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slerp, squad
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real numbers, n-tuples of real numbers, nonnegative real numbers
vector, vector transpose, zero vector

matrix, matrix inverse, matrix transpose, matrix adjoint, identity matrix
matrix determinant, matrix trace

3 x 3 diagonal matrix with diagonal terms listed

short notation for homogeneous matrix with last row (0, 0, 0, 1)

a 3 x 3 matrix whose columns are the specified 3 x 1 vectors
skew-symmetric matrix that represents cross product on the left by w
spectral norm of matrix, norm of matrix

dot product of vectors, cross product of vectors

first-order partial derivative of F with respect to the i component of x
gradient vector of function F, the n-tuple of first-order partial derivatives
represents some vector orthogonal to X

summation operator, product operator, integral operator

set inclusion operators
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Bernstein polynomial

combinations of n items choosing i at a time

resultant of two polynomials by eliminating variable x

function whose partial derivatives through order k are continuous
quaternion, quaternion inverse, quaternion conjugate, quaternion to power
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norm of quaternion, selection of real part of quaternion

interpolation functions for quaternions

indicates quantity A is defined by quantity B
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PREFACE

This book is the culmination of many years of reading and participating in the
Internet newsgroups on computer graphics and computer games, most notably
comp.graphics.algorithms and the hierarchy of groups comp.games.development. The
focus of my participation has been to provide free source code that solves common
problems that arise in computer graphics, image analysis, and numerical methods,
available through Magic Software at www.magic-software.com. The book is also a tech-
nical summary of my experiences in helping to produce a commercial game engine,
NetImmerse, developed by Numerical Design Limited (NDL), www.ndl.com.

The focus of this book is on understanding that a game engine, or more generally
a real-time computer graphics engine, is a complex entity that consists of more than
simply a rendering layer that draws triangles. It is also more than just a collection
of unorganized techniques. A game engine must deal with issues of scene graph
management as a front end that efficiently provides the input to the back end renderer,
whether it be a software- or hardware-based renderer. The engine must also provide
the ability to process complex and moving objects in a physically realistic way. The
engine must support collision detection, curved surfaces as well as polygonal models,
animation of characters, geometric level of detail, terrain management, and spatial
sorting. Moreover, the engine is large enough that the principles of object-oriented
design must be practiced with great care.

The chapters of this book tend to be fairly mathematical and geometrical. The
intended audience includes anyone who is interested in becoming involved in the de-
velopment of a real-time computer graphics engine. It is assumed that the reader’s
background includes a basic understanding of vector and matrix algebra, linear alge-
bra, multivariate calculus, and data structures.

Many people have directly or indirectly contributed to the book. Most notable are
the engineers at NDL: Lars Bishop, Jon McAllister, Chad Robertson, Rob Phillips,
Tim Preston, Scott Sherman, Ed Holzworth, and Andy Jones. Lars and I are the
primary architects for Netlmmerse. He is the renderer expert, especially with regards
to Direct3D, and has been instrumental in helping me to understand many of the
issues for rendering. We also have had many productive design sessions about how best
to incorporate the ideas for scene graph management to properly feed the renderers
and to properly manage renderer state. Chad and Rob are the animation experts.
They did a lot of legwork on understanding how various modeling packages animate
characters and deciding how NetImmerse can best support the animation. Chad also
contributed many good ideas on how to structure the collision detection system to
work well with the hierarchical scene graph system. Jon is the expert on continuous
level of detail and has implemented some of the algorithms mentioned in this book
for NetImmerse. The implementations go well beyond what is discussed here and
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addressed practical concerns that some of the research papers did not cover. Jon also
worked with Chad and Rob on the integration of continuous level of detail with the
skin-and-bones system, a nontrivial task. Tim was helpful in reading Chapter 8 and
attempting to implement the top-down algorithm as I originally wrote it. He pointed
out what I had overlooked, leading to some fine discussions about how to properly
tessellate the surfaces without paying for a large memory overhead. The algorithm
as described in this book reflects these discussions. Finally, Bill Baxter was a summer
intern from the University of North Carolina, but in his time at NDL was able to
investigate the topic of inverse kinematics and implement that system in Netimmerse.
Discussions with him led to my understanding of how inverse kinematics should work
in the game engine and is reflected in how [ wrote the section on that topic.

I want to thank the reviewers for the book: Ian Ashdown (byHeart Consul-
tants Limited), John Laird (University of Michigan), Jeff Lander (Darwin 3D), Franz
Lanzinger (Actual Entertainment), Ming Lin (University of North Carolina), Peter
Lipson (Mindscape), Tomas Méller (Chalmers), Andrea Pessino (Blizzard Entertain-
ment), and Steve Woodcock (Raytheon). They spent a quite large amount of time
reading over the two drafts of the book and provided many helpful comments and
criticisms. I also want to thank my editor, Tim Cox, and his assistants, Brenda Mod-
liszewski and Stacie Pierce, for the time they have put into helping the book come to
completion.



CHAPTER

INTRODUCTION

I have no fault to find with those who teach geometry. That science is the only one which
has not produced sects; it is founded on analysis and on synthesis and on the calculus;

it does not occupy itself with probable truth; moreover it has the same method in

every country.

Frederick the Great

1.1 A BRIEF MOTIVATION

Computer graphics has been a popular area of computer science for the last few
decades. Much of the research has been focused on obtaining physical realism in
rendered images, but generating realistic images comes at a price. The algorithms
tend to be computationally expensive and must be implemented on high-end, special-
purpose graphics hardware affordable only by universities through research funding
or by companies whose focus is computer graphics. Although computer games have
also been popular for decades, for most of that time the personal computers available
to the general public have not been powertul enough to produce realistic images.
The game designers and programmers have had to be creative to produce immersive
environments that draw the attention of the player to the details of game play and yet
do not detract from the game by the low-quality graphics required for running on a
low-end machine.

Chapter opening image is from Prince of Persia. All Prince of Persia images Copyright © 1999, 2000 Mattel
Interactive and Jordan Mechner. All Rights Reserved. Prince of Persia is a registered trademark of Mattel
Interactive.
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Times are changing. As computer technology has improved, the demand for more
realistic computer games that support real-time interaction has increased. Moreover,
the group of computer gamers itself has evolved from a small number of, shall we say,
computer geeks to a very large segment of the population. One of the most popular,
successful, and best-selling games was Myst, created and produced by Cyan Produc-
tions and published through Broderbund. This game and others like it showed that
an entirely new market was possible—a market that included the general consumer,
not just computer-savvy people. The increased demand for games and the potential
size of the market has created an impetus for increased improvement in the computer
technology—a not-so-vicious circle.

One result of the increased demand has been the advent of hardware-accelerated
graphics cards that off-load a lot of the work a CPU normally does for software
rendering. The initial cards were add-ons that handled only the 3D acceleration
and ran only in full-screen mode. The 2D graphics cards were still used for the
standard graphics display interface (GDI) calls. Later-generation accelerators have
been designed to handle both 2D GDI and 3D acceleration within a window that is
not full screen. Since triangle rasterization has been the major bottleneck in software
rendering, the hardware-accelerated cards have acted as fast triangle rasterizers. As of
the time of this writing, the next-generation hardware cards are being designed to off-
load even more work. In particular, the cards will perform point transformations and
lighting calculations in hardware.

Another result of the increased demand for games has been the evolution of the
CPUs themselves to include support for operations that typically arise in game appli-
cations: fast division, fast inverse square roots (for normalizing vectors), and paral-
lelism to help with transforming points and computing dot products. The possibilities
for the evolutionary paths are endless. Many companies are now exploring new ways
to use the 3D technology in applications other than games, for example, in Web com-
merce and in plug-ins for business applications.

And yet one more result of the increased demand is that a lot of people now want
to write computer games. The Internet newsgroups related to computer graphics,
computer games, and rendering application programmer interfaces (APls) are filled
with questions from eager people wanting to know how to program for games. At its
highest level, developing a computer game consists of a number of factors. First and
foremost (at least in my opinion) is having a good story line and good game play—
without this, everything else is irrelevant. Creation of the story line and deciding
what the game play should be can be categorized as game design. Once mapped out,
artists must build the game content, typically through modeling packages. Interaction
with the content during run time is controlled through game artificial intelligence,
more commonly called game Al Finally, programmers must create the application to
load content when needed, integrate the Al to support the story line and game play,
and build the gane engine that manages the data in the world and renders it on the
computer screen. The last topic is what this book is about—building a sophisticated
real-time game engine. Although games certainly benefit from real-time computer
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graphics, the ideas in this book are equally applicable to any other area with three-
dimensional data, such as scientific visualization, computer-aided design, and medical
image analysis.

1.2 A SUMMARY OF THE CHAPTERS

The classical view of what a computer graphics engine does is the rendering of triangles
(or polygons). Certainly this is a necessary component, but it is only half the story.
Viewed as a black box, a renderer is a consumer-producer. It consumes triangles and
produces output on a graphics raster display. As a consumer it can be fed too much
data, too quickly, or it can be starved and sit idly while waiting for something to do. A
front-end system is required to control the input data to the renderer; this process is
called scene graph management. The main function of the scene graph management is
to provide triangles to the renderer, but how those triangles are obtained in the first
place is a key aspect of the front end. The more realistic the objects in the scene, the
more complex the process of deciding which triangles are sent to the renderer. Scene
graph management consists of various modules, each designed to handle a particular
type of object in the world or to handle a particular type of process. The common
theme in most of the modules is geometry.

Chapter 2 covers basic background material on geometrical methods, including
matrix transformations, coordinate systems, quaternions, Euler angles, the standard
three-dimensional objects that occur most frequently when dealing with bounding
volumes, and a collection of distance calculation methods.

The graphics pipeline, the subject of Chapter 3, is discussed in textbooks on
computer graphics to varying degrees. Some people would argue against the inclusion
of some parts of this chapter, most notably the sections on rasterization, contending
that hardware-accelerated graphics cards handle the rasterization for you, so why
bother expounding on the topic. My argument for including these sections is twofold.
First, the computer games industry has been evolving in a way that makes it difficult
for the “garage shop” companies to succeed. Companies that used to focus on creating
games in-house are now becoming publishers and distributors for other companies.
If you have enough programmers and resources, there is a chance you can convince a
publisher to support your effort. However, publishers tend to think about reaching the
largest possible market and often insist that games produced by their clients run on
low-end machines without accelerated graphics cards. And so the clients, interested in
purchasing a third-party game engine, request that software renderers and rasterizers
be included in the package. 1 hope this trend goes the other way, but the commercial
reality is that it will not, at least in the near future. Second, hardware-accelerated cards
do perform rasterization, but hardware requires drivers that implement the high-level
graphics algorithms on the hardware. The cards are evolving rapidly, and the quality
of the drivers is devolving at the same rate—no one wants to fix bugs in the drivers
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for a card that will soon be obsolete. But another reason for poor driver quality is
that programming 3D hardware is a much more difficult task than programming
2D hardware. The driver writers need to understand the hardware and the graphics
pipeline. This chapter may be quite useful to that group of programmers.

Chapter 4 introduces scene graph management and provides the foundation
for a hierarchical organization designed to feed the renderer efficiently, whether a
software or hardware renderer. The basic concepts of local and world transforms,
bounding volumes for culling, render state management, and animation support are
covered.

Chapters 5 and 6 discuss aspects of the intersection of objects in the world. Picking
is the process of computing the intersection of a line, ray, or line segment with abjects.
Collision detection refers to computing intersections between planar or volumetric
objects. Some people include picking as part of the definition of collision detection,
but the complexity of collision systems for nonlinear objects greatly exceeds that for
picking, so I have chosen to separate the two systems.

Chapters 7 through 12 cover various systems that are supported by the scene graph
management system. Chapters 7 and 8, on curves and surfaces, are somewhat general,
but the emphasis is on tessellation. The next-generation game consoles have power-
ful processors but are limited in memory and bandwidth between processors. The
dynamic tessellation of surfaces is desirable since the surfaces can be modeled with
a small number of control points (reducing memory usage and bandwidth require-
ments) and tessellated to as fine a level as the processors have cycles to spare. The
emphasis will start to shift from building polygonal models to building curved surface
models to support the trend in new hardware on game consoles. Chapter 9 discusses
the animation of geometric data, and in particular, key frame animation, inverse kine-
matics, and skin-and-bones systems. Level of detail is the subject of Chapter 10, with
a special focus on continuous level of detail, which supports dynamic change in the
number of triangles to render based on view frustum parameters.

Chapter 11 presents an algorithm for handling terrain. Although there are other
algorithms that are equally viable, I chose to focus on one in detail rather than briefly
talk about many algorithms. The key ideas in implementing this terrain algorithm are
applicable to implementing other algorithms. High-level sorting algorithms, includ-
ing portals and binary space partitioning trees, are the topic of Chapter 12.

Chapter 13 provides a brief survey of special effects that can be used in a game
engine. The list is not exhaustive, but it does give an idea of what effects are possible
with not much effort.

Building a commercial game engine certainly requires understanding a lot about
computer graphics, geometry, mathematics, and data structures. Just as important is
properly architecting the modules so that they all integrate in an efficient manner. A
game engine is a large library to which the principles of object-oriented design apply.
Appendix A provides a brief review of those principles and includes a discussion on
an object-oriented infrastructure that makes maintenance of the library easier down
the road. These aspects of building an engine are often ignored because it is faster
and easier to try to get the basic engine up and running right away. However, short-
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term satisfaction will inevitably come at the price of long-term pain in maintenance.
Appendix B is a summary of various numerical methods that, in my experience, are
necessary to implement the modules described in Chapters 7 through 12.

]..3 TEXT Is NOT ENOUGH

This book is not like the academic textbooks you would find in the school bookstore
or the popular computer game programming books that you see at your favorite
bookseller. Academic texts on computer graphics tend to be tomes covering a large
number of general topics and are designed for learning the basic concepts, not for
implementing a full-blown system. Algorithmic details are modest in some books and
lacking in others. The popular programming books present the basic mathematics and
concepts, but in no way indicate how complex a process it is to build a good engine,
The technical level in those books is simply insufficient.

A good collection of books that address more of the algorithmic issues for com-
puter graphics is the Graphics Gems series (Glassner 1990; Aarvo 1991; Kirk 1992;
Heckbert 1994; Paeth 1995). Although providing a decent set of algorithms, the col-
lection consists of contributions from various people with no guidance as to how to
incorporate these into a larger integrated package such as a game engine. The first real
attempt at providing a comprehensive coverage of the topics required for real-time
rendering is Moller and Haines (1999), which provides much more in-depth cover-
age about the computer graphics topics relevant to a real-time graphics engine. The
excellent references provided in that book are a way to investigate the roots of many
of the concepts that current-generation game engines incorporate.

But there is one last gap to fill. Textual descriptions of graphics algorithms, no
matter how detailed, are difficult to translate into real working code, even for ex-
perienced programmers. Just try to implement some of the algorithms described in
the ACM SIGGRAPH proceedings! Many of those articles were written after the au-
thors had already worked out the details of the algorithms and implemented them.
That process is not linear. Ideas are formulated, algorithms are designed, then im-
plemented. When the results of the coding point out a problem with the algorithmic
formulation, the ideas and algorithms are reformulated. This natural process iterates
until the final results are acceptable. Written and published descriptions of the algo-
rithms are the final summary of the final algorithm. However, taken out of context
of the idea-to-code environment, they sometimes are just not enough. Because hav-
ing an actual implementation to look at while attempting to learn the ideas can only
accelerate the learning process, a CD-ROM containing an implementation of a game
engine accompanies this book. While neither as feature complete nor as optimized as
a commercial engine, the code should help in understanding the ideas and how they
are implemented. Pointers to the relevant source code files that implement the ideas
are given in the text.



CHAPTER

GEOMETRICAL METHODS

his chapter provides some basic mathematics, geometry, and algorithms that
will be used throughout the book. I am assuming that you are familiar with the
concepts of elementary vector and matrix algebra: vectors, matrices, dot product, cross
product, and length. I am also assuming that you are familiar with the basic concepts
in calculus: continuity, derivatives, and integrals. The set of real numbers is denoted I,
and the set of vectors with # components is R". In almost all cases in this book, n < 3.
Numerical methods that are referred to in the book are described in Appendix B.
Transformations (Section 2.1) and coordinate systems (Section 2.2) are pervasive
throughout a game engine. In particular, the graphics pipeline (Chapter 3) and scene
graph management (Chapter 4) require a thorough understanding of these topics.
Section 2.3 covers the topic of quaternions and describes what these entities are and
how they relate to rotations, which are fundamental in orienting objects. For key
frame animation, sequences of rotations must be interpolated in a way that produces
reasonable in-between orientations. Quaternions are quite useful for interpolation.
Section 2.4 covers the topic of Euler angles and shows how to work with rotations
viewed in this way. In particular, there is a discussion of how to factor rotations into
ones that represent rotation about coordinate axes, which many applications require.

7
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Certain types of 3D objects are useful in a game engine, especially spheres and
oriented boxes. Other types that are less frequently seen but are nevertheless quite
useful are cylinders, ellipsoids, capsules, and lozenges. These objects are defined and
their properties listed in Section 2.5. Finally, Section 2.6 discusses computing distance
between various geometric entities, Computing distance accurately and efficiently is
absolutely essential for collision detection.

2. 1 TRANSFORMATIONS

SOURCE CODE

LIBRARY

Core

FILENAME

Vector3
Matrix3

A matrix M : R3 — R is called a linear transformation and | maps vectors to vectors
by Y = MX. The linearity refers to the property that MU + V)=cMU + MV
for any scalar ¢ and any vectors U and V. The zero matrix is a matrix with all zero
entries. The identity matrix is the matrix / with 1 on the diagonal entries and 0 for
the other entries. A matrix is said to be inverrible if there exists a matrix, denoted
M~', such that MM~ = M~'M = I. The transpose of a matrix M = [m,;] is the
matrix M1 = [m;]. That is, the rows of M become the columns of MT. A matrix is
symmetric if MT = M or skew-symmetric if MT = —M. Diagonal matrices D = [dif]
have the property d;; =0 for i # j and are typically denoted D = diag{a, b, c}.
Some special 3 x 3 matrices that appear regularly in computer graphics are described
below.

2.1.1 ScarinG

If a diagonal matrix D = diag(dy, d,, d>} has all positive entries, it is a scaling matrix.
Each diagonal term represents how much stretching (d; > 1) or shrinking (d; <
1) occurs for the corresponding coordinate direction. Uniform scaling is D = s1 =
diag(s, s, s} fors > 0.

2.1.2 ROTATION

A matrix R is a rotation matrix if its transpose and inverse are the same matrix; that
is, R = RT, in which case RR™ = RTR = I. The matrix has a corresponding unit-
]ength axis of rotation U and angle of rotation 6. The choice is not unique since —U
is also an axis of rotation and @ + 2wk for any integer k is an angle of rotation. If
U= (tq, 1y, u3), define the skew-symmetric matrix S by

0 Uy —Uuy
S= —Uz 0 Uy
Uy —uy 0



2.1 Transformations 9

The rotation corresponding to axis U and angle  is

R=1+(sin6)S + (1 — cos #)S%

2.1.3 TRANSLATION

Translation of vectors by a fixed vector T € R? is represented by the function ¥ =
X + T for X, ¥ € R Itis not possible to represent this as a linear transformation of
the form ¥ = M X for some constant matrix M. However, if the problem is embedded
in a four-dimensional setting, it is possible to represent translation with a linear
transformation. The next section describes how to do this.

2.1.4 HOMOGENEOUS TRANSFORMATIONS

Avector (x, y,2) € R* can be mapped uniquely onto a vector (x, v, z, 1) € &*. Other
vectors (x, v, 2, w) € ®* can be projected onto the hyperplane w = 1 by (x, ¥, 2, w) —
(x/w, y/w, z/w, 1). An entire line of points (with origin (0, 0, 0, 0)) is projected onto
the single point (x, v, z, 1), All of B*\ {0) is partitioned into equivalence classes,
each class having representative projection (x, y, z, 1). A 4-tuple in this setting is
called a homogeneous coordinate. Two homogeneous coordinates that are equivalent
are indicated to be so by (xq, ¥0, zo» wo) ~ (x1, Y1, 21, wy).

Transformations can be applied to homogeneous coordinates to obtain other
homogeneous coordinates. Sucha 4 x 4 matrix H = [h;;],0<i <3and0 < j <3,
is called a homogeneous transformation as long as hi3 = 1. Usually, homogeneous
matrices are written as a 2 x 2 block matrix,

where the M is 3 x 3, T is 3 x 1, ST is 1 x 3, and the lower-right entry is just the
scalar 1. The product of a homogenous coordinate and homogeneous transformation
in block format is

- - > - MC’-FIL"?
by M| T I:K]= MV 4+ wT N ___3'11?“.-
ST{1 JLw STV 4w 1

Any 3 x 3 linear transformation M can be represented by the homogeneous
matrix

Ed
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Moreover, translation by vector T can also be represented by a homogeneous trans-
formation,

The two can be composed to represent ¥ = M X+Tas

HEEHE

Assuming M is invertible, the equation can be solved for X =M~YY —T). Thus,
the inverse of a homogeneous matrix is

Gl [+

Perspective projection is discussed in Chapter 3. It too can be represented by a
homogenous matrix where the lower-left entry ST is not the zero vector. Most graph-
ics textbooks discuss the geometric pipeline in terms of products of homogeneous
transformations. That notation is a convenience and is not particularly useful in an
implementation unless the underlying hardware has native support for vector and
matrix operations in four dimensions.

2.2 COORDINATE SYSTEMS

A 3D coordinate system consists of an origin P and three coordinate axes L_]g, 5’1, and (32
that are each unit length and mutually perpendicular. The axes can be written as the
columns of a matrix, R = [Ug | Ul | U;] This matrix is orthonormal; that is, R~! =
R' and | det(R) |= 1. The coordinate system is said to be right-handed if det(R) = 1
or left-handed if det(R) = —1. The axes ina right-handed coordinate system satisfy
Ug = Ul x U:, U1 = U;_ x Ug,and Uz Uo x Ul In aleft-handed coordinate system,
Up=Us x Uy, U, Uu x Uy,and Uy = Ul X Uo The standard Euclidean coordinate
system is right-handed and has origin P =(0,0,0), U= (1,0,0), U; = (0, 1,0), and
Uz =(0,0,1).

Given a coordinate system, any vector X can be written in terms of that system as
X P+ vgb’g + )1U| + vl =P '+ RY.Itis simple to solve this system to obtain

= RT(X P). Specifically, y; = U, (X P) for0<i<2.
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2.3 QUATERNIONS

This section provides a mathematical summary of quaternion algebra and calculus
and explains how they relate to rotations and interpolation of rotations. The ideas are
based on Shoemake (1987).

2.3.1 QUATERNION ALGEBRA

dncz CobE

LIBRARY

Core

FILENAME

Quaternion

A quaternionis givenby g = w + xi + yj + zk, where w, x, y, and 7 are real numbers.
Define g, = wy + xpi + yuj + 24k (n =0, 1). Addition and subtraction of quaternions
is defined by

qo % g1 = (wo + xoi + yoj + zok) + (wy + x1i + y1j + 21k)

= (wo £ wy) + (xo £ xi + (yo £ y1)j + (z0 £ 21)k. (2.1)

Multiplication for the primitive elements i, j, and k is defined by i* = j> = k* =
—Lij=—ji=k, jk=—kj=i,and ki = —ik = j. Multiplication of quaternions is
defined by

gog1 = (wo + xoi + Yo + zok)(wy + x4i + yij + 2,k)
= (wow) — xpxy — Yo¥1 — zo21) + (woex1 + xow| + yYoz1 — Zoy)i +
(woy1 — xpz1 + Yow; + zox1)j + (woz1 + xo¥1 — yox1 + zow k. (2.2)
Multiplication is not commutative; that is, the products gog) and q1gq are not neces-

sarily equal. This is clearly evident for primitive elements since k = ij % ji = —k.
The conjugate of a quaternion is defined by

¢ =(w+xi+yj+zk)*=w—xi — yj — zk. (2.3)

The conjugate of a product of quaternions satisfies the properties (p*)* = p and
(Pq)* =q"p*.
The norm of a quaternion is defined by

N(g)=Nw+xi +yj+zk) =w? + x? + 2 + 22 (2.4)

The norm is a real-valued function, and the norm of a product of quaternions satisfies
the properties N(g*) = N(g) and N(pg) = N(p)N ().
The multiplicative inverse of a quaternion g is denoted ¢~

gq~' =g 'q = 1. Itis constructed as

!'and has the property

q ' =q"/N(q), (2.5)
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where the division of a quaternion by a real-valued scalar is just componentwise
division. The inverse operation satisfies the properties (p™H~'=pand (pg) ' =
1,1
g 'p7.
A simple but useful function is the selection function

Wig) = W(w + xi + vj+zk)=w, (2.6)

which selects the real part of the quaternion. This function satisfies the property
Wig) =(q +q")/2.

The quaternion ¢ = w + xi + yj + zk may also be viewed as ¢ = w + ¥, where
U=xi + yj + zk. If ¥ is identified with the 3D vector (x, y, z), then quaternion
multiplication can be written using vector dot product (-) and cross product (%) as

(wo + o) (wy + 01) = (wow; — g - D1) + wody + wydg + Dy x Dy. (2.7)
In this form it is clear that gog; = g1¢o if and only if $y x ©, = 0 (these two vectors

are parallel).

A quaternion ¢ may also be viewed as a 4D vector (w, x, y, 7). The dot product of
two quaternions is

qo - g1 = wow + xpx1 + yoy1 + 2021 = Wi(gog7). (2.8)
A unit quaternion is a quaternion g for which N(g) = 1. The inverse of a unit
quaternion and the product of unit quaternions are themselves unit quaternions. A
unit quaternion can be represented by
g =cosf + i sind, (2.9)
where &t = ugi + 1y j + uzk and vector (g, u), u2) has length 1. However, observe
that the quaternion product &it = —1. Note the similarity to unit-length complex
numbers cos # + i sin 6. In fact, Euler’s identity for complex numbers generalizes
to quaternions,
exp(ifl) = cos 6 + it sin 4, (2.10)
where the exponential on the left-hand side is evaluated by symbolically substituting
it into the power series representation for exp(x) and replacing products izt by —1.
From this identity it is possible to define the power of a unit quaternion,
q' = (cos 9 + @i sin @) = exp(t®) = cos(t8) + i sin(10). (2.11)

It is also possible to define the logarithm of a unit quaternion,

log(g) = log(cos & + it sin @) = log(exp(if)) = if. (2.12)
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Note that the noncommutativity of quaternion multiplication disallows the standard
identities for exponential and logarithm functions. The quaternions exp(p) exp(g)
and exp(p + ¢) are not necessarily equal. The quaternions log(pq) and log(p) +
log(g) are not necessarily equal.

2.3.2 RELATIONSHIP OF QUATERNIONS TO ROTATIONS

A unit quaternion g = cos 6 + fi sin 6 represents the rotation of the 3D vector 0 by
an angle 26 about the 3D axis &. The rotated vector, represented as a quaternion, is
R(¥) = gvg*. The proof requires showing that R(D) satisfies four conditions: it is a
3D vector, it is a length-preserving function of 0, it is a linear transformation, and it
does not have a reflection component.

To see that R(1) is a 3D vector:

W(R(D)) = W(gig™)
= [(gdq™) + (gdg™)*]/2
=lqdq" +q0%¢"]/2
=ql(® + %)/2]q"
=4W()g*
=W
=0.

To see that R(?) is length preserving:

N(R(D)) = N(qig®)
=N(@N@)N(g")
= N(q)N(0)N(q)
= N (D).

To see that R(D) is a linear transformation, let a be a real-valued scalar and let ©
and w be 3D vectors; then

R(at + ) = glab + w)g~
= (qadg”) + (qig™)
=algdg™) + (givg™)
=aR(D) + R(D),
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thereby showing that the transform of a linear combination of vectors is the linear
combination of the transforms.

The previous three properties show that R(?) is an orthonormal transformation,
a class that includes rotations and reflections. We need to show that reflections cannot
occur. For unit-length vector v, define the function M by © = M (%), a function
from the unit sphere in R? to the unit quaternions with zero real part. Its inverse
s =M"1D). If b = M) and 1 = R(D) = gig*, then the composition

=M =M (R() =M (RIM®T)))

defines a matrix transformation @ = P, where P is an orthonormal matrix since
R(V) is an orthonormal transformation. Thus, | det(P)| = 1, which implies that the
determinant canbe only +1 or —1. P is determined by the choice of unit quaternion g,
so itis a function of ¢, written as P (g) to show the functional dependence. Moreover,
P(g) is a continuous function, which in turn implies that 8§(g) = det(P(g)) is a
continuous function of g. By the definition of continuity, lim,_,, P(g) = P(1) =1,
the identity matrix, and lim,,_, | 8(g) = &8(1) = 1. Since 8(g) can onlybe +1 or — 1 and
since the limiting value is 41, 8(g) = 1 is true for all unit quaternions. Consequently,
P cannot contain reflections.

We now prove that the unit rotation axis is the 3D vector & and the rotation angle
is 26. To see that 4 is a unit rotation axis, we need only show that & is unchanged by
the rotation. Recall that &i* = {iii = —1. This implies that i* = —ii. Now

R(i) = gqlq*
= (cos B + &1 sin @)ii(cos @ — fi sin @)
= (cos )it — (sin 6)%4°
= (cos )20 — (sin B)2(—i)
=u.

To see that the rotation angle is 26, let i, #, and W be a right-handed set of
orthonormal vectors. That is, the vectors are all unitlength; iz - 0= a4 - W =0 - 0 =0,
and &t x 0 =1, U x W =4, and W x &t = 0. The vector ¥ is rotated by an angle ¢
to the vector gug*, so U - (g0g*) = cos(¢). Using Equation (2.8) and 0* = —v, and
p* = —1 for unit quaternions with zero real part,
cos(¢p) =1 - (qug")

=W qug™)

= W|[—0t(cos & + &t sin #)v(cos & — &t sin 0)]
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= W[(—0cos0 — Dt sin 0)(0 cosf — ti sin )]
= W[—0%(cos 8)% + %I sin 6 cos @ — DitD sin 6 cos 6 + (Dir)*(sin #)°]
= W{(cos 8)% — (sin 8)% — (it + D&tD) sin 6 cos B].

Now it = -0 -+ 0xa=vxua=—wand i =—wo=w -0 — i X U =1i.
Consequently,
cos(¢p) = W[(cos 8)* — (sin 6)* — (&t + Did) sin 6 cos 6]

= W((cos 8)* — (sin 6)* — ii(2sin 6 cos 8)]

= (cos 8§)* — (sin #)*

= cos(26),

and the rotation angle is ¢ = 26.

Note that the quaternions ¢ and —q represent the same rotation since (—q)v(—q)*
= qvq*. While either quaternion will do, the interpolation methods require choosing
one over the other.

2.3.3 CONVERSION BETWEEN ANGLE-AXIS AND ROTATION MATRIX

Applications represent rotations using either an angle-axis pair or a rotation matrix.
Sometimes it is necessary to convert from one representation to the other. The con-
versions are discussed here.

Angle-Axis to Rotation Matrix

Any standard computer graphics text discusses the relationship between an angle and
axis of rotation and the rotation matrix, although the constructions can be varied. A
useful one is given here. If 8 is the angle of rotation and U is the unit-length axis of
rotation, then the corresponding rotation matrix is

R=1+ (sinf)S + (1 — cos #)S?,

where [ is the identity matrix and
0 —up uy

S§= Uz 0 —up |,

—U up 0

a skew-symmetric matrix. For @ > 0, the rotation represents a counterclockwise rota-
tion about the axis. The sense of clockwise or counterclockwise is based on looking at
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the plane with normal U from the side of the plane to which the normal points. Note
that SV =U x V and

-=".-/—|—(sin€)f} X l_/—i—{l—cosf)){}x{[}x \7).

Rotation Matrix to Angle-Axis

The inverse problem is to start with the rotation matnx and extract an angle and
unit-length axis. There are multiple solutions since —U is a valid axis whenever
{7 is and # + 27k is a valid solution whenever @ is. First, the trace of a matrix is
defined to be the sum of the diagonal terms. Some algebra will show that cos 8 =
(trace(R) — 1)/2 and R — R" = (2 sin 0)S. The first formula can be solved for the
angle # = cos” '((trace(R) — 1)/2) € [0, w].1f# = 0, then any axis is valid since there
lb no rotation. If @ € (0, ), the second formu]a allows direct extraction of the axis,
V = (ra1 — r12, fo2 — a0, F10 — ro1) and U= V/WI If @ = m, the second formula
does not help with the axis since R — RT = 0. In this case note that

1- 2(“1 — u,) 2ugle) 2uigu2
R=1+28= 2ugu 1 — 2(ud + u3) 2u iz
2ugis 2uqus 1 — 2(u(2) + u%)

The idea now is to extract the maximum component of the axis from the di-
agonal entries of the rotation matrix. If rm is maximum, then uo must be the
largest component in magnitude. Compute 4u,, =rgo — r11 — ra2 + land select up =
Voo — i1 — 722 ¥ 1/2. Consequently, u; = ro1/(2ug) and uy = roa/(2ue). 1f
riy 1s maximum, then compute 4::% =7y — roo — ra2 + 1 and select u; =
JT11 — Foo — ra2 + 1/2. Consequently, uy = rq)/(2u;) and uz = r12/(2uy). Final-

lly, if ry; is maximum, then compute 4u§ =ry — rop — r11 + 1 and select u; =

VT2 — roo — 11 + 1/2. Consequently, ug = roa/(2u) and uy = ry2/(2uz).

2.3.4 CONVERSION BETWEEN QUATERNION AND ANGLE-AXIS

Applications also can represent rotations by quaternions in addition to angle-axis pairs
and rotation matrices. The conversions between quaternions and angle-axis pairs are
discussed here.

Angle-Axis to Quaternion

Recall from earlier in this section that the quaternion ¢ = w + xi + yj + zk =
cos(6/2) + sin(8/2)(ugi + 1 j + uzk) represents the rotation by # radians about
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the axis U = (uo, u1, u2). Given the angle and axis, the components of the quaternion
are w = cos(0/2), x = ug sin(8/2), y = uy sin(6/2), and z = u, sin(6/2).

Quaternion to Angle-Axis

The inverse problem is also straightforward. If [w| = 1, then the angle is # = 0 and
any axis will do. If |w| < 1, the angle is obtained as 8 =2 cos~!(w) and the axis is
computed as U = (x, y, 2)/+/1 — w4,

2.3.5 CONVERSION BETWEEN QUATERNION AND ROTATION MATRIX

To complete the set of conversions between representations of rotations, this section
describes the conversions between quaternions and rotation matrices.

Quaternion to Rotation Matrix

The problem is to compute ¢ and U given w, x, y, and z. Using the identities
2sin(8/2) = 1 — cos(f) and sin(@) = 2 sin(¥/2) cos(#/2), it is easily shown that
2wx = (sin @)ug, 2wy = (sin O)uy, 2wz = (sin Oua, 2x* = (1 — cos Ouj, 2xy =
(1 — cos@uguy, 2xz = (1 — cos Nugua, 2}'2 =(1—cos 9)::.'%,2}’: = (1 — cosf)uus,
and 2% = (1 — cos 8)u?. The right-hand sides of all these equations are terms in the
expression R = I + (sin 8)S + (1 — cos #)S?. Replacing them yields

1—2y? -2z 2xy — 2wz 2xz + 2wy
R=| 2xy+2wz 1-2x%=222 2yz—2wx |. (2.13)
2xz — 2wy 2vz +2wx 1 —2x2—2y?

Rotation Matrix to Quaternion

Earlier it was mentioned that cos @ = (trace(R) — 1)/2. Using the identity 2 cos?(8/2)
=1+ cos # yields w? = cos?(0/2) = (trace(R) + 1)/4 or |w| = y/trace(R) + 1/2.If
trace(R) > 0, then |w| > 1/2, so without loss of generality choose w to be the positive
square root, w = /trace(R) + 1/2. The identity R — RT = (2'5in 0)S also yielded
(ri2 — rat, rao — roa, ro1 — o) = 2 sin 6w, w1, u3). Finally, identities derived earlier
were 2xw = ug sin , 2yw = u; sin #, and 2zw = u; sin 6. Combining these leads to
x = (rig —ry)/(4w), y = (rp — ro2) /(4w), and z = (ro1 — ry0)/(4w).

If trace(R) < 0, then |w| < 1/2. The idea is to first extract the largest one of x, y,
or z from the diagonal terms of the rotation R in Equation (2.13). If ryg is the max-
imum diagonal term, then x is larger in magnitude than y or z. Some algebra shows
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that 4x? = rgg — r11 — ra2 + 1, from which is chosen x = /roo — r11 — r22 + 1/2.
Consequently, w = (rj2 — r21)/(4x), vy = (ro1 + rio)/(4x), and z = (ro2 + rao)/(4x).
If r1; is the maximum diagonal term, then compute 4y? = r; — rgo — r22 + 1 and
choose v = /11 — roo — r22 + 1/2. Consequently, w = (r20 — ro2)/(4¥), x = (ro1 +
rip)/(4y),and z = (ri2 + r21)/(4y). Finally, if r2; is the maximum diagonal term, then
compute 4z° = r3; — roo — 1y + | and choose z = \/ra2 — roo — ri1 + 1/2. Conse-
quently, w = (ro1 — ri0)/(42), x = (ro2 + r2)/(42), and y = (r12 + r21)/(42).

2.4 EULER ANGLES

SOURCE CODE

LIBRARY

Core

FILENAME

Matrix3

Rotations about the coordinate axes are easy to define and work with. Rotation about
the x-axis by angle @ is

1 0 0
Re(@)=1|0 cosf —sinb |,
0 sinfl  cosf

where 6 > 0 indicates a counterclockwise rotation in the plane x = 0. The observer
is assumed to be positioned on the side of the plane with x > 0 and looking at the
origin. Rotation about the y-axis by angle € is

cosf/ 0 sinf
R_\‘(ﬁ) —] 0 1 0
—sinf) 0 cosf

where # = 0 indicates a counterclockwise rotation in the plane y = 0. The observer
is assumed to be positioned on the side of the plane with y > 0 and looking at the
origin. Rotation about the z-axis by angle f is

cosfd —sind 0
R.(#)=| sinf cosd 0
0 0 |

where # > 0 indicates a counterclockwise rotation in the plane z = 0. The observer is
assumed to be positioned on the side of the plane with z > 0 and looking at the origin.
Rotation by an angle @ about an arbitrary axis containing the origin and having unit-
length direction U= (U, Uy, U.) is given by

Ri(6) =1+ (sin6)S + (1 — cos #)S?,
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where [ is the identity matrix,

0 -U. Uy
s=| v. o -U |,
~Uy, U. 0

and # > 0 indicates a counterclockwise rotation in the plane U - (x,v,2) =0. The

observer is assumed to be positioned on the side of the plane to which U points and
is looking at the origin.

2.4.1 FACTORING ROTATION MATRICES

A common problem is to factor a rotation matrix as a product of rotations about the
coordinate axes. The form of the factorization depends on the needs of the application
and what ordering is specified. For example, we might want to factor a rotation
as R = Ry (0,)R,(0,)R;(0,) for some angles 0y, 0y, and 6. The ordering is xyz.
Five other possibilities are xzy, vxz, yzx, zxy, and zyx. We might also envision
factorizations such as x yx—these are not discussed here. In the following discussion,
we use the notation ¢, = cos(f,) and s, = sin(f,) fora = x, y, z.

Factoras R, R\ R,

Setting R=[r;;] for0 <i <2and0 < j < 2,formally multiplying R, (6:) R (6,) R.(8.),
and equating yields

Foo Fo1 Foz [ _‘.C = - C_\,- 5= S_‘-
rg rm ra | = Co8xSy + CxS; CxCr — SeSyS;  —CySy
rao 21 2 —CxCSy + SxSz CoSx + CeSyS; CxCy

From this we have s, = roz, so 6, = Sin~Yrga). If6, € (—m/2,m/2), thenc, # 0 and
¢y (8y, ¢x) = (=112, r22), in which case 8, = Tan™'(—=ry3, r22). Similarly, cy(s,0) =
(—ro1, Fo0), in which case 8. = Tan~ (=rg,, rgo).
If 0, = /2, then s, = 1 and ¢, = 0. In this case
rig rin | | cxSetexs: excr —ses; | | osin(B: 4+ 6y)  cos(8; + 6y)
rao ra1 | | —CxCr H SaS; €Se oS | | —cos(B, +6,) sin(f; +6y) |
Therefore, 6. + 6, = Tan~'(r19, r11). There is one degree of freedom, so the factoriza-

tion is not unique. One choice is #, = 0 and 8, = Tan™!(ryg, r11). If §, = —7/2, then
sy = —land ¢, = 0. In this case

[rlﬂ rin :l _ [ —CgSx + xS CxCr + 3.’(53] _ |: sin(f; — 6;)  cos(B; — 6;) j|
= = ) .

7
ra ran CxC; + 8285, Cp8p — CxS; cos(f, —6,) —sin(f; — 6,)
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Therefore, #, — 6, = Tan~! 2(r1g, r11). There is one degree of freedom, so the factor-
ization is not unique. One choice is @; = 0 and 6, = — Tan™! 2(r19, r11).
Pseudocode for the factorization is

thetaY = asin(r02);
if ( thetaY < PL/2 )

{
if ( thetaY > -PL/2 )
{
thetaX = atan2(-rl2,r22);
thetaZ = atan2(-r01,r00);
}
else
{
// not a unique solution
thetaX = -atan2(rl0,rll):
thetaZ = 0;
}
}
else
{
// not a unique solution
thetaX = atan2(rl0,rll);
thetaZ = 0;
}

Factor as Ry R; R,

Setting R = [ri;| for0 <i < 2and0 < j < 2, formally multiplying R (6x) R (6;) R, (6y),
and equating yields

oo To1 oz CyCz —5; Cz8y
ro rin ri | =\ sesy FexCys; G0z —CySy + CxSyS:
ro ra ra —CxSy + CySxS: C:Sx  CxCy + 5x5y8;

Analysis similar to the xyz case leads to the pseudocode

thetaZ = asin(-r01);
if ( thetaZ < PI1/2 )
{
if ( thetaZ > -P1/2 )
{
thetaX = atan2(r2l,rll);
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thetaY = atan2(r02,r00);
}
else
{
// not a unique solution
thetaX = -atan2(-r20,r22):
thetaY = 0;
}
}
else
{
// not a unique solution
thetaX = atan2(-r20,r22);
thetaY = 0;
}

Factor as Ry R« R;

Setting R=r;;] for0 <i <2and0 < j <2, formally multiplyingR, (8,) R (0) R (6;),
and equating yields

roo ror Foz €yC; + SxS5ySz CpSxSy — CyS:  CxSy
Fio 1 2 | = CxSz CxC; —Sx
ra o —C;8y + CySxS;  €yCrSy + S8z CxCy

Analysis similar to the xyz case leads to the pseudocode

thetaX = asin(-rl2);
if ( thetaX < PI/2 )

{

if ( thetaX > -PI/2 )

{
thetaY = atan2(r02,r22);
thetaZ = atan2(rl0,rll):

}

else

{

// not a unique solution
thetaY -atan2(-r01,r00);
thetaz = 0;
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else

{
// not a unique solution
theta¥ = atan2(-r01,r00);
thetaZ = 0;

Factor as RyR; R,

Setting R = [r;;]for0 <i <2and0 < j <2, formally multiplying R, (6) R: (6;) R (6,),
and equating yields

roo ro1 ro2 CyCz  SxSy — CxCySz CxSy + CySxS;
ro o re2 | = 5z CxCz —Cz8x
rap 21 raz —C:Sy CySy +CeSyS; CxCy — SxSyS:

Analysis similar to the xyz case leads to the pseudocode

thetaZ = asin(rl0):
if ( thetalZ < PI/2 )

{
if ( thetaZ > -PI/2 )
{
thetaY = atan2(-r20,r00);
thetaX = atan2(-rl2,rll);
}
else
(
// not a unique solution
theta¥Y = -atan2(r2l,r22);
thetaX = 0;
}
}
else
{

// not a unique solution
theta¥ = atan2(r21,r22);
thetaX = 0;
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Factor as R, R(R,

Setting R = [r;j|for0 <i <2and0< j <2, formally multiplying R.(9,) R, (Bx)Ry(8y),
and equating yields

Foo Fo1 o2 CyCz — Sx8y8; —CxS; €8y + €8, 8,
Flo rip ra | = | CSeSy +0y5; €0 =008y + SySz
F20 21 ra —Cx Sy Sx CrCy

Analysis similar to the xyz case leads to the pseudocode

thetaX = asin(r2l);
if ( thetaX < PI/2 )

{
if ( thetaX > -PI/2 )
{
thetaZ = atan2(-r01,rl11);
thetaY = atan2(-r20,r22);
}
else
{
// not a unique solution
thetaZ = -atan2(r02,r00);
theta¥Y = 0;
}
}
else
{
// not a unique solution
thetaZ = atan2(r02,r00);
thetaY = 0;
}

Factor as R_R R,

Sﬂng=hHHm05552mm0§j52&nmdhmuMNﬂmRJ&ﬂh$ﬂRﬂ&L
and equating yields

Foo Fro1 o2 CyCy  CofySy — Cx8;  CxCy8y + $;5;
Flo Fin Pz | = | €ySz €xCrt SxSysz  —C8 + CxSyS;
r2o 2y or» —Sy CySx CxCy
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Analysis similar to the xyz case leads to the pseudocode

thetaY = asin(-r20);
if ( theta¥Y < PI/2 )

{
if ( thetaY > -P1/2 )
{
thetaZ = atan2(rl0,r00);
thetaX = atan2(r2l,r22);
}
else
{
// not a unique solution
thetaZ = -atan2(-r01,r02);
thetaX = 0:
}
}
else
{
// not a unique solution
thetaz = atan2(-r01,r02);
thetaX = 0;
}

2.4.2 FACTOR PRODUCT OF TWO

Given a rotation R that is a product of two coordinate axis rotations, the problem is
to factor it into three coordinate axis rotations using the ordering xyz. Derivations
for the other orderings are similar. In the subsections the matrices are Py = Ry(¢x),
Py = Ry(¢y), and P; = R.(¢.). Define 5, = sin(@y), sp = sin(¢y), sc = sin(g;), cq =
cos(¢y), €p = cos(¢y), and ¢, = cos(¢;).

Factor P, Py
Trivial. The factorization is R = Ry(¢:)Ry(¢y) = Ry (6,) R, (6,) R (6.). Therefore,
O = ¢, 9_;- = @_\-, and 6, =0.

Factor P, Py

The factorization is R = Ry(¢py) Rc(¢:) = R (6) R, (6,)R.(6;). Formal multiplica-
tion of the various terms leads to the equation
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—8h  ChSa

[t is easy to see
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CaSh CyCz —CyS: Sy
-5 | = Co85¢8y + €Sz CpCz = SxSy¥; —CySy
CaCp —CxCz8y F 858: CoSy HOxSy8: CuCy

that s, = ¢,5p, in which case 6, = Sin~'(cos 6, sin f;). Adding the 10

and 21 terms yields

0+ cpsy = (Cz85c8y + € §2) 4 (Co8y + CpSys:) = (14 sy)(es0 + Cy8z)s

which leads to

sin(@y + 6.) = cpsa/(1 + cqsp). In the event that cusp = —1, this leads

to a special case in the coding that is casy to solve. Subtracting the 10 term from the

21 term yields

CpSq — 0= (€58 + Cx82) — (€8x + Casysz) = (1 — sy)leasy — ¢« 5:),

which leads to sin(8, — 6.) = ¢p5a/(1 — casp). In the event that ¢ 55, = 1, this also
leads to a special case in the coding that is easy to solve. The sine functions can be
inverted and the two resulting equations for 6, and 6. can be solved. For the case

|Cu5'h| <1

1.
6, = — | Sin
2

6y = Sin~(casp)

1[_ -l
A, = — | Sin
2

Factor P, P:

ChS R Chi, ]
(——” : )+Sm 1(—b ! )
1 + cpSa 1 —cpsa /]

( Cha ) Sin~ 1 ( ChSqa )-
— | — 2N P ——— .
L+ cpsy 1—cpsq ) |

Trivial. The factorization is R = Ry (¢y)R-(¢:) = Ry (6:) R, (8,)R.(8.). Therefore,
Oy = @y, By =0, and 0; = ¢..

Factor P, P,

A construction similar to the case Py Py leads to

1 ar —]
9_( = E Sin

(‘ﬂ(.l' ) . -_— | t.{l(‘('
——— | + Sin —_—
1 + 545 1 — 5480

fy = Sin~ V(sase)

1[H .
6, = — | Sin
2

( CaCe _ Sin_| Cale ) )
1+ SaSe 1 - Sade
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Factor P, P,

Trivial. The factorization is R = Ry(¢,)R;(¢:) = R.(6:)R,(6,)R.(0,). Therefore,
b= 0,6, = ¢,and 6, = 6.

Factor P_ P,

A construction similar to the case Py P, leads to

1 ChS¢ "bSe
6, = [Sin~! b ) Sin~! (*—Lb'3 )
2 1 + spee 1 = spee

By = Sin~ ! (spe,)

1 Se . bSe
0. = - |sin~! [ —2 ) 4 5in~! [ b5 .
2 1 + spe, 1 — spee

2.5 STANDARD 3D OBJECTS

The objects described here are useful as bounding regions for two purposes: rapid
culling in the rendering process and rapid determination that two objects are not
intersecting during the collision detection process.

2.5.1 SPHERES

A sphere is defined by the set of all points X equidistant from a center point C with
distance r > 0. The quadratic equation defining the set is [ X — C|? = r2.

For a geometric object that consists of a collection of points {f",—};'=0, a bounding
sphere can be computed in a number of ways.

_ Sphere Containing Axis-Aligned Box
{SPURCE CopE A simple approach is to compute the minimum-volume axis-aligned bounding box
of the points, then select the smallest enclosing sphere of the box with sphere centered

at the box center. The algorithm is

Containment

Point min = V[0], max = min:
for (i =1; i <= n; i+H)

ContSphere {
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ContSphere
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if ( V[il.x < min.x )
min.x = V[iJ.x;

else if ( V[il.x > max.x )
max.x = V[il.x;

if ( V[il.y < min.y )
min.y = V[il.y:

else if ( V[il.y > max.y )
max.y = V[il.y:

if ( V[il.z < min.z )
min.z = V[il.z;
else if ( V[i].z > max.z )
max.z = V[il.z;
}
Point center = (min+max)/2;
Point diagonal = (max-min)/2;
float radiusSqr = diagonal.SquaredLength();

An advantage of this algorithm is the speed with which it is executed. The drawback
to this algorithm is that the bounding sphere is not as good a fit as it could be.

Sphere Centered at Average of Points

An alternative that takes longer to compute but provides a somewhat better fit is to
select the sphere center to be the average of the points and the sphere radius to be the
smallest value for which the sphere of the given center and that radius encloses the
points, The algorithm is

Point sum = V[0]:
for (i = 1; i <= n; i++)
sum += V[i];

Point center = sum/n;
float radiusSqr = 0;
for (i = 0; i <= n; i++)
{
Point diff = V[i]l - center:
float temp = diff.SquaredlLength();
if ( temp > radiusSqr )
radiusSqr = temp;
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SourceE CODE

LIBRARY

Containment

FILENAME

MinSphere

Minimum-Volume Sphere

Computing the minimum-volume sphere that encloses the points requires a more
complicated algorithm based on work by Emo Welzl (1991). The problem uses a
randomized linear algorithm, so the order is expected to be linear. The worst case
is polynomial in the number of inputs, but the input data is randomly permuted so
that the probability of the worst case occurring is negligible.

The pseudocode for the algorithm given below computes the minimum-volume
sphere containing N points P[0] through P[N — 1]. The idea is to maintain a set of
supporting points for the sphere while processing the input point set one point at a
time. The supporting points lie on the sphere and no other points are necessary to
form the sphere.

Sphere ComputeMinimumSphere (int N, Point P[1])
{
randomly permute the points P[O]..P[N-1];
Sphere sphere = ExactSpherel(P[0]);
PointSet support = { P[O] };

i=1;
while ( 1 < N )
{
if ( P[i] not in support )
{
if ( P[i] not in sphere )
{
add P[i] to support and (possibly) remove
unnecessary points;
compute sphere from current support;
i =0; // need to start over when support
// changes
continue;
]
}
i+t

Internally, the algorithm requires computing spheres that contain exactly two
points, exactly three points, or exactly four points. Updating the support can be
modularized into a collection of update functions, each depending on the current
number of points in the support.
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2.5.2 ORIENTED BOXES
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Oriented boxes generally provide a better fit of the object than spheres. An oriented
box is defined by a center C, three orthonormal axes U; that form a right-handed
coordinate system, and three extents ¢; > 0 for i =0, 1, 2. Let R = [Uu U, Us), an
orthonormal matrix with determmant one. Any pomt X = (xp, X1, x2) inside or on

the box can be represented as X=C+ RY where ¥ = (vo, Y1, ¥2) with |y;| < e; for
alli.

Axis-Aligned Boxes

There are various methods for generating bounding boxes that contain a set of points
{V. "_,- The simplest is to fit with an axis-aligned box. This type of box is simpler to

represem as two Points, Pmin = (Xmins Ymins Zmin) 40d Pmax = (Xmax> Ymax> Zmax)- The
pseudocode is

Point min = V[0], max = min;
for (i = 1; 1 <= n; i++)
{

if ( V[il.x < min.x ) min.x = V[il.x;
if ( V[il.x > max.x ) max.x = V[il.x;
if ( V[il.y < min.y ) min.y = V[il.y;
if ( V[il.y > max.y ) max.y = V[il.y;
if ( V[il.z < min.z ) min.z = V[i].z;
if ( V[il.z > max.z ) max.z = V[il.z;

Fitting Points with a Gaussian Distribution

A Gaussian distribution is a probability distribution of the form A exp((X —
C)M~Y(X — C)), where A is an appropriate scaling factor, C is the mean of the
distribution, and M is the covariance matrix of the distribution. The distribution is
said to be anisotropic if the eigenvalues of M are not all the same value.

A more sophisticated method for building an oriented box that usually fits the
points better than an axis-aligned box is based on fitting the points with an anisotropic
Gaussian distribution. The center of the box is the mean of the points,

U

C=- e
SV
=0
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The axes of the box are selected as unit-length eigenvectors of the covariance matrix

n—1
1 - - - -
M=- V- Oy, -0
- ?:0( = OV = 0O)

If U; are unit-length eigenvectors, the extents along those axes are the extreme values
of the projections of the points onto those axes, ¢; = max; |U; - (V; — C)|. The
pseudocode is

// Box has center, axis[3], extent[3]
Box box;

// compute mean of points

Point3 sum = V[0];

for (i = 1: i < n; i++)
sum += V[il;

box.center = sum/n;

// compute covariances of points

Matrix3 mat = 0;

for (i = 0; i < n; i++)

{
Point3 delta = V[i] - box.center;
mat += Tensor(delta,delta);

}

Matrix3 covariance = mat/n;

// eigenvectors for covariance matrix are the box axes
ExtractEigenvectors(covariance,box.axis[3]);

// compute extents as extreme values of projections onto axes
box.extent = 0;
for (i = 0; i < n; i++)
{
Point3 delta = V[i] - box.center;
for (j = 0; j < 3; j++t)
{
Real adot = |Dot(box.axis[jl.delta)|
if ( adot > box.extent[j] )
box.extent[j] = adot;
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For a vector W, Tensor(W, W) is the matrix WWT. The code does require an
eigensolver fora 3 x 3 matrix. The eigenvectors can be computed using a closed-form
solution rather than an iterative scheme.

One variation of the algorithm is to compute the convex hull of the data points
first, then build an oriented box containing the hull. Another variation is to compute
the eigenvectors of the covariance matrix, project the points onto the lines C +1U;
in the direction of the eigenvectors U;, then compute the intervals of projection
[min;, max;]. The point C is not the center of the box and must be replaced with
the correct center of the box implied by the projected intervals,

=, = > min; + max; -
c=c+y -—"—2—'U,-.
i=0

Minimum-Volume Box

The best-fitting box may be considered to be the box of minimum volume that con-
tains the points. Constructing this box requires an iterative scheme to solve a mini-
mization problem, so it is recommended that minimum-volume boxes be computed
off-line or during program initialization and not during program run time. The al-
gorithm is as follows. For any choice of coordinate axes A, i=0, 1,2, the points
are projected onto the axes Vo + -,A!, the values being p;; = A (V — V()} for all
j. Define a; = min;(p;;), fi = max;(p;;), and y; = (&; + B;)/2. The center of the
smallest-volume oriented box with specified axes is

2
&=+ Y ni

i=0

The extents of the oriented box are a; = (8; — ;) /2.

Each set of coordinate axes can be represented as the columns of rotation matrices.
Each rotation matrix is generated by a unit-length vector U and an angle 6 € [0, 27 ].
The mapping from rotation matrices to coordinate axes is of course not one-to-one.
However, the volume of the oriented boxes can be viewed as a_function v : §% %
[0,27] — [0, 00), where S? is the unit sphere. The volume is v(U f) = ﬂ-_n(ﬁ,
«;). This function is continuous on its compact domain, so from calculus it must
attain its minimum on that domain. Therefore, there exists an axis Uo and an angle 80
for which U(Uo, 8y) < v(U, 6) for all axes U and all angles 8. The construction of Uy
and 6 can be implemented as a numerical minimization using techniques that do not
require derivatives. A good choice is Powell’s direction set method (Press et al. 1988).
The rate of convergence to the minimum depends on the initial guesses for axis and
angle.
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Fitting Triangles with a Gaussian Distribution

This method was presented in Gottschalk, Lin, and Manocha (1996). If the data points
are the vertices of a triangle mesh, the triangles themselves may be used to generate an
oriented box containing the vertices. The fit of an oriented bounding box to the convex
hull of the vertices given previously has problems with sampling. The vertices on the
convex hull may be irregularly distributed so that a small, dense collection of points
can unfairly affect the orientation of the bounding box. This effect can be minimized
by using a continuous formulation of the covariance matrix.

Suppose there are € triangles. If the ith triangle has vertices l_/u is 1—’| i» and 172,-,
then the triangle and its interior are represented by ;( (5,1) = Vg, + s(Vl ; Vo,) +
t(Va; = Vo) for0<s < 1,0 <t < lands +1 < 1. Letm; = [(Vi; — Vo) x (Vo —
Vo,)1/2 be the area of the triangle. Define the weights w; = m;/ 3"'") m,. The mean
point of the convex hull is

. 2 - j»l/l—f_’
C=- w; Xi(s,t)yds dt

£-1

2
1 -
=g w2 Vi
i=0 =0
and the covariance matrix of the convex hull is

£-1 1 1—r
2 - L. T
= 7 Z w; f f (Xi(s,1) = CHXi(s,1) — C‘)I ds dt
i=0 0o

2 2
T2 Z wi | 20D (Vi = O)(Viy = OF

j=0 k=0

If A, are unit-length eigenvectors, the extents along those axes are a; = max; A -
(X — C)I where the X are the vertices. As in the subsection on ﬁttmg points wnh a
Gaussian distribution, a variation allows adjustment of C once the axes A; are known.

2.5.3 CAPSULES

A capsule is a natural extension of a sphere based on equidistance. Itis defined as the set
ofall points that are distancer > 0 from aline segment with end point P and direction
D. The other end pointis P + D. A capsule is a cylinder that has two hemispherical
caps attached at the end points.



aRCE CoDE

Containment

ContCapsule

2.5 Standard 3D Objects 33

In this section, we present two algorithms to bound the points (X }i_o one
involving least-squares fitting and one based on a minimization that is solved using
an iterative algorithm.

Least-Squares Fit

Fit the points by a line using the least-squares algorithm described in Appendix B.
Let the line be A + tW, where W is unit length and A is the average of the data
points. The line will contain the capsule line segment. Compute r to be the maximum
distance from the data points to the line. Select unit vectors U and V so that the
matrix R = [U V W] is orthonormal and has determinant one. The data points can
be represented as X = A + RY,, where Y = (u;, v;, w;). In the (u, v, w) coordinate
system, the capsule axis is contained by the line £(0, 0, 1). We need to compute the
largest & so that all points lie above the hemisphere u® + v + (0 — &) = r2 with
w < &. The value is computed as

&0 = min{w; + m},
i

where 0 < i < n. Similarly, there is a smallest value & so that all points lie below the
hemisphere u? + v? + (w — &)? = r? with w > &. The value is computed as

& = max{w; — \/r? — (u} + v})}.

The end points of the capsule line segment are P =A+ EJW for j=0,1.1If
instead the data points are fit by a least-squares plane W - (X — A) =0, the result is
the same since the unit-length plane normal W is exactly the line direction.

Minimum of Minimum-Area Projected Circles

For each unit-length direction w such that W (0,0,1)=0 (W lies on the upper
unit hemisphere), select unit vectors U and V so that the matrix R = [U % W]
orthonormal and has determinant one. The data points can be represented as X; =
A+ RY;,where ¥ = (u;, vi, w;). The projections of the points onto the plane W.X=
0 are (u;, v;). The minimum-area circle containing these points can be computed,
say, the radius is r = r (W) and the center is C = C(W) Compute the vector W' that
minimizes r(W). The capsule radius is r(W ) and let w;, and Wnax be the extreme
vaiues for the W The capsu]e line segment has end points By=C(W' )+ wm,,.W
and Pg C(W )+ wm“W
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2.5.4 LOZENGES
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A lozenge is also a natural extension of a sphere based on equidistance. It is defined
as the set of all points that are distance r > 0 from a rectangle with origin P and
edge dlrecuons Eg and E|, where En El = 0. The four vertices of the rectangle are
P, P+ Ey, P+ E;,and P+Ey+E.A lozenge is an oriented rectangle that has
attached four half-cylinder sides and four quarter-spherical corners.

In this section, we present two algorithms to bound the points (X; Y'_q. one
involving fitting with a Gaussian distribution and one based on a minimization that
is solved using an iterative algorithm.

Fit with a Gaussian Distribution

Compute the mean A of the points and compute the covariance matrix, just as in
the algorithm for fitting with an oriented box. Let unit-length eigenvectors of the
matrix be U/, V, and W. Assume these are labeled so that U corresponds to the
largest eigenvalue and W corresponds to the smallest eigenvalue. The data points are
represented as X A+ u,U + v,V + w; W;. Let wyj, and Winax be the extreme
values for the wi. The data points are bounded by the two planes W-(X—A)=wWnin
and W - (X — A) = wpax. Set the lozenge radius to r = (Wmax — Wmin)/2 and adjust
the mean to A £ A + ((Wpax + wmm)/Z}w

Analogous to the fitting of data by a three-dimensional capsule, construct a two-
dimensional capsule containing the pairs (v;, w;). We need to compute the largest fo
so that all points lie above the hemicircle w? + (v — Bo)? = r? with v < . The value
is computed as

ﬁo=mﬁnl"*+\f”-w5}‘
I

where 0 < i < n. Similarly, there is a smallest value g so that all points lie below the
hemicircle w? + (v — Bp)? = r? with v > f;. The value is computed as

f1 = max ‘u,- —,frz—wfl.
]

The end points of the projected capsule line segment determine an edge of the lozenge,

=(p1 — Bo)V.

Repeat this process for the pairs (u;, w;) to obtain values

ap = min {u,- +4/r2- wfl
[}
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and
oy = max lu,—— rz—wf}.
[

Although it appears that the other lozenge edge should be Eo = (& — a)U, it might
not be. The hemicylinder ends that are attached by the above process form mitered
corners that enclose more space than the quarter spheres. It is possible for some data
points to be inside the hemicylinder overlap, but outside the quarter sphere. The
candidate edge E, may need to be increased to enclose the outliers.

Let Ko =A+alU + ﬁUV be one of the corner pomts of the current lozenge
rectangle. Suppose that P=A+ a,,U + ﬁ,,V + y_,,W is a point outside the quarter
sphere centered at K. For this to be true, IP Kol > r. The corner must be adjusted
to K, A+ af|U + ﬁlv so that IP K]l = r. There are two degrees of freedom
for the adjustment. One degree is eliminated by requiring (), 1) = t (@, o) + (1 —
t)ap, Bp). Replacing in the previous distance equation yields a quadratic in 7 that can
be solved for

2 2
_ re = yp
(ap - a(])z + (ﬁp - ﬁﬂ)z-

The adjustment on the corner point does not affect previous containment relation-
ships. Thus, the list of input points can be iterated and the corners adjusted as needed.

After the adjustment, the lozenge rectangle parameters are [wo, o1] x [Bo, B1].
The lozenge origiqn is chosen to be A + oyl + Bo V, and the lozenge edges are Eo=
(@ — a)U and Ey = (B) — fo)V.

Minimization Method

The construction of a lozenge in the last subsection used eigenvectors from the co-
variance matrix. The same construction can be applied for any choice of orthonormal
vectors that form a right-handed system. The corresponding rotation matrices whose
columns are the selected vectors form a three-parameter family (the unit quaternions
form a three-dimensional manifold in 4-space). Let the parameters be labeled as the 3-
tuple . The volume for a given set of parameters, v(5), can be computed by adding
the volumes of the pieces forming the lozenge: the rectangular box, the four hemi-
cylinder sides, and the four quarter-sphere corners. A minimization algorithm can be
applied to v to obtain parameters p’ so that v(p') is a global minimum.

2.5.5 CYLINDERS

An infinite cylinder is the set of all points a distance r from a line P + 1 D, wheret ¢ R
and D is unit length. A finite cylinder is a subset of an infinite cylinder, where |¢| < h/2
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fora specified height h. We will refer to finite cylinders simply as cylmders If we need
to talk about infinite cylinders, we will refer to them explicitly as “infinite cylinders.”

Twao algorithms to bound the points (X }i_, are as follows. Fit the points by aline
using the least-squares algorithm described in Appendix B. Let the line be A+W,
where W is unit length and A is the average of the data points. Select unit vectors U
and V so that the matrix R = [U V W] is orthonormal and has determinant one. The
data points can be represented as X; = A + RY;, where Y; = (u;, vi, wy).

Least-Squares Line Contains Axis

The cylinder radius is » = max; fuf + vf‘}. The cylinder height is b = wmax — Wmins
where wmin and wmax are the extreme values of the w;. To conform to the finite cylinder
definition, the line must have its translation vector adjusted. The new translation is

A=A " Wmin ‘+2‘ Wmax W,

The line is A’ 4+ t W and the cylinder is constrained by |f| < h/2.

Least-Squares Line Moved to Minimum-Area Center

The minimum-area circle containing the (u;, v;) values is computed and has center
(', v’) and radius r. The least-squares line is shifted to contain the circle center,

A=A+dU +0'V

The cylinder radius is 7 and the algorithm in the last subsection is applied to compute
h. That algorithm also shifts the line in the direction of W to A” 4 t W, where

A= A 4 Wmin ‘;‘ Wnax W

2.5.6 ELLIPSOIDS

An ellipsoid in standard axis-aligned form is

L=
| [t

[

3

(]

RMI =
o> |
L]

Tl

+ o+ =1

with center (0, 0, 0) and semiaxis lengths @ > 0, b > 0, and ¢ > 0. The axis directions
of the ellipse are (1, 0, 0), (0, 1, 0), and (0, 0, 1).
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Given a coordinate system with center C and orthonormal axis directions U; for
0 <i = 2, the ellipsoid with that center and axes is

X -C)Y'R'DRIX-C) =1,

where R = [{;'(; U, U,) is a rotation matrix, D = diag( lfdé, I/df, l/dzz} has positive
diagonal entries that are the squared semiaxis lengths, and X is the algebraic variable
for the equation. An equation (X — C)TM (X — C) = 1, where M isa positive definite
matrix, also represents an ellipsoid. The axes and semiaxis lengths are obtained by an
eigendecomposition M = RT DR (see Section B.2 in Appendix B).

The most general form for the ellipsoid is XTAX + b X + ¢ = 0, where A is pos-
itive definite. It is possible to algebraically manipulate this, analogous to completing
the square for a quadratic polynomial of one variable, and obtain the other form. The
centerisC = —A"~ ]b/z and the matrix is M = A/(bTA"b/tl — )

Axis-Aligned Ellipsoid

Givenaset of points { V; }'_p» asimple way to bound with an ellipsoid is to first generate
the axis-aligned box containing the points and establish the ratios of semiaxis lengths.
Let Pmin and Pmax be the vectors storing the minimum and maximum component
values. The center of the ellipsoid is C= (Pmax + Pmin)/2. The semiaxis lengths are
components of A(Pmax — Pmin)/2 = +(8p, 81, 82), where & > 0 is to be determined.
Let D = diag{1/(Ad0)?, 1/(A8,), 1/(A82)%}. The ellipsoidis (X — C)TE(X — C) =1,
where E = D/ max;{(\_/,- - C_T)TD{‘:’,- - 5‘)}.

Fitting Points with a Gaussian Distribution

This method is similar to the one used for fitting points with an oriented box. The
mean of the points is used for the center of the ellipsoid, and the eigenvectors of
the covariance matrix are used for the axes. The eigenvalues are used in the same
way as the vector (80, 81, 87) in the fit with an axis- a]lgned elhpsmd The ell]psmd is
(X —O)TE(X — C) =1, where E = (R"DR)/ max;{(V; — C)TR" DR(V; — O)}.

Minimum-Volume Ellipsoid

While the theory of such a fit has been worked out using randomized linear techniques
(Welzl 1991), an implementation is extremely difficult because it requires special-
case handlers for bounding point sets with up to nine points (the minimum-volume
sphere algorithm requires special-case handlers with up to four points). An alternative
is to use a constrained numerical minimization, something that is challenging but
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not impossible to implement. In either case, rapidly computing minimum-volume
ellipsoids is not possible at the moment for real-time applications.

26 DISTANCE METHODS

Calculating distances between points, linear components (line, ray, or line segment),
triangles, and rectangles is based on minimizing a quadratic function on a compact
set. The solution can be computed using methods of calculus. Generally, if two ob-
jects are parameterized as j((.’c') and ;’(?] forse AC R"and 7 € B C [R™, then the
squared distance between two points, one from each set, is Q(5, 1) = |5((3:) — f’(?}]z
for (§,7) € A x B C R" x R™. This is a continuously differentiable function whose
minimum occurs either at an interior point of A x B, in which case %(QJ — 5, or at
a boundary point of A x B, in which case the problem is reduced to minimizing a
quadratic function in spaces with dimension smaller than n + m. Thus, the algorithm
is recursive in dimension.

2.6.1 POINT TO LINEAR COMPONENT

o 'u-
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The following construction applies in any dimension, not just in three dimensions.
Let the point | be P. A line is parameterized as L(t) =B + 1M, where B is a point
on the line, M is the line direction, and r € E. A ray is of the same form but with
restriction 1 = 0. A line segment is restricted even further with r € [0, 1].
The closest point on the line to P is the projection of P onto the line, Q =
B+ rnM where
M.(P—B)
= ——=—=—.
M-M

The distance from P to the line is

=|P = (B + 1oM)]. (2.14)

Iffy = 0, then the closest point on the ray to P is B.Forty > 0, the projection B+ tM
is the closest point. The distance from P to the ray is

|P — B, 10 <0

- - - . (2.15)
|P — (B +fQM)‘, fh=0

Finally, if g > 1, then the closest point on the line segment to P is B + M.Thedistance
from P to the line segment is
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II—J—§|1 IQSO
D=1 |P—(B+1M) 0<top<1- (2.16)
|P—(B+M|, f=>1

The division by M - M is the most expensive algebraic operation. The implemen-
tation should defer the division as late as possible. The pseudocode is given below. The
returned quantity is squared distance and the segment parameter of the closest point
is also made available.

float SquaredDistancePointSegment (Point P, Segment segment,
float& t)

{
diff = P - segment.B;
t = Dot(segment.M,diff);
if (t>0)
{
dotMM = Dot(segment.m,segment.m);
if (t < dotMM )
{
t = t/dotMM;
diff = diff - t*segment.M;
}
else
{
t=1:
diff = diff - segment.M;
}
}
else
{
t=20;
}
return Dot(diff,diff);
}

It is also possible to implement a point-to-segment distance algorithm without
divisions, but it requires storing more information with the linear component. The
line segment can be represented in the style of oriented boxes, C +tU, where U
is a unit-length vector and ¢ € [—r, r]. The line segment data structure still stores
two vector quantities, but must additionally store r. Given two end points initially,
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preprocessing time includes computing U, an operation that requires an inverse
square root. The pseudocode is

float SquaredDistancePointSegment (Point P, Segment segment,
floatd& t)
{
diff = P - segment.C:
t = Dot(segment.U,diff):

if ( t < -segment.r )
t = -segment.r;

else if ( t > segment.r )
t = segment.r:

diff = diff - t*segment.U:
return Dot(diff,diff):

A further small speedup (on average) is possible by allowing the line segment to
store rU in addition to » and U. The pseudocode is

float SquaredDistancePointSegment (Point P, Segment segment,
float& t)

{
diff = P - segment.C:
t = Dot(segment.U,diff);

if ( t < -segment.r )
{
t = -segment.r;
diff = diff + segment.rU:

}
else if ( t > segment.r )
{
t = segment.r;
diff = diff - segment.rU:
}
else
{
diff = diff - t*segment.U;
}

return Dot(diff.diff);
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The six possibilities for I x J.

2.6.2 LINEAR COMPONENT TO LINEAR COMPONENT
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The two linear components are Izg(s) = Bn + sﬂu fors e/ c Rand E.l{r) = 51 +
tM, for t €.J C R. The first component is a line if / =R, arayif 7 = [0, ), or a
segment if / = [0, 1]. The second component is similarly classified.

The squared-distance function for any two points on the linear components is
(s, 1) = 1,?_0(3) — f.l(rjl2 for (s, 1) € I x J. The function is quadratic in s and r,

Q(s, 1) = as® + 2bst + c1* + 2ds + 2et + f,

w_here t_{ = ﬂ-f-!() . ﬂ:l(), b_.= —1‘_::4'0 - ﬂ_;f_!, c =_.A-:f] . A‘;f;, d= ﬂ_f.fo . (B(] - 51]‘ €= —ﬂ;f] .
(Bo — By), and f = (Bo — By) - (By — Bi1). Quadratics are classified by the sign of
ac — b, For function Q,

ac —b* = (Mo - Mo)(My - My) — (Mg - M) = |Mo x M|? > 0.

Ifac — b? > 0, then the two linear components are not parallel and the graph of Q is
a paraboloid. If ac — b? = 0, then the two line segments are parallel and the graph of
Q is a parabolic cylinder.

The goal is to minimize Q(s, 1) over the domain [ x J. Since Q is a continuously
differentiable function, the minimum occurs either at an interior point of the domain
where the gradient @Q = 2(as + br +d, bs + ¢t + ¢) = (0, 0) or at a point on the
boundary of the domain. Figure 2.1 shows the six possibilities for / x J. The plane is
partitioned into regions in which P can live. Each region is handled differently in the
distance calculations.
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Line to Line

If the lines are not parallel (ac — b* > 0), then the minimum distance must occur
when §Q = (0, 0). The two equations in two unknowns can be solved for s = (be —
cd)/(ac — bYandt = (bd — ae)/(ac — b?).If thelines are parallel, only one equation
from VQ = (0, 0) is independent. Any choice of s and 1 satisfying this equation will
produce a pair of closest points on the lines. The simplest choice is s = —d/a and
t = 0. The pseudocode is

float SquaredDistancelinelLine (Line 1ine0, Line linel, float& s,
float& t)
{
diff = 1ine0.B - 1inel.B;
a = Dot(1ine0.M,1ine0.M);
b = -Dot(1ine0.M,1inel.M);
c = Dot(linel.M,linel.M);
d = Dot(line0.M,diff);
f = Dot(diff,diff);
det = |a*c-b*b|; // = |Cross(1ine0.M,linel.M)|*2 >= 0

if ( Positive(det) )

{

// lines are not parallel

e = -Dot(linel.M,diff);

invDet = 1/det;

s = (b*e-c*d)*invDet;

t = (b*d-a*e)*invDet;

return s*(a*s+b*t+2*d)+t*(b*s+c*t+2*e)+f;

else

// lines are parallel, select any closest pair of points
s = -d/a;

t =0;

return d*s+f;

The code Positive(det) is a tolerance test for parallelism. If § = |ac — b*| =
My x A_/h |, a simple absolute error test such as § > € is possible, but assumes the
error tolerance is based on knowing the lengths of the direction vectors. It would be
better to use a relative error that takes into account the lengths of the line directions,
§ > €|My||M;|. The lengths of the line directions can be stored with the lines to be
used for this test. If that is not desired, the squared lengths should be used and the test
becomes 8% = €2|ab.
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Line to Ray or Segment

Similar algorithms can be written for line to ray and line to segment. The source code
on the CD-ROM contains implementations for them.

Ray to Ray or Segment, and Segment to Segment

These cases are slightly more complicated because of the presence of the corner
points in the st-domain. The description here is for segment-to-segment calculations.
Similar algorithms can be written for the other cases, and the source code on the CD-
ROM contains implementations for them.

When ac — b* > 0, the line segments are not parallel. The gradient of Q is zero
only when 5 = (be — cd)/(ac — b*yandt = (bd — ae)/(ac — bH).If (5,7) € [0, 1]2,
then the minimum of Q is found. Otherwise, the minimum must occur on the
boundary of the square. The eight regions referred to in the remaining discussion
are those shown in Figure 2.1.

Suppose (5, 1) is in region 1. The level curves of Q are those curves in the si-
plane for which Q is a constant. Since the graph of Q is a paraboloid, the level curves
are ellipses. At the point where VQ = (0, 0), the level curve degenerates to a single
point (5, 7). The global minimum of Q occurs there, call it Vi, As the level values
V increase from Vpin, the corresponding ellipses are increasingly further away from
(5,1). There is a smallest level value V; for which the corresponding ellipse (implicitly
defined by Q = Vj) just touches the unit square edge s = 1 ata valuer = 1, € [0, 1]. For
level values V < V), the corresponding ellipses do not intersect the unit square. For
level values V > Vy, portions of the unit square lie inside the corresponding ellipses. In
particular, any points of intersection of such an ellipse with the edge must have a level
value V > V;. Therefore, Q(1,1) > Q(1, tg) fort € [0, 1] and 1 # #,. The point (1, ty)
provides the minimum squared distance between two points on the 3D line segments.
The point on the first line segment is an end point, and the point on the second line
segment is interior to that segment. Figure 2.2 illustrates the idea by showing various
level curves.

An alternate way of visualizing where the minimum distance point occurs on the
boundary is to intersect the graph of O with the plane s = 1. The curve of intersection
is a parabola and is the graph of F (1) = Q(1,1¢) for r € [0, 1]. Now the problem has
been reduced by one dimension to minimizing a function F(t) for ¢ € [0, 1]. The
minimum of F(t) occurs either at an interior point of [0, 1], in which case F'(r) =0
at that point, or at an end point r = 0 or t = 1. Figure (2.2) shows the case when the
minimum occurs at an interior point. At that point the ellipse is tangent to the line
s = 1. In the end point cases, the ellipse may just touch one of the corners of the unit
square but not necessarily tangentially.

To distinguish between the interior point and end point cases, the same partition-
ing idea applies in the one-dimensional case. The interval [0, 1] partitions the real
line into three intervals,t < 0,7 € [0, 1], and t > 1. Let F'(f) = 0.1ff < 0, then F(t)
is an increasing function for ¢ € [0, 1]. The minimum restricted to [0, 1] must occur
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Figure 2.2

0=Vi<Vy
First contact
point (1, 1) vO=0
Q=Y
» 5
Q = V3 > VO

Various level curves Q(s, 1) = V.

at t = 0, in which case Q attains its minimum at (s, r) = (1, 0). If7 > 1, then F(r)
is a decreasing function for t € [0, 1]. The minimum for F occurs at t =1, and the
minimum for Q occursat (s, 1) = (1, 1). Otherwise, 7 € [0, 1], F attains its minimum
at 7, and Q attains its minimum at (s, t) = (1, 1.

The occurrence of (5, ) in region 3, 5, or 7 is handled in the same way as when
the global minimum is in region 0. If (5, 7) is in region 3, then the minimum occurs at
(80, 1) for some s € [0, 1]. If (5, 1) is in region 5, then the minimum occurs at (0, tp)
for some t € [0, 1]. Finally, if (5, 7) is in region 7, then the minimum occurs at (so, 0)
for some 5o € [0, 1]. Determining if the first contact point is at an interior or end point
of the appropriate interval is handled the same as discussed earlier.

If (5, ) is in region 2, it is possible the level curve of Q that provides first contact
with the unit square touches either edge s = 1 or edge r = 1. Because the global
minimum occurs in region 2, the gradient at the corner (1, 1) cannot point inside
the unit square. IfVQ = (Qs, Qr), where Q; and Q; are the partial derivatives of 0,
it must be that the partial derivatives cannot both be negative. The choice ofedges =1
orf = 1 can be made based on the signs of Q,(1, 1) and Q,(1, 1). If 0,(1,1) > 0, then
the minimum must occur onedge? = 1since Q(s, 1) < Q(1, ) fors < 1 but closeto 1.
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Similarly, if Q,(1, 1) > 0, then the minimum must occur on edge s = 1. Determining
whether the minimum is interior to the edge or at an end point is handled as in the
case of region 1. The occurrence of (5, f) in regions 4, 6, and 8 is handled similarly.

Whenac — b? = 0, the gradient of Q is zero on an entire st-line, s = — (bt + d)/a
forallt € R. If any pair (s, t) satisfying this equation is in [0, 1], then that pair leads
to two points on the 3D lines that are closest. Otherwise, the minimum must occur
on the boundary of the square. Rather than solving the problem using minimization,
we take advantage of the fact that the line segments lie on parallel lines.

The origin of the first line is assumed to be By and the line direction is M. The
first line segment is parameterized as EU + 5 !:40 for s € [0, 1]. The second line segment
can be projected onto the first line. The end point B, can be represented as

B1 = Eo + Uoﬁ_;f() + a{),
where Uy is a vector orthogonal to M. The coefficient of M, is

Mo-(Bi—By)  d
agy=—="=""=——,
My - My a

where a and d are some coefficients of Q(s, r) defined earlier. The other end point
By + M, can be represented as

é] + 1\}1 = Bg +(T|ﬂ.;[0+6'1,
where E}l is a vector orthogonal to l':f[]. The coefficient of A_;fg is

My (M + B ~B)  b+d
I Mo - My - a ’

where b is also a coefficient of Q(s, 1). The problem now reduces to determining
the relative position of [min(ay, o), max(oy, a1)] with respect to [0, 1]. If the two
intervals are disjoint, then the minimum distance occurs at end points of the two 3D
line segments. If the two intervals overlap, then there are many pairs of points at which
the minimum distance is attained. In this case the implementation returns a pair of
points, an end point of one line and an interior point of the other line,

The implementation of the algorithm is designed so that at most one floating-
point division is used when computing the minimum distance and corresponding
closest points. Moreover, the division is deferred until it is needed. In some cases no
division is needed.

Quantities that are used throughout the code are computed first. In particular, the
values computed are D= Bn - Bl, a= Mo Mu, b= kMo Ml, c= Ml Ml, d=
Mo Dye=~— D and f = D - D. It must be determined immediately whether or
not thetwolme segmentﬁ are parallel. The quadratic classifier is § = ac — b*and is also
computed initially. The code actually computes § = |ac — b?| since it is possible for
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nearly parallel lines that some floating-point round-off errors lead to a small negative
quantity. Finally, § is compared to a floating-point tolerance value, If larger, the two
line segments are nonparallel and the code for that case is processed. If smaller, the
two line segments are assumed to be parallel and the code for that case is processed.

In the theoretical development, 5 = (be — ¢d) /8 and (bd — ae) /8 were computed
s0 that ﬁ’Q(E, ) = (0, 0). The location of the global minimum is then tested to see if
itis in the unit square [0, 1]. If so, then all the information to compute the minimum
distance is known. If not, then the boundary of the unit square must be tested. To
defer the division by 8, the code instead computes § = be — ¢d and = bd — ae and
tests for containment in [0, §]2, If in that set, then the divisions are performed. If not,
then the boundary of the unit square is tested. The general outline of the conditionals
for determining which region contains (3, 7) is

det = a*c-b*b; s = b*e-c*d; t = b*d-a*e;

if (s>0)
{
if (s <= det )
{
ifCt>0) {if (t <=det ) { region 0 } else {
region 3 } }
else { region 7 }
}
else
{
if Ct > 0) {if (t<=det) [ regionl ] else {
region 2 } }
else [ region 8 }
1
}
else

{
if Ct> 0) {if (t<=det) { region5 } else {
region 4 } }
else { region 6 }

The block of code for handling region 0 is
invDet = 1/det;
s *= invDet;
t *= invDet;
mdmmMmaﬁ@kdNMmLﬂmMMkdaﬁdmhmmmgm@m1h

f7 F(t) = Q(1,t) = (a+2*d+f)+2%(b+e)*t+(c)*t*2
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/! F'(t) = 2*((b+e)+c*t)
// F'(T) = 0 when T = -(b+e)/c

s = 1;

tmp = b+te;

if (tmp >0 ) // T <0, sominimum at t =0
t =20;:

else if ( -tmp > c ) // T > 1, so minimum at t =1
t=1;

else // 0 <¢=T <=1, so minimum at t =T
t = -tmp/c;

Notice that at most one division occurs in this block during run time. Code blocks for
regions 3, 5, and 7 are similar.
The block of code for handling region 2 is

// Q_s(1,1)/2 = a+b+d, 0Q_t(1,1)/2 = b+c+te
tmp = b+d;
if ( -tmp < a ) // Qs(1,1) >0
{
// F(s) = Q(s,1) = (c+2*e+f)+2*(b+d)*s+(a)*s"2
/1l F(s) = 2*((b+d)+a*s), F'(S) = 0 when S = -(b+d)/a < 1

t=1;

if Ctmp >0 ) // S <0, sominimum at s =0
s = 0;

else // 0 <= S <1, so minimum at s = S
s = -tmp/a;

}
else // Q_s(1,1) <=0
(
s =1;
tmp = b+e;
if ( -tmp < ¢ ) // Q_t(1,1) > 0O
{
J/ F(t) = Q(1,t) = (a+2*d+f)+2*(b+e)*t+(c)*t"2
[/ F'(t) = 2*((b+e)+c*t), F(T) = 0 when T =
// -(bte)/c <1
if (tmp>0) // T<0, sominimumat t =20
t=20
else // 0 <=T < 1, so minimum at t = T
t = -tmp/c;
)
else // Q t(l1,1) <= 0, gradient points to region 2, so
// minimum at t =1
t=1;
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Notice that at most one division occurs in this block during run time. Code blocks for
regions 4, 6, and 8 are similar.

For parallel line segments, the first information to be computed is the ordering
of op = —d/a and —(b + d)/a. Once the ordering is known, the two s-intervals can
be compared to determine minimum distance. Note that —d /a corresponds to f = 0
and —(b + d)/a corresponds to 1 = 1.

if (b>0)
{
// compare intervals [-(b+d)/a,-d/a] to [0,1]
if (d>0)
// -d/a <= 0, so minimum is at s =0, t =0
else if ( -d <= a )
// 0 < -d/a <= 1, so minimum is at s = -d/a, t =0

else
// minimum occurs at s = 1, need to determine t (see
/1 below)
}
else
{
// compare intervals [-d/a,-(b+d)/a] to [0,1]
if ( -d > a)
// 1 <= -d/a, so minimum is at s =1, t =0
else if (d <=0 )
// 0 <= -dfa < 1, so minimum is at s = -d/a, t = 0
else
// minimum occurs at s = 0, need to determine t (see
/1 below)
}

When b > 0, the remaining problem is to determine on which side of s =1 is
the quantity —(b + d)/a. This is done by first finding that value of ¢ for which
—(bt +d)/ae[—(b+d)/a,—d/a] correspondsto s = 1. Simplyset — (bt + d)/a =
1 and solve fort = —(a + d)/b. By the time this case is reached at run time, it is known
thata +d < 0,s0¢ > 0.Ift < 1, then the quantity can be used as is. But if r > 1, then
clip to t = 1. The block of code is

tmp = a+d;
if ( -tmp >=b ) t =1; else t = -tmp/b;

Again note that the division is deferred until actually needed.
When b < 0, the remaining problem is to determine on which side of s = 0 is the
quantity —(b + d)/a. Set —(bt + d)/a = 0 and solve for t = —d /b. By the time this
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case is reached at run time, it is known thatd > 0,sor > 0. If7 < 1, then the quantity
can be used as is. But if 1 > 1, then clip to r = 1. The block of code is

if (d> -b ) t=1; else t = -d/b;

Just as in the algorithm for distance from point to line segment, the algorithm for
distance from line segment to line segment can be implemented without divisions as
long as the line segments are represented as C + tU for unit-length U andt € [—r, r].

2.6.3 POINT TO TRIANGLE

ancz CoDpE

LIBERARY

Distance

FILENAME

DistVec3Tri3

The problem is to compute the minimum distance between a point P and a triangle
T(s,1)=B +sEq+1E for(s,r)e D={(s,1):5 €[0,1),r €[0,1),5 +1 < 1). The
minimum distance is computed by locating the values (5, 1) € D corresponding to the
point on the triangle closest to P. The squared-distance function for any point on the
triangle to Pis Q(s,t) = |f{s, 1) — F’lz for (s,1) € D. The function is quadratic in s
and?,

Qs, 1) = as? + 2bst + et + 2ds + 2et + f,

where a :..E“ '..Eﬂ’b_: EU..' Enc=E  Ed=Eq (B—P),e=—E - (B-P),
and f=(B—P)-(B— P).
Quadratics are classified by the sign of ac — b?. For function Q,

ac —b* = (Eq- Eq)(E, - E}) — (Eo- E\)? = |Eg x Ey* > 0.

The positivity is based on the assumption that the two edges Eq and E; of the
triangle are linearly independent, so their cross product is a nonzero vector. The goal
is to minimize Q(s, t) over D. Since Q is a continuously differentiable function,
the minimum occurs either at an interior point of D where the gradient VO =
2(as + bt +d, bs + ct + ¢) = (0, 0) or at a point on the boundary of D.

The gradient of Q is zero only when 5 = (be — cd)/(ac — b*) and 1 = (bd —
ae)/(ac — b*). 1f (5, 1) € D, then the minimum of Q is found. Otherwise, the min-
imum must occur on the boundary of the triangle. To find the correct boundary,
consider Figure 2.3, which shows a partitioning of the plane analogous to that shown
in Figure 2.1. The central triangle labeled region 0 is the domain of Q, (s,t) € D. If
(5,7) isin region 0, then the point on the triangle closest to P is interior to the triangle.

Suppose (5, 7) is in region 1. The level curves of Q are those curves in the st-
plane for which Q is a constant. Since the graph of Q is a paraboloid, the level
curves are ellipses. At the point where {?’Q = (0, 0), the level curve degenerates to
a single point (5, 7). The global minimum of Q occurs there, call it Vy,. As the
level values V increase from Vp,p, the corresponding ellipses are increasingly further
away from (5, 7). There is a smallest level value V; for which the corresponding ellipse
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Figure 2.3

Partitioning of the s¢-plane by triangle domain D.

(implicitly defined by Q = V}) just touches the triangle domain edge s + ¢t =1 ata
value s = s € [0, 1], 19 = 1 — sp. For level values V < Vj, the corresponding ellipses
do not intersect D. For level values V > Vy, portions of D lie inside the corresponding
ellipses. In particular, any points of intersection of such an ellipse with the edge must
have a level value V > V. Therefore, Q(s, 1 — ) > Q(sy, Ip) for s E_[O, 1] and s # so.
The point (s, fy) provides the minimum squared distance between P and the triangle.
The triangle point is an edge point. Figure 2.4 illustrates the idea by showing various
level curves.

An alternate way of visualizing where the minimum distance point occurs on the
boundary is to intersect the graph of Q with the plane s = 1. The curve of intersection
is a parabola and is the graph of F(s) = Q(s, 1 — s) for s € [0, 1]. Now the problem
has been reduced by one dimension to minimizing a function F(s) for s € [0, 1]. The
minimum of F(s) occurs either at an interior point of [0, 1], in which case F'(s) =0
at that point, or at an end point s = 0 or s = 1. Figure 2.4 shows the case when the
minimum occurs at an interior point of the edge. At that point the ellipse is tangent to
the line s 4+ ¢t = 1. In the end point cases, the ellipse may just touch one of the vertices
of D, but not necessarily tangentially.

To distinguish between the interior point and end point cases, the same partition-
ing idea applies in the one-dimensional case. The interval [0, 1] partitions the real line
into three intervals, s < 0,5 € [0, 1],and s > 1. Let F'(§) = 0. If § < 0, then F(s) is
an increasing function for s € [0, 1]. The minimum restricted to [0, 1] must occur
at s = 0, in which case Q attains its minimum at (s, ¢) = (0, 1). If § > 1, then F(s)
is a decreasing function for s € [0, 1]. The minimum for F occurs at s = 1 and the
minimum for Q occursat (s, 1) = (1, 0). Otherwise, 5 € [0, 1], F attains its minimum
at 5, and Q attains its minimum at (s, 1) = (5, 1 — §).

The occurrence of (¥, ) in region 3 or 5 is handled in the same way as when the
global minimum is in region 0. If (, 7) is in region 3, then the minimum occurs at
(0, 19) for some 1 € [0, 1]. If (5, 1) is in region 5, then the minimum occurs at (sp, 0)
for some sy € [0, 1]. Determining if the first contact point is at an interior or end point
of the appropriate interval is handled the same as discussed earlier.

If (5, f) is in region 2, it is possible the level curve of Q that provides first contact
with the unit square touches either edge s + ¢ = 1 or edge s = 0. Because the global
minimum occurs in region 2, the negative of the gradient at the corner (0, 1) cannot
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Q: V,c\/(,

First contact
point (1, 1p)

Various level curves Q(s, 1) =V

point inside D. 1f€’Q = (Q,, Q/), where Q, and Q; are the partial derivatives of Q,
it must be that (0, —1) - @Q(O, 1) and (1, —1) - %Q(O, 1) cannot both be negative.
The two vectors (0, —1) and (1, —1) are directions for the edges s =0and s + 1 = 1,
respectively. The choice of edge s + 1 = | or 5 = 0 can be made based on the signs
of (0, —1) - VQ(0, 1) and (1, —1) - VQ(0, 1). The same type of argument applies in
region 6. In region 4, the two quantities whose signs determine which edge contains
the minimum are (1, 0) - €’Q(0, 0)and (0, 1) - 6’(0, 0).

The implementation of the algorithm is designed so that at most one floating-
point division is used when computing the minimum distance and corresponding
closest points. Moreover, the division is deferred until it is needed, and in some cases
no division is needed.

Quantities that are used throughout the code are computed first. In particular, the
va]uescomputed are D = B Pa=FEy Eo@b=Ey E,,c=E, - Eid=Fq-D,
e=FE- D, and f= D - D. The code actually computes § = |ac — b?| since it is
possible for small edge lengths that some floating-point round-off errors lead to a
small negative quantity.

In the theoretical development, 5 = (be — ¢d)/8 and (bd — ae) /8 were computed
so that §Q(§, 1) = (0, 0). The location of the global minimum is then tested to see if
it is in the triangle domain D. If so, then the information to compute the minimum
distance is known. If not, then the boundary of D must be tested. To defer the
division by 8, the code instead computes § = be — ¢d and 1 = bd — ae and tests for
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containment in a scaled domain, s € [0, 8], ¢ € [0,8],and s + ¢t < &.Ifinthat set, then
the divisions are performed. If not, then the boundary of the unit square is tested. The
general outline of the conditionals for determining which region contains (s, ) is

det = a*c-b*b; s = b*e-c*d; t = b*d-a*e;

if ( s+t <= det )

{
if (s <0) {if ( t <0 ) { region 4} else { region 3} }
else if ( £t < 0 ) { region 5}
else { region 0 }

]

else

{
if ( s <0 ) { region 2 }
else if ( £t <0 ) { region 6 }
else { region 1 }

}

The block of code for handling region 0 is

invDet = 1/det;
s *= invDet;
t *= invDet;

and requires a single division.
The block of code for region 1 is

// F(s) = Q(s,l-s) = (a-2b+c)s”2 + 2(b-ct+d-e)s + (c+2e+f)
// F'(s)/2 = (a-2b+c)s + (b-c+d-e)

// F'(S) = 0 when S = (c+e-b-d)/(a-2b+c)

// a-2b+c = |E0-E1|"2 > 0, so only sign of c+e-b-d need be
// considered

if ( numer <= 0 )

{
s = 0;
}
else
{
denom = a-2*b+c; // positive quantity
s = ( numer >= denom ? 1 : numer/denom );
}
i e D
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The block of code for region 3 is given below. The block of code for region 5 is
similar.

// F(t) = Q(0,t) = ct"2 + et + f

[/ F'(t)/2 = ct+e

// F'(T) = 0 when T.= -e/c

s = 0;
t=(e>»>>07?20:(-e>c?l:-elc) )

The block of code for region 2 is given below. The blocks of code for regions 4 and
6 are similar.

// Grad(Q) = 2(as+bt+d,bs+ct+e)

// (0,-1)*Grad(Q(0,1)) = (0,-1)*(b+d,c+e) = -(c+e)

// (1,-1)*Grad(Q(0,1)) = (1,-1)*(b+d,c+e) = (b+d)-(c+e)
// min on edge s+t=1 if (1,-1)*Grad(Q(0,1)) > 0 )

// min on edge s=0 otherwise

tmp0 = B+D;
tmpl = C+E;
if ( tmpl > tmp0 ) // minimum on edge s+t=1
{
numer = tmpl - tmp0;
denom = A-2*B+C;
s = ( numer >= denom ? 1 : numer/denom );
t =1-s;
}
else // minimum on edge s=0
{
s =10;
t=(tmpl <=07?1: (E>07?20: -E/C) );

2.6.4 LINEAR COMPONENT TO TRIANGLE

LIBRARY

Distance

DistLin3Tri3

The problem is to compute the minimum distance between a linear component
L(r) B4rMforrelanda triangle T(s 1) = A +JF(] - rEl for (s,1) e D =
{(s,0):5€[0,1],1 €[0,1],5 +1 < 1}. Thesquared- dlstame functmn between a point
on the line and point on the triangle is Q(s, 1, r) = IT{s 1) — L(r)|? for (s,t,r) €
D = I,s0

QUJuﬁ:amfﬁwuuL+myz+2%w:+2%ﬁr+2mgr+2ms+2m:
+ 2}72!‘ + Cy
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-

where am = E(] En, 0.11 = El E1, ay = M M ag) = Eg E[, am = —Eg M,
ayp = —E| M b(}— Eo (A B}., bl (A - B) bz —M (A B) and
c=(A-B) (A-B).

The partitioning of R? into regions is similar to that shown in Figure 2.3, except
that the regions are extruded along the r-axis and split based on whether I is R, [0, 00),
or [0, 1]. For example, region 0 is an infinite prism (line case), semi-infinite prism (ray
case), or finite prism (segment case). As in the other distance calculation algorithms, if
the solution (5, 1, 7) to @Q = (0, 0, 0) lies in region 0, then the minimum occurs atan
interior point that is determined by the solution. Otherwise, the minimum occurs on
a face separating regions. The region that contains the zero gradient solution must
be determined and the correct faces between the regions must be analyzed to see
which one contains the global minimum. Also analogous to the other algorithms,
1nﬂm$mkmuﬂwdaammmﬂaﬁhnﬁmm&rVQ (0, 0, 0) is zero. In this case
the linear component is parallel to the triangle and must be handled separately.

Line to Triangle

The partitioning of R yields eight regions. The system of equations from VO =
(0,0,0)is Ap = —b, where A = [ai;], b= [b;],and p=[st r|T. The skeleton of
the pseudocode to handle the various regions is

bool SquaredDistancelineTriangle (Line line, Triangle triangle)
{
a00 = Dot(triangle.EO0,triangle.EQ);
a0l = Dot(triangle.E0,triangle.E1);
a02 = -Dot(triangle.E0,1ine.M);
all = Dot(triangle.El,triangle.E1l);
al?2 = -Dot(triangle.El,line.M);
a2?2 = Dot(line.M,Tine.M);
diff = triangle.A - line.B:
b0 = Dot(triangle.E0,diff);
bl = Dot(triangle.El,diff);
b2 = -Dot(line.M,diff);
c = Dot(diff,diff);

// cofactors to be used for determinant and inversion of
// matrix A
cof00 = all*a22 - al2*al2;
cof0l = a02*alz2 - all*a22;
cof02 = a0l*al2 - a02*all;
det = a00*cof00 + a0l*cof0l + a02*cof02:
if ( det < 0 )
{
// avoids having to do dual cases for each region
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det = -det;
b0 = -b0;
bl = -bl;
b2 = -b2;

}

if ( Positive(det) )
{
cofll = a00*az22 - a02*a02;
cofl2 = a02*a0l - a00*al2;
s = -(cof00*b0 + cof0l*bl + cof02*b2);
t = -(cof01*b0 + cofll*bl + cofl2*b2);

if ( s+t <= det )

{
if (s <0 ) {if (t<0) [ region 4 } else {

region 3 } }

else if ( t <0 ) { region5 }
else { region 0 )

)

else

{
if (s <0 ) { region 2}
else if ( t <0 ) { region 6 }
else { region 1 }

else

// Line is parallel to triangle. A closest pair of
// points can be found by computing distance from line
// to triangle edges (at most three line-to-segment
/Il tests).
}

The code Positive(det) should be a relative error test on the determinant with
an application-specified tolerance. The code for the case when the minimum occurs
at an interior point (region 0) is

invDet = l/det;
s = s*invDet;
t = t*invDet;

cof22 = a00*all - a0l*a0l;
r = -(cof02*b0 + cofl2*bl + cof22*b2)*invdet;
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The other regions involve the recursion in dimension. For example, in the case
of region 3, the minimum must occur when s = (0. The quadratic function to mini-
mize is Q1 (1, r) = ant® + axpr’ + 2aptr 4 2byr 4 2bsr + ¢ for (1,r) € [0, 1] x R.
The tr-plane is partitioned into three pieces, an infinite strip and two half planes.
The solution (7, 7) to €’Q1 = (0, 0) is computed. If it lies in the infinite strip, then
the minimum of @; (and hence @) is found. Otherwise it lies in one of the half
planes and the minimum must occur on the corresponding line boundary between
the half plane and the infinite strip. This is yet one more recursion in dimension.
Suppose that f < 0. The minimum must occur when ¢ = 0. The quadratic func-
tion to minimize is Q2(r) = axr? + 2byr + ¢ for r € R. The solution occurs when
dQ1/dr =0,s0r = —bhy/ay;. Similarly, if7 > 1, the quadratic function to minimize is
anr? + 2(ayy + ba)r + (ay) + 2by + ¢), sor = —(ay> + by) /azz. The pseudocode for
region 3 is

s =0;:
t = al2*b2 - a22*bl;
if (t>0)

{
// det = all*a22-al2*al2 = cof00 =
// |Cross(triangle.El,1ine.M)| > 0
if (t <= det )
{
invDet = 1/cof00;
t *= invDet:
r = (al2*bl - a22*b2)*invDet;
}
else
{
t=-1;
r = -(b2+al?2)/a22;
}
}
else
{
t=20;
r = -b2/a22;
!

The determinant is positive since it was already determined by this time that the
line is not parallel to the triangle, so it cannot be parallel to an edge of the triangle.
The code for the other regions is structured in a similar fashion,
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Ray to Triangle and Segment to Triangle

These are straightforward modifications of the line-to-triangle algorithm where the
domain of Q(s,r,r) is D x [0, 00) or D x [0, 1]. The partitioning of R* for a ray
now has 16 components, 8 for r = 0 and 8 for r < 0. The partitioning for a segment
has 24 components, 8 for r < 0, 8 for r € [0, 1], and 8 for r > 1. The source code on
the CD-ROM contains an implementation of this algorithm.

2.6.5 POINT TO RECTANGLE

QRCE CoODE

LIBRARY

Distance

FILENAME

DistVec3Rct3

The distance algorithm for point to rectangle appears to be nearly the same as the
distance algorithm for point to triangle except that the parameter domain is (s, t) €
[0, 1]2. The parameter plane is partitioned into nine regions by the liness = 0,5 = 1,
t =0,andt = L. This partition is shown in Figure 2.1, the lower-right diagram. There
is, however, one main difference. If the zero of the gradient of Q occurred in regions
2, 4, or 6 in the partition of the plane by the triangle parameters, then the minimum
of Q could occur on one of two edges. For rectangles, this is not the case. If the zero
of the gradient of the quadratic is in region 2, then the minimum must occur at the
vertex. The same argument is made for regions 4, 6, and 8. Because the edges of the
rectangle meet at a right angle, the level sets of the squared-distance function are in
fact circles, not ellipses. The closest point on the rectangle to the specified point P is
obtained by projecting P onto the plane of the rectangle; call this point Py. If Py is
inside the rectangle, then it is the closest point. If it is in regions 1, 3, 5, or 7, then
the closest point is obtained by projecting P onto the rectangle edge for that region.
Otherwise, P, is in one of region 2, 4, 6, or 8, and the closest point is the rectangle
vertex of that region.

Let the rectangle be B +sEy+ IEl for (s,1) & [0, 1]%. Define D=P — B.The
projection onto the plane of the rectangle is i’o =P+ sz"u + rf., where s = D - E[,
andt = D - E. Determination of the correct region and closest point requires a simple
analysis of s and 7. The pseudocode is

float SquaredDistancePointRectangle (Rectangle rectangle,
Point P)
{
D =P - rectangle.B;

s = Dot(rectangle.E0,D);
if (s >0)
{
dot0 = Dot(rectangle.EQ0,rectangle.E0);
if (s < dot0 )
D=0D - (s/dot0)*rectangle.EO;
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else
D =0D - rectangle.E0;
}
t = Dot(rectangle.E1,D);
if (t>0)
{

dotl = Dot(rectangle.El,rectangle.El);
if (t < dotl )

D=1D - (t/dotl)*rectangle.El;
else

D =0D - rectangle.El;

return Dot(D,D);

2.6.6 LINEAR COMPONENT TO RECTANGLE

LIBRARY

Distance

FILENAME

DistLin3Rct3

The problem is to compute the minimum distance between a linear component L(r)
=B+rMforrel and a rectangle R[s, 1) = A+ SEQ - rf€1 for (s,t) e D= {(s,1):
s€[0,1],1 € [0, 1], s + ¢ < 1). The squared-distance function between a point on the
line and a point on the rectangle is Q(s,1,r) = [fi’(s, 1) — [:(r)|2 for(s,1,rye D x I,
S0

Q(s,t,r)= apos® + ant® + aznr® + 2ag st + 2agasr + 2aytr + 2bgs + 2byt

+ 2byr + ¢,

where (In_(.) — En N E;}, CLH :_.E' . _.E]} (755 :_’ﬁ:‘f - é:f, ag_l = En - E]i (I{]z__= —E,—g - Jff,
a2 =..._E1.... M,_.bu i ED . (A — B), b1 = £| . (A — B], bz =-M- (A — B], and
c=(A—B)-(A—-B).

The partitioning of R* into regions is similar to that shown in Figure 2.1, the lower-
right diagram, except that the regions are extruded along the r-axis and split based on
whether I is I, [0, 00), or [0, 1]. For example, region 0 is an infinite square column
(line case), semi-infinite square column (ray case), or cube (segment case). As in the
other distance calculation algorithms, if the solution (5,1, 7) to VQ = (0, 0, 0) lies
in region 0, then the minimum occurs at an interior point that is determined by the
solution. Otherwise, the minimum occurs on a face separating regions. The region that
contains the zero gradient solution must be determined and the correct faces between
the regions must be analyzed to see which one contains the global minimum. Also
analogous to the other algorithms, it is possible that the determinant of the system for
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6Q:4m0ﬂ)mmminmmmwﬂmMWummmmmtBmmkhomemamge
and must be handled separately.

The partitioning of IR? yields nine regions. The system of equations from VQ =
(0,0,0)is Ap = —b, where A = [a;;],b = [b;],and p = [s 1 r]". The skeleton of the
pseudocode to handle the various regions is

bool SquaredDistancelineRectangle (Line line, Rectangle
rectangle)
{
a00 = Dot(rectangle.EO0,rectangle.EQ);
a0l = Dot(rectangle.EO0,rectangle.E1l);
a02 = -Dot(rectangle.EQ0,1ine.M);
all = Dot(rectangle.El,rectangle.El);
al2z = -Dot(rectangle.E1l,1ine.M);
az2 = Dot(line.M,line.M):
diff = rectangle.A - 1ine.B;
b0 = Dot(rectangle.E0,diff);
bl = Dot(rectangle.El,diff);
b2 = -Dot(line.M,diff);
¢ = Dot(diff,diff);

// cofactors to be used for determinant and inversion of
// matrix A
cof00 = all*a22 - al2*al2;
cof0l = a02*al2 - a0l*a22;
cof02 = al0l*al2 - a02*all;
det = a00*cof00 + a0l*cof0l + al02*cof02;
if ( det < 0)
{
// avoids having to do dual cases for each region
det = -det;
b0 = -b0;
bl = -bl;
b2 = -b2;
}

if ( Positive(det) )
{
cofll = a00*a22 - a02*a02;
cofl2 = a02*a0l - a00*al2;
s = -(cof00*b0 + cof01*bl + cof02*b2);
t = -(cof01*b0 + cofll*bl + cofl2*b2);
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if (s <0)

{
if (t<0) { region 6 }
else if ( t <= det ) { region 5 }
else { region 4 }

)

else if ( s <= det )

{
if ( t <0 ) [ region 7 }
else if ( t <= det ) { region 0 }
else { region 3 }
1
else
{
if (£t <0) { region 8 }
else if ( t <= det ) { region 1 }
else { region 2 }
}
}
else
{

// Line is parallel to rectangle. A closest pair of
// points can be found by computing distance from line
// to rectangle edges (at most four line-to-segment

// tests).

The code Positive(det) should be a relative error test on the determinant with
an application-specified tolerance. Code for the various regions is implemented in
exactly the way that the line-to-triangle code is built. That code is based on the same
recursive descent on dimension that was discussed earlier.

Ray to Rectangle and Segment to Rectangle

These are straightforward modifications of the line-to-rectangle algorithm where the
domain of Q(s, f,r) is D x [0, 00) or D x [0, 1]. The partitioning of R? for a ray
now has 18 components, 9 for r > 0 and 9 for r < 0. The partitioning for a segment
has 27 components, 9 forr < 0,9 forr € [0, 1], and 9 for r > 1. The source code on
the CD-ROM contains an implementation of this algorithm.
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2.6.7 TRIANGLE TO TRIANGLE

LIBRARY

Distance

FILENAME

DistTri3Tri3

Thf. quadr.itu. function for squared distance between two triangles is O (s, 19, 51, 17) =
m}[su, o) — Tl[u , 1}, where (s;, 1) € Dfor0 <i < 1,the trmngular domain defined
earlier. The domain of Q is the Cartesian product D x D  R*. The code structure
is straightforward, but there are a lot of cases. Since D partitions &* into 7 regions,
D x D partitions [2* into 49 regions. That is the number of cases within the code. The
pseudocode is not presented here because it is quite lengthy. The implementation is
given in the source code on the CD-ROM.,

2.6.8 TRIANGLE TO RECTANGLE

=
RCE CODE

LIBRARY

Distance

FILENAME

DistTri3Rct3

The quadratic function for squared dntamc between a triangle and a rectangle is
Qf(sp, 10, 51, 1) = |T(50, 1) — {\|, I]) , where (sq, ty) € D, the triangular domain
defined earlier, and (s, 1) € [0, 1]%. The domain of Q is the Cartesian product D x
[0, 1]* € B*. As in the triangle-to-triangle case, the code structure is straightforward,
but there are a lot of cases. Since I partitions [2” into 7 regions and [0, 1]* partitions
R? into 9 cases, D x [0, 1]° partitions B*into 63 regions, again the number of cases
within the code. The pseudocode is not presented here, but the implementation is
given in the source code on the CD-ROM.

2.6.9 RECTANGLE TO RECTANGLE

RCE CODE

LIBRARY

Distance

FILENAME

DistRect3Rct3

The largest chunk of code occurs for this case. The quadratic function for squared
distance between two rectangles is Q (s, fo, 51, 1) = Iku(su, to) — RN.\'], 1117, where
(si, 1) € [0, 1) for 0 < i = 1. The domain of Q is [0, 1]* € B*. Since [0, 1] partitions
R? into 9 regions, [0, 1]* partitions [R* into 81 cases, the number of cases within the
code. The pseudocode is not presented here as it is quite lengthy. The implementation
is given in the source code on the CD-ROM.

2.6.10 POINT TO ORIENTED BOX

The firstalgorithm treats the box as a solid. Any point inside the box has distance zero
from the box. Let the box have center C, orthonormal axes U;, and extents ¢;. Let the
point be written as P = C + \(,Uo + 85U, + wb« Solving for the coefficients yields
3= U (P - C ) foralli. Depending on the values of (s, 51, 52) relative to parameter
domain [—ep, eg] x [—ey, e1] x [—ea, e2], the closest point is either P itself, a face
point, an edge point, or a vertex. The pseudocode is
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float SquaredDistancePointSolidBox (Box box, Point P)
{

D =P - box.C;

sQ = Dot(box.U0,D):

s1 = Dot(box.U1,D);

s?2 = Dot(box.U2,D);

if ( sO <= -box.e0 )

D =D + box.e0*box.UO;
else if ( sO < box.e0 )

D =D - sO*box.UO;
else

D =0D - box.eO*box.U0;

if ( sl <= -box.el )

D =D + box.el*box.Ul;
else if ( sl < box.el )

D=0D - sl*¥box.Ul;
else

D=0 - box.el*box.Ul;

if ( s2 <= -box.e2 )

D =D + box.e2*box.UZ;
else if ( s2 < box.e2 )

D =D - s2*box.UZ;
else

D =D - box.e2*box.UZ;

return Dot(D.D):

For computing the distance from a point to a box treated just as a shell, the
algorithm is different for points inside the box. Points outside the box will have
the same distance whether we use the previous code or we use the code about to
be discussed. For a point P inside the box, it must be determined for each pair of
parallel faces which of the two faces the point is closest to. This determines to which
face the point must be projected in order to find the closest point on the shell. The
pseudocode is

float SquaredDistancePointHollowBox (Box box. Point P)
{

D=FP - box.C;

sO0 = Dot(box.U0,D);
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sl = Dot(box.U1,D);
s2 = Dot(box.U2,D);

if ( sO <= -box.e0 )

{
D=1D + box.e0*box.UQ;
if ( sl <= -box.el )
D =D + box.el*box.Ul:
else if ( sl < box.el )
D =D - sl*box.Ul;
else
D =D - box.el*box.Ul;
if ( s2 <= -box.e2 )
D - D+ box.e2*box.U2:
else if ( s2 < box.e2 )
D=10D - s2*box.U2;
else
D=0 - box.e2*box.U2;
}
else if ( sO < box.e0 )
{

D=D - sO0*box.U0D;

if ( s1 <= -box.el )

{
D =D + box.el*box.Ul;
if ( s2 <= -box.e2 )
D =D + box.e2*box.U2:
else if ( s2 < box.e2 )
D=D - s2*box.U2;
else
D =D - box.e2*box.U2;
}
else if ( sl < box.el )
{

D=0D - sl*¥box.ULl;

if ( s2 <= -box.e2 )
{

D =D + box.e2*box.U2;
}

63
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else if ( s2 < box.e2 )

{
// P is inside the box
dist = min(box.e0-|s0|,box.el-|s1|,box.e2-|s2]);
return dist*dist;

}
else
{
D =D - box.e2*box.UZ;
}
}
else
{
D =D - box.el*box.Ul;
if ( s2 <= -box.e2 )
D = D + box.e2*box.UZ2;
else if ( s2 < box.e2 )
D=0D - s2*box.U2;
else
D =D - box.e2*box.UZ;
]
}
else

D =D - box.e0*box.UO;

if ( sl <= -box.el )

D=0D + box.el*box.Ul;
else if ( s1 < box.el )

D=1D - sl*¥box.Ul;
else

D =D - box.el*box.Ul;

if ( s2 <= -box.e2 )
D =D + box.e2*box.UZ2;
else if ( s2 < box.e2 )
D=0D - s2*%box.UZ;
else
D =D - box.e2*box.U2;
}

return Dot(D,D);
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2.6.11 MISCELLANEOUS
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A library of distance calculation methods can be arbitrarily complex. There are many
other cases that can arise in an application. Chapter 6 discusses intersections of moving
spheres, capsules, or lozenges. Those routines require distance calculations not specif-
ically derived here: parallelogram to point, segment, rectangle, or parallelogram; and
parallelepiped to point, segment, rectangle, parallelogram, or parallelepiped. All of
these follow the pattern for setting up a quadratic function on a compact set and ana-
lyzing the regions obtained by partitioning the parameter space appropriately. Other
cases might involve distance from point to quadric surface, distance from point to
circle (in 3D) or disk, point to cylinder, line segment to these same quadratic-style
objects, ad infinitum. At any rate, such a library is never complete and will continually
evolve.

Point to Ellipse

We only need to solve this problem when the ellipse is axis-aligned. Oriented ellipses
can be rotated and translated to an axis-aligned ellipse centered at the origin and the
distance can be measured in that system. The basic idea can be found in an article by
John Hart (on computing distance, but between point and ellipsoid) in Graphic Geris
IV (Heckbert 1994).

Let (i, v) be the point in question. Let the ellipse be (x/a)> + (y/b)> = 1. The
closest point (x, y) on the ellipse to (u, v) must occur so that (x —u, y = v) is
normal to the ellipse. Since an ellipse normal is V((x/a)* + (y/b)}) = (x/a?, y/b),
the orthogonality condition implies that u — x =1 * x/a*and v — y =1 % y/b for
somet. Solving yields x = au/(t + a*) and y = b*u/(t + b?). Replacing in the ellipse
equation yields

( au 2+( bv )2_1
t +a? t+b2) 7

Multiplying through by the denominators yields the quartic polynomial

F(t) = (t + a2 + b)) — @i (1 + b°)* = b0 (1 + a*)* = 0.

The largest root T of the polynomial corresponds to the closest point on the ellipse.

A closed-form solution for the roots of a quartic polynomial exists and can be
used to compute the largest root. This root also can be found by a Newton's iteration
scheme. If (u, v) is inside the ellipse, then o = 0 isa good initial guess for the iteration.
If (u, v) is outside the ellipse, then to = max{a, b}+/u? + v* isa good initial guess. The
iteration itself is

tiv=t— Fu)/F(), i=0
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Some numerical issues need to be addressed. For (i, v) near the coordinate axes,
the algorithm is ill-conditioned because of the divisions of values near zero in the
equations relating (x, y) to (u, v). Those cases need to be handled separately. Also,
if a and b are large, then F(1;) can be quite large. In these cases consider uniformly
scaling the data to O (1) as floating-point numbers first, computing the distance, then
rescaling to get the distance in the original coordinates.

Point to Ellipsoid

The method of measuring distance is a straightforward generalization of that for an
ellipse. Let (ur, v, w) be the point in question. Let the ellipse be (x/a)* + (y/b)* +
(z/¢)? = 1. The closest point (x, v, z) on the ellipsoid to (&, v, w) must occur so
that (x —u, ¥y — v, z — w) is normal to the ellipsoid. Since an ellipsoid normal is
Vi(x/a) + (v/b)? + (z/0)?) = (x/a>, v/b?, z/c?), the orthogonality condition im-
pliesthatu —x =t +x/a*, v — y =t * y/b*,andw — z =t % 7 /c* for some . Solving
yields x = a%u/(r + a?), y = b2v/(t + b?), and z = 2w /(t + ¢2). Replacing in the
ellipsoid equation yields

( au )2+( hu )2+( cw )2_1
t +a? t+ b2 t4c2) T

Multiplying through by the denominators yields the sixth-degree polynomial

F(t) =t +a®2(r + 52 4 ¢D)? = 2P + b2 + ¢H)?

— b“’t‘z(f + aziz(t + - ('zu'l(t + az]z{r + bz]2 =0.

The largest root 1 of the polynomial corresponds to the closest point on the ellipse.

The largest root can be found by a Newton’s iteration scheme. If (u, v, w) is
inside the ellipse, then #; = 0 is a good initial guess for the iteration. If (i, v, w) is
outside the ellipse, then 1y = max(a, b, c}vu? + v? + w* is a good initial guess. The
iteration method is the same as before, ;1) =1, — F(t;)/F'(#;) for i = 0. The same
numerical issues that occur in the ellipse problem need to be addressed for ellipsoids.
For (u, v, w) near the coordinate planes, the algorithm is ill-conditioned because
of the divisions of values near zero in the equations relating (x, v, z) to (i, v, w).
These cases can be handled separately. Also, if a, b, and ¢ are large, F(1;) can be quite
large. In these cases consider uniformly scaling the data to O(1) as floating-point
numbers first, computing the distance, then rescaling to get the distance in the original
coordinates.
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Point to Quadratic Curve or Quadric Surface

This subsection describes an algorithm for computing the distance from a point in 2D
to a general quadratic curve defined implicitly by a second-degree quadratic equation
in two variables or from a point in 3D to a general quadric surface defined implicitly
by a second-degree quadratic equation in three variables.

The general quadratic equation is

Q(X)=X"AX +b'X +c=0,

where A is a symmetric N x N matrix (N = 2 or N = 3 not necessarily invertible,
for example, in the case of a cylinder or paraboloid), bisan N x 1 vector,and c is a
scalar. The parameter is X,an N x 1 vector. Given the surface Q(X) =0 and a point
Y, find the distance from ¥ to the surface and compute a closest point X.

(xeﬂmetncally, the closest point X on the surface to ¥ must satlsfy the condition
that ¥ — X is normal to the surface. Since the surface gradient V Q(X) is normal to
the surface, the algebraic condition for the closest point is

Y — X =1VO(X)=t(2AX + b)
for some scalar t. Therefore,
X=(+2A)""(Y —1th),

where 1 is the identity matrix. You could replace this equation for X into the general
quadratic equation to obtain a polynomial in 7 of at most sixth degree.

Instead of immediately replacing X in the quadratic equation, the problem can be
reduced to something simpler to code. Factor A using an eigendecomposition to ob-
tain A = RDRT, where R is an orthonormal matrix whose columns are eigenvectors
of A and where D is a diagonal matrix whose diagonal entries are the eigenvalues of
A. Then

X = (I +2tA)" (Y —1h)
= (RR" + 2RDR")"' (¥ — 1h)
=(R(I +2D)R")" (Y —1D)
=R +2tD)'"RY(Y —th)

=R(I +2D) Na— 1),
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where the last equation defines @ and B. Replacing in the quadratic equation and
simplifying yields

0=(@—tA)' (I +2D)"'DU +2D)"" @ —18) + BT +20D)" '@ — 1B) +c.
The inverse diagonal matrix is

(1 +2tD)"" =diag{1/(1 + 2tdy), 1/(1 + 2tdy))

for 2D or

(I +2tD)y~" = diag{1/(1 + 2tdy), 1/(1 + 21dy), 1/(1 + 2tdy))

for 3D. Multiplying through by ((1 4 2tdy)(1 + 2¢d;))* in 2D leads to a polynomial
of at most fourth degree. Multiplying through by ((1 + 2tdo)(1 + 2td) )1 + 2td>))?
in 3D leads to a polynomial equation of at most sixth degree.

The roots of the polynomial are computed and X = I+ 20A)" 1Y — th) is
computed for each root 1. The distances between X and ¥ are computed and the
minimum distance is selected from them.

Point to Circle in 3D

A circle in 3D is represented by a center C, a radius R, and a plane containing the
circle, N - (X — €) = 0, where N is a unit length normal to the plane. IfU and V
are also unit-length vectors so that U, V, and N form a right-handed orthonormal
coordinate system, then the circle is parameterized as

X= C + R(COS{Q}C’ +sin(9}f/) =C - RW[&}

forangles & € [0, 2r). Note that X — C] R, s0 the X values are all equidistant from
C. Moreover, N - (X — C) = 0since U and V are perpendicular to N, so the X lie in
the plane.

For each angle & € [0, 27r), the squared distance from a specified point P to the
corresponding circle point is

F(0)=|C+ RW(@®) — PP =R*+|C — P>+ 2R(C — P)- W.

The problem is to minimize F(#) by finding 6 such that F(6y) < F(6) for all 6 €
[0, 277). Since F is a periodic and differentiable function, the minimum must occur
when F'(6) = 0. Also, note that (C — P) - W should be negative and as large in
magnitude as possible to reduce the right-hand side in the definition of F. The
derivative is



aRCE COoDE

LIBRARY

Distance

FILENAME

DistCir3Cir3

2.6 Distance Methods 69

F'(8) = 2R(C — P) - W'(6),

where W - W' =0 since W - W =1 for all 6. The vector W' is unit ]ength since
W”— ~Wando=W . W' implies 0 = W-W' +W.W=—1+W.W. Finally,
W’ is perpendlcular to N since N - W =0 implies 0 = N - W'. All conditions imply
that W is parallel to the projection of P — C onto the plane and points in the same
direction.

Let O be the projection of P onto the plane. Then

0-C=b-C— (- (P-O)N.

The vector l3/[9) must be the normalized projection (Q — E)/|é - E'l. The closest
point on the circle to P is

X—c+r2=C
[Q —C|

assuming that 0+ C. The distance from point to circle is then \P X|.

If the projection of P is exactly the circle center C, then all points on the circle are
equidistant from C. The distance from point to circle is the length of the hypotenuse
of any right triangle whose vertices are C, P, and any circle point. The lengths of the
adjacent and opposite triangle sides are R and |P — C|, so the distance from point to

circle is |/ R + |P — C|2‘

Circle to Circle in 3D

The previous subsection described the formulation for a circle in three dimensions.
Using this formulation, let the two circles be Co + RoWo(0) for 6 € [0, 2m) and
Cy + Ry W\ (¢) for ¢ € [0, 2). The squared distance between any two points on the
circles is

F(8,¢)=1Ci — Co+ RiWi — RoWol?

= |f)¥2 + sz, + Rlz + 2R1b . ﬁ/l - ZRoRlﬁjo- ﬁﬁ — ZR(]E) . WU,
where D = E'] - E‘u. Since F is doubly periodic and continuously differentiable, its
global minimum must occur when VF = (0, 0). The partial derivatives are

aIF

*“—g = —ZR(]}-) . ﬁj':; — ZR(]Rlﬁ/(; . W]
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and

aF - = .
% == ZRlD . W; —2R(|RIWU' W{.
0

4Dc_ﬁnc co = cos(f), so = sin(f), ¢; = cos(¢), and§1 = sin(¢). Then_v_ifg = col}o +
soVo, Wi = Uy + 51 V), WG = —splUp + ¢o Vo, and W{ = —5,U, + ¢ V}. Setting the

partial derivatives equal to zero leads to

0 = splag + a1y + a251) + colas + ascy + assy)

0 = 51(bg + brco + basg) + ¢1 (b3 + bsyco + bsso),

where

ag = -D- E]{],(ﬂ = -—leln Uy ay= —R\U - 171,&3 =D- i}g, ay = ngl - Vo,
as=R\Vo- Vi,

by=—D - Uy, by = Rl - Uy, by = RoUy - Vo, by = D Vi, by=—RoUo- W,
bs = —Rgi}(}' 171.

In matrix form,
Mmoo Moy So | _ | @+ ajey +axsy a; +agc + dssy 50
M My o bisy + bscy b5y + bycy o

_ 0 _ 10
T =hosy +b3c)) | LA

Let M denote the 2 x 2 matrix on the left-hand side of the equation. Multiplying
by the adjoint of M yields

det(M) [So]:[ my —mm] [0] :l:—mm)}]‘ (2.17)
<p —Mip Mmoo A mopi
Summing the squares of the vector components and using s§ + ¢j = 1 yields

1,22 2
(moomyy — meye)” = A (mm +mo1) -

The above equation can be reduced to a polynomial of degree 8 whose roots ¢; €
[—1, 1] are the candidates to provide the global minimum of F. Formally computing
the determinant and using s7 = 1 — ¢ leads to

moomyy — moimyo = po(c1) + sipi(cy),
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where po(z) = Ef:o poiz and p1(z) = z;l=o P1i2- The coefficients are
poo = azby — ash;

po1 = aobs — asbs

poz = asby — axby + aiby — asbs

Pro = aohy — asb;

pn = aiby — asbs + axby — asb,.

Similarly,
may + mg, = qo(c1) + s1q1(c1),
where go(2) = E,—z:o qoiz' and q1(z) = Z::o q1iz. The coefficients are

qoo = ag + a3 + a} + a?
qo1 = 2(apa) + asay)
go2 = ai — a} + aj — a?
q10 = 2(apay + azas)

q11 = 2(ayaz + aqas).

Finally,
22 =ro(c1) + sin(c),
where ro(z) = }::?:0 roiz' and ri(z) = Z;:o r1;z. The coefficients are

ro@=b(2,
r0|=0

2 2
r02=b3 _ba

rip=0
Fi11 = 2b0b3.
Combining these yields

0= [(pé — roqo) + (1 — e} (pi — nql)] + 51 [2pop1 = roq1 — 190

71

= go(cy) + s181(c1), (2.18)
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where go(z) = E?:o goiz and g1(z) = Z?:o £1:2". The coefficients are

8oo = Pgo + pfo — qooroo

go1 = 2(poopor + Prop11) — goiroo — Gl

802 = by + 2poopo2 + Py — Pio — 402ro0 — qooroz — gy
803 =2(po1Poz — PioP11) — qoiroz + qrorn

804 = Pgy — P11 — Go2roz + quirn

£10 = 2Poop10 — 410f00

€11 =2(po1P1o + poop11) — giiroo — qoor

g12=2(po2P1o + Po1pP11) — q10702 — qo1r1

g13=2po2pn — gnro2 — qo2r.

The s, term can be eliminated by solving go = —s, g1 and squaring to obtain
0=gj — (1 —c)gi =h(en,
where h(z) = ¥°0_ hiz'. The coefficients are

ho = 8(2)0 - 3120

hy = 2(800801 — 10811)

hy = g8, + &1y — &1 + 2(800802 — &10812)

h3 = 2(g01802 + googo3 + 10811 — £11812 — §10813)

hy = g3, + &1 — 812 + 2(201803 + 200804 + £10812 — 811813)
hs = 2(g02803 + 801804 + 811812 + L10813 — £12813)

he = 833 + 81 — &1 + 2(802804 + £11813)

h7 = 2(803804 + £12813)

hg = gll),, + gf_q.

To find the minimum squared distance, all the real-valued roots of hi(ci) =0
are computed. For each ¢;, compute 53 = £,/1 — c% and choose either (or both)
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of these that satisfies Equation (2.18). For each pair (¢, 51), solve for (co, so) in
Equation (2.17). The main numerical issue to deal with is how close to zero is
det(M).

Ellipse to Ellipse in 3D
An ellipse in 3D is represented by a center c, unit-length axes U and V with corre-
sponding axis lengths @ and b, and a plane containing the ellipse, N - (X — C) =0,

where NV is a unit length normal to the plane, The vectors U, V, and N form a right-
handed orthonormal coordinate system. The ellipse is parameterized as

X=C+acos(®)U + bsin(®)V

for angles & € [0, 27). The ellipse is also defined by the two polynomial equations

N-(X—C)=0
- .. {o0v vvT\ . .
1
(X -0C) (—a2 + 0 )(X—C):l,

where the last equation is written as a quadratic form. The first equation defines a
plane, and the second equation defines an ellipsoid. The intersection of plane and
ellipsoid is an ellipse.

Solution as Polynomial System

The two ellipses are K/u (X - E‘u) =0and ()? - 6’(])-"AU(;( - 6{1) = 1, where Ag =
lj’of}oT/aé + f’offg/bz, and Nl . (l_} - C‘l) =0and (Y — E‘])TA[(? — E‘l) = 1, where
A= Qlﬁf/af + Dlvll/b%

The problem is to minimize the squared distance IS( - Y’IZ subject to the four
constraints mentioned above. The problem can be solved with the method of Lagrange

multipliers (Thomas and Finney 1988). Introduce four new parameters, «, f§, y, and
8, and minimize

F(X,Y;50,B,9,8) =X = Y+ a((X — Co)"Ap(X — Co) = 1)
+BNo- (X =Co) —0) + y((Y —CNTA (Y —=C) = 1)

+8(Ny - (¥ = C)) —0).
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Taking derivatives yields

F3=2(X —Y) + 2aA¢(X — Co) + BNy

Fy==2X —Y)+2yA|(Y — C)) + 8N,
= (X = Co)"Ag(X = Co) — 1

Fg=Np- (X — Co)

Fy=(¥ —Cp'A(Y = Cp -1

Fy=Ny - (Y = Cy).

Setting the last four equations to zero yields the four original constraints. Setting the
first equation to the zero vector and multiplying by (X — Cp)7 yields

a=-2(X - Co)"(X = V).

Setting the first equation to the zero vector and multiplying by N yields
B=—2NJ(X V).

Similar manipulations of the second equation yield

y=2Y -Cn"(X - ¥)

and

§=2N1(X - ).

The first two derivative equations become

Mo(X = ¥) = (RoN + ag(X = Co)(X = Co)T = 1) (X = T) =0
M(X — V)= (MN,T +A(Y —Cp(Y —C)' - 1) (X —¥)=0.

_ Observe that MnNu 0, MgAg(X Cy) =0, and Mo(Nn X (X C())) = —N.; X
(X Cp). Therefore, My = —WUW'/|W0E where Wy = Ny x (X — Cy). Similarly,
= —W1 WT/\ W{I where Wy = N, x (¥ — Cl) The previous displayed equations
are equwa]t.nt to Wn (X — ¥)=0and W (X =Y)=0.
The points X = (xp, X1, x7) and Y = (¥o, ¥1, ¥2) that attain minimum distance
between the two ellipses are solutions to six quadratic equations in six unknowns:
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polxp, X1, X2) = No- (X —Co)=0
pi(xp, X1, X2) = (X = Cp)TAp(X — 60) =1
P2 (X0, X1, X25 you Y1, ¥2) = (X — ¥) - Ny x (X — Co) =0
qo(yo, ¥1, ¥2) = Ni- (Y =C) =0
@1 (yo, 1, y2) = (¥ = C)TA(Y = Cp) =)
G2(x0, X1, X2, Y0, Y1, ¥2) = (X = ¥) - Ny x (¥ — C1) = 0.

On a computer algebra system that supports the resultant operation for eliminating
polynomial variables, the following set of operations leads to a polynomial in one
variable. Let resultant[ P, @, z] denote the resultant of polynomials P and Q where
the variable z is eliminated (for information on resultants, see Wee and Goldman
1995a, 1995b):

ro(Xo, X1, Yo, Y1, ¥2) = resultant[ pg, p2, x2]
ri(xo, x1) = resultant(p,, p2, x2]

ra(xq, x1, Yo, y1) = resultant[rg, g2, ¥2]
so(Xo, X1, X2, Yo, ¥1) = resultant{qgo, g2, y2]
s1(yo, ¥1) = resultant[q,, g2, ¥1]

52(x0, X1, Yo, V1) = resultant[so, pa, x2]
r3(xo, yo, x1) = resultant|[ra, ry, x1]

rs{xg, ¥o) = resultant[rs, 51, ¥

s3(x0, x1, yo) = resultant[sy, 51, y1]

54(xp, vo) = resultant|s3, ry, xi]

¢ (xg) = resultant[ry, 54, vo|.

For two circles, the degree of ¢ is 8. For a circle and an ellipse, the degree of ¢ is 12.
For two ellipses, the degree of ¢ is 16.

Trigonometric Solution
Let the two ellipses be

X= E‘U + ap cos{ﬂ}(}g + bg sin(ﬂ)i’g

Y = 61 +a cos(¢)f}1 + by sin(q‘b]l-;'l



76  Chapter 2 Geometrical Methods

for 6 € [0, 27) and ¢ € [0, 27). The squared distance between any two points on the
ellipses is F (0, ¢) = \)?{9) P(qﬁ)lz The problem is to minimize F (€, ¢).

Define co = cos((w‘) sy = sm(G) = cos(¢} and 5; = sm(q&) Compute deriva-
tives Fy = (X(ﬁ) — Y(Q‘)}) X' (#) and Fy = —(X(ﬂ} Y(rﬁ)) Y’(Q‘:) Setting these
equal to zero leads to the two polynomial equations in cp, o, ¢;, and s,. The two
polynomial constraints for the sines and cosines are also listed:

po = (ai — b§)soco + ao(aoo + @o1s1 + @o2¢1)s0 + bo(Boo + Porst + Poact)co = 0
= (aj — b})sic1 + ai(a@g + a1150 + a12¢0)s1 + bi(Bio + Pr1so + Praco)cy =0
Go=st+ct—1=0

q|=sf+c'f— 1=0.

This is a system of four quadratic polynomial equations in four unknowns and can
be solved with resultants:

ro(so, $1, €1) = resultant| pg, go, col
ry(s0, 81, o) = resultant[py, g1, ¢1]
ra(so, 81) = resultant[rg, g3, 1]
ry(sp, 51) = resultant[ry, qo, col

¢ (s0) = resultant[ra, r3, 51].

Alternatively, we can use the simple nature of gy and g, to do some of the elimi-
nation. Let pyp = @pso + Poco + Vosoco, where @g and By are linear polynomials in s,
and ¢. Similarly, py = a5 + Bic) + yisic1, where &) and ) are linear polynomials
in 59 and ¢o. Solving for ¢ in pg =0 and ¢; in p; =0, squaring, and using the g;
constraints leads to

ro = (1 — s3)(yoso + Bo)* — etgsg =0
n=1-sDs1 + 1) —aisi =0.
Using the ¢; constraints, write r; = rig + ri1ci—i, i =0, 1, where the r;; are polyno-

mials in s and s;. The terms r;g are degree 4 and the terms r;; are degree 3. Solving
for ¢p in ry = 0 and ¢, in ry = 0, squaring, and using the ¢; constraints leads to
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8
24,2 2 i
wo_—-(l—sl)rm—rm:E wojsg =0
Jj=0

4
— 2y,.2 2 _ J_
wy= (1 —sg)riy —rp= 2 :wuso—O.
=0

The coefficients w;; are polynomials in 5. The degrees of wqg through wgs, respec-
tively, are 4, 3, 4, 3, 4, 3, 2, 1, and 0. The degree of w) j is 8 — j. The total degree for
each of w; is 8.

The final elimination can be computed using a Bézout determinant, ¢(s,) =
det[e;;], where the underlying matrix is 8 x 8 and the entry is

min(8,17—i—j)

eij = Z Vi, 17—i—j—k>

k=max(9—i,9— )

where v j = woiwyj — wo;wy. Ifthe i or j index is out of range in the w terms, then
the term is assumed to be zero. The solutions to ¢ = 0 are the candidate points for s;.
For each sy, two ¢, values are computed using s + ¢} = 1. For each sy, the roots of
the polynomial w(so) are computed. For each sy, two ¢o values are computed using
55 + CS = 1. Qut of all such candidates, ].i’ — f’lz can be computed and the minimum
value is selected.

Numerical Solution

Neither algebraic method above seems reasonable. Each looks very slow to compute,
and the usual numerical problems with polynomials of large degree must be handled.
An iterative alternative is to implement a distance calculator for point to ellipse in three
dimensions. This involves a function of a single parameter, say, F (#) for 6 € [0, 27 ].
Use a numerical minimizer that does not require derivative calculation (Powell’s
method, for example) and minimize F on the interval [0, 27 ]. The scheme is iterative
and should converge rapidly to the solution.
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l nanutshell, agame engine is responsible for managing the data and artistic content
of the game and deciding what to draw on the computer screen and fiow to draw
it. The decisions are made at both a high and a low level. The high-level decisions
are handled by the game AT and by a scene graph management system. Game Al is
specific to the game itself and is not discussed in this book. Scene graph management
is a general topic that applies to most games and is discussed in this book. Chapter 4
provides the foundations for scene graphs and their manipulation. Chapters 5 through
12 cover specific types of objects and algorithms that are part of the scene graph system.

The low-level decisions on what and how to draw are the topic of this chapter.
Aspiring game programmers invariably want to implement a renderer whose job it
is to draw objects in the 3D world on a 2D computer screen. At first glance, build-
ing a renderer appears to be an easy task, but the frequency of questions occurring in
the graphics newsgroups about how to build a renderer is evidence that the task can
be quite formidable. The main goal of this chapter is to describe the three responsi-
bilities of a renderer; examining each responsibility in turn should make it easier to
understand how to implement a renderer.

The first responsibility of a renderer is to transform the 3D data in world space
into 3D data in view space, the latter specified by a camera model. View space provides

79
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a convenient coordinate system that supports the decision on what to draw. A second
transformation converts the data in view space to 2D data in screen space, a process
called projection. In this form the data can be drawn as pixels on the computer screen.
Sections 3.1, 3.2, and 3.3 describe the various spaces and the transformations between
them,

The second responsibility of a renderer is to eliminate portions of the data that are
not visible to the observer whose location is specified as part of the camera model. This
involves the concepts of culling (a process that determines if an object is completely
out of view) and clipping (a process that splits an object into smaller pieces, some of
them visible; the invisible pieces are discarded by the renderer, and the visible pieces
are further processed). Section 3.4 describes culling and clipping in general terms.
Section 3.7 contains a specific algorithm for clipping that is quite efficient.

The third responsibility of a renderer is to draw the 2D data that has been trans-
formed to screen space. This process is called rasterization and the component of the
renderer that does the work is called a rasterizer. The majority of time for rendering
is spent in the rasterizer. Current-generation graphics cards are designed to accelerate
the rasterization, but it is possible to implement one that uses only the CPU. Sections
3.5 and 3.6 describe the ideas of rasterization, including how to compute the final
colors of the pixels based on various effects such as lighting, materials, textures, trans-
parency, and fogging. A discussion of higher-level special effects is found in Chapter
13, but the application of these effects is usually the responsibility of the scene graph
management system.

31 MODEL AND WORLD COORDINATES

Artists develop most game content in coordinate systems specific to each model, called
the model coordinate system. In a typical game, many objects are built. Each must be
placed relative to the other objects by applying transformations (translation, scaling,
orientation). Moreover, the transformations that position and orient an object might
be relative to another object, not to the final world coordinate system of the game. A
hierarchical organization of data, a topic described in Chapter 4, becomes essential at
this point. For each object to be drawn, the hierarchical organization provides a single
transformation that converts the model coordinate system of the object into the world
coordinate system. Once in world coordinates, the data can be further transformed
into view space coordinates and projected onto the viewing plane. Section 3.2 defines
and discusses perspective projection. View space and viewing planes are considered
in Section 3.3.

3.2 PERSPECTIVE PROJECTION

Consider a point E, called the eye point, and a plane N - X = d, called the view plane,
not containing the point. Without loss of generality, assume that E is on the positive
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side of the plane; that is, N - E > d. The perspective projection of a point X onto
the view plane is the intersection of the ray starting at E that also contains X. The
projection exists as long as N-E>N-X.If¥ =(1—1)E + X is the projection,

then, since it lies on the plane, it must be that N - ¥ = d. This equation can be solved
for r to obtain

—-_— (3.1)
N-E-N-X

Both the numerator and denominator are positive, so ¢ > 0 is necessary. A canoni-
cal model for perspective projection makes it somewhat easier to express the concepts.
Let the eye point be the origin E = (0,0, 0), and let the view plane be z =n = 0.
The plane normal is N = (0,0, —1), and the plane constant is d = —n. Equation
(3.1) yields t = n/z. The perspective projection of (x, ¥, z) onto the view plane is
(nx/z,ny/z, n). Because the view plane remains fixed at z = n, the projected points
can be written as 2-tuples, (nx/z, ny/z). A convenient variable to define is w = z/n.
The view plane is w = 1, and the projected point is (x/w, y/w).

3.2.1 LINES PROJECT TO LINES

In perspective projections, line segments are projected to line segments. Consider
a line segment with end points Qi = (xi, yi» 2i) for i =0, 1. Let the corresponding
projected pomts be P, (xi/wiy yi/wi) with w; = z;/n for i =0, 1. The 3D line
segment is Q(s) = Qo + \(Q| Qo) for s € 10, 1]. For each s, let P(s) be the
projection of Q(s). Thus,

Q(s) = (xp + 5(x; — x0), Yo + s(¥1 — yo), zo + 5(z1 — zo))

and

sy = (2ot s(x1 —x0) Yo+ 51— o) )
' wy + s(wy — wg) wy + s(w; — wp)

Xo wys X Xn Yo
=1+ 1], —
up wy + (wy — wp)s \ wy wo wp

+ uns M Mo
wg + (w; — wp)s \w wy

=P+ — (P — Py)
-0 wq + (w) — we)s ! o

=Py +5(P - Py),
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where the last equality defines

- ws
f = w————— 3.2
wy + (W, — wo)s (3:2)

a quantity that is also in the interval [0, 1]. We have obtained a parametric equation
for a 2D line segment with end points Pyand Py, so in fact line segments are projected
to line segments. It is possible that the projected segment is a single point, a degen-
erate case. The inverse mapping s(5) is actually important for perspectively correct
rasterization, as we will see later:

wos

S=——0r. (33)
un + (wy — wy)s

Equation (3.2) has more to say about perspective projection. Assuming w; > wy,
auniform change in s does not result in a uniform change in §. The graph of § = F(s)
is shown in Figure 3.1. The first derivative is F'(s) = wow;/[wo + s(w; — wy)]* > 0,
and the second derivative is F”(s) = —2wow;/[wg + s (wy — wp)]* < 0. The slopes of
the graph at the end points are F'(0) = w;/wg > 1and F'(1) = wy/w; < 1. Since the
second derivative is always negative, the graph is concave. An intuitive interpretation
is to select a set of uniformly spaced points on the 3D line segment. The projections
of these points are not uniformly spaced. More specifically, the spacing between the
projected points decreases as § increases from 0 to 1. The relationship between s and §
and limited floating-point precision are what contribute to depth buffering artifacts,
to be discussed later.
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3.2.2 TRIANGLES PROJECT TO TRIANGLES

Because line segments project to line segments, we can immediately assume that tri-
angles project to triangles, although possibly degenerating to a line segment. However,
let’s derive the parametric relationships that are analogous to those of Equations (3.2)
and (3.3) anyway.

Let Q; = (xj, ¥, z;) for i =0, 1, 2 be the vertices of a triangle. The triangle is
specified parametrically as Q(S, = Qg + .\'(é| - Qn) + r(éz - @0) for0<s <1,
0<t<1,and s +1 < L. Let the projected points for the é,— be F’,— = (x;/wi, yi/wi)
fori =0, 1,2. For cach s and , let P(s, 1) be the projection of Q(s, t). Some algebra
will show that

Pls.t) = ( Xo+ 50 —xo) +1(x2—x0)  yo+s(y— yo) +1(y2 — yo) )
T Nwo + s(wy — wo) + 1wz — wo) " wo + s(wy — wo) + 1 (wy — wo)

Xo uns X] Xo Yo
T \we | wo A+ (wy — we)s + (wa —wodr \wy wp /) wy

uns (y, Yo ))
+ —_— e —
wy + (wy — wo)s + (wy — wolt \wy  wy

- wls - -
Sy (Py — Eo)
O Wo + (wy — wo)s + (wa — wo)t ’

wat

P, — Py).
wy + (wy — we)s + (wr — wo)t (P2 0)

Define

(5(s, 1), (s, 1)) = s, war) . (3.4)

wp + (w1 — wo)s + (w2 — wolt

The inverse mapping can be used by the rasterizers for perspectively correct triangle
rasterization. The inverse is

- (wowss, wow )
LEL s, T)) = = =, 35
(S(" ) (s )) wiw; + walwe — wy)s + wy(wy — wa)r (3.5)

3.2.3 CoNIcS PROJECT TO CONICS

Showing that the pm]ectlon of a conic section is itself a conic section requires a bit
more algebra Let Q, = (xj, yi,» z;) for i =0, 1, 2 be points such that Q] Qu and
Qz - Qg are unit length and orthogonal The points in the piane containing the Q,
are represented by Q(s‘ 1) = Qn + \(Q1 Qo) + 1 Qz Qg) forseRandr e R.
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Within that plane a conic section is defined by
As® + Bst + Ct* 4+ Ds + Et + F =0. (3.6)

To show that the projection is also a conic, substitute the formulas in Equation (3.5)
into Equation (3.6) to obtain

AP+ Bst+Cr2+ Ds+ Et + F =0, (3.7)

2

A=uw? (u'ﬁA + wolwy — wy) D + (wy — wl}zF)

B = ww; (!US’B + wolwy — wa) D + wolwy — w)E + 2(wy — wy)(wg — wg)F)
C= urf (u'éC + wplwg — w7 E + (wy — wz)zF)
D= uuw% (woD + 2(wo — w) F)

E = wiw, (wok + 2(wg — wy) F)
F= wfng.

A special case is D = E = F =0, in which case the conic is centered at Qy
and has axes (:7] - Qn and @2 - QD. Consequently, A= w%w%A, B= wlwgwéB,
C = wiwiC, and B> — 4AC = B’ — 4AC. The sign of B2 — 4AC is preserved, so
ellipses are mapped to ellipses, hyperbolas are mapped to hyperbolas, and parabolas
are mapped to parabolas.

33 CAMERA MODELS

The world is a very big place. And not all of it can be completely processed in a
reasonable amount of time to be displayed on a computer screen. We can make
things easier by limiting the processing to those objects in a region of space called
the view volume. All objects that are completely outside the view volume are not
processed. Such objects are said to be culled. All objects totally inside the view volume
are processed for display on the computer screen. Objects that intersect the boundary
of the view volume must be clipped against the boundary, then processed for display
on the computer screen.

The display process includes projection onto a view plane. Moreover, only a portion
of the view plane can be displayed on a computer screen at one time. A rectangular
region of interest, called a viewport, is selected for display. Although parallel projection
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Figure 3.2 The standard camera model.

is possible, most 3D game engines use perspective projection, so we will restrict further
discussion to this case. An infinite pyramid is formed by the eye point as vertex and
four planar sides, each side containing the eye point and an edge of the viewport. If
additionally the pyramid is limited by two planes, both parallel to the view plane, the
resulting view volume is called the view frustum. The parallel plane closest to the eye
point is called the near plane and the plane farthest from the eye point is called the far
plane. The combination of an eye point, a view plane, a viewport, and view frustum
is called a camera model. In this book we will assume that the view plane is the same
as the near plane.

3.3,1 STANDARD CAMERA MODEL

The simplest camera model for perspective projection occurs when the eye point is
the origin (0, 0, 0), the near plane is z = n > 0, the far plane is z = f > n, and the
viewport is the rectangle defined by / < x <r and b < y <t. The view frustum is
limited on the sides by the left plane x = {z/n, the right plane x = rz/n, the top plane
y =tz/n, and the bottom plane y = bz/n. In nearly all applications, the viewport
is chosen with | = —r and b = —1 so that the frustum is part of an orthogonal
pyramid. The camera is assumed to be located at the eye point and has a set of
coordinate axes associated with it, the left direction L =(1,0,0), the up direction
U = (0, 1,0), and the view direction D = (0, 0, 1). Figure 3.2 illustrates the camera
model. A typical point (x, y, z) inside the view frustum is shown together with its
projection (nx/z, ny/z,n) = (x/w, y/w, n) onto the view plane.

The axis of the view frustum is the ray that contains both the origin and the center
point of the viewport. This ray is parameterized as ((r + 1)z/(2n), (t + b)z/(2n), 2)
for z € [n, f]. It is convenient to transform the (possibly) skewed view frustum into
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il

an orthogonal frustum with viewport [—1, 1]2. We accomplish this by removing the
skew, then scaling the result:

, 2 ( (r+4')z)
K= X —
r—1 2n

;2 . +b)
Y T t—b (} 2n ) (3.8)

The view frustum is now delimited by x" € [—1, 1], y" € [—1,1],and z € [n, f]. The
projection is (x"/w, ¥'/w) with w = z/n.

It is also convenient to transform the z values in [n, f] so that the new range
is [0, 1]. This is somewhat tricky because the transformation should be consistent
with the perspective projection. The linear transformation z' = (z — n)/(f — n) is
not the correct one to use. Equation (3.2) saves the day. The z values in [n, f] can
be written as z = (1 — s)n + sf for s € [0, 1]. We can use z' = 5(5) to rescale so that
z'€10,1].Solving fors = (z —n)/(f — n), usingwg = l andw) = f/n,and replacing
in Equation (3.2) yields

:’=f{n (1—;1). (3.9)

The point (x, y', Z) is specified in a right-handed coordinate system. However,
the computer screen is treated as a left-handed system. The x-axis points to the
right, the y-axis points up, and the z-axis points into the screen. A simple way to
change handedness is to change sign on one of the coordinates. For an engine that
includes its own geometric pipeline (e.g., one built on top of Glide), any coordinate
is as good as another. For an engine that is built on top of an API (e.g., OpenGL or
Direct3D), the choice is determined since those APIs have a predetermined format for
the transformation specified as a 4 x 4 homogeneous matrix H. Typically, the entries
of the z-column of the matrix have their signs changed. The matrix specification of
the projection may lead to some confusion because of the properties of homogeneous
matrices and vectors.

Let V be a 4 x 1 homogeneous vector. The projected values obtained from HV
and ¢H V for any ¢ # 0 are the same because of the division by the w-term. Even more
confusing is that OpenGL maps the z values into [—1, 1], but the above derivation
and Direct3D map the z values into [0, 1]. Homogeneous matrices representing the
projection are

2 !
U 0
2 b
0 :—"b :Th 0
JF’[().l] = 0 0 __f . n (3.10)
f—n —n
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and
2r +{
20 oo 0
2, b
P O ! (3.11)
[-11] = "4 n 2fn . .
0 0 ~{—" -L
o 0o -1 | o

In either case, let H},,; denote the homogeneous projection matrix.

3.3.2 GENERAL CAMERA MODEL

In the standard camera model, we assume that the eye point is at the origin and that
the camera looks in the direction of the z-axis. In general, the eye point can occur
anywhere in space and the camera can be arbitrarily oriented. Specifically, let E be
the eye point and let the camera have left direction L, up vector U, and view direction
Dsothat L, U and D form a right-handed coordinate system. Consequently, the ma-
trix R = [L | U | D] whose columns are the 9peclﬁcd vectors is orthonormal and has
determinant one. The view plane originis P = E + nD, a point that is n units of dis-
tance from the eye point. Let the viewport be defined by the rectangle in the view plane
whose corners are P + rL +tU, P -+-rL+bU P+IL+1tU,and P +IL + bU.
We can write any world point X in terms of the camera’s coordinate system as
X=E + RY and then solve to obtain ¥ = RT(X E) This transformation is called
the view transformation. The camera model in the ¥ coordinate system is in standard
form. The homogeneous transformation representing the view transformation is

R -RUE
HViC\\’ = o . (3.12)
0’ 1

The matrix that maps the view frustum into normalized projection coordinates is
HprojHyiew, where Hppj is either Equation (3.10) or (3.11). In the implementation of
a camera, the two matrices are stored separately and applied in sequence. The matrix
Hyroj is typically constructed at the initialization of the application and remains static.
The matrix Hiie, is a dynamic quantity that changes every time the camera moves to
a new location or changes orientation.

3.3.3 MODEL-TO-VIEW TRANSFORMATION

The total transformation from the model space coordinates to the view space coordi-
nates of the object to be drawn is

Hyoral = Hp 10j Hiiew Hyorlds
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where Hpyoj is given in Equation (3.10) or (3.11), Hyjew is given in Equation (3.12),
and H,oyq 1s the transformation from the object’s model coordinates to its world
coordinates,

MI!' f‘ﬂ}
H world = -
or |1

Because the matrix Hproj is based solely on the intrinsic properties of the camera, and
the matrix Hyiew changes whenever the camera changes position or orientation, an
implementation of a camera model should maintain these two matrices separately.
The matrix Hyor4 i1s dependent on each rendered object and can change any time the
application desires.

From the point of view of efficiency, and assuming there is no hardware support for
geometric transformations, the actual matrix product should be computed as follows.
(We will use the projection of Equation (3.10) for the following discussion, but a
similar one can be made for the other projection matrix.)

The goal is to compute Hy,, so that it can be used in transforming a collection
of homogeneous points of the form (x, y, z, 1) to a collection of preprojected triples
of the form (x', ¥/, w’). The third component really is the homogeneous term w’ and
not z'. As we shall see, depth information is not necessarily required for rasterization
depending on what the application knows about the objects it is rendering. The depth
values can be computed later in the pipeline when they are needed. This observation
allows us to use a slightly different projection matrix than Hpyoj,

r+d

2
=i 0 T nir=nD 0
2 +h
Hooo= 0 —h ri;lfb} 0
pror 0 0 0 0
0 0 o

The difference is that the z-value of the point to be transformed need not be carried
along since the term w = z/n already contains the information about z. The total
transformation is

Higtar = Hproj" Hyiew Hyord-

The presence of a row of zeros in the matrix allows us to skip formal calculations
that might otherwise be performed in a general routine to multiply matrices. The
order of calculation for Hy, that minimizes the number of operations is Hyq, =
(Hproj Hview) Hworld- The camera implementation maintains the product Hproj Hyiew
as the camera model, position, or orientation changes. During a rendering pass, the
renderer need only take the current camera’s matrix product and multiply it times
the object’s model-to-world transform to produce a single matrix that is used to
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transform vertices. [n this last product, the zero row in H i Hyiew need not participate
in the actual computations. Effectively, the renderer has a 3 x 4 matrix, [M|T], for
transforming points rather than a full 4 x 4 homogeneous matrix. The matrix M is
3 x 3and the vector T is 3 x 1. The 3 x 4 matrix is obtained by removing the row of
zeros from the product Hyg,r. The total transform applied to input points is

’

X - x
M|y |+7=|yv]. (3.13)
A w’

More precisely, the matrix M and vector T canbe generated by swapping the row
of zeros with the last row of Hproi and computing products of 4 x 4 matrices, That is,

2 r+f
= 0 _wn[r—f) 0
n 2 t+h
clo 0 = —mum |0
Hpruj"z . = {
oflo 0 0 . 0
0 0 0o lo

Il

EilGasan

CR™™,, | CR" (i,. - E)

(3.14)
gt | 0

The quantity C R" is maintained by the camera implementation. The difference T, —
E is computed once the model-to-world transform for the object is known.

3.3.4 MAPPING TO SCREEN COORDINATES

The raster display has its own (X, ¥) coordinates called screen coordinates. This coor-
dinate system is right-handed with its origin in the lower-left corner of the display.
The x values increase from left to right and the ¥ values increase from bottom to top.
The full screen has dimensions (S, ;) such that 0 =x < 5y and 0 = ¥ < §,. The



90 Chapter 3 The Graphics Pipeline

mapping from normalized projection coordinates (x, v) € [—1, 1]* to screen coordi-
nates (¥, y) is a straightforward transformation,

__(S.t_l)(-l'+1) _J_(S_y_])(,\'-f-l)
= 5 V=

The subtractions by 1 from the screen dimensions are necessary since X < Sy — 1 and
§ < S, — 1 are required for the final integer-based screen coordinates.

The transformation to screen coordinates can be applied before or after clipping.
In this chapter, clipping is implemented in view space using the viewport [—1, 1]%.
If the transformation to screen coordinates is performed first, then clipping must be
implemented against the viewport [0, S, — 1] x [0, S, — 1]

Another issue for screen coordinates is the aspect ratio, p = S /Sy. Typical display
hardware has square pixels and an aspect ratio of 4/3, although high-definition tele-
vision has an aspect ratio of 16/9. In order for the world to be rendered properly, the
view frustum should be constructed to maintain the aspect ratio of the screen. In this
case (r — 1)/(t — b) = p should be enforced in the camera model.

3.3.5 SCREEN SPACE DISTANCE MEASUREMENTS

Consider a camera model with I = —r and b = —1. The upper-left matrix of the
homog_enenus matrix is C = diag(n/r,n/1. —1). Given a line segment with mid-
point V, unit direction A, and length L, we want to measure the length L, of the
screen space projection of the line segment. The model to-world transform is as-
sumed to be the 1den11ty The world end points are Vg — (Ly/2) A = (X0, Y0» Z0)
and 'V1 V4 (L., /E)A (x1, ¥1, 21). From ]:qu.mon {3 ]4) the normalized pro-
}E!C[l(‘}['l LOOI’dl]]dtCS of the end points are T() =COT (V F) — (Lm/Z)CRTA and
CRY(V — E) + (L, /2)CRTA. Define P = CR"(V — E) = (Pg, Py, P;) and
B CRIA = (Bg, By, B3). The screen space transformation of Tg and T1 yields
Qo= (0:(1 + xo/wo), (1 + yo/wo)) = (X, o) and Q1 = (0 (1 + x1/wy), oy (1 +
yi/wi)) = (x1, 1) forsome o, > 0 and oy > 0. The screen space coordinates are mea-
sured in pixels, so o, measures the number of pixels per unit of distance along the
X-axis on the view plane at w = 1 and o, measures the number of pixels per unit of
distance along the y-axis on the view plane.
The squared length of the screen space segment is

Y
2 Yoo
o l———].
’ un iy

2
= (X — ¥o)* + (h — ¥0)? —Uz(xl —ﬂ) +

un wy
where

X ﬂ _ Xwp — Xgu _ Lu(P:By — PyBy)

- 2
wyp Wy Wy P} — L2 B;/4
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and

yi Yo yiwo—Yowr _ Lu(P2By— P1By)

- - il
w wo wy Wy Py — Li_,B%/é

Using the definitions of P, B, defining A = V — E, and assuming that the view
frustum maintains the screen aspect ratio o, /r = o,/t, some algebra leads to

Ly AT (687 + 0T A

2 _

oy

= - = - k] 3.1—
[(D-A)? = LE(D-A)?/4]? B3

where A =0o,/r, P = (E, CAVD — {f) . E)It, and ¥ = (E] . ;‘i)i) - (f) . ;‘1)[‘/ The
vectors L, U, and D are the coordinate frame for the camera. The numerator of the
right-hand side of Equation (3.15) is a quadratic function and the denominator is a
quartic function in A.

In the special case of A = (0,0, 1), we can reduce Equation (3.15) to a more
amenable form. Since R = [1: | U | D) is orthonormal and has determinant one, it
must be that L x U = D, U x D=L,and D x L = U.IfL=(L,, Ly, L), U=
(Uy, Uy, U, and D = (Dy, Dy, D), then® = (L. D — LDy, L:Dy = LyD:,0) =
(—Uy, Uy, 0) and W = (U.D, = U, D, U.Dy — U, D, 0) = (Ly, =Ly, 0). Conse-
quently, ® - A = —UyA, + UyA,and ¥ - A = LyA, — LyAyand (@ - A) + (U -
A) = (L2 + L2)A2 = 2(LiLy + U U A, + (L? + U} A’ Because R is or-
thonormal, its rows are unit length and mutually perpendicular. This provides the
relationships L2 + UZ =1 — D> =D+ D3 L + U'\z, =1- Df, = D! + D?, and
LiLy+UgUy =—D,D,. Thus, (& A)2 + (¥ - A)2 = DIAT + AD) + (DyAc +
Dy A )%, and the relationship between world height and screen space distance is

o mPLLIDA(AL + A + (DA + DyAY)’

L:= . 3.16
' [(DyA, + DyAy+ D:A)? — LE D2/4)? (3.16)

34 CULLING AND CLIPPING

Culling and clipping of objects reduces the amount of data sent to the rasterizer for
drawing. Culling refers to eliminating portions of an object, possibly the entire object,
that are not visible to the eye point. For an object represented by a triangle mesh, the
typical culling operations amount to determining which triangles are outside the view
frustum and which triangles are facing away from the eye point. Clipping refers to
computing the intersection of an object with the view frustum, and with additional
planes provided by the application such as ina portal system (see Section 12.2), so that
only the visible portion of the object is sent to the rasterizer. Foran object represented
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by a triangle mesh, the typical clipping operations amount to splitting triangles by the
various view frustum planes and retaining only those triangles inside the frustum.

3.4.1 OBJECT CULLING

Object culling involves deciding whether or not an object as a whole is contained in
the view frustum. If an object is not in the frustum, there is no point in consuming
CPU cycles to process the object for the rasterizer. Typically, the application main-
tains a bounding volume for each object. The idea is to have an inexpensive test for
nonintersection between bounding volume and view frustum that can lead to quick
rejection of an object for further processing. If the bounding volume of an object
does intersect the view frustum, then the entire abject is processed further even if that
object does not lie entirely inside the frustum. It is also possible that the bounding
volume and view frustum intersect, but the object is completely outside the frustum.
Chapter 4 discusses a variety of bounding volumes that can be used for object culling.
Regardless of choice of bounding volume, culling attempted on a plane-by-plane
basis has the problem that the bounding volume is not necessarily culled even though
it is outside the view frustum. This feature could be viewed as a flaw in a plane-by-
plane culling system, but it is in fact beneficial to use this system as an aid in reducing
clipping time. If a bounding volume for an object is tested against a frustum plane and
is found to be on the frustum side of the plane, that plane need not be processed by the
clipping system if indeed the object is not culled and must be clipped against the view
frustum. Before handing the renderer the object to be processed, the application can
specify which frustum planes need to be clipped against. Moreover, in a portal system
where additional clipping planes are present, the application can likewise attempt to
cull against those planes and inform the renderer which ones need to be used when
clipping. In an implementation, the camera can maintain an array of clipping planes
and an array of Boolean flags that indicate whether or not each clipping plane is
enabled (renderer uses in clipping) or disabled (renderer ignores in clipping).

3.4.2 BACK FACE CULLING

Object culling is an attempt to eliminate the entire object from being processed by the
renderer. If an object is not culled based on its bounding volume, then the renderer has
the opportunity to reduce the amount of data it must draw. The next level of culling
is called back face culling. The triangles are oriented so that their normal vectors point
outside the object whose surface they comprise. If the triangle is oriented away from
the eye point, then that triangle is not visible and need not be drawn by the renderer.
For a perspective projection, the test for a back facing triangle is to determine if the
eye point is on the negative side of the plane of the triangle (the triangle is a “back
face” of the object to be rendered). If E is the world eye point and if the plane of the
triangleis N - X = d, then the triangle is back facing if N - E < d. Figure 3.3 shows the
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/.

Figure 3.3  Object with front facing and back facing triangles indicated.

front view of an object. The front facing triangles are drawn with solid lines. The back
facing triangles are indicated with dotted lines (although they would not be drawn at
all by the renderer).

If the application stores a triangle as an array of three vertices, the renderer would
need to compute the normal vector for back face culling. This cost can be eliminated if
the application also stores a triangle normal vector, called a facet normal, in addition
to the vertices. Moreover, if the triangle is stored as model coordinates and the facet
normal is in model coordinates, the renderer still needs to know the vertices and
normal in world coordinates. Rather than transforming all vertices and normal, it
is cheaper to inverse-transform the camera to the model space coordinates of the
triangle, especiallyif this is done for a triangle mesh that contains many triangles in the
same model coordinate system. Let E be the world coordinates of the eye point for the
camera. If the model-to-world transform involves only translation T, rotation R, and
uniform scale 5, then the coordinates of the eye point in the model space coordinates
for the triangle are

- o= =
E,=-R'(E-T).
5

If the model space facet plane is N, - X = dy, then the triangle is back facing if

3.4.3 CLIPPING

Clipping is the process by which the front facing triangles of an object in the world
are intersected with the view frustum planes. A triangle either is completely inside the
frustum (no clipping necessary), is completely outside the frustum (triangle is culled),
or intersects at least one frustum plane. In the last case the portion of the triangle that
lies on the frustum side of the clipping plane must be calculated. That portion is either
a triangle itself or a quadrilateral that is partitioned into two triangles. The triangles
in the intersection are then clipped against the remaining clipping planes. After all
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Figure 3.4  Four configurations for triangle splitting. Only the triangles in the shaded region are

important, so the quadrilaterals outside are not split,

clipping planes are processed, the renderer has a list of triangles that are completely

inside the view frustum.

The splitting of a triangle by a frustum plane is accomplished by computing the
intersection of the triangle edges with the plane. The three vertices of the triangle are
tested for inclusion in the frustum. If the frustum planeis N - X = d and if the vertices
of the triangle are V, fori =0, 1, 2, then the edge with end points 17’,4, and ‘l?,-, intersects
the plane if p;,p;, <0, where p; = N - V; —d fori =0, 1, 2. This simply states that
one vertex is on the positive side of the plane and one vertex is on the negative side of

the plane. The point of intersection, called a clip vertex, is

Vclip = Vi, + ﬁ (Vi, -V ) .
0 i)

Figure 3.4 illustrates the possible configurations for the triangle. The vertices Vios

V;,, and V;, are assumed to be in counterclockwise order. The pseudocode for clipping
a single triangle against a plane is given below. After splitting, the new triangles have

vertices that are in counterclockwise order.
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ClipConfiguration (pi0,pil,pi2,Vi0,Vil,Vi2)
{

// assert: pi0*pil < 0

VcO = Vi0+(pi0/(pi0-pil))*(Vil-Vi0);

if ( pi0 > 0)

{
if ( pi2 > 0 ) [/ figure, top left
(
Vel = Vil+(pil/(pil-pi2))*(ViZ-Vil);
add triangle <Vc0,Vcl,Vi0> to triangle list;
add triangle <Vcl,Vi2,Vi0> to triangle list;
}
else // figure, top right
(
Vel = Vio+(pi0/(pi0-pi2))*(Viz-Vi0);
add triangle <Vc0,Vcl,ViO> to triangle Tist;
}
}
else
{
if ( pi2 > 0 ) // figure, bottom Teft
{
Vel = Vi0+(pi0/(pi0-pi2))*(Vi2-vio);
add triangle <Vc0,Vil,Vi2> to triangle list;
add triangle <Vc0,Vi2,Vel> to triangle list;
)
else // figure, bottom right
{
Vel = Vil+(pil/(pil-pi2))*(Vi2-Vil);
add triangle <VcO,Vil,Vcl> to triangle list;
}
}

}

ClipTriangle ()
{
remove triangle <V0,V1,V2> from triangle list;

p0 = Dot(N,V0)-d:
pl = Dot(N,V1)-d;
p2 = Dot(N,V2)-d;

if ( pO*pl < 0 )
{

95
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// triangle needs splitting along edge <V0,V1>
ClipConfiguration(p0,pl,p2,v0,V1,V2);

}

else if ( pO0*p2 < 0 )

{
// triangle needs splitting along edge <V0,V2>
ClipConfiguration(p2,p0,pl,V2,v0,V1);

}

else if ( pl*p2 < 0 )

{
// triangle needs splitting along edge <V1,V2>
ClipConfiguration(pl,p2,p0,Vv1,v2,V0);

}
else if ( p0O >0 || pl >0 || p2>0)
{
// triangle is completely inside frustum
add triangle <V0,V1,V2> to triangle list;
1

To avoid copying vertices, the triangle representation can store pointers to vertices
in a vertex pool. However, the above pseudocode has a drawback in that information
about shared edges is not maintained. A shared edge will be clipped as many times as
there are triangles sharing the edge. For manifold geometry, the shared edge is typically
clipped twice when the edge has two triangles sharing it. Clipping pipelines also
typically interpolate vertex attributes at the same time the clip vertices are computed.
Multiple processing of shared edges and premature calculation of vertex attributes
is extremely inefficient. A better approach is to use a triangle mesh data structure
that supports single clipping of an edge. The same structure supports deferred vertex
attribute calculation and interpolation so that a minimal set of initial vertices need
to be lit and only visible clip vertices are interpolated. Details of how to do this are
discussed in Section 3.7,

Regardless of data structures used for triangle representation in the clipping
pipeline, a choice must be made about the order of clipping and transformation
to view space coordinates. The costs associated with each order vary. Let Ny, be the
number of vertices of the object. Let Ny be the number of vertices remaining after
back face culling. Of course, Ny < N,y. Let N; be the number of vertices after clipping
against the ith frustum plane, 1 <i < 6. The N; may be larger or smaller than N
depending on the object and how it is positioned with respect to each frustum plane.
Various per-vertex costs are associated with the stages of clipping:

®  Cy, the cost of transforming as MV + T. The cost includes nine multiplications
and nine additions.
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®  Cyp, the cost of computing the world plane equation, N - V. The cost includes
three multiplications, two additions, and one comparision to the plane constant d.

= C,p, the cost of computing the view plane equation. The view planes are x < w,
X>—w,y<w,y>—w, w>1,and w < K for a fixed constant K. For each
plane the cost is one comparison. The cost of the sign changes is considered to be
negligible.

The cost of back-face culling is the same regardless of choice of clipping pipeline, so
it is not included in the comparative costs of the pipelines.

Clip World, Transform World to View

The first choiceis to clip in world space and transform the postclip vertices from world
space to view space. The sequence of operations is

1. If world coordinates of object vertices require updating, then transform the model
coordinates to world coordinates.

2. Back-face cull in world space.

3. Inverse transform the frustum planes from view space to world space (or let the
camera maintain world space frustum planes).

4. Clip against the world space frustum planes.

5. Transform the postclip vertices from world space to view space.

This style of clipping is possibly of use if the object maintains world coordinates
in addition to model coordinates for purposes other than rendering. For example, the
application might use a collision detection system that requires knowledge of world
coordinates of an object even if that object is not currently visible.

The cost of transforming from model coordinates to world coordinates for such an
application may be considered a necessity, so it is not necessarily included in the cost
of rendering. For the record, the cost of the transform is Cy; Noy. The inverse transform
of the frustum planes is negligible as long as the object has a significant number of
vertices. The rendering costs are incurred mainly from the clipping and transforming
from world space to view space:

5
Ci=Cup Y Ni+ CuNs.
i=(

The first part of the cost comes from computing on which side of the frustum planes
the vertices lie. The second part is from the world space to view space transformation.
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Clip Model, Transform Model to View

The second choice is to clip in the model space of the object and transform the postclip
vertices from model space to view space. The sequence of operations is

1. Inverse transform the camera from world space to the model space of the object,
2. Back-face cull in the model space of the object.

3. Inverse transform the frustum planes from view space to model space.

4. Clip against the model space frustum planes.

5. Transform the postclip vertices from model space to view space.

As in the first choice, the main rendering costs are incurred from the clipping
and transforming from model space to view space. The cost is effectively the same as
before:

3
Cr=Cup Y Ni + CieNs.
i=0

Transform Model to View, Clip View

The third choice is to transform the vertices to view space and clip. The sequence of
operations is

1. Inverse transform the camera from world space to the model space of the object.
2. Back-face cull in the model space of the object.
3. Transform the vertices from model space to view space.

4. Clip against the view space frustum planes.

The main rendering costs are incurred from transforming from model space to
view space and clipping. The cost is

5
Cy=CyNo + Cyp Z N;.
i=0

The third choice is faster than the second whenever C3 < C», in which case

Cup

— C 3
Ny —-—TE Ni + Ne.
tr .
=0

A

- C
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On an Intel Pentium processor, floating-point multiplications and additions each
take 3 cycles. A floating-point comparison takes 4 cycles. Thus, Cy; is 54 cycles, Cwp
is 19 cycles, and C,y, is 4 cycles. The third choice is faster than the second whenever

If the number of clip vertices increases with each frustum plane, then N; > N, for
i = 1. In this case the inequality is clearly satisfied (replace N; by Ng). If the number
of clip vertices is reduced by a fraction for each frustum plane, say, N;.; = rN; for
i = 0and forsome r € [0, 1], then the inequality reduces to a sixth-degree polynomial
inequality in r thatis true for r > 0.76. Therefore, if thereisa 3/4 (or greater) reduction
of vertices from each frustum plane, the third method is slower. This situation does not
typically happen because reasonable scenes tend to have the majority of the vertices
well inside the frustum. The values N; should be about equal to Ny or larger. Note
that the performance comparisons here are theoretical; in practice the costs are also
affected by availability of data in memory cache.

35 SURFACE AND VERTEX ATTRIBUTES

Triangles are drawn by the renderer as colored entities, the color of each pixel de-
termined by vertex attributes assigned to the vertices of the triangle. The pixels at
nonvertex locations are computed via interpolation by the rasterizer, the final values
in total called surface attributes. In screen space the projected vertices have locations
(x’, y), derived in Equation (3.8), that are used to control the interpolation process.
Each vertex is endowed with a list of attributes depending on how the application
wants the triangle to be drawn.

3.5.1 DePTH

The first vertex attribute that always exists is the depth value z or, equivalently,
the value w = z/n where z € [n, f] and w € [1, f/n]. The projected values were
derived earlier in Equation (3.9),z" = f(1 — 1/w)/(f — n) € [0, 1]. These quantities
are perspectively interpolated by the rasterizer to compute the depth values (more
appropriately, pseudodepth values) on a per-pixel basis that are used for sorting at
the pixel level.

3.5.2 COLORS

Each vertex can be assigned a vertex color ¢ = (r, g, b), where r is the red channel,
g is the green channel, and b is the blue channel. Channels from other color models
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could be used instead, but standard renderers and graphics hardware support the RGB
model. A rasterized triangle whose vertices are assigned only colors is not that visually
appealing since interpolation of three color values over a triangle does not produce a
wide variation in color. However, using only vertex colors may be necessary either on
systems with a limited amount of memory, which prevents having a large number of
textures at hand, or on systems with slow processors that take many cycles to combine
multiple colors. Vertex colors are typically used in conjunction with textures to add
more realism to the rendering. Moreover, the vertex colors can be used in conjunction
with lights in the scene to generate dynamic effects, such as a flaming fireball traveling
down a corridor and lighting portions of the walls near its path. This is termed dynamic
lighting and is described in the next section.

3.5.3 LIGHTING AND MATERIALS

Dynamic lighting effects can be achieved by using light sources to illuminate portions
of the scene and by assigning material properties to various objects in the scene.

Lights
The standard light sources in a real-time engine are

®  Directional lights. The light source is assumed to be infinitely far away so that
the directions of the light rays are all parallel. The sun is the classic example of a
directional light.

= Pointlights. The light source has alocation in space and emits light in all directions.

®  Spot lights. The light source has a location in space, but emits light only within a
cone,

Figure 3.5 illustrates the three possible sources. Real light sources emit light from an
area or volume source. Point light sources are a reasonable approximation in a real-
time setting but do not always produce visually correct information. For example,
shadows generated by a point source have hard edges, but shadows generated by a real
light source have soft edges.

Light sources have various attributes in addition to position and direction. Each
light can be monochrome or can have an RGB color associated with it. Instead of a
single color for the light, multiple colors can be used to represent the contribution
to ambient, diffuse, and specular lighting. The light can also maintain an intensity
parameter that applies to the various colors, and a Boolean parameter can be used to
indicate whether the light is on or off, a quick way to enable or disable lights in the
rendering system. Other attributes assigned to lights depend on type. Point lights and
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spot lights can have their light attenuated with distance from the light source, with
the parameter usually specified as an inverse quadratic:

1
a+b|P—V|+clP -V

dgist =

where P is the light position and V is a point to be illuminated. The physically
correct model is @ = b = 0 and produces the inverse square relationship that we
expect. However, the a and b parameters give an application more control over how
the attenuation is to occur. Moreover, choosing @ > 0 guards against floating-point
overflow when 1:_‘." - \7] is nearly zero.

Materials

Associating a material with an object is an attempt to give the object surface character-
istics based on the material parameters and the light sources. The material parameters
include emissive, ambient, diffuse, and specular color components and can include
scalar parameters for shininess and alpha blending. The emissive color represents the
fact that a material itself can emit light rather than simply reflect it. The ambient, dif-
fuse, and specular colors are intended to be terms that interact with the light sources.
Shininess is used to control how sharp or diffuse a specular highlight is. The alpha
value is used to support transparent materials as an alternative to applying texture
images with an alpha channel.

Lighting and Shading

The term lighting refers to the process of computing colors based on light sources and
materials. The term shading refers to the process of computing pixel colors after any
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lighting has been calculated. The three standard shading models are flat, Gouraud, and
Phong. Flat shading uses the same color for all pixels in a rendered triangle. Thus, a
color is assigned to the entire triangle rather than separate colors assigned to the three
vertices. Gouraud shading calculates the vertex colors of the triangle based on light
sources and materials, then interpolates those colors to fill out the remaining pixels in
the triangle. Phong shading takes the three vertex normals and interpolates them to
compute a normal vector per pixel. Each pixel is then lit according to the light sources
and materials that affect the triangle. Flat shading and Gouraud shading are supported
in hardware graphics cards, but Phong shading is more expensive and is not supported
on consumer machines. This is actually surprising because the discrete methods that
are used in line and circle drawing algorithms can be applied to interpolating normal
vectors. Specifically, if the three vertex normals are plotted on a unit sphere, the normal
at any triangle interior point corresponds to a point on the unit sphere contained in
the spherical triangle formed by the original three normals. A discretization of the
spherical triangle is quite possible and not expensive (Andres 1994; Andres and Jacob
1997), so it is conceivable that consumer graphics hardware could support normal
interpolation in this way.

The colors at the triangle vertices are computed via a lighting model. The models
used in real-time graphics involve decomposition into ambient, diffuse, and specular
components. The model described here assumes that each light has an ambient color
I:mbi, adiffuse color Z.diff. aspecular color fapec, and an intensity Lip, that is applied
equally to all three colors. Point and spot lights also have an attenuatlon value Lp.
[:1ch material has an emls:,we color Mum“ an ambient color M,hi, a diffuse color
My, a specular color M\pLu a shininess parameter Mpine, and an alpha component
M.ﬂpha-

Ambient Light

A light ray in the real world follows a path that has it reflecting off many surfaces and
decreasing in intensity along the way. The global effect from all the rays is termed
ambient lighting. The light model incorporates this effect by combining the light’s
ambient color with the material’s ambient color,

Cambi = Mambi © (Lintn Lambi)-

The operator o can represent componentwise multiplication (modulated color model)
or componentwise addition (additive color model). To support operations between
colors, it is necessary to represent the colors in a normalized way. The standard way
is to store all color channels (including alpha) as floating-point numbers in [0, 1]. If
o represents multiplication, then the product of two normalized colors is a normal-
ized color. However, multiplication produces a darkening effect since the product of
c¢g < land ¢) < 1 yields a product cpey < min{cg, 1} < 1. One way to counteract the
darkening is to adjust the light intensity parameter. Another way to avoid darkening
is to choose o to represent addition. The pitfall here is that the sum of two colors can
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result in channel values being larger than 1. Clamping the sum per channel to 1 can
be used but might possibly change the perceived color value since the ratios between
pairs of red, green, and blue are not preserved. Instead, the maximum channel value
is determined and, if larger than 1, is used to scale all three channels to be within
[0, 1]. Rescaling comes at a price since two divisions are required per color, whereas
clamping does not require any divisions. Either clamping or rescaling is necessary
even when o represents multiplication since the final lighting equation will involve
sums of various color components in the lighting model.

For spot lights with a unit-length cone axis {7 and angle 6, the light direction
isD=(V— P)/1V - P| The ambient color is attenuated dependmg on the angle
formed by Dand U.1f D = U, the attenuation coefficient is 1. If D - U = cos(d), then
D is on the cone boundary and the attenuation coefficient is 0. The drop-off from cone
axis to cone boundary is generally chosen as (D - U)¢, where € > 0 is called the spot
exponent. The attenuation coefficient is therefore

= - = €
(ul__) B0 s 1Bleost
dﬁpot = (D-U)sin @ * =
0,D-U <|D| cos b

and the ambient component is written as
Cambi = lr'!,:ipolJ“‘anml\i o (Lintn Lambi)-

For directional lights and point lights the value of dypor is simply set to 1, indicating
it has no effect on the final color.

Diffuse Light

Diffuse lighting is based on Lambert’s law, which says for a matte surface, the intensity
of the reflected light is determined by the cosine of the angle between the surface
normal N and the light direction vector D. Moreover, the intensity drops to zero when
the angle between N and D is 7,2 radians or larger. The light model incorporates
diffuse lighting by

Caitr = dspot max{N - D, 0} My © (Lintn Lait)s

where dypor is the spot angle attenuation factor described in the previous subsection.

The light direction depends on light type. Moreover, spot lights have an atten-
uation based on the angle between light direction and cone axis. For directional
lights, the light direction D is already known. For r point lights, the light direction
isD=(V— P}fI V — P|for light source location P and for each point V to beillu-
minated. For spot lights with a unit-length cone axis U and angle 6, the light direction
isf):(i‘/— ;’)/if/—fjl
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Specular Light

Diffuse lighting represents reflection of light on matte surfaces. Specular lighting
represents reflection of light on shiny surfaces. In particular, specular highlights can
show up on highly reflective surfaces. These are places where the surface normal and
light direction are parallel. The tightness of the region of brightness is something that
can be controlled by the material’s shininess parameter. Let E be the eye point. Let

= (E V)/lE - Vl be the view direction for a point V that is to be illuminated.
Lct D be the light direction, specified for directional lights but computed to be D=
(V = P)/|V — P|for pointand spot lights. The reflection vector of the light direction
through the vertex normal NisR=2(N-D)N — D. The specular coefficient is (R -
D)Maine, assuming that the dot product is nonnegative. The light model incorporates
specular lighting by

- Mahine -
C.t;pec = Uspot (de{R D 0}) Msper o (Lintanp?c)‘

The attenuation coefficient dypor is the same one discussed in the subsection on
ambient lights.

The Light Equation

The final equation for lighting a vertex with a single material and using multiple light
sources, given below, includes the attenuation factors for distance as well as for spot
angles. The superscripts are indices for the array of active lights.

Chinal = Memis +

amhl E ,d-\pul intn ambl +

n
Mg © E d;putd:.list max{N - D', O}L:n!ni‘ihﬁ +

i=l]

n

: spec © z du}mld\h:.l ax”} ’ Dr oy Mavine ¢ Lr

intn spect
i=1

Note that if no lights are present and the material emits light, the final vertex color
is not black. It is also possible to include a global ambient light term M, b © G ambis
where the global ambient color is specified by the application.
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3.5.4 TEXTURES

Textured images, or simply textures, provide the most realism in a model and can
be used effectively to hide the model’s polygonal aspects. A triangle is assigned a
textured image ¢(u, v) = (r(u, v), g(u, v), b(u, v), where («, v) € [0, 1]2. The tuple
(u, v, ¢(u, v)) is called a texture element, or texel for short. Each triangle vertex is as-
signed a fexture coordinate T = (u, v) so that a color lookup can be done in the image.
The texture coordinates at the vertices are perspectively interpolated by the raster-
izer to obtain texture coordinates at other pixels in the triangle. Each interpolated
coordinate is also used to do a color lookup in the image.

Coordinate Modes

It is not necessary that a texture coordinate at a vertex be in [0, 1], This allows for
efficient use of textures and for interesting effects. The two standard texture coordinate
modes are clamping and wrapping. A coordinate («, v) is clamped by setting

(u', v") = (min(max(0, u), 1), min(max(0, v), 1).

One special effect obtained by clamping is to place a small detail in the interior of
a triangle. For example, a triangle that represents part of a glass window can have a
texture applied to make it appear as if the window has a bullet hole in it. The texture
image for the bullet hole can be quite small (to minimize memory usage), and the
texture coordinates for the vertices can be set to quantities well outside the range of
[0, 1]2 to control the size and placement of the bullet hole.

A coordinate (u, v) is wrapped by setting

(' v) = —|ul,v—[v]),

where |w] is the largest integer smaller or equal to w. The typical special effect
obtained by wrapping is to allow a texture to repeat, thereby producing a doubly
periodic effect. The texture in this case is said to be toroidal, and great care must be
taken so that the left/right edges and top/bottom edges of the texture match (otherwise
the texture boundaries are noticeable) in the replication. For example, a brick wall
can be built from a small number of triangles with a small texture representing a few
bricks.

The coordinates can be mixed in a texture, one coordinate being clamped and the
other being wrapped. The texture in this case is said to be cylindrical, and the edges
corresponding to the wrapped coordinate must match to hide the texture boundaries.
Some hardware drivers might not support mixed coordinate modes.
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Filtering Modes

The texture image is defined on a discrete lattice of points, so it is not a continuous
quantity. A texture coordinate (u, v) computed at a pixel via interpolation usually is
not in the lattice. The method of computing a lattice point for the coordinate is called
texture filtering. There are two standard ways to select a lattice point. The first method
selects the nearest lattice point,

(', vy = (lu+1/2], lv + 1/2)).

This gives the textured triangles a blocky appearance, especially when the texture
image is high frequency in its data.

The second method uses bilinear interpolation as a way of smoothing the results
and avoiding the aliasing problem from selection of the nearest lattice point. Let the
texture image be N x M, and let the image lattice coordinates (i, j) correspond to
texture coordinates (i, v) = (8,4, 8, ), where §, = 1/(N — 1) and §, = 1/(M — 1).
The lattice coordinates satisfy 0 <i < N and 0 < j < M. For a specified texture
coordinate (, v) € [0, 1]?, the base lattice coordinate is (i, =N —=1Dul, (M-
1)v]). The corresponding base texture coordinate is (u’, v') = (8,i, §,,j). Setting s =
u —u'and t = v — v', the texture value ¢’ to be used at the pixel is

¢ =1 —s)1 =10, j)+ (1 —s)eli, j+ 1) +s(01 —1)ei + 1, f)
+src(i + 1, j + 1),

Mipmapping

Even bilinear filtering can have aliasing problems when a textured triangle is in the
distance. As the distance from the eye point increases, the perceived frequency in
the texture increases because the same range of texture coordinates is applied over
the smaller set of pixels covered by the triangle. This produces a temporal aliasing
of the textures on objects close to the far plane. A method for reducing the aliasing
is mipmapping (Williams 1983). The prefix mip is an acronym for the Latin multum
in parvo, which means “many things in a small place.” The idea is that a pyramid of
textures is built from the original by downsampling via averaging or blurring,. If the
original texture is a square of size 2" x 2", there are n downsampled textures of sizes
2" x 2' for0 <i < n,i = n representing the original texture. For a nonsquare texture,
the recursive downsampling is applied until one of the dimensions is 1.

The selection of texture to use from the pyramid is based on determining the
number of texels that cover a pixel. As the number of texels per pixel increases,
the amount of averaging will increase. The relationship between screen space point
(x, ¥) and the texture coordinates (u, v) at that point is constructed as follows. Let
the triangle have vertices (x;, y;) and corresponding texture coordinates (u;, v;) for
0 =i = 2. Asa function of world space triangle parameters (s, 1),
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(u, v) = (w0, vo) + s(uy — wp, v1 — vo) + (42 — o, v2 — vo).
Recall from the section on perspective projection that
(¥, ¥) = (X0, Yo) + §(xX1 — X0, Y1 = Yo) + 1(X2 — X0, Y2 = Yo),

where (5, 1) and (s, r) are related by Equations (3.4) and (3.5). The previous equation
can be inverted to obtain

5= : y2—Y  —(x2—Xp)
t (x) — Xg)(yg — yp) — (x2 — xp)(¥y) — yo) —(y1 — yo) X1 — Xp

X —x
X L .
y—=>

Replacing this in Equation (3.5) produces (s, 1) as a function of (x, y). Finally, replac-
ing this in the equation for (u, v) produces

apx + by + ¢o

ulx, y) = dx +ev+ f
ax + by + ¢
v(x, ¥) = ———,
dy +ey+ f

where the various coefficients depend on the (x;, ¥;) and (u;, v;) quantities. This
function is a mapping from R to &% From standard multivariate calculus it is known
that the absolute value of the determinant of the first derivative matrix is a measure
of how the infinitesimal area at (x, y) is magnified to an infinitesimal area at (, v).
The magnification factor is

du dv  du dv

axdy 0oyox

and is an approximate measure of how many texels are required to cover the pixel
(x, ¥). A mapping from d to the mipmap index i € {0, ..., n} must be selected. If
d < 1,theni = n (the original texture) is the obvious choice. As d increases, i decreases
to 0.

The final problem is to select a texel value given (x, y, d). The choices are many,
but the standard ones are the following:

®  Select the nearest mipmap to d and select the nearest texel to (x, y).
®  Select the nearest mipmap to d and bilinearly interpolate using the appropriate
four pixels for (x, y).

m  Select the two bounding mipmaps for d, select the nearest texels to (x, y) on the
two mipmaps, then linearly interpolate using the relationship of  to the mipmap
d values.
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®  Select the two bounding mipmaps for d, bilinearly interpolate using the appro-
priate four pixels for (x, y) on each mipmap, then linearly interpolate using the
relationship of d to the mipmap d values. This choice is called trilinear interpola-
tion and is supported by most hardware cards.

The value d measures a change in infinitesimal area in an isotropic way. It does not
contain information about magnification in individual directions. The pixel covers a
square area, but the region of the texture image corresponding to it is a quadrilateral
that can be quite narrow. The end result in using d for mipmapping is that overblurring
occurs in the direction of the narrow width of the quadrilateral. An attempt to reduce
this effect is to use ripmaps (McReynolds et al. 1998). The averaging process to obtain
a sequence of blurred images is applied independently in each dimension. The lookup
process now involves two parameters, one related to the length of the gradient of u
and one related to the length of the gradient of v.

Multitexture

The number of texture images associated with a triangle does not always have to be
one. Multiple textures, or multitextures, allow for a lot of special effects that enhance
the realism of the rendered scene. For example, multitextures can add variations in
lighting to textures on the walls in a room. This is a form of static multitexture—the
secondary texture corresponding to the lighting is combined with the primary texture
corresponding to the walls in a view-independent manner. Combining such textures
is a way to add visual variation in a scene without an exponential growth in texture
memory usage. N primary textures and M secondary textures can be combined in
NM ways, but only N 4+ M textures are required in memory rather than storing
NM textures. Moreover, an artist can generate the smaller number of textures in
less time.

Here’s another example: A character moves along a textured floor in a scene with
a light and casts a shadow on the floor. The shadow can be dynamically computed as a
texture and is applied to the floor triangles. This is a form of dynamic multitexture—
the secondary texture is generated on the fly. The triangles on which the shadow is
cast must be selected by the application, and the corresponding texture coordinates
must also be computed on the fly.

In either case, the natural question is, How should the various texels be combined
to produce the final colors on the triangles? Combining colors and texels is discussed
in Section 3.5.7.

3.5.5 TRANSPARENCY AND OPACITY

A texture image can have an additional channel, called the alpha channel, used
to control transparency or opacity of the applied texture. The image is ¢(u, v) =
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(r(u, v), g1, v)y blu, v), alu, v)). A value of @ = 1 indicates the texel is completely
opaque. That is, any previous color drawn at a pixel is overwritten by the texture RGB
color. A value of @ = 0 indicates the texel is completely transparent. That is, any pre-
vious color drawn at a pixel is unaffected by the texture RGB color. For 0 < o < 1, the
texture RGB color Ciexture is combined with the current pixel color Z"p-lxel to obtain the
final color,

Chinal = (1 — Of)(‘pixcl + o Crexture-

The addition of fog to an image adds to the realism of the image and also helps to
hide clipping artifacts at the far plane. Without fog, as the eye point moves away from
an object, the object approaches the far plane and is noticeably clipped when the far
plane intersects it. With fog, if the fog density increases with distance from the eye
point, the effect is to provide a depth cue for objects in the distance. And if the fog
density increases to full opacity at the far plane, clipping is substantially hidden and
the objects disappear in a more natural fashion. If ¢rq is the designated fog color,
Cpixet is the current pixel color, and ¢ € [0, 1] is the fog factor and is proportional to
distance from the eye point, then the final color ¢gna is

Chinal = (1 — Q")Epixe] + ¢’E:Iog,-

There are a variety of ways to generate the fog factor. The standard way, called
linear fog, is based on the z value (or w value) of the pixel to be fogged. Moreover,
the fog can be applied to a subset [z, 21] € [n, f] of the view frustum. The linear fog
factor is

0, <o
p=1 12 z€lznal.
1, =127

Since the 7 values or w values are computed by the renderer for other purposes, linear
fog is relatively inexpensive to compute compared to other fog methods.

Exponential fog is obtained by allowing the fog to increase exponentially with the
z value of the pixel to be fogged,

¢ = exp(rz),
where 4 > 0 is a parameter that controls the rate of increase with respect to z.

Range-based fog assigns the fog factor based on the distance r from eye point to
pixel. A subset of radial values [ro, 7] can be used, just as in linear fogging,
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0, r<ry
. rfr!! i
{p_ i—ry’ re[rﬂlr]]~
1, r=r

This type of fog is more expensive to compute than linear fog since the distance must
be calculated for each rendered pixel.

Another possibility for fog is to assign a factor per triangle vertex and let the ras-
terizer interpolate the factors over the entire triangle. This effect is used in volumetric
fogging (see Section 13.4). If the number of triangles to be fogged is small, noticeable
artifacts can occur with this type of fogging. Rather than interpolation, renderers can
allow fog tables to be used with lookup per pixel based either on z value or on depth.
The table lookup can be done with a nearest-neighbor selection or with linear inter-
polation between two bounding table values. Moreover, the table can be constructed
with values that do not necessarily increase with z or depth, which allows for some
interesting visual effects.

3.5.7 COMBINING ATTRIBUTES

The various attributes described in this section all contribute to the final pixel color.
An important observation to make is that the final color depends on the order of com-
bination. Unfortunately, not all graphics hardware cards perform the combination in
the same order. For asingle texture rendering, the two possible orders are vertex colors
first and texture colors second or texture colors first and vertex colors second. The last
combination appears to be the the right choice since vertex colors tend to be used for
dynamic lighting and modulation, so they should be applied after the texture colors
are set up. The pixel color pipeline described here uses the vertex-colors-last scheme.
The order of application is

1. Texture 1

- Texture 2 through texture n (multitextures, if any)

. Vertex colors

I ]

Fog
. Alpha blending

un

For a single texture and vertex colors, the colors are denoted C and the alpha
channel is denoted . A subscript V corresponds to the vertex attributes, a subscript
T corresponds to the texture attributes, and a subscript F corresponds to the final
combined color. If a texture does not have an alpha channel, then the alpha values are
assumed to be 1 in the combinations. Table 3.1 shows the standard combinations.

Let Cyyy denote the RGB fog color and let ¢ be the fog factor for the given vertex.
The output of the texture-vertex blending is updated by the fog color using
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Table 3.1 Combining a single texture and vertex colors.

Mode Equations Uses

Replace C F= C T Texture colors only, no
aF = oy lighting.

Decal Cr=(—-ar)Cy +arCr Decal application such
aoF =y as bullet-hole texture on

vertex-colored surface.

Multiply E.’;- = E‘r * E'V Modulate the texture by
U if texture has alpha  vertex colors to support

F= 1 ay, otherwise dynamic lighting effects.

Multiply Alpha f‘,a =Cr * E,'v Modulate the texture by
QF =07 * AV vertex colors to support

dynamic lighting effects.
The vertex alpha values

allow more control over
transparency and can be
adjusted over time.

[nverse Multiply Cr=Crx(1-Cy) Same as Multiply Alpha,

Alpha Op =QT ¥ Ay but the normalized
vertex colors are inverted
(I=(1,1,1).

a1"" =(1- 4’)&!‘ + ¢(_:fog-

The source alpha values are not modified. The semantics of using both fog and
transparency is dependent on context. If an observer is looking through a partially
transparent window at a fogged landscape, the alpha blending should occur after the
fogging. However, if the landscape contains a lake with partially transparent ice, then
the alpha blending for the ice should occur before fogging. Moreover, if the observer
is looking through the window at the lake, the sorting of triangles for purposes of
transparency becomes an issue.

For multitextures, the textures are combined first before blending with vertex
colors. A subscript 0 indicates the first texture of the pair to be combined and in a two-
texture system is the primary texture. A subscript 1 indicates the second texture of the
pair and in a two-texture system is the secondary texture. A subscript F corresponds
to the final combined color of the pair. Table 3.2 shows some standard combinations.
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Table 3.2 Combining multitextures.

Mode

Equation

Uses

Multiply

Multiply Inverse

Add

Primary Alpha
Blend

Secondary
Alpha Blend

Multiply Alpha

Multiply Alpha
Add Color

Multiply Color
Add Alpha

Cr=Co*C,

6‘F=6’U*(Tka|)

EF=an+61

Cr= aoCo + (1 — @)C

é!" = ﬂflél + (1 *al)au

E,F =C(]60 + &1

&f' = 6061 +{11T

RGB light maps. Texture 0 is the
base texture, texture 1 is the light
map.

RGB dark maps.

Specular light maps. Texture 1
is used to whiten portions of
texture 0.

Advanced environment maps.
Texture 0 represents the surface
RGB colors; the alpha channel
represents the shininess of the
surface. Texture 1 represents
the environment colors that are
reflected by the object.

Decal maps. Texture 0 is the base
texture. Texture 1 contains the
decal.

Monochrome light maps. The
alpha channel of texture 1 is used
as an intensity on the colors of
texture 0.

Advanced light maps. The RGB
channels of texture 1 are used
for color specular highlights.
The alpha channel of texture 1 is
used for intensity adjustment of
texture 0.

Advanced light maps. The RGB
channels of texture 1 are used for
modulating texture 0. The alpha
channel of texture 1 is used for
adding specular highlights,
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3.6 RASTERIZING

Rasterization is the process of taking a geometric entity in screen space and selecting
those pixels to be drawn that correspond to the entity. The standard objects that
most engines rasterize are line segments and triangles, but rasterization of circles and
ellipses is also discussed here. The constructions contained in this section all assume
integer arithmetic since the main goal is to rasterize as fast as possible—floating-point
arithmetic tends to be more expensive than integer arithmetic.

3.6.1 LINES

Figure 3.6

Given two screen points (xp, yo) and (x, y1), a line segment must be drawn that
connects them. Since the pixels form a discrete set, decisions must be made about
which pixels to draw in order to obtain the “best” line segment. Figure 3.6 illustrates
this. If x; = xq (vertical segment) or y; = yp (horizontal segment), it is clear which
pixels to draw. And if |x; — xo| = |y — »ol, the segment is diagonal and it is clear
which pixels to draw. But for the other cases it is not immediately apparent which
pixels to draw. The algorithm should depend on the magnitude of the slope, If the
magnitude is larger than 1, each row that the segment intersects should have a pixel
drawn. If the magnitude is smaller than 1, each column that the segment intersects
should have a pixel drawn. Figure 3.7 illustrates the cases. The two blocks of pixels
on the left illustrate the possibilities for drawing pixels for a line with slope whose
magnitude is larger than 1. The left case draws one pixel per column. The right case
draws one pixel per row, the correct decision. The two blocks of pixels on the right
illustrate the possibilities for drawing pixels for a line with slope whose magnitude is
less than 1. The top case draws one pixel per row. The bottom case draws one pixel
per column, the correct decision.

The process of pixel selection, called Bresenham’s algorithm (Bresenham 1965),
uses an integer decision variable that is updated for each increment in the appropriate

Pixels that form the best line segment between two points.
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Figure 3.7
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Pixel selection based on slope.

input variable. The sign of the decision variable is used to select the correct pixel to
draw at each step. Define dx = x; — xp and dy = y; — yq. For the sake of argument,
assume thatdx > 0 and dy # 0. The decision variable is d;, and its value is determined
by the pixel (x;, y;) that was drawn at the previous step. Figure 3.8 shows two values
s; and 1;, the fractional lengths of the line segment connecting two vertical pixels.
The value of s; is determined by s; = yo + (dy/dx)(x; + 1 — x¢) and s; + #; = 1. The
decision variable is &; = dx(s; — 1;). From the figure it can be seen that

® Ifd; = 0, then the line is closer to the pixel at (x; + 1, y; + 1), so draw that pixel.

® Ifd; <0, then the line is closer to the pixel at (x; + 1, y;), so draw that pixel.

Now consider
diy1 —di =dx(siy1 — tig1) —dx(s; — 1;)
=2dx(si4) — 8)
=2dy(xis) — x;) = 2dx(Vip1 — Vi)

The initial decision value is dy = 2dy — dx. The figure indicates that the slope has
magnitude less than 1, so x is incremented in the drawing, x; 4| = x; + 1. The decision
equation is therefore

diyy=d; +2dy — 2dx(yi41 — ¥)

and the rules for setting the next pixel are

® Ifd; = 0,then y; 11 = y; + 1and the next decision value is d; | = d; + 2(dy —dx).

®  Ifd; <0, then y;y| — ¥ and the next decision value is diy1 =d; + 2dy.

A concise implementation is given below. The special cases of horizontal, vertical,
and diagonal lines can be factored out if desired.
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Deciding which line pixel to draw next.

void DrawLine (int x0, int y0, int x1, int yl)
{

// starting point of line

int x = x0, y = y0;

// direction of line
int dx = x1 - x0, dy = yl - y0:

// increment or decrement depending on direction of line

int sx, sy
if (dx > 0 )
{
sx = 1;
]
else if ( dx < 0 )
{
sx = -1;
dx = -dx;
}
else
{
sx = 0;

}
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if (dy >0)
{
sy = 1;
}
else if ( dy < 0)
{
sy = -1;
dy = -dy;
}
else
{
sy =0
}

int ax = 2*dx, ay = 2*dy;

if (dy <= dx )

{
// single-step in x-direction
for (int decy = ay-dx; /**/; x += sx, decy += ay)
(
DrawPixel(x,y):
// take Bresenham step
if ((x == x1)
break:
if ( decy >= 0 )
{
decy -= ax;
y += sy;
]
}
}
else
{

// single-step in y-direction
for (int decx = ax-dy:; /**/; y += sy, decx += ax)
{

DrawPixel(x,y):

// take Bresenham step
if (y = yl)
break;
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if ( decx >=0 )
{
decx -= ay;
X 4= SX:

In the line drawing algorithm, the calls DrawLine(x0,y0,x1,y1) and Draw-
Line(x1,y1,x0,y0) canproduce different sets of drawn pixels. It is possible to avoid
this by using a variation called the midpoint line algorithm; the midpoint (Xp, yim) =
((xo + x1)/2, (vo + v1)/2) is computed, then two line segments are drawn, Draw-
Line(xm,ym,x0,y0) and DrawLine(xm,ym, x1,y1). This is particularly useful if
aline segment is drawn twice, something that happens when rasterizing triangles that
share an edge. If the original line drawer is used for the shared edge, but the line is
drawn the second time with the end points swapped, gaps (undrawn pixels) can oc-
cur because the two sets of drawn pixels cause an effect called cracking. Another way
to avoid cracking is to always draw the line starting with the vertex of the minimum
y-value. This guarantees that the shared edge is drawn in the same order each time.

3.6.2 CIRCLES

The Bresenham line drawing algorithm has a counterpart for drawing circles using
only integer arithmetic. Let the circle be x? + y” = r?, where r is a positive integer.
The algorithm will draw one-eighth of the circle for y > x > 0. The remaining parts
are drawn by symmetry.

Let (xo, yo) be the last drawn pixel. Let A= (xo+ 1, yo) and B= (xo+ 1L, yo—1).
A decision must be made about which of the two points should be drawn next. Figure
3.9 illustrates the various possibilities. The selected pixel will be the one closest to the
circle measured in terms of radial distance from the origin. The squared distance will
be calculated to avoid square roots.

Define D(x, y) = x> + y% then D(A) = (xo + 1)* + yZ and D(B) = (xo + 1)* +
(vo — 1)%. Define fx, y) = D(x, y) —rd If f(ﬁ) = 0, then P is {_)_utside the circle.
If f(?’) < 0, then P is inside the circle. Finally, if f(i’) = (), then P is on the circle.
The rules for setting pixels are

m If |f(;t)| > 1f{;§)|, then B is closer to the circle, so draw that pixel.

u If Lf(ﬁ)l < \f(f:‘)i, then A is closer to the circle, so draw that pixel.

s If If(;in = If(B)I. the pixels are equidistant from the circle, so either one can be
drawn.
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Figure 3.9

xp  xp+l xg  xp+l xp  xp+l

Deciding which circle pixel to draw next.

_The decision variable is d = f(A) + £(B).In the left part of Figure 3.9, f(A] and
f(B) are both negative, so d < 0. In the right part of the figure f(A) and f(B) are
both positive, so d > 0. In the middle part of the figure, f(A) is positive and f(B) is
negative. If A is closer to the circle than B, then jf(;‘;)| < |f(f-1‘)| andsod < 0.If B
is closer, then I_f(A')| > |f(fi)| and d = 0. In all cases,

s Ifd > 0, draw pixel B.
®  [fd <0, draw pixel A.

® Ifd =0, the pixels are equidistant from the circle, so draw pixel A.

The current decision variable is constructed based on its previous value. Let d; =
G+ D2+ =+ i+ D i - D=2 =20+ D2 R+ (i - DE =
Then

d di= 4x; + 6, Vi1 = Vi
i+ dx; +6—4y;i +4, yipi=y— 1’

The circle is centered at the origin. For a circle centered elsewhere, a simple translation
of each pixel will suffice before drawing. Concise code is

void DrawCircle (int xcenter, int ycenter, int radius)
{
for (int x = 0, ¥y = radius, dec = 3-2*radius; x <= y; x++)
{
DrawPixel(xcenter+x,ycenter+y);
DrawPixel (xcenter+x,ycenter-y);
DrawPixel(xcenter-x,ycenter+y);
DrawPixel(xcenter-x,ycenter-y);
DrawPixel(xcenter+y,ycenter+x);
DrawPixel (xcenter+y,ycenter-x);
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DrawPixel (xcenter-y,ycenter+x);
DrawPixel(xcenter-y,ycenter-x);

if ( dec >=0)
dec += -4*(y--)+4;
dec += 4*x+6;

3.6.3 ELLIPSES

Rasterizing an ellipse is conceptually like rasterizing a circle, but the anisotropy of
ellipses makes an implementation more challenging. The following material discusses
how to conveniently specify the ellipse, how to draw an axis-aligned ellipse, and how
to draw general ellipses.

Specifying the Ellipse

The algorithm described here draws ellipses of any orientation on a 2D raster. The
simplest way for an application to specify the ellipse is by choosing an oriented
boundingbox with center (x, y.) and axes (x4, ¥o) and (xp, y), where all components
are integers. The axes must be perpendicular, so x,xp + yovp = 0. It is assumed that
(X4 Ya) is in the first quadrant (not including the y-axis), so x, > 0 and y, = 0 are
required. It is also required that the other axis is in the second quadrant, so x;, < 0 and
vb = 0. There must be integers n, and ny, such that np(xp, yp) = ny(—yg, x4), but the
algorithm does not require knowledge of these. The ellipse axes are the box axes and
have the same orientation as the box.

All pixel computations are based on the ellipse with center (0, 0). These pixels are
translated by (x., y.) to obtain the ones for the original ellipse. A quadratic equation
for the ellipse centered at the origin is

(X + Yay)* | (px + )t
(x2+ y2)?2 (x; +yp)?

In this form it is easy to see that (x,, y,) and (x;, yp) are on the ellipse. Multiplying
the matrices and multiplying through by denominators yields the quadratic equation

Ax® 4 2Bxy +Cy' =D,
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where the integer coefficients are
2002 22 202 202
A=x (X, + v+ X+ v))

. 242 2 2.2
B = x,va(x, + ¥;)" + xXpyp(x, + v,)

2

C= ,\‘f{xf, + ,\'{:)2 + .“f(-‘”(zx + -‘cr)l
D= (x4 ) (xf + v

For standard-size rasters, since these integers can be quite large, an implementation
should use 64-bit integers.

Axis-Aligned Ellipses

The algorithm for an axis-aligned ellipse draws the arc of the ellipse in the first quad-
rant and uses reflections about the coordinate axes to draw the other arcs. The ellipse
centered at the origin is b%x* + a?y? = a’b?, Starting at (0, b), the arc is drawn in
clockwise order. The initial slope of the arc is 0. As long as the arc has a slope smaller
than Tinabsolute magnitude, the x valueis incremented. The corresponding y value is
selected based on a decision variable, just as in Bresenham’s circle drawing algorithm.
The remaining part of the arc in the first quadrant has a slope larger than 1 in absolute
magnitude. That arc is drawn by starting at (a, 0) and incrementing v at each step.
The corresponding x value is selected based on a decision variable.

While drawing the arc starting at (0, #), let (x, v) be the current pixel that
has been drawn. A decision must be made to select the next pixel (x + 1, y +
8) to be drawn, where & is either 0 or —1. The ellipse is defined implicitly as
Q(x, y) =0, where Q(x, y) = b’ + az_\'z — a*bh?, Each choice for the next pixel
lies on its own ellipse defined implicitly by Q(x, v) = 4 for some constant i that
is not necessarily zero. The idea is to choose § so that the corresponding level
curve has A as close to zero as possible. This is the same idea that is used for
Bresenham’s circle algorithm. For the circle algorithm, the choice is based on se-
lecting the pixel that is closest to the true circle. For ellipses, the choice is based
on level set value and not on the distance between two ellipses (a much harder
problem).

Given current pixel (x, v), for the next step the ellipse must do one of three things:

I. Pass below (x + 1, ¥) and (x + 1, y — 1), in which case Q(x + 1, y) = 0 and
Ox+1,y—1)=0.

2. Pass between (x + 1, y) and (x + 1, ¥ — 1), in which case Q(x + 1, v) = 0 and
Ox+1,y—=1=0.

3. Pass above (x + 1, y) and (x + 1, v — 1), in which case Q(x + 1, v) <0 and
Qx+1,y—1)<0.
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In the first case the next pixel to draw is (x + 1, y). In the second case the pixel
with @ value closest to zero is chosen. In the third case the next pixel to draw is
Q(x 4+ 1, y — 1). The decision in all three cases can be made by using the sign of
o=0x+1,y)+ Q(x+1,y—1).1fo <0, then the next pixelis (x + 1, y — 1). If
a > 0, then the next pixelis (x + 1, y). Fora =0, either choice is allowed, so (x + 1, ¥)
will be the one selected.

The decision variable o can be updated incrementally. The initial value is oy =
01, b) + Q(1, b — 1) = 2b% 4+ a*(1 — 2b). Given current pixel (x, y) and decision
variable o;, the next decision is

Qx+2,v)+Q(x+2,y—1), o; =0

Tiy1 = .
Qx+2,y—-1)+Qx+2,y—2), 0;<0

The choice is based on whether or not the chosen pixel after (x, y)is (x + 1, ¥) [when
o; = 0] or (x + 1, vy — 1) [when oy < 0]. Some algebra leads to

26 (2x + 3), 0 >0

G =t { 267 (2x +3) + 4a*(1 - y), 0; <0

On this arc x is always incremented at each step. The processing stops when the
slope becomes 1 in absolute magnitude. The slope dy/dx of the ellipse can be com-
puted implicitly from Q(x, y) =0as Q. + Q,dy/dx =0, where Q, and Q, are the
partial derivatives of Q with respect to x and y. Therefore, dy/dx = —-Q,/0, =
—(2b%x)/(2a*y) = —(b*x)/(ay). The iteration on x continues as long as —(b*x)/
(a@*y) = —1. The termination condition of the iteration using only integer arithmetic
is b'x < a’y.

The code for the iteration is

int a2 = a*a, b2 = b*b, fa2 = 4*a2;
int x, y, sigma;

for (x = 0, y = b, sigma = 2*b2+a2*(1-2*b): b2*x <= a2*y; x++)
{

DrawPixel(xc+x,yc+y);

DrawPixel(xc-x,yc+y);

DrawPixel(xc+x,yc-y);

DrawPixel(xc-x,yc-y);:

if ( sigma >= 0 )

{
sigma += fa2*(1l-y);
y--:

}

sigma += b2*(4*x+6);
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The code for the other half of the arc in the first quadrant is symmetric in x and
yandina and b:

int a2 = a*a, b2 = b*b, fh2 = 4*b2;
int x, y., sigma;

for (x = a, y =0, sigma = 2%a2+b2*(1-2%a); a2*y <= b2*x; y++)
{

DrawPixel(xc+x,yc+y):

DrawPixel(xc-x,yc+y):

DrawPixel(xc+x,yc-y);

DrawPixel(xc-x,yc-y);

if ( sigma >= 0 )

{
sigma += fb2*(1-x);
x=-;

}

sigma += a2*(4*y+6);

General Ellipses

Anattempt could be made to mimic the case of axis-aligned ellipses by drawing the arc
from (xp, yp) to (x4, ¥4) and reflecting each pixel (x, y) through the appropriate lines.
For example, given pixel i = (x, y), the pixel reflected through ¥ = (xp, ys) given by

PP u-v\ . XpX + Vpy
(x,_$’}=u—2(~ _)v:(x.y)—Z el RCERD)
u-v X, + v,

would also be drawn. The right-hand side requires a division. Moreover, even if
the division is performed (whether as float or integer), the resulting pixels are not
always contiguous and noticeable gaps occur. The general orientation of the ellipse
requires a better method for selecting the pixels. Instead, the arc is generated from
(—Xa, —Ya) to (X4, Ya), and pixels (x. + x, v + v) and their reflections through the
origin (x. — x, y. — y) are plotted.

The algorithm is divided into two cases:

L. Slopeat (—x4, —y,) is larger than 1 in absolute magnitude. Five subarcs are drawn.

(a) Arc from (—xg, y,) to a point (xq, yy) whose slope is infinite. For all points
between, the ellipse has a slope larger than 1 in absolute magnitude, so y is
always incremented at each step.
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(b) Arc from (xo, o) to a point (xy, y;) whose slope is 1. For all points between,
the ellipse has a slope larger than 1 in absolute magnitude, so y is always
incremented at each step.

(c) Arcfrom (x;, y;) toa point (x2, y2) whose slope is 0. For all points between, the
ellipse has aslope less than 1 in absolute magnitude, so x is always incremented
at each step.

(d) Arcfrom (x3, y;) to a point (x3, y3) whose slope is — 1. For all points between,
the ellipse has a slope less than 1 in absolute magnitude, so x is always incre-
mented at each step.

(e) Arc from (x3, y3) to (x4, ¥,). For all points between, the ellipse has a slope
larger than 1 in absolute magnitude, so y is always decremented at each step.

2. Slope at (—x,, —¥,) is smaller than 1 in absolute magnitude. Five subarcs are
drawn.

(a) Arc from (—x4 —y,) to a point (xg, o) whose slope is —1. For all points
between, the ellipse has a slope less than 1 in absolute magnitude, so x is always
decremented.

(b) Arc from (xo, yo) to a point (x;, y;) whose slope is infinite. For all points
between, the ellipse has a slope larger than 1, so y is always incremented.

(c) Arc from (xy, y;) to a point (x3, y2) whose slope is 1. For all points between,
the ellipse has a slope larger than 1 in absolute magnitude, so y is always
incremented at each step.

(d) Arcfrom (x3, ¥2) toa point (x3, y3) whose slope is 0. For all points between, the
ellipse has a slope less than 1 in absolute magnitude, so x is always incremented
at each step.

(e) Arcfrom (x3, y3) to (x4, ¥, ). For all points between, the ellipse has a slope less
than 1 in absolute magnitude, so x is always incremented at each step.

Each subarc is computed using a decision variable as in the case of an axis-aligned
ellipse. The decision to switch between the three subarcs is based on the slope of
the ellipse. The ellipse is implicitly defined by Q(x, y) = 0, where Q(x, y) = Ax? +
2Bxy + Cy* — D =0. Thederivativedy/dx = —(Ax + By)/(Bx + Cy) is obtained
by implicit differentiation. The numerator and denominator of the derivative can
be maintained incrementally. Initially, the current pixel (x, ¥) = (—x,, —y,) and the
numerator and denominator of the slope are dy = Ax, + By, and dx = —(Bx, +
Cyg).

The decision variable o is handled slightly differently than in the case of an axis-
aligned ellipse. In the latter case, the decision was made to use the pixel whose own
level curve is closest to the zero level curve. In the current case, a general ellipse handled
in the same way can lead to gaps at the end points of the arc and the reflected arc. To
avoid the gaps, the decision is made to always select the ellipse with the smallest positive
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level curve value rather than the smallest magnitude level curve value. The selected
pixels are always outside the true ellipse. The decision variable is not incrementally
maintained because it is not expensive to compute, although it is possible to maintain
it s0.

Each of the algorithms for the 10 subarcs are similar in structure. Case 1(a)
is described here. The initial values are x = —x,4, ¥ = —yqa, dx = Bxg + Cy,, and
dy = —(Ax, + By,). As y is incremented, eventually the leftmost point in the x-
direction is encountered where the slope of the ellipse is infinite. At each step the
two pixels to testare (x, ¥y + 1) and (x — 1, y + 1). It is enough to test 0 = Ax? +
2Bx(y + 1) + C(y + 1)* — D < 0 to see if (x, y + 1) is inside the true ellipse. If it
is, then (x — 1, ¥ + 1) is the next pixel to draw. If o = 0, then (x, y + 1) is outside
the true ellipse and closer to it than (x — 1, y + 1), so the next pixel is (x, y + 1). The
code is

while ( dx <=0 ) //loop until point with infinite slope occurs
{
DrawPixel(xc+x,ycty);
DrawPixel(xc-x,yc-y);
y+t;
sigma = a*x*x+2*b*x*y+cry*y-d;
if ( sigma < 0 )
{
dx -= b;
dy += a;
X--3
}
dx += ¢C;
dy -= b;
}

The other nine cases are structured similarly.

3.6.4 TRIANGLES

Drawing a triangle as a white object on a black background is a simple process that
determines the pixels with minimum and maximum x values on each scan line
intersected by the triangle, then draws the pixels between. This is accomplished by
keeping two buffers for the minimum and maximum, with each buffer having a
number of elements equal to the height of the screen, and using the Bresenham line
drawing algorithm to draw the three edges of the triangle. The line drawer updates the
buffers when necessary. It is useful to sort the vertices on y so that the line drawer can
update only one of the buffers at a time. This also helps to trap degenerate triangles
that are passed to the rasterizer; the degeneracy is caused by triangles seen nearly edge
on by the eye point, with numerical round-off errors leading to the projection being
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a line segment. Pseudocode is given for a triangle with integer-valued vertices (x;, y;)
for 0 < i < 2 that are listed in counterclockwise order. There are 13 cases, 6 of the
form y;; < vi; < v;,, 3of the form y;, = y;, < y,, 3 of the form y;, < ¥, = y,,and |
of the form y;, = v;, = ¥;,- Only a couple of the cases are listed in the pseudocode. It
is assumed that there are two update routines, one that updates the minimum buffer
(UpdateMin) and one that updates the maximum buffer (UpdateMax). The return
value of false indicates a degenerate triangle, true otherwise.

// global quantities

xmin[0..H-1] = minimum x-values for scan lines 0 <=y <= H-1:
xmax[0..H-1] = maximum x-values for scan lines 0 <=y <= H-1;:
ymin = last minimum y-value for scan lines:

ymax = last maximum y-value for scan lines:
pixel[0..H-1][0..W-1] = frame buffer;

bool ComputebdgeBuffers ()
{
Jf*** case: y0 < yl < y2
dx0 = x1-x0; dy0 = yl-y0; dx1 = x2-x0; dyl = y2-y0;
det = dx0*dyl-dx1*dy0;
// assert: det <= 0 since vertices are counterclockwise and
/! screen space has left-handed coordinates
if ( det <0 )
{
UpdateMin(x0,y0,x1,y1);
UpdateMin(x1l,yl,x2,y2);
UpdateMax(x0,y0,x2,y2);
return true;

!

else

{
// degenerate triangle
return false;

}

f/*** case: y0 < yl = y?
// assert: x1 <= x2 since vertices are counterclockwise and
// screen space has left-handed coordinates
if ( x1 < x2)
{
UpdateMax(x0,y0,x2,y2);
UpdateMin(x0,y0,x1,y1);
return true;
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else

{
// degenerate triangle
return false;

Lines are always drawn starting from the vertex with the smaller y-value. This
avoids the cracking between triangles that was mentioned in Section 3.6.1. The tri-
angle rasterizer is

void DrawWhiteTriangle ()

{
clear xmin[ymin..ymax];
clear xmax[ymin..ymax];

if ( ComputeEdgeBuffers() )

{
for (y = ymin; y <= ymax; y++)
{
for (x = xminly]; x <= xmax[yl; x++)
pixel[y][x] = WHITE;
}
}

3.6.5 INTERPOLATION DURING RASTERIZATION

Obviously, we don’t usually draw solid colored triangles in rendering. The vertex at-
tributes must be interpolated to obtain the final colors of the pixels. In the context of
perspective projection, all the vertex attributes should be interpolated in a perspec-
tive way. This is an expensive operation for a software renderer, so usually only the
texture coordinates are perspectively interpolated. Vertex colors and other attributes
are linearly interpolated, under the assumption that the visual differences between
the two types of interpolation are not significant. In the discussion, let (xq, yo, o)
and (x}, v;, o)) be end points of a line that are endowed with vertex attribute a. The
edge buffers that stored the extreme x values per scan line are extended to store the
interpolated attributes at those extremes.

Linear Interpolation

The edge buffer updates can be set up to iterate over the y-value of the triangle edges.
Floating-point operations are used to compute the x-values and a-values, so the
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Bresenham line drawing method is not used here. The idea is to avoid interpolation
over long horizontal runs of pixels that are generated by edges with a slope of nearly
2ET0.

The x-value of the line can be viewed as an interpolated value,

xp — Xxg (xoy1 — x1¥0) + (X1 — x0)y
(y=yo) = ,

Y1 — Yo Yi— Yo

and applies to the minimum or maximum buffer calculations. The pseudocode for
computing this is

dx = x1 - x0;
dy = y1 - y0; // dy > 0 is guaranteed by sorting in
// ComputeEdgeBuffers
inv = 1.0/dy; // floating-point division
det = x0*yl - x1*y0;
c0 = det*inv;
¢l = dx*inv;
for (y = y0+1l; y < yl; y++)
x[y] = c0 + cl*y;

The attribute « is linearly interpolated in the same way,

o (ctoy1 — @1 y0) + (o) — o)y
Y=

»

and the pseudocode is

da = al - a0;
dy =yl - y0; // dy > 0 is guaranteed by sorting in
// ComputeEdgeBuffers
inv = 1.0/dy; // floating-point division
det = al*yl - al*y0;
c0 = det*inv;
cl = dx*inv;
for (y = y0+1; y < yl; y++)
alyl = c0 + cl*y:

Although division is usually an expensive operation, there are only n + 1 divisions per
triangle edge, one for the x-value and # for the list of attributes to be interpolated, so
the cost is acceptable. The computations also involve conversions from floating-point
numbers to integers, The conversions can come at some expense if left to a compiler to
decide which method to use, but there may be methods using hand-coded assembly
that provide for a faster conversion.
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When all three edges of the triangle are processed, the edge buffers contain the
extreme x-values and the corresponding interpolated attributes. An iteration over
the relevant scan lines is performed, and the attributes for the vertical run of pixels
between the extreme x-values are themselves computed by linear interpolation of the
edge buffer attributes. In order to make the inner loop as fast as possible, integer
arithmetic is possible (in the style of Bresenham’s line drawing algorithm) as long as
the attributes are mapped to an appropriate range of integer values. The pseudocode
for rasterizing a triangle with a single vertex attribute is

<packing of vertex attributes for the edge buffer algorithm
goes here>;
ComputeEdgeBuffers():
for (y = ymin; y <= ymax: y++)
{
x0 = xmin[y]:
x1 = xmax[y];
a0 = aminfy];
al = amax[y]:

<map a0 and al to integer range, use the same names a0
and al>;

dx = x1 - x0;

if (dx >1)
{
if ( al > a0 )
{
SX = 1;
tx = 2*(al - a0);
}
else if ( al < a0 )
{
sx = -1;
tx = 2*(a0 - al):
}
else
{
sx = 0;
tx = 0;
}

dec = tx - dx;
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for (x = x0, ax = 2*dx; x <= xl; x++)

{
pixel[yl[x] = a0;
if ( dec >= 0 )
{
dec -= ax;
a0 += sx;
}
dec += tx:
)
}
else if ( dx == 1)
{
pixel[yl[(x0] = a0;
pixellyl[x1] = al;
}
else
{
pixel[y]l[x0] = a0;
}

Perspective Interpolation

As before, the x-values of the triangle edges are computed using linear interpolation.
A vertex attribute o is computed using perspective interpolation. Let (xo, yo, @) and
(x1, ¥1, @1) be end points of a line that are endowed with vertex attribute a. The
edge buffers that stored the extreme x-values per scan line are extended to store the
interpolated attributes at those extremes.

Equation (3.3) provides the relationship between the parameter s € [0, 1] ofaline
segment in the world and the parameter 5 € [0, 1] of the perspective projection of the
line segment on the screen. The attribute e is linearly interpolated in world space, so

o — Qp
S=—.
) — @

The value y is linearly interpolated in screen space, so
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Replacing this in Equation (3.3) and performing some algebra manipulation yield the
perspective interpolation

_ (owiy1 — aywoyo) + (1wo — agw))y
(wyyy — woyo) + (wo — wy)y

The perspective aspect is clear since the right-hand side is a ratio of two linear func-
tions of y. The vertex attribute that is always perspectively interpolated is the depth
value 7 or, equivalently, w = z/n. Replacing & by z or w in the interpolation equation
yields

zoz1(y1 — »o)
z =
(z1y1 — 2oy0) + (2o — 21)Y

or

w = wowi(¥1 — Yo)
(wyy1 — woyo) + (wo — wy)y’

This interpolator is used to compute the depth values per pixel that are used for depth
buffer sorting. The calculated value at each pixel is compared to the corresponding
value in the depth buffer to control whether or not the pixel is written,

The pseudocode for the edge buffer setup is

b0 = wl*yl - wO*y0;

bl = w0 - wl;

t0 = wl*al;

tl = wl*a0;

c0 tl*yl - t0*y0;

cl = t0 - tl;

for (y = y0+1; y < yl; y++)
alyl = (cO+cl*y)/(b0+bl*y);

Linear interpolation involves one division per edge per attribute. Perspective interpo-
lation involves one division per pixel per attribute, so a greater cost is incurred.

When all three edges of the triangle are processed, the edge buffers contain the
extreme x-values and the corresponding interpolated attributes. An iteration over
the relevant scan lines is performed, and the attributes for the vertical run of pixels
between the extreme x-values are themselves computed by perspective interpolation
of the edge buffer attributes. The pseudocode for rasterizing a triangle with a single
vertex attribute is
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for (int y = ymin; y <= ymax; y++)
{

x0 = xmin[y]:

x1 = xmax[y]1:

a0 = amin(y]l:

al = amax[y];

dx = x1 - x0;
if (dx > 1)
{

bl = w0 - wl;

b0 = wl*x1l - wO*x0;
t0 = wO*al;

tl = wl*a0;

cl =t0 - tl:

c0 = t0*x1 - t0*x0;

pixel[yl[x0] = a0;

for (x = x0+1; x < x1; x++)
pixel[yl[x] = (cO+cl*x)/(b0+b1*x);

pixel[yl[x1] = al;

}
else if ( dx == 1)
(
pixel[yl[x0] = a0;
pixellyl[x1] = al;
}
else
{
pixellyl[x0] = a0;
}

As implemented, rasterization of a triangle with an attribute that must be per-
spectively interpolated requires a division per pixel—an expense clearly noticed in
software renderers. But there are a couple of ways to avoid this expense. One way is
to replace the floating-point division by an algorithm that approximates division but
uses less cycles. Current-generation CPUs have division-approximation instructions
that typically require just a few cycles more than a multiplication or addition. A sec-
ond way has been the standard approach for CPUs that allow the floating-point unit
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and integer unit to work in parallel. The division is performed at every N'th pixel (typ-
ically, N = 4 or 8 or 16), and the other pixels are linearly interpolated using integer
arithmetic. The first pixel and last pixel in a run have their divisions calculated. The
last pixel of the current run becomes the first pixel of the next run. The last pixel of
the next run is started. While the floating-point unit stalls to complete the division,
the intermediate pixels of the current run are linearly interpolated from the known
values of the first and last pixels of that run. This is done using integer arithmetic, so
the integer unit and floating-point unit are executing in parallel.

There s a very nicely written set of articles on the topic of perspective interpolation
that includes source code for a PC (Hecker 1995a, 1995b, 1995¢, 1995d, 1996).

3.7 AN EFFICIENT CLIPPING AND LIGHTING PIPELINE

The graphics pipeline illustrated here is built with the goal of saving as much infor-
mation as possible to minimize execution time. The object is represented as a triangle
mesh with manifold geometry. Object culling can be performed as indicated earlier,
whether with bounding spheres, oriented bounding boxes, or any other preferred
bounding volume. The clipping pipeline used is the one that transforms vertices to
view space, then clips in view space. The workhorse of the pipeline is the clipping
of the triangle mesh, a process described here in detail. Only clipping of vertices is
performed. Lighting of vertices and interpolation of vertex attributes is deferred until
after the completion of clipping. The triangle mesh retains enough information to
allow us to light the minimum number of vertices and to interpolate the minimum
number of clip vertices. Projection into screen space is straightforward.

3.7.1 TRIANGLE MESHES

An object representation that is well suited for efficient clipping is a triangle mesh.
The meshes considered here have manifold geometry; that is, each edge is shared
by at most two triangles and there are no degenerate vertex junctions. Triangle fans,
triangle strips, and triangle soups fall into this category.

The triangle mesh stores an array of vertices that are contained in the mesh.
Other quantities are stored but not shown here, for example, facet plane normals
(for back face culling) and vertex attributes (color, alpha, texture coordinates, fog).
The minimum connectivity structure for supporting the geometric clipping is

Vertex : point in 3-space

Edge Record :
indices for vertex end points of edge (VO, V1)
indices for triangles sharing the edge (70, T1)
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Triangle Record :
indices for vertices of triangle (VO0, V1, V2)
indices for edges of triangle (E0 = <VO,V1>, E1 = <V1,V2>,
E2 = <V2,V0>)

Triangle Mesh
number of Vertices, NV
number of Edges, NE
number of Triangles, NT
array[0..NV-1] of Vertex
array[0..NE-1] of Edge Record
array[0..NT-1] of Triangle Record

The renderer appends to this data structure additional information that supports
minimum execution time for clipping and deferred lighting calculations:

Per Vertex:
visibility flags
pseudodistance to current clip plane
old edge index for clip vertex
new edge index for clip vertex
clip parameters

Per Edge:
visibility flags
index of clip vertex on edge (if any)

Per Triangle:
visibility flags

The reasons for the design of Edge Record and Triangle Record and for the
additional information in the renderer will become clear shortly.

The renderer maintains a single extended triangle mesh that can contain any
application triangle mesh to be rendered. Initially, the extended mesh dynamically
resizes itself as the scene graph is rendered piece by piece. Eventually, a steady state is
reached, at which time the resizing is no longer necessary.

3.7.2 CLIPPING A TRIANGLE MESH

Each frustum plane in view space is of the form Ax + By + Cw + D = 0. A point
(x, y, w) is said to be on the frustum side of the plane when Ax + By + Cw +
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D = 0. The quantity Ax + By + Cw + D is referred to as a pseudodistance. The
actual distance of point to plane is |[Ax + By + Cw + D[/~ A% + B? + C2. Theonly
important thing to determine is on which side of a plane the point lives. The distance
to plane is not needed, so the expensive square root evaluation is avoided. The near
planeis w = 1, the far plane is —w + f/n, the left plane is x 4+ w = 0, the right plane
is —x + w = 0, the bottom plane is v + w = 0, and the top plane is —y + w = 0. The
frustum side conditions use > instead of = in the plane equations.

The vertex visibility flags are used to determine which vertices need to be processed
by the clipper. If a vertex is tagged as visible and is outside the currently processed
frustum plane, it is tagged as not visible and the next frustum plane test ignores the
vertex. A pass is made over the visible vertices, and the pseudodistances are computed
and saved.

The edge visibility flags are used to determine which edges need to be tested for
clipping. If both pseudodistances are nonpositive, then the edge is culled and is tagged
as invisible. If both pseudodistances are nonnegative, then the edge is on the frustum
side of the plane and remains visible for the next plane test. If an edge is currently
visible and the product of the pseudodistances is negative, then the edge is split by the
frustum plane, The clip vertex is computed according to Equation (3.17). To support
deferred lighting calculations, the parameter p;o/(pi, — pi1) is saved in an array of
clip parameters that is stored by the renderer. The new vertex is appended to the vertex
array of the mesh and is tagged as visible. The old vertex that is outside the frustum is
tagged as invisible. The new edge is the portion of the old edge that is on the frustum
side of the plane. It is appended to the edge array of the mesh and tagged as visible.
The old edge is tagged as invisible so that it will not be tested against the next frustum
plane.

The technical challenge is in updating the triangle and edge connectivity infor-
mation. The edges themselves were clipped against the frustum plane. If two edges
in a single triangle are clipped, the corresponding clip vertices must be connected
by adding a new edge to the mesh. The old triangle must also be subdivided into
one or two triangles. The old triangle is then tagged as invisible and the new trian-
gles are tagged as visible. Figure 3.10 shows the three possible configurations. The
original triangle Ty consists of vertices {Vj, V|, V2| and edges {Eq, E|, E»}, where
Eg=[Vy, Vi; Ty, 00}, Ey = {Vy, Va3 Ty, o0}, and E; = [ V), Vs T, o). The edge for-
mat contains the two vertices that form its end points (stored in the actual data
structure as indices into the vertex array) and the two triangles that share the edge
(stored in the actual data structure as indices into the triangle array, an oc indicating
no adjacent triangle). The triangle format is Ty = { Vi, Vi, Va3 Ey, E|, E;} (stored in
the actual data structure as indices into the appropriate arrays).

In case 1, the vertex array is expanded to {f’n, Vi, Vi, Vs, Va}, the edge array is
expanded to {Eg, Ey, E, Es, Ey, Es), and the triangle array is expanded to {Ty, T1).
The bars over the vertices, edges, and triangles indicate that those objects have been
tagged as invisible, The new edges are £3 = {V3, Vi3 Ty, o0}, Eq = {Va, Vi3 T1, o0},
and F5 = {V3, Vy; T, oc). The new triangle is Ty = {V3, Vi, V5 Es, Ey, Ez).
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Case 1

Case 2

Case 3

Figure 3.10  Three configurations for clipped triangle.

In case 2, the vertex array is expanded to { V, Vi, Vs, Va}, the edge array is expanded
to [Eo, Ey, E», E3, E;), and the triangle array is expanded to {To, 7} ). The new edges
are Ey = [V3, Vi3 Ty, oo} and Ey = V3, Va; T), 0o}. The new triangle is 7y = { V3, Vs,
Yi; Es; Ey, Es)

In case 3, the vertex array is expanded to {Vy, V|, V5, V3, V4}, the edge array is
expanded to {Eo, E\, E3, E3, Ey, Es, Eg), and the triangle array is expanded to (T,
Ty, T2). The new edges are E; = {V3, V); T, 00}, Eq = [ V4, Vs Ta, 00), Es = {V3, Vs
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T\, Tz}, and Eg = V3, Vs T3, 00}, The new triangles are Ty = { Vs, Vi, Vi; Es, Ey, E3)
and T; = { Vi, Vi, Vo Eg, Ey, Es).

Figure 3.10 is slightly misleading about the complexity of the algorithm. First, T
consists of vertices {Uy,, Ui, Uy} and edges [ Fj,, F},, F},}. These must be mapped
onto the V and E terms so that the ordering of the U and F values is consistent with
what is shown in the figure. The old edge indices that are stored by the renderer are
used to assist in calculating the ordering. Second, if 7, happened to share edge E,
with another triangle Sp, then both Ty and 5; must be subdivided. The new edge is
E3={V;, Vi; T, 51}, where Ty and 8, are the appropriate subtriangles. The problem
is that Ty is the first of the two triangles to be processed. S has not yet been subdivided,
and Sy does not exist in the triangle array at the time that £ is constructed. In this
situation the algorithm sets E3 = {V3, V5 T}, 5g). Sy is immediately processed after T;
because when E is processed, both of its adjacent triangles are analyzed for splitting.
Once 5 is processed, the triangle index for Sy in the edge record for Es is updated
to S|‘

3.7.3 COMPUTING VERTEX ATTRIBUTES

Vertex lighting and interpolation is performed in four steps. The first step is to make
a pass over the visible original vertices and mark them as needing to be lit. The sec-
ond step is to make a pass over the visible clip vertices and determine which of the
original vertices (at most three) contributed to it. The edge clipping algorithm and
data structures implicitly contain a directed acyclic graph of related vertices. The
algorithm amounts to a traversal of the graph and tagging the appropriate origi-
nal vertices. Note that an invisible original vertex can contribute to a visible clip
vertex, so this pass may tag additional vertices as needing to be lit, even though
those vertices are invisible. In particular, this is the case when an edge just strad-
dles the frustum. One vertex is inside and one vertex is outside. The outside ver-
tex is invisible, but its attributes need to be computed so that the clip vertex at-
tributes can also be computed. The third step is to make a pass over the original
vertices that need to be lit and actually do the lighting calculations. The process
of lighting was described earlier. The fourth step is to make a pass over the visi-
ble clipped vertices and interpolate their attributes. This pass also uses the directed
acyclic graph of vertices and uses the clip parameters that have been stored by the
renderer.

The directed acyclic graphs of vertices corresponding to the three cases in Figure
3.10 are shown in Figure 3.11. The graphs consisting solely of vertices are weighted.
The arcs connecting vertices contain the appropriate clip parameter values that pro-
duced the clip vertex. The graphs can become more complicated if a triangle is split
by more than one frustum plane.
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Figure 3.11  Three configurations for clipped triangle.
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38 ISSUES OF SOFTWARE, HARDWARE, AND APIs

In summary, this chapter describes the relevant issues in building a renderer without
regard to whether the work is done by a general-purpose CPU, in part by a hardware-
accelerated graphics card, or totally by specialized graphics hardware. Independent
of software or hardware, the rendering pipeline was also described without regard to
integration with existing software that provides an application programmer interface
(API). The reality of building a real-time computer graphics engine requires an un-
derstanding of what platforms are to be supported and what other existing systems
can be used rather than implemented from scratch.

APIs such as Direct3D, OpenGL, or Glide for consumer graphics accelerators can
be viewed as providing a boundary between the scene graph management and the
rendering system. Direct3D and OpenGL are fairly high-level rendering APIs, and
both attempt to hide the underlying hardware to allow an application to be portable
across multiple hardware cards. Glide is a low-level rasterizing API specifically for 3dfx
cards. Writing to this API clearly makes the application nonportable, but if the only
intended platform is one that uses a 3dfx card (an arcade machine, for example), then
there is a lot to be gained by using the specific features of the low-level APIL

Heated debates arise in the computer graphics and games newsgroups about
whether Direct3D or OpenGL is the “best” system to build on. This is an unanswer-
able question—and in fact is not the question to ask. Each system has its advantages
and disadvantages. As with most of computer science, the issue is more about un-
derstanding the trade-offs between using one system or another. OpenGL is clearly
superior with respect to portability simply by its design. An application can be written
to run on a high-end SGI machine or on a consumer machine such as a PC or Mac-
intosh. Direct3D was intended only to provide portability among cards in a PC. On
the other hand, OpenGL insists on handling many details that an application might
like to control but cannot. Direct3D provides much more fine-grained control over
the rendering process. Both APIs are constantly evolving based on what the end pro-
grammers want, but evolution takes time. Moreover, the consumer hardware cards
are evolving at a fast enough rate that the drivers that ship with them are buggy but
are not always corrected because the next-generation card is almost ready to ship.
This requires patching the layer on top of the APIs with work-arounds for specific
cards. Evolution is good, but fast evolution is painful, especially for a company pro-
ducing a commercial product that runs on top of those cards and drivers,

As hardware evolves and begins doing the higher-level work that the scene graph
management system has been doing, the APIs should become easier to work with.
However, there will always be work necessary on the scene graph side to feed data
through the APL The next-generation cards that are shipping as of the time of this
writing will be providing support for hardware transforming and lighting. The model
data is expected to be in some compacted format and may require conversion from
the natural format for the application to the required format of the graphics card. If
two hardware cards require different formats and the APIs do not hide this difference



3.8 Issues of Software, Hardware, and APIs 139

from the application, then portability among cards becomes a difficult issue again.
Repackaging of data does incur some cost.

Another part of the evolution of graphics on a consumer machine involves the
CPUs themselves. Both Intel’s Pentium 111 and AMD’s K6 chipsets have new instruc-
tions to support a small amount of parallelism (SIMD: single instruction, multiple
data) and to provide for faster operations such as inverse square roots (for normal-
izing vectors). To make the most of the new instructions, the registers of the CPUs
must be loaded quickly. For the Pentium II1, the natural format for storing an ar-
ray of points to support fast register loading is to have three arrays, one for x-values,
one for y-values, and one for z-values. However, most applications have tended to
store points as an array of structures, not as a structure of arrays. Repackaging points
to feed the registers quickly invariably offsets most of the speedup for using SIMD.
Again, portability between platforms becomes a significant issue simply because of
data formats. The new CPUs also tend to have data alignment requirements that are
not necessarily guaranteed by current-generation compilers, so either a memory man-
ager must be written to handle the alignment or the chip companies must supply a
compiler. In fact, current compilers have to catch up and provide support for the new
machine instructions, so it is essential to have additional compiler support from the
chip companies.

Finally, one of the most important low-level aspects of building a renderer is
cache coherence. Experience has shown that even with the best-designed high-level
algorithms, the performance can be significantly reduced if the data is organized in
such a way as to cause many cache misses. Unless those implementing the system are
experts for the particular CPU’s instruction set, the most reliable way to determine
cache problems or floating-point unit stalls is to use performance tools. Intel provides
a profiler, called VTune, that does give a lot of information, showing if cache misses
or floating-point stalls have occurred. At a high level, a rearrangement of statements
can help eliminate some of these problems; the necessity of rearranging is the result
of the optimizing compiler not being powerful enough to recognize the problems and
rearrange transparently. But in many cases, a low-level solution is required, namely,
writing parts of the code in assembly language. And once again portability becomes
a problem.

All of these issues must be weighed and the trade-offs made when building a
renderer. This is where the art of renderer construction really kicks in. Someone
who does not understand all the issues will be unlikely to succeed in building a good
renderer.
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he graphics pipeline discussed in Chapter 3 requires that each drawable object

be tested for culling against the view frustum and, if not culled, be passed to the
renderer for clipping, lighting, and rasterizing. Given a 3D world with a large number
of objects, the simplest method for processing the objects is to group them into a list
and iterate over the items in the list for culling and rendering. Although thisapproach
may be simple, it is not efficient since each drawable object in the world must be tested
for culling.

A better method for processing the objects is to group them hierarchically ac-
cording to spatial location. The grouping structure discussed in this chapter is a tree.
The tree has leaf nodes that contain geometric data and internal nodes that provide a
grouping mechanism. Each node has one parent (except for the root node, which has
none) and any number of child nodes. It is possible to use a directed acyclic graph as
an attempt to support high-level sharing of objects. Each node in the graph can have
multiple parents, each parent sharing the object represented by the subgraph rooted at
the node. However, the memory costs and code complexity to maintain such a graph
do not justify using it. Sharing should occur at a lower level so that leaf nodes can
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share vertices, texture images, and other data that tends to use a lot of memory. The
implied links from sharing are not part of the parent-child relationships in the hier-
archy. Regardless of whether trees or directed acyclic graphs are used, the resulting set
of grouped objects is called a scene graph.

The organization of content in a scene graph is quite important for games in many
ways, of which four are listed here. First, the amount of content to manage is typi-
cally large and is built in small pieces by the artists. The level editor can assemble the
content for a single level as a hierarchy by concentrating on the local items of inter-
est. The global ramifications are effectively the responsibility of the hierarchy itself.
For example, a light in the world can be chosen to illuminate only a subtree of the
graph. The level editor’s responsibility is to assign that light to a node in the graph.
The effect of the light on the subtree rooted at that node is automatically handled by
the scene graph management system. Second, hierarchical organization provides a
form of locality of reference, a common concept in memory management by a com-
puter system. Objects that are of current interest in the game tend to occur in the same
spatial region. The scene graph allows the game program to quickly eliminate other
regions from consideration for further processing. Although minimizing the data sent
to the renderer is an obvious goal to keep the game running fast, focusing on a small
amount of data is particularly important in the context of collision detection. The col-
lision system can become quite slow when the number of potentially colliding objects
is large. A hierarchical scene graph supports grouping only a small number of po-
tentially colliding objects, those objects occurring only in the local region of interest
in the game. Third, many objects are naturally modeled with a hierarchy, most no-
tably humanoid characters. The location and orientation of the hand of a character is
naturally dependent on the locations and orientations of the wrist, elbow, and shoul-
der. Fourth, invariably the game must deal with persistence issues. A player wants to
save the current game, and the game is to be continued at a later time. Hierarchical
organization makes it quite simple to save the state of the world by asking the root
node of the scene graph to save itself, the descendants saving themselves in a naturally
recursive fashion.

Section 4.1 provides the basic concepts for management of a tree-based representa-
tion ofa scene, including specification and composition of local and world transforms,
construction of bounding volumes for use both in rapid view frustum culling and fast
determination of nonintersection of objects managed by a collision system, selection
and scope of renderer state at internal or leaf nodes, and control of animated quanti-
ties.

Changes in the world environment of the game are handled by changing various
attributes at the nodes of the tree. A change at a single node affects the subtree for
which that node is the root. Therefore, all nodes in the subtree must be notified of
the change so that appropriate action can be taken. One typical action that requires
an update of the scene graph is moving an object by changing its local transform.
The world transforms of the object’s descendants in the tree must be recalculated.
Additionally, the object’s bounding volume has changed, in turn affecting all the
bounding volumes of its ancestors in the tree. The new bounding volume at a node
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involves computing a single bounding volume that contains all the bounding volumes
ofits children, a process called merging. Another typical action that requires an update
of the scene graph is changing renderer state at a node. The renderer state at all the
leaf nodes in the affected tree must be updated. The update process is the topic of
Section 4.2.

After a scene graph is updated, it is ready for processing by the renderer. The
drawing pass uses the bounding volumes to cull entire subtrees at once, thereby
reducing the amount of time the renderer has to spend on low-level processing of
objects that ultimately will not appear on the computer screen. Section 4.3 presents
culling algorithms for various bounding volumes compared to a plane at a time in the
view frustum. The general drawing algorithm for a hierarchy is also discussed.

4. 1 TREE-BASED REPRESENTATION

Figure 4.1

A simple grouping structure for objects in the world is a tree. Each node in the tree has
exactly one parent, except for the root node, which has none. The root is the first node
to be processed when attempting to render objects in the tree. The simplest example
of a tree is illustrated in Figure 4.1. The top-level node is a grouping node (bicycle) and
acts as a parent for the two child nodes (wheels). The children are grouped because
they are part of the same object both spatially and semantically.

To take advantage of this structure, the nodes must maintain spatial and semantic
information about the objects they represent. The main categories of information are
transforms, bounding volumes, render state, and animation state. Transforms are used
to position, orient, and size the objects in the hierarchy. Bounding volumes are used
for hierarchical culling purposes and intersection testing. Render state is used to set
up the renderer to properly draw the objects. Animation state is used to represent any
time-varying node data.

Back wheel

A simple tree with one grouping node.
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4.1.1

TRANSFORMS

In Figure 4.1, it is not enough to know the semantic information that the two wheels
are part of the bicycle. The spatial information, the location of the wheels, must also
be specified. Moreover, it is necessary to know a coordinate system in which to specify
that information. The parent node has its own coordinate system, and the location of
a child is given relative to its parent’s coordinates.

Local Transforms

The location of a node relative to its parent is represented abstractly as a homoge-
neous matrix with no perspective component. The matrix, called a local transform,
represents any translation, rotation, scaling, and shearing of the node within the par-
ent’s coordinate system. While an implementation of scene graph nodes could directly
store the homogeneous matrixasa 4 x 4 array, it is not recommended. The last row of
the matrix is always [0 0 0 1]. Less memory is used if the homogeneous matrix is stored
asa 3 x 3 matrix representing the upper-left block and a 3 x 1 vector representing the
translation component of the matrix. This also avoids the inefficient general multipli-
cation of homogeneous matrices and vectors since in that multiplication, there would
be three multiplies by 0 and one multiply by 1. Given a homogeneous matrix with no
perspective component, the matrix is denoted by

(4.1)
Using this compressed notation, the product of two homogeneous matrices is
(M1 l ?1) (M; frz)z(Mle ‘ My T + f.) (4.2)

and the product of a homogeneous matrix with a homogeneous vector [V[1]T is

(m

?) V=MV +T. (4.3)

To keep the update time to a minimum and to avoid using numerical inversion of
matrices in various settings, it is better to require that the local transform have only
translation, rotation, and uniform scaling components. The general form of such a
matrix is

<5R \ f) (4.4)
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and is called an SRT-transform. The uniform scaling factor is s > 0, the rotational
component is the orthogonal matrix R whose determinant is one, and the transla-
tional component is 7. The product of two SRT -transforms is

<s|R1 ‘ i"1> (s;R:

?‘2):(.Y1&'1R1R2 ‘.¥1R|?2+ ﬂ}. (4-5)
the product of an SRT-transform and a vector Vis

sR|T) V=sRV+T, (4.6)
(s&| 7)

and the inverse of an SRT -transform is

o=

1 T3
—-R T). (4.7)
§

World Transforms

The local transform at a node specifies how the node is positioned with respect to
its parent. The entire scene graph represents the world itself. The world location of
the node depends on all the local transforms of the node and its predecessors in the
scene graph. Given a parent node P with child node C, the world transform of C is
the product of P’s world transform with C’s local transform,

(M((‘] Fr({‘\ ) :(MEP] “}U‘J ) (M{CJ fr(})

world | “world world world local

local

world ™ local world Iucal+ world

— (M(P} M

M FE L FP) )

The world transform of the root node in the scene graph is just its local transform.
The world position of a node Ny in a path Ng - - - Ni, where Ny is the root node, is
generated recursively by the above definition as

(M(Nk}

world

fum) _ (M(No]

world local

»“f-(Nm} . (M(M}

local local

,;(Nn) )

local

4.1.2 BOUNDING VOLUMES

Object-based culling within a scene graph is very efficient whenever the bounding
volumes of the nodes are properly nested. If the bounding volume of the parent node
encloses the bounding volumes of the child nodes, culling of entire subtrees is sup-
ported. If the bounding volume of the parent node is outside the view frustum, then
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the child nodes must be outside the view frustum and no culling tests need be done
on the children. Hierarchical culling provides a fast way for eliminating large portions
of the world from being processed by the renderer. The same nested bounding vol-
umes support collision detection. If the bounding volume of the parent node does not
intersect an object of interest, then neither do the child nodes. Hierarchical collision
detection provides a fast way for determining that two objects do not intersect. The
bounding volumes that are discussed in this chapter include spheres, oriented boxes,
capsules, lozenges, cylinders, and ellipsoids.

Aleaf node containing geometric data will also contain a bounding volume based
on the model space coordinates of the data. However, the leaf node has a world space
representation based on the product of local transforms from scene graph root to that
leaf. That means the leaf node must also contain a world bounding volume, obtained
by applying the world transform to the model bounding volume.

To support the efficiencies of a hierarchical organization of the world, an internal
node requires a world bounding volume that contains the world bounding volumes of
allits children. It is not necessary to maintain a model bounding volume at an internal
node since such a node does not contain its own geometric data. While transforms
are propagated from the root of the scene graph toward the leaf nodes, the bounding
sphere calculations must occur from leaf node to root. A parent bounding volume
cannot be known until its child bounding volumes are known. A recursive traversal
downward allows computation of the world transforms. The upward return from the
traversal allows computation of the world bounding volumes.

4.1.3 RENDERER STATE

Renderer state can also be maintained in a hierarchical fashion. For example, if a
subtree rooted at a node has all leaf nodes that want their textures to be alpha blended,
the node can be tagged with state information that indicates alpha blending should be
enabled for the entire subtree. Alternatively, tagging all the leaf nodes with the same
renderer state information is an efficient use of memory. A traversal along a single
path in the tree from root to leaf node accumulates the renderer state necessary to
draw the geometry of the leaf node. Just before a leaf node is about to be drawn, the
renderer processes the state information at that node and decides whether or not it
needs to change its own internal state, As changes in rendering state can be expensive,
the number of changes should be minimal. A typical expensive change involves using
different textures. If a texture is in system memory but not in video memory, the
texture must be copied to video memory, and that takes time. For sorting purposes,
it is convenient to allow each leaf node to store a copy of the renderer state. A sorter
can select a renderer state for which it wants to minimize changes, then sort the leaf
nodes accordingly.
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4.1.4 ANIMATION

Animation in the classic sense is the motion of articulated characters and objects in
the scene. If a character is represented hierarchically, each node might represent a
joint (neck, shoulder, elbow, wrist, knee, etc.) whose local transformations change
over time. Moreover, the values of the transformations are usually controlled by
procedural means (see Chapter 9) as compared to the application manually adjusting
the transforms. This can be accomplished by allowing each node to store controllers,
with each controller managing some quantity that changes over time. In the case of
classic animation, a controller might represent the local transform as a matrix function
of time. For each specified time in the application, the matrix is computed by the
controller and the world transform is computed using this matrix.

It is possible to allow any quantity at a node to change over time. For example, a
node might be tagged to indicate that fogging is to be used in its subtree. The fog depth
can be made to vary with time. A controller can be used to procedurally compute the
depth based on current time. In this way animation is controlling any time-varying
quantity in a scene graph.

42 UPDATING A SCENE GRAPH

The scene graph represents the state of the world at a given time. If the state changes for
whatever reason, the scene graph must be updated to represent the new state. Typical
state changes include model data changing at a node, local transforms changing at
a node, the topological structure of the tree changing, renderer state changing, or
some animated quantity changing. Updating the scene graph is only necessary in those
subtrees affected by the changes. For example, if alocal transform is changed at a single
node, then only the subtree rooted at that node is affected. The world transforms of
descendants must be recalculated to reflect the new position and orientation of the
subtree’s root node. It is possible that more than one change has been made at different
locations in the scene graph. An implementation of a scene graph manager can attempt
to maintain the minimum number of subtree root nodes that need to be updated. For
example, if the local transforms are changed at nodes A and B, and if B is a descendant
of A, the update of the subtree rooted at node A will automatically update the subtree
rooted at B. It would be inefficient to first update the subtree at B, then update the
subtree at A.

The updating is done in a recursive pass. Transforms are updated on the downward
pass; bounding volumes are updated on the upward pass that is initiated as a return
from the recursive calls. Note that the upward pass should not terminate at the node
at which the initial update call was made. If the bounding volume of this node has
changed as a result of changes in bounding volumes of the descendants, then the
parent’s bounding volume might also change. Thus, the upward pass must proceed
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all the way to the root of the scene graph. If transforms are animated, the update
pass is responsible for asking the controllers to make the necessary adjustments to the
quantities they manage before the world transform is computed. Finally, if renderer
state has changed, that information must be propagated to the leaf nodes (to support
sorting as mentioned earlier). A single update call can be implemented to handle all
changes in the scene graph, but since renderer state tends to change independently of
geometry and transform changes, it might be desirable to have separate update passes.

The computation of model bounding volumes for geometric data was already dis-
cussed in Chapter 2. The main focus in the remainder of this section is on computing
the parent’s bounding volume from the child bounding volumes. The expense and
algorithmic complexity depends on the type of volume used. It is possible to consider
all child bounds simultaneously, but practice has shown that it is easier and faster to
incrementally bound the children. For a node with three or more children, a bound
is found for the first two children. That bound is increased in size to include the third
child bound, and so on.

4.2.1 MERGING TWO SPHERES

SOURCE CODE

LIBRARY

Containment

ContSphere

The algorithm described here computes the smallest sphere containing two spheres.
Let the spheres S; be | X — C;|> = r2fori =0, 1. Define L = |C, — Cy| and unit-length
vector U = (C) — Cy)/L.The problem can be reduced to one dimension by projecting
the spheres onto the line Co + rU. The projected intervals in terms of parameter f are
[—ro, ro] for Spand [L — ry, L + ry] for §;.

If [=ro, o) € [L = r1, L + 1), then Sy € Sy and the two spheres merge into
Sy. The test for this case is 7o < L + r; and L — r; < —rg. A single test covers both
conditions, 7} — ry = L. To avoid the square root in computing L, compare instead
ry =ropand (r; — ro)? > L2

If [L —r, L+ r] S [—rprol, then §) C S; and the two spheres merge into
Sy. The test for this case is L 4+ r; < rg and —rg < L — ry. A single test covers both
conditions, #; — rg < — L. Again to avoid the square root, compare instead r; < rpand
(ri—ro) = L2,

Otherwise, the intervals either have partial overlap or are disjoint. The interval
containing the two projected intervals is [—rg, L + ry]. The corresponding merged
sphere whose projection is the containing interval has radius

L+r+r
r= —
2

The center t-value is (L 4 | — ry)/2 and corresponds to the point

- - L-}—F]—rn- - L+r—rg /= -
C=C —_— U= e — ) = .
o+ U=+ (a Cg)
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The pseudocode is

Input: Sphere(C0,r0) and Sphere(Cl,rl)
centerDiff = C1 - CO;

radiusDiff = r1 - rO;

radiusDiffSqr = radiusDiff*radiusDiff;
Lsqr = centerDiff.SquaredLength();

if ( radiusDiffSqgr >= LSqr )

{
if ( radiusDiff >= 0.0f )
return Sphere(Cl,rl);
else
return Sphere(CO,r0);
}
else
{
L = sgrt(Llsgr):
t = (L+rl-r0)/(2*L);
return Sphere(CO+t*centerDiff,(L+rl+r0)/2);
}

4.2.2 MERGING TWO ORIENTED BOXES

If two oriented boxes were built to contain two separate sets of data points, it is possible
to build a single oriented bounding box that contains the union of the sets. That box
might not contain the two original oriented boxes—something that is not desired in a
hierarchical decomposition of an object. Moreover, the time it takes to build the single
oriented box could be expensive.

An alternative approach is to construct an oriented box from only the original
Containment boxes and that contains the original boxes. This can be done by interpolation of the

box centers and axes, then growing the box to contain the originals. Let the original two
boxes have centers E‘,- for i =0, 1. Let the box axes be stored as columns of a rotation
ContBox matrix R;. Now represent the rotation matrices by unit quaternions g; such that the

dot product of the quaternions is nonnegative, go - ¢ = 0. The final box is assigned
center C = (Cy + 6'1){‘2. The axes are obtained by interpolating the quaternions.
The unit quaternion representing the final box is ¢ = (g0 + ¢1)/Ig0 + ¢1|, where
the absolute value signs indicate length of the quaternion as a four-dimensional
vector. The final box axes can be extracted from the quaternion using the methods
described in Section 2.3. The extents of the final box are computed by projecting the
vertices of the two original boxes onto the final box axes and computing the extreme
values.
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The pseudocode is

// Box has center, axis[3], extent[3]
Input: Box box0, Box boxl
Output: Box box

// compute center
box.center = (box0.center + boxl.center)/2;

// compute axes

Quaternion q0 = ConvertAxesToQuaternion(box0.axis);
Quaternion ql = ConvertAxesToQuaternion(boxl.axis):
Quaternion q = qO0+qgl;

Real length = Length(q):

q /= Length(q):

box.axis = ConvertQuaternionToAxes(q);

// compute extents
box.extent[0] = box.extent[1] = box.extent[2] = 0;
for each vertex V of box0 do

{
Point3 delta = V - box.center;
for (j = 0; j < 3; j++)
{
Real adot = |Dot(box0.axis[j].delta)|
if ( adot > box.extent[j] )
box.extent[j] = adot;
1
}
for each vertex V of boxl do
{
Point3 delta = V - box.center;
for (j = 0; j < 3; j++)
{
Real adot = |Dot(boxl.axis[j],delta)|
if ( adot > box.extent[j] )
box.extent[j] = adot:
}
}

The function ConvertAxesToQuaternion stores the axes as columns of a rotation
matrix, then uses the algorithm to convert a rotation matrix to a quaternion. The
function ConvertQuaternionToAxes converts the quaternion to a rotation matrix,
then extracts the axes as columns of the matrix.
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4.2.3 MERGING TWO CAPSULES

SOURCE CODE

LIBRARY

Containment

FILENAME

ContCapsule

Two capsules may be merged into a single capsule with the following algorithm. If one
capsule contains the other, just use the containing capsule. Otherwise, let the capsules
have radii r; > 0, end points P;, and directions D; for i = 0, 1. The center points of
the line segments are C; = P; + D; /2. Unit-length directions are U; = DJ|D|.

The line L containing the final capsule axis is computed below. The origin of
the line is the average of the centers of the original capsules, € =(Co+ C1)/2. The
direction vector of the line is obtained by averaging the unit direction vectors of the
input capsules Before doing so, the condition Un Ui =0 should be satisfied. If it is
not, replace U by — U;. The direction vector for the line is U= (Ug -+ U1 /IUU + Uyl

The final capsule radius r must be chosen sufficiently large so that the final capsule
contains the original capsules. It is enough to consider the spherical ends of the
original capsules. The final radius is

r = max/|dist( Py, L) + ro, dist( Py + Do) + ro, dist(Py, L) 4 r1, dist(Py + Dy, L) +11).

Observe that r = r; fori =0, 1.

The final capsule direction D will be a scalar multiple of line direction U.Let Ey
and L; be the end points for the final capsule, so P = 1‘.; and D = E; - P(} The
end points must be chosen so that the final capsule contains the end spheres of the
original capsules. Let the projections of Po, Py + Dy, Pi,and Py + Dy onto C+1U
have parameters Ty, Tj, T2, and 73, respectively. Let the :.orrcspnndmg capsule radii
be denoted p; for 0 =i < 3. Let E =C+ T; D for j=0,1.The T; are determined
by “supporting” spheres that are sdected from the end pmnt spharc:. of the original
capsules. If O is the center of such a supporting sphere of radius p for end point E,
then 7 is the smallest root of the equation |( +TU — QI + p =r.Sincer = p, the
equation can be written as a quadratic

T2420 - (C— T +|C— Q) = (r — p)* =0.

This equation must have only real-valued solutions. Similarly, if the Q is the center of
the supporting sphere corresponding to end point Eq, then T is the largest root of the
quadratic. The quadratics are solved for all four end points of the original capsules,
and the appropriate minimum and maximum roots are chosen for the final Ty and T,.

4.2.4 MERGING TWO LOZENGES

Two lozenges may be merged into a single lozenge that contains them with the fol-
lowing algorithm. Let the lozenges have radii r; > 0, origins F;, and edges EJ,, for
i=0,1and Jj=01L The center points of the rc.c,tanglm of the lozenge are C; =
P+ (Egi + E1,)/2 Unit- lmgth edge vectors are UJ, = F.J,,leJ,| Unit-length nor-
mal vectors are N Uu; x Uy
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SOURCE CODE

LIBRARY

Containment

FILENAME

ContLozenge

The center point of the final lozenge is the average of the centers of the original
lozenges, C=iCo+ () )/ 2.

The edge vectors are obtained by averaging the coordinate frames of the origi-
nal lozenges using a quaternion representation. Let ¢; be the unit quaternion that
represents the rotation matrix [Uy; Uy; N;]. If go - ¢ < 0, replace ¢ by —g,. The
final lozenge coordinate frame is extracted from the rotation matrix IE"I, Ejﬂ 5.’] cor-
responding to the unit quaternion ¢ = (go + ¢1)/lgo + ¢11.

The problem now is to compute r sufficiently large so that the final lozenge
contains the original lozenges. Project the original lozenges onto the line containing
P and having direction N. Each projection has extreme points determined by the
corners of the projected rectangle and the radius of the original lozenge. The radius
1 of the final lozenge is selected to be the length of the smallest interval that contains
all the extreme points of projection. Observe that i = r; is necessary.

Project the rectangle vertices of original lozenges onto the plane containing P and
having normal N. Compute the oriented bounding rectangle in that plane where the
axes correspond to U;. This rectangle is associated with the final lozenge and produces
the edges !_, = L,ﬁ-’, for some scalars L; = 0. The origin point for the final lozenge is

P=C- En;’lz -— Eu‘l.

4.2.5 MERGING TWO CYLINDERS

SourRcE CODE

LIBRARY

Containment

FILENAME

ContCylinder

To keep the merging algorithm simple, the original two cylinders are treated as cap-
sules: their representations are converted to those for capsules, end points are P,
directions are D;, and radii are r,. The capsule merging algorithm is applied to ob-
tain the cylinder radius r. Rather than fitting a capsule to the points 2 + U and
P, + D, + r;U, the points are projected onto the line P + 10, where P is suitably
chosen from one of the fitting algorithms. The smallest interval containing the pro-
jected points determines cylinder height A

4.2.6 MERGING TWO ELLIPSOIDS

SOURCE CODE

Containment

FILENAME

ContEllipsoid

Computingabounding ellipsoid for two other ellipsoids is done ina way similar to that
of oriented boxes. The ellipsoid centers are averaged, and the quaternions representing
the ellipsoid axes are averaged and then the average is normalized. The original
ellipsoids are projected onto the newly constructed axes. On cach axis, the smallest
interval of the form [ —a, o is computed to contain the intervals of projection. The
a-values determine the minor axis lengths for the final ellipsoid.

4.2.7 ALGORITHM FOR SCENE GRAPH UPDATING

The pseudocode for updating the spatial information in a scene graph is given below.
Three abstract classifications are used: Spatial, Geometry, and Node. In an object-
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Spatial class manages a link to a parent, local transforms, and a world transform. It

oriented implementation, the last two classes are both derived from Spatial. The
dRCE CODE  represents leaf nodes in a tree. The Node class manages links to children. It represents

internal nodes in the tree. The Geometry class represents leaf nodes that contain
geometric data. It manages a model bounding volume.
Engine The entry point into the update system for geometric state (GS) is
void Spatial::UpdateGS (float time, bool initiator)
Spatial [
Geometry UpdateWorldData(time);
Node UpdateWorldBound();

if ( initiator )
PropagateBoundToRoot();

The input parameter to the call is set to true by the node at which the update is
initiated. This allows the calling node to propagate the world bounding volume update
to the root of the scene graph.

The function UpdateWorldData is virtual and controls the downward pass that
computes world transforms and updates time-varying quantities:

virtual void Spatial::UpdateWorldData (float time)
{
// update dynamically changing render state
for each render state controller rcontroller do
rcontroller.Update(time);

// update local transforms if managed by controllers
for each transform controller tcontroller do
tcontroller.Update(time);

// Compute product of parent’s world transform with this object’s
// local transform. If no parent exists, the child’'s world
// transform is just its local transform.

if ( world transform not computed by a transform controller )
{
if ( parent exists )
{
worldScale = parent.worldScale*localScale;
worldRotate = parent.worldRotate*localRotate:
worldTranslate = parent.worldTranslate +
parent.worldScale*(parent.worldRotate*TocalTranslate):
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// node is the root of the scene graph
worldScale = localScale:

worldRotate = localRotate;
worldTranslate = localTranslate:

TheﬁnmﬂonUpdateHorldBoundEahovhmumandconhohtheupumrdpa%and
allows each node object to update its world bounding volume. Base class Spatial
has no knowledge of geometric data and in particular does not manage a model
bounding sphere, so the function is pure virtual and must be implemented both by
Geometry, which knows how to transform a model bounding volume to a world
bounding volume, and by Node, which knows how to merge world bounding volumes
of its children.

Finally, the propagation of world bounding volumes is not virtual and is a simple
recursive call:

void Spatial::PropagateBoundToRoot ()
{
if ( parent exists )
{
parent.UpdateWorldBound():
parent.PropagateBoundToRoot():

The derived classes override the virtual functions. Class Geometry has nothing
more to say about updating world data, but it must update the world bound,

virtual void Geometry::UpdateWorldBound ()
{
worldBound = modelBound.TransformBy (worldRotate,
worldTranslate,worldScale);
}

The model bound is assumed to be correct. If model data is changed, the application
is required to update the model bound.
Class Node updates are as shown:

virtual void Node::UpdateWorldData (float time)
{
Spatial::UpdateWorldData(time);
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for each child do
child.UpdateGS(false); // child not initiator of
// original UpdateGS call

virtual void Node::UpdateWorldBound ()
{
worldBound = firstChild.GetWorldBound():
for each additional child do
worldBound = Merge(worldBound,child.worldBound):

The downward pass is controlled by UpdateWorldData. The node first updates its
world transforms by a call to the base class update of world transforms. The children of
the node are each given a chance to update themselves, thus yielding a recursive chain
ofcMhinvohﬁngUpdateGSandUpdateHor]dData.Theupdmeofwoﬂdboundsm
done incrementally. The world bound is set to the first child’s world bound. As each
remaining child is visited, the current world bound and the child world bound are
merged into a single bound that contains both. Although this approach usually does
not produce the tightest bound, it is much faster than methods that do attempt the
tightest bound. For example, if bounding spheres are used, it is possible to compute
the parent world bound as the minimum volume sphere containing any geometric
data of the descendants. Such a computation is expensive and will severely affect the
frame rate of the application. The trade-off is to obtain a reasonable world bounding
volume for the parent that is inexpensive to compute.

Updating the set of current renderer states at the leaf nodes is also a recursive
system just as UpdateGS is. Class Geomet ry maintains a set of such states; call that
member stateSet. Each state can be attached to or detached from an object of this
class. A state object itself has information that can be modified at run time. If the
information is changed, then an update must occur starting at that node. The global
renderer state set is maintained by the renderer, so any changes to renderer state by the
objects must be communicated to the renderer. Class Spatial provides the virtual
function foundation for the renderer state (RS) update:

void Spatial::UpdateRS (RenderState parentState)
{
// update render states
if ( parentState exists )
{
// parentState must remain intact to restore state after
// recursion
currentState = parentState;
modify currentState with thisState:
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else

// this object is initiator of UpdateRS, use default
// renderer states

currentState = defaultRenderState;:
PropagateStateFromRoot(currentState);

UpdateRenderState(currentState);

The initial call to UpdateRS is typically applied to a node in the tree that is not
the root node. Any renderer state from predecessors of the initiating node must be
accumulated before the downward recursive pass. The function PropagateState-
FromRoot does this work:

void Spatial::PropagateStateFromRoot (RenderState
currentState)
{
// traverse to root to allow downward state propagation
if ( parent exists )
parent.PropagateStateFromRoot(currentState);

// update parent state by current state

modify currentState with thisState;

The call UpdateRenderState is pure virtual. Class Geometry implements this
to update its renderer state at leaf nodes. Class Node implements this to perform the
recursive traversal of the call on its children.

void Geometry::UpdateRenderState (RenderState currentState)

{

modify thisState with currentState;
}
void Node::UpdateRenderState (RenderState currentState)
{

for each child do

child.UpdateRS(currentState);

}

}

Notice that UpdateRS and UpdateRenderState form a recursive chain just as
UpdateGS and UpdateWorldData form a recursive chain.
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43 RENDERING A SCENE GRAPH

The renderer manages a camera whose job it is to define the view frustum, the portion

of the world to be viewed. The process of rendering the scene graph in the frustum

at a given instant is typically referred to as the camera click. This process involves a

traversal of the scene graph, and the graph is assumed to be current (as established by
the necessary UpdateGS) and UpdateRS() calls at the relevant nodes).

Scene graph traversal includes object level culling as described earlier. If the world
bounding volume for a node is outside the view frustum, then the subtree rooted at
that node need not be traversed. Ifa subtree is not culled, then the traversal is recursive.
The renderer states are collected during traversal until a leaf node of the scene graph
is reached. At this point the renderer has all the state information it requires to be
able to properly draw the geometry represented by the leaf node. The leaf node has
the responsibility of providing the renderer with its geometric data such as vertices,
triangle connectivity information, triangle normals (for back face culling), and surface
attributes including vertex normals, colors, and texture coordinates.

Before the actual rendering of the leaf node object, it is useful to allow the object to
perform any preparations that are necessary for proper display. For example, culling is
based on world bounding volumes. The classes derived from Geometry have the lib-
erty of keeping current the world bounding sphere via the UpdateWor1dBound call.
It an object is to be culled, then computing any expensive world data in the call to Up -
dateWorldData is wasteful. Instead, the Geometry classes could provide a Boolean
flag indicating whether or not the world data is current. The call to UpdateWorld-
Data updates world transforms, but additionally sets only the Boolean flag indicating
the world data is not current. A prerendering function called after it is determined
that an object is not to be culled can test the Boolean flag, find out the world data is
not current, make the data current, then set the flag to indicate the data is current.

Another use of a prerendering function involves dynamic tessellation of an object.
Chapter 10 discusses objects represented by a triangular mesh whose triangles are
increased or reduced based on a continuous level-of-detail algorithm involving a
preprocessed set of incremental mesh changes. The prerendering function can select
the appropriate level of detail based on the current camera and view frustum. Chapter
§ discusses objects represented by curved surfaces. The prerendering function can
dynamically tessellate the surfaces to the appropriate level of detail.

The complement of a prerendering function is a postrendering function that
gives the object a chance to do any cleanup associated with prerendering and actual
rendering.

4.3.1 CULLING BY SPHERES
The test for intersection of bounding volume with view frustum is performed in

world space since the world bounding information is kept current by the object and
the world view frustum information is kept current by the camera. Let the world
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Figure 4.2

SOURCE CODE

LIBRARY

Intersection

IntrPInSphr

Not culled

\ Not culled

Examples of culled and unculled objects.

bounding sphere have center C and radius r. Let a view frustum plane be specified by
N.-X= d, where Nisa unit-length vector that points to the interior of the frustum.
The bounding sphere does not intersect the frustum when the distance from C tothe
plane is larger than the sphere radius. An object is completely culled if its bounding
sphere satisfies

N o G vy (4.8)

for one of the frustum planes, The left-hand side of the inequality is the signed distance
from C to the plane. The right-hand side is negative and indicates that to be culled,
€ must be on the outside of the frustum plane and must be at least the sphere radius
units away from the plane. The test requires 3 multiplications and 3 additions. The
pseudocode is

bool CullSpherePlane (Sphere sphere, Plane plane)
{
return Dot(plane.N,sphere.C) - plane.d < -sphere.r;

It is possible for a bounding sphere to be outside the frustum even if all six culling
tests fail. Figure 4.2 shows examples of an object that is culled by the tests. It also
shows examples of objects that are not culled, one object whose bounding sphere
intersects the frustum and one object whose bounding sphere does not intersect the
frustum. In either case, the object must be further processed in the clipping pipeline.
Alternatively, the exact distance from bounding sphere to frustum can be computed
at greater expense than the distances from sphere to planes.

Better-fitting bounding volumes can lead to rejection of an object when the
bounding sphere does not, thereby leading to savings in CPU cycles. However, the
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application must keep the bounding volume current as the object moves about the
world. For each change in a rigid object’s orientation, the bounding volume must be
rotated accordingly. This leads to a trade-off between more time to update bounding
volume and less time to process objects because they are more accurately culled.

The following sections describe the culling algorithms for oriented boxes, capsules,
lozenges, cylinders, and ellipsoids. In each section the frustum plane is N - X =d with
unit-length normal pointing to frustum interior.

4.3.2 CULLING BY ORIENTED BOXES

- ﬁif:unce CoDE

LIBRARY

Intersection

FILENAME

IntrPInBox3

An oriented bounding box is outside the frustum plane if all its vertices are outside
the plane. The obvious algorithm of testing if all eight vertices are on the “negative

side” of the plane requires eight comparisons of the form N - V < d. The vertices are
of the form

V= E' + O’[]tlur-;-n + rr|a]/‘-11 + cgaz;{g,

where |o;| = 1 for all i (eight possible choices, two for each ;). Fach test requires
computing signed distances

ﬁ"f/—-d:(ﬁ'-f’—a')+(rgam’_\}-Ag+alulﬁf-ﬁ1+azc‘rzﬁ’-ﬁz.

The 4 dot products are computed once, each dot product using 3 multiplications
and 2 additions. Each test requires an additional 3 multiplications and 4 additions
(the multiplications by a; are not counted). The eight tests therefore require 36
multiplications and 40 additions.

A faster test is to project the box and plane onto the line C +sN.The symmetry
provided by the box definition yields an interval of projection [C — rN, C + rN]
The interval is centered at € and has radius

r =an|.’5’ . ;lgl +a]|!§’ . ;"11| +a2i.§/ - Agl.

The frustum plane projects to a single point

P=C+(d-

=

- C)N.

The box is outside the plane as long as the projected interval is outside, in which case
N -C —d < —r. The test is identical to that of sphere-versus-plane, except that r is
known for the sphere but must be calculated for each test of an oriented bounding
box. The test requires 4 dot products, 3 multiplications, and 3 additions for a total
operation count of 15 multiplications and 11 additions. The pseudocode is
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Figure 4.3

Not culled

Not culled

Examples of culled and unculled objects.

bool CullBoxPlane (Box box. Plane plane)

({

r = box.a0*|Dot(plane.N,box.A0)| +
box.al*|Dot(plane.N,box.Al)| +
box.a2*|Dot(plane.N,box.A2)|;

return Dot(plane.N,box.C) - plane.d < -r;

}

As with the sphere, it is possible for an oriented bounding box not to be culled
when tested against each frustum plane one at a time, even though the box is outside
the view frustum. Figure 4.3 illustrates such a situation.

4.3.3 CULLING BY CAPSULES

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrPInCap

A capsule consists of a radius r > 0 and a parameterized line segment P + 1D, where
D+ 0and! € [0, 1]. The signed distances from plane to end points are 8o = N-P—d
and 8, = N - (P + D) — d. If either 8, = 0 or §; > 0, then the capsule is not culled
since it is either intersecting the frustum plane or on the frustum side of the plane.
Otherwise, both signed distances are negative. If N - D <0, then end point P is
closer in signed distance to the frustum plane than is the other end point P + D.The
distance between P and the plane is computed and compared to the capsule radius.
IfN.P—d< —r, then the capsule is outside the frustum plane and it is culled;
otherwise it is not culled. If N - D > 0, then P + D is closer in signed distance to
the frustum plane than is P. If N - (P + D) —d < —r, then the capsule is culled;
otherwise it is not culled. The pseudocode for the culling algorithm is given below.
The Boolean result is true if and only if the capsule is culled.
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bool CullCapsulePlane (Capsule capsule, Plane plane)
{

sd0 = Dot(plane.N,capsule.P) - plane.d:

if ( sd0 <0 )

(
sdl = sd0 + Dot(plane.N,capsule.D);
if ( sdl <0 )

{
if ( sd0 <= sdl )
{
// PO closest to plane
return sd0 <= -capsule.r;
}
else
{
// P1 closest to plane
return sdl <= -capsule.r;
}
}
}

return false:

4.34 CULLING BY LOZENGES

LIBRARY

Intersection

FILENAME

IntrPInLoz

A lmenge consists of a rad)ua r>0anda p'lrameterized rectangle P+ sEy+ (Ey,
where ED # 0, E. # 0, Eu 51 =0, and (s,1) € [U 112 The four rcctmgle corners
are Pm] = P Pm =P + Eg, Pm =P + El, and P.; —P+ EU + !:1 The signed
distances are 8;; = N - P;; — d. If any of the signed distances are nonnegative, then
the lozenge either mtersects the plane or is on the frustum side of the plane and it
is not culled. Otherwise, all four signed distances are negative. The rectangle corner
closest to the frustum plane is determined, and its distance to the plane is compared
to the lozenge radius to determine if there is an intersection. The pseudocode for the
culling algorithm is

bool CulllLozengePlane (Lozenge lozenge, Plane P)
{
sd00 = Dot(plane.N,lozenge.P) - plane.d:
if ( sd00 < 0 )
{
dotNED = Dot(plane.N,lozenge.E0):
sdl0 = sd00 + dotNEO;
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if ( sd10 < 0 }

{
dotNE1 = Dot(plane.N,lozenge.El);
sd01 = sd00 + dotNEl;
if ( sd01 < 0 )
{
sdll = sdl0 + dotNEl;
if ( sdll < 0 )
{
// all rectangle corners on negative side
// of plane
if ( sd00 <= sdl10 )
{
if ( sd00 <= sd01 )
{
// P00 closest to plane
return sd00 <= -lozenge.r;
)
else
{
// POl closest to plane
return sd01 <= -lozenge.r:
}
}
else
{
if ( sd10 <= sd11 )
(
// P10 closest to plane
return sd10 <= -lozenge.r:
}
else
{
// P11l closest to plane
return sdll <= -lozenge.r;
}
}
}
}
}

}

return false;
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i

Projection of cylinder and frustum plane, no-cull case.

4.3.5 CULLING BY CYLINDERS

LIBRARY

Intersection

FILENAME

IntrPInCyln

A cylinder consists of a radius r > 0, a height & € [0, oo}, and a parameterized line
segment C + W, where |[W| =1 and 1 € [—h/2, h/2]. Figure 4.4 shows a typical
no-cull situation. Let the plane be N-X= d, where |N\ = 1. Let U v, and W
form an orthonormal set of vectors. Any cylmder point X can be written as X =
C+ voU + y1V + vzW where ‘fu + }’1 =r?and|y;| <=h/2.Let yo = r cos(A) and
y1 = r sin(A). Substitute X in the plane equation to get

—~(N-W)y,=(N-C—d)+ (N-U)rcos(A) + (N - V)r sin(A).

If N - W = 0, then the plane is parallel to the axis of the cylinder. The two intersect if
and only if the distance from C to the plane satisfies

IN.C—d|<r.

In this situation the cylinder is culled when N - € —d < —r.

IfN-W # 0, then y; is a function of A. The minimum and maximum values can
be found by the methods of calculus. The extreme values are

d—N-C+1— (N -W)?

N.-W

The plane and cylinder intersect if and only if

min(y;) <h/2 and max(y;) = —h/2.
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In this situation the cylinder is culled when the previous tests show no intersection
and N - C —d < —r. The pseudocode is

bool CullCylinderPlane (Cylinder cylinder, Plane plane)

{
sd0 = Dot(plane.N,cylinder.P) - plane.d;
if ( sd0 < 0 )
{
dotND = Dot(plane.N,cylinder.D)
sdl = sd0 + dotND;
if ( sdl €0)
({
dotDD = Dot(cylinder.D,cylinder.D);
r2 = cylinder.r*cylinder.r;
if ( sd0 <= sdl )
{
// PO closest to plane
return dotDD*sd0*sd0 >= r2*(dotDD-dotND*dotND);
)
else
{
// P1 closest to plane
return dotDD*sdl*sdl >= r2*(dotDD-dotND*dotND);
}
}
}
return false;
}

The quantities D - D and r2 can be precomputed and stored by the cylinder as a way
of reducing execution time for the intersection test.

4.3.6 CULLING BY ELLIPSOIDS

SOURCE CODE  An ellipsoid is represented by the quadratic equation Q(X) = (X — C)TM(X — C) =
1, where C is the center of the ellipsoid, where M is a positive definite matrix, and

where X is any point on the ellipsoid. An ellipsoid is outside a frustum plane whenever
Intersection the projection of the ellipsoid onto the line C + s N is outside the frustum plane. The

projected intervalis [—r, r]. Figure 4.5 shows a typical no-cull situation. The ellipsoid
is culled whenever

IntrPInElp3
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Frustum side

NeC—d-r NeC-d 0 NeC-d+r

Figure 4.5 Projection of ellipsoid and frustum plane, no-cull case,

N-C—d<-—r.

The construction of r is as follows. The points X that project to the end points
of the interval must occur where the normals to the ellipsoid are parallel to N. The
gradient of O(X)isa normal dll‘t‘Ll‘lOH for the point, VQ =2M(X — C). Thus, X
must be a so]utlon to M(X — C) = AN for some scalar . Inverting M and mul-
tiplying yields X — C = AM~'N. Replacing this in the quadratic cquatmn yields
1=22(M7'NY'M(M'N)=2N"M~'N_Finally,r =N - (X — C) = ANTM~'N,

sor =+ NTM~IN. The pseudocode is

bool CullEllipsoidPlane (E1lipsoid ellipsoid, Plane plane)
{
sd0 = Dot(plane.N,ellipsoid.C) - plane.d;
if ( sdd < 0 )
{
rZ = Dot(plane.N,ellipsoid.Minverse*plane.N);
return sd0*sd0 >= r2;
}

return false;
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4.3.7 ALGORITHM FOR SCENE GRAPH RENDERING

SOURCE CODE

Engine

FILENAME

Renderer
Spatial
Geometry
Node
TriMesh

An abstract class Renderer has a method that is the entry point for drawing a scene
graph:

void Renderer::Draw (Spatial scene)
{
scene.0OnDraw(thisRenderer);

Its sole job is to start the scene graph traversal and pass the renderer for camera access
and for accumulating render state. The method is virtual so that any derived class
renderer can perform any setup before, and any cleanup after, the scene graph is
drawn.

The class Spatial implements

void Spatial::0OnDraw (Renderer renderer)
{
if ( forceCulling )
return;

savePlaneState = renderer.planeState;

if ( !renderer.Cull(worldBound) )
Draw(renderer);

renderer.planeState = savePlaneState;

The class Spatial provides a Boolean flag to allow the application to force culling of
an object. If the object is not forced to be culled, then comparison of the world bound-
ing volume to the camera frustum planes is done next. As mentioned in Section 3.4, if
the bounding volumes are properly nested, once a bounding volume is inside a frus-
tum plane there is no need to test bounding volumes of descendants against that plane.
In this case the plane is said to be inactive. The renderer keeps track of which planes are
active and inactive (the plane state). The current object must save the current plane
state since the state might change during the recursive pass and the old state must be
restored.

The member function Draw of class Spatial isalso a pure virtual function. Class
Geometry manages the leaf node renderer state and uses the Draw function to tell the
renderer about the state it should use for drawing that leaf node. Class Node again
provides for the recursive propagation to its children.
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void Geometry::Draw (Renderer renderer)
{
renderer.SetState(thisState);

void Node::Draw (Renderer renderer)
{
for each child do
child.OnDraw(renderer);

Notice the pattern of recursive chains provided by classes Spatial and Node. In this
case Draw and OnDraw form the recursive chain,

Finally, for a specific class derived from Geometry that has actual data, the ren-
derer must implement how to draw that data. For example, if TriMesh is derived from
Geometry and manages a triangle mesh with vertices, normals, colors, and texture
coordinates, the class must implement the virtual function as

void TriMesh::Draw (Renderer renderer)
{
Geometry::Draw(renderer);
renderer.Draw(this);

The call to the base class Draw tells the renderer to use the current rendering state at
the leat node. The next call allows the renderer to do its specific work with the triangle
mesh. The Draw call in the renderer is a pure virtual function. If class SoftRender is
derived from Renderer and represents software rendering, then the entire geometric
pipeline of transformation, clipping, projection, and rasterizing is encapsulated in
Draw for SoftRender. On the other hand, if class HardRender is derived from
Renderer and represents a hardware-accelerated renderer, then Draw probably does
very little work and can feed the hardware card directly.



CHAPTER

PICKING

Thc term picking typically refers to the process of selecting a 3D object from its 2D
projection on the screen by pointing and clicking with a mouse. Fora perspective
camera model, the idea is to build a ray whose origin is the eye point and whose
direction is from the eye point to a world point that projects onto the screen at the
selected location. The ray is converted to world coordinates and a search is made
to find those objects that are intersected by the ray. This chapter considers a more
general picking process where the ray can have any origin, not just the eye point. The
general picking operation supports collision detection where linear probing is used
to determine if the camera or an object can move unimpeded in various directions.
It also supports various special effects—for example, determining if a projectile or
laser beam fired from a character’s gun hits an intended target. Other uses for general
picking include determining height of objects above a terrain, establishing visibility of
objects from current eye point, and avoiding collisions with obstacles while an object
attempts to follow a desired path. In these examples the common theme is estimation
of distance from objects to obstacles.

Support for picking in a hierarchical scene graph amounts to recursively traversing
the graph until each leaf node is reached. The triangles represented by a leaf node are
tested one by one to see if the ray intersects them. All sorts of information can be

169
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reported about an intersection, including the point of intersection, normal vector at
the intersection, surface attributes at the point such as color or texture coordinate,
or other information that an object might have been tagged with by the application.
Given a list of triangles intersected by the ray, additional processing might be required
such as sorting the list or computing the closest triangle to the ray’s origin.

An exhaustive test of intersection by ray with triangles can be expensive, especially
if the ray does not intersect any of the triangles at a leaf node. To avoid this, the
hierarchical structure of the graph can be exploited. The picking operation at a node
is propagated to the children of the node only if the ray intersects a bounding volume
associated with the original node. A test for intersection of ray with bounding volume
is usually inexpensive. If the ray does not intersect the volume, then a small amount
of time is required to show this, and time is not wasted on searching that portion of
the scene graph contained in the bounding volume. The pseudocode for the process is

void DoPick (Node node, Ray ray, PickResults results)

{
if ray intersects node.boundingVolume
{
if node is a leaf
{
for each triangle of node do
{
if (ray intersects triangle)
add intersection information to results;
}
}
else
{
for each child of node do
DoPick(child,ray,results);
}
}
}

// application code

Node root = <root of scene graph to be tested>:

Ray ray = <origin and direction of ray to be tested>:
PickResults results;

DoPick(root,ray,results);

The key tests here involve the intersection of a ray with bounding volumes or with
triangles. It is possible that an application requires information about the intersec-
tion of objects with lines or with line segments. Although the intersection tests are
algorithmically similar, the implementations might take advantage of the knowledge
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that a line, ray, or line segment is involved and avoid some unnecessary calculations.
The remainder of the chapter deals with the mathematical algorithms and their im-
plementations for intersection of linear components (lines, rays, or line segments)
with bounding volumes and triangles. In all sections, the line is parameterized as
L(r) =P+ !D where P is the line origin and D is a unit- length direction vector.
For a line, there is no restriction on 7. For a ray, r > 0 is required. For a line segment,
t € [0, T] is required for some specified value T' > 0.

51 INTERSECTION OF A LINEAR COMPONENT AND
A SPHERE

JRCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Sphr

A sphere with center C and radius R is specified by | X — C|> — R? = 0. Replacing X
by L (1) leads to the quadratic equation

0:|:b+i>—6|1_R2=;2+2,;3.(p_@Hﬁ_alz_Rz

The quadratic formula may be used to solve the equation. The discriminant is
e g5 - 2 o o 7 2
a=4(D-(P-O) —4(1P-CF-R)
=4(R*-(-OTu-DDWP-D).

The projection matrix / — DDV is nonnegative definite, so the discriminant is pos-
sibly negative. If A < 0, then the line does not intersect the sphere. If A =0, the
line is tangential to the sphere. The parameter at the point of intersection is 1 =
—D - (P — C).1fr < 0,thenthe line is tangent to the sphere but neither the ray nor line
segment intersect the sphere. If 1 > T, then the line and ray are tangent to the sphere
but the line segment does not intersect the sphere. If A > 0, then the line intersects
the sphere in two locations. The parameters at the points of intersection are

t=—D- (P - & xR - (P - &)U - DBTY(P - C).

Analysis of the z-values (comparison to 0 and T') determines whether or not the ray
or the line segment intersect the sphere.

In the recursive traversal of the hierarchical scene graph, it may not be necessary
to determine where a linear component intersects a bounding volume, only if the
linear component intersects the bounding volume. Existence of an intersection may
be determined more cheaply for some situations. For cxample, the quadratic equation
foraray intersecting a sphere has constant term |P — C|? — R:.Ifthisterm is negative,
then P isinside the sphere and the ray must necessarily intersect the sphere. This leads
toa quick return from the intersection routine, and the propagation of the test to node
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children commences. The pseudocode for determining the existence of an intersection
of a ray with a sphere is

bool TestIntersection (Ray ray, Sphere sphere)

{
// quadratic is t*2 + 2*al*t + a0 = 0
Q = ray.P - sphere.C:
a0 = Q.Dot(Q) - sphere.R*sphere.R;
if (a0 <=0 )
{
// ray.P is inside the sphere
return true;
}
/! else ray.P is outside the sphere
al = ray.D.Dot(Q);
if ( al >=0)
{
// acute angle between P-C and D, C is "behind" ray
return false;
]
// quadratic has a real root if discriminant is nonnegative
return ( al*al >= a0 );
}

Similarly structured code can be written for comparison of a line or a line segment to
a sphere. Actual points of intersection may also be computed by solving the quadratic
equation for its roots,

5.2 INTERSECTION OF A LINEAR COMPONENT AND
A Box

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Box3

Finding the points of intersection between a linear component and a box is the classic
clipping problem. For parametric lines, an effective method is Liang-Barsky clipping
(Liang and Barsky 1984; Foley et al. 1990). We first describe the algorithm for an axis-
aligned box. The adaptation to an oriented box requires a change in coordinate system.
Although we describe the method for line segments, it can easily be extended to rays
and lines.

Consider the axis-aligned box centered at the origin with extents ¢; for0 <i < 2.
The region of space filled by the box is [—ep, €p] x [—e), €1] x [—e2, €2]. The idea
is to clip the line segment (pg, p1, p2) + t{do, d, d) for t € [0, 1] against the three
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The three cases for clipping when dp < 0.

sets of parallel faces, one pair at a time. The initial interval for the line segment is
[to, 1] = [0, 1], and the values of to and 1, are updated appropriately for the clipping
against the faces.

The intersection of a line with the face xo = —ep is determined by py + tdy = —eo-
If dy # 0, then the line is not parallel to the face and the point of intersection occurs
when 1; = —(eo + po)/do. Moreover, if dy > 0, then the line parameter ! increases
as xg increases. If 1; > 11, then the line segment is outside the face and is completely
clipped. If #; < tg, then the line segment is inside the face and no adjustments are
needed on fy. Otherwise, ¢; € (19, ;] and the minimum parameter value is updated to
to = 1;. In the event that t; = 11, the line segment intersects the face in a single point.
For geometric intersection testing, this point mey be of interest. For clipping against
a view frustum, this point may be ignored by using the test #; > f, instead. Figure 5.1
illustrates the three cases when dg > 0. If dy < 0, the line parameter 7 decreases as xo
increases. If 1; < 1o, then the line segment is outside the face and is completely clipped.
Ift; > £y, then the line segment is inside the face and no adjustments are needed on f;.
Otherwise, #; € (fy, 1) and the maximum parameter value is updated to t; = 1;. Figure
5.2 illustrates the three cases when dy < 0. Finally, if dg = 0, the line is parallel to the
face. A sign test must be made on —ep — pg to determine if the line segment is inside
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Figure 5.3
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The two cases for clipping when dy = 0.

the face (—eg — pg > 0) or outside the face (—ey — po < 0). In the latter case the line
segment is completely clipped. Figure 5.3 illustrates the two cases when d, = 0.
Similar tests can be made for all six faces. A single clipping function can be derived
that handles the tests. The pseudocode as shown in most graphics texts is given below.
A return value of false means the line segment is completely clipped (culled). A
return value of true means the line segment was clipped or needed no adjustments.

bool Clip (float denom, float numer, floatd t0, float& tl)
{
if ( denom > 0 )
{
ti = numer/denom;
if (ti > t1 )
return false;
if (ti > t0)
t0 = ti;
return true;
}
else if ( denom < 0 )
{
ti = numer/denom;
if (ti <t0)
return false;
if (ti <tl)
tl = ti;
return true;
}
else
{
return numer > 0;
I3
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For hardware with fast multiplication and slow division, a version that defers
the divisions until absolutely needed will have on average a smaller execution time.
The worst case for a single call is the use of two additional multiplications. The
pseudocode is

bool Clip (float denom, float numer, float& t0, floatd tl)
{
if ( denom > 0 )

(
if ( numer > denom*tl )
return false;
if ( numer > denom*t0 )
t0 = numer/denom;
return true;
}
else if ( denom < 0 )
{
ti = numer/denom;
if ( numer > denom*t0 )
return false;
if ( numer > denom*tl )
tl = numer/denom;
return true;
}
else

{
return numer > 0;
}

The clipper itself is given by the following pseudocode. A return value of false
indicates the line segment is outside the box. A return value of true indicates the
line segment has been clipped or is completely inside the box. On return, the end
points of the clipped segment are P + toD and P + 1 D. To maintain the format for
line segments, the new segment is P’ + 5D fors € [0, 1], where P' = P + 10D and
f)" =(n - In)[—)‘

bool C1ip3D (Point E, Point P, Point D, float& t0, float& tl)
{

// extents E = (e0,el,e2), all positive components

// line point P = (p0,pl,p2)

// line direction D = (d0,dl,d2)

t0 = 0;
tl = 1;
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Figure 5.4
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Typical separating axis for a line segment and a box.

return Clip(+d0,-p0-e0,t0,t1) and Clip(-d0,+p0-e0,t0,tl) and
Clip(+dl,-pl-el,t0,tl) and Clip(-dl,+pl-el,t0,tl) and
Clip(+d2,-p2-e2,t0,tl) and Clip(-d2,+p2-e2,t0,tl);

Clipping agalnsl an oriented box requires some transformations. Let the box have
center C, axes Uj, and extents e; for 0 < i < 2. Theline point P and direction vector D
must be represented in terms of the coordinate system of the box. The p; and d; used
in the axis-aligned case are now defined by P=C+ i piU;jand D = ): o di U;.
Thus, p; = U, (P — C)andd; U;

Testing whether or not aline, ray, or line segment intersects a box can be done more
cheaply than with a clipping algorithm by separating axes. It can be determined if the
linear component does not intersect the box by analyzing the projections of the linear
component and the box onto a small number of lines and testing if the projections
are disjoint. This approach for comparing line segment and box is used in Gregory
et al. (1998). In the following sections, the oriented box has center E axes U/}, and
corresponding extents ¢; fori =0, 1, 2. A]though they are not necessary to compute
in the algorithm, the vertices of the box are C+ }:‘_0 o;é; U,, where |o;| = 1 (eight
possible choices, two per i ).

5.2.1 LINE SEGMENT

Let the line segment have midpoint M and end points M = V. The six potential
separating axes have directions U; and V x U; for i =0, 1, 2. Figure 5.4 shows the
general situation of projecting onto an axis with direction W, with the direction not
necessarily unit length. Let D = M — C. The radius of the interval corresponding to
the projected line segment is
- \n& . il .
W]
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5.2.2 Ray

5.2 Intersection of a Linear Component and a Box

Separating axis tests for a line segment and a box.

w Ry, R Ry

Us €p |W - Do 1D - Uy

Uy g W - U, \D - U

U, €2 |W - Us| |D - Us|
Vxlo (alV-Dal+elV-0i)/VI 0 |0V xDI/IVI
VO (eolV - Oal+elV Do) IVl 0 [0~V x DIV

V x U

|—

eV -Til+elV 0o} IVl 0 |02-V x DIV

The radius of the interval corresponding to the projected box is

Wil
The distance between the projected centers is the length of the projection of D,

R—f)--ﬁ'(—
N Wil

The axis separates the line segment and box if

Ry > Rp + R;.
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Table 5.1 shows the potential separating axes and the corresponding quantities re-
quired for showing the projected intervals are disjoint. The divisions in the last three

cases can be avoided by multiplying the test inequality by [W1.

Let the ray have origin P and direction V. The six potential separating axes are the
same as for a line compared to a box. Figure 5.5 shows two typical situations for
projection of a ray and a box onto a potential separating axis with direction W. Let

D = P — C. The radius of the interval corresponding to the projected box is

W
U, - —|.
|W|\

2

Rb=ZE[

i=0
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U, Uy
P
\v
£ +—F +— W

Figure 5.5 Typical situations for a ray and a box.

The distance between the projected box center and projected ray origin is the length

of the projection of D,
- W
Rd = D =
L

The axis separates the line segment and box if the projection of the ray origin is outside
the projection of the box and if the ray direction forces the projected ray to point away
from the box. The tests are

Ri> R, and (W.V)(W-D)>0.
For the first three potential separating axes, the tests are
\Uo - DI > eo, (U D)o - V)= 0

\U1-Dl>e, (U)-D)U)-V)=0

\Us-D| > ey, (Uy-D)(U,-V)>0.

For the last three potential separating axis tests the secondary test is always true. The
tests are

|Up-V x D|>e)|V-Usl + eV - Uy
Li}l . \7 x E)| >eo|f/ - [_}2| +€2|‘7 . i}(ﬂ

|Uy -V x D| > eV - Uy + eq|V - Ul
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5.2.3 LINE

Let the line have origin P and direction V. The projection of the line onto at least one
of the axes with direction U, will intersect the projection of the box. The only potential
separating axes are V x U; fori =0, 1,2. The tests are

\Ug-V x D> e|V-Us| + eV - Uy
Uy -V x D| > eol V- Ua| + |V - Ul

Uy -V x D| > eo|V - Uy| + 1|V - Uyl

5.3 INTERSECTION OF A LINEAR COMPONENT AND
A CAPSULE

Testing for the existence of an intersection between a linear component and a capsule
is relatively inexpensive compared to finding the actual points of intersection. The
test involves computing the distance between the capsule line segment and the linear
component and comparing it to the capsule radius. Section 2.6.2 gives algorithms for
computing the distance between linear components.

Finding the points of intersection is more expensive. Let the capsule line segment
Intersection be Po + ng for s € [0, 1] and let the capsule radius be R. Let the line be P|
tDy. If Dy - Dy # 0, then the line must intersect the planes on which the capsule
hemlspheres connect to the cylindrical body. The planes are Do- (X — Po) =0and
IntrLin3Cap Do (X P() - Do) 0. The intersections of the line with the planes occur at 1 =

D{] (Pg — P1)/D() D] and ty =ty + Du D()ng Dl For the sake ofargument let
Do - Dy > 0 so that #; > to. Similar arguments can be made when the dot product is
negative and 1, < #o. The points of intersection (if any) are computed

®  between the ray with 1 < 3 and the capsule hemisphere with origin Py,
®  between the ray with 1 > 1} and the capsule hemisphere with origin Py + Dy, and

®  between the line segment with 1 € [#p, 7;] and the capsule cylindrical wall.

Each of these requires finding the roots of a quadratic equation. In the first case, the
points of intersection are ata distance R from Po. The squared distance between the ray
and end point is |7 D1 + F] Pyl fort <to,a quadratic polyrlomlal int. Inthe second
case, the squared distance between the ray and end point is |rD1 + P1 Po — Dg?
for £ > 1,. In the third case, the distance between any point Q (lying between the
two planes) and the capsule line segment is [ Dy x (Q — Pyl /|f)g]. The squared
distance between the line segment with ¢ € [, ;] and the capsule line segment is
| Dy x {rf); - f’l - i’n)lz,flf)niz. Each of the squared-distance quadratic polynomials
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Figure 5.6

Partitioning of a line by a capsule.

is set to r2, and the real roots (if any) of the polynomial are computed. Once two roots
are found, other cases do not have to be processed because there are at most two points
of intersection between the linear component and the capsule.

Iff)g . I_j] =0, then the line is contained between the two planes mentioned earlier.
In this case only a single quadratic equation must be processed (the third case in the
previous paragraph but with no restriction on ).

Figure 5.6 illustrates in two dimensions the partitioning of the line by the capsule,
including points of intersection.

5.4 INTERSECTION OF A LINEAR COMPONENT AND
A LOZENGE

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Loz

Testing for the existence of an intersection between a linear component and a lozenge
is similar to that for capsules. The test involves computing the distance between the
lozenge rectangle and the linear component and comparing it to the lozenge radius.
Section 2.6.6 gives algorithms for computing the distance between linear components
and rectangles.

Finding points of intersection is also similar to that of capsules. The algorithm
uses partitions of the line and analyzes each partition separately. The lozenge is Po +
uEq+ UE[, where Eo- E1 =0, (u,v) € [0, 1], and has radius r. The line is Pi+ fD

If D- EO X El #0, the hnc is partitioned by the planes EU (X — Py) =0, E, -
(X—PU—E(;)—O E] (X Pu)—o and El (X P{]—El)_o Two of the
clipped components are rays. There are at most three clipped components that are
line segments. In the plane of the lozenge rectangle, the partition planes split that
plane into nine pieces: the lozenge rectangle itself, four edge regions, and four corner
regions. Figure 5.7 illustrates in two dimensions the partitioning of a line by the
lozenge. The number of clipped components in this example is five, as shown by
the projection of the line onto the horizontal axis with tick marks at the points of
intersection with the partition lines. If a clipped component corresponds to a corner
region, a squared-distance function is computed between the component and the
corner point for that region. If a component corresponds to an edge region, the
squared distance between that component and the edge line segment is computed.
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Partitioning of a line by a lozenge.

This process is exactly the one that occurs in the case of intersections between lines
and capsules. If a component corresponds to the lozenge rectangle region, then the
squared-distance function is computed. The squared distance between any point Q
in the rectangle region and the lozenge rectangle is

B [Eo-(Q — Py))? B (E)- (0 — Py))?
[Eol? [E\|?

1@ — Byl

Point Q is replaced by P, 41D to obtain the quadratic polynomial. Any of the
computed polynomials is set to r? and solved. The corresponding values of 1 provide
the points of intersection between the line and the lozenge.

If D - Eq x E, =0, the line is perpendicular to the lozenge rectangle. The ap-
propriate region of the nine possible ones is determined, and the squared-distance
polynomial is computed between the line and the corresponding lozenge component
(quarier sphere, half cylinder, or rectangle slab).

55 INTERSECTION OF A LINEAR COMPONENT AND
A CYLINDER

LIBRARY

Intersection

FILENAME

IntrLin3CyIn

In the case of capsules, testing for intersections involves measuring the distance be-
tween the linear component and the capsule line segment. For cylinders the test is
more complicated since there are no hemispherical caps. The portion cf the linear
component between the two planes of the cylinder ends must be computed. The dis-
tance between the clipped linear component and the cylinder line segment is measured
and compared to the cylinder radius.

Finding the intersections with the cylinder is similar to that with capsules, but
again the clipped linear component is used. The same quadratic equation arises when
measuring the distance between the clipped linear component and the cylinder line
segment. However, the linear component might also intersect the circular disks at the
ends of the cylinder. If the clipped component has an end point on a plane containing
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a circular disk, there must be a test to see if that end point is inside the circle. If so, the
end point is a point of intersection.

5.6 INTERSECTION OF A LINEAR COMPONENT AND
AN ELLIPSOID

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Elp3

An ellipsoid is represented by the quadratic equation (X — (ﬂ.“)TM()*( — C) =1, where
C is the center of the ellipsoid and where M is a positive definite matrix. The matrix
canbe factoredas M = RT DR, where R isarotation matrixand D is a diagonal matrix
whose diagonal entries are positive. The rows of R are the axes of the ellipsoid, and
the diagonal entries of D are the axis lengths. If the line is P + 1V, then substitution
into the ellipsoid equation produces a quadratic equation

VIMVY 2+ QVITM(P - Ot +(P-O)YTM(P-C)—1=0.

The points of intersection are determined by the real roots of this equation. If there
are no real roots, the line does not intersect the ellipsoid. If there is one real root, the
line is tangent to the ellipsoid. If there are two real roots, then the line penetrates the
ellipsoid at two distinct locations.

57 INTERSECTION OF A LINEAR COMPONENT AND
A TRIANGLE

SOoURCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Tri3

An excellent article for computing ray-triangle intersections is Méller and Trumbore
(1997). The general strategy for lines, rays, or segments is described below.

Let the triangle have vnrmes Vo, V. = Vo + Ep, and Vs = VU + E,. The plane
of the tnang]t is given by N - (X Vn) = (), where N = Fn % 51 Let the line be
L(1) = P + 1D, where the direction vector is not necessarily unit length. The ray
satisfies t > 0, and the line segment satisfies r € [0, 1].

The first problem is to determine if the linear component intersects the plane of
the triangle. If D is not perpendicular to N, then the line must intersect the plane. The
corresponding ¢ value is computed by substitution of L(t) into the plane equation,

N. P)
= .

2-“
; 1
'C'I

The point of intersection is L(T). If the linear component is a ray, then the point of
intersection is valid if 7 = 0. If the linear component is a line segment, then the point
of intersection is valid if T € [0, 1].

For a valid point of intersection, the second problem is to determine if the point is
inside the triangle. Writing L(T Vn - cUF;, + 51 E}, the coefficients are determined
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by the linear system shown below, where 0=L(T) — Vi:

[Eu- Ey En‘ §1:1 I:Su} _ [f_‘-'o- Q]

Eqy-E, E|-E s1 | Ei-Q |

Define eij = Ef,' . Ej, qi = E; . é, and A = eqpey) — i’él = |E{) x E”z = |1’_\"'|2; then
so = (e1190 — ea1q1)/ A and sy = (epoq1 — €01g0)/ A. The point is inside the triangle
if so = 0, 57 = 0, and sy + 51 < 1. The division can be avoided by setting oy = e 140 —
€141, 01 = €oog1 — €ngo, and testing oy > 0, 0y = 0, and og + 0 < A.

If the line is parallel to, but not contained in the plane, then the linear component
does not intersect the triangle. This condition occurs when N-D=0and N - (Vy —
P) % 0. Otherwise, the line is contained in the plane of the triangle. A 3D application
could consider this case as not meaningful (transverse intersections are the only
important cases). If not, more work must be done to decide if the linear component
actually intersects the triangle.

First consider the case of a line. The line intersects the triangle if at least one of
the vertices is on the line or if at least two vertices straddle the line. These conditions
can be tested by projecting the vertices onto a line in the plane of the triangle that
is perpendicular to the test line, P + sN x D. In fact, this has the same flavor as
separating axes. It is enough to consider the signs of the numerators of the projection
components, V, N x D. Define o = min; [V N x D} and m | = max; | V,

:D}. The line intersects the triangle if and only if 0 € [mg, m,].

Segments and rays are handled using the method of separating axes (see Sec-
tions 5.2.1 and 5.2.2). In addition to the triangle edges already defined, set £, =
Vi — Vo

For rays the potential separating axes have directions N x E;for0<i <2and
N x D. In this case, though, let the potential separating axis contain the ray origin
P. Assuming the potential separating axis direction W is not perpendicular to the ray
direction D, the ray projects to a semi-infinite interval [0, +0¢) or (—o¢, 0] depending
on the sign of W D.IfW - D =0, then the ray projects to the singleton point set {0}.
The vertices of the triangle project to W - (Vi — P)for0 < i < 2.Letmgand m be the
minimum and maximum values of these projections. If W - D > 0, the ray does not
intersect the triangle if [mg, m] N [0, 00) = @A, If W . D <0,the ray does not intersect
the triangle if [mg, mi] N (—o0, 0] = @. If W . D=0, the ray does not intersect the
triangle if 0 & [mo, m,].

For line segments the potential scparaling axes are the same as for rays. The
midpoint representation should be used, M =P +05D,and U = 0.5D, so the line
segment has midpoint M and end points M + U. The potential separating axis with
direction W is required to contain M, in which case the line segment projects to an
interval of the form [—u, p], where t = W - U. The triangle vertices project to an
interval [mg, m]. The line segment and triangle do not intersect when [—p, 1| N
[mg,m] =@



CHAPTER

COLLISION DETECTION

C ollision detection is a very broad topic, relevant to computer games and to other
applications such as navigation and robotics. The classic example for collision
detection in a third—person perspective, indoor game is having the main character
move around in a set of rooms that contain obstacles. The character is controlled by
an input device, typically a joystick, keyboard, or mouse, and must not be allowed to
walk through the walls or obstacles. Moreover, if the character walks into a wall, he
might be allowed to slide along the wall ina direction that is oblique to the one implied
by the event from the input device. A standard technique for preventing the character
from walking through a wall is to enclose the character with a tight-fitting bounding
volume and testing if it intersects the plane of the wall. The collision detection system
must provide support for this test even when the character (and bounding volume)
are moving. Preventing the character from walking through an obstacle is as simple
as enclosing the obstacle with its own bounding volume and testing for intersection
between the character and obstacle bounding volumes. Other typical situations in
a game that require collision detection are keeping vehicles moving over a terrain
without dropping through it, monitoring racing cars on a track and detecting when
two cars hit or when a car hits a wall, determining when a projectile hits an intended
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target, bouncing objects off other objects, providing feedback about character control
when two characters are fighting, and determining if an object can pass through an
opening, such as when a character attempts to walk through a doorway that may or
may not be tall enough.

Implementing a robust collision detection system is a difficult and elusive task, as
many game programmers have found. The algorithms for dynamic (moving) objects
tend to be somewhat more difficult to implement than for static (nonmoving) objects,
particularly because of the implied increase in dimension (four dimensions, three in
space and one in time).

Collision detection is determining if, when, and where two objects intersect. De-
termining if two objects intersect is referred to in this chapter as testing intersec-
tion—typically easy to implement and inexpensive in CPU time. However, testing
intersection only provides a Boolean result—the objects either do or do not intersect.
Determining when two moving objects intersect involves computing the first time
of contact. This is slightly more expensive to compute than the Boolean result from
testing for intersection, but conceptually still doable. Determining where two objects
intersect is referred to in this chapter as finding intersection. This is the most difficult
part of collision detection, both conceptually and in terms of the use of CPU time,
and involves finding first point(s) of contact. For strictly convex objects such as ellip-
soids that are initially separated, the first time of contact results in a single first point
of contact. Finding isolated contact points is relatively easy. However, for other con-
vex objects such as oriented boxes or capsules, the first time of contact might result
in a continuum of first contact points (two boxes can collide edge-to-edge, edge-to-
face, or face-to-face). A collision system must deal with these pathological cases. In a
typical system, most of the code deals with the pathologies.

The types of objects that are handled in this chapter are the same ones found dis-
cussed in Chapter 2: linear components, planes, triangles, rectangles, oriented boxes,
spheres, capsules, lozenges, cylinders, and ellipsoids. Complex objects can be arbitrary
unions of these, but for game engine purposes, the only complex objects to consider
are those that are unions of triangles. Later in the chapter is a discussion on the use of
bounding volume trees to assist in collision detection between two complex objects.

The types of intersections considered fall into three categories: linear component
versus object (picking), object versus plane (navigation or culling), and object versus
object (general collision). For static objects, Chapter 5 already described intersec-
tion testing and finding. Chapter 4 described intersection testing between objects and
planes for culling purposes. Later in this chapter, picking moving objects and moving
object navigation among a collection of planes are discussed. Object-object intersec-
tions, whether static or dynamic, are discussed separately.

61 DESIGN ISSUES

One of the most important concepts in designing a collision system is how to organize
the data. Because the world might contain a large number of interacting objects,
an exhaustive comparison of the objects is too expensive. The objects should be
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organized into collision groups. For example, in an indoor environment, rooms are
natural candidates for partitioning dynamic objects into groups. Each room can act
as a collision group. Only objects moving within a room are compared to each other.
However, if an object moves from one room into another, then the object must switch
groups, but not before possibly comparing it to objects within the group of the current
room followed by comparing it to objects within the group of the adjacent room.
Given a single complex object, it is also important how the object is structured.
Using a scene graph representation and bounding volumes at the nodes of the graph,
quick rejection testing is supported for determining that two objects do not intersect.
While the rejection testing is done at a coarse level, the geometric data at the leaf nodes
of the graph can be further decomposed using bounding volume trees. Comparison of
these trees can lead to further rejections or might eventually result in computing the
intersections of triangles represented by the leaf nodes of those trees. The following
issues come up in using a hierarchical representation of objects for collision purposes:

= Should the hierarchy be built top-down or bottom-up?

= Should the bounding volumes be built manually or automatically?

®  How should intersection information be reported?

®  How should the propagation of the test/find collision calls be controlled?

»  How much information should be retained about the current collision state to
support future test/find collision calls?

Bottom-up construction of hierarchies is natural for building the world from small
models. Bounding volumes at the leaf nodes are based on geometric data. Bounding
volumes at interior nodes contain child bounding volumes, as described in Section 4.3.
Top-down construction is good for a decompaosition of complex objects, in particular,
triangle meshes. The bounding volumes can be built using recursive subdivision
methods.

The automatic generation of bounding volumes is desirable to minimize the work
of artists and programmers, but it does not always generate a good set of volumes.
Manual generation gives better control for fitting the data and using a minimum
number of bounding volumes for maximum coverage of space in which the object
lives. But manual generation can be time-consuming and perhaps is not a good use
of artist/programmer resources. The best approach appears to be a mixture of the
two. An automatic generation algorithm can be applied, but the output is subject to
manual inspection and tweaking. Tools that support this process are highly desirable.

A reasonable mechanism for reporting intersection information is to use callbacks.
Each object involved in the collision test has a callback that is executed when an inter-
section is predicted or detected. Relevant information about the intersection (location,
time, normal vectors, surface attributes, etc.) is passed to the callback. The applica-
tion has the responsibility for deciding what to do with the information. The callback
mechanism provides for collision response and maintains an abstract separation be-
tween the response and the detection. In particular, this scheme integrates nicely with
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physics systems: any collision detection back end can be fit with any physics system
front end.

Hierarchical organization of data allows the application to tag each node with a
set of flags indicating how the collision test should propagate. The simplest choice
i§ whether or not o recurse on the call or to terminate immediately. Other choices
involve specifying what types of calculations should occur (test only, first time only,
first point of contact, do only bounding volume comparisons but not triangle-triangle
tests, go all the way to triangle-triangle tests, etc.).

Remembering information about a previous intersection may help in localizing
the search for the next call of the collision system. The usual space-time trade-off
applies: more memory is used to retain state information in exchange for a faster
execution. Whether space or time is important depends on the application and its
data. For example, retaining state information is a key feature in the GJK and extended
GJK algorithms (Gilbert, Johnson, and Keerthi 1988; Cameron 1996; van den Bergen
1999), but bounding volume trees typically do not retain state information and are
designed to localize the search by fast intersection tests between the bounding volumes
(Gottschalk, Lin, and Manocha 1991; Gregory et al. 1998). Both approaches are viable,
but in this chapter we will discuss only the bounding volume tree ideas.

6.2 INTERSECTION OF DYNAMIC OBJECTS AND LINES

In the following sections, the line is stationary and defined by P + sD for s € R.
The other objects are moving with constant linear velocity W over a time interval
1 € [0, Imax). If D x W = 0, then the object is moving parallel to the line. The static
test for intersection is sufficient for this case.

The algorithms presented here determine only if the line and object will intersect
on the time interval. Computation of the first time of contact is typically more ex-
pensive. For the sphere, capsule, and lozenge, finding the first time of contact involves
solving a quadratic equation, which requires taking a square root.

6.2.1 SPHERES

SOURCE CODE

Intersection

IntrLin35phr

The moving sphere has center C+iWlorre [0, fmax ) and radius r = 0. The distance
between a pointand a line is given by Equation 2.14. Replacing the time-varying center
in this equation leads to a quadratic function in 7 that represents the squared distance,

. D.W . L D.(C — P) -
sz‘(w-‘? W)((]_u))
D-D DD

The coefficient a is positive because of the assumption that the direction of motion is
not parallel to the line. If Q(t) < r? for some t € [0, fmax], then the line intersects the
sphere during the specified time interval. The problem is now one of determining the

2

=:at® + 2bt + c.
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minimum of Q on the interval. Solve Q'(T) =0for T = —b/a. If T € [0, tmax], then
the minimum is Q(7'). If T < 0, the minimum is Q(0). If T > fiay, the minimum is
Q(fmax). The minimum value is then compared to r2, The coefficients each simplify
to a fraction whose denominator is D - D. To avoid the division, @ and r? can be
multiplied through and the minimization is performed using those quantities. The
pseudocode is

bool TestSpherelLine (Sphere sphere, Line line, Velocity W,
float tmax)

{
E = sphere.C - line.P;

dotDW = Dot(T1ine.D,W);

dotDD = Dot(line.D,line.D);

dotWW = Dot(W.W);

dotWE = Dot(W.E);

dotDE = Dot(line.D,E);

dotEE = Dot(E,E):

ddr2 = dotDD*sphere.r*sphere.r;

@ = dotDD*dotWW - dotDW*dotDW; // = |Cross(line.D,W)|*2 >= 0
b = dotDD*dotWE - dotDE*dotDW;

¢ = dotDD*dotEE - dotDE*dotDE; // = |Cross(1ine.D,E)|*2 >= 0

if (a>0)

{
t = -b/a;
if (t<0)
{

// minimum occurs at t =0

return ¢ <= ddr2;
}

else if ( t > tmax )

{
// minimum occurs at t = tmax

return tmax*(a*tmax+2*b)+c <= ddr2:
}
else

{
// minimum occurs at t

return t*(a*t+2*b)+c <= ddr2:

}

else

{
// a =0, sphere moving parallel to line, just need to
/f test t =0 .
return ¢ <= ddr2; /
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6.2.2 ORIENTED BOXES

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Box3

In Section 5.2 it was shown that the three separating axis tests for a line versus a static
oriented box are

|Up - D x (C‘—13)|>e;\51l73|+£f1|5-{7||
\Uy+ D x (C = P)| > e| D - Us| + &2 D - Uy
|E]3i) x (é— F))l D(’[p‘f)-i}” +(’|lb‘i}g|.

If any of these tests are true, then the line and box do not intersect. For the motion
case, C is replaced by(_? +tWfort € [0, fmax)- Squaring the terms in the inequalities,
the three tests are of the form Qi (1) := a;t* + 2bit 4+ ¢; > d; for 0 =i < 2. The line
and box intersect on the given interval if all three tests fail. That is, if there is a time
T € [0, tyax ] for which Q;(T) = d; foralli, then an intersection must occur. If /; is the
interval (possibly empty) for which Q;(1) < ¢;, then the line and box must intersect
i lo NV 0 1 N[0, tax] # W

6.2.3 CAPSULES

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Cap

The moving capsule is C + uE + tW, where the capsule origin is C and the capsule
axis has direction E. The parameter domain is (u, 1) € [0, 1] x [0, fmax ). Replacing this

in Equation 2.14 leads to a quadratic equation in u and ¢ that represents the squared
distance,

Qu, t) = |au + Bt + 714,

where
. - D-E-
e=FE——=——=D

DI
. . D-W-
f=W-—-——=D

D.D
. - - D (C—E)-
y=(C—P) $~—LD.

D-D
If Qu, 1) < r? for some (u, t) € [0, 1] x [0, fyax ], then the line and capsule must
intersect during the given time interval. Just as for the line-sphere test, the division
can be avoided by multiplying through by D - D and comparing the minimum of the

modified quadratic to 7> D - D. The minimization problem is solved in the same way
as for measuring the distance from a point to a rectangle.
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6.2.4 LOZENGES

SOURCE CODE

Intersection

FILENAME

IntrLin3Loz

The moving lozenge is C +uEg+ vE, + tW, where the lozenge origin is C and
the lozenge edge directions are Eg and E,. The parameter domain is (u, v, 1) €
[0, 112 % [0, tmax). Replacing this in Equation 2.14 leads to a quadratic equation in
u, v, and t that represents the squared distance,

Qu, v, 1) = |au + Bv + yt +38)%

where
. . D-Ep-
Q‘:f:n—- —D
D-D

g b

DD
y =W b'ff)
AN
W - - D.(C—E)-
5=(C-—P)———£~—)D.

D-D

If Q(u, v, 1) < r*forsome (i, v, 1) € [0, 1]7 x [0, fmax], then thelineand lozenge must
intersect during the given time interval. Just as for the line-sphere test, the division
can be avoided by multiplying through by D - D and comparing the minimum of the
modified quadratic to r? D - D. The minimization problem is solved in the same way
as for measuring the distance from a point to an oriented box.

6.2.5 CYLINDERS

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Cyln

Testing for the intersection of a line with a moving cylinder is an extremely com-
plicated and somewhat expensive process. For that reason, cylinders are not recom-
mended for use as bounding volumes. Capsules are a better choice. The algorithm for
picking a moving cylinder is not presented here.

6.2.6 ELLIPSOIDS

Given theline P + s D and static ellipsoid ()-( — (?)"IM(.;( — C) =1, theline intersects
the ellipsoid whenever the quadratic equation as* — 2bs + ¢ = 0 has a real-valued
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SOURCE CODE

Intersection

FILENAME

IntrLin3Elp3

root; the coefficients are a = (f)TMb), b=2DTMA with A =C — E’, and ¢ =
ATM A — 1. The condition for having a real-valued root is b — ac > 0.

For a moving ellipsoid, the center is C+tWforte [0, tmax]. The b and ¢ co-
efficients of the quadratic in s now become functions of 1, b = byt + by and ¢ =
(2r2+2(1t+tu,wherehu D'MA,by=D"MW,co=ATMA — 1,¢c,= ATMW,
and ¢; = WTM W The condition for having a real-valued root is

O(r) = (byr + bo)* — aleat® + 2¢11 + ¢g) > 0.

The minimum of Q(1) can be computed on [0, fyex] and compared to zero.

6.2.7 TRIANGLES

SOURCE CODE

Intersection

FILENAME

IntrLin3Tri3

The moving triangle hab vertices Vg + IW Vl Vo + Eg, and Vo + f;z The plane of
the trlang]e attime 1 is N-(X— VO} =tN - W, where N = Eo X E1 Let the line be
P +sDfors € R.If N - D, then the line must intersect each plane regardless of 7. In
this case the point of intersection occurs when

y=

IN-W+N-(Vy—P)
N-D ’

The intersection point can be represented as E(s_) = 'r/n + W+ ugEn + 1:151 for
some choice of uy and u;. Defining (} = I:(.\-} — Vo and using the same notation as
in the intersection test for a line and a static triangle, the coefficients are computed as
uo = (engo — en1g1)/ A and iy = (enog1 — €190}/ A. The point is inside the triangle
ifug=0,u; =0,and ug + u; < 1.

However, for the moving case, u; = u;(t) = (a;t + b;)/A for some coefficients
a; and b;. The test for a point inside a triangle is agt + by = 0, ayt + b, = 0, and
(ap + ap)t + (bg + b1) < A. To show an intersection of a line and a moving triangle,
itis enough to show that thereisat € [0, 1n,y ] for which these three inequalities are all
true. If Iy is the set of t for which agt + by = 0, I is the set of ¢ for which a;t + by, = 0,
and 1 is the set of r for which (ag 4 ay)t + (bg + by) < A, then the line and moving
triangle intersect whenever Iy N 1y N I3 N [0, tay] # 7.

For the case of N - D, ifthereisnot € [0, #max ] for which the corresponding plane
of the triangle contains the line, then there is no intersection. If there is such a ¢, it is
computed and the problem reduces to determining if the line intersects the triangle
within that plane, a two-dimensional problem. However, note that the triangle may
very well be moving in that plane. The two-dimensional problem itself has a time
component, and the algorithm shown earlier for the static case needs to be slightly
modified to handle time.
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6.3 INTERSECTION OF DYNAMIC OBJECTS AND PLANES

In the following sections, the plane is stationary and defined by N - X = d. The other
objects are moving with constant linear velocity W over a time interval f € [0, fmax].
The problem is to determine if the moving object intersects the plane within the
specified interval of time. Typically, in a game environment, the objects start out in
nonintersecting positions. The algorithms presented here only report an intersection
time of t = 0 when the object and plane are initially intersecting. The intersection set
is usually a continuum of points, and the time necessary to calculate the full set is
sometimes expensive.

The following sections use notations that were introduced, and formulas that were
derived, in Section 4.3, They are not redefined or rederived here.

6.3.1 SPHERES

LIBRARY

Intersection

FILENAME

IntrPInSphr

Consider a sphere of radius r with moving center C (1) = Co + tW. The distance
between center and plane is ]N ("(f) —d|. If |N (U —d| = r, then the sphere is
already intersecting the plane. The first time of contact is 1 = 0, and the intersection
set is a point (distance is exactly r) or a circle. If not initially intersecting, then the
intersection testing depends on the motion of the sphere relative to the plane. That
is, the sign of N - W is - important. The first time of contact ' of the sphere with the
plane is a solution to |N C (T)—d|=r,

_d—N-é‘U—sign(ﬁ-(}g)r
= W .

(6.1)

If 7 > 0, then the sphere will intersect the plane. If ' < 0, the sphere is moving away
from the plane.

In an implementation, the division does not have to be performed first. The
numerator and denominator are computed, and if they have different signs, then
there is no intersection. If the signs are the same, then there is an intersection and
the division is performed to obtain T. The first point of contact, if required by the
application, is computed by evaluating C(T). The pseudocode for test intersection is
given below. A return value of true indicates the intersection will occur. In this case
the T value is set to the first time of contact. If no intersection occurs, the return value
is false and the T parameter is invalid.

bool TestSpherePlane (Sphere sphere, Plane plane. Velocity W,
floatd T)
{
sdist = Dot(plane.N,sphere.C) - plane.d:
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if ( sdist > sphere.r )

{
dotNW = Dot(plane.N.W):
if ( dotNW < 0 )
{
T = (sphere.r - sdist)/dotNW;
return true;
}
else
{
return false;
}
}
else if ( sdist < -sphere.r )
{
dotNW = Dot(plane.N,W);
if ( dothNW > 0 )
{
T = -(sphere.r + sdist)/dotNW;
return true;
}
else
{
return false;
}
}
else
{
T=20;
return true;
}

An implementation can also provide the maximum time allowed, fmax, with the
obvious changes to the code to compare T to that time. An implementation for
FindSpherePlane will have additional code to compute the first point of contact.

6.3.2 ORIENTED BOXES

Consider an oriented box with center 60 and fixed coordinate axes ﬁ,- and extents
a; for 0 <i < 2. The quantity r = Y.2_ a;|N - A;| is the radius of the interval of
the projected box onto a normal line to the plane. Computation of the first time of
contact T (if any) is identical to that of a sphere versus a plane; see Equation (6.1).
The pseudocode is
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bool TestBoxPlane (Box box, Plane plane, Velocity W, float& T)

Fo
. SOURCE CODE r = box.a0*|Dot(plane.N,box.A0)| +
box.al*|Dot(plane.N,box.Al)| +

box.a2*|Dot(plane.N,box.A2)|;

Intersection

sdist = Dot(plane.N,box.C) - plane.d;

i (sdist > r )

IntrPInBox3 {
dotNW = Dot(plane.N,W):
if ( dotNW < 0 )
{
T = (r - sdist)/dotNW;
return true;
}
else
{
return false;
}
}
else if ( sdist < -r )
{
dotNW = Dot(plane.N,W):
if ( dotNW > 0 )
{
T=-(r + sdist)/dotNW:
return true;
]
else
{
return false;
}
}
else
{
T=20;
return true;
}

Determining the first point of contact is more difficult for boxes. If there is a
first time of contact, then the intersection set depends on the orientation of N to
the box axes. If N is aligned with a box axis (it is perpendicular to two box axes),
then the intersection set is an entire face of the box. If N is not aligned with a single
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axis, but is perpendicular to one axis, then the intersection set is an entire edge of
the box. Otherwise, the intersection set is a vertex of the box. How you implement
FindBoxP1ane depends on the application’s requirements. Choices on what to return
from the function include (1) the entire set of intersection; (2) a representative point in
the intersection; or (3) a flag indicating that there are multiple contact points, probably
with information about type such as vertex, edge, or face.

6.3.3 CAPSULES

SouURCE CODE

LIBRARY

Intersection

FILENAME

IntrPInCap

Consider a c1pbule whose axis is the line segment P{I) + sDfors e [0, 1] and where
P(1) = } + .'W I)eﬁm the signed distances §; = N.Py—dandd, =N . P1 d,
where P, = Py + D. If  508) = 0, then the capsule is already intersecting the plane.
Otherwise, the sign of N - D is analyzed to decide which of Py and P is closer to the
plane. Once that is known, it is enough to apply the intersection testing algorithm
between a sphere and a plane. The pseudocode is

bool TestCapsulePlane (Capsule capsule, Plane plane, Velocity W.
float& T)
{
sd0 = Dot(plane.N,capsule.P) - plane.d;
sdl = sd0 + Dot(plane.N,capsule.D):
if ( sd0*sdl > capsule.r*capsule.r )
{
// Both end points of capsule on same side of plane and
// the capsule is not initially intersecting the plane.
if ( |sd0| <= |sdl]| )

{
// P is closer to plane than P+D
Sphere sphere(capsule.P,capsule.r);
return TestSpherePlane(sphere,plane,W,T);
}
else
{
// P+D is closer to plane than P
Sphere sphere(capsule.P+capsule.D,capsule.r);
return TestSpherePlane(sphere,plane,W,T):;
}

}

// capsule already intersecting plane
T=0;
return true;
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An implementation should inline the sphere-plane tests since the signed distances
to Py and Py have already been computed, yet TestSpherePlane computes them
again. An implementation for FindCapsulePlane must deal with the fact that the
intersection set at first contact time is either a point or, if N - D = 0, a line segment.

6.3.4 LOZENGES

Consideralozenge P+ uEu + 1‘E1,Whﬂ'l‘€Eu 9é 0, E, ?é 0, Eo El, and(u v) € [0, l]
The four corners of the lozenge rectangle are Po=P, Pjy=P + Ey, Pm P+ E,

and P11 =P+ Ey+ Ey. The signed distances to the plane are 8ij = N - P,), —d. If
Intersection the signed distances are not all positive or not all negative, then the lozenge is already

intersecting the plane. Otherwise, the corner closest to the plane is determined and
the test intersection algorithm is applied to the sphere corresponding to that corner.

IntrPInLoz The pseudocode is

bool TestLozengePlane (Lozenge lozenge, Plane plane, Velocity W,
float& T)
{
r2 = lozenge.r*lozenge.r;
sd00 = Dot(plane.N,lozenge.P) - plane.d;
sd10 = sd00 + Dot(plane.N,lozenge.ED);
if ( sd00*sd10 > r2 )
{
// P00 and P10 on same side of plane and the capsule
// connecting them is not intersecting the plane.
dotNE1 = Dot(plane.N,lozenge.E1);
sd01 = sd00 + dotNEl:
if ( sd00*sd01 > r2 )
{
// PCO and P01 on same side of plane and the capsule
// connecting them is not intersecting the plane.
sdll = sd10 + dotNEl;
if ( sdll*sdl0 > r2 )
{
// A1l rectangle corners on same side of plane and the
// lozenge containing them is not intersecting the plane.
if ( |sd00| <= |sd10]
{
|sd00| <= |sd01]

// P00 closest to plane
Sphere sphere(lozenge.P,lozenge.r);
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return TestSpherePlane(sphere,plane,W,T):
}
else
{
// P01 closest to plane
Sphere sphere(lozenge.P+lozenge.E1l,lozenge.r);
return TestSpherePlane(sphere,plane,W,T);

}
}
else
{
if ( |sdl0]| <= |sdll] )
{
// P10 closest to plane
Sphere sphere(lozenge.P+lozenge.E0,lozenge.r);
return TestSpherePlane(sphere,plane,W,T);
1
else
{
// P11l closest to plane
Sphere sphere(lozenge.P+lozenge.EO+lozenge.E1l,l0ozenge.r);
return TestSpherePlane(sphere,plane,W,T);
}
}

// lozenge already intersecting plane
T=20;
return true;

An implementation should inline the sphere-plane tests since the signed distances
to ,‘—’,-J- have already been computed, yet TestSpherePT1ane computes them again. An
implementation for FindLozengeP1ane must deal with the fact that the intersection
set at first contact time is either a point, a line segment, or a rectangle.

6.3.5 CYLINDERS

This algorithm is similar to the one discussed for the culling of cylinders. If 8 and §,
are the signed distances for the end points, then the four important cases are where
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both are positive (two cases based on order of the distances) or both are negative (again
& two cases). The pseudocode is
| SOURCE CoODE

bool TestCylinderPlane (Cylinder cylinder, Plane plane,
Velocity W, float& T)

Intersection {

dotND = Dot(plane.N,capsule.D);

sd0 = Dot(plane.N,capsule.P) - plane.d;

IntrPInCyln sdl = sd0 + dotND;
if ( sd0*sdl > 0 )
{

// both end points of cylinder on same side of plane
lenD = Length(cylinder.D);
lenNxD = Length(Cross(plane.N,cylinder.D));
ratio = lenNxD/lenD;
if ( sd0 > 0 )
{
if ( sd0 <= sdl )
(
// P is closest to plane
sdq = sd0 - cylinder.r*ratio;
}
else
{
// P+D is closest to plane
sdq = sdl - cylinder.r*ratio;

if ( sdq > 0 )
{
// cylinder not initially intersecting plane
dotNW = Dot(plane.N,W);
if ( dotNW < 0 )
{
// cylinder moving towards plane
T = -sdq/dotNW;
return true;
}
else
{
// cylinder moving away from plane
return false;
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]
}
else
{
if ( sdl <= sd0 )
{
// P is closest to plane
sdq = sd0 + cylinder.r*ratio;
}
else
{
// P+D is closest to plane
sdq = sdl + cylinder.r*ratio;
}
if ( sdg < 0)
{
// cylinder not initially intersecting plane
dotNW = Dot(plane.N,W):
if ( dothNW > 0 )
{
// cylinder moving toward plane
T = -sdq/dotNW;
return true;
}
else
{
// cylinder moving away from plane
return false;
}
}
}

}

// cylinder already intersecting plane
T=20;:
return true;

Here is where the first snag with cylinders shows up. In order to find the first time of
contact, a square root must be taken, an expensive operation. Even if the length of Dis
precomputed and stored with the cylinder, the length of N x D must be computed at
run time. For this reason, capsules are better bounding volumes to use than cylinders.
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6.3.6 ELLIPSOIDS

| SOURCE CODE

LIBRARY

Intersection

IntrPInElp3

The algorithm for ellipsoids is similar to that for spheres and oriented boxes. One

difference is in the computation of the radius of the interval of projection; here the
square root is avoided. The pseudocode is

bool TestEllipsoidPlane (E1lipsoid ellipsoid, Plane plane,

{

Velocity W, float& T)

sdist = Dot(plane.N,sphere.C) - plane.d;
if ( sdist > 0 )
{

r2 = Dot(plane.N,ellipsoid.Minverse*plane.N);
if ( sdist*sdist > r2 )

{
dotNW = Dot(plane.N,W):
if ( dotNW < 0 )
{
// ellipsoid moving toward plane
r = sqrt(r2);
T =1(r - sdist)/dotNw:
return true;
}
else
{
// ellipsoid moving away from plane
return false;
}
}

1

else if ( sdist < 0 )
{

rZ = Dot(plane.N.ellipsoid.Minverse*plane.N);
if ( sdist*sdist > r2 )
{
dotNW = Dot(plane.N.W):
if ( dotNW > 0 )
{
// ellipsoid moving toward plane
r o= sqrt(r2);
T=-(r + sdist)/dotNuW;
return true;
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else
{

// ellipsoid moving away from plane
return false;

T=20;
return true;

6.3.7 TRIANGLES

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrPInTri3

Let the three vertices be ‘:ﬁ and three signed distances be §; = N - ‘l?,- —dfor0<i=<2.
If the signed distances are not all positive or not all negative, the triangle is already
intersecting the plane. Otherwise, the closest vertex to the plane is determined and an
intersection test is applied to it. The pseudocode is

bool TestTrianglePlane (Triangle triangle, Plane plane,

{

Velocity W, floatk T)

sd0 = Dot(plane.N,triangle.V0);
if ( sd0 > 0 )
{
sdl = Dot(plane.N,triangle.V1);
if ( sdl > 0 )
{
sd2 = Dot(plane.N,triangle.V2);
if ( sdz2 > 0 )
{
// vertices all on same side of plane
GetMinimumDistanceAndVertex(sdMin, VMin);
dotNW = Dot(plane.N,W):
if ( dotNW < 0 )

{
// triangle moving toward plane
T = -sdMin/dotNW;
return true;

}

else

{

// triangle moving away from plane
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return false;

}
}
}
}
else if ( sd0 < 0 )
{

sdl = Dot(plane.N.triangle.V1);
if ( sdl < 0)
{
sd2 = Dot(plane.N.triangle.V2);
if ( sd2 < 0)
{
// vertices all on same side of plane
GetMinimumDistanceAndVertex(sdMin,VMin):
dotNW = Dot(plane.N.W);:
if ( dothNW < 0 )

{
// triangle moving toward plane
T = -sdMin/dothW;
return true;
}
else
{
// triangle moving away from plane
return false;
}

// triangle already intersecting plane
T=0;
return true;

}

ThefuncﬁonGetMinimumDistanceAndVertexﬁndsthenﬁnhnunlvﬂueof{&hah

8>} and the corresponding vertex.
yd

6.4 STATIC OBJECT-OBJECT INTERSECTION

The algorithms in this section determine if two of the same type or stationary objects
intersect, but it is also possible to develop intersection testing algorithms for mixed
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Table 6.1 Relationship between sphere-swept volumes and distance calculators (pnt, point; seg,

line segment; rct, rectangle).

Sphere Capsule Lozenge

Sphere dist(pnt,pnt)  dist(pnt,seg)  dist(pnt,rct)
Capsule  dist(seg,pnt)  dist(seg,seg)  dist(seg,rct)
Lozenge  dist{rct,pnt)  dist(rct,seg)  dist(rct,rct)

types. In the case of spheres, capsules, and lozenges, this is not a difficult process, and
the details are presented here. For a case such as an oriented box and an ellipsoid,
the details are sufficiently complex and beyond what was intended for the scope of
this book. When analyzing intersections between objects there is a difference between
treating the objects as three-dimensional solids and treating them as two-dimensional
shells. The testing here assumes that the objects are solids since that is the natural
setting for bounding volumes. Finally, the return value of any “test” pseudocode
functions is true if there is an intersection, false otherwise.

The objects for which intersection testing is relatively inexpensive are considered
here and include spheres, capsules, lozenges, oriented boxes, and triangles. Testing
for the intersection of two ellipsoids can be solved by a constrained minimization
that leads to three polynomial equations in three unknowns. The methods in Wee
and Goldman (1995a, 1995b) can be used to solve the system, but they are too
expensive for a real-time application on current hardware. Testing for the intersection
of two cylinders requires a lot of special-case handling based on how the cylinders are
oriented with respect to each other and is also too expensive for real time.

6.4.1 SPHERES, CAPSULES, AND LOZENGES

SOURCE CODE

Intersection

FILENAME

IntrSphrSphr
IntrSphrCap
IntrSphrloz
IntrCapCap
IntrCaploz
IntrLozLoz

Spheres, capsules, and lozenges are examples of sphere-swept volumes. Intersection
testing between pairs of objects is equivalent to measuring distances between the me-
dial structures and comparing to the sum of the radii. Table 6.1 shows the relationship
between the volumes and the corresponding distance calculators.

The pseudocode for the six distinct cases is

bool TestSphereSphere (Sphere sphere0, Sphere spherel)
{

diff = sphere0.C - spherel.C;

rsum = sphere0.r + spherel.r;

return Dot(diff,diff) <= rsum*rsum;
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bool TestSphereCapsule (Sphere sphere, Capsule capsule)

{

rsum = sphere.r + capsule.r;

Segment seg(capsule.P,capsule.D);

return SquaredDistancePointSegment(sphere.C,seg) <= rsum*rsum;
}
bool TestSpherelozenge (Sphere sphere, Lozenge lozenge)
{

rsum = sphere.r + lozenge.r;

Rectangle rct(lozenge.P,lozenge.E0,lozenge.E1);

return SquaredDistancePointRectangle(sphere.C,rct) <= rsum*rsum;
}
bool TestCapsuleCapsule (Capsule capsule0, Capsule capsulel)
{

rsum = capsule0.r + capsulel.r;

Segment segO(capsule0.P,capsule0.D);

Segment segl(capsulel.P,capsulel.D);

return SquaredDistanceSegmentSegment(seg0,segl) <= rsum*rsum;
}

bool TestCapsulelozenge (Capsule capsule, Lozenge lozenge)
{
rsum = capsule.r + lozenge.r;
Segment seg(capsule.P,capsule.D);
Rectangle rct(lozenge.P,lozenge.E0,l0zenge.E1);
return SquaredDistanceSegmentRectangle(seg,rct) <= rsum*rsum:

bool Testlozengelozenge (Lozenge lozengeO, Lozenge lozengel)

{

rsum = lozengeO.r + lozengel.r;

Rectangle rect0(lozenge0.P,lozenge0.E0,lozenge0.E1);

Rectangle rectl(lozengel.P,lozengel.E0,lozengel.E1);

return SquaredDistanceRectangleRectangle(rect0,rectl) <= rsum*rsum;
}

The functions for computing the various distances can be found in Chapter 2.

6.4.2 ORIENTED BOXES

The method of separating axes is used to determine whether or not two boxes intersect.
Let the first box have center Cy, axes Ay, A}, A,, and extents ag, a|, a». Let the second
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SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrBox3Box3

box have center Cl, axes Bu, Bl, Bg, and extents hg, by, hz The potentlal separating
axes are of the form Cp + sL, where L is one of A, BJ,, or A; x B for0<i <2and
0=<j=2 . -

The projections of the vertices of the first box onto the line Cy 4 sL relative to
origin E(] are

QA
> o =

— L

The interval of projection is [—ro, ro] and contains all the vertex projections. The
radius is obtained by making the summation as large as possible by choosing a; to be
the sign of L - A;. Thus,

3 -
LB
3 LB
i=0 L
and
L-D
o —
L-L

The two projected intervals do not intersect whenever the distance between in-
terval centers is larger than the sum of the radii of the intervals: |r| > ro 4 ry. Each
of the quantities involved has in its denominator L - L. The division is therefore not
necessary. Define R = Ir|L - L Ry= roL - L,and R, = ri1L - L. The nonintersection
test is

2 2
IL-DI=R>Ro+Ri =Y alL-Ail+Y blL-Byl.
i=0 i=0

That is, the line with direction L is a separating axis if R > Ry + Ry.



6.4 Static Object-Object Intersection 207

The axes of the second box can be written as combinations of axes of the first,
Bi = coiAg + i Ay + €2 Ay

for0 <i < 2. Let A be the matrix whose columns are the ;1,-‘ let B be the matrix whose
columns are the R-, and let C be the matrix whose entries are ciji then B = AC, in
which case C = AT B. The components of C are just cij = A - 5’;-. Similarly, the axes
of the first box can be written as linear combinations of axes of the second box,

/-5:' = f'i{)étl + (‘né] + (-‘fzifz

for 0 =i = 2. These relationships allow computation of the various dot products
between the separating axis directions and the box axes in terms of the ¢;; and extents.
In particular, the nonintersection tests involve various triple scalar products involving
the box axes:

;ijn - ;1,-] x E’_,- = sign(ig, i1)c;,; and Bj, A; x Bj, =sign(j1, jo)eij (6.2)

where sign(0, 1) =sign(1, 2) = sign(2,0) = +1 and sign(1, 0) = sign(2, 1) = sign(0,
2) = —1.For two boxes there are 15 potential separating axes, which include 6 box axes
(3 per box) and 9 axes obtained as cross products of box axes, one chosen from each
box. Table 6.2 summarizes the quantities that must be computed for thé separating
axes tests.

Testing for intersection amounts to processing each axis of the 15 potential sep-
arating axes. If a separating axis is found, the remaining ones of course are not pro-
cessed. The various entries ¢;; and |c;;| are computed only when needed, avoiding
unnecessary calculations in the event that a separating axis is found quickly and some
of the ¢;; do not need to be computed. The basic separating axis test involves comput-
ing Ro, Ry, and R and then testing for nonintersection by comparing R > Ry + R.

6.4.3 ORIENTED BOXES AND TRIANGLES

RCE CODE

LIBRARY

Intersection

FILENAME

IntrBox3Tri3

Let the triangle have vertices ff,- for 0 < i < 2. The edges of the triangle are E’u =
Uy — Uy, Ey =U,; — Uy,and E; = E| — Ej. A normal for the triangleis N = Ey x E|
and is not necessarily unit length. The triangle and its interior are given by

[ffn+sf?o+.ril:{)5s¢_:1, 0<r=<1, s+r=<1}.

Let the box have center C, axes A;, and extents g; for 0 <i < 2. Define D =_f]0_’— C.
The potential separating axes are of the form C + sL, where L is one of N, A;, or
Aix Ejfor0<i<2and0<j <2
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Table 6.2 Values for R, Ro, and R, for the separating axis tests.

L Ro R R

A ap bolcool + bilcor| + balcoz| |Ag - D

A a bolciol + bilen] + bzlerzl |A; - D|

A a bolcaol + bilcar| + b2fe| |Az- D|

Bo aolcool + arleiol + azlczol bg |By - D

B, agleorl +arlen| + azlex| by |B, - D|

B aolcoz| + aileiz] + azlez| b, |B; - D|

Ag % By aileol + azleol bilcoal + balcpl lc10Az - D = c0A; - D
Ag % By alen| + azlen| bo|coz| + b2lcool lenAz - D — cnAy - D
Ag x B, alezz| + a2l bolcor| + bilcool lci2Az - D = cA, - D
Ay x By aolc2ol + azlcool bylerz| + bafenl leaoAo - D — cooAz - D
Ay x B aolez1| + azlecor] bolcia| + b2lciol le21Ao - D = co1Az - D
Ay x B, agleaz| + azleo| bolenil + bilerol lc2Ao - D — co2Az - D
Ay x By dolciol+ ailcool bilcaal + baleal lcgoAy - D — c10Ao - D)
Ay x B aglen| + arleon bole2a| + ba|ezol lcoiAr - D = c11Aq - D
Ay x By aolerz| + arleor| boleza1l + bilezol lcoaA1 - D — cipAo - D

The interval of projection for the box is [—r, r], where

2 -
[L-A
r:Za,- i ..*
=0

The projections of the triangle’s vertices relative to the line origin are

-

L (U;-0)
L-L

for 0 < i < 2. The projection of the triangle does not have a natural center or radius
as does the box. Nonintersection now amounts to showing that the minimal interval
containing the three projected triangle vertices is separated from the projected box
interval. As before, the division by L-Lis not necessary. Define R = rL - L and p; =
L (U, C)forO =i<2, Notethatpa_ L- (UO—C)— D pL= L- (U1 CL—

[D+Eu)—ﬁn+L Eg,andp;, L (Uz‘-C) L (D+El)—p0+L-E[.
Table 6.3 summarizes the quantities that must be computed for the separating axis
tests.
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Table 6.3 Values for R, po, p1, and p; for the separating axis tests.

L Po P P2 R

N N-D Po Po ao|N - Aol + a)|N - A)| + N - A,
Ay Ag- D po+Ag-Ey  po+ Ag- Ey ag

Al f_tlb Po+;’l|'Eo P0+;’n-él ay

;42 ;‘z D P(1+;’lz‘éu Pu+;‘!2-:51 a

Ag x Eg Ao x Eq-D Po po+Ag- N ar|A; - Eol +a) A, - Eql
Ay x E, Agx E\ - D po— Ay N Po ai|A; - Ey| + az|A; - Ey|
Ag x E; Agx Ey-D po— Ay N po— Ag- N alAy - Ex| +axlA; - Es
A1 x Eg Ay x Eg-D Po po+ Ay N agl Az - Eo| + azl A - Eq
Elxil ilel-l-) })0—E|-N 7o aglﬁg-Eﬂ-{-aﬂﬁg-Eﬂ
ﬁlez E}XE;‘E} p()—;il‘ﬂf pg—ﬁl-ﬁ uulza;-ﬁ.'gl-i-a;_l;{g-égl
Ar x Ep 32 x Ey- D Po Po+ Ay N al A, - Eol +ay|Ag - Eol
;’cszl ﬁgxﬁl-ﬁ pn—ﬁg-ﬁl Po a0|2,-E‘l|+a1|ﬁ.0vEE|
Ay x E; Ay x Ey-D pPo— AN po— Ay N aolAy - Es| + aYAg - Ea|

For axis direction N, the projected triangle vertices are identical, so the nonin-
tersection test amounts to showing N - D is not in the interval [— R, R]. For axis
directions A;, the projected triangle vertices may all be distinct. For axis directions
A x Ej, at most two of the projected vertices are distinct. If the triangle interval is
[min( po, p1, p2), max(pg, p1, p2)| and the box interval is [— R, R], then the triangle
and box do not intersect whenever min(pg, p1, p2) = R or max(po, p1, p2) < —R.

Testing for intersection amounts to processing each axis of the 13 potential sep-
arating axes. If a separating axis is found, the remaining ones are not processed. Any
quantities that are needed multiple times are calculated only once and only when
needed. Pseudocode that shows how to minimize the calculations is given below for
each type of axis test.

-

Axis N

The nonintersection test is |S/ . f)l > R. The pseudocode for testing if p is not in
[—R, R) is

if ¢ |p] >R
return no_intersection;



210 Chapter 6 Collision Detection

Axes ﬁk

The nonintersection test is min(pg, p1, p2) > R or max(pg, P P2) < —R. The
pseudocode is

if ( p0>R)
{
if ( pl > R and p2 > R )
return no_intersection;
}
}
else if ( p0 < -R )
{
if ( pl < -R and p2 < -R )
return no_intersection;

Axes ,_51,- X Ej

The triangle projects to at most two values uy and ;. The nonintersection test is
min(ug, #1) > R or max(ugy, u;) < — R. The pseudocode is

if ( (u0 > R and ul > R) or (ub < -R and ul < -R) )
return no_intersection;

6.4.4 TRIANGLES

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrTri3Tri3

Two fast tests for the intersection of triangles are the interval overlap test (Méller 1997)
and an algorithm in the ERIT package (Held 1997). The underlying idea is effectively
the same for both methods. If the two triangles intersect, the set of intersection must
occur on the line of intersection of the two planes containing the triangles, and it
must be an interval. Each method attempts to find that interval in its own way. Both
methods are discussed in detail in Moller and Haines (1999). The method presented
here uses separating axes. This approach easily extends to the case of moving triangles;
the interval overlap test and the ERIT " algorithm do not have a simple extension.
Lel the first triangle have vertlceq AU, Al, Az, edges E{] = Al An, El Ay — Ag.
E1 E(), and normal N = En x El (not neaesban]y unit leugth) Let the sewnd
tnang]e have vertlces Bo, B\, B, edges Fo= B| Ba, Fy= By — By, Fz F| Fo,
and normal M = FO x Fi (not necessarily unit length). Define D= By — Ao
Triangles in three dimensions present an interesting problem for nonintersection
by the separating axis approach. The set of potential separating axes depends on
whether or not the triangles are parallel. If the two triangles are parallel but not
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coplanar, then the triangle normals will provide separatmg axes. However, if the
: ide: >






















































































































































































































































































































































































































































































































378 Chapter 11 Terrain

Table 11.1 Values for rpy;, and Fmax based on eye point location.

2

2

Region Fiin T max
Ex < Xmin A Ymax < Ey dx} + dy} dxt +dy¢
Ex = Xmin A Ymin < Ey < Ymax dx} dxj + max(dy, dy?)
Ey < Xmin A Ey € Yimin dx? 4 dy? dx} +dy?
Xmin < Ex = Xmax A Ymax < Ey dy} max({dxg, dx}} + dv}
Xmin = Ex < Xmax A Ymin € Ey < Ymax 0 max{dxo, dx;}* + max{dyo, dy;)?
Xmin £ Ex < Xmax A Ey < Ymin dyé max{dxg, dx;}? + d_)-‘f
Xmax = Ex A ymax = Ey dx} + dy} dxj + dy?
Xmax £ Ex A Ymin < Ey £ Ymax dx} dxg + max{dyg, dy})
Xmax < Ex A Ey < Vmin dxf + dy} dx} +dy}

To make F (:ﬁ‘) as small as possible, it is clear that for a given (Ay, A)), A2 should
be made as large as possible:

A? = max{(Zmin — E:)Z: (Zmax — E:)z}-

As before, F is treated as a function of r, F(r) = r/rt+ }rﬁmx}, where .y 1s the
fixed value of A, given in the displayed equation. The minimum of F on [Fmin, #max)
is

Fmin Fmax

2 2 72 2 :
" tnin + hmax Fmax + hmax

Fmin(E} = min

Finally,r2. andrl, arecomputedinthe following way. Letdxg = |xmin — E|,dx; =
[max = Exl, d¥o = | Ymin — Ey|, and dy; = |yyax — E|. The values are specified in
Table 11.1.

11.3.2 CLOSE TERRAIN ASSUMPTION

In Inequality (11.2), define F(V — E) by F(V — E) = F(A) = 1/ID,A, + D,A,|.
The inequality is rewritten as L, (V) = AnL,(V)F(V — E) < 7 for V € B. The same
construction that was used for the distant terrain assumption can be applied here, but
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DA
r—max |V, — E.|

t

ET L minlV, - E|

Figure 11.6  Special case for optimization when (D, Dy) = (1,0).

11.3.3

for the current function F. The conditions in Equations (11.4) and (11.5) apply. The
problem now is to compute me(E) and Fmax(E) Note that

1

mm(E)—mln max D (V EJ)+D‘.(V-_E)
ves [De(Ve — Ex) + Dy(Vy, — E))|  vep ‘ 4 )l
and
1
Fax(E) = max =min [Dy(Vy — E;) + Dy(V, — E,)|.

ves |Di(Vi — E;) + Dy(Vy — E\)|  ves

The z-components of the vectors do not matter in the optimization, so the prob-
lem is two-dimensional. Figure 11.6 illustrates the case when (D, Dy)=(1,0). In
this special setting, the optimum values to compute are those of |V, — E,|. Clearly,
these occur at the extreme values of the two-dimensional box in the x-direction, and
the occurrences are at two of the corners of the box. For general (DJ, D,), the opti-
mization process consists of computing |D,(V, — E,) + Dy(V, — )| at the four
xy-corners of box B and selecting the minimum and maximum va]ues

NO ASSUMPTION

In Inequality (11.3), define

LuyDHAZ + A2) + (DA, + DyA,)?

G(Ly, A) = - g
(Fws &) (DAy+ DyAy + D A)? — L2 D2/4

For a fixed A, define g(&) = G(&, A). In short format, g(&)y=ak/(b— L§ ) for
positive constants a, b, and c. The derivative is g'(£) = a(b +cEY /(b — d; H2 s,
Thus, g is an increasing function. Consequently, G(L,, A] < G (8maxs A), where
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Bmax = maxy . p er(‘-’;)sand G(Ly, 5) = G(8mins A], where §pip = minffeg Lw(‘-/)-
The extreme values for L, over the set B are

max {.J(f/") < An max G(8may, V- E)
Vel VinB

and

min L‘.(':f) = an min G (8pin, V - E)
Veb VinB

Let Vo and if}min be those vectors in B that optimize the G function. The
constraints on 8y, and S,y that are equivalent to those in Equations (11.4) and

(11.5) are

AnG (8maxs i}max —E) < (11.6)
and

MG Buasi, Vi = By > 2 (11.7)

Both equations are implicit constraints, but they are quadratic. Using the short format

G Bmaxs Vimax — E) = admax /(b — ¢82,,,), the implicit maximum constraint is

2
Anadmy,
__"12“‘_" <.
b —c8z .,

The denominator of the fraction is positive, so multiplying by it and collecting terms
on the left-hand side yields

Q8max) 1= cré‘fnax + Anadmax — br.

Note that Q(0) < 0 and Q'(0) = Ana = 0, so the unique positive value 8y for which
Q(dg) = 0 provides the upper bound test, 8y < . Computing the root for Q is
expensive and is in fact not necessary. The quadratic inequality itself may be evaluated
in theimplementation. Similarly, a quadratic function can be established for 8., and
the threshold test is 8., = 8y, where 8 is the unique positive root of the quadratic
function. B

The problem now is to compute V,, and Vmin so that the coefficients in the
quadratic inequality constraints can be evaluated. Asin the distant terrain assumption,
G is a decreasing function of A_. The vector Vi, must occur at a point for which
Az = Zmin, the minimum z-value for the box. Similarly, Vimin must occur at a point
for which A; = zp,4¢. This limits the search for the optimum points to eight edges
of the box. On one such edge where A, is fixed, G is a rational function in A,
whose numerator is quadratic and whose denominator is quartic. The minimum
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and maximum of the rational function must be computed. The derivative is also a
rational function whose numerator is a cubic polynomial and whose denominator
is positive. The search for extreme points along the edge amounts to computing the
roots of the cubic polynomial, evaluating the rational function at those points, and
comparing among themselves and the rational function at the end points (up to
five points to test). This is done for all eight edges to find the global minimum and
maximum. The construction also yields the points Vinax and Vinin at which the extrema
occur.

114 VERTEX DEPENDENCIES

After block-based simplification, the five candidate vertices of each block are analyzed
for simplification. At this stage adjacent blocks may have cracks that need to be
removed. The problem is that one higher-resolution block contains a vertex in its
mesh and the adjacent lower-resolution block does not contain the same vertex. The
vertex forms a T-junction, and a crack occurs in the mesh. The cracks are removed by
keeping track of vertex dependencies. If a vertex is determined to be in the final mesh,
then any dependent vertices must also be in the final mesh. For a block treated as a
3 x 3 array of vertices, the dependencies are shown in Figure 11.7. The four corners
of each active block must occur in the mesh.

Asanexample, considera5 x 5height field. The corresponding quadtree has three
levels: 1 root block, 4 interior blocks, and 16 leaf blocks. Figure 11.8 illustrates there
was enough variation in the screen space vertex heights for the vertices represented
by the root block that its four children needed to be analyzed for further simplifi-
cation. The figure also illustrates that the lower-left child block itself needed to be
analyzed for further simplification. There are 7 active blocks. The minimal triangu-
lation for each active block is shown. If only the triangles shown are drawn, there
are two cracks in the mesh, one between the upper-left and lower-left children of
the root block and one between the lower-right and lower-left children of the root
block.

The left half of Figure 11.9 illustrates the vertex dependencies (large solid dots)
generated by the midpoint (small solid dot) of the edge shared by the lower-left and
lower-right children of the root block. The right half of Figure 11.9 shows the addi-
tional vertices (large solid dots), edges (bold lines), and triangles that are generated
because of the vertex dependencies of the two midpoints (small solid dots).

Finally, suppose that a vertex in the lower-right child of the lower-left child of the
root block was added to the mesh because its screen space height was large enough.
The presence of the vertex and its dependencies force the mesh to be further refined.
The upper-left part of Figure 11.10 shows the added vertex (small solid dot) and the
dependencies (large solid dots) generated by its left dependent. The upper-right part
of Figure 11.10 shows the dependencies generated by the right dependent. The lower
part of Figure 11.10 shows the additional edges and triangles that are generated by the
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Figure 11.7  Vertex dependencies for an even block (left) and an odd block (right).

Figure 11.8  Minimal triangulation after block-based simplification.

/

-« [}

/

Figure 11.9  Triangulation after vertex dependencies are satisfied.
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Figure 11.10  The upper-left block shows one set of dependents for the added vertex. The upper-
right block shows the other set of dependents. The lower block is the triangulation
based on all dependents.

full set of dependencies. The dependencies for a vertex form a binary tree since each
vertex has two immediate dependents. However, the nodes of the binary tree are not
necessarily distinct, as is clear from Figure 11.10.

1 1.5 BLOCK RENDERING

After simplification, the triangles in each active block must be rendered. Computing
the triangles is straightforward because the triangles form a binary tree that can be
recursively traversed. For example, consider the lower-right child of the root block
shown in Figure 11.10. After block simplification, the block consisted of two triangles.
After vertex simplification, the block was subdivided into smaller triangles. Figure
11.11 shows the original configuration and the subdivided configuration.

Figure 11.12 shows the corresponding binary tree for the block. The root node of
the binary tree corresponds to the block itself and is not a triangle. All other nodes
represent isosceles right triangles. The dotted lines indicate where a parent node is split
to form the two child nodes. The triangle of a node is split only when the midpoint
of its hypotenuse is a vertex that is required to be in the final mesh, as determined by
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Figure 11.11  The left block is the configuration after block simplification. The right block is the
configuration after vertex simplification.
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Figure 11.12  Binary tree for the right block in Figure 11.11.

the screen space height calculations during vertex simplification. Thus, a leaf node of
the binary tree is one whose triangles cannot be split because either the hypotenuse
does not contain an enabled vertex from simplification or is a triangle in the highest-
resolution mesh for the height field, in which case the length of a leg of the triangle is
the spacing between consecutive samples in the height field.

The binary tree is traversed in depth-first order. When a leaf node is encountered,
either the corresponding triangle can be rendered immediately or information about
it can be saved for deferred rendering. The choice depends on how the renderer itself
is structured.
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116 THE FULL ALGORITHM

This section provides a detailed description of an algorithm for the simplification
and rendering of a height field. The height field itself is characterized by a size of
2N 41 for N = 1 and a two-dimensional array of height values, H;; for 0 =i = N
and 0 < j < 2¥.Inanimplementation, a height value is usually stored as a 1-byte or 2-
byte unsigned integer type to minimize memory usage. The application must then also
supply parameters to relate the height array to world coordinates. In particular, the
following parameters should be specified: minimum elevation zmin and maximum
elevation zpmax (corresponding to zero and the maximum representable value M of
the unsigned integer type), the spacing between spatial samples o (assumed to be
uniform in both spatial dimensions), and the spatial location (xmin, Ymin) of the point
with height Hyo. The world coordinates of the sample corresponding to height H;; are
(Xis ¥j» 2ij) = (Xmin + (0, Ymin + JO, Zmin + ((Zmax — f:min)/M)Hf;') for0 =i = 2
and 0 < j <2V,

A quadtree of blocks is maintained. For a size of 2V + 1, the quadtree has (4" —
1)/3 nodes. Since the quadtree is complete, it can be stored in memory as an array
of structures, each structure containing information relative to a block. The array is
assumed to have zero-based indexing. Given a parent node with index p, the four
child nodes have indices ¢ = 4p + i for 1 <i < 4. Given a child node with index ¢,
the parent node has index p = [(c — 1)/4].

A queue of blocks is maintained to keep track of the current blocks that are at the
correct level of detail (based on the block simplification algorithm) and are potentially
in the view frustum. Theoretically, the queue must be large enough to hold the entire
set of blocks from the quadtree, so an implementation needs to provide enough space
for this case, however improbable.

Finally, a two-dimensional array of vertex information is maintained, one vertex
per height sample. Each item has a Boolean flag storing whether or not the vertex
is currently in the mesh that is to be rendered (based on the vertex simplification
algorithm). The item also stores information about who are its two dependent vertices.

The choice of data structures is of course dependent on implementation. The usual
space-time trade-offs come into play, and each implementor has to decide what is the
best trade-off for his application. The vertex information structure is the simplest
one. It contains two pointers to its dependent vertices and a Boolean flag indicating
whether or not the vertex is currently in the mesh to be rendered.

The block structure contains information to index into various arrays, such as the
height array or related surface attribute arrays including normals and vertex colors.
Minimally, it contains an index into the global arrays, the index corresponding to
the origin point of the block. This is typically the upper-left point when viewing the
block in row-major order with row indices increasing from top to bottom. The block
must also contain the stride information so that it can be manipulated as an entity
representing a 3 x 3 array of points. To distinguish between even and odd blocks, the
block stores a Boolean flag. Since the vertex simplification occurs more often than
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most other processes in the system, it is too expensive to constantly be calculating the
world space heights of the line segments corresponding to the five candidate vertices.
Therefore, the block structure saves the world space heights for those five points. The
calculations of the heights are done during program initialization. The maximum
of the five heights is also saved at leaf blocks. At interior blocks, the maximum of
the five heights and of the maximum heights for the four child blocks is saved. The
minimum and maximum heights §, and §, that change with eye point are computed
and stored whenever necessary. Finally, the block stores the axis-aligned bounding
box that contains all the highest-resolution vertices covered by the spatial extent of
the block.

The queue is implemented in bounded memory as a circular queue. The queue
items contain the block indices and two flags, one to indicate whether or not the block
has already been processed during the current simplification phase and one to indicate
whether or not the block is potentially visible. It is possible to implement the flags
using the two high-order bits of the block indices as long as the total number of blocks
is representable by an integer with two less bits than the total number of bits for the
integer type of the index.

The processing of the height field is in three stages: initialization of the blocks,
vertices, and queue; simplification based on current eye point; and rendering of the
active blocks. The camera represents both the eye point and view frustum.

InitBvV();
InitQC);
for (each frame) do
{
if (camera.eye point has changed since last frame) then
{
ResetBlocks();
SimplifyBlocks(camera);
SimplifyVertices(camera);
}
RenderBlocks();

Block initialization involves a recursive traversal of the quadtree. The interval
values for all blocks are initialized to 8, = 0 and &, = 0o. The origin indices for
the root block are (0, 0), the upper-left corner of the height field, and the stride
is 2V~ The root block is an even block, and its quadtree index is 0. Generally,
if a block has quadtree index ¢, origin indices (x, y), stride s, and Boolean e
indicating whether or not the block is even, then InitBV(block,q,x,y.s,e),
shown below, provides a recursive initialization of all blocks. The initial call is
InitBV(rootBlock,0,0,0,2¥" ! true).
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InitBY (block,q.x.,y.s.e)

{
block.x0rigin = x;
block.yOrigin = y;
block.stride = s;
block.even = e;
block.deltal = 0;
block.deltal = infinity;

// delta values for five candidate vertices
block.deltal0] = (P(x,y).z + P(x+2s,y))/2 - P(x+s,¥);
block.delta[l] = (P{x+2s,y).z + P(x+2s5,y+2s))/2 - P(x+2s,y+s);
block.delta[2] = (P(x,y+2s).z + P(x+2s,y+2s))/2 - P(x+s,y+2s);
block.delta[3] = (P{x,y).z + P(x,y+2s5))/2 - P(x,y+s);
if ( block.even )

block.deltal4] = (P(x,y+2s).z + P(x+2s,y).2)/2 - P(x+s,y+s):
else

block.delta[4] = (P(x,y).z + P(x+2s,y+25).2)/2 - P(x+s,y+s);

block.deltaMax = maximum of block.deltalil:

// vertex dependencies
V(x+s,y).dependent0 = V(x+s,y+s);
V(x,y+s).dependentl = V(x+s,y+s);
V(x+2s,y+s).dependent0 = V(x+s,y+s);
V(x+s,y+2s).dependentl = V(x+s,y+s);
if ( block.even )

{
V(x+s,y+s).dependent0 = V(x,y+2s):
V(x+s,y+s).dependentl = V(x+2s,y);
1
else
{
V(x+s,y+s).dependent0 = V(x,y);
V(x+s,y+s).dependent]l = V(x+2s5,y+25);
}

// recursively handle remaining blocks

if ( block is interior )

{
InitBV(block.childUL,4*quadIndex+1,x,y,s/2,even);
InitBV(block.childUR,4*quadIndex+2, x+s,y,.s/2,!even);
InitBV(block.childLL,4*quadIndex+3,x,y+s,s/2,!even);
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InitBV(block.childLR,4*gquadIndex+4, x+s,y+s,s/2,even);

block.min = minimum of block.childIJd.min;
block.max = maximum of block.childld.max;
block.deltaMax = max(block.deltaMax,block.childIJd.deltaMax);

1
else
{
// leaf block, stride = 1
block.min = minimum of nine world vertices with indices (i,j)
With x <= i <= x42, y <= j <= y+2;
block.max = maximum of nine world vertices with indices (i,j)
wWith x <=1 <= x+2, y <= j <= y+2;
}

The function InitQ() creates a circular queue stored as an array of unsigned
short indices. The queue represents those currently active blocks for which vertex
simplification must occur. The number of elements is the number of leaf nodes in the
quadtree, the maximum possible number of active blocks at any one time. The queue
is initially empty.

After each frame the vertices of an active block are tagged as either enabled or
disabled for the final tessellation. Function ResetBlocks iterates over the active
blocks and resets the vertices to be disabled. If a vertex is currently enabled and must
be disabled, the dependents of that vertex must be informed to disable themselves,
too. Thus, a call to ResetBlocks requires traversing the vertex dependency trees, an
operation that typically is not inexpensive. A more complicated scheme for updating
vertex dependencies by Lindstrom et al. (1996) attempts to maintain the correct
current state for each vertex.

Function Simp1ifyB1locks does the block simplification as described earlier. The
blocks in the queue are considered to be unprocessed and may need to be replaced by
four child blocks (need more detail) or, together with its three siblings, may need to
be replaced by a parent block (need less detail).

while ( queue.ExistUnprocessedBlocks() )

{

block = gqueue.GetFrontAndRemove();
if ( not block.Processed() )

{

queue.DecrementUnprocessedCount();

if ( block.IsFirstChild() )
{
// test if block and siblings need to be replaced by parent
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if ( queue.ContainsSiblings(block) )
{
for ( each child of block )
child.ComputeDeltalnterval(eyepoint,tolerance);

if ( child.deltaMax <= child.delta0 for all children )
{
// need to replace by parent, first remove children
// blocks
for ( each child of block )
{
queue.RemoveFront();
if ( not child.Processed() )
queue.DecrementUnprocessedCount();
}

// add parent (may need further reductions later)
parent = block.GetParent();
parent.SetProcessed(false):
queue.AddRear(parent):
queue.IncrementUnprocessedCount():

continue with while loop:

}

if ( not block.VisibilityTested() )
block.TestForIntersectionWithFrustum();

if ( block.IsInteriorNode() )
{
// subdivide only if block intersects view frustum
if ( block.IsVisible() )
{
for ( each child of block )
child.ComputeDeltalnterval(eyepoint,tolerance);

if ( child.deltaMax > child.delta0 for some child )
{
// subdivide if at least one child requires it
for ( each child of block )
{
// add child (may need further processing)
child.SetProcessed(false);
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queue,AddRear(child);
queue.IncrementUnprocessedCount();

continue with while loop;

block.SetProcessed(true):
)]

// place processed blocks at rear of queue
queue.AddRear(block);

The function ComputeDeltalnterval implements the simplification constraint
based on which type of constraint is desired: distant terrain assumption, close terrain
assumption, or no assumptions.

Function Simp1ifyVertices does the vertex simplification as described earlier.
The pseudocode is

for ( each block in queue )
{
if ( block.IsVisible() )
block.SimplifyVertices():

Each visible block attempts to simplify its five noncorner vertices and automati-

cally enables two of its four corner points depending on the parity of the block. The
pseudocode is

for ( each noncorner vertex )
{
if ( vertex.IsEnabled() )
{
if ( block.delta0 <= vertex.delta0 )
{
if ( vertex.deltal <= block.deltal )
{
// not sure vertex is needed, test
// simplification constraint
if ( not vertex.SatisfiesConstraint(tolerance) )
vertex.SetEnabled(true):
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else

{
// absolutely certain vertex is needed in
// tessellation
vertex.SetEnabled(true);

}

if ( block.IsEvenParity() )

{
vertex[lowerLeft].Enable(true);
vertex[upperRight].Enable(true);
}
else
{
vertex[upperLeft].Enable(true);
vertex[lowerRight].Enable(true);
}

Finally, the function RenderBlocks traverses the binary tree of triangles for the
block, as illustrated in Figure 11.12. Let the corner vertices be V;; for 0 <i <1 and
0 < j < 1. The pseudocode is

if ( block.IsEven() )

{
RenderTriangle(Vv00,V10,V01);
RenderTriangle(V11,V01,V10);
}
else
{
RenderTriangle(V10,Vv11,V00);
RenderTriangle(V01,V00,V11);
)

The function RenderTriang]e does the recursive traversal of the binary tree. The
pseudocode is

void RenderTriangle (T,L,R)

{
// T = top vertex, L = left vertex. R = right vertex
if ( triangle is interior node of tree )
{
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// compute midpoint, recurse only if it is enabled

M = (L+R)/2;
if ( M.IsEnabled() )
{

// split the triangle and recurse
RenderTriangle(M,T,L);
RenderTriangle(M,R,T);

return;

)

// Code for adding triangle <T,L,R> to tessellation goes
// here. Alternatively, the triangle can be sent directly
// to the rendering engine to be drawn now.

An implementation must have structures that keep track of the vertices and their
state (enabled/disabled). Rather than passing vertex locations, it is possible to pass
indices into vertex arrays and perform arithmetic on them to do the splitting and
state lookup.

Plate 5 illustrates subdivision of a height field terrain using tessellation based on
the continuous level-of-detail algorithm described in this chapter. The terrain system
is an implementation of a continuous level-of-detail algorithm. The top-left image is
the rendering at a particular level of detail for a small screen space error tolerance.
The bottom-left image is a wireframe view of that image. The top-right image is the
rendering at a level of detail with a larger screen space error tolerance. The bottom-
right image is a wireframe view of that image. While the top two images look the same,
the wireframe images show the difference in tessellation. In the demo, there is some
noticeable popping of triangles as you move about the terrain with the larger error
tolerance.

1 1.7 OTHER ISSUES

Although the tessellation algorithm itself is the core of the terrain system, other
issues must be handled in a real game environment. This section describes the most
important of these: paging and memory management, use and construction of vertex
colors and normals, and height calculations.

11.7.1 TERRAIN PAGES AND MEMORY MANAGEMENT

The terrain algorithm was described for a single-height (2 + 1) x (2¥ + 1) height
field. To keep the memory usage at a minimum (unsigned short for heights and
queue indices), the restriction is N < 7. A height field of size 129 x 129 is not really



11.7 Other Issues 393

large enough to represent an expansive terrain in a game. Thus, a rectangular lattice
of height fields can be used, with each height field in the lattice called a terrain page.
There are two problems with this. The first problem is that if two adjacent pages are
dynamically tessellated independently, each page has no cracking, but the common
boundary will. The second problem is that the memory usage is still a concern for a
single page, especially if additional per-vertex information needs to be stored, such as
texture coordinates, vertex colors, or vertex normals.

The first problem is straightforward to handle. Recall in the pseudocode for block
initialization the lines of code where the vertex dependencies are established. For a
single page this code only initializes one of the two dependents for any vertex on
the boundary of the page. In an implementation using pointers to dependents, the
uninitialized pointer will be set to null, and any vertex dependency tree traversing will
test to make sure that a dependent pointer is not null before traversing a branch of the
tree, If two terrain pages are adjacent, then in fact the null dependent pointers of one
page can be set to point to vertices in the other page by a stitching process. [f an adjacent
page is unloaded from memory, then the dependent pointers for the page remaining in
memory must be reset to null by an unstitching process. The pseudocode for stitching
is given below. The vertex information is assumed to be stored as a two-dimensional
array in row-major order. The dependents are indexed by 0 and 1, just as in the block
initialization pseudocode, and are consistently named to work with that code.

// for two pages that are adjacent on a left-right edge

void StitchLeftRight (TerrainPage pagel, TerrainPage pageR)
{
for (row = 1; row < 2*N; row++)
{
pageR.vertex[row][0].dependent0=pagelL.vertex[row][2"N];
pagel.vertex[row][2”N].dependentl = pageR.vertex[row][0];

void UnstitchLeftRight (TerrainPage pagel, TerrainPage pageR)
{
for (row = 1; row < 2*N; row++)
{
pageR.vertex[row][0].dependent0=null;
pagel.vertex[row][2~N].dependentl =null;

}
// for two pages that are adjacent on a top-bottom edge

void StitchTopBottom (TerrainPage pageT, TerrainPage pageB)
{
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for (col=1; col < 2°N: col++)

{
pageT.vertex[2*N][col].dependent0=pageB.vertex[0][col];
pageB.vertex[0][col].dependentl =pageT.vertex[2*N][col];

void UnstitchTopBottom (TerrainPage pageT, TerrainPage pageB)
{
for (col = 1; col < 2°N; col++)
{
pageT.vertex[2*N][col].dependent) = null;
pageB.vertex[0][col].dependentl = null;

The memory usage problem isa more complicated one. Given a set of terrain pages
that are required to be coexistent in memory, one way to minimize the use of memory
is to share as much as possible between pages. While the height information is typically
unique to each page, it can be shared if the application wishes to repeat height fields,
much like texture coordinates are allowed to repeat to conserve texture memory usage.
The texture images themselves can be shared between pages, but at the cost of having
some parts of the world looking the same as other parts. Some of this effect can be
lessened by applying small, yet different, secondary textures that contain noise or light
maps to the terrain pages. If the tessellation of a page is stored in memory so that the
renderer can be fed all the triangles at once, as compared to sending one triangle at a
time when it is known it will be in the tessellation, the storage used by the tessellation
algorithm can be shared among all pages. While this does keep memory usage to a
minimum, the tessellation data is not persistent. If a picking operation is initiated
for a set of terrain pages, the pages have to be retessellated for that operation rather
than having the tessellation available from the previous rendering pass. However an
application decides to share memory, there are always trade-offs like these to consider.

Given an expansive terrain, not all pages can fit into memory at once, even with
an optimum amount of sharing. This requires what is effectively a virtual memory
manager whose job it is to load and unload terrain pages on demand or based on a
predictive system. If the terrain pages are organized as a rectangular lattice, a subset
of the pages called the working set (the same concept found in operating systems) is
maintained in memory. As the camera moves about the world, pages must be unloaded
and new pages must be loaded. Before unloading an old page, the unstitching process
is applied to all its adjacent pages. After loading the new page, the stitching process
is applied to all its adjacent pages. The loading process will be affected by any design
choices, such as which pages will share a single texture. In such a case, the texture
image will not be reloaded when the new height field is streamed in.

A recommended system for predictive loading is to use a multiresolution ap-
proach. Suppose the working setisa (2P 4 1) x (2P + 1) lattice of pages. The center
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page, and possibly some set of immediate neighbors, is stored in memory in its high-
est resolution. That is, the height field and texture image are fully loaded in memory.
However, pages more distant from the center can be only partially loaded in mem-
ory. Consider that even if a distant page were fully loaded in memory, it is sufficiently
far from the camera that the tessellation algorithm would produce a small number of
large triangles. The active blocks in the quadtree are nearer to the root of the tree than
they are to the leaf nodes of the tree. The quadtree is effectively truncated and repre-
sents a height field of smaller resolution than the original. Thus, it is sufficient to load
only a small portion of the height field to support a coarse tessellation. As the camera
gets closer to that page, more height field data is loaded to allow a finer tessellation. If
the camera moves farther from the page, then the coarse-level data can be unloaded
to make room for data in pages that the camera is getting closer to. This scheme re-
quires that the height field not be stored as an array in row-major order. The height
data must be arranged to support the coarse-to-fine requirements. The coarsest level
of detail corresponds to the root block and uses the four corner points, the midpoints
of the edges, and the center point, a 3 x 3 array of values. The next level of detail fills
in the heights to form a 5 x 5 array, and so on. The implementation of a working
set manager includes tagging each entry in the (2P + 1) x (2P + 1) lattice with the
desired level of detail that must occur for the height fields that are stored there. Fach
time the camera moves, the system must decide to load/unload the height field data
at the specified levels.

11.7.2 VERTEX ATTRIBUTES

A terrain has to look good to be effective in a game. That means an application will
require textures, multitexture, and lighting (prelit with vertex colors or dynamically
lit using vertex normals). Each of these increases the memory usage for the terrain
system. Whether prelighting or dynamic lighting is used, the lighting requires knowing
or computing normals at the vertices of the height field. From a modeling point of
view, it is better to automatically generate normals rather than require an artist to
generate them. The normals can be computed using central differences. If (x;, Vi Ziij)
is a height sample at an interior point (0 < i < 2Y and 0 < j < 2™, then an estimate
of the normal vector is obtained by using the fact that (=3 H fix, —dH/dy, 1) is a
(not necessarily unit-length) normal to the graphof z = H(x, y),

o= ( i Tl Tl = it
iy 2(5‘ > Zé\ » »

where 8, and 8, are the sample spacings in world coordinates. The height samples
are also measured in world units. If the heights are stored as unsigned short, then a
conversion to world coordinates is necessary, so each page must store such conversion
factors. The normal vector in the previous equation is then normalized, a requirement
by the lighting system.
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Normals at points on edges or corner points of the height field must be calculated
differently. If an edge is shared between two adjacent terrain pages, then central
differences again can be used for normal vector estimates. In this case both pages
contribute to that estimate. For example, if a point (x;, yo, z; 0) is on the top edge of
a page, but not a corner (0 < i < 2V), and there is an adjacent page, then a normal is

(©) <y AN )
Sic10 T Eigl0 Sigéo1 T il

Nio= )
o 28, 26,

L

where the superscript (C) indicates height data from the current page and (T') in-
dicates height data from the adjacent top page. The normal is also then normalized.
Similar formulas can be derived for edge points on left, right, or bottom edges when
there are adjacent pages. At a corner point, information is required from two adjacent
pages, the ones adjacent to the edges forming the corner. For example, consider the
point (xg, Yo, Zo,0). A normal is

(L () (1) 0
A A T B | 2 T 8 | |
28, 28, e

Noo =

where the superscript (C) indicates height data from the current page, (T) indicates
height data from the top page, and (L) indicates height data from the left page. Similar
formulas can be derived for the other corner points when the adjacent pages exist.

At edges or corners when adjacent pages do not exist, the application can assign a
zero vector to the normals since typically such a page will not occur in the view frustum
(unless fogging is used to hide the end of the world). Another possibility is to use one-
sided differences for derivative estimation. For example, at (x;, ¥, 2; o) on the top edge
of a page, but not a corner, a normal that uses only the current page data is

Y Zi—1,0 — Zi+10 Zio — Zi
Nip= , 1)
26, 3,

The x-derivative estimate is centralized, whereas the y-derivative estimate is one-
sided. The one-sided estimates are not recommended on an edge shared by two pages.
The problem is that a triangle is computed, one per page, and the triangle shares
an edge along the common page boundary. Because the two pages might duplicate
vertices along the shared edge (if that is how the pages are implemented), the one-
sided estimates will produce different normal vectors for the duplicated vertices, so a
discontinuity in lighting will most likely occur.

The normals as calculated here can be used for prelighting to generate vertex
colors. In a terrain-based game that has the concept of long-term time (that is, the
sun may vary its position in the sky during game play), dynamic lighting may be too
expensive since it is calculated each frame even when the position of the sun has not
changed. A better choice would be to use vertex colors that are recalculated only when
the position of the sun has changed.
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11.7.3 HEIGHT CALCULATIONS

The height field provides information at points on a lattice. However, if the game
requires sublattice calculations to support picking, collision detection, or simply to
have smooth motion of a vehicle over the terrain, then there is a need to calculate
heights at points other than those of the lattice. A simple method for continuous
height is to use linear interpolation. If (x, y) is the world spatial location at which
an estimate is required for height z, it is necessary to find the three bounding samples
in the height field. The column index is ¢ = | x /3, |, and the row index is r = | v/8,],
where 8, and 8, are the world values for the sample spacing. The row and column
indices determine the square that contains the test sample. A further check must be
made to determine in which of two triangles forming the block the point lives. The
pseudocode for the height estimate is given below.

float Height (float world_x, float world_y)

{
// world_delta_x is world spacing in x-direction;
// world_delta_y is world spacing in y-direction;
c = floor(world_x/world_delta x):
r = floor(world_y/world_delta_y);
dx = world_x - c;
dy = world_y - r;

if ( parity(c) == parity(r) )

{
if (dx > dy )
z=(1-dx)*H[r1lcl+(dx-dy)*H[r+1](c]+dy*H[r+1]1[c+1];
else
z=(1-dy)*H[r]lc]+(dy-dx)*H[r1[c+1]+dx*fH[r+1][c+1];
}
else
{
if ((dx +dy <=1)
2= (1-dx-dy)*H[r][cl+dx*H[r+1][c]+dy*H[r][c+l];
else
z=(dx+dy-1)*H[r+1]1[c+1]+(1-dy)*H[r+1]1[c]+(1-dx)
*H{rllc+1l];
1
return z;

For a smoother interpolation, it is also possible to use bilinear interpolation or
some higher-order scheme.
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118 HEIGHT FIELDS FROM POINT SETS OR TRIANGLE
MESHES

Although it is easy enough to model the terrain for a game by building the height
fields directly on a rectangular lattice, it is also possible to construct the fields from
unordered point sets or from already constructed triangle meshes. In the case of point
sets, each element must be of the form (x, y, f(x, y)). The spatial locations (x, v) can
be triangulated, typically with a Delaunay triangulation (see O’Rourke 1994; Watson
1981). This reduces the problem of generating height fields from triangle meshes, a
process that can be done using interpolation.

11.8.1 LINEAR INTERPOLATION

SOURCE CODE

LIBRARY

Terrain

FILENAME

TriangleNetwork
LinearNetwork

Given a triangular mesh {(x;, y;, z;)} that represents the graph of a function, an axis-
aligned bounding rectangle can be constructed to contain the spatial locations of
the vertices: Xpiy = min; X;, Xmax = MAax; X;, Vmin = Min; Vi» Ymax = Max; v;, and
Zmin = MIN; Z;; Zmax = Max; Z;. [tisassumed that outside the planar extent of the mesh
the heights are provided procedurally, the simplest method being the assignment of
zero to the heights. The bounding rectangle can be partitioned into an R x C array
of terrain pages, where each page is to be sampled as a (2V + 1) x (2" + 1) array of
vertices. Adjacent pages overlap by one row or one column.

If (x, y) is the spatial location for one of the vertices in a page, a corresponding
height z must be computed for it. Simply locate a triangle in the original mesh that
contains (x, y). This is accomplished by using barycentric coordinates. If the three
vertices of a triangle are (x}, v}, z;) for 0 < j < 2, then any point P = (x, y) can be
written as a barycentric combination of the V; = (x/, ¥i)s

F) = (‘0';}() + ¢ i}] + f/g.
where ¢y + ¢; + e2=1.If ¢; € [0, 1] for all j, then P is contained by the triangle,
either at an interior point (all ¢; € (0, 1)), at an edge (¢; = 0 for exactly one j), ar at
avertex (¢j = 0 for exactly two j values). Using co =1 — cg — ¢3,
P=Vo+ (V) — V) + (V= Vo) = Vo + By + e By,
The coefficients ¢; and ¢; can be computed by solving a linear system,

E\-E 1-52} [cl B P-El]

EE-E| 2-52 c2 Pég '
Defininge;; = E, . E;"J,‘ d=e€ — e]zz. and p; = P E,-, the solutionisc, = (ex p) —
enp2)/8,c; = (enp: —ennp)/d,andcg=1—c; — co.

e Myt
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Ifthe solution satisfies the conditions ¢ € [0, 1] forall 7, then P is contained by the
projected triangle in the plane. The barycentric coefficients are used to compute the z-
value of P so that P is in the plane of the unprojected triangle, z = cozo + 121 + 222

11.8.2 QUADRATIC INTERPOLATION

Terrain

FILENAME

TriangleNetwork
QuadraticNetwork

The height fields generated by linear resampling of the triangle mesh are piecewise
planar. Such a mesh is not visually appealing. Instead, it is possible to create a smooth
mesh by local quadratic interpolation (Cendes and Wong 1987). This method requires
specifying first-order partial derivatives at the original samples. These can be estimated
from the original mesh itself. Let’s look closer at the algorithm.

The input points are of the form (x;, yi, f(xi, ¥i), fa(xi, ¥i), fylxin yi)), and a
triangulation of the spatial locations is assumed. The algorithm consists of two parts:

®  Subdivison. Each triangle is subdivided into six triangles. The subdivision requires
knowledge of the inscribed centers of the triangle and its three adjacent triangles.

®  Bézier net construction. Each subtriangle is further partitioned into four triangles.
This subdivision is affine, and the partition is used to build a quadratic function
(via the Bézier triangle method described in Chapter 18 of Farin 1990).

The quadratics are of course C! functions, but additionally the interpolation is C!
at any interface with other triangles, whether they are part of the current subdivision
or part of the subdivision of an adjacent triangle. Thus, the interpolation is globally
C'. Moreover, the interpolation has local control. If the function or derivative values
are modified at a single data point, then the affine subdivision of the triangles sharing
the data point does not change, but the function values at the additional control points
must be recalculated. If the spatial component of a single data point is modified, then
the affine subdivisions of the triangles sharing the data point change. These changes
are propagated to any immediately adjacent triangles of those that share the data point,
but no further.

Barycentric Coefficients as Areas

The algorithm makes use of barycentric coordinates, as described in the last section.
The coefficients have a geometric interpretation,

Area(P, Vi, V) . Area(Vg, P, V2) . Area(Vy, Vi, P)
Co=—"T""=""="" 1= == = ===
Area(Vo, V1, V) Area(Vo, Vi, V2) AFEE(VO' V1, Vz)

The center of the inscribed circle for the triangle can be written in barycentric form.
The triangle formed by P,V,, and Vz has base length LV; V;\ and height given by
the radius r of the inscribed circle. Thus, Area(P, V;, V3) = IV — Valr/2. Similarly,
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Area(lﬂ/o, P, 92) = |‘l70 — i’zlr/2 and Area(ffo, 'i-«"l. P)= |K_}o - lj’l\rﬂ. The total area
is the sum of these three values,
r - - - - - -
A=3 (|Vl — W+ Vo — Vol + Vo — IV1|) .
The barycentric coordinates of the inscribed center are therefore

_ Vi = Vi = Vo — Vil
- = = - = =~ = 1= = = = ey — -
(Vi = Va| + [Vo — Vol + |Vp — Vi Vi = Vol + Vo — Vol + | Vo — V|

<o

_ Vo — Vi
Vi = Vol + [Vy — Vol + |V — ¥

2

These are just ratios of the lengths of the triangle sides to the triangle perimeter.

Inscribed Circles

One of the properties of the inscribed center is that each line from a vertex to the
center bisects the angle corresponding to that vertex. This property may be used to
prove the following result, which is needed in the subdivision algorithm: The line
segment connecting the inscribed centers of two adjacent triangles must intersect the
common edge of the triangles at an interior point.

If two adjacent triangles form a convex quadrilateral, then clearly the line segment
connecting the inscribed centers has the desired property. If the triangles do not form
a convex quadrilateral, as is shown in Figure 11.13, some work must be done to prove
the result. The inscribed centers are K and K. Set up the intersection equations as

(1 —5)Kg+ Ky = (L — )¢ + th.

Note that kn and IE'| lie on different sides of the common edge (F?, ¢), so the line
segment connecting the centers must intersect the line containing the common edge,
implying 0 < s < 1. The geometry of the setting also implies that the intersection must
occur on the & side of b, which implies ¢ < 1.Ifit can additionally be shown that s > 0,
then the line segment connecting the inscribed centers must intersect the interior of
the common triangle edge.

Subtracting ¢, rearranging terms, and dotting with b — ¢ yields

t1h =P =0 =)[(Ko—2)- (b= +s[(Ky— &) - (b— )

= (1= 5)[|Ko — Ellb — &| cos(B/2) + s[|Ky — &|lb — &| cos(81/2),



Figure 11.13

11.8 Height Fields from Point Sets or Triangle Meshes 401

Adjacent triangles forming a nonconvex quadrilateral.

where 6 is the angle formed by edges @ — ¢ and b — &, and 6, is the angle formed by
edgesd — ¢and b — ¢. The half-angles in the formula occur because of the bisection
property mentioned eatlier. Since 0 < 6; < 7 for interior angles in a triangle, it follows
that0 < #;/2 < 7 /2 and cos(6; /2) > 0. The convex combination in the above formula
is therefore positive, which implies that > 0.

Bézier Triangles

Define a multi-index on three indices as I = (ig, i), i2), where 0 <i; < || and |I| =
iy + i) + i2. Define E, =(1,0,0), E,=(0,1,0), and E; = (0,0, 1). Given a tri-
angular array of points b; € R?, where |/| = n, and given a barycentric coordinate
i = (1o, uy, uz), recursively define

b)) = by

and

. 2

Bl =Y wb Y G,
k=0

where 1 <7 <nand |J| =n — r. The point " (&) := 53 (1) is a point on the Bézier
triangle determined by the original array. The iterative algorithm is called the de
Casteljau algorithm.

When n = 1, this states that the point on the Bézier triangle is just the barycen-

tric combination of the three vertices b, 0,0), b(o,n,0» and 5(0‘0,,,;. The interpolation
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algorithm is concerned with the case n = 2. The triangle array is organized as

b(0,0.2)
baon by

B{Z.U‘O} 5[1,1,0] B(u.z,m

The barycentric coordinates are listed as (1, v, w). Forr =1,
531,0.0} = ubz,00) + vh(1,10) + whion

Bglu,l,n; = ub1,1,0) + vho2.0) + whio,11)

Bflo.o,n =ub( 1) + vho1) + Wf;m,o.zy-

Forr =2,

T2 71 71 71
blo.oo = 4b(100) T P 0,1.0) F Whigo

boo Paro baon u
=[lu v wl| baro bo20 born v |,
baon bory beo2 w

so the triangular Bézier patch is a quadratic function. This formula is a nice general-
ization of tensor products for rectangular grids.

Derivatives

Given a surface vector ¥ (i), where & = (1, 11, u2) are barycentric coordinates (g +
u) + w2 = 1), and a barycentric direction d = (do, d1, d2) with dy + d) + d2 = 0, the
derivative in the given direction is the tangent vector

2
D5 (i) = Z""}“n
i=0

where X,,; denotes the partial derivative of X with respect to barycentric component
u;. The second-order directional derivative is

Kugug  Xuguy  Xuguz d()
2 - — - -
D(} x(w)=\|dy d dr]| xu g Ny X d)

Xy Xy Xuouo dﬁ-‘.
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A general formulation can be made by using Bernstein polynomials,

I
n - Jj k
B“J’h(u) i 'l'” (IS TR

where i + j + k = n. The rth-order directional derivative is

DLi() = Y 8'% (@) By(d),

I-":!

where I = (ig, i1, i2) and 3'% = d'”r/:iuﬂ 'iiuf. For a Bézier triangle, the rth-
order directional derivative is given in terms of de Casteljau iterates and Bernstein
polynomials:

e n! TR—F = pFo 1
Db = o= > BB ).

(n — T |=r

For the quadratic case n =2, the first and second directional derivatives of
b (u, v, w) are

baoo banom Paon d
-, - - -
Dy pbp@vwy=2[u v wl| barn bo2o bPowy

ha

baon boiny boo
and

baoo Paie baon d
) - - - .
D{d,.,,f.bz(u,v- w)y=2[d e f1|barn boze bovy

baoy boin boo f

Note that the second derivative is constant with respect to u, v, and w, as expected for
a quadratic function.

Derivative Continuity

Farin (1990) provides a comprehensive development of derivative continuity on the
common boundary between two adjacent triangular patches. The main result is that
derivatives up through order s of B depend only on the 5 + 1 rows of control points

“parallel” to the boundary in question. The cases discussed are those relevant to the
quadratic interpolation, s = 0 and s = 1. Figure 11.14 illustrates two ad]acent trian-
gular patches (n = 2). The patches define two functions b*(u, v, w) and & (u, v, w).



404 Chapter 11 Terrain

Figure 11.14
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Adjacent Bézier triangle patches.

Continuity of the functions is guaranteed if

bo0) =C00,  baso =Can0s b0 = 020
Continuity of the derivatives is guaranteed if

caon =ubiony + vboog + whi 0
Eo,1) = ub,1,1y + vh,1,0) + wh20).

Each pair of shaded triangles in the figure is coplanar. Moreover, the two pairs
have the same barycentric coordinates. The two continuity conditions are referred to
as coplanarity and coaffinity. Note that coaffinity implies coplanarity.

The Algorithm

In this section we will describe the Cendes-Wong algorithm. The input is a set of
points of the form (x;, i, f(x;, i)y fe(x1, i), Jfy(xi, yi)) for 0 < i < N. The input
also includes a triangle mesh of the spatial locations of the samples. The output is a
globally C! quadratic interpolating function that takes as input spatial points (x, y)
and produces as output function values £ (x, y) and derivatives Jfxlx, yyand filx, y).

The idea is to subdivide the triangles and fit the subtriangles as quadratic Bézier
triangles so that derivative continuity is achieved on each shared triangle edge. The
Cendes-Wong paper (Cendes and Wong 1987) provides a construction that stresses
the coplanarity condition for derivative continuity. The coaffinity condition is a con-
sequence of the affine subdivision of the planar triangles. Consider one of the triangles
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Control points in triangle subdivision.

shown in Figure 11.15. The points 52, 54, and 56 are the vertices of the triangle (spatial
components in the xy-plane). The point bo is the inscribed center. The points A; are
the inscribed centers for the adjacent triangles. The points b1, 53. and 55 are the inter-
sections of the triangle edges with the line segments connecting the inscribed center
with those of its adjacent triangles. In the case that the triangle does not have an adja-
cent triangle for one of its edges (the edge is on the boundary of the mesh), then the
midpoint of the edge is used in lieu of an intersection. The spatial relationships for

the subdivision points are as follows:

B@ :5052 + 5154 + 5256: Sp+8+8=1, };3 = Otoiilz -+ Ct]i).‘, og+oap=1,

bs = Pibs + Pabes Br + B =1,

by = (by + b3) /2,
bio = (bs + bs)/2,
by = (b2 + b1)/2,
bis = (B + bo) /2,
bis = (bs + bo) /2,

E’317 = ﬁif;w + .32513,

hi=yVat+nVer+r=1,

b = (bs + b3)/2,
by = (be + bs) /2,
bia = (bs + b1)/2,
bie = (bs + bo) /2,
515 = 00514 + 0'1516;

513 = P’0514 + }’2518-
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Figure 11.16

The required coatfine subtriangles are shaded in gray.

The 3D mesh points are denoted (b, ¢i). The indices are convenient for identifying
the six Bézier control points for each of the six subdivision triangles. If i is the index
for a triangle, 1 < i < 6, then the indices of the control points for that triangle are 0,
12+i,13 +imod6,i,6 + i, and 1 + imodé.

The goal now is to specify functions and derivatives at the three vertices and to
choose function values at the remaining 16 so that the coplanarity and coaffinity
conditions are satisfied in the Bézier triangle constuction. Figures 11.16 and 11.17 are
from Cendes and Wong (1987). The shaded regions must be coplanar for derivative
continuity to occur. The shaded quadrilateral straddling the interface of two triangles
must be planar. To see this let A, B, C, and D be any four points in R, Lete, f, g,
and h be points along the line segments AB, BC, CD, and DA, respectively. If

length Ae  length Dg 4 length Bf  length Ak

length AB ~ length DC e length BC ~ length AD

= P2

then the four points e, f, g, and h are coplanar.

The proof involves showing eg = (p,/p)ef + ((1 — 1)/ p2)eh, in which case
eg, ef,and eh are linearly dependent vectors and must be coplanar. The quadrilateral
ABCD is constructed so that the desired length ratios hold and the result applies.

Now for the construction of the function values at the control points. Let ¢; denote
the function values at the 19 control points, 0 < i < 18. The vertex values ¢, ¢4, and
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Figure 11.17  Illustration for geometric relationships between the vertices.

¢ are already specified. The derivative values at the vertices are also specified, call
them V¢,,i = 2,4, 6. .
To satisfy coplanarity at vertex Vy:

$7=¢2+ Ve - (by — b2)
b8 = b2 + Vb - (b — b))
P14 =02+ Vo2 - (bis — b2).
To satisfy coplanarity at vertex Vi
9= s+ Vs - (by — ba)
$10= s + Vs - (bro — bu)
P16 = s + Vs - (brs — ba).
To satisfy coplanarity at vertex Vj:
¢11 =6 + Vs - (b1 — be)
$12= 6 + Vs - (br2 — be)

$18 = s + Veps - (b1 — be).
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To satisfy coplanarity of the quadrilaterals containing Eq, E|, and Es:

@3 = apP2 + a1y
@5 = B1ps + Pags
&1 = yvod2 + yadbe.

To satisty coplanarity of the large triangle containing C:

$15 = a4 + 116
@17 = Bidhs + Badis
P13 = Yod1a + 218
$o = Sod14 + 81016 + Saepys.

Verifying coaffinity in the spatial components is straightforward. The triangle
vert:ces are related by a dg = ubg + vb; + wbs The midpoints are b1 (bo + b3)/’2,
by = (bo + bs) /2, by = (b3 + bs) /2,d@) = (d@ + b3)/2,and &, = (do + bs) /2. Consider

a, = (do + b3)/2
= (u/2)bg + (v + 1)/2)bs3 + (w/2)bs
= @/2)bo+ (v + u + v + w)/2)bs + (w/2)bs
= u(bo + b3)/2 + vhs + w(bs + bs)/2
= uby + vbs + why.

Similarly,

a = (do + bs)/2
= (u/2)bo + (v/2)b3 + ((w + 1)/2)bs
= /)by + (v/2)b3 + (W + u + v + w)/2)bs
= u(bo + bs)/2 + v(bs + bs)/2 + whs
= ul;z + u54 + wl;s.

Therefore, the midpoint subdivision satisfies the coaffinity conditions. It must be
verified that the function values assigned to the control points also satisfy the coaffinity
conditions. This turns out to be a consequence of the midpoint subdivision and the
coplanarity of certain triangles in the Bézier net.
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Forexample, let h] = ubg + I‘ho + wbz for some barycentrlc coordmates (u, v, w).
The mldpomt subdivision guarantees | that b? = ubg + vbn + wbz The plane at the
vertex bv is of the form ¢ = K + N - b. Therefore,

@7 — udpy — V14 — wdr = (K + N -by) —u(K + N - bs) — v(K + N - bry)
—w(K + N - 53)
=K(l -u—v—w)+.’-\)-(!;;»uf_;g—vﬁu—u.!rag)
=KO)+N-0
=0,
S0 ¢7 = Ugs + VP1s + weh. The midpoint subdivision also guarantees that b|3 =
ubls + vbn + wb]4 The plane conlammg control pomtsb fori=0and13<i <18
isalso of the form ¢ = K + N - b. A similar argument shows that @13 = u¢ys + ve +
we4. Thus, the two subtriangles satisfy the coaffinity condition. The same argument

holds for any pair of subtriangles, both within a single triangle and across a triangle
boundary.
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SPATIAL SORTING

he process of rendering a hierarchically structured scene is discussed in Chapter
4. The objects in the scene are drawn in the order determined by the depth-first
traversal of the scene. In almost all cases the rendered scene will be incorrectly drawn
using this approach. For example, if two disjoint objects along the line of sight of the
eye point are to be drawn, the object that is most distant should be drawn first. If
that object occurs after the closest object in a depth-first traversal, the scene will be
incorrectly drawn. Therefore, correct drawing of a scene can only be accomplished
through serting. The example just given illustrates why sorting is needed. In a real
game it might be possible to simply sort the objects as they are modeled, for example,
in a cityscape that contains a lot of buildings. The actual sorting mechanism might
need to be more complex, especially if the objects are not disjoint and are intertwined
to some degiee. In fact, if a scene contains transparent objects, the correct order for
drawing can be difficult to determine and might even require splitting the objects.
This is definitely the case for outdoor environments containing trees that are each
modeled by two intersecting alpha-blended polygons.
The basic idea behind spatial sorting is to avoid drawing a pixel on the screen
multiple times. The term depth complexity refers to how many times a pixel is written.

411
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Since the entire screen is drawn each frame, the desired depth complexity is 1; that is,
each pixel is drawn once. The higher the depth complexity, the slower the frame rate.

The typical sorting method used is depth buffering, as discussed in Chapter 3. This
method is on a per-pixel basis. The depth, measured between near and far planes, is
stored ina z-buffer. The color of each pixel is stored in the frame buffer. Assuming the
z-buffer is enabled for both testing and writing, «. pixel is drawn in the frame buffer
only if its depth indicates it is in front of the pixel previously drawn. This is a slow
process for a software renderer, but with hardware-accelerated support, z-buffers are
a good general solution for sorting by depth.

Depth buffering requires a triangle to be processed, even if most or all of the
enclosed pixels are not drawn. It would be better to avoid sending triangles to the
renderer at all if they are not going to be drawn. Determination of this information
is on a per-object rather than a per-pixel basis. The methods discussed in this chapter
are for higher-level sorting. Section 12.1 is a summary of quadtrees and octrees, two
tree-based structures that provide a regular decomposition of the world. A quadtree
is used for subdivision of a planar rectangle, and an octree is used for subdivision of a
rectangular solid. However, many game environments require sorting that is naturally
related to the world data. For an indoor environment, a natural sorting method
relies on the use of portals, the topic of Section 12.2. For outdoor environments
and for correct drawing of scenes that contain alpha-blended polygons, binary space
partitioning trees are quite useful. Section 12.3 gives a description of such trees,
including how to construct them and how they are used for hidden surface removal,
visibility determination, and picking or collision detection.

121 QUADTREES AND OCTREES

The scene graph provides a basic mechanism for culling objects. A comparison of
the bounding volume of a node to the view frustum can eliminate many objects
from being sent to the renderers. If the bounding volume does intersect the frustum,
then the subtree rooted at that node is further processed, but the processing is done
based solely on bounding volume information. The application may have higher-level
information about the structure of the world that can be exploited. For example, in a
terrain-based system it is possible to build a visibility graph to help eliminate entire
terrain pages that cannot be seen from the current camera location. Specifically, if one
terrain page has high mountains that hide the terrain behind them, then the hidden
pages do not have to be processed, even if their bounding boxes intersect the view
frustum.

Quaditrees or octrees can be used to partition the world into cells, The visibility
graph is also cell based. Since the camera is situated in one cell, a list of potentially
visible cells can be made that relate to that cell. At best this is a crude way of handling
visibility, but it can be quite effective if the world environment is carefully designed
to support it.
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Construction of a scene graph to support cell-based visibility can be based either
on planar locations, in which case the plane can be decomposed into a quadtree, or
on full spatial locations, in which case space can be decomposed into an octree. The
scene graph nodes represent the particular quadtree blocks or octree blocks. If a node
represents a quadtree block, then it has four child nodes. If it represents an octree
block, then it has eight child nodes. Additional child nodes are used to represent the
actual objects that live in those cells. If the objects move about over time, the scene
graph needs to be reconfigured on the fly by attaching and detaching the additional
children. However, the basic quadtree or octree structure remains constant over the
application lifetime.

The pseudocode for the processing of a quadtree or octree scene graph is given
below. The visible list for a quadtree block stores pointers to all the nodes whose blocks
are potentially visible from the current block.

cameraBlock = GetBlockOf(renderer.camera):

visibleList = GetVisibleCellsFrom(cameraBlock):

for ( each node in visiblelList )
renderer.Draw(node);

As mentioned in Chapter 4, the Draw call recursively traverses the specified subtree
and attempts to cull based on bounding volumes before drawing. It is quite possible
that portions of the subtree corresponding to the quadtree structure are culled away
based on the bounding volume comparisons.

Of course the difficult part of the process is establishing the visibility lists. An
excellent reference for visibility determination is the doctoral dissertation by Seth
Teller (1992). The two-volume set by Hanan Samet (1989, 1990) provides everything
you ever wanted to know about quadtrees and octrees.

12 .2 PORTALS

The quadtree and octree sorting attempts to set up a visibility graph based on meta-
knowledge that the application has about the structure of the world and the objects
in it. The game writers have the responsibility for setting up the visibility graph by
hand or by some automatic method. An approach that requires less interaction is
a portal-based system. In this system, rather than using an explicitly built visibility
graph, the game writers can specify additional planes that trim down the view frus-
tum into smaller pieces. The classic situation is where the camera is positioned outside
a room, but looking into it. The doorway is a portal that allows you to see inside the
room, but the walls surrounding the doorway occlude the view of much of the room’s
contents. When drawing the room, objects hidden by the walls about the doorway can
be culled. Moreover, if objects are partially hidden, the planes formed by the frame
of the doorway and the camera location can be used to establish planes that can be
used for clipping in addition to culling. Portals are particularly useful for indoor-style
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Figure 12.1

Ilustration of visibility through a portal.

games because there are many walls and other objects that obstruct the view enough
so that a sufficient amount of culling can be performed. However, the use of portals is
not restricted to an indoor environment. For example, a character visible to the cam-
era might walk behind a building. Assuming the building is tall enough, it is known
that the top of the character will never be visible above the rooftops. The plane formed
by the cameralocation and the edge of the side of the building that the character passes
by before disappearing from view can be used in a portal system. Once the character
is completely behind the building (that is, the character is on the invisible side of the
plane), it can be culled completely and not sent to the renderer for processing.

Figure 12.1 illustrates the classic situation for a portal. The gray areain the diagram
on the left shows what the renderer attempts to process in the standard view frustum.
The gray area in the diagram on the right shows how the portal planes restrict what
must be considered. Support for additional planes for culling is trivial using the
hierarchical scheme mentioned in Chapter 4. The culling mechanism kept track of
a flag of six bits, with each bit indicating whether or not the object is culled against
the corresponding frustum plane. The flag can be extended to have any number of bits,
and the camera can store additional planes for culling purposes. The same planes can
be used for clipping, but in a hardware-accelerated system APIs such as OpenGL and
Direct3D tend to allow only a small number of additional clipping planes. A portal
system wanting to take advantage of the API must restrict its number of additional
planes accordingly.

Anindoor level for which portals are used must be partitioned into convex regions.
By doing so, the order in which the components of the region are rendered is unim-
portant, The portals themselves are convex polygons that live in a plane separating
two convex regions. The portal provides a connection between the regions through
which one region can be seen from the other. In this sense a portal is bidirectional,
although for interesting effects, it is not necessary to be so. It is possible to construct
two adjacent regions such that one region is viewed from the other, but once in the
other region, the first is not visible. In fact, the second region may not even have a
portal connecting it to the first. This represents the notion of one-way teleportation.
In this chapter, we will assume that portals are unidirectional. If two adjacent regions
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are to be viewable through a common geometric portal, then both regions must have a
portal associated with them, and the two portals coexist in space in identical locations.

The regions and portals together can form an arbitrarily complex scene. For
example, it is possible to stand in one region, look through a portal into an adjacent
region, and see another portal from that region into yet another region. The rendering
algorithm must draw the regions in a back-to-front order to guarantee the correct
visual results. This is accomplished by constructing an abstract directed graph for
which the regions are the graph nodes and the portals are directed graph edges.
This graph is not the parent-child scene graph, but represents relationships about
adjacency of the regions. Each region is represented as a scene graph node that contains
enough state information to support traversal of the adjacency graph. The portals are
represented by scene graph nodes but are not drawable objects. Moreover, the portal
nodes are attached as children to the region nodes to allow culling of portals. If a region
is currently being visited by the adjacency graph traversal, it is possible that not all
portals of that region are in the view frustum (or part of the current set defined by the
intersection of the frustum and additional portal planes). The continued traversal of
the adjacency graph can ignore such portals, effectively producing yet another type of
culling. Finally, the region nodes can have additional child nodes that represent the
bounding planes of the regions (the walls, so to speak, if the region is a room) and the
objects that are in the regions and that need to be drawn if visible. The pseudocode for
rendering a convex region in the portal system is given below. The object planeSet is
the current set of planes that the renderer uses for culling and (possibly) clipping. The
planes maintained by the portal are those formed by the edges of the convex polygon
of the portal and the current camera location.

void Render (Region region)
{
if ( not region.beingVisited )
{
region.beingVisited = true;
for ( each portal in region )
{
if ( portal.IsVisibleWithRespectTo(planeSet) )
{
planeSet.Add(portal.planes);
Render(portal.adjacentRegion);
planeSet.Remove(portal.planes);
}
}
Render(region.boundingPlanes):
Render(region.containedObjects):
region.beingVisited = false:
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Figure 12.2

Figure 12.3

Region B

Portal BA,

——1—

Portal AB, Portal AB,

Region A

Simple portal example.

Region B

Region A

L-shaped region in a portal system,

The visitation flag is required in case a region hasa bidirectional portal into an adjacent
region or if the region has a unidirectional portal into, and a unidirectional portal out
of, an adjacent room. This avoids traversing cycles in the abstract graph. Figure 12.2
shows a simple set of convex regions, portals, and the corresponding adjacency graph.

Although the regions must be convex, a nonconvex region can be processed in a
portal system by decomposing it as a union of convex regions with portals acting
as “invisible walls” This use of a portal deviates from the classic setting whereby
the portal represents a cutout (door, window) in a wall. Figure 12.3 shows how an
L-shaped region can be represented in the portal system.

As mentioned earlier, the portal planes can be used for both culling and clipping;
however, the renderer performance must be considered. If a scene has a lot of portals,
there is the potential for having a large number of additional planes active at one time.
The time spent culling and clipping can quite possibly be large enough that a better
alternative is to just allow the renderer to use a few planes to reduce its clipping load
and rely on its depth buffer.
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The same problem can occur if a single portal is a many-sided convex polygon that
forces the addition of a lot of planes to the system. Two alternatives come to mind. One
is to just use the planes for culling. The second is to approximate a complex portal by
constructing a bounding convex polygon with fewer edges and use the approximation
instead. If an object is culled by the approximating portal, then it would have been
culled by the original portal. However, there is the chance that an object is not culled
by the approximating portal when in fact the original portal would have culled it. The
trade-off is the time spent culling against a large number of planes versus the time
spent culling against a smaller number and drawing an object (with the aid of the
depth buffer) that is mostly occluded.

123 BINARY SPACE PARTITIONING

An extremely popular sorting method is binary space partitioning, in which n-
dimensional space is recursively partitioned into convex subsets by hyperplanes. For
n = 2 the partitioning structure is a line, and for n = 3 the partitioning structure
is a plane. A binary space partitioning tree, or BSP tree, is the data structure used
to represent the partitioning. For n = 3, the root node represents all of space and
contains the partitioning plane that divides space into two subsets. The first child,
or front child, represents the subset corresponding to that portion of space on the
positive side of the plane. That is, if the partitioning plane is N-X —d=0, then
the left child represents those points for which N - X —d > 0. The use of the term
front is relevant when sorting for reasons of visibility. If the partitioning plane is
generated by a face of an object, and if the eye point is on the positive side of the
plane, then the face is visible and is called front facing. The second child, or back
child, represents the subset corresponding to the negative side of the plane. Either
of the subsets can be further subdivided by other planes, in which case those nodes
store the partitioning plane and their children represent yet smaller convex subsets
of space. The leaf nodes represent the final convex sets in the partition. These sets
can be bounded or unbounded. Figure 12.4 illustrates a BSP tree in two dimen-
sions. The square is intended to represent all of R2. The interior nodes indicate which
planes they represent, and the leaf nodes indicate which convex regions of space they
represent.

BSP trees are more general than quadtrees and octrees because there is no con-
straint on the orientation of the planes. Moreover, quadtrees and octrees can be imple-
mented as BSP trees. Given a parent node and four sibling nodes in a quadtree, a new
parent node is added for the first two siblings, making the old parent a grandparent.
A new parent node is similarly added to the other two parents. The new parent of the
first two siblings represents the left half of the quad, and the siblings represent a par-
titioning of that half into quarters. The same idea applies to an octree, where a parent
and eight siblings are replaced by a tree that makes the old parent a great-grandparent
and adds two grandparents and four parents.
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Figure 12.4  BSP tree partitioning R?.

The first formal papers on this topic were Fuchs, Kedem, and Naylor (1979, 1980).
The BSP FAQ (reality.sgi.com/bspfaq/) provides a good summary of the topic and has
links to Web sites containing other information or source code.

12.3.1 BSP TREE CONSTRUCTION

Although a BSP tree is a partitioning of space, it may also be used to partition objects
in space. If an object is on the positive side of a partition plane, then that object is
associated with the front child of the node representing the plane. Similarly, if an
object is on the negative side of the plane, it is associated with the back child. The
difficulty in classification occurs when the object straddles the plane. In this case the
object can be split into two subobjects, each associated with a child node. If the objects
are polytopes, then the subobjects are also polytopes that share a common face on the
partition plane. An implementation of BSP trees that treats the objects in the world
as a polygon soup may store the common face with the node of the partition plane.
Because of the potential to do a lot of splitting, this saves memory since the common
face data is stored once and shared by the polytopes. The pseudocode for construction
is given below. A precondition is that the initial polygon list is not empty.

void ConstructTree (BspTree tree, PolygonList 1ist)
{

PolygonList poslList, neglist;

Edgelist sharedlList;

tree.plane = SelectPartitionPlane(list); // Dot(N.X)-c = 0
for (each polygon in 1ist) do
{

type = Classify(polygon,tree.plane);

if (type == POSITIVE) then



}
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{
/1 Dot(N,X)-c >= 0 for all vertices with at least
// one positive
posList.Add(polygon);

}

else if (type == NEGATIVE) then

{
/7 Dot(N,X)-c <= 0 for all vertices with at least
// one negative
neglList.Add(polygon);

}

else if (type =— TRANSVERSE) then

{
/1 Dot(N,X)-c is positive for at least one vertex
// and negative for at least one vertex.
Polygon posPoly, negPoly:
Edge sharedEdge;
Split(polygon,tree.plane,posPoly,negPoly,

sharedEdge):

positivelist.Add(posPoly);
negativelist.Add(negPoly);
sharedlist.Add(sharedEdge);

}

else // type == COINCIDENT

{
// Dot(N,X)-c¢ = 0 for all vertices
tree.coincident.Add(polygon);

1

if ( sharedList is not empty )

[

}

// Find all disjoint polygons in the intersection of
// partition plane with polygon list.

PolygonList component;
ComputeConnectedComponents(sharedList,component);
tree.coincident.Append(component);

if { posList is not empty )

tree.positive = new BspTree;
ConstructTree(tree.positive,posList):
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if ( neglist is not empty )

{
tree.negative = new BspTree:
ConstructTree(tree.negative,neglist):

The function SelectPartitionPlane chooses a partition plane based on what
theapplication wants. The input s the polygon list because typically a plane containing
one of the polygons is used, but it is possible to select other planes based on the list
data. For example, the ideas in building oriented bounding box trees (see Chapter 2)
may be applied. An oriented bounding box can be fit to the polygons in the list, and
the selected partition plane is the one whose normal vector corresponds to the axis
with greatest extent. This latter choice is an attempt to create a balanced BSP tree.
Other choices can be designed to meet a criterion such as minimizing the number of
polygon splits.

The function Split for triangle lists is essentially the first clipping algorithm
mentioned in Chapter 3. More generally, the loop over the polygon list represents
the general Boolean operation of splitting a polygonal object by a plane. This allows a
BSP tree to be used for computational solid geometry operations. The pseudocode is
structured to indicate that the positive and negative polygons in a split share vertices.
The shared edges are processed later to compute the polygons of intersection in
the partition plane. For many applications, having access to these polygons is not
necessary, so the shared edge code can be safely removed.

Finally, note that the recursive call of Const ructTree terminates when the corre-
sponding tree node contains only coincident polygons. Other criteria for stopping can
be used, such as termination (1) when the number of polygons in a positive or nega-
tive list is smaller than an application-specified threshold or (2) when the tree reaches
a maximum depth. Both of these criteria were mentioned in oriented bounding box
tree construction.

12.3.2 HIDDEN SURFACE REMOVAL

BSP trees provide an efficient method for sorting polygons by way of a depth-first
traversal of the tree. The price for sorting is that polygons have to be split in the process.
For static geometry, the trees can be built as a preprocessing step, so the expense of
sorting is not incurred at run time.

Back-to-Front Drawing

Drawing objects farthest from the eye point first, followed by drawing those closer to
the eye point, is the essence of the painter’s algorithm. The objects are drawn in an
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Two polygons that cannot be sorted.

order much like a painter draws on canvas, background first and foreground last. The
condition for this method to be correct is that any two visible polygons in the scene
must be separated by a plane. Figure 12.5 shows a situation where the separation is not
possible. However, the BSP tree construction will partition the overlapping polygons
into disjoint subpolygons. The polygons represented by the leaf nodes of the tree
are correctly ordered to be drawn back-to-front. The pseudocode for the traversal
is shown below and assumes the BSP tree construction does not use the shared list
scheme mentioned earlier. The test against view direction eliminates portions of space
that are approximately behind the view frustum and are not visible.

void DrawBackToFront (BspTree tree, Camera camera)
{
// compute signed distance from eye point E to plane
// Dot(N,X)-c =0
float sd = Dot(tree.plane.N,camera.E) - tree.plane.c;
if ( sd > 0)
{
if ( -Dot(tree.plane.N,camera.D) >= camera.cos(A) )
{
if ( tree.negative is not empty )
DrawBackToFront(tree.negative,camera.E):

DrawPolygons(tree.coincident);

if ( tree.positive is not empty )
DrawBackToFront(tree.positive,camera.E);
}
else if ( sd < 0 )
{
if ( Dot(tree.plane.N,camera.D) >= camera.cos(A) )
{
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if ( tree.positive is not empty )
DrawBackToFront(tree.positive,camera.E):

DrawPolygons(tree.coincident);

if ( tree.negative is not empty )
DrawBackToFront(tree.negative,camera.E);
1
else

{
if ( Dot(tree.plane.N,camera.D) >= 0 )

{
if ( -Dot(tree.plane.N,camera.D) >= camera.cos(A) )
{
if ( tree.negative is not empty )
DrawBackToFront(tree.negative,camera.E):
DrawPolygons(tree.coincident):
}
if ( tree.positive is not empty )
DrawBackToFront(tree.positive,camera.E);
}
else
{
if ( Dot(tree.plane.N,camera.D) >= camera.cos(A) )
{
if ( tree.positive is not empty )
DrawBackToFront(tree.positive,camera.E);
DrawPolygons(tree.coincident);
}
if ( tree.negative is not empty )
DrawBackToFront(tree.negative,camera.E);
1

}

The view direction of the camera is D and the field of view for the frustum is angle2A.
The cosine of A is precomputed and stored in the camera object for culling purposes.
When sd < 0, the comparison of dot products is used to determine if N is in the
cone of the view frustum. If it is, then the partition plane is oriented in a way that it
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possibly intersects the view frustum, and the subtree must be processed. If it is not,
then the negative side of the plane does not intersect the frustum and is invisible, so it
is not drawn, A more accurate culling could be implemented by testing for separation
between view frustum and partition plane. In this case the sign of the dot product
between plane normal and view direction is important, not the field of view of the
frustum.

Front-to-Back Drawing

Back-to-front drawing with BSP tree support accurately draws the scene, but pixel
overdraw can be significant. The depth complexity is sufficient that such an algorithm
is not fast enough for real-time rendering. It is better to first draw the polygons closest
to the eye point. Now once a pixel is written, it should not be overwritten by any other
polygon because of the correctness of the sorting. This requires some type of pixel
mask that indicates whether or not a pixel has been drawn. Note that the mask is not
the same as a depth buffer. The depth buffer is used when it is not known what order
the polygons are in. Depth values are compared before an attempt to write a pixel.
Moreover, a pixel can be written more than once using a depth buffer approach.

Scan Line Masks

There are a couple of ways that BSP trees can be used to assist in maintaining the
pixel mask. One way is to keep track of each scan line separately. When a triangle is
rasterized, each scan line that intersects the triangle has an interval of pixels that are
written (interval length is one or larger). A one-dimensional BSP tree can be used to
keep track of the written intervals. Each node represents an interval [xo, x1), where
the left end point is included and the right end point is not. The half-open interval
supports the idea that each triangle is responsible for its left and vertical edges, thereby
guaranteeing that shared edges and shared vertices of triangles do not have their pixels
drawn more than once. Initially, an empty scan line is represented by a single-node
BSP tree. If the screen width is W pixels, then the interval for the node is [0, W). Now
if a triangle is rasterized on that scan line in the interval [xg, x1), the value xy causes
a split into [0, xo) and [xg, W). The left interval is associated with the left child of the
root node and the right interval is associated with the right child. The value x, causes
a split of the node for (x5, W) into a left child representing [xo, x1) and a right child
representing [.x;, W). Figure 12,6 illustrates the BSP tree representing rasterization of
a single interval of points. The figure shows the split intervals and the x-value that
caused the split. Consider a new interval [x3, x3) to be rasterized on that scan line. For
the sake of argument, suppose that 0 < xp < x; < x; <x3 < W. Value xy is processed
first. Comparing it against xq at the root node, x; is larger so the right child is the
next node to visit. Comparing x, against x shows it is smaller. Since the left child is
an interval of drawn pixels, no splitting occurs. Value x3 is now processed. The tree
is traversed and the comparisons cause the leaf node for [x}, W) to be reached. That
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Figure 12.6
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One-dimensional BSP tree representing drawn pixels on a scan line.

interval has undrawn pixels, so a split occurs into [x1, x3) and [x3, W). The left interval
is tagged as drawn and the right interval is tagged as undrawn.

This method of masking is very well suited for software renderers that need to
conserve as many cycles as possible, Keep in mind that the triangle edge setup for
interpolation of vertex attributes must still be performed. Moreover, if a prepared
interval is additionally clipped by the scan line BSP tree, the vertex attributes for the
end points of the clipped interval must also be interpolated.

Region Masks

The scanline mask concepts can be extended to two dimensions. A BSP tree represents
the current drawn state of pixels on the screen. When a triangle is to be rasterized,
each line containing a triangle edge is processed by the tree. The line normal is chosen
to point to the triangle side, the side on which pixels will be drawn. After the three
lines are processed, the BSP tree has at most seven leaf nodes, with one of them
corresponding to the triangle to be rasterized. The next triangle to be rasterized has
its edges processed by the BSP tree, but overlap is possible. The technical challenge is
tagging the nodes appropriately so that the leaf nodes are correctly tagged as drawn
or undrawn. In effect the region mask algorithm produces a BSP tree whose drawn
leaf nodes form a disjoint union of all pixels that will be drawn on the screen for the
given frame.

12.3.3 VISIBILITY DETERMINATION

Given the eye point, visibility determination refers to the process of deciding what
parts of the world are visible from that location. In a world populated with polygonal
objects, knowing what is visible helps to minimize the data that is sent to the renderer.
The concept of occlusion is related. Objects that are occluded in the scene do not have
to be processed by the renderer. Visibility information can be used for ocelusion culling,
the process of determining those objects that are not visible from the current eye point.
For a static scene where the eye point cannot move, the visibility information can
be computed as a preprocessing step. However, if the eye point can move, what is
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visible changes over time. Determining exactly what is visible dynamically is usually
an expensive process. Most systems attempt to get an approximation and minimize
the number of objects that are sent to the renderer but are unknowingly invisible.

The portal system described earlier is a reasonable way to deal with dynamic
visibility as long as the number of portals is small. BSP trees can also be used for
visibility determination. Two methods are described here, one that works in view space
(3D) and one that works in screen space (2D). In both cases, a BSP tree already exists
that represents the partitioned world and is used for front-to-back sorting. Call this
tree the world tree. A second BSP tree is used to store the visibility information. Call
this the visibility tree.

View Space Method

The visibility tree lives in three dimensions and initially represents the view frustum.
The partitioning planes in the tree are the six forming the frustum. Given the current
eye point, the world tree is traversed. Each polygon encountered in the traversal
is processed by the visibility tree and factored into subpolygons, each of which is
totally visible or totally invisible. Each visible subpolygon is used to define a new
set of partitioning planes that are formed by the eye point and the edges of the
subpolygon (compare with portal systems). The eye point and corresponding planes
form a pyramid. Any portions of the world in the pyramid but behind the subpolygon
are invisible to the eye. The visibility tree now stores that pyramid and uses it for
further clipping of polygons that are visited in the world tree traversal.

Screen Space Method

The visibility tree lives in two dimensions and initially represents the rectangle corre-
sponding to the drawable pixels on the screen. Given the current eye point, the world
tree is traversed. Each polygon encountered in the traversal is projected to screen space,
then is processed by the visibility tree and factored into subpolygons, each of which is
totally visible or totally invisible. Because the world tree sorts the polygons from front
to back, any visible subpolygon obtained in the clipping will remain visible throughout
the visibility tree calculations. These subpolygons can be stored in a list for whatever
purposes the application requires.

12.3.4 PICKING AND COLLISION DETECTION

Given a BSP tree representing the world, a picking operation involves determining if
a linear component (line, ray, or segment) intersects any objects in the world. The
idea is to traverse the BSP tree and recursively split the linear component. If any linear
subcomponent exists once a leaf node representing a world polygon is reached, then
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the original linear component does intersect an object in the world. The exact point of
intersection can be computed when the intersected leaf node is reached in the traversal.

Collision detection between two polygonal objects is a more complicated problem
to solve. If two BSP trees are used to represent the objects, and if the objects are not
moving, the BSP trees can be used to compute the intersection of the objects. If the
intersection is not empty, then the objects are currently in a colliding state. Although
Boolean operations between BSP trees can be implemented to provide general support
for computational solid geometry, they can be somewhat expensive because they
involve splitting each polygonal face in one tree against all the polygonal faces of the
other tree. Moreover, if the objects are moving but not changing shape, the BSP trees
represent model space information, and the partitioning planes must be transformed
into world space coordinates each time the objects move. The intersection testing is
much more complicated by the motion, and Boolean operations between the trees are
generally very expensive. The methods for bounding volume trees are much cheaper
to use since they are based on separating axis testing or distance calculations that take
advantage of geometric information about the bounding volumes to localize polygon-
polygon intersection testing rather than doing an exhaustive comparison of pairs of
triangles.



CHAPTER

SPECIAL EFFECTS

his chapter describes some special effects that can be used to provide a more

realistic rendering of a scene. So far this book has discussed only the mechanisms
that a game engine provides for drawing whatever content the game designers can
dream up. But generating the content for special effects and combining them in just
the right way is essentially an art. In this chapter we will give only a high-level summary
of the ideas, with examples presented in the color plates that accompany the book. For
a more detailed description of special effects and references, see Miller and Haines
(1999) and many of the articles that appear in Game Developer Magazine.

13. 1 LENS FLARE

Lens flare occurs when the lens of a camera is pointed near a bright light source. The
flare typically consists of a set of annular regions of brightness that occur approxi-
mately along a line and a set of various length line segments emanating from the light
source. The effects are due to refraction of light in the lens and to variation of density
of material in the lens. Adding lens flare to a rendered scene is quite popular. The basic
method is to create textures for the flare components, then place them in the scene
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along a ray emanating from the light source with direction dependent on the view
direction. The textures are placed as billboards that are required to be screen aligned.
The starlike texture can also be animated as the eye point moves to give a more realistic
cffect. Plate 6 provides an illustration of the concept.

13.2 ENVIRONMENT MAPPING

Environment mapping is a method that allows surfaces to be drawn with a reflection
of the environment in which the surface lives. Blinn and Newell (1976) introduced the
concept. A ray is drawn from the eye point to each point on the surface and reflected
through the outward pointing unit-length normal at that point. The direction of the
reflection vector is used as a lookup into a texture > map that represents thc surrounding
environment. Figure 13.1 illustrates the idea. If E is the eye point and P is the surface
point with normal N, the unit- -length view vector is V= (P E)/iP E\ The umt—
length reflection vector R must be computed. Observe that the projections of Vand R
onto the tangent plane must be the same vector; therefore, R — (N R] N=V_—(N-
V)N. The angle between N and R and the angle between N and — V are the same, in
which case N - R = —N - V. The reflection vector is therefore R = V — 2(N V)N.
In spherical coordinates it is

R=(R., Ry, R;) = (cos 6 sin,sinf sin ¢, cos ¢),

where 6 € [0, 27r] and ¢ € [0, 7 ]. The texture coordinates are chosen as u — 6/(2m)
and v =¢/m, so

57 atan2(R,, R,), Ry =0

‘= 1—+— + T atan2(R,, Ry), R, <0

1
and v = — acos(R,).
T

Applying environment mapping on a per-pixel basis is an expensive operation
because it requires calculating an inverse square root ' (to create unit vector V), an
inverse tangent, and an inverse cosine for each point P on the surface. The cost can
be significantly reduced in three ways by using approximations. First, in a real-time
system the objects are polygonal models or dynamically tessellated surfaces that result
in polygonal models. Assuming each vertex in the model has been assigned a surface
normal, only the vertices need to be assigned texture coordinates using the reflection
vector. The texture coordinates for other points in the polygons are computed via in-
terpolation by the rasterizer. This reduces the number of points for which (u, v) must
be computed. Second, if the object is approximately convex and the eye point some-
what distant from the object, a central point C can be selected to represent the object.
For example, the central point can be chosen as the average of the model vertices or
as the center of a _bounding sphere for the object. The view direction is computed
tobe V= (C - b)/l( - El and is used for all model vertices. Thus, the inverse
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Texture
map

(u,v)

Figure 13.1  Illustration of environment mapping.

square root that was required per vertex is replaced by a single inverse square root.
Third, the inverse trigonometric functions can be approximated by linear functions
v=(1+R.)/2andu=(1+ R.)/4for R, =00ru=(3—R,)/4for R, <.

The function from (u, v) — Risa map from the unit square onto the sphere.
One problem with such a mapping is that if the texture is not cylindrical in «, then
the seam is visible in the environment mapping. A more serious problem is that the
metrics of the plane and the sphere are not the same, so there must be distortion near
the poles of the sphere. This problem is mathematically unavoidable. Other methods
have been developed to circumvent the problem: cubic environment mapping, where
the target surface is a cube rather than a sphere (Greene 1986); sphere mapping, where
the texture image itself is defined on a sphere and the environment mapping does not
lead to distortion (Williams 1978); and parabolic mapping, where two parabolic halves
are used instead of a sphere and two textures are reflected off the halves (Heidrich
and Seidel 1998). Plate 3 provides an illustration of environment mapping in the
character’s dress.

13.3 BumMP MaPPING

Bump mapping is a method for changing the visual appearance of a surface by using
a different set of normals for lighting than the surface normals (Blinn 1978). The
classical method is to vary the normal per pixel, but this is not suitable for real-time
graphics. An approach involving derivatives of the texture image requires multiple
rendering passes to an offscreen buffer and the ability to do multitexturing. The effect
in this method is to provide an embossed surface. The original texture is a gray-scale
image. The triangle mesh is rendered to an offscreen buffer with this texture and with
diffuse lighting. The texture coordinates at the vertices are then offset by a differential
vector (i, v) whose length is small (on the order of a pixel or two), and the mesh is
rendered to a second offscreen buffer. The difference of the values in the two offscreen
buffers produces an image with an embossed effect. The mesh is rendered to the screen
in the usual way, and the difference texture is combined as a secondary texture. Other
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more sophisticated methods have been proposed for bump mapping, but a standard
across current hardware-accelerated cards is not yet agreed upon. A good survey of
the various techniques is found in Méller and Haines (1999). Plate 7 provides an
illustration of derivative-based bump mapping.

13.4 VOLUMETRIC FOGGING

Depth-based fogging was described in Chapter 3. The general use of such fogging is to
hide clipping artifacts at the far plane when new objects enter the view frustum at that
plane. The fog also helps add to the perception of depth of faraway objects. Depth-
based fogging cannot help an application generate dense fog that occurs close to the
eye point. Instead, the method of velumetric fogging can be used. The idea is to select
a region of space that is to contain fog. For each visible vertex in the scene, calculate
the length of intersection with the region and the segment from the eye point to the
vertex. A fog value proportional to the length of intersection and in the range [0, 1]
is assigned to the vertex as an attribute that will be interpolated during rasterization.
This provides fog values for the other points of the triangles sharing that vertex. Color
combination is the same as for depth-based fogging, Cnal = (1 = f)Cvertex + f Crog-

One example is to create a layer of fog over a terrain. The fog reg]on is chosen as
the region of space between two parallel planes. If E is the eye point, V is the vertex,
and N - X = ¢; are the planes for i =0, 1, then the segment is E+ :(V — E) for
t € [0, 1], and the intersection of the line of the segment and the planes occurs when
atf; = (c; — N - E)/ﬁ' . ('lj' — E). Let (1o, 1] = [0, 1] N [tp, 11]. The length of the
intersection is

LVY=|(E4+1(V—E)—(E+ 1V - E) = (1, — t)|V — E|.

Assuming that the fog range is [0, 1], the values L(V) & [0, o0) must be mapped
to the range. There are many choices, but a simple one is to use a rational function
f(L)=cL/(L + 1) for constant ¢ > 0. The choice of ¢ allows control over how large
L must be before f(L) is sufficiently close to 1. Plate 8 provides an illustration of
volumetric fogging.

13.5 PROJECTED LIGHTS

Projected lighting is a dynamic multitexturing technique that can be used to create a
wide variety of interesting special effects. The idea is to select a location in space that
corresponds to the projector, a projection frustum that is much like the view frustum
but allows for skewing (the pyramid is not necessarily orthogonal), a texture to project
into the environment, and a set of triangles in the environment that are to receive that
image as a secondary texture. A classic example is to set up a projected light that casts
light through a stained glass window. While there is technically no light source present,
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the stained glass texture is projected onto the walls and floor of the room that contains
the window. Moreover, the projector can be moved over time so that the projected
texture itself moves, thus giving the appearance that the sun is slowly moving across
the sky. Other examples include creating the effects of a vehicle’s headlamps shining
onto a road, a flashlight shining onto portions of a room, or even projecting cloud
shadow textures onto the ground.

The secondary texture coordinates of the triangles that are to receive the projected
texture must be computed on the fly. For each triangle vertex, a ray is cast from the
projector location to that vertex. The intersection of the ray with the near plane of
the projection frustum generates a relative coordinate (x, v) € [0, 1]* that is used as a
lookup into the projected texture image. Thus, the projection is as if a light shines onto
a texture that is coincident with the near plane of the frustum, with the corresponding
color projected onto the receiving triangle. Once the secondary texture coordinates
are known for the triangle, the projected image is combined with the base texture of
the triangle just as in the multitexturing system. The application has the choice of
how to combine the textures, whether as an additive process (brightening effect), a
multiplicative process (darkening effect), or some other combination mode that is
supported by the system.

While the projection process is much like that of the camera and view frustum,
there are some differences that must be considered. First, the projection frustum
should not usually have a far plane since that might abruptly terminate the light effect
in an unnatural way. The other planes can be used for clipping the receiving triangles,
but depending on the application that might also cause strange artifacts. If only one
or two vertices of a triangle are influenced by the projector, the third can be assigned
some texture coordinate so that the entire triangle is multitextured in a way to cause
some type of gradual attenuation of the projected texture. Finally, back facing triangles
do not have to receive the projected texture. If back facing triangles are omitted, there
can be noticeable artifacts along the terminator, the polyline that separates the front
facing triangles from the back facing ones. An alternative to eliminate the artifact is to
use culling based on vertex normals rather than triangle normals. The triangles that
share the terminator will have some front facing and some back facing normals. An
interpolation can split the triangle into two halves, one half that receives the projection
and one half that does not. For a tessellated sphere, this method will project the texture
onto exactly the front facing hemisphere. Plate 3 provides an illustration of projected
light in the disco ball dots.

13.6 PROJECTED SHADOWS

Projected shadows are very much related to projected lights. Rather than projecting a
texture onto the environment, a projected shadow system consists of a projector that
corresponds to a dark source rather than a light source. The system has a set of objects
that are used to occlude the projector as a light source or enhance the projector as a
dark source. The occluding objects will cast shadows on a receiving set of triangles.



432 Chapter 13 Special Effects

The associated projected texture is actually generated on the fly rather than se-
lected a priori as for projected lights. The idea is to treat the projector as another
camera and render the occluding objects to an offscreen texture. This is necessary
since the occluding objects can be arbitrarily complex, such as a moving character in
the scene. The background color of the rendering is white, and the triangles of the oc-
cluders are rendered with only black vertex colors. The resulting texture appears as a
shadow with hard edges. Support by some hardware cards for this process uses a block
of memory called a stencil buffer. Blending the shadow texture as a secondary texture
is done with any of the usual combination modes in the multitexturing system.

For an occluder that is a convex triangular mesh, the general rendering of the
mesh is not necessary to obtain the shadow edge. The terminator of the mesh can
be computed very rapidly. The idea is to treat the triangle mesh as an abstract graph
whose nodes correspond to the triangles and whose arcs connect nodes corresponding
to adjacent triangles. Each node has an associated value that is the signed distance
of the projector location to the plane of the triangle (with outward facing normal).
The arcs that connect two nodes with opposite signs correspond to the edges on the
terminator. Starting with a single triangle, a linear walk of the graph is started to
find an arc connecting opposite-signed nodes. Once found we have an edge of the
terminator. A second linear walk occurs along the remaining edges of the terminator.
This requires a vertex-edge-triangle data structure for which the vertices store all
adjacent edges. Abstractly, the determination of all node pairs with opposite-signed
distances is similar to a zero contour extraction of a planar image. The graph nodes
are the pixels, and the signed distances are the pixel values. However, the image is
defined on a closed surface rather than on a plane. The terminator extraction for a
convex mesh can be extended to general meshes using the analogy to zero contour
extraction in an image. The terminator now consists of a union of polylines, each
polyline representing a connected component of the zero contour of signed distances.

Once the terminator is computed for the convex occluder, it can be projected onto
the offscreen buffer. The projection of the terminator is a convex polygon in the pro-
jection plane, so it can be fanned into a set of triangles and processed by the rasterizer.
Or the convex polygon itself can be rasterized without the partitioning into triangles
as long as the rendering system has support for it. Plate 9 provides an illustration of
projected shadows. The harlequin is an animated skin-and-bones character that per-
forms a tumble roll into a kneeling position. The image shows the first part of the
sequence. A projected shadow system is used to render the harlequin with a second
camera and renderer to an offscreen texture that is black at a pixel whenever that pixel
is occluded by the harlequin. That texture is rendered as a secondary texture by the
multitexturing system.

137 PARTICLE SYSTEMS

In its simplest form, a particle system consists of a set of points, each having an
associated color. The point locations are time-dependent and can change based on
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just about any algorithm the user can think of. Usually, a physically based model is
applied. For example, the particles might represent smoke and move randomly to
simulate Brownian motion. Another example is to use particles to represent water
droplets spewing from a fountain. The path of each particle is parabolic and depends
on the initial velocity of the particle and the acceleration due to gravity. Although such
particle systems are easy to render, they can be limited in visual effect.

An extension is to allow the elements of the particle system to be short line
segments with vertex colors assigned to the end points. These can be used to simulate
effects such as sparks shooting from a fire. The leading point of the spark is colored red
or orange and the trailing point is a darker hue. The vertex colors themselves change
over time to represent that the spark is cooling. Although line segments allow more
significant effects than points, they can also be limiting in visual effect.

One of the best ways to represent a particle is as a square with center point
C and half-width r. The square is always screen aligned, and the four corners are
C + rU + rR, where U is the view frustum up vector and R is the view frustum
right vector. Moreover, the particle has assigned to it a color, a normal vector, and
a textured image. In this sense the particle is rendered as a two-triangle square with
the same surface attributes that any rendered triangle mesh can have. The textured
image is mapped fully onto the square and in almost all cases has an alpha channel.
The idea is that a spherical particle can be drawn with a textured image that contains
a sphere in its center and is fully transparent outside that part of the image. Because
the particle now has a size, the distance from the eye point makes a difference in the
rendering. The color and normal vector can be used for modulation of the texture,
usually via dynamic lighting. One nice use of particles in this form is as leaves of a tree.
The particle can represent a single leaf or a collection of leaves. Multiple systems can be
used, each system having its own leaf texture, so that some variation of leaves occurs in
the final rendering. Plates 10 and 11 provide illustrations of particle systems. In Plate
10, the pond has fireflies swarming over it, generated as a particle system. The light
shafts are alpha-blended polygons with an additive effect to produce the brightness.
The view is taken with the observer just slightly under a downed tree trunk with moss
hanging from it.

In Plate 11, the renderings are from the same part of the data set, but with lighting
that conforms to day, dusk, and night (top to bottom images). There is a wind blowing
from top left to bottom right in the images and the trees are animated to display the
effect of the wind. The dust clouds are also moving and are built as a particle system.
The waterfall is built with static geometry, but animated texture coordinates to give
the effect of flow.

13.8 MORFPHING

Morphing is the process of deforming an object over time. In a graphics setting only the
surface of the object is deformed. In particular, the vertices of a mesh are allowed 10
change with time, and in many applications the topology of the mesh is preserved,
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although this constraint is not essential. Because morphing involves time-varying
quantities, it can be implemented as a controller, as discussed in Chapter 4.

While there are infinitely many ways to control a morph, two standard ones
are useful in a real-time setting. The first way is to control the individual vertices
while preserving the mesh topology. A vertex location can be controlled through user
interaction with some input device. For example, a vertex can be selected with the
mouse (by a three-dimensional picking operation) and dragged. In this sense the
vertex location is a function of time, but is indeterminate. Vertex locations can also
be controlled procedurally, in which case the locations are determinate functions of
time. For example, a pool of water might have a triangle mesh representing the surface
of the water. The mesh is rigidly attached to the pool walls, but the interior vertices
are allowed to move. To give the impression that the surface is slightly moving, each
interior vertex can be slightly perturbed in the normal direction to the plane of the
original mesh and perturbed with a somewhat greater amplitude within the plane of
the original mesh.

The second way for defining a morph is to blend between two objects. This is
what most people tend to think of as morphing. A correspondence must be defined
between the surfaces of the two objects, and a blending function is selected that uses
the correspondence. The simplest morph for two triangular meshes with the same
number of vertices involves choosing a one-to-one correspondence between vertices
and applying a linear blend. If V; is a vertex in the first mesh and Visits corresponding
vertex in the second mesh, then the morph is Vi =(1- NV + rffl foranormalized
time 7 € [0, 1]. If the two objects are not significantly different in shape, the objects
obtained by blending will have a natural look about them. Attempts to linearly blend
two somewhat different-shaped objects will produce in-between objects that usually
are not what you expect. It is more difficult to establish a reasonable correspondence
between verticesif the two meshes have different topologies. It is even more difficult to
control the blending so that the in-between objects look reasonable. Morphing based
on shape information is possible, but gets heavily into differential geometric concepts
and is not covered in this book.

Morphing can be implemented using the controller system described in Chapter
4. Modeling packages that allow morphing by providing the pairing between two sets
of vertices can have their data exported as objects in a class MorphController, The
update routine of this controller performs the linear interpolation for the specified
time between the paired vertices. Plate 12 provides an illustration of morphing.
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RTTI game engine is a large and complicated software system, The principles of
SmartPointer object-oriented software engineering and large library design apply just as they
Stream would to any other large system. This appendix presents a review of some basic
TArray issues of object-oriented infrastructure. In addition, specific issues related directly
TMap to implementation of object-oriented support in the game engine are also addressed,
TClassArray including naming conventions and namespaces, run-time type information, single
TClassMap and multiple inheritance, templates (parameterized data types), shared objects and

reference counting, streaming, and startup and shutdown mechanisms.

A.l OBJECT-ORIENTED SOFTWARE CONSTRUCTION

A good reference on object-oriented software engineering is Meyer (1988). Extensive
in-depth coverage of abstract data types including stacks, lists, strings, queues, maps,
sets, trees, and graphs can be found in Booch (1987).
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A.l.1

SOFTWARE QUALITY

The goal of software engineering is to help produce quality software, both from the
point of view of the end users and of the software writers. The desired qualities in
software fall into two categories:

External: Software is fast, reliable, and easy to use. The end users care about these
qualities. End users also include team members who will use the code, so ease of
use Is important.

Internal: Software is readable, modular, and structured. The programmers care
about these qualities.

The external qualities are the more important since the goal of software construc-

tion is building what a client wants. However, the internal qualities are key to attaining
the external qualities. Object-oriented design is intended to deal with the internal, but
the end result should be to satisfy the following external qualities:

Correctness: the ability of software to exactly perform tasks, as defined by the
requirements and specification

Robustness: the ability of software to function even in abnormal conditions

Extendability: the ease with which software may be adapted to changes of specifi-
cations

Reusability: the ability of software to be reused, in whole or in part, from new
applications

Compatibility: the ease with which software products may be combined with
others

Efficiency: the good use of hardware resources such as processor, memory, and
storage, both in space and time

Portability: the ease with which software may be transferred to various hardware
and software platforms

Verifiability: the ease of preparing test data and procedures for detecting and
locating failures of the software

Integrity: the ability of software systems to protect their various components
against unauthorized access and modification, whether or not the access or mod-
ification is intentional

Ease of use: the ease of learning how to use software, including executing the
programs, preparing input data, interpreting output data, and recovering from
exceptions

Software maintenance is the process of modifying already existing code either to

correct deficiencies, enhance efficiency, or extend the code to handle new or modi-
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fied specifications. The following is a representative breakdown of maintenance time
(Meyer 1988):

= Changes in user requirements (41.8%). Inevitable, but is the large percentage due
to a lack of extendability?

®  Changes in data formats (17.4%). Also inevitable since initial design may have
lacked insight into how data might evolve.

®  Emergency fixes (12.4%).

= Routine debugging (9.0%). For example, fixes need to be made, but the software
can still run without them.

m  Hardware changes (6.2%). Also inevitable, but isolation of hardware-dependent
code can minimize these changes by encapsulation of the dependent code into
device drivers.

®  Documentation (5.5%). All of us are taught to do this as code is developed, but
the reality is the client always wants the code yesterday.

m  Efficiency improvements (4.0%).

A.1.2 MODULARITY

Modules are autonomous, coherent, robust, and organized packages. Not that this
really defines what a module is, but all of us have an idea of what a module should be.
The following criteria should help in deciding what it means for a software construc-
tion method to be modular:

= Decomposability. The design method helps decompose a problem into several
subproblems whose solution may be pursued separately.
- Example: Top-down design.
- Counterexample: Initialization modules.

= Composability. The design method supports production of software elements that
may be freely combined to produce new systems.
— Example: Math libraries.
- Counterexample: Combined GUI and database libraries.

®  Understandability. The design method helps produce modules that can be sepa-

rately understood by a human reader or can be understood together with a few
other modules.

- Example: A math library with exported functions clearly specified and for
which no other libraries are required for linking.

- Counterexample: Sequentially dependent modules, module A depends on
module B, module B depends on module C, and so on.
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®  Continuity. A small change in the problem specification results in a change of just
one (or a few) modules. Changes should not affect the architecture of the system.

- Examples: Symbolic constants (do not hard-code numbers), the Principle of
Uniform Reference (services of a module should be available through a uniform
notation; in C++ this becomes a design question about public versus private
members).

— Counterexample: Failing to hide the data representation from the user when
that representation may change later.

®  Protection. The design method yields an architecture in which the effect of ab-
normal conditions at run time in a module remains confined to that module (or
a few modules).

— Example: Validation of input and output at their sources. This is the notion of
preconditions and postconditions in abstract data types.

— Counterexample: Undisciplined exceptions. An exception is a signal that is
raised by one code block and handled in another, possibly remote part of
the system. This separates algorithms for normal cases from error processing
in abnormal cases, but the mechanism violates the criterion of confining the
abnormal conditions to the module. This also violates the continuity criterion.

The five criteria lead to five principles that should be followed to ensure modu-
larity. The criteria that lead to each principle are listed in parentheses.

®  Linguistic modular units. Modules must correspond to syntactic units in the
language used. (decomposability, composability, protection)

®  Few interfaces. Every module should communicate with as few others as possible.
(continuity, protection)

®  Smallinterfaces. If two modules must communicate, they should exchange as little
information as possible. This is termed weak coupling. (continuity, protection)

®  Explicit interfaces. Whenever two modules communicate, this must be obvious
from the text of the modules. This is termed direct coupling. (decomposability,
composability, continuity, understandability)

® Information hiding. All information about the module should be private unless
it is declared public. (continuity, not necessarily protection)

The Open-Closed Principle

This is one final requirement for a good modular decomposition. It states that a
module must be both open and closed.
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®  Open module: The module is still available for extension. For example, it is still
possible to add fields to data structures or to add new functions that operate on
the structures.

®  Closed module: The module is available for use by other modules. This assumes
that the module has a well-defined, stable interface, with the emphasis being on
“stable.” For example, such a module would be compiled into a library.

At first glance, being both open and closed appears to be contradictory. If the public
interface to a module remains constant, but the internal implementations are changed,
the module may be considered open and closed (it has been modified, but dependent
code does not need to be changed or recompiled). However, most modifications of
modules are to add new functionality. The concept of inheritance allows for open-
closed modules.

A.1.3 REUSABILITY

Reusability is a basic issue in software engineering. Why spend time designing and
coding an algorithm when it probably already exists elsewhere? But this question does
not have a simple answer. It is easy to find already-written code for searching and
sorting lists, handling stacks, and other basic data structure manipulations. However,
other factors may compound the issue. Some companies provide libraries that have
capabilities you need, but to use the libraries you need to purchase a license and
possibly pay royalties. If the acquired components have bugs in them, you must rely
on the provider to fix them, and that will probably not occur in the time frame in
which you need the repairs.

At least in your local environment, you can attempt to maximize reuse of your
own components. Here are some issues for module structures that must be resolved
to yield reusable components:

® Variation in types. The module should be applicable to structures of different
types. Templates or parameterized data types can help here.

®  Variation in data structures and algorithms. The actions performed during an
algorithm might depend on the underlying structure of the data. The module
should allow for handling variations of the underlying structures. Overloading
can help here.

m  Related routines. The module must have access to routines for manipulating the
underlying data structure.

®  Representation independence. The module should allow a user to specify an oper-
ation without knowing how it is implemented or what underlying data structures
have been used. For example,

x is in table t = search(x,t);:



440 Appendix A Object-Oriented Infrastructure

is a call to search for item x in a table t and return the (Boolean) result. If many
types of tables are to be searched (lists, trees, files, etc.), it is desirable not to have
massive control structures such as

if (t is of type A)
apply search algorithm A
else if ( t is of type B )
apply search algorithm B
else if ...

whether it be in the module code or in the client code. Overloading and polymor-
phism can help here.

Commonality within subgroups. Extract commonality, extract commonality, ex-
tract commonality! Avoid the repetition of similar blocks of code because if a
change is required in one block, it is probably also required in the other similar
blocks, which will require a lot of time spent on maintenance. Build an abstract
interface that doesn’t expose the underlying data structures.

A.1.4 FUNCTIONS AND DATA

Which comes first, functions or data? The key element in answering this question is
the problem of extendability, and in particular, the principle of continuity. During the
full life cycle, functions tend to change quite a bit since requirements on the system
also tend to change regularly. However, the data on which the functions operate tend
to be persistent and change very little. The object-oriented approach is to concentrate
on building modules based on objects.

A classical design method is the top-down functional approach—specifying the

system’s abstract function, then applying stepwise refinement to smaller, more man-
ageable functions, The approach is logical, well-organized, and encourages orderly
development. The drawbacks are as follows:

The method ignores the evolutionary nature of software systems. The problem
is continuity. The top-down approach yields short-term convenience, but as the
system changes, there will be constant redesigning, with a large potential for long-
term disaster.

The notion of a system being characterized by one function is questionable. An
operating system is the classic case of a system not characterized by a single “main”
function. Real systems have no top.

The method does not promote reusability. The designers tend to decompose the
functions based on current specifications. The subroutines are reflections of the
initial design. As the system evolves, the subroutines may no longer be relevant to
the new requirements.
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A.1.5 OBJECT ORIENTATION

Object-oriented design leads to software architectures based on the objects every
system or subsystem manipulates rather than “the function” it is meant to ensure.
Issues are

How to find the objects. A well-organized software system may be viewed as an
operational model of some aspect of the world. The software objects will simply
reflect the real-world objects.

How to describe the objects. The standard approach to describing objects is
through abstract data types. Specification for an abstract data type involves types
(type becomes a parameter of the abstraction), functions (what operations are
applied), preconditions (these must be satisfied before operations are applied),
postconditions (these must be satisfied after operations are applied), and axioms
(how compositions of the functions behave).

Object-oriented design is also the construction of software systems as structured

collections of abstract data type implementations. Issues are

Object-based modular structure. Systems are modularized on the basis of their
data structures.

Data abstraction. Objects should be described as implementations of abstract data
types.

Automatic memory management. Unused objects should be deallocated by the
underlying language system, without programmer intervention.

Classes. Every nonsimple type is a module, and every high-level module is a type.
This is implemented as the one-class-per-module paradigm.

Inheritance. A class may be defined as an extension or restriction of another.

Polymorphism and dynamic binding. Program entities should be permitted to
refer to objects of more than one class, and operations should be permitted
to have different realizations in different classes.

Multiple and repeated inheritance. It should be possible to declare a class as heir
to more than one class, and more than once to the same class.

Whether or not a language can support all the various features mentioned in

this section is questionable. Certainly, SmallTalk and Ada make claims that they are
fully featured. However, fully featured languages come at a price in performance. The
object-oriented code that accompanies this book is written in C++. While not a
“pure” object-oriented language, C-++ supports the paradigm fairly well, yet allows
flexibility in dealing with situations where performance is important. One of the
common fallacies about C++ is that its performance is unacceptable compared to that
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of C. Keep in mind that a compiler is a large software system itself and is susceptible,
just as any other large system, to being poorly implemented. Current-generation C++
compilers produce code that is quite compact and fast. (For a reference book on
C++, see Ellis and Stroustrup (1994). For an extensive set of examples illustrating
the features of C++, see Lippman (1991).)

AZ STYLE, NAMING CONVENTIONS, AND NAMESPACES

One of the software engineering goals mentioned previously is that code should be
readable. In an environment with many programmers developing small pieces of a
system, each programmer tends to have his or her own style, including choice of
identifier names, use of white space, alignment and indentation of code, placement
of matching braces, and internal comments. If a team of programmers develops
code that will be read both internally (by other team members) and externally (by
paying clients), ideally the code should have as consistent a style as possible purely
from the point of view of readability. Inconsistent style distracts from the client’s
main purpose—to understand and use the code for his or her own applications.
A management-imposed style certainly is a possibility, but beware of the potential
religious wars. Many of today’s C++ programmers learned C first and learned their
programming style at that time. Although a lot of the conventions in that language are
not consistent with an object-oriented philosophy, the programmers are set in their
ways and will still use what they originally learned.

Naming conventions are particularly important so that a reader of the code knows
what to expect across multiple files that were written by multiple programmers.
One of the most useful naming conventions used in the code on the CD-ROM that
accompanies this book allows the reader to distinguish between class members, local
variables, and global variables, including whether they are nonstatic or static. This
makes it easy to determine where to look for definitions of variables and to understand
their scope. Moreover, the identifier names have type information encoded in them.
The embedded information is not as verbose as Microsoft’s Hungarian notation, but
it is sufficient for purposes of readability and understandability of the code.

Because a game engine, like any other large library, will most likely be integrated
with software libraries produced by other teams, whether internal or external, there
is the possibility of clashes of class names and other global symbols. Chances are that
you have named your matrix class Matrix and so has someone else who has produced
header files and libraries for your use. Someone has to make a name change to avoid
the clash. C++ provides the concept of namespace to support avoiding the clashes,
but a method that is popular among many library producers is to use a prefix on class
names and global symbols in hopes that the prefix is unique among all packages that
will be integrated into the final product. The namespace construct implicitly mangles
the class names, whereas the manual selection of prefix makes the mangling explicit.



A.2 Style, Naming Conventions, and Namespaces ~ 443

The conventions used for the accompanying code are the following. The class
names and global symbols are prefixed by Mgc. Function names are capitalized; if
multiple words make up the name, each distinct word is capitalized. For example,
given a class that represents a string, a class member function to access the length
of the string would be named GetlLength. Identifier names are capitalized in the
same way that function names are, but with prefixes. Nonstatic class data members
are prefixed with m_, and static class data members are prefixed with ms_. The m refers
to “member” and the s indicates “static.” A static local variable is prefixed with s_. A
global variable is prefixed with g_, and a static global variable is prefixed with gs_. The
type of the variable is encoded and is a prefix to the identifier name, but follows the
underscore (ifany) for member or global variables. Table A.1 lists the various encoding
rules. Identifier names do not use underscores, except for the prefixes as described
carlier. Class constants are capitalized and may include underscores for readability.
Combinations of the encodings are also allowed, for example,

unsigned int* auiArray = new int[16];
void ReallocArray (int iQuantity, unsigned int*& rauiArray)
{
delete[] rauiArray;
rauiArray = new unsigned int[iQuantity]:
}

short sValue;
short& rsValue = sValue;
short* psValue = &sValue:

class MgcSomeClass
{
public:
MgcSomeClass ()
MgcSomeClass (const MgcSomeClass& rkObject);

protected:
enum { NOTHING, SOMETHING, SOMETHING_ELSE };
unsigned int m_eSomeFlag;

typedef enum { ZERO, ONE, TWO } Counter;
Counter m_eCounter;

The rules of style in the code are not listed here and can be inferred from reading
any of the source files.
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Table A.1 Encoding for the various types to be used in identifier names.

Type Encoding Type Encoding
char c unsigned char uc
short s unsigned short us
int i unsigned int ui
long 1 unsigned long ul
float f double d
pointer p smart pointer sp
reference r array a
enumerated type e class variable k
template t function pointer 0
void v

A.3 RUN-TIME TYPE INFORMATION

Polymorphism provides abstraction of functionality. A polymorphic function call can
be made regardless of the true type of the calling object. But there are times when you
need to know the type of the polymorphic object, or you need to determine if the
object’s type is derived from a specified type—for example, to safely typecase a base
class pointer to a derived class one, a process called dynamic typecasting. Run-time type
information (RTTI) provides a way to determine this information while the program
is executing.

A.3.1 SINGLE-INHERITANCE SYSTEMS

A single-inheritance object-oriented system consists of a collection of directed trees
where the vertices represent classes and the edges represent inheritance. Suppose
vertex Vi represents class Cg and vertex V) represents class Cy. If C; inherits from Cy,
then the directed edge from V; to Vj represents the inheritance relationship between
C, and Cy. The directed edges indicate an is-a relationshiop. Figure A.1 shows a simple
single-inheritance hierarchy.

The root of the tree is PoryGon. RECTANGLE is a PoLYGoN, and SQUARE is a
RECTANGLE. Moreover, SQUARE is a PoryGon indirectly. TRIANGLE is a POLYGON,
EQUILATERALTRIANGLE is a TRIANGLE, and RIGHTTRIANGLE is a triangle. However,
SQUARE is not a TRIANGLE, and RIGHTTRIANGLE is not an EQUILATERALTRIANGLE.

An RTTI system is a realization of the directed trees. The basic RTTI data type
stores any class-specific information an application might require at run time. It also
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EQUILATERAL-
TRIANGLE

Single-inheritance hierarchy.

stores a link to the base class (if any) to allow an application to determine if a class is
inherited from another class. The simplest representation stores no class information
and only the link to the base class. However, it is useful to store a string encoding the
name of the class. In particular, the string will be used in the streaming system that
is described later. The string may also be useful for debugging purposes in quickly
identifying the class type.

class MgcRTTI
{
public:
MgcRTTI (const char* acName, const MgcRTTI* pkBaseRTTI)
m_kName (acName)

{
m_pkBaseRTTI = pkBaseRTTI;
}
const MgcRTTI* GetBaseRTTI () const
{
return m_pkBaseRTTI;
}

const MgcString& GetName () const
{
return m_kName;

}
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private:
const MgcRTTI* m_pkBaseRTTI;
const MgcString&k m_kName;

1

The root class MgcObject in an inheritance tree must contain basic support for
the RTTI system. Minimally, the class is structured as

class MgcObject
{
public:
static const MgcRTTI ms_kRTTI;

virtual const MgcRTTI* GetRTTI () const
{

return &ms_kRTTIL;
}

bool IskExactlyClass (const MgcRTTI* pkQueryRTTI) const
{

return ( GetRTTI() == pkQueryRTTIL );
}

bool IsDerivedFromClass (const MgcRTTI* pkQueryRTTI) const
{

const MgcRtti* pkRTTI = GetRTTI();

while ( pkRTTI )}

{
if ( pkRTTI == pkQueryRTTI )
return true;
pkRTTI = pkRTTI->GetBaseRTTI():
}

return false;
1

void* DynamicCast (const MgcRTTI* pkQueryRTTI)
{
return ( IsDerivedFromClass(pkQueryRTTI) ? this : 0 );
}
}s



A.3 Run-Time Type Information 447

Each derived class in the inheritance tree has a static MgcRTTI and must minimally
be structured as

class MgcDerivedClass : public MgcBaseClass

{
public:
static const MgcRTTI ms_kRTTI;
virtual const MgcRTTI* GetRTTI () const
(
return &ms_KRTTI;
}
I

where MgcBaseClass is, or is derived from, MgcOb ject. Note that the unique iden-
tification is possible since the static MgcRTTI members all have distinct addresses in
memory at run time. The source file for the derived class must contain

const MgcRTTI MgcDerivedClass::ms_kRTTI("MgcDerivedClass™,
&MgcBaseClass::ms_kRTTI):

A.3.2 MULTIPLE-INHERITANCE SYSTEMS

A multiple-inheritance object-oriented system consists of a collection of directed
acyclic graphs where the vertices represent classes and the edges represent inheritance.
Suppose vertices V; represent classes C; for i =0, 1, 2. If C; inherits from both Cy
and C), then V, has directed edges to both Vj and Vi that represent the multiple
inheritance. Figure A.2 shows a multiple-inheritance hierarchy. An RTTI system in the
context of multiple inheritance is a realization of the directed acyclic graphs. While the
RTTI data type for a singly inherited system has a single link to a base class, the RTTI
data type for a multiply inherited system requires a list of links to the base classes
(if any). The simplest representation stores no class information and only the links
to the base classes. To support a to-be-determined number of base classes, the C-
style ellipses are used in the constructor, thus requiring standard argument support.
For most compilers, including stdarg.h gives access to the macros for parameter
parsing.

class MgcRTTI

{

public:

MgcRTTI (const char* acName, unsigned int uiNumBaseClasses,...)

m_kName(acName)
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Class AB

Figure A.2  Multiple-inheritance hierarchy. Class AB inherits from both class A and class B and
indirectly inherits from the root class.

{
if ( uiNumBaseClasses == 0 )
{
m_uiNumBaseClasses = 0;
m_apkBaseRTTI = 0;
}
else
{
m_uiNumBaseClasses = uiNumBaseClasses;
m_apkBaseRTTI = new const MgcRTTI*[uiNumBaseClasses];
va_list list;
va_start(list,uiNumBaseClasses);
for (unsigned int i = 0; i < uiNumBaseClasses; i++)
m_apkBaseRTTI[i] = va_arg(list, const MgcRTTI*);
va_end(1ist);
}
}
~MgcRTTI ()
{
delete[] m_apkBaseRTTI;
}

unsigned int GetNumBaseClasses () const
{
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return m_uiNumBaseClasses;
}

const MgcRTTI* GetBaseRTTI (unsigned int uilndex) const
{

return m_apkBaseRTTI[uilndex];
}

private:
unsigned int m_uiNumBaseClasses;
const MgcRTTI** m_apkBaseRTTI;
const MgcString m_kName;

}s

The root class in a single-inheritance tree provided the member functions for
searching the directed tree to determine if one class is the same or derived from another
class. A technical problem with a multiple-inheritance directed graph is that there may
be more than one vertex with no edges; that is, the hierarchy may have multiple root
classes. To avoid this situation, always provide a single root class whose sole job is to
provide an interface for any systems used by the entire inheritance graph.

The root class in the multiple-inheritance graph is structured exactly as in
the single-inheritance tree, except that the implementation of member function
IsDerivedFromClass must handle the list of base class RTTI pointers.

bool MgcObject::IsDerivedFromClass (const MgCRTTI* pkQueryRTTI) const
(
const MgcRTTI* pkRTTI = GetRTTI():
if ( pkRTTI == pkQueryRTTI )
return true;

for (unsigned int 1 = 0; i < pkRTTI->GetNumBaseClasses(); it+)
{
if ( IsDerivedFromClass(pkRTTI->GetBaseRTTI(i)) )
return true;
}

return false;
The derived classes still provide the same static RTTI member and a virtual func-
tion to access its address. For example, consider

class MgcDerived : public MgcBaseO, MgcBasel
{
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public:
static const MgcRTTI ms kRTTI;

virtual const MgcRTTI* GetRTTI () const
{
return &ms_kRTTI;
1

where both MgcBase0 and MgcBasel are either MgcObject or are derived from
MgcObject. The source file for this derived class must contain

const MgcRtti MgcDerived::ms_ kRTTI("MgcDerived".2,
&MgcBase0::ms_kRTTI,&MgcBasel::ms_kRTTI):
A.3.3 MACRO SUPPORT
Macros can be used to simplify use by an application and to hide the verbosity of the
code. The following macros apply to both single-inheritance and multiple-inheritance
systems:
// macros in MgcRTTI.h
#define MgcDeclareRTTI \
public: \
static const MgcRTTI ms_kRTTI; \
virtual const MgcRTTI* GetRTTI () const { return &ms_kRTTI; }

jfdefine MgcImplementRootRTTI(rootclassname) \
const MgcRTTI rootclassname::ms_kRTTI(f#frootclassname,0)

// macros in MgcObject.h and MgcObjectM.h

fidefine MgclsExactlyClass(classname,pObject) \
( pObject ? pObject->IskExactlyClass(&classname::ms_kRTTI) : false )

ffdefine MgclsDerivedFromClass(classname,pObject) \
( pObject ? pObject->IsDerivedFromClass(&classname::ms_kRTTI) : false )

{ffdefine MgcStaticCast(classname,pObject) \
((classname*)pQObject)

ftdefine MgcDynamicCast(classname,pObject) \
( pObject ? (classname*)pObject->DynamicCast(&classname::ms_kRTTI) : 0 )
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The macro MgcDecareRTTI is placed in the class declaration in the header file. Note
that the scope is pub11c, so any other class declarations following the macro call will
need to declare other scopes if needed.

The following macro applies to the single-inheritance case:

fidefine MgcImplementRTTI(classname,baseclassname) \
const MgcRTTI classname::ms kRTTI(ffclassname,&baseclassname::ms_kRTTI):

and should be called in the source file for the class definition. A similar macro for
multiple-inheritance systems is not possible because C-style macros do not allow for
a variable number of arguments.

A4 TEMPLATES

Templates, sometimes called parameterized data types, are used to share code among
classes that all require the same structure. The classic example is a stack of objects.
The operations for a bounded stack are Push, Pop, IsEmpty, I1sFull, and GetTop
(read top element without popping the stack). The operations are independent of the
type of object stored on the stack. A stack could be implemented for both int and
f1oat, each using array storage for the stack elements. The only difference between
the two implementations is that the integer stack code uses an array of int and the
float stack code uses an array of f1oat. A template can be used instead so that the
compiler generates object code for cach type requested by an application.

template <class T> class Stack

{

public:
Stack (int iStackSize)
{

m_iStackSize = iStackSize;

m_iTop = -1;

m_akStack = new T[iStackSizel;
}

~Stack () { delete[] m akStack; }

bool Push (const T& rkElement)
{ if ( m_iTop < m_iStackSize )
{ m_akStack[++m_iTop] = rkElement;
return true;
Leturn false;
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bool Pop (T& rkElement)

{
if ( m_iTop >= 0 )
{
rkElement = m_akStack[m_iTop--1;
return true;
}
return false;
}
bool GetTop (T& rkElement) const
{
if ( m_iTop >= 0 )
{
rkElement = m_akStack[m iTop]l;
return true;
}
return false;
}

bool IsEmpty () const { return m_iTop = -1; }
bool IsFull () const { return m_iTop == m_iStackSize-1; }

protected:
int m_iStackSize;
int m_iTop:
T* m_akStack;

1N

Macros could be used to generate code for different types, but the macros are not
typesafe and are susceptible to side effects. Although it is possible to implement the
stack code for both int and f1oat, this poses a problem for code maintenance. If
one file changes, the other must be changed accordingly. The maintenance issue is
magnified even more so when there are a large number of types sharing the same
code. Templates provide a way of localizing those changes to a single file.

Templates are a good choice for container classes for various data structures such
as stacks, arrays, lists, and so on. Standard template libraries are available that can
be integrated into a game engine. One problem to be aware of when dealing with a
container of objects (in this case, objects of type MgcObject) is that certain side effects
of the class are necessary, especially in construction and destruction. If a standard
template library container class has a need to resize itself, it might do so by creatingan
array of the new size, placing a memory copy of the old array into the new array, then
deleting the old array. This scheme has the implicit assumption that the underlying
data is native. If the data consists of class objects where the constructor allocates
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memory and the destructor deallocates memory, the memory copy causes memory

leaks and misses side effects that occur because of object construction or destruction.
This will definitely be the case for shared objects and reference counting, the topic
of the next section. If the standard template library does not support side effects, the
game engine code will need to implement its own template container classes.








































































































































































































































hyperbolic: wave and shock
phenomena, 501
midpoint method, 497
ordinary, 496-499
parabolic: heat transfer, population
dynamics, 500-501
partial, 499-503
Runge-Kutta fourth-order method,
498
Runge-Kutta with adaptive step,
495—-499
second-order form, 496-497
source code, 496
See also numerical methods
diffuse color, 102
diffuse light, 103, 429
diffusion of heat, 500
Direct3D, 138, 414
direction vectors, 285
directional lights, 100
discrete level of detail, 360, 361-362
defined, 361
morphing, 362
for multiresolution models, 369-370
popping effect, 362
source code, 361
See also level of detail (LOD)
distance methods, 38-77
calculation, 38
circle to circle in 3D, 69-73
ellipse to ellipse in 3D, 73-77
linear component to linear
component, 41-49
linear component to rectangle, 58-60
linear component to triangle, 53-57
point to circle in 3D, 68-69
point to ellipse, 65-66
point to ellipsoid, 66
point to linear component, 38—41
point to oriented box, 61-64
point to quadratic curve/surface,
67-68
point to rectangle, 57-58
point to segment, 39
point to triangle, 49-53
rectangle to rectangle, 61
triangle to rectangle, 61

Index 533

triangle to triangle, 61
distant terrain assumption, 370
block-based simplification, 376-378
vertex-based simplification, 373-374
See also close terrain assumption
division
approximation instructions, 131
floating-point, 45
slow, 175
dynamic collision detection, 251-256
collision points, finding, 253-256
collision testing, 252-253
See also collision detection; oriented
bounding box (OBB) trees
dynamic lighting, 100, 395
defined, 100
expense, 396
See also lighting
dynamic object-object intersections,
214-243
capsules and capsules, 216, 217
defined, 214=215
oriented boxes and triangles, 223-232
triangles and triangles, 232-243
See also intersections
dynamic objects, 186
capsules, 190, 196-197
cylinders, 191, 198-200
ellipsoids, 191-192, 201-202
intersection of lines with, 188—192
intersection of planes with, 193-203
lozenges, 191, 197-198
oriented boxes, 190, 194-196
spheres, 188-189, 193-194
triangles, 192, 202-203
See also objects

E

edge buffer setup, 130
eigensystems, 472
ellipse rasterization, 119-124
axis-aligned ellipses, 120-122
defined, 119
ellipse specification, 119-120
general ellipses, 122-124
See also rasterization



ellipse to ellipse in 3D, 73-77

defined, 73

numeric solution, 77

solution as polynomial system, 73-75
trigonometric solution, 75-77

See also distance methods

ellipses

axes, 119

axis-aligned, 65, 120-122

centered at origin equation, 119

closest point on, 65

mapped to ellipses, 84

oriented, 65

parameterized, 73

plane/ellipsoid intersection, 73

points to, 65-66

polynomial equations, 73

with smallest positive level curve,
123-124

specifying, 119-120

ellipsoid subdivision, 328-338

algorithm data structures, 329-331

initial mesh, 329, 330

midpoint projection phase, 331

subdivision algorithm, 331-338

working set of vertices, edges,
triangles, 332

ellipsoids, 36-38

axis directions, 36

axis-aligned, 37

bounding, computing, 152

center, 164, 192

with center and axes, 37

closest point on, 66

culling by, 164-165

defined, 36

dynamic, 191, 201-202

fitting points with Gaussian
distribution, 37

general form, 37

intersection of linear component and,
182

line intersection with, 191-192

merging, 152

minimum-volume, 37-38

outside frustum plane, 164

plane intersection, 73, 201-202

points to, 66
projection of, 165
quadratic equation, 164, 182
See also 3D objects
elliptic paraboloid, 305
end effector
best position, 350
defined, 348
formula, 348
position selection for, 348
environment mapping, 428429
applying on per-pixel basis, 428
cubic, 429
defined, 428
illustrated, 429
See also special effects
Euler angles, 18-26
factor product of two, 24-26
factoring rotation matrices, 19-24
source code, 18
Euler’s identity, 12
Euler’s method, 249, 497
exponential fog, 109
eye point, 85
defined, 80
parallel plane closest to, 85
in standard camera model, 85

F

facet normal, 93
far plane, 85
fast function evaluation, 503-507
CORDIC methods, 507
cosine, 505
inverse square root, 503-504
inverse tangent, 505-506
sine, 504-505
source code, 503
square root, 503-504
tangent, 505
See also numerical methods
fast subdivision
for cubic curves, 283-285
source code, 283
See also subdivision
finding intersection, 186
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finite cylinders, 35-36
first point(s) of contact, 186

Gaussian distribution
covariance matrix, 29

for boxes, 195
for spheres, 193

flat shading, 102
floating-point

comparison, 99
division, 45
multiplication, 99
number conversion, 127
overflow, 101

precision, 82

round-off errors, 46, 51

fog, 109-110

density, 109
exponential, 109
factor, 109

linear, 109
range-based, 109-110
transparency and, 111
volumetric, 110

defined, 29
fitting points with (ellipsoid), 37
fitting points with (oriented boxes),
29-31
fitting triangles with, 32
lozenge fit with, 34-35
mean, 29
Gaussian quadrature, 260, 495-496
general camera model, 87
generalized cylinder surface, 301-302
geographical methods, 7-77
geometric clipping, 132-133
geometric level of detail, 359-368
Glide, 138
global maximum, 377
global minimum, 49, 50, 54, 58, 69, 381
Gouraud shading, 102
Gram-Schmidt orthonormalization, 249
Graphics Gems, 5, 65, 488, 503, 504

See also attributes graphics pipeline, 3, 7, 79-139
frame buffer, 412 clipping and lighting, 132-137
Frenet frame renderer responsibilities, 79-80

defined, 259 grouping node, 143

orientation using, 285-286
Frenet-Serret formulas, 259
front-to-back drawing, 423-424 H

region masks, 424 H-adjacent triangles, 325, 326

scan line marks, 423-424 defined, 325

See also hidden surface removal vertex dependencies for, 327
frustum planes, 94 Handbook of Mathematical Functions,

bounding volume inside, 166 503

clip vertices increase and, 99 height fields, 370, 386

ellipsoid outside of, 164 linear interpolation and, 398-399
inactive, 166 from point sets, 398409

inverse transform of, 97 quadratic interpolation and, 399-409

projection of, 163, 165 single-height, 392
subdivision, 382
from triangle meshes, 398-409
G See also terrain
game Al, 2 Hermite interpolation basis, 271
game design, 2 hidden surface removal, 420-424
Garland-Heckbert algorithm, 362 back-to-front drawing, 420-423
Gaussian curvature front-to-back drawing, 423-424
computing, 293 one-dimensional, 424

defined, 290
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Index

hidden surface removal (continued)

See also binary space partitioning

(BSP) trees

homogeneous coordinates, 9
homogeneous matrices, 9, 86

with no perspective component, 144

product of, 144

of projection, 86—87
homogeneous transformations, 9-10

product of, 9

representation, 10, 87

See also transformations
Householder transformations, 472
hyperbolas mapped to hyperbolas, 84
hyperbolic paraboloid, 305
hypotenuse, 324

identity matrix, 8, 19
implicit surface
application to finding principal
curvatures, 292-293
curvatures for, 290-293
defined, 288
maxima of quadratic forms, 290-291
maxima of restricted quadratic forms,
291-292
See also surfaces
imposters. See sprites
infinite cylinders, 35
infinite pyramid formation, 85
infinite square column, 58
inscribed circles, 400—401
integration, 491-496
Gaussian quadrature, 260, 495-496
Romberg, 260, 491-495
See also numerical methods
intermediate tensor, 270, 302, 304
interpolation
angular cubic, 347
bilinear, 106, 397
Catmull-Rom, 271
during rasterization, 126132
exact, 264
Hermite, 271
for lattice of control points, 302

linear, 126129, 398-399

of location rotations, 341

perspective, 129-132

quadratic, 399-409

of quaternions, 149

spherical cubic, 345

spherical linear, 343-344

spline, 346347

intersections

capsule and capsule (dynamic), 216,
217

capsule and capsule (static), 205

capsule and line, 190

capsule and lozenge, 205

capsule and plane, 196-197

collision detection and, 186

cylinder and line, 191

cylinder and plane, 198-200

dynamic object and line, 188-192

dynamic object and plane, 193-203

dynamic object-object, 214-243

ellipsoid and line, 191-192

ellipsoid and plane, 201-202

finding, 186

geometric, testing, 173

information about, 169-170

line segment with box, 176-177

line segment with triangle, 182-183

line with box, 179

line with triangle, 183

linear component, 171

linear component and box, 172-179

linear component and capsule,
179-180

linear component and cylinder,
181-182

linear component and ellipsoid, 182

linear component and lozenge,
180-181

linear component and triangle,
182-183

lozenge and line, 191

lozenge and lozenge, 205

lozenge and plane, 197198

normal vector at, 170

OBB, 253

object-object, 186, 203-243



oriented box and line, 190

oriented box and oriented box
(dynamic), 217-223

oriented box and oriented box (static),
205-207

oriented box and plane, 194-196

oriented box and triangle (dynamic),
223-232

oriented box and triangle (static),
207-210

point of, 170

ray and bounding volume, 170

ray and box, 177178

ray and triangle, 182-183

sphere and capsule, 205

sphere and line, 188-189

sphere and lozenge, 205

sphere and plane, 193-194

sphere and sphere, 204

sphere, capsule, lozenge (dynamic),
215-217

sphere, capsule, lozenge (static),
204-205

static object-object, 203-214

surface attributes at, 170

testing, 170, 186

tests between bounding volumes, 188

triangle and line, 192

triangle and plane, 202-203

triangle and triangle (dynamic),
232-243

triangle and triangle (static), 210-214

types of, 186

interval

end points, 228
overlap test, 210
of uncertainty, 376

inverse kinematics, 348-356

defined, 342

numerical solution by cyclic
coordinate descent, 351-356

numerical solution by Jacobian
methods, 350-351

numerical solution by nonlinear
optimization, 351

prismatic joint, 350

problem, 348, 349
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revolute joint, 350
source code, 348
See also animation
inverse mapping, 82
inverse tangent approximations, 505-506

J

Jacobian matrix, 350

K

key frame animation, 342-347
defined, 341, 342
key frame node update, 347
quaternion calculus, 342-343
spherical cubic interpolation, 345
spherical linear interpolation,
343-344
spline interpolation of quaternions,
346-347
See also animation
key frames
defined, 341
nodes, updating, 347
kinematics
defined, 348
inverse, 348-356
Kochanek-Bartels splines, 271-276
bias, 271
continuity, 271
defined, 271
implementation of, 347
parameter examples, 273-276
source code, 271
tension, 271
See also curves

L

leaf nodes, 141, 157
OBB, 250
quadtree, 370
triangle representation by, 169
See also nodes
least-squares fit, 33, 295, 298



least-squares fitting, 472-481
circle to 2D points, 476-478
defined, 472
hyperplanar fitting of points using
orthogonal regression, 475-476
linear fitting of points, 472-473
linear fitting of points using
orthogonal regression, 473474
planar fitting of points, 474-475
quadratic curve to 2D points, 480481
quadric surface to 3D points, 481
sphere to 3D points, 478—480
See also numerical methods
least-squares line, 36
left-handed coordinate system, 10, 86
lens flare, 427428
level editor, 142
level of detail (LOD), 359
continuous, 360, 362-368
discrete, 360, 361-362
geometric, 359-368
nodes, 361
light equation, 104
lighting
ambient, 102-103
defined, 101
diffuse, 103, 429
dynamic, 100, 395, 396
intensity, 102
model, 102
prelighting, 395
projected, 430431
specular, 104
of vertices, 132
See also attributes
lights
attenuated with distance, 101
directional, 100
intensity parameter, 100
point, 100
sources, 100, 101
spot, 100
line segments
3D, 43
axis tests, 177
closed point to, 38
distance to, 38

end points, 176
inside/outside face determination,
173-174
intersection with box, 176-177
intersection with triangle, 182-183
line to, 43
midpoint, 176
parallel, 48
project to line segments, 83
rays to, 4349
to rectangles, 60
represented as oriented boxes, 39
to segments, 43—49
separating axes, 183
to triangles, 57
uniformly spaced points on, 82
linear component to linear component,
4]1-49
defined, 41
goal, 41
line to line, 42
line to ray, 43
line to segment, 43
ray to ray, 43—49
ray to segment, 4349
segment to segment, 43—49
See also distance methods
linear component to rectangle, 58-60
defined, 58
ray to rectangle, 60
region partitioning, 58
segment to rectangle, 60
squared-distance function, 58
See also distance methods
linear component to triangle, 53-57
defined, 53
line to triangle, 54-56
ray to triangle, 57
region partitioning, 54
segment to triangle, 57
squared-distance function, 53
See also distance methods
linear components
intersection with box, 172-179
intersection with capsule, 179-180
intersection with cylinder, 181-182
intersection with ellipsoid, 182



intersection with lozenge, 180-181
intersection with sphere, 171-172
intersection with triangle, 182-183
intersections, 171
parallel to rectangle, 59
point to, 38-41
linear fitting of points, 472-474
with orthogonal regression, 473-474
source code, 473
See also least-squares fitting
linear fog, 109
linear interpolation, 126-129
for continuous height, 397
height fields and, 398-399
implementation of, 347
one division per edge per attribute,
130
See also interpolation
linear polynomials, 76
linear systems, 469470
linear transformations, 8, 13-14
lines
direction lengths, 42
intersection of capsules and, 190
intersection of cylinders and, 191
intersection of dynamic objects and,
188-192
intersection of ellipsoids and, 191-192
intersection of lozenges and, 191
intersection of oriented boxes and,
179, 190
intersection of spheres and, 188—189
intersection of triangles and, 183, 192
to lines, 42
partitioning, by capsule, 180
partitioning, by lozenge, 181
project to, 81-82
rasterizing, 113-117
to ray, 43
to segment, 43
to triangle, 54-56
link 1Ds, 460, 462-463
defined, 460
persistence of, 462
storage of, 462, 463
list manipulator, 352-355
initial point, 352
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lengths, 352
with multiple end effectors, 354-355
with one end effector, 352-354
rotate to line, 352
rotate to plane, 353
rotate to point, 352
slide to line, 354
slide to plane, 354
slide to point, 354
two-segment, 354-355
See also manipulators

loading data, 460

local control, 267

local transforms, 144—145
defined, 144
SRT-transform, 145
See also transforms

lozenges, 34-35
capsule intersection with, 205
centers, 152
culling by, 161-162
defined, 34
dynamic, 191, 197-198
edge directions, 191
edges, 35
fit with Gaussian distribution, 34-35
intersection of linear component and,

180-181

line intersection with, 191
lozenge intersection with, 205
minimization method, 35
origin, 191
parameterized rectangle, 161
partitioning line by, 181
plane intersection with, 197-198
radius, 161
rectangle corners, 197
rectangle parameters, 35
rectangle vertices, 152
sphere intersection with, 205
See also 3D objects

M

macros, 450-451, 452
manipulators
defined, 348
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manipulators (continued)
joints, optimized, 351-352
joints, parameter restricted, 355
linearly linked, 349
list, 352-355
tree, 355
as trees of segments, 350
mapping
bump, 429-430
environment, 428—429
parabolic, 429
to screen coordinates, 89-90
sphere, 429
masks
region, 424
scan line, 423-424
matrices
2x2,70,289
adjoint, 367
blending, 268, 302
companion, 487
covariance, 29
diagonal, 8, 67, 68
homogeneous, 9, 86
identity, 8, 19
Jacobian, 350
norm of, 487
orientation, 286, 306
orthonormality, 149
quadric, 365
rotation, 8, 15-16, 17-18, 19-24
scaling, 8
skew-symmetric, 8, 15
symmetric, 8
trace of, 16
transpose of, 8
zero, 8
mean curvature
computing, 293
defined, 290
merging
capsules, 151
cylinders, 152
ellipsoids, 152
lozenges, 151152
oriented boxes, 149-150
spheres, 148—149

mesh triangles, 250
OBB based on distribution of, 250
submeshes, 250-251
metric tensors, 289
midpoint
line algorithm, 117
method, 497
subdivision, 408—409
minimization, 35, 481-485
Brent’s method, 482
conjugate gradient search, 483-484
methods in many dimensions,
482—-485
methods in one dimension, 481-482
Powell’s direction set method, 31,
484-485
source code, 481, 484
steepest descent search, 483
See also numerical methods
minimum-volume box, 31
minimum-volume OBB, 250
minimum-volume sphere, 28
mipmapping, 106-108
defined, 106
index, 107
magnification factor, 107
model coordinate system, 80
model space
clipping in, 98
coordinate transformation to view
space, 87-88
coordinates, 93
facet plane, 93
transforming, to view space, 98
model-to-view transformation, 8789
modularity, 437-439
criteria, 437-438
defined, 437
open-closed principle, 438—439
morphing, 362, 433-434
control, 434
defined, 433
defining, 434
implementation, 434
source code, 434
motion equations, 246-248



moving abjects
along a curved path, 258
closed-form algorithm, 248
equations, 246-248
motion equations, 246-248
processing, 245-250
multiple-inheritance systems, 447—
450
elements, 447
hierarchy illustration, 448
macros, 450-451
multiple root classes, 449
RTTI, 447
multiplication
fast, 175
floating-point, 99
quaternions, 11, 12, 13
multitextures, 108
combining, 111-112
defined, 108
See also textures

N

naming conventions, 442-443
natural splines, 266
Newton’s iteration scheme, 65, 66
Newton’s method, 486, 490
nodes

binary tree, 383

bounding volume at, 142-143

child, 141, 143

controllers, 147

defined, 141

grouping, 143

key frame, 347-348

leaf, 141, 157

level of detail (LOD), 361

OBB, 250, 252

parent, 141, 143, 417

portal, 415

region, 415

root, 141, 142, 145

switch, 361

See also scene graphs; tree
nonlinear optimization, 351
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nonparametric B-spline curves, 258,
267-271
defined, 268
evaluation pseudocode, 270-271
source code, 268
See also curves
nonparametric B-spline rectangle
patches, 288, 302-304
blending matrices, 302
evaluation pseudocode, 302
intermediate tensor, 302, 304
nonuniform rational B-splines (NURBS),
258
nonuniform subdivision
Bézier cylinder surfaces, 328
Bézier rectangle patches, 313-316
Bézier triangle patches, 323-328
See also subdivision
normals
at points on edges, 396
for prelighting, 396
weighted averages of, 366
numerical methods, 469-507
differential equations, 496-503
eigensystems, 472
fast function evaluation, 503-507
integration, 491-496
least-squares fitting, 472—481
minimization, 481-485
root finding, 485-490
systems of equations, 469472

o

object culling, 91, 92

object-object intersections, 186
dynamic, 214243
static, 203-214

object-oriented design, 441442

object-oriented infrastructure, 435-468
run-time type information, 444-451
shared objects and reference counting,

453459

software construction, 435442
source code, 435
startup and shutdown, 464—468
streaming, 459-464



object-oriented infrastructure (contin-
ued)
style, naming conventions,
namespaces, 442—444
templates, 451-453
object-oriented software construction,
435442
functions and data, 440
modularity, 437-439
object orientation, 441-442
reusability, 439-440
software quality, 436-437
objects
bounding volume, 92, 142
clipped, 84
colliding, 142
culled, 84, 158, 160
dynamic, 186, 188-203
moving, 245-250, 258

orientation on curved paths, 285-286

rotating, processing, 245-250
shared, 453-459
static, 186
top-level, 459
unculled, 158, 160
occlusion culling, 424
octrees, 412-413
BSP trees vs., 417
for partitioning into cells, 412
processing pseudocode, 413
sorting, 413
See also quadtree(s)
opacity, 108-109
OpenGL, 138, 414
operational model, 441
optimization, nonlinear, 351
orientation
adjacent triangle, 335
with fixed “up” vector, 286
with Frenet frame, 285-286
matrix, 286, 306
objects, on curved paths, 285-286
oriented bounding box (OBB) trees,
244-245
application-specified maximum
depths of traversal for, 252
automatic generation of, 245

collision testing between, 251

constant linear/angular velocities and,
244

constructing, 250-251

defined, 244

dual recursion on, 251

function, 244

nodes, 250, 252

root, 244

oriented bounding boxes (OBBs), 420

algorithm based on numerical
ordinary differential equation
solver, 249-250

based on distribution of mesh points,
250

based on distribution of mesh
triangles, 250

center, 247, 249

comparison, 251

computing, for triangle mesh, 250

coordinate frame, 249

equations of motion, 247-248

intersection between, 253

linear velocity, 249

minimum-volume, 250

time-varying, 247

velocity, 250

oriented boxes, 8, 29-32

axes, 30

axis-aligned, 29

center, 29, 194

coordinate axes, 194

culling by, 159-160

defined, 29

dynamic, 190, 194-196

finding first time of intersection,
218-219

finding point of intersection, 219-223

first point of contact, 195

fitting to convex hull of vertices, 32

fitting triangles with Gaussian
distribution, 32

fixed points with Gaussian
distribution, 29-31

line intersection with, 190

line segment representation as, 39

merging, 149-150



minimum-volume, 31
nonintersection test, 206, 207
oriented boxes intersection with
(dynamic object-object), 217-223
oriented boxes intersection with
(static object-object), 205-207
plane intersection with, 194-196
points to, 61-64
separating axes, 217-218
as shell, 62
as solid, 61
See also 3D objects
oriented boxes and triangles intersection
additional axes, 223
coefficients for unique points, 232,
233,234,235
constant velocities, 223
dynamic object-object, 223-232
finding first time intersection,
223-227
finding point of intersection, 227-232
nonintersection test, 224, 225
projected box interval, 224
separating axes, 223
static-object-object, 207-210
See also intersections
orthogonal regression
hyperplanar fitting of points using,
475-476
linear fitting of points using, 473-474
orthonormal transformations, 14
overshooting, 272

P

painter’s algorithm, 420-421
parabolas mapped to parabolas, 84
parabolic cylinder, 305
parabolic mapping, 429
parallel plane, 85
parallel projection, 84-85
parameterized data types. See templates
parametric curves

defined, 258

for graphs, 293
parametric surfaces

curvatures for, 289-290
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patches, 288
parent nodes, 143, 417
bounding volume of, 145
defined, 141
multiple, 141
See also nodes
partial subdivision, 317-320
defined, 318
illustrated, 318, 319, 320
with one subdividing edge, 320
with parent’s topological constraint,
319, 320
with three subdividing edges, 318
with two adjacent subdividing edges,
319
with two opposing subdividing edges,
320
See also subdivision
particle systems, 432—433
patches
Bézier rectangle, 293-297
Bézier triangle, 297-301
nonparametric B-spline rectangle,
302-304
parametric surface, 288
rectangular, 288
triangular, 288
See also surfaces
path controlling, 285
Pentium IIT CPU, 139
perspective interpolation, 129-132
defined, 130
depth value, 130
one division per pixel per attribute,
130
See also interpolation
perspective projection, 10, 80-84
canonical model, 81
conics project to conics, 83-84
defined, 81
lines project to lines, 81-82
on view plane, 81
triangles project to triangles, 83
Phong shading, 102
physics engines, 342
picking, 169-183
BSP tree, 425



picking (continued)

defined, 4, 169
general, 169
support for, 169-170
uses, 169

pixels

circle, draw decision, 118

decision equation, 114

ellipse, selection, 122-123

forming best line segment between
two points, 113

level of detail (LOD), 359

line drawing algorithm, 113, 117

selection based on slope, 114

selection of, 113

setting, rules for, 117

planar curves, 258-259

coordinate frame, 258
curvature, 259
defined, 258

See also curves

planar fitting of points, 474-476

with orthogonal regression, 475-476
source code, 475
See also least-squares fitting

planes

clipping, 92, 414

facet, 93

far, 85

frustum, 94, 97

intersection of capsules with, 196-197

intersection of cylinders with,
198-200

intersection of dynamic objects with,
193-203

intersection of ellipsoids with,
201-202

intersection of lozenges with, 197-198

intersection of oriented boxes with,
194-196

intersection of spheres with, 193-194

intersection of triangles with, 202-203

normal, 81

parallel, 85

union of, 305

view, 80

point lights, 100

points
2D, fitting circles to, 476—478
2D, fitting quadratic curves to,
480—481
3D, fitting quadric surface to, 481
3D, fitting spheres to, 478—480
to circle in 3D, 68-69
closest, 38, 39, 45
collision, 253-256
contact, 44, 50, 186
control, 296, 298
to ellipses, 65-66
to ellipsoids, 66
end, 43, 44, 176, 228, 238-239
eye, 80, 85
input, 89
interior, 43, 44, 50
to linear component, 38—41
minimum distance, 43, 50
on frustum side of the plane, 133134
to oriented boxes, 61-64
to rectangles, 57-58
squared distance between, on circle,
69
subdivision, 276
to triangles, 49-53
polygonal models, 287
polygons
bounding convex, 417
coincident, 420
many-sided convex, 417
sorting, 420
subpolygons, 425
tree, 358
polymorphism, 456
polynomial roots, 486—489
bounding, by derivative sequences,
487488
bounding, by Sturm sequences,
488-—489
of multiplicity larger than 1, 486
source code, 486
See also root finding
polynomial systems, 470472
general handling of, 472
source code, 470



portals, 413-417
connection between regions, 414
defined, 413
example illustration, 416
L-shaped region, 416
nodes, 415
plane restriction, 414
planes maintained by, 415
regions, 414-416
uses, 413—414
visibility through, 414
Powell’s direction set method, 31,
484-485
prelighting, 395, 396
prerendering function, 157
principal curvatures, 289
application to finding, 292-293
defined, 289
is 2D generalized eigenvector, 290
principal directions, 289
prismatic joint, 350
progressive meshes, 362
projected lighting, 430-431
defined, 430
projection process, 431
texture coordinates, 431
See also special effects
projected shadows, 431-432
defined, 431
occluder, 432
projected texture, 432
See also special effects
projection
defined, 80
frustum, 430
homogeneous matrices projection,
86-87
matrix specification, 86
onto view plane, 84
parallel, 84-85
perspective, 10, 8084
projectors, 430
pseudodistance, 134

Q

quadratic classifier, 45, 49

Index

quadratic equations
ellipsoid, 164, 182
general, 67
polynomial, 76
quadric surfaces, 304
second-degree, 67
simultaneous, 471
sphere, 171
two, solving for, 471
quadratic forms
defined, 290
expanding, 291
maxima of, 290-291
restricted, maxima of, 291-292
quadratic function, 56
quadratic interpolation, 399-409
algorithm, 404-409
algorithm parts, 399
barycentric coefficients as areas,
399-400
Bézier net construction, 399
Bézier triangles, 401-402
derivative continuity, 403—404
derivatives, 402-403
inscribed circles, 400-401
local control, 399
subdivision, 399
See also height fields; terrain
quadric error metrics, 362-364
quadric matrices, 365
quadric surfaces, 304-305
defined, 288
one nonzero eigenvalue, 305
quadratic equation, 304
source code, 304
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three nonzero eigenvalues, 304-305

two nonzero eigenvalues, 305
See also surfaces

quadtree(s), 412-413
blocks, 370, 375, 385, 413
BSP trees vs., 417
defined, 370
leaf nodes, 370
for partitioning into cells, 412
processing pseudocode, 413
recursive traversal, 386
representation illustration, 371



quadtree(s) (continued)
sorting, 413
subdivision, 317
quaternion calculus, 342-343
quaternions, 11-18
addition of, 11
algebra, 11-13
angle axis to, 16—17
to angle-axis, 17
conjugate of, 11
conversion (angle-axis), 16-17
conversion (rotation matrix), 17-18
cubic interpolation of, 345
defined, 11
dot product of, 12
intermediate, 346
interpolating, 149
log, 13
multiplication of, 11, 12, 13
multiplicative inverse of, 11
norm of, 11
relationship to rotations, 13-15
to rotation matrix, 17
rotation matrix to, 17-18, 150
source code, 11
spline interpolation of, 346-347
subtraction of, 11
unit, logarithm of, 12
unit, power of, 12
queues
circular, 386, 388
empty, 388
unprocessed blocks in, 388

R

range-based fog, 109-110
rasterization, 113-132
acceleration, 80
circle, 117-119
defined, 80, 113
ellipse, 119-124
interpolation during, 126-132
line, 113-117
perspectively correct, 82
triangle, 83, 124-126, 130-131

rasterizers
defined, 80
inverse mapping, 83
rays
direction, 177
intersection with bounding volume,
170
intersection with box, 177-178
intersection with sphere, 172
intersection with triangle, 182-183
lines to, 43
origin, 177
to rays, 43-49
to rectangles, 60
to segments, 43
to triangles, 57
rectangle mesh, 328
rectangles
Bézier, 288
closest point on, 57
linear components to, 58-60
points to, 57-58
rays to, 60
rectangles to, 61
segments to, 60
triangles to, 61
rectangular patches
Bézier, 293-297
defined, 288
nonparametric B-spline, 302-304
subdivisions of parameter space for,
307
See also surfaces
recursion formula, 281
recursive subdivision, 284-285
reference counting, 453459
reflection vector, 428
region masks, 424
regions, 414-416
adjacent, 414
bounding planes of, 415
convex, 416
nonconvex, 414, 416
See also portals
rejection testing, 187
render state, 146
defined, 143



global, 155
hierarchical maintenance of, 146
updating, 148, 155-156

renderers

building, 79
defined, 79
responsibilities, 79-80

rendering

block, 383-384
costs, 97, 98
time, 80

rendering scene graph, 157-167

algorithm, 166-167

camera click, 157

culling by capsules, 160-161
culling by cylinders, 163-164
culling by ellipsoids, 164-165
culling by lozenges, 161-162
culling by oriented boxes, 159-160
culling by spheres, 157-159

See also scene graphs
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motion equations, 246-248
processing, 245-250

rotation, 8-9
about x-axis, 18
about y-axis, 18
about z-axis, 18
angle, 8, 14
quaternions relationship to, 13-15
unit length axis, 8
See also transformations

rotation matrix, 8, 246
about x-axis, 18
to angle-axis, 16
angle-axis to, 15-16
axes storage as columns of, 150
conversion (angle-axis), 15-16
conversion (quaternion), 17-18, 150
factoring, 19-24
in minimum-volume box, 31
to quaternion, 17-18
quaternion to, 17

reusability, 439-440
revolute joint, 350

Runge-Kutta fourth-order method, 498
Runge-Kutta with adaptive step, 498—499
Richardson extrapolation, 491-493 run-time type information, 444-451
right-handed coordinate system, 10, 68, macro support, 450—451
86 multiple-inheritance systems,
ripmaps, 108 447-450
Romberg integration, 260, 491-495 single-inheritance systems, 444—447
method, 494495 See also object-oriented infrastructure
Richardson extrapolation, 491-493

source code, 491

trapezoid rule, 493 S

See also integration saving data, 459-460
root finding, 485-490 scaling, 8

bisection, 486, 490 scan line masks, 423-424

methods in many dimensions, scene graphs

489-490

colliding objects and, 142

methods in one dimension, 485489
Newton’s method, 486, 490
polynomial roots, 486—489
See also numerical methods
root node, 141, 142
defined, 141
world transform of, 145
See also nodes
rotating objects
closed-form algorithm, 248

constructing, 413

content organization, 142
defined, 142

hierarchical organization, 142
implementation, 147
management, 3, 4,7, 79, 141-167
rendering, 157-167

subtree, 142

traversal of, 157

updating, 147-156



screen coordinates
aspect ratio, 90
defined, 89
mapping to, 89-90
transformation to, 90
screen dimensions, 89
screen space
coordinates, 90
data conversion to, 80
distance measurements, 9091
distance threshold, 375
linear polarization in, 129
projected vertices in, 99
segments, squared length of, 90-91
transformation, 90
visibility determination method, 425
semi-infinite square column, 58
shading, 101-102
defined, 101-102
flat, 102
Gouraud, 102
models, 102
Phong, 102
shared objects, 453-459
simplification
block-based, 375-381
defined, 371-372
fine-level, 370
vertex-based, 373-375, 385-386
sine approximations, 504-505
single-inheritance systems, 444—447
derived classes, 447
elements, 444
hierarchy illustration, 445
macros, 450451
root class, 449
skew-symmetric matrix, 8, 15
skin, 356-357
controller, 357
defined, 356
skinning, 356-358
bone hierarchy, 356
defined, 342, 356
progression of events, 357
source code, 356
SmallTalk, 441

smart pointers, 453
as function parameters, 458
reference count and, 457
templates, 454455
software
commonality, 440
maintenance, 436-437
modularity, 437-439
naming conventions, 442—443
quality, 436437
reusability, 439-440
sorting
defined, 411
octree, 413
polygons, 420
quadtree, 413
spatial, 411-426
source code
axis-aligned boxes, 29
Bézier curves, 261
Bézier cylinder surfaces, 301
Bézier cylinder surfaces subdivision,
328
Bézier rectangle patches, 294
Bézier rectangle patches subdivision,
306
Bézier triangle patches, 297
Bézier triangle patches subdivision,
322
billboards, 360
bisection, 486, 490
capsules, 33
circle to circle in 3D, 69
continuous level of detail (CLOD),
363
culling by capsules, 160
culling by cylinders, 163
culling by ellipsoids, 164
culling by lozenges, 161
culling by oriented boxes, 159
culling by spheres, 158
curvatures for implicit surfaces, 290
curvatures for parametric surfaces,
289
cylinders, 36
differential equations, 496
discrete level of detail, 361



eigensystems, 472
ellipsoids, 37
Euler angles, 18
fast function evaluation, 503
fitting circles to 2D points, 476
fitting points with Gaussian
distribution, 29
fitting quadratic curves to 2D points,
480
fitting quadric surface to 3D points,
481
fitting spheres to 3D points, 478
intersection of capsules and lines, 190
intersection of capsules and planes,
196
intersection of cylinders and lines, 191
intersection of cylinders and planes,
199
intersection of ellipsoids and lines,
192
intersection of ellipsoids and planes,
201
intersection of linear component and
box, 172
intersection of linear component and
capsule, 179
intersection of linear component and
cylinder, 181
intersection of linear component and
ellipsoid, 182
intersection of linear component and
lozenge, 180
intersection of linear component and
sphere, 171
intersection of linear component and
triangle, 182
intersection of lozenges and planes,
197
intersection of oriented boxes and
lines, 190
intersection of oriented boxes and
planes, 195
intersection of oriented boxes and
triangles (dynamic object-object),
223
intersection of oriented boxes and
triangles (static object-object), 207
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intersection of oriented boxes
(dynamic object-object), 218

intersection of oriented boxes (static
object-object), 206

intersection of spheres and lines, 188

intersection of spheres and planes,
193

intersection of spheres, capsules and
lozenges (static object-object), 204

intersection of spheres, capsules,
lozenges (dynamic object-object),
215

intersection of triangles and lines, 192

intersection of triangles and planes,
202

intersection of triangles (dynamic
object-object), 232

intersection of triangles (static
object-object), 210

inverse kinematics, 348

key frame node update, 347

Kochanek-Bartels splines, 271

linear component to linear
component, 41

linear component to rectangle, 58

linear component to triangle, 53

linear fitting of points, 473

linear resampling of triangle mesh,
398

linear systems, 470

lozenges, 34

merging capsules, 151

merging cylinders, 152

merging ellipsoids, 152

merging lozenges, 152

merging oriented boxes, 149

merging spheres, 148

minimum-volume box, 31

minimum-volume sphere, 28

morphing, 434

natural splines, 264

nonparametric B-spline curves, 268

numerical ordinary differential
equation solver, 249

object-oriented infrastructure, 435

particle systems, 433

planar fitting of points, 475



source code (continued)
point to circle in 3D, 68
point to ellipse, 65
point to ellipsoid, 66
point to linear component, 38
point to quadratic curve/surface, 67
point to rectangle, 57
point to triangle, 49
polynomial roots, 486
polynomial systems, 470
quadratic resampling of triangle
mesh, 399
quadric surfaces, 304
quaternion calculus, 343
quaternions, 11
rectangle to rectangle, 61
Romberg integration, 491
scene graph rendering algorithm, 166
scene graph updating, 153
skinning, 356
sphere centered at average of points,
27
sphere containing axis-aligned box,
26
spherical cubic interpolation, 345
spherical linear interpolation, 343
spline interpolation of quaternions,
346
subdivision, 276
subdivision of spheres and ¢llipsoids,
329
terrain, 369
transformations, 8
triangle to rectangle, 61
triangle to triangle, 61
tube surfaces subdivision, 339
space curve, 259-260
defined, 259
Frenet frame, 259
torsion, 259
See also curves
spatial sorting, 411-426
special effects, 427-434
bump mapping, 429-430
environment mapping, 428-429
lens flare, 427-428
morphing, 433-434

particle systems, 432-433
projected lights, 430—431
projected shadows, 431-432
volumetric fogging, 430
spectral radius, 487
specular color, 102
specular light, 104
sphere mapping, 429
sphere subdivision, 328-338
algorithm, 331-339
algorithm data structures, 329-331
initial mesh, 329, 330
midpoint projection phase, 331
working set of vertices, edges,
triangles, 332
See also subdivision
spheres, 8, 26-28
bounding, computation, 26
center, 171, 188, 193
centered at average of points, 27
containing axis-aligned box, 26-27
culling by, 157-159
defined, 26
dynamic, 188-189, 193-194
exactly two, three, and four points, 28
first point of contact, 193
intersection of capsules with, 205
intersection of linear component
with, 171-172
intersection of lines with, 188189
intersection of lozenges with, 205
intersection of planes with, 193—194
intersection of spheres with, 204
merging, 148-149
minimum-volume, 28
quadratic equation, 171
radius, 171, 188, 193
See also 3D objects
sphere-swept volumes
distance calculators relationship, 204
distance calculators relationship
(when second object moving), 215
examples of, 204
intersection of, 204-205
spherical cubic interpolation, 345
spherical linear interpolation, 343-344
boundary conditions, 344



defined, 344
derivative, 344
extra spins, 344
formula construction, 343
source code, 343
for unit quaternions, 344
spline interpolation, of quaternions,
346-347
splitting methods, 490
spot lights, 100
sprites, 360
square root/inverse square root, 503-504
squared-distance function, 49, 53, 58
SRT-transforms, 145
standard camera model, 85-87
eye point, 85
illustrated, 85
view frustum, 85-86
viewport, 85
See also camera models
startup/shutdown, 464-468
static object-object intersections,
203-214
defined, 203-204
oriented boxes, 205-207
oriented boxes and triangles, 207-210
spheres, capsules, lozenges, 204-205
triangles, 210-214
See also intersections
steady-state distribution of heat, 502
steepest descent search, 483
stencil buffer, 432
stitching process, 393
streaming, 459464
defined, 459
loading data, 460
saving data, 459-460
support, 461-464
See also object-oriented infrastructure
Sturm sequences, 488—489
subdivision, 276-285
by arc length, 276-277
of Bézier cylinder surfaces, 328
of Bézier rectangle patches, 306-321
of Bézier triangle patches, 321-328
of child blocks, 318
with cracking, 316, 318
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defined, 276
of ellipsoids, 328-338
fast, for cubic curves, 283-285
height fields, 382
by midpoint distance, 277-278
by minimizing variation, 282-283
nonuniform, 313-316
partial, 317-320
points, 276
of polyhedron, 329
quadtree, 317
recursive, 284-285
source code, 276
of spheres, 328-338
triangle, 405
of tube surfaces, 339-340
by uniform sampling, 276, 277
uniform, 306-313
by variation, 278-282, 284
See also curves
sublattice calculations, 397
subtraction, quaternions, 11
subtrees, 142
subtriangles, 406, 409
surface area, 288
surface attributes, 99-112
defined, 99
at intersection, 170
selecting, 366—368
See also attributes
surfaces, 287-340
Bézier cylinder, 288, 301-302
Bézier rectangle patches, 293-297
Bézier triangle patches, 297-301
curved, 258, 287
cylinder, 301
definitions, 288-289
developable, 301
generalized cylinder, 301-302
implicit, 288, 290-293
parametric, 289-290
quadric, 288, 304-305
rectangular patches, 288
of revolution, 306
special, 293-306
swept, 306
triangular patches, 288
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surfaces (continued)
tube, 288, 306

swept surfaces, 306

switch node, 361

systems of equations, 469472
linear systems, 469470
polynomial systems, 470-472
See also numerical methods

T

tangent approximations, 505
Taylor series, 284
templates, 451-453
defined, 451
example, 451
smart pointer system, 454-455
uses, 452—453
using, 451-452

See also object-oriented infrastructure

temporary instances, 458-459
terrain, 369—409
algorithm, 385-392
block rendering, 383384
continuous height, 397
data, 369
height calculations, 397
height field, 370, 386, 392
issues, 392-397

memory usage problem, 394-395

primitive blocks, 370
source code, 369
systems, 369, 392
topology, 370-373
vertex attributes, 395-396
vertex dependencies, 381-383
See also blocks

terrain pages
defined, 393
memory usage, 394-395
predictive loading, 394
problems, 393
stitching process, 393
unstitching process, 393, 394
working set, 394

tessellation, 392

texels
defined, 105
value selection, 107-108
texture coordinates, 105
defined, 105
lattice point, computing, 106
mixed, 105
modes, 105
wrapped, 105
textures, 105-108
boundaries, hiding, 105
cylindrical, 105
defined, 105
filtering, 106
mipmapping, 106—108
multitexture, 108, 111-112
toroidal, 105
vertex colors combination, 111
See also attributes
top-level objects, 459
torsion, 259
transformations, 7, 8-10
homogeneous, 9-10, 87
Householder, 472
linear, 8, 13-14
model-to-view, 8789
orthonormal, 14
rotation, 89
scaling, 8
to screen coordinates, 90
screen space, 90
source code, 8
translation, 9
view, 87
transforms, 144-145
defined, 143
local, 144-145
SRT, 145
updating, 147
world, 145
translation, 9
transparency, 108—109
controlling, 108
fogand, 111
trapezoid rule, 493
tree generation algorithm, 250-251
tree manipulator, 355



tree polygons, 358
trees, 143-147
binary, 383
bounding volume, 426
BSP, 417-426
defined, 141
illustration, 143
nodes, 141
OBB, 244-245
subtrees, 142
vertex dependency, 388
visibility, 425
world, 245
triangle meshes, 132133, 250-251
clipping with, 133-136
defined, 132
height fields from, 398409
linear resampling of, 398-399
quadratic resampling of, 399-409
vertices storage, 132
triangle patches
Bézier, 297-301
defined, 288
parameter space subdivision, 322
See also surfaces
triangles
adjacent, 335-337, 401
back facing, 93
Bézier, 401-402
clipped, configurations, 135
coefficient, 297
coplanar, 211
domain edges, 50
dynamic, 192, 202-203

fitting, with Gaussian distribution, 32

front facing, 93

H-adjacency for, 325, 326

hypotenuse, 324

inside/outside of frustum, 93

intersection of line and, 183

intersection of line segment and,
182-183

intersection of linear component and,

182-183
intersection of ray and, 182-183
interval overlap test, 210
leaf node representation, 169
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line intersection with, 192

linear components to, 53-57

lines to, 54-56

mesh, 250

nonintersection test, 208, 209-210,
213-214

nonparallel, 211

normal vector, 93

normals, 211

oriented boxes intersection of oriented
boxes and, 207-210

plane intersection with, 202-203

points to, 49-53

project to triangles, 83

projections of vertices relative to line
origin, 208

rasterization, 83, 124126, 130-131

rasterized, 100

rays to, 57

to rectangles, 61

segments to, 57

separating axes, 207-209, 211-212

splitting configurations, 94

subdivision, 324, 405

subdivision pattern, 327

subtriangles, 406, 409

in three dimensions, 210

to triangles, 61

vertices, 192

vertices, projection distances, 211, 231

as white object on black background,
124

triangles and triangles intersection

additional axes, 232

coefficients for unique points, 243

constant velocities, 233

dynamic object-object, 232-243

finding a point of intersection,
238-243

finding first time of intersection,
233-238

interval end points, 238-239

relative velocities, 233

separating axes, 232

static object-object, 210-214

vertices projection, 239, 240, 242

See also intersections
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Index

tube surfaces, 306
defined, 288, 306
parameter space, 339
subdivision, 339-340
tessellation of, 339
See also surfaces

U

unconstrained recursion, 314-315
undershooting, 272
uniform scaling, 8
uniform subdivision, 276, 277
Bézier cylinder surfaces, 328
Bézier rectangle patches, 306-313
Bézier triangle patches, 322-323
recursive, 310-313
See also subdivision
unstitching process, 393, 394
updating
animation, 148
bounding volumes, 147
child nodes, 155
key frame nodes, 347
render state, 148, 155-156
scene graphs, 147-156
transforms, 147
vertex dependencies, 388
world transforms, 155
updating scene graph, 147156
algorithm, 152-156
animation state, 148
bounding volumes, 147
downward pass, 147, 155
merging two capsules, 151
merging two cylinders, 152
merging two ellipsoids, 152
merging two lozenges, 151-152
merging two oriented boxes, 149—
150
merging two spheres, 148-149
recursive pass, 147
render state, 148
transforms, 147
upward pass, 147-148
See also scene graphs

\"

vertex attributes, 99-112
computing, 136-137
defined, 99
terrain, 395-396
See also attributes
vertex clustering, 363
vertex color, 99-100
defined, 99
texture combination, 111
use of, 100
See also attributes
vertex dependencies, 317, 381-383
binary tree, 383
for even/odd blocks, 382
for H-adjacent triangles, 327
triangulation after, 382
updating, 388
vertex-based simplification, 373-375,
385-386
close terrain assumption, 374-375
defined, 373
distant terrain assumption, 373-374
no assumption, 375
See also simplification
view frustum
bounding volume intersection with,
92, 157
clipping against, 173
defined, 85
defining, 157
skewed, 85-86
standard camera model, 85-86
world, 157
view plane
computation cost, 97
defined, 80
display, 84
fixed, 81
perspective projection on, 81
projection onto, 84
view space, 79-80
clipping in, 98-99
data conversion from, 80
model space coordinate
transformation to, 87-88
transforming model space to, 98



transforming world space to, 97

visibility determination method, 425

view transformation, 87
view volume, 84
viewport, 85
defined, 84
standard camera model, 85
visibility
flags, 134
graphs, 412
lists, 413
through portals, 414
tree, 425
visibility determination, 424-425
defined, 424
screen space method, 425
view space method, 425
See also binary space partitioning
(BSP) trees
visitation flag, 416
volumetric fogging, 110, 430
VTune, 139
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w

world coordinate system, 80
world plane, 97
world space

clipping in, 97

transforming, to view space, 97
world transforms, 145

defined, 145

downward recursive transversal and,

146

of root node, 145

updating, 155

See also transforms
world tree, 425

z

z-buffers, 412
zero matrix, 8
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ABOUT THE CD-ROM

Contents of the CD-ROM

The accompanying CD-ROM contains source code that illustrates the ideas in the
book. A partial listing of the directory structure is

/Wild Magic 0.4
LinuxReadMe.txt
WindowsReadMe.txt
/Linux

/WildMagic
/Applications
/Include
/Library
/Licenses
/Object
/Sourcefree
/SourceGameEngine

/Mindows

/WildMagic
/Applications
/Include
/Library
/Licenses
/Sourcefree
/SourceGameEngine
/Tools

The read-me files contain the installation instructions and other notes. The path Win-
dows/WildMagic contains the distribution for use on a computer whose operating
system is one of Windows 95, Windows 98, Windows NT, or Windows 2000. The path
Linux/WildMagic contains the distribution for use on a computer whose operating
system is Linux. Compiled source code is already on the CD-ROM. The application
directories, located in App1ications, contain compiled executables that are ready to
run.

The distributions are nearly identical. The Windows text files have lines that are
terminated by carriage return and line feed pairs whereas the Linux text files are ter-
minated by line feeds. The Windows distribution contains an OpenGL renderer and
a Win32 application layer, both dependent on the operating system. The Windows
distribution also has a rudimentary software renderer and it has a tool for convert-
ing bitmap (*.bmp) files to Magic image files (*.mif). Both the Windows and Linux
distributions contain an OpenGL renderer and an application layer that is dependent
on GLUT. The Windows code is supplied with Microsoft Developer Studio Projects
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(*.dsp) and Microsoft Developer Studio Workspaces (*.dsw). The Linux code is sup-
plied with make files. The other portions of the distributions are the same.

License Agreements

Each source file has a preamble stating which of two license agreements governs the
use of that file. The license agreements are located in the directory Licenses. The
source code in the path SourceGameEngine is governed by the license agreement
Licenses/3DGameEngine.pdf. The remaining source code is governed by the li-
cense agreement Licenses/free.pdf. All source code may be used for commercial
or noncommercial purposes subject to the constraints given in the license agreements.

Installation on a Windows Sytem

These directions assume that the CD-ROM drive is drive D and the disk drive to
which the contents are to be copied is drive C. Of course you will need to substi-
tute the drive letters that your system is using. Copy the CD-ROM subtree D:\Wild
Magic 0.4\Windows\WildMagic to C:\SomePath\WildMagic. Since the files are
copied as read-only, execute the following two commands, in order, from a com-
mand window: cd C:\SomePath\WildMagic and attrib -r *.* /s, The dis-
tribution comes precompiled, but if you want to rebuild it, open the workspace
C:\SomePath\WildMagic\BuildA11.dsw and select the BuildA11 project (the
default one that shows up in the project list box is BezierSurface). Build
both the Debug and Release configurations. This builds the Sourcefree,
SourceGameEngine, and Application source trees, in that order. Each of the
directories SourceFree, SourceGameEngine, and Applications has a top level
workspace to build only those pieces.

Installation on a Linux System

Mount the CD-ROM drive by: mount -t 1509660 /dev/cdrom /mnt. If your de-
sired top level directory is /HomeDirectory/SomePath (substitute the actual path
to your home directory), and if your current working directory is /HomeDirec-
tory/SomePath then use cp "/mnt/Wild Magic 0.4/Linux/WildMagic" -r .
to generate the source tree /HomeDirectory/SomePath/Wi1ldMagic. Note that “.”
is the last argument of “cp”. Since the files are copied as read-only, execute the fol-
lowing two commands, in order, (assumes your current working directory is still
/HomeDirectory/SomePath): cd WildMagic and chmod a+rw -R *, The distri-
bution comes precompiled, but if you want to rebuild it, run make on the makefile in
the Wi1dMagi c subdirectory. Build the Debug configurationbymake CONFIG=Debug
and the Release configuration by make CONFIG=Release. Each of the directories
Sourcefree, SourceGameEngine, and Applications has a top-level makefile to
build only those pieces.

You need some form of OpenGL and GLUT on your machine. I downloaded
Mesa packages from the Red Hat site, Mesa-3.2-2.1686.rpm Mesa-devel-3,202
.1686.rpm, and Mesa-glut-3.1-1.1686.rpm, and used the Gnome RPM tool
to install them. I told the tool to ignore the fact that GLUT is 3.1 and Mesa is
3.2, The installation puts the libraries in /usr/X11R6/1ib and the headers in
/usr/X11R6/include. The makefiles for applications use the libraries 11bGL. 1a,
11bGLU.Ta,and 1ibglut.la.
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Eclipse is a trademark of Random Games.
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Glide is a trademark of 3Dfx Interactive, Inc.
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LIBRARIES ON THE CD-ROM
(alphabetical order, related chapters and sections)

Animation (9): Key frame animation, inverse kinematics, skin and bones.

Application: Application layer that hides the underlying operating system, command line parsing, binding
of keyboard to changing a transformation.

Approximation (15.3): Fitting of point sets with circles, ellipses, ellipsoids, Gaussian distributions, lines,
planes, paraboloids, quadratic curves, quadratic surfaces, spheres.

Containment (2.4, 6.7): Bounding volume trees (box, capsule, lozenge, sphere), containment by circles,
boxes, capsules, cylinders, ellipsoids, lozenges, spheres.

Core (2.1, 2.2, 2.3, 2.4): Geometric objects (box, capsule, circle, cylinder, disk, ellipse, ellipsoid, line,
lozenge, parallelogram, plane, ray, rectangle, segment, sphere), vector and matrix algebra, quater-
nions, polynomials, colors, strings, template container classes.

Curve (7): Abstract curve class (position, derivatives, tangents, speed, arc length, reparameterization by
arc length, subdivision algorithms), 2D curves (curvature, normals), 3D curves (curvature, torsion,
normals, binormals), polynomial curves, Bézier curves, B-spline curves, cubic spline curves, tension-
bias-continuity curves.

Detail (10): Discrete level of detail, continuous level of detail.

Distance (2.5): Distance between pairs of objects of type point, segment, ray, line, triangle, rectangle,
parallelogram, ellipse, ellipsoid, quadratic curve, quadratic surface.

Engine (3.1, 3.2, 3.3, 3.4.1, 4, Appendix A): Scene graph management (tree structures, internal nodes, ab-
stract leaf node, abstract geometric leaf node, point primitives [particles], line primitives [polylines],
triangle primitives [meshes], bounding spheres), render state (alpha blending, dithering, fog, light-
ing, material, shading, texturing, multitexturing, wireframe, z-buffering), abstract renderer layer,
camera and view frustum, object-oriented infrastructure (abstract object base class, run-time type
information, streaming, smart pointers for reference counting, cloning for mixed shallow-deep copy-
ing of objects, controllers for time-varying quantities).

Intersection (4.3,5,6): Picking (segment, ray, line versus box, capsule, cylinder, ellipsoid, lozenge, sphere,
triangle), culling (plane versus box, capsule, cylinder, ellipsoid, lozenge, plane, sphere), collision (box,
capsule, lozenge, sphere, triangle).

Numerics (Appendix B): root finding via bisection, eigensolver for symmetric matrices, fast function
evaluation, integration, linear system solving, systems of ordinary differential equations (Euler,
midpoint, Runge-Kutta), minimization without derivative calculations, special functions.

OglRenderer (3): OpenGL-based renderer (supports hardware acceleration).
SoftRenderer (3): Software renderer.
Sorting (12): Portals, BSP trees.

Surface (8): Abstract surface class (metric tensor, curvature tensor, principal curvatures and directions),
parametric surfaces (position, derivatives, tangents, normals), implicit surfaces, polynomial surfaces.

Terrain (11): Continuous level of detail for height fields.
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Plate 1

The images are screen shots from
the Surface Sample, courtesy of
Numerical Design, Ltd. The top
image is a rendering of a creature
built as a mesh of Bézier triangle
and rectangle patches. The tessel-
lation is based on uniform sam-
pling in parameter space. The
bottom image is a wireframe
view to show that the tessellation
is independent of the mesh cur-
vature,

Plate 2

The images are screen shots from
the Surface Sample, courtesy of
Numerical Design, Ltd. The top
image is a rendering of a creature
built as a mesh of Bézier triangle
and rectangle patches. The tessel-
lation is based on a continuous
level of detail algorithm that
depends on mesh curvature and
view frustum parameters. The
bottom image is a wireframe
view to show that the tessellation
is dependent on the mesh curva-
ture (low tessellation in flat
regions, high tessellation in
curved regions).
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Plate 3 The images are screen shots from the Dancer Demo, courtesy of Numerical Design, Ltd.

See page 357 for detailed comments.



Plate 4 I'he images are screen shots from the Eclipse Demo, courtesy of Random Games, See
page 358 for detailed comments.



Plate 5 The images are screen shots from the Terrain Flyer Demo, courtesy of Numerical Design,
Ltd. See page 392 for detailed comments.

Plate 6 The images are screen shots from the Priority 12 Demo, courtesy of Numerical Design,
Ltd. The images are taken at two separate times and show how the direction of the flare
changes. The flare was generated by using five alpha-blended grayscale textures.



Plate 7 The words “EMBOSSED TEXT" were generated as white letters on a black background.
To generate a derivative-style bump map, the directional derivative of the white-on-black
image was computed in the direction (2,1) and added back to the original image, a
process called image sharpening. The values of the sharpened image were used to control
the color that was applied to the text.

Plate 8 The image is a screen shot from the Explosion Demo, courtesy of Numerical Design, Ltd.
The volumetric fog layer is generated by the intersections of rays from the eye point to
terrain vertices with a slab of finite thickness but infinite extent.



Plate 9 The image is a screen shot from the Advanced Multitexture Sample, courtesy of Numeri-
cal Design, Ltd. See page 432 for detailed comments.

Plate 10 The image is a screen shot from the Eclipse Demo, courtesy of Random Games. See page
433 for detailed comments.



Plate 11 The images are screen shots from the Eclipse Demo, courtesy of Random Games. See
page 433 for detailed comments.



Plate 12

The images show various time samples of a morphed face. The data set consists of five
targets, each having 1330 vertices, leading to 1330 sets of five vertices. At a selected time
each set of vertices is blended using a set of convex weights to generate an output vertex
for that time. Initially, the first few targets have the most weight in the morph. Later, the
last few targets have the most weight.



