuild your frame hierarchy and render your rag doll character's mesh. You must resolve the bone−to−bone
connections.

You'll recall that in the "Connecting Rigid Bodies with Springs" section, you learned how to create a spring
between bones and use it to calculate a force vector that immediately moves and rotates a body into the proper
position. That's just what the ProcessConnections function does−it takes the coordinates of the
transformed point that represents the joint offset (the offset from the center of the bone to where the bone
joins with its parent) and the coordinates of where it connects to the parent (stored as another transformed
point) to create the spring.

void cRagdoll::ProcessConnections(DWORD BoneNum)
{
 // Get a pointer to the bone and
 // parent bone for easier handling
 cRagdollBone *Bone = &m_Bones[BoneNum];
 cRagdollBone *ParentBone = Bone−>m_ParentBone;

 // Don't continue if there's no parent bone
 if(!ParentBone)

return;

 // Get the pointer to the bone's state
 cRagdollBoneState *BState = &Bone−>m_State;

 // Get pointer to parent's state
 cRagdollBoneState *PState = &ParentBone−>m_State;

 Enforcing Bone−to−Bone Connections

174

 // Get joint connection position and vector to center
 D3DXVECTOR3 vecBonePos = BState−>m_vecPoints[8];
 D3DXVECTOR3 vecBtoC = BState−>m_vecPosition − vecBonePos;

 // Get the parent connection point coordinates
 D3DXVECTOR3 vecParentPos = BState−>m_vecPoints[9];

 // Calculate a spring vector from point to parent's point
 D3DXVECTOR3 vecSpring = vecBonePos − vecParentPos;

 // Move point to match parent's point and adjust
 // the angular velocity and momentum
 BState−>m_vecPosition −= vecSpring;
 BState−>m_vecAngularMomentum −= CrossProduct(&vecBtoC, \
 &vecSpring);
 BState−>m_vecAngularVelocity = Transform(\
 &BState−>m_vecAngularMomentum,
 &BState−>m_matInvWorldInertiaTensor);
}

I know I'm moving quickly, but I have already explained all the code up to this point; I just wanted to reiterate
some vital points. The next and last function that I want to show you rebuilds the hierarchy, allowing you to
update your skinned mesh.

Rebuilding the Hierarchy

After resolving the rigid−body simulation, the last bit of processing you perform every frame is rebuilding the
frame's transformations. Because the rigid−body bones in your rag doll are specified in world coordinates,
there's no need to go through each bone in the hierarchy and combine each transformation with the bone's
parent transformation. Basically, all you need to do is copy the bone's orientation (from the state object) to the
frame's combined transformation matrix.

The only problem is that each bone is oriented and translated about the rigid body's center coordinates, not the
coordinates of the joint connection point as defined by the vecJointOffset vector. You need to transform
the vecJointOffset vector by the orientation of the bone and add the resulting vector to the position of
the bone, which will give you the proper coordinates to position the bone. The comments in
RebuildHierarchy should explain things nicely.

void cRagdoll::RebuildHierarchy()
{
 if(!m_pFrame)
 return;
 if(!m_NumBones || !m_Bones)
 return;

 // Apply bones' rotational matrices to frames
 for(DWORD i=0;i<m_NumBones;i++) {

 // Transform the joint offset in order to position frame
 D3DXVECTOR3 vecPos;
 D3DXVec3TransformCoord(&vecPos,
 &m_Bones[i].m_vecJointOffset,
 &m_Bones[i].m_State.m_matOrientation);

 // Add bone's position
 vecPos += m_Bones[i].m_State.m_vecPosition;

 Rebuilding the Hierarchy

175

 // Orient and position frame
 m_Bones[i].m_Frame−>matCombined = m_Bones[i].m_State.m_matOrientation;
 m_Bones[i].m_Frame−>matCombined._41 = vecPos.x;
 m_Bones[i].m_Frame−>matCombined._42 = vecPos.y;
 m_Bones[i].m_Frame−>matCombined._43 = vecPos.z;
 }
}

You've reached the end of the line! All that's left is to put your rag doll animation class to good use in your
own projects. To do so, you simply need to instance a cRagdoll class object, call Create to build the data,
and continuously call Resolve and RebuildHierarchy. The demo for this chapter shows you how easy
this is, so I highly recommend you go through the demo's source code before continuing.

Check Out the Demo

As you can tell, rag doll animation systems are nothing more than rigid−body simulations in disguise. Why
pay thousands of dollars for a rag doll animation system when you've seen how easy it is to create your very
own? The demo for this chapter shows you one such rag doll animation system you can use in your projects.

This demo, shown in Figure 7.12, takes a sample character and tosses it through the air. This doesn't sound too
exciting, so to spice things up, a bunch of collision objects (spheres) are littered about, causing the poor
character to flop like a limp noodle.

Figure 7.12: A wooden dummy meets a gruesome death, flying through the air and bouncing off a bunch of
floating spheres.
The field of rigid−body physics is certainly an exciting one; if you find yourself craving a bit more
information than I provided here, the resources are definitely out there.

Programs on the CD

There is only one project for Chapter 7, but believe me, it's a whopper! You can find the project in the
Chapter 7 directory of this book's CD−ROM:

Ragdoll. This project demonstrates rag doll animation by showing you what happens when a
character is thrown through a field of floating spheres. It is located at
\BookCode\Chap07\Ragdoll.

♦

 Check Out the Demo

176

 Check Out the Demo

177

Part Four: Morphing Animation
Chapter 8: Working with Morphing Animation
Chapter 9: Using Key−Framed Morphing Animation
Chapter 10: Blending Morphing Animations
Chapter 11: Morphing Facial Animation

178

Chapter 8: Working with Morphing Animation
With a loud clank, the wall across the compound begins to slide down. The grinding of stone mixes with the
ferocious roars of unseen evil creatures that lurk just beyond the ever−shrinking barrier. I can only wonder
what horrors are about to be unleashed upon me. As the wall settles, the onslaught begins. Wave after wave of
pixelated demons pour forth, only to meet their doom at the hands of my trusty pulse rifle.

With demons running, teeth gnashing, and bits of flesh flying, I'm sure animation techniques are not at the top
of your list of priorities. But if you did have to think about animation, I'm sure images of complex skeletal
structures, frame hierarchies, and skinned meshes would come to mind, wouldn't they? Would it surprise you
to find out that all the animations for the previously mentioned onslaught might be brought to you through the
use of a morphing animation system? That's right−with games such as those in id's Doom and Quake series,
those little demonic critters are animated by morphing animation, a technique that ensures smooth and easy
playback on even the lowliest of systems. Morphing animation is so simple to use that you'll wonder why you
didn't look into it sooner. Don't fret any longer, because this chapter is here to help you!

Morphing in Action

Back in the early 90s, a revolutionary computer−graphics animation technique known as morphing hit the big
league and was brought into the mainstream, thanks to a man known as Michael Jackson. No, I'm not referring
to one of his plastic surgery fiascos−rather, the use of morphing in one of his music videos. Yep, the King of
Pop used morphing techniques in his video for the song "Black or White" and created an animation
phenomenon that continues to this day.

In case you haven't seen the video, let me explain. It includes a segment in which a person is grooving to the
tune, and the camera is centered on that person's face. Every few seconds, the person's face morphs into
another person's face. This continues while the face morphs more than 10 times. The results of the morphing
in the video are incredible, and I still remember them clearly to this day!

As the years rolled by, morphing eventually made its way to gaming. Whereas the older days of morphing
involved digitally editing video footage to smoothly change one image into another (such as in "Black or
White"), nowadays morphing (or at least the morphing we're going to discuss here) involves the smooth
change of 3D meshes over time.

Probably the most popular example of morphing in gaming has got to be with id's Quake. In Quake, all of the
characters' animation sequences are constructed from a series of morphing meshes. One mesh slowly changes
shape to a second mesh, the second mesh changes shape to match a third mesh, and so on.

Spaced over a short period of time and using enough meshes from which to morph, all animation sequences
are smooth and extremely easy to process. Even the lowliest of computer systems can run Quake decently.
That's because morphing animation is extremely easy to work with, as you'll see in the next few chapters.

So as you can surmise, morphing−or tweening, as it is sometimes referred to (such as in the DirectX SDK)−is
the process of changing one shape into another over time. For you, those shapes are meshes. The process of
morphing a mesh involves slowly changing the coordinates of the mesh vertices, starting at one mesh's shape
and progressing to another.

The mesh that contains the orientation of the vertices at the beginning of the morphing cycle is called the
source mesh. The second mesh, which contains the orientation of the vertices at the end of the morphing
cycle, is called the target mesh. Take a closer look at these two meshes to better understand the whole

179

morphing process.

Defining Source and Target Meshes

The source and target meshes you'll deal with in this book are everyday ID3DXMesh objects. However, you
can't use just any two meshes for a morphing operation; there are some rules to follow. First, each mesh must
share the same number of vertices. The morphing operation merely moves vertices from the source mesh
positions to match the target mesh positions. This brings up the second rule: Each vertex in the source mesh
must have a matching vertex (that is, a matching index number) in the target mesh. Take the meshes shown in
Figure 8.1 as an example.

Figure 8.1: During the morphing process, the vertices in the source mesh gradually move to match the
positions of the target mesh. Each vertex shares the same index number in both the source and target meshes.
Vertex ordering is important here. For a vertex to move from the source position to the target position, it must
share the same index number. If you were to renumber the order, the vertices would move in the wrong
direction while morphing and produce some funky−looking results such as those shown in Figure 8.2

Figure 8.2: Morphing gone bad−the vertex order differs between the source and target meshes, producing
some odd results.
As long as you design the meshes to have the same number of vertices and so that the vertex ordering matches
up, you'll do just fine. As for getting the actual mesh data, I'll leave that in your capable hands. You can use
the D3DXLoadMeshFromX function, or feel free to use the functions you developed in Chapter 1 to load
your meshes. After you've got two valid meshes loaded and ready to use, you can begin morphing them!

Morphing the Meshes

Now that you have two meshes to work with (the source and target meshes), you can begin the morphing
process. Remember that morphing is the technique of changing one shape to another. You want the vertices in
the source mesh, in their initial positions, to gradually move to match the positions of the target mesh's

 Defining Source and Target Meshes

180

vertices.

You can measure the time period used to track the motion of the vertices from the source mesh coordinates to
the target mesh coordinates using a scalar value (ranging from 0 to 1). With a scalar value of 0 the vertices
will be positioned at the source mesh coordinates, whereas with a scalar value of 1 the vertices will be
positioned at the target mesh coordinates. As Figure 8.3 illustrates, any scalar value between 0 and 1 will
place the vertices somewhere between the source mesh and target mesh coordinates.

Figure 8.3: Starting at the source mesh coordinates (and a scalar value of 0), a vertex gradually moves toward
the target mesh coordinates as the scalar value increases.
It is quite simple to calculate the coordinates in which to position a vertex between the source mesh
coordinates and target mesh coordinates. Take a vertex from the source mesh and multiply the vertex's
coordinates by the inversed scalar value (1.0−scalar). Using the inversed scalar means that the original vertex
coordinates will use 100 percent of the vertex's coordinate position when the scalar is at 0.0, and zero percent
of the vertex's coordinate position when the scalar is at 1.0.

Next, using the same indexed vertex's coordinates from the target mesh, multiply the vertex's coordinates by
the scalar value. Adding the two resulting values gives you the final coordinates to use for the vertex during
the morphing animation.

At first, this concept of multiplying the vertex coordinates by a scalar value and adding the results together
might seem strange. If you're unsure of the math, perform the following calculations to see that the results are
indeed correct. Use a one−dimensional value to represent the vertex coordinates. Set the source vertex
coordinate to 10 and the target vertex coordinate to 20. To make things easy, use a scalar value of 0.5, which
should give you a resulting morphing vertex coordinate of 15.

Multiplying the source coordinate (10) by 1−0.5 gives you 5. Multiplying the target coordinate (20) by 0.5
gives you 10. Adding the two results (5 and 10) gives you 15. Isn't that special−it comes out to the correct
value after all!

This procedure would resemble the following code, assuming that the vertex's source coordinates are stored in
vecSource, the target coordinates are stored in vecTarget, and the scalar is stored in Scalar.

// vecSource = D3DXVECTOR3 w/source coordinates
// vecTarget = D3DXVECTOR3 w/target coordinates
// Scalar = FLOAT w/scalar value

// Multiply source coordinates by inversed scalar
D3DXVECTOR3 vecSourcePos = vecSource * (1.0f−Scalar);

// Multiply target coordinates by scalar
D3DXVECTOR3 vecTargetPos = vecTarget * Scalar;

 Defining Source and Target Meshes

181

// Add the two resulting vectors together
D3DXVECTOR vecPos = vecSourcePos + vecTargetPos;

After that last bit of code, the vecPos vector will contain the coordinates to use for positioning a vertex
during the morphing animation. Of course, you would repeat the same calculations for each vertex in the
source mesh. In the next section, you'll get to see how to perform these calculations to build your own
morphing meshes. Before that, however, I'd like to mention something about timing your morphing
animations.

Up to this point, I've been ignoring the factor of time−both the length of the animation cycle (how long the
morphing animation takes to progress from the source coordinates to the target coordinates) and exactly what
point in time you are sampling the coordinates from in the animation sequence. Assuming you are measuring
time in milliseconds, with the animation's length stored as Length (a FLOAT value) and the time at which
you are sampling the coordinates stored as Time (also a FLOAT value), you can compute a proper scalar
value to use in your calculations as follows:

Scalar = Time / Length;

Using the calculations you've already seen in this section, you can use the scalar value to compute the
coordinates of the vertices to build your morphing mesh.

That's the second time I've mentioned building a morphing mesh, so I won't keep delaying things. Read on to
see how to build a morphing mesh you can use to render. Although I previously hinted at using a vertex
shader, first I will show you the easiest way to build a morphing mesh−by manipulating the mesh's vertex
buffers directly.

Building a Morphed Mesh through Manipulation

Directly manipulating a mesh's vertex buffers is probably the easiest way to work with morphing. For this
method you'll need a third mesh that contains the final coordinates of each vertex after morphing; it's this third
mesh that you'll render.

To create the third mesh, which I call the resulting morphed mesh, you can clone the source mesh and be on
your way.

// Declare third mesh to use for resulting morphed mesh
ID3DXMesh *pResultMesh = NULL;

// Clone the mesh using the source mesh pSourceMesh
pSourceMesh−>CloneMeshFVF(0, pSourceMesh−>GetFVF(), \
 pDevice,&pResultMesh);

After you've created the resulting morphed mesh (pResultMesh), you can begin processing the morphing
animation by locking the source, target, and resulting morphed mesh's vertex buffers. Before you do that,
however, you need to declare a generic vertex structure that contains only the vertex coordinates, which you'll
use to lock and access each vertex buffer.

typedef struct {
 D3DXVECTOR3 vecPos;
} sGenericVertex;

Also, because each vertex buffer contains vertices of varying sizes (for example, the source might use

 Building a Morphed Mesh through Manipulation

182

normals whereas the target doesn't), you need to calculate the size of the vertex structure used for each mesh's
vertices. You can do so using the D3DXGetFVFVertexSize function.

// pSourceMesh = source mesh object
// pTargetMesh = target mesh object
// pResultMesh = resulting morphed mesh object
DWORD SourceSize = D3DXGetFVFVertexSize(pSourceMesh−>GetFVF());
DWORD TargetSize = D3DXGetFVFVertexSize(pTargetMesh−>GetFVF());
DWORD ResultSize = D3DXGetFVFVertexSize(pResultMesh−>GetFVF());

Now you can lock the vertex buffers and assign the pointers to them.

// Declare vertex pointers
char *pSourcePtr, *pTargetPtr, *pResultPtr;
pSourceMesh−>LockVertexBuffer (D3DLOCK_READONLY, \
 (void**)&pSourcePtr);
pTargetMesh−>LockVertexBuffer (D3DLOCK_READONLY, \
 (void**)&pTargetPtr);
pResultMesh−>LockVertexBuffer (0, (void**)&pResultPtr);

Notice how I assigned a few char * pointers to the vertex buffers instead of using the generic vertex
structure? You need to do that because the vertices in the buffers could be of any size, remember? Whenever
you need to access a vertex, you cast the pointer to the generic vertex structure and access the data. To go to
the next vertex in the list, add the size of the vertex structure to the pointer. Get it? If not, don't worry−the
upcoming code will help you make sense of it all.

After you've locked the buffers you can begin iterating through all vertices, grabbing the coordinates and
using the calculations from the previous section to calculate the morphed vertex positions. Assuming that the
length of the animation is stored in Length and the current time you are using is stored in Time, the
following code will illustrate how to perform the calculations:

// Length = FLOAT w/length of animation in milliseconds
// Time = FLOAT w/time in animation to use

// Calculate a scalar value to use for calculations
float Scalar = Time / Length;

// Loop through all vertices
for(DWORD i=0;i<pSourceMesh−>GetNumVertices();i++) {

// Cast vertex buffer pointers to a generic vertex structure
sGenericVertex *pSourceVertex = (sGenericVertex*)pSourcePtr;
sGenericVertex *pTargetVertex = (sGenericVertex*)pTargetPtr;

sGenericVertex *pResultVertex = (sGenericVertex*)pResultPtr;

// Get source coordinates and scale them
D3DXVECTOR3 vecSource = pSourceVertex−>vecPos;
vecSource *= (1.0f − Scalar);

// Get target coordinates and scale them
D3DXVECTOR3 vecTarget = pTargetVertex−>vecPos;
vecTarget *= Scalar;

// Store summed coordinates in resulting morphed mesh
pResultVertex−>vecPos = vecSource + vecTarget;

 Building a Morphed Mesh through Manipulation

183

// Go to next vertices in each buffer and continue loop
pSourcePtr += SourceSize;
pTargetPtr += TargetSize;
pResultPtr += ResultSize;
}

Up to this point I've skipped over the topic of vertex normals because normals are identical to vertex
coordinates in that you use scalar and inversed scalar values on the normals to perform the same calculations
as you do for the vertex coordinates.

In the preceding code, you can calculate the morphing normal values by first seeing whether the mesh uses
normals. If so, during the loop of all vertices you grab the normals from both the source and target vertices,
multiply by the scalar and inversed scalar, and store the results. Take another look at the code to see how to do
that:

// Length = FLOAT w/length of animation in milliseconds
// Time = FLOAT w/time in animation to use

// Calculate a scalar value to use for calculations
float Scalar = Time / Length;

// Set a flag if using normals
BOOL UseNormals = FALSE;
if(pSourceMesh−>GetFVF() & D3DFVF_NORMAL && \
 pTargetMesh−>GetFVF() & D3DFVF_NORMAL)
 UseNormals = TRUE;

// Loop through all vertices
for(DWORD i=0;i<pSourceMesh−>GetNumVertices();i++) {

 // Cast vertex buffer pointers to a generic vertex structure
 sGenericVertex *pSourceVertex = (sGenericVertex*)pSourcePtr;
 sGenericVertex *pTargetVertex = (sGenericVertex*)pTargetPtr;

sGenericVertex *pResultVertex = (sGenericVertex*)pResultPtr;

// Get source coordinates and scale them
D3DXVECTOR3 vecSource = pSourceVertex−>vecPos;
vecSource *= (1.0f − Scalar);

// Get target coordinates and scale them
D3DXVECTOR3 vecTarget = pTargetVertex−>vecPos;
vecTarget *= Scalar;

// Store summed coordinates in resulting morphed mesh
pResultVertex−>vecPos = vecSource + vecTarget;

// Process normals if flagged
if(UseNormals == TRUE) {
 // Adjust generic vertex structure pointers to access
 // normals, which are next vector after coordinates.
 pSourceVertex++; pTargetVertex++; pResultVertex++;

 // Get normals and apply scalar and inversed scalar values
 D3DXVECTOR3 vecSource = pSourceVertex−>vecPos;
 vecSource *= (1.0f − Scalar);
 D3DXVECTOR3 vecTarget = pTargetVertex−>vecPos;
 vecTarget *= Scalar;
 pResultVertex−>vecPos = vecSource + vecTarget;

 Building a Morphed Mesh through Manipulation

184

 }

 // Go to next vertices in each buffer and continue loop
 pSourcePtr += SourceSize;
 pTargetPtr += TargetSize;
 pResultPtr += ResultSize;
}

Everything looks great! All you need to do now is unlock the vertex buffers and render the resulting mesh! I'll
skip the code to unlock the buffers and get right to the good part−rendering the meshes.

Drawing Morphed Meshes

If you're building the morphing meshes by directly manipulating the resulting mesh's vertex buffer, as shown
in the previous section, then rendering the morphing mesh is the same as for any other ID3DXMesh object
you've been using. For example, you can loop through each material in the mesh, set the material and texture,
and then draw the currently iterated subset. No need to show any code here−it's just simple mesh rendering.

On the other hand, if you want to move past the basics and start playing with real power, you can create your
own vertex shader to render the morphing meshes for you. Take my word for it−this is something you'll
definitely want to do. Using a vertex shader means you have one less mesh to deal with because the resulting
mesh object is no longer needed; the speed increase is well worth a little extra effort.

Before you can move on to using a vertex shader, however, you need to figure out how to render the mesh's
subsets yourself.

Dissecting the Subsets

To draw the morphing mesh, you need to set the source mesh's vertex stream as well as the target mesh's
stream. Also, you need to set only the source mesh's indices. At that point, it's only a matter of scanning
through every subset and rendering the polygons related to each subset.

Wait a second! How do you render the subsets yourself? By duplicating what the
ID3DXMesh::DrawSubset function does, that's how! The DrawSubset function works in one of two
ways. The first method, which you use if your mesh has not been optimized to use an attribute table, is to scan
the entire list of attributes and render those batches of polygons belonging to the same subset. This method
can be a little slow because it renders multimaterial meshes in small batches of polygons.

The second method, which is used after you optimize the mesh to use an attribute table, works by scanning the
built attribute table to determine which grouped faces are drawn all in one shot. That is, all faces that belong
to the same subset are grouped together beforehand and rendered in one call to DrawPrimitive or
DrawIndexedPrimitive. That seems like the way to go!

To use the second method of rendering, you need to first optimize your source mesh. You can (and should) do
this when you load the mesh. It's a safe habit to optimize all meshes you load using the
ID3DXMesh::OptimizeInPlace function, as shown in the following bit of code:

// pMesh = just−loaded mesh
pMesh−>
OptimizeInPlace(D3DXMESHOPT_ATTRSORT, \
 NULL, NULL, NULL, NULL);

 Drawing Morphed Meshes

185

Once the mesh is optimized, you can query the ID3DXMesh object for the attribute table it is using. The
attribute table is of the data type D3DXATTRIBUTERANGE, which is defined as follows:

typedef struct_D3DXATTRIBUTERANGE {
 DWORD AttribId;
 DWORD FaceStart;
 DWORD FaceCount;
 DWORD VertexStart;
 DWORD VertexCount;
 } D3DXATTRIBUTERANGE;

The first variable, AttribId is the subset number that the structure represents. For each material in your
mesh, you have one D3DXATTRIBUTERANGE structure with the AttribId set to match the subset number.

Next come FaceStart and FaceCount. You use these two variables to determine which polygon faces
belong to the subset. Here's where the optimization comes in handy−all faces belonging to the same subset are
grouped together in the index buffer. FaceStart represents the first face in the index buffer belonging to
the subset, whereas FaceCount represents the number of polygon faces to render using that subset.

Last, you see VertexStart and VertexCount, which, much like FaceStart and FaceCount,
determine which vertices are used during the call to render the polygons. VertexStart represents the first
vertex in the vertex buffer to use for a subset, and VertexCount represents the number of vertices you can
render in one call. When you optimize a mesh based on vertices, you'll notice that all vertices are packed in
the buffer to reduce the number of vertices used in a call to render a subset.

For each subset in your mesh you must have a matching D3DXATTRIBUTERANGE structure. Therefore, a
mesh using three materials will have three attribute structures. After you've optimized a mesh (using
ID3DXMesh::OptimizeInPlace), you can get the attribute table by first querying the mesh object for
the number of attribute structures using the ID3DXMesh::GetAttributeTable function, as shown
here:

// Get the number of attributes in the table
DWORD NumAttributes;
pMesh−>GetAttributeTable(NULL, &NumAttributes);

At this point, you only need to allocate a number of D3DXATTRIBUTERANGE objects and call the
GetAttributeTable function again, this time supplying a pointer to your array of attribute objects.

// Allocate memory for the attribute table and
// query for the table data
D3DXATTRIBUTERANGE *pAttributes;
pAttributes = new D3DXATTRIBUTERANGE[NumAttributes];
pMesh−>GetAttributeTable(pAttributes, NumAttributes);

Cool! After you've got the attribute data, you can pretty much render the subsets by scanning through each
attribute table object and using the specified data in each in a call to DrawIndexedPrimitive. In fact,
do that now by first grabbing the mesh's vertex buffer and index buffer pointers.

// Get the vertex buffer interface
IDirect3DVertexBuffer9 *pVB;
pMesh−>GetVertexBuffer(&pVB);

// Get the index buffer interface
IDirect3DIndexBuffer9 *pIB;
pMesh−>GetIndexBuffer(&pIB);

 Drawing Morphed Meshes

186

Now that you have both buffer pointers, go ahead and set up your streams, vertex shader, and vertex element
declaration, and loop through each subset, setting the texture and then rendering the polygons.

// Set the vertex shader and declaration
pDevice−>SetFVF(NULL); // Clear FVF usage
pDevice−>SetVertexShader(pShader);
pDevice−>SetVertexDeclaration(pDecl);

// Set the streams
pDevice−>SetStreamSource(0, pVB, \
 0, pMesh−>GetNumBytesPerVertex());

pDevice−>SetIndices(pIB);

// Go through each subset
for(DWORD i=0;i<NumAttributes;i++) {

 // Get the material id#
 DWORD MatID = pAttributes[i];

 // Set the texture of the subset
 pDevice−>SetTexture(0, pTexture[AttribID]);

 // Render the polygons using the table
 pDevice−>DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, \
 pAttributes[i].VertexStart, \
 pAttributes[i].VertexCount, \
 pAttributes[i].FaceStart * 3, \
 pAttributes[i].FaceCount);
 }

After you've rendered the subsets you can free the vertex buffer and index buffer interfaces you obtained.

pVB−>Release(); pVB = NULL;
pIB−>Release(); pIB = NULL;

When you're done with the attribute table, make sure to free that memory as well.

delete [] pAttributes; pAttributes = NULL;

All right, now you're getting somewhere! Now that you know how to render the subsets yourself, it's time to
move on to using a vertex shader.

Creating a Morphing Vertex Shader

Something as simple as morphing meshes just demands the use of a vertex shader. In fact, once you've seen
how easy it is to use a morphing vertex shader, you'll never go back to manipulating the vertex buffers
yourself again!

Remember that at its essence, a morphing mesh is composed of interpolated position and normal coordinates
that are calculated from a source mesh and a target mesh. Since those position and normal coordinates are part
of the vertex stream, you can create a vertex shader that takes two vertex streams at a time and the same scalar
values as before, and calculates the vertex values using a few simple commands.

 Creating a Morphing Vertex Shader

187

That's right−no more locking and rebuilding a morphing mesh each frame. It's all happening in line with the
shader! All you need to do is set the vertex stream sources. Using the rendering techniques shown in the
previous section, you can render the groups of polygons belonging to the meshes.

Let's kick things up a notch and get started with your vertex shader. First, start with the vertex element
declaration that will map the vertex data to your vertex registers in the shader.

Note Included with the Chapter 1 helper functions you'll find the DrawMesh function, which uses a
vertex shader and a vertex element declaration interface to render a mesh object. By setting the
target mesh to stream #1, you can call on DrawMesh to render the morphing mesh, much like
this chapter's morphing mesh vertex shader demo. Check out the end of this chapter for details
on locating the demo. As for the rest of this chapter, I'll show you how to render the mesh with
raw code−no wrapper functions for you!

D3DVERTEXELEMENT9 MorphMeshDecl[] =
{
 // 1st stream is for source mesh
 { 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0 },
 { 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_NORMAL, 0 },
 { 0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0 },
 // 2nd stream is for target mesh
 { 1, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 1 },
 { 1, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_NORMAL, 1 },
 { 1, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 1 },
 D3DDECL_END()
};

As you can see from the vertex element declaration, two streams are being used. Each stream is using a set of
position, normal, and texture coordinates. The first stream uses a usage index of 0, whereas the second stream
uses a usage index of 1.

When you are setting up the vertex streams, you set the source mesh's vertex buffer as stream #0 and the
target mesh's vertex buffer as stream #1. You only use one index buffer−the source's, which is set using
IDirect3DDevice9::SetIndices. Make sure both the source and target meshes use the same indices
and vertex orders, or the morphing animation may be distorted.

I'll get back to the streams in a bit; for now I want to move on to the shader code. At the start of the vertex
shader, you'll find the typical version number and mapping declarations.

vs.1.0

; declare mapping
dcl_position v0
dcl_normal v1
dcl_texcoord v2
dcl_position1 v3
dcl_normal1 v4

You can see that only five vertex registers are being used, so where's the sixth? Because the texture
coordinates are the same for both meshes, the second set of texture coordinates can be skipped entirely. All
the better−that's less to deal with. The registers that are used map directly to the vertex element declaration.
There are the source mesh's position coordinates (v0), normal (v1), and texture coordinates (v2),
followed by the target mesh's position coordinates (v3) and normal (v4).

 Creating a Morphing Vertex Shader

188

Moving on in the vertex shader, you begin calculating the vertex position coordinates by first multiplying v0
by the inversed scalar value you provide in the vertex−shader constant register c4.x. Remember, this scalar
value ranges from 0 to 1, with 0 indicating that the vertex coordinates match the source mesh's coordinates
and 1 meaning that the vertex coordinates match the target mesh's coordinates.

Next you have to multiply the vertex coordinates stored in v3 by the scalar value stored in the vertex−shader
constant register c4.y. The vertex−shader code that performs these two calculations follows.

; apply scalar and inversed scalar values to coordinates
mul r0, v0, c4.x
mad r0, v3, c4.y, r0

Notice that you first multiply v0 by the inversed scalar and then multiply v3 by the scalar. Both values are
summed and stored in a temporary register that you need to project using a combined and transposed world *
view * projection transformation. I'll get to that in a second; for now, you need to process the normal values in
the same way you did the vertex coordinates.

; apply scalar and inversed scalar values to normals
mul r1, v1, c4.x
mad r1, v4, c4.y, r1

All that's left now is to transform the coordinates by the transposed world * view * projection transformation
matrix (stored in the vertex−shader constants c0 though c3), dotproduct the normal by the inversed light
direction (the same light direction you use in a D3DLIGHT9 structure) stored in the vertex−shader constant
c5, and store the texture coordinates (from the v2 register).

; Project position
m4x4 oPos, r0, c0

; Dot normal with inversed light direction
; to get diffuse color
dp3 oD0, r1, −c5

; Store texture coordinates
mov oT0.xy, v2

See, I told you this vertex shader would be a simple one. Assuming you already have the code to load your
vertex shader, skip to the good stuff and see how to render using the vertex shader.

The first step to rendering with your vertex shader is to set the constant registers. Earlier in this section, you
learned that those constants are the world * view * projection transformation, light direction, and morph scalar
values. Suppose you've stored the world, view, and projection transformations in the three following matrix
objects:

// matWorld = world transformation matrix (D3DXMATRIX)
// matView = view transformation matrix (D3DXMATRIX)
// matProj = projection transformation matrix (D3DXMATRIX)

In case you didn't keep track of the three transformations, you can obtain them using the
IDirect3DDevice9::GetTransform function, as shown here.

pDevice−>GetTransform(D3DTS_WORLD, &matWorld);
pDevice−>GetTransform(D3DTS_VIEW, &matView);
pDevice−>GetTransform(D3DTS_PROJECTION, &matProj);

 Creating a Morphing Vertex Shader

189

After you've obtained the three transformations, you can combine them and set the transposed matrix in the
vertex−shader constants c0 through c3 as follows.

D3DXMATRIX matWVP = matWorld * matView * matProj;
D3DXMatrixTranspose(&matWVP, &matWVP);
pDDevice−>SetVertexShaderConstantF(0, (float*)&matWVP, 4);

Next, set the morphing inversed−scalar value in c4.x and the scalar value in c4.y.

// Set the scalar and inverse scalar values to use
D3DXVECTOR4 vecScalar = D3DXVECTOR4(1.0f − Scalar, \
 Scalar, \
 0.0, 0.0);
pDevice−>SetVertexShaderConstantF(4, (float)&Scalar, 1);

Last, set the normalized direction that your light is pointing in the vertex−shader constant register c5. This
direction value is the same directional vector stored in the D3DLIGHT structure that you should be used to by
now, although this vector is cast as a D3DXVECTOR4.

// Set the light direction in the c5 constant register
D3DXVECTOR4 vecLight(0.0f, −1.0f, 0.0f, 0.0f);
pDevice−>SetVertexShaderConstantF(5, (float*)&vecLight, 1);

Note that the light direction is in object space, meaning that as your object rotates, so does your light. This is
to ensure that the object is lit exactly as you want, regardless of the viewing direction. If you want the light in
view space instead of object space, you need to transform the light direction by the inversed view
transformation.

Whew! A little work goes a long way, and you're now ready to render the mesh using the vertex shader. At
this point, it's only a matter of setting the vertex streams, texture, shader, and vertex declaration and calling
your draw primitive function. Of course, you need to use the methods from the previous section to render the
individual subsets of the source mesh. Instead of repeating the code you've already seen, I'll leave it up to you
to check out the code from the vertex−shader demo for this chapter. Happy morphing!

Check Out the Demos

As you can see, morphing is an awesome animation technique that you can implement in your current projects
with a minimum of effort. For this chapter, I created two demo programs (Morphing and MorphingVS) that
demonstrate morphing, from using the vertex buffer manipulation technique to using a vertex shader.

These two programs operate in basically the same way. When you run either demo, you are treated to an
animated display (shown in Figure 8.4) of a dolphin jumping through the animated waves of a cool ocean.
Both programs continue until you exit the application.

 Check Out the Demos

190

Figure 8.4: The animated dolphin jumps over morphing sea waves! Both objects (the sea and the dolphin) use
morphing animation techniques.

Programs on the CD

Two projects for this chapter help demonstrate the use of morphing meshes. These two projects are located in
the Chapter 8 directory of the book's CD−ROM.

Morphing. This project demonstrates building morphing meshes by directly manipulating a mesh's
vertex buffer. It is located at \BookCode\Chap08\Morphing.

♦

MorphingVS. With this project, you can check out how to implement vertex shaders to save memory
and speed up rendering. It is located at \BookCode\Chap08\MorphingVS.

♦

 Check Out the Demos

191

Chapter 9: Using Key−Framed Morphing Animation
Pre−calculated animations are the life−blood of today's game engines. With little work, an animator can
design a complete animation sequence inside a popular 3D modeler and export the animation data to a format
readily usable by the game engine. Without any extra effort, the programmer can change or modify those
animations without rewriting the game code.

I know you've seen quite a few of these games, and I know that you want to have the same ability to play back
pre−calculated animations in your own games. This chapter is just what you need!

Using Morphing Animation Sets

If you want to include morphing animation in your projects, you need to develop the means to include
morphing animation sets. Unlike skeletal animation sets, morphing animation sets are extremely easy to use.
Take a look at Figure 9.1, where you can see a common morphing animation sequence and how it is ordered.

Figure 9.1: Morphing animation uses a series of source and target morphing meshes spaced over time (using
animation keys) to create a continuous morphing animation.
Officially, there is no support for morphing animation set templates in DirectX, but don't let that stop you.
You just need to create your own custom templates, and everything will be just fine.

Creating .X Morphing Animation Templates

Morphing animation data is foreign to the .X file format−it doesn't exist officially. For that reason, it's time to
pump up those brain cells and devise your own morphing animation data templates. Now push out those evil
scientist visions of you hysterically laughing at the thought of creating some wild animation data
templates−you only need to follow a few simple steps to construct a morphing animation data template.

If you recall from Chapter 1, morphing animation requires two meshes−the source mesh and the target mesh.
A single time value is used to morph from the source to the target mesh. By specifying a range of time values
(key frames), you can use interpolation to morph into the final mesh that you'll render to the display. This
means that you need to define a morphing animation key−frame template that defines a time value and a mesh
to use as both the source and the target (for subsequent and previous keys) for morphing. For each key, a
single mesh is defined. If a key precedes another key, then the current mesh represents the target mesh during
the morph operation. A key following another will set the current mesh as the source in the morph operation.

The following two templates should suit your purposes for .X morphing animation data:

template MorphAnimationKey
{
 <2746B58A−B375−4cc3−8D23−7D094D3C7C67>

192

 DWORD Time; // Key's time
 STRING MeshName; // Mesh to use (name reference)
}

template MorphAnimationSet
{
 <0892DE81−915A−4f34−B503−F7C397CB9E06>
 DWORD NumKeys; // # keys in animation
 array MorphAnimationKey Keys[NumKeys];
}

Of course, every template needs a matching GUID declaration in your source, so add the following code to the
top of your main source file (or wherever it's appropriate for you):

// {2746B58A−B375−4cc3−8D23−7D094D3C7C67}
DEFINE_GUID(MorphAnimationKey,
 0x2746b58a, 0xb375, 0x4cc3,
 0x8d, 0x23, 0x7d, 0x9,
 0x4d, 0x3c, 0x7c, 0x67);
{0892DE81−915A−4f34−B503−F7C397CB9E06}
DEFINE_GUID(MorphAnimationSet,
 0x892de81, 0x915a, 0x4f34,
 0xb5, 0x3, 0xf7, 0xc3,
 0x97, 0xcb, 0x9e, 0x6);

The comments in each of the two templates pretty much speak for themselves, but take a quick look back to
make sure you're clear on a few things. In MorphAnimationKey, there are only two variables−Time,
which is the timing value of the animation (the time the key is placed in the timeline, commonly specified in
milliseconds), and MeshName, a STRING value that holds the name of the mesh used in the morphing
operation.

As for the MorphAnimationSet template, there are only two variables. The first variable, NumKeys, is
the number of MorphAnimationKeys objects that are contained within the animation. The second variable
is the Keys array, which holds every MorphAnimationKey data object used in the animation.

Note You'll notice that the MorphAnimationKey template defines the mesh name as a STRING data type,
not as a template reference. That means you have to match the mesh name to the animation key after the
morphing animation keys have been loaded.

Now that you've been introduced to the templates, take a look at how you can use them to contain your
morphing animation data. For a quick example of using your newly created template, create a simple
animation. First, you'll need some meshes to work with:

Mesh MyMesh1 {
 // Mesh data goes here
}

Mesh MyMesh 2 {
 // Mesh data goes here
}

Mesh MyMesh 3 {
 // Mesh data goes here
}

 Chapter 9: Using Key−Framed Morphing Animation

193

To keep things simple, I left out the specific mesh data and merely showed you how to instance the Mesh data
objects for later use. These three Mesh objects are named MyMesh1, MyMesh2, and MyMesh3. For the
animation data, I want to define two animations, called MyAnimation1 and MyAnimation2.

MorphAnimationSet MyAnimation1
{
 2;
 0; "MyMesh1";,

500; "MyMesh2";,
}

MorphAnimationSet MyAnimation2
{
 4;
 0; "MyMesh1";,
 500; "MyMesh2";,
 1000; "MyMesh3";,
 1500; "MyMesh2";;
}

The first animation, MyAnimation1, contains two animation keys. The first key is at time 0 and uses
MyMesh1 as a source mesh. The second key is at time 500 and uses MyMesh2 as the target mesh. The
animation is therefore 500 time units in length.

For the second animation, MyAnimation2, there are four animation keys. These keys, spaced 500 time units
apart, use all three meshes in the series. If you wanted to update the animation at 700 time units, you would
use MyMesh2 for the source mesh and MyMesh3 as the target mesh in a morphing animation. The scalar
value for the morphing operation would be calculated using the key's time values.

Well, that's pretty easy to understand. It's the part where you actually load this animation data that will be a
little tough.

Loading Morphing Animation Data

After you've defined your morphing animation templates, you can load your animation data and start putting it
to good use. The first step is to define three classes that match the templates' data structures, containing data
for animation keys, sets, and a collection of animation sets.

class cMorphAnimationKey
{
 public:
 DWORD m_Time; // Time of key
 char *m_MeshName; // Name of mesh to use
 D3DXMESHCONTAINER_EX *m_MeshPtr; // Pointer to mesh data

 public:
 cMorphAnimationKey()
 {
 m_MeshName = NULL;
 m_MeshPtr = NULL;
 }

 ~cMorphAnimationKey()
 {
 delete [] m_MeshName;
 m_MeshName = NULL;

 Loading Morphing Animation Data

194

 m_MeshPtr = NULL;
 }
};

class cMorphAnimationSet
{
 public:
 char *m_Name; // Name of animation
 DWORD m_Length; // Length of animation
 cMorphAnimationSet *m_Next; // Next animation in linked list

 DWORD m_NumKeys; // # keys in animation
 cMorphAnimationKey *m_Keys; // Array of keys

 public:
 cMorphAnimationSet()
 {
 m_Name = NULL;
 m_Length = 0;
 m_Next = NULL;
 m_NumKeys = 0;
 m_Keys = NULL;
 }

 ~cMorphAnimationSet()
 {
 delete [] m_Name; m_Name = NULL;
 m_Length = 0;
 m_NumKeys = 0;
 delete [] m_Keys; m_Keys = NULL;
 delete m_Next; m_Next = NULL;
 }
};

class cMorphAnimationCollection : public cXParser
{
 protected:
 DWORD m_NumAnimationSets; // # animation sets
 cMorphAnimationSet *m_AnimationSets; // Animation sets

 protected:
 // Parse an .X file for mass and spring data
 BOOL ParseObject(IDirectXFileData *pDataObj,
 IDirectXFileData *pParentDataObj,
 DWORD Depth,
 void **Data, BOOL Reference);

 public:
 cMorphAnimationCollection()
 {
 m_NumAnimationSets = 0;
 m_AnimationSets = NULL;
 }

 ~cMorphAnimationCollection() { Free(); }

 BOOL Load(char *Filename);
 void Free();

 void Map(D3DXMESHCONTAINER_EX *RootMesh);
 void Update(char *AnimationSetName, \

 Loading Morphing Animation Data

195

 DWORD Time, BOOL Loop, \
 D3DXMESHCONTAINER_EX **ppSource, \
 D3DXMESHCONTAINER_EX **ppTarget, \
 float *Scalar);
};

The first class shown, cMorphAnimationKey, stores the time of the key, the mesh's name, and a pointer to
a mesh object (which you need to set after you load all meshes from the .X file).

The cMorphAnimationSet class contains an array of cMorphAnimationKey objects that constitute
the entire animation. Each cMorphAnimationSet class contains a name buffer that is filled with the
matching animation set's data object from the .X file. This means you can have any number of animations
(each contained within its own cMorphAnimationSet object), each identified by a unique name.

This list of animation set objects is contained in a linked list, which you access via the
cMorphAnimationSet::m_Next pointer. (One animation set points to the next set in the list.) The entire
list of animation set objects is stored in the cMorphAnimationCollection object, which stores only a
pointer to the root animation set object. To access any animation set object, you need to scan through the
animation set objects and look for the specific animation.

You should be familiar with the member variables from the cMorphAnimationSet object (except for the
m_Length variable, which stores the length of the animation as determined by the time of the last key in the
array of cMorphAnimationKey objects). You'll use m_Length later to determine the length of the
animation without having to continuously scan through the array of keys.

Whereas the cMorphAnimationSet class contains a single animation, it's the responsibility of the
cMorphAnimationCollection class to contain a series of cMorphAnimationSet objects (through
the use of the aforementioned linked list pointers).

To load the morphing mesh animations, you derive the cMorphAnimationSet class from the cXParser
class you developed in Chapter 3. Deriving from the cXParser class gives you access to the
ParseObject function, which is where you'll slip in the code to retrieve the animation data from any
MorphAnimationSet objects.

However, you don't have to call ParseObject directly because there is a Load function that does it for
you. You only need to call Load, specifying the name of the .X file from which you want to load the
morphing animation data sets, and let the class functions take care of the rest. When you are finished with the
animation data, a call to Free releases all resources used to contain the animation data.

The constructor, destructor, Load, and Free functions are trivial in this instance; I'll leave it up to you to
look at the code for those on the CD−ROM. However, you do want to take a close look at the ParseObject
function here. Basically, you want to code the ParseObject function to look for any
MorphAnimationSet object instances and create a cMorphAnimationSet object to contain the
animation data. You can use the following code to do so:

BOOL cMorphAnimationCollection::ParseObject(\
 IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference)
{
 const GUID *Type = GetObjectGUID(pDataObj);

 Loading Morphing Animation Data

196

 // Read in animation set data
 if(*Type == MorphAnimationSet) {

 // Create and link in a cMorphAnimationSet object
 cMorphAnimationSet *AnimSet = new cMorphAnimationSet();
 AnimSet−>m_Next = m_AnimationSets;
 m_AnimationSets = AnimSet;

 // Increase # of animation sets
 m_NumAnimationSets++;

 // Set the animation set's name
 AnimSet−>m_Name = GetObjectName(pDataObj);

 // Get data pointer
 DWORD *Ptr = (DWORD*)GetObjectData(pDataObj, NULL);

 // Get # of keys and allocate array of keyframe objects
 AnimSet−>m_NumKeys = *Ptr++;
 AnimSet−>m_Keys = new cMorphAnimationKey[AnimSet−>m_NumKeys];

 // Get key data − time and mesh names
 for(DWORD i=0;i<AnimSet−>m_NumKeys;i++) {
 AnimSet−>m_Keys[i].m_Time = *Ptr++;
 AnimSet−>m_Keys[i].m_MeshName = strdup((char*)*Ptr++);
 }

 // Store length of animation
 AnimSet−>m_Length = AnimSet−>m_Keys[AnimSet−>m_NumKeys−1].m_Time;
 }

 return ParseChildObjects(pDataObj, Depth, Data, Reference);
}

The only critical code in the cMorphAnimationCollection::ParseObject function is the bit that
loads morphing animation set objects. After you create an instance of the cMorphAnimationSet object
and link it into a linked list of objects, you need to read in the number of keys used in the animation.
Following the number of keys, the code enters a loop that reads every key's time value and mesh name. After
the loop is finished, the total length of the animation is grabbed (using the last key's time value).

After you load all the animation sets in the .X file, it is time to link the appropriate mesh objects to the
animation key objects. You need to do this so that you have fast access to each mesh that an animation set
object needs to render.

To match the meshes to the animation sets, create a function that scans through each animation set. For each
key in the set, scan through a list of meshes you provide for ones that are named the same as the names stored
in the keys. This is exactly the purpose of the cMorphAnimationCollection::Map function.

void cMorphAnimationCollection::Map(\
 D3DXMESHCONTAINER_EX *RootMesh)
{
 // Error checking
 if(!RootMesh)
 return;

 // Go through each animation set
 cMorphAnimationSet *AnimSet = m_AnimationSets;
 while(AnimSet != NULL) {

 Loading Morphing Animation Data

197

 // Go through each key in animation set and match
 // meshes to key's mesh pointers
 if(AnimSet−>m_NumKeys) {
 for(DWORD i=0;i<AnimSet−>m_NumKeys;i++)

AnimSet−>m_Keys[i].m_MeshPtr = \
 RootMesh−>Find(AnimSet−>m_Keys[i].m_MeshName);
 }

 // Go to next animation set object
 AnimSet = AnimSet−>m_Next;
 }
}

In the Map function, I use the D3DXMESHCONTAINER_EX::Find function to iterate all meshes contained
with the object to look for a specifically named mesh. If found, the pointer to that mesh is stored in the key
object.

When it is time to render the morphing animation set, you perform a quick scan of the keys, find the mesh
pointers, and perform a morphing mesh render. You can follow the same steps to render your own morphing
animation. Just follow along with me in the next section, and you'll be rendering morphing animations in no
time!

Rendering the Morphing Mesh

Rendering with the morphing mesh animation set is easy, now that you've loaded all your data. By taking a
time value in your animation timeline, you can scan through the array of animation keys and look for the two
keys between which the time falls. The first key contains a pointer to the source mesh to use in the morphing
operation, and the second key contains a pointer to the target mesh.

Since you can have any number of animations loaded into your animation collection object, you need to create
a function that scans for a specifically named animation, and then scan through that animation, grabbing the
appropriate key values you need to render with. This is what the
cMorphAnimationCollection::Update function does.

void cMorphAnimationCollection::Update(\
 char *AnimationSetName, \
 DWORD Time, BOOL Loop, \
 D3DXMESHCONTAINER_EX **ppSource, \
 D3DXMESHCONTAINER_EX **ppTarget, \
 float *Scalar)

Although it appears quite formidable, the Update function is really easy to use. You need to supply the name
of the animation set you want to use as the AnimationSetName parameter, the time of the animation as
Time, and whether of not to use looping (set Loop to TRUE or FALSE).

Also, you need to provide two pointers (ppSource and ppTarget) that are filled with the source and target
mesh objects you'll use to perform the morphing render function, along with a pointer to a variable that will
contain the scalar value to use for morphing.

The Update function starts by getting a pointer to the animation set linked list and clearing the pointers you
passed to the function.

{

 Rendering the Morphing Mesh

198

 cMorphAnimationSet *AnimSet = m_AnimationSets;

 // Clear targets
 *ppSource = NULL;
 *ppTarget = NULL;
 *Scalar = 0.0f;

The pointers are cleared in case an error occurs. If it does, you can check the pointers to see whether they are
set to NULL. Non−NULL values mean the call to Update worked.

Moving on with the function, you scan the list of animation sets to look for a match to the name you passed in
the AnimationSetName parameter. You can force the Update function to use the first animation set in
the linked list by setting AnimationSetName to NULL.

The name of the animation must match what is stored in the .X file. The name from the .X file is the
animation set's data object instance name. For example, the following animation set data object has an
instance name of Walk:

MorphAnimationSet Walk
{
 2;
 0; "Figure1";,
 500; "Figure2";;
}

To get the pointers to the Figure1 and Figure2 meshes, you would specify Walk as the
AnimationSetName. I think you get the picture, so here's the code that will scan the list of animation sets
(returning from the function if no set was found or if the animation set found has no animation keys set).

 // Look for matching animation set name if used
 if(AnimationSetName) {

 // Find matching animation set name
 while(AnimSet != NULL) {

 // Break when match found
 if(!stricmp(AnimSet−>m_Name, AnimationSetName))
 break;

 // Go to next animation set object
 AnimSet = AnimSet−>m_Next;
 }

}

 // Return no set found
 if(AnimSet == NULL)
 return;

 // Return if no keys in set
 if(!AnimSet−>m_NumKeys)
 return;

At this point, you have a pointer to the cMorphAnimationSet object that contains the key data to use for
your morphing animation. With this pointer (AnimSet), you can bounds−check the time of the animation
from which you want to obtain the key data with the actual length of the animation (as stored in the animation
set's m_Length data member).

 Rendering the Morphing Mesh

199

 // Bounds time to animation length
 if(Time > AnimSet−>m_Length)
 Time = (Loop==TRUE)?Time%(AnimSet−>m_Length+1):AnimSet−>m_Length;

From here, you can scan through each key object in the animation set and determine which keys to use to
obtain the pointers to the source and target meshes for rendering. You saw how to scan the keys in Chapter 5,
so I'll skip the explanation and get to the code.

 // Go through animation set and look for keys to use
 DWORD Key1 = AnimSet−>m_NumKeys−1;
 DWORD Key2 = AnimSet−>m_NumKeys−1;
 for(DWORD i=0;i<AnimSet−>m_NumKeys−1;i++) {
 if(Time >= AnimSet−>m_Keys[i].m_Time && \
 Time < AnimSet−>m_Keys[i+1].m_Time) {

 // Found the key, set pointers and break
 Key1 = i;
 Key2 = i+1;
 break;
 }
}

Now that you've found the keys you want to use in the morphing animation (stored as Key1 and Key2), you
can calculate a morphing scalar value based on the times of the two keys.

 // Calculate a time scalar value to use
 DWORD Key1Time = AnimSet−>m_Keys[Key1].m_Time;
 DWORD Key2Time = AnimSet−>m_Keys[Key2].m_Time;
 float KeyTime = (float)(Time − Key1Time);
 float MorphScale = 1.0f/(float)(Key2Time−Key1Time)*KeyTime;

Finally, you can set the source, target, and scalar pointers (which you passed to the Update function) with
the appropriate values.

// Set pointers
 *ppSource = AnimSet−>m_Keys[Key1].m_MeshPtr;
 *ppTarget = AnimSet−>m_Keys[Key2].m_MeshPtr;
 *Scalar = MorphScale;
}

Now that all your classes and functions are defined, you can get to work! Take a look at an example that uses
the classes you just created to load and use a morphing animation collection from a file called MorphAnim.x.
First, you need to instance a cAnimationCollection object and load a series of animation sets.

cMorphAnimationCollection MorphAnim;
MorphAnim.Load("MorphAnim.x");

You also need to load some meshes. You can use the handy helper functions you developed in Chapter 1 to
load a series of meshes (from the same MorphAnim.x file shown here).

D3DXMESHCONTAINER_EX *Meshes;
LoadMesh(&Meshes, NULL, pDevice, "MorphAnim.x");

After the meshes and animation sets are loaded, you need to map the animation sets to the meshes using the
cMorphAnimationCollection::Map function.

 Rendering the Morphing Mesh

200

MorphAnim.Map(MorphAnim);

From this point, you can use the Update function to get the source mesh, target mesh, and scalar values to
create your sequenced morphing animation. Going way back to when you created these morphing animation
set templates, assume you have two animation sets−one called MyAnimation1 and another called
MyAnimation2.

You're going to use MyAnimation2 here, and you want to determine how to update the animation at a time
of 700 units (specifying looping). The following code will determine which source mesh, target mesh, and
scalar values you must use:

// pAnimCollection = preloaded cMorphAnimationCollection object
// Time = DWORD value w/time of animation to use,
// which is 700 in this case

// Pointers to the source and target meshes used for rendering
D3DXMESHCONTAINER_EX *pSource, *pTarget;

// Scalar value to use for morphing
float Scalar;

// Call Update to object morphing mesh and scalar data
MorphAnim.Update("MyAnimation2", Time, TRUE, \
 &pSource, &pTarget, &Scalar);

The source mesh and target mesh pointers now point to the meshes to use in your call to render your morphing
mesh, along with Scalar, which contains the scalar value. Things are starting to wrap up now; all that's left
is for you to draw the morphing mesh using the techniques you learned in Chapter 8. If you want, check out
the demo for this chapter, which shows a morphing animation in action. Go ahead, you know you want to.
The source code for the demo is just sitting there, waiting for you to use it in your project!

Obtaining Morphing Mesh Data from Alternative Sources

Well, designing your own morphing animation templates and classes is really a top−notch effort on your part,
but what good is it if you can't obtain that morphing animation data from anywhere, such as from a popular
3D rendering package? Don't fret, there are a few things you can do to get that morphing animation set data
you crave in your projects.

The CD−ROM includes a program called MeshConv, which you can use to convert .MD2 files into .X files.
What are .MD2 files, you ask? Developed by id Software, an .MD2 file (used in games such as id's Quake)
contains morphing mesh and animation set data. You can find hundreds of .MD2 files on the Internet (such as
from http://www.planetquake.com/polycount) to use in your own programs. Using the MeshConv program,
you can convert those files into .X files for use in your projects.

You probably remember this handy program from Chapter 5. In case you didn't read that chapter yet, let me
give you a brief glimpse of the program here. After you execute the program, you are presented with the
MeshConv dialog box, shown in Figure 9.2.

 Obtaining Morphing Mesh Data from Alternative Sources

201

Figure 9.2: The MeshConv dialog box contains two buttons you can click to convert .MS3D and .MD2 files to
.X files.
To convert an .MD2 file to an .X file, click on the Convert .MD2 to .X button in the MeshConv dialog box.
The Open File dialog box will appear. This dialog box allows you to navigate your drives and locate the file
you want to convert to .X format. Select an appropriate file to convert and click Open.

Next, the Save .X File dialog box will appear. You can use this dialog box to locate and select an .X file into
which you want to save the mesh and animation data. Enter a file name and click Save. After a moment, you'll
see a message box informing you that the conversion was successful.

Now you're ready to use your .X file with one of the classes you developed earlier in this chapter. You have a
series of Mesh templates that contain every target morphing mesh used in the source file. A single
MorphAnimationSet template will help you load animation data into your project using the classes and
techniques you studied in this chapter.

For an example of how to work with the .X files you created using the MeshConv program, check out the
MorphAnim demo included for this chapter.

Check Out the Demos

This chapter contains two projects−one that converts .MD2 files into .X files, and another that demonstrates
how to use morphing animation sets in your own projects. Fire up the MorphAnim demo (shown in Figure
9.3) to check out how effective morphing animation sets are.

Figure 9.3: An animator's dream comes true via a morphing music box ballerina animation!
Programs on the CD

 Check Out the Demos

202

In the Chapter 9 directory on this book's CD−ROM, you'll find the following projects to peruse and use for
your own game projects.

MeshConv. You can use this utility program to convert your .MS3D and .MD2 files to .X files. The
source code is fully commented and shows the format of the two file types. It is located at
\BookCode\Chap09\MeshConv.

♦

MorphAnim. You can use this demo program to see how to use morphing animation sets. It is
located at \BookCode\Chap09\MorphAnim.

♦

 Check Out the Demos

203

Chapter 10: Blending Morphing Animations
Punching, ducking, kicking, walking, and jumpingthat's a whole lot of animation to work with. Can you
imagine taking the time to painstakingly define each and every one of those animations, only to have your
boss decide he wants you to make characters jump and punch at the same time, or duck and kick, or perform
any number of other combined animations? What are you to do?

Well, if you're using morphing animation, then all you can do is to work your programming magic and
develop a blended morphing animation technique in which the meshes of your previously created animations
can be blended to form new and unique animations on the fly and in real time. This chapter is here to show
you how to do just that!

Blending Morphing Animations

Way back in Chapter 6, you saw how to create new and dynamic animations by combining, or rather
blending, various mesh movements as defined in multiple animation sets. Whereas Chapter 6 concentrated on
blending skeletal−based animation sets, this chapter will show you how to achieve the same blended
animation effects with your morphing meshes. That's rightin this chapter you'll see how to combine the
various movements of your pixel−based morphing meshes to create new and dynamic animations on the fly!

Blending morphing mesh animations is a little bit tougher to accomplish than blending skeletal−based mesh
animations. Don't worry, though. It's not that much harderit just takes a different approach. With blended
morphing animation, you want to be able to take the results of multiple morphed meshes and combine them
into one mesh.

For example, suppose you have a mesh that represents a person's face, and you have two morphing
animationsone that opens and closes the mesh's mouth and another that blinks the mesh's eyes. Figure 10.1
shows the cycle of each animation.

Figure 10.1: Using the same mesh, you move (morph) various vertices to create two unique animation
sequences.

204

Now suppose you want to spice things up by blending the two animations (as shown in Figure 10.2) so your
mesh has the ability to open its mouth and blink its eyes at the same time, and at various speeds for each
animation. Sounds difficult, doesn't it? Well, it's not that tough once you know the secret.

Figure 10.2: You can combine two animations to create a single blended mesh.
The trick to blending morphing animations is to isolate only those vertices that actually move during each
animation sequence, and to combine each vertex's motions into a single mesh that represents the final mesh
you want to render. Trying to determine which vertices move during an animation sequence sounds tricky, but
believe me, with the help of an additional reference mesh (called a base mesh), you can tackle this problem
with your hands tied behind your back!

Using a Base Mesh in Blended Morphing Animation

The real secret to using blended morphing animation is to introduce a reference mesh into the equation. The
base mesh defines the initial coordinates of each vertex in the mesh before any morphing is applied. This base
mesh is commonly the source mesh of the morph operation. In the example of a person's face, the base mesh
is the person's face with its mouth closed and eyes open.

When you are ready to blend two morphed meshes (or any number of meshes, for that matter), you determine
the difference in vertex coordinates between each morphed mesh and the base mesh. You blend these
differences in coordinates into a final blended morphing mesh. Read on to see how to calculate those
differences.

Calculating the Differences

Calculating the difference values is pretty basic. Each animation you blend requires a source mesh (the base
mesh) and a target mesh. For the first animation, the target mesh is the one with the person's mouth fully open.
The second animation's target mesh is the one with the person's eyes fully closed. And of course, you
remember the base meshit's the one with the person's mouth fully closed and eyes fully open.

In this example, those meshes will be the ones shown in Figure 10.2. I'll assume you have gone through the
trouble of loading each mesh in the following three mesh objects.

 Using a Base Mesh in Blended Morphing Animation

205

ID3DXMesh *pBaseMesh; // Contains the base mesh
ID3DXMesh *pTargetMesh1; // Contains 1st morph target mesh
ID3DXMesh *pTargetMesh2; // Contains 2nd morph target mesh

Aside from the base mesh and the two target meshes, you need one more mesh to store the final blended
mesh. This blended mesh is identical to the others with regard to the number of vertices and faces, so you can
clone the blended mesh from the base mesh to make sure everything matches.

To clone the base mesh (after it has been loaded) into the blended mesh (an ID3DXMesh object that you'll
call pBlendedMesh), you can use the following code.

ID3DXMesh *pBlendedMesh;

// Get the base mesh's FVF and 3−D device
DWORD FVF = pBaseMesh−>GetFVF();
IDirect3DDevice9 *pMeshDevice;
pBaseMesh−>GetDevice(&pMeshDevice);

// Clone the mesh
pBaseMesh−>CloneMeshFVF(0, FVF, pMeshDevice, &pBlendedMesh);

So, you'll be working with four mesh objectsthe base mesh, two target meshes, and a blended mesh. To keep
things easy, I'll assume each mesh uses the same vertex structure and FVF, using only a vertex position,
normals, and pair of texture coordinates, as I have declared here. If need be, just clone all meshes to use the
same FVF as I did previously.

typedef struct {
 D3DXVECTOR3 vecPos; // Vertex coordinates
 D3DXVECTOR3 vecNormal; // Vertex normals
 float u, v; // Texture coordinates
} sVertex;
#define VERTEXFVF (D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1)

When your meshes are all ready, you can lock the vertex buffers of each to access the vertex data.

// Lock all meshes and get pointers
sVertex *pBaseVertices, *pBlendedVertices;
sVertex *pTarget1Vertices, *pTarget2Vertices;

pBaseMesh−>LockVertexBuffer(D3DLOCK_READONLY, \
 (void**)&pBaseVertices);
pTargetMesh1−>LockVertexBuffer(D3DLOCK_READONLY, \
 (void**)&pTarget1Vertices);
pTargetMesh2−>LockVertexBuffer(D3DLOCK_READONLY, \
 (void**)&pTarget2Vertices);
pBlendedMesh−>LockVertexBuffer(0, (void**)&pBlendedVertices);

Now that you have the pointers to each mesh's vertex buffer, you can begin iterating through each target
mesh's vertices, subtracting the vertex (and normal) coordinates from the matching base mesh's vertices (with
each different value stored in temporary registers that you will tally later).

// Iterate all vertices
for(DWORD i=0;i<pBaseMesh−>GetNumVertices();i++) {

 // Get the difference in vertex coordinates
 D3DXVECTOR3 vecPosDiff1 = pTarget1Vertices−>vecPos − \

 Using a Base Mesh in Blended Morphing Animation

206

 pBaseVertices−>vecPos;
 D3DXVECTOR3 vecPosDiff1 = pTarget2Vertices−>vecPos − \
 pBaseVertices−>vecPos;
 // Get the difference in normals
 D3DXVECTOR3 vecNormalDiff1 = pTarget1Vertices−>vecNormal − \
 pBaseVertices−>vecNormal;
 D3DXVECTOR3 vecNormalDiff2 = pTarget2Vertices−>vecNormal − \
 pBaseVertices−>vecNormal;

You're halfway therejust hang in a little bit longer! You've calculated the differences, so now you need to
blend them.

Blending the Differences

At this point, you have the difference values for the vertex and normal coordinates. The next step is to scale
each of the differences based on the amount of blending you want for each mesh. For example, if you only
want the first animation (the mouth opening) to use 50 percent of the difference (meaning the mouth would be
halfway open), then multiple the values by 0.5.

Tip In addition to determining the percentage of the differences to blend, you can use the blending
values as a factor to animate the blended mesh. Slowly increase the blending values from 0 to 1
over time to achieve smooth animation.

To make things easy, specify the amount of blending in two variablesone for the blending amount for the first
mesh and the other for the blending amount for the second mesh.

float Blend1 = 1.0f; // Use 100% of the differences
float Blend2 = 1.0f;

To blend the differences, you only need to multiply them by the blending values you just defined.

// Apply blending values
vecPosDiff1 *= Blend1; vecNormalDiff1 *= Blend1;
vecPosDiff2 *= Blend2; vecNormalDiff2 *= Blend2;

When you've got the differences scaled by your blending factors, you can add them together to achieve the
blended difference values.

// Get tallied blended difference values
D3DXVECTOR3 vecBlendedPos = vecPosDiff1 + vecPosDiff2;
D3DXVECTOR3 vecBlendedNormal = vecNormalDiff1+vecNormalDiff2;

The final step is to add the blended differences to the coordinates of the base mesh's vertex coordinates and
normal, and store the results in the blended mesh's vertex buffer.

// Add the differences back to base mesh values and store
pBlendedVertices−>vecPos = vecBlendedPos + \
 pBaseVertices−>vecPos;
// Normalize the normals before storing them!
D3DXVECTOR3 vecNormals = BlendedNormal+pBaseVertices−>vecNormal;
D3DXVec3Normalize(&pBlendedVertices−>vecNormal, &vecNormals);

All that's left now is to increase the vertex buffer pointers so the next vertex in each mesh is iterated, close the

 Blending the Differences

207

fornext code block to finish iterating the vertices, and unlock the vertex buffers.

// Go to next vertices
 pBaseVertices++; pBlendedVertices++;
 pTarget1Vertices++; pTarget2Vertices++;
} // Next loop iteration

// Unlock the vertex buffers
pBlendedMesh−>UnlockVertexBuffer();
pTarget2Mesh−>UnlockVertexBuffer();
pTarget1Mesh−>UnlockVertexBuffer();
pBaseMesh−>UnlockVertexBuffer();

And there you have it! One complete blended mesh, ready to render! You've got to admit that blending two
meshes is pretty cooland easy, for that matter. What would you say to blending four or more meshes? You'd
think I was crazy, but if you check out the source code for the blended morphing mesh demo included on the
CD−ROM, you'll see that it's been done! That's right, the complete code for blending four morphing
animations is sitting on that disc, waiting for you to use it in your next project.

What's that, you say? You'd prefer a faster way to blend the meshes? Well, the programming gods have
answered your prayers, my friend, for you're about to see how you can use a vertex shader to do the blending
dirty work for you!

Building a Blending Morph Vertex Shader

Vertex shaders are going to be your savior when it comes to working with blended morphing animations.
Earlier in this chapter, you saw what was involved in blending mesheslocking each vertex buffer, calculating
the differences, and finally blending the values togethereach and every frame, the same slow process.

Talk about a major slowdown, especially if those meshes' buffers are contained in video memory. Using a
vertex shader is guaranteed to increase the speed at which your blended morph animations are processed
because you can store all your mesh data in fast video memory and let the vertex shader deal with the
processing.

Your blended vertex shader will work pretty much the same way you blended the vertex coordinates directly
earlier in this chapter. For each mesh that you want to blend, you need access to the vertex buffers. With
vertex shaders, you have to map each mesh's vertex buffer to a vertex stream. Instead of locking the vertex
buffer to get at the vertex data, you use the vertex stream data (as mapped out by the vertex declaration) to
obtain the coordinate and normal data.

The only problem is that vertex shaders can only use so many streams. In addition, each vertex shader can
only access a limited number of vertex registers (such as coordinates, normal data, and texture coordinates).
DirectX 8 and 9 limit the number of vertex registers to 16, so you have to make every little bit of data count.

If, at minimum, your vertex structure contains the coordinates of the vertex, normal, and texture (for a total of
three registers per stream), you could only use five meshes, one of which is the base mesh. You could use up
to four blending meshes inside a vertex shader. Not to worry, howeverfour blending meshes is probably more
than you'll ever need!

The first step in creating your blending morph vertex shader is defining the vertex structure and declaration.
Remember, you want to keep the amount of vertex data to a minimum (three registers at most), so your vertex
structure might look something like this:

 Building a Blending Morph Vertex Shader

208

typedef struct {
 D3DXVECTOR3 vecPos; // Vertex coordinates
 D3DXVECTOR3 vecNormal; // Vertex normals
 float u, v; // Texture coordinates
} sBlendVertex;

The sBlendVertex structure's comments speak for themselves, so I'll skip ahead to the vertex declaration.

// Vertex shader declaration and interfaces
D3DVERTEXELEMENT9 g_MorphBlendMeshDecl[] =
{
 // 1st stream is for base mesh
 // specify position, normal, texture coordinate
 { 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, \
 D3DDECLUSAGE_POSITION, 0 },
 { 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_NORMAL, 0 },
 { 0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_TEXCOORD, 0 },

 // 2nd stream is for mesh 1
 { 1, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_POSITION, 1 },
 { 1, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_NORMAL, 1 },
 { 1, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_TEXCOORD, 1 },

 // 3rd stream is for mesh 2
 { 2, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_POSITION, 2 },
 { 2, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_NORMAL, 2 },
 { 2, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_TEXCOORD, 2 },

 // 4th stream is for mesh 3
 { 3, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_POSITION, 3 },
 { 3, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_NORMAL, 3 },
 { 3, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_TEXCOORD, 3 },

 // 5th stream is for mesh 4
 { 4, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_POSITION, 4 },
 { 4, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_NORMAL, 4 },
 { 4, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
 D3DDECLUSAGE_TEXCOORD, 4 },
 D3DDECL_END()
};

In g_BlendMorphDecl, you can see that you are defining five streams, each specifying a
three−dimensional position and a normal, as well as a two−dimensional texture coordinate. The first stream
uses an index usage value of 0; the second stream uses an index usage value of 1; and so on. This means the
vertex shader will have access to five usage types for each of the vertex components (position, normal, texture
coordinates). Table 10.1 shows the data stored in each vertex register.

 Building a Blending Morph Vertex Shader

209

Table 10.1: Blended Morph Animation Vertex Register Assignments

Vertex RegisterAssignment

v0 First (base) mesh's 3D coordinates

v1 First (base) mesh's normal

v2 First (base) mesh's texture coordinates

v3 Second mesh's 3D coordinates

v4 Second mesh's normal

v5 Second mesh's texture coordinates

v6 Third mesh's 3D coordinates

v7 Third mesh's normal

v8 Third mesh's texture coordinates

v9 Fourth mesh's 3D coordinates

v10 Fourth mesh's normal

v11 Fourth mesh's texture coordinates

v12 Fifth mesh's 3D coordinates

v13 Fifth mesh's normal

v14 Fifth mesh's texture coordinates

Note You can find the blended morph vertex shader (MorphBlend.vsh) on the CD−ROM. Check
out the end of this chapter for information on the blended morphing demo.

After you create the vertex structure and declaration, you can move on to creating the vertex shader itself. The
shader will duplicate what you've already done previously in this chapter. For each vertex to be blended, you
calculate the difference in vertex coordinates from the target morphing mesh to the base mesh.

That difference is scaled by a percentage you specify (via a vertex shader constant ranging from 0 to 1), and
the results are tallied from each blended mesh into a resulting set of position coordinates, normals, and texture
coordinates used to output a vertex. Simple, isn't it?

Take a look at the vertex code bit by bit to see just what's occurring.

; v0 = Base mesh's position.xyz
; v1 = Base mesh's normal.xyz
; v2 = Base mesh's texture.xy
;
; v3 = Blend 1 mesh's position.xyz
; v4 = Blend 1 mesh's normal.xyz
; v5 = Blend 1 mesh's texture.xy
;
; v6 = Blend 2 mesh's position.xyz
; v7 = Blend 2 mesh's normal.xyz
; v8 = Blend 2 mesh's texture.xy
;
; v9 = Blend 3 mesh's position.xyz
; v10 = Blend 3 mesh's normal.xyz
; v11 = Blend 3 mesh's texture.xy
;

 Building a Blending Morph Vertex Shader

210

; v12 = Blend 4 mesh's position.xyz
; v13 = Blend 4 mesh's normal.xyz
; v14 = Blend 4 mesh's texture.xy
;
; c0−c3 = world+view+projection matrix
; c4 = Blend amounts 0−1 (mesh1, mesh2, mesh3, mesh4)
; c5 = light direction
vs.1.0

To begin, you see a bunch of comments to help you decipher which vertex registers and constants are in use.
You need to set six vertex constants before calling the vertex shader.

c0 through c3 need to contain the transposed world * view * projection transformation matrix.♦
c4 holds the blending amounts for each mesh (c4.x for mesh #1, c4.y for mesh #2, c4.z for mesh
#3, and c4.w for mesh #4).

♦

c5 is set to the light direction vector.♦

I'll get back to the constants in a bit; for now, I'll continue with the vertex shader code. After the comments, I
added the vertex shader version requirement. As you can see, the blended morph vertex shader only requires
vertex shader 1.0, which should be supported by most cards by the time you read this book.

After the comments and version requirement comes the vertex element mapping declarations. These
declarations are used to map the vertex components you defined in the D3DVERTEXELEMENT9 array to the
shader's vertex registers (v0 through v14). These mappings are identical to those seen in Table 10.1, so you
should be able to follow along quite easily.

; declare mapping
dcl_position v0 ; base mesh
dcl_normal v1
dcl_texcoord v2

dcl_position1 v3 ; 1st mesh
dcl_normal1 v4
dcl_texcoord1 v5

dcl_position2 v6 ; 2nd mesh
dcl_normal2 v7
dcl_texcoord2 v8

dcl_position3 v9 ; 3rd mesh
dcl_normal3 v10
dcl_texcoord3 v11

dcl_position4 v12 ; 4th mesh
dcl_normal4 v13
dcl_texcoord4 v14

With the vertex registers now mapped, you can access the various vertex data via the v0 through v14
registers. The v0 register will contain the coordinates of the vertex in the base mesh; the v6 register will
contain the coordinates of the vertex in the second mesh; and so on.

You start the actual vertex shader code by putting the base mesh's vertex coordinates and normal into two
temporary registers (r0 and r1).

; Get base coordinates and normal into registers r0 and r1
mov r0, v0 ; coordinates (r0)

 Building a Blending Morph Vertex Shader

211

mov r1, v1 ; normal (r1)

The shader only uses these two registers for reference, so they will not be overwritten during functions that
follow (at least until the end of the shader, which you'll see soon). The next bit of code calculates the
difference between the base mesh's coordinates and the mesh specified as the first blended mesh, which uses
vertex registers v3 through v5.

The difference is scaled (multiplied) by the constant value in c4.x (a value ranging from 0 to 1), added back
to the original vertex coordinates from r0, and stored in the r4 register. Through the remainder of the vertex
shader, r4 will contain the final coordinates of the blended mesh's vertex. The same process is repeated with
the normal and tallied into the register r5. Take a look:

; Get differences from 1st blended mesh and add into result
sub r2, v3, r0 ; Get difference in coordinates
mad r4, r2, c4.x, r0 ; Put resulting coordinates into r4
sub r3, v4, r1 ; Get difference in normal
mad r5, r3, c4.x, r1 ; Put resulting normal into r5

The same process is repeated three more times, once each for the remaining blended meshes. From here on,
however, the multiply and add instructions are tallied back in their respective registers so that the tallied
coordinates and normal differences can be used later. Here's the rest of the code to calculate the difference
values to use:

; Get differences from 2nd blended mesh and add into result
sub r2, v6, r0 ; Get difference in coordinates
mad r4, r2, c4.y, r4 ; Add resulting coordinates to r4
sub r3, v7, r1 ; Get difference in normal
mad r5, r3, c4.y, r5 ; Add resulting normal to r5

; Get differences from 3rd blended mesh and add into result
sub r2, v9, r0 ; Get difference in coordinates
mad r4, r2, c4.z, r4 ; Add resulting coordinates to r4
sub r3, v10, r1 ; Get difference in normal
mad r5, r3, c4.z, r5 ; Add resulting normal to r5

; Get differences from 4th blended mesh and add into result
sub r2, v12, r0 ; Get difference in coordinates
mad r4, r2, c4.w, r4 ; Add resulting coordinates to r4
sub r3, v13, r1 ; Get difference in normal
mad r5, r3, c4.w, r5 ; Add resulting normal to r5

Now that you've got the final blended vertex coordinates to use (in r4), your vertex shader will need to
transform the position for the combined world, view, and projection matrices (stored in constants c0 through
c3). As for the normal (stored in r5), you can perform a dot−product with the inversed light direction (stored
in c5) to come up with the diffuse color component to use for shading the polygons.

; Project position using world*view*projection transformation
m4x4 oPos, r4, c0

; Dot−normal normal with inversed light direction
dp3 oD0, r5, −c5

Last, the texture coordinates are picked from the base mesh's vertex register v2 and stuffed into the texture
out register t0.

; Store texture coordinates

 Building a Blending Morph Vertex Shader

212

mov oT0.xy, v2

At this point, your vertex shader is complete. All you need to do is plug the shader into your project and figure
out how to get the darned thing going.

Using the Blending Morph Vertex Shader

Now that you've written your vertex shader and you have the supporting vertex structure and declaration, you
can finally get things rocking and rolling! Assume you have your base mesh and four target meshes already
loaded into the following mesh objects.

ID3DXMesh *pBaseMesh;
ID3DXMesh *pMesh1, *pMesh2, *pMesh3, *pMesh4;

The same for your vertex shader and vertex declarationassume you already have loaded them and that you
have the following valid interfaces to them:

IDirect3DVertexShader9 *pShader;
IDirect3DVertexDeclaration9 *pDecl;

After you have loaded the vertex shader, you can set it to render your blended meshes with the following lines
of code:

pDevice−>SetFVF(NULL); // Clear FVF usage
pDevice−>SetVertexShader(pShader); // Set vertex shader
pDevice−>SetVertexDeclaration(pDecl); // Set declarations

To begin drawing the blended mesh, you must set the vertex streams to point to each mesh's vertex buffer.
Even if you're not using four blending meshes, you should always assign a vertex stream; just use the base
mesh's vertex buffer multiple times as a stream if you have fewer than four meshes to blend.

// Get the size of a vertex
DWORD VertexStride = D3DXGetFVFVertexSize(pBaseMesh−>GetFVF());
// Get the vertex buffer pointers
IDirect3DVertexBuffer9 *pBaseVB;
IDirect3DVertexBuffer9 *pMesh1VB, *pMesh2VB;
IDirect3DVertexBuffer9 *pMesh3VB, *pMesh4VB;

pBaseMesh−>GetVertexBuffer(&pBaseVB);
pMesh1−>GetVertexBuffer(&pMesh1VB);
pMesh2−>GetVertexBuffer(&pMesh2VB);
pMesh3−>GetVertexBuffer(&pMesh3VB);
pMesh4−>GetVertexBuffer(&pMesh4VB);
// Set the vertex streams
pDevice−>SetStreamSource(0, pBaseVB, VertexStride);
pDevice−>SetStreamSource(1, pMesh1VB, VertexStride);
pDevice−>SetStreamSource(2, pMesh2VB, VertexStride);
pDevice−>SetStreamSource(3, pMesh3VB, VertexStride);
pDevice−>SetStreamSource(4, pMesh4VB, VertexStride);

Now you need to grab the current world, view, and projection matrices from your 3D device. These matrices
are combined, transposed, and stored in the vertex shader constant registers c0 through c3. The following
code handles things quite nicely.

// Get the world, view, and projection matrices

 Using the Blending Morph Vertex Shader

213

D3DXMATRIX matWorld, matView, matProj;
pDevice−>GetTransform(D3DTS_WORLD, &matWorld);
pDevice−>GetTransform(D3DTS_VIEW, &matView);
pDevice−>GetTransform(D3DTS_PROJECTION, &matProj);

// Get the world*view*proj matrix and set it
D3DXMATRIX matWVP;
matWVP = matWorld * matView * matProj;
D3DXMatrixTranspose(&matWVP, &matWVP);
g_pD3DDevice−>SetVertexShaderConstantF(0, (float*)&matWVP, 4);

To control the amount of blending for each blend mesh, just alter the values stored in the vertex shader
constant c4. The x register of constant c4 represents the amount of blending in the first mesh, and it ranges
from 0.0 to 1.0 (or more if you want to achieve some exaggerated results).

Note Realistically, you shouldn't call GetTransform to get your various transformation
matrices. These should be maintained by your application, possibly on (but not limited to) a
global level.

The same goes for c4.y, c4.z, and c4.weach mesh has one register to store its blending amounts (y for
mesh #2, z for mesh #3, and w for mesh #4). For now, set the blending values to 100 percent (by storing a
value of 1.0 for each blending value in a D3DXVECTOR4 object), and store the values in the vertex shader's
c4 constant using the SetVertexShaderConstantF function.

// Set the blending amounts
D3DXVECTOR4 vecBlending = D3DXVECTOR4(1.0f, 1.0f, 1.0f, 1.0f);
pDevice−>SetVertexShaderConstantF(4, (float*)&vecBlending, 1);

Last, you need to specify your scene's light direction (the same light direction you used in a D3DLIGHT9
structure) in the vertex shader constant c5. For example, if you want a light (positioned in object space) to
point downward in your scene, you can use a vector of 0, 1, 0. (Note that you use a D3DXVECTOR4 object to
contain the light direction as opposed to a D3DXVECTOR3 objectjust specify 0.0 for the w component.)

// Set the light vector
D3DXVECTOR3 vecLight = D3DXVECTOR4(0.0f, 1.0f, 0.0f, 0.0f);
pDevice−>SetVertexShaderConstantF(5, (float*)&vecLight, 1);

Because you're grabbing the vertex data from a series of ID3DXMesh objects, you need to set the index
buffer as well because all ID3DXMesh objects use indexed primitive lists. You only need to set the index
buffer of the base mesh object because the indices are the same for all of your mesh objects. The following
code sets the base mesh's index buffer for you:

// Set the index buffer
IDirect3DIndexBuffer9 *pIndices;
pBaseMesh−> GetIndexBuffer(&pIndices);
pDevice−> SetIndices(pIndices, 0);

Finally, you can render your blended mesh! Skipping the typical code for setting your rendering material and
textures, you can render the entire mesh using the following code:

// Render the mesh
pDevice−>DrawIndexedPrimitive(D3DPT_TRIANGLELIST, \
 0, pBaseMesh−>GetNumVertices(), \
 0, pBaseMesh−>GetNumFaces());

 Using the Blending Morph Vertex Shader

214

If you want to check out a fully−functional example of the blended morphing vertex shader, take a look at the
BlendMorphVS demo on the CD−ROM. In Chapter 11, "Morphing Facial Animation," you'll see how to put
your vertex shader to great use by creating some awesome facial animations!

Check Out the Demos

The demos provided for Chapter 10 (BlendMorph and BlendMorphVS) show you how to use the information
from this chapter to blend a series of meshes into one animated mesh. Both demos, while alike in appearance
(see Figure 10.3), use different techniques to render the blended morphing animation.

Figure 10.3: A prelude to facial animation. Watch as multiple meshes are blended at various levels to produce
a simplistic facial animation.
In BlendMorph, the animation is accomplished by locking, updating, and unlocking the vertex buffers of the
various meshes. In BlendMorphVS, the locking, updating, and unlocking bits are tossed out, and the demo
shows its power by modifying the vertex data via a vertex shader! With either demo, you're sure to be pleased
with the results!

Programs on the CD

In the Chapter 10 directory on the CD−ROM, you'll find two projects that demonstrate the use of blended
morphing animation. These projects are

BlendMorph. In this project you'll see how to create animation by blending a morphing animation by
directly manipulating the vertices of your meshes. This project is located at
\BookCode\Chap10\BlendMorph.

♦

BlendMorphVS. Check out how to perform blended morphing animations using the vertex shader
developed in this chapter. This project is located at \BookCode\Chap10\BlendMorphVS.

♦

 Check Out the Demos

215

Chapter 11: Morphing Facial Animation
To make a long explanation short, facial animation is the technique of animating a mesh that represents a
character's face in a realistic manner, including movements of the mouth, eyes, and brows. Using facial
animation adds that extra panache to your game that makes gamers' jaws drop. With perfectly
audio−synchronized mouth motions and varying facial expressions, your game's characters come to life.
Those characters are no longer stiff, lifeless dummies, but living, breathing, talking, screaming, and smiling
game denizens.

Current games that use advanced facial animation, such as Electronic Art's Medal of Honor: Frontline and
Interplay's Baldur's Gate: Dark Alliance have raised the bar, and the use of facial animation is quickly
becoming mainstream. The facial animations in both of these games are nothing short of incredible. The
added feeling of reality just increases the gamer's potential enjoyment of each game. Now, don't you want that
added realism in your game project? If so, then this chapter is right up your alley.

The Basics of Facial Animation

You will use four main features in your facesthe eyes, brow, mouth, and head orientation. The most basic of
the four features is the head orientation. With just a cursory glance, you can see that most people constantly
move their heads around as they go about their daily duties. Rarely does a person hold his head still. People's
most evident head movements often occur when they talk; a person's head is constantly moving as he speaks.
You want your facial animation engine to imitate the same motions.

The next thing you might notice is that people's eyes are also constantly moving. Do you want this feature in
your animation package? If so, you have to think about what your characters are looking at. Most people have
a reason for moving their eyesthey are watching their surroundings and the people around them.

To keep things simple, you should limit eye movements. If your characters need to look around, you should
separate the eyes from the face (as separate meshes) and maintain them that way. It's much easier to rotate a
few eyeballs than to construct a bunch of morphing meshes that represent all the possible eye orientations.

The eyelids and eyebrows are also related to the eyes. Like you and I, your characters need to blink their eyes
periodically to appear realistic. Using blended morphing, adding the ability to blink is fairly straightforwardall
you need is a morph target mesh that represents your base mesh with its eyes closed. By varying the blending
amount of the blinking mesh over time, you can create a believable blinking animation.

Did I just mention using blended morphing animation? You bet I did! Blended morphing animation is easy to
work with, and using morphing animation is perfect when it comes to facial animations. Take a closer look to
see why you'll want to use blended morphing meshes with your own facial animation engine.

Blended Morphing Back in Action

As I mentioned in Chapter 10, your blended facial animation depends on the use of a base mesh. The base
mesh determines the default orientation that other meshes use to derive which vertices deform during
animation. Only those vertices that deviate in position from a mesh and the base mesh are altered and used to
render the final blended mesh.

The base mesh represents your facial mesh with no expression whatsoever. For each expression you want
your mesh to take on, such as blinking eyelids, raising of the brow, and the various mouth shapes, you merely

216

blend the target morphing mesh with the base mesh.

Take the series of meshes shown in Figure 11.1 as an example of what blended morphing does for facial
animation.

Figure 11.1: You can blend the base mesh on the left with multiple meshes to create unique animations. Here,
a smiling expression is blended with a blinking expression.
Again, simple morph targets are used to animate each unique aspect of the facial mesh. The eyes blinking is
one aspect, and the mesh's eyebrows could be another aspect. You could raise one or both of the eyebrows.
They are tied into the emotion of the character, so they can be hard−coded in some way inside your animation
package. For instance, suppose you have a flag that determines whether a character is angry. When you render
a facial animation, your engine can blend in a target mesh that has both eyebrows lowered. If a character is
asking a question, perhaps your engine will raise one of the mesh's eyebrows.

Speaking of emotions, you can use more than just the brow to help convey a character's feelings. The mouth
might change shape as well. Typically, the edges of a character's mouth are raised or lowered as his emotion
changes. Unhappy characters lower the edges of their lips, forming a frown, whereas happy characters raise
the edges of their lips into a smile.

You can use target morphing meshes to convey emotions as a whole for the mesh. You can modify a single
mesh to have the brow lowered and lips slightly lowered to convey a believable sense of anger. As Figure
11.2 demonstrates, there's no need to use two separately combined morph meshes when one mesh will do the
job just as well!

 Chapter 11: Morphing Facial Animation

217

Figure 11.2: Instead of using two target morph meshes, you can combine the two to use as the target mesh,
thus saving time and space.
Let's get back to the mouth. In addition to helping display emotion, the mouth is great for communicating. The
lips are powerful little muscle machines that can contort themselves into many shapes. As you speak, your
mouth changes shape to help create the sounds that compose your speech.

The various shapes your mouth makes during speech are called visemes, whereas the sounds you make are
called phonemes. In this chapter, I commonly mix the usage of visemes and phonemes because they mean
pretty much the same thing when it comes to animation. Take a moment to learn more about phonemes and
how you can use them for your own lipsyncing animation needs.

Using Phonemes for Speech

As I just mentioned, phonemes are the smallest sounds we can make; each word in our language (or any
language) is constructed from a series of these phonemes. For example, the word program is constructed of
the following seven phonemes: p, r, ow, gh, r, ae, and m.

To pronounce each of those phonemes, your mouth takes on a unique shape (a viseme). Hence, you can see
why I mix the two terms; there's one viseme per phoneme. In facial animation, you want to create a target
morphing mesh with a mouth that has the same shape as yours when you pronounce the various phonemes.

Note Rather than referencing IPA Unicode values using decimal notation, it is much easier (and it is the
standard) to use a hexadecimal notation. Therefore, throughout this chapter I will reference the IPA
values in a hexadecimal value that ranges from 0x0000 to 0x0FFF.

I'll get back to creating the phoneme facial meshes in a bit. For now, I want you to study phonemes a little
closer to see how you can use them in your project. Phonemes are identified by unique sets of symbols; each
symbol is assigned a unique value to make it more identifiable. These values, known as IPA (International
Phonetic Alphabet) Unicode values, range from 0 to 1024 (for English users), with each grouping of values
assigned to various languages and pronunciations (as shown in Table 11.1).

Table 11.1: IPA Phoneme Unicode Groupings

 Using Phonemes for Speech

218

Value Range Language

0x0041 to 0x00FFStandard Latin

0x0010 to 0x01F0European and extended Latin

0x0250 to 0x02AFStandard phonetic characters

0x02B0 to 0x02FFModifier letters

0x0300 to 0x036FDiacritical marks

English speakers use a wide assortment of the values shown in Table 11.1, but for the most part the values
(and phonemes) will be the ones shown in Table 11.2

Table 11.2: American English Phonemes

Value PhonemeExample

0x0069 iy Feel

0x026A ih Fill

0x00E6 ae Carry

0x0251 aa Father

0x028C ah Cut

0x0254 ao Lawn

0x0259 ax Ago

0x0065 ey Ate

0x025B eh Ten

0x025A er Turn

0x006F ow Own

0x028A uh Pull

0x0075 uw Crew

0x0062 b Big

0x0070 p Put

0x0064 d Dug

0x0074 t Talk

0x0067 g Go

0x006B k Cut

0x0066 f Forever

0x0076 v Veil

0x0073 s Sit

0x007A z Lazy

0x03B8 th Think

0x00F0 dh Then

0x0283 sh She

0x0292 zh Azure

 Using Phonemes for Speech

219

0x006C l Length

0x0279 r Rip

0x006A y Yacht

0x0077 w Water

0x0068 hh Help

0x006D m Marry

0x006E n Never

0x014B nx Sing

0x02A7 ch Chin

0x02a4 jh Joy

You use the IPA values shown in Table 11.2 as an index into your array of phoneme facial meshes used when
rendering. To construct an animation sequence, you string together a sequence of those IPA values to form
words and sentences. You'll learn more about building phoneme sequences in the "Building Phoneme
Sequences" section later in this chapter.

As for the facial animations, it's a matter of animating (or rather, blending) the various meshes that represent
the phonemes and facial expressions to create a complete facial animation system. Of course, that means
you'll have to build a series of meshes to use in your animations.

Building Facial Meshes

The first step to using facial animation is to create a set of facial meshes that represent the various features of
your game characters' faces. Since you're using blended morphing animation techniques, you only need to
create a single base mesh and a series of target morphing meshes for each facial feature you'll be using. For
instance, you might only need a few meshes that show your character smiling, blinking his eyes, and moving
his mouth to match a phoneme sequence.

This is where the hardest part of your facial animation job liesin designing and building the various facial
meshes to use in your engine. With the help of various 3D modeling programs, such as Caligari's trueSpace
and Curious Labs' Poser, you can create a whole slew of facial meshes quickly and easily.

Caligari's trueSpace (versions 5.1 and newer) comes packaged with Facial Animator, a cool plug−in that helps
you create, texture, and animate facial meshes. I used the Facial Animator plug−in to create the demo for this
chapter.

Poser is a complete character−creation package that gives you the ability to model an entire person. With
shapes, clothing, textures, and facial features, the Poser 3D package will definitely come in handy.

Regardless of the 3D package you use, it all boils down to the same thingcreating a base facial mesh to use.

Creating the Base Mesh

Both 3D packages I mentioned come with a generic set of facial meshes to use. With trueSpace, you can
easily import your own meshes and prepare them for use with the Facial Animator plug−in. With Poser, you
can use the facial generator to develop an almost unlimited number of unique faces.

Again, regardless of which package you use, you need to create a base mesh. Remember that this base mesh
must be devoid of expression; the mouth should be closed and the eyes fully open. To make things easier, I'm

 Building Facial Meshes

220

going to use one of the facial meshes that comes packaged with trueSpace's Facial Animator. Figure 11.3
shows the mesh I'll use in this chapter.

Figure 11.3: The Chris (low poly) facial mesh from trueSpace will serve perfectly as the base mesh. Per
Caligari's user license, feel free to use the Chris (low poly) model in your own applications
After picking the mesh to use as your base mesh, you need to texture−map it appropriately. The cool thing
about trueSpace's Facial Animator plug−in is that you can design texture maps to use for your facial meshes
by taking a side and front view picture of yourself and using the Texturize Head tool to fit it to the mesh. For
this book's demo, I used my own face to texture the mesh.

After two short steps, the base mesh is ready! I know I skipped over the specifics such as modeling the head,
but this book isn't about modeling, it's about animating! Truthfully, the two 3D packages I mentioned,
trueSpace and Poser, do an admirable job of making the facial modeling process extremely easy, so I'll leave
it to each package's manuals and tutorials to teach you how to create a head mesh.

Note The Chris (low poly) facial mesh I'm using as the base mesh is missing a couple features, most notably
the eyes. I used trueSpace's Add Face tool to add a few polygons where the eyes would be, which
allowed me to apply an eyeball texture map.

For now, your base mesh is ready, and you can start building the facial expressions you want to include in
your animations.

Creating Facial Expressions

Before you continue, be sure to save your base mesh to disk using a descriptive file name, such as Base.x.
Remember, you're using the .X format, so you might want to export the mesh as .X. If that's not available,
export the mesh as a .3DS file. Once you have saved the mesh as a .3DS file, you can use the Conv3DS.exe
program that comes with the DirectX SDK to convert the file to .X. Typically you will find the Conv3DS.exe
program in your DirectX SDK's \Bin\DXUtils directory, or you can download the newest version from
Microsoft's Web site at http://www.microsoft.com/DirectX.

Now that you've saved your base mesh to disk, you can start creating the various facial features you'll be
using. It is easiest to start with the expressions, such as smiling, frowning, and blinking. Again, I want to
make this as simple as possible, so I'll depend on trueSpace's Facial Animator to help.

It just so happens that Facial Animator comes with a list of predefined expressions you can apply to your

 Creating Facial Expressions

221

facial mesh with just a click of your mouse button! Come to think of it, Poser has the same abilities, so your
bases are covered regardless of which program you use!

To create your mesh's expressions, click on the Expressions tab in the Facial Animator dialog box. As you can
see in Figure 11.4, a list of expressions your mesh is capable of using will appear.

Figure 11.4: Facial Animator's Expressions list gives you eight expressions from which to choose.
I want my facial animation demo to be simple enough to follow, and since I'm such a happy fellow, I want to
use the Smile expression. Click on the Smile button, and notice that the facial mesh in the 3D editor changes
to match the expression. If you feel adventurous, click on the other expression buttons to see the effect of each
on the mesh. When you're ready, click on the Smile button to get back to the smiling mesh setup.

After you've selected the expression you want to use (in this case, the smile), export the mesh. Call the mesh
Smile.x to keep things simple. Place the Smile.x file in the same directory as the Base.x file. If you want to
use more expressions, click on the appropriate expression button in the Facial Animator dialog box, wait for
the mesh to change, and then export it to an .X file.

I don't want to fool you into thinking there are only eight expressions to use with Facial Animator, so click on
the Gestures tab. Voila! Fourteen more expressions should appear (see Figure 11.5).

 Creating Facial Expressions

222

Figure 11.5: Facial Animator's Gestures list includes 14 more expressions you can apply to your mesh.
Before you use any of the expressions on the Gestures tab, click the Reset All button once. This will cause the
facial mesh to revert to its base orientation. Feel free to play around with the collection of gestures. Decide
which gestures you want to use and export the facial mesh with the appropriate gestures applied. For my
demo, I am using only the Blink gesture.

Caution As you export your facial animation meshes and begin using them in your projects, make sure you
don't change the ordering of the vertices. This is essential to proper morphing, as detailed in Chapter
8.

After you export all your expressions and gestures, move on to creating the various meshes for your phoneme
sequences.

Creating Viseme Meshes

The majority of meshes you'll construct will be the phoneme shapes your mesh's mouth can form. While you
don't need a complete set of meshes to match every conceivable phoneme shape, it does help to create a small
set that represents the majority of shapes your phoneme sequences use

As I mentioned previously, the unique sounds you use to create words are called phonemes. The shape of your
mouth and the position of your tongue, which create the sounds, are called visemes. To create lip−synced
animation, you need to construct a set of visemes your game can use to match the phonemes in a recorded
voice.

Depending on how realistic your want your lip−syncing animations to look, you can get away with using as
few as four viseme shapes for lower−quality animations, or you can go all the way up to 30 or more viseme
shapes for high−quality animations.

With trueSpace's Facial Animator plug−in, you can use the set of eight visemes located in the Viseme section,

 Creating Viseme Meshes

223

which you can access by clicking on the Viseme tab. Although they are somewhat limited, the eight visemes
are a good place to start your facial animations. I would highly recommend expanding this list of visemes as
soon as possible, using Facial Animator's Head Geometry Setup tools. Consult your product's manual to see
how you can add your own facial expressions and visemes to the list of shapes you can use. For the examples
in this book, the eight visemes are sufficient.

Using the same techniques you used in the previous section, click on each of the visemes that you want to use
for your animations, and export each mesh as you go. For my demo, I named each exported file based on its
viseme nameff.x, consonant.x, ii.x, aa.x, oo.x, uu.x, and ee.x. These .X files go in the same directory as the
base.X and Smile.x files.

If you're going the other route and creating more viseme meshes, you need to take the time to create the
various shapes for your mesh's mouth. As I mentioned, you can use more than 30 different visemes in your
animations, so make sure you're up to the task.

Looking back at Table 11.2, you can see the most common phonemes used in the English language. It's those
phonemes for which you want to create matching facial meshes. The easiest way to create these phoneme
meshes is to grab a mirror and watch your mouth as you pronounce the various phonemes. Model the exact
shape of your mouth, save the result, and move on to the next phoneme.

To help you out a bit, Michael B. Comet (creator of Comet Cartoons at http://www.comet−cartoons.com) has
provided various phoneme shapes you can use (see Figure 11.6).

Figure 11.6: Michael B. Comet's demonstration set of phonemes should provide you with a guide to creating
your own facial meshes.
Try to match the shapes as best you can when creating your own meshes. Since the animations are so fast,
slight deviations from the actual phoneme shapes shouldn't be a problem. After you've created all the
phoneme facial meshes you're going to use, it's time for the fun partputting those meshes to work in your own

 Creating Viseme Meshes

224

animations!

Creating Animation Sequences

Now you're ready to get going with your animations! At this point, you should have a basic understanding of
what phonemes are, and you should have constructed a series of target meshes to use in blended morphing
animation. These meshes should include the various features you'll want to work with, such as blinking eyes,
raising brows, and changing mouth shapes (the visemes).

Before you start blending your way to animation success (now that would be a great tag line for an
infomercial!), there are some things you need to handle. I'll start with the easiest features of your facial
animations and then move on to the tough stuff! What's easy when it comes to facial animation, you ask? The
automated features, of course!

Automating Basic Features

Before you jump into the hardest part of facial animationthe phoneme sequencestake a quick look at the things
you normally take for granted. The blinking of your eyes, for instance, is something all too common, and you
really don't notice itunless the person you are talking to doesn't blink at all, in which case it becomes very
apparent!

The same goes for a person's expressions. As you talk, your face changes expression to match the tone of your
voice. Cheerful people tend to smile when they talk, and people frown when they are sad. As your emotions
change during speech, your expressions changeto match them. Every subtle movement of your lips, eyes, and
brow can change the look of emotion on your face. Without this emotional appearance, we'd all look like
mannequins!

Notice also that a person's head always moves when he speaks. From small nods and bobs to turns, most
people's heads are constantly moving. With emotions aside, the small movements of a person's head and the
blinking of his eyes are considered automated. In other words, those features should be animated without you
needing to explicitly define them in your sequences.

Let me go back to the eyes to explain this concept better. An adult normally blinks his eyes around 10 to 20
times per minute. When you concentrate on something, you tend to blink less often, about three to eight times
per minute. Also, as you glance back and forth, you tend to blink more often.

Other factors, such as emotions, change the rate at which you blink your eyes. A nervous or excited person
blinks more often, at close to twice the normal rate, and an angry person blinks less. The golden rule: If it
involves concentration, the blink rate drops; if it involves a lot of movement, the blink rate increases.

To automate the blinking of your facial mesh's eyes, you can create a timer that forces the blending of the
blinking mesh every so often. If you want to maintain a constant rate, you can force the eyes to blink every
3,000 milliseconds (every three seconds). If you want to be really creative, you can add the ability to mark
sections of your script to alter the blink rate.

For this chapter, I want to maintain a constant blink rate. The blinking target mesh will therefore be blended
every three seconds, and will take one−third of a second to animate. This means that the blending scale of the
blend morphing mesh will range from 0 to 1 over the first 33 milliseconds of the animation and remain fixed
at 0 for the remainder of the time.

 Creating Animation Sequences

225

Now what about head movements while talking? Again, this feature is easy to incorporate by applying small,
random values to the rotational values of the mesh you are drawing. Nothing majorjust make sure you don't
over−rotate the mesh, or you'll end up with some distorted B−rate movie monster!

The facial animation demo for this chapter demonstrates the use of automated blinking and head movements;
you can use this demo as a starting ground for your own facial animations. (Refer to the discussion of the
FacialAnim demo at the end of this chapter for more information.)

With the automated animations out of the way, it's time to move on to a much more difficult subjectcreating
your phoneme animation sequences.

Building Phoneme Sequences

Aside from the rudimentary animations you can use, such as eye blinking or face twitching, the most
important aspect of facial animation is lip−syncing. Remember, your lips change shape to match each
phoneme in your speech, and it's those phoneme sequences that you want to reproduce during animation.

When it comes to lip−syncing animation, there are a number of methods at your disposal. Currently, the most
popular method of creating lip−synced animation sequences is to use scripts (spoken and written) in
combination with a phoneme dictionary to break every spoken (and written) word down into its phoneme
sequence.

A script contains the exact sequence that is to be spoken and lip−synced. For example, suppose you want your
game's character to lip−sync to you saying "Hello and welcome." Using a text editor, enter that exact phrase
and save it as a text file. Next, using a sound−editing program of some sort, record yourself saying that
phrase. Make sure to save it as a standard .WAV file.

After you've done this, you can break up your phrase into its phoneme sequence. You accomplish this by
using a phoneme dictionary, which is a data file that contains phoneme sequences for each word contained in
the dictionary. By piecing together the sequences for each word, you can create sequences to match any script.

For instance, the phoneme dictionary definition for the word "Hello" would be the phonemes hh, ah, l, and
ow. Each of those four phonemes has a matching facial mesh associated with it. As those various phonemes
are processed in your animation playback, your facial mesh morphs to match the sounds. For the entire "Hello
and welcome" sequence, you would use the phonemes hh, ah, l, ow, ae, n, d, w, eh, l, k, ah, and m. Using the
script and dictionary in unison makes the real magic happens.

So far this is a cool idea, but how does it work? Take a look at the entire process of writing, recording, and
processing data that will eventually become your lip−sync animation. Start by writing a script file (as a text
file). This script should contain everything that is to be spoken by you or your voice actor.

Next, using a high−quality recording format, record the script word for word. Be sure to speak slowly and
clearly, adding brief silences between words. When you are finished with the script, you can clean up the
sound file by maximizing the volume and cleaning out any static. It also helps to run the sound through a filter
to convert the sounds between words to silence.

Figure 11.7 shows you a wave form for a couple of words I recorded to demonstrate this lip−syncing
technique.

 Building Phoneme Sequences

226

Figure 11.7: A wave form of me saying "Hello and welcome!"
Now here's where the cool part comes in! Using the phoneme dictionary, take the written script and convert
every word to a sequence of phonemes. Using the sound file, examine each word (by its sound wave) and
determine its spoken length. The length of each word determines the animation speed for each phoneme
sequence.

How do you determine the length of each word in the sound file? For that matter, how do you know what each
word is? Remember, you have the script that has the exact sequence of words spoken. That takes care of
knowing what each word is, but what about determining the position and length of each word?

Remember how I said you should speak slowly and deliberately, adding a slight pause between words? Those
pauses are like signal markers. A pause marks the end of one word and the beginning of another. Take a look
back at the sound wave from Figure 11.7. This time, I've marked the silence between words and used the
pauses to isolate each word. Figure 11.8 shows the new sound wave, with each pause and word marked.

Figure 11.8: The sound wave has been sectioned into words and silence.
Now I know you're starting to understand the significance of the script combined with the dictionary! Using
the time value (based on the sound's playback frequency and position), you can go back to your phoneme
sequence and use the time values to animate it. What could be simpler?

To get the ball rolling, check out a program that works much like what you've just studiedMicrosoft's
Linguistic Information Sound Editing Tool.

Using Microsoft's Linguistics Software
With the concept of using scripts, spoken voice, and phoneme dictionaries in the bag, it's time to turn to an
actual program that compiles phoneme sequences for you. This program, Microsoft's Linguistic Information
Sound Editing Tool, or LISET for short, analyzes. WAV files of recorded voice. In conjunction with a typed
script, it will produce a phoneme sequence you can plug right into your game.

 Building Phoneme Sequences

227

The LISET program is part of Microsoft's excellent Agent software package. Agent is a complete speech and
animation package that allows users to interact with animated characters embedded in applications and Web
pages. Imagine thathaving a virtual guide lead visitors around your Web site, and for that matter, having your
guide look and sound just like you!

With full speech processing, such as text−to−speech synthesis, phoneme processing, and lip−syncing abilities,
the Agent package is definitely something you should check out. For more information about Agent, check
out Microsoft's Web site at http://www.microsoft.com/msagent.

If you haven't done so yet, install Agent on your system. Make sure to install LISET as well, because you'll be
using it quite a bit in this section. Once you have installed everything, fire up LISET. (Look for it in your
Programs menu.) Figure 11.9 shows the main LISET window you'll use.

Figure 11.9: Microsoft's Linguistic Information Sound Editing Tool allows you to load. WAV files and mark
portions of the sound waves with phoneme markers.
Once LISET is running, you can load a .WAV file that contains your spoken voice scripts. Click on File and
select Open. The Open dialog box will appear, allowing you to locate a .WAV file. Find a .WAV file, select
it, and click on Open to continue.

Once loaded, the .WAV file is ready to be processed. However, LISET needs the text script to match to the
sound wave. See the Text Representation edit box at the top of the LISET application? That's where you'll
paste your text script. Take it easy, however, because the edit box can hold only a finite number of letters. Try
to parse your scripts in chunks of 65,000 words or fewer at a time.

Take a look back at Figure 11.9, where you can see that I've loaded a .WAV file and entered the
corresponding text. To test the script's phoneme sequence, click Audio and select Play. See that little mouth at
the top−right corner of LISET? As your sound plays, that little mouth changes shape to match the phonemes
in the script. Cool, isn't it?

For some real fun, click on Edit and select Generate Linguistic Info. After a few moments (and a pop−up
progress window), your phoneme sequence will be analyzed and the phoneme information will be overlaid on
the sound wave. Check out Figure 11.10 to see what I mean.

 Building Phoneme Sequences

228

Figure 11.10: The word "test" consists of four phonemes (t, eh, s, and t), which are overlaid on top of the
sound wave. Notice that the silence at the end of the word is also marked.
LISET does a pretty decent job of putting the phonemes in the proper positions over the sound wave, but if
something isn't quite right, you can modify the positions and lengths of each phoneme manually.

As you move your mouse over each phoneme, you'll notice that the arrow changes. At the left and right edges
of the phoneme, the arrow changes to a double bar with arrows, meaning that if you click and drag the mouse,
the phoneme will be resized. Clicking inside the phoneme itself (not on the edges) will highlight portions of
the sound wave.

You can highlight portions of the sound wave, click Edit, and select Replace Phoneme, Delete Phoneme,
Insert Phoneme, or Insert Word. Replace Phoneme allows you to change from one phoneme to another, and
Delete Phoneme removes an entire phoneme from the sequence. Using the two Insert functions, you can
manually place a new word or phoneme into the sound wave.

After you've processed and placed the phoneme sequence LISET displays, you can save the phoneme
information. Click on File and select Save As. Select a path and file name to save the resulting file, and you're
done!

As a result of using LISET, your phoneme sequences are stored in special files signified by the extension
.LWV. The only problem is, how do you use those .LWV files in your programs? How about converting those
files to something more readable?

Converting from LISET to .X
The .LWV file format used by the LISET application contains all the phoneme information your program
needs to create your lip−synced facial animations. The only problem is that the .LWV file format is something
you don't want to mess around with in your project. What you need is a way to convert the phoneme
sequences from the .LWV format into a more readable format, such as .X.

That's rightit's .X to the rescue again! This book's CD−ROM includes a utility program called .LWV to .X
Converter (ConvLWV for short), which converts .LWV files into .X files. Check out the end of this chapter
for the location of the ConvLWV program. The program is fairly straightforward and easy to use. To convert
an .LWV into an .X file, all you have to do is click the Convert .LWV to .X button, as shown in Figure 11.11.

 Building Phoneme Sequences

229

Figure 11.11: The ConvLWV program has six controls at your disposal, the most important being the Convert
.LWV to .X button.
When you click on the Convert .LWV to .X button, you are presented with the Select .LWV File for Import
dialog box. Use the controls in the dialog box to locate the source .LWV file that you want to convert. After
you've selected the file, click Open.

Next, you'll see the Select .X File for Export dialog box. Enter a file name and path to which to export the
phoneme sequence, and then click Save. Poof! Within a few seconds, you'll have a brand−new .X file that
contains your phoneme sequence!

The format of the exported .X file should resemble the following:

xof 0303txt 0032

// Exported with .LWV to .X Converter v1.0 (c) 2002−03 by Jim Adams

Header
{
 1;
 0;
 1;
}

Like a typical .X file, your exported phoneme sequence .X file starts by defining the format header. This is
followed by a shameless plug and finally a Header data object. There's nothing you haven't seen already
going on there. You'll want to pay close attention to what comes next, though.

// DEFINE_GUID(Phoneme, 0x12b0fb22, 0x4f25, 0x4adb, 0xba, 0x0, 0xe5, 0xb9, 0xc1, 0x8a,
0x83, 0x9d)
template Phoneme
{
 <12B0FB22−4F25−4adb−BA00−E5B9C18A839D>
 DWORD PhonemeIndex;
 DWORD StartTime;
 DWORD EndTime;
}

// DEFINE_GUID(PhonemeSequence,
// 0x918dee50, 0x657c, 0x48b0,
// 0x94, 0xa5, 0x15, 0xec, 0x23, 0xe6, 0x3b, 0xc9);
template PhonemeSequence
{
 <918DEE50−657C−48b0−94A5−15EC23E63BC9>

 Building Phoneme Sequences

230

 DWORD NumPhonemes;
 array Phoneme Phonemes[NumPhonemes];
}

Your phoneme sequences are stored in .X files using two custom templates. The first template, Phoneme,
stores information about a single phoneme. There's the phoneme identification number (the phoneme mesh
number, which you'll soon read about), as well as the beginning and ending time (in milliseconds) for the
phoneme to animate.

That's rightthe Phoneme template is actually an animation key frame! That's where the
PhonemeSequence template comes into play. The PhonemeSequence template stores an array of
Phoneme objects that define an entire animation sequence. The number of key frames in the animation is
defined by the first value in PhonemeSequence, followed by the array of key frames. This structure
makes loading your phoneme animations quick and painless.

Let's continue looking deeper into the .X file you've just created (or rather, one that I've created to
demonstrate the converter). The following PhonemeSequence object, called PSEQ, contains a short
animation with five key frames.

PhonemeSequence PSEQ {
 5;
 116; 0; 30;, // 0x0074
 603; 30; 200;, // 0x025b
 115; 200; 230;, // 0x0073
 116; 230; 270;, // 0x0074
 95; 270; 468;; // 0x005f
}

As you can see, each phoneme is represented by its decimal IPA Unicode value (with each key frame
commented to show the hex value of the IPA). To make your facial animation system really powerful, you can
create a facial mesh to match each phoneme. As you can probably tell, there's no way you'll ever use more
than a few hundred different meshes for your facial animation, so you need to limit the number of IPA
Unicode values with which you work.

This is where the ConvLWV utility application really shinesin reassigning the IPA Unicode values you know
into smaller, more manageable values you will use in your programs. Looking back at Figure 11.11, you'll
notice that the lower section details the use of a conversion database. This database is used to remap IPA
Unicode values into values you specify. For instance, instead of using 0x025b to represent the phoneme "eh"
(as in the words "ten" and "berry"), you might prefer to use the value 0x0001 (which might just happen to be
the index number of the phoneme mesh in your animation engine).

These values are later used as indices into an array of meshes that represent your phonemes. Now instead of
hundreds of phoneme meshes, you can work with a small set of meshes that are reused for multiple phonemes.
Whenever you remap an IPA Unicode value and convert an .LWV file to an .X file, those IPA Unicode values
are converted inside your PhonemeSequence object. For instance, after you remap a set of IPA Unicode
values, the previous PSEQ object might look like this:

PhonemeSequence PSEQ {
 5;
 2; 0; 30;, // 0x0074
 3; 30; 200;, // 0x025b
 6; 200; 230;, // 0x0073
 2; 230; 270;, // 0x0074
 0; 270; 468;; // 0x005f

 Building Phoneme Sequences

231

}

By default, all IPA Unicode values are remapped to the same value0x025b always converts to 0x025b,
0x0075 is always 0x0075, and so on. To change the remapped IPA Unicode value, locate it in the list box in
the lower−right corner of the ConvLWV dialog box (as shown in Figure 11.12)

Figure 11.12: Double−click on the IPA Unicode value you want to remap in the list box. The number on the
left is the Unicode value, and the number on the right is the remapped value.
As an example, suppose you want to remap the "eh" phoneme (IPA Unicode value 0x025b) to a value of
0x0001. In the list box, locate 0x025b (on the left) and double−click it. The Modify Conversion Value dialog
box will open, allowing you to enter a new value (see Figure 11.13). Enter 0x0001 and click OK. The list box
values will be updated, and you can continue to remap them.

Figure 11.13: The Modify Conversion Value dialog box allows you to remap an IPA Unicode value to another
number. Enter the new value to use and click OK.
So all your hard work is not lost, you have the option to save and later reload your remapped values. This is
handy when you are working on many different sequences using the same conversion values. To save a
conversion database, click the Save Database button and enter a file name. All conversion databases use the
.IPA file extension. To load a conversion database, click the Load Database button, locate your .IPA file, and
click Load.

The last two buttons in the ConvLWV program are Clear Database and Reset Database. The Clear Database
button sets all conversion values to 0x0000, meaning that all IPA Unicode values are remapped to the number
0. Clicking the Reset Database button sets all conversion values to match each IPA Unicode value (so that
0x025b will convert to 0x025b, 0x0075 will remap to 0x0075, and so on).

 Building Phoneme Sequences

232

And that's it for using the ConvLWV program. Go ahead and give it a tryrecord, process, and convert a few
.LWV files to .X files. When you're ready, you can move on to loading the phoneme sequences into your
program using a custom .X parser.

Using an .X Parser for Sequences

After you've run your .LWV files through the ConvLWV program, you're left with an .X file that contains a
couple template definitions and a key−framed phoneme sequence. All you need to do is write an .X parser that
loads that sequence into an array of structures that contains the phoneme mesh reference numbers, as well as
the beginning and ending times of each key frame. One structure definition should do the trick for storing the
key frames.

typedef struct {
 DWORD Code; // Phoneme mesh #
 DWORD StartTime; // Starting time of morph
 DWORD EndTime; // Ending time of morph
 } sPhoneme;

When you're parsing the .X file containing your phoneme sequence, allocate an array of sPhoneme
structures to match the number of key frames used in the animation. For example, consider the following
PhonemeSequence object (which contains a phoneme sequence):

PhonemeSequence PSEQ {
 5;
 2; 0; 30;,
 3; 30; 200;,
 6; 200; 230;,
 2; 230; 270;,
 0; 270; 468;;
}

In PSEQ, there are five key frames in the animation, as determined by the first value in the object. As you are
parsing the PSEQ object, you must allocate five sPhoneme structures to match. Once you allocate the
structures, you can iterate the list of key frames.

The first key frame uses phoneme mesh #2 and achieves 100−percent blending in 30 milliseconds (starting at
0 milliseconds and ending at 30). The second key frame uses mesh #3 and achieves 100−percent blending in
170 milliseconds (from 30 milliseconds to 200 milliseconds). This continues throughout the list.

One of the issues I've been dodging up to this point is how the blending actually works in facial animation. In
Chapter 8, you saw how to blend multiple meshes. For facial animations, such as making your mesh's eyes
blink and brow move, blending the appropriate meshes at various percentages is perfect. The snag comes
when you try to morph from one phoneme mesh to another. Morphing from the base mesh to a phoneme mesh
is no problem. However, trying to morph from one phoneme mesh to another is impossible. If the base mesh
is the source of the morphing operation and the phoneme mesh is the target mesh, how can you blend from
one phoneme mesh to another without having to specify a new base mesh?

Of course, you can always specify a new base mesh for the blending operation, but the problem is that all your
animations are designed around the initial base mesh (in which your mesh's mouth is closed and its eyes are
open). Using a phoneme mesh as the new base mesh is just asking for trouble!

 Using an .X Parser for Sequences

233

What's the solution? It's actually quite simple. By blending the base mesh with two different phoneme meshes
at the same time, you can make it look like your mesh is morphing from one phoneme mesh to another. All
you need to do is slowly decrease the source phoneme mesh's blending values from 1 to 0 and slowly increase
the target phoneme mesh's blending values from 0 to 1.

I'll get back to this blending solution in a bit. For now, let's get back to your .X parser and take a look at the
class declaration.

class cXPhonemeParser : public cXParser
{
 public:
 char *m_Name; // Name of sequence
 DWORD m_NumPhonemes; // # phonemes in sequence
 sPhoneme *m_Phonemes; // Array of phonemes
 DWORD m_Length; // Length (milliseconds) of sequence

protected:
 BOOL ParseObject(IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference);

public:
 cXPhonemeParser();
 ~cXPhonemeParser();

// Free loaded resources
void Free();

// Find the phoneme at specific time
DWORD FindPhoneme(DWORD Time);

// Get mesh #'s and time scale values
void GetAnimData(DWORD Time, \
 DWORD *Phoneme1, float *Phoneme1Time, \
 DWORD *Phoneme2, float *Phoneme2Time);
};

I want to take the cXPhonemeParser class bit by bit so you can better understand what's occurring. The
first thing you'll notice in the class is the variable declarations. Each phoneme animation sequence is
contained within a PhonemeSequence object. Remember that each object instance can be assigned a name.
That is the purpose of the m_Name variableto contain the object's instance name.

Note In this case, the cXPhonemeParser class only contains the data from a single
PhonemeSequence, so there's only one buffer to contain the name and other phoneme
information. If you're feeling anxious, I recommend expanding the class to contain
multiple phoneme sequences.

Following m_Name is the number of key frames in the sequence (contained within the .X file), as well as an
array of sPhoneme structures that contain the phoneme sequence information. Last comes m_Length,
which is the length of the entire animation sequence in milliseconds. The m_Length variable is useful for
bounds−checking time values to the length of the animation.

Next in the cXPhonemeParser class are the functions, starting with the typical ParseObject function
you've come to know and love. Remember, the ParseObject function is called every time a data object is
enumerated from an .X file and you want to load the phoneme sequence data in this function.

 Using an .X Parser for Sequences

234

Since you're only looking for the PhonemeSequence objects, the ParseObject function is short and to
the point. Starting with the GUID declaration of the PhonemeSequence template, you can move on to the
actual ParseTemplate code to see what's occurring.

// Define the PhonemeSequence template GUID
DEFINE_GUID(PhonemeSequence,
 0x918dee50, 0x657c, 0x48b0,
 0x94, 0xa5, 0x15, 0xec, 0x23, 0xe6, 0x3b, 0xc9);

BOOL cXPhonemeParser::ParseObject(\
 IDirectXFileData *pDataObj, \
 IDirectXFileData *pParentDataObj, \
 DWORD Depth, \
 void **Data, BOOL Reference)
{
 const GUID *Type = GetObjectGUID(pDataObj);

 // Only process phoneme sequence objects
 if(*Type == PhonemeSequence) {
 // Free currently loaded sequence
 Free();

 // Get name and pointer to data
 m_Name = GetObjectName(pDataObj);
 DWORD *DataPtr = (DWORD*)GetObjectData(pDataObj, NULL);

 // Get # phonemes, allocate structures, and load data
 m_NumPhonemes = *DataPtr++;
 m_Phonemes = new sPhoneme[m_NumPhonemes];

At this point, you've retrieved the instance name of the object you are parsing, and you've pulled out the
number of phoneme key frames in the sequence. Next, an array of sPhoneme structures is allocated, and
processing continues by iterating through each key frame in the sequence, retrieving the phoneme mesh
number, starting time, and ending time.

for(DWORD i=0;i<m_NumPhonemes;i++) {
 m_Phonemes[i].Code = *DataPtr++;
 m_Phonemes[i].StartTime = *DataPtr++;
 m_Phonemes[i].EndTime = *DataPtr++;
 }
 m_Length = m_Phonemes[m_NumPhonemes−1].EndTime + 1;
 }

 // Parse child objects
 return ParseChildTemplates(pDataObj, Depth, Data, Reference);
}

As the ParseObject function wraps up, you can see that the length of the animation sequence is saved and
any child objects are enumerated. Remember, only the first phoneme sequence object is parsed; any object
after the first will be loaded, but earlier sequences will be erased. Again, you might want to expand on that by
loading more than one sequence for your own work.

The Free function comes next in the cXPhonemeParser class. This function frees the class's data, such as
the phoneme key−frame array. I'll skip the code for the Free function and move on to the next function,
FindPhoneme, which is responsible for finding the phoneme mesh number inside the key frames for a
specified time.

 Using an .X Parser for Sequences

235

DWORD cXPhonemeParser::FindPhoneme(DWORD Time)
{
 if(m_NumPhonemes) {
 // Search for time
 for(DWORD i=0;i<m_NumPhonemes;i++) {
 if(Time >= m_Phonemes[i].StartTime && \
 Time <= m_Phonemes[i].EndTime)
 return i;

 }
 }
 return 0;
}

The FindPhoneme function simply iterates the array of phoneme key frames, looking for the one in which
the specified time falls. The FindPhoneme function is usually called by the GetAnimData function,
which you use to get the two phoneme meshes that need to be blended, as well as the timescale to blend each
of the two meshes (in a range from 0 to 1).

void cXPhonemeParser::GetAnimData(\
 DWORD Time, \
 DWORD *Phoneme1, float *Phoneme1Time, \
 DWORD *Phoneme2, float *Phoneme2Time)
{
 // Quick check if past end of animation
 if(Time >= m_Length) {
 *Phoneme1 = m_Phonemes[m_NumPhonemes−1].Code;

*Phoneme2 = 0;
 *Phoneme1Time = 1.0f;
 *Phoneme2Time = 0.0f;
 return;
}

As you can see from the last bit of code, you must insert a special case to test whether the animation is past
the end of its length. If so, only the last key frame is used, with the first mesh being blended at 100 percent
and the second mesh at 0 percent.

Moving on, the GetAnimData function iterates the list of phonemes and looks for one that matches the time
specified.

 // Find the key to use in the phoneme sequence
 DWORD Index1 = FindPhoneme(Time);
 DWORD Index2 = Index1+1;
 if(Index2 >= m_NumPhonemes)
 Index2 = Index1;

 // Set phoneme index #'s
 *Phoneme1 = m_Phonemes[Index1].Code;
 *Phoneme2 = m_Phonemes[Index2].Code;

The phoneme found at the specified time is used as the first blended mesh. The second mesh to be blended is
pulled from the following phoneme structure. Again, if the animation sequence is at its end, only the last
key−frame values are used.

Here's where you get back to using three meshes to morph from one phoneme mesh to another. As the
sequence animates from the first phoneme mesh to the second, the first mesh slowly decreases its blending
value from 1 to 0. The second phoneme mesh starts at a blending value of 0 and slowly moves to 1.

 Using an .X Parser for Sequences

236

To calculate the blending factors for the two meshes, you need to finish the GetAnimData function with a
few calculations that scale the current time between the two used key frames' times and store the blending
values as a factor of that scaled time.

 // Calculate timing values
 DWORD Time1 = m_Phonemes[Index1].StartTime;
 DWORD Time2 = m_Phonemes[Index1].EndTime;
 DWORD TimeDiff = Time2 − Time1;
 Time −= Time1;
 float TimeFactor = 1.0f / (float)TimeDiff;
 float Timing = (float)Time * TimeFactor;

 // Set phoneme times
 *Phoneme1Time = 1.0f − Timing;
 *Phoneme2Time = Timing;
}

And that's it for the cXPhonemeParser class! To use the class, you only need to instance it and call
Parse on the .X file that contains your phoneme sequence data.

cXPhonemeParser PhonemeParser;
PhonemeParser.Parse("Phoneme.x");

For each frame of animation, call the GetAnimData function to determine which meshes and blending
values to use for drawing your facial mesh. You need to calculate the animation timing by calling a function
such as timeGetTime and bounding the result by the length of the animation, as I've done here:

 // Get animation time
 DWORD Time = (DWORD)timeGetTime();
 Time %= PhonemeParser.m_Length;

 // Get mesh numbers and blending values
 DWORD Mesh1, Mesh2;
 float Time1, Time2;
 PhonemeParser.GetAnimData(Time,&Mesh1,&Time1,&Mesh2,&Time2);

I think you already know what's coming next. Using the values you retrieved from the GetAnimData
function call, you can now draw your blended mesh. Consult Chapter 8 for details on drawing blended
meshes, or check out the facial animation demo included on the CD−ROM for a working example. Check the
end of this chapter for details on the facial animation demo.

Congratulations! You've successfully loaded and played back a phoneme animation sequence! What's next on
the list? You can blend more meshes to make your facial animations more believable, by having the eyes
blink or adding the ability to change the facial expressions. Now that you've learned the basics, it's all easy to
do.

Playing Facial Sequences with Sound

Now that you've recorded and played your facial animation sequences, it's time to go that extra step and begin
synchronizing those animations to sound. If you're using facial animation to lip−sync to sound files, this is as
easy as playing the sound file and running your animation at the same time.

With so many ways to load and play back your sound files, what's a DirectX programmer like you supposed
to do? To cut through the confusing array of available media libraries, I'd like to turn to the best one to

 Playing Facial Sequences with Sound

237

dateMicrosoft's DirectShow! DirectShow is really a powerful media−authoring system in disguise. Lucky for
us, it's quite easy to use.

If all you need is to play media files (audio media files, in this case), then you're in luck because that is one of
the simplest functions to perform using DirectShow. In this section, I'll give you the whirlwind tour of making
DirectShow play back an audio media file, whether that file is a .WAV, .MP3, .WMA, or any other sound file
that has a codec registered with Windows. Of course, these media files will contain the spoken dialog that you
want to synchronize with your facial animation.

For the exact details on DirectShow and the objects you'll use here, consult Chapter 14, "Using Animated
Textures." Like I said, this is the whirlwind tour, so things are going to happen fast!

Using DirectShow for Sound

DirectShow is a collection of interfaces and objects that works with video and audio media. I'm talking about
recording and playing media from just about any source, including live video, streaming Web content, DVD,
and pre−recorded files. As if that isn't enough, DirectShow even allows you to create your own media
decoders and encoders, making it the only media system of choice.

To add DirectShow to your project, you must first include dshow.h in your source code.

#include "dshow.h"

Also, make sure to add the strmiids.lib file to your project's link files. The strmiids.lib file is located in the
same directory as your other DirectX libraries (commonly \dxsdk\lib). After you've included and linked the
proper files, you can instance the following four DirectShow interfaces to use in your code:

IGraphBuilder *pGraph = NULL;
IMediaControl *pControl = NULL;
IMediaEvent *pEvent = NULL;
IMediaPosition *pPosition = NULL;

The first interface, IGraphBuilder, is the head honcho here. It deals with loading and decoding your
media files. The second interface, IMediaControl, controls playback of the audio file. The third interface,
IMediaEvent, retrieves events, such as playback completion. The last interface, IMediaPosition, sets
and retrieves the position in which playback occurs. (For instance, you can set the audio to play five seconds
into the sound, or you can tell that playback is currently at 20 seconds into the sound.)

Note Since you're using the COM system, you need to call CoInitialize inside your
program's initialization code. Once that is complete, you must call CoUninitialize to
make the application shut down the COM system.

Use the CoCreateInstance function to create your IGraphBuilder object (from which the remaining
three interfaces are queried), as I've done here:

// Initialize the COM system
CoInitialize(NULL);

// Create the IGraphBuilder object
CoCreateInstance(CLSID_FilterGraph, NULL, \
 CLSCTX_INPROC_SERVER, IID_IGraphBuilder, \
 (void**)&pGraph);

 Using DirectShow for Sound

238

After you've created the IGraphBuilder object, you can call IGraphBuilding::RenderFile to
begin using the object immediately to load the audio media file you want. (This is called rendering.) As the
file is rendered, DirectShow loads all necessary codecs for decoding the media data.

The RenderFile function takes the file name of the media file you want to play as a wide−character string,
which you can construct using the L macro. For example, to load a file named MeTalking.mp3, you would use
the following code bit. (Note that the second parameter of RenderFile is always NULL.)

pGraph−>RenderFile(L"MeTalking.mp3", NULL);

After you've loaded the media file, you can query the remaining three interfaces from the IGraphBuilder
object, as I've done here:

pGraph−>QueryInterface(IID_IMediaControl, (void**)&pControl);
pGraph−>QueryInterface(IID_IMediaEvent, (void**)&pEvent);
pGraph−>QueryInterface(IID_IMediaPosition,(void**)&pPosition);

You're almost there! Getting your sound to begin playing is as simple as calling IMediaControl::Run.

pControl−>Run();

There you have it. If everything went as planned, you should hear your sound being played back! Now you
just need to synchronize your facial animation with the sound that's being played.

Synchronizing Animation with Sound

After your sound is loaded and playing, it's time to synchronize the animation to the sound. Because your
animation runs off time values (milliseconds, in this case), you can query DirectShow for the exact time of the
playing sound. Using this time value, you can update your lip−syncing facial animation every frame, making
it perfectly synchronized to your playing sound.

To obtain the sound's play time, you use the IMediaPosition interface you created in the previous
section. The specific function you're looking for is IMediaPosition::get_CurrentPosition,
which takes a pointer to a REFTIME (a float data type) variable as the only parameter, as you can see here:

REFTIME SndTime; // REFTIME = float
pPosition−>get_CurrentPosition(&SndTime);

To obtain the current play time in milliseconds, you simply multiply the REFTIME value you receive from
get_CurrentPosition by 1000.0 and cast the resulting number into a DWORD variable. That DWORD
variable will contain the time you'll use to update your lip−syncing facial animation. Following is an example
bit of code that converts the time received from get_CurrentPosition to milliseconds.

Note Automated features, such as the blinking of your mesh's eyes, should run off the internal timer, not the
DirectSound playback time. To obtain the internal timer's value (in milliseconds) you can use the
timeGetTime function, which returns a DWORD value that contains the number of milliseconds that
have passed since Windows started.

DWORD MillisecondTime = (DWORD)(SndTime * 1000.0f);

You use this time value (MillisecondTime) to locate the correct sequence of phoneme facial meshes
between which to morph the animation data you loaded with your .X parser. Take a moment to check out this

 Synchronizing Animation with Sound

239

chapter's demo program to see just how to use these timing values in your animation. (See the end of this
chapter for more details about the demo program.)

If you jumped ahead and tried playing the sound and animation perfectly synchronized, you might have
noticed that something is wrong. In the real world, a person moves his mouth before you hear a sound. In its
current state, your synchronization method doesn't compensate for this fact. Not to worry, howeveryou only
need to offset the animation timing a tiny bit to correct this problem. Simply subtract a small amount of time
from the animation. I suggest a value of 30 to 80 milliseconds, but you might want to play with the value a bit
to get the animation synchronized just right.

Looping Sound Playback

Something seems to be missing. Hmm, what could it be? It's IMediaEvent, the third extra interface you
queried from the IGraphBuilder object! The IMediaEvent interface shows its true colors whenever
you need to know whether your sound has completed playback. (That's all you're concerned with at this
point.) This is useful when you want to determine whether the sound should restart, or whether some other
event needs to occur when playback is complete.

Events are represented by a command code and two parameters, all cast to long data types.

long Code, Param1, Param2;

To retrieve the event code and parameters, you call IMediaEvent::GetEvent, as shown here:

HRESULT hr = pEvent−>GetEvent(&Code, &Param1, &Param2, 1);

It's important to record the return value from calling IMediaEvent::GetEvent. A value of S_OK means
that an event was retrieved, and any other error value means that there are no further events to process.
Because any number of events can be waiting for you to process, you should continuously call GetEvent
until no more events are waiting. You can see that process here, contained within a while loop.

Note The fourth parameter of IMediaEvent::GetEvent is how many milliseconds you want to wait for
an event to be retrieved. For the purposes of this book, I always wait for one millisecond before
continuing.

while(SUCCESS(pEvent−>GetEvent(&Code,&Param1,&Param2,1))) {
 // Process playback completion event
 if(Code == EC_COMPLETE) {
 // Do something, as playback is done
 }

 // Free event data
 pEvent−>FreeEventParams(Code, Param1, Param2);
 }

From the comments in the preceding code, you can see that I've taken the liberty of checking the type of event
code that was retrieved from the call to GetEvent. The one and only event you're looking for is playback
completion, which is represented by the EC_COMPLETE macro. Inside the conditional block, you can do
whatever your little heart desires. For example, you can seek back to the beginning of the sound and start
playback, as I've done here:

// Process playback complete event
if(Code == EC_COMPLETE) {

 Looping Sound Playback

240

 // Seek to beginning of sound and replay it
 pPosition−>put_CurrentPosition(0.0f);
 pControl−>Run();
}

One other thing you might have noticed is the call to IMediaEvent::FreeEventParams. You must
always call FreeEventParams to let DirectShow free any resources that were allocated for the event you
retrieved from a prior call to GetEvent.

With that, your sound playback functions are complete! Well, almost complete. When you're finished with the
sound, it's customary to call IMediaControl::Stop to stop any sound from playing and to free all COM
interfaces using their respective Release functions.

Check Out the Demo

Whew! Facial animation is incredibly easy to use when you have the know−how, and the effects are
definitely worth it. On the book's CD−ROM, you'll find two programs of interest when it comes to facial
animationFacialAnim and ConvLWV.

The first program, FacialAnim, is the only project that comes with source code. The FacialAnim demo, shown
in Figure 11.14, shows off the power of the facial animation engine developed in this chapter.

Figure 11.14: Get a hands−on soccer report from a fully lip−synced game character in the FacialAnim demo!
The final program, ConvLWV, helps you create your own phoneme sequences for use with the facial
animation package developed in this chapter. Check out this chapter's text for more information about using
ConvLWV.

When you think you've got this whole facial animation system down, I suggest you improve on the techniques
covered here by giving your face mesh new features, such as teeth, hair, and eyebrows. Add animation to your
mesh's eyes or try increasing your set of phonemes. When you've got your facial meshes just right, start
playing with texturing. Texturing plays a major role in your systema neatly textured face model beats a plain
one any day.

Programs on the CD

 Check Out the Demo

241

The Chapter 11 directory on the CD−ROM includes a project (the FacialAnim demo) and two programs
(Microsoft's Agent software package and the ConvLWV program). Specifically, these include

FacialAnim. Check out facial animation with this demo, which shows a mesh talking and changing
its reactions in real time. It is located at \BookCode\Chap11\FacialAnim.

♦

Agent. Microsoft's Agent software package includes the Linguistic Information Sound Editing Tool.
It is located at \BookCode\Chap11\Agent.

♦

ConvLWV. This program converts .LWV files to .X files and saves phoneme sequences in objects
easily imported into your game projects. For licensing reasons, the source code for this project is not
available. The program is located at \BookCode\Chap11\ConvLWV.

♦

 Check Out the Demo

242

Part Five: Miscellaneous Animation
Chapter 12: Using Particles in Animation
Chapter 13: Simulating Cloth and Soft Body Mesh Animation
Chapter 14: Using Animated Textures

243

Chapter 12: Using Particles in Animation
Aflashy explosion, a clump of grass, a towering tree, a puff of smoke, a screaming pedestrian, and a sketchy
little fishwhat could they possibly have in common? The fact that you can draw them in your game using
particles, that's what! Particles are the number one special−effect doodads of gaming, capable of displaying
everything from droplets of rain to glowing bursts of explosive shrapnel. With a little know−how and the help
of this chapter, you can turn these simple little particles into huge game−enhancing visuals!

Working with Particles

First things firstwhat are particles? A particle is a simple graphical object used as a visual enhancement.
Particles are typically used to draw small graphical effects such as fire, smoke, and those sparkly little lights
that come from a magic missile trail (see Figure 12.1). Your game could certainly operate without particles,
but it's the particles that make the visuals so vivid.

Figure 12.1: A blast from a spell creates a shower of particles in Gas Powered Games' Dungeon Siege.
In fact, particles are good for more than just those sparkly little lights and puffs of smoke. A couple games
use particles in manners you might not suspect. For instance, Namco's Tekken series uses particles to represent
flowing tufts of grass in specific levels.

What are some other advanced uses for particles? Imagine thisyour newest game consists of gargantuan
monsters that wreak havoc on the various cities of the nation. In one level of your game, your monster of
choice can smash a local dam. After a few direct hits, the dam cracks and water begins to pour out, bouncing
off the scaly back of the titanic creature and pouring down into the city. Where are the particles in this
scenario?

I'll bet you said the water, right? You are correct, but there are also the chunks flying off the dam, terrified
citizens fleeing the city's buildings, exploding transformers from flooded power lines, and maybe even the
occasional bullet being shot at the monster by the braver citizens. That's not even mentioning the portions of
your level that use billboards to render the city's various signs, trees, and cars, which are also particles.

So there you have ityou can throw a bunch of simple particles into your game, enhancing the visual
appearance with a minimum of effort. The cool thing is, you can handle most particles with one or two small
class objects that you can plug into any of your game projects.

244

Before you can go as far as using classes to control particles, however, you'll have to start with the extreme
basics. First you need to see how to draw particles, and then you can move on from there.

Starting with the Basics

Particles are typically quad−shaped polygons that are rendered using a small set of textures. Using
texture−mapped quad polygons, you can fool people into thinking the particle is actually a 3D mesh; the
texture map gives it the appearance of such. It makes sense because if you are going to show only one side of
a mesh, you can render it out to a texture map and apply it to a quad polygon instead.

Because a particle is drawn using only two triangles (forming a quad), as shown in Figure 12.2, you must rely
on billboard rendering to ensure that the polygons are always facing the viewer.

Figure 12.2: Two triangles are sandwiched together to form a quad polygon. Looking down from above, you
can see that billboarding ensures that the polygons are always facing the viewer.
In case you haven't heard the term before, billboarding is the technique of orienting an object (such as a
polygon) so that it is always facing the viewer. Initially, a billboarded object is created so that it points at the
negative z−axis (as shown in Figure 12.3). As the viewer moves, the billboarded object rotates so that it
always faces the viewer.

Figure 12.3: The billboarded quad polygon on the left initially points at the negative z−axis, only to be rotated
when drawn so that it faces the viewer.
The reasons for using billboards are quite simpleto save memory and speed up rendering. To billboard, you
would typically take a bitmap image of what you want the particle to look like (such as a puff of smoke for a
smoke particle), and you would draw this image onto the particle's polygons. Then, instead of having to
render a 3D mesh that represents the smoke, you could render the particle polygons using the smoke bitmap

 Starting with the Basics

245

image as a texture.

This is not to say that rendering 3D meshes for particles is a bad thing. In fact, a particle can be composed of
any type of primitive, from pixels and lines to polygons and entire 3D meshes. You can bet that there will be
times when a simple quad polygon won't cut it and you'll need to use 3D meshes instead.

Going back to your monster game, you could use particles to represent the tiny vehicles driving your city's
streets. A simple textured (and billboarded) quad polygon could suffice for those vehicles, but what if you had
a simple 3D mesh to use instead? That only requires a few additional polygons to render each frameand
believe me, the effects of having all those little cars driving around your virtual city would be well worth the
extra rendering time.

Okay, rendering with meshes aside, the majority of particles you'll be drawing are from billboarded quad
polygons. You can draw these polygons in a number of ways, but I will show you three in this book. The first
method of drawing particles is quite possibly the easiest, but you'll soon find out that it has its drawbacks.

Drawing Particles with Quad Polygons

Drawing particles is as simple as drawing polygons because a particle is merely a variable−sized
texture−mapped quad polygon. Figure 12.4 illustrates a typical layout of the two triangular polygons you'll
use to create a particle. In this figure, I have shown a particle that is 10 units in size.

Figure 12.4: A particle that is 10 units in size extends 5 units from the origin in both the x and y axes.
In addition to the coordinates of the vertices you use to draw the particles, you need a couple other things.
First, there's the texture you'll use to enhance the particle's appearance. Whether that texture is smoke, a blob
of light, or a terrified person, you need to store the image in a texture object. Along with the texture, your
polygons also need texture coordinate information to map the texture image to the polygons.

To keep things simple, I will use one texture per particle type for all the particles in this chapter. In other
words, if I have a smoke particle and a fire particle, I'll load two textures. Any instance of either particle will
use its respective texture to render. You might want to compile the particle textures into one texture surface to
improve your particle.

The next bit of information you need to create your particle's polygon data is the diffuse color component. The
ability to change the colors of your particles during run time is very useful because the changing colors can
represent the various life cycles of your particles. For instance, fire slowly cools and changes color as it moves

 Drawing Particles with Quad Polygons

246

away from the heat source. Instead of using a multitude of texture images to represent the various levels of
heat, you can use the same texture image and slowly modify the diffuse color of the particle.

The last bit of information you need is the particle's size. Particles can pretty much be any size, from a tiny
speck of dust to an Earth−crushing meteor. To define the size of a particle, you just choose the dimensions
you want the particle to be using the same world−space coordinates as your 3D meshes.

For example, suppose you want a particle to be 20 units wide by 50 units high. This size extends in the x and
y axes only (since a particle is really a flat object that is rotated to always face the viewer). When it is being
created, the center of the particle is placed at the origin of the world. Using the particle's size as a guide, you
then create some vertices to represent the corners of the particle. These vertices are placed using half of the
particle's dimensions as an offset. For example, your 20×50 particle extends from 10 to 10 along the x−axis,
and from 25 to 25 along the y−axis.

That's about ityou should now have enough information to start drawing your particles! To recap, you should
have the particle's size and vertex coordinates (using the size of the particle as a reference), as well as the
texture coordinates and diffuse−color component for each vertex. Go ahead and put those components into a
vertex structure, as I've done here:

typedef struct {
 D3DXVECTOR3 vecPos; // Particle vertex coordinates
 D3DCOLOR Diffuse; // Diffuse color
 float u, v; // Texture coordinates
} sVertex;

Don't forget to define your FVF declaration for your newly created vertex structure.

#define VERTEXFVF (D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX1)

Using the vertex structure and FVF, you can create a small vertex buffer that contains enough vertices to draw
a single particle. You're using two triangular polygons, which means you need to create six vertices (three per
polygon). Using a triangle strip, you can reduce the number of vertices to four.

You can create the vertex using the following bit of code:

IDirect3DVertexBuffer9 *pVB = NULL;
pDevice−>CreateVertexBuffer(4*sizeof(sVertex), \
 D3DUSAGE_WRITEONLY, \
 VERTEXFVF, D3DPOOL_DEFAULT, \
 &pVB, NULL);

Now that you have created the vertex buffer (which you only do once in your program), you can stuff your
particle data in it. Suppose you want to draw a particle that is 10 units in size (for both the x and y axes), uses
the entire texture surface, and has a white color component. To do so, you would use the following code:

// Size = size of particle, 10.0 in this case
float Size = 10.0;

// Get half the size for setting vertex coordinates
float HalfSize = Size / 2.0f;

// Lock the vertex buffer and fill with vertex data
sVertex *Vertex = NULL;

 Drawing Particles with Quad Polygons

247

pVB−>Lock(0, 0, (void**)&;Vertex, 0);

// Top−left corner, vertex #0
pVB[0].vecPos = D3DXVECTOR3(−Size, Size, 0.0f);
pVB[0].Diffuse = D3DCOLOR_RGBA(255,255,255,255);
pVB[0].u = 0.0f; pVB[0].v = 0.0f;

// Top−right corner, vertex #1
pVB[1].vecPos = D3DXVECTOR3(Size, Size, 0.0f);
pVB[1].Diffuse = D3DCOLOR_RGBA(255,255,255,255);
pVB[1].u = 1.0f; pVB[1].v = 0.0f;

// Bottom−left corner, vertex #2
pVB[2].vecPos = D3DXVECTOR3(−Size, −Size, 0.0f);
pVB[2].Diffuse = D3DCOLOR_RGBA(255,255,255,255);
pVB[2].u = 0.0f; pVB[2].v = 1.0f;

// Bottom−right corner, vertex #3
pVB[3].vecPos = D3DXVECTOR3(Size, −Size, 0.0f);
pVB[3].Diffuse = D3DCOLOR_RGBA(255,255,255,255);
pVB[3].u = 1.0f; pVB[3].v = 1.0f;

// Unlock vertex buffer
pVB−>Unlock();

At this point, your vertex buffer is ready to render. However, there is one little catch. You'll notice that the
vertex coordinates place the polygons at the origin of your 3D world, extending in the x and y axes. Since the
viewpoint can be anywhere in the world, you must position the polygons using the world transformation prior
to rendering.

You also have to rotate the polygons to face the view, which you'll recall is the purpose of billboarding. You
need to calculate a billboard transformation to rotate the particle polygons to face the viewer. With that
transformation, you add the coordinates of the particle where it should be drawn (in world space coordinates).

Caution Using the GetTransform function to retrieve a transformation from Direct3D is
extremely slow and sometimes not allowed. It's best to maintain global transformations
for your world, view, and projection transformations so you can use those instead. For
now, however, I'll go the bad route and use GetTransform for demonstration
purposes.

To create a billboard transformation, you need to grab the view transformation matrix and calculate its
inversed transformation (thus reversing the order of transformation contained in the transformation) using the
D3DXMatrixInverse function, as shown here:

// Grab the view transformation matrix and inverse it
D3DXMATRIX matView;
pDevice−>GetTransform(D3DTS_VIEW, &matView);
D3DXMatrixInverse(&matView, NULL, &matView);

The purpose of using the inversed transformation is that it will rotate the particle's vertices in the opposite
direction that the view is facing, thus aligning the coordinates to the viewer. After you get the inversed view
transformation, you need to add the particle's coordinates directly in order to position the particle in the 3D
world. You can do this by storing the x, y, and z coordinates in the just−calculated inversed transformation
matrix's _41, _42, and _43 variables and setting the resulting transformation matrix as the world
transformation

 Drawing Particles with Quad Polygons

248

// Assuming ParticleXPos, ParticleYPos, and ParticleZPos
// contain the particle's coordinates in world space where
// you want it drawn.

// Add in coordinates of particle to draw
matView._41 = ParticleXPos;
matView._42 = ParticleYPos;
matView._43 = ParticleZPos;

// Set resulting matrix as the world transformation
pDevice−>SetTransform(D3DTS_WORLD, &matView);

Now that you have set your world transformation matrix, you can render the polygons. To make sure your
particles blend perfectly with your scene, you should ensure that you are using z−buffering and that alpha
testing is enabled. Using z−buffering ensures that the particles are drawn into the scene properly, and alpha
testing ensures that transparent portions of the particle's texture map are not drawn (leaving your geometry to
show through those transparent parts). Also, you can enable alpha blending if you want to create some cool
color−blending effects.

Skipping the z−buffer setup (which you should have done during setup), you can enable alpha testing and
alpha blending as follows:

// Turn on alpha testing
pDevice−>SetRenderState(D3DRS_ALPHATESTENABLE, TRUE);
pDevice−>SetRenderState(D3DRS_ALPHAREF, 0x08);
pDevice−>SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL);

// Turn on alpha blending (simple additive type)
pDevice−>SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice−>SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR);
pDevice−>SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTCOLOR);

For the alpha testing, you'll notice that I chose to use the greater than or equal to comparative rule. This
means that pixels in your particle's texture map that have an alpha value of 8 or greater are rendered, while the
others are skipped. Using alpha testing means you need to use a function such as
D3DXCreateTextureFromFileEx to load your textures, specifying a color mode that uses alpha
channels (such as D3DFMT_A8R8G8B8) and a color key of opaque black
(D3DCOLOR_RGBA(0,0,0,255)), such as in the following code bit:

D3DXCreateTextureFromFileEx(
 pDevice,
 "Particle.bmp",
 D3DX_DEFAULT, D3DX_DEFAULT, D3DX_DEFAULT,
 0, D3DFMT_A8R8G8B8, D3DPOOL_DEFAULT,
 D3DX_DEFAULT, D3DX_DEFAULT,
 D3DCOLOR_RGBA(0,0,0,255), NULL, NULL,
 &pTexture);

Now that you have the appropriate alpha render states set up, you can set the FVF, streams, and texture, and
then render away!

// Set vertex shader and stream source
pDevice−>SetVertexShader(NULL);
pDevice−>SetFVF(PARTICLEFVF);
pDevice−>SetStreamSource(0, pBuffer, 0, sizeof(sVertex));

// Set the texture

 Drawing Particles with Quad Polygons

249

pDevice−>SetTexture(0, &pTexture);

// Draw the particle
pDevice−>DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);

All right, now you're getting somewhere! You have drawn a single particle! Because you'll most likely render
more than one particle at a time, you won't have to repeat all this code for each particle. Once you've set up
the stream and texture, you can repeatedly lock the vertex buffer, fill in the data, unlock the buffer, and render
the particle. If the size of your particles doesn't change, you can avoid locking and unlocking the vertex buffer
each time and just skip to storing the particle's coordinates in the inverse transformation matrix, setting the
appropriate texture, and rendering away.

Note The Particles demo on the CD−ROM demonstrates drawing huge lists of particles using the techniques
you just learned. Check out the end of this chapter for information on the Particles demo.

After you've played around with the particle−rendering code, you'll notice a couple of things. First, there's a
lot of vertex data to process. Second, the constant locking, filling, and unlocking of the vertex buffer can
really knock down your performance. You need something to render particles that uses less memory and is
more optimized. What you need are Point Sprites!

Working with Point Sprites

As you can tell, particles are game staplesmany games use them for various special effects. Microsoft was
well aware of this fact, and they added the ability to render billboarded quad polygons in Direct3D using Point
Sprites. A Point Sprite is merely a billboarded quad polygon represented by a set of minimal data. Each
particle is represented by a single 3D coordinate (representing the center of the particle) and the size of the
particle (as measured in the previous section, except you use only one size measure that extends equally in
both the x and y axes). This provides you with an enormous memory savings over using quad polygons.

Remember from earlier in this chapter that a quad−polygon particle requires four vertices. For the previous
sVertex structure, you're stuck using twenty floats and four DWORDs per particle. That's a total of 96 bytes
of data to draw just one particle! So how do Point Sprites compare?

A Point Sprite uses the following vertex structure:

typedef struct {
 D3DXVECTOR3 vecPos; // Center coordinates of particle
 float Size; // Size of particle
 D3DCOLOR Diffuse; // Diffuse color
} sPointSprite;

It looks somewhat the same, doesn't it? The big difference is that you only need one sPointSprite per
particle. That's rightthe sPointSprite structure uses only 20 bytes of data, beating the sVertex particles
by 76 bytes. What a savings!

So what's the catch to using Point Sprites? You knew there had to be some kind of downfall, didn't you? The
bad thing about Point Sprites is that they are limited in size. Whereas you can create particles of any size
using quad polygons, a Point Sprite is limited to the maximum size set in the D3DCAPS9::MaxPointSize
variable. That means the maximum size of a Point Sprite particle is dependent on the end user's video
hardware.

Note

 Working with Point Sprites

250

To ensure that the hardware can render Point Sprites, make sure to check the driver's hardware
capabilities using the IDirect3D9::GetDeviceCaps function. If the
D3DCAPS9::MaxPointSize value obtained from that function is set to 1.0f, then the hardware
doesn't support Point Sprites.

Another downfall is that the video card drivers must be able to handle Point Sprites. Frequently, I have
encountered bad drivers that make the Point Sprites flicker or use the incorrect size to render. You can just
hope that most end users will have updated drivers that guarantee accurate use of Point Sprites!

Downfalls aside, Point Sprites save you a tremendous amount of memory; for those video cards that can
handle them, they are great for drawing particles. As you saw in the sPointSprite vertex structure, Point
Sprites only use four floats and a single DWORD to store the particle coordinates, size, and diffuse color,
respectively.

Note Point Sprites use the entire texture surface to render onto the particle, meaning that you need one texture
per particle image you are using. This also means you don't have to specify texture coordinates in your
Point Sprite vertex structure.

Point Sprites use the following FVF declaration:

#define POINTSPRITEFVF (D3DFVF_XYZ|D3DFVF_PSIZE|D3DFVF_DIFFUSE)

You need to specify the D3DUSAGE_POINTS flag during your call to CreateVertexBuffer, as in the
following code bit:

pDevice−>CreateVertexBuffer(8 * sizeof(sPointSprite), \
 D3DUSAGE_POINTS | D3DUSAGE_WRITEONLY, \
 POINTSPRITEFVF, D3DPOOL_DEFAULT, \
 &pBuffer, 0);

After you've created your vertex buffer (remembering to specify the number of vertices you want to contain in
the vertex buffer), you can begin filling the buffer with the particles you want to render. For example, suppose
there are eight particles you want to render, each of which is 10 units in size (extending 5 units in both the x
and y axes) and use a white diffuse color. With the vertex buffer you just created, you can lock, fill, and
unlock the vertex buffer using the following code:

float Size = 10.0f; // Make particles 10 units in size

sPointSprite PointSprites[8] = {
 // Particle #0
 { D3DXVECTOR3(0.0f,0.0f,0.0f), Size,
 D3DCOLOR_RGBA(255,255,255,255) },
 // Particle #1
 { D3DXVECTOR3(10.0f,0.0f,0.0f), Size,
 D3DCOLOR_RGBA(255,255,255,255) },
 // Particle #2
 { D3DXVECTOR3(20.0f,0.0f,0.0f), Size,
 D3DCOLOR_RGBA(255,255,255,255) },
 // Particle #3
 { D3DXVECTOR3(30.0f,0.0f,0.0f), Size,
 D3DCOLOR_RGBA(255,255,255,255) },
 // Particle #4
 { D3DXVECTOR3(−10.0f,0.0f,0.0f), Size,
 D3DCOLOR_RGBA(255,255,255,255) },
 // Particle #5

 Working with Point Sprites

251

 { D3DXVECTOR3(−20.0f,0.0f,0.0f), Size,
 D3DCOLOR_RGBA(255,255,255,255) },
 // Particle #6
 { D3DXVECTOR3(−30.0f,0.0f,0.0f), Size,
 D3DCOLOR_RGBA(255,255,255,255) },
 // Particle #7
 { D3DXVECTOR3(−40.0f,0.0f,0.0f), Size,
 D3DCOLOR_RGBA(255,255,255,255) },
 };

 // Lock the vertex buffer
 sPointSprite *Ptr;
 pBuffer−>Lock(0,0,(void**)&Ptr,0);

 // Copy vertex data into buffer
 memcpy(Ptr, PointSprites, sizeof(PointSprites));

 // Unlock vertex buffer
 pBuffer−>Unlock();

Now that you've created and filled in the vertex buffer with the Point Sprite data, you can render away. Wait!
I forgot to have you set some important render states. Direct3D needs to know a few things, namely that you
want to use textured Point Sprites that are positioned in 3D space (as opposed to screen space). To specify that
you want to use Point Sprites that are positioned in 3D space, you must set the appropriate render states, as
shown here:

// Use entire texture for rendering point sprites
pDevice−>SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE);

// Scale in camera space
pDevice−>SetRenderState(D3DRS_POINTSCALEENABLE, TRUE);

Also, you need to let Direct3D know the minimum size of a Point Sprite, and how big to make it if your
vertex declaration is missing the size. For now, I'll tell Direct3D that Point Sprites are to use a size of 1 if the
vertex declaration is missing the data, and to use a minimum size of 0.

// Set default and minimum size of point sprites
pDevice−>SetRenderState(D3DRS_POINTSIZE, FLOAT2DWORD(1.0f));
pDevice−>SetRenderState(D3DRS_POINTSIZE_MIN, FLOAT2DWORD(0.0f));

Finally, you need to set a few distance−based attenuation scaling factors. These tell Direct3D how to size the
particles depending on their distance from the viewer. We're not getting fancy here, so the default values (as
specified by the DirectX SDK documents) will do. These factors (which are actually render states) are set
using the following code:

// Define a function to convert from a float to a DWORD
inline DWORD FLOAT2DWORD(FLOAT f) { return *((DWORD*)&f); }

// Set attenuation values for scaling
pDevice−>SetRenderState(D3DRS_POINTSCALE_A, FLOAT2DWORD(1.0f));
pDevice−>SetRenderState(D3DRS_POINTSCALE_B, FLOAT2DWORD(0.0f));
pDevice−>SetRenderState(D3DRS_POINTSCALE_C, FLOAT2DWORD(0.0f));

You'll notice something funny about that last code bitthe inclusion of the FLOAT2DWORD function. As you
know, the SetRenderState function only accepts DWORD values for the second parameter. The
attenuation factors are floating−point values, so you need a way to convert from those floating−point values to

 Working with Point Sprites

252

a DWORD value. That's where FLOAT2DWORD comes in. Using FLOAT2DWORD, you can pass any
floating−point value to the SetRenderState function, and rest assured the value will be converted into an
acceptable DWORD value.

Finally, you are able to render the Point Sprites! Remember, Point Sprites are merely vertex buffers that use
the Point Sprite primitive type, signified by the D3DPT_POINTLIST flag in your call to DrawPrimitive.
Without further delay, here's the call to enable alpha testing and blending and set the FVF and stream source,
followed by the call to DrawPrimitive.

// Turn on alpha testing
pDevice−>SetRenderState(D3DRS_ALPHATESTENABLE, TRUE);
pDevice−>SetRenderState(D3DRS_ALPHAREF, 0x08);
pDevice−>SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL);

// Turn on alpha blending (simple additive type)
pDevice−>SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice−>SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR);
pDevice−>SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTCOLOR);

// Set vertex shader and stream source
pDevice−>SetVertexShader(NULL);
pDevice−>SetFVF(POINTSPRITEFVF);
pDevice−>SetStreamSource(0, pBuffer, 0, sizeof(sPointSprite));

// Render the Point Sprites (8 of 'em)
pDevice−>DrawPrimitive(D3DPT_POINTLIST, 0, 8);

As you can see, working with Point Sprites is very easy. It's certainly much easier than dealing with
billboarded quad polygonsthere's much less data involved. The only problem is that Point Sprites are limited
in size and not fully supported on all video cards. It would be really nice if you had the ability to use large
particles and the speed of rendering Point Sprites, wouldn't it? Great newsyou can have both using vertex
shaders!

Improving Particle Rendering with Vertex Shaders

What could I possibly show you that would improve your particle−rendering abilities? I might as well tell it
to you straightusing vertex shaders, you can mix the ease of using quad polygons with the speed of rendering
Point Sprites.

Previously, in the "Drawing Particles with Quad Polygons" section, I showed you how to draw particles one at
a time by setting the coordinates of four vertices to create a quad polygon, and then using an inversed view
transformation matrix mixed with the particle's world coordinates to render the polygons. Each particle was
rendered one at a time, meaning that you had to lock, fill, and unlock the vertex buffer each time.

Even if the particles didn't change in size, meaning you didn't have to lock and unlock the vertex buffer for
each particle drawn, you still had to modify and set the transformation matrix each time to make sure the
particles were in their proper locations in the 3D world before rendering. Think of ita thousand particles
means a thousand SetTransform function calls!

Because vertex shaders work in line with the rendering pipeline, there's no need to bother with the
transformations every time you want to render a single particle. That's rightno more of this
drawing−one−particle−at−a−time business! Using vertex shaders, you can fill the vertex buffer with as many
vertices as you can and draw a whole slew of particles with one call. That means your vertex shader particles

 Improving Particle Rendering with Vertex Shaders

253

will match the speed of Point Sprites!

Using vertex shaders, the vertex structure is much like the structure of Point Sprites. Figure 12.5 and the
following vertex structure show the center coordinates of the particle in 3D world space, as well as the diffuse
color and texture coordinates to track. The only difference between the following vertex structure and the
Point Sprite vertex structure is that the size of the particle is stored a little differently.

Figure 12.5: The vertex shader particle is composed of four vertices that are defined by a central point, the
offset from the center, the diffuse color, and texture coordinates.

typedef struct {
 D3DXVECTOR3 vecPos; // Coordinates of particle
 D3DXVECTOR2 vecOffset; // Vertex coordinate offsets
 DWORD Diffuse; // Diffuse color of particle
 float u, v; // Texture coordinates
} sShaderVertex;

As Figure 12.5 shows, each vertex is measured by a distance away from the center of the particle, called an
offset. The offsets are stored in a D3DXVECTOR2 vector object, with each vector component relating to its
respective axis (vecOffset.x for the x−axis and vecOffset.y for the y−axis).

The offset vector values perform much like the standard polygon and Point Sprite size variables; they
determine the size of the particle in each axis. For example, an offset value of 10 in the x offset means the
particle extends from 10 to 10 in the x−axis (giving you a particle width of 20 units). The same is true for the
y−axis; the offset value can be any number that determines the size of the particle in the y−axis. Typically,
you set these offset values to the same amount to ensure a square particle.

To create a particle using the vertex structure just declared, you create a vertex buffer that contains enough
vertices for each particle you want to draw. Using triangle lists, this means each particle uses six vertices; if
you use an index buffer as well, you can knock the number of vertices down to four.

I'll get back to the index buffer in a moment. For now, I want to talk more about the vertex buffer. Because
you're using a vertex shader to render the particles, you must create a vertex element declaration to create the
vertex buffer and map the vertex structure components to the vertex shader registers. For DirectX9 users, this
means instancing an array of D3DVERTEXELEMENT9 structures, as shown in the following bit of code:

D3DVERTEXELEMENT9 ParticleDecl[] =
{

 Improving Particle Rendering with Vertex Shaders

254

 // Vertex coordinates − D3DXVECTOR3 vecPos
 { 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, \
 D3DDECLUSAGE_POSITION, 0 },
 // Vertex corner offset − D3DXVECTOR2 vecOffset
 { 0, 12, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, \
 D3DDECLUSAGE_POSITION, 1 },
 // Diffuse color − DWORD Diffuse
 { 0, 20, D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT, \
 D3DDECLUSAGE_COLOR, 0 },
 // Texture coordinates − float u, v
 { 0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, \
 D3DDECLUSAGE_TEXCOORD, 0 },
 D3DDECL_END()
};

The ParticleDecl vertex element declaration is pretty straightforwardit maps the vertex structure
components to their respective counterparts in the vertex shader. First, there are two position components (the
3D coordinates and the corner−offset vector). These are followed by the diffuse color and texture coordinates.
Each component uses index #0 except for the corner−offset vector, which uses index #1 of the position usage
type.

The vertex elements will make more sense when you see the vertex shader. For now, just create the vertex
buffer and fill it with the particle data. Suppose you want room for four particles, which works out to sixteen
vertices (four vertices per particle, with each vertex defining a corner of the particle). The following code bit
will create the vertex buffer using the previously declared vertex elements:

IDirect3DVertexBuffer9 *pVB = NULL;
pDevice−>CreateVertexBuffer(16 * sizeof(sShaderVertex), \
 D3DUSAGE_WRITEONLY, 0, \
 D3DPOOL_DEFAULT, &pVB, 0);

As I mentioned earlier, you also need to create an index buffer to render the particles. Because each particle
uses two polygons (with three vertices each), you need six indices per particle. In this case you have four
particles, so you need to create an index buffer that can hold 24 indices.

IDirect3DIndexBuffer9 *pIB = NULL;
pDevice−>CreateIndexBuffer(24 * sizeof(short), \
 D3DUSAGE_WRITEONLY, D3DFMT_INDEX16, \
 D3DPOOL_DEFAULT, &pIB, 0);
unsigned short *IBPtr;
pIB−>Lock(0, 0, (void**)&IBPtr, 0);
for(DWORD i=0;i<4;i++) { // # particles
 IBPtr[i*6+0] = i * 4 + 0;
 IBPtr[i*6+1] = i * 4 + 1;
 IBPtr[i*6+2] = i * 4 + 2;
 IBPtr[i*6+3] = i * 4 + 3;
 IBPtr[i*6+4] = i * 4 + 2;
 IBPtr[i*6+5] = i * 4 + 1;
}
pIB−>Unlock();

All that's left to do at this point is lock your vertex buffer, fill in the data, unlock, and render away! When you
are filling the vertex buffer, make sure to set the correct offset vector values for each corner of the particle
being drawn, and set the center coordinates of the particle in each vertex. The following code demonstrates
setting up four particles to draw, each at a random position and size:

// Lock the vertex buffer

 Improving Particle Rendering with Vertex Shaders

255

sShaderVertex *VPtr = NULL;
pVB−>Lock(0, 0, (void**)VPtr, 0);

for(DWORD i=0;i<4;i++) {
// Get a random position of the particle

 float x = (float)(rand()%20)−10.0f;
 float y = (float)(rand()%20)−10.0f;
 float z = (float)(rand()%20)−10.0f;

 // Get a random size of the particle to use
 float Size = (float)(rand()%10)+1.0f;

 // Get half the size of the particle for setting data
 float HalfSize = Size / 2.0f;

 // Top−left vertex
 pVB[0].vecPos = D3DXVECTOR3(x, y, z);
 pVB[0].vecOffset = D3DXVECTOR2(−HalfSize, HalfSize);
 pVB[0].Diffuse = D3DCOLOR_RGBA(255,255,255,255);
 pVB[0].u = 0.0f; pVB[0].v = 0.0f;

 // Top−right vertex
 pVB[1].vecPos = D3DXVECTOR3(x, y, z);
 pVB[1].vecOffset = D3DXVECTOR2(HalfSize, HalfSize);
 pVB[1].Diffuse = D3DCOLOR_RGBA(255,255,255,255);
 pVB[1].u = 1.0f; pVB[0].v = 0.0f;

 // Bottom−left vertex
 pVB[2].vecPos = D3DXVECTOR3(x, y, z);
 pVB[2].vecOffset = D3DXVECTOR2(−HalfSize, −HalfSize);
 pVB[2].Diffuse = D3DCOLOR_RGBA(255,255,255,255);
 pVB[2].u = 0.0f; pVB[0].v = 1.0f;

 // Bottom−right vertex
 pVB[3].vecPos = D3DXVECTOR3(x, y, z);
 pVB[3].vecOffset = D3DXVECTOR2(HalfSize, −HalfSize);
 pVB[3].Diffuse = D3DCOLOR_RGBA(255,255,255,255);
 pVB[3].u = 1.0f; pVB[0].v = 1.0f;

 // Go to next four vertices
 pVB+=4;
}

Now that you have set the vertex buffer, you can render the particles. Well, that's not entirely trueyou still
have to create and load the vertex shader; create the declaration interface; set the vertex sources, texture, alpha
testing and blending; and set the vertex shader constants.

Loading a vertex shader and creating the declaration interface is standard in DirectX9, so I'll skip that. (If you
need help, that code is in the ParticlesVS demo for this chapter, or check out the helper functions in Chapter
1.) You've also seen how to set vertex sources, textures, and alpha testing and blending states, so I'll skip that
too. Now I want to show you the actual vertex shader you'll use to render the particles.

Remember that each particle is composed of four vertices. Previously in this chapter, you needed to position
each of those vertices using an inversed view transformation matrix before rendering the particle. Things are
going to be a little different with your vertex shader, however. Before going on, I'd like to pause and introduce
you to the view transformation's directional vector components.

 Improving Particle Rendering with Vertex Shaders

256

Aside from being a tongue twister, the directional vector components describe the direction your view is
pointingforward, up, and to the right (as illustrated in Figure 12.6).

Figure 12.6: The view transformation tells you which direction the view is facing, as well as which way is up
and which is right from its orientation.
To better understand the directional components, stand straight up and look forward. The direction you are
looking is called the eye vectorit describes the direction you are facing. In your mind, draw a line from your
heels to the top of your head. The direction of this line is called the up vectorit points up from your current
orientation. Finally, raise your right arm at a 90−degree angle to your body and point your finger in the
direction your arm is pointing. The direction you are pointing is the right vectorit always points to the right of
your current orientation.

These vectors (eye, up, and right) tell you which directions are relative to your current orientation. For
example, if you walk forward, then the eye vector is the direction you are moving; if you walk backward, then
the inverse eye vector is the direction you are moving. Likewise, if you moved to your right, you would be
moving in the direction of the right vector. Move left and you are going in the inverse direction of the right
vector. The same goes for the up vector if you move up or down along that same imaginary line from your
feet to your head.

Now, you know all this vector component stuff is leading somewhere, don't you? Well, your view
transformation actually contains the three directional vectors I just mentioned. Each component is stored in a
column of the view transformation. As shown in Figure 12.7, the right vector is column 1, the up vector is
column 2, the eye vector is column 3, and column 4 is left alone.

Figure 12.7: Each column in the view transformation contains a directional vector you can use to position
your particle's vertices.
Now I want to get back to the point. Using these directional vectors (or actually the normalized directional
vectors), you can position the particle's corner vertices by first moving them in the appropriate directionup,
down, left, or right, as determined by the up and right directional vectors. These vectors are scaled by the
offset coordinates of the particle.

 Improving Particle Rendering with Vertex Shaders

257

In plain English, you first want to place each vertex at the origin of the world. From there, move the vertex
left or right using the normalized right directional vector scaled by the x offset
(sShaderParticle::vecOffset.x) of the particle. Now move the vertex up or down using the
normalized up directional vector scaled by the y offset (sShaderParticle::vecOffset.y) of the
particle. Finally, add the particle's center coordinates to come up with the vertex's final coordinates. Rinse,
lather, and repeat for each vertex. Now your vertices are in their proper world−space positions, and you can
render away!

I'll show you how to grab those directional vector components from the view transformation in a moment; for
now, I want to get back to the vertex shader. To start the shader, I list in comments its mapping and constants
used, along with the version requirement:

; v0 = Particle coordinates
; v1 = X/Y offsets to position vertex
; v2 = Diffuse color of particle
; v3 = Texture coordinates
;
; c0−c3 = view*projection matrix
; c4 = normalized right directional vector
; c5 = normalized up directional vector
vs.1.1

As you can see, the constants you will use are the combined view and projection matrices, which you place in
constants c0 through c3. Next come the normalized right and up directional vectors I mentioned earlier. You
put these in constants c4 and c5. I'll get back to setting up the constants later; for now, I want to get back to
the shader code.

Next comes the actual vertex register mapping declarations, which ensure that the proper components from
the vertex structure can be accessed in the vertex shader.

dcl_position v0
dcl_position1 v1
dcl_color v2
dcl_texcoord v3

And now the fun begins! Remember earlier in this section, when I said you need to first position the vertex at
the world's origin and move it along the scaled right and up vectors? Well, that's the purpose of the following
code, which comes next in the vertex shader.

; Scale the corner's offsets by the right and up vectors
mov r2, v1
mad r1, r2.xxx, c4, v0
mad r1, r2.yyy, c5, r1

The previous bit of code takes the normalized scaling vectors (placed in the constant registers c4 and c5) and
multiplies them by the offset values in the vertex structure. The results are then added to the particle's center
coordinates to come up with the final vertex coordinates. All you have to do now is apply your
view*projection transformation to the vertex's coordinates and store the diffuse color and texture coordinates.

; Apply view * proj transformation
m4x4 oPos, r1, c0

; Store diffuse color
mov oD0, v2

 Improving Particle Rendering with Vertex Shaders

258

; Store texture coordinates
mov oT0.xy, v3

Wow, that's one small and efficient shader! All that's left to do after you create and load your new vertex
shader is set the vertex shader constants and draw away! These constants include your view*projection
transformation and the right and up directional vectors. Let's get the transformation bit out of the way and
move on to the directional vectors.

I'm going to assume you have the view and projection transformation matrices stored in two different
D3DXMATRIX objects. All you have to do is multiply these two, transpose the resulting matrix, and store it in
the constants via the SetVertexShaderConstantF function.

// matView = view transformation matrix
// matProj = projection transformation matrix
D3DXMATRIX matViewProj = matView * matProj;
D3DXMatrixTranspose(&matViewProj, &matViewProj);
pDevice−>SetVertexShaderConstantF(0, (float*)matViewProj, 4);

Now come the directional vectors. Remember that I said the directional vectors are stored in the columns of
the view transformation? Since you already have your view transformation matrix object, you can pull out the
components directly and normalize them at the same time with the following code. (Notice you're only
dealing with the right and up components, leaving the eye vector alone.)

// Get normalized right/up vectors from view transformation
D3DXVECTOR4 vecRight, vecUp;

// Right vector is 1st columnn
D3DXVec4Normalize(&vecRight, \
 &D3DXVECTOR4(matView._11, \
 matView._21, \
 matView._31, 0.0f));

// Up vector is 2nd column
D3DXVec4Normalize(&vecUp, \
 &D3DXVECTOR4(matView._12, \
 matView._22, \
 matView._32, 0.0f));

Once you have the normalized vectors, you can store them in the constants c4 and c5.

pDevice−>SetVertexShaderConstantF(4, (float*)&vecRight, 1);
pDevice−>SetVertexShaderConstantF(5, (float*)&vecUp, 1);

At last! It's all ready, and you can render your particles using your cool vertex shader! Make sure to set the
streams, texture, shader, and declaration, and be sure to use the indexed primitive drawing methods because
you're using index buffers. Check it out here in this bit of code:

// pShader = vertex shader interface
// pDec = vertex element declaration interface

// Set vertex shader, declaration, and stream sources
pDevice−>SetFVF(NULL);
pDevice−>SetVertexShader(pShader);
pDevice−>SetVertexDeclaration(pDecl);

 Improving Particle Rendering with Vertex Shaders

259

pDevice−>SetStreamSource(0, pVB, 0, sizeof(sShaderVertex));
pDevice−>SetIndices(pIB);

// Turn on alpha testing
pDevice−>SetRenderState(D3DRS_ALPHATESTENABLE, TRUE);
pDevice−>SetRenderState(D3DRS_ALPHAREF, 0x08);
pDevice−>SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL);

// Turn on alpha blending (simple additive type)
pDevice−>SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice−>SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR);
pDevice−>SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTCOLOR);

// Render the vertex shader particles (4 of 'em)
pDevice−>DrawIndexedPrimitive(D3DPT_TRIANGLELIST,0,0,16,0,8);

As you can see, drawing particles using a vertex shader is the best way to go. When you are comfortable with
the way the vertex shader works with the particle data, check out the demo for this chapter, which
demonstrates how to handle large amounts of particles in your own projects.

When you're ready to get past the basics of drawing particles, you can move on and see how to bring them to
life in your own game projects.

Bringing Your Particles to Life

Now that you know how to draw a particle, you can put that knowledge to work and learn how to create,
control, and destroy many instances of your particles in your 3D world. The first thing you can do is create a
particle class that will contain the various bits of information about your particle.

Aside from the vertex data that is kept separate from the particle data, you might want to keep tabs on the
particle's position, color, and type. You can also store the direction and speed in which a particle moves, as
well as how long the particle has to live before your engine removes it.

For this book, I decided to use the following bits of information for each particle:

Type. Particles can be many different types, and this data defines the type of particle. For example, I
can store fire and smoke particles together using the same particle structure.

♦

Position. This set of 3D coordinates determines where in the world a particle is located.♦
Velocity. Speed and directional data are stored using a vector. The x, y, and z components of the
vector define how fast a particle moves in that axis.

♦

Life. Particles can exist in your 3D world for only so long; this piece of data lets your engine know
when to remove the particle from the list of active particles to render. However, you don't have to
remove particles because you can make them live indefinitely if you want.

♦

Size. A particle can change size during its lifetime. This data contains the value you want to use for
the particle's size (in 3D units). Remember, a particle extends equally in both the x and y axes, so
specifying a size of 10 will make the particle 20 units wide by 20 units high (−10 to 10 units in both
axes).

♦

Color. To simulate changes in a particle, you use a color modifier to change the red, green, and blue
color components of the polygons during rendering. For example, a fire particle can change color
from white to red to yellow over time.

♦

You can pack all of this data into a simple class, as follows.

 Bringing Your Particles to Life

260

class cParticle
{
 public:
 DWORD m_Type; // Type of particle

 D3DXVECTOR3 m_vecPos; // Position of particle
 D3DXVECTOR3 m_vecVelocity; // Velocity of particle
 DWORD m_Life; // Life of particle in ms
 float m_Size; // Size of particle
 DWORD m_Color; // Diffuse color of particle
};

Each particle requires its own cParticle class instance. You can compile a collection of these classes into
an array to make dealing with multiple particles a breeze. Or, as I'll show you later, you can maintain a linked
list of these particle containers. I'll teach you how to deal with more than one particle later in this chapter. For
now, I want to keep things simple and deal with one particle at a time.

The first step is to fill in the cParticle class with the information about the particleits type, where you
want it placed, its color, and so on. The following bit of code sets the particle to type 1 and places it at the
origin of the world. The size is nominal (set at 5), and the color is set to bright white (the original color of the
texture map). Velocity doesn't come into play yet, so just zero out the vector's components.

// Instance a particle and fill w/data
cParticle Particle;
Particle.m_Type = 1;
Particle.m_vecPos = D3DXVECTOR3(0.0f, 0.0f, 0.0f);
Particle.m_Size = 5.0f;
Particle.m_Color = D3DCOLOR_RGBA(255,255,255,255);
Particle.m_vecVelocity = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

That's all there is to creating a particle! Of course, the particle is just sitting there doing nothing, so let's make
that sucker fly around by giving it some velocity.

Moving Particles Using Velocity

Once you've birthed a particle int he oyour 3D world, you need to give it motion, or a method of updating its
position in the world. Each particle has a special way of updating its coordinates. You want fire particles to
slowly rise while changing color from the hottest to coldest values (red to orange, for example). Smoke
particles tend to drift in the wind, so you want to check for a wind source nearby and use that to control those
particles.

Most particles are very simple in nature, moving in a specific direction that alters over time based on external
forces. Particles have a velocity that tells each one how fast or slow to move. The external forces you use can
increase or decrease a particle's velocity over time, thus speeding up or slowing down its movement.

For each frame you process, you can tally the forces to apply to the velocity of the particles. These forces can
come from any source, such as wind, gravity, drag, or propulsion. Not all forces are required for your engine,
howeverthey just make things a little more realistic. At a minimum, you'll want to incorporate propulsion and
gravity into your particle engine so that your particles will be able to move and come to a rest on the ground.

You can add the functions that apply force to the particle class. Or, if you are using another class to manage
the particles (like the one you'll soon see), you can place the functions in there. For now, I'll just show you
how to calculate a force vector from multiple sources to apply to a particle's velocity (notice that forces are
measured per millisecond).

 Moving Particles Using Velocity

261

// The force to apply to the particle(s)
D3DXVECTOR3 vecForce = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

// Add a per−millisecond gravity force of 0.02
vecForce += D3DXVECTOR3(0.0f, −0.02f, 0.0f);

// Add a per−millisecond wind force of 0.01f
vecForce += D3DXVECTOR3(0.01f, 0.0f, 0.0f);

After you've calculated the force to apply to each particle, you need to update the velocity. Updating the
particle's velocity is only a matter of adding the force vector to the velocity vector. Remember, forces are
measured per millisecond, meaning that you must multiply the force vector by the number of milliseconds that
has passed since you last moved the particles. Suppose the amount of time passed is stored in a floating−point
variable called TimeElapsed.

// TimeElapsed = time, in milliseconds, that has passed
// since the particle was last moved.
Particle.m_vecVelocity += (m_vecForce * TimeElapsed);

In addition to using a force vector to change your particle's velocity, there are alternative means to update
your particles using a more intelligent processing method.

Using Intelligence in Processing

So far I've only discussed simple particle movements using simple forces. What about those fleeing
pedestrians I spoke about at the beginning of this chapter? You knowthose terrified people running for their
lives from the towering monsters destroying their city's dam. Well nobody said you couldn't use a little
intelligence in your particle's processing, did they?

Instead of applying a set force to the particles, you can intelligently move them using minimal time and
processing. For example, suppose your game's town is divided into a grid. Each gridline is a street on which
cars are allowed to drive. Each car has a specific direction it is traveling; whenever it hits an intersection of
the gridlines, it can choose a new, random direction to move.

Various grid intersections are marked as dangerous when the monster attacks the city, and from that point on
all cars will try to move away from those points at twice the normal speed. Eventually, all cars will have fled
the city, been crushed by the ravaging monster, or become hopelessly trapped and abandoned by the
occupants. Therefore, all car particles can be removed over time, thus freeing up processing time for other
things.

The intelligent particles know exactly what velocity to travel in what direction. Rather than slowly changing
velocity in a specific direction over time, those particles change velocity immediately.

This sort of intelligent processing is specific to your game project, and it is easy to perform using the
techniques in this chapter. In the demo programs included on the CD−ROM, you'll see how I incorporated
intelligent processing into my particle engine.

In the demo, there's a batch of particles that represent people. These people are just standing around doing
nothingthat is, until a helicopter buzzes overhead, making the poor particle people duck for cover!

To learn about some ways you can use intelligent particle processing, take a look at games like Ingoc's War of
the Monsters for the PlayStation 2. Remember the scenario of terrorized citizens I mentioned earlier? In War

 Using Intelligence in Processing

262

of the Monsters, huge beasts lay waste to small towns as hundreds of tiny little particle people run for their
lives. Definitely a cool use of particles in action!

Creating and Destroying Particles

Particles are commonly used to help spice up game visuals. Your game engine can use literally thousands of
polygons to display a single effect. For that reason, it is essential that you use only as many particles as you
must, and that you periodically destroy old particles that are no longer of use to your visuals.

For example, a blast at a wall from a laser rifle might produce a batch of particles that represent flying debris.
That debris quickly flies through the air and dissipates. This is typical of most particles you will usethey exist
only for a short time and then disappear. Of course, there are exceptions for particles that live throughout the
entire span of your game. Take the billboarded trees and signs that populate your city's landscape, for
example. Those never move and are never removed (except perhaps if a monster stomps them to a pulp). The
best way to handle those long−living particles is to draw only those that are within a certain distance of the
viewer, thus saving the number of particles drawn every frame. For the demos on the CD−ROM, I use
particles for the trees and peoplethese particles are never destroyed. Also, I use particles for puffs of
smokethese particles are destroyed after a short time.

Maintaining lists of active particles is easy using a linked list. For each active particle, there is a matching
structure of sorts in the linked list of particles. Whenever you want to update the particles in your engine, you
iterate through the entire linked list and update the particles contained in it. If a particle is no longer useful, its
structure is freed and removed from the linked list.

Going back to the rudimentary cParticle class you created earlier in this chapter, you can add a couple
pointers to maintain a linked list of particles. Also, you can add a constructor and destructor to the class to
handle those pointers during creation and destruction of a class instance.

class cParticle
{
 public:
 // Previous particle data, such as type, position, etc.

 cParticle *m_Prev; // Prev particle in linked list
 cParticle *m_Next; // Next particle in linked list

 public:
 // Constructor and destructor to clear/release data
 cParticle() { m_Prev = NULL; m_Next = NULL; }
 ~cParticle() { delete m_Next; m_Next=NULL; m_Prev=NULL; }
};

Being a linked list, one particle will become the root to which all other particles are linked. Even this root
particle can be destroyed, so the root can change at any time. You can set every particle you want to add to the
linked list as the root particle, and then link the old root particle as the next in line (using the m_Prev and
m_Next pointers).

// pRoot = current root of particle list

// Create a new instance of a particle class to use
cParticle *pParticle = new cParticle();

// Link new particle as root and link to old root
pParticle−>m_Prev = NULL; // Clear prev linked list pointer

 Creating and Destroying Particles

263

pParticle−>m_Next = pRoot; // Link new particle to root
pRoot−>m_Prev = pParticle; // Link root to new particle
pRoot = pParticle; // Reassign root to new particle

To remove a specific particle, you can use the linked list pointers to make any linked particles connect to one
another and free the resources of the particle you are removing.

// pParticle = particle pointer to remove from list
// pRoot = root particle

// Link previous particle to next particle
if(pParticle−>m_Prev) {
 pParticle−>m_Prev−>m_Next = pParticle−>m_Next;
} else {
 // If there's no previous particle in the linked list,
 // then that means this particle is the root. You need
 // to assign the next particle as the root then
 pRoot = pParticle−>m_Next;
}

// Link next particle to previous particle
if(pParticle−>m_Next)
 pParticle−>m_Next−>m_Prev = pParticle−>m_Prev;

// Clear the particle's pointers and release resources
pParticle−>m_Prev = pParticle−>m_Next = NULL;
delete pParticle;

Maintaining a linked list is basic programming stuff, so there's really no need to go into any more detail here.
I'm sure there are much more efficient ways to handle lists of particles, but to be perfectly honest (and I'm sure
I'll get some e−mails about this!), using a linked list is fast and easy.

I'll leave it up to you to check out the Particles demo source code to see how the linked list is used to store
large numbers of particles. For now, read on to see how to take a linked list of particles and render them.

Drawing Your Particles

What more can I say here that you already haven't seen? Well, the way you draw your particles is very
important when you're dealing with what could be thousands of them. Because you don't want a bunch of
huge vertex buffers eating away at your memory, you should start managing your buffers before you go any
further.

Managing your vertex buffers means that you need to lock and fill them each frame. I know I said that you
shouldn't do this, but if you do it correctly you can effectively manage large numbers of particles with the
vertex bufferswithout the slowdown commonly caused by using the lock, load, and unlock methodology.

To effectively manage your buffers, you need to keep track of the number of particles being drawn and the
number of vertices being inserted during the rendering of the particles. For each particle to be drawn, you
insert the appropriate vertices into the vertex buffer. If the buffer is full after the insertion, you can render the
entire buffer and start anew with the next particle in line.

After all particles have been processed, you check to see whether any particles have not yet been rendered. In
other words, you check to see whether there is still vertex data in the buffer. If so, you render the last batch of
particles and move on.

 Drawing Your Particles

264

For each batch of particles you render, you need to unlock the vertex buffer and render the polygons. After
rendering, you need to re−lock the buffer and continue. Suppose you are using the vertex−shader method of
rendering particles and you have a linked list of particles pointed to by a cParticle object (pRoot). The
following code demonstrates how to manage your vertex buffers by batch−rendering groups of particles.

// pRoot = root cParticle object w/all particles to draw
// matView, matProj = view and projection transformations
// pTexture = texture object to use for rendering particles
// pShader, pDecl = vertex shader and declaration objects
// pVB, pIB = vertex buffer and index buffer objects
// NumParticles = # of particles vertex buffer can hold

// Set vertex shader, declaration, and stream sources
pDevice−>SetFVF(NULL);
pDevice−>SetVertexShader(pShader);
pDevice−>SetVertexDeclaration(pDecl);
pDevice−>SetStreamSource(0, pVB, 0, sizeof(sShaderVertex));
pDevice−>SetIndices(pIB);

// Turn on alpha testing
pDevice−>SetRenderState(D3DRS_ALPHATESTENABLE, TRUE);
pDevice−>SetRenderState(D3DRS_ALPHAREF, 0x08);
pDevice−>SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL);

// Turn on alpha blending (simple additive type)
pDevice−>SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice−>SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR);
pDevice−>SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTCOLOR);

// Set the texture
pDevice−>SetTexture(0, pTexture);

// Stored transposed view*projection matrix in constants
D3DXMATRIX matViewProj = (*matView) * (*matProj);
D3DXMatrixTranspose(&matViewProj, &matViewProj);
pDevice−>SetVertexShaderConstantF(0, (float*)&matViewProj, 4);

// Get normalized right/up vectors from view transformation
D3DXVECTOR4 vecRight, vecUp;

// Right vector is 1st columnn
D3DXVec4Normalize(&vecRight, \
 &D3DXVECTOR4(matView._11, \
 matView._21, \
 matView._31, 0.0f));

// Up vector is 2nd column
D3DXVec4Normalize(&vecUp, \
 &D3DXVECTOR4(matView._12, \
 matView._22, \
 matView._32, 0.0f));

// Store vectors in constants
pDevice−>SetVertexShaderConstantF(4, (float*)&vecRight, 1);
pDevice−>SetVertexShaderConstantF(5, (float*)&vecUp, 1);

Up to this point, the code is merely setting up your vertex buffer, streams, alpha states, texture, and constant
registers (with the transformation and directional vector values). The next bit of code is what's important here.

 Drawing Your Particles

265

It will lock the vertex buffer to prepare to add the particles' vertices. From there, a loop will iterate through
every particle.

Note Since you're constantly locking, accessing, and unlocking the vertex buffer here, you might want to use
the D3DUSAGE_DYNAMIC flag in your call to IDirect3DDevice9::CreateVertexBuffer.
This ensures that Direct3D knows you'll be doing a lot of work with the buffer, and that it will leave the
buffer in some easily accessible and efficiently used memory.

// Start at first particle in list
cParticle *Particle = pRoot;

// Set a count for flushing vertex buffer
DWORD Num = 0;

// Lock the vertex buffer for use
sShaderVertex *Ptr;
pVB−>Lock(0, 0, (void**)&Ptr, D3DLOCK_DISCARD);

// Loop for all particles
while(Particle != NULL) {

After the loop has begun, you can copy the currently iterated particle's vertex data into the vertex buffer.

 // Copy particle data into vertex buffer
 float HalfSize = Particle−>m_Size / 2.0f;

 Ptr[0].vecPos = Particle−>m_vecPos;
 Ptr[0].vecOffset = D3DXVECTOR2(−HalfSize, HalfSize);
 Ptr[0].Diffuse = Particle−>m_Color;
 Ptr[0].u = 0.0f;
 Ptr[0].v = 0.0f;
 Ptr[1].vecPos = Particle−>m_vecPos;
 Ptr[1].vecOffset = D3DXVECTOR2(HalfSize, HalfSize);
 Ptr[1].Diffuse = Particle−>m_Color;
 Ptr[1].u = 1.0f;
 Ptr[1].v = 0.0f;
 Ptr[2].vecPos = Particle−>m_vecPos;
 Ptr[2].vecOffset = D3DXVECTOR2(−HalfSize, −HalfSize);
 Ptr[2].Diffuse = Particle−>m_Color;
 Ptr[2].u = 0.0f;
 Ptr[2].v = 1.0f;
 Ptr[3].vecPos = Particle−>m_vecPos;
 Ptr[3].vecOffset = D3DXVECTOR2(HalfSize, −HalfSize);

Ptr[3].Diffuse = Particle−>m_Color;
 Ptr[3].u = 1.0f;
 Ptr[3].v = 1.0f;

 Ptr+=4; // Go to next four vertices

After the vertices have been copied to the vertex buffer, you can increase the number of particles contained
within the buffer. If this number reaches the maximum number of particles a vertex buffer can contain, then
the buffer is unlocked, rendered, and relocked, ready to take on a new set of particles.

 // Increase vertex count and flush buffer if full
 Num++;
 if(Num >= NumParticles) {

 // Unlock buffer and render polygons

 Drawing Your Particles

266

 pVB−>Unlock();
 ppDevice−>DrawIndexedPrimitive(D3DPT_TRIANGLELIST, \
 0, 0, Num*4, 0, Num*2);

 // Lock vertex buffer again
 pVB−>Lock(0, 0, (void**)&Ptr, D3DLOCK_DISCARD);

 // Clear vertex count
 Num=0;
 }

 // Go to next particle
 Particle = Particle−>m_Next;
}

After you've looped through all the particles, you need to unlock the vertex buffer one last time. If there are
vertices still in the buffer, you must render them.

// Unlock vertex buffer
pVB−>Unlock();

// Render any polygons left
if(Num)
 pDevice−>DrawIndexedPrimitive(D3DPT_TRIANGLELIST, \
 0, 0, Num*4, 0, Num*2);
}

And that's itan efficient way to use a small vertex buffer to render an unlimited number of particles! Now let's
take everything you've learned up to this point and create a couple classes that will help you control every
aspect of your particles.

Controlling Particles with Class

Earlier in this chapter, in the "Bringing Your Particles to Life" section, you saw how to create a class to
contain particle data. This class, cParticle, is the perfect starting place to build up a couple of classes to
help you. Actually, there are at least two classes you'll want to create. The cParticle class contains
information about an individual particle, such as position, size, and type. There's not much to the
cParticle class except that you want it to store data and maintain the pointers to a linked list of particles.

The second class handles an entire list of particles and manages the creation and destruction of particles over
time. It also allows you to render all the particles contained in this class's linked list. This type of class object
is referred to as a particle emitter because it is responsible for emitting particles. One such emitter class I
created is defined as follows:

class cParticleEmitter
{
 protected:
 IDirect3DDevice9 *m_pDevice; // Parent 3−D device

 // Type of emitter
 DWORD m_EmitterType;

 // Vertex buffer and index buffer to contain vertices
 IDirect3DVertexBuffer9 *m_VB;
 IDirect3DIndexBuffer9 *m_IB;

 Controlling Particles with Class

267

 // Max # particles in buffer
 DWORD m_NumParticles;

 // Position of emitter (in 3D space)

 D3DXVECTOR3 m_vecPosition;

 // Root object of particle linked list
 cParticle *m_Particles;

 // Class reference count
 static DWORD m_RefCount;

 static IDirect3DVertexShader9 *m_pShader; // Vertex shader
 static IDirect3DVertexDeclaration9 *m_pDecl; // Vertex decl
 static IDirect3DTexture9 **m_pTextures; // Textures

 public:
 cParticleEmitter();
 ~cParticleEmitter();

 BOOL Create(IDirect3DDevice9 *pDevice,
 D3DXVECTOR3 *vecPosition,
 DWORD EmitterType,
 DWORD NumParticlesPerBuffer = 32);
 void Free();

 void Add(DWORD Type, D3DXVECTOR3 *vecPos, float Size,
 DWORD Color, DWORD Life,
 D3DXVECTOR3 *vecVelocity);

 void ClearAll();
 void Process(DWORD Elapsed);

 // Functions to prepare for particle rendering, wrap
 // up rendering, and to render a batch of particles.
 BOOL Begin(D3DXMATRIX *matView, D3DXMATRIX *matProj);
 void End();
 void Render();
};

Wowthat's a lot to take in! Let's take it bit by bit so you can understand what this particle emitter class does
for you. To begin, you have a bunch of protected variables. For each particle emitter class there's a 3D device
pointer, as well as a vertex buffer and index buffer pair that you use to render the particles.

Because each emitter might have a different purpose (one emitter might emit fire particles while another emits
debris particles, for example), there's a particle type variable (m_EmitterType). This variable is dependent
on the types of particles you use. For the demo included with this book, I use the following types of particle
emitters:

// Particle emitter types
#define EMITTER_CLOUD 0
#define EMITTER_TREE 1
#define EMITTER_PEOPLE 2

Depending on the type of particle emitter you want, you pass the value as defined in the macros to the
cParticleEmitter::Create function, along with the 3D device object to use and the number of
particles the vertex buffer can hold. Also, you need to pass a vector object that determines the location of the

 Controlling Particles with Class

268

particle emitter in your 3D world.

Next in the list of protected variables you have the root particle object (m_Particles), which you use to
contain the list of particles created by the emitter. As you can see from thecParticleEmitter class
declaration, there is a single function (Add) that lets you add particles to the scene. You simply call Add,
specifying the type of particle to add.

I base the type of particle on the textures I use. For example, I have three textures for the three types of
emitters. One contains a fire particle image, one contains a smoke particle image, and the third one contains a
flashy particle image. The type of particle is defined as follows:

#define PARTICLE_FIRE 0
#define PARTICLE_SMOKE 1
#define PARTICLE_FLASH 2

Getting back to the Add function, you specify the location (in world space) of the particle to add to the scene.
Each particle has its own lifespan, color, size, and starting velocity, all of which you can set in the call to Add.
The lifespan is measured in milliseconds, the color is measured by a D3DCOLOR value, the size is measured
as a floating−point value, and the velocity is measured as a D3DXVECTOR object.

Normally you wouldn't use the Add function directly to add particles to your worldthat's the job of the
emitter's Update function (although that shouldn't stop you from using Add when necessary). In fact, the
Update function has two purposesto update all particles in the linked list and to determine whether more
particles need to be added to the list.

A few object pointers finish up the protected variables. These pointers are the vertex shader and element
declaration, as well as the array of textures you use to render the particles. Notice that each of these objects is
static, meaning that all instances of the particle emitter share them, which helps to save memory.

A reference count is maintained in the m_RefCount variable to keep track of the three static objects. When
an emitter is created (by calling Create), the reference count is increased; when an emitter is destroyed (by
calling Free or by the class deconstructor), the reference count is decreased. The vertex shader and textures
are loaded during the first emitter's initialization (inside the Create function); when the last emitter is freed
(the reference count is 0), all objects are released.

So far I've described everything except for four functionsClearAll, Begin, End, and Render. The
ClearAll function clears the list of particles from the emitter, giving you a fresh slate. You call this
function whenever you want to force the emitter to remove all particles.

As for Begin, End, and Render, these functions work in conjunction to render the particles. When you're
using vertex−shader−based particles, there's bound to be some render states and other settings that are
constant between all particle emitters. You can save some time by setting up that data beforehand and then
rendering the particles, and then finishing up by resetting the appropriate rendering states and data. This is the
purpose of those three functions.

In Begin, which you really only need to use for vertex−shader−based particles, you set the FVF to NULL,
set the vertex shader and declaration to use, store the transposed view*projection transformation, and store the
right and up directional vectors. Once you've called the Begin function (which takes your view and
projection transformation matrices as parameters), you can call Render to draw all your particles. This goes
for all emitters instanced from the same class, since you are using the same textures and vertex shader. Once
you're finished rendering particles, just call End to clear the vertex shader and declaration.

 Controlling Particles with Class

269

The particle emitter class is very straightforward in its constructionit merely maintains a list of particles and
renders them. For every frame of your game, you call Update to let the class decide which particles to add to
the list, which to update, and which to remove. This is simple linked−list manipulation, so I'll skip the code
here and leave it for you on the CD−ROM.

In fact, you've already seen everything about the particle emitter in this chapter, from the linked list of
particles to processing motion and collision to rendering particles. There's not much to review at this point. If
you check out the code for this chapter's demo, you'll see how I created a particle emitter class that handles all
types of particles, emitter types, and rendering via the three methods you saw at the beginning of this chapter.

Using the Emitter in Your Project

Okay, okay, that's enough of the class code; let's see how to put all this stuff to work for you. To create an
emitter, you need to instance the emitter class, as follows:

cParticleEmitter Emitter;

Now call the emitter's Create function to place the emitter in the center of your 3D world. Also, specify
which type of emitter to use.

Emitter.Create(pDevice, \
 &D3DXVECTOR3(0.0f, 0.0f, 0.0f), \
 EMITTER_CLOUD);

Once you've created the emitter, you can start adding particles to the world using the Add function, or you can
call Update to add those particles for you.

Emitter.Add(PARTICLE_SMOKE, \
 &D3DXVECTOR3(0.0f, 0.0f, 0.0f), \
 10.0f, 0xFFFFFFFF, 2000, \
 &D3DXVECTOR3(0.0f, 1.0f, 0.0f));

After you've added some particles to the scene, you can update them using the Update function, and then
render the particles.

Emitter.Update(ElapsedTime);
Emitter.Begin(&matView, &matProj);
Emitter.Render();
Emitter.End();

This is sort of a half attempt at demonstrating how to use the particle classes, but I recommend checking out
the demos on the book's CD−ROM. These demos do a far better job of showing you just what you can do with
particles in your own projects.

Creating Particle Engines in Vertex Shaders

Well, you knew somebody had to create it! There does in fact exist a way to create a complete particle engine
that runs inside a vertex shader. At the time of this writing, you could find this vertex shader on Nvidia's Web
site at http://developer.nvidia.com/view.asp?IO=Particle_System

The way this shader works is that you define a vertex structure that contains a particle's velocity; using this
velocity, you develop a means to move the particle based on an elapsed time. To render the particle, you use

 Using the Emitter in Your Project

270

Point Sprites, meaning that you can represent each particle using a single vertex (contained in a vertex buffer).

I don't want to reinvent the wheel, but with the information you've read in this chapter, you should be able to
understand what is going on in a particle vertex shader such as this. For each vertex the shader receives to
draw (as a Point Sprite), the position, color, and size are calculated. This calculation involves an elapsed time
variable that is set via a vertex shader constant. You've already seen how to move a particle based on its
velocityit's just a matter of multiplying the velocity vector by the amount of time passed. The same goes for
the color and sizethose are calculated by multiplying the appropriate values by the amount of time elapsed.

Check Out the Demos

On this book's CD−ROM you'll find three projects that I created to demonstrate how to manage particles.
Including adding, removing, and rendering particles of various types, these projects contain code you can plug
right into your own projects to achieve some awesome particle effects.

The output of these three demos is the same (see Figure 12.8). A helicopter flies above a forest and a group of
people. There are a number of particles used in the demowisps of smoke that are blown off the ground by the
overhead helicopter, as well as trees and people. In fact, there are three different types of trees and two types
of people. The particle emitter has a couple extra functions that add smoke particles and change the way the
people particles appear during the demo. Whenever the helicopter flies over a person, the particle representing
that person changes to a different type. When the helicopter flies away from a person, the particle changes to
another particle. Check out the demo to see exactly what I mean.

Figure 12.8: An Apache buzzes the heads of some tree−loving bystanders.
As you can see, particle usage is really a project−to−project ordeal. What goes for one project might not work
in the next. For that reason, there's not much to go on except the basic theory and knowledge I showed you in
this chapter. For a little guidance, make sure to check out the demos on the CD−ROM.

Programs on the CD

In the Chapter 12 directory of this book's CD−ROM, you'll find three projects that demonstrate the three
methods of drawing particles, as shown in this chapter. These projects are

Particles. This project demonstrates how to draw particles one at a time using the♦

 Check Out the Demos

271

quad−polygon−based−method shown first in this chapter. It is located at
\BookCode\Chap12\Particles.
ParticlesPS. This project shows you how to use Point Sprites to draw your particles. It is located at
\BookCode\Chap12\ParticlesPS.

♦

ParticlesVS. This final project shows you how to use vertex shaders to render your particles. It is
located at \BookCode\Chap12\ParticlesVS.

♦

 Check Out the Demos

272

Chapter 13: Simulating Cloth and Soft Body Mesh
Animation
Animation in your game need not be so rigid and preshaped. The characters that are walking around in your
game−you know the ones I'm talking about−need to appear more realistic. Their clothes are so bland and stiff,
their bodies so hard and impenetrable. How is a programmer to deal with these problems? How can you fix
them?

I'll tell you what you need−cloth and soft body mesh animation! Give your characters realistic clothing that
flows off their body and flaps in the wind, or a lush head of hair that bobs as they are running after fresh prey.
Let those characters take blow after blow from an enemy, only to have their bodies bend inward and bounce
back out. That's right, realistic cloth and soft body meshes are yours for the taking. It's all here in this chapter!

Simulating Cloth in Your Projects

In its very essence, a cloth is merely a 3D mesh composed of vertices, indices, and polygon faces. While they
are understandably important for rendering, those vertices do double−duty when it comes to cloth simulation
because they are affected by its physics. A cloth's vertices are therefore referred to as cloth points (or points,
for short). By manipulating the coordinates of the cloth's points over time (with forces such as gravity, wind,
or anything else you can throw at it), you can create the appearance of a flowing, elegant piece of material.

To closely emulate a real piece of cloth, these cloth points have a specific mass value associated with them
that determines how the point moves according to how much external force is applied. Points with a higher
mass require more force to accelerate them, whereas points with a lower mass tend to accelerate more due to
external forces being applied. This is a factor of momentum, which states that the force required to move an
object is equal to the mass times the acceleration you wish to achieve (F=ma).

Points don't have to move, however; they can be "pinned" in place, as if they are stuck to a part of your game
level or attached to a mesh. For the purposes of this chapter, I consider these points to have no mass. (In
reality, these points can be thought to have infinite mass, because the amount of force required to move them
would by infinitely too high.)

The cloth mesh's polygon edges also have an important role−they hold together the cloth's points. Well, the
polygon edges really don't hold the points together−rather, as Figure 13.1 illustrates, those edges represent a
bunch of tiny little springs that hold together the points. As the points in your cloth move, each spring tries to
maintain a state of static equilibrium by pushing and pulling the points until the forces are balanced. Visually,
this makes it look like the points are being kept at a certain distance from one another.

273

Figure 13.1: As external forces are applied to the cloth's points, the springs push and pull those points back
into shape, thus maintaining the overall shape of the cloth's mesh.
The distance these springs try to maintain is the initial length between the points at the beginning of the
simulation. Each spring has its own way of "snapping" back into position using variable spring stiffness and
damping values. The stiffness allows you to define how much force a spring exerts in an attempt to return to
its original length, whereas the damping reduces the amount of force those springs exert to smooth out the
motion of points due to spring forces.

It's the relationship of a cloth's points, mass, and springs that you're interested in; you'll be working mostly
with those three aspects in cloth simulation. Take a closer look at how to simulate cloth motion using these
points and springs.

Defining Cloth Points and Springs

A cloth point, being analogous to a vertex, is simply a point in 3D space. As such, you can define its
coordinates using a D3DXVECTOR3 object. This object initially contains the same coordinates as the
matching cloth mesh's vertex, as well as the mass of the cloth point.

Actually, you need to use two mass−related values, the first being the actual mass of the object and the
second being the value of 1 divided by the mass value. (This second value is used to aid in certain
calculations.)

I'll explain why you need these two mass values in a little bit; for now, I want to show you how to define
those cloth points. Because your cloth mesh can consist of many points, it makes sense to use an array of
vectors and floating−point values. Creating a class to contain each point's data is perfect, and creating an array
of those class objects to hold the cloth mesh's points is just what you need to do.

class cClothPoint {
 D3DXVECTOR3 m_vecPos; // 3−D coordinates of point
 float m_Mass; // Point's mass (0=pinned)
 float m_OneOverMass; // 1 / Mass (0=pinned in place)
};
cClothPoint *ClothPoints = new cClothPoint[NumPoints];

 Defining Cloth Points and Springs

274

As for the springs, you need to store the two index numbers (in the array of points) of the two points to which
the spring connects. Each spring also has an initial distance between the points, known as the spring's resting
length. The resting length value of the spring is important because it is used to calculate whether a spring is
being stretched or constricted during cloth simulation.

Finally, you need to define a spring's stiffness and damping values. These values are important because they
determine how the spring reacts to force. I'll show you how these two values work shortly; for now, just
define them as a couple of floating−point variables.

You can define a class to contain each spring's data, as well as an array of spring class objects to use, as
follows:

class cClothSpring {
 DWORD m_Point1; // 1st point in spring
 DWORD m_Point2; // 2nd point in spring
 float m_RestingLength; // Resting length of spring
 float m_Ks; // Stiffness of spring
 float m_Kd; // Spring's damping value
};
cClothSpring *ClothSprings = new cClothSpring[NumSprings];

Having an array of points and springs is really nothing special, especially if those arrays of data don't contain
the essential information about the cloth mesh's points and springs. Take a moment to see where to get that
point and spring data.

Obtaining Cloth Data from Meshes

Assume that you've gone through the steps and loaded a mesh into an ID3DXMesh object, and that it is the
mesh object from which you want to create a cloth object. In the previous section, I defined two variables to
allocate the points and springs arrays−NumPoints andNumSprings. At that time those two variables were
undefined, but now that you have a valid mesh object (assume that it's called pClothMesh) from which to
obtain information, you can calculate those two variables as follows:

// pClothMesh = pre−loaded ID3DXMesh object
NumPoints = pClothMesh−>GetNumVertices();
NumSprings = pClothMesh−>GetNumFaces() * 3;

Now that you've got the number of points and springs in the cloth's arrays, you can start pulling out the vertex
data and constructing the array. The first step to obtaining the mesh's vertex data is to calculate the size of
each mesh vertex using D3DXGetFVFVertexSize, as shown here:

DWORD VertexStide = D3DXGetFVFVertexSize(pClothMesh−>GetFVF());

When you know the vertex's size (called the vertex stride), you can lock the mesh's vertex buffer, thus
obtaining a vertex buffer data pointer used to access the vertex data. Using the vertex buffer data pointer, you
can iterate through each vertex in the mesh and obtain the coordinates of the vertices (the first three float
values of each vertex).

So why did you go to the trouble of calculating the size of each vertex? When you are iterating the vertices in
the vertex buffer, you aren't sure how much data each vertex contains. Since you're only interested in the
coordinates of each vertex, you can use the vertex size to skip the remaining data and get to the next vertex in
the list.

 Obtaining Cloth Data from Meshes

275

Note It's really not a good idea to use the number of faces as a reference to how many springs to create
in your cloth. Since each face in the mesh can share any number of vertices, you're sure to have
many duplicate springs. Later in this chapter, I'll show you a better way to construct a list of
springs that ensures you don't have any duplicate ones in your list.

Now that you know what to do with the vertex size, try locking the vertex buffer, obtaining a data pointer, and
iterating the list of vertices.

// Create a generic vertex structure to access vertex coords
typedef struct {
 D3DXVECTOR3 vecPos;
} sVertex;

// Lock the vertex buffer
BYTE *pVertices;
pClothMesh−>LockVertexBuffer(D3DLOCK_READONLY, \
 (BYTE**)&pVertices);

// Iterate list of vertices to get coordinates
for(DWORD i=0;i<NumPoints;i++) {

// Cast to the generic vertex structure
sVertex *pVertex = (sVertex*)pVertices;

// Store the cloth point coordinates
ClothPoints[i].m_vecPos = pVertex−>vecPos;

At this point, you also need to define a point's mass. Since you have no real source for this value (because a
mesh doesn't define mass values), you can just set a default value of, say, 1. The same goes for the other mass
value (m_OneOverMass)−set that to the value of 1 divided by the mass.

// Assign a mass of 1 and 1/mass
ClothPoints[i].m_Mass = 1.0f;
ClothPoints[i].m_OneOverMass = 1.0f / ClothPoints[i].m_Mass;

After setting the two mass values, you can go on to the next vertex and point, and continue on until all cloth
points have been initialized with the proper data. You can then unlock the vertex buffer and continue, as
shown here:

// Go to the next vertex in the list
pVertices += VertexStride;
}

// Unlock vertex buffer
pClothMesh−>UnlockVertexBuffer();

Cool, you're halfway to getting the essential cloth data you need to simulate cloth in your project! Next you
need to convert the polygon edges into springs that will hold together your cloth. This time, you need to lock
the mesh's index buffer and pull out the three indices that construct each face. Three points connect to form
three edges, and each edge is assigned as a spring.

Accessing the index buffer is much easier than accessing the vertex buffer. I assume you're using 16−bit
indices, because 32−bit indices are not widely supported at this time. If so, you need to grab three 16−bit
values in a row for each face, starting at the beginning, and construct three springs, using every combination
that connects two of the indices.

 Obtaining Cloth Data from Meshes

276

You can start by locking the index buffer.

unsigned short *pIndices;
pClothMesh−>LockIndexBuffer(D3DLOCK_READONLY, \
 (BYTE**)&pIndices);

Now iterate through each face and grab the three indices used to construct the face. (You also need to declare
a variable that tracks the spring you're currently creating.)

DWORD SpringNum = 0;
for(i=0;i<pClothMesh−>GetNumFaces();i++) {
 unsigned short Index1 = *pIndices++;
 unsigned short Index2 = *pIndices++;
 unsigned short Index3 = *pIndices++;

Using the three indices, create three springs that represent each edge.

 // Create spring from 1−>2
 ClothSprings[SpringNum].m_Point1 = Index1;
 ClothSprings[SpringNum].m_Point2 = Index2;
 SpringNum++; // Increment spring count

 // Create spring from 2−>3
 ClothSprings[SpringNum].m_Point1 = Index2;
 ClothSprings[SpringNum].m_Point2 = Index3;
 SpringNum++; // Increment spring count

 // Create spring from 1−>3
 ClothSprings[SpringNum].m_Point1 = Index1;
 ClothSprings[SpringNum].m_Point2 = Index3;
 SpringNum++; // Increment spring count
}

When you finish the entire list of indices and springs, you need to go back through the list and calculate each
spring's resting length. This is the length between the points, calculated using the infamous Pythagorean
Theorem, which states that the square of the length of the hypotenuse of a right triangle is equal to the sum of
the squares of the legs. No need to whip out your math books to look up this theorem and code a function to
handle it; instead, you can have D3DX do it for you with the following code:

for(i=0;i<NumSprings;i++) {
 // Get indices for each point in the spring
 unsigned short Point1 = ClothSprings[i].m_Point1;
 unsigned short Point2 = ClothSprings[i].m_Point2;

 // Calculate the vector difference in points
 D3DXVECTOR3 vecDiff = ClothPoints[Point2].m_vecPos − /
 ClothPoints[Point1].m_vecPos;

 // Use D3DX to calculate the length of the vector difference
 ClothSprings[i].m_RestingLength = D3DXVec3Length(&vecDiff);
}

At last, you're done creating the cloth points and springs! Now you can get those cloth points moving!

 Obtaining Cloth Data from Meshes

277

Applying Force to Create Motion

Your cloth is very bland and static at this point because you really haven't done anything to it except store
each point's coordinates and spring data. To actually make your cloth move and flow, you need to apply force.

Every cloth point has a separate force affecting it, or rather, a collection of applied and natural forces. These
forces can come from any source−the wind, gravity, friction, or just somebody tugging on the cloth. The
springs act as another type of force; whenever two points connected by a spring move away from or toward
each other, the spring responds by expanding or contracting according to Hooke's Law−that is, until the force
from the spring counters the external forces. In other words, the springs are trying to apply enough force to
maintain static equilibrium.

Another aspect of cloth force and motion is velocity. As forces, such as gravity, affect your cloth points, they
gain momentum and velocity. That means your points will continue to move in the direction a force is pushing
them until something, such as friction or an opposing force, slows that point down. Using acceleration and
velocity results in a very realistic piece of flowing cloth, and realism is one thing you definitely want for your
project.

Note Momentum is calculated by multiplying the mass by the acceleration vector (F=ma). It's the momentum
of a point, not the force vectors, that increases the point's velocity and eventually causes the point to
move.

In your cloth simulation, forces such as gravity and velocity are represented as directional vectors that are
used to move each point in your cloth. The magnitude of each vector determines the amount of force exerted.
To emulate these forces correctly, you need to add two relevant vectors to your cloth point class.

class cClothPoint {
 D3DXVECTOR3 m_vecPos; // 3−D coordinates of point
 float m_Mass; // Point's mass (0=pinned)
 float m_OneOverMass; // 1 / Mass (0=pinned in place)
 D3DXVECTOR3 m_vecForce; // Force vector (acceleration)
 D3DXVECTOR3 m_vecVelocity; // Velocity vector
};

Initially, a cloth point's force and velocity are set to 0, meaning no directional movement or force is applied.
For every frame of animation, you need to reset your force vectors to 0 and begin applying your external
forces, such as wind and gravity, as well as the internal forces from the springs. This net amount of forces is
what you are tracking in the m_vecForce vector.

To clear the force vector, just iterate the list and reset the values, as I have done here.

for(DWORD i=0;i<NumPoints;i++)
 ClothPoints[i].m_vecForce = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

You should clear the velocity of each point at the beginning of your simulation using the following bit of
code:

for(DWORD i=0;i<NumPoints;i++)
 ClothPoints[i].m_vecVelocity = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

After you clear out the force and velocity vectors, you can begin applying some sort of force to your points.
Let's start with the most basic of forces−gravity and wind.

 Applying Force to Create Motion

278

Applying Gravity and Wind

Gravity is a natural force that attracts objects to one another. Heavier objects attract light ones. On Earth, that
means all objects fall to the ground (another instance in which the big guy wins). Your cloth mesh is no
different. To properly simulate the motion of cloth, each point in the cloth mesh should be allowed to fall to
the ground (with the exception of cloth points that are pinned or attached to some object, thus keeping those
points in place).

In real life, objects increase in velocity as they fall. For all objects, the acceleration is more or less a constant
value of 9.8 m/s2. One second after you drop an object, its velocity is 9.8 m/s2. After two seconds, the velocity
of the object is 19.6 m/s2. The reason that some objects fall faster (achieve a higher velocity) than others is
that objects with different shapes tend to encounter more air resistance (an opposing force) as they fall, thus
slowing down or stopping their acceleration. Terminal velocity is the maximum velocity an object can obtain
before the upward force from air resistance halts the increase in the object's acceleration.

You can represent gravity in your simulation as a directional vector. This directional vector is added to each
point's force vector to make the points move. You can use the following code to define your gravity vector
(assuming that you want gravity to pull points downward in the negative y−axis):

// Create a gravity force vector (−9.8 is the amount of pull)
D3DXVECTOR vecGravity = D3DXVECTOR3(0.0f, −9.8f, 0.0f);

After you define the gravity vector, you can add it to each cloth point. (Remember to clear out your points'
force vectors first.) Notice in the following bit of code that you're scaling the gravity vector by the mass value.
This is very important because all forces are eventually scaled down according to their mass. (To calculate
momentum, remember that the force to push an object is the mass times its acceleration.) This scaling of the
gravity vector at this point ensures that all objects will fall at the proper speed, regardless of their mass.

Tip Because the gravity vector uses a directional vector, you can have gravity that pushes up, left, right, or
any combination of directions you want. Imagine using reverse gravity settings to make cloth float
upward!

for(DWORD i=0;i<NumPoints;i++)
 ClothPoints[i].m_vecForce += (vecGravity * \
 ClothPoints[i].m_Mass);

Wind is another force common on Earth. You know how cloth just loves to catch the wind and flutter about?
Well, it's the wind that creates the forces that moves your cloth's points. You can easily model the same effect
in your cloth simulation functions. Wind is also represented as a directional vector.

// Blow wind sideways along the x−axis
D3DXVECTOR3 vecWind = D3DXVECTOR3(0.5f, 0.0f, 0.0f);

At first, you might think that you apply a wind force the same way you apply gravitational forces−by adding a
directional vector to each point's force. I'm sorry to say it's not that easy. To apply wind forces, you have to
loop through every face in the cloth and, based on the direction each face is pointing, calculate the directional
force received by the wind's directional vector.

As you can see in Figure 13.2, each face in your mesh has a normal, which is the direction that the face is
pointing. Figure 13.2 also shows the direction of the wind you are applying, and the angle between these two
vectors.

 Applying Force to Create Motion

279

Figure 13.2: The angle between the face's normal and the wind vector is used to calculate the amount of force
to apply to each point.
The angle between the face's normal vector and wind vector is very important−it determines how much force
to apply to the points. To help understand this concept, think about when you are driving your car and you
stick your hand out the window. If your hand is parallel to the ground, the wind whips above and below your
hand, and does not push it back. Turn your hand, however, and the amount of force (from the wind) pushing
back your hand increases.

As you can see, the angle between the vectors determines how much of the wind's force to apply. To calculate
this angle, you perform a dot−product calculation on the face's normalized vector with the wind vector. The
only problem at this point is, where do you get the face's normal?

Since you're using an ID3DXBaseMesh object, you can obtain the index list that defines which vertices are
used by each face in your mesh. If you grab these indices beforehand, you can use them to grab the current
positions of each vertex, and then use those to calculate a cross−product vector that represents your face's
normal.

To get the indices before you begin your cloth simulation, you can allocate an array of 16−bit values (or
32−bit, depending on your mesh settings) and fill them with the values from your mesh's index buffer.

// pClothMesh = pre−loaded ID3DXMesh object

// The index buffer to contain your mesh's face indices
unsigned short *FaceIndices = NULL;

// Allocate the array of indices based on the number of
// faces contained in the mesh object. Remember there
// are 3 indices per face. There's room for 32−bit indices.
DWORD NumFaces = pClothMesh−>GetNumFaces();
FaceIndices = new DWORD[NumFaces * 3];

// Now, lock the mesh to get the indices
unsigned short *pIndices;
pClothMesh−>LockIndexBuffer(D3DLOCK_READONLY,(void**)&pIndices);

// Go through each index and store it
for(DWORD i=0;i<NumFaces*3;i++)
 FaceIndices[i] = (unsigned short)#x002A;Indices++;

// Unlock the index buffer
pClothMesh−>UnlockIndexBuffer();

 Applying Force to Create Motion

280

Upon completion, the previous bit of code will have created an array of indices for you− three indices per
face. Using these indices, you can then iterate through the list and calculate each face's normal.

for(i=0;i<m_NumFaces;i++) {
 // Get three vertices that construct face
 DWORD Vertex1 = FaceIndices[i*3];
 DWORD Vertex2 = FaceIndices[i*3+1];
 DWORD Vertex3 = FaceIndices[i*3+2];

 // Calculate face's normal

 D3DXVECTOR3 vecV12 = ClothPoints[Vertex2].m_vecPos − \
 ClothPoints[Vertex1].m_vecPos;
 D3DXVECTOR3 vecV13 = ClothPoints[Vertex3].m_vecPos − \
 ClothPoints[Vertex1].m_vecPos;
 D3DXVECTOR3 vecNormal;
 D3DXVec3Cross(&vecNormal, &vecV12, &vecV13);
 D3DXVec3Normalize(&vecNormal, &vecNormal);

Now that you have the face's normal (stored in the vecNormal vector object), you calculate the dot product
with the wind's vector to determine the angle between the two.

// Get dot product between normal and wind
float Dot = D3DXVec3Dot(&vecNormal, vecWind);

With the dot product in hand, you can scale the face's normal vector to calculate the amount of force to apply
to each point used by the face. (Remember that each vertex has a matching point.)

 // Scale normal by dot product
 vecNormal * = Dot;
 // Apply normal to point's force vector
 ClothPoints[Vertex1].m_vecForce += vecNormal;
 ClothPoints[Vertex2].m_vecForce += vecNormal;
 ClothPoints[Vertex3].m_vecForce += vecNormal;
}

Once you've iterated through all the face indices, you are left with all your points' force vectors filled to the
brim with the appropriate values, which allows your cloth to flutter in the wind! Now you're ready to move on
to computing the next important set of forces used in your cloth simulation−the forces from your cloth's
springs.

Applying Spring Forces

Each spring in the cloth mesh starts with an initial resting length. This represents the distance between the two
points that the spring connects. When it is time to resolve the springs and push/pull the cloth points, you need
to calculate the current length of every spring and decide how it affects the forces to apply to the points.

For springs that are shorter than their resting lengths, you must stretch out the spring and push the attached
points away from each other. For springs that are longer than their resting lengths, you need to constrict the
spring and pull the attached points closer together.

This stretching and pulling all happens thanks to Hooke's Law, which states that the power of any springy
body is in the same proportion to the extension of the body. This means that the force that a spring exerts is
proportionate to the length of the spring (or rather, the difference in length between the spring's current and
resting lengths). Expressed mathematically, Hooke's Law looks like this:

 Applying Force to Create Motion

281

F = k . x

F represents the applied force, and x is the spring's extension (the difference in length between the spring's
current and resting lengths, as illustrated in Figure 13.3). k is the spring constant; it represents a ratio of sorts
that determines how to scale the extension amount to generate a force value. The larger the spring constant
amount, the greater the force applied.

Figure 13.3: The spring on the left is at rest (it has obtained equilibrium), whereas the spring on right has been
stretched. The force applied by the spring is calculated from the extension of the spring and a spring constant
value.
For example, suppose you want to calculate the amount of force a spring exerts. This spring has a resting
length of 128 units and is currently stretched out to 200 units. Subtracting the resting length from the current
length gives you a value of 200−128= 72; this is the extension value x. Multiply the extension value by the
spring constant k. Suppose k equals 0.4. This will give you a result of −0.4*72= 28.8, which is the amount of
force applied (F).

28.8 is the force used to pull together your spring's points. Each point on either end of the spring receives
equal and opposite forces of the other. Once you have this force value, you can add it to the other forces of the
points. Later, you will use this net force you have been accumulating to calculate acceleration, which in turn
alters the velocity of the points.

One thing I haven't mentioned yet is where you get the spring constant value to use in your formula to
calculate the applied force. Remember earlier, when I had you define a floating−point value that represents
the stiffness of your spring? Well, that stiffness value is your spring constant! Normally represented by the
symbol k or ks, you can use this spring constant/stiffness value in your formula to determine how to scale the
applied force of a spring during resolution.

I'm sure you're wondering what acceptable values of stiffness you can use. Well, there isn't an easy answer.
The higher the stiffness, the greater the force applied from a spring. Typically, this is just fine−setting a high
stiffness value would seem to work great. The only problem is that during simulation, this high stiffness value
can cause your springs to apply too much force, resulting in your cloth dancing around in an unpredictable
way. If you use a stiffness value that is too low, your cloth will stretch out, making it look like a piece of
rubber.

So again, which stiffness value is just right? For the examples in this chapter, I use a stiffness value of 4.
When you get your cloth simulation up and running, I invite you to try different values and see what works
best for you.

To resolve the springs during the cloth simulation, you iterate all springs in the mesh using a for...next
loop and get the current length of the spring (the distance between its two points).

 Applying Force to Create Motion

282

for(DWORD i=0;i<NumSprings;i++) {

 // Get the two point index numbers
 DWORD Point1 = ClothSprings[i].m_Point1;
 DWORD Point2 = ClothSprings[i].m_Point2;

 // Get the vector between points
 D3DXVECTOR3 vecSpring = ClothPoints[Point2].m_vecPos − \
 ClothPoints[Point1].m_vecPos;

 // Get the length of the vector between points

 float SpringLength = D3DXVec3Length(&vecSpring);

The current distance between the spring's two points is important. Remember from earlier in this chapter that
a spring can stretch or constrict. By first calculating the vector between the spring's points, you can derive the
current length of the spring using the D3DXVec3Length function. To compute the force of the spring, use
Hooke's Law. This involves multiplying the spring's extension amount (the resting length subtracted from the
current length) by the spring's stiffness value to obtain a spring force scalar.

 // Calculate applied force scalar
 float SpringForce = Spring−>m_Ks *
 (SpringLength − Spring−>m_RestingLength);

The vecSpring vector is also very important in determining the direction to move your points. By
normalizing the current spring's length vector and scaling it by SpringForce, you can quickly calculate the
force vector to apply to each point connected to the spring.

 // Normalize spring vector
 vecSpring /= SpringLength;

 // Multiply by the force value
 vecSpring * = SpringForce;

At this point you have a vector that represents the amount of force to apply to each of the spring's points. Add
this force vector to the first point's accumulated force vector, and subtract the force vector from the second
point's accumulated force vector to move them in the proper direction (either toward or away from each
other).

 // Apply force to points' force vector
 ClothPoints[Point1].m_vecForce += vecSpring;
 ClothPoints[Point2].m_vecForce −= vecSpring;
}

That's it for resolving the cloth's springs! At this point, you're almost ready to update the velocity and position
of each point based on the net force you have accumulated, but first you must apply the most important
force−friction.

Damping Motion with Friction

To keep things realistic, your cloth needs to adhere to the laws of friction. As your cloth moves through a
medium such as air, it slows down. Friction is actually an opposing force, whether this force is from gravity,
air turbulence, or friction. To keep things simple I'll refer to this combination of forces as simply friction.

 Applying Force to Create Motion

283

If you don't apply friction to the cloth points, you'll be presented with a problem−the cloth will never stop
moving, and the cloth simulation will suffer from poor stability (the velocities will cause your mesh to flutter
about out of control). Sure, the force of gravity will pull the cloth downward, but the horizontal motion will
never cease. By applying friction, you force the motion of the cloth to slowly come to an end, as long as no
strong forces act against the friction. Also, by using a damping friction on the springs, you increase stability
by reducing the amount of applied force from the spring.

To apply friction (called linear damping in this case) to the cloth's points, you need to reduce the force vector
of each point by a small percentage of the point's velocity vector. (Damping is actually a force proportionate
to the velocity, F=kV.) This percentage is specified as a floating−point number, with typical values ranging
from −0.04 to −0.1. (The negative range implies that you are reducing the force rather than increasing it.) The
higher the value, the greater the amount of friction applied. For example, a value of −1.0 gives the effect of
your cloth floating in a vat of oil!

Suppose you are using a linear damping value of −0.04. Go ahead and iterate all your points right now. For
each point you want to add the point's velocity vector, scaled by the damping value, to the point's force vector,
as in the following code:

for(DWORD i=0;i<NumPoints;i++) {
 ClothPoints[i].m_vecForce += (−0.04f * \
 ClothPoints[i].m_vecVelocity);
}

For the friction to apply to springs (called spring damping friction), you need to add a damping value to the
spring's force calculation, as shown previously. This damping value, as you can probably guess, was defined
as part of your spring class's data! The friction value must be a little higher than the linear damping value,
with typical values being 0.1 to 0.5. For the examples here, I will use a value of 0.5.

To apply the spring damping, go back to your spring force calculations.

for(DWORD i=0;i<NumSprings;i++) {

 // Get the two point index numbers
 DWORD Point1 = ClothSprings[i].m_Point1;
 DWORD Point2 = ClothSprings[i].m_Point2;

 // Get the vector between points
 D3DXVECTOR3 vecSpring = ClothPoints[Point2].m_vecPos − \
 ClothPoints[Point1].m_vecPos;

 // Get the length of the vector between points
float SpringLength = D3DXVec3Length(&vecSpring);

 // Calculate applied force scalar
 float SpringForce = Spring−>m_Ks *
 (SpringLength − Spring−>m_RestingLength);

At this point, you need to calculate your spring damping scalar value, based on the normalized relative
velocity of the two points (the difference in the points' velocities) and the spring's damping value. To calculate
the normalized relative velocity of the points, you only need to subtract the two velocity vectors and divide by
the current length of the spring.

 // Get the relative velocity of the points
 D3DXVECTOR3 vecVelocity = CState2−>m_vecVelocity − \
 CState1−>m_vecVelocity;

 Applying Force to Create Motion

284

 float Velocity = D3DXVec3Dot(&vecVelocity, \
 &vecSpring) / SpringLength;
 // Apply the spring's damping value (m_Kd)
 float DampingForce = Spring−>m_Kd * Velocity;

Continue with the rest of the code to compute the spring's force, but instead of only applying the spring's force
(SpringForce) to the spring vector, you need to add the spring's force scalar and damping force scalar
(DampingForce) together and then apply the result to the spring vector.

 // Normalize spring vector
 vecSpring /= SpringLength;

 // Multiply by the force scalars (spring and damping scalars)
 vecSpring * = (SpringForce + DampingForce);

 // Apply force to points' force vector
 ClothPoints[Point1].m_vecForce += vecSpring;
 ClothPoints[Point2].m_vecForce −= vecSpring;
}

After you adjust your forces by a frictional value, you can apply those forces to each point's velocity and
apply the motion to each cloth point.

Applying Forces and Moving Points over Time

At this point, each point should have its forces computed and stored in the force vector. These force vectors
represent the amount of acceleration you need to apply to each point's velocity over time. These velocity
values are also directional vectors that determine the direction and speed that each point moves during
simulation.

So, if you had a force vector of (0, −9.8, 1), your acceleration is said to be 9.8 m/s in the negative y−axis and
1 m/s in the positive z−axis. This translation from force to acceleration (using the same force vector to
represent acceleration) is a little misleading, but it works perfect for your simulation, so we'll ignore the laws
of physics on this point.

Something of concern at this point in time is, well...time. You see, every time you update your simulation, you
need to express how much time has passed so that your cloth's points can move according to this time.
Suppose, for example, that you only want to calculate the motion of the points over a period of 400
milliseconds. How do you do this without having to run the simulation 400 times, once for each millisecond?
You want real−time cloth simulation, darn it!

Now to worry my friend! Using what is called explicit integration, you can estimate the acceleration achieved
over time, and how that acceleration affects the velocity of the point over the same period of time. So instead
of running the simulation every millisecond, you can run it every 40 milliseconds, thus tremendously speeding
up things!

In this example, I'll use Forward Euler integration, which allows you to scale a vector or value by a set
sampling amount (time). Using a point's force (which represents the acceleration at this point), you can
calculate how much velocity has accumulated over a period of time, as follows:

// TimeElapsed = number of SECONDS elapsed
ClothPoints[Num].m_vecVelocity += TimeElapsed * \
 ClothPoints[Num].m_vecForce;

 Applying Force to Create Motion

285

Tip If you want to specify time in milliseconds instead of seconds, as shown in the code here, just
specify a fractional decimal value. To calculate this fractional value, divide 1 by 1000 and
multiply by the number of milliseconds. For example, one millisecond is 0.001, ten milliseconds
is 0.01, and a hundred milliseconds is 0.1.

Over that same period of time, you can calculate how much the point would have moved based on the
velocity.

ClothPoints[Num].m_vecPos += TimedElapsed * \
 ClothPoints[Num].m_vecVelocity;

So Forward Euler integration is nothing more than scaling your vectors. Pretty simple, eh? One thing I didn't
mention is that you need to take into consideration each point's mass. Remember, the more mass an object
has, the more force you must apply to move that object. I'm talking about momentum here, which states that
the point's combined forces (represented by your force vector) need to be scaled by the mass to calculate the
actual acceleration to apply. Scaling the force vector by the mass value (actually, the 1/mass value) during
integration does this nicely.

ClothPoints[Num].m_vecVelocity += TimeElapsed * \
 ClothPoints[Num].m_OneOverMass * \
 ClothPoints[Num].m_vecForce;

To sum this up, you must multiply each point's force vector by the mass (1 /mass) and elapsed time, and add
the resulting vector to the point's velocity vector. Here's a snippet of code that does all this for each point in
your cloth:

// TimeElapsed = number of seconds to process
for(DWORD i=0;i<NumPoints;i++) {

 // Integrate velocity
 ClothPoints[Num].m_vecVelocity += TimeElapsed * \
 ClothPoints[Num].m_OneOverMass * \
 ClothPoints[Num].m_vecForce;

 // Integrate position
 ClothPoints[Num].m_vecPos += TimedElapsed * \
 ClothPoints[Num].m_vecVelocity;
}

And there you have it, my friend! You have successfully calculated the velocity and updated the position of
each cloth point in your mesh! The next thing on your agenda is to take that point data and use it to rebuild
and render your cloth mesh.

Rebuilding and Rendering the Cloth Mesh

Because your cloth's points have changed positions, you must rebuild your original mesh so the changes will
be visible. Since you've gone to the trouble of loading the original mesh from an .X file into an ID3DXMesh
object, all you have to do is lock the mesh's vertex buffer, stuff in the points' coordinates, and rebuild the
normals (if your original mesh used them).

Once again, create a generic vertex structure that contains only a vector. This vector is used to access the
coordinate data of your mesh's vertices.

typedef struct {
 D3DXVECTOR3 vecPos;

 Rebuilding and Rendering the Cloth Mesh

286

} sVertex;

From here, it's a matter of locking the mesh's vertex buffer and iterating all cloth points (again!), and then
stuffing back in the data from the coordinates.

// Lock the mesh's vertex buffer
BYTE * pVertices;
pClothMesh−>LockVertexBuffer(0, (BYTE**)&pVertices);

for(DWORD i=0;i<NumPoints;i++) {

 // Cast a vertex pointer
sVertex * pVertex = (sVertex*)pVertices;

 // Store vertex coordinates
 * pVertex = ClothPoints[i].m_vecPos;

 // Go to next vertex
 pVertices += VertexStride; }

 // Unlock the vertex buffer
 pClothMesh−>UnlockVertexBuffer();

After you've rebuilt the mesh, you can render it normally by looping through each of the mesh's materials and
using the ID3DXMesh::DrawSubset function to draw each subset. If you plan to reuse your original
mesh, perhaps to reset the cloth simulation, you need to restore the mesh's original vertex coordinates.

Restoring the Original Mesh

One thing you might have noticed is that the cloth point's data is very dynamic. There's no easy way to restore
the initial orientation of each cloth point in the mesh. Why would you want to restore the original mesh?
Perhaps to restart the simulation or reuse the cloth mesh in its original state.

The easiest method of restoring the original mesh's cloth point data is to add another vector to your
cClothPoint class.

class cClothPoint {
 D3DXVECTOR3 m_vecOriginalPos; // Initial coordinates
 D3DXVECTOR3 m_vecPos; // 3−D coordinates of point
 float m_Mass; // Point's mass (0=pinned)
 float m_OneOverMass; // 1 / Mass (0=pinned in place)
 D3DXVECTOR3 m_vecForce; // Force vector (acceleration)
 D3DXVECTOR3 m_vecVelocity; // Velocity vector
};

The additional vector (vecOriginalPos) stores the initial coordinates of your cloth's points. When you are
creating the cloth point array, make sure to store the initial position in this new vector.

// ... After loading cloth points into array
for(DWORD i=0;i<NumPoints;i++)
 ClothPoints[i].m_vecOriginalPos = ClothPoints[i].m_vecPos;

When it's time to restore your original cloth point data, just copy the data from this new vector into the point's
position vector.

for(DWORD i=0;i<NumPoints;i++)

 Restoring the Original Mesh

287

 ClothPoints[i].m_vecPos = ClothPoints[i].m_vecOriginalPos;

Using an initial position is perfect for restoring the original mesh's data, and it is also useful when you need
to determine the distance between a cloth point's current and initial positions, such as when you are dealing
with soft body meshes later in this chapter.

For now, just continue to improve your cloth simulation by adding more springs to your mesh, thus improving
the stability of the cloth during simulation.

Adding More Springs

Up to this point, I've referred to springs as being constructed from the polygon edges of a mesh. Realistically,
this is a very sloppy way to create springs from mesh data if precise cloth simulation is your goal. Take Figure
13.4, for example. You'd think the springs shown would hold together the cloth mesh perfectly.

Figure 13.4: A set of springs was created using the polygon edges of the cloth mesh shown.
Everything in Figure 13.4 looks fine until you run it through cloth simulation. The problem here is a cloth
mesh that uses only the polygon edges as the springs might fold inward on itself over time, as if it were made
of a very thin material. That might be fine for most instances, but what about those times when you want a
stiffer cloth that is very stubborn about changing shape?

The secret is that the more springs you have in your mesh, the stiffer the cloth becomes. That's right−by
adding a few more springs you can make your cloth crease and bend instead of bunching up into a flimsy
lump of vertices. Of course, the placement of those springs is what really matters, so take a look back at your
mesh in Figure 13.4 to see what to do. In Figure 13.5, you see the new mesh, this time with a few new springs
added.

 Adding More Springs

288

Figure 13.5: The cloth mesh now has a series of interconnected springs spread across its faces.
You remember that a spring will pull or push two points toward or away from each other, depending on their
distance from one another. Taking a closer look at Figure 13.5, you can see that with the strategic placement
of a few additional springs, you can enforce the structure of the cloth because those springs will force every
cloth point away from other points if the cloth tries to fold in on itself. It's hard to visualize what I'm talking
about at first, but give it a minute or two to sink in. Just think of the new springs as a sort of crease−repellent.
As folds and creases form, the new springs force the creases open.

The easiest way to add more springs to your mesh is to create a list of springs you want and build them using
that list. You can obtain this list by using a custom .X parser. While you're at it, why not use a custom .X
parser to also obtain your points' mass data!

Loading Mass and Spring Data from .X

Aside from the mesh data that you can load from an .X file, what else is there for you to use? Well, for a start,
that mesh data doesn't contain information about your cloth points' mass values. Also, what about all those
extra springs you might need to add to your cloth−you know, those springs that add more support to the cloth
mesh?

Well, no need to fret−.X is perfect for storing all your extra cloth−related data, such as the points' mass values
and springs to use. By adding two small templates in your .X files and a series of class objects in your source
files, getting access to external point mass and spring data is extremely easy.

The two templates in question are defined as follows (with supporting GUID declaration macros to insert into
your source code):

// DEFINE_GUID(ClothMasses,
// 0xf5ad0f93, 0x9bf2, 0x4bcf,
// 0xb7, 0xcf, 0xd6, 0x8c, 0xd6, 0xb5, 0x41, 0x56);
template ClothMasses {
 <F5AD0F93−9BF2−4bcf−B7CF−D68CD6B54156>
 DWORD NumPoints; // # of point mass values
 array FLOAT Mass[NumPoints]; // mass values
}

// DEFINE_GUID(ClothSprings,
// 0x8c08b088, 0x728e, 0x46c8,
// 0xbe, 0x87, 0x72, 0x67, 0x2b, 0x81, 0xdb, 0x11);
template ClothSprings {

 Loading Mass and Spring Data from .X

289

 <8C08B088−728E−46c8−BE87−72672B81DB11>
 DWORD NumSprings; // # of springs to load
 DWORD NumVertices; // NumSprings * 2
 array DWORD Vertex[NumVertices]; // spring points to use
}

The first template, ClothMasses, contains two variables. The first variable, NumPoints, describes the
number of points in your mesh and the number of mass values to follow in the object. The second object,
Mass, is an array of point mass values, which can be anywhere from 0 (the point is pinned in place) on up.

Here's an example data object that uses the ClothMasses template to contain six points' mass values:

ClothMasses {
 6;
 1.0, 0.0, 0.0, 1.0, 1.0, 1.0;
}

This list of mass values is analogous to the points in your cloth mesh−the first mass value is for the first cloth
point, the second mass value is for the second cloth point, and so on. In my example, the first, fourth, fifth,
and sixth mass values are set to 1, whereas the second and third mass values are 0.

The second template shown, ClothSprings, is used to define the points in your cloth mesh that are joined
by springs. The NumSprings variable states how many springs are to be defined, and the NumVertices
variable defines how many vertices (points) are affected. NumVertices should always equal twice the
number of springs. Finally, Vertex is an array of index numbers that define which points are joined.

For example, suppose you want to define three springs that connect six vertices. Here's a sample data object
that connects the points 0 and 1, 1 and 2, and 2 and 0.

ClothSprings {
 3;
 6;
 0,1,
 1,2,
 2,0;
}

Once these templates and data object are defined in your .X file, you can use a custom .X parser to read the
appropriate values into your game. When you are creating your cloth data .X parser, you can even include
your cloth simulation code in the derived class. In the cloth demo included with this book, I've done just that
for you−included the cloth simulation in a single class.

Building an .X Parser for Cloth Data

Once again, the cXParser.X parser class from Chapter 3 comes to the rescue. Here you will derive the
cXParser class into one that will scan for two different templates−one that contains cloth point mass values
(ClothMasses) and the other that contains spring information (ClothSprings).

The data from each data object fits perfectly into the point and spring classes defined earlier in this
chapter−all you need is a parser class to enumerate the data objects and grab the appropriate data. Here's a
sample .X parser class that does just that for you:

class cClothMesh : cXParser
{

 Building an .X Parser for Cloth Data

290

 protected:
 DWORD m_NumPoints; // # points in cloth
 cClothPoint *m_ClothPoints; // Point data

 DWORD m_NumSprings; // # springs in cloth
 cClothSpring *m_ClothSprings; // Spring data

 protected:
 // Parse an .X file for mass and spring data
 BOOL ParseObject(IDirectXFileData *pDataObj,
 IDirectXFileData *pParentDataObj,
 DWORD Depth,
 void **Data, BOOL Reference)
 {
 const GUID *Type = GetObjectGUID(pDataObj);
 DWORD *DataPtr = (DWORD*)GetObjectData(pDataObj, NULL);

 // Read in cloth point masses
 if(*Type == ClothMasses) {

 // Get number of mass value assignments
 DWORD NumPoints = *DataPtr++;

 // Copy over mass values
 float MassPtr = (float*)DataPtr;
 for(DWORD i=0;i<NumPoints;i++) {
 m_ClothPoints[i].m_Mass = *MassPtr++;

 // Calculate one−over−mass value
 m_ClothPoints[i].m_OneOverMass = \
 (m_ClothPoints[i].m_Mass==0.0f) ? \
 0.0f:(1.0f/m_ClothPoints[i].m_Mass);
 }
 }

 // Read in spring data
 if(*Type == ClothSprings) {

 // Free prior springs' data
 delete [] m_ClothSprings; m_ClothSprings = NULL;

 // Get new number of springs and vertices
 DWORD NumSprings = *DataPtr++;
 DWORD NumVertices = *DataPtr++;

 // Allocate the springs
 m_ClothSprings = new cClothSpring[NumSprings];

 // Load each springs' data
 for(DWORD i=0;i<NumSprings;i++) {
 m_ClothSprings[i].m_Point1 = *DataPtr++;
 m_ClothSprings[i].m_Point2 = *DataPtr++;
 }
 }

 return ParseChildObjects(pDataObj, Depth, \
 Data, Reference);
 }
}

 Building an .X Parser for Cloth Data

291

The code I've just shown for the cXParser class is very basic, so I won't explain it in detail. All that the
ParseObject function accomplishes is loading any spring or point mass data into an array of class objects
to use in your program. To make your parser class really powerful, you can combine it into a class that creates
and controls all aspects of a cloth mesh.

To actually use the .X parser object, just call cClothMesh::Parse, specifying the name of the .X file to
use. You'll notice the cloth's point and spring data arrays are embedded in the parser class−just make sure
you've already allocated the proper point class objects before parsing the .X file. Later in this chapter, you'll
see how to construct a complete cloth mesh class that inherits the .X parser class to load the mass and spring
data.

For now, it's time to start livening up your simulation by adding collision detection and response.

Working with Collision Detection and Response

One important aspect that I haven't mentioned up to this point is collision. Remember that your mesh is
considered a solid object. It, too, will collide with objects in your virtual world, and it will need to react
accordingly. For example, your character's cloak will roll off his shoulders and flap against his back. That
cloak should never penetrate the character's mesh.

Perhaps your cloth is dangling from a pole. Your character (or any other object that brushes against the cloth)
will cause the cloth to push away from the pole and flutter about as it settles. Talk about some cool ideas
there−with collision detection and response, you can unlock some awesome potential in your cloth simulation!

Working with collision detection and response is suspiciously simple. After you apply each point's velocity,
you check to see whether the point resides inside another solid object. For example, you can check whether a
cloth point is inside a sphere by using a simple distance check, or you can perform a plane−point check to see
on which side of the plane the point is located (see Figure 13.6).

Figure 13.6: A point has collided with a sphere if it's closer than the sphere's radius or if it is located on the
back side of a plane.
So there are two simple objects that you can use to perform collision detection−spheres and planes. You need
to create a class to contain these collision objects.

Defining Collision Objects

To store the data that pertains to a collision object, you can use the following class (with two macros):

 Working with Collision Detection and Response

292

// Macros to define types of collision objects
#define COLLISION_SPHERE 0
#define COLLISION_PLANE 1

class cCollisionObject {
 public:
 DWORD m_Type; // Type of object

 D3DXVECTOR3 m_vecPos; // Sphere coordinates
 float m_Radius; // Sphere radius
 D3DXPLANE m_Plane; // Plane values

 cCollisionObject *m_Next; // Next in linked list

 public:
 cCollisionObject() { m_Next = NULL; }
 ~cCollisionObject() { delete m_Next; m_Next = NULL; }
};

There are four main variables inside the cCollisionObject class. You need to set the m_Type variable
to one of the two macros that represents the type of object the class contains−either a sphere
(COLLISION_SPHERE) or a plane (COLLISION_PLANE).

You need to store the center coordinates of a sphere collision object in m_vecPos. These coordinates are in
3D space, just like your 3D meshes. Also, if you're using a sphere object, make sure to set the radius of the
sphere in the m_Radius variable.

If you're using a plane collision object, however, you only need to set the respective plane parameters inside
the m_Plane object. The m_Plane.a, m_Plane.b, and m_Plane.c parameters are the normalized
directional vectors of the plane, whereas m_Plane.d is the distance along the directional vector where the
plane is located.

Moving on in the class, you see the m_Next pointer, which you use to contain a linked list structure. Using a
linked list, you can create a whole slew of collision objects to use in your cloth simulation. Later in this
section, you'll see how to use this linked list of objects.

With the variable declarations finished, it is time for the cCollisionObject functions. The class object
contains only two functions, the constructor and destructor, which are used to clear the linked list pointer on
initialization and free the linked list on destruction.

Aside from the cCollisionObject class, you can create another class that maintains the linked list of
collision objects. I'm recommending a separate class so you can maintain multiple lists of collision objects,
such as one for the static geometry and another for dynamic geometry. Your collision objects can move
around, bumping into cloth objects and causing them to flutter.

This second class, called cCollision, is defined as follows:

class cCollision {
 public:
 DWORD m_NumObjects; // # of objects
 cCollisionObject *m_Objects; // Object list

 public:
 cCollision() { m_NumObjects = 0; m_Objects = NULL; }
 ~cCollision() { Free(); }

 Working with Collision Detection and Response

293

 void Free()
 {
 // Delete linked list of objects
 delete m_Objects; m_Objects = NULL;
 m_NumObjects = 0;
 }

 void AddSphere(D3DXVECTOR3 *vecPos, float Radius)
 {
 // Allocate a new object
 cCollisionObject *Sphere = new cCollisionObject();

 // Set sphere data
 Sphere−>m_Type = COLLISION_SPHERE;
 Sphere−>m_vecPos = (*vecPos);
 Sphere−>m_Radius = Radius;

 // Link sphere into list and increase count
 Sphere−>m_Next = m_Objects;
 m_Objects = Sphere;
 m_NumObjects++;
 }

 void AddPlane(D3DXPLANE *PlaneParam)
 {
 // Allocate a new object
 cCollisionObject *Plane = new cCollisionObject();

 // Set plane data
 Plane−>m_Type = COLLISION_PLANE;
 Plane−>m_Plane = (*PlaneParam);

 // Link plane into list and increase count
 Plane−>m_Next = m_Objects;
 m_Objects = Plane;
 m_NumObjects++;
 }
};

The cCollision class declaration includes two variables (m_NumObjects and m_Objects) that
contain the number of collision objects loaded and the collision object linked list, respectively. There are five
functions at your disposal, starting with the constructor and destructor. These functions clear out the class's
data and call the Free function, respectively.

The Free function has the job of deleting the linked list and zeroing out the number of objects loaded in the
linked list. As for AddSphere and AddPlane, those two functions allocate a new cCollisionObject
object and link it into the linked list maintained by the cCollision class object.

To add a sphere to the linked list, call AddSphere and specify the coordinates of the sphere's center and
radius. To add a plane, pass a D3DXPLANE object that specifies that plane's normal and distance from the
origin.

To actually put the collision object data to good use, you need to construct a function that scans each point in
your cloth, and for each point, checks to see whether a collision with a collision object has occurred. This is a
matter of some simple distance checking, as you'll soon see.

 Working with Collision Detection and Response

294

Detecting and Responding to Collisions

The function that you create to check collisions needs to iterate through all cloth points and, for each point,
check whether a collision has occurred with any of the collision objects maintained in the linked list of
objects. Call this function CheckCollision; it will take a pointer to the cCollision object for checking
point−to−object collisions, as well as a transformation matrix that you can use to position and orient the
collision objects in your 3D world.

void CheckCollisions(cCollision *pCollision, \
 D3DXMATRIX *matTransform)
{
 // Go through each point
 for(DWORD i=0;i<NumPoints;i++) {

 // Don't process points w/0 mass
 if(ClothPoints[i].m_Mass != 0.0f) {

In the previous bit of code, you begin to iterate through all cloth points. I'm assuming the number of points is
defined in the NumPoints variable and the points themselves have their data defined in an array called
ClothPoints. During iteration, you want to first make sure that the point has a non−zero mass, which
means it is allowed to move. If the point is allowed to move, then you can scan through each collision object
and see whether the point collides.

 // Go through each collision object
 cCollisionObject *pObject = pCollision−>m_Objects;
 while(pObject) {

 // Check if point collides with a sphere object
 if(pObject−>m_Type == COLLISION_SPHERE) {

The first type of object with which you will check collision is a sphere. Remember that the sphere is
positioned using a three−dimensional vector, and the sphere's radius is defined by a floating−point value that
you set with a call to AddSphere. As Figure 13.7 demonstrates, a point collides with a sphere if the distance
from the sphere's center to the point is less than the sphere's radius.

Figure 13.7: A point collides with a sphere if the distance from the sphere's center to the point is less than the
sphere's radius.
Since you're using a transformation to position the collision objects, you need to apply the translation portion
to the sphere's position vector before checking for collisions.

 Detecting and Responding to Collisions

295

 // Put sphere coordinates into local vector
 D3DXVECTOR3 vecSphere = pObject−>m_vecPos;

 // Translate sphere if needed
 if(matTransform) {
 vecSphere.x += matTransform−>_41; // Translate x
 vecSphere.y += matTransform−>_42; // Translate y
 vecSphere.z += matTransform−>_43; // Translate z
 }

Now that you have a vector representing the position of the sphere, calculate a vector that represents the
length from the point to the sphere's center.

 // Calculate a distance vector
 vecDist = vecSphere − ClothPoints[i].m_vecPos;

You can now compare the length of this vector to see whether it is equal to or less than the radius of the
sphere. To avoid using a sqrt to calculate distances, just compare the squared values instead.

 // Get the squared length of the difference
 float Length = vecDist.x * vecDist.x + \
 vecDist.y * vecDist.y + \
 vecDist.z * vecDist.z;

 // If the length of the difference less than radius?
 if(Length <= (pObject−>m_Radius*pObject−>m_Radius)) {

 // Collision occurred!

Once you've determined that a collision has occurred (the distance between the point and the sphere is less
than or equal to the radius of the sphere), you can handle the collision. I'm going to throw physics and time
out the window to keep things simple at this point, and merely push the point outside the sphere. Also, you're
going to assume that something as flimsy as a piece of cloth won't bounce off a collision object in any
measurable fashion, so I'll also skip any coefficient of restitution calculations.

To push the point outside the sphere, you need to scale the normalized distance vector (the vector that
represents the distance from the point to the sphere's center) by the difference in distance from the point to the
sphere's edge, and subtract this vector from the point's position (and velocity, in order to decelerate the point).

 // Normalize the distance value and vector
 Length = (float)sqrt(Length);
 vecDist /= Length;

 // Calculate the difference in distance from the
 // point to the sphere's edge
 float Diff = pObject−>m_Radius − Length;

 // Scale the vector by difference
 vecDist *= Diff;

 // Push the point out and adjust velocity
 ClothPoints[i].m_Pos −= vecDist;
 ClothPoints[i].m_Velocity −= vecDist;
 }
 }

 Detecting and Responding to Collisions

296

That does it for checking and responding to point−to−sphere collisions! Next comes checking collisions
against planes.

 // Check if point collides with a plane object
 if(pObject−>m_Type == COLLISION_PLANE) {

To check whether a point has collided with a plane, you must first transform the plane and then perform a
dot−product on the plane's normal and the point's position vector. This dotproduct, combined with the plane's
distance component, will determine whether the point is located in front of the plane (not colliding) or behind
the plane (colliding). Points behind the plane must be pushed out to the surface of the plane.

To transform the plane, you must first inverse and transpose the transformation matrix. This only needs to be
done once in your function because you can reuse the matrix many times if you have more than one plane.
The demo program for this chapter shows you how to create this transformation once. For now, I'll just
calculate it every time. With this inversed and transposed matrix, you can then call D3DXPlaneTransform
to transform the plane for you.

// Put plane in a local variable
 D3DXPLANE Plane = pObject−>m_Plane;

 // Transform plane if needed
 if(matTransform) {

 // Inverse and transpose the transformation matrix
 D3DXMATRIX matITTransform;
 3DXMatrixInverse(&matITTransform, NULL, matTransform);
 D3DXMatrixTranspose(&matITTransform, &matITTransform);

 // Transform the plane
 D3DXPlaneTransform(&Plane, &Plane, &matITTransform);
 }

After you've transformed the plane, you can pull its normal vector out and use that to compute the
dot−product with the point's position vector.

 // Get the normal vector
 D3DXVECTOR3 vecNormal = D3DXVECTOR3(Plane.a, \
 Plane.b, \
 Plane.c);

 // Get the dot product between the plane's normal
 // and the point's position
 float Dot = D3DXVec3Dot(&ClothPoints[i].m_vecPos, \
 &vecNormal) + Plane.d;

You'll notice that I added the plane's distance component (d) to the resulting dot−product. This ensures that
the distance of the plane to the point is computed properly. If the resulting dot−product value is less than 0,
then the point has collided with the plane and needs to be pushed out. To calculate the vector to add to your
point's position and velocity vectors, you simply need to multiply the plane's normal by the dot−product value
and add the result to your position and velocity vectors.

 // Check if point is behind plane
 if(Dot < 0.0f) {

 // Scale the plane's normal by the
 // absolute dot product.

 Detecting and Responding to Collisions

297

 vecNormal *= (−Dot);

 // Move point and adjust velocity by normal vector
 ClothPoints[i].m_vecPos += vecNormal;
 ClothPoints[i].m_vecVelocity += vecNormal;
 }
 }

From here, you can go to the next collision object to check and wrap up the loop to iterate the rest of the
cloth's points.

 // Go to next collision object
 pObject = pObject−>m_Next;
 }
 }
 }
}

To use the CheckCollisions function, load your cloth mesh data and begin your simulation. After you've
processed the cloth's forces and updated the cloth's points, call CheckCollisions. Here's a small snippet
of code to demonstrate:

// Instance a collision object and transformation matrix
cCollision Collision;
D3DXMATRIX matCollision;

// Add a sphere to collision list and set matrix to identity Collision.AddSphere(&D3DXVECTOR3(0.0f, 0.0f, 0.0f), 40.0f); D3DXMatrixIdentity(&matCollision);

// Process cloth mesh forces and update cloth point's
// Process collisions
CheckCollisions(&Collision, &matCollision);

Although not the most precise methods of collision detection and response in the world, the methods I just
showed you should work for the majority of your game projects. For those of you who need exact precision,
such as knowing the exact moment a cloth point hits a collision object, you need to investigate methods such
as back−stepping time or time−stepping. I covered time−stepping back in Chapter 7; you can use the same
techniques and apply them to cloth simulation.

For now, I want to show you how to take all the knowledge you've read so far and create a complete cloth
mesh class that you can use to handle your cloth simulation.

Creating a Cloth Mesh Class

I'm sure you can't wait to add cloth simulation to your project now that you've seen it in action (and drooled
over the results). Using what you've learned in this chapter, you can easily construct a class that handles a
single cloth mesh. I've taken the liberty of creating such a class (or rather, a collection of classes) that you can
use in your own projects.

You'll use three classes for your cloth mesh class.

cClothPoint contains the information for every cloth point in the mesh.♦
cClothSpring contains the information about the springs, including which cloth vertices are
attached, the resting length of each spring, and the spring's stiffness and damping values

♦

 Creating a Cloth Mesh Class

298

cClothMesh contains a single mesh, an array of cloth points, a list of springs, and an array that
contains the indices for each face in your mesh. It includes functions to load a mesh, add springs, set
point masses, assign forces, and rebuild the mesh.

♦

Note You will find the cloth mesh classes on this book's CD−ROM. (Check out the "Programs on the CD"
sidebar at the end of this chapter for information.) To use the classes, just insert the appropriate source
files into your project.

The only class you'll use directly is cClothMesh, which uses cClothPoint and cClothSpring to
contain cloth point and spring data, respectively. Take a quick look at the cClothPoint and
cClothSpring class declarations.

// Class to contain information about cloth points class cClothPoint
{
 public:
 D3DXVECTOR3 m_vecOriginalPos; // Original position of point
 D3DXVECTOR3 m_vecPos; // Current point coords

 D3DXVECTOR3 m_vecForce; // Force applied to point
 D3DXVECTOR3 m_vecVelocity; // Velocity of point

 float m_Mass; // Mass of object (0=pinned)
 float m_OneOverMass; // 1/Mass
};

// Class to contain information about springs class cClothSpring
{
 public:
 DWORD m_Point1; // First point in spring
 DWORD m_Point2; // Second point in spring
 float m_RestingLength; // Resting length of spring

 float m_Ks; // Spring constant value
 float m_Kd; // Spring damping value

 cClothSpring *m_Next; // Next in linked list

 public:
 cClothSpring() { m_Next = NULL; }
 ~cClothSpring() { delete m_Next; m_Next = NULL; }
};

As you can see, the cClothPoint and cClothSpring classes use the same data as the cClothPoint
and cClothSpring structures you read about earlier in this chapter, so there's nothing new going on here.
In fact, you've already seen the code for these two classes spread throughout this chapter, so I'll just jump past
those classes and concentrate on the cClothMesh class.

cClothMesh uses the following class declaration:

// Class to contain a complete cloth mesh (w/.X parser) class cClothMesh : public cXParser
{
 protected:
 DWORD m_NumPoints; // # points in cloth
 cClothPoint *m_Points; // Points

 DWORD m_NumSprings; // # springs in cloth
 cClothSpring *m_Springs; // Springs

 Creating a Cloth Mesh Class

299

At this point, there's an array of points in the mesh and the root spring in the linked list of springs. From here,
some medial information is defined, such as the number of faces in the mesh, an array of face indices, and the
size of a vertex (in bytes).

 DWORD m_NumFaces; // # faces in mesh
 DWORD *m_Faces; // Faces

 DWORD m_VertexStride; // Size of a vertex

Following the protected data members is a single protected function that you use to parse your .X file data
objects and load the appropriate point mass and spring data. You use the .X parser functionality to process
point masses and spring data, as you saw earlier in the "Building an .X Parser for Cloth Data" section.

 protected:
 // Parse an .X file for mass and spring data
 BOOL ParseObject(IDirectXFileData *pDataObj,
 IDirectXFileData *pParentDataObj,
 DWORD Depth,
 void **Data, BOOL Reference);

From here, it's all public access to the functions! Starting your class's public function, you have the typical
constructor and destructor that you use to set up the class's data, followed by the Create and Free
functions.

public:
 cClothMesh();
 ~cClothMesh();

 // Create cloth from supplied mesh pointer
 BOOL Create(ID3DXMesh *Mesh, char *PointSpringXFile = NULL);

 // Free cloth data
 void Free();

Using the Create function, you can supply a source mesh to convert to cloth data, as well as an optional file
name of an .X file that contains point mass and spring data to load. The Free function is there for you to free
the resources allocated to storing the cloth data; you should only call Free when you're finished using the
cloth mesh class.

Next in the list of public functions are those which allow you to specify the forces to apply to your cloth
points during simulation, update the points based on those forces, and process collisions.

 // Set forces to apply to points
 void SetForces(float LinearDamping,
 D3DXVECTOR3 *vecGravity,
 D3DXVECTOR3 *vecWind,
 D3DXMATRIX *matTransform,
 BOOL TransformAllPoints);

 // Process forces
 void ProcessForces(float Elapsed);

 // Process collisions
 void ProcessCollisions(cCollision *Collision,
 D3DXMATRIX *matTransform);

 Creating a Cloth Mesh Class

300

You've already seen the code to the ProcessCollisions function; it's the other two that I want to show
you. Well, actually, I still want to show you the class's declaration, so I'll get back to the function code in a bit.
The next two functions in the class rebuild the mesh after you've processed the cloth points (including
recomputing the mesh's normal, if necessary, using the D3DXComputeNormals function) and restore the
cloth's points to their initial positions.

 // Rebuild cloth mesh
 void RebuildMesh(ID3DXMesh *Mesh);

 // Reset points to original pose and reset forces
 void Reset();

Not that you should depend on an .X file to contain your spring data or point mass data−you also have a
couple functions that allow you to add a spring to your list of springs and set the mass of a specific point.

 // Add a spring to list
 void AddSpring(DWORD Point1, DWORD Point2,
 float Ks = 8.0f, float Kd = 0.5f);

 // Set a point's mass
 void SetMass(DWORD Point, float Mass);

To conserve memory and to ensure that no duplicate springs exist in your cloth mesh, the AddSpring
function will scan the existing linked list for duplicates. If it finds a matching spring you are attempting to
add, it will discard the new one. The SetMass function takes the point number you are altering and the new
mass value to use. It also computes the new 1/mass value for you.

Finishing up the class declaration, you have a number of functions that merely retrieve the number of points,
springs, and faces in your mesh, as well as pointers to the array of points, springs, and faces. You can use
these functions to extend the usefulness of your cloth mesh class at a later time.

 // Functions to get point/spring/face data
 DWORD GetNumPoints();
 cClothPoint *GetPoints();

 DWORD GetNumSprings();
 cClothSpring *GetSprings();

 DWORD GetNumFaces();
 DWORD *GetFaces();
};

Now that you have declared the cClothMesh class, it is time to see the code for each of its functions.
You've already seen the ParseObject and ProcessCollisions code, so I'll skip those. Starting at the
top of the list, that leaves three important functions I want to show you: Create, SetForces, and
ProcessForces. (You can check out the rest on the CD−ROM.)

You use the Create function to create a cloth mesh from an ID3DXMesh object you provide.

BOOL cClothMesh::Create(ID3DXMesh *Mesh, char *PointSpringXFile)
{
 DWORD i;

 // Free a prior mesh
 Free();

 Creating a Cloth Mesh Class

301

 // Error checking
 if(!Mesh)
 return FALSE;

 // Calculate vertex pitch (size of vertex data)

m_VertexStride = D3DXGetFVFVertexSize(Mesh−>GetFVF());

 //
 // Calculate the spring information from the loaded mesh
 //

 // Get the # of faces and allocate array
 m_NumFaces = Mesh−>GetNumFaces();
 m_Faces = new DWORD[m_NumFaces*3];

 // Lock index buffer and copy over data (16−bit indices)
 unsigned short *Indices;
 Mesh−>LockIndexBuffer(0, (void**)&Indices);
 for(i=0;i<m_NumFaces*3;i++)
 m_Faces[i] = (DWORD)*Indices++;
 Mesh−>UnlockIndexBuffer();

 // Get the # of points in mesh and allocate structures
 m_NumPoints = Mesh−>GetNumVertices();
 m_Points = new cClothPoint[m_NumPoints]();

 // Lock vertex buffer and stuff data into cloth points
 char *Vertices;
 Mesh−>LockVertexBuffer(0, (void**)&Vertices);
 for(i=0;i<m_NumPoints;i++) {

 // Get pointer to vertex coordinates
 sClothVertexPos *Vertex = (sClothVertexPos*)Vertices;

 // Store position, velocity, force, and mass
 m_Points[i].m_vecOriginalPos = Vertex−>vecPos;
 m_Points[i].m_vecPos = m_Points[i].m_vecOriginalPos;
 m_Points[i].m_Mass = 1.0f;
 m_Points[i].m_OneOverMass = 1.0f;

 // Setup point's states
 m_Points[i].m_vecVelocity = D3DXVECTOR3(0.0f, 0.0f, 0.0f);
 m_Points[i].m_vecForce = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

 // Go to next vertex
 Vertices += m_VertexStride;
 }
 Mesh−>UnlockVertexBuffer();

 // Build list of springs from face vertices

for(i=0;i<m_NumFaces;i++) {

 // Get vertices that construct a face
 DWORD Vertex1 = m_Faces[i*3];
 DWORD Vertex2 = m_Faces[i*3+1];
 DWORD Vertex3 = m_Faces[i*3+2];

 // Add springs from 1−>2, 2−>3, and 3−>1
 AddSpring(Vertex1, Vertex2);

 Creating a Cloth Mesh Class

302

 AddSpring(Vertex2, Vertex3);
 AddSpring(Vertex3, Vertex1);
 }

 // Parse cloth masses and springs from file
 if(PointSpringXFile)
 Parse(PointSpringXFile);

 return TRUE;
}

The Create function starts by freeing a prior mesh via a call to Free. From there, it calls
D3DXGetFVFVertexSize to compute the size of a single vertex's data, and then continues by getting the
number of faces in the mesh and allocating an array to contain the indices. At that point, the face indices are
read into that array, and an array of cloth points is allocated.

Locking the vertex buffer, you continue by stuffing each vertex's coordinates into the matching cloth point
object and setting the point's mass, velocity, force, and 1/mass values. After you go through each vertex and
build the cloth point data, you finish by creating the springs and parsing your .X file. (You create the springs
by taking the three indices that define each face and calling AddSpring three times to join each of the three
points.)

The next important function I want to point out is SetForces, which goes through each point in the cloth
and sets the appropriate forces in preparation for integration.

void cClothMesh::SetForces(float LinearDamping,
 D3DXVECTOR3 *vecGravity,
 D3DXVECTOR3 *vecWind,
 D3DXMATRIX *matTransform,
 BOOL TransformAllPoints)
{
 DWORD i;

 // Error checking
 if(!m_NumPoints || m_Points == NULL)
 return;

The SetForces function starts with the prototype and a few lines of code that ensure you have some cloth
points with which to work. The parameters to SetForces include the linear damping amount to apply (set
as a negative value, such as −0.05f), a vector that represents the direction and magnitude of the gravity and
wind forces, a transformation matrix to apply to the points, and a flag that determines which points to
transform.

You've already read about the linear damping and force vectors (for gravity and wind), but up to this point I
haven't said anything about transforming your points' coordinates. What good would your cloth mesh be if
you couldn't move it through your 3D world? By passing a transformation matrix to SetForces, you
transform certain points before their forces are calculated.

Which points are transformed, you ask? That depends on the TransformAllPoints flag. If you set
TransformAllPoints to TRUE, which you should do the very first time you position and orient your
cloth mesh in the 3D world, then all the cloth's points are affected by the transformation matrix. Setting
TransformAllPoints to FALSE means that only those points with zero mass are affected (meaning that
those points with mass need to have forces applied to catch up to the transformed points).

 Creating a Cloth Mesh Class

303

You can break the SetForces function into three major code bits. The first bit prepares the points by
clearing out their force vectors, transforming the points based on the supplied transformation matrix, applying
the gravity force, and applying the linear damping force.

 // Clear forces, apply transformation, set gravity,
 // and apply linear damping
 for(i=0;i<m_NumPoints;i++) {

 // Clear force
 m_Points[i].m_vecForce = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

 // Move point using transformation if specified
 if(matTransform && (TransformAllPoints == TRUE || \
 m_Points[i].m_Mass == 0.0f)) {

 D3DXVec3TransformCoord(&m_Points[i].m_vecPos, \
 &m_Points[i].m_vecOriginalPos, \
 matTransform);
 }

 // Only apply gravity and linear damping to points w/mass
 if(m_Points[i].m_Mass != 0.0f) {

 // Apply gravity if specified
 if(vecGravity != NULL)
 m_Points[i].m_vecForce += (*vecGravity) * \
 m_Points[i].m_Mass;

 // Apply linear damping
m_Points[i].m_vecForce += (m_Points[i].m_vecVelocity * \

 LinearDamping);
 }
 }

I explained how to calculate a linear damping force and gravity force earlier in this chapter, so I won't bore
you with the details again. As I mentioned, there's also some code in there that transforms the cloth points
based on a transformation matrix you supply. The next code bit applies wind forces to your cloth points using
the techniques shown earlier in this chapter.

 // Apply wind
 if(vecWind != NULL && m_NumFaces) {

 // Go through each face and apply wind vector to
 // vertex on all faces
 for(i=0;i<m_NumFaces;i++) {

 // Get three vertices that construct face
 DWORD Vertex1 = m_Faces[i*3];
 DWORD Vertex2 = m_Faces[i*3+1];
 DWORD Vertex3 = m_Faces[i*3+2];

 // Calculate face's normal
 D3DXVECTOR3 vecV12 = m_Points[Vertex2].m_vecPos − \
 m_Points[Vertex1].m_vecPos;
 D3DXVECTOR3 vecV13 = m_Points[Vertex3].m_vecPos − \
 m_Points[Vertex1].m_vecPos;
 D3DXVECTOR3 vecNormal;
 D3DXVec3Cross(&vecNormal, &vecV12, &vecV13);
 D3DXVec3Normalize(&vecNormal, &vecNormal);

 Creating a Cloth Mesh Class

304

 // Get dot product between normal and wind
 float Dot = D3DXVec3Dot(&vecNormal, vecWind);

 // Amplify normal by dot product
 vecNormal *= Dot;

 // Apply normal to point's force vector
 m_Points[Vertex1].m_vecForce += vecNormal;
 m_Points[Vertex2].m_vecForce += vecNormal;
 m_Points[Vertex3].m_vecForce += vecNormal;
 }
 }

Last, and most important, comes the third code bit that applies the springs' forces.

 // Process springs
 cClothSpring *Spring = m_Springs;
 while(Spring) {

 // Get the current spring vector
 D3DXVECTOR3 vecSpring;
 vecSpring = m_Points[Spring−>m_Point2].m_vecPos − \
 m_Points[Spring−>m_Point1].m_vecPos;

 // Get the current length of the spring
 float SpringLength = D3DXVec3Length(&vecSpring);

 // Get the relative velocity of the points
 D3DXVECTOR3 vecVelocity;
 vecVelocity = m_Points[Spring−>m_Point2].m_vecVelocity − \
 m_Points[Spring−>m_Point1].m_vecVelocity;
 float Velocity = D3DXVec3Dot(&vecVelocity, &vecSpring) / \
 SpringLength;

 // Calculate force scalars
 float SpringForce = Spring−>m_Ks * (SpringLength − \
 Spring−>m_RestingLength);
 float DampingForce = Spring−>m_Kd * Velocity;

 // Normalize the spring
 vecSpring /= SpringLength;

 // Calculate force vector
 D3DXVECTOR3 vecForce = (SpringForce + DampingForce) * \
 vecSpring;
 // Apply force to vectors
 if(m_Points[Spring−>m_Point1].m_Mass != 0.0f)
 m_Points[Spring−>m_Point1].m_vecForce += vecForce;

 if(m_Points[Spring−>m_Point2].m_Mass != 0.0f)
 m_Points[Spring−>m_Point2].m_vecForce −= vecForce;

 // Go to next spring
 Spring = Spring−>m_Next;
 }
}

Again, there's really nothing here that you haven't already seen. After you've called SetForces, it is time to
process the forces and move your cloth's points based on their accumulated forces.

 Creating a Cloth Mesh Class

305

void cClothMesh::ProcessForces(float Elapsed)
{
 // Error checking
 if(!m_NumPoints || !m_Points)
 return;

 // Resolve forces on points
 for(DWORD i=0;i<m_NumPoints;i++) {

 // Points w/0 mass don't move
 if(m_Points[i].m_Mass != 0.0f) {

 // Update velocity
 m_Points[i].m_vecVelocity += (Elapsed * \
 m_Points[i].m_OneOverMass * \
 m_Points[i].m_vecForce);

 // Update position
 m_Points[i].m_vecPos += (Elapsed *
 m_Points[i].m_vecVelocity);
 }
 }
}

Short and sweet, the ProcessForces functions get right to the point by iterating the list of cloth points,
and for each point, linearly integrating the velocity and position based on the points' forces and amount of
time elapsed (which you specify in the call to ProcessForces). Note that the Elapsed parameter
represents the number of seconds to integrate. If you want to specify milliseconds, you need to specify a
fractional value, as I mentioned earlier in this chapter.

How about some code to show you how to use the cClothMesh class in your own project? To start, make
sure you have an ID3DXMesh object to work with, and then call Create to generate the necessary cloth
data.

Note You shouldn't process (integrate) more than 10−20 milliseconds at a time. If you want to process more
than 20 milliseconds at a time, you should call SetForces and ProcessForces multiple times,
each time specifying a small time value. For example, you can call ProcessForces twice, specifying
20 milliseconds each time, to process a total of 40 milliseconds of time.

// pMesh = pre−loaded ID3DXMesh object
cClothMesh ClothMesh;
// Generate cloth data by calling
Create ClothMesh.Create(pMesh);

Now that you have created the cloth mesh data, you can use the class object to simulate the motion of your
cloth mesh each frame of your game. Suppose you have a function that is called each frame your game is
updated. In this function, you want to track the number of milliseconds that have passed since the last update.
This elapsed time is used to integrate the cloth's points. Once the forces have been set and the cloth has been
updated, you can rebuild the mesh and render it.

void FrameUpdate()
{
 static DWORD LastTime = timeGetTime()−1;
 DWORD ThisTime = timeGetTime();
 DWORD Elapsed;

 // Calculate elapsed time

 Creating a Cloth Mesh Class

306

 Elapsed = ThisTime − LastTime;
 LastTime = ThisTime;

 // Set the gravity and wind vectors
 D3DXVECTOR3 vecGravity = D3DXVECTOR3(0.0f, −9.8f, 0.0f);
 D3DXVECTOR3 vecWind = D3DXVECTOR3(0.0f, 0.0f, 1.0f);

 // Set the cloth's forces
 ClothMesh.SetForces(−0.05f,&vecGravity,&vecWind,NULL,FALSE);

 // Process the cloth's forces based on elapsed time
 // Make sure to specify time in milliseconds − divide
 // the elapsed time by 1000 to do this
 ClothMesh.ProcessForces((float)Elapsed / 1000.0f);

 // Process any collisions if you have them

 // Rebuild the mesh
 ClothMesh.RebuildMesh(pMesh);

 // Render the cloth mesh using preferred methods
}

To help you get comfortable using the cClothMesh, you can fire up the accompanying demo from the
CD−ROM. The demo is heavily commented, and it shows off the cloth mesh class' capabilities. Enjoy!

Using Soft Body Meshes

Soft body meshes are becoming increasingly popular in today's games. They allow your objects to appear
soft, stretchy, and/or rubbery. The objects can bend, twist, bounce, and deform in myriad manners, only to
revert to their original shapes in mere moments.

What can soft body meshes do for your game? Well, take a look at a current game that uses soft body meshes.
Interplay's Baldur's Gate: Dark Alliance uses soft body meshes in their character animations to give the
female characters that extra...um...bounce in their step.

You can also use soft body meshes to simulate hair on a character. As a character's hair bobs, it slowly reverts
to its default shape over time. Your game's maps and levels can also benefit from soft body meshes. Imagine
having a level in your game that bends and twists in response to the game character's actions, as if the
character were walking on top of a hot−air balloon. Awesome!

I know you're wondering why I bunched cloth simulation and soft body mesh animation together in one
chapter. The answer is simple−soft body meshes are cloth meshes! Yep, you heard me right−soft body meshes
are almost identical to cloth meshes, with one major exception. Soft body meshes will always revert to their
original shapes over time, instead of just hanging limp like pieces of cloth.

Reverting a Soft Body Mesh

Unlike its cloth mesh cousins, a soft body mesh will slowly regain its shape over time. If you've been paying
attention up to this point, you realize that reverting the soft body mesh is as easy as resolving the forces
needed to return the mesh's vertices to their original coordinates. So on top of resolving a mesh's springs, you
need to resolve its points.

 Using Soft Body Meshes

307

Unlike the forces that your cloth's springs exert, your soft body mesh instead directly modifies each point's
position and velocity vectors. By iterating through each point in the mesh, you can calculate a spring vector
that represents the distance from the point's current and initial positions.

Remember when you saved each point's initial position? By applying a spring constant to the distance
between the point's current and initial positions, you determine the force to add to each point's position and
velocity vectors.

Without further ado, here's the code to calculate the force required to revert each point in the mesh:

// SpringStiffness = float value w/stiffness to revert points
for(DWORD i=0;i<NumPoints;i++) {
 // Get difference vector between current initial position
 D3DXVECTOR3 vecDiff = ClothPoints[i].m_vecInitialPos − \
 ClothPoints[i].m_vecPos;

// Apply a stiffness value to spring vector
vecDiff *= SpringStiffness;

 // Apply spring vector to position and velocity vectors
 ClothPoints[i].m_vecPos += vecDiff;
 ClothPoints[i].vecVelocity += vecDiff;
}

Quick and simple, the preceding code calculates the difference vector from the current and initial positions of
a cloth point. This difference vector is then scaled by a spring stiffness value you specify. Unlike your point's
spring earlier in this chapter, this soft body spring stiffness value should remain small−say from 0.05 to 0.4.
The stiffness value all depends on how much time you specify in your call to the base class's
UpdateForces function. I personally like using a stiffness value of 0.2 for each 20 to 30 milliseconds
processed.

Since we're talking about using the same code for the soft body mesh simulation as we used for the cloth
simulation, you can add the preceding code that reverts the mesh's points to their initial positions into your
function that resolves a cloth's forces and moves the points.

Creating a Soft Body Mesh Class

The soft body mesh class is identical to the cloth mesh class in every detail, except that in the soft body mesh
class you have one extra function that reverts the mesh to its original shape. Because you are only adding that
one function, you can skip the majority of the soft body mesh class declaration and get right into the function
to revert the soft body mesh.

// Derive a soft body mesh class
class cSoftbodyMesh : public cClothMesh
{
 public:
 void Revert(float Stiffness, D3DXMATRIX *matTransform)
 {
 // Error checking
 if(!m_NumPoints || m_Points == NULL)
 return;

 // Process softbody forces (revert shape)
 for(DWORD i=0;i<m_NumPoints;i++) {

 Creating a Soft Body Mesh Class

308

 // Only process points that can move
 if(m_Points[i].m_Mass != 0.0f) {

 // Transform original coordinates if needed
 D3DXVECTOR3 vecPos = m_Points[i].m_vecOriginalPos;
 if(matTransform)
 D3DXVec3TransformCoord(&vecPos, &vecPos, matTransform);

 // Create a spring vector from original position
// of point (transformed) to its current position

 D3DXVECTOR3 vecSpring = vecPos − m_Points[i].m_vecPos;

 // Scale spring by stiffness value
 vecSpring *= Stiffness;

 // Directly modify velocity and position
 m_Points[i].m_vecVelocity += vecSpring;
 m_Points[i].m_vecPos += vecSpring;
 }
 }
 }
};

As you can see from the previous cSoftbodyMesh class declaration, the Revert function goes through each
point in your cloth, moves it toward its initial position, and adjusts the point's velocity accordingly. You'll
notice that you can specify the stiffness value in the call to Revert, as well as specifying a transformation
matrix that is applied to the points' initial positions before the spring vector is computed. This allows you to
move the mesh around and allow the points to catch up to their proper positions.

Using the same techniques as those in your cloth mesh class, you can work with the soft body mesh class.
Loading, setting forces, rendering−it's all the same for both classes. The only difference is that you need to
call cSoftBodyMesh::Revert directly after calling cSoftBodyMesh::Resolve. Check out the soft
body mesh demo program included on the CD−ROM to see how to use cSoftBodyMesh in your own
projects.

Check Out the Demos

Whew, this chapter was a long one, but the information contained here sure made it a worthwhile read! Now
that you've seen how easy it is to work with cloth simulation, I'm sure you're dying to get to work putting
these newly discovered techniques into your own game projects. To help you understand how to use cloth
meshes and soft body meshes in your own projects, I have included two sample programs with this book.

The first project (ClothMesh), shown in Figure 13.8, demonstrates one subtle use for cloth−a flapping cape on
a superhero.

 Check Out the Demos

309

Figure 13.8: Our superhero flies through the air, his cape fluttering about him.
The second project included with this book, Softbody, demonstrates how to use soft body meshes to give
characters extra bounce in their step. Check out the demo to see what I'm talking about, or consult Figure
13.9.

Figure 13.9: Karate class is in session! A soft body mesh gives extra bounce to this master's attacks.
Programs on the CD

The cloth mesh and soft body mesh classes in this chapter are contained in two project files located in the
Chapter 13 directory of this book's CD−ROM. These two projects are

ClothMesh. This program demonstrates the use of the cloth mesh class developed in this chapter. It is
located at \BookCode\Chap13\ClothMesh.

♦

SoftBody. This demo shows how you can use soft body meshes and the soft body mesh class in your
own projects. It is located at \BookCode\Chap13\SoftBody.

♦

 Check Out the Demos

310

Chapter 14: Using Animated Textures
Three−dimensional animation tends toward the manipulation of vertices, polygons, and meshes. Truthfully,
your complete animation system can revolve around such manipulations, but you'll miss out on using one of
the coolest animation techniques available today−texture animation.

With texture animation, your worlds come alive in ways you can't imagine. Using everything from basic
texture transformations to advanced media playback techniques, you can recreate some awesome effects such
as dynamic level backdrops, flowing water, and in−game cinematic sequences.

Using Texture Animation in Your Project

Typical animation consists of the manipulation of vertices in your 3D meshes. For the most part, the
manipulation of those vertices is enough for your game. But what about animating the polygon surfaces?
Maybe you want to change the appearance of a polygon over time, play a movie on the surface of the
polygons, or just smoothly scroll a texture across the polygon's surfaces. I'm talking about making those pretty
polygons of yours dance! I'm talking about texture animation.

With texture animation, you work on a polygon level (by manipulating the image source or texture
coordinates a polygon uses) as opposed to working with vertices, as you do in the typical animation I
mentioned. For this book, I chose two of the most popular texture animation techniques used today−texture
transformations and video media texture animation.

Let's start with the easier of the two and take a look at how you can use texture transformations in your game
project.

Working with Texture Transformations

One of the most underrated (and quite possibly the easiest) forms of texture animation is texture
transformation. Much like world transformations alter a model's vertex coordinate data before it is drawn,
texture transformations alter a model's texture coordinate data before it is rendered.

What possible use is there for texture transformations? Suppose you need an animation for a few polygons.
For example, suppose you want the appearance of water gushing forth from a waterfall and rolling lazily
down a stream. Can you achieve this effect using conventional vertex deformation animation? Not easily, I
assure you.

Using texture animation, you can smoothly scroll a texture of water across the polygons that make up your
waterfall and stream. Without any changes to the mesh, your scene comes alive! Scrolling textures aren't all
that you can do, though−you can also rotate your textures. Imagine your water texture rolling and spinning all
at once! The secret to using texture transformations is...well, the transformations.

Creating a Texture Transformation

Unlike their 3D equivalents, texture transformations are two−dimensional and use a 3x3 transformation
matrix. You no longer have to do anything with translation along the z−axis and rotation along the x and y
axes. All you're left with is x/y translation (with the y−axis flipped, negative going upward) and z−rotation.
Don't fret, because those are good enough for what you need!

311

The easiest texture transformation you can perform is translation. Direct3D texture translations are specified
in values from 0 to 1, much like they are assigned as texture coordinates. For example, if your texture is 256
pixels and you want to translate right by 64 pixels, you specify a translation value of 0.25 (which is
one−fourth the texture's size, or 64 pixels).

In their default state, textures wrap around whenever they are transformed. That means if you translate a
texture 64 pixels to the right, the last 64 columns of pixels will wrap around to the left side of the texture. This
texture wrapping is perfect, so we'll stick with it.

Note DirectX bounds−checks any value you specify for a texture translation that is greater than 1 or less than
0 to fall in the 0 to 1 range−there's no extra work on your part to perform this action. That way, you can
continuously increase or decrease the translation's values, and rest assured, they will always be
converted to a value from 0 to 1.

To make things easy, you can use the D3DX matrix objects to construct your texture transformations. I know I
said that texture transformations use a 3x3 matrix, but if you manage to stick to using only x/y translations
and z−rotations, you can work a little magic and makeD3DX's 4x4 matrices work for you, as you'll see in the
upcoming "Setting Texture Transformation Matrices" section.

Knowing you can use the D3DX matrix object, you can create a translation matrix like this:

// D3DXMatrixTranslation prototype from DX SDK
D3DXMATRIX *D3DXMatrixTranslation(D3DXMATRIX *pOut,
 FLOAT x, FLOAT y, FLOAT z);

D3DXMATRIX matTranslation;
D3DXMatrixTranslation(&matTranslation, 0.5f, 0.5f, 0.0f);

This code, while showing the D3DXMatrixTranslation function prototype you'll be using, demonstrates
setting up a translation transformation that will scroll a texture left and up by half the width and height of the
texture (in pixels). Notice that the z−translation is left at 0.0, as it should be for all texture transformations.

You'll remember that I said translations are dependent on the size of the texture. Even though the values you
specify represent a percentage of the texture's dimensions to scroll (with 0.0 being 0% and 1.0 being 100%),
you need to work on the pixel level if you need exact pixel precision. For example, if you were to apply the
transformation I just mentioned (a value of 0.5, meaning half the size of the texture, for the x/y axes) to a
256x128 texture, it would scroll left 128 pixels and up 64 pixels. As long as you remember how translation
values work, you'll be fine.

For texture rotation transformations, you can use the D3DXMatrixRotationZ function. Remember that a
texture can only rotate along the z−axis. As long as you keep to the z−axis, you can use a 4x4 matrix.
Here's an example of using the D3DXMatrixRotationZ function to rotate a texture by 1.57 radians.

// D3DXMatrixRotationZ function prototype
D3DXMATRIX *D3DXMatrixRotationZ(D3DXMATRIX *pOut, FLOAT Angle);

D3DXMATRIX matRotation;
D3DXMatrixRotationZ(&matRotation, 1.57f);

Rotation occurs around the origin of the texture, which happens to be the top−left pixel. If you want your
textures to rotate around another point, you have to transform the texture, rotate it, and then transform it back
to its original position. Here's an example of rotating a texture around its center by 0.47 radians:

 Chapter 14: Using Animated Textures

312

D3DXMATRIX matTrans1, matTrans2, matRotation;
D3DXMatrixTranslation(&matTrans1, −0.5f, −0.5f, 0.0f);
D3DXMatrixTranslation(&matTrans2, 0.5f, 0.5f, 0.0f);
D3DXMatrixRotationZ(&matRotation, 0.47f);

// Combine matrices into a single transformation
D3DXMATRIX matTransformation;
matTransformation = matTrans1 * matRotation * matTrans2;

As you can see from this example code, you can combine any number of matrices to come up with your final
transformation matrix. Once you've got your final matrix, it's time to hand it to Direct3D and render your
textures.

Setting Texture Transformation Matrices

Now that you've got a valid D3DXMATRIX set up with all of the transformations you want to apply, you can
render the transformed texture. First, however, you need to convert the 4x4 matrix to a 3x3 matrix that
Direct3D uses for texture transformations. A small function like the following one will convert the matrix for
you:

void Matrix4x4To3x3(D3DXMATRIX *matOut, D3DXMATRIX *matIn)
{
 matOut−>_11 = matIn−>_11; // Copy over 1st row
 matOut−>_12 = matIn−>_12;
 matOut−>_13 = matIn−>_13;
 matOut−>_14 = 0.0f;

 matOut−>_21 = matIn−>_21; // Copy over 2nd row
 matOut−>_22 = matIn−>_22;
 matOut−>_23 = matIn−>_23;
 matOut−>_24 = 0.0f;

 matOut−>_31 = matIn−>_41; // Copy bottom row
 matOut−>_32 = matIn−>_42; // used for translation
 matOut−>_33 = matIn−>_43;
 matOut−>_34 = 0.0f;

 matOut−>_41 = 0.0f; // Clear the bottom row
 matOut−>_42 = 0.0f;
 matOut−>_43 = 0.0f;
 matOut−>_44 = 1.0f;
}

Calling the Matrix4x4To3x3 function is as simple as calling any D3DX matrix function. All you need to
do is provide a source and destination matrix pointer, as I have done here. (Note that the source and
destination matrices can be the same.)

// Convert matrix to a 3x3 matrix
Matrix4x4To3x3(&matTexture, &matTexture);

Once you've passed your 4x4 texture transformation matrix to Matrix4x4 To3x3, you can set the resulting
3x3 texture transformation matrix using IDirect3DDevice9::SetTransform, specifying the
D3DTS_TEXTURE0 flag in the call.

// Set transformation in Direct3D pipeline
pDevice−> SetTransform(D3DTS_TEXTURE0, &matTexture);

 Setting Texture Transformation Matrices

313

At this point, Direct3D is almost ready to use your texture transformation! The only thing left to do is tell
Direct3D to process two−dimensional texture coordinates in its texture transformation calculations. You can
accomplish this with the following call to IDirect3DDevice9::SetTextureStageState:

pDevice−> SetTextureStageState(0,
 D3DTSS_TEXTURETRANSFORMFLAGS,
 D3DTTFF_COUNT2);

Now you're cooking! Every texture (from stage 0) you render from this point will have the transformation
applied to it. When you're finished with the transformation, you can disable it by calling
SetTextureStageState again, this time setting D3DTSS_TEXTURETRANSFORMFLAGS to
D3DTTFF_DISABLE.

Note The code shown here only allows you to use texture transformations in stage 0. If you are
using textures in another texture stage, simply replace the 0 with the stage number you are
using.

pDevice−>SetTextureStageState(0,
 D3DTSS_TEXTURETRANSFORMFLAGS,
 D3DTTFF_DISABLE);

Using Texture Transformations in Your Project

As you can see, using texture coordinate transformations is pretty straightforward and simple. The hardest part
is keeping track of the various transformations. I recommend that you create a manager of sorts to keep track
of each texture's transformation. (Maybe just maintaining an array of translation and rotation values will work
for you.)

For an example of how you can actually use texture transformations in your project, you might want to check
out the texture transformation demo located on the CD−ROM. (Look under the Chapter 14 subdirectory or
consult the end of this chapter for more information.) The demo shows you how to create the effect of a
flowing waterfall using simple translation transformations. Let the demo serve as your starting point into the
world of texture transformation animation!

Using Video Media Files for Textures

Textures, although great for enhancing the appearance of your 3D graphics, are merely bland photo−stills. Not
even the use of texture transformations can do certain textures justice. What you need is the ability to apply a
video sampling to the surface of your polygons.

That's right! You can actually play a video media file on the surface of your 3D model, which means that you
can achieve inconceivable effects! Imagine recording some live−action footage and playing that video back in
your game. For example, a sports game might have crowds of fans cheering on their favorite team. You could
paint this live−action footage onto the surfaces of your empty seats, thus filling the stadium with thousands of
adoring fans. Talk about realism!

Don't be limited by just using video media for textures, however. There's so much more you can do with this
technique. How about in−game cinematic sequences? Simply apply a full−screen polygon that is textured with
your video sequence. What's the catch? Nothing−you're using the same techniques you used to texture your
game character's facial mesh!

 Using Texture Transformations in Your Project

314

If the texture transformations got you riled up, I'm sure the use of video media textures has really got you
going! How does it work, you ask? It all starts with Microsoft's DirectShow.

Importing Video with DirectShow

DirectShow is the component of DirectX that you rely on to control video playback. It is an extremely useful
set of components that is capable of working with many different types of media including various audio
formats, such as .mp3 and .wma, and numerous video formats, such as .mpg, .avi, and even DVD−encoded
files!

Since you're only concerned with video media formation, you can safely ignore most of DirectShow's
components and stick to those that deal with video. Hmm−now that I think about it, the easiest way to deal
with video media files is to create a custom filter that processes the video data that DirectShow can import for
you. Take a look at how you can use filters for texture animation.

Note Those of you who have taken the time to explore the DirectX SDK might have come upon the
Texture3D demo program that demonstrates how to use a single video media file to texture−map your
polygons. In this chapter, I expand on that demo by developing a way to use an unlimited number of
video media files in your 3D scenes.

Using Filters in DirectShow

DirectShow works with media formats through the use of filters. Each filter is responsible for encoding or
decoding media data as it is written to or read from a file. Filters can be strung together, with one filter
handling the decoding of one type of media data and the next filter processing the media data and displaying it
to the viewer (see Figure 14.1).

Figure 14.1: A media file might pass through various filters to let viewers see and hear its contents.
You begin by creating your own DirectShow filter and inserting it into the flow of the video media decoding.
Whenever you tell DirectShow to decode a video media file, your filter will kick in and pass the video data
straight to a texture surface you use to paint your polygons. Sounds simple, doesn't it?

 Importing Video with DirectShow

315

The problem is, at last count DirectShow uses more than 70 filters and 70 interfaces! Wow−that's enough to
make even the best programmers cringe! What's a programmer like you or I supposed to do against these
overwhelming interfaces? I'll tell you what you can doyou can use the Base Classes.

Using the Base Classes

Here comes Microsoft to the rescue! Knowing that working directly with the video decoders and various
DirectShow interfaces was a bit daunting, Microsoft constructed a series of classes you can use to aid in the
development of your filters. These classes, called the DirectShow Base Classes, are located in your DirectX
SDK installation directory at \Samples\Multimedia\DirectShow\BaseClasses.

Tip To switch configurations inside the Visual C/C++ compiler, select Build, Set Active Configuration from
the main menu. In the SetActive Project Configuration dialog box, select the desired configuration (either
debug or release) from the Project Configurations list and click the OK button.

You need to compile the Base Classes to use them in your projects. Start Visual C/C++ and open the
BaseClasses project that is located in the DirectX SDK installation at
\Samples\Multimedia\DirectShow\BaseClasses\BaseClasses.dsw. Compile the Base Classes project using
both the debug and release configurations.

After you complete the compilation (make sure to compile in both configurations!), you need to copy the
resulting two library files (\debug\strmbasd.lib for the debug configuration and \release\strmbase.lib for the
release configuration) and all of the .h files located in the BaseClasses directory into your project's directory.

In your project's Settings/Link dialog box, add strmbasd.lib or strmbase.lib (debug or release, respectively,
depending on your configuration) to your project's Object/ Library Modules list. Also, whenever you use
DirectShow in your projects, make sure to include the streams.h header file (from the Base Classes directory),
as well as the dshow.h header file.

Note If you want to avoid putting the Base Classes' files in your project's directory (to save on disk space, or
because you don't want a hundred or so files residing there), simply add the Base Classes as an include
directory within the compiler. Make sure to do the same for the library directories; rather, just link
directly to the library from your compiler's link settings.

You're now ready to rock! To start importing video data, you first need to create your own filter.

Creating a Custom Filter

In the previous section, you learned how DirectShow uses filters to process streams of data that are being
decoded or encoded. In this case, those streams represent frames of video. DirectShow comes with a number
of video−capable filters for you to use in your own projects, but unfortunately, none of those filters are really
what you need here. You need to create your own custom DirectShow filter that takes incoming video data
and "pastes" it onto a texture surface, thus creating a video texture animation.

Creating your own custom filter really isn't difficult. The trick is to derive your custom filter from
DirectShow's base filter class, assign it a unique identification number, and override the appropriate functions
to process incoming video data. That doesn't sound so difficult, does it? The following sections detail the steps
to create your custom filter.

Deriving the Filter Class

 Creating a Custom Filter

316

The first step to creating your own custom DirectShow filter is to derive your own filter class from
DirectShow's Base Classes. You're going to derive CBaseVideoRenderer, which is responsible for
processing video samples from an input stream. Go ahead and derive a class (called cTextureFilter) that
you'll use for your filter.

class cTextureFilter : public CBaseVideoRenderer
{

Aside from the functions that you'll use (which you'll read about in a moment), you need to declare a few
member variables to store the pointer to your Direct3D device (IDirect3DDevice9), texture object
(IDirect3DTexture9), texture format (D3DFORMAT), and the video source's image width, height, and
pitch. You can define these six variables in the cTextureFilter class.

public:
 IDirect3DDevice9 *m_pD3DDevice; // 3D device interface
 IDirect3DTexture9 *m_pTexture; // Texture object
 D3DFORMAT m_Format; // Format of texture
 LONG m_lVideoWidth; // Pixel width of video
 LONG m_lVideoHeight; // Pixel height of video
 LONG m_lVideoPitch; // Video surface pitch

The first three variables, m_pD3DDevice, m_pTexture, and m_Format are pretty standard fare for
storing a texture. First there's the 3D device interface you are using in your project, then there's the texture
object that will contain the animated texture, and finally there's the texture's color format descriptor.

The last three variables, m_lVideoWidth, m_lVideoHeight, and m_lVideoPitch, describe the
dimensions of the video source. DirectShow imports video data by creating a bitmap surface in memory and
streaming video data onto that surface. That surface has its own unique height (m_lVideoHeight), width
(m_lVideoWidth), and surface pitch (m_lVideoPitch) that determine how many bytes a row of video
data uses.

Give the variables a rest for the moment. (You'll get back to those later in the "Working with the Custom
Filter" section.) For now, read on to see how to assign a unique identification number to your texture filter.

Defining a Unique Identification Number

For DirectShow to distinguish your filter from all the others, you need to assign it a unique identification
number. This unique number (a class ID number, to be exact) is represented by a UUID that you can define
using the following code in your source file. (Typically, you would include this code at the beginning of your
custom filter source code file.)

Note The filter's UUID can be anything; running Microsoft's guidgen.exe program will give you an acceptable
GUID number you can use. I took the liberty of using the UUID shown for all of the examples for this
chapter. If you want to see how to create your own GUIDs, refer to Chapter 3.

struct __declspec(\
 uuid(";{61DA4980−0487−11d6−9089−00400536B95F}") \
) CLSID_AnimatedTexture;

Once you have defined the UUID, you'll only need to use it once inside your custom filter's constructor
function. The purpose is to register your UUID with the DirectShow filter system so it knows where to go to
find your filter. It is interesting to note that once your filter is set up and registered with the system (a feature
you'll read about shortly), it will be in memory at all times. Whenever a media file is loaded, your filter gets a

 Creating a Custom Filter

317

shot at decoding it. For your filter to decode media data, you need to override a few common functions.

Overriding the Essential Functions

Now that you have declared your custom filter class and you've assigned your filter a unique identification
number, it is time to define the functions your filter will use. Aside from the typical class constructor, you
need to override three essential DirectShow filter functions that are common to all filters.

The first function, CheckMediaType, determines whether your filter can handle the incoming media data.
Since DirectShow can handle almost any media file, your filter will use CheckMediaType to determine
whether the incoming media data is actually video data stored in a format you want to use. Take a look at the
CheckMediaType function prototype.

virtual HRESULT CBaseRenderer::CheckMediaType(
 const CMediaType *pmt) PURE;

The CheckMediaType function only has one parameter−CMediaType, the incoming media's data
interface. Using the CMediaType interface's FormatType function, you can query for the type of media
the interface contains (video, sound, or something else).

Since you're only interested in video media files, the return code from CMediaType::FormatType you'll
be looking for is FORMAT_VideoInfo. If the media data is indeed video, you need to perform one further
check to determine whether it is the proper format. You can accomplish this by checking the GUID value of
the video's type and subtype.

Again, the media type you want is video (represented by a MEDIATYPE_Video GUID macro), whereas the
subtype you want is the MEDIASUBTYPE_RGB24 color−depth GUID macro (meaning a 24−bit color depth
with the color arranged in red, green, and blue chunks).

Once you've verified that you have a valid video stream, you can return a value of S_OK from your
CheckMediaType function to let DirectShow know you can use it. If the media data isn't what you want,
you can return a value of E_FAIL from CheckMediaType.

That sounds like a lot to do to verify a medium's data type, but believe me, it's not. Take a look at the
overridden CheckMediaType function that you use.

HRESULT cTextureFile::CheckMediaType(\
 const CMediaType *pMediaType)
{
 // Only accept video type media
 if(*pMediaType−>FormatType() != FORMAT_VideoInfo)
 return E_INVALIDARG;
 // Make sure media data is using RGB 24−bit color format
 if(IsEqualGUID(*pMediaType−> Type(), MEDIATYPE_Video) && \
 IsEqualGUID(*pMediaType−>Subtype(), MEDIASUBTYPE_RGB24))
 return S_OK;
 return E_FAIL;
}

The second function of the three you need to override is SetMediaType, which your filter can use to
configure the internal variables it has defined and prepare for the incoming media data. Again, this function
can reject incoming media data based on its format.

 Creating a Custom Filter

318

SetMediaType uses only one parameter, const CMediaType, just as the CheckMediaType function
did. Inside the SetMediaType function, you want to retrieve the resolution of the video data (width, height,
and surface pitch) and store it within the class's variables.

Also, you need to create a valid 32−bit texture surface (which might default to a 16−bit surface if no 24−bit
modes are available) to hold the video data as it is being streamed in. After you have created the texture, you
need to check its format, which must be 32−bit or 16−bit, and store the color information for later use.

A return value of S_OK from the SetMediaType function signifies that your filter is ready to use the video
data; otherwise, you need to return an error value (such as E_FAIL).

You can program the SetMediaType function to retrieve the video's resolution and create the texture
surface using the following code. (I'll let the comments point out the relevant parts of the code.)

HRESULT cTextureFilter::SetMediaType(const CMediaType *pMediaType)
{
 HRESULT hr;
 VIDEOINFO *pVideoInfo;
 D3DSURFACE_DESC ddsd;

 // Retrieve the size of this media type
 pVideoInfo = (VIDEOINFO *)pMediaType−>Format();
 m_lVideoWidth = pVideoInfo−>bmiHeader.biWidth;
 m_lVideoHeight = abs(pVideoInfo−>bmiHeader.biHeight);
 m_lVideoPitch = (m_lVideoWidth * 3 + 3) & ~(3);

 // Create the texture that maps to this media type
 if(FAILED(hr = D3DXCreateTexture(m_pD3DDevice, \
 m_lVideoWidth, m_lVideoHeight, \
 1, 0, D3DFMT_A8R8G8B8, \
 D3DPOOL_MANAGED, &m_pTexture)))
 return hr;

 // Get texture description and verify settings
 if(FAILED(hr = m_pTexture−>GetLevelDesc(0, &ddsd)))
 return hr;
 m_Format = ddsd.Format;
 if(m_Format != D3DFMT_A8R8G8B8 && m_Format != D3DFMT_A1R5G5B5)
 return VFW_E_TYPE_NOT_ACCEPTED;
 return S_OK;
}

The last of the three functions you need to override, DoRenderSample, is the most important.
DoRenderSample is called every time your filter needs to process a frame of data from the media file. In
this case, the data represents a video clip that needs to be pasted onto a texture surface.

The overridden DoRenderSample function has the following prototype:

virtual HRESULT CBaseRenderer::DoRenderSample(
 IMediaSample *pMediaSample);

DoRenderSample uses one parameter, IMediaSample, which is an interface that contains the
information regarding a single media sample (the bitmap image representing a single frame of video). Your
job is to grab a pointer to the media's data and paste it onto your texture surface.

 Creating a Custom Filter

319

Start by declaring the overridden DoRenderSample function and grabbing a pointer to the media's data via
the IMediaSample::GetPointer function.

HRESULT cTextureFilter::DoRenderSample(\
 IMediaSample *pMediaSample)
{
 // Get a pointer to video sample buffer
 BYTE *pSamplePtr;
 pMediaSample−>GetPointer(&pSamplePtr);

At this point, you need to lock your texture surface to copy over the pixel data from the video data. You can
use your texture object's LockRect method to accomplish this.

// Lock the texture surface
D3DLOCKED_RECT d3dlr;
if(FAILED(m_pTexture−>LockRect(0, &d3dlr, 0, 0)))
 return E_FAIL;

// Get texture pitch and pointer to texture data
BYTE *pTexturePtr = (BYTE*)d3dlr.pBits;
LONG lTexturePitch = d3dlr.Pitch;

Once you have locked the texture surface and retrieved the texture surface's pitch and data pointer, you can
begin copying over the video data. First, however, you need to point to the bottom row of the texture because
for some odd reason, the video data is stored upside down.

// Offset texture to bottom line, since video
// is stored upside down in buffer
pTexturePtr += (lTexturePitch * (m_lVideoHeight−1));

Cool, now you're ready to copy over the video data. Remember back when you created the texture surface, the
color format of the texture could have been either 32−bit or 16−bit? Now you need to consider the color depth
when copying over the video data, because you need to copy it 32 or 16 bits at a time.

The following code starts with a switch statement and branches off to a block of code that will copy over
the video data using 32 bits of color information per loop (if the color format is 32−bit, of course).

// Copy the bits using specified video format
int x, y, SrcPos, DestPos;
switch(m_Format) {
 case D3DFMT_A8R8G8B8: // 32−bit

The next bit of code loops through each row of the video sample and copies each pixel over to the texture
surface.

// Loop through each row, copying bytes as you go
 for(y=0;y<m_lVideoHeight; y++) {

 // Copy each column
 SrcPos = DestPos = 0;
 for(x=0;x<m_lVideoWidth;x++) {
 pTexturePtr[DestPos++] = pSamplePtr[SrcPos++];
 pTexturePtr[DestPos++] = pSamplePtr[SrcPos++];
 pTexturePtr[DestPos++] = pSamplePtr[SrcPos++];
 pTexturePtr[DestPos++] = 0xff;
}

 Creating a Custom Filter

320

// Move pointers to next line
pSamplePtr += m_lVideoPitch;
pTexturePtr −= lTexturePitch;
}
break;

The second switch case statement copies the 16−bit color depth video data. This code is basically the same
as the 32−bit color pixel code, but this time only 16−bit pixels are copied.

case D3DFMT_A1R5G5B5: // 16−bit
 // Loop through each row, copying bytes as you go
for(y=0;y<m_lVideoHeight;y++) {

 // Copy each column
 SrcPos = DestPos = 0;
 for(x=0;x<m_lVideoWidth;x++) {
 (WORD)pTexturePtr[DestPos++] = 0x8000 +
 ((pSamplePtr[SrcPos+2] & 0xF8) << 7) +
 ((pSamplePtr[SrcPos+1] & 0xF8) << 2) +
 (pSamplePtr[SrcPos] >> 3);
 SrcPos += 3;
}

// Move pointers to next line
pSamplePtr += m_lVideoPitch;
pTexturePtr −= lTexturePitch;
}
break;
}

To wrap up the DoRenderSample function, you just need to unlock the texture surface and return a
resulting success or error code.

// Unlock the Texture
if (FAILED(m_pTexture−>UnlockRect(0)))
 return E_FAIL;

return S_OK;
}

DirectShow calls directly each of the three overridden functions you've just written (CheckMediaType,
SetMediaType, and DoRenderSample). In other words, you never directly call any of the three
functions; rather, you let DirectShow call them whenever it needs them. For that reason, all DirectShow filters
are kept resident in memory at all times. This means that once you've created an instance of your filter, you
should never delete it from memory. DirectShow will remove filters from memory for you.

Finishing Your Filter Class

Now that your filter class is accepting incoming media data, you only have to write a couple more functions to
complete your filter. These functions are the constructor and a function that returns the texture surface's object
pointer. Each function is defined as follows (declared as public functions within your cTextureFilter
class):

class cTextureFilter {
 // ... Previous declaration stuff
 public:

 Creating a Custom Filter

321

cTextureFilter(IDirect3DDevice9 *pD3DDevice, \
 LPUNKNOWN pUnk = NULL, \
 HRESULT *phr = NULL);
IDirect3DTexture9 *GetTexture();
};

The one and only constructor to your cTextureFilter class registers your filter with the DirectShow
system and declares your 3D device object interface. Don't let the constructor's function prototype scare you.
Other than the 3D device object pointer, the constructor takes a pointer to an IUnknown object (which you
can set to NULL) and a pointer to an HRESULT variable you can use to store the success or error result.
Here's the code for the cTextureFilter class constructor:

cTextureFilter::cTextureFilter(IDirect3DDevice9 *pD3DDevice, \
 LPUNKNOWN pUnk, HRESULT *phr)
 : CBaseVideoRenderer(__uuidof(CLSID_AnimatedTexture),
 NAME("ANIMATEDTEXTURE"), pUnk, phr)
{
 // Save device pointer
 m_pD3DDevice = pD3DDevice;

 // Return success
 *phr = S_OK;
}

To register your filter with DirectShow, you need to call the CBaseVideoRenderer constructor function,
as shown in your filter's constructor call. The CBaseVideoRenderer's constructor takes the UUID of
the filter you created, as well as the name you want to assign to your filter (ANIMATEDTEXTURE, in this
case). The other two variables are merely passed from your filter's constructor function parameters.

Inside the constructor, you only need to save the 3D object pointer to a class member variable
(m_pD3DDevice) and store a successful return code in the supplied HRESULT pointer. Quickly enough,
that's the end of your filter class' constructor!

The second (and last) function you need to add to your filter class will return a pointer to your texture surface
object. Remember, the texture object was declared in your class definition as m_Texture, so the following
function code will do the job for you:

IDirect3DTexture9 *cTextureFilter::GetTexture()
{
 return m_Texture;
}

And with that last function, your filter class is ready to use!

Working with the Custom Filter

All right, things are starting to heat up! At this point, your custom filter is ready to use. The only thing
stopping you is you need to create a class that initializes the proper DirectShow objects (including your filter),
loads a video media file, and controls playback of the video.

In fact, you'll come to rely on one main DirectShow interface for use with your filter−IGraphBuilder. The
IGraphBuilder interface, called a graph builder, builds and maintains a list of filters (called a filter
graph) that are used during the decoding of a media file. The graph builder will load a media file for you and
configure all of the proper filters for processing the media data. Take a closer look at this very important

 Working with the Custom Filter

322

object.

Using a Graph Builder

The IGraphBuilder object is much like any other COM interface. To use IGraphBuilder, you need to
instance it and call CoCreateInstance to create the object and retrieve the interface.

IGraphBuilder *pGraph;
CoCreateInstance(CLSID_FilterGraph, NULL, \
 CLSCTX_INPROC_SERVER, IID_IGraphBuilder, \
 (void**)&Graph);

After you have created the IGraphBuilder interface, you can use it to register your filter for use and load
a media file. Before you register your filter, however, you must first instance a copy of it that the graph
builder will keep in memory during the course of the media playback. You can use the new operator to
allocate an instance of your filter class, and you can register the filter instance with the graph builder using the
IGraphBuilder::AddFilter function.

Tip Before using any COM object, you must first ensure that the COM system is initialized. You can initialize
the COM system by inserting the following line of code at the beginning of your application's execution
(typically at the beginning of your WinMain function):

CoInitialize(NULL);

When your application is ready to exit, you must de−initialize the COM system using the following line
of code:

CoUninitialize();

Note The CoCreateInstance function returns a value of S_OK if the function call was successful. Any
other return value means an error occurred during the creation of the COM object. Consult the Win32
SDK for information on what each return code signifies.

Here's some code that will allocate the filter and register it with the graph builder:

// pD3DDevice = pre−initialized Direct3D device object pointer

// Allocate an instance of the filter
cTextureFilter *pTextureFilter = \
 new cTextureFilter(pD3DDevice, NULL, &hr);
// Add the filter to the graph builder
IBaseFilter *pFilter = (IBaseFilter*)pTextureFilter;
pGraph−>AddFilter(pFilter, L"ANIMATEDTEXTURE");

The graph builder uses the AddFilter function to accept a pointer to a filter (cast to an IBaseFilter
class interface, from which all filters are derived), as well as a name to assign to the filter you are adding. In
the previous example of AddFilter, you passed a pointer to your texture filter (using the pFilter
pointer) and called the filter ANIMATEDTEXTURE. The filter's name is not used from this point on; it's
merely for your own use and for an external filter viewer that examines all filters in use by DirectShow.

After you have registered the filter, you can begin using it by selecting a source video file.

Selecting a Source File

 Working with the Custom Filter

323

Now that your filter is registered with DirectShow (via the IGraphBuilder interface), you must tell
DirectShow which file to use for importing video. The IGraphBuilder::AddSourceFilter function
takes care of setting the source file and creating the appropriate filters for importing the video data.

HRESULT IGraphBuilder::AddSourceFilter(
 LPCWSTR lpwstrFileName,
 LPCWSTR lpwstrFilterName,
 IBaseFilter **ppFilter);

The AddSourceFilter function takes three parameters−the name of the media file to load, the name of
the source filter (lpwstrFilterName, which you'll read about in a moment), and a pointer (ppFilter)
to an IBaseFilter filter object that you'll use to access the source video filter object.

What's all this talk about a source filter? I know I told you there are a number of filters you can use in the
process of decoding a media file. As Figure 14.2 illustrates, the source filter is really a conduit to all of the
filters the graph builder is using.

Figure 14.2: The source filter uses a single interface to represent a collage of filter objects.
By creating a source filter (using an IBaseFilter interface to represent it) and naming it (via the
lpwstrFilterName parameter), you can quickly access the various filters in the filter graph through the
single source filter interface.

Makes sense now, doesn't it? Call AddSourceFilter to create your base filter and load the media file.
The base filter will be named SOURCE (cast as a Unicode character string using the L"" macro) and requires
an instanced IBaseFilter interface.

// Filename = name of video media filename to use
IBaseFilter *pSrcFilter;

// Convert from ASCII text to Unicode text:
WCHAR wFilename[MAX_PATH];
mbstowcs(wFilename, Filename, MAX_PATH);

// Add source filter to graph
pGraph−>AddSourceFilter(wFilename, L"SOURCE", &pSrcFilter);

Once you have called AddSourceFilter, you will receive a pointer to the source filter. This pointer,
pSrcFilter, is used to connect the video source's output pin to your texture filter's input pin.

Note You'll notice that I convert the multi−byte Filename text string to a wide−character

 Working with the Custom Filter

324

string because the AddSourceFilter functions (like most DirectShow calls) require
you to use Unicode characters.

Connecting the Pins

Just what the heck am I talking about−what are these pins and what are they doing here? Each filter has a set
of pins, which are sort of like funnels that push the media's data in and out of the filter. The media file's data is
fed to the first filter through its In pin. The data is processed by the filter and fed to the next filter in line
though the Output pin. This process continues until the media data reaches the end of the line, which in this
case is the texture surface you are using. Check out Figure 14.3 to get a better understanding of what I mean.

Figure 14.3: A sample set of four filters is used to grab data from the media file, decode it, and finally render
it to the video display
Each filter must do whatever is necessary to the incoming media data and pass it to the next filter in line. As
for your filter, it only waits for the media data and pastes it onto your texture surface. So again, what does all
this stuff about pins have to do with you?

The next step to using a video texture is to find your filter's In pin (the pin that accepts incoming data) and the
source filter's Output pin (the one that the video data comes out of) and connect them. Thus, your filter will
receive all data coming out of the source filter.

To find these two pins (your filter's In pin and the source filter's Output pin), you use the FindPin function.

HRESULT IBaseFilter::FindPin(
 LPCWSTR Id, // Name of pin to find
 IPin **ppPin); // Pin interface object

I know I told you that you wouldn't mess with too many DirectShow interfaces, but I promise you, there's not
much left to do. The FindPin function takes only two parameters−the pin's name that you want to find
(either In or Out in this case, both represented in a Unicode character string) and an IPin interface.

The IPin interfaces are not important for you here; you only need them so your graph builder can connect
them. Check out the code for finding the pins first, and then move on to connecting them.

// Find the input and out pins and connect together
IPin *pFilterPinIn;
IPin *pSourcePinOut;
pFilter−>FindPin(L"In", &pFilterPinIn);
pSourceFilter−>FindPin(L"Output", &pSourcePinOut);

It can't get any easier than that. With one more call, you can connect the pins.

pGraph−>Connect(pSourcePinOut, pFilterPinIn);

At this point, the media file is loaded, and the filters are all connected and ready to rock! The only thing left is
to begin playback of the video stream. The problem is the graph builder doesn't have any functions to control
playback. What a bummer! Don't fret, though, because you can query the graph builder for just the right
interfaces you need to control video−stream playback.

Querying for Interfaces

 Working with the Custom Filter

325

To control the playback of the video data, you must query the graph builder for a media control
interface−IMediaControl. The media control interface can play, stop, pause, and resume playback of the
video stream.

To determine when playback of the video is complete, you need to query the graph builder for a media event
interface−IMediaEvent. Last, you want to query for one additional interface to determine the current
position, or rather the time, of the video playback.

Use the following code to query for the three interfaces you need:

// Instance media object interfaces
IMediaControl *pMediaControl;
IMediaPosition *pMediaPosition;
IMediaEvent *pMediaEvent;

// Query for interfaces
pGraph−>QueryInterface(IID_IMediaControl, \
 (void **)&pMediaControl);
pGraph−>QueryInterface(IID_IMediaPosition, \
 (void **)&pMediaPosition);
pGraph−>QueryInterface(IID_IMediaEvent, \
 (void **)&pMediaEvent);

Don't give up; you're almost there! All that's left is to start playback of the video, determine the video's
position as it is playing, and watch for various media events to occur.

Controlling Playback and Handling Events

The last step to get your animated texture going is to begin playback of the video source using the
IMediaControl object you just created. There are two functions of interest in
IMediaControl−IMediaControl::Run and IMediaControl::Stop.

The IMediaControl::Run function begins playback of the video at the current playback position, which
in turn streams the data into your filter and likewise onto your texture surface. The Run function takes no
parameters and can be used as in the following code:

pMediaControl−>Run();

Once a video is playing, you can stop it by calling the IMediaControl::Stop function, which also uses
no parameters. The following code will stop a playing video:

pMediaControl−>Stop();

The cool thing about the Run and Stop functions is that you can also use them to pause and resume your
video playback. Calling the Stop function will pause the video playback; a subsequent call to Run will
resume playback.

To seek a specific position within the video file (such as the starting position of the video whenever you want
to "rewind" it), you turn to the IMediaPosition interface. To seek to a specific time in the video file, you
call the IMediaPosition::put_CurrentPosition function.

HRESULT IMediaPosition::put_CurrentPosition(
 REFTIME llTime);

 Working with the Custom Filter

326

The REFTIME parameter of the put_CurrentPosition function is really a float data type in disguise;
you set the llTime time to any time value you want to seek in the video stream. (For example, 2.0 means to
seek to 2.0 seconds in the stream.) You'll most likely use the put_CurrentPosition function to rewind
the video and begin playback at the beginning, much like I have done in this code.

// Seek to start of video stream (0 seconds)
pMediaPosition−>put_CurrentPosition(0.0f);

Last in the trio of media objects that you're using is IMediaEvent, which retrieves any pending events. The
only event that you're concerned with is the one that signifies the end of the video, so you can restart the
video, process some function to stream in another video, or whatever other option you choose.

To retrieve an event from the IMediaEvent interface, you use the IMediaEvent::GetEvent function.

HRESULT IMediaEvent::GetEvent(
long *lEventCode, // Event code
long *lParam1, // 1st event parameter
long *lParam2, // 2nd event parameter
long msTimeout); // Time to wait for event

The GetEvent function has four parameters for you to set, with the first three being pointers to long
variables and the last one being a long value. After the call to GetEvent, the first three long variables
(lEventCode, lParam1, and lParam2) are filled with the current event's information, such as the event
code and two parameters used by the event. You can set the fourth variable, msTimeout, to the amount of
time you want to wait for an event to occur, or you can set it to 0 to wait indefinitely for an event to occur.

The only event you want to check for is the video ending, which is represented by the EC_COMPLETE macro.
You shouldn't wait indefinitely for an event; instead, wait for a few milliseconds and then continue querying
for events until none remain. How do you know if no events remain to query? Whenever the GetEvent
function returns an error code, you can safely assume there are no events waiting.

Here's some code that continuously queries the media event interface for the current event (breaking when
there are no events waiting), as well as a little block of code that handles the EC_COMPLETE event.

// Process all waiting events
long lEventCode, lParam1, lParam2;
while(1) {
 // Get the event, waiting 1 milliseconds per event
 if(FAILED(pMediaEvent−>GetEvent(&lEventCode, &lParam1, &lParam2, 1)))
 break;

// Handle the end−of−video event by calling a special function
if(lEventCode == EC_COMPLETE)
 EndOfAnimation(); // Any function you want

// Free the event resources
pMediaEvent−>FreeEventParams(lEventCode, lParam1, lParam2);
}

Hah! I tried to fool you by throwing in a new function call from the IMediaEvent
interface−FreeEventParams. Every time you retrieve an event using the GetEvent function, you must
follow it up with a call to FreeEventParams so the media event object has a chance to free any resources
associated with the event.

 Working with the Custom Filter

327

And so you have it. You now have the ability to play, stop, pause, resume, and position the playback of your
video texture, as well as check for the completion of the video playback (at which point you can restart
playback or whatever else your little heart desires).

Creating an Animated Texture Manager

Not that it's very hard to use animated textures (with the help of this book, that is), but your life will be much
easier if you take the time to create a manager to handle the filters and textures for you. I've taken the liberty
of wrapping all that you've seen about video textures in this chapter into a single class that you can use for
your game projects. You'll find this class, called cAnimationTexture, on the CD−ROM, under the
\BookCode\Chap14\TextureAnim\ directory. The class declaration is defined as follows:

class cAnimatedTexture
{
 protected:
 IGraphBuilder *m_pGraph; // Filter graph
 IMediaControl *m_pMediaControl; // Playback control
 IMediaPosition *m_pMediaPosition; // Positioning control
 IMediaEvent *m_pMediaEvent; // Event control

 IDirect3DDevice9 *m_pD3DDevice; // 3−D device
 IDirect3DTexture9 *m_pTexture; // Texture object

 public:
cAnimatedTexture();
~cAnimatedTexture();
// Load and free an animated texture object
BOOL Load(IDirect3DDevice9 *pDevice, char *Filename);
BOOL Free();

// Update the texture and check for looping
BOOL Update();

// Called at end of animation playback
virtual BOOL EndOfAnimation();

// Play and stop functions
BOOL Play();
BOOL Stop();

// Restart animation or go to specific time
BOOL Restart();
BOOL GotoTime(REFTIME Time);

// Return texture object pointer
IDirect3DTexture9 *GetTexture();
};

You should recognize most of cAnimatedTexture's class members. There are your ever−faithful
DirectShow interfaces that are used for media playback, events, and position information, as well as a couple
Direct3D objects used to point to the 3D device in use and a texture surface object that points to your filter's
texture surface.

Aside from the class' variables, you have access to 11 class functions. As you would expect, there's the class
constructor and destructor, which initialize the class' variables and release the object's resources, respectively.
Then there's the Load function, which loads a video file and prepares your filter for use. You only need to

 Creating an Animated Texture Manager

328

supply Load with the pointer to the IDirect3DDevice9 object you are using and the file name of the
video file to use as a texture, and you're off! The Load function will instance a copy of your
cTextureFilter class and begin using it to load video data for you. When you're done with the
cAnimatedTexture class object, call the Free function to free all used resources and interfaces.

Moving on, there's the Update function, which you should call every iteration of your message pump (every
frame of your game). The Update function polls the media event object to see whether any messages are
waiting; if so, those messages are handled. If the video has completed playback, then the EndOfAnimation
function is called.

You'll notice that you can override the EndOfAnimation function, meaning that you can write your own
functions to determine what should be done when the video playback is complete. For instance, you might call
on the Restart function, which restarts the video at the beginning, or you might call GotoTime,
which takes a REFTIME value (a float value) of the time to scan to in the video and then begins playing.

Finally, there are three more functions. Start will start playback of the video at the current playback
position, and Stop will stop the video playback. It's possible to pause a video by calling Stop and then
resume playback by calling Play.

Last is the GetTexture function, which is identical to your filter's GetTexture function; both return the
pointer to your texture object's interface, which allows you to set the texture via a call to
IDirect3DDevice9::SetTexture.

I'm not going to show any code to cAnimatedTexture here, since you've pretty much seen it all
throughout this chapter. Again, I'll refer you to the source code in the TextureAnim project on this book's
CD−ROM. To check out what the cAnimatedTexture class can do for you, take a look at a quick
example that shows you what you can accomplish with animated textures.

Applying Animated Media Textures

Now that you've got your animated−video texture engine working, it's time to put it to the test and create
something worthwhile. In this example, you'll create a quad polygon (a polygon with four points) and apply
an animated texture to it. To keep things clean, I'll skip the mundane Direct3D initialization code and get right
into the example by first creating a vertex buffer that will contain the polygon data.

Note When using the DirectShow filters developed in this chapter, you must specify the
D3DCREATE_MULTITHREADED flag in your call to IDirect3D9::CreateDevice.This lets
Direct3D know you're using a multithreaded application (in which the filters are separate threads) and
ensures that you need access to those filters for the texture surface data. Also, you should use a
multithreaded run−time library (as set in your compiler's settings).

Creating a Vertex Buffer

To use the animated texture, you need to apply it as a regular texture on a polygon (or series of polygons). To
demonstrate the animated texture on which we've been building, create a simple quad using two triangles.
You can accomplish this using a vertex buffer with four vertices (in a triangle strip).

// pDevice = pre−initialized Direct3D Device
typedef struct {
 float x, y, z; // 3D coordinates
 float u, v; // Texture coordinates

 Applying Animated Media Textures

329

} sVertex;
#define VERTEXFVF (D3DFVF_XYZ | D3DFVF_TEX1)
// Define a quad polygon data (two triangles in a strip)
sVertex Verts[4] = {
 { −128.0f, 128.0f, 0.0f, 0.0f, 0.0f },
 { 128.0f, 128.0f, 0.0f, 1.0f, 0.0f },
 { −128.0f, −128.0f, 0.0f, 0.0f, 1.0f },
 { 128.0f, −128.0f, 0.0f, 1.0f, 1.0f }
};
// Instance and create a vertex buffer
IDirect3DVertexBuffer9 *pVertices;
pDevice−>CreateVertexBuffer(sizeof(Verts), \
 D3DUSAGE_WRITEONLY, VERTEXFVF, \
 D3DPOOL_MANAGED, &pVertices);

// Set the vertex data
BYTE *VertPtr;
pVertices−>Lock(0, 0, (BYTE**)&VertPtr, D3DLOCK_DISCARD);
memcpy(VertPtr, Verts, sizeof(Verts));
pVertices−>Unlock();

In this code, you create a vertex buffer to hold four vertices, which are arranged in a triangle strip to form a
quad polygon. The vertex buffer you're using here is a very common one that contains the vertex coordinates
and a single set of texture coordinates.

After you've created the vertex buffer, it is time to load your animated texture.

Tip If you're going for two−dimensional video−media playback (as opposed to rendering the
texture to a series of polygons), you can substitute the untransformed 3D vertex coordinates
for a set of transformed 2D vertex coordinates (thus specifying the D3DFVF_XYZRHW FVF
flag).

Loading the Animated Texture

You've got the vertex buffer ready, and of course you've got your animated texture file. All that's left is to load
up the texture and draw away! For this example, derive the cAnimatedTexture class into one that loops
the video playback by overriding the EndOfAnimation function so that the function calls Reset
whenever the video is finished. Here's the derived class you use:

class cAnimTexture : public cAnimatedTexture
{
 public:
 BOOL EndOfAnimation() { Restart(); return TRUE; }
};

From here, just create an instance of the cAnimTexture class and, using the Load function, load your
video.

cAnimTexture *g_Texture = new cAnimTexture();
g_Texture−>Load(pDevice, "Texture.avi");

At this point, your video texture is loaded, and you're ready to start drawing the scene.

Preparing to Draw

 Applying Animated Media Textures

330

It's time to prepare to draw the polygons that use your animated texture. This is typical rendering code−no
need for anything special here. Just set your vertex stream source, shader, material, and the texture. That's
right−you only need to set the texture surface that contains the video data; DirectShow will handle the rest!

The following code follows along with the sample in this chapter to set the vertex stream source, FVF shader,
material, and texture:

pDevice−>SetFVF(VERTEXFVF);
pDevice−>SetStreamSource(0, pVB, sizeof(sVertex));
pDevice−>SetMaterial(&Material);
pDevice−>SetTexture(0, g_Texture−>GetTexture());

After you set the source, FVF shader, material, and texture, all you have to do is draw your primitives and
present the scene.

Drawing and Presenting the Scene

Again, you don't need to do anything special to draw your graphics primitives and present the scene. Since
DirectShow handles the streaming of video data in the background, you can draw your primitives as you
normally would and present the scene as usual.

The following code will render the vertex buffer, free the texture and vertex source usage (to avoid memory
leaks), and present the scene.

pDevice−>DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
pDevice−>SetStreamSource(0, NULL, 0);
pDevice−>SetTexture(0, NULL);
pDevice−>Present(NULL, NULL, NULL, NULL);

And there you have it−a fully animated texture, compliments of DirectShow and you! Now that you've seen
just how easy it is to work with animated textures, you can start adding effects to your games, such as
animated facial textures, full motion backdrop images, and even cinematic sequences playing from within
your 3D engine.

Check Out the Demos

To demonstrate the texture animation techniques you read about in this chapter, there are two demos at your
disposal. These two demos, both displaying a waterfall pouring over a mountainside (see Figure 14.4), offer
you a small glimpse of what's possible with texture animation.

 Check Out the Demos

331

Figure 14.4: A cool waterfall gushes from unseen sources over a mountainside in the TextureAnim and
Transformations demos.
The first demo, Transformations, uses texture transformations to smoothly scroll the water texture, giving the
appearance of a flowing waterfall. The second demo, TextureAnim, uses the video media texture filters
developed in this chapter to animate the surface of the water.

Wrapping Up Advanced Animation

Sniff.... Unfortunately, my friend, we have reached the end of the road. You have completed the last chapter.
Don't fret, however, because this book is only the tip of the iceberg. There are so many more advanced
animation techniques out there for you to learn! If you're feeling adventurous, check out Appendix A, "Web
and Book References," to see what resources are out there for you. From further reading to cool Web sites,
there's sure to be something that'll catch your fancy.

So go forth, my lad, and see what the world of animation has yet to offer. Good luck!

Programs on the CD

The Chapter 14 directory on the CD−ROM includes two projects.

Transformations. This project demonstrates using texture transformations to animate the water
shown in the scene. It is located at \BookCode\Chap14\Transformations.

♦

TextureAnim. This source file uses the texture filter class developed in this chapter to demonstrate
how to draw scenes using animated textures. It is located at \BookCode\Chap14\TextureAnim.

♦

 Wrapping Up Advanced Animation

332

Part Six: Appendixes
Appendix A: Web and Book References
Appendix B: What's on the CD

333

Appendix A: Web and Book References
We live in a time in which information is plentiful and easily accessible−it's only a matter of knowing where
to look. In this appendix I have compiled a list of Web sites and books that you might find useful in your
quest for knowledge on using advanced animation in your own projects.

Web Sites to Check Out

Knowing where to look for help and information on the Net is difficult enough; with thousands of Web pages
to weed through, your quest for knowledge can seem like an unyielding adventure. Where are programmers to
turn when they need help or information to get their latest projects rolling? Well, here's a short list of Web
sites that I find useful. Hopefully the information from these sites will help you as much as it has helped me.

The Collective Mind

http://www.theCollectiveMind.net

I begin the list with my own Web site, where you can check out information about my books, download the
newest code updates, read game−related articles, download demos, and basically find stuff that I'm involved
in. If you ever need help on one of my books or projects, stop by my Web site and see if there's an update, or
feel free to drop me an e−mail.

GameDev.net

http://www.GameDev.net

This is THE place to go for all your game development needs. Hook up with other developers on the message
boards, read up on articles, enter coding contests, and download hundreds of home−brew games and demos
created by GameDev's devoted followers. Aside from my own Web site, this is the best place to find me,
hanging out in the message boards.

Premier Press Books

http://www.PremierPressBooks.com

Here you can check out Premier's lineup of cool game−related programming books, as well as upcoming titles
that might catch your fancy. Aside from game programming, Premier offers a full line of technical books that
extends into many computer−related fields, such as graphics modeling, digital imaging, network and security,
and much, much more.

Microsoft

http://www.microsoft.com

If you're reading this book, chances are you already know about Microsoft's Web site. Specifically,
Microsoft's DirectX and Agent Web pages are where you want to be. With articles, demos, and downloads
galore, you'll want to make sure you keep an eye on this site and see what's new.

Caligari

334

http://www.caligari.com

Low cost and high quality is the name of the game, and Caligari knows just how to play. Caligari is the
company behind the easy−to−use trueSpace 3D modeling package. This Web site is a definite must−visit for
those of you who are on a budget and have need for great modeling software. With features such as facial
animation (as seen in this book), non−linear editing, and texture−baking, as well as the ability to export right
to the .X file format, you should give Caligari's Web site and modeling packages a look.

NVIDIA

http://www.nvidia.com

Creators of the GeForce series of video cards, NVIDIA maintains a long list of DirectX and OpenGL
developer−related documents and demos worth checking out. Check this Web site for advanced information
on vertex shaders, pixel shaders, and NVIDIA's own high−level shader language, Cg.

ATI Technologies, Inc.

http://www.atitech.com

Second to none, ATI is the company behind the Radeon series of video cards. Like NVIDIA's Web site, ATI
maintains a long list of documents, utilities, and demos aimed at DirectX and OpenGL developers. Check out
this Web site for information on shader development using ATI's own RenderMonkey software package.

Curious Labs, Inc.

http://www.curiouslabs.com

Mentioned briefly in this book, Curious Labs' Web site is the home of the awesome Poser 3D character
modeling and animation software package. Allowing you to freely pose, animate, render, and export 3D
characters to popular file formats, Curious Labs' Poser software package is something to seriously consider,
and this is definitely a Web site you'll want to visit.

Polycount

http://www.polycount.com

Polycount is the premier source for 3D character models you can plug into your favorite games such as Quake
II and III, Half−Life, and Grand Theft Auto 3. If you need some models for your game, this is definitely the
place to find them, as well as being a terrific site to find artists for your next project!

Flipcode

http://www.flipcode.com

Another infamous programming Web site. Here you can read up on the latest happenings in the programming
field, message other users, and even check out the cool Image of the Day gallery. While you're there, check
out Kurt's links to some interesting science discoveries and innovations!

Chris Hecker and Jeff Lander Physics

 Appendix A: Web and Book References

335

Chris Hecker: http://www.d6.com/users/checker

Jeff Lander: http://www.darwin3d.com

The goal of this book is to help you produce some awesome animation effects as quickly as possible. I'll admit
that at times I was a little lax on the physics, but the purpose was to provide you with only what you need to
get the work done. For further reading, I recommend picking up any one of Chris Hecker or Jeff Lander's
articles or demos on using physics in games.

Recommended Reading

Behind every great programmer is his or her collection of books. I am no different, so I offer you a glimpse at
those books that I find helpful in relation to the book you are now holding in your hands.

Programming Role Playing Games with DirectX by Jim Adams (Premier Press, 2002)

ISBN: 1−931841−09−8

Another shameless plug for myself! Actually, my role−playing game programming book is a great resource
for those who want to make a complete game from scratch. Not just limited to role−playing games, my book
shows key components that you can use in any game engine, such as an octree graphics engine and character
and inventory control. It also shows you how to build a complete core of game−programming libraries to ease
the development of your game projects.

Focus On 3D Models by Evan Pipho (Premier Press, 2002)

ISBN: 1−59200−033−9

The butter to my bread, the Sonny to my Cher, this book is your guide to the various 3D model formats being
used in the market's hottest games. A great companion book for those readers who want to use more than the
.X, .MD2, and .MS3D file formats I outlined in this book.

Real−Time Rendering Tricks and Techniques in DirectX by Kelly Dempski (Premier Press, 2002)

ISBN: 1−931841−27−6

Kelly Dempski shows you how to get started using some advanced rendering methods such as vertex shaders
to achieve some cool effects. This book is handy if you're getting started in vertex and pixel shaders, and it
also explores other game−enhancing topics.

Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks by Wolfgang F. Engel (Wordware, 2002)

ISBN: 1−556220−41−3

This is another great book packed with pixel shader and vertex shader goodness that works hand−in−hand
with this book. Learn how to improve your graphics by using effects such as bubble rendering and rippling
water. Using these techniques with what you've read in this book, you're guaranteed to create some awesome
special animation effects!

 Recommended Reading

336

Appendix B: What's on the CD

Overview

You've read the book; now it's time to check out the software! This book's CD−ROM contains the source
code to every one of those cool demos mentioned in each chapter, as well as a handful of useful utilities and
applications that I used to create the effects mentioned in this book.

If you haven't already done so, I recommend tearing open that CD−ROM sleeve and plopping the CD in your
computer's drive. If Autorun is enabled, you should be greeted with an interface that will guide you through
the CD−ROM's contents. If Autorun is disabled, you can still run the interface by following these steps:

Insert the CD−ROM into your computer's CD drive.1.
Right−click on My Computer and select Open from the menu.2.
Click on your CD drive in the list of drives.3.
In the list of the CD's contents, double−click on the Start_Here.html file. After reading the licensing
agreement, click I Agree if you accept the terms (or click I Disagree to quit the interface).

4.

If you accepted the licensing terms and clicked on the I Agree button, you'll be presented with the Premier
Press user interface. From there you can browse the contents of the CD−ROM or select from a number of
applications to install. Following is a list of the applications you will find on the CD−ROM.

DirectX 9.0 SDK

The main application is Microsoft's DirectX 9 SDK. Used in all the projects in this book, the SDK is the first
thing you should install. For help installing the DirectX 9.0 SDK, consult Chapter 1, "Preparing for the Book."

GoldWave Demo

Each of the sounds you find in this book's demos was created with GoldWave, a lightweight sound−editing
tool. Created by GoldWave Inc., this handy little program allows you to work on multiple sounds at the same
time. Recording, playing back, and altering sounds was never so easy as with this program. With GoldWave,
you can

Edit sound files up to 1 GB in size♦
Use real−time graphs to view amplitude, spectrum, and so on♦
Zip around using fast−forward and rewind features♦
Save or load to and from multiple sound formats, such as .WAV, .AU, .MP3, .OGG, .AIFF, .VOX,
.MAT, .SND, and .VOC

♦

Use drag−and−drop cue−points to mark specific areas of your sounds♦

Paint Shop Pro Trial Version

Image editing on a budget. With Paint Shop Pro, you can edit still images just like the pros, without having to
pay as much! This 30−day trial version of Jasc's image−editing program is top−notch, allowing you to open
and save multiple image formats, work with multiple layers, use extensive plug−ins, and retouch images.

337

TrueSpace Demo

Want powerful 3D editing capabilities at a great price? Then Caligari's trueSpace 3D modeling program is
right up your alley. This demo program lets you explore the various aspects of Caligari's newest version of
trueSpace. With advanced features such as a facial animation system, hybrid radiosity rendering, and
non−linear time editing, this program is something you'll certainly want to check out!

Microsoft Agent and LISET

Microsoft's Agent package contains some extremely useful language development tools to help you create
text−to−speech, speech recognition, and lip−synced animation applications. With the LISET program
distributed with Agent, you can create your own lip−syncing animation for your game projects, as shown in
this book.

 TrueSpace Demo

338

List of Figures

Chapter 1: Preparing for the Book

Figure 1.1: The DirectX 9 SDK introduction screen gives you a few options−most importantly the installation
option for the DirectX 9 SDK.
Figure 1.2: Clicking on Install DirectX 9.0 SDK will eventually lead you to the InstallShield Wizard, where
you can decide which of the SDK components to install.
Figure 1.3: The DirectX system properties give you a multitude of options. In this case, the Direct3D tab has
been selected, and you can see that the debug libraries are in use at the highest debug output level.
Figure 1.4: The Options dialog box displays a list of directories that Visual C/C++ searches for header and
library files.
Figure 1.5: Selecting VC++ Directories will bring up the directory list on the right side of the dialog box in
Visual Studio .NET.
Figure 1.6: The Project Settings Link properties allow you to specify exactly which library files to link to your
application.
Figure 1.7: Visual Studio .NET lists all files and projects in use in the Solution Explorer.
Figure 1.8: The project's Property Pages dialog box is where you are allowed to modify your linker settings,
among other things.
Figure 1.9: The Project Settings dialog box allows you to add specific compiler commands in the Project
Options text box, as well as change a multitude of other compiler options.

Chapter 2: Timing in Animation and Movement

Figure 2.1: Key frames track the orientation of the cube. Each key frame is spaced 400 milliseconds from the
next, and interpolation is used to calculate the in−between orientations.
Figure 2.2: You can find a point on the path by using a scalar value that represents the percentage of the total
length of the path, with 0 being the start and 1 being the end of the path.
Figure 2.3: A cubic Bezier curve uses four points to determine the direction of the path as it moves from
beginning to end.
Figure 2.4: You define a cubic Bezier curve by connecting the four points and dividing the lines connecting
the points by a set amount. Each division is numbered for later reference.
Figure 2.5: You can see a cubic Bezier curve by highlighting the newly connected lines created by joining the
numbered divisions.
Figure 2.6: You can create a complex route using a series of straight and curved paths. As you can see here,
paths do not need to be connected to complete a route.
Figure 2.7: A combination of two straight paths and a curved path form a complex route.
Figure 2.8: Just like a movie, the camera follows a predetermined path, showing the pre−calculated
animation from different angles. The angles are determined by setting a path for both the camera and the
camera's target location (where the camera is looking).
Figure 2.9: Key−framed animation in action! The robot rotates and moves according to the transformation
key frames set in the demo source.
Figure 2.10: The TimedMovement demo shows you how to move a series of robots up and down straight and
curved paths over time.
Figure 2.11: Take command of your robot by laying down complex routes in which to travel around your
worlds. Here, the robot demonstrates the use of straight and curved paths.
Figure 2.12: The cinematic camera demo adds a moving camera to the Route demo.

339

Chapter 3: Using the .X File Format

Figure 3.1: The guidgen.exe's Create GUID dialog box allows you to create a unique identification number in
various formats.
Figure 3.2: The ParseFrame demo's dialog box contains two controls−a button you click to load an .X file
and a list box that displays the frame hierarchy.
Figure 3.3: After locating and opening an .X file, you are shown some vital data on each mesh contained in
that file.

Chapter 4: Working with Skeletal Animation

Figure 4.1: The skeletal structure on the left is represented by the hierarchy on the right. Notice the usage of
the D3DXFRAME pointers to form a linked list of sibling and child frames.
Figure 4.2: The simple skeletal structure on the left uses the bone transformations on the right to orient the
frames.
Figure 4.3: When connected to a skeletal structure, a mesh is mapped in such a way that each vertex is
connected to the bones.
Figure 4.4: Vertices only rotate around their source mesh's origin. Before you apply the bone transformation,
you must build a transformation that orients the vertices around the mesh's origin.
Figure 4.5: Meet Tiny, Microsoft's woman of skeletal meshes. She is constructed from a single mesh and an
underlying hierarchy of invisible bones.

Chapter 5: Using Key−Framed Skeletal Animation

Figure 5.1: A bone's animation over a period of time; a key marks the extent of each movement
Figure 5.2: The MeshConv dialog box contains two buttons you can click on to convert .MS3D and .MD2 files
to .X.
Figure 5.3: Tiny on the move in the SkeletalAnim demo! This demo shows you how to use skeletal−based
animated meshes.

Chapter 6: Blending Skeletal Animations

Figure 6.1: Even though the two animations shown on the left are separately defined, you can combine them
into one unique animation, as shown on the right.
Figure 6.2: The skeleton's default pose (on the left) has an associated set of transformation matrices; when
combined with animation set transformation matrices, these will create new poses.
Figure 6.3: Explore your newfound blended skeletal animation techniques by choosing which animations to
blend in real time.

Chapter 7: Implementing Rag Doll Animation

Figure 7.1: You can split a sample character, complete with a skeletal structure and skinned mesh, into a
series of individual components.

 Chapter 3: Using the .X File Format

340

Figure 7.2: The sample character's bones and vertices have been replaced by bounding boxes, with each box
encompassing the area occupied by the bones and vertices.
Figure 7.3: Each bounding box surrounds a bone's vertices and bone−to−bone connection points.
Figure 7.4: A series of springs helps you bring the separated boxes back into shape.
Figure 7.5: A box (which represents a rigid body) is defined by positioning eight points around its origin. The
positions of these points are determined by halving the body's width, height, and depth.
Figure 7.6: The vector component (v = x, y, z) of a quaternion defines the rotational axis.
Figure 7.7: The force being applied affects not only linear movement, but also angular motion.
Figure 7.8: The force vector and the vector from the center to the point of application are used to compute a
cross product that designates your axis of rotation.
Figure 7.9: Springs connect a number of rigid bodies at the bone joint positions.
Figure 7.10: Each bone is defined by the size of its bounding box and the point where the bone connects to its
parent bone.
Figure 7.11: You create a spring vector by joining the joint offset point and the parent offset point. Both
points are specified in world coordinates.
Figure 7.12: A wooden dummy meets a gruesome death, flying through the air and bouncing off a bunch of
floating spheres.

Chapter 8: Working with Morphing Animation

Figure 8.1: During the morphing process, the vertices in the source mesh gradually move to match the
positions of the target mesh. Each vertex shares the same index number in both the source and target meshes.
Figure 8.2: Morphing gone bad−the vertex order differs between the source and target meshes, producing
some odd results.
Figure 8.3: Starting at the source mesh coordinates (and a scalar value of 0), a vertex gradually moves
toward the target mesh coordinates as the scalar value increases.
Figure 8.4: The animated dolphin jumps over morphing sea waves! Both objects (the sea and the dolphin) use
morphing animation techniques.

Chapter 9: Using Key−Framed Morphing Animation

Figure 9.1: Morphing animation uses a series of source and target morphing meshes spaced over time (using
animation keys) to create a continuous morphing animation.
Figure 9.2: The MeshConv dialog box contains two buttons you can click to convert .MS3D and .MD2 files to
.X files.
Figure 9.3: An animator's dream comes true via a morphing music box ballerina animation!

Chapter 10: Blending Morphing Animations

Figure 10.1: Using the same mesh, you move (morph) various vertices to create two unique animation
sequences.
Figure 10.2: You can combine two animations to create a single blended mesh.
Figure 10.3: A prelude to facial animation. Watch as multiple meshes are blended at various levels to
produce a simplistic facial animation.

 Chapter 8: Working with Morphing Animation

341

Chapter 11: Morphing Facial Animation

Figure 11.1: You can blend the base mesh on the left with multiple meshes to create unique animations. Here,
a smiling expression is blended with a blinking expression.
Figure 11.2: Instead of using two target morph meshes, you can combine the two to use as the target mesh,
thus saving time and space.
Figure 11.3: The Chris (low poly) facial mesh from trueSpace will serve perfectly as the base mesh. Per
Caligari's user license, feel free to use the Chris (low poly) model in your own applications
Figure 11.4: Facial Animator's Expressions list gives you eight expressions from which to choose.
Figure 11.5: Facial Animator's Gestures list includes 14 more expressions you can apply to your mesh.
Figure 11.6: Michael B. Comet's demonstration set of phonemes should provide you with a guide to creating
your own facial meshes.
Figure 11.7: A wave form of me saying "Hello and welcome!"
Figure 11.8: The sound wave has been sectioned into words and silence.
Figure 11.9: Microsoft's Linguistic Information Sound Editing Tool allows you to load. WAV files and mark
portions of the sound waves with phoneme markers.
Figure 11.10: The word "test" consists of four phonemes (t, eh, s, and t), which are overlaid on top of the
sound wave. Notice that the silence at the end of the word is also marked.
Figure 11.11: The ConvLWV program has six controls at your disposal, the most important being the Convert
.LWV to .X button.
Figure 11.12: Double−click on the IPA Unicode value you want to remap in the list box. The number on the
left is the Unicode value, and the number on the right is the remapped value.
Figure 11.13: The Modify Conversion Value dialog box allows you to remap an IPA Unicode value to another
number. Enter the new value to use and click OK.
Figure 11.14: Get a hands−on soccer report from a fully lip−synced game character in the FacialAnim
demo!

Chapter 12: Using Particles in Animation

Figure 12.1: A blast from a spell creates a shower of particles in Gas Powered Games' Dungeon Siege.
Figure 12.2: Two triangles are sandwiched together to form a quad polygon. Looking down from above, you
can see that billboarding ensures that the polygons are always facing the viewer.
Figure 12.3: The billboarded quad polygon on the left initially points at the negative z−axis, only to be
rotated when drawn so that it faces the viewer.
Figure 12.4: A particle that is 10 units in size extends 5 units from the origin in both the x and y axes.
Figure 12.5: The vertex shader particle is composed of four vertices that are defined by a central point, the
offset from the center, the diffuse color, and texture coordinates.
Figure 12.6: The view transformation tells you which direction the view is facing, as well as which way is up
and which is right from its orientation.
Figure 12.7: Each column in the view transformation contains a directional vector you can use to position
your particle's vertices.
Figure 12.8: An Apache buzzes the heads of some tree−loving bystanders.

Chapter 13: Simulating Cloth and Soft Body Mesh Animation

Figure 13.1: As external forces are applied to the cloth's points, the springs push and pull those points back

 Chapter 11: Morphing Facial Animation

342

into shape, thus maintaining the overall shape of the cloth's mesh.
Figure 13.2: The angle between the face's normal and the wind vector is used to calculate the amount of force
to apply to each point.
Figure 13.3: The spring on the left is at rest (it has obtained equilibrium), whereas the spring on right has
been stretched. The force applied by the spring is calculated from the extension of the spring and a spring
constant value.
Figure 13.4: A set of springs was created using the polygon edges of the cloth mesh shown.
Figure 13.5: The cloth mesh now has a series of interconnected springs spread across its faces.
Figure 13.6: A point has collided with a sphere if it's closer than the sphere's radius or if it is located on the
back side of a plane.
Figure 13.7: A point collides with a sphere if the distance from the sphere's center to the point is less than the
sphere's radius.
Figure 13.8: Our superhero flies through the air, his cape fluttering about him.
Figure 13.9: Karate class is in session! A soft body mesh gives extra bounce to this master's attacks.

Chapter 14: Using Animated Textures

Figure 14.1: A media file might pass through various filters to let viewers see and hear its contents.
Figure 14.2: The source filter uses a single interface to represent a collage of filter objects.
Figure 14.3: A sample set of four filters is used to grab data from the media file, decode it, and finally render
it to the video display
Figure 14.4: A cool waterfall gushes from unseen sources over a mountainside in the TextureAnim and
Transformations demos.

 Chapter 14: Using Animated Textures

343

List of Tables

Chapter 3: Using the .X File Format

Table 3.1: .X Template Data Types
Table 3.2: DirectX .X Standard Templates
Table 3.3: D3DXLoadMeshFromX Option Flags

Chapter 10: Blending Morphing Animations

Table 10.1: Blended Morph Animation Vertex Register Assignments

Chapter 11: Morphing Facial Animation

Table 11.1: IPA Phoneme Unicode Groupings
Table 11.2: American English Phonemes

344

List of Sidebars

Chapter 1: Preparing for the Book

Programs on the CD

Chapter 2: Timing in Animation and Movement

Programs on the CD

Chapter 3: Using the .X File Format

Programs on the CD

Chapter 4: Working with Skeletal Animation

Programs on the CD

Chapter 5: Using Key−Framed Skeletal Animation

Programs on the CD

Chapter 6: Blending Skeletal Animations

Programs on the CD

Chapter 7: Implementing Rag Doll Animation

Programs on the CD

Chapter 8: Working with Morphing Animation

Programs on the CD

345

Chapter 9: Using Key−Framed Morphing Animation

Programs on the CD

Chapter 10: Blending Morphing Animations

Programs on the CD

Chapter 11: Morphing Facial Animation

Programs on the CD

Chapter 12: Using Particles in Animation

Programs on the CD

Chapter 13: Simulating Cloth and Soft Body Mesh Animation

Programs on the CD

Chapter 14: Using Animated Textures

Programs on the CD

 Chapter 9: Using Key−Framed Morphing Animation

346

	 Advanced Animation with DirectX
	Table of Contents
	Introduction
	 Part One: Preparations
	 Chapter 1: Preparing for the Book
	 Overview
	 Installing the DirectX SDK
	 Choosing the Debug or Retail Libraries
	 Configuring Your Compiler
	 Setting the DirectX SDK Directories
	 Linking to the DirectX Libraries
	 Setting the Default char State

	 Using the Book's Helper Code
	 Using the Helper Objects
	 Checking Out the Helper Functions

	 Moving On with the Book

	 Part Two: Animation Basics
	 Chapter 2: Timing in Animation and Movement
	 Using Time-Based Motion
	 Reading Time in Windows
	 Animating with Time
	 Moving with Time
	 Moving along Paths
	 Creating an .X Path Parser
	 Creating In-Game Cinematic Sequences

	 Check Out the Demos
	 TimedAnim
	 TimedMovement
	 Route
	 Cinematic

	 Chapter 3: Using the .X File Format
	 Working with .X Templates and Data Objects
	 Defining Templates
	 Creating Data Objects from Templates
	 Embedding Data Objects and Template Restrictions
	 Working with the DirectX Standard Templates

	 Accessing .X Files
	 Registering Custom and Standard Templates
	 Opening an .X File
	 Enumerating Data Objects
	 Retrieving Data from a Data Object
	 Constructing an .X Parser Class

	 Loading Meshes from .X
	 Loading Meshes Using D3DX
	 Loading Meshes with Your .X Parser
	 Loading Skinned Meshes

	 Loading Frame Hierarchies from .X
	 Loading Animations from .X
	 Loading Custom Data from .X
	 Check Out the Demos
	 ParseFrame
	 ParseMesh

	 Part Three: Skeletal Animation
	 Chapter 4: Working with Skeletal Animation
	 Overview
	 Taking on Skeletal Animation
	 Using Skeletal Structures and Bone Hierarchies
	 Loading Hierarchies from .X
	 Modifying Bone Orientation
	 Updating the Hierarchy

	 Working with Skinned Meshes
	 Loading Skinned Meshes from .X
	 Creating a Secondary Mesh Container
	 Mapping Bones to Frames
	 Manipulating the Skinned Mesh
	 Updating the Skinned Mesh
	 Rendering the Skinned Mesh

	 Check Out the Demo

	 Chapter 5: Using Key-Framed Skeletal Animation
	 Using Key-Framed Skeletal Animation Sets
	 Using Keys in Animation
	 Working with the Four Key Types
	 Reading Animation Data from .X Files
	 Matching Animations to Bones
	 Updating Animations
	 Obtaining Skeletal Mesh Data from Alternative Sources
	 Check Out the Demos

	 Chapter 6: Blending Skeletal Animations
	 Overview
	 Blending Skeletal Animations
	 Combining Transformations
	 Enhancing Skeletal Animation Objects
	 Check Out the Demo

	 Chapter 7: Implementing Rag Doll Animation
	 Overview
	 Creating Dolls from Characters
	 Working with Rigid-Body Physics
	 Creating a Rigid Body
	 Positioning and Orienting Your Rigid Bodies
	 Processing the Motion of Rigid Bodies
	 Using Forces to Create Motion
	 Connecting Rigid Bodies with Springs
	 Providing Collision Detection and Response

	 Creating a Rag Doll Animation System
	 Defining the Rigid Body State
	 Containing Bones
	 Creating the Rag Doll Controller Class
	 Building Bone Data
	 Computing the Bone Bounding Box
	 Setting the Forces
	 Integrating the Bones
	 Processing Collisions
	 Enforcing Bone-to-Bone Connections
	 Rebuilding the Hierarchy

	 Check Out the Demo

	 Part Four: Morphing Animation
	 Chapter 8: Working with Morphing Animation
	 Morphing in Action
	 Defining Source and Target Meshes
	 Morphing the Meshes

	 Building a Morphed Mesh through Manipulation
	 Drawing Morphed Meshes
	 Dissecting the Subsets
	 Creating a Morphing Vertex Shader

	 Check Out the Demos

	 Chapter 9: Using Key-Framed Morphing Animation
	 Using Morphing Animation Sets
	 Creating .X Morphing Animation Templates
	 Loading Morphing Animation Data
	 Rendering the Morphing Mesh
	 Obtaining Morphing Mesh Data from Alternative Sources
	 Check Out the Demos

	 Chapter 10: Blending Morphing Animations
	 Blending Morphing Animations
	 Using a Base Mesh in Blended Morphing Animation
	 Calculating the Differences
	 Blending the Differences
	 Building a Blending Morph Vertex Shader
	 Using the Blending Morph Vertex Shader

	 Check Out the Demos

	 Chapter 11: Morphing Facial Animation
	 The Basics of Facial Animation
	 Blended Morphing Back in Action
	 Using Phonemes for Speech

	 Building Facial Meshes
	 Creating the Base Mesh
	 Creating Facial Expressions
	 Creating Viseme Meshes

	 Creating Animation Sequences
	 Automating Basic Features
	 Building Phoneme Sequences
	 Using an .X Parser for Sequences

	 Playing Facial Sequences with Sound
	 Using DirectShow for Sound
	 Synchronizing Animation with Sound
	 Looping Sound Playback

	 Check Out the Demo

	 Part Five: Miscellaneous Animation
	 Chapter 12: Using Particles in Animation
	 Working with Particles
	 Starting with the Basics
	 Drawing Particles with Quad Polygons
	 Working with Point Sprites
	 Improving Particle Rendering with Vertex Shaders

	 Bringing Your Particles to Life
	 Moving Particles Using Velocity
	 Using Intelligence in Processing
	 Creating and Destroying Particles
	 Drawing Your Particles

	 Controlling Particles with Class
	 Using the Emitter in Your Project
	 Creating Particle Engines in Vertex Shaders
	 Check Out the Demos

	 Chapter 13: Simulating Cloth and Soft Body Mesh Animation
	 Simulating Cloth in Your Projects
	 Defining Cloth Points and Springs
	 Obtaining Cloth Data from Meshes
	 Applying Force to Create Motion
	 Rebuilding and Rendering the Cloth Mesh
	 Restoring the Original Mesh
	 Adding More Springs

	 Loading Mass and Spring Data from .X
	 Building an .X Parser for Cloth Data

	 Working with Collision Detection and Response
	 Defining Collision Objects
	 Detecting and Responding to Collisions

	 Creating a Cloth Mesh Class
	 Using Soft Body Meshes
	 Reverting a Soft Body Mesh
	 Creating a Soft Body Mesh Class

	 Check Out the Demos

	 Chapter 14: Using Animated Textures
	 Using Texture Animation in Your Project
	 Working with Texture Transformations
	 Creating a Texture Transformation
	 Setting Texture Transformation Matrices
	 Using Texture Transformations in Your Project

	 Using Video Media Files for Textures
	 Importing Video with DirectShow
	 Creating a Custom Filter
	 Working with the Custom Filter
	 Creating an Animated Texture Manager
	 Applying Animated Media Textures

	 Check Out the Demos
	 Wrapping Up Advanced Animation

	 Part Six: Appendixes
	 Appendix A: Web and Book References
	 Web Sites to Check Out
	 Recommended Reading

	 Appendix B: What's on the CD
	 Overview
	 DirectX 9.0 SDK
	 GoldWave Demo
	 Paint Shop Pro Trial Version
	 TrueSpace Demo
	 Microsoft Agent and LISET

	Lists
	List of Figures
	 Chapter 1: Preparing for the Book
	 Chapter 2: Timing in Animation and Movement
	 Chapter 3: Using the .X File Format
	 Chapter 4: Working with Skeletal Animation
	 Chapter 5: Using Key-Framed Skeletal Animation
	 Chapter 6: Blending Skeletal Animations
	 Chapter 7: Implementing Rag Doll Animation
	 Chapter 8: Working with Morphing Animation
	 Chapter 9: Using Key-Framed Morphing Animation
	 Chapter 10: Blending Morphing Animations
	 Chapter 11: Morphing Facial Animation
	 Chapter 12: Using Particles in Animation
	 Chapter 13: Simulating Cloth and Soft Body Mesh Animation
	 Chapter 14: Using Animated Textures

	List of Tables
	 Chapter 3: Using the .X File Format
	 Chapter 10: Blending Morphing Animations
	 Chapter 11: Morphing Facial Animation

	List of Sidebars
	 Chapter 1: Preparing for the Book
	 Chapter 2: Timing in Animation and Movement
	 Chapter 3: Using the .X File Format
	 Chapter 4: Working with Skeletal Animation
	 Chapter 5: Using Key-Framed Skeletal Animation
	 Chapter 6: Blending Skeletal Animations
	 Chapter 7: Implementing Rag Doll Animation
	 Chapter 8: Working with Morphing Animation
	 Chapter 9: Using Key-Framed Morphing Animation
	 Chapter 10: Blending Morphing Animations
	 Chapter 11: Morphing Facial Animation
	 Chapter 12: Using Particles in Animation
	 Chapter 13: Simulating Cloth and Soft Body Mesh Animation
	 Chapter 14: Using Animated Textures

