Access Database Design & Programming, 3rd Edition

Steven Roman
Publisher: O'Reilly

]] £ Third Edition January 2002

; : y ISBN: 0-596-00273-4, 448 pages
AcCCess
Database

Thsedger & FProgramming

ORELLY”
When using GUI-based software, we often focus so much on the interface
L NOTES | that we forget about the general concepts required to use the software
effectively. Access Database Design & Programming takes you behind the
Copyright details of the interface, focusing on the general knowledge necessary for
Table of Contents Access power users or developers to create effective database applications.
Index The main sections of this book include: database design, queries, and
Full Description programming.
About the Author
Reviews
Reader reviews
Errata

1 N _—>
FlyrHeart.com

TEAM FLY PRESENTS

http://www.oreilly.com/catalog/accessdata3/

Table of Content

TaDIE OF CONTENT ...t sr e 2
= = USSR 7
Preface to the Third Edition...........ooeiiiiceee s 7
Preface to the SecoNd EitiON.........coeo i 8
The BOOK'S AUdIENCE......c..oiiiiiitirierieeee ettt st 11
The SAMPIE COUE........coieiee et nre s 11
Organization Of ThiSBOOK.........ccccceiieiiiieiicce e 11
ConventionSiN THIS BOOKc.coiiiiiiieiiiie ettt 14
Obtaining Updated INfOrmMation............ccceceveeieieeieere e esee e 15
ReqUESE FOr COMIMENTS........coiiiiieiiesieeie ettt st sre s 15
ACKNOWIEAGMENTS.......eeieeiecie et e st e s te e s e sae e reeneeeneenns 15
Part 11 Datalase DESIGN.......coiiiierieiiesie ettt st ae et nb e nnes 17
Chapter 1. INtrOAUCTIONeeieieesieesie e eee e eee e e e ste e sse e reesaeeaesneenseenee e 17
1.1 DAADASE DESIGN.....eiiiiieiiieiie ettt sttt st st sb e bt nns 17
1.2 Database ProgramiMing.........cceeceeeereeseseeseeseeseesseesessseessesssesseessesssssssessessesses 23
Chapter 2. The Entity-Relationship Model of aDatabase..........ccccceveeivveenerieenieeeene 24
2.1 What 1SaDatalase?........c.coeriiiieierese s 24
2.2 Entitiesand Their AttriDULES..........oco i 24
2.3 KeYS anNd SUPEIKEYS........ecueerieeieeiesieete s siesee e ste et ae e e sseeaesneestesneesreenneens 28
2.4 Relationships Between ENtitiEs.........ccvoiiiiierieneseee e 29
Chapter 3. Implementing Entity-Relationship Models. Relational Databases............. 31
3.1 Implementing ENLITIES........cccoiiiieeieeiesee e 31
3.2 A SNOI GIOSSAIY ...c.veeveeeiecteeie ettt et e et sreesteenaesne e teeneesreenseens 33
3.3 Implementing the Relationshipsin a Relational Database.............cccccceevvvenenne 35
3.4 The LIBRARY Relationa Datahase..........c.ccoverireririenierenesesese s 39
5 INAEX FIIES....eee e et 44
BB NULL VAIUES.....c.eiiiiiietieieeeee ettt bbb 46
Chapter 4. Database Design PrinCIPIES.ooveiiiiiieieeee e 47
L I = [0 7= oy a7
4.2 NOIMEI FOMIS ...ttt b et ne e 49
A3 FIrst NOMM@l FOMMN ...ttt s 49
4.4 Functional DEPeNENCIES.........ccuriiriireeieseese et et 50
4.5 Second NOIMEl FOMN......coiiiiiiiiieiee et 51
4.6 Third NOrmMal FOMM......coiiiieee et 53
4.7 Boyce-Codd NOrmal FOrMccuvieeiiee et 54
Tl N\ ol 0= [z (o] o [P R PP RR 55
Part [1: Database QUENTEScceeeeeecieecree ettt e sbe e sae e sb e e sareesbeesaeeebeesneesareas 62
Chapter 5. Query Languages and the Relational Algebra..........ccoceveeivievenieneeinne 62
5.1 QUENY LANQUAGESceeiuriiiiiieaiiieesitieesieeesseessseessssessssseesssseesseessaseeesnseessssessnsneas 63
5.2 Relational Algebra and Relational CalCulUus...........c.covieiiieenieiinieeeeee 64
5.3 Details of the Relational Algebra............ccoovevieieiieii e 66
Chapter 6. Access Structured Query Language (SQL) ..c..evvereereneeneeie e 91
6.1 INtroduction tO ACCESS SQLeecviiiiieiieerie ettt ettt e e sre e e sreereas 91
6.2 ACCESS QUENY DESIGN ...ttt sttt st 91
2 S

FlyrHeart.com 4

TEAM FLY PRESENTS

6.3 ACCESS QUENY TYPIESeeeiieieteeeieeetee ettt et st s e b ae e s neesae e saneesneesnnas 92

6.4 WHY USE SQL? ...ttt sttt st 94
5.5 ACCESS SQL ... uteieieiieeitiie ettt ettt ste e sre e st e e e e ebe e e sae e e sbe e e eare e e naae e eraeeereeeereeaas 95
6.6 The DDL Component 0f ACCESS SQLccvuveeerueerierierieeieeseeseeeeesseeseesseesseeeens 96
6.7 The DML Component Of ACCESS SQLccorerirrerrierienieeie e see e e 100
Part [11: Database ArChiteCIUIe ..o e 123
Chapter 7. Database System ArchiteCtureccooeeiieeiinienee e 123
8 T) VA (00 = 1 S 123
7.2 DataDase SYSIEIMS........ooiiiiiieieie e 124
7.3 Database Management SYSLEIMS..........ccevveiereereeie e eee e 126
TATREJIEE DBIMS.... .ottt st sne e 126
7.5 Data Definition LanQUABOESccveeerieerieeiesieeseeeesieeseeseesseeeesseessessesneenseeneas 128
7.6 Data Manipulation LanQUAOgESccveeuerierieeiieneesieenee e siesee e saesessseeseesneas 129
7.7 HOSE LANQUAJES......cooiiieiiiie ettt sttt s sne e nabe e nnneas 130
7.8 The Client/Server ArchiteCture.........oooovvieeiiie e 131
Part 1V: Visual BasiC for APPliCatioNS..........ccveieiiereeiie et 133
Chapter 8. The Visual Basic EAItor, Part 1. 133
8.1 The ProjeCt WINUOWccceiieiieieesieeie et see st ee et eae e nns 134
8.2 The Properti@S WINAOWcoieiiiiiiiiiie et 136
8.3 The COU WINUOWcceiuiriiriiriieieieee ettt st 137
8.4 The Immediate WINUOWcccoeiiiiiiiiie et 138
8.5 Arranging WINAOWS........cccueieerieeieseesie et esaeseesaeesae e steeae e sseesesneesseeneesns 139
Chapter 9. The Visual Basic EAItor, Part 11 ..o 141
9.1 NavigatiNg the IDEcc.ocee et nnan 141
0.2 GELLING HEIP. ..t 142
9.3 Creating @ProCEUUIE.c.cceeiieeeeseese ettt ee s ee et ae e e e e eesneennas 142
9.4 Run Mode, Break Mode, and Design Mode...........ccoceeierinneenenieeneene e 143
O BITOIS....eeeee et 144
XSl B I= o 18 o o] oo TSR 147
Chapter 10. Variables, Data Types, and ConStants...........ccceeeveereeieeseenesieeseeseeennns 150
101 COMIMENES ...ttt ettt et sae et e e be e s eeesbe e s e e e sbeesaseeneesnneeseesnneeneesnnas 150
10.2 Lin€ CONLINUALTONcoueeiiieriesiesiesiesiee ettt s 150
10O.3 CONSLANES.eeeieeeeieeeiee ettt e et e be e s e e e sbe e saseenbe e snneenseesnneeneesnnas 150
10.4 Variables and Data TYPESccovevereeriereeseeseeseesieessesseesseseesseessesseessesssessenns 153
1O.5 VBA OPEIELIOIScceeeieieieeiee ettt ee et sse e sreesseesseesne e aseesseesaneeneesnnas 168
Chapter 11. FUNCtions and SUDIOULINES.........ccueiueeieereeie e e eee e sie e e sseseesneeneas 170
11.1 Caling FUNCHIONS.........oiiiiieie ettt sttt re e s 170
11.2 Caling SUBIOULINES.........ccvevieieeeesieeieeseeseete e te e sre e e e ee e e sneeeeas 171
11.3 Parameters and ATQUMENEScoiueruireerieeeesieesieseesieeseeseestesssesseessessesseeseens 172
114 EXiting @ PrOCEAUIE.........eee ettt nne s 176
11.5 Public and Private PrOCEAUIESooeeiirierieeie et 176
11.6 Fully Qualified Procedure NamES..........ccccccereereiieesiese e e see s eee e 177
Chapter 12. Built-in Functions and Statementsccooeverrerienieeseeie e 178
12.1 The MSOBOX FUNCLIONcocuieiecie et ee s 179
12.2 The INPUEBOX FUNCLION.......cceiiiiriiiiesiee ettt e 181
12.3 VBA StiNG FUNCLIONS.........ccuieieieesieeieeseesieeie e e eseesseesseese e sseeeesnaesseenens 181
3 S

FlyrHeart.com 4

TEAM FLY PRESENTS

12.4 Miscellaneous FUNCLIONS and StatemMENESoeeeeeeeeeee e 186

12.5 Handling Errorsin Code.........covieeiieiieiieseee et 189
Chapter 13. Control SEAtEMENTS........ccoiiierereeee e e 197
13.1The lf ... Then SLaemMENT ... 197
(G I TSN e g I o o OSSR 197
13.3 The EXit FOr SEAEMENEcceiereeieerierie et 198
13.4 The FOr EQCN LOOP ..ccuviieiieeie ittt 199
(GRS I Lo N I o o U S 200
13.6 The Select Case SEAeMEN.........cociiieiieeereeee e e 201
13.7 A Final NOtE ONVBA ... 202
Part V: Data ACCESS ODJECES.coiuiiieiieeiie et sttt ee e nee e 205
Chapter 14. Programming DAQO: OVEINVIEWcccceeeereerieseeseeieeseeseeseesseesessseensens 205
I RO o = o £ USRS 205
14.2 The DAO ODJeCt MOGEL........c.cooiiiiiiicereeeee e 211
14.3 The Microsoft Access Object MOdE!ccooeierinieiie e 213
14.4 ReferenCing ObJECES........cciiiieiieie sttt sneenre e 215
14.5 CollectionS Are ODJECLS TOO......coiiieireeiieie et 219
14.6 The PropertieS COHECTIONccveeeieeie et 224
14.7 ClOSING DAQO ODJECES......oiiiitieierie sttt st e e nee s 230
14.8 A LoOK at the DAO ODJECES.......cocieiiiierircee e 230
14.9 The CurrentDD FUNCHIONooiiiiieeee e 238
Chapter 15. Programming DAO: Data Definition Languagecccvvveveeveeseeneeennn. 245
15.1 Creating aDatalasecccveieiierienesee e 245
15.2 Opening aDatalasecccveueieerieeseere e 246
15.3 Creating aTable and ItS FEldScccoieiiiiiiieceeee e 247
15.4 Creating an INAEXeceeieeie e eiesee e eee e te e e e e e esesnaesneesesneenreas 250
15.5 Creating @REGHONcc.ooiiiiiieieesee e e 252
15.6 Creating @ QUENYDEScoov e 254
Chapter 16. Programming DAO: Data Manipulation Language...........cccceveeereenuenen. 258
16.1 RECOrASEt ODJECEScueeveeeecieesieeie sttt ae e e neeneeas 258
16.2 Opening @RECOITSELcccuiiiiieieeeesee et 259
16.3 Moving Through a RECOIASELcceveerieiie e 260
16.4 Finding Records in @ RECOITSELcccureirerieiieneeie e e 264
16.5 Editing Data USiNg @ RECOIASELcccceivreeiierecee e 266
Part VI: ACtiVeX Dala ODJECEScoeeiieiiiiieniee et nne s 271
Chapter 17. ADO @and OLE DBcccoooiiiiieieieriese et 271
17 L WHEE ISADO?.....eeeee ettt sttt st e besresneeneeneeneens 271
17.2 INSEAlING ADO ... b 272
17.3 ADO @Nd OLE DBh......couociicieieceeeeiesie ettt 273
17.4The ADO ODJeCt MOGEL........coooiiiieiereeree e 276
17.5 FNdiNg OLE DB ProVIiderScocooviiiiniineeieeee e 311
17.6 A Closer Look at ConNeCtioN StINGS.......ccverveerieieeseeieeseesieeseeseesseenseseeseens 316
17.7 An Example: Using ADO over the WED..........ccocoiiieeiinenece e 329
Chapter 18. ADOX: Jet Data Definition in ADO......c.coveeieeieieeie e cee e 333
18.1 The ADOX ODjECt MOUEcoiieiieieeieeiee e 333
Part VII: Programming ProbleMScoceiirieieece e 342
4 S

FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 19. Some Common Data Manipulation Problems............cccccvvevieniencenennnn. 342

19.1 RUNNING SUMS.....coitieieeieiiesieeeeseesteeseesseesseesesseesseessessessseessessssssesssesssesseessens 342
19.2 Overlapping INLEIVAIS |oueieeeeee e 345
19.3 Overlapping INLEIVAIS Icc.eeieeeeeeeeee e 346
19.4 Making Assignments With Defaultcccooeeienininiie e 349
19.5 TIiMeto COMPIELION |eeieeeiieee e nre s 351
19.6 TiIMe to COMPIELION 1oueeiieiieieetee e 352
19.7 Time to Completion [I—A MaxMin Problem..........cccccovevveieiienecicseene 354
19.8 Vertical tO HOMZONLAc.ooueeiiiiiiriieie e e 357
19.9 A Matching Problem...........ooeeiiee e 359
19.10 EQUAIILY OF SEES......oiiieiiiiciesieeie ettt e nne s 361
Part VI APPENAIXES......cceeieeee et eesteee e ee sttt e e esae e e s e esesneesreenennnens 363
Appendix A. DAO 3.0/3.5 Callections, Properties, and Methods..............cccceruenneee. 363
AL DAO CIBSSES...c.uiiuirieriieiesie sttt sttt sttt st st bbbt se e et e besaesbenbesseeseens 364
A.2 A Collection ODJECEcovuiiiieeee e e 364
A.3 Connection Object (DAO 3.5 0N1Y) ..cceeiieieceee e 365
A4 ContaiNer ODJECEcoouiiiiieee e e 366
A.5Database OBJECTcoiiiriiiirirereee e 366
A.6 DBENGINE ODJECL ...t 367
A.7 DOCUMENT ODJECT ...ttt e e reeneesneenee e 369
A LB EIOr OBJECL.......eeiieiee ettt 369
AL FIEld ODJECL.....cuiiiiiiieieie ettt s 370
A.L10 GrouUP ODJECL......ciiueeieieiesieeiiesee ettt e e ae et e neesre e 371
N B 00 (@ o< ot TSSO 371
A.12 Parameter ODJECL........coouiieerieiisiee ettt ee e 372
A. 13 Property ODJECLccv et 372
A.14 QUEIYDEF ODJECL ..ot e 372
A.15 ReCOrdset ODJECL........ccci e 373
A.16 REIAiON ODJECL ..ottt 375
A.L7 TabIEDEf ODJECL......ceiiiiiiirie e e 376
AL LB USEN ODJECL ...t e e 377
A. 19 WOrkSpace ODJECTcueieeiieeieeiesie e s ese s e se e ste e nae e teeneesneense e 377
Appendix B. The Quotient: An Additional Operation of the Relational Algebra...... 379
= 30 S = o TP 380
oIS = o SRR 380
RIS (= o TSRS 381
Appendix C. Open Database Connectivity (ODBC)ccooveveriinieneeeeee e 382
C.LINETOOUCTION ...ttt ettt bbb 382
C.2The ODBC DIiVEr MaANAENcccieeiuerienieenieeeesieeseeseesseseesseesseses e ssessesseeas 383
C.3TNE ODBC DIIVEN ..ottt sttt st b sae s sne e 384
C.4 DELE SOUICES......ccueeeteeeeeesteeeee et e et e teesaeeebeesaeeebeesaeeanseesseesseesaeeanseesneesnneenns 385
C.5 Getting ODBC DriVer HEIP....uv et 393
C.6 Getting ODBC Information Using Visual BaSIC..........ccccevvreeneriennennieseennns 394
Appendix D. Obtaining or Creating the Sample Database............cccccccevvevvccievieennene 402
D.1 Creating the Dat@Dasecooereerierieniese et 402
D.2 Creating the BOOK S TalI€........ccoeiiereer et 404
5 S

FlyHeart.com g4

TEAM FLY PRESENTS

D.3 Creating the AUTHORS TabDI€.......ooiiiieiieeerieeesee e 406

D.4 Creating the PUBLISHERS TaDI€........cccoviiiiiriiceeeeseeee e 407
D.5 Creating the BOOK/AUTHOR Table........ooeeiiiiiiiieeeeeieeesee e 407
D.6 Backing Up the Database...........cceiveeereerieeee e e s sses e sse e snee e 409
D.7 Entering and Running the Sample Programs...........cccceceneeneniesieenessieseenens 410
Appendix E. Suggestions for Further Readingcccoevevvveeriesesiiene e see e esee e 411
(©0 (0] /5o o TSR 412
N 4107 o] ISP 413
6 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Preface
Preface to the Third Edition

Aswith the second edition, let me begin by thanking all of those readers who have helped
to make this book so successful.

The third edition of the book includes two new chapters; the first of which is Chapter 18.
With the sad and, in my opinion, highly unfortunate demise of DAO at Microsoft's hands,
it seemed necessary to bring the book up to speed on that aspect of ADO that givesthe
programmer most of the functionality of the Data Definition Language (DDL) portion of
DAO.

ADOX isan acronym for ADO Extensions for Data Definition and Security. When
making comparisons between ADO and DAO, proponents of DAO will point out that
ADO does not include features for data definition—that is, features that can be used to
create and alter databases and their components (tables, columns, indexes, etc.). Thisis
precisely the purpose of ADOX. (Our concern hereiswith ADOX asit relates to Jet.)

Unfortunately, ADOX is not a complete substitute for DAO's data-definition features. For
example, query creation in ADOX has a serious wrinkle. Namely, a query created using
ADOX will not appear in the Access user interface! | elaborate on thisin Chapter 18.

The other new chapter for the third edition is Chapter 19. In this chapter, | present a
number of problems that are commonly encountered when dealing with data, along with
their solutions couched in terms of SQL. | hope that this chapter will provide some good
food for thought, as well as useful examples for your own applications.

7 e

FlyrHeart.com 4

TEAM FLY PRESENTS

Preface to the Second Edition

Let me begin by thanking all of those readers who have helped to make the first edition
of thisbook so very successful. Also, my sincere thanks go to the many readers who have
written some very flattering reviews of the first edition on amazon.com and on O'Rellly's
own web site. Keep them coming.

With the recent release of Office 2000, and in view of the many suggestions | have
received concerning the first edition of the book, it seemed like an appropriate time to do
a second edition. | hope that readers will find the second edition of the book to be even
more useful than the first edition.

Actualy, Access has undergone only relatively minor changesin itslatest release, at least
with respect to the subject matter of this book. Changes for the Second Edition are:

e A discussion (Chapter 8 and Chapter 9 of Access new VBA Integrated
Development Environment. At last Access shares the same IDE as Word, Excel,
and PowerPoint!

e Inresponse to reader requests, | have significantly expanded the discussion of the
VBA language itself, which now occupies Chapter 10, Chapter 11, Chapter 12, and
Chapter 13.

e Chapter 17, which is new for this edition, provides afairly complete discussion of
ActiveX Data Objects (ADO). Thisis also accompanied by an appendix on Open
Database Connectivity (ODBC), which is still intimately connected with ADO.

Asyou may know, ADO is a successor to DAO (Data Access Objects) and is
intended to eventually replace DA O, athough | suspect that thiswill take
considerable time. While the DAO model is the programming interface for the Jet
database engine, ADO has a much more ambitious goal—it is a programming
model for a universal data accessinterface called OLE DB. Simply put, OLE DB
is atechnology to connect to any type of data—traditional database data,
spreadsheet data, web-based data, text data, email, and so on.

Frankly, while the ADO object model is smaller than that of DAO, the
documentation is much less complete. Asaresult, ADO seems far more confusing
than DAO, especially when it comes to issues such as how to create the infamous
connection strings. Accordingly, | have spent considerable time discussing this
and other difficult issues, illustrating how to use ADO to connect to Jet databases,
Excel spreadsheets, and text files.

| should also mention that while the Access object model has undergone significant
changes, as you can see by looking at Figure 14-7, the DAO object model has changed
only in one respect. In particular, DAO has been upgraded from Version 3.5 to Version
3.6. Hereiswhat Microsoft itself says about this new release:

8 o

FlyrHeart.com 4

TEAM FLY PRESENTS

DAO 3.6 has been updated to use the Microsoft® Jet 4.0 database engine. This includes
enabling al interfaces for Unicode. Datais now provided in unicode (internationally
enabled) format rather than ANSI. No other new features were implemented.

Thus, DAO 3.6 does not include any new objects, properties, or methods.

This book appearsto cover two separate topi cs—database design and database
programming. It does. It would be misleading to claim that database design and database
programming are intimately related. So why are they in the same book?

The answer is that while these two subjects are not related, in the sense that knowledge of
one leads directly to knowledge of the other, they are definitely linked, by the simple fact
that a power database user needs to know something about both of these subjects to
effectively create, use, and maintain a database.

In fact, it might be said that creating and maintaining a database application in Microsoft
Accessis done in three broad steps—designing the database, creating the basic graphical
interface (i.e., setting up the tables, queries, forms, and reports), and then getting the
application to perform in the desired way.

The second of these three stepsisfairly straightforward, for it is mostly a matter of
becoming familiar with the relatively easy-to-use Access graphical interface. Helpis
available for this through Access' online help system, as well as through the dozens of
overblown 1,000-plus-page tomes devoted to Microsoft Access. Unfortunately, none of
the books that | have seen does any real justice to the other two steps. Hence this book.

To be abit more specific, the book has two goals:

o Todiscussthe basic concepts of relational database theory and design

e Todiscuss how to extract the full power of Microsoft Access, through
programming in the Access Structured Query Language (SQL) and the Data
Access Object (DAO) component of the Microsoft Jet database engine

To accomplish the first goal, | describe the how and why of creating an efficient database
system, explaining such concepts as:

Entities and entity classes

Keys, superkeys, and primary keys

One-to-one, one-to-many, and many-to-many relationships

Referential integrity

Joins of various types (inner joins, outer joins, equi-joins, semi-joins, f-joins,

and so on)

o Operations of the relational algebra (selection, projection, join, union, intersection,
and so on)

e Normal forms and their importance

9 .

FlyrHeart.com 4

TEAM FLY PRESENTS

Of course, once you have a basic understanding of how to create an effective relational
database, you will want to take full advantage of that database, which can only be done
through programming. In addition, many of the programming techniques | discussin this
book can be used to create and maintain a database from within other applications, such
as Microsoft Visual Basic, Microsoft Excel, and Microsoft Word.

| should hasten to add that this book is not atraditional cookbook for learning Microsoft
Access. For instance, | do not discuss forms and reports, nor do | discuss such issues as
database security, database replication, and multiuser issues. Thisiswhy I've been able to
keep the book to a (hopefully) readable few hundred pages.

Thisbook isfor Accessusers at al levels. Most of it applies equally well to Access 2.0,
Access 7.0, Access 8.0, Access 9.0 (which isacomponent of Microsoft Office 2000), and
Access 2002 (which isincluded with Office XP). | will assume that you have a passing
acquaintance with the Access development environment, however. For instance, | assume
that you already know how to create a table or a query.

Throughout the book, | will use a specific modest-sized example to illustrate the concepts
discussed. The example consists of a database called LIBRARY that is designed to hold
data about the booksin a certain library. Of course, the amount of data used will be kept
artificially small—just enough to illustrate the concepts.

10 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

The Book's Audience

Most books on Microsoft Access focus primarily on the Access interface and its
components, giving little attention to the more important issue of database design. After
all, once the database application is complete, the interface components play only a small
role, whereas the design continues to affect the usefulness of the application.

In attempting to restore the focus on database design, this book aspires to be a kind of
"second course" in Microsoft Access—a book for Access users who have mastered the
basics of the interface, are familiar with such things as creating tables and designing
gueries, and now want to move beyond the interface to create programmable Access
applications. This book provides a firm foundation on which you can begin to build your
database-application development skills.

At the same time that this book isintended primarily as an introduction to Access for
aspiring database-application developers, it also is of interest to more experienced Access
programmers. For the most part, such topics as normal forms or the details of the
relational algebra are amost exclusively the preserve of the academic world. By
introducing these topics to the mainstream Access audience, Access Database Design and
Programming offers a concise, succinct, readable guide that experienced Access
developers can turn to whenever some of the details of database design or SQL
statements escape them.

The Sample Code

To follow along with the sample code, you will need to set areferencein the Visual Basic
Editor to the DAO object model and the ADO and ADOX object models. Onceinthe VB
Editor, go to the Tools menu, choose References, and select the references entitled:

e Microsoft DAO 3.XX Object Model
e Microsoft ActiveX Data Objects 2.X Library
e Microsoft ADO Ext. 2.5 for DLL and Security

Organization of This Book

Access Database Design and Programming consists of 19 chapters that are divided into
six parts. In addition, there are five appendixes.

Part |

Thefirst part of the book focuses on designing a database—that is, on the process of
decomposing data into multiple tables.

Chapter 1 examines the problems involved in using aflat database—a single table that
holds all of an application’'s data—and makes a case for using instead a
rel ational-database design consisting of multiple tables. But because relational -database

FlyrHeart.com 4

TEAM FLY PRESENTS

applications divide data into multiple tables, it is necessary to reconstitute that datain
ways that are useful—that is, to piece data back together from their multiple tables.
Hence, there is aneed for query languages and programming, which are in many ways an
integral part of designing a database.

Chapter 2 introduces some of the basic concepts of rel ational -database management, such
as entities, entity classes, keys, superkeys, and one-to-many and many-to-many
relationships.

Chapter 3 shows how these general concepts and principles are applied in designing a
real-world database. In particular, the chapter shows how to decompose a sample flat
database into a well-designed relational database.

Chapter 4 continues the discussion begun in Chapter 3 by focusing on the major problem
of database design, that of eliminating data redundancy without |osing the essential
relationships between items of data. The chapter introduces the notion of functiona
dependencies and examines each of the major forms for database normalization.

Once adatabase is properly normalized or its data is broken up into discrete tables, it
must, almost paradoxically, be pieced back together again to be of any value at al. The
next part of the book focuses on the query languages that are responsible for doing this.

Part 11

Chapter 5 introduces procedural query languages based on the relational algebra and
nonprocedural query languages based on the relational calculus, then focuses on the
major operations—Ilike unions, intersections, and inner and outer joins—that are available
using the relational algebra.

Chapter 6 shows how the relational algebraisimplemented in Microsoft Access, both in
the Access Query Design window and in Access SQL. Interestingly, the Access Query
Design window isreally afrontend that constructs Access SQL statements, which
ordinarily are hidden from the user or developer. However, it does not offer a complete
replacement for Access SQL—a number of operations can only be performed using SQL
statements, and not through the Access graphical interface. This makes abasic
knowledge of Access SQL important.

While SQL isacritical tool for getting at datain relational database management systems
and returning recordsets that offer various views of their data, it is also an unfriendly tool.
The Access Query Design window, for example, was developed primarily to hide the
implementation of Access SQL from both the user and the programmer. But Access SQL,
and the graphical query facilities that hide it, do not form an integrated environment on
which the database programmer can rely to shield the user from the details of an
application's implementation. Instead, creating this integrated application environment is
the responsibility of a programming language (Visual Basic for Applications or VBA)

12 -

FlyrHeart.com 4

TEAM FLY PRESENTS

and an interface between the programming language and the database engine (DAO).
Parts 1V and V examine these two tools for application devel opment.

Part [11

Part 111 consists of asingle chapter, Chapter 7, that describes the role of programming in
database-application development and introduces the major tools and concepts needed to
create an Access application.

Part |V

When programming in Access VBA, you use the VBA integrated development
environment (or IDE) to write Access VBA code. The former topic is covered in Chapter
8, and Chapter 9, while the following three chapters are devoted to the latter. In particular,
separate chapters are devoted to VBA variables, data types, and constants (Chapter 10), to
VBA functions and subroutines (Chapter 11), to VBA statements and intrinsic functions
(Chapter 12), and to statements that alter the flow of program execution (Chapter 13).

Part V

Chapter 14 introduces Data A ccess Objects, or DAO. DAO provides the interface between
Visual Basic for Applications and the Jet database engine used by Access. The chapter
provides an overview of working with objectsin VBA before examining the DAO object
model and the Microsoft Access object model.

Chapter 15 focuses on the subset of DAO that is used to define basi ¢ database objects. The
chapter discusses operations such as creating tables, indexes, and query definitions under
program control.

Chapter 16 focuses on working with recordset objects and on practical record-oriented
operations. The chapter discusses such topics as recordset navigation, finding records,
and editing data.

Part VI

Chapter 17 explores ActiveX Data Objects, Microsoft's newest technology for data access,
which offers the promise of a single programmatic interface to datain any format and in
any location. The chapter examines when and why you might want to use ADO and
shows you how to take advantage of it in your code.

Chapter 18 discusses the role of ADOX in various data-definition operations, such as
creating a Jet database and creating and altering Jet database tables.

Part Vi1

Chapter 19 presents a number of problems commonly encountered when dealing with data,
along with their solutions.

13 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

Part VI

Appendix A isintended as a quick reference guide to DAO 3.0 (which isincluded with
Access for Office 95) and DAO 3.5 (which isincluded with Access for Office 97).

Appendix B examines an additional, little-used query operation that was not discussed in
Chapter 5.

Appendix C examines how to use ODBC to connect to a data source.

Appendix D contains instructions for either downloading a copy of the sample files from
the book or creating them yourself.

Appendix E lists some of the major works that provide in-depth discussion of the issues of
relational database design and normalization.

Conventions in This Book
Throughout this book, we've used the following typographic conventions:
UPPERCASE

Indicates a database name (e.g., LIBRARY) or the name of atable within a
database (e.g., BOOKS). Keywords in SQL statements (e.g., SELECT) also
appear in uppercase, as well astypes of data (e.g., LONG), commands (e.g.,
CREATE VALUE), options (e.g., HAVING), etc.

Constant width

Indicates alanguage construct such as alanguage statement, a constant, or an
expression. Lines of code also appear in constant width, as do function and
method prototypes in body text.

Constant width italic

Indicates parameter and variable names in body text. In syntax statements or
prototypes, constant width italic indicates replaceable parameters.

Italic

Is used in normal text to introduce a new term, to represent menu options, and to
indicate object names (e.g., QueryDef), collection names, the names of entity
classes (e.g., the Books entity class), and VBA keywords.

14 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

Obtaining Updated Information

The sample tablesin the LIBRARY database, as well as the sample programs presented

in the book, are available online and can be freely downloaded. Alternately, if you don't
have access to the Internet by either aweb browser or afile transfer protocol (FTP) client,
and if you don't use an email system that allows you to send and receive email from the
Internet, you can create the database file and its tables yourself. For details, see Appendix
D.

Updates to the material contained in the book, along with other Access-related
developments, are available from the O'Reilly web site,

http://www.oreilly.com/catal og/accessdata3/. Simply follow the links to the Windows

section.

Request for Comments
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is aweb page for this book, which lists errata, examples, or any additional
information. Y ou can access this page at:

http://www.oreilly.com/catalog/accessdata3/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Rellly
Network, see the O'Reilly web site at:

http://www.oreilly.com

Acknowledgments

My thanks to Ron Petrusha, editor at O'Reilly & Associates, for making many useful
suggestions that improved this book.

Also thanks to the production staff at O'Reilly & Associates, including Jeffrey Holcomb,
the production editor, Edie Freedman for the cover design, David Futato for interior

15 -

FlyrHeart.com 4

TEAM FLY PRESENTS

http://www.oreilly.com/catalog/accessdata3/
http://www.oreilly.com/catalog/accessdata3/
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

design, Mihaela Maier for Tools support, Rob Romano and Jessamyn Read for the
illustrations, Rachel Wheeler, Matt Hutchinson, and Claire Cloutier for quality and sanity
control, and Brenda Miller for the index.

FlyHeart.com g4

TEAM FLY PRESENTS

Part |: Database Design

Chapter 1. Introduction
1.1 Database Design

As mentioned in the Preface, one purpose of this book isto explain the basic concepts of
modern rel ational -database theory and show how these concepts are realized in Microsoft
Access. Allow meto amplify on thisrather lofty goal.

To take avery smple view, which will do nicely for the purposes of this introductory
discussion, a database isjust a collection of related data. A database management system,
or DBMS, isasystem that is designed for two main purposes:

o To add, delete, and update the data in the database
e To provide various ways to view (on screen or in print) the datain the database

If the datais simple and there is not very much of it, then a database can consist of a
singletable. In fact, asimple database can easily be maintained even with aword
processor!

To illustrate, suppose you want to set up a database for the booksin alibrary. Purely for
the sake of illustration, suppose the library contains 14 books. The same discussion
would apply to alibrary of perhaps afew hundred books. Table 1-1 shows the
LIBRARY_FLAT database in the form of asingle table.

Table1-1. The LIBRARY_FLAT sample database

ISBN Title |Aul D[ll AuName | AuPhone [Publ D[ll PubName| PubPhone | Price
1-1111-1111-1/C++ 4 Roman |444-444-4444)1 29 |123-456-7890/$20.95
0-99-099999-9 Emma |1 Austen |111-111-1111[1 B9 |123-456-7890/$20.00
0-91-335678-7 &€ 17 Spenser (777-777-777711 Big 123-456-7890/$15.00

Queene House

0-91-045678-5/Hamlet |5 Shakespeare|555-555-55552 ’F*,r'i‘sa 999-999-9999 $20.00
0-103-45678-9|lliad 3 Homer |333-333-3333/1 B9 |123-456-7890/825.00
0-12-345678-9|Jane Eyre |1 Austen |111-111-1111)3 ﬁgl"j"s'e 714-000-0000/$49.00
0-99-777777-7|King Lear |5 Shakespeare|555-555-55552 ’F*,r'i‘sa 999-999-9999 $49.00
0-555-55555-9|Macbeth |5 Shakespeare|555-555-5555/2 Alpha |999-099-9999/$12.00

FlyrHeart.com

TEAM FLY PRESENTS

Press
0-11-345678-9 Moby-Dick 2 Melville |222-222-22223 32326 714-000-0000($49.00
0-12-333433-3/0n Liberty |8 Mill 883-888-8888|1 ﬁ'(?use 123-456-7890/$25.00
0-321-32132-1Balloon 13 |Sleepy |321-321-11113 ﬁgl"j"s'e 714-000-0000/$34.00
0-321-32132-1Balloon |11 |Snoopy |321-321-2222|3 32326 714-000-0000($34.00
0-321-32132-1Balloon |12 |Grumpy |321-321-00003 ﬁgl"j"s'e 714-000-0000/$34.00
0-55-123456-9|Man 10 Jones 123-333-33333 small 120 4 000-0000($22.95
Street House
0-55-123456-9 Man g Smith 123-222-2222/3 smal 100 1 000-0000/$22.95
Street House
0-123-45678-0|Ulysses |6 Joyce 666-666-66662 Qr'g;a 999-999-9999 $34.00
1-22-233700-0|Y'SUd 1 Roman 444-444-4444[1 Big 123-456-7890|$25.00
Basic House

(3] Columns labeled AulD and Publ D are included for identitification purposes, i.e., to
identify an author or a publisher uniquely. In any case, their presence or absence will not
affect the current discussion.

LIBRARY_FLAT (Table 1-1) was created using Microsoft Word. For such asimple
database, Word has enough power to fulfill the two goals mentioned earlier. Certainly,
adding, deleting, and editing the table presents no particular problems (provided we know
how to manage tables in Word). In addition, if we want to sort the data by author, for
example, we can just select the table and choose Sort from the Table menu in Microsoft
Word. Extracting a portion of the datain the table (i.e., creating a view) can be done by
making a copy of the table and then deleting appropriate rows and/or columns.

1.1.1 Why Use a Relational-Database Design?

Thus, maintaining a simple, so-called flat database consisting of a single table does not
require much knowledge of database theory. On the other hand, most databases worth
maintaining are quite a bit more complicated than that. Real-life databases often have
hundreds of thousands or even millions of records, with datathat is very intricately
related. Thisiswhere using a full-fledged relational -database program becomes essential.
Consider, for example, the Library of Congress, which has over 16 million booksin its
collection. For reasons that will become apparent soon, a single table simply will not do
for this database!

1.1.1.1 Redundancy

FlyrHeart.com

TEAM FLY PRESENTS

Using a single table to maintain a database |eads to problems of unnecessary repetition of
data, that is, redundancy. Some repetition of datais always necessary, as we will see, but
theideaisto remove as much unnecessary repetition as possible.

The redundancy in the LIBRARY _FLAT table (Table 1-1) is obvious. For instance, the
name and phone number of Big House publishersis repeated six times in the table, and
Shakespeare's phone number is repeated thrice.

In an effort to remove as much redundancy as possible from a database, a database
designer must split the datainto multiple tables. Here is one possibility for the
LIBRARY_FLAT example, which splits the original database into four separate tables.

¢ A BOOKStable, shown in Table 1-2, in which each book has its own record

¢ AnAUTHORS table, shown in Table 1-3, in which each author has his own record

e A PUBLISHERS table, shown in Table 1-4, in which each publisher hasits own
record

e BOOK/AUTHOR table, shown in Table 1-5, the purpose of which we will explain
abit later

Table 1-2. The BOOK Stablefrom the LIBRARY_FLAT database

ISBN Title PublD Price
0-555-55555-9 Macbeth 2 $12.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-999999-9 Emma 1 $20.00
0-91-045678-5 Hamlet 2 1$20.00
0-55-123456-9 Main Street 3 $22.95
1-22-233700-0 Visual Basic 1 $25.00
0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 lliad 1 $25.00
1-1111-1111-1 C++ 1 $29.95
0-321-32132-1 Balloon 3 $34.00
0-123-45678-0 Ulysses 2 $34.00
0-99-777777-7 King Lear 2 $49.00
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 'Moby-Dick 3 1$49.00

Table1-3. The AUTHORS tablefrom the LIBRARY _FLAT database

AulD AuName AuPhone
1 Austen 111-111-1111
12 Grumpy 321-321-0000
3 Homer 333-333-3333
10 Jones 123-333-3333
6 \Joyce 666-666-6666

19

w
FlyrHeart.com

TEAM FLY PRESENTS

2 Melville 200-222-2222
8 Mill 888-888-8888
4 Roman 444-444-4444
5 Shakespeare 555-555-5555
13 'Sleepy 321-321-1111
9 Smith 123-222-2222
11 Snoopy 321-321-2222
7 Spenser 71777777

Table 1-4. The PUBLISHERS table from the LIBRARY _FLAT database

PublD PubName PubPhone
1 Big House 123-456-7890
2 /Alpha Press 1999-999-9999
3 'Small House 714-000-0000

Table 1-5. The BOOK/AUTHOR tablefrom the LIBRARY _FLAT database

ISBN AulD
0-103-45678-9 3
0-11-345678-9 2
0-12-333433-3 8
0-12-345678-9 1
0-123-45678-0 6
0-321-32132-1 11
0-321-32132-1 12
0-321-32132-1 13
0-55-123456-9 9
0-55-123456-9 10
0-555-55555-9 5
0-91-045678-5 5
0-91-335678-7 7
0-99-777777-7 5
0-99-999999-9 1
11-1111-1111-1 4
1-22-233700-0 4

Note that now the name and phone number of Big House appears only once in the
database (in the PUBLISHERS table), as does Shakespeare's phone number (in the
AUTHORS table).

Of course, thereis still some duplicated datain the database. For instance, the PublD
information appears in more than one place in these tables. As mentioned earlier, we
cannot eliminate all duplicate data and still maintain the relationships between the data.

20 w
FlyrHeart.com

TEAM FLY PRESENTS

To get afed for the reduction in duplicate data achieved by the four-table approach,
imagine (asis reasonable) that the database al so includes the address of each publisher.
Then Table 1-1 would need a new column containing 14 addresses—many of which are
duplicates. On the other hand, the four-table database needs only one new column in the
PUBLISHERS table, adding atotal of three distinct addresses.

To drive the difference home, consider the 16-million-book database of the Library of
Congress. Suppose the database contains books from 10,000 different publishers. A
publisher's address column in a flat-database design would contain 16 million addresses,
whereas a multitable approach would require only 10,000 addresses. Now, if the average
address is 50 characters long, then the multitable approach would save:

(16,000,000 - 10,000) x 50 = 799 million characters

Assuming that each character takes 2 bytes (in the Unicode that is used internally by
Microsoft Access), the single-table approach wastes about 160 gigabytes of space just for
the addressfield!

Indeed, the issue of redundancy alone is quite enough to convince a database designer to
avoid the flat-database approach. However, there are several other problems with flat
databases, which we now discuss.

1.1.1.2 Multiple-value problems

It is clear that some booksin our database are authored by multiple authors. This leaves
us with three choices in asingle-table flat database:

e We can accommodate multiple authors with multiple rows—one for each author,
asinthe LIBRARY _FLAT table (Table 1-1) for the books Balloon and Main
Sreet.

e We can accommodate multiple authors with multiple columnsin asingle
row—one for each author.

e Wecaninclude al authors namesin one column of the table.

The problem with the multiple-row choice isthat all of the data about a book must be
repeated as many times as there are authors of the book—an obvious case of redundancy.
The multiple-column approach presents the problem of guessing how many Author
columns we will ever need and creates alot of wasted space (empty fields) for books with
only one author. It also creates major programming headaches.

The third choiceisto include all authors namesin one cell, which can lead to trouble of
itsown. For example, it becomes more difficult to search the database for a single author.
Worse yet, how can we create an alphabetical list of the authorsin the table?

1.1.1.3 Update anomalies

FlyrHeart.com 4

TEAM FLY PRESENTS

In order to update, say, a publisher's phone number in the LIBRARY_FLAT database
(Table 1-1), it is necessary to make changes in every row containing that number. If we
miss arow, we have produced a so-called update anomaly , resulting in an unreliable
table.

1.1.1.4 Insertion anomalies

Difficultieswill arise if we wish to insert anew publisher inthe LIBRARY_FLAT
database (Table 1-1), but we do not yet have information about any of that publisher's
books. We could add a new row to the existing table and place NULL valuesin al but
the three publisher-related columns, but this may lead to trouble. (A NULL isavaue
intended to indicate a missing or unknown value for afield.) For instance, adding several
such publishers means that the ISBN column, which should contain unique data, will
contain several NULL values. This general problem isreferred to as an insertion
anomaly.

1.1.1.5 Deletion anomalies

In contrast to the preceding problem, if we delete all book entries for a given publisher,
for instance, then we will also lose al information about that publisher. Thisis a deletion
anomaly .

1.1.2 Complications of Relational-Database Design

Thislist of potential problems should be enough to convince us that the idea of using a
single-table database is generally not smart. Good database design dictates that the data
be divided into several tables and that relationships be established between these tables.
Because atable describes a "relation,” such adatabase is called arelational database. On
the other hand, relational databases do have their complications. Here are afew
examples.

1.1.2.1 Avoiding data loss

One complication in designing arelational database is figuring out how to split the data
into multiple tables so as not to lose any information. For instance, if we had left out the
BOOK/AUTHOR table (Table 1-5) in our previous example, there would be no way to
determine the author of each book. In fact, the sole purpose of the BOOK/AUTHOR
table is so that we do not lose the book/author relationship!

1.1.2.2 Maintaining relational integrity

We must be careful to maintain the integrity of the various relationships between tables
when changes are made. For instance, if we decide to remove a publisher from the
database, it is not enough just to remove that publisher from the PUBLISHERS table, for
thiswould leave dangling references to that publisher in the BOOK S table.

FlyrHeart.com 4

TEAM FLY PRESENTS

1.1.2.3 Creating views

When the datais spread throughout several tables, it becomes more difficult to create
various views of the data. For instance, we might want to see alist of al publishers that
publish books priced under $10.00. This requires gathering data from more than one table.
The point is that, by breaking data into separate tables, we must often go to the trouble of
piecing the data back together in order to get a comprehensive view of the datal

1.1.3 Summary

It isclear that to avoid redundancy problems and various unpleasant anomalies, a
database needs to contain multiple tables with relationships defined between these tables.
On the other hand, this raises some issues, such as how to design the tablesin the
database without losing any data, and how to piece together the data from multiple tables
to create various views of that data. The main goal of the first part of this book isto
explore these fundamental issues.

1.2 Database Programming

The motivation for learning database programming is quite simple—power. If you want
to have as much control over your databases as possible, you will need to do some
programming. In fact, even some simple things require programming. For instance, there
isno way to retrieve thelist of fields of a given table using the Access graphical
interface—you can only get this list through programming. (Y ou can view such alist in
the table-design mode of the table, but you cannot get accessto thislist in order to, for
example, present the end-user with the list and ask if she wishes to make any changesto

it.)

In addition, programming may be the only way to access and manipul ate a database from
within another application. For instance, if you are working in Microsoft Excel, you can
create and manipulate an Access database with as much power as with Accessitself, but
only through programming! The reason is that Excel does not have the capability to
render graphical representations of database objects. Instead you can create the database
within Access and then manipulate it programmatically from within Excel.

It is aso worth mentioning that programming can give you a great sense of satisfaction.
There is nothing more pleasing than watching a program that you have written step
through the rows of atable and make certain changes that you have requested. It is often
easier to write a program to perform an action such as this than to remember how to
perform the same action using the graphical interface. In short, programming is not only
empowering, but it also sometimes provides the ssmplest route to a particular end.

And let us not forget that programming can be just plain fun!

FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 2. The Entity-Relationship Model of a Database

Let us begin our discussion of database design by looking at an informal database model
called the entity-relationship model . This model of arelational database provides a
useful perspective, especialy for the purposes of theinitial database design.

| will illustrate the genera principles of this model with the LIBRARY database example,
which I will carry through the entire book. This example database is designed to hold
data about the booksin a certain library. The amount of datawe will use will be kept
artificially small—just enough to illustrate the concepts. (In fact, at this point, you may
want to take alook at the example database. For details on downloading it from the
Internet, or on using Microsoft Accessto create it yourself, see Appendix D.) In the next
chapter, we will actually implement the entity-relationship (E/R) model for our
LIBRARY database.

2.1 What Is a Database?

A database may be defined as a collection of persistent data. The term persistent is
somewhat vague, but is intended to imply that the data has a more-or-less independent
existence or that it is semipermanent. For instance, data stored on paper in afiling cabinet,
or stored magnetically on a hard disk, CD-ROM, or computer tape is persistent, whereas
data stored in a computer's memory is generally not considered to be persistent. (The

term permanent is a bit too strong, since very littlein lifeis truly permanent.)

Of course, thisisavery general concept. Most real-life databases consist of data that
exist for a specific purpose and are thus persistent.

2.2 Entities and Their Attributes

The purpose of a database isto store information about certain types of objects. In
database language, these objects are called entities. For example, the entities of the
LIBRARY database include books, authors, and publishers.

It is very important at the outset to make a distinction between the entities that are
contained in a database at a given time and the world of all possible entities that the
database might contain. The reason thisisimportant is that the contents of a database are
constantly changing and we must make decisions based not just on what is contained in a
database at a given time, but on what might be contained in the database in the future.

For example, at agiventime, our LIBRARY database might contain 14 book entities.
However, as time goes on, new books may be added to the database, and old books may
be removed. Thus, the entities in the database are constantly changing. If, for example,
based on the fact that the 14 books currently in the database have different titles, we
decide to use thetitle to identify each book uniquely, we may be in for some trouble
when, later on, a different book arrives at the library with the sametitle as a previous
book.

24 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Theworld of al possible entities of a specific type that a database might contain is
referred to as an entity class. We will useitalics to denote entity classes. Thus, for
instance, the world of all possible books is the Books entity class, and the world of all
possible authors is the Authors entity class.

We emphasize that an entity classis just an abstract description of something, whereas an
entity is a concrete example of that description. The entity classesin our very modest
LIBRARY example database are (at least so far):

e Books
e Authors
e Publishers

The set of entities of a given entity class that are in the database at a given timeis called
an entity set. To clarify the difference between entity set and entity class with an example,
consider the BOOK S tablein the LIBRARY database, which is shown in Table 2-1.

Table 2-1. The BOOK Stablefrom the LIBRARY database
ISBN Title Price

0-12-333433-3 On Liberty $25.00
0-103-45678-9 lliad $25.00
0-91-335678-7 Faerie Queene $15.00
0-99-999999-9 [Emma $20.00
1-22-233700-0 Visual Basic $25.00
1-1111-1111-1 CH++ $29.95
0-91-045678-5 Hamlet $20.00
0-555-55555-9 Macbeth $12.00
0-99-777777-7 King Lear $49.00
0-123-45678-0 Ulysses $34.00
0-12-345678-9 Jane Eyre $49.00
0-11-345678-9 Moby-Dick $49.00
0-321-32132-1 Balloon $34.00
0-55-123456-9 Main Street $22.95

The entities are books, the entity classisthe set of all possible books, and the entity set
(at this moment) is the specific set of 14 books listed in the BOOKS table. As mentioned,
the entity set will change as new books (book entities) are added to the table or old ones
are removed. However, the entity class does not change.

Incidentally, if you are familiar with object-oriented programming concepts, you will
recognize the concept of aclass. In object-oriented circles, we would refer to an entity
class smply as a class and an entity as an object.

FlyrHeart.com

TEAM FLY PRESENTS

The entities of an entity class possess certain properties, which are called attributes. We
usually refer to these attributes as attributes of the entity classitself. It isup to the
database designer to determine which attributes to include for each entity class. It isthese

attributes that will correspond to the fields in the tables of the database.

The attributes of an entity class serve three main purposes.

e Attributes are used to include information that we want in the database. For
instance, we want the title of each book to be included in the database, so we

include a Title attribute for the Books entity class.

o Attributes are used to help uniquely identify individual entities within an entity
class. For instance, we may wish to include a publisher's ID-number attribute for
the Publishers entity class, to uniquely identify each publisher. If combinations of
other attributes (such as the publisher's name and publisher's address) will serve
this purpose, the inclusion of an identifying attribute is not strictly necessary, but
it can still be more efficient to include such an attribute, since often we can create
amuch shorter identifying attribute. For instance, a combination of title, author,
publisher, and copyright date would make avery awkward and inefficient
identifying attribute for the Books entity class—much more so than the ISBN

attribute.

o Attributes are used to describe relationships between the entities in different

entity classes. We will discuss this subject in more detail later.

For now, let uslist the attributes for the LIBRARY database that we need to supply
information about each entity and to identify each entity uniquely. | will deal with the
issue of describing relationships later. Remember that this example is kept deliberately

small—inreal life we would no doubt include many other attributes.

The attributes of the entity classesin the LIBRARY database are:

Books attributes
Title

ISBN

Price

Author s attributes
AuName

AuPhone

AulD

Publishers attributes

PubName
PubPhone

26

—
FlyrHeart.com 4

TEAM FLY PRESENTS

PublID
Let us make afew remarks about these attributes.

o From these attributes alone, there is no direct way to tell who is the author of a
given book, since there is no author-related attribute in the Books entity class. A
similar statement applies to determining the publisher of a book. Thus, we will
need to add more attributes in order to describe these rel ationships.

e ThelSBN (International Standard Book Number) of abook servesto identify the
book uniquely, since no two books have the same ISBN (at least in theory). On
the other hand, the Title alone does not uniquely identify the book, since many
books have the sametitle. In fact, the sole purpose of ISBNs (here and in the real
world) isto identify books uniquely. Put another way, the ISBN is a quintessential
identifying attribute!

e We may reasonably assume that no two publishersin the world have the same
name and the same phone number. Hence, these two attributes together uniquely
identify the publisher. Nevertheless, we have included a publisher's ID attribute to
make this identification more convenient.

Let us emphasize that an entity classis adescription, not a set. For instance, the entity
class Books is a description of the attributes of the entities that we identify as books. A
Books entity is the "database version” of abook. It isnot a physical book, but rather a
book as defined by the values of its attributes. For instance, the following is a Books
entity:

Title = Gone With the Wind
ISBN = 0-12-345678-9
Price = $24.00

Now, thereis certainly more than one physical copy in existence of the book Gone With
the Wind, with this ISBN and price, but that is not relevant to our discussion. Asfar as
the database is concerned, there is only one Books entity defined by:

Title = Gone With the Wind
ISBN = 0-12-345678-9
Price = $24.00

If we need to model multiple copies of physical booksin our database (asareal library
would do), then we must add another attribute to the Books entity class, perhaps called
CopyNumber. Even still, abook entity isjust a set of attribute values.

These matters emphasi ze the point that it is up to the database designer to ensure that the
set of attributes for an entity uniquely identify the entity from among all other entities
that may appear in the database (now and forever, if possible!). For instance, if the Books
entity classincluded only the Title and Price attributes, there would certainly be cause to
worry that someday we might want to include two books with the same title and price.
Whilethisis allowed in some database-application programs, it can lead to great

FlyrHeart.com 4

TEAM FLY PRESENTS

confusion and is definitely not recommended. Moreover, it isforbidden by definitionin a
true relational database. In other words, no two entities can agree on al of their attributes.
(Thisis alowed in Microsoft Access, however.)

2.3 Keys and Superkeys

A set of attributes that uniquely identifies any entity from among all possible entitiesin
the entity class that may appear in the database is called a superkey for the entity class.
Thus, the set { ISBN} is a superkey for the Books entity class, and the sets { PubID} and
{ PubName, PubPhone} are both superkeys for the Publishers entity class.

Note that there is abit of subjectivity in this definition of superkey, since it depends
ultimately on our decision about which entities may ever appear in the database, and this
is probably something of which we cannot be absolutely certain. Consider, for instance,
the Books entity class. Thereis no law that says all books must have an ISBN (and many
books do not). Also, thereis no law that says that two books cannot have the same ISBN.
(The ISBN is assigned, at least in part, by the publisher of the book.) Thus, the set { ISBN}
isasuperkey only if we are willing to accept the fact that all books that the library
purchases have distinct ISBNs or that the librarian will assign a uniqueersatz ISBN to any
books that do not have areal ISBN.

It isimportant to emphasize that the concept of a superkey appliesto entity classes, and
not entity sets. Although we can define a superkey for an entity set, thisis of limited use,
since what may serve to identify the entities uniquely in a particular entity set may fail to
do so if we add new entities to the set. To illustrate, the Title attribute does serve to
identify each of the 14 books uniquely in the BOOK S table. Thus, { Title} is a superkey
for the entity set described by the BOOKS table. However, { Title} is not a superkey for
the Books entity class, since there are many distinct books with the sametitle.

We have remarked that { ISBN} is a superkey for the Books entity class. Of course, sois
{Title, ISBN}, but it is wasteful and inefficient to include the Title attribute purely for the
sake of identification.

Indeed, one of the difficulties with superkeysis that they may contain more attributes
than is absolutely necessary to indentify any entity uniquely. It is more desirable to work
with superkeys that do not have this property. A superkey is called a key when it has the
property that no proper subset of it is also a superkey. Thus, if we remove an attribute
from akey, the resulting set is no longer a superkey. Put more succinctly, akey isa
minimal superkey. Sometimes keys are called candidate keys, sinceit is usually the case
that we want to select one particular key to use as an identifier. This particular choiceis
referred to asthe primary key . The primary keysin the LIBRARY database are ISBN,
AulD, and PublID.

| should remark that a key may contain more than one attribute, and different keys may
have different numbers of attributes. For instance, it is reasonable to assume that both

FlyrHeart.com 4

TEAM FLY PRESENTS

{ Social SecurityNumber} and { FullName, Full Address, DateofBirth} are keysfor auUS
Citizens entity class.

2.4 Relationships Between Entities

If we are going to model a database as a collection of entity sets (tables), then we also
need to describe the relationships between these entity sets. For instance, an author
relationship exists between a book and the authors who wrote that book. We might call
this relationship WrittenBy. Thus, Hamlet is WrittenBy Shakespeare.

It is possible to draw a diagram, called an entity-relationship diagram, or E/R diagram,to
illustrate the entity classes in a database model, along with their attributes and
relationships. Figure 2-1 shows the LIBRARY E/R diagram, with an additional entity
class called Contributors (a contributor may be someone who contributes to or writes
only avery small portion of abook, and thus may not be accorded all of the rights of an
author, such as aroyalty).

Figure2-1. The LIBRARY entity-relationship diagram
Title AuName

ISEN Price AulD AuPhone

\\ / N //f

7N

PublD PubPhone

PubName

ConlD

ConName

ConPhone

Note that each entity classis denoted by arectangle, and each attribute by an ellipse. The
relations are denoted by diamonds. We have included the Contributors entity classin this
model merely to illustrate a specia type of relationship. In particular, since a contributor
is considered an author, thereis an I sA relationship between the two entity classes.

The model represented by an E/R diagram is sometimes referred to as a semantic model
since it describes much of the meaning of the database.

29 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

2.4.1 Typesof Relationships

Referring to Figure 2-1, the symbols 1 and COrepresent the type of relationship between
the corresponding entity classes. (The symbol CQisread "many.") Relationships can be
classified into three types. For instance, the relationship between Books and Authorsis
many-to-many, meaning that a book may have many authors and an author may write
many books. On the other hand, the relationship from Publishers to Books is one-to-many,
meaning that one publisher may publish many books, but abook is published by at most
one publisher (or so we will assume).

One-to-one rel ationships, where each entity on each sideisrelated to at most one entity
on the other side of the relationship, are fairly rare in database design. For instance,
consider the Contributors-Authors relationship, which is one-to-one. We could replace
the Contributors class by a contributor attribute of the Authors class, thus eliminating the
need for a separate class and a separate relationship. On the other hand, if the
Contributors class had several attributes that are not shared by the Authors class, then a
separate class may be appropriate.

In Chapter 3 we will actually implement the full E/R model for our LIBRARY database.

30 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 3. Implementing Entity-Relationship Models: Relational
Databases

An E/R model of adatabase is an abstract model, visualized through an E/R dia-gram.
For this to be useful, we must trandl ate the abstract model into a concrete one. That is, we
must describe each aspect of the model in the concrete terms that a database program can
manipulate. In short, we must implement the E/R model. This requires implementing
several things:

The entities

The entity classes

The entity sets

The relationships between the entity classes

The result of thisimplementation is arelational database.

Aswe will see, implementing the relationships usually involves some changes to the
entity classes, perhaps by adding new attributes to existing entity classes or by adding
new entity classes.

3.1 Implementing Entities

As discussed in the previous chapter, an entity isimplemented (or described in concrete
terms) simply by giving the values of its attributes. Thus, the following is an
implementation of a Books entity:

Title = Gone With the Wind
ISBN = 0-12-345678-9
Price = $24.00

3.1.1 Implementing Entity Classes—T able Schemes

Since the entities in an entity class are implemented by giving their attribute values, it
makes sense to implement an entity class by the set of attribute names. For instance, the
Books entity class can be identified with the set:

{ISBN,Title,Price}
(We will add the PublD attribute name later, when we implement the relationships.)

Since attribute names are usually used as column headings for atable, a set of attribute
names is called atable scheme. Thus, entity classes are implemented as table schemes.
For convenience, we use notation such as:

Books(ISBN,Title,Price)

31)

FlyrHeart.com 4

TEAM FLY PRESENTS

which shows not only the name of the entity class, but aso the names of the attributesin
the table scheme for this class. Y ou can aso think of atable scheme as the column
headings row (the top row) of any table that is formed using that table scheme. (1 will
present an example of this shortly.)

We have defined the concepts of a superkey and a key for entity classes. These concepts
apply equally well to table schemes, so we may say that the attributes { A,B} form akey
for atable scheme, meaning that they form a key for the entity class implemented by that
table scheme.

3.1.2 Implementing Entity Sets—Tables

In arelational database, each entity set is modeled by atable. For example, consider the
BOOKS table shown in Table 3-1, and note the following:

o Thefirst row of the table is the table scheme for the Books entity class.
o Each of the other rows of the table implements a Books entity.
e Theset of al rows of the table, except the first row, implements the entity set

itself.
Table 3-1. The BOOK Stable from the LIBRARY database
ISBN Title Price

0-12-333433-3 On Liberty $25.00
0-103-45678-9 lliad $25.00
0-91-335678-7 Faerie Queene $15.00
0-99-999999-9 Emma $20.00
1-22-233700-0 Visual Basic $25.00
1-1111-1111-1 CH++ $29.95
0-91-045678-5 Hamlet $20.00
0-555-55555-9 Macheth $12.00
0-99-777777-7 KKing Lear 1$49.00
0-123-45678-0 Ulysses $34.00
0-12-345678-9 Jane Eyre $49.00
0-11-345678-9 Moby-Dick $49.00
0-321-32132-1 Balloon $34.00
0-55-123456-9 Main Street $22.95

More formally, atable T isarectangular array of elements with the following properties:

o Thetop of each column islabeled with a distinct attribute name A;. The label A;
isalso called the column heading.

e Theelements of thei th column of the table T come from asingle set D;, called
the domain for thei th column. Thus, the domain is the set of all possible values
for the attribute. For instance, for the BOOK Stablein Table 3-1, thedomain D; is

FlyrHeart.com

TEAM FLY PRESENTS

the set of all possible ISBNs, and the domain D isthe set of all possible book
titles.
e Notwo rows of the table are identical.

Let us make some remarks about the concept of atable:

o A tablemay (but is not required to) have a name, such as BOOKS, whichis
intended to convey the meaning of the table as awhole.

« Thenumber of rows of the tableis called the size of the table, and the number of
columnsis called the degree of the table. For example, the BOOKS table shown
in Table 3-1 has size 14 and degree 3. The attribute names are ISBN, Title, and
Price.

o Asmentioned earlier, to emphasize the attributes of atable, it is common to
denote atable by writing T(A1 ...,A;); for example, we denote the BOOKS table
by:

BOOKS(ISBN, Title,Price)

e Theorder of the rows of atableis not important, and so two tables that differ only
in the order of their rows are thought of as being the same table. Similarly, the
order of the columns of atable is not important as long as the headings are
thought of as part of their respective columns. In other words, we may fedl free to
reorder the columns of atable, aslong as we keep the headings with their
respective columns.

o Finally, there is no requirement that the domains of different columns be different.
(For example, it is possible for two columns in a single table to use the domain of
integers.) However, there is arequirement that the attribute names of different
columns be different. Think of the potential confusion that would otherwise ensue,
in view of the fact that we may rearrange the columns of atable!

Now that we have defined the concept of atable, we can say that it is common to define a

relational database as afinite collection of tables. However, this definition belies the fact
that the tables also model the relationships between the entity classes, as we will see.

3.2 A Short Glossary
To help keep the various database terms clear, let us collect their definitionsin one place:
Entity

An object about which the database is designed to store information. Example: a
book; that is, an ISBN, atitle, and aprice, asin:

0-12-333433-3, On Liberty, $25.00
Attribute

A property that (partially or completely) describes an entity. Example: title.

33 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

Entity class

An abstract group of entities, with acommon description. Example: the entity
class Books, representing all books in the universe.

Entity set

The set of entities from a given entity class that are currently in the database.
Example: the following set of 14 books:

0-12-333433-3, On Liberty, $25.00
0-103-45678-9, lliad, $25.00
0-91-335678-7, Faerie Queene, $15.00
0-99-999999-9, Emma, $20.00
1-22-233700-0, Visual Basic, $25.00
1-1111-1111-1, C++, $29.95
0-91-045678-5, Hamlet, $20.00
0-555-55555-9, Macbeth, $12.00
0-99-777777-7, King Lear, $49.00
0-123-45678-0, Ulysses, $34.00
0-12-345678-9, Jane Eyre, $49.00
0-11-345678-9, Moby-Dick, $49.00
0-321-32132-1, Balloon, $34.00
0-55-123456-9, Main Street, $22.95

Superkey

A set of attributes for an entity class that servesto identify an entity uniquely
from among all possible entitiesin that entity class. Example: the set { Title, ISBN}
for the Books entity class.

Key
A minimal superkey; that is, akey with the property that, if we remove an
attribute, the resulting set is no longer a superkey. Example: the set { ISBN} for
the Books entity class.

Table

A rectangular array of attribute values whose columns hold the attribute values for
agiven attribute and whose rows hold the attribute values for a given entity.
Tables are used to implement entity sets. Example: the BOOK S table shown
earlier in Table 3-1.

Table scheme

The set of al attribute names for an entity class. Example:

{ISBN,Title,Price}

34 o

FlyrHeart.com 4

TEAM FLY PRESENTS

Since thisis the table scheme for the entity class Books, we can use the notation
Books (ISBN,Title,Price).

Relational database

A finite collection of tables that provides an implementation of an E/R database
model.

3.3 Implementing the Relationships in a Relational Database

Now let us discuss how we might implement the relationships in an E/R database model.
For convenience, we repeat the E/R diagram for the LIBRARY database in Figure 3-1.

Figure 3-1. The LIBRARY entity-relationship diagram

Title

ISEN Price

AulD

AuName

AuPhone

N4 NS

VAN VRN

PublD PubPhone ConlD ConPhone

PubName ConName

3.3.1 Implementing a One-to-Many Relationship—Foreign Keys

Implementing a one-to-many relationship, such as the Publisher Of relationship, isfairly
easy. Toillustrate, since { PubID} isakey for the Publishers entity class, we smply add
this attribute to the Books entity class. Thus, the Books entity class becomes:

Books(ISBN,Title,PublD,Price)

The Books table scheme is now:

{I1SBN,Title,PublD,Price}

35 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

and the BOOKSS table now appears as shown in Table 3-2 (sorted by PublD).

Table 3-2. The BOOK Stable sorted by PublD
ISBN Title PublD Price
0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 lliad 1 $25.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-999999-9 Emma 1 $20.00
1-22-233700-0 Visual Basic 1 $25.00
1-1111-1111-1 C+ 1 $29.95
0-91-045678-5 Hamlet 2 $20.00
0-555-55555-9 Macbeth 2 $12.00
0-99-777777-7 King Lear 2 $49.00
0-123-45678-0 Ulysses 2 $34.00
10-12-345678-9 \Jane Eyre 3 1$49.00
0-11-345678-9 Moby-Dick 3 $49.00
0-321-32132-1 Balloon 3 $34.00
0-55-123456-9 Main Street 3 $22.95

The PublID attribute in the Books entity classis referred to as aforeign key, becauseitisa
key for aforeign entity class—that is, for the Publishers entity class.

Note that the value of the foreign key PublD in the BOOKS table provides areference to
the corresponding value in PUBLISHERS. Moreover, since { PubID} isakey for the
Publishers entity class, there is at most one row of PUBLISHERS that contains a given
value. Thus, for each book entity, we can look up the PublD value in the PUBLISHERS
table to get the name of the publisher of that book. In this way, we have implemented the
one-to-many Publisher Of relationship.

Theideajust described is pictured in more general termsin Figure 3-2. Suppose that there
is a one-to-many relationship between the entity classes (or, equivalently, table schemes)
Sand T. Figure 3-2 shows two tables Sand T based on these table schemes. Suppose also
that { A2} isakey for table scheme S (the one side of the relationship). Then we add this
attribute to the table scheme T (and hence to table T). In this way, for any row of the
table T, we can identify the unique row in table S to which it isrelated.

Figure 3-2. A one-to-many relationship shown in tablesSand T

FlyrHeart.com

TEAM FLY PRESENTS

Takiz § Tkl T

-
I O T B hIB | B|=]"
.—'—'_'_'_'_'_'_.' '
.,——'—'—"_'_-'_'_
?::_.____'
'“‘—h_,__________‘_‘—‘—l- v
____‘_‘“—_
—| ¥
Key Foreign

____________,f"' ey

The attribute set { A,} intable Sis akey for the table scheme S. For this reason, the
attribute set { A} isaso called aforeign key for the table scheme T. More generally, a
set of attributes of atable scheme T is aforeign key for T if it isakey for some other table
scheme S. Note that aforeign key for T isnot akey for T—it isakey for another table
scheme. Thus, the attribute set { PublD} is akey for Publishers, but aforeign key for
Books.

Aswith our example, aforeign key provides areference to the entity class (table scheme)
for which it isakey. The table scheme T is called the referencing table scheme, and the
table scheme Sis called the referenced table scheme. The key that isbeing referenced in
the referenced table schemeis called the referenced key .

Note that adding aforeign key to atable scheme does create some duplicate valuesin the
database, but we must expect to add some additional information to the database in order
to describe the rel ationships.

3.3.2 Implementing a One-to-One Relationship

Of course, the procedure of introducing aforeign key into atable scheme works equally
well for one-to-one relationships as for one-to-many relationships. For instance, we only
need to rename the ConlD attribute to AulD to make ConID into aforeign key that will
implement the Authors-Contributors I sA relationship.

3.3.3 Implementing a Many-to-M any Relationship—New Entity Classes

The implementation of a many-to-many relationship is abit more involved. For instance,
consider the WrittenBy relationship between Books and Authors.

At first glance, we might think of just adding foreign keys to each table scheme, thinking
of the relationship as two distinct one-to-many rel ationships. However, this approach is
not good, since it requires duplicating table rows. For example, if we add the ISBN key to
the Authors table scheme and the AulD key to the Books table scheme, then each book
that is written by two authors must be represented by two rows in the BOOK S table, so

37 FlyHe N‘p

TEAM FLY PRESENTS

we can have two AulDs. To be specific, since the book Main Street is written by Smith
and Jones, we would need two rows in the BOOK S table;

TITLE: Main Street, I1SBN 0-55-123456-9, Price: $22.95 AulD: Smith
TITLE: Main Street, ISBN 0-55-123456-9, Price: $22.95 AulD: Jones

It is clear that this approach will bloat the database with redundant information.

The proper approach to implementing a many-to-many relationship isto add a new table
scheme to the database in order to break the relationship into two one-to-many
relationships. In our case, we add a Book/Author table scheme, whose attributes consist
precisely of the foreign keys ISBN and AulD:

Book/Author (I1SBN,AulD)

To get apictorial view of this procedure, Figure 3-3 shows the corresponding E/R diagram.
Note that it is not customary to include this as a portion of the original E/R diagram, since
it belongs more to the implementation of the design than to the design itself.

Figure 3-3. A many-to-many relationship in the BOOK/AUTHOR table
Title AuName

3.3.4 Referential Integrity

There are afew important considerations that we must discuss with regard to using
foreign keys to implement relationships. First, of course, isthe fact that each value of the
foreign key must have a matching value in the referenced key. Otherwise, we would have
a so-called dangling reference. For instance, if the PublD key in a BOOKS table did not
match a value of the PublD key in the PUBLISHERS table, we would have a book whose
publisher did not exist in the database—that is, a dangling reference to a nonexistent
publisher.

The requirement that each value in the foreign key be avauein the referenced key is
called thereferential constraint , and the problem of ensuring that there are no dangling
referencesis referred to as the problem of ensuring referential integrity.

There are several ways in which referential integrity might be compromised. First, we
could add avaueto the foreign key that is not in the referenced key. This would happen,

FlyrHeart.com 4

TEAM FLY PRESENTS

for instance, if we added a new book entity to the BOOK S table, whose publisher is not
listed in the PUBLISHERS table. Such an action will be rejected by a database
application that has been instructed to protect referential integrity. More subtle ways to
affect referential integrity are to change or delete avalue in the referenced key—the one
that is being referenced by the foreign key. This would happen, for instance, if we deleted
apublisher from the PUBLISHERS table, but that publisher had at least one book listed
in the BOOK Stable.

Of course, the database program can simply disallow such a change or deletion, but there
is sometimes a preferable aternative, as discussed next.

3.3.5 Cascading Updates and Cascading Deletions

Many database programs allow the option of performing cascading updates , which
simply meansthat, if avauein the referenced key is changed, then all matching entries
in the foreign key are automatically changed to match the new value. For instance, if
cascading updates are enabled, then changing a publisher's PublD in aPUBLISHERS
table, say from 100 to 101, would automatically cause all values of 100 in the PublD
foreign key of the referencing table BOOKS to change to 101. In short, cascading updates
keep everything "in sync."

Similarly, enabling cascading deletions means that if avalue in the referenced tableis
deleted by deleting the corresponding row in the referenced table, then al rowsin the
referencing table that refer to that deleted key value will also be deleted. For instance, if
we delete a publisher from a PUBLISHERS table, all book entries referring to that
publisher (through its PublD) will be deleted from the BOOKS table automatically. Thus,
cascading deletions also preserve referential integrity, at the cost of performing perhaps
massive deletions in other tables. Thus, cascading deletions should be used with
circumspection.

Asyou may know, Microsoft Access allows the user to enable or disable both cascading
updates and cascading deletions. We will see just how to do thisin Access later.

3.4 The LIBRARY Relational Database

We can now complete the implementation of the LIBRARY relational database (without
the Contributors entity class) in Microsoft Access. If you open the LIBRARY databasein
Microsoft Access, you will see four tables:

e AUTHORS

« BOOK/AUTHOR
e BOOKS

e PUBLISHERS

(The LIBRARY _FLAT tableisnot used in the relational database.)

FlyrHeart.com 4

TEAM FLY PRESENTS

These four tables correspond to the following four entity classes (or table schemes):

e Authors (AulD, AuName, AuPhone)
o Book/Author (ISBN, AulD)

o Books (ISBN, Title, PublD, Price)
e Publishers (PublD, PubName, PubPhone)

The actual tables are shown in Tables Table 3-3 through Table 3-6.

Table 3-3. The AUTHORS table from the Access LIBRARY database

AulD AuName AuPhone
1 Austen 111-111-1111
10 Jones 123-333-3333
11 Snoopy 321-321-2222
12 Grumpy 321-321-0000
13 Sleepy 321-321-1111
2 Melville 222-222-2222
3 Homer 333-333-3333
4 Roman 444-444-4444
5 Shakespeare 555-555-5555
6 Joyce 666-666-6666
7 Spenser 777-777-7777
8 Mill 888-888-8888
9 Smith 123-222-2222

Table 3-4. The BOOK/AUTHOR table from the LIBRARY database

ISBN

AulD

0-103-45678-9

0-11-345678-9

0-12-333433-3

0-12-345678-9

0-123-45678-0

0-321-32132-1

0-321-32132-1

0-321-32132-1

0-55-123456-9

0-55-123456-9

0-555-55555-9

0-91-045678-5

0-91-335678-7

0-99-777777-7

0-99-999999-9

1-1111-1111-1

40

—
FlyrHeart.com

TEAM FLY PRESENTS

1-22-233700-0 4

Table 3-5. The BOOK Stablefrom the LIBRARY database

ISBN Title PublD Price
0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 lliad 1 $25.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-999999-9 Emma 1 $20.00
1-22-233700-0 Visual Basic 1 $25.00
1-1111-1111-1 C+ 1 $29.95
0-91-045678-5 Hamlet 2 $20.00
0-555-55555-9 Macbeth 2 $12.00
0-99-777777-7 King Lear 2 1$49.00
0-123-45678-0 Ulysses 2 $34.00
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby-Dick 3 $49.00
0-321-32132-1 Balloon 3 $34.00
0-55-123456-9 Main Street 3 $22.95

Table 3-6. The PUBLISHERS Tablefrom the LIBRARY Database

| Publ D | PubName | PubPhone
1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 'Small House 714-000-0000

Notice that we have included the necessary foreign key { PubID} in the BOOK S tablein
Table 3-5, to implement the Publisher Of relationship, which is one-to-many. Also, we
have included the BOOK/AUTHOR table (Table 3-4) to implement the WrittenBy
relationship, which is many-to-many.

Even though all relationships are established through foreign keys, we must tell Access
that these foreign keys are being used to implement the relationships. Here are the steps.

3.4.1 Setting Up the Relationshipsin Access

1. Justtoillustrate a point, make the following small change in the BOOK S table:
Open the table and change the PublID field for Hamlet to 4. Note that thereis no
publisher with PublD 4 and so we have created a dangling reference. Then close
the BOOK S window.

2. Now choose Relationships from the Tools menu. Y ou should get a window
showing the table schemes in the database, similar to that in Figure 3-4.
Relationships are denoted by lines between these table schemes. As you can see,
there are as yet no relationships. Note that the primary key attributes appear in
bol dface.

41 e

FlyrHeart.com

TEAM FLY PRESENTS

Figure 3-4. The Relationships view of the BOOK Stable

= Relationships

Pubily
Pubdams
PubPtone

-
i | 3

3. To set the relationship between PUBLISHERS and BOOKS, place the mouse
pointer over the PublD attribute name in the PUBLISHERS table scheme, hold
down the left mouse button, and drag the name to the PublD attribute name in the
BOOKS table scheme. Y ou should get awindow similar to Figure 3-5.

Figure 3-5. Relationship between the PUBLISHERS and BOOKS

tables
Relationships HE
Table)Query: Relatad Table/Query:
PLELISHERS [Ecoks |« -
PUbLD = | PublD Il Cancel

o] e |

[~ Erforce Referenkial Inbegrib
-
-

Relationship Type: Cme-To-Marvy

4. Thiswindow shows the relationship between PUBLISHERS and BOOKS, listing
the key { PubID} in PUBLISHERS and the foreign key { PubID} in BOOKS. (We
did not need to call the foreign key PublD, but it makes sense to do so, since it
reminds us of the purpose of the attribute.)

5. Now check the Enforce Referential Integrity box, and click the Create button.

Y ou should get the message in Figure 3-6. The problemis, of course, the dangling

reference that we created by changing the PublD field in the BOOK S table to
refer to a nonexistent publisher.

Figure 3-6. Error message dueto dangling reference

42

—_
FlyrHeart.com

TEAM FLY PRESENTS

|Microzoft Access

i Miciozoft Access can't cieate this
relationzship and enlorce referential ntegrily.

[1ata i the table 'BO0RS" violstes refeential nkegrky
ndes.

Fo example, there may be records relaling o an
anmplopes i the related table, bt no record for the
ermploves i the primany bable

Edit e data so that records in the primary table euxis
for al ielsted recoids.

If wau wark to create the relatiorship without following
iz rubes of rederenbial integriy, clear the Enfoce
Fieferantial Integrity check bau.

6. Click the OK button, reopen the BOOK S table, and fix the offending entry
(change the PublD field for Hamlet back to 2). Then close the BOOKS table, and
re-establish the relationship between PUBLISHERS and BOOKS. Thistime,
check the Enforce Referential Integrity checkbox, as well as the Cascade Update
Related Fields checkbox. Do not check Cascade Delete Related Fields.

7. Next, drag the ISBN attribute name from the BOOK S table scheme to the ISBN
attribute name in the BOOK/AUTHOR table scheme. Again check the Enforce
Referential Integrity and Cascade Update Related Fields checkboxes.

8. Finally, drag the AulD attribute name from the AUTHORS table scheme to the
AuID attribute name in the BOOK/AUTHOR table scheme. Check the Enforce
Referential Integrity and Cascade Update Related Fields checkboxes. Y ou should
now see the lines indicating these relationships, as shown in Figure 3-7. Note the
small 1sand OJs, indicating the one side and many side of each relationship.

Figure 3-7. Relationships view showing various table relationships

= 7 Relationshipz [_[O] =]

PaallDy j
Aulame
AuPhone

=
] | »

9. To test the enforcement of referential integrity, try the following experiment: open
the BOOK S and PUBLISHERS tables, and arrange them so that you can see both
tables at the same time. Now change the value of PubID for Small House in the
PUBLISHERS table from 3 to 4. As soon as you move the cursor out of the Small
House row (which makes the change permanent), the corresponding PublD values
in BOOKSS should change automatically! When you are done, restore the PublD
value in PUBLISHERS back to 3.

FlyHeart.com g4

TEAM FLY PRESENTS

3.5 Index Files

When atableis stored on disk, it is often referred to as afile. In this case, each row of the
tableisreferred to asarecord , and each column isreferred to as afield. (These terms are
often used for any table.)

Since disk accessistypically slow, an important goal is to reduce the amount of disk
accesses necessary to retrieve the desired data from afile. Sequential searching of the
data, record-by-record, to find the desired information may require a large number of disk
accesses and is very inefficient.

The purpose of an index fileis to provide direct (also called random) accessto datain a
database file.

Figure 3-8 illustrates the concept of an index file. For illustration purposes, we have
changed the Publishers data, to include a city column. Thefile on the left is the index file
and indexes the Publishers datafile by the City field, which is therefore called theindexed
field. Thecity fileis caled an index for the PUBLISHERS table. (Theindex fileisnot a
table in the same sense as the PUBLISHERS tableisatable. That is to say, we cannot
directly access the index file—instead we use it indirectly.) The index file contains the
cities for each publisher, along with a pointer to the corresponding datarecord in the
Publishersfile.

Figure 3-8. Index file between City and Publisher

Boston il J— Huge House Seattle
Dallas '_q] 2 Little House Kansas ity
Hansas City . L : o 3 Medium House Buastan
Kansas City " L. Big House Kansas Gity
Seattle . 5 Huge House Dallas

Anindex file can be used in a variety of ways. For instance, to find all publishers located
in Kansas City, Access can first search the alphabetical list of citiesin the index file.
Sincethelist is alphabetical, Access knows that the Kansas City entries are all together,
and so once it reaches the first entry after Kansas City, it can stop fcthe search. In other
words, Access does not need to search the entire index file. (In addition, there are very
efficient search algorithms for ordered tables.) Once the Kansas City entries are found in
the index file, the pointers can be used to go directly to the Kansas City publishersin the
indexed file.

Also, since the index provides a sorted view of the datain the original table, it can be
used to efficiently retrieve arange of records. For instance, if the Books data were
indexed on price, we could efficiently retrieve al books in the price range between
$20.00 and $30.00.

FlyrHeart.com

—

>

TEAM FLY PRESENTS

A table can be indexed on more than one column; that is to say, atable can have more
than one index file. Also, atable can be indexed on a combination of two or more
columns. For instance, if the PUBLISHERS table also included a State column, we could
index the table on a combination of City and State, as shown in Figure 3-9.

Figure 3-9. Index file between City, State, and Publisher

BostonMA — —=] Huge House Seattle Wi
DalltasTx -— q [_' 2 Little House Kansas City | MO
Kansas CityKS - T J e 3 Medium House Boston M4
Konsas Citytid - o 4 Big Hause Kansas City | K8
Seattleli . =l 5 Huge House Dallas [

Anindex on aprimary key isreferred to as aprimary index. Note that Microsoft Access
automatically creates an index on a primary key. An index on any other column or
columnsis called a secondary index. An index based on akey (not necessarily the
primary key) is called a unique index , since the indexed column contains unique values.

3.5.1 Example
To view the indexes for a given table in Microsoft Access, open the table in design view,

and then choose Indexes from the View menu. For the BOOKS table, you should see a
window similar to Figure 3-10 (without the PubTitle entry).

Figure 3-10. Index view of the BOOK Stable

f Indexes: BOOES
Index Mame Fiehd Hame Sork Order -
¥ | Primarykey 12BN Azcending
PubID PubID Ascending _l
PubTitle PublD Ascanding
Title Ascending
Index Properties
Primary Mo
Unique Mo The nanve For this index, Each index can use
Ignore Nuls Mo up ko 10 Fislds

To add an index based on more than one attribute, you enter the multiple attributes on
successive rows of the Indexes dialog box. We have done thisin Figure 3-10, adding an
index called PubTitle based on the PublD and the Title attributes. Thisindex indexes the
BOOKS entities first by PublD and then by Title (within each PublD).

45 .

FlyrHeart.com

TEAM FLY PRESENTS

3.6 NULL Values

The question of NULLs can be very confusing to the database user, so let us set down the
basic principles. Generally speaking, aNULL isaspecial value that is used for two
reasons.

e Toindicatethat avaueismissing or unknown
e Toindicatethat avalueisnot applicable in the current context

For instance, consider an author's table:

AUTHORS(AulD,AuName,AuPhone)

If aparticular author's phone number is unknown, it is appropriate for that value to be
NULL. Thisis not to say that the author does not have a phone number, but smply that
we have no information about the number—it may or may not exist. If we knew that the
person had no phone number, then the information would no longer be unknown. In this
case, the appropriate value of the AuPhone attribute would be the empty string, or
perhaps the string no phone, but not aNULL. Thus, the appropriateness of allowing
NULL vauesfor an attribute depends upon the context.

The issue of whether NULLs should appear in a key needs some discussion. The purpose
of akey isto provide ameans for uniquely identifying entities, and so it would seem that
keys and NULLs are incompatible. However, it isimpractical to never allow NULLsin
any keys. For instance, for the Publishers entity, this would mean not allowing a
PubPhone to be NULL, since { PubName,PubPhone} is akey. On the other hand, the
so-called entity integrity rule says that NULLs are not allowed in a primary key.

Asafina remark, the presence of aNULL asaforeign key value does not violate
referential integrity. That is, referential integrity requires that every non-NULL valuein a
foreign key must have a match in the referenced key.

FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 4. Database Design Principles

In Chapter 1 | tried to present a convincing case for why most databases should be
modeled as relational databases, rather than single-table flat databases. | tried to make it
clear why | split the single LIBRARY _FLAT tableinto four separate tables: AUTHORS,
BOOKS, PUBLISHERS, and BOOK/AUTHOR.

However, for large real-life databases, it is not always clear how to split the datainto
multiple tables. As | mentioned in Chapter 1, the goa is to minimize redundancy, without
losing any information.

The problem of effective database design is a complex one. Most people consider it an art
rather than a science. This means that intuition plays amajor role in good design.
Nonetheless, there is a considerable theory of database design, and it can be quite
complicated. My goal in this chapter isto touch upon the general ideas, without
becoming involved in the details. Hopefully, this discussion will provide a helpful guide
to the intuition needed for database design.

4.1 Redundancy

Aswe saw in Chapter 1, redundant data tends to inflate the size of a database, which can
be a very serious problem for medium to large databases. Moreover, redundancy can lead
to several types of anomalies, as discussed earlier. To understand the problems that can
arise from redundancy, we need to take a closer look at what redundancy means.

Let us begin by observing that the attributes of atable scheme can be classified into three
groups:

o Attributes used strictly for identification purposes
o Attributes used strictly for informational purposes
o Attributes used for both identification and informational purposes

For example, consider the table scheme:

{PublD,PubName,PubPhone, YearFounded}

In this scheme, PublID is used strictly for identification purposes. It carries no
informational content. On the other hand, Y earFounded is strictly for informational
purposes in this context. It gives the year that the publishing company was founded, but
isnot required for identification purposes.

Consider dso the table scheme:

{Title,PublD,AulD,PageCount,CopyrightDate}

47 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

In this case, if we assume that there is only one book of a given title published by a given
publisher and written by a given author, then { Title,PublD,AulD} isakey. Hence, each
of these attributesis used (at least in part) for identification. However, Titleisaso an
informational attribute.

| should hasten to add that these classifications are somewhat subjective and depend upon
the assumptions made about the entity class. Nevertheless, this classification does
provide a useful intuitive framework.

We can at least pin down the strictly informational attributes a bit more precisely by
making the following observation. The sign that an attribute is being used (at least in part)
for identification purposesisthat it is part of some key. Thus, an attribute that is not part
of any key is being used, in that table scheme, strictly for informational purposes. Let us
call such an attribute a strictly informational attribute.

Now consider Table 4-1. In this case, both Title and PubName are strictly informational,
since {ISBN} isthe only key, and neither Title nor PubName is part of that key. However,
the values of Title are not redundant (the fact that they are the same does not mean that
they are not both required), whereas the values of PubName are redundant.

Table 4-1. A tablewith two informational attributes

| ISBN | Title | PubiD | PubName
1-1111-1111-1 CH+ 1 Big House
0-91-335678-7 Faerie Queene 1 Big House
11-011-22222-0 C++ 2 /ABC Press

The reason that Title is not redundant is that there is no way to eliminate any of these
titles. Each book entity must have its title listed somewhere in the database—one title per
ISBN. Thus, the two titles C++ must both appear somewhere in the database.

On the other hand, PubName is redundant, as can easily be seen from the fact that the
same PubName is listed twice without adding any new information to the database. To
look at this another way, consider the table with two cells blank in Table 4-2. Can you fill
in thetitle field for the last row? Not unless you call the publisher to get thetitle for that
ISBN. In other words, some information is missing. On the other hand, you can fill in the
blank PubName field.

Table 4-2. A tablewith blank cellstoillustrate attribute dependency
ISBN Title PublD PubName
1-1111-1111-1 Macbeth 1 Big House
2-2020-2222-2 Hamlet 1
5-555-55555-5 2 ABC Press
48 W

FlyHeart.com g4

TEAM FLY PRESENTS

Theissue hereis quite ssimple. The Title attribute depends only upon the ISBN attribute,
and {ISBN} isakey. In other words, Title depends only upon a key. However, PubName
depends completely upon PublD, which is not a key for this table scheme. (Of course,
PubName also depends on the key { ISBN}, but that is not relevant.)

Thus, we have seen a case where redundancy results from the fact that one attribute
depends upon another attribute that is not a key. Armed with this observation, we can
move ahead.

4.2 Normal Forms

Those who make a study of database design have identified a number of special forms,
properties, or constraints that a table scheme may possess, in order to achieve certain
desired goals, such as minimizing redundancy. These forms are called normal forms.
There are six commonly recognized normal forms, with the inspired names:

First normal form (INF)

Second normal form (2NF)

Third normal form (3NF)

Boyce Codd normal form (BCNF)
Fourth-normal form (4NF)

Fifth normal form (5NF)

We will consider the first four of these normal forms, but only informally. Each of these
normal formsis stronger than its predecessors. Thus, for instance, atable schemethat is
in third normal form is also in second normal form. While it is generally desirable for the
table schemes in a database to have a high degree of normalization, as we will seein this
chapter, the situation is not as ssimple as it may seem.

For instance, requiring that all table schemes be in BCNF may cause some |0ss of
information about the various relationships between the table schemes. In generdl, itis
possible to manipulate the data to achieve third normal form for al table schemes, but
this may turn out to be far more work than it is worth.

The plain fact isthat forcing all table schemesto be in a particular normal form may
require some compromises. Each individual situation (database) must be examined on its
own merit. It isimpossible to make general rules that apply in all situations.

The process of changing a database design to produce table schemesin normal formis
called normalization.

4.3 First Normal Form

First normal formisvery simple. A table schemeissaid to bein first normal formif the
attribute values are indivisible. To illustrate, we considered in Chapter 1 the question of

FlyrHeart.com 4

TEAM FLY PRESENTS

including al the authors of a book in a single attribute, called Authors. Hereisan
example entity:

ISBN = 0-55-123456-9

Title = Main Street

Authors = Jones, H. and Smith, K.
Publisher = Small House

Since the table scheme in this case alows more than one author name for the Authors
attribute, the scheme is not in first normal form. Indeed, one of the obvious problems
with the Authors attribute is that it isimpossible to sort the data by individual author
name. It is also more difficult to, for instance, prepare amailing label for each author, and
so on.

Attributes that allow only indivisible values are said to be scalar attributes or atomic
attributes. By contrast, an attribute whose values can be, for example, alist of items
(such asalist of authors) is said to be a structured attribute . Thus, atable schemeisin
first normal form if all of its attributes are atomic. Good database design almost aways
requires that all attributes be atomic, so that the table schemeisin first normal form.

In general, making the adjustments necessary to ensure first normal form is not hard, and
itisagood general rule that table schemes should be put in first normal form. However,
as with the other normal forms (and even more so the higher up we go) each situation
must be considered on its own merits. For instance, a single field might be designed to
hold a street address, such as 1333 Bessemer Street." Whether the house number and the
street name should be separated into distinct attributes is a matter of context. Put another
way, whether a street address is atomic depends upon the context. If thereis reason to
manipul ate the street numbers apart from the street names, then they should certainly
constitute their own attribute. Otherwise, perhaps not.

4.4 Functional Dependencies

Before we can discuss the other normal forms, we need to discuss the concept of
functional dependency , which is used to define these normal forms. This concept is quite
simple, and we have actually been using it for some time now. As an example, we have
remarked that, for the Publishers table scheme, the PubName attribute depends
completely on the PublD attribute. (More properly, we should say that the value of the
PubName attribute depends completely on the value of the PublD attribute, but the earlier
shorthand is convenient.) Thus, we can say that the functional dependency from PublD to
PubName, written:

PubID —2PubName

holds for the Publishers table scheme. This can be read "PublD determines PubName' or
"PubName depends on PubID."

FlyrHeart.com 4

TEAM FLY PRESENTS

More generally, suppose that { A1,...,Ax} are attributes of atable scheme and that
{B1,...,Bn} arealso attributes of the same table scheme. We do not require that the Bs be
different from the As. Then the attributes B,,...,Bn depend on the attributes A4,..., Ay,
written:

if the values of Aj,...,Ax completely determine the values of B;,...,B,. Our main interest is
when there is only one attribute on the right:

For instance, it is probably safe to say that:
{PubName, PubPhone} —2{PublID}

which is just another way of saying that there is only one publisher with a given name
and phone number (including area code).

It is very important to understand that a functional dependency means that the attributes
on the left completely determine the attributes on the right for now and for al timeto
come, no matter what additional data may be added to the database. Thus, just as the
concept of akey relates to entity classes (table schemes) rather than individual entity sets
(tables), so does functional dependency. Every table scheme has its set of associated
functional dependencies, which are based on the meaning of the attributes.

Recall that a superkey is aset of attributes that uniquely determines an entity. Put another
way, a superkey is aset of attributes upon which all other attributes of the table scheme
are functionally dependent.

Some functional dependencies are obvious. For instance, an attribute functionally
depends upon itself. Also, any set of attributes functionally determines any subset of
these attributes, asin:

{A,B,C} —2{A,B}

Thisjust says that if we know the values of A, B, and C, then we know the value of A
and B! Such functional dependencies are not at all interesting, and are called trivial
dependencies . All other dependencies are called nontrivial.

4.5 Second Normal Form

Intuitively, atable scheme T isin second normal form if all of the strictly informational
attributes (attributes that do not belong to any key) are attributes of the entitiesin the
table scheme, and not of some other class of entities. In other words, the informational

51 N

FlyHeart.com g4

TEAM FLY PRESENTS

attributes provide information specifically about the entities in this entity class and not
about some other entities.

Let usillustrate with an example. Consider a simplified table scheme designed to store
house addresses. One possibility is:

{City,Street,HouseNumber ,HouseColor,CityPopulation}

The CityPopulation attribute is out of place here because it is an attribute of cities, not
house addresses. More specifically, CityPopulation is strictly an informational attribute
(not for identification of houses), but it gives information about cities, not house
addresses. Thus, this table scheme is not in second normal form.

We can be alittle bit more formal about the meaning of second normal form as follows.
Referring to the previous example, we have the dependency:

{City} —?{CityPopulation}

where CityPopul ation does not belong to any key, and where City is a proper subset of a
key, namely, the key { City, Street, HouseNumber} . (By proper subset, we mean a subset
that is not the whole set.)

A table schemeisin 2NF if it isnot possible to have a dependency of the form:

where B does not belong to any key (is strictly informational) and { As,...,Ax} isa
propersubset of some key, and thus does not identify the entities of this entity class, but
rather identifies the entities of some other entity class.

Let us consider another example of atable scheme that is not in second normal form.

Consider the following table scheme, and assume for the purposes of illustration that,
while there may be many books with the same title, no two of them have the same
publisher and author:

{Title,PublID,AulD,Price,AuAddress}

Thus, { Title, PublD, AulD} isthe only key. Now, AuAddress does not belong to any key,
but it depends upon { AulD}, which is a proper subset of the key, in symbols:

{AulD} —2{AuAddress}

Hence, this table scheme is not in second normal form. In fact, AuAddressis not a piece
of information about the entities modeled in the table scheme (i.e., books), but rather
about authors. Of course, we could remove the AuAddress attribute to bring the table
scheme into second normal form. (If each publisher charged a single price for all of its

52 N

FlyrHeart.com 4

TEAM FLY PRESENTS

books, then Price would also cause a violation of second normal form, but thisis not the
case, of course.)

4.6 Third Normal Form

Second normal form is good, but we can do better. We have seen that if atable schemeis
in second normal form, then no strictly informational attribute depends on a proper subset
of akey. However, there is another undesirable possibility. Let usillustrate with an
example.

Consider the following table scheme and assume, for the purposes of illustration, that no
two books with the same title have the same publisher:

{Title,PublD,PageCount,Price}

The only key for this table schemeis { Title,PublD}. Both PageCount and Price are
informational attributes only.

Now, let us assume that each publisher decides the price of its books based solely on the
page count. First, we observe that this table isin second normal form. To seethis,
consider the proper subsets of the key. These are:

{Title} and {PublD}
But none of the dependencies:

{Title} ‘9{PageCount}
{Title} —2?{Price}
{PublD} ‘9{PageC0unt}
{PubID} —2{Price}

hold for this table scheme. After al, knowing the title does not determine the book, since
there may be many books of the same title, published by different publishers. Hence, the
table isin second normal form.

It isalso not correct to say that:

{PageCount} ‘9{Price}

holds, because different publishers may use different price schemes based on page count.
In other words, one publisher may price books over 1,000 pages at one price, whereas

another may price books over 1,000 pages at a different price. However, it is true that:

{PublD,PageCount} ‘9{Price}

53 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

holds. In other words, here we have an informational attribute (Price) that depends not on
aproper subset of akey, but on a proper subset of akey (PublD) together with another
informational attribute (PageCount).

Thisisbad, since it may produce redundancy. For instance, consider Table 4-3. Note that
the price attribute is redundant. After all, we could fill in the Price value for the third row
if it were blank, because we know that PublD 2 charges $34.95 for 500-page books.

Table 4-3. Redundant data in atable

Title PublD PageCount Price
Moby-Dick 1 500 29.95
Giant 2 500 34.95
Moby-Dick 2 500 34.95

We can summarize the problem with the dependency:
{PublID,PageCount} —2?{Price}

by saying that the attribute Price depends upon a set of attributes:
{PublD,PageCount}

that is not akey, not a superkey, and not a proper subset of akey. It isamix containing
one attribute from the key { Title,PublD} and one attribute that is not in any key.

With this example in mind, we can now define third normal form. A table schemeisin
third normal form if it is not possible to have a dependency of the form:

where B does not belong to any key (is strictly informational) and { A,...,Ax} isnhot a
superkey. In other words, third normal form does not permit any strictly informational
attribute to depend upon anything other than a superkey. Of course, superkeys determine
all attributes, including strictly informational attributes, and so all attributes depend on
any superkey. The point is that, with third normal form, strictly informational attributes
depend only on superkeys.

4.7 Boyce-Codd Normal Form

It is possible to find table schemes that are in third normal form, but still have
redundancy. Here is an example.

Consider the table scheme { City,StreetName,ZipCode} , with dependencies:

{City,StreetName} —>{Z ipCode}

54 .

FlyrHeart.com 4

TEAM FLY PRESENTS

and:

{ZipCode} —2{City}

(Although in real life, azip code may be shared by two different cities, we will assume
otherwise for the purposes of illustration.) This table schemeisin third normal form. To
see this, observe that the keys are { City,StreetName} and { ZipCode,StreetName} . Hence,
no attribute is strictly informational, and there is nothing to violate third normal form.

On the other hand, consider Table 4-4. We can fill in the blank city name because

{ ZipCode} —2{ City}.

Table 4-4. A table with dependencies

|

City

StreetName

ZipCode

Los Angeles

Hollywood Blvd

95000

Vine St

95000

The problem here is with the dependency:

{ZipCode}?{City}

which does not violate third normal form because, as we have mentioned, { City} is not

strictly informational.

The previous example gives us the idea to strengthen the condition in the definition of
third normal form by dropping the requirement that B be strictly informational. Thus, we
can define our last, and strongest, normal form. A table schemeisin Boyce-Codd normal

form if it is not possible to have a dependency of the form:

where { A4,...,A} isnot asuperkey. In other words, BCNF form does not permit any

attribute to depend upon anything other than a superkey.

As mentioned earlier, all attributes must depend on any superkey by the very definition of
superkey. Thus, BCNF is the strongest possible restriction of this type—it says that an
attribute is not allowed to depend on anything other than a superkey.

4.8 Normalization

As mentioned earlier, the process of changing a database design to produce table schemes
in normal formis called normalization.

Asavery simple example, the table scheme:

55

—
FlyrHeart.com 4

TEAM FLY PRESENTS

{ISBN,Title,Authors}

isnot even in first normal form, because the Authors attribute might contain more than
one author and is therefore not atomic. By trading in this table scheme for the two

schemes:

{ISBN,Title,AulD}

and:

{AulD,AuName}

we have normalized the database into first normal form.

Here is another example involving the higher normal forms. Recall from an earlier
example that the table scheme { City,StreetName,ZipCode}, with dependencies:

{City,StreetName} ‘9{ZipCode}

and:

{ZipCode} —2{City}

isin third normal form. However, Table 4-5 shows that there is still some redundancy in
the table scheme. The table scheme is not in BCNF. In fact, this was the example we used

to motivate our definition of BCNF. (The example violates BCNF.)

Table 4-5. A table with redundant data

|

City

StreetName

ZipCode

Los Angeles

Hollywood Blvd

95000

Vine St

95000

However, we can split this table scheme into two schemes:

{zZipCode,City}

and:

{zipCode,StreetName}

In this case, Table 4-5 gets split into two tables, Tables Table 4-6 and Table 4-7, and the

redundancy is gone!

Table 4-6. First table derived from Table 4-5 to eliminate redundancy

56

—_
FlyrHeart.com

TEAM FLY PRESENTS

ZipCode

City

95000

Los Angeles

Table 4-7. Second table derived from Table 4-5 to eliminate redundancy

|

ZipCode

StreetName

95000

Hollywood Blvd

95000

Vine St

Generally speaking, the design of a database may begin with an E/R diagram. This
diagram can be implemented according to the principles discussed in Chapter 3. The result
may very well be a perfectly satisfactory database design. However, if some of the table
schemes have redundancies, it may be desirable to split them into smaller table schemes
that satisfy a higher normal form, asin the previous example.

4.8.1 Decomposition

Although the decomposition of atable scheme into smaller (hopefully normalized) table
schemes is desirable from an efficiency point of view (in order to reduce redundancy and
avoid various anomalies), it does carry with it some risk, which primarily comesin two

forms:

e Thepossibleloss of information
e Thepossibleloss of dependencies

The following example illustrates the first problem—Ioss of information. Consider the

table scheme:

{AulD,AuName,PublID}

The only dependency in thistable schemeis:

{AulD} Q{AuName}

We could decompose this table scheme into the two schemes:

{AulD,AuName}

and:

{AuName,PublD}

Now consider Table 4-8, which has two different authors with the same name. The

decomposition gives the two tables shown in Tables Table 4-9 and Table 4-10.

57

—_
FlyrHeart.com

TEAM FLY PRESENTS

Table 4-8. A tablewith two identical author names

| AuID | AuName | PubID
Al \John Smith P1
A2 \John Smith P2

Table 4-9. Partial decomposition of Table 4-8

AulD AuName
Al John Smith
A2 \John Smith

Table 4-10. Partial decomposition of Table 4-8

AuName PublD
John Smith P1
\John Smith P2

Unfortunately, if we were to ask Microsoft Access to show us the datafor all authors
named John Smith, we would get the table shown in Table 4-11, which is not the table we
started with! Information has been lost, in the sense that we no longer know that both
John Smiths together have published only two books, each author with a different
publisher. (It may look as though we have more information, since the table is bigger, but
in reality we have lost information.)

Table4-11. An incorrect reconstruction of Table 4-8
| AuID | AuName | PubID
Al \John Smith P1
Al John Smith P2
A2 John Smith P1
A2 \John Smith P2

The second problem | mentioned in connection with the decomposition of a table scheme
isloss of dependencies. Theissueisthis: during the life of the database, we will be
making changes (updates, insertions, and deletions) to the separate tables in the
decomposition. Of course, we must be careful to preserve the functional dependencies
that are inherited from the original table scheme. However, this does not necessarily
guarantee that all of the original dependencies will be preserved!

Hereisasimple example to illustrate the problem. Consider the table scheme:

{1SBN, PageCount,Price}

with dependencies:

FlyrHeart.com

TEAM FLY PRESENTS

{1SBN} 9{PageCount}
{PageCount} Q{Pr ice}

Consider the decomposition into the table schemes:

{1SBN, PageCount}

and:

{1SBN,Price}
Note that the key {ISBN} isin both schemes in the decomposition.

Unfortunately, the decomposition has caused us to lose the dependency { PageCount} —>
{Price}, in the sense that these two attributes are not in the same table scheme of the
decomposition. To illustrate, consider Table 4-12, which has two different books with the
same page count and price. The decomposition of this table into two tablesis shown in
Tables Table 4-13 and Table 4-14.

Table4-12. Table example to show further decomposition

ISBN PageCount Price
0-111-11111-1 500 $39.95
0-111-22222-2 500 $39.95

Table 4-13. Partial decomposition of Table4-12

ISBN | PageCount
0-111-11111-1 500
0-111-22222-2 500

Table 4-14. Partial decomposition of Table4-12
| ISBN | Price
0-111-11111-1 $39.95
0-111-22222-2 $39.95

Now hereisthe problem. Looking at the second table, we have no indication that the
original scheme required that PageCount determine Price. Hence, we might change the
price of the second book to $12.50, as we've done in Table 4-15.

Table 4-15. Decomposition example changing price

ISBN Price
0-111-11111-1 $39.95
0-111-22222-2 |$12.50

59 w
FlyrHeart.com

TEAM FLY PRESENTS

But putting the tables back together for alook at all of the data gives us Table 4-16, which
reveals aviolation of the requirement that PageCount determine Price. In fact, somebody
at the publishing company is going to be very unhappy that the company is now selling a

500-page book below cost!

Table 4-16. Looking at data by combining Table 4-12 through Table 4-15

|

ISBN

PageCount

Price

0-111-11111-1

500

$39.95

0-111-22222-2

500

$12.50

By contrast, consider the decomposition of the original table scheme into:

{1SBN, PubPhone}

and:

{PubPhone,PubName}

Here, no dependency is lost, so we can update each separate table without fear.

The previous two examplesillustrate the pitfalls in decomposing a table scheme into
smaller schemes. If a decomposition does not cause any information to be lost, it is called
alossless decomposition. A decomposition that does not cause any dependencies to be
lost is called a dependency-preserving decomposition.

Now it is possible to show that any table scheme can be decomposed, in alossless way,
into a collection of smaller schemes that are in the very nice BCNF form. However, we
cannot guarantee that the decomposition will preserve dependencies. On the other hand,
any table scheme can be decomposed—in alossless way that also preserves
dependencies—into a collection of smaller schemes that are in the almost-as-nice third

normal form.

However, before you get too excited, | must hasten to add that the algorithms given do
not always produce desirable results. They can, in fact, create decompositions that are
less intuitive than we might do just using our intuition. Nevertheless, they can berelied
upon to produce the required decomposition, if we can't do it ourselves.

| should conclude by saying that there is no law that says that a database is always more
useful or efficient if the tables have a high degree of normalization. These issues are more
subj ective than objective and must be dealt with, as adesign issue, on an ad hoc basis. In
fact, it appears that the best procedure for good database design isto mix eight parts
intuition and experience with two parts theory. Hopefully, discussion of normalization
has given you a general feel of the issuesinvolved and will provide a good jumping-off
placeif you decide to study these somewhat complicated issuesin greater depth. (See
Appendix E for some books for further study.)

60

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

61

—_—
FlyrHeart.com

TEAM FLY PRESENTS

Part Il: Database Queries

Chapter 5. Query Languages and the Relational Algebra

In the first part of this book, | have tried to make a convincing argument that good
database design isimportant to the efficient use of a database. As you have seen, this
generally involves breaking the data up into separate pieces (tables). Of course, this
implies that we need methods for piecing the data back together again in various forms.

After al, one of the main functions of a database program isto alow the user to view the
datain avariety of ways. When datais stored in multiple tables, it is necessary to piece
the data back together to provide these various views. For instance, we might want to see
alist of al publishers that publish books priced under $10.00. This requires gathering
data from more than one table. The point is that, by breaking datainto separate tables, we
must often go to the trouble of piecing the data back together in order to get a
comprehensive view of the data.

Thus, we can state the following important maxim:

Asadirect consequence of good database design, we often need to use methods for
piecing data from several tablesinto a single coherent form.

Many database applications provide the user with relatively easy waysto create
comprehensive views of data from many tables. For instance, Microsoft Access provides
agraphical interface to create queries for that purpose. Our goal in this chapter isto
understand how a database application such as Access goes about providing this service.

The short answer to thisis the following:

1. The user of adatabase application, such as Access, asks the application to provide
aspecific view of the data by creating aquery.

2. The database application then converts this query into a statement in its query
language, which in the case of Microsoft Access is Access Structured Query
Language, or Access SQL. (Thisisaspecial form of standard SQL..)

3. Finally, aspecia component of Access (known as the Jet Query Engine, which
we will discuss again in Chapter 7) executes the SQL statement to produce the
desired view of the data.

In view of thisanswer, it istime to turn away from a discussion of database-design issues
and turn toward a discussion of issues that will lead us toward database programming and,
in particular, programming in query languages such as Access SQL.

| will now outline my plan for this and the next chapter. In this chapter, | will discussthe
underlying methods involved in piecing together data from separate tables. In short, | will

62)

FlyrHeart.com 4

TEAM FLY PRESENTS

discuss methods for making new tables from existing tables. Thiswill give usaclear
understanding as to the general tasks that must be provided by a query language.

In the next chapter, | will take alook at Access SQL itself. You will seethat SQL is
much more than just a simple query language, for not only is it capable of manipulating
the components of an existing database (into various views), but it is also capable of
creating those components in the first place.

5.1 Query Languages

A guery can be thought of as arequest of the database, the response to which isanew
table, which | will refer to asaresult table . For instance, referring to the LIBRARY
database, we might request the titles and prices of all books published by Big House that
cost over $20.00. The result table in this case is shown in Table 5-1.

Table 5-1. Books published by Big House costing over $20.00
Title Price PubName
On Liberty $25.00 Big House
lliad $25.00 Big House
Visual Basic $25.00 Big House
C++ $29.95 Big House

It is probably not necessary to emphasize the importance of queries, for what good is a
database if we have no way to extract the datain meaningful forms?

Specia languages that are are used to formul ate queries—in other words, that are
designed to create new tables from old ones—are known as query languages. (There does
not seem to be agreement on the precise meaning of the term query language, so | have
decided to use it in amanner that seems most consistent with the term query.)

There are two fundamental approaches to query languages. one is based on algebraic
expressions, and the other is based on logical expressions. In both cases, an expression is
formed that refers to existing tables, constants (i.e., values from the domains of tables),
and operators of various types. How the expression is used to create the return table
depends on the approach, as you will see.

Before proceeding, let us discuss a bit more terminology. A table whose datais actually
stored in the database is called a base table . Base-table datais generally stored in a
format that does not actually resemble a table—but the point is that the datais stored. A
table that is not stored, such as the result table of aquery, iscalled aderived table. It is
generaly possible to save (i.e., store) aresult table, which then would become a base
table of the database. In Microsoft Access, thisis done by creating a so-called make-table

query .

63 s _—>

TEAM FLY PRESENTS

Finally, aview is a query expression that has been given aname and is stored in the
database. For example, the expression:

all titles where (PubName = Big House) and (Price > $20.00)

isaview. Notethat it is the expression that is the view, not the corresponding result table
(as might be implied by the name view).

Whenever the expression (or view) is executed, it creates aresult table. Therefore, aview
isoften referred to asavirtual table . Again, it isimportant not to confuse a view with the
result table that is obtained by executing the expression. The virtue of avirtua table (or
view) isthat an expression generally takes up far less room in storage than the
corresponding result table. Moreover, the datain aresult table is redundant, since the data
is aready in the base tables, even though not in the samelogical structure.

5.2 Relational Algebra and Relational Calculus

The most common algebraic query language is called the relational algebra. This
language is procedural, in the sense that its expressions actually describe an explicit
procedure for returning the results. Languages that use logic fall under the heading of the
relational calculus (there is more than one such language in common use). These
languages are nonprocedural , since their expressions represent statements that describe
conditions that must be met for arow to be in the result table, without showing how to
actually obtain those rows.

Let usillustrate these ideas with an example. Consider the following request, written in
plain English:

Get the names and phone numbers for publishers who publish books costing under
$20.00.

For reference, let us repeat the relevant tables for this request. The BOOKSS table appears
in Table 5-2, while the PUBLISHERS table is shown in Table 5-3.

Table5-2. The BOOK Stablefrom the LIBRARY database
| ISBN | Title | PublD | Price
0-555-55555-9 Macbeth 2 $12.00
0-91-335678-7 Faerie Queene 1 $15.00
10-99-999999-9 [Emma 1 1$20.00
0-91-045678-5 Hamlet 2 $20.00
0-55-123456-9 Main Street 3 $22.95
1-22-233700-0 Visual Basic 1 $25.00
0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 llliad 1 1$25.00
64 =

FlyHeart.com g4

TEAM FLY PRESENTS

1-1111-1111-1 C++ 1 $29.95
0-321-32132-1 Balloon 3 $34.00
0-123-45678-0 Ulysses 2 $34.00
0-99-777777-7 King Lear 2 $49.00
10-12-345678-9 \Jane Eyre 3 1$49.00
0-11-345678-9 IMoby-Dick 3 1$49.00

Table5-3. The PUBLISHERS table from the LIBRARY database

PublD PubName PubPhone
1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 Small House 714-000-0000

Hereis aprocedure for executing this request. Don't worry if some of the terms do not
make sense to you now; | will explain them later.

1. Join the BOOKS and PUBLISHERS tables, on the PublD attribute.

2. Sdlect those rows (of the join) with Price attribute less than $20.00.
3. Project onto the columns PubName and PubPhone.

In the relational algebra, thiswould be translated into the following expression:
ProjpubName,PubPhone(S€lprice<20.00(BOOKS join PUBLISHERS))

The result table is shown in Table 5-4.

Table 5-4. Publisher swith books under $20.00

PubName PubPhone
Big House 123-456-7890
\Alpha Press 1999-999-9999

In arelational calculus, the corresponding expression might appear as.
{(x,y) | PUBLISHERS(z,x,y) and BOOKS(a,b,z,c) and c < $20.00}
where the bar | isread "such that," and the entire expression is read:

The set of al pairs (x,y) such that (z,x,y) isarow in the PUBLISHERS table, (a,b,z,c) is
arow inthe BOOK Stable, and ¢ < $20.00.

Note that the variable z appears twice, and it must be the same for each appearance. This
is precisely what provides the link between the BOOK S and PUBLISHERS tables. In
other words, the row PUBLISHERS(z,x,y) in the PUBLISHERS table and the row
BOOK S(a,b,z,c) in the BOOKS table have an attribute value in common (represented by

FlyrHeart.com

TEAM FLY PRESENTS

the common letter z). This attribute, which isthe first attribute in PUBLISHERS and the
third attribute in BOOKS, is PublID.

Asyou can see from the previous example, the relational calculusis generally more
complex (and perhaps less intuitive) than the relational algebra, and | will not discuss it
further in this book, beyond making the following comments. First, it isimportant to at
least be aware of the existence of the relational calculus, since there are commercialy
available applications, such as IBM's Query-by-Example, that use the relational calculus.
Second, most relational cal culus-based languages have exactly the same expressive
power as the relational algebra. In other words, we get no more or less by using a
relational calculus than we do by using the relational algebra.

5.3 Details of the Relational Algebra

We are now ready to discuss the details of the relational algebra. The operations that are
part of the relational algebra are described in this section. Y ou should find most of these
operations intuitive.

Before beginning, however, | should say aword about how Microsoft Access implements
the operations of the relational algebra. Most of these operations can be implemented in
Microsoft Access by creating aquery. Thisis most easily donein Access's Query Design
mode, which provides the graphical environment shown in Figure 5-1.

Figure 5-1. The Access Query Design window

[51 Querp : Select Query

Pubitdame
PubPhone

Field: [Tile Fubll Frice PubMarme =
Table: [BOOES BO0KS BOOKS PUEBLISHERS =
Soit | Azcending
Show (s] Ll i
Critena: » 20
o -
4] | v

The user can add table schemes from the database to the upper portion of the Query
Design window. From there, various attributes can be moved to the design grid. Note that
the second row of the grid shows the table from whence the attribute comes, just in case
two tables have attributes of the same name (which happens often).

The grid has options for sorting and for determining whether to display a particular
attribute in the result table. It also has room for criteria used to filter out datafrom the

query.

FlyHeart.com g4

TEAM FLY PRESENTS

Note also that we do not need to include the Publ D field from both tables in the lower
portion of the design window. Microsoft Access takes care of forming the appropriate
join based on the information in the upper portion of the window.

Microsoft Access trandates the final query design into a statement in the query language
known as structured query language, or SQL. We will discuss the details of Access SQL
(which differs somewhat from standard SQL) in Chapter 6, where the knowledge you gain
here will prove very useful. | should also mention that Access SQL is more powerful than
the Access Query Design interface, so some operations must be written directly in SQL.
Fortunately, Access allows the user to write SQL statements.

Let us recall some notation used earlier in the book. In order to emphasize the attributes
of atable (or table scheme), we use the notation T(A4,...,An). As an example, the BOOKS
table can be written:

BOOKS(ISBN,Title,PublD,Price)

and the Books table scheme can be written:

Books(ISBN,Title,PublD,Price)

5.3.1 Renaming

Renaming refers simply to changing the name of an attribute of atable. If atable T hasan

attribute named A, we will denote the table resulting from the operation of renaming A to
B by:

rena—=2g(T)
For Table 5-5:

Table 5-5. The BOOK Stablewith original fields
| ISBN | Title | Pricc | PublD
10-103-45678-9 "The Firm $24.95 1
0-11-345678-9 Moby-Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1

the result of performing:
rensun—BooklA NMpuye—Xoot(BOOKS)

isshown in Table 5-6.

FlyHeart.com g4

TEAM FLY PRESENTS

Table5-6. The BOOK Stablewith renamed fields

| BookID

| Title | Cost | PublD
10-103-45678-9 The Firm $24.95 1
0-11-345678-9 Moby-Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1
5.3.2 Union

If Sand T are tables with the same attributes, then we may form theunion S T, which
isjust the table obtained by including all of the rowsfrom both Sand T. Hereisan

example.
| Aq | Az
a b
d
f
Ay A
g h
i j
Ay Az
a b
Ic |d
e f
h

g
li

Notethat if Sand T do not have the same attributes, but do have the same degree —that
is, the same number of columns—then we can first rename the attributes of one table to
match the other and then take their union. Of course, this will not always make sense,
since it may result in combining attribute values from different domains into one column.

Let us consider an example of how to take a union in Microsoft Access. Unions can be
formed in one of two ways in Microsoft Access. Thefirst is straightforward:

1. First, we need some expendable tables to use in this example. We can create these
tables by copying the BOOKS table as follows. Highlight the BOOK Stable in the
Database Window, and choose Copy from the Edit menu. Then choose Paste from
the Edit menu. You will get the dialog box in Figure 5-2.

68

Figure 5-2. The Access Paste Table As dialog box

FlyrHeart.com

TEAM FLY PRESENTS

[PooTobons —— @mH]

[umiom
Cancel
Paste Oplinns
(" Structure Only
% Stauckure and [ata

™ Append Data ko Existing Table

Type the table name Unionl, and click OK. Choose Paste a second time to create
atable named Union2. Open Unionl, and delete the last seven rows from the table.
(Just highlight the rows and hit the Delete key.) Open Union2, and delete the first
seven rows of the table. Thus, Unionl will consist of thefirst half of the BOOKS,
table and Union2 will consist of the second half of BOOKS.

2. Thesimplest way to take the union isto use the same Copy...Paste procedure that
we used in Step 1. To illustrate, highlight Union2, and choose Copy from the Edit
menu. Then choose Paste, and enter the table name Unionl. Select the Append
Data to Existing Table option. If you then click OK, the rows of the copied table
(Union2) will be appended to the rows of the table Unionl. In other words,
Unionl will now contain the union of the original Unionl table and the Union2
table, which in this case is the complete contents of BOOKS. Thisis expressed in
symbols as:

NewUnionl = OriginalUnionl “»Union2

Open Unionl to verify that it now has 14 rows. Then delete the last seven rows
again to restore Unionl to itsoriginal condition.

Another way to create aunion isto use an Append Query as follows:
1. From the Query tab in the Database window, choose the New button. Select
Design View, and then add Union2 to the design window. Select Append from the
Query menu to get the dialog box in Figure 5-3.

Figure5-3. The Access Append dialog box

e R |
fppend To ITI

Table Mame: |I.Im:|n|.| LI .
ance

% Currant Database
" fnother Database:

FlyHeart.com g4

TEAM FLY PRESENTS

2. Click OK to get the window shown in Figure 5-4. Drag the asterisk (*) in the table
scheme for Union2 to thefirst cell in the Field row of the design grid. Thiswill
fill in the first column of the design grid as shown in Figure 5-4. Run the query
(choose Run from the Query menu). You will get awarning that you are about to
append seven rows and that the process cannot be undone. Click OK, and then

open the Union1 table to verify that it now has 14 rows.

Figure 5-4. The Access Append Query window

i=F Queryl : Append Duery

-

Fighd:

Urion2.

Table:

Union2

Soil:

Append Ta:

Urnond.*

Ciilena:
cu:

5.3.3 Intersection

Theintersection SI™ T of two tables S and T with the same attributes is the table
formed by keeping only those rows that appear in both tables. Here is an example:

A A,
a b
c |d
e f
Ay Az
c d
i i
e f
A, A,
d
f

We will see an example of how to form an intersection in Microsoft Access when we

discuss differences, in the next section.

70

) = -
FlyiHeart.com 4

TEAM FLY PRESENTS

5.3.4 Difference

Thedifference S- T of two tables S and T with the same attributes is the table consisting
of all rows of Sthat do not appear in T, as shown in the following tables:

A, A,
a b
c d
e f
g h

Aq Az
c d
i i
e f

Aq Az
a b
9 h

Let us consider an example of how to take an intersection or difference in Microsoft
Access.

1. First, we need some expendable tables. Asin thefirst step of the example for

creating a union, use the Copy and Paste features to create two tables named
Diffl and Diff2 that are exact copies of BOOKS. Open Diff1, and remove the last
four rows. Open Diff2, and remove the first four rows. Thus, Diff1 contains the
first ten books from BOOKS, and Diff2 contains the last ten books from BOOKS.
Now switch to the Query tab, and start anew query. Add both Diff1 and Diff2 to
the query. Y ou may notice a connecting line between the two ISBN attributes. If
thereis no such line, drag one ISBN name to the other to create aline. Now right
click on the line and choose Join Properties from the pop-up menu. This should
produce the dialog box shown in Figure 5-5. Select option 2, which will include all
records (rows) from Diff1 and all rows of Diff2 that have a matching ISBN in
Diffl. Thisisaso-caled left outer join. We will discuss thisin more detail later in
this section. Click OK.

Figure5-5. The Access Join Properties dialog box

Join Properties [7]]

" 1; Only inchude rows where the joined fieds from both
tables are equd.,

Lo é; Include ALL records from ‘TiFi" and only those records
from 'DiFZ" where the joned fields are equal,

™ 3 Include ALL records from ‘DIFF2" and only those records
Fram 'CafF1" where the jored Fiekss are equal,

O I Cancel

71 e

FlyrHeart.com

TEAM FLY PRESENTS

3. Dragthe asterisk (*) from Diff1 to the design grid, and then drag ISBN from
Diff2 to the second column of the design grid. The design window should now

appear asin Figure 5-6.

Figure 5-6. The Access Select Query design window showing ajoin
between two properties

i Quey? - Select Queny

Field: |Difr.* ISEH - L
Table: (TN Diliz n
Soit:
o [l Ll
Ciiteiia

- =
i | 3

4. Now run the query. Y ou should get atable as shown in Figure 5-7. Thistable
contains the ten rows from Diff1, with an extra column that gives the matching
ISBN from Diff2, if there is one. Otherwise, the column containsaNULL. We
can see that the six rows that have a matching ISBN in column Diff2.1ISBN form
the intersection of the two tables. Also, the four rows that do not have a matching
ISBN form the difference Diff1 - Diff2. Hence, we only need to add asimple
criterion to the query to obtain either the intersection or the difference.

Figure 5-7. The Access Select Query window showing the inter section

of two tables
iaf qubiflerence? : Select Query = i=] E3
Diff1.1SAN Title PublD Price Diff2.ISBN

iz 2500
0-11-345675-9 Moby Dick $49,00
012-333433-3 On Libery 32500
0-12-3456789 Jane Eyre §45.00

0-123-45678-0 Ulysses
[-321-32132-1 Balloon
0-55-123486-9 Main Stroot
[-555-55555-9 MacBeth
0910456785 Hamilet
[-91-338678-F Faene Qlueene

Record: 14 S NS]

$34.00 D0-123-45673-0
$34.00 0-321-32132-1
§22.95 D-55-123455-9
$12.00 (-555-55555-9
F20.00 D0-91-045673-5
$15.00 0-919-335678-7

— B P W B e — o —

3 5 5 D B

72 w
FlyiHeart.com 4

TEAM FLY PRESENTS

5. To get the intersection Diffl (MYDIff2, return to the desi gn view of the query, and
add the words Is Not Null under the Criteria row in the Diff2.1ISBN column. Run
the query.

6. To get the difference Diff1 - Diff2, return to the design view of the query, and add
the words |s Null under the Criteria row in the Diff2.1ISBN column. Run the
guery.

5.3.5 Cartesan Product

To define the Cartesian product of tables, we need to adjust the way we write attribute
names, just in case both tables have an attribute of the same name. If atable T has an
attribute named A, the fully qualified attribute name (or just qualified attribute name) is
T.A. Thus, we may write BOOKS.ISBN or AUTHORS.AuID.

If S(A4,...,An) and T(By,...,.Bnm) aretables, then the Cartesian product Sx T of Sand T is
the table whose attribute set contains the fully qualified attribute names of all attributes
fromSand T:

{S.Aq,....S.An,T.By,.... T.B}

Therowsof Sx T are formed by combining each row s of Swith each rowtof T, to form
anew rowst. An example will help make this clear:

| Aq | Az
b
d
f
B: | B, | Bs
g h i
i k I
SA; SA, T.B; T.B, T.Bs
a b g h i
a b i K [
c d g h i
c d i k I
e f g h i
e f i k I

Noticethat if Shaskrowsand T hasj rows, then the Cartesian product has kj rows.
Hence, the Cartesian product of two tables can be very large.

To form a Cartesian product of two tablesin Microsoft Access, proceed as follows:

1. Createthetwo tablesSand T in the previous example.

FlyrHeart.com

TEAM FLY PRESENTS

2. Create anew guery, and add the tables Sand T. Make certain that there are no
lines joining the two table schemes. (If there are, right click on the lines, and
choose Delete from the pop-up menu.)

3. Drag the asterisks from each table scheme to the design grid. Y ou should now
have a design window as shown in Figure 5-8. Run the query to get the Cartesian
product.

Figure 5-8. The Access Query window illustrating a Cartesian product
of two tables

|7 Quen : Select Querny

Field: | 5.* [=
Table: [T -
Sart: | -
Showit [+ 0

Critena:

5.3.6 Projection

Projection is avery ssimple concept. Intuitively, a projection of atable onto a subset of its
attributes (columns) is the table formed by throwing away all other columns.

More formally, let T(A1,...Ap) be atable, where A = {As,...,An} istheattribute set. If Bis
asubset of A, then the projection of T onto B isjust the table obtained from T by keeping
only those columns headed by the attribute names in B. We denote this table by projg (T).

Asan example, for the table:

ISBN Title Price PublD
0-103-45678-9 TheFirm $24.95 1
0-11-345678-9 Moby-Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1
the projection proj s price(BOOKYS) is:

ISBN Price
0-103-45678-9 $24.95
0-11-345678-9 $49.00
0-12-333433-3 $25.00

74

w
FlyrHeart.com

TEAM FLY PRESENTS

Note that, if the projection produces two identical rows, the duplicate rows must be
removed, since atableis not allowed to have duplicate rows. (Thisrule of relationa
databases is not enforced by all commercia database products. In particular, it is not
enforced by Microsoft Access. That is, some products allow identical rowsin atable. By

definition, these products are not true relational databases—but that is not necessarily a
flaw.)

The Query Design window in Microsoft Access was tailor-made for creating projections.
Just add the table to the design window, and drag the desired attribute names to the
design grid. Run the query to get the projection. Figure 5-9 shows the Query Design
window for computing the projection of Books onto the attributes ISBN and Price.

Figure 5-9. Creating a projection using the BOOK S table

| 151 Queryl : Select Query

LI

Field m = | Piice
Table: [BOOES BOOKS

Sort:
Show [+ [+ |

Critena:

o -
1| | ¥

5.3.7 Selection

Just as the operation of projection selects only a subset of the columns of atable, so the
operation of selection selects a subset of the rows of atable. Thefirst step in defining the
operation of selection isto define a selection condition or selection criterion to be any
legally formed expression that involves:

o Constants (i.e., members of any attribute domain)
o Attribute names

« Arithmetic comparison relations (=, 7, <, <, >, 2)
e Logical operators (and, or, not)

For example, the following are selection conditions:

e Price>$10.00
. Price <$50.00 and AuName = "Bronte"
e (Price <$50.00 and AuName = "Bronte") or (not AuName = "Austen”)

FlyHeart.com g4

TEAM FLY PRESENTS

If condition is a selection condition, then the result table obtained by applying the

corresponding selection operation to atable T is denoted by:
Se€lcondition(T)
or sometimes by:

T where condition

and is the table obtained from T by keeping only those rows that satisfy the selection

condition.

For example, see Table 5-7.

Table5-7. The BOOK Stablein the LIBRARY databse
| ISBN | Title | PublD | Price
10-103-45678-9 lliad 1 1$25.00
0-11-345678-9 Moby-Dick 3 $49.00
0-12-333433-3 On Liberty 1 $25.00
0-12-345678-9 Jane Eyre 3 $49.00
0-123-45678-0 Ulysses 2 $34.00
0-321-32132-1 Balloon 3 $34.00
0-55-123456-9 Main Street 3 $22.95
0-555-55555-9 Macbeth 2 $12.00
0-91-045678-5 Hamlet 2 $20.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-777777-7 King Lear 2 $49.00
0-99-999999-9 Emma 1 $20.00
1-1111-1111-1 CH++ 1 $29.95
1-22-233700-0 \Visual Basic 1 1$25.00
Thetable $¢!Price>325.00(BOOKS)ig shown in Table 5-8:
Table 5-8. Theresulting table
ISBN Title PublD Price
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby-Dick 3 1$49.00
0-99-777777-7 King Lear 2 $49.00
0-123-45678-0 Ulysses 2 $34.00
1-1111-1111-1 CH++ 1 $29.95
0-321-32132-1 Balloon 3 $34.00
76

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

Some authors refer to selection as restriction, which does seem to be a more appropriate
term and has the advantage that it is not confused with the SQL SELECT statement,
which is much more general than just selection. However, it isless common than the term
selection, so we will use thisterm.

The Query Design window in Microsoft Access was also tailor-made for creating

selections. We just use the Criteria rows to apply the desired restrictions. For example,
Figure 5-10 shows the design window for the selection:

58l price=325.00[BOOKS)
from the previous example.

Figure 5-10. Creating a selection in the Query Design window

gt Quenyl : Select Query _ |Of =]
-
*
ISEN
Title:
FublID
Price
-
4 r
Field |BOOKS* Frice -
Table: {BODES EOOES i
Soek
Showe [L]
Cribesia +25
ar; -
4| | *

Y ou will probably agree that the operations we have covered so far are pretty
straightforward—union, intersection, difference, and Cartesian product are basic

set-theoretic operations. Selecting rows and columns are clearly valuable table
operations.

Actualy, the six operations of renaming, union, difference, Cartesian product, projection,
and selection are enough to form the compl ete relational algebra by combining these
operations with constants and attribute names to create relational-al gebra expressions.

However, it is very convenient to define some additional operations on tables, even
though they can theoretically be expressed in terms of the six operations previously
mentioned. So let us proceed.

5.3.8 Joins

The various types of joins are among the most important and useful of the
relational-algebra operations. Loosely speaking, joining two tables involves combining
the rows of two tables based on comparing the values in selected columns.

FlyrHeart.com

TEAM FLY PRESENTS

5.3.8.1 Equi-join

In an equi-join, rows are combined if there are equal attribute valuesin certain selected

columns from each table.

To be specific, let Sand T be tables, and suppose that { C,...,Cy} are selected attributes of
Sand{D,,....Dy} are selected attributes of T. Each table may have additional attributes as
well. Note that we select the same number of attributes from each table.

The equi-join of Sand T on columns{ Cy,...,C¢} and {D4,...,Dy} isthetable formed by
combining arow of Swith arow of T, provided that corresponding columns have equal

value—that is, provided that:
S.C1 = T.D1,S.C2, ...,S.Ck = T.Dk

As an example, consider the tables:

| A

Az

6 7

1 1

To form the equi-join:

S equi-joinaz = 3T

we combine rows for which:
S.A2=T.Bs3

Thisgives:

| SA; | SA |

T.B;

T.B,

T.B;3

1 4 2

1 4 1

6 3 6

7

3

Notice that the equi-join can be expressed in terms of the Cartesian product and the

selection operation as follows:

Sequisjoine o c,=p, T =sele op g =p 5%T)

78

FlyrHeart.com

TEAM FLY PRESENTS

This simply says that, to form the equi-join, we take the Cartesian product Sx T of Sand
T (i.e., the set of all combinations of rows from S and T) and then select only those rows
for which:

S.C1 T.D;,S.C, =T.Dy, ...,S.Ck=T.Dy, ...,S.Cx = T.Dx

5.3.8.2 Natural join

The natural join (nat-join) is avariation on the equi-join, based on the equality of
allcommon attributes in two tables.

To be specific, suppose that Sand T are tables and that the set of all common attributes
between these tablesis { Cy,...,C} . Thus, each table may have additional attributes, but no
further attributes in common. The natural join of Sand T, which we denote by:

S nat-join T

isformed in two steps.

1. Form the equi-join on the common attributes { Cy,...,Cy}.
2. Remove the second set of common columns from the table.

Consider these tables:

A A, As Ay
a b c d
e f 9 h
i j k I
m n 0 p
B: A, A, B,
a b c d
c j I f
f b d g
X z h
S I I j

In this case, the set of common attributesis { A2,A4}. The corresponding columns are
shaded for easier identification.

The equi-joinon Az and A, is:

| SA, | SA, | SA; | sA, | TB | TA, | TA, | TB,
a b C d f b d g
i i k | c i | f
i i K [s i [i

79 w
FlyrHeart.com

TEAM FLY PRESENTS

Deleting the second set of common columns (the columns that come from T, as shaded in

the previous table) gives:

| SA;

| SA,

| SA;

| SA,

T.B;

T.By

a

b

g

i

f

j

i

The importance of the natural join comes from the fact that, when there is a one-to-many
relationship from Sto T, we can arrange it—by renaming, if necessary—so that the only
common attributes are the key of S and the foreign key in T. In this case, the natural join

Snat-join T issimply the table obtained by matching rows that are related through the
one-to-many relationship.

For example, consider the following BOOK S and PUBLISHERS tables in Tables Table
5-9 and Table 5-10, respectively.

Table 5-9. The BOOK Stable
ISBN Title Price PubID
0-103-45678-9 The Firm $24.95 1
0-11-345678-9 Moby-Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1
0-12-345678-9 Jane Eyre 1$34.00 1
0-26-838888-8 Persuasion $13.00 3
0-555-55555-9 Emma $12.00 3
0-91-045678-5 The Chamber $20.00 3
0-91-335678-7 Partners $15.00 1
0-99-777777-7 Triple Play 1$44.00 3
10-99-999999-9 Mansfield Park 1$18.00 1
Table5-10. The PUBLISHERS table
Publ D PubName PubPhone

1 Big House 212-000-1212

2 Little House 213-111-1212

3 Medium House 614-222-1212

Then PUBLISHERS nat-join BOOKS is the table formed by taking each PUBLISHERS
row and adjoining each BOOK S row with a matching PublD, as shown in Table 5-11.

Table5-11. The PUBLISHERS nat-join BOOK Stable

PublD

PubName

PubPhone

ISBN

Title

Price

Big House

212-000-1212

0-103-45678-9

The Firm

$24.95

80

FlyrHeart.com

TEAM FLY PRESENTS

1 Big House 212-000-1212 0-12-333433-3 War and Peace $25.00
1 Big House 212-000-1212 0-12-345678-9 Jane Eyre $34.00
1 Big House 212-000-1212 0-91-335678-7 Partners $15.00
1 Big House 212-000-1212 0-99-999999-9 Mansfield Park $18.00
2 Little House 213-111-1212 0-11-345678-9 'Moby-Dick 1$49.00
3 Medium House 614-222-1212 0-26-888888-8 Persuasion $13.00
3 Medium House 614-222-1212 0-555-55555-9 Emma $12.00
3 Medium House 614-222-1212 0-91-045678-5 The Chamber $20.00
3 Medium House 614-222-1212 0-99-777777-7 Triple Play $44.00
5.3.8.3 8-Join

The B-join (read theta join, since flisthe Greek letter theta) is similar to the equi-join
and is used when we need to make a comparison other than equality between column
values. In fact, the B-join can use any of these arithmetic comparison relations:

=l il <l gl >l -2

Let Sand T betables, and suppose that { C,,...,Ci} are selected attributes of S and
{Ds,...,Dy} are selected attributes of T. Each table may have additional attributes as well.
Note that we select the same number of attributes from each table. Let 8,,...,8y be

comparison relations. Thenthe #-join of tables Sand T on columns Cy,...,Cy and
Ds,....Dkis:

S B-joinc o p,___co0,1 =%¢lcop, cenlSxT)

Thus, to form the f-join, we take the Cartesian product Sx T of Sand T and then select
those rows for which the value in column C; standsin relation to the value in column
D, and similarly for each of the other columns.

As an example, consider these tables:

Ay A,
1 2
4 5
6 3
B, B, Bs
2 3 4
6 7 3

To formthe 8-join:

5 E".-'-"*\'"i”nz <g,

81 M
FlyrHeart.com

TEAM FLY PRESENTS

we keep only those rows of the Cartesian product of the two tables for which the valuein
column A, is <the valuein column Bs:

| SA; | SA, | T.B, | T.B, | T.B,
1 2 2 3 4
1 2 6 7 3
6 3 2 3 4
6 3 6 7 3

Noticethat a f-join, where all relations 8; are equality (=), is precisely the equi-join.
5.3.9 Outer Joins

The natural join, equi-join, and #-join are referred to asinner joins. Each inner join has a
corresponding left outer join and right outer join, which are formed by first taking the
corresponding inner join and then including some additional rows.

In particular, for the left outer join, if sisarow of Sthat was not used in theinner join,
we include therow s, filled out to the proper size with NULL values. An example may
help to clarify this concept.

In an earlier example, we saw that the natural join of the tables:

Ap A, As Ay
a b c d
e f g h
i j k I
m n o] p

B, | A, | A, | B4
a b c d
c j I f
f b d g
X y z h
S j I j
is:

A A, Az Ay B, B,

a b c d f g
i j k I c f
i j k I j

The corresponding |eft outer join is the same as the nat-join, but with afew extrarows:

82

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

Ay A, As A, B, B
a b c d f g
i i k | c f
i i k | s i
le f g i INULL INULL
m n o p INULL INULL

In particular, the left outer join aso contains the two rows of S that were not involved in
the natura join, with NULL values used to fill out the rows. Theright outer joinis
defined similarly, where the rows of T are included, with NULL vauesin place of the S
values.

One of the ssmplest uses for an outer join isto help see what is not part of an inner join!
For instance, the previous table shows us instantly that the second and fourth rows:

g f 9 h
m n o P

of table S are not involved in the natural join S nat-join T. Put another way, the values:

Ay=f A, =h

are not present in any rows of table T.

5.3.10 Implementing Joinsin Microsoft Access

Now let us consider how to implement the various types of joinsin Microsoft Access.
The Access Query Design window makes it easy to create equi-joins. Of course, a natural
joiniseasily created from an appropriate equi-join by using a projection. Let usillustrate
this statement with an example.

Begin by creating the following two simpletables, Sand T, shown in Table 5-12 and Table
5-13.

Table5-12. The Stable
Al A2

83 w
FlyrHeart.com

TEAM FLY PRESENTS

Table5-13. The T table
| B1 | B2 | Bs

<|lalalx
N |I< | X |—

Let us create the equi-join:

5 equi-join ; _ BLA, =B, L

Open the Query Design window (by asking for a new query), and add these two tables.
To establish the associations:

S.Al = TB]_
and
S.Az = TBZ

drag the attribute name A to B; and drag the attribute name A, to B,. This should create
the lines shown in Figure 5-11. Drag the two asterisks down to the first two columns of the
design grid, asin Figure 5-11. (Access provides the asterisk as a quick way to drag all of
the fields to the design grid. It is the same as dragging each field separately with one
exception—changes to the underlying table design are reflected in the asterisk. In other

words, if new fields are added to the underlying table, they will be included automatically
in the query.)

Figure5-11. Establishing associationsin the Access Query Design window

1= Querp? : Select Query

* -
al e L
Az " |E2
B3
4] | LIJ
Fiakt [5* T - =
Table |5 T |
Soxk
Showe [[}
Criteriac
ar; -
1] | ¥

84 = _—>
FlyrHeart.com

TEAM FLY PRESENTS

Now all we need to do isrun the query. The result is shown in Table 5-14.

Table5-14. An equi-join of tablesSand T

A1

Az

B1

B>

Bs

c

d

c

d

y

B

d

c

d

x

In other words, Microsoft Access uses the relationships defined graphically in the upper
portion of the window to create an equi-join.

The Access Query Design window does not allow usto create a #-join that does not use
equality. However, we can easily create such ajoin from an equi-join by altering the
corresponding SQL statement. We will discuss SQL in detail in Chapter 6. For now, let us
modify the previous example to illustrate the technique.

From the design view for the query in the previous example, select SQL from the View
menu. Y ou should see the window shown in Figure 5-12.

Figure5-12. The SQL statement generated from Figure 5-11

[15! Queny? - Solect Query

SELECT 5.5 1.7 -
FROM 5 INNER JOIN T ON [5.A2 = T.B2) AND [5.41 = T.B1].

Thisisthe SQL statement that Access created from our query design for the previous
example. Now, edit the two equal signs by changing each of them to <= (less than or
egual to). Note that, for text, the less-than-or-equal-to sign refers to aphabetical order.

Now run the query. The result table should appear as shown in Table 5-15.

Table 5-15. Result tablefrom a #-join
Ay A, B B, Bs
a b g h i
a b] k I
a b c d X
a b c d v
a b c y z
c d g h i
c d i K [
c d c d X
d c d
c d © y z

85 w
FlyrHeart.com

TEAM FLY PRESENTS

Notice that for each row of the table, A; precedes or equals B in aphabetical order, and
A, precedes or equals B..

Finally, observe that if wetry to return to the design view of this query, Access issues the
message in Figure 5-13, because the design view cannot create #-joins that are not based
strictly on equality.

Figure5-13. Accesserror for attempting to create unequal f-joins

Miciosofl Access E

i Microzoll Access can'l iepiesend the join
exprezsion 5.A2 ¢= T.B2 in Design view.

* O ¢ moee fields may have been delsted o
renamed

= The name of one o mane fields or tables specihed
in thee join expression may be migzpelled.

* The: poin may uze an opesatar that ien’t supgaed in
Chegign wiew, such az » or <.

To create an outer join, return the SQL statement of the previous example back to its
original form (with equal signs), and then return to design view. Click the right mouse
button on one of the connecting lines between the table schemes, and choose Join
Properties from the pop-up menu. This should produce the dialog box shown in Figure
5-14.

Figure 5-14. The Access dialog box for joining properties

€ | Oniby inchede rows whese the joined Figkds from both
tables are equal,

0 E Include ALL records From S’ and only those records from
'T' where the joined Felds are equal,

" 3: Include ALL records From T and onby thoses records from
'S where the joined Fields are squal,

ok | Cancel |

Select option 2, which will produce aleft outer join. (Option 1 creates an inner join,
option 2 creates a left outer join, and option 3 creates aright outer join.) Do the same for
the other connecting line. Take a peek at the SQL statement, which should appear asin

Figure 5-15.

Figure 5-15. The SQL statement illustrating a left outer join

FlyrHeart.com

TEAM FLY PRESENTS

151 Quernp? : Select Query

SELECT S T.* =
FROM 5 LEFT JOIN T ON [S.A1 = T.B1] AND [S.A2 = T.B2];

Now you can run the query, which should produce the result table in Table 5-16, where
the empty cells contain the NULL value.

Table5-16. A left outer join
| A | Az | B1 | B> | Bs
a b | | |
d c d y
d c d X
e f | | |

Of course, aright outer join is created similarly, by choosing option 3 in Figure 5-14.
5.3.11 Semi-Joins

A semi-joinisformed from an inner join (or #-join) by projecting onto one of the tables
that participated in the join. In other words, we first form the join:

S left-semi-joine o c,00,T = PrOfan cotumns of ¢l 8,0, c,0,0,(5% T

and then just keep the columns that came from S or from T. Thus, the formulafor the left
semi-joinis.

£, - - = - -
S lef i'gﬁ”“'f'ﬁm{'ﬁ,ﬂ,. C;_.&ki.'.'kf = PT0J 51 columns of S{bt’l{l'-_l’:'-,n'}]. C;._BIDQ(S x 1))

Similarly, the formulafor the right semi-joiniis:

s r.igfz.f-wu;,'_Jlmrzf_lU D, G, D, T = PrOlan cotumns of Tl 0 b c,0,0,(8 X TH

The concept of a semi-join occursin relation to the DISTINCTROW keyword of the
SELECT clausein Access SQL, which we will discussin Chapter 6. For now, let us
consider an example of the semi-join, which should indicate why semi-joins are useful.

Imagine that we add a new publisher to the PUBLISHERS table (Another Pressin Table
5-17), but do not add any books for this publisher to the BOOKS table. Consider the inner
join of the tables PUBLISHERS and BOOKS:

PUBLISHERS joinpygtisHERs.PubiD = Books.pubio BOOKS

FlyrHeart.com

TEAM FLY PRESENTS

Table5-17. The PUBLISHERS (new) table

| PubID | PubName | PubPhone
11 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 Small House 714-000-0000
4 /Another Press 111-222-3333

For the LIBRARY database, the result table resulting from thisjoin is shown in Table

5-18.

Table 5-18. Result table from an inner join
PUBLISHERS.PubID| Pub-Name | PubPhone | ISBN | Title |BOOKS.PubID| Price
3 Small - 1714-0000000/0-12-345678-9 Jane Eyre |3 $49.00

Small .

3 Potse 714-000-0000|0-11-345678-9|Moby-Dick |3 $49.00

Small
3 714-000-0000|0-321-32132-1|Balloon 3 $34.00

House

Small .

3 Potse 714-000-0000|0-55-123456-9|Main Street |3 $22.95
1 Big House |123-456-7890|0-12-333433-3|On Liberty |1 $25.00
1 IBig House |123-456-7890|0-103-45678-9|lliad 1 $25.00
1 Big House |123-456-7890/0-91-335678-7| 21 $15.00
Queene
1 Big House |123-456-7890|0-99-999999-9|Emma 1 $20.00
1 Big House |123-456-7890|1-22-233700-0|Visual Basic |1 $25.00
1 BigHouse |123-456-7890|1-1111-1111-1|C++ 1 $29.95
2 \Alpha Press |999-999-9999|0-91-045678-5 Haml et 2 $20.00
2 Alpha Press 999-999-9999|0-555-55555-9|Macbeth 2 $12.00
2 Alpha Press [999-999-9999(0-99-777777-7|King Lear |2 $49.00
2 \Alpha Press |999-999-9999) 0-123-45678-0|Ulysses 2 $34.00

If we now project onto the PUBLISHERS table, we get the left semi-join:

PUBLISHERS left-semi-joinpygLisHers.Pubid = Books.pubio BOOKS

for which the result table is shown in Table 5-19.

Table 5-19. Result table from a semi-join

PublD

PubName

PubPhone

Small House

714-000-0000

Big House

123-456-7890

88

) = -
FlyrHeart.com

TEAM FLY PRESENTS

2 /Alpha Press 1999-999-9999

Thisisthe set of all publishersthat have book entries in the BOOK S database.

5.3.12 Other Relational Algebra Operations

There is one more operation in relational agebrathat occurs from time to time, called the
guotient. However, since this operation is less common, and a bit involved, we will cover
it in Appendix B. (You may turn to that appendix after finishing this chapter, if you are
interested.)

5.3.13 Optimization

Let us conclude this discussion with a brief remark about optimization . Aswe have
discussed, statements in the relational algebra are procedural; that is, they describe a
procedure for carrying out the operations. However, this procedure is often not very
efficient.

Let usillustrate with an extreme example. Consider the two table schemes:
{ISBN,Title,Price} and {ISBN,PageCount}

If Sisatable based on thefirst scheme and T is atable based on the second scheme, then
the natura joinis:

5 joinT = Projs 1caN Tide Price,PageCounc 5615 4, = 7.4, (8% T))

According to this formula, the join is carried out in the following steps:

1. Form the Cartesian product.
2. Takethe appropriate selection.
3. Takethe appropriate projection.

Now imagine two tables Sand T, where S has 10,000 rows and T has 10,000 rows.
Assume also that the tables have only one common attribute, for which no values are the
same in both tables. In this case, according to the definition of natural join, thejoinis
actually the empty table.

However, according to the procedure described, the first step in computing thisjoin isto
compute the product Sx T, which has 10,000 x 10,000 = 100,000,000 rows—that is, one
hundred million rows! Obvioudly, thisis not the best procedure for computing the join!

Fortunately, database programs that use a procedural language have optimization routines
to avoid problems such as this. Such aroutine looks at the task it is requested to perform
and triesto find an alternative procedure that will produce the same output with less

89 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

computation. Thus, from a practical standpoint, procedural |anguages sometimes behave
similarly to nonprocedural ones.

FlyrHeart.com

TEAM FLY PRESENTS

Chapter 6. Access Structured Query Language (SQL)
6.1 Introduction to Access SQL

Aswe have said, Microsoft Access uses aform of query language referred to as
Sructured Query Language, or SQL. (I prefer to pronounce SQL by saying each letter
separately, rather than saying "sequel.” Accordingly, | will write "an SQL statement”
rather than "a SQL statement.")

SQL isthe most common database query language in use today. It is actually more than
just aquery language, as | have defined the term in the previous chapter. It is a complete
database management system (DBMYS) language, in that it has the capability not only to
mani pul ate the components of a database, but also to create them in the first place. In
particular, SQL has the following components:

1. A data definition language (DDL)component, to allow the definition (creation) of
database components, such as tables.

2. A data manipulation language (DML) component, to allow manipulation of
database components.

3. A data control language (DCL) component, to provide internal security for a
database.

We will discuss the first two components of SQL in some detail in this chapter.

SQL (also known as SEQUEL) was developed by IBM in San Jose, California. The
current version of SQL is called SQL-92. However, Microsoft Access, like all other
commercia products that support SQL, does not implement the complete SQL-92
standard and in fact adds some additional features of its own to the language. Since this
book uses Microsoft Access, we will discuss the Access version of SQL.

6.2 Access Query Design

In Microsoft Access, queries can be defined in several different ways, but they all come
down to an SQL statement in the end. The Query Wizard helps create a query by asking
the user to respond to a series of questions. This approach is the most user friendly, but
also the least powerful. Access also provides a Query Design window with two different
views. The Design View is shown in Figure 6-1.

Figure 6-1. The Access Query Design View

91)

FlyrHeart.com 4

TEAM FLY PRESENTS

P Queryl - Select Query _ (O] =]

Fiekd | Title Frce Puibs arme
Tabke |EODES BOOKS FLEBLISHERS
Soet
Showe (=] [w]
Critesix »25

Ly of

Query Design View displays table schemes, along with their relationships, and allows the
user to select columns to return (projection) and specify criteriafor the returned data
(selection). Figure 6-1 shows a query definition that joins the BOOK S and PUBLISHERS
table and returns the Title, Publisher, and Price of all books whose priceis over $25.00.

The Query Design window also has an SQL View. Switching to this view shows the SQL
statement that corresponds to the Design View query. Figure 6-2 shows the corresponding
SQL statement for the query in Figure 6-1.

Figure 6-2. The Access SQL View of Figure6-1

15! Queryl : Select Queny

SELECT BOOKS.Title, BODKS.Price, PUBLISHERS.PubName N
FROM PUBLISHERS INNER JOIN BOOKS ON

PUBLISHERS.PublD = BOOKS.PublD

WHERE [([BOOKS.Price]>25]):

In addition to using the Design View, users can enter SQL statements directly into the
SQL View window. In fact, some constructions, such as directly creating the union of
two tablesin athird table, cannot be accomplished using Design View and therefore must
be entered in SQL View. However, such constructs are rare, and it is often possible to
complete a project without the need to enter SQL statements directly.

6.3 Access Query Types

Access supports a variety of query types. Hereis alist, along with a brief description of
each:

Select query

These queries return data from one or more tables and display the resultsin a
result table. Thetableis (usually) updatable, which means that we can change the

FlyrHeart.com

TEAM FLY PRESENTS

datain the table, and the changes will be reflected in the underlying tables. Select
gueries can also be used to group rows and cal cul ate sums, counts, averages, and
other types of totals for these groups.

Action queries
These are queries that take some form of action. The action queries are:
Make-table query
A query that is designed to create a new table with data from existing tables.
Delete query
A query that is used to delete rows from a given table or tables.
Append query
A query that is used to append additional rows to the bottom of an existing table.
Update query
A gquery that is used to make changes to one or more rows in atable.

SQL queries
These are queries that must be entered in SQL View. The SQL queries are:
Union query
A query that creates the union of two or more tables.

Pass-through query

A gquery that passes the uninterpreted SQL statement through to an externa
database server. (We will not discuss these queries in this book.)

Data-definition query

Queries that use the DDL component of SQL, such as CREATE TABLE or
CREATE INDEX.

Crosstab query

Thisisaspecia type of select query that displays valuesin a spreadsheet format,
with both row and column headings. For instance, we might wish to know how

93 s _—>

TEAM FLY PRESENTS

many books are published by each publisher at each price. Thisis most
conveniently pictured as a crosstab query, as shown in Table 6-1.

Parameter query

For select or crosstab queries, we may choose to let the user supply certain data at
runtime by filling in adialog box. This can be done in both Design View and SQL
View. When the query asks for information from the user, it isreferred to asa
parameterized query, or parameter query.

Table6-1. A CROSSTAB Query

Price Total Big House Medium House Small House
$12.00 1 1
$13.00 3 2 1
$15.00 1 1
$18.00 1 1
$20.00 6 1 5
$25.00 2 2
$34.00 5 1 a |
$44.00 1 1
$49.00 6 1 4 1
1$99.00 1 | 1 |

Finally, | mention that Access allows a select or action query to contain another select
guery. Thisis done by nesting SQL SELECT statements, as we will see. The internal
guery is called a subquery of the external query. Access allows multiple levels of
subqueries.

6.4 Why Use SQL?

As you look through the syntax of the SQL statements in this chapter, you may be struck
by the fact that SQL is not a particularly pleasant language. Moreover, as | have said,
many features of SQL can be accessed through the Access Query Design Window. So
why program in SQL at all?

Here are some reasons:

e There are some important features of SQL that cannot be reached through the
Query Design Window. For instance, there is no way to create a union query, a
subquery, or an SQL pass-through query (which is aquery that passes through
Access to an external database server, such as Microsoft SQL Server) using the
Query Design Window.

e You cannot use the DDL component of SQL from within the Query Design
Window. To use this component, you must write SQL statements directly.

94 p

FlyrHeart.com

TEAM FLY PRESENTS

e SQL can be used from within other applications, such as Microsoft Excel, Word,
and Visual Basic, to run the Access SQL engine.

e SQL isanindustry-standard language for querying databases, and as suchit is
useful outside of the Microsoft Access environment.

Despite these important reasons, we suggest that, on first reading, you go lightly over the
SQL commands to get aflavor for how they work. Then you can use this chapter as a
reference whenever you actually need to write SQL statements yourself. Fortunately,
SQL has relatively few actual commands, which makes it easy to get an overall picture of
the language. (For instance, SQL is single-statement oriented. It does not have control
structures such as For...Next... loops, nor conditional statements such as If...Then...
statements.)

We should also mention that using the Query Design Window itself isagood way to
learn SQL, for you can create a query in the Design Window and then switch to SQL
View to see the corresponding SQL statement, obligingly created by Microsoft Access.

6.5 Access SQL

SQL isanonprocedural language, meaning, as we have seen, that expressionsin SQL
state what needs to be done, but not how it should be done. This frees the programmer to
concentrate on the logic of the SQL program. The Access Query Engine takes care of
optimization.

One way to experiment with SQL isto enter aquery using Design View and then switch
to SQL View to see how Access resolves the query into SQL. It is also worth mentioning
that the Help system has compl ete details on the syntax and options of each SQL
statement.

Incidentally, reading the definition of SQL statements can be tiresome. Y ou may wish to
just skim over the syntax of each statement and go directly to the examples. The main
goal hereisto get areasonable feel for SQL statements and what they can do. Y ou can
then look up the correct syntax for the relevant statement when needed (as | do).

6.5.1 Syntax Conventions

In looking at the SQL commands, we need to establish a consistent syntax. | will employ
the following conventions:

e Uppercase words are SQL keywords and should be typed in as written.
e Wordsin constant width italic are intended to be replaced with something el se.
For instance, in the statement:

CREATE TABLE TableName

we must replace TableNamewith the name of atable.

FlyrHeart.com 4

TEAM FLY PRESENTS

Anitem in square brackets|[] is optional.

Braces ({}) are used to (hopefully) clarify the syntax. They are never to be
included in the statement proper.

Parentheses should be typed as shown.

The symbol ::= means "defined as' and the symbol | means "or." For instance, the
line:

TableElement ::= ColumnDefinition | TableConstraint

means that atable e ement is defined as either a column definition or atable
constraint.

The syntax item, ... meansthat you can repeat item as often as desired,
separated by commas. For instance, in the line:

CREATE TABLE TableName (TableElement, ...)

you may repeat the TableElement as many times as desired but at least once,
sinceit is not enclosed in square brackets, so it is not optional. (The parentheses
must be included.) If agroup of items may be repeated, then we use curly braces
to enclose those items (for easier reading). For instance, the following expression
means that you may repeat the clause ColName [ASC|DESC]:

{ColName [ASC|DESC]}, --.

6.5.1.1 Notes

Y ou may break the linesin an SQL statement at any point, which is useful for
improving readability.

Each SQL statement should end with a semicolon (although Access SQL does not
require this).

If atable name (or other name) contains a character that SQL regards asillegal,
then the name must be enclosed in square brackets. For instance, the forward
slash character isillegal in SQL and so the table name BOOK/AUTHOR isalso
illegal. Thus, it must be enclosed in square brackets: [BOOK/AUTHOR]. This
should not be confused with the use of square brackets to denote optional itemsin
SQL syntax descriptions.

6.6 The DDL Component of Access SQL

We begin by looking at the data definition commands in Access SQL. These commands
do not have a counterpart in Query Design View (athough, of course, you can perform
these functions through the Access graphical environment). Access SQL supports these
four DDL commands:

CREATE TABLE
ALTERTABLE

FlyrHeart.com 4

TEAM FLY PRESENTS

- DROPTABLE
o CREATEINDEX

| should mention now that there is some duplication of featuresin the DDL commands.
For instance, you can add an index to atable using either the ALTER TABLE command
or the CREATE INDEX command.

6.6.1 The CREATE TABLE Statement

The CREATE TABLE command has the following syntax:

CREATE TABLE TableName
(ColumnDefinition, ...
[,Multi-ColumnConstraint,...]);

In words, the parameters to the CREATE TABLE statement are a table name, followed
by one or more column definitions, followed by one or more (optional) multicolumn
constraints. Note that the parentheses are also part of the syntax.

6.6.1.1 Column definition

A column definition is defined as follows:

ColumnDefinition ::= ColumnName
DataType[(Size)]
[Single-ColumnConstraint]

In words, aColumnDefinition isaColumnName, followed by aDataType (with size if
appropriate), followed by aSingle-ColumnConstraint.

There are several datatypes available in Access SQL. For comparison, the list in Table
6-2 includes the corresponding selection in the Access Table Design window. (We have
not included all synonyms for the data types.) Note that the SQL type INTEGER
corresponds with the Access data type Long. Note also that the Sze option affects only
TEXT columns, indicating the length of the field. (If it is omitted, the text length defaults
to 255.)

Table 6-2. Access SQL data types
SQL datatype Table Design field type

BOOLEAN, LOGICAL, or YES/INO Yes/No
BYTE or INTEGER1 Number, Field Size = Byte
COUNTER or AUTOINCREMENT AutoNumber, Field Size = Long Integer
CURRENCY or MONEY Currency
DATETIME, DATE, or TIME Date/Time
SHORT, INTEGER2, or SMALLINT Number, Field Size = Integer

FlyrHeart.com

TEAM FLY PRESENTS

LONG, INT, INTEGER, or INTEGER4 Number, Field Size = Long

SINGLE, FLOAT4, or REAL Number, Field Size = Single

DOUBLE, FLOAT, FLOAT8, NUMBER, or NUMERIC Number, Field Size = Double

TEXT, ALPHANUMERIC, CHAR, CHARACTER, or STRING [Text

LONGTEXT, LONGCHAR, MEMO, or NOTE |Memo

LONGBINARY, GENERAL, or OLEOBJECT (OLE) Object

GUID AutoNumber, Field Size = Replication ID
6.6.1.2 Constraints

Constraint clauses can be used to:

o Designate aprimary key
o Designate aforeign key, thus establishing a relationship between two tables
e Force acolumn to contain only unigue values

(In SQL-92, these clauses have two other uses: to disallow NULLs and to restrict
allowable values to a specified range.)

There are two types of constraint clausesin a CREATE TABLE command. The
single-column constraint is used (as indicated in the syntax) within a column definition.
Its syntax is:

Single-ColumnConstraint ::=
CONSTRAINT
IndexName
[PRIMARY KEY |
UNIQUE |
REFERENCES ReferencedTable [(ReferencedColumn,...)]]

The first option designates the column as a primary key and creates an index file of the
name IndexName on that column. The second option designates the column as a
(candidate) key and creates a unique index file on that key, by the name IndexName. The
third option designates the column as aforeign key that references the
ReferencedColumn, . .. column(s) of the ReferencedTable. The

ReferencedColumn, . .. clauseisoptional if the referenced table has a primary key,
since that key will be the referenced key.

For multicolumn constraints, the CONSTRAINT clause must appear after al column
definitions and has the syntax:

Multi-ColumnConstraint ::=
CONSTRAINT
IndexName
[PRIMARY KEY (ColumnName,...) |
UNIQUE (ColumnName,...) |
FOREIGN KEY (ReferencingColumn,...)
REFERENCES ReferencedTable [(ReferencedColumn,...)]]

98 N

FlyrHeart.com

TEAM FLY PRESENTS

Here are some examples.

Create the Publishers table scheme:

CREATE TABLE PUBLISHERS

(PubID TEXT(10) CONSTRAINT PrimaryKeyName PRIMARY KEY,
PubName TEXT(100),

PubPhone TEXT(20));

Create the Books table scheme, and link to Publishers using PublD as foreign key:

CREATE TABLE BOOKS

(ISBN TEXT(13) CONSTRAINT PrimaryKeyName PRIMARY KEY,

TITLE TEXT(100),

PRICE MONEY,

PubID TEXT(10) CONSTRAINT Test FOREIGN KEY (PublD) REFERENCES
Publishers

(PublD));

6.6.1.3 Notes

« The CREATE TABLE statement does not provide away to create an index with
nonunigue values. This can be done using the CREATE INDEX statement,
however.

e Inspecifying aforeign key, the CREATE TABLE statement does enable
referential integrity rules, but does not allow the option of enabling cascading
updates or deletes. (Thisis one place where Access SQL isweaker than SQL-92,
which has a FOREIGN KEY clause that allows the programmer to specify ON
UPDATE CASCADE and/or ON DELETE CASCADE.)

6.6.2 TheALTER TABLE Statement
The ALTER TABLE command is used to:

e Addanew columnto atable
e Ddete acolumn from atable
e Add or delete single- or multiple-column index

The syntax for the ALTER TABLE command is:

ALTER TABLE

TableName

ADD COLUMN ColName ColType[(size)] [Single-ColumnConstraint] |
DROP COLUMN ColName |

ADD CONSTRAINT Multi-ColumnConstraint |

DROP CONSTRAINT MultiColumnIndexName;

Asyou can see, the Single- and Multi-Column Constraint clauses (as defined earlier) can
be used here to add or delete (DROP) an index.

99 g N

FlyHeart.com g4

TEAM FLY PRESENTS

6.6.2.1 Notes
e New columns are added at the beginning of the table, immediately following any
primary key columns.

e You cannot delete a column that is part of an index. The index must first be
removed using a DROP CONSTRAINT statement (or DROP INDEX).

6.6.3 The CREATE INDEX Statement

The CREATE INDEX command has the following syntax:

CREATE [UNIQUE] INDEX IndexName
ON TableName ({ColName [ASC|DESC]},---1)
[WITH {PRIMARY | DISALLOW NULL] IGNORE NULL}]

where ASC stands for ascending and DESC for descending. Note that:
e The UNIQUE keyword prevents duplicate values in the index.
« WITH PRIMARY designates the primary key and creates a primary index file. In
this case, the UNIQUE keyword is redundant.
e WITH DISALLOW NULL disalows NULL vauesin the key.
e WITH IGNORE NULL alows NULL valuesin the key, but does not include

them in the index file. (Hence, they will be skipped in any searches that use the
index.)

6.6.3.1 Note

The CREATE INDEX command is specific to Access SQL and is not part of the SQL-92
standard.

6.6.4 The DROP Statement

The syntax for the DROP statement, which is used for deleting tables and indexes, is:

DROP TABLE TableName | DROP INDEX IndexName ON TableName

6.6.4.1 Note

A table must be closed before it can be deleted or an index can be removed from it.
6.7 The DML Component of Access SQL

We now turn to the DML component of SQL. The commands we will consider are:

e SELECT
e UNION

FlyrHeart.com 4

TEAM FLY PRESENTS

UPDATE
DELETE
INSERT INTO
SELECT INTO
TRANSFORM
PARAMETER

Before getting to these statements, however, we must discuss afew relevant points.

6.7.1 Updatable Queries

In many situations, aquery is updatable , meaning that we may edit the valuesin the
result table, and the changes are automatically reflected in the underlying tables. The
details of when thisis permitted are fairly involved, but they are completely detailed in
the Access Help facility. (Thisinformation is not easy to find, however. Y ou can locate it

by entering "updatable query" in the Access Answer Wizard and choosing Determine
when | can update data from a query.)

6.7.2 Joins

Let's begin with a brief discussion of how Access SQL denotes joins. Note that ajoin
clauseis not an SQL statement by itself, but must be placed within an SQL statement.

6.7.2.1 Inner joins

The INNER JOIN clause in Access SQL actually denotesa #-join on one or more
columns. (See the discussion of joinsin Chapter 5.) In particular, the syntax is:

Tablel INNER JOIN Table2 ON Tablel.Columnl 8, Table2.Columnl [{AND]JOR ON
Tablel.Column2 H, Table2.Column2},...]

where each Bisoneof =, <, >, <=, >=, <> (not equal to).
6.7.2.2 Outer joins
The syntax for an outer join clause is:

Tablel {LEFT [OUTER]} | {RIGHT [OUTER]} JOIN Table2 ON Tablel.Columni 8,
Table2.Columnl [{AND]JOR ON Tablel.Column2 f, Table2.Column2},...]

where flisoneof =, <, >, <=, >=, or < >. Note that the word OUTER is optional.
6.7.2.3 Nested joins

JOIN statements can be nested. Here is an example that joins the BOOKS, AUTHORS,
PUBLISHERS, and BOOK/AUTHOR tables and then selects the Title, AuName, and

FlyrHeart.com 4

TEAM FLY PRESENTS

PubName columns. | have indented some lines in the hope of increasing readability. (1
will describe the SELECT statement soon.)

SELECT Title, AuName, PubName

FROM
AUTHORS INNER JOIN

(PUBLISHERS INNER JOIN

(BOOKS INNER JOIN [BOOK/AUTHOR]

ON BOOKS. ISBN=[BOOK/AUTHOR] - ISBN)

ON PUBLISHERS.PubID = BOOKS.PublD)
ON AUTHORS.AulD = [BOOK/AUTHOR].AulD;

To see how this was constructed, it helps to look at the rel ationships between the tables
involved. Figure 6-3 shows a portion of the relationships window in Access.

Figure 6-3. A portion of the Relationships window in Access
Ir ’715% F_
AuMame il PubMame
fuFhone —_— PubFane

One way to create the previous join statement is to work from the inside out. Wefirst join
BOOKS and BOOK/AUTHOR by the statement:

(BOOKS INNER JOIN [BOOK/AUTHOR]
ON BOOKS. I SBN=[BOOK/AUTHOR] - 1SBN)

We then join thisto PUBLISHERS on the PublD column:

(PUBLISHERS INNER JOIN

(BOOKS INNER JOIN [BOOK/AUTHOR]
ON BOOKS . 1 SBN=[BOOK/AUTHOR] . ISBN)
ON PUBLISHERS.PubID = BOOKS.PublD)

and finally we join thisto AUTHORS on the AulD column.
6.7.2.4 Self-joins

A table can be joined to itself, resulting in aself-join. In order to do this, SQL requires
the use of the AS AliasName syntax. For instance, we can write:

BOOKS INNER JOIN BOOKS AS BOOKS2 ON ...

The least confusing way to think of this statement is as though Access creates a second
copy of the BOOK S table and callsit BOOK S2. We can now refer to the columns of
BOOKS as BOOK S.ColumnName or BOOK S2.ColumnName.

6.7.2.5 Notes

FlyrHeart.com 4

TEAM FLY PRESENTS

e Anouter join may be nested inside an inner join, but an inner join may not be
nested inside an outer join.

o Wemay use Access expressions, which involve functions (such as Left$, Len,
Trim$, and Instr) in SQL statements (even though the "officia" syntax does not
describe this).

e In Access, we can define relationships between tables. However, these
relationships have no effect on SQL statements. Thus, an INNER JOIN statement
does not require that a relationship already exist between the participating tables.
Relationships are used in Design View, however, and trandate into INNER JOIN
statements. For example, if we add BOOKS and PUBLISHERS to the Query
Design View window, move Title and PubName to the Design grid, and then
view the SQL equivalent, we will see an INNER JOIN clause in the SQL
Statement.

6.7.3TheSELECT Statement

The SELECT statement is the workhorse of SQL commands (as you can tell by the
length of our discussion on this statement). The statement returns a table and can perform
both of the relational algebra operations selection and projection. The syntax of the
SELECT statement is:

SELECT [predicate] ReturnColumnDescription,...
FROM TableExpression

[WHERE RowCondition]

[GROUP BY GroupByCriteria]

[HAVING GroupCriteria]

[ORDER BY OrderByCriteria]

Let us describe the various components of this statement. We note immediately that the
keyword SELECT isin some ways unfortunate, since it denotes the relational algebra
operation of projection, not selection. It isthe WHERE clause that performs selection.

6.7.3.1 Predicate

The predicate is used to describe how to handle duplicate return rows. It can have one of
the following values: ALL, DISTINCT, DISTINCTROW, or TOP.

The default option ALL returns all qualifying rows, including duplicates. If thereis more
than one qualifying row with the same valuesin al of the columns that arerequested in
the ReturnColumnDescription, then the option DISTINCT returns only the first such row.
The:

TOP number
or.

TOP percent PERCENT

FlyrHeart.com 4

TEAM FLY PRESENTS

option returns the top number (or percent) of rows in the sort order determined by the
ORDER BY clause.

The DISTINCTROW option can be a bit confusing, so let us see if we can straighten it
out. The Access Help system says that the DISTINCTROW option "Omits data based on
entire duplicate records, not just duplicate fields." It doesn't say how thisis done.
Microsoft Technet is abit less vague:

In contrast, DISTINCTROW is unigue to Microsoft Access. It causes a query to return
unigue records, not unique values. For example, if 10 customers are named Jones, a query
based on the SQL statement "SELECT DISTINCTROW Name FROM Customers®
returns al 10 records with Jones in the Name field. The mgjor reason for adding the
DISTINCTROW reserved word to Microsoft Access SQL isto support updatable
semi-joins, such as one-to-many joins in which the output fields all come from the table
on the"one" side. DISTINCTROW is specified by default in Microsoft Access queries
and isignored in queriesin which it has no effect. Y ou should not delete the
DISTINCTROW reserved word from the SQL dialog box.

The intended purpose of DISTINCTROW issimple. DISTINCTROW applies only when
the FROM clause involves more than one table. Consider this statement:

SELECT ALL PubName
FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PublID = BOOKS.PublD;

Since there are many books published by the same publisher, the result table tblALL

shown in Table 6-3 has many duplicate publisher names.

Table6-3. ThetblALL table

PubName

Smadll House
Small House
Smadll House
ISmaII House
Big House
Big House
Big House
Big House
IBig House
Big House
Alpha Press
Alpha Press
Alpha Press
IAIpha Press

FlyrHeart.com

TEAM FLY PRESENTS

To remove duplicate publisher names, we can include the DISTINCT keyword. Thus, the
statement

SELECT DISTINCT PubName
FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PubID = BOOKS.PublD;

produces the table tbIDISTINCT that is shown in Table 6-4.

Table 6-4. ThetbIDISTINCT table

| PubName
Alpha Press

Big House

Smadll House

Now consider what happensif the PUBLISHERS table is changed by adding a new
publisher with the same name as an existing publisher (but a different PublD and phone),
aswe have donein Table 6-5. The previous DISTINCT statement will give the same
result table as before, thus leaving out the new publisher.

Table 6-5. The PUBLISHERS (altered) table
PublD PubName PubPhone
1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 Small House 714-000-0000
4 \Small House 555-123-1111

What is called for is a selection criterion that will return both publisher names simply
because they come from different rows of the PUBLISHERS table. Thisis the purpose of
DISTINCTROW. Thus, the statement:

SELECT DISTINCTROW PubName
FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PublID = BOOKS.PublD;

produces the result table tbI DISTINCTROW shown in Table 6-6 (note that we aso had to
add a book to the BOOK S table, with PublD 4).

Table 6-6. ThetbIDISTINCTROW table

| PubName
ISmaII House
]Big House

105 R

FlyrHeart.com

TEAM FLY PRESENTS

Alpha Press

Small House

We can now describe how DISTINCTROW works. Consider the following SQL
skeleton:

SELECT DISTINCTROW ColumnsRequested
FROM TablesClause

Here ColumnsRequested isalist of columns requested by the statement, and
TablesClause isajoin of tables. Let usrefer to atable mentioned in TablesClause asa
return tableif at least one of its columnsis mentioned in ColumnsRequested. Thus, in
the statement:

SELECT DISTINCTROW PubName
FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PubID = BOOKS.PublD;

PUBLISHERS is areturn table, but BOOKS is not. Hereis how DISTINCTROW works:

1. Form thejoin(s) described in TablesClause.

2. Project the resulting table onto all of the columns from all return tables (not just
the columns requested). Put another way, remove all columns that are not part of a
return table.

3. Remove al duplicate rows, where two rows are considered duplicatesif they are
composed of the same rows from each result table. It is not the values that are
compared, but the actual rows. It is necessary to add this because two different
rows may haveidentical valuesin an Access table.

Let usillustrate with a simple example.

Consider the following tables, named Templ, Temp2, and Temp3, respectively:

| Aq | Az
al X
a2 link
a3 link

B, | B, | Bs
bl y z
b2 link link2

Cl Cz CS

cl t link2
c2 \% link2
c3 a X
The statement:

FlyrHeart.com

TEAM FLY PRESENTS

SELECT *

FROM

(Templ INNER JOIN Temp2 ON Templ.A2 = Temp2.B2)
INNER JOIN Temp3 ON Temp2.B3 = Temp3.C3;

givesthe result table tblALL:
A A, B, B, Bs C, C, Cs
a3 link b2 link link2 c2 \% link2
a3 link b2 link link2 cl t link2
a2 link b2 link link2 c2 \% link2
a2 link b2 link link2 cl t link2

Now let us add the DISTINCTROW keyword and select a single column from just tblA:

SELECT DISTINCTROW Al

FROM

(Templ INNER JOIN Temp2 ON Templ.A2 = Temp2.B2)
INNER JOIN Temp3 ON Temp2.B3 = Temp3.C3;

Now we consider the projection onto the rows of the only return table (tblA):

| A | Az
a3 link
a3 link
a2 link
a2 link

It isclear that the first two rows of this table are the same row of tblA, so they produce
only one row in the final result table. The same holds for the last two rows. Hence, the

result tableis;

A1

a2

a3

Let us now change this by requesting a column from tblC, thus making it areturn table as

well:

SELECT DISTINCTROW A1,C1

FROM

(Templ INNER JOIN Temp2 ON Templ.A2 = Temp2.B2)
INNER JOIN Temp3 ON Temp2.B3 = Temp3.C3;

The projection onto return table rows is now:

| A1 | Az | C, | C,

107

FlyrHeart.com

TEAM FLY PRESENTS

a3 link c2 \% link2
a3 link cl t link2
a2 link c2 \% link2
a2 link cl t link2
Theserow "pairs' are dl distinct. In fact:

¢ Row 1 comesfrom row 3 of thlA and row 2 of thIC.

e Row 2 comes from row 3 of tblA and row 1 of thlC.

¢ Row 3 comesfrom row 2 of thlA and row 2 of thIC.

e Row 4 comes from row 2 of tblA and row 1 of thlC.
It follows that the return table includes all rows:

A; C;

a2 cl
a2 c2
a3 cl
a3 c2

Finally, consider what happens if we change the third row of tblA to:

| Aq | Az
al X

a2 link
a2 link

|

Running the first DISTINCTROW statement:

SELECT DISTINCTROW Al

FROM

(Templ INNER JOIN Temp2 ON Templ.A2 = Temp2.B2)
INNER JOIN Temp3 ON Temp2.B3 = Temp3.C3;

gives.

| A1

a2
a2

Comparing this to the previous result table DISTINCTROW, A1 emphasizes the fact that,
even though the second and third rows of tbiINewA areidentical in values, they are
different rows, so they both contribute to the final result table. If we were to replace the
DISTINCTROW keyword with the word DISTINCT, then the result table would have
only one row, since then it is the values in each row that form the basis for comparison.

10 S

TEAM FLY PRESENTS

Of course, thiswould not be an issue if al tables had a key, since then the valuesin arow
would determine the row. Y ou may now see why | recommended against having two
different rows with the same column values, even though Access permits this possibility
(but true relational databases do not).

Notice what happensiif all tables mentioned in the TablesClause are return tables. This
would happen, for instance, if there isonly one table in TablesClause. In this case, the
projection does nothing; since each row of the TablesClause result table must come from
adistinct combination of rows of the result tables, we deduce that DISTINCTROW has
exactly the same effect asALL. To put it another way, DISTINCTROW isignored.

It isuseful to compare DISTINCTROW and DISTINCT. We can see that the only
differenceisthat a DISTINCT statement will return distinct values, rather than values
from distinct rows. However, these will be the same if the requested columns from each
return table uniquely identify their rows.

Let usillustrate with the PUBLISHERS example. Suppose we return akey (PublD) for
PUBLISHERS, as in the statement:

SELECT DISTINCTROW PublID, PubName
FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PublID = BOOKS.PublD;

Then the result table will return all PUBLISHERS rows that have at least one book in the
BOOKS table, as Table 6-7 shows.

Table 6-7. Publisherswith at least one book in BOOK S
PubID | PubName

3 Small House

1 Big House

2 Alpha Press

|4 'Small House

Thisis, in fact, the semi-join:
PUBLISHERS semi-joinPUBLISHERS.PublID=BOOKS .Pub ID%s

Recall that the semi-join is the projection of the join onto one of the tables (in this case,
the PUBLISHERS table). Thus, as Microsoft itself says, the purpose of the
DISTINCTROW option isto return an updatable semi-join.

Of course, the same statement with DISTINCT in place of DISTINCTROW will return
the same result table. However, there is one big difference. Since DISTINCT statements
can completely hide the origin of the returned values, it would be a disaster if Access

FlyrHeart.com 4

TEAM FLY PRESENTS

allowed such a result table to be updatable—and indeed it does not. For instance, recall
the table tbIDISTINCT discussed earlier and shown in Table 6-8.

Table 6-8. ThetbIDISTINCT table
| PubName
Alpha Press

Big House
]Small House

Changing the name of Small House in this result table would be disastrous, since we
would not know which Small House was being affected!

On the other hand, the result table of the DISTINCTROW statement has a
"representative” from each row of the PUBLISHERS table, as Table 6-9 shows. Hence,
whileit still may not be a good idea to change this particular table, since we cannot tell
which Small House is which, it would be reasonabl e to make a change to both names, for
instance.

Table 6-9. ThetbIDISTINCTROW table

| PubName
ISmaII House

Big House

Alpha Press

]Small House

More generally, Access does not permit updating of the result table of a DISTINCT
statement, but it does permit updating of the result table for a DISTINCTROW statement.

Finally, we mention that Microsoft Access includes the DISTINCTROW keyword by
default when you create a query using the Access Query Design Window.

6.7.3.2 ReturnColumnDescription

The ReturnColumnDescription describes the columns, or combination of columns, to
return. It can be any of the following:

e * (indicating all columns)

e Thename of acolumn

e Anexpression involving column names, enclosed in brackets, along with strings
and string operators; for example, [PubID] & "-" & [Title]

(Note that, according to the syntax of the SELECT statement, ReturnColumnDescription
can be repeated as many times as desired.)

110 S

FlyrHeart.com

TEAM FLY PRESENTS

When two returned columns (from different tables) have the same name, it is necessary to
gualify the column names using the table names. For instance, to qualify the PublD
column name, we write BOOK S.PublD and PUBLISHERS.PubID. We can also write
BOOKS.* toindicate all columns of the BOOK S table.

Finally, each ReturnColumnDescription can end with:
[AS AliasName]

to give the return column a (new) name. For example, the following statement:

SELECT DISTINCTROW
[ISBN] & ™ from " & [PubName] AS [ISBN from PubName]
FROM PUBLISHERS INNER JOIN BOOKS ON PUBLISHERS.PubID = BOOKS.PublD;

returns a single-column result table ISBN-PUB, as shown in Table 6-10.

Table 6-10. The ISBN-PUB table
ISBN from PubName

0-12-345678-9 from Small House
0-11-345678-9 from Small House
0-321-32132-1 from Small House
0-55-123456-9 from Small House
0-12-333433-3 from Big House
0-103-45678-9 from Big House
0-91-335678-7 from Big House
0-99-999999-9 from Big House
1-22-233700-0 from Big House
1-1111-1111-1 from Big House
0-91-045678-5 from Alpha Press
0-555-55555-9 from Alpha Press
0-99-777777-7 from Alpha Press
0-123-45678-0 from Alpha Press

Not only doesthe AS AliasName option allow us to name a compound column, it also
allows us to rename duplicate column names without having to qualify the names.

6.7.3.3 FROM TableExpression

The FROM clause specifies the tables (or queries) from which the SELECT statement is
to take its rows. The expression TableExpression can be a single table name, severa table
names separated by commas, or ajoin clause. The TableExpression may also include the
AS AliasName syntax for table-name aliases.

111 W

FlyrHeart.com

TEAM FLY PRESENTS

When tables are separated by commas in the FROM clause, a Cartesian product is formed.

For example, the statement:

SELECT *

FROM AUTHORS, PUBLISHERS;

will produce the Cartesian product of the two tables.

6.7.3.4 WHERE RowCondition

The RowCondition is any Access expression that specifies which rows are included in the
result table. Expressions can involve column names, constants, arithmetic (=, <, >, <=, >=,
<>, BETWEEN) and logical (AND, OR, XOR, NOT, IMP) relations, aswell as

functions. Here are some examples:

WHERE Title LIKE "F*"

WHERE Len(Trim(Title)) > 10
WHERE Instr(Title, "Wind") > 0 AND Len(Trim(Title)) > 10
WHERE DateSold = #5/21/96#

Note that dates are enclosed in number signs (#) and the strings are enclosed in quotation

marks (").

6.7.3.5 GROUP BY GroupByCriteria

The GROUP BY option allows records to be grouped together for the purpose of
computing the value of an aggregate function (Avg, Count, Min, Max, Sum, First, Last,
SDev, SDevP, Var, and VarP). It is equivalent to creating a so-called totals query. The
GroupByCriteria can contain the names of up to 10 columns. The order of the column
names determines the grouping levels, from highest to lowest.

For example, the following statement lists each publisher by name, aong with the
minimum price of each publisher's books in the BOOKS table:

SELECT PUBLISHERS.PubName, MIN(Price) AS [Minimum Price]

FROM PUBLISHERS

INNER JOIN BOOKS

ON PUBLISHERS.PubID = BOOKS.PublD

GROUP BY PUBLISHERS.PubName;

The result table appearsin Table 6-11.

Table 6-11. Each publisher'sleast expensive book

| PubName | Minimum Price
Alpha Press $12.00
Big House $15.00
112 -

FlyrHeart.com 4

TEAM FLY PRESENTS

|Small House $22.95

6.7.3.6 HAVING GroupCriteria

The HAVING option is used in conjunction with the GROUP BY option and allows usto
specify a criterion, in terms of aggregate functions, for deciding which datato display.

For example, the following command is the same as the previous one, with the additional
HAVING option that restricts the return table to those publishers whose minimum price
isless than $20.00:

SELECT PUBLISHERS.PubName, MIN(Price) AS [Minimum Price]
FROM PUBLISHERS INNER JOIN BOOKS

ON PUBLISHERS.PublID = BOOKS.PublD

GROUP BY PUBLISHERS.PubName

HAVING MIN(Price)<20.00;

The result table is shown in Table 6-12.

Table 6-12. Each publisher's cheapest book under $20.00

PubName Minimum Price
Alpha Press $12.00
Big House $15.00

Note that the WHERE clause restricts which rows participate in the grouping and hence
contribute to the value of the aggregate functions, whereas the HAVING clause affects
only which values are displayed.

6.7.3.7 ORDER BY OrderByCriteria

The ORDER BY option describes the order in which to return the rows in the return table.
The OrderByCriteria has the form:

OrderByCriteria :-:= {ColumnName [ASC | DESC]}, ---

In other words, it isjust alist of columnsto use in the ordering. Rows are sorted first by
thefirst column listed, then rows with identical valuesin the first column are sorted by
the values in the second column, and so on.

6.7.4 The UNION Statement

The UNION statement is used to create the union of two or more tables. The syntax is.

[TABLE] Query
{UNION [ALL] [TABLE] Query}, ...

113 S

FlyHeart.com g4

TEAM FLY PRESENTS

where Query iseither a SELECT statement, the name of a stored query, or the name of a
stored table preceded by the TABLE keyword. The ALL option forces Access to include
all records. Without this option, Access does not include duplicate rows. The use of ALL
increases performance as well and is thus recommended even when there are no duplicate
rows.

6.7.4.1 Example

The following statement takes the union of all rows of BOOK S and those rows of
NEWBOOKS that have Price > $25.00, sorting the result table by Title:

TABLE BOOKS

UNION ALL

SELECT * FROM NEWBOOKS WHERE Price > 25.00
ORDER BY Title;

6.7.4.2 Notes

e All queriesin a UNION operation must return the same number of fields.
However, the fields do not need to have the same size or data type.

e Columns are combined in the union by their order in the query clauses, not by
their names.

e Aliases may be used inthefirst SELECT statement (if there is one) to change the
names of returned columns.

e ANnORDERBY clause can be used at the end of the last Query to order the
returned data. Use the column names from the first Query.

e GROUPBY and/or HAVING clauses can be used in each query argument to
group the returned data.

e Theresult table of aUNION is not updatable.

e UNION isnot part of SQL-92.

6.7.5 The UPDATE Statement

The UPDATE statement is equivalent to an Update query and is used for updating datain
atable or tables. The syntax is:

UPDATE TableName | QueryName
SET NewValueExpression, ...
WHERE Criteria;

The WHERE clause is used to restrict updating to qualifying rows.
6.7.5.1 Example

The following example updates the Price column in the BOOKS table with new prices
from atable called NEWPRICES that has an ISBN and a Price column:

114 e

FlyrHeart.com 4

TEAM FLY PRESENTS

UPDATE

BOOKS INNER JOIN NEWPRICES ON BOOKS.ISBN = NEWPRICES.ISBN
SET BOOKS.Price = NEWPRICES.Price

WHERE BOOKS.Price <> NEWPRICES.Price;

Note that UPDATE does not produce a result table. To determine which rows will be
updated, first run a corresponding SELECT query, asin:

SELECT * FROM
BOOKS INNER JOIN NEWPRICES ON BOOKS.ISBN = NEWPRICES.ISBN
WHERE BOOKS.Price <> NEWPRICES.Price

6.7.6 The DELETE Statement

The DELETE statement is equivalent to a Delete query and is used to delete rows from a
table. Here is the syntax:

DELETE
FROM TableName
WHERE Criteria

Criteria isused to determine which rows to del ete.

This command can be used to delete all data from atable, but it will not delete the
structure of the table. Use DROP for that purpose.

Y ou can use DELETE to remove records from tables that have a one-to-many
relationship. If cascading delete is enabled when you delete arow from the one side of
the relationship, all matching rows are deleted from the many side. The action of the
DELETE statement is not reversable. Always make backups before deleting! Y ou can run
a SELECT operation before DELETE to see which rows will be affected by the DELETE
operation.

6.7.7 The INSERT INTO Statement

The INSERT INTO statement is designed to insert new rows into atable. This can be
done by specifying the values of a new row using this syntax:

INSERT INTO Target [(FieldName,...)]
VALUES (Valuel,...)

If you do not specify the FieldName (), then you must include values for each field in
thetable.

Let'slook at several examples of the INSERT INTO statement. The following statement
inserts anew row into the BOOKS table:

INSERT INTO BOOKS
VALUES (*'1-000-00000-0*, *'SQL is Fun',1,25.00);

115 =

FlyrHeart.com 4

TEAM FLY PRESENTS

The following statement inserts a new row into the BOOKS table. The Price and PublD
columns have NULL values.

INSERT INTO BOOKS (ISBN,Title)
VALUES (*'1-1111-1111-1","Gone Fishing™);

To insert multiple rows, use this syntax:

INSERT INTO Target [(FieldName,...)]
SELECT FieldName, ...
FROM TableExpression

In both syntaxes, Target is the name of the table or query into which rows areto be
inserted. In the case of a query, that query must be updatable and all updates will be
reflected in the underlying tables. TableExpression isthe name of the table from which
records are inserted, the name of a saved query, or a SELECT statement.

Assume that NEWBOOKS is atable with three fields: ISBN, PublD, and Price. The
following statement inserts rows from BOOKS into NEWBOOKS. It inserts only those
books with Price > $20.00.

INSERT INTO NEWBOOKS
SELECT I1SBN, PublD, Price
FROM BOOKS

WHERE Price>20;

6.7.7.1 Note

Text field values must be enclosed in quotation marks.

6.7.8 The SELECT...INTO Statement

The SELECT... INTO statement is equivalent to a MakeTable query. It makes a new
table and inserts data from other tables. The syntax is:

SELECT FieldName, ...
INTO NewTableName

FROM Source

WHERE RowCondition
ORDER BY OrderCondition

FieldName isthe name of the field to be copied into the new table. Source isthe name of
the table from which datais taken. This can aso be the name of aquery or ajoin
statement.

For example, the following statement creates a new table called EXPENSIVEBOOKS
and includes books from the BOOK S tabl e that cost more than $45.00:

SELECT Title, ISBN

FlyrHeart.com 4

TEAM FLY PRESENTS

INTO EXPENSIVEBOOKS
FROM BOOKS

WHERE Price>45
ORDER BY Title;

6.7.8.1 Notes

e Thisstatement is unique to Access SQL.
o This statement does not create indexes in the new table.

6.7.9 TRANSFORM

The TRANSFORM statement (which is not part of SQL-92) is designed to create
crosstab queries. The basic syntax is:

TRANSFORM AggregateFunction
SelectStatement
PIVOT ColumnHeadingsColumn [IN (Vvalue,...)]

The AggregateFunction is one of Access aggregate functions (Avg, Count, Min, Max,
Sum, Firgt, Last, SDev, SDevP, Var, and VarP). The ColumnHeadingsColumn isthe
column that is pivoted to give the column headings in the crosstab result table. The
values in the IN clause option specify fixed column headings.

The SelectStatement isaSELECT statement that uses the GROUP BY clause, with
some modifications. In particular, the select statement must have at least two GROUP
BY columns and no HAVING clause.

As an example, suppose we wish to display the total number of books from each
publisher by price. The SELECT statement:

SELECT PubName, Price, COUNT(Title) AS Total
FROM PUBLISHERS INNER JOIN BOOKS

ON PUBLISHERS.PubID=BOOKS.PubID

GROUP BY PubName, Price;

whose result table is shown in Table 6-13, doesn't really give the information in the
desired form. For instance, it is difficult to tell how many books cost $20.00. (Remember,
thissmall tableisjust for illustration.)

Table 6-13. Book prices by publisher
PubName Price Total
Big House $15.00 1
Big House $20.00 1
Big House $25.00 2
Big House $49.00 1
117 =

FlyHeart.com g4

TEAM FLY PRESENTS

Medium House $12.00 2
Medium House $20.00 1
Medium House $34.00 1
Medium House $49.00 1
\Small House $49.00 1

We can transform this into a crosstab query in two steps:

1. Add aTRANSFORM clause at the top, and move the aggregate function whose
value isto be computed to that clause.

2. Add aPIVOT line at the bottom, and move the column whose values will form
the column headings to that clause. Also, delete the reference to this column in the
SELECT clause.

This gives:

TRANSFORM COUNT(Title)

SELECT Price
FROM PUBLISHERS

with the result table shown in Table 6-14.

Table 6-14. A cross-tabulation of book prices by publisher

INNER JOIN BOOKS
ON PUBLISHERS.PubID=BOOKS.PubID
GROUP BY Price
PIVOT PubName;

Price

Big House

Medium House

Small House

$12.00

$15.00

$20.00

$25.00

$34.00

$49.00

We can group the rows by the values in more than one column. For example, suppose
that the BOOK S table also had aDISCOUNT column that gave the discount from the
regular price of the book (as a percentage). Then by including the DISCOUNT column in
the SELECT and GROUP BY clauses, we get:

TRANSFORM COUNT(Title)

SELECT Price,
FROM PUBLISHERS

Discount
INNER JOIN BOOKS
ON PUBLISHERS.PublID=BOOKS.PublD
GROUP BY Price,
P1VOT PubName;

Discount

118

—~_
FlyrHeart.com

TEAM FLY PRESENTS

for which the result table is shown in Table 6-15.

Table 6-15. Book prices and discount by publisher
Price Discount Big House Medium House Small House

$12.00 30% 2

$15.00 20% 1

$20.00 20% 1

$20.00 30% 1

$25.00 10% 1

$25.00 20% 1

$34.00 10% 1

$49.00 10% 1

1$49.00 130% | 1 1

In this case, each row represents a unique price/discount pair.

A crosstab can also include additional row aggregates by adding additional aggregate
functionsto the SELECT clause, as follows:

TRANSFORM COUNT(Title)

SELECT Price, COUNT(Price) AS Count, SUM(Price) AS Sum
FROM PUBLISHERS INNER JOIN BOOKS

ON PUBLISHERS.PubID=BOOKS.PublID

GROUP BY Price

PIVOT PubName;

which gives the result table shown in Table 6-16.

Table 6-16. Aggregating resultsin a crosstab table
| Price | Count | Sum | Big House | M edium House | Small House
$1200 |2 $24.00 2
$1500 |1 $15.00 1
$2000 |2 $40.00 1 1
$2500 |2 $50.00 2
1$34.00 |1 $34.00 | 1 |
$49.00 |3 $147.00 |1 1 1

Finally, by including fixed column names, we can reorder or omit columns from the
crosstab result table. For instance, the next statement is just like the previous one except
for the PIVOT clause:

TRANSFORM COUNT(Title)
SELECT Price, COUNT(Price) AS Count, SUM(Price) AS Sum
FROM PUBLISHERS INNER JOIN BOOKS

119 Byt M

TEAM FLY PRESENTS

ON PUBLISHERS.PubID=BOOKS.PubID
GROUP BY Price
PIVOT PubName IN (*'Small House', "‘Medium House');

The result table is shown in Table 6-17. Note that the order of the columns has changed
and Big House is not shown.

Table 6-17. Omitting columnsfrom a crosstab table

| Price | Count | Sum | Small House | M edium House
$12.00 2 $24.00 2

$15.00 1 $15.00

$20.00 2 $40.00 1

$25.00 2 $50.00

$34.00 1 $34.00 1

$49.00 3 $147.00 1 1

6.7.10 Subqueries
SQL permits the use of SELECT statements within the following:

Other SELECT statements
SELECT... INTO statements
INSERT... INTO statements
DELETE statements
UPDATE statements

Theinternal SELECT statement is referred to as a subquery and is generally used in the
WHERE clause of the main query.

The syntax of a subquery takes three possible forms, described as follows.

6.7.10.1 Syntax 1
Comparison [ANY | SOME | ALL] (SQLStatement)

where Comparison is an expression followed by a comparison relation that compares the
expression with the return value(s) of the subquery. This syntax is used to compare a
value against the values obtained from another query.

For example, the following statement returns all titles and prices of books from the
BOOK S table, whose prices are greater than the maximum price of all booksin the table
BOOKS2:

SELECT Title, Price
FROM BOOKS
WHERE Price > (SELECT Max(Price) FROM BOOKS2);

120 S

FlyrHeart.com

TEAM FLY PRESENTS

Note that since the subquery returns only one value, we do not need to use any of the
keywords ANY, SOME, or ALL.

The following statement selects all BOOK Stitles and prices for books that are more
expensive than ALL of the books published by Big House:

SELECT Title, Price
FROM BOOKS
WHERE Price > ALL
(SELECT Price
FROM PUBLISHERS INNER JOIN BOOKS ON PUBLISHERS.PublID =
BOOKS.PublID
WHERE PubName = "Big House);

Note that ANY and SOME have the same meaning and return all choices that make the
comparison true for at least one value returned by the subquery. For example, if we were
to replace ALL by SOME in the previous example, the return table would consist of all
book titles and prices for books that are more expensive than the cheapest book published
by Big House.

6.7.10.2 Syntax 2
Expression [NOT] IN (SQLStatement)

This syntax is used to look up a column value in the result table of another query.

For example, the following statement returns all book titles from BOOKS that do not
appear in the table BOOK S2:

SELECT Title
FROM BOOKS
WHERE Title NOT IN (SELECT Title FROM BOOKS2);

6.7.10.3 Syntax 3
[NOT] EXISTS (SQLStatement)

This syntax is used to check whether an item exists (is returned) in the subquery.

For example, the following statement selects all publishers that do not have books in the
BOOKS table:

SELECT PubName
FROM PUBLISHERS
WHERE NOT EXISTS
(SELECT * FROM BOOKS WHERE BOOKS.PublID =
PUBLISHERS.PublID);

Notice that the PUBLISHERS table is referenced in the subquery. This causes Access to
evaluate the subguery once for each value of PUBLISHERS.PubID in the PUBLISHERS
table.

121 -

FlyrHeart.com 4

TEAM FLY PRESENTS

6.7.10.4 Notes

e When using Syntax 1 or 2, the subquery must return a single column, or an error
will occur.

o The SELECT statement that constitutes the subquery follows the same format and
rules as any other SELECT statement. However, it must be enclosed in
parentheses.

6.7.11 Parameters

Access SQL alows the use of parameters to obtain information from the user when the
guery isrun. The PARAMETERS line must be the first line in the statement and has the
syntax:

PARAMETERS Name DataType, - ..
An example will illustrate the technique.

The following statement will prompt the user for a portion of the title of a book and
return al books from BOOKS with that string in the title. Note the semicolon at the end
of the PARAMETERS line.

PARAMETERS [Enter portion of title] TEXT;

SELECT *

FROM BOOKS

WHERE Instr(Title, [Enter portion of title]) > O;

The function Instr(Text1, Text2) returnsthefirst location of the text string Text2
within the text string Text1. Note that Name is repeated in the WHERE clause and will be
filled in by the value that the user enters as aresult of Name appearing in the
PARAMETERS clause.

FlyrHeart.com 4

TEAM FLY PRESENTS

Part Ill: Database Architecture

Chapter 7. Database System Architecture
7.1 Why Program?

Thereisno doubt that SQL is a powerful language—as far asit goes. However, itisa
somewhat unfriendly language, and it lacks the sophisticated control structures of a more
traditional language, such as For...Next... loops and If...Then... statements.

Thisisnot really aproblem, since SQL is designed for avery specific purpose related to
database-component creation and manipulation. SQL is not designed to provide an
overall programming environment for Microsoft Accessitself. Thisroleis played by
Visual Basic for Applications (VBA).

VBA isthe macro or scripting language for all of the major Microsoft Office products:
Microsoft Access, Excel, PowerPoint, and Word (starting with Word 97). It isavery
powerful programming language that gives the programmer access to the full features of
these applications, as well as the means to make the applications work together.

One of the major components of VBA isits support for Data Access Objects model,
(DAO). DAO isthe programming-language interface for the Jet database management
system (DBMYS) that underlies Microsoft Access. It provides a more-or-less
object-oriented data definition language (DDL) and data manipulation language (DML),
thereby alowing the VBA programmer to define the structure of a database and
manipulate its data.

Of course, it is natural to wonder why you would want to use DAO, and VBA in general,
rather than using the built-in graphical interface of Microsoft Access. The answer is
simple. While the graphical interface is very easy to use and is quite adequate for many
purposes, it is simply not as powerful as the programming languages. The database
creator gains more power and flexibility over the database by directly manipulating the
basic objects of the database (such as the tables, queries, relationships, indexes, and so on)
through programming.

Asasimple example, thereis no way to get alist of the fields of agiven table (i.e, the
table's table scheme) using the Access graphical interface. However, thisisasimple
matter using programming techniques. The following short program:

Sub Example()
Dim db As DATABASE
Dim tdf As TableDef
Dim fld As Field

Set db = CurrentDb

FlyrHeart.com 4

TEAM FLY PRESENTS

Set tdf = db.TableDefs(""BOOKS™)
For Each fld In tdf.Fields
Debug.Print fld.Name
Next
End Sub

displays the following list of fields for the BOOKS table in the Debug window:

1SBN

Title
PublD
Price

Thisisagood place to discuss the relationship between DAO and SQL. The fact is that
DAO both uses SQL and overlaps SQL. That is, there are many commands in DAO that
can accept an SQL statement as an argument. For instance, the following VBA code
opens arecordset (discussed later in the book) using an SQL statement to define the
records in the recordset:

" Get current database
Set dbs = CurrentDb()

" Write SQL statement
strSelect = "Select * FROM Books WHERE Price=10"

" Open recordset using SQL statement
Set rsCheap = dbs.OpenRecordset(strSelect)

On the other hand, DAO overlaps SQL in the sense that many actions can be performed
using either language. For instance, atable can be created using either the SQL statement
CREATE TABLE or the DAO method CreateTable. The choice is up to the programmer.

Our main goal in the remaining portion of this book is to discuss the DAO model. Before
doing so, however, we need to set the stage by discussing the overall architecture of a
database management system, and of the Jet DBM S in particular, so we can put DAO in
its proper context. We will do so in this chapter and also take a quick peek at DAO
programming. In Part IV, | will present a brief introduction to programming in VBA.
Then I will turnto DAOQ itself in the following chapters of the book. Finally, I'll conclude
by examining ActiveX Data Objects (ADO), Microsoft's recent technology for universal
data access.

7.2 Database Systems
A database systemis often pictured as athree-level structure, as shown in Figure 7-1.

Figure 7-1. Thethree-level structure of a database system

124 -

FlyrHeart.com 4

TEAM FLY PRESENTS

Conceptual Database

Physical
Database

At the lowest level of the structure is the physical database, which consists of the raw
data existing on a physical object, such as ahard disk. At thislevel, the data has no
logical meaning, asrelated to the database. However, the data does have a very definite
physical structure to allow efficient access. In other words, the datais more than just a
string of bits.

In fact, there are avariety of structuresin which the data might be stored, including hash
tables, balanced trees, linked lists, nested records, and so on, and the choice of data
structure is not asimple one. However, | will not pursue a discussion of the physical
database in this book. Sufficeit to say that, at the physical level, the datais viewed asa
structured collection of bits, and the sole purpose of the structure is to provide efficient
access to the data. The physical level of adatabase is often referred to as the internal
level.

The conceptual database is a conceptual view of the database as a whole. It givesthe
dataalogical structure. For instance, in arelational database system, the datais viewed
as a collection of tables, with column headings describing the attributes of the
corresponding entity class. Moreover, tables are related to one another through certain
columns.

The conceptual model isintended to model the entire database. However, individual users
may be interested in views of only specific portions of the data. For instance, in the
LIBRARY database, a student using the library's online database catalog is probably not
interested in the price of the book, but isinterested in whereit islocated on the shelves.
Thus, asingle database, such as LIBRARY, may need different views for the student than
for the librarian.

The highest level in the three-tier structure consists of the individual views of the data
that may be held by users of the database. Views are aso referred to as subschemes, and
thislevel of thetier is also referred to as the external level.

FlyrHeart.com 4

TEAM FLY PRESENTS

As another example, we can think of the Microsoft Visual Basic programming language
as providing an external view of the Jet database management system that is geared
toward database programmers. We can think of Microsoft Access as providing an
external view that is geared, not just to programmers, but also to high-level users of
varying degrees of sophistication. After all, auser does not need to know anything about
database programming to create a database in Microsoft Access, although he does need to
have afamiliarity with the conceptual level of arelational database.

Thinking of a database system as a three-tier structure has distinct advantages. One
advantage isthat it allows for acertain level of independence that permits the individual
tiersto be changed or replaced without affecting the other tiers. For instance, if the
database is moved to a new computer system that stores the datain hash tables rather than
balanced trees, this should not affect the conceptual model of the data, nor the views of
users of the database. Also, if we switch from the Visual Basic view of the database to
the Access view, we can still use the same conceptual database model. Put more bluntly,
adatabasetablein Visua Basicis still a database table in Microsoft Access.

7.3 Database Management Systems

A DBMS s asoftware system that is responsible for managing all aspects of a database,
at all levels. In particular, aDBMS should provide the following features, and perhaps
more:

e A mechanism for defining the structure of a database, in the form of adata
definition language, or DDL.

e A mechanism for data manipulation, including data access, sorting, searching, and
filtering. Thistakes the form of a data manipulation language, or DML.

« Interaction with ahigh-level host language or host application, allowing

programmers to write database applications designed for specific purposes. The

host language can be a standard programming language, such as C or Visual Basic,

or a database application language, such as Microsoft Access.

Efficient and correct multiuser access to the data.

Effective data security.

Robustness—that is, the ability to recover from system failures without data loss.

A data dictionary, or data catalog. Thisis adatabase (in its own right) that

provides alist of the definitions of all objectsin the main database. For instance, it

should include information on al entitiesin the database, along with their

attributes and indexes. This "data about data" is sometimes referred to as

metadata. The data dictionary should be accessible to the user of the database, so

that she can obtain this metadata.

7.4 The Jet DBMS

Asthetitle of the book suggests, our primary interest isin the DBM S that underlies
Microsoft Access (and also Visual Basic). Accordingly, we will take our examples from
thisDBMS, called the Jet DBMS or the Jet Database Engine. The relationship between

FlyrHeart.com 4

TEAM FLY PRESENTS

the Jet DBM S and other database-related programs, including Microsoft Access and
Visual Basic, can be pictured asin Figure 7-2.

Figure 7-2. Therelationships and structure of the Jet Database Engine

(DBMYS)
Database Database
Application Application

ﬂisualnasit| Access | Excel | Word '

' ' I '

Visual Basic for Applications

__________________ HostLomguages fortheJot D8NS
Data Access Objects (DAO)
{Indludes DDL and DML)
Jet Internal Replication
Query Engine IASM Engine

The Jet Database Engine (Jet DBMS)

Microsaft
Access
Datahase

Microsoft's application-level products Visual Basic, Access, and Excel play host to VBA,
which is the underlying programming language (al so called scripting or macro language)
for these applications. (Microsoft Word Version 7 does not use VBA—it uses asimilar
language called Word Basic. However, as of Microsoft Word 97, Word does use VBA.)
As expected, each of these applications integrates VBA into its environment in a specific
way, since each application has a different purpose.

In turn, Visual Basic for Applicationsisthe host language for the Jet DBMS. The Jet
DBMS contains the DAO component, which is the programming-language interface for
the Jet DBMS. The DAO provides a more-or-less object-oriented DDL and DML,
thereby alowing the VBA programmer to define the structure of a database and
manipulate its data.

The Jet Database Engine is a collection of components, generaly in the form of dynamic
link libraries (DLLS), designed to provide specific functions within the Jet DBMS. (A
DLL isessentialy acollection of functions for performing various tasks.) The Jet Query

FlyHeart.com g4

TEAM FLY PRESENTS

Engine handles the trand ation of database queriesinto Access SQL, and the subsequent
compilation, optimization, and execution of these queries. In short, it handles queries.
The Internal ISAM component is responsible for storing and retrieving data from the
physical database file. ISAM stands for Indexed Sequential Access Method and isthe
method by which datais stored in a Jet database file. The Replication Engine allows
exact duplicates of a database to coexist on multiple systems, with periodic
synchronization.

The host languages for the Jet DBMS, such as Visual Basic and Access, are used by
database programmers to create database applications for specific purposes. For instance,
we might create a Library database application, which alibrary can use to maintain
information about its books, or an Order Entry database application for asmall business.

Incidentally, the Jet DBM S is also capable of interfacing with non-Access-formatted
databases, such as those with format Xbase (dBase), Paradox, Btrieve, Excel, and
delimited text formats. It can also interface with open database connectivity (ODBC is
discussed in Appendix C) to access server database applications across networks.

Let ustake a closer ook at the components of the Jet DBMS. We will study these
components in much greater detail in separate chapters of the book.

7.5 Data Definition Languages

We have aready mentioned that a DBM S needs to provide a method for defining new
databases. Thisis done by providing a data definition language (DDL) to the programmer.
A DDL isnot aprocedural language; that is, its instructions do not actually perform
operations. Rather, aDDL is adefinitional language.

7.5.1 The Jet Data Definition Language

Example 7-1 illustrates the use of the Jet data definition language. The code will runin
Visual Basic or in an Access code module, so feel freeto key it in and try it yourself.
(Use anew database in Access, since some of this code will conflict with the LIBRARY
database that we have been working with in earlier chapters.) The purpose isto create a
new database called LIBRARY, along with atable called BOOKS, containing two fields,
ISBN and TITLE, and one index. (Don't worry if some portions of this code don't make
senseto you at this point.) Note that Access uses a space followed by an underscore
character (_) to indicate that the next line is a continuation of the current line.

Example 7-1. Use of the Jet data definition language
" Data Definition Language example

" Declare variables of the required types
Dim ws As Workspace

Dim dbLibrary As Database

Dim tblBooks As TableDef

Dim fldBooks As Field

FlyrHeart.com 4

TEAM FLY PRESENTS

Dim idxBooks As Index

" Use the default workspace, called Workspaces(0)
Set ws = DBEngine.Workspaces(0)

" Create a new database named LIBRARY
" in the default Workspace

Set dbLibrary = _
ws.CreateDatabase'd:\dao\library._mdb",
dbLangGeneral)

" Create a new table called BOOKS
Set tblBooks = dbLibrary.CreateTableDef("'BOOKS™™)

" Define ISBN field and append to the

" table"s Fields collection

Set fldBooks = tblBooks.CreateField("ISBN", dbText)
fldBooks.Size = 13

tbIBooks.Fields.Append fldBooks

" Define Title field and append to the

" table"s Fields collection

Set fldBooks = tblBooks.CreateField("Title", dbText)
fldBooks.Size = 100

tbIBooks.Fields.Append fldBooks

" Add the table to the db"s Tables collection
dbLibrary.TableDefs.Append tblBooks

" Create an index
Set idxBooks = tblBooks.Createlndex(""ISBNIdx")
idxBooks.Unique = False

Indices need their own fields
Set fldBooks = idxBooks.CreateField(""ISBN")

" Append to the proper collections
idxBooks.Fields.Append fldBooks
tbIBooks. Indexes.Append idxBooks

Asyou can see, the clue that we are dealing with a DDL are the commands
CreateDatabase, CreateTableDef, CreateField, and Createlndex (in boldface for
easier identification). Y ou can also see from this code that the Jet DBM S uses the
collections to hold the properties of an object. For instance, the fields that we create for a
table must be appended to the Fields collection for that table. This has the advantage that
we don't need to keep a separate reference to each field—the collection does that for us.
This approach istypical of object-oriented programming.

7.6 Data Manipulation Languages

A DBMS must also provide alanguage designed to manipul ate the data in a database.
Thislanguage is called a database manipulation language, or DML. To the database

FlyrHeart.com 4

TEAM FLY PRESENTS

programmer, however, the distinction between aDDL and a DML may be just alogical
one, defined more by the purpose of the language than the syntax.

7.6.1 The Jet Data Manipulation Language

Example 7-2 is Jet DML code to add two records to the BOOK S table, set the index, and
display the records.

Example 7-2. Jet DML code altering the BOOK Stable

" Data Manipulation Language example
Dim rsBooks As Recordset

" Open the database
Set dbLibrary = DBEngine.OpenDatabase(*'d:\dao\library.mdb™)

" Create a recordset for the BOOKS table
Set rsBooks = dbLibrary.OpenRecordset(*'BOOKS™)

" Add two records

rsBooks.AddNew

rsBooks!ISBN = "0-99-345678-0"
rsBooks!Title = "DB Programming is Fun
rsBooks.Update

rsBooks.AddNew

rsBooks!ISBN = "0-78-654321-0"
rsBooks!Title = "DB Programming isn®"t Fun"
rsBooks.Update

" Set index
rsBooks. Index = "I1SBNIdx"

" Show the records

rsBooks.MoveFirst

MsgBox "ISBN: " & rsBooks!ISBN & ™ TI: " & rsBooks!ITitle
rsBooks._.MoveNext

MsgBox "ISBN: " & rsBooks!ISBN & ™ TI: ' & rsBooks!ITitle

As you can see even from this small example, the DML is designed to perform avariety
of actions, such as:

e Moving through the data in the database

e Adding datato the database

« Editing or updating data in the database

o Deéleting data from the database

e Querying the data and returning those portions of the data that satisfy the query

7.7 Host Languages

Data is seldom manipulated without some intended purpose. For instance, consider a
LIBRARY database consisting of information about the books in alibrary. If astudent

FlyrHeart.com 4

TEAM FLY PRESENTS

wishes to access this data, it is probably with the intention of finding a certain book, for
which the student has some information, such as thetitle. On the other hand, if alibrarian
wishes to access the information, it may be for other purposes, such as determining when
the book was added to the library or how much it cost. These issues probably don't
interest the student.

The point hereisthat a DBMS should supply an interface with a high-level language with
which programmers can program the database to provide specific services—that is, with
which programmers can create database applications. Thus, when a student logs onto a
library's computer to search for abook, he may be accessing a different database
application than the librarian might access. The language that is used for database
application programming is the hostlanguage for the DBMS. As mentioned earlier, a host
language may be atraditional programming language, such as C or COBOL, or it may be
an application-level language, such as Microsoft Access or Visual Basic, asit isfor the
Jet DBMS.

In fact, the Jet DBMSis so tightly integrated into both of these applicationsthat it is hard
to tell where one leaves off and the other begins. Put another way, it sometimes seems as
though Microsoft Accessisthe Jet DBMS, whereas it is more accurate to say that Access
and Visual Basic are front ends, or host applications, for the Jet DBMS.

7.8 The Client/Server Architecture

The client/server model of a database system isreally very simple, but its meaning has
evolved somewhat through popular usage. The client/server model is shown in Figure 7-3.

Figure 7-3. Theclient/server mode example

m +— fpplication = +~— DBMS -~

ient Server

Database

End [ser

The server in aclient/server model is ssimply the DBMS, whereas the client isthe
database application serviced by the DBMS. (We could aso think of Visual Basic and
Access as clients of the Jet DBMS server.)

The basic client/server model says nothing about the location of the various components.
However, since the components are distinct, it is common to find them on different
computers. The two most common configurations are illustrated in Figures Figure 7-4 and
Figure 7-5. The distributed client/server model (Figure 7-4), wherein the client is on one
computer and the server and database are on another, is so popular that it isusually
simply referred to as the client/server model. The remote database model (Figure 7-5)
refers to the case in which the client and server are on the same computer, but the
database is on a remote computer.

FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 7-4. Thedistributed client/server model example

i ' +—» Application i i DBMS -—

(liemt | : Server
| Endlser '
Flgure 7—5 The remotedatabaseexample
' Application | =—+ DEMS l
: Database
: Server :
| Endler :
132

—_—
FlyrHeart.com

TEAM FLY PRESENTS

Part IV: Visual Basic for Applications

Chapter 8. The Visual Basic Editor, Part |

The first step in becoming an Access VBA/DAO programmer is to become familiar with
the environment in which Access programming is done. Each of the main Office
applications has a programming environment referred to asits Integrated Devel opment
Environment or IDE. Microsoft also refers to this programming environment as the
Visual Basic Editor.

My plan in this chapter and the next is to describe the major components of the Access
IDE. | realize that you are probably anxious to get to some actual programming, but it is
necessary to gain some familiarity with the IDE before you can use it. Nevertheless, you
may want to read quickly through this chapter and the next and then refer back to them as
needed.

Until the release of Office 2000, not all of the Office Suite applications used the same
IDE. In Office 97, Word, Excel, and PowerPoint use the full VBA IDE, whereas Access
97 uses a simple code module environment. However, with the appearance of Access 9
for Office 2000, all four of the Office applications use the same IDE, as show in Figure
8-1. To start the Access IDE, simply choose Visual Basic Editor from the Macros
submenu of the Tools menu, or hit Alt+F11.

Let ustake alook at some of the components of this IDE.

Figure 8-1. The Access VBA IDE

FlyrHeart.com 4

TEAM FLY PRESENTS

A8 Mecrosoht Vesunl Basic - Iniro to WBA s - [Modus! {Code]))
I Fie Edt Wew freot Fomst Debig @n Toos Wndow Help = |
Hoa-d 2 ¢ Fouowk MEW S O was oo
L] |frenerag 7| |PriniCearsConirollist Excel 1 =
m [=] j
-
) Thipvrrk ok =] Fub sub PrintChacaControllist Excel 110
Forme | - -
¥ Mook e
- Camoers J im charfonteol ks CommandBarlontool
o modFunctions Din i Rz Integet
o mockiobak: Din lngRowIndex A= Long
o i Thasaiih e Din engHeadings he Range
ik modSuormtines =mtoCEarMane= L= String
T Mool _I_I stebefault Ao 5
- FtCroonpt A3
s - ookl - | Dim ateTitle As ¢
|mmuc1~m.;c =1 Din ateType As Stcing
H : t | 51‘.:1“:].- = '_xcel.ﬂ.rn-:h Conmand Bac Control Listec”
feiodiie] strfafavit = "Standard”
gtEPrompt = "Plsase anter the name oI the command bar " & _ J
Tpan e intepssted ini"
strCRariane = InputBox (stePrompt, steTitle, stelefaplt)
-
== 1 »
-
i 3

8.1 The Project Window

The window in the upper-left corner of the client area (below the toolbar) is called the
Project Explorer. Figure 8-2 shows a close-up of this window.

Note that the Project Expl

Flgure8 -2. The PI‘OjeC'[Explorer

alak-ml.-m\c- ':l!':‘e':'hil VM_]SF’ ri i F
[h\‘iy{'l.?.u:-:l}ﬁm\" AR,

COE O

+ B8 acwzmain [ACWEMAIN)
.| ¥ BookCode (Book)
i Microsoft Access Class Chjects

8 Form_A&Farm

A Mocules
2 codeForbBook
<% Madulel

% Class Modules
£ Class1

orer has atree-like structure, similar to the Windows Explorer's

folders pane (the left-hand pane). Each entry in the Project Explorer is called anode. The

top nodes, of which there
projects (hence the name
contracted by clicking on

are two in Figure 8-2, represent the currently open Access VBA
Project Explorer). The view of each project can be expanded or
the small boxes (just as with Windows Explorer).

Asyou know, Accessis asingle document interface (SDI) program, meaning that you
can only open one database for each session of Access. Each Access session hasits own

IDE aswell. Hence, the p

roject window for a given instance of the IDE will contain only

one user project. However, as you can see in Figure 8-2, Access may add another project

134

) = -
FlyrHeart.com

TEAM FLY PRESENTS

to the project window. The ACWZMAIN project in Figure 8-2 was added when | invoked
the Access wizard to create atable, for instance. If you try to access any of the codein
the ACWZMAIN project, you will be rewarded with a"Project Unviewable" error

message.
8.1.1 Project Names

Each project has a name, which the programmer can choose. The default name for a
project is the name of the database. The top node for each project is labeled:

ProjectName (DatabaseName)

where ProjectName isthe name of the project and DatabaseName is the name of the
Access database. The name of the project can be changed using the Properties window,
which | will discuss abit later.

8.1.2 Project Contents

At the level immediately below the top (project) level, as Figure 8-2 shows, there are
nodes named:

Microsoft Access Class Objects
Modules
Class Modules

Under the Microsoft Access Class Objects node, there is anode for each Accessformin
the database that contains some code (just creating a form does not add a node to the
Projects window). The form nodes provide access to the code module "behind” the form,
where we can write code to implement events, such as clicking on a command button.

In fact, Access forms have two components—a user-interface component (the form's
background and any controls on the form) and a code component. By right-clicking on a
form node, we can choose to view the object itself or the code component for that object.
| will not discuss creating Access formsin this book, however.

8.1.2.1 Standard modules

Under the Modules node, thereis anode for each standard module in the project. By
double-clicking on the node for a standard module, Access will display the code window
for that module. A standard module is a code module that contains general procedures.
VBA alows two kinds of procedures: functions and subroutines. The only difference
between a function and a subroutine is that a function returns avalue, whereas a
subroutine does not. | will discuss functions and subroutines in Chapter 11.

FlyrHeart.com 4

TEAM FLY PRESENTS

These procedures may be intended to be run by the user (in response to a button click, for
instance), or they may be support programs that are intended to be run by code from
within other procedures (in the same or other modules).

8.1.2.2 Class modules

Under the Classes node, there is a node for each class module in the project. By
double-clicking on a class module node, Access will display the code window for the
corresponding class module.

Class modules are code modules that contain code related to custom objects. The Access
object model contains built-in objects representing such objects as forms and reports. It is
also possible to create custom objects and endow them with various properties. To do so,
we would place the appropriate code within a class module.

However, since creating custom objects is beyond the scope of this book, we will not be
using class modules. (For an introduction to object-oriented programming using VB,
allow me to suggest my book, Concepts of Object-Oriented Programming with Visual
Basic, published by Springer-Verlag, New Y ork.)

8.2 The Properties Window

The Properties window (see Figure 8-1) displays the properties of an object and allows us
to change them.

When a standard module is selected in the Project window, the only property that appears
in the Properties window is the module's name. However, when aform is selected in the
Projects window, many of the object's properties appear in the Properties window, as
shown in Figure 8-3.

The Properties window can be used to change some of the properties of the object while
no code isrunning, that is, at design time. (Note that while most properties can be
changed either at design time or runtime, some properties can only be changed at design
time and some can only be changed at runtime. Runtime properties generally do not
appear in the Properties window.)

Figure 8-3. The Propertieswindow

FlyrHeart.com 4

TEAM FLY PRESENTS

Froperies - Form_AForm

Alphabetic | Catagorized |

hame) [EE¥ETYE -
ditoRepaat Fake [
Cancal Fake

Caption Puigh Ma

ControlTipText

ControlType 104

Dafault Fake

Dizplayviden a0

Enaibled True

EvartPracPrafix crmdPushivie

FortRold fu] JE
Fontltalic Fakse

Fonthame Taoma

FantSize g

Fantnderline Fake

Fontvaight 400

ForeColor -21474B3630

Height 360

HelpCortesdd 0

Hyper linkaddress

HyperlinkSubaddress

il:ue.ptt—l:al. fl—E‘I:I.-\. A T R | ﬂ

8.3 The Code Window

The Code window displays the code that is associated with the selected item in the
Projects window. To view this code, select the item in the Projects window, and either
choose Code from the View menu or hit the F7function key. For objects with only a code
component (that is, standard or class modules), you can just double-click on the itemin
the Projects window.

8.3.1 Procedure and Full-Module Views

Generally, a code modul e contains more than one procedure. The IDE offers the choice
between viewing one procedure at atime (called procedure view) or all procedures at
one time (called full-module view), with a horizontal line separating the procedures. Each
view has its advantages and disadvantages, and you will probably want to use both views
at different times. Unfortunately, Microsoft has not supplied a menu choice for selecting
the view. (I've complained about this in my other books as well, but Microsoft does not
seem to be listening to me. Strange.) To change views, click on the small buttonsin the
lower-left corner of the Code window. (The default view can be set using the Editor tab
of the Options dialog box.)

Incidentally, the default font for the module window is Courier, which has arather thin
looking appearance and may be somewhat difficult to read. Y ou may want to change the

137 ——

FlyrHeart.com

TEAM FLY PRESENTS

font to FixedSys (on the Editor Format tab of the Options dialog box, under the Tools
menu), which is much more readable.

8.3.2 The Object and Procedure Listboxes

At the top of the Code window there are two drop-down listboxes (see Figure 8-1). The
Object box contains alist of the objects that are associated with the current project, and
the Procedure box contains alist of all of the procedures associated with the object
selected in the Object box. The precise contents of these boxes vary depending on the
type of object selected in the Project Explorer.

When a standard module is selected in the Project window, the Object box contains only
the entry (General), because there are no objects in a standard module with which to
associate code (or any objects at al). In this case, the Procedure listbox containsalist of
the current proceduresin that module.

When aform is selected, the Objects listbox contains alist of each control on the form, as
well as entries for page and form headers and footers, the detail section of the form, and
so on. As Figure 8-4 shows, when we select an object, such as a command button, in the
Objects listbox, the Procedures listbox contains a list of procedures for that object. When
you selecting a procedure, Access will automatically place the cursor in the appropriate
location in the code window, so we can start entering code.

Figure 8-4. Theeventsfor a Workbook object
|emdPushMe v | |Click =]

Option Compare Databasd

DbiClick L
Enter
Private Sub cmdPushMe (Bt
T |) : GotFocus
End Sub KeyDown
[eyPress
Keyllp
LostFocus
houseliomam
Mouwsekdove
hMowsellp

For example, if we choose the Click event in the Procedures box, Accesswill create the
following code shell for this event, and place the cursor within this procedure:

Private Sub cmdPushMe_Click()

End Sub

8.4 The Immediate Window

The Immediate window (see Figure 8-1) has two main functions. First, we can send output
to this window using the command Debug . Print. For instance, the code shown in Figure

FlyHeart.com g4

TEAM FLY PRESENTS

8-5 produces the result shown in the Immediate window (there were four recordsin the
recordset when | executed this code). (We will see how to execute the codein a
procedure shortly.) This provides a nice way to experiment with different code snippets.

The other main function of the Immediate window is to execute commands. We can enter
aline of code directly in the Immediate window. Hitting the Enter key at the end of the
line asks Access to execute that line of code. Note that this only works for single physical
lines of code, but you can place more than one logical line of code on the same physical
line by separating the logical lines with colons, asin:

For 1 = 1 To 10: Debug.-Print i: Next i

Figure 8-5. The Immediate window

|(General) x| |Test x|

i]"_'.li'.ll'l | :.’l are Database
Sub Test{)

.
Dim rs As Recordset
get rs = CurrentDb.opsnRecordset ("Namsas™)
Debug.Print rs.EecordCount

-

End &ub
== 4] | Ll_l
x|
_4 Y
4 | » ;

The Immediate window is an extremely valuable tool for debugging a program, and you
will probably useit often (as | do).

8.5 Arranging Windows

If you need more space for writing code, you can close the Properties window, the
Project window, and the Immediate window. On the other hand, if you are fortunate
enough to have alarge monitor, then you can split your screen as shown in Figure 8-6in
order to see the Access VBA IDE and the corresponding Access database at the same
time. In some cases (but not all), you can trace through each line of your code and watch
the results in the database! (Y ou can toggle between Access and the IDE using the
Alt+F11 function key combination.)

Figure 8-6. A split-screen approach

FlyHeart.com g4

TEAM FLY PRESENTS

B R R M e IO |

M-RERY L@ - I TR Mok Oar 0.

; MM Tk

L]

= [haitenn

8.5.1 Docking

Many of the windows in the IDE (including the Project, Properties, and Immediate
windows) can be in one of two states: docked or floating. This state can be set using the
Docking tab on the Options dialog box, which is shown in Figure 8-7.

Figure 8-7. The Docking options

Editor | Editar Format | General Docking |

oK, | Cancal Help |

A docked window is attached, or anchored, to an edge of another window or an edge of
the main VBA window's client area. When a dockable window is moved, it snaps to an
anchored position. A floating window can be placed anywhere on the screen.

140 &1{_?
FlyrHeart.com

TEAM FLY PRESENTS

Chapter 9. The Visual Basic Editor, Part Il

In this chapter, we conclude our discussion of the Visual Basic Editor. Again, | remind
the reader that she may want to read quickly through this chapter and refer to it later as

needed.

9.1 Navigating the IDE

If you prefer the keyboard to the mouse (as | do), then you may want to use keyboard
shortcuts. Here are some tips.

9.1.1 General Navigation

The following keyboard shortcuts are used for navigating the IDE:

|F7 |Go to the Code window.

F4 Go to the Properties window.

Ctrl-R Go to the Project window.

ICtrI-G |Go to the Immediate window.
|AIt+F11 |Toggle between Access and VB IDE.

9.1.1.1 Navigating the code window at design time

Within the code window, the following keystrokes are very useful:

F1 Help on the item under the cursor.

Shift+E2 Go to the definition of the item under the cursor. (If the cursor is over a call to a
function or subroutine, hitting Shift+F2 sends you to the definition of that procedure.)

Control+ . .

Shift+E2 Return to the last position where editing took place.

9.1.1.2 Tracing code

The following keystrokes are useful when tracing through code (discussed | ater):

F8 Step into

Shift+F8 Step over
Ctrl+Shift+F8 Step out

Ctrl+F8 Run to cursor

F5 Run

Ctrl+Break Break

Shift+F9 Quick watch

F9 Toggle breakpoint
Ctrl+Shift+F9 Clear all breakpoints

141 Byt M

TEAM FLY PRESENTS

9.1.1.3 Bookmarks

It is aso possible to insert bookmarks within code. A bookmark marks alocation to
which we can return easily. To insert a bookmark, or to move to the next or previous
bookmark, use the Bookmarks submenu of the Edit menu. The presence of abookmark is
indicated by a small blue square in the left margin of the code.

9.2 Getting Help

The simplest way to get help on any particular item is to place the cursor on that item and
hit the F1 key. Thisworks not only for VBA language keywords but also for portions of
the VBA IDE.

Note that Microsoft provides multiple help files for Access, the VBA language, and the
Access object model. While thisis quite reasonable, occasionally the help system getsa
bit confused and refuses to display the correct help file when | strike the F1 key.

Note also that a standard installation of Microsoft Office does not install the VBA help
filesfor the various applications. Thus, you may need to run the Office setup program
and install Access VBA help by selecting that option in the appropriate setup dialog box.
(Do not confuse Access help with Access VBA help.)

9.3 Creating a Procedure

There are two ways to create a new procedure (that is, a subroutine or a function) within a
code module. First, after selecting the correct project in the Project Explorer, we can
select the Procedure option from the Insert menu. Thiswill produce the dialog box

shown in Figure 9-1. Just type in the name of the procedure, and select Sub or Function
(the Property choice is used with custom objects in a class module). We will discuss the
issue of Public versus Private procedures and static variables later in this chapter.

Figure 9-1. The Add Procedure dialog box

Add Procedura

Type
g Cancal
& Sub

™ Function

™ Broparty

Scope
= Public
™ Frivate

[T all Local variahles as Statics

142 =

FlyrHeart.com 4

TEAM FLY PRESENTS

A simpler aternative is to begin typing:
Sub SubName

or:

Function FunctionName

in any code window (following the current End Sub or End Function statement, or in the
genera declarations section). As soon as the Enter key is struck, Access will move the
line of code to a new location and thereby create a new subroutine. (It will even add the
appropriate ending—End Sub or End Function.)

9.4 Run Mode, Break Mode, and Design Mode

The VBA IDE can be in any one of three modes: run mode , break mode, or design mode.
When the IDE isin design mode, we can write code.

Run mode occurs when a procedure is running. To run (or execute) a procedure, just
place the cursor anywhere within the procedure code, and hit the F5 key (or select Run
from the Run menu). If for some reason a running procedure seems to be hanging, we can
usually stop the procedure by hitting Ctrl+Break (hold down the Control key and hit the
Break key).

Break mode is entered when a running procedure stops because of either an error in the
code or adeliberate act on our part (described abit later). In particular, if an error occurs,
Access will stop execution and display an error dialog box, an example of whichis
shown in Figure 9-2.

Figure 9-2. An error message

Microsotft Visual Basic

Rur-time error '2078":

The Microsoft Jet database engine cannot find the input table or
query Mareex'. Make sure it axists and that ks nama s spaliad
corrackhy,

Error dialog boxes offer afew options: end the procedure, get help (such as it may be)
with the problem, or enter break mode to debug the code. In the latter case, Access will
stop execution of the procedure at the offending code and highlight that code in yellow.
We will discuss the process of debugging code a bit |ater.

Aside from encountering an error, there are several ways we can deliberately enter break
mode for debugging purposes:

FlyHeart.com g4

TEAM FLY PRESENTS

« Hit the Ctrl+Break keys, and choose Debug from the resulting dial og box.

e Include astop statement in the code, which causes Access to enter break mode.

o Insert abreakpoint on an existing line of executable code. Thisis done by placing
the cursor on that line and hitting the F9 function key (or using the Toggle
Breakpoint option on the Debug menu). Access will place ared dot in the left
margin in front of that line and stop execution when it reaches the line. Y ou may
enter more than one breakpoint in a procedure. Thisis generally preferred over
using the stop statement, because breakpoints are automatically removed when
we close down the Visual Basic Editor; therefore, we don't need to remember to
remove them, as we do with Stop statements.

e Set awatch statement that causes Access to enter break mode if a certain
condition becomes true. We will discuss watch expressions a bit later.

To exit from break mode, choose Reset from the Run menu.

Note that the caption in the title bar of the VBA IDE indicates which modeis currently
active. The caption contains the word "[running]” when in run mode and "[break]" when
in break mode.

9.5 Errors

In computer jargon, an error isreferred to as abug. In case you are interested in the origin
of thisword, the story goes that when operating the first large-scale digital computer,
called the Mark |, an error was traced to a moth that had found its way into the hardware.
Incidentally, the Mark | (circa 1944) had 750,000 parts, was 51 feet long, and weighed
over 5 tons. How about putting that on your desktop? It also executed about one
instruction every 6 seconds, as compared to over 200 million instructions per second for a
Pentium!

Errors can be grouped into three types based on when they occur — design time, compile
time, or runtime.

9.5.1 Design-Time and Compile-TimeErrors

Asthe name implies, adesign-time error occurs during the writing of code. Perhaps the
nicest feature of the Visual Basic Editor isthat it can be instructed to watch as we type
code and stop us when we make a syntax error. This automatic syntax checking can be
enabled or disabled in the Options dialog box shown in Figure 9-3, but | strongly suggest
that you keep it enabled.

Figure 9-3. The Options dialog box

144 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Options

Editor lEdllDrFDrmat| General | Docking |

Code Sattings
P jhutn Syntax Chec e Auto Indert
W Require Variable Declaration

il Tsh |3
¥ Auto List Memoers

[AUt Quidk Info
W Auto Data Tips

W indow Settings

[+ [rag-and-Orop Text Editing
[w Default to Full Module Ve
[« Procedure Separator

Ik | Cancel Help

Notice also that there are other settings related to the design-time environment, such as
how far to indent code in response to the Tab key. We will discuss some of these other
settings a bit | ater.

Illustrating automatic syntax checking, Figure 9-4 shows what happens when we
deliberately enter the syntactically incorrect statement x == 5 and then attempt to move to
another line. Note that Microsoft refers to this type of error as acompile error in the
dialog box, and perhaps we should as well. However, it seems more descriptive to cal it
adesign-time error or just a syntax error.

Figure 9-4. A syntax error message

|{Eeneral] ;I |Te5l
Sub Test |}

i . o o) o .If Compile amor:

Expecled: expression

Before a program can be executed, it must be compiled—or translated into a language
that the computer can understand. The compilation process occurs automatically when we
request that a program be executed. We can a so specifically request compilation by
choosing the Compile Project item under the Debug menu. If Access encounters an error
while compiling code, it displays a compile-error message.

145 N

FlyrHeart.com 4

TEAM FLY PRESENTS

9.5.2 RuntimeErrors

An error that occurs while a program isrunning is called aruntime error . Figure 9-2
illustrates a runtime error message that occurred in response to the line:

Set rs = CurrentDb.OpenRecordset(*'Namesx'")

because no table named Namesx exists.

9.5.3Logical Errors

There is one more type of error that we should discuss, since it is the most insidious type
of al. A logical error can be defined as the production of an unexpected and incorrect
result. Asfar as Accessis concerned, thereis no error, because Access has no way of
knowing what we intend. (Thus, alogical error is not aruntime error in the traditional
sense, even though it does occur at runtime.)

Toillustrate, the following code purports to compute the average of some numbers:

Dim x(3) As Integer
Dim Ave As Single

x(0) =1

x(1) =3

x(2) = 8

x(3) =5

Ave = (X(0) + x(1) + x(2) + x(3)) 7/ 3
MsgBox "Average is: " & Ave

The result is the message box shown in Figure 9-5. Unfortunately, it isincorrect. The
penultimate line in the preceding program should be:

Ave = (X(0) + x(1) + x(2) + x(3)) 7/ 4

Note the 4 in the denominator, since there are 4 numbers to average. The correct average
is4.25. Of course, Access will not complain because it has no way of knowing whether
we really want to divide by 3.

Figure 9-5. Theresult of alogical error
Microsoft Access [

Average is: 5 BEEEET

Precisely because Access cannot warn us about logical errors, they are the most
dangerous, because we think that everything is correct.

146 N

FlyrHeart.com 4

TEAM FLY PRESENTS

9.6 Debugging

Invariably, you will encounter errorsin your code. Design-time and compile-time errors
are relatively easy to deal with because Access helps us out with error messages and by
indicating the offending code. Logical errors are much more difficult to detect and fix.
Thisiswhere debugging plays amajor role. The Access IDE provides some very
powerful ways to find bugs.

Debugging can be quite involved, and we could include a whole chapter on the subject.
There are even specia software applications designed to assist in complex debugging
tasks. However, for most purposes, afew simple techniques are sufficient. In particular,
Access makes it easy to trace through a program, executing one line at atime, watching
the effect of each line asit is executed.

Let us discuss some of the tools that Access provides for debugging code.

9.6.1 Tracing

The process of executing code oneline at atime is referred to as tracing or code stepping.
Access provides three options related to tracing: stepping into, stepping over, and
stepping out of. The difference between these methods refers to handling calls to other
procedures.

To illustrate the difference, consider the code shown in Example 9-1. In ProcedureA, the
first line of code adds a new record to arecordset denoted by rs. The second line calls
ProcedureB, and the third line updates the recordset. ProcedureB sets the value of the
LastName and FirstName fields for the current record. Don't worry about the exact
syntax of this code. The important thing to notice is that the second line of ProcedureA
calls ProcedureB.

Example 9-1. Sample code for tracing methods

Sub ProcedureA()
rs.AddNew " Add a new record
Call ProcedureB
rs.Update " Update recordset
End Sub

Sub ProcedureB()
rs!LastName = "Smith"
rs!FirstName = ""John"

End Sub

9.6.1.1 Step Into (F8 or choose Step Into from the Debug menu)

Sep Into executes code one statement (or instruction) at atime. If the statement being
executed calls another procedure, stepping into that statement simply transfers control to
thefirst linein the called procedure. For instance, with reference to the previous code,
stepping into the line:

147 N

FlyrHeart.com 4

TEAM FLY PRESENTS

Call ProcedureB

in ProcedureA transfers control to the first line of ProcedureB:

rs!LastName = ""Smith"

Further tracing proceeds in ProcedureB. Once all of the lines of ProcedureB have been
traced, control returnsto ProcedureA at the lineimmediately following the call to
ProcedureB, that is, at the line:

rs._.Update

Step Into has another important use. If we choose Step Into while till in design
mode—that is, before any code is running—execution begins, but break mode is entered
before the first line of code is actually executed. Thisis the proper way to begin tracing a
program.

9.6.1.2 Step Over (Shift+F8 or choose Step Over from the Debug menu)

Sep Over issimilar to Step Into, except that if the current statement being traced is acall
to another procedure, the entire called procedure is executed without stopping (rather
than tracing through the called procedure). Thus, for instance, stepping over the line:

Call ProcedureB

in the previous procedure executes ProcedureB and stops at the next line:

rs._.Update

in ProcedureA. Thisisuseful if we are certain that ProcedureB is not the cause of the
problem and we don't want to trace through that procedure line by line.

9.6.1.3 Step Out (Ctrl+Shift+F8 or choose Step Out from the Debug menu)

Sep Out isintended to be used within a called procedure (such as ProcedureB). Step Out
executes the remaining lines of the called procedure and returns to the calling procedure
(such as ProcedureA). Thisisuseful if we arein the middle of a called procedure, and we
decide that we don't need to trace any more of that procedure but want to return to the
calling procedure. (If you trace into a called procedure by mistake, just do a Step Out to
return to the calling procedure.)

9.6.1.4 Run to Cursor (Ctrl+F8 or choose Run To Cursor from the Debug
menu)

If the Visual Basic Editor isin break mode, we may want to execute several lines of code
at one time. This can be done using the Run To Cursor feature. Simply place the cursor

FlyrHeart.com 4

TEAM FLY PRESENTS

on the statement immediately following the last line you want to execute and then
execute.

9.6.1.5 Set Next Statement (Ctrl+F9 or choose Set Next Statement from the
Debug menu)

We can al so change the flow of execution whilein break mode by placing the cursor on
the next statement that we want to execute and selecting Set Next Statement from the
Debug menu. Thiswill set the selected statement as the next statement to execute, but not
execute it until we continue tracing.

9.6.1.6 Breaking out of Debug mode

When we no longer need to trace our code, we have two choices. To return to design
mode, we can choose Reset from the Run menu (there is no hotkey for this). To have
Access finish executing the current program, we can hit F5 or choose Run from the Run
menu.

149 -

FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 10. Variables, Data Types, and Constants

In the next few chapters, we will discuss the basics of the VBA programming language,
which underlies al of the Microsoft Office programming environments. During our
discussion, we will consider many short coding examples. | hope that you will take the
time to key in some of these examples and experiment with them.

10.1 Comments

We have aready discussed the fact that comments are important. Any text that follows an
apostrophe is considered a comment and isignored by Access. For example, thefirst line

in the following code is a comment, asis everything following the apostrophe on the third
line:

" Declare a recordset variable
Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset(''Names') " Get recordset for Names

When debugging code, it is often useful to comment out lines of code temporarily so they
will not execute. The lines can subsequently be uncommented to restore them to active
duty. The CommentBlock and UncommentBlock buttons, which can be found on the Edit
toolbar, will place or remove comment marks from each currently selected line of code
and are very useful for commenting out several lines of code in one step. (Unfortunately,
there are no keyboard shortcuts for these commands, but they can be added to a menu and
given menu accelerator keys.)

10.2 Line Continuation

The very nature of Access VBA syntax often leads to long lines of code, which can be
difficult to read, especialy if we need to scroll horizontally to see the entire line. For this
reason, Microsoft recently introduced a line-continuation character into VBA. This
character is the underscore, which must be preceded by a space and cannot be followed
by any other characters (including comments). For example, the following code:

Set rs = CurrentDb.OpenRecordset(*'Names",
dbOpenForwardOnly)

istreated as one line by Access.

It isimportant to note that a line-continuation character cannot be inserted in the middie
of aliteral string constant, which is enclosed in quotation marks.

10.3 Constants

The VBA language has two types of constants. A literal constant (also called a constant
or literal) isaspecific value, such as anumber, date, or text string, that does not change
and is used exactly as written. Note that string constants are enclosed in double quotation

FlyrHeart.com 4

TEAM FLY PRESENTS

marks, asin ""Donna Smith', and date constants are enclosed between number signs, asin
#1/1/96#.

For instance, the following code stores adate in the variable called dt:

Dim dt As Date
dt = #1/2/97#

A symbolic constant (also sometimes referred to simply as a constant) isaname for a
literal constant. To define or declare a symbolic constant in a program, we use the Const
keyword, asin:

Const InvoicePath = "d:\Invoices\"

In this case, Access will replace every instance of InvoicePath in our code with the
string "'d:\Invoices\". Thus, InvoicePath isaconstant, sSince it never changes value,
but it isnot alitera constant, sinceit is not used as written.

The virtue of using symbolic constants is that, if we decide |ater to change
"d:\Invoices\" to "d:\OldInvoices\", we only need to change the definition of
InvoicePath to:

Const InvoicePath = "'d:\OldInvoices\"

rather than searching through the entire program for every occurrence of the phrase
"d:\Invoices\".

Note that it is generally good programming practice to declare any symbolic constants at
the beginning of the procedure in which they are used (or in the Declarations section of a
code module). Thisimproves readability and makes housekeeping simpler.

In addition to the symbolic constants that you can define using the Const statement, VBA
has a large number of built-in symbolic constants (about 700), whose names begin with
the lowercase letters vb. Access VBA adds several hundred additional symbolic constants
that begin with the letters ac.

Among the most commonly used VBA constants are vbCrLf, which is equivalent to a
carriage return followed by aline feed, and vbTab, which is equivalent to the tab
character.

10.3.1 Enums

Microsoft hasintroduced a structure into VBA to categorize the plethora of symbolic
constants. This structure is called an enum , which is short for enumeration. For instance,
the built-in enum for the constant values that can be returned when the user dismisses a
message box (by clicking on abutton) is:

151 —

FlyrHeart.com 4

TEAM FLY PRESENTS

Enum VbMsgBoxResult
vbOK = 1
vbCancel = 2
vbAbort = 3
vbRetry = 4
vblgnore = 5
vbYes = 6
vbNo = 7

End Enum

When the user hits the OK button on adialog box (assuming it has one), VBA returns the
value vboK. Certainly, it isalot easier to remember that VBA will return the symbolic
constant vboK than to remember that it will return the constant 1. (We will discuss how to
get and use this return value later.)

VBA aso defines some symbolic constants that are used to set the types of buttons that
will appear on amessage box. These are contained in the following enum (which
includes some additional constants not shown):

Enum VbMsgBoxStyle
vbOKOnly = 0
vbOKCancel = 1
vbAbortRetrylgnore = 2
vbYesNoCancel = 3

vbYesNo = 4
vbRetryCancel = 5
End Enum

To illustrate, consider the following code:

IT MsgBox(*'Proceed?', vbOKCancel) = vbOK Then
" place code to execute when user hits OK button
Else
" place code to execute when user hits any other button
End IFf

In the first line, the code MsgBox(**Proceed?', vbOKCancel) causes Accessto display a
message box with an OK button and a Cancel button and the message "Proceed?’, as
shown in Figure 10-1.

Figure 10-1. Example message box

Microsoft Access E

Froceed?

If the user clicks the OK button, Access returns the constant value vboK; otherwise, it
returns the value vbCancel. Thus, the I statement in the first line distinguishs between

152 .

FlyHeart.com g4

TEAM FLY PRESENTS

the two responses. (We will discussthe I statement in detail in Chapter 13. Here we are

interested in the role of symbolic constants.)

In case you are not yet convinced of the value of symbolic constants, consider the

following enum for color constants:

Enum ColorConstants
vbBlack = 0O
vbBlue = 16711680
vbMagenta = 16711935
vbCyan = 16776960
vbWhite = 16777215
vbRed = 255
vbGreen = 65280
vbYellow = 65535

End Enum

Which would you rather type:
ATextBox.ForeColor = vbBlue
or.

16711680

ATextBox.ForeColor

Need | say more?

10.4 Variables and Data Types

A variable can be thought of as a memory location that can hold values of a specific type.
The value in avariable may change during the life of the program—nhence the name

variable.

In VBA, each variable has a specific data type, which indicates which type of datait may
hold. For instance, a variable that holds text strings has a String datatype and is called a
string variable. A variable that holds integers (whole numbers) has an Integer data type
and is called an integer variable. For reference, Table 10-1 shows the complete set of VBA
data types, aong with the amount of memory that they consume and their range of values.

We will discuss afew of the more commonly used data types in a moment.

Table 10-1. VBA data types

| Type | Sizein memory | Range of values

Byte 1byte 10to 255

Boolean 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

Long (long integer) |4 bytes -2,147,483,648 to 2,147,483,647

Sindle 4 bytes Approximately -3.4E38 to 3.4E38
153

—_
FlyrHeart.com

TEAM FLY PRESENTS

(single-precision real)
a‘;tﬂl‘;precigon real) B VtES Approximately -1.8E308 to 4.9E324
_Currency (scaled 8 bytes Approximately -922,337,203,685,477.5808 to
integer) 922,337,203,685,477.5807
Date 8 bytes 1/1/100 to 12/31/9999
Object 4 bytes Any Object reference
Variable length: 10 bytes + . -
String str@ng IengthgJ Fixed Ieyr:gth: ://V?rr:%blli 'g)‘(get(;]:| (:n:g?r? ol:JFt) t20b(|3|5I|’280(65,400 for
string length
16 bytes for numbers Number: same as Double
Variant
22 bytes + string length String: same as String
\User-defined Varies |

10.4.1 Variable Declaration

To declare avariable means to define its data type. Variables are declared with the Dim
keyword (or with the keywords Private and Public, which we will discuss later in this
chapter). Here are some examples.

Dim Name As String
Dim Holiday As Date
Dim Age As Integer
Dim Height As Single
Dim Money As Currency
Dim db as Database
Dim rs as Recordset

The general syntax of avariable declarationis:

Dim VariableName As DataType

If aparticular variable is used without first being declared, or if it is declared without a
data type mentioned, asin Dim Age, then VBA will treat the variable as having type
Variant. Aswe can see from Table 10-1, thisis generally awaste of memory, since
variants require more memory than most other types of variables.

For instance, an integer variable requires 2 bytes, whereas a variant that holds the same
integer requires 16 bytes, which is awaste of 14 bytes. It is common to have hundreds or
even thousands of variablesin acomplex program, and so the memory waste could be
significant. For thisreason, it isagood ideato declare all variables.

Perhaps more importantly, much more overhead is involved in maintaining a Variant than
its corresponding String or Integer, for example. Thisin turn means that using Variants
typically results in worse performance than using an equivalent set of explicit data types.

We can place more than one declaration on aline to save space. For instance, the line:

FlyrHeart.com

TEAM FLY PRESENTS

Dim Age As Integer, Name As String, Money As Currency
declares three variables. Note, however, that a declaration such as:
Dim Age, Height, Weight As Integer

islegal, but Age and Height are declared as Variants, not Integers. In other words, we
must specify the type for each variable explicitly.

It isalso possibleto tell VBA the type of the variable by appending a special character to

the variable name. In particular, VBA allows the type-declaration suffixes shown in Table
10-2. (I personally dislike these suffixes, but they do save space.)

Table 10-2. Type-declar ation suffixes

Suffix Type
% integer
& long
! single
I# double
@ currency
$ string

For instance, theline:

Dim Name$

declares avariable called Name$ of type String. We can then write:

Name$ = "‘Donna’

Finally, let us note that although Access allows variable and constant declarations to be
placed anywhere within a procedure (before the item is used, that is), it is generally good
programming practice to place all such declarations at the beginning of the procedure.
This improves code readability and makes housekeeping much simpler.

10.4.2 The Importance of Explicit Variable Declaration

| have said that using the Variant data type generally wastes memory and often resultsin
poorer performance, and that all variables are assumed to be variants unless you specify
otherwise. There is an additional, even more important reason to declare all variables
explicitly. This has to do with making typing errors, which we all do from time to time.
In particular, if we accidentally misspell avariable name, VBA will think we mean to
create a new variable!

10.4.2.1 Option Explicit

155

—

FlyHeart.com g4

TEAM FLY PRESENTS

To avoid this problem, we need away to make Access refuse to run aprogram if it
contains any variables that we have not explicitly declared. Thisis done simply by
placing the line:

Option Explicit

in the Declarations section of each code module. Sinceit is easy to forget to do this, VBA
provides an option called Require Variable Declaration in its Options dialog box. When
this option is selected, VBA automatically insertsthe option Explicit linefor us.
Therefore, | strongly recommend that you enable this option.

Now let us briefly discuss some of the datatypesin Table 10-1.

10.4.3 Numeric Data Types

The numeric data types include Integer, Long, Single, Double, and Currency. A longis
also sometimes referred to as along integer.

10.4.4 Boolean Data Type

A Boolean variable is a variable that takes on one of two values. True or False. Thisisa
very useful datatype that was only recently introduced into VBA. Prior to itsintroduction,
VBA recognized 0 as False and any nonzero value as True, and you may still seethis
usage in older code.

10.4.5 String Data Type

A string is a sequence of characters. (An empty string has no characters, however.) A
string may contain ordinary text characters (letters, digits, and punctuation), aswell as
specia control characters such as vbCrLT (carriage return/line feed characters) or vbTab
(tab character). Aswe have seen, a string constant is enclosed within quotation marks. An
empty string is denoted by a pair of adjacent quotation marks, asin:

EmptyString =

There are two types of string variablesin VBA: fixed-length and variable-length. A
fixed-length string variable is declared as follows:

Dim FixedStringVarName As String * StringlLen

where StringLen specifies the number of characters reserved for the string. For instance,
the following statement declares a fixed-length string of length 10 characters:

Dim sName As String * 10
Observe that the following code, which concatenates two strings:

FlyrHeart.com 4

TEAM FLY PRESENTS

Dim s As String * 10
s = "test"
Debug.-Print s & "'/"

produces the output:
test /

This shows that the content of a fixed-length string is padded with spacesin order to
reach the correct length.

A variable-length string variable is a variable that can hold strings of varying lengths (at
different times, of course). Variable-length string variables are declared simply as:

Dim VariableStringvVarName as String
As an example, the code:

Dim s As String

s = '""test"
Debug.Print s & "'/"
s = "another test"

Debug.Print s & "/"

produces the output:

test/
another test/

Variable-length string variables are used much more often than fixed-length strings,
although the latter have some very specific and important uses (which | will not go intoin
this book).

10.4.6 Date Data Type

Variables of the Date data type require 8 bytes of storage and are actually stored as
decimal (floating-point) numbers that represent dates ranging from January 1, 100 to
December 31, 9999 (no year 2000 problem here) and times from 0:00:00 to 23:59:59.

Asdiscussed earlier, literal dates are enclosed within number signs, but when assigning a
date to a date variable, we can aso use valid dates in string format. For example, the
following are all valid date/time assignments:

Dim dt As Date

dt = #1/2/98#

dt = "January 12, 2001"

dt = #1/1/95#

dt = #12:50:00 PM#

dt = #1/13/76 12:50:00 PM#

157 -

FlyrHeart.com 4

TEAM FLY PRESENTS

VBA has alarge number of functions that can manipulate dates and times. If you need to
manipul ate dates or times in your programs, you should probably spend some time with
the Access VBA help file. (Start by looking under "Date Data Type.")

10.4.7 Variant Data Type

The Variant datatype provides a catch-all data type that is capable of holding data of any
other type except fixed-length string data and user-defined types. | have already noted the
virtues and vices of the Variant data type and discussed why variants should generally be
avoided.

10.4.8 Access Object Data Types

Access VBA/DAO has anumber of additional datatypes that fall under the general
category of Object datatype. Here is a sampling:

Some Access objects
Form
Module
Report
Control
Section

Some DAO objects
Workspace
Database
Recordset
Field
Error
User

Thus, we can declare variables such as:

Dim fm As Form

Dim ws As Workspace
Dim db As Database

Dim rs As Recordset
Dim fld As Field

| devote much of this book to studying the objectsin the DAO object model, for it is
through these objects that we can manipulate Access databases programmaticaly. (1 will
briefly describe the Access object model as well, but not go into its details, for its primary
use is to manipulate Access forms and reports, not actual data. In fact, the Access object
model does not even have a Table object!)

10.4.8.1 The generic As Object declaration

FlyrHeart.com 4

TEAM FLY PRESENTS

It is also possible to declare any Access object using the generic-object datatype Object,
asin the following example:

Dim rs As Object

While you may see this declaration from timeto time, it is much less efficient than a
specific object declaration, such as:

Dim rs As Recordset

Thisis because Access cannot tell what type of object the variable rs refersto until the
program is running, so it must use some execution time to make this determination. This
isreferred to aslate binding and can make programs run significantly more slowly.

10.4.8.2 The Set statement

Declaring object variablesis done in the same way as declaring nonobject variables. For
instance, here are two variable declarations:

Dim int As Integer nonobject (standard) variable declaration
Dim db As Database " object variable declaration

On the other hand, when it comes to assigning avalue to variables, the syntax differsfor
object and nonobject variables. In particular, we must use the set keyword when
assigning avalue to an object variable. For example, the following line assigns the
current Access database to the variable db :

Set db = CurrentDb
10.4.9 Arrays

An array variableis a collection of variables that use the same name, but are
distinguished by an index value. For instance, to store 10 fields objects in variables, we
could declare an array variable as follows:

Dim MyFields(1l To 10) As Field

The array variableismyFields. It hassize 10. The lower bound of the array is 1, and the
upper bound is 10. Each of the variables:

MyFields(1), MyFields(2), ..., MyFields(10)
areField variables. Note that if we omit thefirst index in the declaration, asin:
Dim MyFields(10) As Field

then VBA will automatically set the first index to 0, so the size of the array will be 11.

FlyrHeart.com 4

TEAM FLY PRESENTS

The virtue of declaring array variablesis clear, since it would be very unpleasant to have
to declare 10 separate variables. In addition, as we will see, there are ways to work
collectively with all of the elementsin an array, using afew simple programming
constructs. For instance, the following code sets all 10 Field typesto Integer:

For 1 =1 To 10

MyFields(i).Type = dblnteger
Next i

10.4.9.1 Thedimension of an array

The myFields array defined in the previous example has dimension one. We can also
define arrays of more than one dimension. For instance, the array:

Dim Stats(1l To 10, 1 To 100) As Integer

isatwo-dimensional array whose first index ranges from 1 to 10 and whose second index
ranges from 1 to 100. Thus, the array has size 10 x 100 = 1000.

10.4.9.2 Dynamic arrays

When an array isdeclared, asin:

Dim FileName(1l To 10) As String

the upper and lower bounds are both specified, and so the size of the array is fixed.
However, there are many situations in which we do not know at declaration time how
large an array we may need. For thisreason, VBA provides dynamic arrays and the
ReDim statement.

A dynamic array is declared with empty parentheses, asin:

Dim FileName() as String

Dynamic arrays can be sized (or resized) using the ReDim statement, asin:

ReDim FileName(l to 10)

This same array can later be resized again, asin:

ReDim FileName(1l to 100)

Note that resizing an array will destroy its contents unless we use the Preserve keyword,
asin:

ReDim Preserve FileName(1 to 200)

FlyrHeart.com 4

TEAM FLY PRESENTS

However, when Preserve is used, we can only change the upper bound of the array (and
only the last dimension in amultidimensional array).

10.4.9.3 The UBound function

The UBound function is used to return the current upper bound of an array. Thisisvery
useful in determining when an array needs redimensioning. To illustrate, suppose we
want to collect an unknown number of filenames in an array named Fi leName. If the next
file number is iNextFile, the following code checks to seeif the upper bound isless
than iNextFile and if so, it increases the upper bound of the array by 10, preserving its
current contents, to make room for the next filename:

IT UBound(FileName) < iNextFile Then
ReDim Preserve FileName(UBound(FileName) + 10)
End IF

Note that redimensioning takestime, so it is wise to add some "working room" at the top
to cut down on the number of times the array must be redimensioned. Thisiswhy we
added 10 to the upper bound in this example, rather than just 1. (There is a tradeoff here
between the extratime it takes to redimension and the extra space that may be wasted if
we do not use the entire redimensioned array.)

10.4.10 Variable Naming Conventions

VBA programs can get very complicated, and we can use all the help we can get in trying
to make them as readable as possible. In addition, as time goes on, the ideas behind the
program begin to fade, and we must rely on the code itself to refresh our memory. Thisis
why adding copious comments to a program is so important.

Another way to make programs more readabl e is to use a consistent naming convention
for constants, variables, procedure names, and other items. In general, a name should
have two properties. First, it should remind the reader of the purpose or function of the
item. For instance, suppose we want to assign Field variables to some fields in an Access
table. The code:

Dim fldl As Field, fld2 as Field
Set fldl = Fields("Sales'™)
Set fld2 Fields('Transactions')

is perfectly legal, but 1,000 lines of code and 6 months later, will we remember which
field isf1d1 and which is f1d2? Since we went to the trouble of naming thefieldsin a
descriptive manner, we should do the same with the fid variables, asin:

Dim fldSales As Field, fldTrans as Field
Set fldSales Fields('Sales™™)
Set fldTrans Fields("'Transactions')

FlyrHeart.com 4

TEAM FLY PRESENTS

Of course, there are exceptions to al rules, but in general, it is better to choose
descriptive names for variables (as well as other items that require naming, such as
constants, procedures, controls, forms, and code modules).

Second, a variable name should reflect something about the properties of the variable,
such asits data type. Many programmers use a convention in which thefirst few
characters of avariable's name indicate the data type of the variable. Thisis sometimes
referred to as a Hungarian naming convention, after the Hungarian programmer Charles
Simonyi, who is credited with itsinvention.

Table 10-3 and Table 10-4 describe the naming convention that we will generally use for

nonobject and object variables, respectively. Of course, you are free to make changes for
your own personal use, but you should at least try to be reasonably consistent. These
prefixes are intended to remind us of the datatype, but it is not easy to do this perfectly
using only a couple of characters, and the longer the prefix, the lesslikely it is that we
will useit! (Note the c prefix for integers or longs. Thisis acommonly used prefix when
the variable isintended to count something.)

Table 10-3. Naming convention for nonobject variables

| Variable | Prefix
Boolean boal, b, or f
Byte b, byt, or bt
ICurrency |cur
Date dor dte
Double d or dol
Integer i,c, orint
Long I, ¢, oring
ISi ngle |s or sng
String sor str
User-defined type typ, u, or ut
]Variant |v or var
Table 10-4. Naming convention for some object variables
Variable Prefix
Database db
Workspace ws
Recordset rs
TableDef tdef
Field fld
Index idx
IQueryDef |qdef

162

—~_
FlyrHeart.com

TEAM FLY PRESENTS

In addition to a data type, every variable has a scope and a lifetime. Some programmers
advocate including a hint as to the scope of avariable in the prefix, using g for global and
m for module level. For example, the variable giSize isaglobal variable of type Integer.

| will discuss the scope and lifetime of avariable next (but | will not generaly include
scope prefixes in variable names).

10.4.11 Variable Scope

Variables and constants have a scope, which indicates where in the program the variable
or constant is recognized (or visible to the code). The scope of avariable or constant can
be either procedure-level (also called local), module-level private, or module-level public.
The rules may seem abit involved at first, but they do make sense.

10.4.11.1 Procedure-level (local) variables

A local or procedure-level variable or constant is a variable or constant that is declared
within a procedure, asis the case with the variable Localvar and the constant
LocalConstant in Figure 10-2. A local variable or constant is not visible outside of the
procedure. Thus, for instance, if wetry to run ProcedureB in Figure 10-2, we will get the
error message, "Variable not defined,” and the name Localvar will be highlighted.

Figure 10-2. Examples of variable scope

FlyrHeart.com 4

TEAM FLY PRESENTS

| (General) = | |[Procedured =]

Option Explicit

T : 1!
Public Publicvar As Integer

L :
Public Const PublicConstant = £
"l kh anl

Private Privatevar As Integer
Dim Al=ofrivate iz Integer

'Eri 1= Tan
Const PrivateConst = 7

Suib Proacedurah()

'l cadu
Dim Localvar As Integer

"I adu] 11
Const LocalConst = 9

Localer = 0
Publicvar = §
Privatevgr = 9

End sub
Sub ProcedursB()
Localvgr = 1
End Sub
hd
=l LRI .4

One of the advantages of local variablesisthat we can use the same name in different
procedures without conflict, since each variable is visible only in its own procedure.

10.4.11.2 Module-level variables

A module-level variable (or constant) is one that is declared in the declarations section of
a code module. Module-level variables and constants come in two flavors: private and
public.

Simply put, amodule-level public variable (or constant) is available to al proceduresin
all of the modules in the project, not just the module in which it is declared, whereas a
module-level private variable (or constant) is available only to the proceduresin the
module in which it was declared.

Public variables and constants are declared using the Public keyword, asin:

Public APublnt As Integer
Public Const APubConst = 7

FlyrHeart.com

TEAM FLY PRESENTS

Private variables and constants are declared using the Private keyword, asin:

Private APrivatelnt As Integer
Private Const APrivateConst = 7

The Dim keyword, when used at the module level, has the same scope as Private, but is
not as clear, so it should be avoided.

Public variables are also referred to as global variables, but this descriptive term is not de
rigueur.

10.4.12 Variable Lifetime

Variables aso have alifetime. The difference between lifetime and scopeis quite simple:
lifetime refers to how long (or when) the variable isvalid (that is, retains avalue),
whereas scope refers to where the variable is accessible or visible.

To illustrate the difference, consider the following procedure:

Sub ProcedureA()
Dim LocalVar As Integer
Localvar = 0O
Call ProcedureB
Localvar = 1

End Sub

Note that LocalVvar isalocal variable. When the line;

Call ProcedureB

is executed, execution switches to ProcedureB. While the lines of ProcedureB are being
executed, the variable LocalVvar isout of scope, sinceit islocal to ProcedureA. Butitis
still valid. In other words, the variable still exists and has avalue, but it is simply not
accessible to the code in ProcedureB. In fact, ProcedureB could also have alocal
variable named LocalVvar, which would have nothing to do with the variable of the same
name in ProcedureA.

Once ProcedureB has completed, execution continues in ProcedureA with the line:

LocalvVar = 1
which isavalid instruction, since the variable LocalVvar is back in scope.

Thus, the lifetime of the local variable Localvar extends from the moment that
ProcedureA is entered to the moment that it is terminated. This includes the period during
which ProcedureB is executed as aresult of the call to this procedure, even though during
that period, LocalVvar isout of scope

FlyrHeart.com 4

TEAM FLY PRESENTS

Incidentally, you may notice that the Microsoft help files occasionally get the notions of
scope and visibility mixed up a bit. The creators of the files seem to understand the
difference, but they don't always use the terms correctly.

10.4.12.1 Static variables

To repeat, avariable may go in and out of scope and yet remain valid during that
time—that is, retain a value during that time. However, once the lifetime of avariable
expires, the variable is destroyed, and its valueislost. It is the lifetime that determines
the existence of avariable; its scope determinesitsvisibility.

Thus, consider the following procedures:

Sub ProcedureA(Q)
Call ProcedureB
Call ProcedureB
Call ProcedureB
Call ProcedureB
Call ProcedureB

End Sub

Sub ProcedureB()
Dim x As Integer
X =5

End Sub

When ProcedureA is executed, it smply calls ProcedureB five times. Each time
ProcedureB is called, thelocal variable x is created anew and destroyed at the end of that
call. Thus, x is created and destroyed five times.

Normally, thisisjust want we want. However, there are times when we would like the
lifetime of alocal variable to persist longer than the lifetime of the procedure in which it
isdeclared. As an example, we may want a procedure to do something specia the first
timeit is called, but not subsequent times.

A static variableis alocal variable whose lifetime is the lifetime of the entire module,

not just the procedure in which it was declared. In fact, a static variable retainsits value
as long as the document or template containing the code module is active (even if no code
isrunning). Thus, a static variable has the scope of alocal variable, but the lifetime of a
module-level variable. C'est tout dire!

For instance, the procedure in Example 10-1 uses a static variable to execute some code
only the first time the procedureis called, other code only after the first time, and still
other code every time the procedureis run.

Example 10-1. Using a static variable
Sub StaticExample()

" Declare static Boolean variable

FlyrHeart.com 4

TEAM FLY PRESENTS

Static NotFirstTime As Boolean

" If first time, then run special code
IT NotFirstTime = False Then

" Code here that runs only the first time procedure is called

" No longer the first time
NotFirstTime = True

Else

" Not the first time
" Code here will run if not first time

End IFf
" Code here will always run (unless procedure is exited beforehand)

End Sub

The 1 statement checks to see if the value of NotFirstTime isFalse, asit will bethe
first time the procedureis called. During thisfirst call, the line:

NotFirstTime = True

will execute, so that in subsequent calls to this procedure, the 1f condition:

IT NotFirstTime = False
will be False, and the alternate code will execute.
Static variables are not used very often, but they can be quite useful at times.

It may have occurred to you that we could accomplish the same effect by using a
module-level private variable to keep arecord of whether the procedure has been called,
instead of a static local variable. However, it is considered better programming style to
use the most restrictive scope possible, which, in this case, isalocal variable with an
"extended" lifetime. This helps prevent accidental ateration of the variable in other
portions of the code. (Remember that this code may be part of amuch larger code module,
with alot of things going on. It is better to hide the NotFirstTime variable from this
other code.)

10.4.13 Variable I nitialization

When a procedure begins execution, all of itslocal variables are automatically initialized,
that is, given initial values. In general, however, it is not good programming practice to
rely on thisinitialization, since it makes the program less readable and somewhat more
proneto logical errors. Thus, it isagood ideato initialize all local variables explicitly, as
in the following example:

FlyrHeart.com 4

TEAM FLY PRESENTS

Sub Example()

Dim x As Integer
Dim s As String

x =0 " Initialize x to O
s =" " Initialize s to empty string

more code here . . .

End Sub

Note, however, that static variables cannot be initialized, since that defeats their purpose!
Thus, it isimportant to know the following rules that VBA uses for variable initialization
(note also that they are intuitive):

o Numeric variables (Integer, Long, Single, Double, and Currency) areinitialized to
zero.

o A variable-length string isinitialized to a zero-length (empty) string.

o A fixed-length string is filled with the character represented by the ASCI|
character code O, or Chr (0).

e Variant variables areinitialized to Empty.

e Object variables are initialized to Nothing.

The Nothing keyword actually has several related usesin Access VBA. It is used to
release an object variable, asin:

Set rs = Nothing
and to determine if an object variable references avalid object, asin:
IT rs Is Nothing

It is also sometimes used as areturn value for some functions, generally to indicate that
some operation has failed. Finally, it is used to initialize object variables.

10.5 VBA Operators

VBA uses a handful of simple operators and relations, the most common of which are
shown in Table 10-5.

Table 10-5. VBA operators and relations
Type Name Symbol
Arithmetic operators Addition +
Subtraction
Multiplication *
| Division /
168 S

FlyHeart.com g4

TEAM FLY PRESENTS

Division with Integer result

Exponentiation n

Modulo Mod
String operator Concatenation &
Logical operators AND AND

OR OR

NOT NOT
Comparison relations Equal =

Lessthan

Greater than >

Lessthan or equal to

Greater than or equal to

Not equal to

The Mod operator returns the remainder after division. For example:

8 Mod 3

returns 2, since the remainder after dividing 8 by 3is2.

To illustrate string concatenation, the expression:

"To be or " & "not to be"

is equivalent to:

"To be or not to be"

169

—
FlyrHeart.com

TEAM FLY PRESENTS

Chapter 11. Functions and Subroutines

VBA alows two kinds of procedures: functions and subroutines. The only difference
between afunction and a subroutine is that a function returns avaue, whereas a
subroutine does not.

11.1 Calling Functions

A function declaration has the form:

[Public or Private] Function FunctionName(Paraml As DataTypel, _
Param2 As DataType2,...) As ReturnType

Note that we must declare the data types not only of each parameter to the function, but
also of the return type. Otherwise, VBA declares these items as variants.

| will discuss the optional keywords Publiic and Private later in this chapter, but you
can probably guess that they are used here to indicate the scope of the function, just as
they are used in variable declarations. For example, the AddOne function in Example 11-1
adds 1 to the original value.

Example 11-1. The AddOne function

Public Function AddOne(Value As Integer) As Integer
AddOne = Value + 1
End Function

To use the return value of afunction, we just place the call to the function within the
expression, in the location where we want the value. For instance, the code:

MsgBox "Adding 1 to 5 gives: " & AddOne(5)

produces the message box in Figure 11-1, where the expression AddOne(5) is replaced by
the return value of AddOne, which in this caseis6.

Figure 11-1. The message dialog box displayed by Example 11-1

Adding 110 5 gives: &

8¢

Note that, in general, any parameters to afunction must be enclosed in parentheses within
the function call.

FlyrHeart.com 4

TEAM FLY PRESENTS

In order to return avalue from afunction, we must assign the function's name to the
return value somewhere within the body of the function. Example 11-2 shows a dlightly
more complicated example of afunction.

Example 11-2. Assigning a function'sreturn value
Function ReturnCount() As Variant

" Return count of records in recordset

IT rs Is Nothing Then

ReturnCount = ""No recordset"
Else

ReturnCount = rs.RecordCount
End If

End Function

This function returns a count of the number of recordsin the recordset referenced by the
variable rs. However, if rs does not currently reference a recordset, then the function
returnsthe words "No recordset™.

Note that since the return value may be anumber or a string, we declare the return type as
Variant. Note also that ReturnCount is assigned twice within the body of the function. Its
value, and hence the value of the function, is set differently depending upon the value
returned by the I ¥ statement.

11.2 Calling Subroutines

A subroutine declaration has the form:

[Public or Private] Sub SubroutineName(Paraml As DataTypel, _
Param2 As DataType2,...)

Thisis similar to the function declaration, with the notable absence of the As ReturnType
portion. (Note also the word Sub in place of Function.)

Since subroutines do not return a value, they cannot be used within an expression. To call
a subroutine named SubroutineA, we can write either:

Call SubroutineA(parameters, . . .)
or simply:
SubroutineA parameters, . . .

Note that any parameters must be enclosed in parentheses when using the call keyword,
but not otherwise.

171 e

FlyrHeart.com 4

TEAM FLY PRESENTS

11.3 Parameters and Arguments

Consider the following very simple subroutine, which does nothing more than display a
message box declaring a person’'s name:

Sub DisplayName(sName As String)
MsgBox "My name is " & sName
End Sub

To call this subroutine, we would write, for example:
DisplayName "‘Wolfgang"
or:

Call DisplayName("'Wolfgang'™)

The variable sName in the procedure declaration:

Sub DisplayName(sName As String)

is called a parameter of the procedure. The call to the procedure should contain a string
variable or aliteral string that is represented by the variable sName in this procedure (but
see the discussion of optional arguments in the next section). The value used in place of
the parameter when we make the procedure call is called an argument. Thus, in the
previous example, the argument is the string "Wolfgang.”

Note that many programmers fail to make a distinction between parameters and
arguments, using the names interchangeably. However, since a parameter islikea
variable and an argument is like avalue of that variable, failing to make this distinction is
like failing to distinguish between a variable and its value!

11.3.1 Optional Arguments

In VBA, the arguments to a procedure may be specified as optional, using the Optional
keyword. (It makes no sense to say that a parameter is optional; it isthe value that is
optional.)

For instance, the definition of the OpenRecordset method is:

Set recordset = object.OpenRecordset(source, type, options, lockedits)

where type , options , and lockedits are optional. Thus, for instance, each of the
following lines of code are legdl:

Dim rs As Recordset
Set rs CurrentDb.OpenRecordset(‘'Names')
Set rs CurrentDb.OpenRecordset(*'"Names", dbOpenForwardOnly)

FlyrHeart.com 4

TEAM FLY PRESENTS

Set rs
Set rs

CurrentDb.OpenRecordset(*'"Names', dbOpenForwardOnly, dbReadOnly)
CurrentDb.OpenRecordset(*'"Names', dbOpenForwardOnly, _
dbReadOnly, dbOptimistic)

To define a function with optional arguments, we just include the keyword Optional in
the parameter declaration, asin Example 11-3.

Example 11-3. Using an optional argument

Sub ChangeFieldType(sFieldName As String, _
Optional NewSize As Variant)

" Change type to integer
rs!Fields(sFieldName).Type = dblnteger

" ITf size supplied, use it. Else use 25.
IT Not IsMissing(NewSize) Then
rslFields(sFieldName).Size = CInt(NewSize)
Else
rs!Fields(sFieldName).Size = 25
End IFf

End Sub

The second parameter is declared with the Optional keyword. Because of this, we may
call the procedure with or without an argument for this parameter, asin:

ChangeFieldType(*'Age', 10)
and:
ChangeFieldType(*'Age™)

Note that the IsMissing function is used in the body of the procedure to test whether the
argument is present. If the argument is present, then the font size is changed. Note also
that we declared the NewSize parameter as type Variant because | sMissing works only
with parameters of type Variant. (Other types of variables are given default values, which
precludes the possibility of them going missing.) Thus, we converted the Variant to type
Integer using the Cint function.

Note that a procedure may have any number of optional arguments, but they must all
come at the end of the parameter list.

11.3.2 Named Arguments

Normally, the arguments to a function are matched to the parameters by their positionin
the function call. For instance, in the function call:

Set rs = CurrentDb.OpenRecordset("'Objects", dbOpenForwardOnly)

FlyrHeart.com 4

TEAM FLY PRESENTS

Access can tell that the argument dbOpenForwardOnly isthe value for the second
parameter (Type) of the function. Such arguments are called positional arguments.

Many built-in VBA/DAO functions also allow named arguments. For example, the
OpenRecordset function can be called as follows:

Set rs = CurrentDb.OpenRecordset(Name:="Objects",
Type :=dbOpenForwardOnly)

Here, each argument has the form:

ParameterName:=Argument
There are three main advantages to named arguments:

« Named arguments can improve readability and clarity.

o Blank spaces (separated by commas) are required for missing optional arguments
when using a positional declaration, but not when using named arguments.

e Theorder in which named arguments are listed isimmaterial, which, of course, is
not the case for positional arguments. For instance, the previous function call
could be written:

Set rs = CurrentDb.OpenRecordset(Type:=dbOpenForwardOnly,
Name:="Objects™)

Named arguments can improve readability quite a bit, and they are highly recommended.
However, they can require considerably more space, so for the short examplesin this
book, | usualy will not use them.

11.3.3 ByRef Versus ByVal Parameters

Parameters come in two flavors. ByRef and Byval. Many programmers do not have a
clear understanding of these concepts, but they are very important and not that difficult to
understand.

To explain the difference, | present the two procedures in Example 11-4. ProcedureA
simply sets the value of the module-level variable x to 5, displays that value, calls the
procedure AddOne with the argument x, and then displays the value of x again.

Example 11-4. Testing the ByVal and ByRef keywor ds
Sub ProcedureA()

X =5 " Set x to 5

MsgBox X " Display x

Call AddOne(x) = Call AddOne

MsgBox X " Display x again
End Sub

Sub AddOne(ByRef i1 As Integer)
i=i+1

174 e

FlyrHeart.com 4

TEAM FLY PRESENTS

End Sub

Note the presence of the ByRef keyword in the Addone procedure declaration. This
keyword tells VBA to pass areference to the variable x to the Addone procedure.
Therefore, the AddOne procedure, in effect, replaces its parameter i by the variable x. As
aresult, theline:

i=i+1
effectively becomes:
X =x+1

So, after AddOneis called, the variable x has the value 6.

On the other hand, suppose we change the Addone procedure, replacing the keyword
ByRef with the keyword Byval:

Sub AddOne(ByVval i As Integer)
=i+ 1
End Sub

In this case, VBA does not pass areference to the variable x, but rather it passesits value.
Hence, the variable i in AddOne simply takes on the value 5. Adding 1 to that value
gives 6. Thus, i equals 6, but the value of the argument x is not affected! Hence, both
message boxes will display the value 5 for x.

ByRef and ByVval both have their uses. When we want to change the value of a variable,
we must declare the corresponding parameter as ByRef so that the called procedure has
access to the actual variableitself. Thisisthe case in the previous example. Otherwise,
the AddOne procedure does absolutely nothing, since the local variable i isincremented,
but it is destroyed immediately afterwards, when the procedure ends.

On the other hand, when we pass an argument for informational purposes only, and we
do not want the argument to be altered, it should be passed by value, using the Byval
keyword. In thisway, the called procedure gets only the value of the argument.

There is one downside to passing arguments by value: it can take alot of memory (and
time). When passing a string variable that contains alarge string by value, the entire
string must be duplicated.

Thus, we can summarize by saying that if we want the procedure to modify an argument,
the argument must be passed by reference. If not, the argument should be passed by value
unless thiswill produce an unacceptable decrease in performance, or unless we are very
surethat it will not get changed by accident.

175 -

FlyrHeart.com 4

TEAM FLY PRESENTS

It isimportant to note that VBA defaults to ByRef if we do not specify otherwise. This
means that the values of arguments are subject to change by the called procedure, unless
we explicitly include the keyword Byval. Caveat scriptor !

11.4 Exiting a Procedure

VBA provides the Exit Sub and Exit Function statements, should we wish to exit from
a procedure before the procedure would terminate naturally. For instance, if the value of a
parameter is not suitable, we may want to issue awarning to the user and exit, as Example
11-5 shows.

Example 11-5. Using the Exit Sub statement
Sub DisplayName(sName As String)

IT sName = """ then
Msgbox "Please enter a name."
Exit Sub
End If
MsgBox '‘Name entered is " & sName
End Sub

While we are on the subject of exiting, we should comment on the use of the End
statement, which will terminate a procedure. Simply put, you should almost never use the
End statement in VBA programming, since it produces a rather abrupt termination of a
program. (I never like to say never.) Hereis apartial list of what happens when the End
statement is executed:

o Code execution stops abruptly, without invoking the Unload, QueryUnload, or
Terminate event of any formsin the application, which means that forms are not
given the opportunity to prevent the program from terminating or from
performing any necessary cleanup.

e All module-level variables and all static local variables are reset. (Nonstatic local
variables go out of scope, as expected.) Objects created from class modules are
destroyed.

« Files opened using the open statement are closed.

While there may be some rather specialized situations in which this behavior is desirable,

you will no doubt recognize such asituation if and when it arises. In the meantime, it is
probably best to simply avoid using the End statement.

11.5 Public and Private Procedures

Just as variables and constants have a scope, so do procedures. We can declare a
procedure using the Public or Private keyword, asin:

Public Function AddOne(i As Integer) As Integer

or:

FlyrHeart.com 4

TEAM FLY PRESENTS

Private Function AddOne(i As Integer) As Integer

The differenceis simple: aPrivate procedure can only be called from within the module
in which it is defined, whereas aPubl ic procedure can be called from within any module
in the project.

Notethat if the Public or Private keyword is omitted from a procedure declaration,
then the procedure is considered to be Public.

11.6 Fully Qualified Procedure Names

When we call a public procedure that lies in another code module, thereis a potential
problem with ambiguity, for there may be more than one public procedure with the same
name in another module. VBA will execute the first one it finds, and this may not be the
one we had in mind!

The solution isto use a qualified procedure name, which has the form:
ModuleName .ProcedureName

For instance, if a public procedure named AddOne liesin a module named Utilities, then
we can call this procedure using the syntax:

utilities.AddOne

177 -

FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 12. Built-in Functions and Statements

VBA has alarge number of built-in functions and statements. For possible reference,
Table 12-1 shows the VBA functions, and Table 12-2 shows the statements. We will take a
look at afew of the more commonly used functions and statements in this chapter and the
next.

Table 12-1. VBA functions

Abs CreateObject |Error InputB Len PPmt StrComp
Array CSng Exp InputBox |LenB PV StrConv
Asc CsStr FileAttr InStr LoadPicture |QBColor |String
AscB CurDir FileDateTime InStrB Loc Rate Switch
AscW [Cvar FileLen Int LOF RGB |SYD

Atn CVDate Fix Ipmt Log Right Tab

CBool CVErr Format IRR Ltrim RightB |Tan

CByte Date FreeFile ISArray Mid Rnd Time
CCur DateAdd Fv IsDate MidB RTrim [Timer
CDate DateDiff GetAllSettings ISEmpty |Minute Second |TimeSeria
CDnhl DatePart GetAttr IsError MIRR Seek TimeVaue
CDec DateSerial GetAutoServerSettings |IsMissing |Month Sgn Trim
Choose DateValue GetObject [SNull MsgBox Shell TypeName
Chr Day GetSetting IsNumeric |Now Sin UBound
ChrB DDB Hex IsObject |Nper SLN UCase
Chrw Dir Hour Lbound NPV Space Val

Clnt DoEvents lif Lcase Oct Spc VarType
CLng Environ IMEStatus Left Partition Sor Weekday
Command |EOF Input LeftB Pmt Str Year

(Cos | | | | | |

Table 12-2. VBA statements

AppActivate |DefDec Error Kill Open Randomize |Set
Beep DefInt Event Let Option Base ReDim SetAttr
Cdll DefLng Exit Line Input # |Option Compare |Rem Static
ChDir DefObj FileCopy Load Option Explicit |Reset Stop
ChDrive DefSng For Each...Next |Lock Option Private |Resume Sub
Close DefStr For...Next L Set Print # Return Time
Const DefVar Function Mid Private RmDir Type
Date DeleteSetting |Get MidB Property Get |RSet 'Unload
Declare Dim GoSub...Return |MkDir Property Let SavePicture |Unlock
DefBool Do...Loop GoTo Name Property Set SaveSetting |While...Wend
DefByte End If..Then..Else |On Error Public Seek Width #
DefCur Enum Implements On...GoSub |Put Select Case |With

178 B

TEAM FLY PRESENTS

DefDate

Erase Input #

On...GoTo |RaiseEvent SendKeys

Write #

DefDbl

To help ssimplify the exposition, we will follow Microsoft's lead and use square brackets
to indicate optional parameters. Thus, for instance, the second parameter in the following
procedure is optional :

Sub ChangeFieldType(sFieldName, [NewSize])

Note that we have also omitted the data type declarations, which will be discussed

separately.

12.1 The MsgBox Function

We have been using the MsgBox function unofficialy for some time now. Let us
introduce it officialy. The MsgBox function is used to display a message and wait for the
user to respond by pushing a button. The most commonly used syntax is:

MsgBox(prompt [, buttons] [, title])

(Thisis not the function's complete syntax. There are some additional optional
parameters related to help contexts that you can look up in the help documentation.)

prompt isa String parameter containing the message to be displayed in the dialog box.
Note that a multiline message can be created by interspersing the vbCrLf constant within

the message.

buttons isalong parameter giving the sum of values that specify various properties of
the message box. These properties are the number and type of buttons to display, theicon
style to use, the identity of the default button, and the modality of the message box. (A
system modal dialog box remains on top of all currently open windows and captures the
input focus systemwide, whereas an application modal dialog box remains on top of the
application's windows only and captures the application's focus.) The various values of
buttons that we can sum are shown in Table 12-3. (They are officially defined in the
VbMsgBoxStyle enum.)

Table 12-3. The MsgBox buttons argument values

I Purpose | Constant | Value | Description

Button types vbOKOnly 0 Display OK button only
vbOK Cancel 1 Display OK and Cancel buttons
vbAbortRetrylgnore 2 Display Abort, Retry, and Ignore buttons
vbY esNoCancel 3 Display Yes, No, and Cancel buttons
vbY esNo 4 Display Yes and No buttons
vbRetryCancel 5 Display Retry and Cancel buttons

179

—_
FlyrHeart.com

TEAM FLY PRESENTS

Icon types

vbCritical

16 Display Critical Message icon

vbQuestion

32 Display Warning Query icon

vbEXxclamation

48 Display Warning Message icon

vblnformation

64 Display Information Message icon

Default button |vbDefauItButt0n1 |0 |Fi rst button is default
vbDefaultButton2 256 Second button is default
vbDefaultButton3 512 Third button is default
vbDefaultButton4 768 Fourth button is default

Modality vbApplicationModal 0 Application modal message box

| |vbSystemM odal |4096 |System modal message box

For instance, the code:

MsgBox "'Proceed?', vbQuestion + vbYesNo

displays the message box shown in Figure 12-1, which includes a question-mark icon and
two command buttons, labeled Yes and No.

Figure 12-1. A MsgBox dialog box

Microsoft Access

The title parameter isastring expression that is displayed in thetitle bar of the dialog
box. If we omit this argument, then Microsoft Access will be displayed, asin Figure 12-1.

The MsgBox function returns a number indicating which button was selected. These
return values are given in Table 12-4. (They are officially defined in the vbMsgBoxResul t

enum.)
Table 12-4. MsgBox return values
Constant Value Description
vbOK 1 OK button pressed
vbCancel 2 Cancel button pressed
vbAbort 3 Abort button pressed
Ivaetry |4 |Retry button pressed
vblgnore 5 Ignore button pressed
vbYes 6 Y es button pressed
IvbNo |7 |No button pressed
180

FlyrHeart.com

TEAM FLY PRESENTS

12.2 The InputBox Function

The InputBox function is designed to get input from the user. The most commonly used
(but not complete) syntax is:

InputBox(prompt [, title] [, default])

where prompt is the message in the input box, title isthetitle for the input box, and
default isthe default value that is displayed in the text box. For instance, the code:

sName = InputBox("'Enter your name.', "Name', "Albert')

produces the dialog box in Figure 12-2.

Figure 12-2. An InputBox dialog box

Mame

Entar wour name.

X

Cancel

The InputBox function returns the string that the user enters into the text box. Thus, in our
example, the string variable sName will contain this string.

Note that if we want a number from the user, we can still use the InputBox function and

simply convert the returned string (such as**12.55") to a number (12.55) using the Val
function, discussed later in the chapter.

12.3 VBA String Functions
Here are a handful of useful functions that apply to strings (both constants and variabl es):
The Len function

The Len function returns the length of a string, that is, the number of charactersin
the string. Thus, the code:

Len(*"January Invoice'™)

returns the number 15.

The UCase and LCase functions

FlyrHeart.com 4

TEAM FLY PRESENTS

These functions return an all-uppercase or all-lowercase version of the string
argument. The syntax is:

UCase(String)
LCase(String)

For instance:

MsgBox UCase(''Donna')
will display the string DONNA.
The Left, Right, and Mid functions
These functions return a portion of astring. In particular:
Left(string, number)
returns the leftmost number charactersin string, and:
Right(string, number)
returns the rightmost number charactersin string. For instance:
MsgBox Right(''Donna Smith", 5)
displays the string Smi th.
The syntax for Midis:
Mid(string, start, length)

This function returns the first 1ength number of characters of string, starting at
character number start. For instance:

Mid('Library._xI1s",9,3)

returns the string x1Is. If the length parameter ismissing, asin:

Mid('Library.x1s",9)

the function will return the rest of the string, starting at start.
The InStr function

The syntax for this very useful functionis:

182 Flyite N—p

TEAM FLY PRESENTS

Instr(Start, StringToSearch, StringToFind)

The return value is the position, starting at Start, of the first occurrence of
StringToFind within StringToSearch. If Start ismissing, then the function
starts searching at the beginning of StringToSearch. For instance:

MsgBox InStr(1, '""Donna Smith', "Smith'™)

displays the number 7, because "*Smith' begins at the seventh position in the
string "'Donna Smith™.

The Str and Val functions

The str function converts a number to a string. For instance:

Str(123)

returns the string 123. Conversely, the val function converts a string that
represents a number into a number (so that we can do arithmetic with it, for
instance). For example:

val("'4.5™)

returns the number 4.5 and:

Val (*'1234 Main Street')

returns the number 1234. Note, however, that val does not recognize dollar signs
or commas. Thus:

Val ($12.00)
returns o, not 12.00.
The type-conversion functions

The Sr and Val functions have been replaced by the more modern
type-conversion functions. CBool, CByte, CCur, CDate, CDbl, CDec, Cint, CLng,
CSng, CVar, and CStr. For instance, the function CStr convertsits argument to a
string, asin:

Cstr(123)

One advantage of the newer type-conversion functions over the older str and val
functionsis that the new functions are international-aware. For instance, the CCur
function converts an expression to currency format, taking into account the
particular decimal separators, thousands separators, and other currency options

FlyrHeart.com 4

TEAM FLY PRESENTS

that are determined by the local e setting of the computer upon which the function
is being used.

The Trim, LTrim, and RTrim functions

The LTrim function removes leading spaces from a string. Similarly, RTrim
removes trailing spaces, and Trim removes both leading and trailing spaces. Thus:

Trim(* extra ')
returns the string extra.
The String and Space functions

The Sring function provides away to create a string quickly that consists of a
single character repeated a number of times. For instance:

sText = String(25, "B")

sets sText to a string consisting of 25 Bs. Also, the Space function returns a string
consisting of a given number of spaces. For instance:

sText = Space(25)
sets sText to a string consisting of 25 spaces.
The Like operator and StrCmp function

The Like operator isvery useful for comparing two strings. Of course, we can use
the equal sign:

stringl = string2

which istrue when the two strings are identical. However, Like will also make a
case-insensitive comparison or allow the use of pattern matching.

The expression:
string Like pattern

returns True if string fits pattern and returns False otherwise. (Actually, the
expression can aso return Nul1.) We will describe pattern in amoment.

The type of string comparison that the Like operator uses depends upon the
setting of the Option Compare statement. There are two possibilities:

184 -

FlyrHeart.com

TEAM FLY PRESENTS

Option Compare Binary
Option Compare Text

one of which should be placed in the Declarations section of amodule (in the
same place as Option Explicit). Note that the default isOption Compare
Binary.

Under Option Compare Binary, string comparison isin the order given by the
ANSI character code, as shown here:

A<B<...<Z<a<b<...<z<A<...<@<a<...cx<
%)

Under Option Compare Text, String comparison is based on a case-insensitive
sort order (determined by your PC's locale setting). This gives asort order as
shown here:

A=a<A=a<B=b<...<Z=z<0=g9

By the way, the last item in the Text sort order isthe left bracket ([) character,
with ANSI value 91. Thisis useful to know if you want to place anitem last in
alphabetical order—just surround it by square brackets.

The pattern-matching features of the Like operator allow the use of wildcard
characters, character lists, or character ranges. For example:

?

Matches any single character

*

Matches zero or more characters

#

Matches any single digit (0-9)

[charlist]

Matches any single character in charlist
[lcharlist]

Matches any single character not in charlist

For more details, check the VBA help file.

FlyHeart.com g4

TEAM FLY PRESENTS

The SrComp function also compares two strings. Its syntax is:
StrComp(stringl, string2 [, compare])

and it returns a value indicating whether stringl isequal to, greater than, or less
than string2. For more details, check the VBA help file.

12.4 Miscellaneous Functions and Statements
WE'l conclude our discussion of Access VBA functions and statements by examining a
hodgepodge of language constructs that perform such tasks as eval uating objects or

variables, evaluating an expression, and altering program flow based on an expression’s
values.

12.4.1 ThelsFunctions

VBA has severa 1s functions that return Boolean values indicating whether a certain
condition holds. We have already discussed the IsMissing function in connection with
optional arguments. Here are some additional 1s functions.

12.4.1.1 ThelsDate function

This function indicates whether an expression can be converted to a date. For instance,
the code:

Dim x As String
X = "1/1/45"
Debug.Print IsDate(x)

will print True to the Immediate window.
12.4.1.2 The I sEmpty function

This function indicates whether a variable has been initialized. For example, the code:

Dim x As Variant
IT IsEmpty(x) Then . . .

tests whether the variable x is empty.
12.4.1.3 The IsNull function

Thisfunction is used to test whether avariable or field isNul I (that is, contains no data).
Note that code such as:

If var = Null Then

FlyrHeart.com 4

TEAM FLY PRESENTS

will always return False because most expressions that involve Nul I automatically
return Nul I. The proper way to determineif the variable var isNul I isto write:

IT IsNull(var) Then

Hereisatypical scenario:

Dim rs As Recordset
Dim s As String
Set rs = CurrentDb.OpenRecordset(*'Names'™)
rs_MoveFirst
IT Not IsNull(rs!LastName) Then
s = rsllLastName

End If
12.4.1.4 ThelsNumeric function

This function indicates whether an expression can be evaluated as a number. For instance,
consider the code:

Dim s As String
s = "123"
IT IsNumeric(s) Then Debug.Print "Number"

Thiswill print the word "Number.” However, if we change the second line to:

s = "123 Main St"

then the Debug . Print statement will not execute.
12.4.2 The Immediate If Function

The Immediate If function has the syntax:
11f(Expression, TruePart, FalsePart)

If Expression is True, then the function returns TruePart. If Expression iSsFalse, the
function returns FalsePart. For instance, consider the following code:

Dim rs As Recordset
Dim s As String

Set rs = CurrentDb.OpenRecordset(*'Names'™)
rs.MoveFirst

IT Not IsNull(rs!LastName) Then
s = rslLastName)
End If

FlyrHeart.com 4

TEAM FLY PRESENTS

This codefills astring variable with afield value. We must make a distinction between a
Null and non-Null field value because the code:

s = rslLastname

will produce the error "Invalid use of Null" if we try to assign aNull value to a string
variable.

It is very important to note that the Immediate If function always evaluates both
TruePart and FalsePart, even though it returns only one of them. Hence, we must be
careful about undesirable side effects. For example, the following code will produce a
"Division by Zero" error because even though the 11 function returns 1/x only when x is
not equal to 0, the expression 1/x isevaluated in all cases, including when x = 0:

0
IHHfx =0, x~2, 1/ %)

X
y

12.4.3 The Switch Function

The syntax of the Switch functioniis:
switch(exprl, valuel, expr2, value2, ... , exprn, valuen)

where exprn and valuen are expressions. Note that there need only be one
expression-value pair, but the function is more meaningful if there are at least two such
pairs.

The Switch function evaluates each expression exprn. When it encounters the first True
expression, it returns the corresponding value. As with the 11f function, Switch always
evaluates all of the expressions. If none of the expressionsis True, the function returns
Nul 1. This can be tested with the IsSNull function.

The procedure in Example 12-1 displays the type of file based on its extension: Access
database, text, or dbase database.

Example 12-1. The Switch function
Sub ShowFileType(FileExt As String)

Dim FileType As Variant

FileType = Switch(FileExt = "mdb", "Database'™, _
FileExt = "txt", "Text", _
FileExt = "'dbf'’, "dBase')

" Display result

IT Not IsNull(FileType) Then
MsgBox FileType

Else
MsgBox "‘Unrecognized type"

FlyrHeart.com 4

TEAM FLY PRESENTS

End If

End Sub

There is one subtlety in this code. Since the Switch function can return aNul I value, we
cannot assign the return value to a String variable, as we might first try to do:

Dim FileType As String

FileType = Switch(FileExt = "mdb", 'Database"™, _
FileExt = "txt", "Text", _
FileExt = "dbf", ""dBase™)

Thiswill produce an error if FileExt isnot "mdb™, "txt", or "dbf", in which case we
will get the very annoying error message, "Invalid use of Null." The solution isto declare
FileType asa Variant, which can hold any datatype, including no data type, whichis
indicated by the Nul I keyword. (Thisissue can be avoided by using aSelect Case
statement, discussed in Chapter 13.)

12.4.4 The Beep Statement

This simple statement, whose syntax is:

Beep

sounds a single tone through the computer's speakers. It can be useful (when used with
restraint) if we want to get the user's attention. However, there is a caveat: the results are
dependent upon the computer's hardware, and so the statement may not produce a sound
at al! Thus, if you use this statement in your code, be sure to warn the user.

12.5 Handling Errors in Code

| discussed the various types of errorsin Chapter 9, but | have scrupulously avoided the
guestion of how to handle runtime errorsin code. Indeed, VBA provides several tools for
handling errors (On Error, Resume, the Err object, and so on), and we could include an
entire chapter on the subject in this book.

Proper error handling is extremely important. Indeed, if you are, or intend to become, a
professional application devel oper, then you should familiarize yourself with
error-handling procedures.

On the other hand, if your intention is to produce Access VBA code for your own
personal use, then the reasons for adding error-handling routines are somewhat mitigated.
When an error occurs within one of your own programs, VBA will stop execution,
display an error message, and highlight the offending code. This should enable you to
debug the application and fix the problem. (It would be unreasonable to expect another
user of your program to debug your code, however.)

FlyrHeart.com 4

TEAM FLY PRESENTS

Let us undertake a brief discussion of the highlights of error handling. (For more details,
may | suggest my book Concepts of Object-Oriented Programming in Visual Basic,
published by Springer-Verlag. It has adetailed chapter on error handling.)

12.5.1 The On Error Goto L abdl Statement

The on Error statement tells VBA what to do when aruntime error occurs. The most
common form of the statement is:

On Error GoTo label

where label isalabel. For instance, consider the following code:

Sub RecordCt()
On Error GoTo ERR_EXAMPLE

Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset(*'"Name'™)

MsgBox rs.RecordCount
Exit Sub
ERR_EXAMPLE:
MsgBox "Error " & Err.Number & " - " & Err.Description, vbCritical

Exit Sub

End Sub

The purpose of this procedure is ssmply to display the number of rowsin atable.
However, the database does not happen to have a table called Name. Hence, when VBA
encountersthe line:

Set rs = CurrentDb.OpenRecordset(*'"Name'™)
aruntime error will occur.

To deal with this possibility in afriendly manner, we add some error checking. Theline:

On Error GoTo ERR_EXAMPLE

tells VBA to move execution to the label ERR_EXAMPLE if an error does occur. The code
following this labdl is called the error-handling code. If an error should occur, the next
line executed is the MsgBox line, in which case the dialog box in Figure 12-3 will be
displayed. This message gives a description of the error, obtained from the error object,
which we discuss in the next section.

Figure 12-3. An error dialog box

FlyrHeart.com 4

TEAM FLY PRESENTS

Microsoll ACCass

a Emor 0% = Tha Wicroa ot ded delsiass engine cannot ird the mput sable o queny ‘Meems'. WMake surs texsts and thed i

neme i spelad comachy

It isimportant to note the:

Exit Sub

line just before the ERR_EXAMPLE label. Without this statement, the error-handling code
will always be executed, even when thereis no error! Omitting thislineis acommon
mistake. Note also that |abels always end with a colon.

The process of adding error-handling code to a procedure is sometimes referred to as
error-trapping.

12.5.2 Handling Errorsin the Calling Procedure

Consider the following version of the RecordCt function:

Function RecordCt(TableName As String) As Integer
On Error GoTo ERR_EXAMPLE
Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset(TableName)
RecordCt = rs.RecordCount
rs.Close
Exit Function
ERR_EXAMPLE:
RecordCt = -1 " Indicates error
rs.Close

Exit Function

End Function

In this case, if thereis an error, the function will simply return the value -1, rather than
displaying a message box. This behavior is better than that of the previous version,
because in this case the calling procedure can decide what to do.

Hereis aprocedure that calls RecordCt:

Sub Main(Q)

On Error GoTo Err_Main

191

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Dim rc As Long
rc = RecordCt("'Object'™)

If rc = -1 Then
* code here to handle error
Else

code here for no error
End If
Exit Sub

Err_Main:
MsgBox "Error " & Err.Number & " - " & Err.Description, vbCritical
Exit Sub

End Sub

Note that areturn value of -1 is not perceived by VBA as an error at al, so we need to
handle the error using code such as:

If rc = -1 Then
12.5.3 The Calls Stack
What happens if we do not trap errors in a procedure?

If the procedure was not called by another procedure, but rather was called directly by the
user, or if the procedure is an event procedure—that is, code that executes in response to
auser manipulating a control on aform (for instance, clicking on a command
button)—then VBA just displays an error message and halts the program.

However, if the procedure in which the error occurred was called by another procedure,
then VBA passes the error to the calling procedure, just as though the calling procedure
had caused the error.

To illustrate this, consider the following procedures:

Function RecordCt2(TableName As String) As Integer
Dim rs As Recordset

Set rs = CurrentDb.OpenRecordset(TableName)
RecordCt2 = rs.RecordCount

rs.Close

End Function

Sub Main2(Q)
On Error GoTo Err_Main

Dim rc As Long
rc = RecordCt2(""'Objects™)

FlyrHeart.com 4

TEAM FLY PRESENTS

" More code here
Exit Sub

Err_Main:
MsgBox "Error " & Err.Number & " - " & Err.Description, vbCritical
Exit Sub

End Sub

The RecordCt2 function has no error-trapping code. If Main2 calls RecordCt2 with a bad
table name, the error in RecordCt2 will be passed to Main2, whose error-trapping code
will execute. Thus, we will get an error message from Main2. (This may be just fine.)
More generally, if ProcedureA calls ProcedureB, which calls ProcedureC, and so on,
then an error in any one procedure will be passed up the call stack (list of proceduresin
reverse order of execution) until a procedure with error-handling code is encountered. If
none is encountered, then VBA will issue its own error message and terminate the
program.

Incidentally, you can view the call stack while in break mode by choosing Call Stack
from the View menu.

12.5.4 TheError Object

The error object, denoted by Err, belongs to the VBA object model. The most important
properties of this object are:

Number
The VBA error number
Source
The name of the current VBA project
Description
A description of the error
Thus, for instance, the line:
MsgBox "Error " & Err_Number & ' - " & Err._Description, vbCritical
displays the error number and its description.

The Err object has a Clear method:

FlyrHeart.com 4

TEAM FLY PRESENTS

Err.Clear

that will clear all of the properties of the Err object, setting its Number property to 0
(which indicates the absence of an error).

1255 TheOn Error GoTo 0 Statement

The statement:

On Error GoTo O

turns off any previous on Error GoTo label statements. Any error occurring
subsequently will be handled by VBA in its own inimitable way.

12.5.6 The On Error Resume Next Statement

The syntax:

On Error Resume Next

tells VBA to continue executing the code immediately following the line that caused the
error. There are two important uses for thisform of on Error. Thefirst isto cause VBA
toignore an error. For instance, the code:

Sub example()

On Error Resume Next
MsgBox rs.RecordCount

End Sub
will report the record count when rs is avalid recordset and do nothing otherwise.

Another important use for the on Error Resume Next syntax isfor in-line error checking,
where we check for errors immediately following the line that may have caused an error.
For instance, another way to handle errors in the RecordCount property is as follows:

Sub example()
On Error Resume Next
MsgBox rs.RecordCount

IT Err_Number <> 0 Then

" code to handle error here
End If
End Sub

194 -

FlyrHeart.com 4

TEAM FLY PRESENTS

12.5.7 The Resume Statement

It is aso possible to include the Resume statement in the error-handling portion of the
code. Thiswill cause VBA to resume execution at the line that follows the one that
caused the error. Thus, the previous code is equivalent to the following:

Sub example()

On Error GoTo ERR_EXAMPLE
MsgBox rs.RecordCount

" An error will cause execution to resume here after
" displaying an error message

Exit Sub

ERR_EXAMPLE:
MsgBox Err.Description, vbCritical
Resume Next

End Sub
There are three variations on the Resume statement:

e Resume
e Resume Next
e Resume ALabel

Thefirst version will cause VBA to resume with the line that caused the error. Thisis
useful if your error-handling code actually repairs the error condition and you want the
line that caused the original error to be executed again.

Toillustrate, if the procedure in Example 12-2 encounters an error, it branchesto an error
handler. This handler checks for error number 3078, which isthe "Can't find table" error.
If thisisthe error, then the procedure displays a dialog box asking for a new table name.
If the user enters a new name, the Resume statement is executed, and so the line:

Set rs = CurrentDb.OpenRecordset(TableName)

isrepeated. Note that it isvital to give the user away out, however. Thisis done by
letting the user leave the dialog box blank. (Incidentally, | got the correct error number
3078 by simulating the error and reading the resulting error-message dial og box.)

Example 12-2. Error handling with the Resume statement
Function RecordCt3(TableName As String) As Integer

On Error GoTo ERR_EXAMPLE
Dim rs As Recordset

Set rs = CurrentDb.OpenRecordset(TableName)

FlyrHeart.com 4

TEAM FLY PRESENTS

RecordCt = rs.RecordCount

rs.Close
Exit Function

ERR_EXAMPLE:
If Err_Number = 3078 Then
" Can"t find table
sTable = InputBox("'Can"t find table " & sTable & _
". Please enter table name again or leave blank to end.")
IT sTable = """ Then
rs.Close
TableName = sTable
Exit Function
Else
Resume
End IF
Else
" Unknown error
MsgBox "Error " & Err.Number & " - " & Err.Description, vbCritical
rs.Close
Exit Function
End IFf

End Function
The third variation:

Resume ALabel

causes VBA to resume execution at the line labeled ALabel .

FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 13. Control Statements

| conclude our discussion of the VBA language with the main VBA control statements,
which are statements that affect the flow of control (or flow of execution) in a program.

13.1 The If ...Then Statement
The 1. . _Then statement is used for conditional control. The syntax is:

If Condition Then
" statements go here . . .

Elself AnotherCondition Then

" more statements go here . . .
Else

" more statements go here . . .
End If

Note that we may include more than one Elsel ¥ part, and that both the Elsel f part(s)
and the Else part are optional. We can also squeeze al parts of this statement onto a
single line, which is generally only a good idea when the Elsel ¥ and Else parts are not
required.

To illustrate, the following code checksto seeif the FirstName field isnull. If so, it
replaces the Nul I value with aquestion mark. If not, it capitalizes the first name.

rs_Edit
IT IsNull(rs!FirstName) Then
rs!FirstName = "?"
Else
rs!FirstName = UCase(rs!FirstName)
End If
rs.Update

13.2 The For Loop

The For. . .Next statement provides a method for repeatedly looping through a block of
code (that is, one or more lines of code). Thisloop is naturaly referred to as aFor loop.
The basic syntax is:

For counter = start To end
" block of code goes here .

Next counter

Thefirst time that the block of code is executed, the variable counter (called the loop
variable for the For loop) is given the value start. Each subsequent time that the block

FlyrHeart.com 4

TEAM FLY PRESENTS

of code is executed, the loop variable counter isincremented by 1. When counter
exceeds the value end, the block of code is no longer executed. Thus, the code block is
executed atotal of end - start + 1 times, each time with a different value of counter.

Note that we can omit the word counter in the last line of aFor loop (replacing Next
counter with just Next). This may cause the For loop to execute a bit more quickly, but
it aso detracts a bit from readability.

To illustrate, the following code prints the names of the fields in the Objects table:

Sub PrintFields()

Dim 1 As Integer
Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset("'Objects"™)

For i = 0 To rs.Fields.Count - 1
Debug.Print rs_Fields(i).Name
Next

rs.Close

End Sub

Note that the limits of the For statement are 0to rs.Fields.Count - 1 because the fields
are indexed starting at O (rather than 1). We will discuss thisissue in more detail when we
talk about DA O programming.

For loops are often used to initialize an array. For instance, the code:

For i = 0 To 10
iArray(i) = 0
Next i

assigns avaue of 0 to each of the 11 variables iArray (0) through iArray (10).

Note that the loop variable counter will usually appear within the block of code, asit
doesin this array-initialization example, but thisis not a requirement. However, if it does
appear, we need to be very careful not to change its value, since that will certainly mess
up the For loop. (VBA automatically increments the loop variable each time through the
loop, so we should leave it alone.)

13.3 The Exit For Statement

VBA providesthe Exit For statement to exit a For loop prematurely. For instance, the
code in Example 13-1 finds the first field whose type is Integer.

Example 13-1. Finding the First Integer field
Sub FindFirstintegerField()

FlyrHeart.com 4

TEAM FLY PRESENTS

Dim 1 As Integer
Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset('Objects™)

For 1 = 0 To rs.Fields.Count - 1
IT rs.Fields(i).Type = dblnteger Then Exit For
Next

If i < rs.Fields.Count Then

" First Integer field found
Else

" No such field exists
End If

rs.Close
End Sub
We can aso control the step size and direction for the counter in a For loop using the

Step keyword. For instance, in the following code, the counter i isincremented by 2
each time the block of code is executed:

For 1 = 1 to 10 Step 2
" code block goes here
Next i

The following loop counts down from 10 to 1 in increments of -1. This can be useful
when we want to examine a collection (such asthe cellsin arow or column) from the
bottom up.

For 1 = 10 to 1 Step -1
" code block goes here
Next i

13.4 The For Each Loop

The For Each loop is avariation on the For loop that was designed to iterate through a
collection of objects (as well asthrough elements in an array) and is generally much more
efficient than using the traditional For loop. The general syntax is:

For Each ObjectVar In CollectionName
" block of code goes here .

Next ObjectVar

where Objectvar isavariable of the same object type as the objects within the collection.
The code block will execute once for each object in the collection.

FlyrHeart.com 4

TEAM FLY PRESENTS

The following version of PrintFields uses aFor Each loop. It is more elegant than the
previous version (and more efficient as well):

Sub PrintFields2()
Dim fld As Field
Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset("'Objects'™)
For Each fld In rs.Fields
Debug.Print fld._.Name
Next
rs.Close

End Sub

Thus, when iterating through a collection of objects, we have two choices:

For Each object in Collection
" code block here
Next object

or:

For 1 = 1 to Collection.Count
* code block here
Next 1

It isimportant to keep in mind that the For Each loop can be much faster than the For
loop when dealing with collections of objects.

13.5 The Do Loop

The Do loop has several variations. To describe these variations, we use the notation:

{While | Until}

to represent either the word whi e or the word unti I, but not both. With thisin mind,
here are the possible syntaxes for the Do loop:

Do {While] Until} condition

code block here

Loop

or:

Do

200 =

FlyrHeart.com 4

TEAM FLY PRESENTS

" code block here

Loop {While | Until} condition

Actudly, thereis afifth possibility, because we can dispense with condition completely
and write:

Do

code block here

Loop

The Do loop is used quite often in DAO programming to iterate through a recordset. Here
isatypical examplethat prints all values of aparticular field in a recordset:

Sub DoExample()

Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset("'Objects™™)

rs.MoveFirst

Do While Not rs.EOF
Debug.Print rs!Name
rs.MoveNext

Loop

rs.Close

End Sub

We will discuss the EOF property, as well as the MoveFirst and MoveNext methods,
when we discuss Recordset objects later in the book.

Just as the For loop has an Exit For statement for terminating the loop, a Do loop has an
Exit Do statement for exiting the Do loop.

13.6 The Select Case Statement

Aswe have seen, the If. . .Then. .. construct is used to perform different tasks based on
different possibilities. An alternative construct that is often more readable is the Select
Case statement, whose syntax is:

Select Case testexpression
Case valuel

" statements to execute if testexpression = valuel
Case value2
" statements to execute if testexpression = value2
201 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Case Else
" statements to execute otherwise
End Select

Note that the Case Else part isoptional. To illustrate, the following codeis the Select
Case version of Example 12-1 in Chapter 12 (see the discussion of the Section 12.4.3) that
displays the type of afile based on its extension. | think you will agree that thisis abit
more readable than the previous version:

Sub ShowFileType(FileExt As String)
Dim FileType As Variant

Select Case FileExt
Case "'mdb"
FileType
Case ""txt"
FileType
Case "'dbf"
FileType
Case Else
FileType = "unknown"
End Select

"Database"’

"text”

""dBase"'

" Display result
MsgBox FileType

End Sub

Note that VBA allows us to place more than one condition in the same Case statement
(separated by commas). Thisis useful when more than one case produces the same resullt.

13.7 A Final Note on VBA

Thereisalot more to the VBA language than we have covered here. In fact, the
Microsoft VBA reference manual is about 300 pages long. However, we have covered
the main points needed to begin Access VBA/DAO programming. (For areference on the
VBA language, you might want to check out the book VB & VBA in a Nutshell, by Paul
Lomax, also published by O'Reilly.)

Actualy, many Access VBA programming tasks require only asmall portion of VBA's
features, and you will probably find yourself wrestling much more with DAQO's object
model than with the VBA language itself.

| conclude our discussion of the VBA language per se with abrief outline of topics for
further study, which you can do using the VBA help files.

202 =

FlyHeart.com g4

TEAM FLY PRESENTS

13.7.1 File-Related Functions

VBA has alarge number of functions related to file and directory housekeeping. Table
13-1 contains a selection of them.

Table 13-1. Some VBA fileand directory functions
Function Description
Dir Find afile with a certain name.
FileLen Get the length of afile.
FileTimeDate Get the date stamp of afile.
IFiIeCopy |Copy afile.
Kill Delete afile.
Name Rename afile or directory.
RmDir Delete adirectory.
MKDir Make a new directory.

In addition to the file-related functionsin Table 13-1, there may be times when it is useful
to create new text filesto store data. VBA provides a number of functions for this
purpose, headed by the open statement, whose (simplified) syntax is:

Open pathname For mode As [#]filenumber

Once afile has been opened, we can read or write to it.

13.7.2 Date- and Time-Related Functions

VBA has alarge number of functions related to manipulating dates and times. Table 13-2
contains a selection.

Table 13-2. Some date- and time-related functions
| Function | Description
|Date, Now, Time |Get the current date or time.
DateAdd, DateDiff, DatePart Perform date calculations.
DateSerial, DateValue Return a date.

TimeSeria, TimeVaue Return atime.
Date, Time Set the date or time.
]Timer |Time aprocess.

13.7.3 The Format Function

The Format function is used to format strings, numbers, and dates. Table 13-3 gives afew
examples.

203 e OM

TEAM FLY PRESENTS

Table 13-3. Format function examples
Expression Return valug!
Format(Date, "Long Date") Thursday, April 30, 1998
Format(Time, "Long Time") 5:03:47 PM
Format(Date, "mm/dd/yy hh:mm:ss AMPM™) 04/30/98 12:00:00 AM
Format(1234.5, " $##,##0.00") $1,234.50
Format("HELLO", "<" "hello"

(Y The exact format of the return value is governed by certain system settings.

204 w
FlyrHeart.com

TEAM FLY PRESENTS

Part V: Data Access Objects

Chapter 14. Programming DAO: Overview

We have seen that Access SQL provides away to create and manipul ate database objects,
such as tables and queries, through its DDL and DML components. In addition, users can
enter SQL statements directly into the Access SQL View window.

On the other hand, Microsoft Access allows us to program the Jet database engine
directly, through its programming interface, which is known as Data Access Objects, or
DAO. Thisgivesthe user far more control over a database.

DAO isacomplicated structure, and | won't discuss al of its aspects. Our focusin this
book will be on gaining a general understanding of the following concepts and
components:

e Theorganization of DAO, whichisat least partly object-oriented
e TheDDL component of DAO
e The DML component of DAO

| will certainly not cover all aspects of the DDL and DML components. My main goal is
to prepare you so that you can get whatever additional information you need from
Microsoft Access' extensive online help for the DAO model or from similar hardcopy
reference manuals.

14.1 Objects

Before discussing the various components of the DAO model, we must discuss the
concept of an object. In the parlance of object-orientation, an object is something that is
identified by its properties and its methods(or actions).

Aswe will see (and asthe name implies) DAO isfull of objects. For example, each saved
table in an Access database is an object, called a TableDefobject. (Actually, it isthe
definition of the table, rather than its data, that is an object of type TableDef.) Some of the
properties of TableDef objects are Name, RecordCount, DateCreated, and LastUpdated.

An object's methods can be thought of as procedures or functions that act on the object.
For instance, one of the methods of a TableDef object isCreateField, which, asthe
name implies, is used to create anew field for the TableDef object. Another method is
OpenRecordset, which creates a Recordset object that can be used to manipulate the data
in the table. (A more object-oriented view of methods is that they are messages sent to
the object, saying, in effect, perform the following action.)

FlyrHeart.com 4

TEAM FLY PRESENTS

14.1.1 Object Variables

In order to access the properties or invoke the methods of an object, we need to first
define an object variable to reference that object.

VBA and DAO offer awide variety of object data types. Thereisadlight differencein
syntax when declaring and setting an object variable, as opposed to a standard variable.
For instance, here is an example using the Database object type. Note that the full
pathname of the LIBRARY database on my PC is d:\dbase\library.mdb:

Dim dbLibrary as Database
Set dbLibrary = ""d:\dbase\library.mdb"

In general, the syntax is:

Dim objectVariable as ObjectDataType
Set objectVariable = ObjectName

Note that the only difference between setting object variables and setting standard
variablesisthe keyword Set. However, this minor syntactic difference belies a much
more significant difference between standard variables and object variables.

In particular, a standard variable can be thought of as a name for alocation in the
computer's memory that holds the data. For instance, in the code:

Dim intVar As Integer
intvar = 123

the variable intvar is a4-byte memory location that holds the integer value 123. Figure
14-1 illustrates the variable intvar. (Actualy, the 4-byte memory location holds the
value 123 in binary format, but that is not relevant to our discussion.)

Figure 14-1. An exampleof theintVar variable

it lar 123

Of course, if we wereto write;

Dim intVar As Integer
Dim intVar2 As Integer
intvar = 123

intvar2 intvar
intvar2 567

we would not expect the last line of code to have any effect upon the value of the variable
intvar, which should still be 123.

206 =

FlyrHeart.com 4

TEAM FLY PRESENTS

On the other hand, an object variable is not the name of a memory location that holds the
object's "value,” whatever that means. Rather, an object variable holds the address of the
area of memory that holds the object. Put another way, the object variable holds a
reference to, or points to, the object. It is therefore called apointer variable. Theideais
pictured in Figure 14-2, where rsBooks and rsBooks?2 are object variables, both pointing
to an object of type Recordset.

Figure 14-2. An example of a pointer variable

rilionks addressof @ ———————= Recordset

/ e
rilflooks? address of

To illustrate this further, consider the code in Example 14-1.

Example 14-1. An object variable example
Sub exaObjectvar()

"Declare some object variables
Dim dbLib As DATABASE

Dim rsBooks As Recordset

Dim rsBooks2 As Recordset

"Set dbLib to the current database (i.e. LIBRARY)
Set dbLib = CurrentDb

"Open a recordset object for the BOOKS table
Set rsBooks = dbLib.OpenRecordset(*'BOOKS'™)

"Two object variables will refer to the same object
Set rsBooks2 = rsBooks

"Use a property of this object
MsgBox ''BOOKS record count: " & rsBooks.RecordCount

"Destroy the object using rsBooks2 reference
rsBooks2.Close

"Now rsBooks has nothing to refer to, so we get error
MsgBox "'BOOKS record count: " & rsBooks.RecordCount

End Sub

First, we declare two object variables of type Recordset (we will discussthistypein
detail later). Theline:

Set rsBooks = dbLib.OpenRecordset("'BOOKS™™)

FlyrHeart.com 4

TEAM FLY PRESENTS

sets rsBooks to point to (or refer to) a Recordset object created from the BOOKS table.
Note again that, unlike standard variables, setting an object variable requires the use of
the keyword Set. Theline:

Set rsBooks2 = rsBooks
Sets rsBooks2 to point to the same Recordset object as rsBooks, as shown in Figure 14-2.

Next, theline

MsgBox "'BOOKS record count: " & rsBooks.RecordCount
displays the message box in Figure 14-3, showing that there are 14 books in the recordset.

Figure 14-3. The message box from the exaObjectVar () example

Miciozoft Access

BOOKS record count: 14

To illustrate the fact that both variables point to the same object, the line:
rsBooks2.Close

uses the pointer rsBooks2 to destroy (or close) the Recordset object. Then, when the line:

MsgBox "'BOOKS record count: " & rsBooks.RecordCount

is executed, the Recordset object that both variables referred to is gone, and so the
expression rsBooks .RecordCount causes an "Object invalid or no longer set" error, as
shown in Figure 14-4.

Figure 14-4. Error message from the exaObjectvar () example

Microzolt Access

Fun-tme amos 3420

Obyect invalid or o longes sst.

The moral of this exampleisthat it isimportant to remember that object variables refer to
objects and that more than one variable can refer to the same object. Despite this, it is
customary to use the misleading statement "the objVar object” when we really should be
saying "the object referred to by objVar."

208 =

FlyHeart.com g4

TEAM FLY PRESENTS

14.1.2 Object-Variable Naming Conventions

Tables Table 14-1 and Table 14-2 describe the naming convention for both standard and

object variables that we will (try to) use in thisbook. (Table 14-1 isarepeat of Table 10-3.)

We will explain the various object types as we proceed through this chapter.

Table 14-1. Standard-variable naming for VBA

Variable Prefix
Boolean bool, b, or f
Byte b, byt, or bt
Currency cur
Date dt or dte
Double d or dbl
Integer i,c,orint
Long I, ¢, oring
Single sor sng
String str
User-defined type typ, u, or ut
Variant v or var
Table 14-2. Object-variable naming for VBA
Variable Prefix
Container con
Database db
Document doc
Dynaset dyn
Error err
Field fld
Form frm
Index idx
Object obj
Parameter prm
Property prp
QueryDef qdf
Recordset rs
Relation rel
Report rpt
Snapshot snp
Table thl
TableDef tdf or thl
User usr
Workspace WS

209

—
FlyrHeart.com

TEAM FLY PRESENTS

14.1.3 Referencing the Properties and M ethods of an Object

The general syntax for referring to an object's properties and methods is very simple.
Suppose that objVar isavariable that refers to an object. If AProperty is a property of
this object, then we can access this property using the syntax:

objVar.AProperty

If AMethod isamethod for this object, then we can invoke that method with the syntax:

objVar.AMethod(any required parameters)

Toillustrate, consider the code in Example 14-2.

Example 14-2. A property and method example
Sub exaPropertyMethod()

Dim dbLib As DATABASE
Dim qdfExpensive As QueryDef

" Get current database (LIBRARY)
Set dbLib = CurrentDb

" Show Name property
MsgBox dbLib.Name

" Invoke the CreateQueryDef method to create a query
Set qdfExpensive = dbLib.CreateQueryDef(*'Expensive",
"“"SELECT * FROM BOOKS WHERE Price > 20")

End Sub
Theline

Set dbLib = CurrentDb

sets the object variable of type Database to point to the current database, that is, the
LIBRARY database. Theline:

MsgBox dbLib.Name
displays the value of the Name property of dbLib. The line:

Set qdfExpensive = dbLib.CreateQueryDef(*'Expensive",
“SELECT * FROM BOOKS WHERE Price > 20")

invokes the CreateQueryDefmethod to create a new query named Expensive and defined
by the SQL statement:

SELECT * FROM BOOKS WHERE Price > 20

FlyrHeart.com 4

TEAM FLY PRESENTS

Note that the code:

dbLib.CreateQueryDef(""Expensive",""SELECT * FROM BOOKS WHERE Price > 20')

invokes the method, which returns the QueryDef object, which is then pointed to by the
object variable qdfExpensive. If you run this program, you will notice anew entry in the
Query tab of the Database window. (If the query Expensive is aready in the database,
delete it before running this program. Also, you may need to switch away from and then
return to the Query tab to refresh the list.)

14.2 The DAO Object Model

Asthe name Data Access Objects suggests, the DAQ is, at least in part, an
object-oriented environment. In particular, the DAO isimplemented as a hierarchy of
collections of objects. Figure 14-5 shows the DAO Object Model, describing the
collections and their objects.

Figure 14-5. The DAO object model

| 1

Workspaces Errars
| I |
(aroups sers
[atabases | 1
Users Groups
|] |] |
TableDefs (ueryDefs Recordsets (Contaimers felations
Fialds Figlds \— Fields \— Documents L Fields

Indexes Parameters

\— Fields

Each of the shaded boxes represents a collection of objects. (Thus DBEngine is the only
noncollection.) The name of the objects contained within a given collection isjust the
singular of the collection name. For instance, the TableDefs collection holds TableDef
objects, and the Documents collection holds Document objects. DBEngine is the only
standal one object—not contained in any collection.

Thereisapotential point of confusion about the DAO object hierarchy in Figure 14-5 that
we should address. Consider, for example, the relationship between the Databases and

211

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Wor kspaces collections. It would be incorrect to say, as one might infer from the diagram,
that the Databases collection is contained in the Workspaces collection. Indeed, the line
from Workspaces to Databases means that each Workspace object has (or as Microsoft
would say, "contains') a Databases collection.

Perhaps the best way to view the situation is to say that each object in the DAO hierarchy
has three things associated with it: collections, methods, and properties. For instance, a
Wor kspace object has the following items associated with it:

Collections
Databases
Groups
Users
Properties (not shown in Figure 14-5)
Methods
BeginTrans
Close
CommitTrans
CreateDatabase
CreateGroup
CreateUser
OpenDatabase
Rollback
Properties
IsolateODBCTrans
Name
UserName

Let us pause for a brief aside. In an object-oriented environment such as C++, or even
Visual Basic, acollection is also considered an object. Moreover, the value of one
object's property can be another object (these are so-called object properties). Hence, in
such an object-oriented environment, we would probably think of the collections
associated with an object as just additional properties of that object. However, Microsoft
chose not to express this explicitly in the DAO.

Figure 14-6 shows a more detailed example of the object-collection relationship. The
Containers collection in this case contains three Container objects, each of which has
(the same) properties and methods. Each object also "contains' a Documents collection,
which contains some Document objects.

Figure 14-6. A detailed example of the object-collection relationship

212 -

FlyrHeart.com 4

TEAM FLY PRESENTS

Documents Collection

Documents Collection

Thus, according to this model, there may be more than one Documents collection. Indeed,
there is one Documents collection for every Container object. Similarly, thereis one
Databases collection for each Workspace object and one TableDefs collection for each
Database object.

14.3 The Microsoft Access Object Model

Y ou may have noticed that there are no collectionsin the DAO object model
corresponding to Access forms or reports. The fact isthat DAO is not the whole object
story. Microsoft Access defines its own collections of objects, as shown in Figure 14-7.

Figure 14-7. The Micr osoft Access object model

FlyrHeart.com 4

TEAM FLY PRESENTS

Application

(ol md Screen

[odelﬂatn ‘
CurrentData
|_J CodeProject
(umentProject
WehOptions
| | | | |
o Newfarfecess®

Dhjicts

Access defines the Forms collection to hold all currently open forms. (Note the words
"currently open.") Similarly, the Reports collection holds al currently open reports. The
Application, DoCmd, and Screen objects are not contained in a collection. The Modules
collection holds all open code modules.

The References collection holds all Reference objects. A Reference object is areference
to another application's type library, which is afile containing information on the objects
that the application exposes through Automation. It is through Automation objects that an
application can share some of its features with other applications. However, we will not
go further into this subject in this book. (Allow me to recommend my book Concepts of
Object-Oriented Programming with Visual Basic, published by Springer-Verlag, for
more information on OLE Automation geared toward the Visual Basic programmer.)

Asyou can seein Figure 14-7, Microsoft has added several new objects to the object
model for Access 9 for Office 2000. (In fact, there are a few more objects not shown in
thefigure.) Severa of these objects relate to the Internet. The CodeData and
CurrentData objects have child collections containing all tables and all queries (whether
open or not). The CodeProject and CurrentProject objects have child collections
containing all forms, reports, modules, macros, and DataAccessPages (whether open or
not).

We will not discuss the Access object model in genera in this book, since it belongs
more to issues related to the Access user interface (forms and reports) than to database
manipulation.

214 -

FlyrHeart.com 4

TEAM FLY PRESENTS

On the other hand, we will discuss some aspects of the Access object model. For instance,
theline:

Set db = CurrentDb

sets the variable db to point to the currently open database. The function Currentbb,
which we will discuss in more detail later, is not a DAO function—you will not find it in
the DAO reference manual. It isapart of the Access object model: it isamethod of the
Application object, to be precise. Thus, the Access object model and DA O both provide
supporting objects and instructions for database management.

14.4 Referencing Objects

The first step in understanding the objects in the DAO and Microsoft Access object
hierarchies is to understand how to refer to an object in the hierarchy. In particular, we
can refer to an object by the name of ObjectName that belongs to a collection named
CollectionName, by any of the following syntaxes.

e CollectionName!ObjectName, Or Col lectionName! [ObjectName] when
ObjectName hasillegal characters, such as spaces.

e CollectionName("'ObjectName'™).

e CollectionName(StringVvar), where StringVvar holds the string ObjectName.

e CollectionName(lIndex), where Index isthe index number of the object in the
collection. Indexes start with 0 and go up to one less than the number of objectsin
the collection. (Aswe will see, the number of elementsin a collection is denoted
by CollectionName.Count.)

For instance, the TableDef object named BOOKS in the TableDefs collection is denoted
by:

TableDefs!BOOKS
or.
TableDefs("'BOOKS™)
or.

Dim strBooks as String
strBooks = ''BOOKS"
TableDefs(strBooks)

or, if BOOKS happensto be the first TableDef object in the TableDefs collection:

TableDefs(0)

The exclamation point (1) used in the first syntax is called the bang operator .

FlyrHeart.com 4

TEAM FLY PRESENTS

14.4.1 Fully Qualified Object Names

There is a problem with these names. For instance, to which object does Fields(0) refer?
There are several Fields collectionsin the DAO hierarchy, as can be seen from Figure
14-5. Let usrefer to the names described in the previous syntax as semiqualified names.
To avoid the problem that a semiqualified name may not be unique, we must use the fully
qualified object name, which isformed by tracing the entire hierarchy from the top
(DBENgine) to the desired object. For instance, the fully qualified name for BOOKS is:

DBEngine.Workspaces(0) .Databases![d:\dbase\library._.mdb].TableDefs!BOOKS

Let us examine this name. It is composed of four separate semiqualified object names,
separated by periods. These periods are referred to as dot operators :

DBEngine.

Workspaces(0).
Databases![d:\dbase\library.mdb].
TableDefs!BOOKS

Perhaps the easiest way to make sense of this name is to start from the bottom. The
semiqualified name of the object we areinterested iniis:

TableDefs!IBOOKS
This object is contained in the TableDefs collection for the Database object named:

Databases![d:\dbase\library._.mdb]

This object is, in turn, contained in the Databases collection of the default Wor kspace
object (more on this later), which is:

Workspaces(0)

which, in turn, is contained in the DBEngine object. Separating each of these object
names by the dot operator gives the fully qualified object name.

In general, the syntax for a semiqualified object nameis:
Collection!Object
and for afully qualified object name, it is:

DBEngine.Collectionl!Objectl. - - - _CollectionN!ObjectN

There seems to be much confusion over when to use the bang operator (1) and when to
use the dot operator (.). Perhaps the following will help:

FlyrHeart.com 4

TEAM FLY PRESENTS

e Thebang operator is used to separate an object's name from the name of the
collection of which it isamember. In other words, bang signifies a member of a
collection. It therefore appears in semiqualified object names.

e Thedot operator is used to separate each semiqualified object namein afully
qualified object name. In other words, it signifies the next step in the hierarchy.

e Thedot operator is also used to denote a property or method of an object.

This naming convention isreally not as confusing as it may look at first, if you remember
the previous three maxims. However, if you want confusing, stay tuned for default
collections.

14.4.2 Using Object Variablesto Your Advantage

Asyou can see, afully qualified object name can be quite lengthy. This problemis
compounded by the fact that it may be necessary to refer to the same object many times
in aprogram. There are two common ways to deal with thisissue.

One way isto use object variables. Consider the code in Example 14-3 to display the
RecordCount property of the BOOK S table.

Example 14-3. An object variable example
Sub exaObjVvar()

Dim ws As Workspace
Dim dbLib As DATABASE
Dim tdfBooks As TableDef

Set ws = DBEngine.Workspaces(0)
Set dbLib = ws.Databases![d:\dbase\library.mdb]
Set tdfBooks = dbLib.TableDefsIBOOKS

MsgBox tdfBooks.RecordCount

End Sub

By defining three object variables, ws, dbLib, and tdfBooks, we were able to avoid
writing the fully qualified name of BOOKS (on asingleline, that is). Also, the line:

MsgBox tdfBooks.RecordCount
ismuch easier to read. (It reads. "Message me the record count of TableDef tdfBooks.")

The use of object variablesin thisway has several advantages and is highly
recommended. First, it tends to make the lines of code shorter and more readable. Second,
we can refer to the object variable tdfBooks many times without having to write the fully
qualified object name each time. As aresult, the program will run somewhat faster, since
VBA does not have to resolve the object name by climbing down the object hierarchy
more than once.

FlyrHeart.com 4

TEAM FLY PRESENTS

14.4.3 Default Collections
There is another method that can be used for shortening fully qualified object names. In

particular, each object has adefault collection , which can be used as follows. Consider a
portion of afully qualified name:

Collectionl!Objectl.Collection2!0bject2
If Collection2 isthe default collection of Objectl, then this name may be shortened to:

Collectionl!Objectl!Object?2

where we have omitted the default collection name Collection2, as well as the preceding
dot.

For instance, the default collection of DBEngine is Wor kspaces. Hence:
DBEngine.Workspaces!MyWorkspace

can be shortened to:

DBEngine!MyWorkspace

and the phrase:

DBEngine.Workspaces(0)

can be shortened to:

DBEngine(0)

Also, since the default collection for a Wor kspace object is Databases, the phrase:
DBEngine.Workspaces(0) .Databases(0)

can be shortened to:

DBEngine(0)(0)

Table 14-3 shows the default collections in the DAO and Access object model.

Table 14-3. DAO and Access obj ect default collections

Object Default collection
DBEnNgine Workspaces
Workspace Databases
Database TableDefs
218 e

FlyrHeart.com

TEAM FLY PRESENTS

TableDef Fields
Recordset Fields
QueryDef Parameters
Index Fields
IRelation Fields
Container Documents
User Groups
Group Users
Forms Controls
]Reports |Contro|s

The use of default collections can save space. However, it does very little for readability
(to say the least) and is probably best |eft to programmers with so much experience that
they hardly read the names anyway! To emphasi ze the point, each of the linesin Example
14-4 displays the RecordCount property of the BOOKS table. Note that the full name of
the database library file on my computer is d:\dbase\library.mdb.

Example 14-4. A default collections example
Sub exaDefaultCollections()

MsgBox DBEngine.Workspaces(0) .Databases![d:\dbase\library.mdb]. _
TableDefs!IBOOKS.RecordCount

MsgBox _
DBEngine(0) .Databases![d:\dbase\library.mdb].TableDefsIBOOKS.RecordCoun
t

MsgBox DBEngine(0)![d:\dbase\library.mdb].TableDefs!BOOKS.RecordCount
MsgBox DBEngine(0)![d:\dbase\library.mdb]!BOOKS.RecordCount
MsgBox DBEngine(0)(0)!BOOKS.RecordCount

End Sub

14.5 Collections Are Objects Too

In atrue object-centric environment, everything is an object. While Access, VBA, and
DAO may not go thisfar, it istrue that collections are objects, and so they have their own
properties and methods.

In the Access environment, collections can be divided into three types:

Microsoft Access collections

Which are part of the Access object hierarchy

DAOQO collections

219 .

FlyrHeart.com

TEAM FLY PRESENTS

Which are part of the DAO hierarchy
User-defined collections
Which are VBA objects of type Collection

Note that only user-defined collections are of type Collection, whichisaVBA datatype,
not a DAO datatype. The properties and methods of collections are not very complicated,
so let uslist them here.

14.5.1 Properties and M ethods of Access Collections

The Access collections Forms, Reports, and Controls have no methods and only one
property, Count, which reports the number of objectsin the collection. Thus, the line:

Forms.Count

reports the number of opened forms in the current database. (When we discuss Container
objects, well seethat there is away to get the number of saved forms aswell.)

14.5.2 Propertiesand M ethods of DAO Collections

DAO collections fal into two categories with respect to their properties and methods. All
DAO collections have a single property: Count. All DAO collections also have the
Refresh method, which we will discuss a bit later. In addition, some of the collections
have the Append and corresponding De lete methods, while others do not.

Collections that have Append and Delete methods:
Workspaces
TableDefs
QueryDefs
Groups
Users
Relations
Fields
Indexes
Properties (explained later)
Collections that do not have Append and Delete methods:
Databases
Errors
Recordsets
Containers
Documents
Parameters

220

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Evidently, some collections do not have Append or Delete methods because DAO does
not want the user to append or delete objects from these collections. Thisis reasonable
because DAO takes care of collection housekeeping automatically for these collections.
For example, DA O automatically appends new databases to the Databases collection
whenever they are created using the CreateDatabase method. However, it does not do
so for new TableDef or QueryDef objects, for instance.

Note that Microsoft Access will do the housekeeping chores for you when objects are
created and saved using the Access interface.

14.5.3 Properties and M ethods of User-Defined Collections

User-defined Collection objects have one property: Count. They have three methods:
Add , Remove, and Item. Add and Remove perform as advertised by their names, and we
will see an example shortly. The 1tem method is used to identify theitemsin the
collection, since they may or may not have names.

A single user-defined collection can contain objects of various types, including other
collections. Hereis an example to illustrate the Add method.

In Example 14-5, we create two collections. colParent and col Child. We then place
colChild inside col Parent, along with the BOOK S TableDef object. Thus, the col Parent
collection contains two objects of very different types—one Collection object and one
TableDef object. (While this exampleis not of much practical value, it doesillustrate the
point.)

Example 14-5. A collections example
Sub exaCollections()

" Declare two variables of type collection
Dim colParent As New Collection
Dim colChild As New Collection

Dim tdfBooks As TableDef
Dim objVar As Object

Set tdfBooks = DBEngine(0)(0).TableDefs!Books

" Use Add method of collection object

" to add objects to colParent collection
colParent.Add colChild

colParent.Add tdfBooks

" Display size of collection
MsgBox "'Size of Parent collection " & colParent.Count

" Iterate through collection. Note use of
" TypeOf statement
For Each objVvar In colParent

IT TypeOf objVar Is Collection Then

FlyrHeart.com 4

TEAM FLY PRESENTS

MsgBox "'Collection"
ElselT TypeOf objvar Is TableDef Then
MsgBox objVar_Name
End If
Next

End Sub

In Example 14-5, we used the Add method of the Collection object to add items to the
collection and the Count property of the Collection object, which returns the size of the
collection. Note also the use of the TypeOF statement to determine the type of each object
in the collection.

Now let us consider the 1tem method, which returns a specific object from a collection.
The general syntax is:

Collection. Item(index)

where index is an index into the collection. Note that DAO collections begin with index
0 and go toindex Collection.Count - 1.

To illustrate the 1tem method, in place of the code:

For Each tbl In db.TableDefs
strTbls = strTbls & vbCrLf & tbl.Name
Next tbl

we could have written:

For 1 = 0 To db.TableDefs.Count - 1

strTbls = strTbls & vbCrLf & _
db.TableDefs. I1tem(i).Name

Next i

We should remark that an object's ordinal position in a collection is never guaranteed and
can sometimes change without warning. Thus, for example, it is unwiseto rely on the fact
that the object that is Item(0) at some time will always be Item(0).

Incidentally, one of the drawbacks of collections that contain different types of objects, as
in the previous example, is that we can seldom do the same thing to all of the objectsin
the collection. For this reason, creating collections containing different types of objectsis
generally not very useful.

14.5.4 Say It Again

It isworth re-emphasizing that the collections in the DAO hierarchy are not contained in
their parent collections (as is the case for the user-defined collectionsin the previous

222 =

FlyrHeart.com 4

TEAM FLY PRESENTS

example). For example, the TableDefs collection contains only TableDef objects (table
definitions). It does not contain the Fields collection. Rather, each TableDef object
contains a Fields collection. We can confirm this with the code in Example 14-6, which
displays the size of the TableDefs collection for the LIBRARY database as 14 and then
displays the names of each of its 14 objects, showing that there is nothing but TableDef
objectsin the TableDefs collection.

Example 14-6. A TableDef example
Sub exaCheckTableDefs()

Dim db As DATABASE
Dim tbl As TableDef
Dim strTbls As String

Set db = CurrentDb

strTbls = ™"
MsgBox db.TableDefs.Count
For Each tbl In db.TableDefs
strTbls = strTbls & vbCrLF & tbl_Name & " - ' & TypeName(tbl)
Next

MsgBox strTbls

End Sub

Running the code in Example 14-6 produces two message boxes; the second is shown in
Figure 14-8, which also shows that most of the TableDefs in the database are system-table
definitions, created by Microsoft Access for its own use. (Just in case some additional
tables get added to the LIBRARY database after this book goesto print, you may find a
different list of tables when you run this example.) Figure 14-8 also illustrates the use of
the function TypeName.

Figure 14-8. A list of TableDefs generated by exaCheckTableDefs()

{Microsoft Access

AUTHORS - TableDef
BOOEMALUTHOR - TableD e
BOOKS - Tablelef

lSusACE s - TableDef
MSpsbdodule: - TablaDief
Spshdodules? - TableDef
MSpz0bjects - TablaDef
MSuslluenes - TableDef

M5 psHelatiorships - TableDel
FURLISHERS - Tablelef

14.5.5 Refreshing Certain Collections

There are times when the Microsoft Jet engine does not have the latest information on the
contents of a collection. For example, this can happen in amultiuser environment, when
one user makes a change to a collection. It can also happen when a host environment,

223 =

FlyHeart.com g4

TEAM FLY PRESENTS

such as Microsoft Access, makes a change to the environment. To see this, try the
following simple experiment.

Enter the following code:

Sub temp(Q

Dim db As DATABASE
Set db = DBEngine(0)(0)

* db.TableDefs.Refresh
MsgBox "'Table count: " & db.TableDefs.Count

End Sub

Run the procedure. Y ou should get a message that there are 13 tables in the TableDefs
collection. Now use Microsoft Access to create a new table, and save the table. Then
rerun the previous code. It will still report that there are 13 tables! Now remove the
comment mark on theline:

" db.TableDefs.Refresh
and rerun the code. Y ou should now get an accurate table count.

The point here is that the Jet engine does not keep track of the machinations of its host
application—Microsoft Access. Hence, to be certain that a collection is up to date, you
may need to use the Refresh method.

14.6 The Properties Collection

One item that has been left out of the diagram of the DAO object model shown earlier in
Figure 14-5 (and is done so in most DAO diagrams) is the Properties collection. Thisis
because every DA O object has a Properties collection, so it would clutter up the diagram
considerably without adding much information. Figure 14-9 shows a Properties collection.

Figure 14-9. An Access properties collection diagram
Any DAD Collection

|

Properties

The purpose of the Properties collections is simple. Properties are objects too, and so
they are contained in collections, just like al other objects of the DAO (except
DBENgine). Thus, the Properties collection of an object contains the Property objects
(better known simply as properties) for the object.

224 -

FlyrHeart.com 4

TEAM FLY PRESENTS

The fact that the properties of an object are themselves objects and thusresidein a
collection, implies that we may access these properties in several different ways. For
example, the RecordCount property of the BOOK 'S TableDef object can be referred to in
any of the following ways (among others):

TableDefs!BOOKS.Properties!RecordCount
TableDefs(*'BOOKS™) .Properties(*'RecordCount'™)

or just:
TableDefs!BOOKS.RecordCount

Of course, the latter form is the simplest and most commonly used. Note that the
Properties collection is never the default collection for any object. Hence, for example,
the syntax:

TableDefs!1BOOKS!IRecordCount

(which differs from the previous only by a bang) will cause VBA to look for the
RecordCount object in the default Fields collection for the BOOKS TableDef object. Of
course, it will not find such an object and so the error message "Item not found in this
collection" will result.

14.6.1 The Virtuesof Properties Collections

There are several virtues to the existence of Properties collections. Oneisthat it is
possible to iterate through al of the properties of an object, using the For Eachsyntax
discussed earlier, for instance, without even knowing the names of the properties.

For example, the following simple code:

Dim db As DATABASE
Dim prp As Property
Set db = CurrentDb

For Each prp In db.TableDefs!IBOOKS.Properties
Debug.Print prp.Name
Next prp

produces the following list of all properties of the BOOKS object:

Name

Updatable
DateCreated
LastUpdated
Connect
Attributes
SourceTableName
RecordCount
ValidationRule

FlyrHeart.com 4

TEAM FLY PRESENTS

ValidationText
ConflictTable
OrderByOn
OrderBy

Another virtue of Properties collectionsisthat they allow for the creation (and storage)
of new properties. We discuss this next.

14.6.2 Types of Properties

In general, the properties of an object can be classified into three groups, depending upon
their origin:

e Built-in properties
o Application-defined properties
o User-defined properties

The Jet database engine defines built-in properties for its objects. For instance, a
TableDef object has a built-in Name property. In addition, Microsoft Access (and other
applications that may be using the Jet engine) can create application-defined properties.
For example, if you create atable in Microsoft Access and fill in the Description field in
the View...Properties dialog box, Access creates a Description property for the table and
appends it to the Properties collection for that TableDef object. Finaly, as we will see
later, the user can create his own properties.

It isimportant to note that an application-defined property is created only if the user
assigns avalue to that property. For example, if you do not specifically type a description
in the Description field, as discussed earlier, then Access will not create a Description
property. In other words, Access does not create a blank Description property. If you then
use this property in your code, an error will result. Thus, when you write programs that
refer to either application-defined or user-defined properties, it isimportant to check for
errors, in case the referenced property does not exist.

Of course, each Property object, being an object, has its own properties, but you will be
glad to hear that these properties do not have Property objects. (Where would this end?)

We should also mention that properties can be classified as read/write, read-only, or
write-only. A read/write property can be both read and written to (i.e., changed), whereas
aread-only property can be read but not changed, and a write-only property can be
changed but not read. When an object isfirst created, its read/write properties can be set.
However, in many cases, once the object is appended to a collection, some of these
properties may become read-only and can therefore no longer be changed.

The properties of a Property object are described as follows. A Property object has no
methods.

14.6.2.1 Property: Inherited

226 -

FlyrHeart.com 4

TEAM FLY PRESENTS

For the built-in Property objects, this value is always O (False). For user-defined
properties, thisvalueistrueif the property exists because it was inherited from another
object. For instance, any Recordset object that is created from a QueryDef object inherits

the QueryDef 's properties.

14.6.2.2 Property: Name

The usual Name property, which in this case is the name of the property represented by

this Property object.

14.6.2.3 Property: Type

This value gives the data type of the object. Note that the Type property is read/write
until the Property object is appended to a Properties collection, after which it becomes
read-only. The value of the Type property is an integer. VBA provides built-in constants
so that we do not need to remember integer values. Table 14-4 gives these values, along
with their numerical values, which are returned in code such asMsgBox Property.Type.

Table 14-4. Constantsfor the Type property in VBA

| Data type | Constant | Numerical value
Boolean dbBoolean 1
Byte dbByte 2
Integer dbinteger 3
Long dbLong 4
Currency dbCurrency 5
Single dbSingle 6
Double dbDouble 7
Date/Time dbDate 8
Text dbText 10
Long Binary (OLE Object) dbLongBinary 11
Memo dbMemo 12
GUID dbGUID 15

14.6.2.4 Property: Value

Finally, we get to the main property of a Property object—its value, which can be any
value commensurate with the assigned Type property of the Property object.

Let us consider another example of how to use the Properties collection. The codein
Example 14-7 will display the entire contents of the Properties collection for the BOOKS
TableDef object in the LIBRARY database.

Example 14-7. A Properties collection example

Sub exaProperties()

227

—_
FlyrHeart.com

TEAM FLY PRESENTS

Dim db As DATABASE
Dim tbl As TableDef
Dim prp As Property
Dim str As String

Set db = CurrentDb
Set tbl = db!BOOKS
str = "V

For Each prp In tbl_Properties

str = str & prp-Name

str = str & " = " & prp-Value

str = str & " (" & prp.-Type & ') "

str = str & prp.Inherited & vbCrLf
Next prp

MsgBox "'BOOKS has " & tbl_Properties.Count _
& " properties: " & vbCrLF & str

End Sub

Running this procedure gives the window shown in Figure 14-10, where each line has the
form Name = Value (Type) Inherited.

Figure 14-10. Window generated from executing exaPr operties

BOOKS has 13 properhies:

Mame = BOOKS [12] Faze

Updatable = Tree [1) Faze

DateCrested = 3/24/97 4:12:06 P (8] Fales
Laztilpdated = 3/27,/97 5:23:54 PM [B] Falze
Cormect = [12] Falze

Attibutes = 0 4] Falze

Sowcel sbleMame = [12) Fak=
RecordCount = 14 [4] Fal:e

WakdalicnFule = [12] Fale=

VabdationText = [12] Falze

CorflictT able = [12] False

ReplicaFiker = [1.2] Fake

DuderBpOn = Fatse (1] False

14.6.3 User-Defined Properties

We mentioned that a user can add user-defined properties to an object. Let us consider an
example of adding a new property to the BOOKS TableDef object.

The code in Example 14-8 adds the user-defined property named UserProperty to the
BOOKS table. It usesthe CreateProperty method of the TableDef object.

Example 14-8. A user-defined properties example
Sub exaUserDefinedProperty()

228 S

FlyrHeart.com

TEAM FLY PRESENTS

" Add user-defined property to BOOKS TableDef object

Dim db As DATABASE
Dim tbl As TableDef
Dim prp As Property

Dim str As String

Set db = CurrentDb
Set tbl = db!BOOKS

" Create new property using CreateProperty method
Set prp = tbl._CreateProperty(*'UserProperty', dbText,"Programming DAO is
fun.'™)

" Append it to Properties collection
tbl _Properties.Append prp

" List all properties
str = "V
For Each prp In tbl_Properties

str = str & prp-Name

str = str & " = " & prp-Value

str = str & " (" & prp.-Type & ') "

str = str & prp.Inherited & vbCrLf
Next prp

MsgBox *""BOOKS has " & tbl.Properties.Count & " properties: " & vbCrLf & str

End Sub

This procedure produces the window shown in Figure 14-11. Note the last property on the
list.

Figure 14-11. Window generated from executing exaUser DefinedPr operty

Microzoft Access

BOODKS has 14 paoperhes:

Mame = BOOKS [12) False

Updatable = T 1) Falza

DateCrested = 3/24/97 41206 PM [3) False
Lastilpdated = 3/27/97 5:23:54 PM [B]) False
Cormect = [12) False

Altributesz = 0 4] Falze

Sowrcel ableM ame = [12] Falss
RecordCount = 14 [4] Faka

WaldalionRuke = [12] Fales

VabdationText = [12] Falze
ConfliciTable = [12) Fake

ReplicaFite; = [12] False

OiderByOmn = Fakee [1] Falze

IizesPropesty = Programeming D40 s fun. [10) False

229 .

FlyrHeart.com

TEAM FLY PRESENTS

14.7 Closing DAO Objects

We should make a few remarks about closing DA O objects that have been opened
programmatically. The Database, Recordset, and Wor kspace objects each have aClose
method. This method will remove these objects from their respective collections. Thisis
appropriate for the three object types mentioned previoudy for the following reasons:

o The Databases collection is defined to be the collection of all open database
objects.

e The Recordset objects are temporary objects, to be used only for
data-mani pulation purposes.

« Attemptsto close the default Wor kspace object are ignored, but you can close
other Workspace objects.

Note that objects of types other than the three mentioned are intended to be persistent
members of their collections, stored on disk in the Access mdb file. However, they can be
removed from their respective collections by using the Delete method.

Here are some caveats to keep in mind with respect to closing objects:

o Aswewill seein Chapter 16, you should update (i.e., complete) all pending edits
before closing an open Recordset object.

e When aprocedure that declares a Recordset or Database object is exited, the
recordset or database is closed, and any unsaved changes or pending edits are |ost.

o |If you close a Database object while any Recordset objects are still open, or if
you close a Wor kspace object while any of its Database objects are open, those
Recordset objects will be automatically closed, and any pending updates or edits
will belost.

14.8 A Look at the DAO Objects

Now we can look briefly at each of the collections (and their objects) in the DAO Object
Model. | will discuss each object and mention afew of the more commonly used
properties and methods. A complete list of al collections, methods, and properties of
each object isgiven in Appendix A.

14.8.1 DBENgine Object

The DBENgine object, of which thereis only one, represents the Jet database engine. This
isthe only object in the DAO that is not contained in a collection. We have seen several
examples of its use, along with the fact that the default collection for the DBENngine
object is Workspaces, and so:

DBEngine.Workspaces(0)

isequivalent to:

230 -

FlyrHeart.com 4

TEAM FLY PRESENTS

DBEngine(0)

We have also seen that:

DBEngine(0) (0)

denotes the first database in the first (default) workspace.

The DBENgine object has methods to create a new workspace (CreateWorkspace), to
compact a database (CompactDatabase), and to repair a database (RepairDatabase),
among others.

14.8.2 Errors

From time to time, an operation may cause one or more errors to occur (or so | am told).
When this happens, the Errors collection isfirst emptied and then filled with one Error
object for each error that the operation caused. (Some operations may cause more than
one error.) Note that if no errors occur, the Errors collection remains as it was before the
operation.

Example 14-9, which deliberately produces an error, illustrates the use of the Errors
collection. It also demonstrates the use of three Error object properties. Number (the
VBA error number), Description (a description in words of the error), and Source (the
object or application that generated the error).

Example 14-9. An Errorscollection example
Sub exaErrorsCollection()

" Note declaration of object variable of type Error
Dim dbsTest As DATABASE

Dim txtError As String

Dim errObj As Error

On Error GoTo ehTest

" A statement that produces an error
Set dbsTest = _
DBEngine._Workspaces(0) .OpenDatabase(**'NoSuchDatabase')

Exit Sub
ehTest:

txtError = """

" Loop through the Errors collection,

" to get the Number, Description and Source
" for each error object

For Each errObj In DBEngine.Errors

txtError = txtError & Format$(errObj.Number)
txtError = txtError & ": "™ & errObj.Description
txtError = txtError & " (" & errObj.Source & "™)"

FlyrHeart.com 4

TEAM FLY PRESENTS

txtError = txtError & vbCrLf
Next

MsgBox txtError
Exit Sub

End Sub
Running this code produces the window in Figure 14-12.

Figure 14-12. Error message from executing exaError sCollection

Microzoft Access

3024: Coulidnt find tie "NoSuchD atabaze’. [D&0 \Wordizpace|

14.8.3 Wor kspaces

There is one Workspace object for each Access user session. In a single-user environment,
thereis generally only one session running. When a user starts A ccess with no security
options enabled, Access automatically creates a Workspace called:

DBEngine.Workspaces(0)

Since we are not concerned in this book with multiple users or with database-security
issues, we will not be creating multiple workspaces.

The values of the Name and UserName properties of the default Workspace object are
easily determined by running the following code:

Sub Test()

MsgBox "'Count: ' & DBEngine.Workspaces.Count
MsgBox **Name: "' & DBEngine.Workspaces(0) .Name
MsgBox "'UserName: " & DBEngine.Workspaces(0).UserName

End Sub

This code should produce three message boxes, indicating that there is only one open
workspace, with name #Default Wor kspace# and username admin.

Among the methods of a Workspace object are CreateDatabase (for creating a new
database) and openDatabase (for opening an existing database). Another interesting
group of methods isBeginTrans, CommitTrans, and Rol Iback, which alow the
programmer to group several operations into one transaction. At the end of the
transaction, the programmer can commit the operations—or rollback the database to its
state prior to any of the operations in the transaction. One use for thisisin updating

232 =

FlyrHeart.com 4

TEAM FLY PRESENTS

related tables (as in transferring money from one table to another). If the entire group of
operations is not completed successfully, then arollback is probably desirable.

Wor kspace objects also have a Close method for closing opened workspaces. However,
the method isignored when applied to the default Workspace under Microsoft Access.

14.8.4 Users

The Jet engine provides security by assigning access permissions to users of the engine.
A User object represents a user of the Jet engine. The Users collection contains all User
objects. (Of course, female users are never to be considered objects.)

14.8.5 Groups

A Group object represents a set of User objects (users) that have a common set of access
permissions. By using Group objects, anew user can be given a set of access permissions
simply by adding the corresponding User object to the appropriate Group object. The
Groups collection holds al Group objects.

14.8.6 Databases

A Database object represents a currently open database. In Microsoft Jet, you can have
multiple databases open at one time (using the openbatabase function, discussed in
Chapter 15). However, the Microsoft Access environment can display a graphical
interface for only one database. In the Microsoft Access environment, when a database is
opened, it is assigned to DBEngine . Workspaces(0) . Databases(0).

Database objects have a variety of methods for creating new objects. CreateProperty,
CreateQueryDef, CreateTableDef, and OpenRecordset. Thereisalso an Execute
method for running action queries or executing SQL statements on the database. As
mentioned earlier, Database objects also have a Close method.

14.8.7 TableDefs

A TableDef object represents atable definition for a saved table in the database. A
TableDef object is more than atable scheme, in that it also has a RecordCount property
that gives the number of rows in the table (and thus, in some sense, reflects the datain the
table). However, it islessthan atable, in that it does not describe the actual datain the
table. The TableDefs collection contains all TableDef objects for a given database.
TableDef objects have methods for creating fields (CreateField), indexes
(Createlndex), and opening recordsets (OpenRecordset).

233 -

FlyrHeart.com 4

TEAM FLY PRESENTS

14.8.8 QueryDefs

A QueryDef object represents a saved query in the database. The QueryDefs collection
contains all QueryDef objects for a given database. One of the most interesting properties
of a QueryDef object is SQL, which can be used to set or read the SQL definition of the
QueryDef object.

14.8.9 Recor dsets

A Recordset object represents data from one or more tables or queries, and is used to
manipulate that data. Note that a Recordset object istemporary, in that it is not saved
with the application. In fact, recordsets are created in code using the OpenRecordset
function. The Recordsets collection contains all open Recordset objects in the current
database.

Recordset objects are the workhorses of the DAO object model, with about 15 different
methods and about 20 different properties. There are actually three types of Recordset
objects—Table-type, Dynaset, and Shapshot—used for different purposes. We will
discuss recordsets in Chapter 15.

14.8.10 Relations

A Relation object represents a relationship between certain fields in tables or queries. The
Relation object can be used to view or create relationships. The Relations collection
contains all Relation objects for a given database. We will discuss how to create a
relationin .

14.8.11 Containers
The Microsoft Jet engine provides the Containers collection as alocation where a host

application, such as Microsoft Access, can store its own objects. Thisis done through the
use of Container objects, as shown in Figure 14-13.

Figure 14-13. Container objects diagram of the M S Jet engine

234 -

FlyrHeart.com 4

TEAM FLY PRESENTS

: Databases Tables Relations
! Container Container Container
: Forms Reports Macros Modules
! Container Container Container Container

Mocuments Collection

Report Document Objects

Documents Collection

Form Document Objects

The Jet engine itself creates three Container objects:

- e e

o A Databases container object, containing information about the database
e A Tables container object, containing information about each saved table and

query
e A Relations container object, containing information about each saved
relationship

It isimportant not to confuse these Container objects (which are not collections,

despite

their names) with the Databases, TableDefs, and Relations collections. Indeed, these
objects are at entirely different locations in the DAO object hierarchy and serve different

purposes, as we will see.

In addition to the Container objects created by the Jet engine, Microsoft Access storesits
forms, reports, macros, and modules in the Containers collection. Hence, the Containers

collection aso contains:

e A Forms container object, containing information about all saved forms

e A Reports container object, containing information about all saved reports
e A Macros container object, containing information about all saved macros
e A Modules container object, containing information about al saved modules

The Forms and Reports Container objects should not be confused with the Microsoft

Access collections of the same name (in the Access object model). In particular,
former contains information about all saved objects, whereas the | atter contains
information about all open objects.

235

the

—
FlyrHeart.com 4

TEAM FLY PRESENTS

To illustrate the aforementioned difference, create and save two formsin an Access
session, and make sure that only one form is open. Then run the code in Example 14-10,
which should report that the open form count is 1 but the saved form count is 2.

Example 14-10. A Containers collection example
Sub exaFormsContainer()

Dim db As DATABASE
Dim frm As Form
Dim doc As Document

Set db = CurrentDb

Debug.Print "Opened form count: " & Forms.Count
For Each frm In Forms
Debug.Print frm_Name
Next
Debug.Print

Debug.-Print *"'Saved form count: " & db.Containers!Forms.Documents.Count
For Each doc In db.Containers!Forms.Documents

Debug.Print doc.Name
Next

End Sub

Note that a user cannot create new or delete existing Container objects—they are
controlled by the Jet engine only. Put another way, there is no such thing as a
user-defined Container object. The properties of a Container object generally reflect
security-related issues, such as permission and user/group names. Container objects have
no methods.

14.8.12 Documents

We have seen that applications (including Jet and Access) store objects through the use of
Container objects. However, the Forms Container object, for example, is not of any real
interest per se. The Form objects that reside within the Forms container are of interest.
Actualy, these Form objects are referred to as Document objects and are contained in the
Documents collection of the Forms container, also shown in Figure 14-6. (If you are
getting a bit confused, Figure 14-6 should help—it always helps me.)

Thus, it is the Document objects (in a Documents collection) that are the raison d'étre for
the Container objects. Example 14-11 illustrates afew of the properties of a Document
object: Container, DateCreated, LastUpdated, Name, and Owner. It displays the value of
various properties of the Document objects in the Documents collection of the Tables
Container object.

Example 14-11. Properties of the Document object

Sub exaTablesDocuments()
Dim db As DATABASE

236 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Set db = CurrentDb
Dim docs As Documents
Dim doc As Document

Set docs = db.Containers!Tables.Documents
Debug.Print "Count: " & docs.Count

For Each doc In docs

Debug.Print "Container: " & doc.Container
Debug.Print ""DateCreated: " & doc.DateCreated
Debug.Print "LastUpdated: " & doc.LastUpdated
Debug.Print "Name: " & doc.Name

Debug.-Print "Owner: " & doc.Owner

Debug.Print

Next doc

End Sub

Hereis aportion of the output from executing Example 14-11:

Count: 16

Container: Tables

DateCreated: 10/22/96 3:16:44 PM
LastUpdated: 10/24/96 1:36:16 PM
Name: AUTHORS

Owner: admin

Container: Tables

DateCreated: 10/22/96 3:19:47 PM
LastUpdated: 10/24/96 1:36:16 PM
Name: BOOK/AUTHOR

Owner: admin

Container: Tables

DateCreated: 5/15/96 6:16:29 PM
LastUpdated: 5/15/96 6:16:29 PM
Name: MSysACEs

Owner: Engine

Container: Tables

DateCreated: 5/15/96 6:16:31 PM
LastUpdated: 5/15/96 6:16:31 PM
Name: MSysIMEXColumns

Owner: admin

14.8.13 Fields

The Fields collection contains Field objects, which describe the variousfieldsin a

TableDef, QueryDef, Index, Relation, or Recordset object.

237

—
FlyrHeart.com 4

TEAM FLY PRESENTS

14.8.14 Parameters

The parameters of a parameter query are represented by Parameter objects, contained in
the Parameters collection for that QueryDef object. Note that Parameter objects cannot
be added to or deleted from the Parameters collection—Parameter objects represent
existing parameters. Let us consider an example.

The code in Example 14-12 creates a parameter query named ParameterQuery and
demonstrates some of the properties of a Parameter object—namely, Name, Type, and
Value.

Example 14-12. A parameter query example

Sub exaParameters()
Dim db As DATABASE
Dim qdf As QueryDef
Dim strSQL As String

Set db = CurrentDb

" Create an SQL statement with parameters
strsSQL = "SELECT * FROM BOOKS WHERE _
Price > [Enter minimum price]"

" Create a new QueryDef object
Set qdf = db.CreateQueryDef(*'ParameterQuery", strSQL)

" Supply value for parameter
qdf_PARAMETERS![Enter minimum price] = 15

" Now query query

Debug.Print qdf.PARAMETERS![Enter minimum price].Name
Debug.Print qdf.PARAMETERS![Enter minimum price].Type
Debug.-Print qdf.PARAMETERS![Enter minimum _
price]-Value

End Sub
14.8.15 Indexes

An Indexes collection contains all of the saved Index objects (i.e., indexes) for a TableDef
object. We will discuss how to create an index in Chapter 15.

14.9 The CurrentDb Function

We have seen that DA O refers to the current database as:

DBEngine.Workspaces(0) .Databases(0)

or, through default collections, as:

238 =

FlyrHeart.com 4

TEAM FLY PRESENTS

DBEngine(0)(0)

However, within Microsoft Access, there is a preferred way to refer to this database,
since, unlike DBEngine(0) (0), it is aways current with respect to changes made using
the Access graphical interface. This preferred way is to use the Access function
CurrentDb. Unfortunately, there is some confusion as to precisely what this function
does.

Hereis part of what the Access help system says about this function:

The CurrentDb function returns an object variable of type Database that represents the
database currently open in the Microsoft Access window.

The CurrentDDb function provides away to access the current database from Visual Basic
code without having to know the name of the database. Once you have a variable that
points to the current database, you can also access and manipul ate other objects and
collections in the data access object hierarchy.

Y ou can use the CurrentDb function to create multiple object variables that refer to the
current database. In the following example, the variables dbsA and dbsB both refer to the
current database:

Dim dbsA As Database, dbsB As Database
Set dbsA CurrentDb
Set dbsB CurrentDb

This certainly makes it appear as though the object variables dbsA and dbsB point to a
single Database object, namely, the currently open database. In other words, executing
the instruction:

Set db = CurrentDb

implies that db points to the Database object known to DAO as DBEngine(0) (0).
However, the Help system goes on to say:

Note: In previous versions of Microsoft Access, you may have used the syntax
DBEnNgine.Wor kspaces(0).Databases(0), or DBENngine(0)(0) to return a pointer to the
current database. In Microsoft Access for Windows 95, you should use the CurrentDb
function instead. The CurrentDb function creates another instance of the current database,
while the DBEngine(0)(0) syntax refersto the open copy of the current database. Using
the CurrentDb function enables you to create more than one variable of type Database
that refersto the current database. Microsoft Access still supports the DBEngine(0)(0)
syntax, but you should consider making this modification to your code in order to avoid
possible conflicts in a multiuser database.

This seems to contradict the previous statements, by indicating that each time CurrentDb
is executed, it creates a new Database object. Actualy, if the current database is

239 -

FlyHeart.com g4

TEAM FLY PRESENTS

considered an object, then the statement "...creates another instance of the current
database..." makes no sense, since you cannot create an instance of an object. (In
object-oriented terms, you can create an instance of a class, and such an instanceis called

an object.)

In any case, each call to CurrentDb does seem to create a new object, as we can see from
the experiment in Example 14-13, which checks the Count property of the Databases
collection both before and after calling CurrentDb, showing that the count goes up.

Example 14-13. A CurrentDb function example

Sub exaCurrentDB()

Dim db, dbExtra, dbOriginal As DATABASE
Dim str As String
Dim 1 As Integer

Set dbOriginal = DBEngine(0)(0)

" Check the database count

MsgBox "Initial db count: " & _
DBEngine.Workspaces(0) .Databases.Count

" Invoke CurrentDB
Set dbExtra = CurrentDb()

" Check the database count again
MsgBox "'Count after CurrentDb run: " &

DBEngine.Workspaces(0) .Databases.Count B

" Display the two database names
str = "

For Each db In DBEngine._Workspaces(0) .Databases

str = str & vbCrLf & db.Name
Next db
MsgBox "'Db Names: " & vbCrLFf & str
dbExtra.Close

End Sub

If each call to CurrentDb produces a pointer to a new object, then it is natural to wonder
what happens if we change the object pointed to by one of these pointers. Does it affect
the other objects? What about DBEngine(0) (0)? Consider the code in Example 14-14,

which does the following:

o Creates two Database object variables dbOne and dbTwo and sets both equal to

CurrentDb

e Addsanew field NewFieldl to the BOOK S table using dbOne
e Addsanew field NewField2 to the BOOK S table using dbTwo
o Displaysthelist of fields for BOOKS using doOne
o Displaysthelist of fields for BOOKS using dbTwo

240

—
FlyrHeart.com 4

TEAM FLY PRESENTS

e Closes dbOne and dbTwo; that is, it removes their objects from the Databases
collection

Example 14-14. The dbOne and dbTwo variable example
Sub exaCurrentDb2()

Dim dbOne As Database, dbTwo As DATABASE
Dim fldNew As Field
Dim str As String

Set dbOne
Set dbTwo

= CurrentDb

= CurrentDb

" Get field list in BOOKS

str = "Fields before: " & vbCrLF

" "MsgBox dbOne.TableDefs!Books.Fields.Count

For Each fldNew In dbOne.TableDefs!Books.Fields
str = str & fldNew.Name & vbCrLfF

Next

" Use dbOne to add a new field to BOOKS
Set fldNew = dbOne.TableDefs!Books.CreateField("'NewFieldl', dblnteger)
dbOne.TableDefs!Books.Fields.Append fldNew

" Use dbTwo to add a new field to BOOKS
Set fldNew = dbTwo.TableDefs!Books.CreateField("'NewField2'", dblnteger)
dbTwo.TableDefs!Books.Fields.Append fldNew

""Stop - (see the explanation in the text)

" Refresh Fields collection using dbOnel!ll
dbOne.TableDefs!BOOKS.Fields.Refresh

" Get field list now using dbOne
str = str & vbCrLF & "Fields after using dbOne: " & vbCrLf
For Each fldNew In dbOne.TableDefs!Books.Fields
str = str & fldNew.Name & vbCrLf
Next

" Get field list now using dbTwo
str = str & vbCrLF & "Fields after using dbTwo: " & vbCrLf
For Each fldNew In dbTwo.TableDefs!Books.Fields
str = str & FfldNew_.Name & vbCrLF
Next

MsgBox str

dbOne.Close
dbTwo.Close

End Sub

Running this code produces the window shown in Figure 14-14.

241 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 14-14. Message box from executing exaCurrentDb2

Miciosoil Acoess

Fields befoae:
ISEN

Tille

PubilD

Price

Fiekds after using dolne
ISEN

Tille

PubilD

Frice

Meweigld]

MewFisld2

Fields afler uzing dbT wa
ISBN

Title

Publl

Frice

MewFieldl

MewFisld2

Thus, it appears that changing the Database object pointed to by dbTwo doesin fact aso
change the Database object pointed to by doOne. However, if we do not refresh the
Fields collection using the variable dbOne, or if we refresh using the variable dbTwo
instead, we get the message box shown in Figure 14-15. Note that NewField2 is missing
from the second group.

Figure 14-15. M essage box from executing exaCurrentDb2() when refreshing

with dbTwo
Field: before:
ISBM
Tikle
Py

Piice

Fields after uzng dbOre:
IZEM

Tkl

PublD

Piice:

NewFieldl

Figld: after using dbTwia:
ISEN

Titl=

Publly

Plice

NewaFzld]

NewFisld2

Note also that even before the two objects dbOne and dbTwo have been closed, the
Access graphical interface has been updated to reflect the two new fields. In fact, if you
uncomment the Stop line in Example 14-14 and check the design of the BOOK S table
though Access, you will find that both new fields appear, even before the Refresh
method is called.

242 N

FlyrHeart.com

TEAM FLY PRESENTS

Running exaCurrentDb2

To examine the behavior of the procedure shown in Example 14-14, do the
following:

1. Runtheprogram asis. Access displaysthe dialog in Figure 14-14.

2. Delete NewField1l and NewField2 from the BOOKS table. Y ou can do
this by opening the table in Design view, selecting each field separately,
and choosing the Delete Row option from the Edit menu.

3. Comment out (using either the Rem statement or the = character) the call

to the Refresh method, then run the procedure. Access displaysthe

dialog box in Figure 14-15.

Once again, delete NewField1l and NewField2 from the BOOK Stable.

Remove the comment from the call to the Refresh method, and change

it to read dbTwo . TableDefs!Books.Fields.Refresh. When you run

the procedure, A ccess once again displays the dialog box shownin

Figure 14-15.
6. Once again, delete NewField1l and NewField2 from the BOOK S table.

o A

It's necessary to delete both NewField1 and NewField2 each time you run some
variation of this procedure, since otherwise Access will display a"Can't define
field more than once" error message.

All of this experimenting leaves us with afeeling that there are some mysteries associated
with CurrentDb that Microsoft is not revealing (at least not readily). We can summarize
asfollows:

e Invoking CurrentDb creates another member of the Databases collection.

e On the other hand, each variable set through CurrentDb seems to affect the same
database.

o Refreshing isrequired to keep objects created through multiple invocations of
CurrentDb current, belying the purpose of CurrentDb to some extent.

e On the other hand, the Access interface does not require refreshing—it reflects the
latest operations performed using any of the invocations of Currentbb.

These issues notwithstanding, it makes sense to follow Microsoft's recommendation to
use CurrentDb, since it does reflect the current state of the Access environment more
accurately than DBEngine (0) (0). Just be advised that some circumspection (refreshing)
is needed when creating more than one variable through CurrentDb.

Finally, if you do use CurrentDb, then you should use it according to Microsoft's rules,
found in the Access 7.0 readme file acreadme.txt (but missing from the Access 8.0
readme file acread80.wri). Itstext is reproduced here. Note the use of the word "once."

243 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

Using the CurrentDb Function to Return a Reference to the Current Database

When you write code that includes a reference to the current database, you should declare
avariable of type Database and use the CurrentDb function once to assign to it a pointer
to the current database. Y ou should avoid using CurrentDb to return the current database
in a statement that also returns a reference to another object, such as a Set statement. It
was possible to do this in some beta versions of Microsoft Access, but in Microsoft
Access for Windows 95, your code may not run properly. For example, to determine the
number of Document objects in the Documents collection, you should write code such as
that shown in the following two examples:

Dim dbs As Database, con As Container
Set dbs = CurrentDb

Set con = dbs.Containers!Forms
Debug.Print con.Documents.Count

or

Debug.Print _
CurrentDb.Containers!Forms.Documents.Count

Code such as the following will not work:

Dim con As Container
Set con = CurrentDb.Containers!Forms
Debug.Print con.Documents.Count

244 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 15. Programming DAO: Data Definition Language

In the overview of DAO, | noted that Data A ccess Objects consists of two conceptually
distinct components: a data definition language (DDL), which allows usto create or
access some basic database system objects, like databases, table definitions, and indexes;
and a data manipulation language (DML), which allows us to perform the practical
operations of adding data (records) to our tables, deleting unwanted data, and modifying
existing data. In this chapter, | discussthe DDL aspects of DAO.

Let us begin by noting the following:

o Toindicate variables of acertain type, | will write the type name followed by the
suffix var. For example, DatabaseVardenotes a variable of type Database, and
TableDefVvar denotes a variable of type TableDef.

e Indescribing the syntax of certain methods, | will use square brackets ([]) to
indicate optional items.

o | will generaly givethe full syntax of methods, but will only give details on the
more common options. Of course, full details are avail able through the Access
help system.

15.1 Creating a Database

Databases are created using the CreateDatabase method of a Workspace object. The
genera syntax of this method is:

Set DatabaseVar = [WorkspaceVar.]CreateDatabase _
(DatabaseName, locale [, options])

where:

e DatabaseName isastring expression representing the full path and name of the
database file for the database being created. If you don't supply afilename
extension, then the extension .mdb is automatically appended.

e locale isastring expression used to specify collating order for creating the
database. Y ou must supply this argument, or an error will occur. For the English
language, use the built-in constant dbLangGeneral.

e options relatesto specifying encryption or use of a specific version of the Jet
database engine. For more information, please see Access help.

15.1.1 Notes

e ThecCreateDatabase method creates a new Database object, appends the
database to the Databases collection, saves the database on disk, and then returns
an opened Database object, but the database has no structure or content at this
point.

FlyrHeart.com 4

TEAM FLY PRESENTS

e Toduplicate adatabase, you can use the CompactDatabase method of a
Wor kspace object, specifying a different name for the compacted database.

e A database cannot be deleted programmatically through DAO. To delete a
database programatically, use the KILL statement in VBA.

Example 15-1 creates a new database named MoreBks.mdb on the directory c:/temp and
then lists the tables that are contained in the database.

Example 15-1. A CreateDatabase method example

Sub exaCreateDb()
Dim dbNew As DATABASE
Dim tbl As TableDef

Set dbNew = CreateDatabase

(""c:\temp\MoreBks", dbLangGeneral)

For Each tbl In dbNew.TableDefs
Debug.Print tbl_Name
Next

dbNew.Close
End Sub

The program in Example 15-1 displays the following list of tables:

MSysACEs
MSysObjects
MSysQueries
MSysRelationships

These tables are created by Microsoft Access for its own use.
15.2 Opening a Database

To open an existing database, use the OpenDatabase method of a Workspace object. The
syntax is.

Set DatabaseVar = [WorkspaceVar.]OpenDatabase _
(DatabaseName[, exclusive[, read-only[, source]]l])

where DatabaseName IS the name of an existing database. (As indicated by the square
brackets, the other parameters are optional.) For information about the optional
parameters, see the Access help system.

It isimportant to remember to close a database opened through the OpenDatabase
method. This removes the database from the Databases collection.

246 -

FlyrHeart.com 4

TEAM FLY PRESENTS

15.3 Creating a Table and Its Fields

Tables are created using the CreateTableDef method of a Database object. The full
syntax of this method is:

Set TableDefVar = DatabaseVar.CreateTableDef _
([TableDefName[, attributes[, source[, connect]]11D)

where:

e TableDefName isastring or string variable holding the name of the new TableDef
object.
« For information about the optional parameters, see the Access help system.

15.3.1 Notes

e Thenew TableDef object must be appended to the TableDefs collection using the
Append method. However, before appending, the table must have at least one
field.

e CreateTableDef does not check for an already used TableDefName. If
TableDefName does refer to an object already in the TableDefs collection, an
error will occur when you use the Append method, but not before.

e Toremove aTableDef object from a TableDefs collection, use the Delete
method.

Fields are created for atable using the CreateField method of the TableDef object. The
syntax is.

Sset Fieldvar =
TableDefVar .CreateField _
([FieldName[, type [, sizelll)

where:

e FieldName isastring or string variable that names the new Field object.

e type isan integer constant that determines the data type of the new Field object.
(See Table 15-1.)

e sizeisaninteger between 1 and 255 that indicates the maximum size, in bytes,
for atext field. Thisargument isignored for other types of fields.

Table 15-1. Constantsfor the Type property

| Datatype | Constant | Numerical value
Boolean dbBoolean 1
Byte dbByte 2
247 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Integer dblnteger 3
Long dbLong 4
Currency dbCurrency 5
Single dbSingle 6
IDOUUe |dbDouUe 7
Date/Time dbDate 8
Text dbText 10
Long Binary (OLE Object) dbLongBinary 11
Memo dbMemo 12
\GUID [dbGUID 15
15.3.1.1 Note

To remove afield from a TableDef object, use the Delete method.
Field objects have a variety of properties, among which are:
AllowZeroLength

True if azero-length valueisvalid for atext or memo field. (Setting this property
for anontext field generates an error.)

DefaultValue
Sets or returns the default value of a Field object.
Required
True indicates that a null value is not allowed.
ValidationRule and ValidationText
Used for validation of field values. (See the following example.)
The procedure in Example 15-2 creates a new table named NewTable, creates anew field

named NewField, sets certain properties of the field and appendsiit to the Fields
collection, and then appends the new table to the TableDefs collection.

Example 15-2. A CreateT ableDef method example
Sub exaCreateTable()

Dim db As DATABASE
Dim tbINew As TableDef
Dim fld As Field

Set db = CurrentDb

FlyrHeart.com

TEAM FLY PRESENTS

Set tbINew = db.CreateTableDef("'NewTable')
Set fld = tbINew.CreateField("'NewField", dbText, 100)

" Set properties of Ffield BEFORE appending
" zero length value is OK
fld.AllowZeroLength = True

" default value is "Unknown*
fld.Defaultvalue = "Unknown"
* Null value not allowed
fld.Required = True
" Validation
fld.vValidationRule
fld.vValidationText

“"Like "A*" or Like "Unknown-®"
"Known value must begin with A"

" Append field to Fields collection
tbINew.Fields.Append fld

" Append table to TableDef collection
db.TableDefs.Append tblINew

End Sub

Setting the validation properties of afield requires setting two properties. The
ValidationRule property is atext string that describes the rule for validation, and the
ValidationText isastring that is displayed to the user when validation fails. After running
the code from Example 15-2, a new table appears in the Access Database window. (You
may need to move away from the Tables tab and then return to that tab to see the new
table.) Opening thistable in Design View shows the window in Figure 15-1. Note that the
Field Properties setting reflects the properties set in our code.

Figure 15-1. Design view of table generated from running exaCreateT able

[NewTable : Table [_[o]x]
Field Mame Diata Tupe Descriokion -
H hewField] Test -
Field Proparties

Ganerdl I Loakup] A figkd
Field Size 100 niame Can
Farmat be up ko
Input Mask b
Capticn characters
Defauk Yale Uniknown o Il-lr::?-.
Yabdation Rule Like “5% Or Like ‘Unlknosn’ sp-a-ces :
Wabdation Text Kruown walue must begin with A Press FL
Required e far help
Allow Zero Length es i fiedd
Tredeed . mames,

Incidentally, TableDef objects also have ValidationRule and ValidationText properties,
used to set validation rules that involve multiple fieldsin the table.

FlyHeart.com g4

TEAM FLY PRESENTS

15.3.2 Changing the Properties of an Existing Table or Field

| have remarked that some properties that are read/write before the object is appended to
its collection become read-only after appending. One such example is the Type property
of afield. On the other hand, the Name property of afield can be changed. Thisisan
example of achange that can be made using DAO but not by using SQL.

15.4 Creating an Index

Indexes are created using the Create Index method for a TableDef object. Here isthe
syntax:

Set IndexVar = TableDefVar.Createlndex([IndexName])

Creating an index by itself does nothing. We must append one or more fields to the
Fields collection of the index in order to actually index the table. Moreover, the order in
which the fields are appended (when there is more than one field) has an effect on the
index order. Thisis demonstrated in Example 15-3, in which anew index called PriceTitle
is added to the BOOK S table.

Example 15-3. A Createl ndex method example
Sub exaCreatelndex()

Dim db As DATABASE
Dim tdf As TableDef
Dim 1dx As INDEX
Dim fld As Field

Set db = CurrentDb
Set tdf = db.TableDefs!BOOKS

" Create index by the name of PriceTitle
Set idx = tdf.Createlndex("PriceTitle")

" Append the price and then the Title fields
" to the Fields collection of the index

Set fld = idx.CreateField("Price')
idx_.Fields.Append fld

Set fld = idx.CreateField("Title"™)
idx.Fields.Append fld

" Append the index to the indexes collection
* for BOOKS
tdf. Indexes.Append idx

End Sub

Figure 15-2 shows the result of running the program from Example 15-3. (To view this
dialog box, open the BOOK S table in design view, and select the Indexes option from the

FlyrHeart.com 4

TEAM FLY PRESENTS

View menu.) The figure shows clearly why we first create two fields—Price and
Title—and append them, in that order, to the Fields collection of the index.

Figure 15-2. Indexes view of BOOK Stable from running exaCr eatel ndex

| £ Indexes: BOOKS E
Index Mams Fiald Mama Sort Crder -
B | PriceTitle Price Azcending
| Title Aiscanding |
% | Primarykey 15N hecending
| |PubID PubID Ascending
|| PubTitle PubIn Azcending
Title Azcending ﬂ
Index Properties
Prifmary ha
Unique Ho The name Fior this index. Each
Ignore Muls ko index can use up ko 100 Fields,

Aswe discussed in an earlier chapter, an index for atableis actually afile that contains
the values of the fields that make up the index, along with a pointer to the corresponding
records in the table. Microsoft tends to blur the distinction between an index (as afile)
and the fields that contribute to the index. Thus, to say that an index is primary is to say
that the fields (actually, the attributes) that make up the index constitute a primary key.
With thisin mind, some of the important index properties are:
DistinctCount

Gives the number of distinct valuesin the index.

IgnoreNulls

Determines whether a record with anull value in the index field (or fields) should
be included in the index.

Primary

Indicates that the index fields constitute the primary key for the table.
Required

Determines whether all of the fields in amultifield index must befilled in.
Unique

Determines whether the values in aindex must be unique, thus making the index
fields akey for the table.

251 e

FlyrHeart.com

TEAM FLY PRESENTS

Note that the difference between a primary key index and a unique valuesindex isthat a
primary key is not allowed to have NULL values.

15.5 Creating a Relation
Relations are created in DAO using the CreateRelation method. The syntax is:

Set RelationVar = DatabaseVar .CreateRelation _
([RelName[, KeyTable[, ForeignTable[, Attributes]]1D)

where;

e RelName isthe name of the new relation.

e KeyTable isthe name of the referenced table in the relation (containing the key).

e ForeignTable isthe name of the referencing table in the relation (containing the
foreign key).

e Attributes isaconstant, whose values are shown in Table 15-2.

Table 15-2. Attributesfor a Relation object

Constant Description
dbRelationUnique Relationship is one-to-one
dbRelationDontEnforce |No referential integrity

Relationship exists in a noncurrent database that contains the two attached
tables

dbRelationUpdateCascade|Cascading updates enabled
]dbReI ationDel eteCascade |Cascading deletions enabled

dbRelationlnherited

15.5.1 Notes

o All of the properties of a Relation object become read-only after the object is
appended to a Relations collection.

o Field objectsfor the referenced and referencing tables must be appended to the
Fields collection prior to appending the Relation object to the Relations

collection.

e Duplicate or invalid names will cause an error when the Append method is
invoked.

« Toremove aRelation object from a collection, use the Delete method for that
collection.

Example 15-4 illustrates the use of Relation objects. In this example, we will create a new
relation in the LIBRARY database. Thefirst step isto create a new table, using Microsoft
Access. Call the table SALESREGIONS, and add two text fields: PublD and
SalesRegions. Then add afew rows shown in Table 15-3 to the table.

FlyHeart.com g4

TEAM FLY PRESENTS

Table 15-3. The SALESREGIONS table

| PublD | SalesRegions
11 \United States

1 Europe

1 Asia

2 United States

2 Latin America

The code in Example 15-4 creates arelation between the PublD field of the PUBLISHERS
table (the primary key) and the PublD field of the SALESREGIONS table (the foreign

key).

Example 15-4. A CreateRelation method example
Sub exaRelations()

Dim db As DATABASE
Dim rel As Relation
Dim fld As Field

Set db = CurrentDb

" Create relation
Set rel = db.CreateRelation("'PublisherRegions',
"PUBLISHERS", '""SALESREGIONS'™)

" Set referential integrity with cascading updates
rel _Attributes = dbRelationUpdateCascade

" Specify the key field in referenced table
Set fld = rel.CreateField(""PublID™)

" Specify foreign key field in referencing table.
fld.ForeignName = "PublD"

"Append Field object to Fields collection of
" Relation object.
rel _Fields_Append fld

" Append Relation object to Relations collection.
db.Relations.Append rel

End Sub

After running this code, make sure the Database window is active, and select Tools —>
Relationships from the Access menu bar. Then select Relationships —Show All, and you

should see awindow similar to that in Figure 15-3, showing the new rel ationship.

Figure 15-3. Relationships window after running exaRelations

253

—_
FlyrHeart.com

TEAM FLY PRESENTS

=% Aelationzhips M=l E

SalesHegons

| o

15.6 Creating a QueryDef

Creating a QueryDef object is done using the CreateQueryDef method. The syntax is.

Set QueryDefVar = DatabaseVar .CreateQueryDef _
([QueryDefName][, SQLText])

where QueryDefName is the name of the new QueryDef object and SQLText isastring
expression that constitutes avalid Access SQL statement.

15.6.1 Notes

e If you include QueryDefName, the QueryDef is automatically saved (appended to
the appropriate QueryDefs collection) when it is created. The Name property and
the SQL property of a QueryDef can be changed at any time.

e You can create atemporary QueryDef, which is not appended to a collection, by
setting the QueryDefName property to a zero-length string (""). Y ou cannot
change the name of atemporary QueryDef.

o If you omit the SQLText argument, you can define the QueryDef by setting its
SQL property before or after you append it to a collection.

o Toremove aQueryDef object from a QueryDefs collection, use the Delete
method.

15.6.2 Running a Query

Recall from Chapter 6 that Microsoft Access supports several types of queries. In
particular, a select query returns arecordset. An action query does not return a recordset,
but rather takes action on existing data, such as making a new table, deleting rows from a
table, appending rowsto atable, or updating the valuesin atable.

If a QueryDef object represents an action query, then we can use its Execute statement to
run the query. If the QueryDef object represents a select query, then we can open the
corresponding result table (recordset) using the OpenRecordset method on the QueryDef
object. Let usillustrate. The code in Example 15-5 creates a new select query and displays
the record count for the resulting recordset.

FlyHeart.com g4

TEAM FLY PRESENTS

Example 15-5. A CreateQueryDef method example
Sub exaCreateSelect()

Dim db As DATABASE

Dim qdf As QueryDef
Dim strSQL As String
Dim rs As Recordset

Set db = CurrentDb

" Create an SQL SELECT statement
strSQL = ""SELECT * FROM BOOKS WHERE Price > 20"

" Create a new QueryDef object
Set qdf = db.CreateQueryDef(*'NewQuery', strSQL)

" Open a recordset for this query
Set rs = qdf.OpenRecordset

" Move to end of recordset
rs.MovelLast

" Show record count
MsgBox ""There are "™ & rs.RecordCount & " books with price exceeding $20"

End Sub

The code in Example 15-6 creates a new action query and executesit. The effect isto raise
the price of each book in the BOOKS table by 10%.

Example 15-6. A new action query example
Sub exaCreateAction()

" Creates an action query and executes it
Dim db As DATABASE

Dim qdf As QueryDef

Dim strSQL As String

Set db = CurrentDb

" Create an SQL UPDATE statement

" to raise prices by 10%

strSQL = "UPDATE BOOKS SET Price = Price*1.1"

" Create a new QueryDef object
Set qdf = db.CreateQueryDef(*'Pricelnc', strSQL)

qdf.Execute

End Sub

Note that once a QueryDef object exists, we may still use the OpenRecordset Or Execute
methods to run the query. The Execute method can also be used on a Database object to

FlyrHeart.com 4

TEAM FLY PRESENTS

run an SQL statement. Here is an example that reduces the price of each book in the
BOOK S table by 10%:

Dim db As DATABASE
Set db = CurrentDb
db.Execute "UPDATE BOOKS SET Price = Price*0.9"

15.6.3 Properties of a QueryDef Object

When a QueryDef object is created or changed, Jet sets certain properties, such as
DateCreated, LastUpdated, and Type. (Note that the QueryDefs collection may need
refreshing before these properties can be read.) Some of the possible query types are
listed in Table 15-4.

Table 15-4. Possible query-type constants
Constant Query type Value

dbQSelect Select 0

dbQAction Action 240
dbQCrosstab Crosstab 16
dbQD¢elete Delete 32
dbQUpdate Update 48
dbQAppend Append 64
|dbQMakeTable Make-table 80

The RecordsAffected property returns the number of records affected by the last
application of the Execute method. Let usillustrate.

Example 15-7 modifies the earlier action-query example to perform the action (10% price
increase) if and only if the increase will affect more than 15 booksin the table. Thisis
done using the BeginTrans, Committrans, and Rollback properties of the current

Wor kspace obj ect.

Example 15-7. A Recor dsAffected property example
Sub exaCreateAction2()

Dim ws As Workspace
Dim db As DATABASE

Dim qdf As QueryDef
Dim strSQL As String

Set ws
Set db

DBEngine(0)
CurrentDb

" Create an SQL UPDATE statement
" to raise prices by 10%
strSQL = "UPDATE BOOKS SET Price = Price*1.1

FlyrHeart.com

TEAM FLY PRESENTS

" Create a new QueryDef object
Set qdf = db.CreateQueryDef("'Pricelnc', strSQL)

" Begin a transaction
ws.BeginTrans

" Execute the query
qdf.Execute

" Check the number of records affected and either roll back transaction or
proceed
IT gdf.RecordsAffected <= 15 Then
MsgBox qdf.RecordsAffected & " records affected " & _
"by this query. Transaction cancelled.”
ws.Rol Iback
Else
MsgBox qdf.RecordsAffected & " records affected " & _
"by this query. Transaction completed."
ws.CommitTrans
End If

End Sub

257 .

FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 16. Programming DAO: Data Manipulation Language

In Chapter 15 we examined how to use DAO to create and access the major components

of adatabase, likeitstables, itsindexes, or its query definitions. For the most part, though,
the focus of a database application is on accessing and manipulating discrete items of

data stored in one or more records. In this chapter, we'll continue our overview of Data
Access Objects by examining its data manipul ation component, which allows you to
perform such practical maintenance operations as adding, deleting, and updating records
and accessing the records that your application isto display.

16.1 Recordset Objects

The main tool for manipulating data is the Recordset object. There are three types of
Recordset objects:

Table-type Recordset object

A representation of the records in asingle table of the database. Itislikea
window into the table. Thus, operations on this type of recordset directly affect
the table. | emphasize that a table-type recordset can be opened for asingle table
only. It cannot be opened for ajoin of more than one table or for aquery. A
table-type recordset can be indexed using atable index. This provides for quick
manuvering within the table, using the seek method, which we will discuss later
in the chapter.

Dynaset-type Recordset object

A dynamic (changeable) set of records that can contain fields from one or more
tables or queries. Dynaset-type recordsets are generally updatable in both
directions. Thus, changesin the recordset are reflected in the underlying tables or
gueries, and changes in the underlying tables or queries, are reflected in the
dynaset-type recordset. With a dynaset-type recordset, no datais brought into
memory. Rather, a unique key is brought into memory to reference each row of
data. Searching through a dynaset-type recordset is done with the Find method,
which is generally slower than the Seek method (which uses one of the table's
indexes).

Snapshot-type Recordset object

A static (nonchangeable) set of records that can contain fields from one or more
tables or queries. These recordsets cannot be updated. For searching, a
snapshot-type recordset can be faster than a dynaset-type recordset.

FlyrHeart.com 4

TEAM FLY PRESENTS

16.2 Opening a Recordset

To create or open arecordset, Jet provides the OpenRecordset method. This method can
be used on Database, TableDef, QueryDef, or existing Recordset objects. The syntax is:

Set RecSetVar = DatabaseVar .OpenRecordset _
(source[, type[, options]])

or:

Set RecSetVar = ObjectVar .OpenRecordset _
([type[, options]D)

where;

e ObjectVar pointsto an existing TableDef, QueryDef, or Recordset object.

e When opening a recordset based upon a database (the first syntax), source isa
string specifying the source of the records for the new recordset. The source can
be atable name, a query name, or an SQL statement that returns records. For
table-type Recordset objects, the source can only be a table name.

o If you do not specify atype, then atable-type recordset is created if possible.
Otherwise, the type vaue can be one of the following integer constants:

o dbOpenTable to open atable-type Recordset object
o dbOpenDynaset to open a dynaset-type Recordset object
o dbOpenSnapshot to open a snapshot-type Recordset object

e options has severa possible values related to multiuser situations. It also can
take the value dbForwardonly, which means that the recordset is aforward-only
scrolling snapshot. This type of snapshot is useful for rapid searching.

16.2.1 Note

A new Recordset object is automatically added to the Recordsets collection when you
open the object, and it is automatically removed when you close it using the Close
method.

The code in Example 16-1 opens and then closes arecordset of each type, based on the
BOOK S table. It also displays (in the debug window) the value of the RecordCount
property for these recordsets. For a dynaset- and snapshot-type recordset, the
RecordCount property is the number of records accessed. Accordingly, to determine the
total number of recordsin such arecordset, we need to invoke the MoveLast method,
thereby accessing all records. For atable-type recordset, the RecordCount property gives
the total number of records. (We will discuss the MoveLast method later.)

Example 16-1. An OpenRecor dset method example
Sub exaRecordsets()

FlyrHeart.com 4

TEAM FLY PRESENTS

Dim db As DATABASE

Dim rsTable As Recordset
Dim rsDyna As Recordset
Dim rsSnap As Recordset

Set db = CurrentDb

" Open table-type recordset
Set rsTable = db.OpenRecordset(''Books'™)
Debug.Print "TableCount: " & rsTable.RecordCount

" Open dynaset-type recordset

Set rsDyna = db.OpenRecordset(*'Books', dbOpenDynaset)
Debug.Print "DynaCount: " & rsDyna.RecordCount
rsDyna.MovelLast

Debug.Print ""DynaCount: " & rsDyna.RecordCount

" Open snapshot-type recordset

Set rsSnap = db.OpenRecordset(*'Books', dbOpenSnapshot)
Debug.Print "SnapCount: " & rsSnap.RecordCount
rsSnap.MovelLast

Debug.Print "SnapCount: " & rsSnap.RecordCount

" Close all

rsTable.Close
rsDyna.Close
rsSnap.Close

End Sub
16.2.2 Default Recordset Types

If you do not specify atype in the OpenRecordset method, Jet will choose one for you
according to the following rules:

e Thedefault Type when opening arecordset on a Database object (first syntax) or
a TableDef object (second syntax) is atable-type Recordset object.

e Thedefault Type when opening arecordset on a QueryDef object isa
dynaset-type Recordset object. (Table-type recordsets are not available.)

e Thedefault Type when opening arecordset on an existing table-type Recor dset
object is a dynaset-type recordset. If the recordset is not table-type, then the new
recordset has the same type as the original.

16.3 Moving Through a Recordset

All recordsets have a current position (pointed to by the current record pointer) and a
current record. Normally, the current record is the record at the current position.
However, there are two exceptions. The current position can be:

o Beforethefirst record
o After thelast record

260 =

FlyrHeart.com 4

TEAM FLY PRESENTS

in which cases there is no current record.

To change the current position (and hence the current record), Jet provides several Move
methods:

MoveFirst

Movesto thefirst record.

MovelLast

Moves to the last record.

MoveNext

Moves to the next record.

MovePrevious

Moves to the previous record.

Move[n]

Moves forward or backward n positions.

In each case the syntax has the form:

RecordSetVar .MoveCommand

16.3.1 BOF and EOF

The properties BOF (Beginning of File) and EOF (End of File) are set by Jet after each
Move command. The concepts of BOF, EOF, current record, and current position can be
confusing. Perhaps the following notes will help.

16.3.1.1 Notes on the BOF and EOF properties

BOF is True when the current position is before the first record in the recordset,
not at the first record.

EOF is True when the current position is after the last record in the recordset, not
at the last record.

If either of BOF or EOF is True, then there is no current record.

If you open arecordset containing no records, then BOF and EOF are set to True.
If the recordset has some records, then Jet does atacit MoveFirst so thefirst
record becomes the current record and both BOF and EOF are set to False.

FlyrHeart.com 4

TEAM FLY PRESENTS

« |If you delete the last remaining record in arecordset, then BOF and EOF remain
False until you attempt to change the current position.

16.3.1.2 Notes on the M ove methods

e If you useMovePrevious when thefirst record is current, the BOF property is set
to True, and there is no current record. A further MovePrevious will produce an
error, and BOF remains True.

e If you use MoveNext when the last record is current, the EOF property is set to
True, and thereis no current record. A further MoveNext will produce an error,
and EOF remains True.

o If therecordset is atable-type recordset, then movement follows the current index,
which is set using the Index property of the Recordset object. If no index is set (or
if the recordset is not table-type), the order of returned recordsis not predictable.

The most common use of the Move methods isto cycle through each record in a recordset.
Example 16-2 illustrates this. It creates both a table-type and a dynaset-type recordset on
BOOKS and prints (in the debug window) alist of PublDs and Titles. Note the use of the:

Do While Not rs.EOF

statement, which istypical of thistype of procedure. Also, note the presence of thisline:

rsTable.MoveNext

within the Do loop. It isacommon error to forget to advance the current record pointer, in
which case the PC will enter an endless loop, in this case printing the same line over and
over again!

Example 16-2. Moving through a Recor dset

Sub exaRecordsetMove()

Dim db As DATABASE
Dim rsTable As Recordset
Dim rsDyna As Recordset

Set db = CurrentDb

Set rsTable = db.OpenRecordset(''Books'™)
Debug.Print ""Books indexed by PubID/Title:"

" Move through table-type recordset using PubTitle index
rsTable_ INDEX = "PubTitle"
rsTable_MoveFirst
Do While Not rsTable_EOF
Debug.Print rsTable!PublID & "™ / " & rsTablelTitle
rsTable_MoveNext
Loop

Debug.Print

262 =

FlyrHeart.com 4

TEAM FLY PRESENTS

" Move through dynaset-type recordset

Debug.Print "'‘Dynaset-type recordset order:"

Set rsDyna = db.OpenRecordset(*'Books', dbOpenDynaset)

rsDyna.MoveFirst

Do While Not rsDyna.EOF
Debug.Print rsDynal!PubID & "™ /7 ™ & rsDynalTitle
rsDyna.MoveNext

Loop

rsTable.Close
rsDyna.Close

End Sub

It isworth remarking that, for a dynaset-type or snapshot-type recordset, or for a
table-type recordset for which the Index property has not been set, you cannot predict or
rely on the order of records in the recordset.

In this connection, two Recordset properties of particular use are AbsolutePosition and
PercentPosition, which give the ordinal position of the current record in a dynaset-type or
snapshot-type recordset and the percent position, respectively. Let usillustrate by
modifying Example 16-2, as shown in Example 16-3.

Example 16-3. The modified Recordset position example
Sub exaRecordsetPosition()

Dim db As DATABASE
Dim rsDyna As Recordset
Dim strMsg As String

Set db = CurrentDb
Set rsDyna = db.OpenRecordset(*'Books', dbOpenDynaset)

" Move through recordset and display position
rsDyna.MoveFirst
Do While Not rsDyna.EOF

strMsg rsDynalPublID & "™ /7 " & rsDynalTitle

strMsg strMsg & " / " & _
str$(rsDyna.AbsolutePosition)

strMsg = strMsg & " / " & _
Format$(rsDyna.PercentPosition, "##")

Debug.Print strMsg

rsDyna.MoveNext
Loop

rsDyna.Close

End Sub

263 =

FlyrHeart.com 4

TEAM FLY PRESENTS

16.4 Finding Records in a Recordset

The method used to search for arecord in arecordset is different for indexed table-type
recordsets than for other recordsets.

16.4.1 Finding Recordsin a Table-Type Recor dset

To locate arecord in an indexed table-type recordset, you use the Seek method. Note that
the recordset’'s Index property must be set before the Seek method can be used. The
syntax of the Seek method is:

TableTypeRecSetVar.Seek comparison, keyl, key2,...

where comparison isone of the following strings:

and keyl, key2, . .. arevalues corresponding to each field in the current index.
16.4.1.1 Notes

e The seek method searches through the specified key fields and locates the first
matching record. Once found, it makes that record current, and the NoMatch
property of the recordset is set to False. If the Seek method failsto locate a
match, the NoMatch property is set to True, and the current record is undefined.

e If comparison isequal to (=), greater than or equal to (>=), or greater than (>),
Seek starts its search at the beginning of the index. If comparison islessthan (<)
or lessthan or equal to (<=), Seek startsits search at the end of the index and
searches backward unless there are duplicate index entries at the end. In this case,
Seek starts at an arbitrary entry among the duplicate index entries at the end of the
index.

The code in Example 16-4 uses the Seek method on the Title index of BOOK S to find the
first title that begins with the word "On."

Example 16-4. A Seek method example
Sub exaRecordsetSeek()

Dim db As DATABASE
Dim rsTable As Recordset

Set db = CurrentDb

Set rsTable = db.OpenRecordset(''Books'™)

264 -

FlyrHeart.com 4

TEAM FLY PRESENTS

" Find First book (if any) with title beginning
" with the word "On".
rsTable.INDEX = "Title"
rsTable.Seek "=", "On"
IT Not rsTable.NoMatch Then
MsgBox rsTablelTitle
Else
MsgBox *'No title beginning with word "On"._."
End If

rsTable.Close

End Sub
16.4.2 Finding Recordsin a Dynaset-Type or Snapshot-Type Recor dset

To search for arecord in a dynaset-type or snapshot-type recordset, Jet provides various
Find methods:

FindFirst
Finds the first matching record in the recordset.
FindNext
Finds the next matching record, starting at the current record.
FindPrevious
Finds the previous matching record, starting at the current record.
FindLast
Finds the last matching record in the recordset.
The syntax of these methodsiis:
RecordsetVar.FindMethod criteria
where:
* RecordsetVar represents an existing dynaset-type or snapshot-type Recor dset
. SEJietC;.ri a isastring expression, using the same syntax as a WHERE SQL clause

(but without the word WHERE).

It isimportant to note that, if arecord matching the criteriais not located, the NoMatch
property is set to True, the current position is undetermined, and so there is no current

FlyrHeart.com 4

TEAM FLY PRESENTS

record. It isthus important to position the current record pointer. Thisis usually done by
setting a bookmark at the current record before starting the search. Then, if the search
fails, the original position can be restored using the bookmark. In fact, a bookmark is a
system-generated string that Jet can use to identify arecord. Thus, by setting a bookmark
on the current record and then moving to another record, we can return to the
bookmarked record. Let usillustrate.

The code in Example 16-5 displays all book titles starting with *"M" and then returns to the
current record before the search.

Example 16-5. A Find method example
Sub exaRecordsetFind()

Dim db As DATABASE

Dim rs As Recordset

Dim bmkReturnHere As Variant

Set db = CurrentDb

Set rs db.OpenRecordset(*'Books", dbOpenDynaset)

" Display current title
Debug.-Print "Current title: "™ & rs!ITitle

" Set bookmark at current record
bmkReturnHere = rs.Bookmark

" Find books (if any) with first letter of title
" equal to "M".
rs.FindFirst "Left$(Title,1) = "M™"
Do While Not rs.NoMatch
Debug.Print rsiTitle
rs.FindNext "Left$(Title,1) = "M""
Loop

" Return to original location
rs_Bookmark = bmkReturnHere
Debug.Print "Returned to: " & rs!Title

rs.Close

End Sub
16.5 Editing Data Using a Recordset

Let us now discuss the methods used to edit, add, or delete data from atable-type or
dynaset-type recordset. Snapshot-type recordsets are static, so datain such arecordset
cannot be changed. Thus, in this section, the term recordset will refer to table-type or
dynaset-type recordsets. Recall that any changes made to arecordset are reflected in the
underlying tables or queries.

266 =

FlyrHeart.com 4

TEAM FLY PRESENTS

16.5.1 Editing an Existing Record
Editing an existing record is done in four steps:

Make the record the current record.

Invoke the Edi t method for the recordset.
Make the desired changes to the record.
Invoke the Update method for the recordset.

El N

It isimportant to note that if you move the current record pointer before invoking the
Update method, any changes to the record will be lost.

The code in Example 16-6 changes al of thetitlesin a copy of the BOOKS table to
uppercase. Before running this code, you should use the Copy and Paste menu options
(under the Edit menu) to make a copy of BOOKS, called Books Copy. (Select BOOKSin
the Database window, choose Edit —2Copy, then choose Edit —2Paste.)

Example 16-6. Editing data with Recor dset
Sub exaRecordsetEdit()

Dim db As DATABASE
Dim rs As Recordset

Set db = CurrentDb

Set rs db.OpenRecordset(*'Books Copy')

rs.MoveFirst
Do While Not rs.EOF
rs.Edit
rs!Title = UCase$(rs!Title)
rs.UPDATE
rs.MoveNext
Loop

rs.Close

End Sub

To emphasize an earlier point, you might want to start over with a fresh Books Copy table
and run the previous code without the line:

rs.Update

to see that no changes are made to the table.

FlyrHeart.com 4

TEAM FLY PRESENTS

16.5.2 Deleting an Existing Record

Deleting the current record is done with the Delete method of the Recordset object. The
syntax issimply:

RecordSetVar .Delete

16.5.2.1 Notes

« Deletions are made without any warning or confirmation. If you want
confirmation, you must write appropriate code to do so.

o Notethat immediately after arecord is deleted, thereis no valid current record.
The current record pointer must be moved to an existing record (usualy by
invoking MoveNext).

The procedure in Example 16-7 deletes all books that have a price greater than $20.00in a
copy of the BOOK S table, after asking for confirmation. Before running this code, you
should use the Copy and Paste commands to make a copy of BOOKS, called Books
Copy.

Example 16-7. Using the Delete method with Recor dset

Sub exaRecordsetDelete()

" Demonstrates deleting records

" Deletes all books that have a price greater than
" $20.00 in a copy of the BOOKS table.

" Before running this, use Copy, Paste to make a

" copy of the BOOKS table

Dim db As DATABASE
Dim rs As Recordset
Dim DeleteCt As Integer

Set db = CurrentDb

Set rs = db.OpenRecordset(*'Books Copy')
DeleteCt = 0

rs.MoveFirst
Do While Not rs.EOF
If rs!Price > 20 Then
IT MsgBox(‘'Delete ™ & rs!ITitle & (" & _
Format(rs!Price, "Currency') & ")?', vbYesNo) = _
vbYes Then
rs.Delete
DeleteCt = DeleteCt + 1
End If
End If
rs.MoveNext
Loop

268 =

FlyrHeart.com 4

TEAM FLY PRESENTS

rs.Close
MsgBox Format$(DeleteCt) & ' records deleted."

End Sub
16.5.3 Adding a New Record
Adding anew record to arecordset is donein three steps:

1. Invoke the AddNew method to create a blank record, which Jet makes the current
record.

2. Fill inthefields of the record.

3. Invoke the Update method to save the record.

The syntax of the AddNew method is simply:
RecordsetVar .AddNew
16.5.3.1 Notes

e Oncethe Update method isinvoked, the record that was the current record prior
to invoking the AddNew method again becomes the current record. To make the
new record current, use a bookmark together with the LastModified property, as
shown in Example 16-8.

e Inatable-typerecordset, the new record is placed in its proper order with respect
to the current index. In a dynaset-type recordset, the new record is placed at the
end of the recordset. If the recordset has a sort order (such as might be inherited
from an underlying query), the new record can be repositioned using the Requery
method.

Example 16-8 adds a new book to the BOOK S table and makes it the current record. It
also demonstrates the With . . .EndWith construct.

Example 16-8. Adding a record with Recor dset
Sub exaRecordsetAddNew()

Dim db As DATABASE
Dim rs As Recordset

Set db = CurrentDb

" Open recordset
Set rs = db.OpenRecordset(''Books'™)

Debug.-Print "Current title: "™ & rsiTitle

" Use With...End With construct
With rs

269 =

FlyrHeart.com 4

TEAM FLY PRESENTS

-AddNew " Add new record

TISBN = "0-000"" " Set fields
ITitle = "New Book™

1PublID = 1

Price = 100

-UPDATE " Save changes.

.Bookmark = rs.LastModified ~ Go to new record
Debug.-Print "Current title: " & rsiITitle
End With

rs.Close

End Sub

270 S

FlyrHeart.com

TEAM FLY PRESENTS

Part VI. ActiveX Data Objects

Chapter 17. ADO and OLE DB
17.1 What Is ADO?

In this chapter, we will discuss Microsoft's latest database programming object model,
called ActiveX Data Objects, or ADO. This object model is asuccessor to DAO and is
intended to replace DAO. Of course, the arrival of ADO raises the question of whether to
redo existing DAO applicationsin ADO, as well as whether to write new applicationsin
ADO.

Asto the former, | can't see any immediate need to do so unless the application would
benefit by some new feature of ADO. One possibility isthat ADO may provide superior
performance, but thisis an ad hoc issue that will require experimentation in each situation.
Asto the latter, this decision is somewhat of a moving target. While DAO is more
established and has proven to be reliable and stable, ADO is Microsoft's current wave of
the future. For instance, the new VB6 DataBinding object model isjust afrontend for an
OLE DB dataclient and is designed to use ADO. In order to keep up with Microsoft's
latest technol ogies—clearly a desirable goa—we will need to get on the ADO
bandwagon. We can only hope that Microsoft will offer us other good reasons to join this
bandwagon.

Actualy, ADO isthe immediate successor to Remote Data Objects (RDO), whichis, in
turn, the immediate successor to DAO. Since RDO did not get much first-string playing
time, we will not discussit in this book. My plan is to discuss the terminology related to
ADO and its underlying technology, called OLE DB. Then we will look at the ADO
object model and do afew examples, such as connecting to a Jet database, an Excel
spreadsheet, and atext file. Thiswill give you a solid foundation in ADO and OLE

DB — certainly enough to understand the documentation (such asit is) and dig more
deeply if the need arises.

It appears from the documentation that | have seen (from Microsoft and others) that most
writers feel that the most important use of ADO isto connect to an SQL Server data
provider. However, in my consulting practice, | seldom encounter SQL Server (or
perhaps | just unconsciously avoid it). Much more often, | encounter the need to connect
to an Excel spreadsheet, for instance. A great many business clients like to do database
management in Excel, probably because they are familiar with that application, since they
useit for financia analysis (which isits intended purpose). It seemsthat it isonly the
VBA consultant, and not those who hire her, who appreciates how limited Excel iswhen
it comes to database management!

FlyrHeart.com 4

TEAM FLY PRESENTS

There seem to be three approaches to dealing with Excel "databases’ (and | have used all
three):

e We can twist and coerce Excel into doing more database management than it is
intended to do. However, this creates bloated Excel workbooks with code that
runs at a snail's pace.

e Wecan migrate the datafrom Excel into Access, whereiit really belongs.

e We can connect directly to an Excel spreadsheet using Open Database
Connectivity (ODBC) for programming in ADO (or DAO).

We will discuss the latter approach in this chapter. This does seem to work, but for major
data manipulation, | definitely prefer the second alternative.

17.2 Installing ADO

| should mention aword about installing ADO. ADO isinstalled along with Office 2000,
but not with Office 97.

To seeif you have ADO installed on your system, first open an Access code module, and
then open the References dialog box, under the Tools menu. If you see an entry such as
the one highlighted in Figure 17-1, you're all set.

Figure 17-1. Referenceto the ADO object library

References ﬂ
Ssvallable Referances:

¢ visusl Basic For applications il
¥ Microsoft access 8.0 Object Library

B utility

k¢ Microsoft Da0 3.51 Ohject Library
[ZEMcro=oft activel Data Obgacts 2.0 Libr. ..

[Access

[T active Setup Control Libeary
[activeriovie control type library Priarity
[T activeX DLL to perform Migration of M., |
[Add-In Shell il
[APE Database Satup Wizard

[4P1 Declaration Losder

[T spphcation Performance Explorer 2.0 1,

[spplication Performance Esplorer Client ll

Microsoft ActiveX Diata Objects 2.0 Library
Patn: C\Program Files\Comman Files'ayste miadoMSAD015, 0LL
Language: Standard

If, on the other hand, you have no such listing, you might want to do afile search of your
hard disk, looking for MSADOxx.DLL. If you don't have the file, then you can download
the required software components from Microsoft's web site. At the time of thiswriting,

FlyHeart.com g4

TEAM FLY PRESENTS

the URL is http://www.microsoft.com/data/. (If this URL is no longer valid, try searching
for ADO or MDAC, which stands for Microsoft Data Access Components.) Note that the
small version of the software kit isover 5 MB! Enjoy.

Note also that there is considerable confusion when it comesto versions of ADO, a
situation that Microsoft does not seem to want to clarify. Version 2.0 refers to the
following items, as reported by the type library itself (or the VBA IDE References dialog
box). Note the different version numbers:

Implementation: msado15.dll

Object library name: msado15.dll

Object Library Version: 2.0

Documentation String: Microsoft ActiveX Data Objects 1.5 Library
Help File: msadol0.hlp

On the other hand, Version 2.1 of ADO refersto the following items:

Implementation: msado15.dll

Object library name: msado20.tlb

Object Library Version: 2.0

Documentation String: Microsoft ActiveX Data Objects 2.0 Library
Help File: (none)

Thus, Version 2.1 uses the same implementation as Version 2.0, which is presumably the
same as Version 1.5! (Put another way, referring to Figure 17-1, if you highlight a
referenceto ADO 2.1, you will still see areference to the msadol15.dll library!)

Thetype library has changed for Version 2.1 of ADO, having been extracted from within
the implementing DLL. However, this new type library does not report a help file,
although the file ado20.chm appears to be such afile. (Accordingly, the type library
contains no context-sensitive help references.)

Frankly, this situation does not seem to make much sense to me, but the bottom lineis
that ADO appears to be implemented by the same file (msado15.dll) through severa
"versions."

17.3 ADO and OLE DB

Aswe have seen, the DAO model is the programming interface for the Jet database
engine. On the other hand, ADO has a more ambitious goal—it is the programming

model for a universal data-access interface called OLE DB. Simply put, OLE DB isa
technology that isintended to be used to connect to any type of data—traditional database
data, spreadsheet data, web-based data, text data, email data, and so on.

Technically speaking, OLE DB isaset of COM interfaces. An interfaceisjust a
collection of functions, also called services, with asimilar purpose. The term COM refers

FlyrHeart.com 4

TEAM FLY PRESENTS

http://www.microsoft.com/data/

to the Component Object Model , which is Microsoft's model for communication between
software components. Thus, simply put, OLE DB is a set of functions or services.

Figure 17-2 gives an overview of ADO and OLE DB from aVB programmer's
perspective.

Figure17-2. OLE DB and ADO

Data Consumérs Applications
A
L |
I ADO |
: &
| OLE DB |
OLE DB
. , Cursor Query
Service Providers Engine Processor
'
¥ L
| OLE DB |
A
¥
Data Providers DBMS Spreadshest ISAM File
17.3.1 Data Stores

The purpose of OLE DB isto provide applications with universal data access—that is,
with acommon method for accessing data in essentially any format, including traditional
database formats, text formats, spreadsheet formats, email formats, file system formats,
web-based formats, and more. OLE DB uses the term data store to refer to any data that
can be accessed through the OLE DB services. The term data source seemsto be a
synonym for data store, although this term is used in different ways in other related
contexts (such as the VB6 DataBinding object model). Indeed, the term "data source” is
one of the most abused in Microsoft's arsenal.

17.3.2 Data Providers

In order to create access to a particular type of data, a developer must write an OLE DB
data provider for that type of data store. Thisisusually done in a C-type development
environment such as Visual C++, but it can be donein VB aswell.

The purpose of an OLE DB data provider is to expose the data in data stores of a
particular type in tabular format, with rows (records) and columns (fields). In other
words, the role of a data provider isto make data from a data store look like atable, even

274 N

FlyHeart.com g4

TEAM FLY PRESENTS

if the raw format does not resemble atable. For this reason, a data provider usually has
direct access to the data in data stores of that type.

Note that some data providers may also implement more sophisticated data-retrieval and
manipulation techniques, such as SQL. However, thisis not arequirement. Thisisin
distinction to ODBC, where an ODBC data provider must implement aform of SQL. (For
more on this, see Appendix C.)

Hereis asampling of the OLE DB data providers available at the time of this writing:

Microsoft OLE DB Simple Provider (a JavaBeans-related interface)

Microsoft OLE DB Provider for ODBC Drivers (for Open Database Connectivity)
Microsoft OLE DB Provider for Oracle (for Oracle databases)

Microsoft Jet 3.51 OLE DB Provider (for Jet databases)

Microsoft OLE DB Provider for SQL Server (for SQL Server databases)
Microsoft OLE DB Provider for Directory Services (provides directory services—
that is, logon, administration, and replication services—for Windows NT Server
networks)

Two of these providers are especialy interesting for us. the Microsoft Jet 3.51 OLE DB
Provider and the Microsoft OLE DB Provider for ODBC Drivers. The ODBC provider is
the default data provider and can be used to connect to a variety of data sources, such as
an Excel spreadsheet or atext file, through ODBC. We will consider examples of how to
use these providers later in the chapter.

It seems as though the distinction between data provider and data store (or data source) is
often blurred. Thus, the term "data provider" may refer to a combination of both the data

store (the raw data) and the data provider (the software component that implements OLE

DB for that type of data store).

17.3.3 Data Consumers

An OLE DB data consumer is a software component that communicates with a data
provider in order to gain access to and manipulate a data store. To a data consumer, all
OLE DB data has atabular format, with rows and columns.

17.3.4 Service Providers

In addition to the standard data providers, a devel oper may implement custom service
providers (see Figure 17-2), which do not have direct accessto the data (in the parlance of
OLE DB, service providers do not own data). The purpose of a service provider isto
provide additional services (features) for that particular type of data store through the use
of OLE DB interfaces.

Here are some examples of OLE DB data services:

FlyrHeart.com 4

TEAM FLY PRESENTS

The Microsoft Data Shaping Service for OLE DB

Provides support for the construction of hierarchical (shaped) Recordset objects
from one or more data providers. A hierarchical recordset is onein which the
valuein aparticular field can be another Recordset object, which would then be
considered a child of the first (parent) recordset.

The Microsoft OLE DB Persistence Provider

Provides support for saving a Recordset object to afile and restoring a Recor dset
object from afile.

The Microsoft OLE DB Remoting Provider

Enables a user on alocal machine to invoke data providers that reside on aremote
machine.

Actualy, an OLE DB service provider is both an OLE DB consumer and an OLE DB
data provider. For example, consider a heterogeneous query processor. (The term

heter ogeneous refers to the fact that the query processor can process queries that
reference data in more than one data source.) When a consumer asks the query processor
to provide data from multiple OLE DB data sources, the query processor acts like a
consumer when it submits the query to multiple data providers and retrieves the data from
the data sources (through each source's data provider), and it acts like a provider when it
returns the results of the query to the consumer that requested the data.

17.4 The ADO Object Model

OLE DB isdesigned for C programmers. In order to make it accessibleto VB
programmers, Microsoft created the ADO object model. This model gives VB
programmers access to certain aspects of the OLE DB paradigm, by allowing the
programmer to program an object model, rather than having to use the OLE DB API
functions directly. For instance, a VB programmer can get access to a data provider by
creating a Connection object and setting its Provider property. Thus, the Connection
object represents a connection to a data store through a data provider.

The ADO object model is actually quite small, even smaller than the DAO object model.

Table 17-1 shows the complete list of ADO objects (along with corresponding collection
objects).

Table17-1. The ADO objects

|Command
|Connecti on
Error (Errors)
Field (Fields)

FlyrHeart.com 4

TEAM FLY PRESENTS

Parameter (Parameters)
Property (Properties)
IRexwdﬁx

The ADO object model is shown in Figure 17-3. Unlike the DAO model, which has a
single object (DBENgine) at the top of the model, the ADO object model is headed by a
triumvirate of three externally creatable objects: Command, Connection, and Recor dset.
(The Parameter object is also externally creatable.)

An externaly creatable object is an object that can be created directly using the VBA New
operator, asin:

Dim rs As New Recordset

or, dternatively:

Dim rs As Recordset
Set rs = New Recordset

Thus, aswe will see, unlike DAO, a Recordset object can be created independently at the
"beginning” of an ADO session.

Let us emphasize that while DAO is centered around the DBENgine object, through
which almost al action begins, in ADO, as we will soon see, the "action" can begin with
any of the three main ADO objects. Connection, Command, or Recordset. If you are
accustomed to programming in DAO, this can take a bit of getting used to.

Incidentally, the tree-like view of the ADO object model shown in Figure 17-3 isfrom my
Object Browser software program. For more on this, please see the card at the end of the
book. Y ou can also get more information on this object browser at my web site:
http://www.romanpress.com.

Figure 17-3. The ADO object model

FlyHeart.com g4

TEAM FLY PRESENTS

http://www.romanpress.com/

=20 Command
=+ 7o Connection
— 70 Parameter
+/ - ?E Properties
— 74 Parameters
+ 1o Parameter
- 74 Properties
70 Property
+ 70 Recordset
— 7o Connection
= T Errors
70 Error
+-- 7l Properties
+ 70 Recordset
— 70 Recordset
— 7l Fields
- 7o Field
&l Properties +
+ 7 Properties
+ 70 Recordset

Our planisto take alook at the Command, Connection, Field, Property, and Recordset
objects, along with their properties and methods. (We will also touch lightly upon the
Parameter object.)

It isimportant to emphasize that some features (objects, properties, or methods) of the
ADO aobject model may not be implemented (or implemented fully) by a particular data
provider. Thisisin contrast to the DAO object model, where the entire model is
implemented. Thisisimportant enough to bear repeating:

To a large extent, it is up to a data provider to decide which features of the ADO
object model to support.

There are potentialy four ways in which to determine whether a particular featureis
supported by a particular data provider:

e Check the documentation for the data provider (if you can find it).

e Usethe supports method of the Recordset object to determine whether certain
features are supported (but this only applies to the Recordset object).

e Usedynamic properties, discussed later.

o Experiment. If you get the error message shown in Figure 17-4, then you know that
the operation that caused the message is not supported!

Figure 17-4. An " oper ation not supported” message

FlyHeart.com g4

TEAM FLY PRESENTS

Rur=time eror 3219

The operation requesied by the epplication is not allowed in this combesd.

Debug End Help

Note that we will discuss most of the properties and methods in the ADO object model,
with the primary exception of those that relate to batch processing or transaction
processing.

For the record, batch processing refers to sending multiple commands at one time. When
communication between consumer and provider takes place over a network, this can save
considerable time. Transaction processing refers to the grouping of multiple operations
into asingle transaction. At the end of the transaction, the programmer can commit the
operations or rollback the data source to its state prior to any of the operationsin the
transaction. One use for thisisin updating related tables (as in transferring money from
one table to another). If the entire group of operationsis not completed successfully, then
arollback is probably desirable.

17.4.1 The Three-Pronged Approach to Data Manipulation

Asfar as data manipulation is concerned (as opposed to data definition), the main
purpose of ADO isto create arecordset that provides access to the data. Asisindicated
by the object model in Figure 17-3, there are three ways to obtain a Recordset object. The
three methods are:

Create a Recordset object directly, and use its Open method, asin:
Dim rs As ADODB.Recordset
Set rs = New ADODB.Recordset

rs.Open ...

o Create a Connection object, and use its Execute method to return arecordset, as
in:

Dim cn As ADODB.Connection

Dim rs As ADODB.Recordset

cn.Provider = ...
cn._ConnectionString = ...
cn.Open

Set rs = cn.Execute(...)

o Create aCommand object:
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset

FlyHeart.com g4

TEAM FLY PRESENTS

Set cmd = New ADODB.Command
Set cmd.ActiveConnection = ...
cmd.CommandText = ...

Set rs = cmd.Execute

Note that we will tend to qualify all ADO objects with the prefix ADODB. This
will help distinguish between ADO objects and DAO objects of the same name.
In fact, theline:

Dim rs As Recordset

will be interpreted by VBA as either an ADO or a DAO recordset depending on
which of the references to the corresponding object library has higher priority in
the References dialog box (under the Tools menu). Since it is a dangerous practice
to rely on this priority (which can easily differ from system to system), it is best to
aways qualify:

Dim rsl As ADODB.Recordset
Dim rs2 As DAO.Recordset

The RecordsetExampl e procedure shown in Example 17-1 illustrates each of the previous
approachesto creating a recordset. Note, however, that only the first method (using the
open method of the Recordset object) allows usto set various recordset options. The
other methods create read-only, forward-only recordsets. We will discussthisissuein
detail at the appropriate time.

Example 17-1. Three methods of creating a Recor dset object
Sub RecordsetExample()

" Creating recordsets in different ways

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection

" Set up connection
Set cn = New ADODB.Connection
cn.Provider = "Microsoft Jet 3.51 OLE DB Provider"

cn.ConnectionString = "Data Source=D:\BkAccesslI\AccessCode.mdb"
cn.Open

Use rs.Open with table (or SQL)
This is the most flexible method

Set rs = New ADODB.Recordset
rs.Open "'‘Names'™, cn, adOpenDynamic, adlLockReadOnly, adCmdTable

rs.MoveFirst

280 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Debug.Print "Use rs.Open:

Debug.Print "ActiveConnection: " & rs.ActiveConnection
Debug.-Print "'Source: ' & rs.Source
rs.Close

" Use cn.Execute
" Always a read-only, forward only cursor

Set rs = cn.Execute('SELECT * FROM Names')

rs.MoveFirst
Debug.Print
Debug.Print "Use cn.Execute:

Debug.Print "ActiveConnection: " & rs.ActiveConnection
Debug.Print "Source: " & rs.Source
rs.Close

" Use Command object

" Always a read-only, forward only cursor
Dim cmd As ADODB.Command

Set cmd = New ADODB.Command

Set cmd.ActiveConnection = cn
cmd.CommandText = "SELECT * FROM Names"
Set rs = cmd.Execute

rs.MoveFirst
Debug.Print
Debug.Print ""Use Command object:

Debug.Print "ActiveConnection: " & rs.ActiveConnection
Debug.-Print "'Source: ' & rs.Source

rs.Close

cn.Close

End Sub

For future reference, let us note the output from the Debug . Print statements in Example
17-1. In each case, the ActiveConnection property of the recordset is the same. | have
broken the string into multiple lines to aid readability:

Provider=Microsoft.Jet.OLEDB.3.51;
Persist Security Info=False;

User ID=Admin;

Data Source=D:\BkAccesslI\AccessCode.mdb;
Mode=Share Deny None;

Extended Properties="";

COUNTRY=0;

CP=1252;

LANG1D=0x0409";

Locale ldentifier=1033;

Jet OLEDB:System database=""';

Jet OLEDB:Registry Path=""";

Jet OLEDB:Database Password=""';

FlyrHeart.com 4

TEAM FLY PRESENTS

Jet OLEDB:Global Partial Bulk Ops=2

Aswe will see when we discuss connection strings in more detail later in the chapter, this
after-the-fact approach is one of the best (read: only) ways to actually see what a
complete connection string looks like.

Asfor the Source property, here is the output:

Use rs.Open with table:
Source: select * from Names

Use cn.Execute:
Source: SELECT * FROM Names

Use Command object:
Source: SELECT * FROM Names

We will refer to this output when we discuss the Source property.
Let us now take alook at the various objectsin the ADO object model. Our intention is
not to be comprehensive, but to cover the main objects and their main properties and

methods. After looking at the ADO model, we will ook at several examples of
connecting to avariety of data sources.

17.4.2 The Connection Object

The Connection object represents a connection to a data store through a data provider.
17.4.2.1 Properties of the Connection object

The main properties of the Connection object are:

CommandTimeout

Sets the length of time to wait for a response to a command from the data source
before issuing atimeout error message.

ConnectionString
Holds the information needed to make the connection. This may include the name
of the data provider, the name of the data source, a password, and auser ID. We
will discuss connection strings at some length later in the chapter.

ConnectionTimeout

Sets the length of time to wait for a connection to be made before issuing a
timeout error message.

282 =

FlyrHeart.com 4

TEAM FLY PRESENTS

CursorLocation

Sets arecordset's cursor (which is adevice used to traverse the recordset and
which defines the current recordset) to reside on the client side of the connection
or on the server side. Typically, client-side cursors offer more capabilities than
server-side, but server-side cursors may be better at reflecting changes to the data
source made by other users. Ultimately, the choice of which type of cursor to use
depends on the capabilities of the data provider and on the particular needs at the
time. We will see examples of using both types of cursorslater on.

DefaultDatabase

Errors

Mode

By setting a default database for a particular connection, avoids the need to
qualify each table namein an SQL statement with the database name.

Returnsthe Errors collection of all Error objects (if any) for the previous
command.

Specifies the access mode for the connection and can be set to any one of the
following:

adModeUnknown

Signals that permission has not yet been set or cannot be determined. Thisisthe
default.

adModeRead

Is read-only permission.
adModeWrite
Iswrite-only permission.
adModeReadWrite

Is read/write permission.
adModeShareDenyRead

Prevents other users from opening the connection with read permission.

263 ————

TEAM FLY PRESENTS

adModeShareDenyWrite

Prevents other users from opening the connection with write permission.

adModeShareExclusive

Prevents other users from opening the connection.

adModeShareDenyNone

Prevents other users from opening the connection with any permission.
Provider

Specifies the data provider. Note that the data provider can aternatively be
specified in the ConnectionString property.

State

Returns the state of the connection (read-only). The possible values are given by
the following enum:

Enum ObjectStateEnum
adStateClosed = 0O
adStateOpen = 1
adStateConnecting = 2
adStateExecuting = 4
adStateFetching = 8

End Enum

Version
Returns the ADO version number as a string.

17.4.2.2 M ethods of the Connection object
The main methods of the Connection object are:
Close

Closes the connection. Its syntax issimply:

cn.Close
Execute

Executes acommand. A command can be a database query, an SQL statement, a
stored procedure, or a provider-specific command in text form. We emphasize
that the form of command depends on the data provider. For instance, not all data
providers support stored procedures or even SQL statements.

284 Flyrte N—p

TEAM FLY PRESENTS

Note that some commands return arecordset and some do not. Accordingly, there
are two syntaxes for the Execute method:

" Syntax for a non recordset-returning command

ConnectionObject.Execute CommandText, RecordsAffected,
Options

" Syntax for a recordset-returning command

Dim rs As ADODB.Recordset

Set rs = ConnectionObject.Execute(CommandText, RecordsAffected,
Options)

We will see several examples of the use of the Execute method.
RecordsAffected iSalong parameter that we must supply. ADO will fill this
variable with the number of records that are affected by the command. The
optional Options parameter can assume a variety of valuesindicating how the
data provider should interpret the CommandText argument. The possible values
are:

adCmdText

CommandText is atextual definition of acommand.

adCmdTable

CommandText iS atable name. The rows of this table should be returned by an
SQL query created internaly by ADO.

adCmdTableDirect

CommandText is atable name. The provider should return all rows from this table.
adCmdStoredProc

CommandText iS the name of a stored procedure.

adCmdUnknown

The type of command in the CommandText argument is not known.
adAsyncExecute

The command should execute asynchronously. (This means that the command
will execute and then fire the ExecuteComplete event to signal that it has

completed.)

adAsyncFetch

FlyrHeart.com 4

TEAM FLY PRESENTS

Open

The remaining rows after theinitial quantity specified in the CacheSize property
should be fetched asynchronously.

Opens a connection; that is, it creates an actual connection to the data provider. Its
syntax is:

connection.Open ConnectionString, UserlID, Password, Options

where all parameters are optional. The ConnectionString parameter isthe tricky
one here. We will discuss connection strings at length later in the chapter. Note
that the Connection object has a ConnectionString property that can be used to set
the connection string as well. However, the ConnectionString parameter will
override any setting of the ConnectionString property.

Microsoft warns that we should not pass UserlD and password values in both the
ConnectionString property and the ConnectionString parameter of the open
method, for this may lead to unpredictable results. (And here | thought that
computers did not produce unpredictable results.)

Note that it isimportant to close a connection using the Close method when the
connection is no longer required. However, closing the connection does not
remove the Connection object from memory, so its properties may still be
accessed or atered. In order to remove the Connection object from memory, we
must set the variable that references the Connection object to Nothing.

The Options parameter can assume one of the following values:
adConnectUnspecified

The default value. Opens the connection synchronously. Code execution pauses
until the connection is made.

adAsyncConnect

Opens the connection asynchronously. The ConnectComplete event is fired when
the connection is complete.

OpenSchema

Gets database information from the data provider. The simplest syntax for this
method is:

ConnectionObject.OpenSchema(QueryType)

286 =

FlyrHeart.com 4

TEAM FLY PRESENTS

where QueryType can be one of several constants specifying the type of
information to retrieve. The method returns a Recordset object with the requested
data.

For instance, the following code lists the tables in a Jet database:

" Get list of tables
Set rs = cn.OpenSchema(adSchemaTables)

Do While Not rs.EOF
Debug.Print rs!TABLE NAME & " Type: " & rs!TABLE TYPE
rs.MoveNext

Loop
17.4.3 The Recordset Object

A Recordset object represents a recordset. To quote the documentation, "When you use
ADO, you manipulate data ailmost entirely using Recordset objects."”

Recordsets are created using the open method with code such as:

Dim rs As ADODB.Recordset
Set rs = New ADODB.Recordset

rs.CursorType = adOpenDynamic
rs.CursorLocation = adUseServer
rs.Open "SELECT * FROM Names', cn

Aswe have seen, a Recordset object may also be created using the Execute method of
the Connection object or the Command object.

Let usreiterate that even though the raw data in a particular data store (such as atext file
or mail store) may not have the appearance of atraditional table with rows and columns,
all ADO recordsets are structured with rows (records) and columns (fields). In fact, that is
the primary purpose of ADO—to give all forms of raw data a table-like format.

17.4.3.1 Cursors

A recordset cursor isadevicethat is used to traverse the records (or rows) in arecordset.
Recordsets (and their cursors) can reside on the client side of the connection or on the
server side. Although we will not discuss remote connections—that is, connections over a
network—in this introduction to ADO, the terminology is still valid. For instance, if we
connect to alocal Excel spreadsheet using the OLE DB provider for ODBC, then the
dividing line between client and server is still the connection, even though both "sides" of
this connection are on the same computer.

FlyrHeart.com 4

TEAM FLY PRESENTS

The cursor location is set using the CursorLocation property of the Recordset object; its
value can be adUseClient Or adUseServer.

ADO supports four types of cursors, determined by the CursorType property setting:
Dynamic cursor (CursorType = adOpenDynamic)

Thistype of cursor isautomatically updated to show additions, deletions, and
edits to the recordset made by other users. It a'so permits all forms of movement
through the recordset that do not use bookmarks, as well as those that do use
bookmarksiif the provider supports bookmarks. (Note, however, that the provider
must support bookmarks or backward cursor movement in order to use the
MovePrevious method.)

Keyset cursor (CursorType = adOpenKeyset)

Thistype of cursor issimilar to adynamic cursor, except that it does not show
records that have been added by other users, nor does it allow accessto records
that have been deleted by other users. However, edits by other users are visible.
Keyset cursors must support bookmarks and therefore allow all forms of
movement through the recordset.

Static cursor (CursorType = adOpenStatic)

Thistype of cursor provides a static copy of a set of records. Thisislikea
snapshot DAO recordset. Static cursors are used to find data or to generate reports.
They must support bookmarks and therefore alow all forms of recordset
movement. However, additions, deletions, and edits by other users are not visible.
Note that al client-side cursors are static cursors. Even if we specify a different
type of cursor for a client-side cursor, ADO will open a static cursor instead.

Forward-only cursor (CursorType = adOpenForwardOnlly)

Thistype of cursor behaves identically to a dynamic cursor except that it permits
only forward scrolling. Thisisthe analog of supplying the dobForwardonly
constant as an argument to the DAO OpenRecordset method. Aswith
forward-only DAO recordsets, forward-only cursors perform more efficiently
when we need to make only a single pass through the recordset.

17.4.3.2 LockType

The LockType property is akey property for recordsets. This property indicates the type
of lock that is placed on the records during editing. It can be one of the following values:

adLockReadOnly

288 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Records are read-only. Note that thisis the default value, which means that if we
want to do any editing, we must set this property to another value.

adLockPessimistic
In this case, the data provider ensures successful editing of records, usually by
locking records at the data source as soon asthe Edit method iscalled. Thisis

termed pessimistic locking. It occurs on arecord-by-record basis.

adLockOptimistic

In this case, the provider locks records only when the Update method is called.
Thisistermed optimistic locking. It occurs on arecord-by-record basis.

adLockBatchOptimistic
Optimistic batch updates are required for batch update mode.

| emphasize that adLockReadOnly is the default value, which means that if we want to do
any editing, we must set this property to another value.

17.4.3.3 Properties of the Recor dset object
The main properties of the Recordset object are described here:
AbsolutePage, PageCount, and PageSize

To help the user page through the datain arecordset (especially when that datais
intended to be displayed on the Web), ADO alows us to group the data into
logical pages. (The page count starts at 1, by the way.) The PageSize property is
used to specify the number of records per page (the default is 10 records per
page).

The PageCount property returns the number of pagesin the recordset. If a data
provider does not support pages, it will indicate this by always returning a
PageCount value of -1.

The AbsolutePage property is used either to set the current record at the beginning
of apage or to return the page number of the current record. The return value of
AbsolutePage may be a page number or one of the following values:

adPosUnknown

Indicates that the current position is unknown, the recordset is empty, or the data
provider does not support pages.

289 =

FlyrHeart.com 4

TEAM FLY PRESENTS

adPosBOF

Indicates that the current record pointer is pointed at BOF (BOF is True).

adPosEOF

Indicates that the current record pointer is pointed at EOF (EOF is True).
AbsolutePosition

This property works like the corresponding DAO property; namely, it provides
the ordinal position of the current record in the recordset (the first positionis
position 1). Aswith DAO, however, the AbsolutePosition property can change
when another record is deleted or if the recordset is refreshed. Thus, we cannot
rely on the value of AbsolutePosition to return to agiven record at alater time. To
mark arecord for later retrieval, we should use bookmarks.

ActiveConnection

The ActiveConnection property of arecordset returns the connection string for the
corresponding connection. If there is no active connection, it returns Nothing. For
instance, in the code:

Dim rs As New ADODB.Recordset

Debug.Print rs.ActiveConnection
Debug.Print rs.ActiveConnection Is Nothing

the second line will produce a runtime error, whereas the third line will return
True.

Thus, if the recordset rs is associated with the connection cn, then the following
values are the same:

cn.ConnectionString
rs.ActiveConnection

For an open recordset, this property is read-only (as you would expect). However,
for aclosed recordset, we can set the ActiveConnection property to avalid
connection string, and ADO will open the connection for us automatically. Setting
the property to Nothing will disconnect the recordset from any provider.

Note that the ActiveConnection property can be set either to a string that specifies
the connection or to avalid Connection object variable name.

We will have much more to say about connection strings later in the chapter. For
now, we refer the reader to the RecordsetExample subroutine in Example 17-1 for

290 =

FlyrHeart.com 4

TEAM FLY PRESENTS

an example of the ActiveConnection property. As mentioned earlier, querying the
ActiveConnection property is one of the best ways to get the full syntax of a
connection string for a data provider. Needing to resort to this techniqueis a
reflection on the poor quality of the documentation for OLE DB data providers,
especially when it comes to connect strings.

BOF and EOF

Aswith DAO, these Boolean properties indicate whether the current record
pointer lies before the first record (BOF is True) or after the last record (EOF is
True). In either case, there is no current record.

Bookmark
Each record in an ADO recordset has a bookmark associated with it. (A bookmark
has Variant data type.) We can retrieve this bookmark and store it in avariable
with code such as:
bk = rs.Bookmark

We can then return to this record at any time by writing:

rs.Bookmark = bk
CacheSize

This specifies the number of records that will be placed in the client-side memory
buffer at one time. Put another way, it is the number of records that are fetched
from the data store at one time.

CursorLocation

As discussed earlier, this property specifies the location of the cursor: client-side
or server-side.

CursorType

Asdiscussed earlier, this property specifies the type of cursor: dynamic, keyset,
static, or forward-only.

EditMode
Like DAO, ADO uses atemporary editing buffer for the current record. The
EditMode property indicates the current status of the datain this buffer. Its

possible values are:

adEditNone

FlyrHeart.com 4

TEAM FLY PRESENTS

Indicates that no editing operation is in progress.
adEditinProgress

Indicates that the datain the current record buffer has been modified but has not
yet been saved.

adEditAdd

Indicates that the AddNew method has been invoked and the new datain the
current record buffer has not yet been saved.

adEditDelete

Indicates that the current record has been deleted.

Fields
This returns the Fields collection for the given recordset. We will discuss Field
objects later in the chapter.

Filter
Filters the current recordset by restricting the records that are visible. Thus, for
instance, after executing the code:
rs.Filter = "Lastname = "Smith" OR FirstName Like “A*""
the recordset referenced by rs isfiltered so that we have access only to those
records that meet the filter condition. We can rel ease the filter by writing:
rs_Filter = ™"
Note that after setting afilter, the current record pointer is moved to the first
record that fits the filter criteria. Note also that Microsoft warnsthat it is
preferable to define and open a new recordset on the data source than to make
extensive use of filters.
LockType
This property, discussed earlier, indicates the type of lock that is placed on the
records during editing.

MaxRecords

292 Flyite N—p

TEAM FLY PRESENTS

This limits the number of records returned by a query. The default value of 0
indicates that al matching records should be returned. This property is read-only
for an open recordset.

RecordCount

This indicates the number of recordsin an open recordset. The property returns -1
when ADO cannot determine the number.

Note that if the recordset supports either approximate positioning or bookmarks
(asindicated, for example, by the Supports method discussed later), then the
RecordCount value is a\ways correct regardless of whether the recordset has been
fully populated by using the MoveLast method. Thus, if neither positioning nor
bookmarks are supported, the only way to make sure that the RecordCount
property is accurate is to populate the recordset fully, which may place a
significant drain on resources because al records in the recordset will need to be
retrieved from the data source.

Source

This Variant property gives the source of the datafor the recordset. It isread-only
when the recordset is open. It can be set to avalid Command object variable name,
an SQL statement, a table name, or a stored procedure call. (As always with ADO,
this depends on the level of support from the data provider.) See the
RecordsetExampl e subroutine in Example 17-1 for examples of the Source

property.
State

This read-only property returns the state of the recordset. The possible values are
given by the following enum :

Enum ObjectStateEnum
adStateClosed = 0
adStateOpen = 1
adStateConnecting = 2
adStateExecuting = 4
adStateFetching = 8

End Enum

17.4.3.4 M ethods of the Recor dset obj ect
The main methods of the Recordset object are described in this section.

AddNew

293 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Adds new records to a recordset, provided that the data provider and the current
cursor type support this feature, of course. The general syntax is:

recordset.AddNew Fields, Values

where Fields isan optional single field name or an array of field names and the
optional values isthe corresponding value (for asingle field) or value array (for
afield array) to assign to the fields in the new record. For instance, the code:

rs_AddNew Array(LastName, FirstName), Array("Einstein”, "Albert")

adds a new record with values LastName = "Einstein" and FirstName =
"Albert".

Clone

Creates a new Recordset object that is a duplicate of the Recordset object to
which it is applied. It isimportant to note, however, that a cloned Recordset
object is not entirely independent of its parent. Here is what the documentation
says about cloned recordsets:

Changes made to one Recordset object are visible in all of its clones regardless of
cursor type. However, after you execute Requery on the original Recordset, the
clones will no longer be synchronized to the original.

Closing the original Recordset does not close its copies; closing a copy does not
close the original or any of the other copies.

Y ou can only clone a Recordset object that supports bookmarks. Bookmark
values are interchangeabl e; that is, a bookmark reference from one Recordset
object refers to the same record in any of its clones.
Close
Closes the recordset.
Delete
Deletes one or more records. Its syntax is.
rs_Delete AffectRecords
where AffectRecords is one of the following constants:

adAffectCurrent

Deletes the current record.

294 -

FlyrHeart.com 4

TEAM FLY PRESENTS

adAffectGroup

Causes al records that match the current filter only to be deleted.
adAffectAll
Deletes al records.
adAffectAlIChapters
Deletes all chapter records.
GetRows
Retrieves multiple records into an array. The syntax is:

array = recordset.GetRows(Rows, Start, Fields)

Rows is an optional Long parameter that specifies the number of rowsto retrieve.
Its default is adGetRowsRest, indicating that the method should retrieve all of the
remaining records in the recordset. The optional Start parameter specifies the
starting row to retrieve. It should be either abookmark or one of the values:
adBookmarkCurrent (start at the current record; thisis the default),
adBookmarkFirst (start at the first record), or adBookmarkLast (start at the last
record). Finally, Fields can be asingle field name (or ordinal position) or an
array of field names (or ordinal positions). If the Fields parameter is not missing,
only those fields will be returned; otherwise, all fields will be returned.

Note that the DAO version of the GetRows method has a different syntax.
Here are some things to keep in mind concerning the GetRows method:

o Thefirst subscript in the array identifies the field, and the second
identifies the record. Thisis counterintuitive.

e Thelower bound on the returned array is 0, whereas the upper bound is
one less than the number of records actually returned. Thus, if we specify
more rows than are returned, the upper bound provides away to get the
number of rows actually returned. (Use the VBA UBound function to get
the upper bound, and add 1 to get the number of records returned.)

o After acal to GetRows, the current record is the next unread record, or
EOF if there are no more records. Thus, subsequent calls to GetRows can
be made without specifying the Start parameter.

Move , MoveFirst, MoveLast , MoveNext , MovePrevious

Are used to move the current record pointer.

FlyrHeart.com 4

TEAM FLY PRESENTS

The Move method has the syntax:
recordset.Move NumRecords, Start

where NumRecords is a Long specifying the number of records to move the
current record pointer relative to Start, which is either abookmark or one of the
values adBookmarkCurrent, adBookmarkFirst, Or adBookmarkLast.

According to the documentation, "the Move method is supported on all Recordset
objects." Of course, exactly what this meansis unclear. Doesit refer to all types
of recordsets for a provider that supports the Move method, or does it mean that all
providers must support this method?

If you are experiencing performance problems with Move, you might want to
consider whether the CacheSize setting is causing too many retrievals. It may be
possible to improve performance by setting the CacheSize value to alarger
number. Thisis atradeoff between performance and memory usage (as always).

Note that if the Recordset object to which we apply the Move method is
forward-only, we can still pass aNumRecords value that is less than zero,
provided that the destination is within the current set of cached records. If not, an
error will occur. On the other hand, a call to MovePrevious will generate an error
even if the resulting move lies within the currently cached group of records.

The MoveFirst, MoveLast, MoveNext, and MovePrevious methods work
similarly to those methodsin DAO. Note, however, that the Recordset object
must support bookmarks or backward cursor movement in order to use the
MovePrevious method. Otherwise, the method will generate an error. On the
other hand, the MoveFirst method will work on aforward-only recordset, but it
may cause the provider to re-execute the command that retrieved the Recor dset
object in the first place.

NextRecordset

Open

Makes it possible to set up a compound command that contains several individual
commands. For instance, the statement:

SELECT * FROM tablel;SELECT * FROM table2

consists of two separate SQL statements. If we execute this command using the
Execute method, ADO will execute and retrieve only the first SQL statement. To
execute the second command and get the corresponding recordset, we use the
NextRecordset method. For more on this, we refer the reader to the ADO
documentation.

296 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Opens arecordset. The full syntax is:

recordset.Open Source, ActiveConnection, CursorType,
LockType, Options

As with the Connection object, the parameters are optional and can be specified
separately using properties of the Recordset object.

The Source parameter specifies the data source. Setting this parameter will
override the setting of the Source property (if any). The parameter can be set to a
Variant that identifies avalid Command object variable name, or to an SQL
statement, atable name, or a stored procedure call (if supported by the data
provider, asusual).

Setting the ActiveConnection parameter will override the current value of the
ActiveConnection property (if any). The setting can be the name of avalid
Connection object variable or a string that describes the connection. Thiswill
cause ADO to establish (open) the connection.

For adiscussion of the CursorType and LockType parameters, see Section 17.4.3.1
and Section 17.4.3.2 in the discussion of Section 17.4.3 earlier in this chapter. Note
that if we set either of these parameters, the setting will also be made
automatically in the corresponding property value.

The options parameter is used when Source isastring (not a Command object)
to identify the type of the Source argument. It can be one of the following values:

adCmdText

Treats the Source argument as atext string that describes a command.

adCmdTable

Treats the Source argument as a table name. ADO should generate an SQL query
to return the table rows.

adCmdTableDirect

Treats the Source argument as a table name and returns all rows.
adCmdFile

Returns a recordset from the file named by Source.

adCmdStoredProc

FlyrHeart.com 4

TEAM FLY PRESENTS

Treats the Source argument as the name of a stored procedure.

adCmdUnknown
The Source argument type is unknown.

These values can be combined with values that relate to asynchronous fetching of
records:

adAsyncExecute

The Source should be executed asynchronously. A FetchComplete event will fire
when the operation is complete.

adAsyncFetch

After theinitial quantity specified in the Initial Fetch Size property is fetched, any
remaining rows are fetched asynchronoudly. If arequired row has not yet been
fetched, further code execution is blocked (halted) until the requested row
becomes available.

adAsyncFetchNonBlocking

Thisis similar to adAsynchFetch, except that further code execution is never
blocked. If the requested row has not been fetched, the current row automatically
moves to the end of thefile.

It isimportant to close a recordset using the Close method when the recordset is
no longer required. However, closing the recordset does not remove the Recor dset
object from memory, so its properties may still be accessed or altered. In order to
remove the Recordset object from memory, we must set the recordset variable
that references the object to Nothing.

Requery
Updates the recordset by requerying the data source.

Resync
Resynchronizes the recordset with the underlying data. It differs from the
Requery method in that it does not re-execute the original query that produced the
recordset. Hence, it will cause any changes to existing records to be visible, but it

will not show any new records.

Supports

298 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Gets information on what features are supported for recordsets of the specified
type by the data provider. The syntax is:

boolean = recordset.Supports(CursorOptions)

Thereturn valueis True if the feature described by CursorOptions is supported
and False otherwise.

Hereisalist of the possible values for CursorOptions:
adAddNew

The AddNew method is supported

adApproxPosition

The AbsolutePosition and AbsolutePage methods are supported.
adBookmark

The Bookmark property is supported.

adDelete

The Delete method is supported.

adHoldRecords

With respect to transaction processing, we can retrieve more records or change
the next retrieve position without committing all pending changes.

adMovePrevious

The MovePrevious method is supported. Also, Move and GetRows can be used to
move the current record pointer backwards without requiring the use of
bookmarks.

adResync
The Resync method is supported
adUpdate
The Update method is supported.

adUpdateBatch

299 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Batch updating is supported.

adSeek

The seek method is available.

adIndex

The Index property with which to name an index is available (ADO 2.1 only).

To illustrate, the SupportsExample procedure in Example 17-2 compares static and
dynamic cursors for a Jet connection.

Example 17-2. The SupportsExample procedure
Sub SupportsExample()

" Compares support options for static and dynamic cursors

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection
Dim IRecordsAffected As Long

" Set up connection

Set cn = New ADODB.Connection

cn.Provider = "Microsoft Jet 3.51 OLE DB Provider"
cn.ConnectionString = "Data Source=D:\BkAccesslI\AccessCode.mdb"
cn.Open

Set rs = New ADODB.Recordset

" Check support options for server-side static cursor
rs.CursorLocation = adUseServer

rs.Open "SELECT * FROM Names', cn, adOpenStatic, adLockOptimistic
" Get recordset support

Debug.Print

Debug.Print "'Server-Side Static Recordset:"

Debug.Print "adAddNew: " & rs.Supports(adAddNew)

Debug.Print "adBookmark: " & rs.Supports(adBookmark)
Debug.Print "adDelete: " & rs.Supports(adDelete)

Debug.Print "adFind: " & rs.Supports(adFind)

Debug.Print "adUpdate: "™ & rs.Supports(adUpdate)

Debug.Print "adMovePrevious: " & rs.Supports(adMovePrevious)

rs.Close

" Check support options for server-side dynamic cursor
rs.CursorLocation = adUseServer

rs.Open "'SELECT * FROM Names'™, cn, adOpenDynamic, adLockOptimistic
" Get recordset support

Debug.Print

Debug.Print "'Server-Side Dynamic Recordset:"

300 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Debug.Print "adAddNew: " & rs.Supports(adAddNew)

Debug.Print "adBookmark: " & rs.Supports(adBookmark)
Debug.Print "adDelete: " & rs.Supports(adDelete)

Debug.Print "adFind: " & rs.Supports(adFind)

Debug.Print "adUpdate: " & rs.Supports(adUpdate)

Debug.Print "adMovePrevious: " & rs.Supports(adMovePrevious)

rs.Close
cn.Close

End Sub

The output is:

Server-Side Static Recordset:
adAddNew: True

adBookmark: True

adDelete: True

adFind: True

adUpdate: True
adMovePrevious: True

Server-Side Dynamic Recordset:
adAddNew: True

adBookmark: False

adDelete: True

adFind: True

adUpdate: True

adMovePrevious: True

Thus, we can see that static cursors support bookmarks, whereas dynamic cursors
do not.

Update

Updates the current record after editing. This method can be used to set values as
well, sinceits general syntax is:

recordset.Update Fields, Values

where Fields isasingle field name or an array of field names, and values are
the corresponding values to assign to the fields in the record. For instance, the
code:

rs.Update Array(LastName, FirstName), Array("Einstein”, "Albert'™)

updates the record by setting LastName = "Einstein' and FirstName = "
Albert".

301 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

17.4.4 The Command Object

A Command object represents a definition of acommand that may be executed by a data
provider. We have seen an exampl e (the Recor dsetExampl e subroutine in Example 17-1)
of how a Command object can be used to create a recordset. The RecordsetExample
procedure also demonstrates that a Command object is not always required in order to
execute a command. However, a Command object is required when we want to execute
the same command more than once. Also, a Command object is needed to pass
parameters to aquery.

17.4.4.1 Command objects and connections

The ActiveConnection property is used to specify the connection over which the
command will pass. The ActiveConnection property can be set either to atext string that
describes the connection or to a Connection object variable that refersto avalid
connection.

It isimportant to note that if we want to assign a single connection to multiple commands
(at different times), a Connection object variable should be used. For if we use atext
string, ADO will create a new Connection object for each command, even if the
connection string is the same.

Setting the ActiveConnection property to Nothing disassociates the Command object
from the current connection and causes the data provider to release any associated
resources on the data source. This may or may not be required, depending on the data
provider, before associating a new Connection object to the command.

17.4.4.2 Properties of the Command obj ect
Let us discuss the main properties of the Command object.
ActiveConnection

Sets the connection over which the command will be sent. As discussed earlier, it
can be atext string (a connection string) or a Connection object variable.

CommandText

Sets (or retrieves) the actual command. Thisisusually an SQL statement, but it
can be any string that is recognized as a command by the data provider (such asa
stored procedure call). According to the documentation, some data providers may
alter the text of acommand string. We can view any changes by examining the
value of the CommandText property.

CommandTimeout

302 N

FlyrHeart.com 4

TEAM FLY PRESENTS

Sets or returns the length of time to wait for the command to execute before
displaying atimeout error. The default is 30 seconds.

CommandType

Name

Sets the type of command; it has the same values as the Options parameter in the
Oopen method of the Recordset object:

adCmdText

A text string that describes a command.
adCmdTable

A table name whose records are returned by generating an internal SQL query.
adCmdTableDirect

A table name whose records are returned.
adCmdFile

The name of afile containing a recordset.
adCmdStoredProc

The name of a stored procedure.
adExecuteNoRecords

CommandText isacommand or stored procedure that does not return rows. This
value is always combined with either adCmdText or adCmdStoredProc.

adCmdUnknown

Unknown type.

Can be used to assign a name to a command.

Parameters

Returns a Parameters collection, which contains the parameters that are required
by the command (if any). We will not discuss parameterized queriesfor ADO in
this book.

303 -

FlyHeart.com g4

TEAM FLY PRESENTS

Prepared

If set to True, the data provider will compile the command specified in the
CommandText property, assuming that it supports this feature. This may slow
execution the first time that the command is executed. However, subsequent
executions of the same command should proceed more quickly. Note that if the
data provider does not support command compilation, it may return an error as
soon as this property is set to True, or it may simply ignore the request to prepare
the command and set the Prepared property to False.

17.4.4.3 M ethods of the Command obj ect
L et us discuss the main methods of the Command object.
CreateParameter

Creates a Parameter object. A Parameter object represents a parameter that is
associated with a parameterized query. We will not discuss parameterized queries
for ADO in this book.

Execute

Executes the command represented by the Command object. As with the Execute
method of the Connection object, there are two possible syntaxes based on
whether or not the command returns a recordset:

" Syntax for a non recordset-returning command
CommandObject.Execute RecordsAffected, Parameters, Options

" Syntax for a recordset-returning command
Dim rs As ADODB.Recordset
Set rs =

CommandObject.Execute(RecordsAffected, Parameters,
Options)

Note that all parameters are optional.

The RecordsAffected parameter isalong that returns the number of records
affected by the command. The Parameters parameter isaVariant array of
parameters that may be required by the SQL statement (if any). The valuesin this
array will override any parameter values set through the Parameters property.
(The order of parametersin the array isthe order in which the parameters are
passed.)

Finally, the options parameter is equivalent to the CommandType property (and
has the same possible val ues).

304 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

17.4.5 The Property Object and Dynamic Properties
The ADO objects:

Recordset
Parameter
Field
Connection
Command

each have a Properties property that returns a Properties collection. This collection
contains a Property object for each dynamic property of the object.

ADO aobjects can have two types of properties: built-in and dynamic. Built-in properties
are the familiar propertiesimplemented by ADO itself. These are the properties that we
have been discussing up to now. Note that the Properties collection does not contain
Property objects for built-in properties.

On the other hand, dynamic properties are defined by the data provider and are thus
specific to aparticular data provider. There is one Property object in the Properties
collection for each dynamic property, and this Properties collection provides the only
method for referencing a dynamic property, asin:
Object.Properties(PropertyName)

or:

Object.Properties(Propertylndex)

Dynamic properties have four built-in properties of their own:

Name
Identifies the property, as in the previous code.

Type
An integer that specifies the data type of the property. It can be one of the values
in Table 17-2.

Table 17-2. The values of the Type property

}adEmpty =0 ladlUnknown = 13 ‘adNumeric = 131
adSmallint = 2 adDecimal = 14 adUserDefined = 132
adinteger =3 adTinylnt = 16 adDBDate = 133

FlyHeart.com g4

TEAM FLY PRESENTS

Value

adSingle=4 adUnsignedTinylnt = 17 adDBTime =134
adDouble =5 adUnsignedSmallint = 18 adDBTimeStamp = 135
adCurrency = 6 adUnsignedint = 19 adVarChar = 200
adDate =7 adBigInt = 20 adLongVarChar = 201
‘adBSTR = 8 ladUnsignedBigint = 21 ‘adVarWChar = 202
adlDispatch=9 adGUID =72 adlL ongVarWChar = 203
adError = 10 adBinary = 128 adVarBinary = 204
adBoolean = 11 adChar = 129 adLongVarBinary = 205
adVariant = 12 adWChar = 130

Note also that the Type property can be set to adisjunction (ORing) of one of the
constants in Table 17-2 and one of the following values:

adArray

Indicates that the Type value is an array of values.

adByRef

Indicates that the Type value is a pointer to avalue.

adVector

Indicates that the Type value is aDBVECTOR structure, as defined by OLE DB.
This structure contains a count of elements and a pointer to data of type
DBTYPE_VECTOR. For more on this, see the ADO documentation.

For example, the value:

adlnteger OR adArray

represents an array of integers.

A Variant containing the value of the dynamic property.

Attributes

A Long that describes attributes of the property. It can be a sum of one or more of

the following values:

adPropNotSupported

The property is not supported by the data provider.

306

—

FlyrHeart.com

TEAM FLY PRESENTS

adPropRequired

The user must specify avalue for this property before the data sourceis
initialized.

adPropOptional
The property is optional.
adPropRead
The property can be read.
adPropWrite
The property can be set.
Toillustrate, consider the PropertiesExample procedure shown in Example 17-3.

Example 17-3. The PropertiesExample procedure
Sub PropertiesExample()

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection
Dim prop As ADODB.Property

" Set up connection
Set cn = New ADODB.Connection
cn.Provider = "Microsoft Jet 3.51 OLE DB Provider"

cn.ConnectionString = "Data Source=d:\BkAccesslI\AccessCode.mdb"
cn.Open

" Open recordset
Set rs = New ADODB.Recordset
rs.Open "'‘Names'™, cn, adOpenDynamic, adlLockReadOnly, adCmdTable

For Each prop In rs.Properties
Debug.Print prop.Name
Next

rs.Close
cn.Close
End Sub

This procedure prints alist of dynamic property names for a Jet recordset. The rather
impressive output is:

Preserve on Abort
Blocking Storage Objects
Use Bookmarks

307 ————

TEAM FLY PRESENTS

Skip Deleted Bookmarks
Bookmark Type

Cache Deferred Columns
Fetch Backwards

Hold Rows

Scroll Backwards

Column Privileges
Preserve on Commit
Defer Column

Delay Storage Object Updates
Immobile Rows

Literal Bookmarks
Literal Row ldentity
Maximum Open Rows
Maximum Pending Rows
Maximum Rows

Column Writable

Memory Usage
Notification Phases
Bookmarks Ordered
Others™ Inserts Visible
Others® Changes Visible
Own Inserts Visible

Own Changes Visible
Quick Restart

Reentrant Events

Remove Deleted Rows
Report Multiple Changes
Row Privileges

Row Threading Model
Objects Transacted
Updatability

Strong Row ldentity
l1Accessor

IColumnsinfo
IColumnsRowset
IConnectionPointContainer
IRowset

IRowsetChange
IRowsetldentity
IRowsetInfo
IRowsetLocate
IRowsetResynch
IRowsetScroll
IRowsetUpdate
ISupportErrorinfo
ILockBytes
ISequentialStream
IStorage

IStream

IRowsetlIndex

Column Set Notification
Row Delete Notification
Row First Change Notification
Row Insert Notification
Row Resynchronization Notification
Rowset Release Notification

308

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Rowset Fetch Position Change Notification
Row Undo Change Notification

Row Undo Delete Notification

Row Undo Insert Notification

Row Update Notification

Append-0Only Rowset

Change Inserted Rows

Return Pending Inserts

IConvertType

Notification Granularity

Access Order

Lock Mode

Jet OLEDB:Partial Bulk Ops

Jet OLEDB:Pass Through Query Connect String
Jet OLEDB:ODBC Pass-Through Statement
Jet OLEDB:Grbit Value

Jet OLEDB:Use Grbit

Jet OLEDB:3.5 Enable IRowsetlndex
Bookmarkable

Of course, getting documentation on these properties is another matter. Let me know if
you find any.

17.4.6 The Field Object

The Field object represents afield (or column) in arecordset. The Fields property of the
Recordset object returns the Fields collection of all Field objects for that recordset.

The Field object has but two methods, AppendChunk and GetChunk, which are used with
large text or binary fields. The reader should refer to the documentation for more on these
methods.

17.4.6.1 Properties of the Field object

Here are the properties of the Field object:

ActualSize and DefinedSize
The DefinedSize property is used to set the size of afield asit is defined. The
Actual Size property returns the size of the actual data stored in that field for the
current record. Thus, for example, a String field named FirstName may have

DefinedSize 25, but if the actual datain a given record at a particular timeis
"Albert", then the Actual Size property will return 6.

Attributes

The Attributes property of aField object can be a sum of the following val ues.
Note that for a Field object, the Attributes property is read-only.

309 =

FlyrHeart.com 4

TEAM FLY PRESENTS

adFldMayDefer

Thefield isdeferred; that is, the field values are not retrieved from the data source
when the record is retrieved. Instead, we must explicitly request the values.

adFldUpdatable

Thefield valueiswritable.
adFldUnknownUpdatable

The provider cannot determine if we can write to the field.
adFldFixed

The field contains fixed-length data.
adFldisNullable

The field accepts Nul I values.
adFldMayBeNull

Nul I values can be read from the field.
adFldLong

Thefieldisalong binary field. Hence, the AppendChunk and GetChunk methods
are available for thisfield.

adFIdRowID

The field contains some type of record ID, such as arecord number or unique
identifier.

adFldRowVersion

The field contains atime or date stamp used to track updates.
adFldCacheDeferred

The provider caches field values and subsequent reads are done from the cache.

Name

FlyHeart.com g4

TEAM FLY PRESENTS

Thisisthe name of the field. Note that the Name property is read-only for Field
objects.

NumericScale and Precision

The read-only NumericScale property is used to return the number of digitsto the
right of the decimal place that is used to represent numeric values. The read-only
Precision property returns the total number of digits used to represent a numeric
value. Both are Byte properties.

Value, UnderlyingValue, and OriginalValue
The Value property sets or returns the value of the field for the current record.
The UnderlyingValue property returns the current field value from the database.
This value may be the result of arecent update to the recordset by another
transaction, whereas the OriginalVValue property returns the original value that
was retrieved from the recordset and thus does not reflect any updates by another
transaction.

The UnderlyingValue and OriginalValue properties are read-only. To set avalue,
we must use the Value property.

Type

This specifies the datatype for the field. The possible values are listed earlier in
Table17-1.

17.5 Finding OLE DB Providers

It is clearly important to be able to determine which OLE DB providers areinstalled on a
particular system. The Windows registry contains entries for each installed OLE DB
provider. An exampleis shown in Figure 17-5.

Figure 17-5. Registry entry for an OLE DB provider

Ei_-ld Aegistry Editor
Be=gisry Edt View Haln
] foBE m204-0Ps 11 CESOE HonasansBens 1, =] [Hame il
£ (7] {CFEFIBCARED e-57AB-OICI4FC2ADE} i _E]._l Iefeidll) | “Wicsosof OLE DB Prowidarfion 201 Sanse
' _:I ExtendedEmrs
] ramocSaneril
Y CLE DS Provider
] Progit
._J “ersioaindapendentFroglD -
y i N

by Computes HEEY CLASEES ROOTWLSIDEOCTFF 60-3AE - 10097 AB-MCIAFC2ACENOLE DB Prosidar

311 N

FlyHeart.com g4

TEAM FLY PRESENTS

Unfortunately, Windows does not make it a Simple matter to extract this registry
information using code. The ListDPs procedure shown in Example 17-4 will do the trick.
Y ou don't need to worry about all of the coding details related to the registry, but you
may want to change some of the code, since it currently just printsthe list of data
providers to the Immediate window. Also, don't forget to include the code in the
declarations section, also shown in Example 17-4.

Example 17-4. The ListDPs procedure

" Declarations for ListDPs

Type FILETIME
dwLowDateTime As Long
dwHighDateTime As Long

End Type

Public Const HKEY_CLASSES_ROOT = &H80000000

Public Const ERROR_SUCCESS = 0&

Public Const KEY_QUERY_VALUE = &H1

Public Const KEY_ENUMERATE_SUB KEYS = &H8

Public Const KEY_NOTIFY = &H10

Public Const SYNCHRONIZE = &H100000

Public Const STANDARD_RIGHTS_READ = &H20000

Public Const KEY_READ = ((STANDARD_RIGHTS_READ Or KEY_QUERY_VALUE Or _
KEY_ENUMERATE_SUB_KEYS Or KEY_NOTIFY) And (Not SYNCHRONIZE))

Public Const REG SZ =1

Declare Function RegOpenKeyEx Lib "advapi32.dIl'" Alias _
""RegOpenKeyExA"™ (ByVal hKey As Long, ByVal IpSubKey As String, _
Byval ulOptions As Long, ByVal samDesired As Long, _
phkResult As Long) As Long

Declare Function RegCloseKey Lib "advapi32.dil"™ _
(Byval hKey As Long) As Long

Declare Function RegEnumKeyEx Lib "advapi32.dIl' Alias _
""RegEnumKeyExA" (ByVal hKey As Long, ByVal dwlndex As Long, _
Byval IpName As String, IpcbName As Long, _
ByVal IpReserved As Long, ByVal IpClass As String, _
IpcbClass As Long, IpftLastWriteTime As FILETIME) As Long

Declare Function RegQueryValueEx Lib "advapi32.dll"™ Alias _
""RegQueryValueExA"™ (ByVal hKey As Long, ByVal IpValueName As String, _
ByvVal IpReserved As Long, IpType As Long, IpData As Any, _
IpcbData As Long) As Long

Declare Function RegQueryValueExStr Lib "advapi32.dil" Alias _
""RegQueryValueExA"™ (ByVal hKey As Long, ByVal IpValueName As String, _
ByvVal IpReserved As Long, IpType As Long, ByVal IpData As String, _
IpcbData As Long) As Long

Private Sub ListDPs()

" Search the registry for Data Providers

Const BUF_LEN As Long = 2048

312 N

FlyrHeart.com 4

TEAM FLY PRESENTS

m lret As Long, lret2 As Long, lret3 As Long

Dim hCLSIDKey As Long, hClassKey As Long, hClassSubKey As Long

Dim IbufKeyName As Long

Dim bufKeyName As String * BUF_LEN
Dim lbufClassName As Long
Dim bufClassName As String * BUF_LEN

Dim IbufKeyName2 As Long
Dim bufKeyName2 As String * BUF_LEN
Dim lbufClassName2 As Long

m bufClassName2 As String * BUF_LEN

Dim Ibufvalue As Long

im bufvalue As String * BUF_LEN

Dim ft As FILETIME, ft2 As FILETIME
Dim IxKey As Long, IxKey2 As Long

im IValueType As Long

Dim bProvider As Boolean
Dim sDPs As String

im sName As String

Iret = RegOpenKeyEx(HKEY_CLASSES_ROOT, 'CLSID", 0, KEY_READ, hCLSIDKey)

IT Iret <> ERROR_SUCCESS Then

MsgBox ''Cannot open CLSID key", vbCritical
Exit Sub

End If

IxKey = 0

Do

IbufKeyName = BUF_LEN
bufKeyName = String(BUF_LEN, Chr$(0))
IbufClassName = BUF_LEN
bufClassName = String(BUF_LEN, Chr$(0))
Iret = RegEnumKeyExX(hCLSIDKey, IxKey, bufKeyName, lIbufKeyName, _
0, bufClassName, lbufClassName, ft)
IxKey = IxKey + 1
DoEvents
IT Iret = ERROR_SUCCESS Then
" We have a subkey of CLSID (a class key) -
" check its subkeys for OLE DB Provider key
Iret2 = RegOpenKeyEx(HKEY_CLASSES ROOT, "CLSID\" & _
Left$(bufKeyName, IbufkKeyName), O, KEY_READ, hClassKey)
IT Iret2 <> ERROR_SUCCESS Then
MsgBox "'Cannot open key " & Left$(bufKeyName, IbufKeyName)
RegCloseKey hCLSIDKey
Exit Sub
End If

" Got a class key, check its subkeys
" We compile the subkeys and their default values in sDPs

313 N

FlyrHeart.com 4

TEAM FLY PRESENTS

to be discarded if the class is not a provider
sDPs = """
bProvider = False
IxKey2 = 0O
Do
IbufKeyName2 = BUF_LEN
bufKeyName2 = String(BUF_LEN, Chr$(0))
IbufClassName2 = BUF_LEN
bufClassName2 = String(BUF_LEN, Chr$(0))
Iret2 = RegEnumKeyEx(hClassKey, IxKey2, bufkeyName2,
IbufkeyName2, 0, bufClassName2, lbufClassName2, ft2)
IT Iret2 = ERROR_SUCCESS Then
" Test for OLE DB Provider
If LCase$(Left$(bufkeyName2, IbufKeyName2)) = _
"ole db provider'™ Then
bProvider = True
Exit Do
End If
End If
IxKey2 = IxKey2 + 1
Loop While lret2 = ERROR_SUCCESS
" Finished looping through subkeys of the class key
* If a provider, display all key values
IT bProvider Then
Debug.Print "
Debug.Print "***NEW PROVIDER***"

Debug.Print "CLSID = " & Left$(bufKeyName, IbufKeyName)
IxKey2 = 0O
Do

Ibufvalue = 0 """this causes a GPF --> BUF_LEN
bufvalue = String(BUF_LEN, Chr$(0))
IbufKeyName2 = BUF_LEN
bufKeyName2 = String(BUF_LEN, Chr$(0))
IbufClassName2 = BUF_LEN
bufClassName2 = String(BUF_LEN, Chr$(0))
Iret2 = RegEnumKeyEx(hClassKey, IxKey2, bufKeyName2,
IbufKkeyName2, 0, bufClassName2, lIbufClassName2, ft2)
IT Iret2 = ERROR_SUCCESS Then
" Open the key and get the default value
Iret3 = RegOpenKeyEx(HKEY_ CLASSES ROOT, _
"CLSID\" & Left$(bufKeyName, lIbufKeyName) & ""\" & _
Left$(bufKeyName2, IbufKeyName2), _
0, KEY_QUERY_VALUE, hClassSubKey)
IT Iret3 = ERROR_SUCCESS Then
sName = "'
" Get the length and check for string
Iret3 = RegQueryValueEx(hClassSubKey, sName, 0&,
1ValueType, 0&, lbufValue)

" Check for string
IT IValueType = REG_SZ Then

IT Ibufvalue <> 0 Then
Iret3 = RegQueryValueExStr(hClassSubKey, sName, _

0&, IvalueType, bufvalue, lbufValue)
End If

314 -

FlyrHeart.com 4

TEAM FLY PRESENTS

IT Left$(bufkeyName2, lbufKeyName2) <> _
"ExtendedErrors"™ Then
Debug.Print Left$(bufkeyName2, IbufKeyName2) & _
" =" & Left$(bufvalue, Ibufvalue)
End If
End I " string
RegCloseKey hClassSubKey
End If
End If
IxKey2 = IxKey2 + 1
Loop While lret2 = ERROR_SUCCESS

End If

RegCloseKey hClassKey
End If
Loop While lret = ERROR_SUCCESS

RegCloseKey hCLSI1DKey

End Sub

Hereisthe output of ListDPs on my system:

NEW PROVIDER

CLSID = {OC7FF16C-38E3-11d0-97AB-00C04FC2AD98}

InprocServer32 = C:\Program Files\Common Files\system\ole db\SQLOLEDB.DLL
OLE DB Provider = Microsoft OLE DB Provider for SQL Server

ProglD = SQLOLEDB.1

VersionlndependentProglD = SQLOLEDB

NEW PROVIDER

CLSID = {3449A1C8-C56C-11D0-AD72-00C04FC29863}

InprocServer32 = C:\Program Files\Common Files\system\msadc\MSADDS.DLL
OLE DB Provider = MSDataShape

ProglD = MSDataShape.1

VersionlndependentProglD = MSDataShape

NEW PROVIDER

CLSID = {c8b522cb-5cf3-11ce-ade5-00aa0044773d}

InprocServer32 = C:\Program Files\Common Files\System\OLE DB\MSDASQL.DLL
OLE DB Provider = Microsoft OLE DB Provider for ODBC Drivers

ProglD = MSDASQL.1

VersionlndependentProglD = MSDASQL

NEW PROVIDER

CLSID = {dee35060-506b-11cf-blaa-00aa00b8de95}

InprocServer32 = C:\Program Files\Common Files\system\ole db\MSJTOR35.DLL
OLE DB Provider = Microsoft Jet 3.51 OLE DB Provider

ProglID = Microsoft.Jet_OLEDB.3.51

VersionlndependentProglD = Microsoft.Jet_OLEDB

NEW PROVIDER

CLSID = {dfc8bdc0-e378-11d0-9b30-0080c7e9fe95}

InprocServer32 = C:\Program Files\Common Files\system\ole db\MSDAOSP.DLL
OLE DB Provider = Microsoft OLE DB Simple Provider

315 a~s.

FlyrHeart.com 4

TEAM FLY PRESENTS

ProgID = MSDAOSP.1
VersionlndependentProglD = MSDAOSP

NEW PROVIDER

CLSID = {e8cc4cbe-fdff-11d0-b865-00a0c9081cld}

InprocServer32 = C:\Program Files\Common Files\system\ole db\MSDAORA.DLL
OLE DB Provider = Microsoft OLE DB Provider for Oracle

ProglD = MSDAORA.1

VersionlndependentProglD = MSDAORA

NEW PROVIDER

CLSID = {E8CCCB79-7C36-101B-AC3A-00AA0044773D}
InprocServer32 = C:\oledbsdk\bin\SAMPPROV.DLL

OLE DB Provider = Microsoft OLE DB Sample Provider
ProgID = SampProv

VersionlndependentProglD = SampProv

With reference to this output, a CLSID is anumber that is intended to identify the data
provider (in this case) or any software component (in more general settings) throughout
the universe. Thisiswhy it isalso referred to as a globally unique identifier (GUID). We
have no use for this value, however.

The InprocServer32 entry shows the fully qualified name of the DLL that actually
implements the data provider. For instance, the Jet provider has the filename C:\Program
Files\Common Files\system\ole do\MSJITOR35.DLL.

The OLE DB Provider entry isthe name of the provider. This can be used with the
Provider property of the Connection object. The ProglD entry isthe provider's
programmatic 1D, an identifying string that is friendlier than the CLSID and is supposed
to be unique as well. The ProglD can also be used as the value of the Provider property.

17.6 A Closer Look at Connection Strings

It seemsfair to say that the most confusing aspect of using ADO is determining the
correct connection string required to establish a connection to an OLE DB provider.
Certainly, thisis one of the first confusing aspects of ADO, if not the only one.

In the beginning, there was only one OLE DB provider—Muicrosoft OLE DB Provider for
ODBC Drivers. Thiswas agood way for Microsoft to introduce OLE DB, because it
meant that any ODBC provider automatically became an OLE DB provider.

Today, the list of OLE DB providers has grown to include the following (and presumably
there are more of which | am not aware):

Microsoft OLE DB Simple Provider (a JavaBeans-related interface)

Microsoft OLE DB Provider for ODBC Drivers (for Open Database Connectivity)
Microsoft OLE DB Provider for Oracle (for Oracle databases)

Microsoft Jet 3.51 OLE DB Provider (for Jet databases)

Microsoft OLE DB Provider for SQL Server (for SQL Server databases)

316)

FlyrHeart.com 4

TEAM FLY PRESENTS

e Microsoft OLE DB Provider for Directory Services (provides directory
services—that is, logon, administration and replication services—for Windows
NT Server networks)

Aside from the ODBC provider, the SQL Server provider is used most often in examples,
so we will not do so here. On the PC side, | think that the most interesting OLE DB
providers are the Jet provider and the ODBC provider, especialy since the | atter can be
used to connect to such things as Excel spreadsheets and text documents. Accordingly,
we will take alook at how to set up connection strings using these two providers.

17.6.1 The Microsoft Jet 3.51 OLE DB Provider

Oddly enough, the MSDN Library (which is now the main source of documentation for
Microsoft's development platforms) does not seem to document the Jet 3.51 OLE DB
provider—at least | couldn't find any documentation on it. However, some
experimentation will yield sufficient details to use the provider.

Y ou may be wondering why you would want to use this OLE DB provider to connect to a
Jet database when DA O was specifically designed for this purpose and works quite well.
Thisisafair question. | suppose one answer is that we had better stay current with
Microsoft's technology, or we may find ourselvesin trouble later on. Frankly, | wish |

had a better answer at thistime.

The place to start is with the results of the ListDPs procedure shown earlier for the Jet
provider:

CLSID = {dee35060-506b-11cf-blaa-00aa00b8de95}

InprocServer32 = C:\Program Files\Common Files\system\ole db\MSJTOR35.DLL
OLE DB Provider = Microsoft Jet 3.51 OLE DB Provider

ProglID = Microsoft.Jet.OLEDB.3.51

VersionlndependentProglD = Microsoft.Jet._OLEDB

Recall that we can use either the ProgID entry or the OLE DB Provider entry as the value
of the Provider property of the Connection object.

The AccessExample procedure in Example 17-5 illustrates a connection to a Jet database.

Example 17-5. The AccessExample procedure
Sub AccessExample()

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection

" Set up connection

Set cn = New ADODB.Connection

cn.Provider = "Microsoft Jet 3.51 OLE DB Provider"
cn.ConnectionString = "Data Source=D:\BkAccesslI\AccessCode.mdb"
cn.Open

317 -~

FlyrHeart.com 4

TEAM FLY PRESENTS

" Get full connection string after opening
Debug.Print "Full connection string: " & cn.ConnectionString

" Get list of 2s

Set rs = cn.OpenSchema(adSchemaTables)

Do While Not rs._EOF
Debug.Print rs!TABLE_NAME & " Type: " & rs!ITABLE_TYPE
rs.MoveNext

Loop

rs.Close
cn.Close

End Sub

After declaring and creating a Connection object:

Dim cn As ADODB.Connection
Set cn = New ADODB.Connection

we set the Provider property:

cn.Provider = "Microsoft Jet 3.51 OLE DB Provider"

Asfor the ConnectionString property, without knowing much about the connection string
format, we try specifying just a data source:

cn.ConnectionString = "Data Source=D:\BkAccesslI\AccessCode.mdb"

Then we open the connection and print the ConnectionString property:

cn.Open
Debug.Print "Full connection string: " & cn.ConnectionString

The resulting output gives us afull connection string, which in this caseis.

Provider=Microsoft.Jet.OLEDB.3.51;

Persist Security Info=False; _

User ID=Admin; _

Data Source=D:\BkAccesslI\AccessCode.mdb; _

Mode=Share Deny None; _

Extended Properties=";COUNTRY=0;CP=1252;LANGID=0x0409"; _
Locale ldentifier=1033; _

Jet OLEDB:System database="""; _

Jet OLEDB:Registry Path="""; _

Jet OLEDB:Database Password=""";

Jet OLEDB:Global Partial Bulk Ops=2

Much of this connection string, such as the Persist Security Info, is obscure. Fortunately,
we don't seem to need it. Note that the Provider parameter isthe ProglD rather than the
text description that we used to set this value.

318 N

FlyrHeart.com 4

TEAM FLY PRESENTS

Finally, to test the connection, we also print out alist of al of the tables in the database
using the openschema method of the Connection object. Theresult is:

MSysACEs Type: SYSTEM TABLE
MSysIMEXColumns Type: TABLE
MSysIMEXSpecs Type: TABLE
MSysModules Type: TABLE

MSysModulles2 Type: TABLE

MSysObjects Type: SYSTEM TABLE
MSysQueries Type: SYSTEM TABLE
MSysRelationships Type: SYSTEM TABLE
Names Type: TABLE

Tablel Type: TABLE

17.6.2 The Microsoft OLE DB Provider for ODBC Drivers

Open Database Connectivity (ODBC) for short, isan Application Programming Interface
(API) designed for connecting to databases of various types. The term database is used
here in avery general senseto refer not only to traditional relational databases, such as
Access, FoxPro, Oracle, or SQL Server databases, but also to less traditional "databases,”
such as delimited text files or Excel worksheets.

Since ODBC is still very commonly used and will be for sometime, | have included
Appendix C, which describes this technology in some detail. For now, we want to discuss
how to connect to an ODBC data source through the OLE DB provider for ODBC. To
understand the process completely and create your own connection strings, you must be
familiar with ODBC Data Source Names. These are discussed in Appendix C. However,

to modify the connection strings for the Excel files and text files that we will discuss later,
you don't really need to know anything about DSNs beyond the following.

The term Data Source Name (DSN) refers not ssmply to the name of the data source, but
to adescription of the data source and its accompanying driver, aswell as the attributes
of a connection between the two. For instance, a DSN includes the name of the data
source, the complete path of the data source, the name of the driver, and details about the
connection to the data source, such as whether the connection is read-only. As we will
seein the Appendix C, there are various types of DSNs. A DSN is created using the
ODBC Administrator, which can be activated by clicking on the ODBC icon in the
Windows Control Panel. Appendix C discusses how to use this applet.

Again referring to the output of the ListDPs procedure described earlier, we first note that
the Provider property of the Connection object can be set to either MSDASQL (or its
version-dependent counterpart, MSDASQL . 1) or the string ""Microsoft Jet 3.51 OLE DB
Provider". Also, since this provider is the default, we can ssmply omit the Provider
property altogether.

Fortunately, there is some documentation for the Microsoft OLE DB provider for ODBC,
and, equally fortunately, it is quite clearly written, asfar asit goes. Here is what the

319)

FlyrHeart.com 4

TEAM FLY PRESENTS

documentation says about the connect string (this is from the Microsoft MSDN Library
CD):

Because you can omit the Provider parameter, you can therefore compose an ADO
connection string that is identical to an ODBC connection string for the same data source,
using the same parameter names (DRIVER=, DATABASE=, DSN=, and so on), values,
and syntax as you would when composing an ODBC connection string. Y ou can connect
with or without a predefined data source name (DSN) or FileDSN.

Syntax with aDSN or FileDSN:

"[Provider=MSDASQL ;] { DSN=name | FileDSN=filename } ; [DATABA SE=database;]
UID=user; PWD=password"

Syntax without a DSN (DSN-less connection):

"[Provider=MSDASQL ;] DRIVER=driver; SERVER=server; DATABASE=database;
UID=user; PWD=password"

If you useaDSN or FileDSN, it must be defined through the ODBC Administrator in the
Windows Control Panel. As an alternative to setting a DSN, you can specify the ODBC
driver (DRIVER=), such as"SQL Server," the server name (SERVER=), and the database
name (DATABASE=).

Y ou can also specify a user account name (UID=), and the password for the user account
(PWD-=) in the ODBC-specific parameters or in the standard ADO-defined User ID and
Password parameters. If you include both the ADO and the ODBC-specific parameters
for these values, the ADO parameters take precedence.

Although a DSN definition already specifies a database, you can specify a DATABASE
parameter in addition to a DSN to connect to a different database. This also changes the
DSN definition to include the specified database. It is a good ideato aways include the
DATABASE parameter when you use a DSN. Thiswill ensure that you connect to the
proper database because another user may have changed the default database parameter
since you last checked the DSN definition.

This seems to be saying that when we omit the provider portion of the connection string
(which can aways be supplied using the Provider property), an OLE DB connection
string isidentical with an ODBC connection string. Of course, this begs the question:
"How do we compose an ODBC connection string?"

The simplest answer isto let Windows do thisfor us. However, the starting point for this
isaDSN that we must create, probably using the ODBC Administrator. The
GetODBCConnectString procedure in Example 17-6 will extract a connection string from
aDSN. The procedure first uses DAO (yes, DAO) to create an ODBC workspace. Then
the OpenConnection method:

320)

FlyrHeart.com 4

TEAM FLY PRESENTS

Set c = ws.OpenConnection('"", dbDriverPrompt, , "ODBC;')

causes Windows to display the ODBC Administrator so we can create a DSN. Once this
is done, the procedure prints the complete connection string.

Example 17-6. The GetODBCConnectString procedure
Private Sub GetODBCConnectString()

" Create an ODBC workspace and get the connect string for a DSN

Dim db As Database, ws As Workspace, rs As Recordset
Dim cn As Connection

Set ws = CreateWorkspace("'NewODBC", "admin', "', dbUseODBC)

" The following causes a prompt for the DSN

Set cn = ws.OpenConnection(*"', dbDriverPrompt, , "ODBC;'")
Debug.Print cn.Connect

cn.Close

End Sub

Actualy, there are two types of ODBC connection strings—DSN and DSN-less. Here are
examples of the two types of connection strings for a connection to an Excel worksheet
and to atext file. These strings were obtained using the GetODBCConnectString
procedure:

" Excel DSN-less connection string
ODBC; _
DBQ=D:\BkAccesslI\Connect.xls; _
DefaultDir=D:\bkado; _
Driver={Microsoft Excel Driver (*.xIs)}; _
Driverld=790; _

FlL=excel 5.0; _
ImplicitCommitSync=Yes; _
MaxBufferSize=512;
MaxScanRows=8; _

PageTimeout=5; _

ReadOnly=0; _

SafeTransactions=0; _

Threads=3; _

UlID=admin; _

UserCommitSync=Yes;

" Excel DSN connection string
ODBC; _

DSN=ConnectExcel; _
DBQ=D:\BkAccesslI\Connect.xls; _
DefaultDir=D:\bkado; _
Driverld=790; _

FlL=excel 5.0; _
MaxBufferSize=512;
PageTimeout=5; _

UlD=admin;

321 N

FlyrHeart.com 4

TEAM FLY PRESENTS

" Text File DSN-less connection string
ODBC; _

DefaultDir=D:\bkado; _
Driver={Microsoft Text Driver (*.txt;*.csv)}; _
Driverld=27; _
Extensions=txt,csv,tab,asc; _
FlL=text; _

ImplicitCommitSync=Yes; _
MaxBufferSize=512;

MaxScanRows=25;

PageTimeout=5;

SafeTransactions=0; _

Threads=3; _

UlID=admin; _

UserCommitSync=Yes;

" Text File DSN connection string
ODBC;

DSN=ConnectText; _
DBQ=D:\bkado; _
DefaultDir=D:\bkado; _
Driverld=27; _
FlL=text; _
MaxBufferSize=512;
PageTimeout=5; _
UlID=admin; _

The main difference between the two types of connection stringsisthat inaDSN
connection string, the DSN file is referenced so that ODBC can get information from that
file. InaDSN-less string, all required information must be supplied directly. Thus, in
many ways DSN-less connection strings are superior since they do not require an external
DSN file.

Let mereiterate (lest you become annoyed with me) that we will discuss creating DSNs
using the ODBC Administrator in Appendix C. At this point, however, you should just
keep the following in mind:

e If you just want to connect to an Excel spreadsheet or text file, you can modify
and use the connection strings in the upcoming examples.

o If you want to create a connection string for adifferent ODBC provider, you can
use the GetODBCConnectString procedure to get the proper connection string,
but for this you will need to use the ODBC Administrator to createaDSN. A
discussion of how to do thisis given in Appendix C, along with more details on
DSNs and ODBC in general. Aswe will see in the appendix, by creating aFile
DSN, the GetODBCConnectSring procedure will produce a DSN-less connection
string!

S0 let us turn to some actual examples.

17.6.2.1 Connecting to an Excel workbook

322 a~s.

FlyrHeart.com 4

TEAM FLY PRESENTS

The ExcelExample procedure shown in Example 17-7 illustrates how to connect to an
Excel worksheet named MasterTable (shown in Figure 17-6) in the workbook
D:\BkAccessl I\Connect.xls.

Figure 17-6. A test Excel worksheet

A E C D E
a b C i &
U
W
W
X

e
tad
b

OF N A G R
[(R N o
R B
o Ln B

= R T

The procedure uses the SQL statement:

"“"SELECT * FROM [MasterTable$]"

to open arecordset based on thistable. (I can't tell you how long it took me to determine
that adollar sign must be appended to the end of an Excel worksheet name.)

We set the connect string to:

" Connection string

cn.ConnectionString = _
"DRIVER={Microsoft Excel Driver

(*.x1s)};DBQ=D:\BkAccesslI\Connect.xlIs;"

Note the bBQ parameter. Based on the documentation from Microsoft that | quoted earlier,
| first tried to use the parameter name DATABASE, but was rudely rewarded with the
message "Operation cancelled” at the line:

cn.Open

(In case you are wondering how | discovered that DBQ was the correct name, | used the
ODBC Administrator to create a DSN and inspected the DSN file with atext editor.)

The ExcelExample procedure in Example 17-7 prints the full connection string, whichin
thiscaseis:

Provider=MSDASQL.1; _

Connect Timeout=15; _

Extended Properties="DBQ=D:\BkAccesslI\Connect.xls; _
Driver={Microsoft Excel Driver (*.xIs)}; _
Driverld=790; _

MaxBufferSize=512;
PageTimeout=5;"";

Locale ldentifier=1033

323 = _—>

TEAM FLY PRESENTS

Next, the procedure prints the field names for the Excel worksheet, which are the entries
in thefirst row. (I didn't know this until | ran this code.) It then prints the remaining rows
of the table. Note the use of the GetRows function to grab all of the recordsin the
recordset at once.

Finally, the procedure gathers some support information for future reference.

Example 17-7. The ExcelExample procedure
Sub ExcelExample()

Dim r As Integer, T As Integer
Dim vrecs As Variant

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection
Dim fld As ADODB.Field

" Set up connection
Set cn = New ADODB.Connection

" Set provider
" Note we can also use the ProglID: "MSDASQL.1", or nothing!
cn._Provider = "Microsoft OLE DB Provider for ODBC Drivers"

" Connection string

cn.ConnectionString = _
"DRIVER={Microsoft Excel Driver

(*.x1s)};DBQ=D:\BkAccesslI\Connect.xlIs;"

" Open the connection
cn.Open

" Get full connection string after opening
Debug.Print "Full connection string: " & cn.ConnectionString

" Get recordset using rs.open SQL statement

Set rs = New ADODB.Recordset

rs_.CursorLocation = adUseClient

rs.Open ""'SELECT * FROM [MasterTable$]"', cn, adOpenDynamic, adLockOptimistic

" Print the field names (from first row)
For Each fld In rs_Fields
Debug.-Print fld.Name,
Next
Debug.Print

" Get the rows all at once
vrecs = rs.GetRows(6)

For r = 0 To UBound(vrecs, 2)
For f = 0 To UBound(vrecs, 1)
Debug.Print vrecs(f, r),
Next
Debug.Print
Next

324 -

FlyrHeart.com 4

TEAM FLY PRESENTS

" Check support options while we are here

Debug.Print

Debug.Print "Client-Side Dynamic Recordset:"

Debug.Print "adAddNew: " & rs.Supports(adAddNew)

Debug.Print "adBookmark: " & rs.Supports(adBookmark)
Debug.Print "adDelete: " & rs.Supports(adDelete)

Debug.Print "adFind: " & rs.Supports(adFind)

Debug.Print "adUpdate: "™ & rs.Supports(adUpdate)

Debug.Print "adMovePrevious: " & rs.Supports(adMovePrevious)

rs.Close
cn.Close

End Sub

The output from the support information codeis:

Client-Side Dynamic Recordset:
adAddNew: True

adBookmark: True

adDelete: True

adFind: True

adUpdate: True

adMovePrevious: True

This shows that ADO provides pretty good access to an Excel worksheet.

17.6.2.2 Connecting to atext file

The TextExample procedure, shown in Example 17-8, illustrates how to create atext file
and add text to it using the ODBC provider for OLE DB. (Before running this procedure,
you will probably want to change the Defaul tDir value.)

Example 17-8. The TestExample procedure
Sub TextExample()

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection
Dim sCS As String
Dim sSQL As String

* Declare new connection
Set cn = New ADODB.Connection

" Form connection string

sCS = "DefaultDir=d:\bkado;"

sCS sCS & "Driver={Microsoft Text Driver (*.txt; *.csv)};"
sCS sCS & '"Driverld=27;"

cn.ConnectionString = sCS

cn.Open

325 N

FlyrHeart.com 4

TEAM FLY PRESENTS

" Get full connection string after opening
Debug.Print "Full connection string: " & cn.ConnectionString

" Create a new text file and add a line
On Error Resume Next
cn.Execute "CREATE TABLE [newfile.txt] (FirstName TEXT, LastName TEXT);"

IT Err_Number <> 0 And Err._Number <> vbObjectError + 3604 Then

MsgBox "Error: ' & Err.Number & ": " & Err._Description
Err.Clear
End IFf

sSSQL = "INSERT INTO [newfile.txt] (FirstName, LastName) Values ("steve®,
“roman®);"
cn.Execute sSQL

" Open a recordset
Set rs = New ADODB.Recordset
rs.Open "'SELECT * FROM NewFile.txt", cn, adOpenDynamic, adLockOptimistic

" Check support options while we are here

Debug.Print

Debug.Print "Client-Side Dynamic Recordset:"

Debug.-Print "adAddNew: " & rs.Supports(adAddNew)

Debug.Print "adBookmark: " & rs.Supports(adBookmark)
Debug.Print "adDelete: " & rs.Supports(adDelete)

Debug.Print "adFind: " & rs.Supports(adFind)

Debug.Print "adUpdate: " & rs.Supports(adUpdate)

Debug.Print "adMovePrevious: ' & rs.Supports(adMovePrevious)

rs.Close
cn.Close

End Sub

In this case, there is awrinkle in the connection-string requirements. We seem to need the
clause:

Driverld = 27;

in the connection string, even though the driver nameis aso given. Without the
Driverld, we get the confusing error message "Data source name not found and no
default driver specified.” Aswith the Excel example, to figure thisout, | created aDSN
with the ODBC Administrator and inspected the resulting file. Starting with the entire
connection string based on that file, | Slowly eliminated entries until |1 got a minimal
working connection string.

Note also that when creating a new text file, we need to deal with the possibility that the
file aready exists. Theline:

On Error Resume Next

326 N

FlyrHeart.com 4

TEAM FLY PRESENTS

tells VBA that if an error occurs, it should simply skip the line that produced the error
and execute the next line. Now consider the code that will handle an error:

IT Err_Number <> 0 And Err_Number <> vbObjectError + 3604 Then

MsgBox "Error: ' & Err.Number & '": " & Err._Description
Err.Clear
End IFf

If we remove the On Error Resume Next line, the second time we run the procedure, we
will get the error message in Figure 17-7.

Figure 17-7. An error message

Rur-time error -2147217300 (80040e1 4)"

[Microsoit])[DDBC Text Drrver] Table ‘newhle#txt’ alreacdy exists.

Deabug End Help l

Now, VBA uses error numbers starting with the constant vbobjectError (which equals
&H8004000) to indicate object errors. The error number in Figure 17-7 isthus:

&H8004000 + &HOel4 = vbObjectError + 3604

So, the error-handling code:

IT Err_Number <> 0 And Err._Number <> vbObjectError + 3604 Then
MsgBox "Error: " & Err.Number & ": " & Err.Description
Exit Sub

End If

looks for errors message other than error number vbobjectError+3604. If it finds such
an error, it displays a message and exits. However, if the error is the one shown in Figure
17-7, then the procedure just ignoresit. Thisis what we want, because the next line of
code just inserts alinein the existing file.

The full connection string for this text connectionis:

Provider=MSDASQL.1; _

Connect Timeout=15; _

Extended Properties="DefaultDir=d:\bkado; _

.. .Driver={Microsoft Text Driver (*.txt; *.csv)}; _
.. .Driverld=27;MaxBufferSize=512;PageTimeout=5;"; _
Locale Ildentifier=1033

and the support-related output is:

Client-Side Dynamic Recordset:

FlyHeart.com g4

TEAM FLY PRESENTS

adAddNew: True
adBookmark: False
adDelete: True
adFind: True
adUpdate: True

adMovePrevious: True

Thus, we even have pretty good accessto atext file, but we cannot use bookmarks.

17.6.2.3 ODBC support

The documentation for the ODBC data provider does include some useful tables that
describe which features are available for various recordset types. These tables are
reproduced here as Tables 17-3 and 17-4.

Table 17-3. Availability of properties by Recordset

Property ForwardOnly Dynamic Keyset Static
AbsolutePage Not available Not available Read/write Read/write
AbsolutePosition Not available Not available Read/write Read/write
ActiveConnection Read/write Read/write Read/write Read/write
BOF Read-only Read-only Read-only Read-only
Bookmark Not available Not available Read/write Read/write
CacheSize Read/write Read/write Read/write Read/write
CursorLocation Read/write Read/write Read/write Read/write
CursorType Read/write Read/write Read/write Read/write
EditMode Read-only Read-only Read-only Read-only
EOF Read-only Read-only Read-only Read-only
|Fi Iter | Read/write | Read/write | Read/write | Read/write
LockType Read/write Read/write Read/write Read/write
Marshal Options Read/write Read/write Read/write Read/write
MaxRecords Read/write Read/write Read/write Read/write
PageCount Not available Not available Read-only Read-only
IPageSi ze | Read/write | Read/write | Read/write | Read/write
RecordCount Not available Not available Read-only Read-only
Source Read/write Read/write Read/write Read/write
State Read-only Read-only Read-only Read-only
Status Read-only Read-only Read-only Read-only

Table 17-4. Availability of methods by Recor dset

| M ethod | ForwardOnly | Dynamic | K eyset | Static
\AddNew Yes Yes \Yes \Yes
CancelBatch Yes Yes Yes Yes
CancelUpdate Yes Yes Yes Yes
]Clone |No |No |Yes |Yes

328

FlyrHeart.com

TEAM FLY PRESENTS

Close Yes Yes Yes Yes
Delete Yes Yes Yes Yes
GetRows Yes Yes Yes Yes
Move Yes Yes Yes Yes
IMoveFirst Yes Yes Yes Yes
Movel ast No Yes Yes Yes
MoveNext Yes Yes Yes Yes
MovePrevious No Yes Yes Yes
NextRecordset (except Jet) Yes Yes Yes Yes
Open Yes Yes Yes Yes
Requery Yes Yes Yes Yes
Resync No No Yes Yes
Supports Yes Yes Yes Yes
Update Yes Yes Yes Yes
IUpdateBatch |Yes |Yes Yes Yes

17.7 An Example: Using ADO over the Web

Let us conclude this chapter with asimple real-world illustration of the use of ADO.
Many web sites expose data from an underlying database. Now, it is quite easy to save an
Accesstablein the form of an HTML page, using Access Export feature. However, the
resulting datais static. To generate dynamic data in response to a user's input, we need to
do some programming.

One of my dutiesisto maintain aweb site called The Mathematics Online Bookshelf
(http://www.mathbookshelf.com). This siteis essentially afrontend for a searchable Jet
database of severa thousand high-level mathematics books. The user can fill in a search
form and click a Search button. All matching records will be returned to the user over the
Web. Let'slook at asimplified version of the ADO code used to search the database.
(Incidentally, the context of this codeis an Active Server Pages (ASP) file, and the
scripting language is VB Script. However, you don't need to know anything about these
technologies.)

Figure 17-8 shows a greatly smplified version of the search form. This version allows
user input of author, title, and publisher, and the principle is the same for more
complicated forms.

Figure 17-8. A search page

329 .

FlyrHeart.com

TEAM FLY PRESENTS

http://www.mathbookshelf.com/

" Exact Match & Substring Match

" Exact Match * Substring Match
|-All Publishers- -]

Search | ResetAll Fields |

We begin by noting that in VBScript, the Like operator uses a percent sign (%) to
represent any string and an underscore (_) to denote any single character. (Thisisthe
syntax of regular expressions.)

First, we declare some variables. Since this code is written as VBScript, variables are
declared without atype. Note that we include variables that correspond to the values of
each search-form control.

" Declare variables

Dim cn, rs, sSQL

Dim author, authorexact, title, titleexact, publisher
Dim connective

Dim cMatches

Then we assign the variables to the control's values, as returned by the ASP Request
object.

" Gather input from search form
author = Request('txtAuthor'™)
authorexact = Request('optAuthor'™)
title = Request('txtTitle™)
titleexact = Request(“optTitle™)
publisher = Request("'IstPublishers™™)

Now we open an ADO connection to the database, which is called MobBooks, and
declare arecordset variable for later use.

" Open a connection to MobBooks database
Set cn = Server.CreateObject(*"ADODB.Connection™)
Set rs = Server.CreateObject(*"ADODB.Recordset')

cn._Provider = "Microsoft Jet 3.51 OLE DB Provider"

cn.ConnectionString = "Data Source=" & Server .MapPath(*'/MobBooks.mdb') &
"';Jet OLEDB:
Database Password=
cn.Open

Now we can build an SQL statement based on the contents of the search form, as
contained in the variables.

330 Fly e N_‘Q

TEAM FLY PRESENTS

We begin by creating a JOIN between the MobBooks and the MobPubs tables. The
reason isthat the PUB field in the MobBooks table contains abbreviations for the
publisher names, but we want to display the full publisher names, which arein the
MobPubs table.

" Build SQL statement

" Start with a join between MobBooks and

" Publishers to pick up Long name of publisher

sSQL = "SELECT MobBooks.*, MobPubs.[LONG NAME] AS Publisher™

sSQL = sSQL & " FROM MobBooks INNER JOIN MobPubs ON MobBooks.PUB =
MobPubs . PUBL ISHER""

connective = " WHERE "

" Publisher

IT publisher <> "-All Publishers-" Then
sSQL = sSQL & connective & "([Long Name] = " & publisher & "")"
connective = " AND "

End If

" Author
if author <> """ then
iT authorexact = "exact" then
sSQL = sSQL & connective & ""(AU=""" & author & "")"
else
sSQL = sSQL & connective & "(AU Like "%" & author & "%")"
End If
connective = " AND "
End If

" Title
if title <> """ then
if titleexact = "exact" then
SSQL = sSQL & connective & "(Title="" & title & "")"
else
sSQL = sSQL & connective & "(Title Like "%" & title & "%")"
End IFf

connective = " AND "
End If
Next we open the recordset:

" Open recordset
rs.Open sSQL, cn

Now we can write the search resultsto HTML output, using the Write method of the
ASP Response object (the HTML header has already been written):

" Write search results to html output

" First write search form"s control values for reference
connective = """
Response._Write "Search Criteria
"

331 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

IT title <> """ Then
Response.Write connective & "Title:" & title

connective = '; "

end if

IT author <> """ Then
Response.Write connective & "Author:" & author
connective = "; "

End IF

IT publisher <> """ Then
Response.Write connective & "'Pub:" & publisher
End If
Response.Write "
"
connective = """

" Loop through recordset
cMatches = 0
Do While Not rs.eof

cMatches = cMatches + 1
Response.Write "<HR>" & cMatches & "™ - " &
rs(C'Title) & ""

Response Write "
" & rs("Au™)

" Collect bibliographic data from recordset
bib = "

if rs("Date') <> """ then bib = bib & ", " & rs("Date™)

if rs("ISBN) <> """ then bib = bib & ", "™ & rs("ISBN"™)

if rs("Pages') <> """ then bib = bib & ", " & rs("Pages'™) & " pp-"
if rs("Price'™) <> """ then bib = bib & ", $" & rs("Price™)

" Remove leading comma and space and print it
bib = "
" & mid(bib, 2)
Response.write bib

" Write TOC
if rs("TOC™) <> """ then Response.write
"
<i>Contents</i>: " & rs('TOC")

rs.MoveNext
Loop

Response._Write "<HR>"

rs.close
cn.close

That'sit. Asyou can see, alittle ADO programming is al it takes to "publish” an Access
database over the Web.

332 N

FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 18. ADOX: Jet Data Definition in ADO

ADOX isan acronym for ADO Extensions for Data Definition and Security. When
making comparisons between ActiveX Data Objects (ADO) and Data Access Objects
(DAO), proponents of DAO will point out that ADO does not include features for data
definition—that is, features that can be used to create and alter databases and their
components (tables, columns, indexes, etc.). Thisis precisely the purpose of ADOX, but
not just in the context of Jet databases. ADOX isintended to be a universal
data-definition object model. Of course, aswith ADO, it requires support from OLE DB
data providers. Our concern iswith ADOX in relation to Jet.

| plan to discuss the role of ADOX in various data definition operations, such as creating
a Jet database and creating and atering Jet database tables.

It isworth mentioning that ADOX is not a complete substitute for DAQO's data-definition
features. For example, query creation in ADOX has a serious wrinkle (at least for Access
2000). Namely, a query created using ADOX will not appear in the Access 2000 user
interface! We will revisit thisissue later in this chapter.

18.1 The ADOX Object Model

The ADOX object model is shown in Figure 18-1. The model has 9 object pairs
(object/collection), about 75 properties, and about 50 methods—not a very large object
model as Microsoft object models go (and smaller than the ADO object mode!).
Unfortunately, the ADOX help documentation is among Microsoft's worst, which is

saying alot.

Figure 18-1. The ADOX object model

333 =

FlyrHeart.com 4

TEAM FLY PRESENTS

— 7o Catalog
— 7 Groups
~| 70 Group
+ 7 Users
—7U Procedures
7o Procedure
TW Tables
=70 Table
— 7 Columns
= 7o Column
+ U Properties
— 7 Indexes
— 70 Index
+ 74 Columns
+ 7U Properties
— U Keys
— 70 Key
+ 74 Columns
U Properties

7o Property

—7U Users
= 7o User
+ 71 Groups
— 7 Views
70 View

Let's now look at some of the more common data-definition operations from the
perspective of ADOX.

18.1.1 Creating a Database
To create a Jet database, use the Create method of the Catalog object. Its syntax is:
CatObject.create(ConnectString)

where ConnectString IS aconnection string that must also define the database to be
created.

The following code creates a new Jet database:

Sub CreateDatabase()
Dim cat As New Catalog

" Must use version 3.51 of data provider in order

" to create a database compatible with Access 97.

" If this is not required, can use version 4.0.

cat.Create "Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=d:\temp\ADOXExample._mdb"

FlyrHeart.com

TEAM FLY PRESENTS

End Sub

Note that if the database already exists, an error will be generated. Incidentally, the
ADOX documentation says: "The Create method creates and opens anew ADO
Connection to the data source specified in ConnectString." This seemsto imply that the
data source must already exist, which is, of course, not the case.

18.1.2 Creating Tables
A Jet tablein ADOX is created as follows:

1. Create a Table object.

2. Giveit aname by assigning a string containing the name to the Table object's
Name property.

3. Append some columns to the Table object's Columns collection. Do this by
calling the Append method of the Column collection. Its syntax is:

TableObject.Columns.Append Item[, Type[, DefinedSize]]

where 1'tem is either a Column object or the string containing the name of the
column. The remaining two parameters are optional if 1tem isa Column object
that contains al column information. Type is an optional Long or a member of the
DataTypeEnum enumeration (the default is advarwChar), and DefinedSize iSan
optiona Long that determines the column size.

4. Append the Table object to the Catal og object's Tables collection. Do this by
calling the Append method of the Tables collection. Its syntax is.

TablesObject._Append ltem
where I'tem isthe Table object added to the collection.

Hereisasample:

Sub CreateTable()

Dim cat As New ADOX.Catalog
Dim tbl As New ADOX.Table

" Open catalog
cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=d:\temp\ADOXExample.mdb"

" Assign table name and some columns

With tbl
-Name = "NewTable"
-Columns_.Append "Columnl™, adVarWChar, 250
-Columns.Append ""Column2"™, adlnteger

FlyrHeart.com 4

TEAM FLY PRESENTS

-Columns.Append "Column3"™, adlnteger
End With

cat.Tables._Append tbl

End Sub

To rename a column, we use the Name property of the Column object. To delete a
column, we use the belete method of the Columns collection. Its syntax is:

ColumnsObject.pelete ltem

where I'tem is a string containing the name of the column to delete. Hereis an example:

Sub ChangeColumn()

Dim cat As New ADOX.Catalog
Dim tbl As New ADOX.Table

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=d:\temp\ADOXExample._mdb"

" Assign table name and some columns
Set tbl = cat.Tables("'Newtable'™)

" Rename a column
tbl _Columns(**'Column2'™) _Name = "'Column2X*

" Delete a column
tbl.Columns.Delete "Column3™

End Sub

Y ou may have noticed the use of the data type constant advarwChar to create a string
column. Table 18-1 compares the field data type constants of DAO and ADOX.

Table 18-1. DAO/ADOX field data type constants
| DAO datatype | ADOX datatype
dbBinary adBinary
dbBoolean adBoolean
'dbByte ladUnsiignedTinyInt
dbCurrency adCurrency
dbDate adDate
dbDecimal adNumeric
dbDouble adDouble
dbGUID adGuUID
dblnteger adSmalllInt
'dbLong ladInteger
\dbLongBinary ladLongVarBinary

336 —

FlyrHeart.com

TEAM FLY PRESENTS

'dbMemo ladLongVarWChar
dbSingle adSingle
dbText advarWChar

18.1.3 The Tables Collection

Unlike DAO, the ADO Tables collection may contain objects other than Jet tables. For
example, the Tables collection contains row-returning, nonparameterized queries (which
are considered Views by ADO).

To determine the actua type of a Table object, we can use the Type property. Table 18-2
lists the possible values for the Type property (in the context of the Jet Data Provider).
Note that the Type property is read-only and returns a string.

Table 18-2. Return values of the Table object's Type property
| Type property returns | Description
ACCESS TABLE A Microsoft Access system table
LINK A linked table from a non-ODBC data source
PASS-THROUGH A linked table from an ODBC data source
SYSTEM TABLE A Microsoft Jet system table
TABLE A Jet table
VIEW A row-returning, nonparameterized query

For instance, the following code:

Sub ListTables(Q)

Dim cat As New ADOX.Catalog
Dim tbl As ADOX.Table

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=d:\temp\ADOXExample.mdb;"

For Each tbl In cat.Tables
Debug.Print tbl_Name, tbl.Type

Next

End Sub

may produce the following output:

MSysAccessObjects ACCESS TABLE
MSysACEs SYSTEM TABLE

MSysObjects SYSTEM TABLE
MSysQueries SYSTEM TABLE
MSysRelationships SYSTEM TABLE
NewQuery VIEW

NewTable TABLE

FlyrHeart.com

TEAM FLY PRESENTS

18.1.4 Creating | ndexes
The process for creating atable index isthe samein ADOX asitisin DAO:

1. Createtheindex by creating an Index object and assigning a name to it.

2. Append columns one by one to the Index object's Columns collection. Call the
Columns collection's Append method; its syntax was discussed in Section 18.1.3
earlier in this chapter.

3. Append the index to the Table object's Indexes collection. The syntax of the
Append method is:

TableObject. Indexes.Append Index[, Columns]

where Index isthe Index object to be appended or a string containing the name of
the index to create, and Columns is an optional variant specifying the columns to
be indexed.

Hereis an example:

Sub ADOCreatelndex()

Dim cat As New ADOX.Catalog
Dim tbl As ADOX.Table
Dim idx As New ADOX.Index

" Open the catalog
cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=d:\temp\ADOXExample.mdb;"

Set tbl = cat.Tables(*'Newtable'™)

" Create Index object and append table column to it
idx_Name = "Newindex"
idx.Columns.Append *""Columnl"

" Allow Null values
idx.IndexNulls = adlndexNullsAllow

" Append the Index object to the table"s Indexes collection
tbl.Indexes.Append idx

End Sub

The DAO Index object has two properties that determine the behavior of Nulls within an
index: Required and IgnoreNulls. Both of these properties are False by default, implying
that Null values are allowed in the index and that an index entry is added for each row
with aNull valuein the index field.

On the other hand, ADO has a single property, called IndexNulls, that governs the
behavior of Null values in indexes. By default, the IndexNullsproperty is set to

338 =

FlyrHeart.com 4

TEAM FLY PRESENTS

adIndexNulIsDisal low, implying that Null values are not allowed in the index and that
no index entry will be added if afield contains Null. Table 18-3 compares the relevant
settingsin DAO and ADOX.

Table 18-3. Comparison of constantsfor treating nulls
DAORequired DAG ADOX IndexNulls Description
€ IgnoreNulls P

True False adindexNullsDisallow Null value not allowed in index field; no index
entry added

False True adindexNullsignore Null value allowed in index field; no index entry
added

False False adindexNullsAllow gldlgle(\j/alueallowedmlndexfleld; index entry

18.1.5 Creatinga Primary Key

In DAO, primary keys are created by setting the Primary property of the Index object to
True. In ADOX, we proceed as follows:

1. Create aKey object.

2. Setits Type property to Primary using the adkeyPrimary constant.
3. Append some columns to the Key object's Columns collection.

4. Append the Key object to the Index object's Keys collection.

Hereis an example:

Sub ADOCreatePrimaryKey()

Dim cat As New ADOX.Catalog
Dim tbl As ADOX.Table
Dim pk As New ADOX.Key

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=d:\temp\ADOXExample.mdb;"

Set tbl = cat.Tables(*'Newtable')

" Create the Primary Key
pk-Name = "PrimaryKey"
pk.Type = adKeyPrimary
pk.Columns._Append ""Columnl®’

" Append the Key object to the Keys collection of Table
tbl .Keys.Append pk

End Sub

339 =

FlyrHeart.com

TEAM FLY PRESENTS

18.1.6 Creating a Query

To create a query, we use the ADO Command object to create anew ADO command.
This can be appended to the Views (or Procedures) collection of the catalog to create a
new query. Its syntax is:

ViewsObj .Append Name, Command

where Name is a string containing the name of the object, and Command is a Command
object.

Hereis an example:

Sub CreateQuery()

Dim cat As New ADOX.Catalog
Dim cd As New ADODB.Command
Dim sSQL As String

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=d:\temp\ADOXExample.mdb;"

sSQL = “SELECT * FROM Newtable™
cd.CommandText = sSQL
cat_Views._Append "Newquery', cd

End Sub
Now, the bad news. Here is a quotation from MSDN:

Although it is possible to create and modify a stored query in an Access database by
using Microsoft ActiveX® Data Objects Extensions for Data Definition Language and
Security (ADOX), if you do so your query won't be visible in the Access Database
window or in any other part of the Access user interface...

The reason behind thisinvisibility is explained further in MSDN:

Thisis so because the Microsoft Jet 4.0 database engine can run in two modes: one mode
that supports the same Jet SQL commands used in previous versions of Access, a new
mode that supports new Jet SQL commands and syntax that are more compliant with the
ANSI SQL-92 standard.

Queries created with ADOX can support the new Jet SQL mode, and so are flagged
internally to identify them as using that mode, whether the query contains the new
commands or not. Access 2000 can open an Access database only while using the mode
that supports the older Jet SQL commands and syntax. To prevent error messages and
conflicts between the new Jet SQL commands and syntax and the Access query editing

340 N

FlyrHeart.com 4

TEAM FLY PRESENTS

tools, Access hides queries that are flagged as containing the new Jet SQL commands and
syntax.

An interesting thing happens with Access 2002. Access 2002 does see the query,
probably because it can handle the newer Jet SQL syntax; however, the Design view of
the query does not show the output fields of the query!

18.1.7 Conclusion

| wish Microsoft would continue to support DAO. It iswell understood, easy to use, does
what is necessary, seems quite stable, and is optimized for Jet.

Sony supports avariety of TVs, General Motors supports a variety of cars, General
Electric supports avariety of refrigerators; so why can't Microsoft support two types of
data access? Imagine General Motors saying: "We make only one model of car, but itis
designed to be universal. Whether you want a convertible sports car, or a car to haul
around ten sheets of plywood, or a car to race on weekends, or a car to do off-roading,
thisisthe car for you." Ridiculous.

341 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

Part VII: Programming Problems

Chapter 19. Some Common Data Manipulation Problems

In this chapter, | discuss a number of problems that you may encounter when dealing
with data, along with possible solutions. | suggest that you try to find a solution before
reading the solution in the text. Also, | should mention that there are usualy many
different ways of solving a given problem. In fact, you may very well be ableto find a
more efficient solution than the one given. The main purpose of these problems and
solutionsis to give you some food for thought.

Before beginning, let us note that many of the upcoming solutions involve the use of
subqueries. We discussed subqueries in Chapter 6, but let us review quickly here.

Access SQL permits the use of SELECT statements within other SELECT statements (as
well asin other statements, such as INSERT INTO statements). The internal, or nested,
SELECT statement isreferred to as a subquery.

Note that you may include a nested SELECT statement within amain SELECT statement
only if theinternal SELECT statement returns at most one record. To illustrate, consider
the main SQL statement:

SELECT Hour,
(SELECT Count(Interval) FROM StartTimes WHERE (StartTime <= Hour))
FROM Hours

Here, the internal SQL statement:

SELECT Count(Interval) FROM StartTimes WHERE (StartTime <= Hour)

returns at most a single record, because it returns a Count. Note also that the WHERE clause
in theinternal SQL statement refers to the Hour field that is part of the main SQL, thus
linking the return value of the internal statement to the current record in the HOURS
table.

19.1 Running Sums
The computation of running sums isacommon operation. To illustrate, consider Table

19-1, which contains the duration (in hours, say) for various events.

Table 19-1. A running sum

Event Duration

342 Flyrte N—p

TEAM FLY PRESENTS

alrlw|dN
Alwlooog

6 1
7
8 2

For each event, we want to compute the sum of all the durations of the events that
precede that event. This sum isarunning sum.

19.1.1 Solution

One approach is to use the Cartesian product of the table with itself. In this way, we can
access al records whose Event number precedes that of a given record. For instance, for
the record with Event number 5, we need access to the records with Event numbers 1
through 4. The Cartesian product provides us with these records.

Hereisthe SQL statement that does the job:

SELECT Running.Event, Sum(RunningCopy.Duration) AS StartTime
FROM Running, Running AS RunningCopy

WHERE (RunningCopy.Event < Running.Event)

GROUP BY Running.Event

The FROM clause creates the Cartesian product of the table with itself. The WHERE clause
restricts the records to those for which:

RunningCopy.Event < Running.Event

that is, to the records that provide information about the records preceding each record in
Table 19-1. Finally, we GROUP BY Event and compute the sum of the durations.

The problem is that Cartesian products are very inefficient and use alot of resources. (If
Table 19-1 has 100,000 rows, then the Cartesian product has 100,000 x 100,000 =
10,000,000,000 rows!)

A more efficient solution isto use a nested SELECT statement, that is, to use a SELECT
statement within the main SELECT statement. Recall that thisis permitted in Access SQL,
provided that the internal SELECT statement returns at most one record.

In the following SQL statement, note the use of table aliases, which are needed because
we must refer to Table 19-1 in two contexts:

SELECT R1.Event,
(SELECT SUM(R2.Duration) FROM Running As R2 WHERE R2_Event < R1.Event)
AS StartTime

343 .

FlyrHeart.com

TEAM FLY PRESENTS

FROM Running As R1

Theinternal SQL statement:

SELECT SUM(R2.Duration) FROM Running As R2 WHERE R2_Event < R1.Event

returns the sum of the duration for all events preceding the current event, which is
denoted by R1.Event.

Example 19-1 shows a VBA procedure to execute this SQL statement. The DoCmd object
isused in VBA to run an Access action. Thus, the line DoCmd . OpenQuery opens a query
in Access.

Example 19-1. Calculating running sums using nested SQL statements
Private Sub RunningSumSQLQ)

Dim db As Database
Set db = CurrentDb

Dim gry As QueryDef
Dim sSQL As String

On Error Resume Next
db.QueryDefs.Delete "temp"
On Error GoTo O

sSQL = "'SELECT R1.Event," & _

" (SELECT SUM(R2.Duration)" & _

' FROM Running As R2" & _

' WHERE R2_.Event < R1.Event)" & _
' AS StartTime" & _

' FROM Running As R1"

Set qry = db.CreateQueryDef(*"temp", sSQL)

DoCmd.OpenQuery gry-Name

End Sub

Another approach isto use DAO, which provides avery simple solution in this case. It
creates a permanent result table, whereas the previous solution creates a select query.

Example 19-2 shows the DA O code performing the same operation. The results are placed
in Table 19-1.

Example 19-2. Calculating a running sum using DAO
Private Sub RunningSumDAO(Q)

Dim db As Database
Dim rs As Recordset
Dim IRunningSum As Long

Set db = CurrentDb

FlyrHeart.com 4

TEAM FLY PRESENTS

IRunningSum = 0O

Set rs = db.OpenRecordset(*'SELECT * FROM Running ORDER BY Event')
Do While Not rs.EOF

rs._Edit
rs!RunningSum =
rs._.Update
IRunningSum =
rs.MoveNext

IRunningSum

IRunningSum + rs!Duration

Loop

rs.Close

End Sub

19.2 Overlapping Intervals |

In Table 19-2, the rows denote intervals of time. The problem is determining, for each
hour of the day, the number of intervals that contain this hour.

Table 19-2. Overlap table: Rows denotetimeintervals

Interval StartTime EndTime
1 4:00:00 PM 7:00:00 PM
2 5:00:00 PM 9:00:00 PM
3 2:00:00 PM 6:00:00 PM
4 8:00:00 PM 11:59:00 PM
5 12:00:00 PM 4:00:00 PM

For this, we also use an HOURS table (see Table 19-3).

Table 19-3. Hourstable

Hours

12:00:00 PM

1:00:00 PM

2:00:00 PM

3:00:00 PM

4:00:00 PM

5:00:00 PM

6:00:00 PM

7:00:00 PM

8:00:00 PM

9:00:00 PM

10:00:00 PM

11:00:00 PM

345

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

11:59:00 PM

19.2.1 Solution

This problem can be solved using a nested SELECT statement (that is, a subquery). Hereis
the code:

Private Sub Overlappinglintervals(Q)

Dim db As Database
Set db = CurrentDb

Dim gry As QueryDef
Dim sSQL As String

On Error Resume Next
db.QueryDefs.Delete "temp"
On Error GoTo O

sSQL = "SELECT Hours.Hour,™ & _

' (SELECT Count(Interval) AS CountOfintervals" & _
' FROM Overlap" & _

" WHERE (StartTime <= Hours.Hour) And™ & _

* (Hours.Hour < EndTime))" & _

' FROM Hours"

Set qry = db.CreateQueryDef(*"temp', sSQL)
DoCmd.OpenQuery gry-Name

End Sub

We invite you to create a DA O solution. The problem in the next section illustrates the
overlapping intervals technique.

19.3 Overlapping Intervals Il

A company employs workers and supervisors. During atypical day, each worker and
supervisor works one or more shifts, which consist of consecutive hours. Table 19-4
shows atypica day (from 12 noon to 12 midnight).

Table 19-4. Superload table: Hoursworked by supervisorsand workers

| EmplID | EmpType | StartHour | EndHour

11 Super 12:00:00 PM 5:59:00 PM

2 Super 6:00:00 PM 11:59:00 PM

3 Super 4:00:00 PM 8:59:00 PM

4 Worker 4:00:00 PM 6:59:00 PM

5 Worker 5:00:00 PM 8:59:00 PM

6 \Worker 2:00:00 PM 5:59:00 PM

FlyrHeart.com

TEAM FLY PRESENTS

7 Worker 8:00:00 PM 11:59:00 PM
8 Worker 12:00:00 PM 3:59:00 PM

We want to compute the maximum number of workers that each supervisor must
supervise a one time.

19.3.1 Solution

This problem can be handled in a two-step process. First, we count the number of
workers in each hour. Consider the following SQL statement:

SELECT Hours_.Hour,

(SELECT Count(EmpType) FROM SuperlLoad

WHERE (Starthour <= Hours.Hour) And (Hours.Hour < EndHour)
And (EmpType="Worker®)) AS CountOfWorkers

FROM Hours

This, again, uses a subquery that returns a single record giving the number of workers
that are working during a given hour.

Using this SQL statement, we make a query named gry1, so it can be used in the next
step. See Table 19-5 for the result of this query.

Table 19-5. Number of workersworking at a particular hour

| Hours | CountOfWorkers
12:00:00 PM 1
1:00:00 PM 1
2:00:00 PM
3:00:00 PM
4:00:00 PM
5:00:00 PM
6:00:00 PM
7:00:00 PM
8:00:00 PM
9:00:00 PM
10:00:00 PM
11:00:00 PM

N

PIRPIRPINEPINWININ

The next step is computing the supervisor load as the maximum number of workersin
each supervisor's shift. Do this by using the name of the query from the previous step in
the following SQL statement:

sSQL2 = "SELECT SuperLoad.EmplID, SuperLoad.EmpType,™ & _
' (SELECT Max(CountOfWorkers) AS WorkerLoad" & _
" FROM [& gryl.Name & "]" & _

347 w
FlyrHeart.com

TEAM FLY PRESENTS

" WHERE ((Hours.Hour >= StartHour) And (Hours.Hour < Endhour)))" &
' FROM SuperLoad™ & _
' WHERE SuperlLoad.EmpType = "Super™"

The results are shown in Table 19-6.

Table 19-6. Maximum number of workers per supervisor

EmpID EmpType Worker L oad
1 Super 3
2 Super 2
3 Super 3

The complete code for this solution isin Example 19-3.

Example 19-3. Calculating the maximum number of workers per supervisor
Private Sub SupervisorLoad()

Dim db As Database
Set db = CurrentDb

Dim gryl As QueryDef
Dim gry2 As QueryDef
Dim sSQL1 As String
Dim sSQL2 As String

On Error Resume Next
db.QueryDefs.Delete "templ"
db.QueryDefs_Delete "temp2'
On Error GoTo O

sSQL1 = ""'SELECT Hours.Hour,™ & _

" (SELECT Count(EmpType) FROM SuperLoad"™ & _

' WHERE (Starthour <= Hours.Hour) And (Hours.Hour < EndHour)" &
* And (EmpType="Worker®))" & _

' AS CountOfWorkers'" & _

' FROM Hours™

Set gryl = db.CreateQueryDef(*"templ", sSQL1)

" Uncomment to see how this step looks
"DoCmd.OpenQuery qryl.Name

sSQL2 = "SELECT SuperLoad.EmplID, SuperLoad.EmpType,™ & _

' (SELECT Max(CountOfWorkers) AS WorkerLoad" & _

" FROM [& gryl_.Name & "]" & _

" WHERE ((Hours.Hour >= StartHour) And (Hours.Hour < Endhour)))"™ & _
' FROM SuperLoad"™ & _

' WHERE SuperLoad.EmpType = "Super™"

Set gry2 = db.CreateQueryDef('"temp2", sSQL2)

DoCmd.OpenQuery qry2.Name

348 N

FlyrHeart.com

TEAM FLY PRESENTS

End Sub

19.4 Making Assignments with Default

Imagine a conference where your task is assigning conference rooms to attendees. Table

19-7 shows the preregistered attendees along with corresponding room numbers.

Table 19-7. Assgnment table

| Name | Room
_default 15
_default 14
_default 13
_default 12
Bach 123
Beethoven 231
Mozart 455
Chopin 455
Elgar 231
Gluck 123
Liszt 455

Note that the table contains several default choices. If an individual isnot in the table,
then you want to assign one of the default rooms to that individual. Moreover, to avoid
overcrowding, you want to assign the default room numbers randomly. How do you do

this?

19.4.1 Solution

This problem can be solved in avariety of ways, one of which provides a nice use of both
subqgueries and the UNITON statement. First, consider the SQL statement:

sSQL1 = "SELECT Room FROM Assignment WHERE (Name

[Enter Name])"

Recall that [Enter name] is aparameter. When the query is run, the user will be
prompted for a name, which will be substituted for [Enter name]. This statement will
return the record associated with agiven nameif it isin the table; otherwise, it will return

the empty recordset.

Now consider the statement:

sSQL2 = ""SELECT Room FROM Assignment
WHERE (Name = " default®™) AND

([Enter Name] NOT IN (SELECT Name FROM Assignment))"

349

—_
FlyrHeart.com

TEAM FLY PRESENTS

The clause:

[Enter Name] NOT IN (SELECT Name FROM Assignment)

returns TRUE if and only if the name entered by the user is not in the table. Hence, the
clause sSQL2 can be rewritten based on two cases, name in table:

sSQL2 = "SELECT Room FROM Assignment WHERE (Name = " default") AND FALSE"
and name not in table:

sSQL1 = "SELECT Room FROM Assignment WHERE (Name = " _default®) AND TRUE"
This simplifies further to name in table:

sSQL2 = ""SELECT Room FROM Assignment WHERE FALSE"

and name not in table:

sSQL1 = ""SELECT Room FROM Assignment WHERE (Name " _default™)"

Thus, this statement returns the empty recordset if the nameisin the table and the default
records if the nameis not in the table.

Now we take the union:

SSQL3 = sSQL1 & ' UNION " & sSQL2

This SQL statement will return the room number for aname if the nameisin thetable;
otherwise, it returns the default records.

Now, all we need to do is return arandom record! Note that thiswill work in either case,
because if the nameisin the table, there is only one record, so arandomly chosen record
must be that record.

The complete code is shown in Example 19-4.

Example 19-4. Handling preregistered and default room assignments
Private Sub AssignmentWithDefault()

Dim db As Database
Set db = CurrentDb

Dim sName As String
Dim gryl As QueryDef
Dim rs As Recordset
Dim sSQL1 As String
Dim sSQL2 As String
Dim sSQL3 As String

FlyrHeart.com 4

TEAM FLY PRESENTS

Dim IRandom As Long
Dim IcRecords As Long

On Error Resume Next

db.QueryDefs.Delete "templ"
On Error GoTo O

sSQL1 = ""SELECT Room FROM Assignment' & _
" WHERE (Name = [Enter Name])"

sSQL2 = ""SELECT Room FROM Assignment" & _

" WHERE (Name = *_default") AND ([Enter Name] NOT IN (SELECT Name FROM
Assignment))*

SSQL3 = sSQL1 & ' UNION ' & sSQL2

Set gryl = db.CreateQueryDef(*"templ", sSQL3)

sName = InputBox("'Enter name')
qryl.Parameters(0) = sName

" To see the results
" "DoCmd .OpenQuery gryl._Name

Set rs = gryl.OpenRecordset

" Populate and get recordcount
rs.MovelLast

IcRecords = rs.RecordCount

* Random record

Randomize Timer

" IRandom is between O and lIcRecords-1
IRandom = Int(lcRecords * Rnd)

rs.MoveFirst
rs.Move IRandom

MsgBox ''‘Room for "™ & sName & ' is " & rs!Room

End Sub

19.5 Time to Completion |

Hereis a simple time-to-completion problem. Table 19-8 shows the status of widget

production for your company. At various stages in the production process, the workers
enter arecord into the table indicating the remaining time to completion for the widget.

Table 19-8. Widgetstable: Timeto completion for widgets

WidgetI D TimeToCompletion

FlyHeart.com g4

TEAM FLY PRESENTS

OIN|hflO|hlOIN|/O|O|W|O|FLIN|W

(AR IPIWWWWNDNDNRPRPRPRPEP

We want to identify those widgets that are not yet completed.
19.5.1 Solution

The next SQL statement does the job. Note the use of the NOT IN form of subquery,
which isdiscussed in Section 6.7.10 in Chapter 6.

SELECT DISTINCT WidgetlD FROM Widgets As W1
WHERE O NOT IN

(SELECT TimeToCompletion FROM Widgets As W2
WHERE W2.WidgetID = W1.WidgetlD)

19.6 Time to Completion Il

Let's make the time-to-completion problem more complicated. Imagine again that you are
keeping track of the status of widget production for your company. Each widget is
composed of four modules, each of which is assembled separately. Table 19-9 shows
some sample data.

Table 19-9. Widgetstable: Timeto completion of multimodule widgets
Widgetl D Modulel D TimeToCompletion
1 1 0
1 2 1
1 3 2
1 4 1
2 1 1
2 2 2
2 3 3
2 4 4

352 - ;ﬁrhz:;jfzjjzr

TEAM FLY PRESENTS

Wlwlw|w
AlWIN| -
ol h~|lO1|O

N
N[=
o

4 4 2

We are trying to determine the widgets in which Module 1 is the only completed
module—that is, where TimeToCompletion is equal to zero for Module 1, but not for any
of the other modulesin the widget. Thus, for our table, Widgets 1 and 4 qualify.

19.6.1 Solution

Consider the following SQL statement:

SELECT WidgetlID

FROM Widgets AS W1

WHERE (TimeToCompletion = 0) AND

0 NOT 1IN

(SELECT TimeToCompletion FROM Widgets AS W2

WHERE (W2.WidgetID=W1._WidgetlD) AND (W2_ModulelD <> 1))

The subquery selects, for a particular widget, all TimeToCompletions for all modules
except the first module. We can then test to seeif that set of TimeToCompletions
contains a zero.

Example 19-5 shows the complete code.

Example 19-5. TimeT oCompletion example
Private Sub TimeToCompletion()

Dim db As Database
Set db = CurrentDb

Dim gryl As QueryDef
Dim sSQL1 As String

On Error Resume Next
db.QueryDefs_Delete "templ"
On Error GoTo O

sSQL1 = "SELECT WidgetlD FROM Widgets AS W1" & _

" WHERE (TimeToCompletion = 0) AND" & _

"0 NOT IN" & _

" (SELECT TimeToCompletion FROM Widgets AS W2" &

" WHERE (W2._.WidgetID=W1._.WidgetlD) AND (W2_ModulelD <> 1))"

Set gryl = db.CreateQueryDef(*"templ", sSQL1)

FlyrHeart.com

TEAM FLY PRESENTS

DoCmd.OpenQuery gryl.Name

End Sub

19.7 Time to Completion lll—A MaxMin Problem

Let's make the time-to-completion problem even more involved. Suppose each moduleis

composed of several parts. Periodically, the workers involved with a particular part will
make an entry into a database table, as shown in Table 19-10.

Table 19-10. Widgetstable: Timeto completion of a widget whose modules
consist of multiple parts
WidgetI D Modulel D PartlD TimeToCompletion

1 1 1 3
1 1 1 4
1 1 1 5
1 1 2 2
1 1 2

1 1 2

1 2 1 6
1 2 1 5
1 2 1 3
1 2 2 7
1 2 2 4
1 2 2 3
1 2 3 4
1 2 3 5
1 2 3 6
1 3 1 8
1 3 1 5
1 3 2 2
1 3 2 4

We want to compute the time to completion for each part, module, and widget. Note that
there may be severa entries for a given part. The time to complete a given part isthe
minimum of the times in these rows.

19.7.1 Solution 1

Let's take a step-by-step approach to the solution. Later, we can present a more elegant,
but less readable, solution.

354 “~=:71¢:::-
FlyrHeart.com

TEAM FLY PRESENTS

First, we create an SQL statement that returns only those rows of the table that, for each
widget/module, have the smallest part TimeToCompletion. We can do thisin two steps.
Thefirst SQL statement selects the TimeToCompletion field for all records in Widgets2

that have a given WidgetID, ModulelD, and PartID.

" Times to completion for given WidgetiD/ModulelD/PartiD
sSQL1 = "SELECT TimeToCompletion FROM Widgets2 AS w2 & _
" WHERE (W2.WidgetlD = W1._.WidgetID)" & _

" And (W2.ModulelD = W1l_ModulelD)"™ & _

" And (W2.PartID = Wi1_PartlID)"

The second SQL statement returns all records whose TimeToCompletion is less than or
equal to all records returned in the first SQL statement—that is, all records for the given

WidgetID, ModulelD, and PartID:

" Those records that have minimum time to completion for each part

sSQL2 = "SELECT WidgetlID, ModulelD, PartlID,” & _
" TimeToCompletion AS TimeToFinishPart FROM Widgets2 AS Wl1" & _
" WHERE TimeToCompletion <= ALL (" & sSQL1 & ")

An alternative approach is to use asingle nested SELECT statement:

sSQL2 = "SELECT DISTINCT WidgetlD, ModulelD, PartlID,"™ & _
' (SELECT MIN(TimeToCompletion)™ & _

' FROM Widgets2 as W2 WHERE" & _

' (W2_WidgetlD = W1.WidgetID) And" & _

' (W2_ModulelD = W1l_ModulelD) And"™ & _

" (W2_PartlD = W1._PartiID))" & _

* AS TimeToFinishPart" & _

' FROM Widgets2 AS W1"

Running this query

Set qryl = db.CreateQueryDef(""templ", sSQL2)
DoCmd.OpenQuery qryl.Name

will result in Table 19-11.

Table 19-11. Resultstablefor gryl

WidgetI D Modulel D PartlD TimeToFinishPart
1 1 1 3
1 1 2 1
1 2 1 3
1 2 2 3
1 2 3 4
1 3 1 5
1 3 2 2
355

—_
FlyrHeart.com

TEAM FLY PRESENTS

Using this query, it is simple to get the time to completion for each modul e

" Time to finish each module

sSQL3 = "SELECT WidgetlD, ModulelD," & _

' Max(TimeToFinishPart) AS TimeToFinishModule FROM "™ & qryl.Name & _
' GROUP BY WidgetlID, ModulelD"

Set qry2 = db.CreateQueryDef(""temp2'", sSQL3)

" Show it
DoCmd.OpenQuery gry2.Name

This query resultsin Table 19-12.

Table 19-12. Resultstablefor qry2

WidgetI D Modulel D TimeToFinishM odule
1 1 3
1 2 4
1 3 5

Finally, we can compute the time to completion for each widget:

" Time to finish each Widget

sSQL4 = "SELECT WidgetlD," & _

' Max(TimeToFinishModule) AS TimeToFinishWidget FROM " & qry2.Name & _
' GROUP BY WidgetID"

Set qry3 = db.CreateQueryDef("temp3", sSQL4)

Thisresultsin Table 19-13.

Table 19-13. Resultstablefor qry3

WidgetI D TimeToFinishWidget

19.7.2 Solution 2

It is possible to get the time to completion in asingle SQL statement, although |
definitely do not recommend doing so. The result may be more elegant, but it isalso
harder to read. For instance, for modules, we have:

sSQL1 = "SELECT DISTINCT WidgetlD, ModulelD,"™ & _
" TimeToCompletion FROM Widgets2 AS W1" & _
" WHERE TimeToCompletion =" & _
(SELECT MAX(TimeToCompletion) FROM Widgets2 As W2 & _
WHERE TimeToCompletion =" & _
(SELECT MIN(TimeToCompletion) FROM Widgets2 AS W3" & _

FlyrHeart.com

TEAM FLY PRESENTS

WHERE (W3.WidgetlD = W2_WidgetlID)" & _
And (W3_.ModulelD = W2.ModulelD)" & _

And (W3.PartlID = W2_PartID)" & _
Group BY W3.WidgetlD, W3_.ModulelD, W3_PartID)" & _
AND (W2.WidgetlID = W1.WidgetlID) And (W2_.ModulelD = W1.ModulelD)" & _
GROUP BY W2.WidgetlID, W2_ModulelD)"

Digesting this SQL statement will probably take time, and | hope it will make you
reconsider using such a statement in your own applications.

19.8 Vertical to Horizontal

Imagine a database of personal statistics with two tables (Table 19-14 and Table 19-15).

Table 19-14. Composer stable

EmpID

| Name

Beethoven

Chopin

Mozart

Schubert

|Bﬁmms

OO~ W N|F

ﬂkzt

Notice that Table 19-15 has one row per statistic. Thus, the data for an individual personis
arranged vertically. Notice also that some datais missing. For instance, there is no data at

al for Liszt.
Table 19-15. ComposersData table
EmpID StatType Value

1 Age 45
1 Height 63
1 Weight 150
2 Age 46
2 Height 67
3 Age 35
3 Weight 135

Age 44
5 Height 76

Now, we want to view the data horizontally, asin Table 19-16.

Table 19-16. Combination of Table 19-14 and Table 19-15

357

) = -
FlyiHeart.com 4

TEAM FLY PRESENTS

EmpID Name Age Height Weight
1 Beethoven 45 63 150
2 Chopin 46 67
3 Mozart 35 135
4 |Ebhuben 44
5 Brahms 76
6 Liszt
19.8.1 Solution

One solution is given by the following SQL statement:

SELECT DISTINCT Composers.EmplID, Name,
(SELECT Value FROM ComposerData As T2 WHERE
(T2.StatType="Age") And (T2.EmplD=Composers.EmpID)) As Age,
(SELECT Value FROM ComposerData As T2 WHERE
(T2.StatType="Height") And (T2.EmplID=Composers.EmpID)) As Height,
(SELECT Value FROM ComposerData As T2 WHERE
(T2_StatType="Weight®) And (T2.EmplID=Composers.EmplID)) As Weight
FROM (Composers INNER JOIN ComposerData
ON Composers.EmplID=ComposerData.EmplID)

Here, we have multiple SELECT subquery statements within the main SELECT clause. For
instance, the clause:

(SELECT Value FROM ComposerData As T2 WHERE
(T2_StatType="Age") And (T2.EmplD=Composers.EmplD)) As Age,

selects the age for the person selected by the main SELECT clause.

Asthe number of statistics grows, this SQL statement becomes more complex. Example
19-6 shows an alternative solution using DA O that does not require adjusting when
additional statistics are added.

Example 19-6. VerticalToHorizontal example
Private Sub VerticalToHorizontal2()

Dim db As Database
Set db = CurrentDb

Dim rskEmp As Recordset
Dim rsData As Recordset
Dim rsHor As Recordset

Set rskEmp
Set rsHor

db.OpenRecordset("'Composers'™)
db.OpenRecordset(**ComposersOutput'™)

Do While Not rsEmp.EOF

Set rsData = db.OpenRecordset(_

FlyrHeart.com

TEAM FLY PRESENTS

"SELECT * FROM ComposerData WHERE EmpID = " & rsEmp!EmplID)
rsHor . AddNew
rsHor'EmpID = rsEmp!EmplID
rsHor!Name = rsEmp!Name
Do While Not rsData.EOF
rsHor.Fields(rsDatalStatType).Value = rsData!Value
rsData.MoveNext
Loop
rsHor .Update

rsEmp.MoveNext
Loop

rsEmp.Close
rsData.Close
rsHor .Close

End Sub
19.9 A Matching Problem
Table 19-17 presents programmers and their language skills. Table 19-18 specifiesthe

language requirements for a number of different jobs. We want to display alist of the
jobs and their respective qualified programmers.

Table 19-17. Programmerstable: Programmersand their language skills

| Name | Language
Blaise Pascal VB

Blaise Pascal C++

Blaise Pascal Access
Blaise Pascal Excel
Gauss VB

Gauss Access
Gauss Delphi
Gauss |SQLSHVH
Smith C++

Von Neuman VB

Von Neuman C++
Wordsworth Delphi
\Wordsworth (C++
IWordsworth |Word

Table 19-18. ProgrammingJobs table

JoblD Language
1 VB
1 Access
2 C++

TEAM FLY PRESENTS

3 C++

3 SQL Server
4 Delphi

5 VB

5 \Pascal
19.9.1 Solution

One solution is given by the following SQL statement:

SELECT ProgrammingJobs.JoblD, Programmers.Name

FROM Programmers INNER JOIN ProgrammingJobs

ON Programmers.Language = ProgrammingJobs.Language
GROUP BY ProgrammingJobs.JoblD, Programmers.Name
HAVING Count(Programmers.Language)=

(SELECT Count([Language]) FROM ProgrammingJobs AS PJ
WHERE PJ.JobID=ProgrammingJobs.JoblD)

We begin with an INNER JOIN of the two tables on the Language field. For each
job/programmer pair, this INNER JOIN creates a set of records of the form:

JobID X - Language 1 - ProgrammerName Y
JoblID X - Language 2 - ProgrammerName Y
JoblID X - Language 3 - ProgrammerName Y

where the job requires the language, and the programmer is skilled in that language.

Now, for each job/programmer pair, we need to ensure that the number of such recordsis
the same as the number of languages required by that job. Thisis accomplished by
grouping the records by job/programmer pair and then using a HAVING clause that
compares a count of those records with the count of languages for that job. The resulting
tableis Table 19-19.

Table 19-19. Jobs and programmers qualified for these jobs

JobID Name
Blaise Pascal

Gauss

Blaise Pascal

Smith

Von Neuman

Wordsworth

|4 |Gax5

|4 |Wordsworth

NININDN R

360 -

FlyrHeart.com

TEAM FLY PRESENTS

19.10 Equality of Sets

A common problem is determining when two sets are equal, that is, when they have the
same elements. Consider Table 19-20, which shows five sets and their members. To
simplify this as much as possible, we simply number the sets and assume they contain
numbers themselves. We want to get alist of which sets are equal.

Table 19-20. Equality

M ember

£

[EN
[EN

NN P~
Nl WIDN

N
w

oo~ WW WlW
OIN|IRP|PARIWINFRP[RRWIDNPF

19.10.1 Solution

This problem has an elegant solution using a single SQL statement. While, in general,
SQL does not permit us to compare two sets directly, asin:

(SELECT Members FROM Equality WHERE Set=1) = (SELECT Members FROM Equality
WHERE _
Set=2)

it will accept such clausesif the two SELECT statements return asingle value.

Consider now the SQL statement:

SELECT Equality.Set, E2.Set

FROM Equality INNER JOIN Equality AS E2 ON
(Equality._Member = E2_.Member) And (Equality.Set < E2_Set)
GROUP BY Equality.Set, E2_Set

HAVING

361 F it M

TEAM FLY PRESENTS

((SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=Equality.Set) =
(SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=E2.Set))

AND

(Count(Equality.Set) =

(SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=E2.Set))

The INNER JOIN ison the clause:

(Equality.Member = E2.Member) And (Equality.Set < E2.Set)

The important part of this clause isthefirst part. It states that we want all set pairs that
have a common member. The second part prevents returning duplicate set pairs. For
instance, if sets 1 and 2 both contain the number 3, we don't want to return both pairs
[(1,2) and (2,1)].

Toillustrate further, since the number 3isin sets 1, 2, 3, and 4, the records returned for
the member 3 are as follows:

(1,2) (from member 3)
(1,3) (from member 3)
(1,4) (from member 3)
(2,3) (from member 3)
(2,4) (from member 3)
(3,4) (from member 3)

If it were not for the clause Equality.Set < E2.Set, we would also be getting (1,1),
(2,2), ... (4,4), aswell as(2,1), (3,1), and so on.

Now we ask the question, "How many times will a given set pair appear?' A given set
pair, say (1,2), will appear as many times as there are common elements between the two
sets. That is, it will appear as many times as the size of the intersection of the two sets.

So if we GROUP BY set pair, we can examine these intersections and restrict the returns
using aHAVING clause. The HAVING clause we want says that the two sets are equal. But
two sets A and B are equal if the sizes of A, B, and the intersection of A and B are al the
same! The clause:

(SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=Equality.Set) =
(SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=E2_Set)

saysthat, for agiven set pair (Equality.Set, E2.Set) from the main SELECT clause, the
size of Equality.Set isequal to the size of E2.Set. The clause:

Count(Equality.Set) =
(SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=E2.Set)

says that the size of the intersection of Equality.Set and E2.Set isthe same asthe size
of E2.Set. That'sit.

362 N

FlyrHeart.com 4

TEAM FLY PRESENTS

Part VIII: Appendixes

Appendix A. DAO 3.0/3.5 Collections, Properties, and Methods

Microsoft Access 97 comes with a utility known as the Object Browser, which can be
used to explore the DAO object hierarchy. Figure A-1 shows the Object Browser, which
can be invoked from an Access code module by striking the F2 function key (or from the
View menu).

Figure A-1. The Object Browser

< Dbject Browser Mi=] E
[pao o I B
|
Classes Members of ‘Database’
@ =globalss 5 Connect |
2 Connection & Connection
&8 Connections # Conlainers
o Confainer o DesigniMasienD
21 Conlainers & harne
& & Propeties
& Databases # CueryDefs
&1 DBEngine e CuenTimeout
& Docurnent i Recordesfected
& Documents &' Recordsels
& Errar H Relations
&4 Errors & ReplicalD i
& Field 25 TableDefs
& Fislds i Transackions
& Group & Updatable
& Groups z5 Version
&8 Index % Close
@) Indeces B e
Class Database i‘
ember of A0
An open databaze. ﬂ

The Object Browser can be avery useful tool, but there are times when a hardcopy
reference is also useful. Accordingly, this appendix contains information on the
collections, properties, and methods of each of the objectsin the DAO 3.0 object
hierarchy (which underlies Access 95) and the DAO 3.5 (which underlies Access 97). If
nothing else, thisinformation should help point you to the right spot in the Access Online
Help System.

In this DAO reference, atable listing the classes and collections available in DAO is
followed by tables listing the properties and methods exposed by each class, aswell as
the collections that are accessible from each object. The tables also indicate whether each
item appliesto DAO 3.0, DAO 3.5, or both. Finally, there is a summary description of
each item.

363 .

FlyrHeart.com

TEAM FLY PRESENTS

A.1 DAO Classes

Classname | Version Description
Connection (3.5 An open ODBCDirect connection
Connections (3.5 A collection of Connection objects
Container 3.0/3.5 |Storage for information about a predefined object type
Containers (3.0/3.5 |A collection of Container objects
Database 3.0/3.5 |An open database
Databases 3.0/3.5 |A collection of Database objects
IDBEngi ne |3.0/3.5 |The Jet database engine
Document 3.0/3.5 |Information about a saved, predefined object
Documents |3.0/3.5 |A collection of Document objects
Error 3.0/3.5 |Information about any error that occurred with a DAO object
Errors 3.0/3.5 |A collection of Error objects
Field 3.0/3.5 |A column that is part of atable, query, index, relation, or recordset
Fields 3.0/3.5 |A collection of Field objects
Group 3.0/3.5 |A group of user accounts
Groups 3.0/3.5 |A collection of Group objects
Index 3.0/3.5 |Object used to order values and provide efficient access to a recordset
Indexes 3.0/3.5 |A collection of Index objects
Parameter 3.0/3.5 |Parameter for a parameter query
IParameters |3.0/3.5 |A collection of Parameter objects
Properties 3.0/3.5 |A collection of Property objects
Property 3.0/3.5 |A built-in or user-defined property
QueryDef 3.0/3.5 |A saved query definition
QueryDefs (3.0/3.5 |A collection of Querydef objects
IRecordset |3.0/3.5 |The representation of the recordsin atable or that result from a query
Recordsets |3.0/3.5 |A collection of Recordset objects
Relation 3.0/3.5 |A relationship between fields in tables and queries
Relations 3.0/3.5 |A collection of Relation objects
TableDef 3.0/3.5 |A saved table definition
TableDefs 3.0/3.5 |A collection of Tabledef objects
User 3.0/35 |A user account
Users 3.0/3.5 |A collection of User objects
Workspace |3.0/3.5 |A session of the Jet database engine
Workspaces |3.0/3.5 |A collection of Workspace objects

A.2 A Collection Object

Each of the Collection objects listed earlier in Section A.1 supports asingle method and a
single property.

364

) = -
FlyrHeart.com

TEAM FLY PRESENTS

A.2.1 Methods

| M ethod |Type| Version | Description
IRefreﬁh |Sub |3.0/3.5 |Updat05 the collection to reflect recent changes

A.2.2 Properties

I Property | Type | Version | Description
]Count |Integer |3.0/3.5 |Number of objectsin the collection (read-only)

In addition, DynaCaollection objects—that is, Collection objects whose members can be
dynamically added and removed—have the two additional methods.

A.2.3 Methods

| M ethod | Par ameters | Returns | Version | Description
Append |Object As Object Sub 3.0/35 Appends an object to the collection
Delete Name As String Sub 3.0/35 Deletes an object from the collection

A.3 Connection Object (DAO 3.5 Only)

A.3.1 Collections

| Property | Type | Version | Description
Database Database 35 Returns a Database reference to this Connection object
QueryDefs |QueryDefs |3.5 A collection of QueryDef objects
IRecordsets |RecordSets |3.5 |A collection of Recordset objects open in this connection
A.3.2 Methods

M ethod Parameters Returns [Version Description
Cancel Sub 35 Cancels execution of an asynchronous

Execute or OpenRecordset method
Closes the Connection object and

Close Sub 35 o X

everything it contains
CreateQueryDef |[Name], [SQL Text] QueryDef|3.5 Creates a new QueryDef object
Execute Query As String, [Options] |Sub 35 Executes an SQL statement

Name As String, [Type],
[Optiong], [LockEdit]

OpenRecordSet Recordset|3.5 Creates a new Recordset object

A.3.3 Properties

Property Type |Version Description
Connect Sring |35 Information saved from the Connect argument of the OpenDatabase
method
]Name |Stri ng |3.5 |Name of the Connection object

365 Fly it QM

TEAM FLY PRESENTS

. Number of seconds before timeout occurs when executing an ODBC
QueryTimeout 35 query
RecordsAffected 35 Number of records affected by the last Execute method
StillExecuting |Boolean|3.5 Indicates whether an asynchronous method call is still executing
Transactions Boolean|3.5 Indicates whether the DAO object supports transactions
Updatable Boolean|3.5 Indicates whether the connection allows data to be updated

A.4 Container Object

A.4.1 Collections

| Property |

Type | Version |

Description

| Documents

|Documents |3.0/3.5

|Co| lection of Document objects in the container

A.4.2 Properties

| Property |Type |Version|

Description

AllPermissions|Long

3.0/3.5 |All permissions that apply to the current username

Inherit Boolean

Indicates whether new Document objects inherit default permissions

3.0/35 ;
properties

Name String

3.0/3.5 |The name of this object

Owner String

3.0/3.5 |Setsor returns the owner of the object

Permissions |Long

Sets or returns permissions for the user or group indicated by the

3035 UserName property when accessing the object

UserName String

3.0/3.5 |User or group to which the Permissions property applies

A.5 Database Object

A.5.1 Collections

Property

Version Description

Connection |Connection |3.5

An open ODBCDirect connection

Containers |Containers |3.0/3.5

Collection of Container objects in the Database object

QueryDefs |QueryDefs |3.0/3.5

Collection of QueryDef objectsin the Database object

Recordsets |Recordsets (3.0/3.5

Collection of Recordset objects open in Database object

Relations Relations 3.0/3.5 |Collection of Relation abjectsin the Database object

TableDefs |TableDefs [3.0/3.5 |Collection of TableDef objectsin the Database object

A.5.2 Methods

| M ethod | Par ameters | Returns |Version| Description |

366 Flyt QM

TEAM FLY PRESENTS

Close b [3.0/35 (Closesthe Database object and
everything it contains
Creates a new user-defined
CreateProperty |[Name], [Type], [Value], [DDL] |Property [3.0/3.5 Property object
|CreateQueryDef|[Name], [SQLText] |QueryDef|3.0/3.5 |Cree¢% anew QueryDef object
CreateRelation {Ezwgt'tg]able] . [ForeignTable], Relation |3.0/3.5 |Creates anew Relation object
CreateTableDef {g‘oa;'r‘iT[aAbtlg\l'b;ﬁ Comecy | T2DIEDel [30/35 |Crestes anew TableDef objec
Execute Query As String, [Options] Sub 3.0/3.5 |Executesaquery
: PathName As String, Description Makes a new replica based on the
MakeReplica As String, [Options] Sub 3.0/35 current replicable database
NewP: ord bst_rOId As String, bstrNew As Sub 3.0/35 Chaqgesthe password of an
String existing database
OpenRecordset |Name As String, [Type], [Options] |Recordset|3.0/3.5 |Creates a new Recordset object
PopulatePartial |DbPathName As String Sub 35 Synchronizes a partia replica
Synchronize DbPathName As String, Sub 3.0/3.5 |Synchronizes the database object
[ExchangeType] T

A.5.3 Properties

Property Type |Version Description
CollatingOrder |Long (3.0/3.5 |Definesthe order used for sorting and comparisons
Connect String Information saved from the Connect argument of the OpenDatabase
method
DesignMasterID [String |3.0/3.5 |Unique identifier for areplica design master
Name String |3.0/3.5 |The name of this Database object
QueryTimeout Integer |3.0/3.5 l(;ll;Jergl/Jer of seconds before timeout occurs when executing an ODBC
RecordsAffected|Long |3.0/3.5 |Number of records affected by the last Execute method
ReplicalD String |13.0/3.5 |Unique identifier for areplica
Transactions Boolean|3.0/3.5 |Indicates whether the Database object supports transactions
Updatable Boolean|3.0/3.5 |Indicates whether the Database object can be modified
IVersi on |Stri ng |3.0/3.5 |Versi on number of the Database object format

A.6 DBEngine Object

A.6.1 Collections

Property

Type

Version Description

Errors Errors

3.0./3.5 |Collection of errors from the most recently failed DAO operation

IProperti €s |Properti es

|3.0/3.5 |Co||ection of Property objects

IWorkspaceﬁ |W0rkspacm |3.0/3.5 |Co||ecti0n of open Workspace objects

367 Byt M

TEAM FLY PRESENTS

A.6.2 Methods

| M ethod | Par ameters Returns |Version| Description
BeginTrans Sub 3.0/3.5 |Beginsanew transaction
CommitTrans Sub 30 Ends the transaction and
saves any changes
CommitTrans [Option as Long] Sub 35 Ends the transaction and
saves any changes
SrcName As String, DstName As
CompactDatabase|String, [DstConnect], [Options], Sub 3.0 Compacts a closed database
[SrcConnect]
SrcName As String, DstName As
CompactDatabase|String, [DstLocal€], [Optiong], Sub 35 Compacts a closed database
[SrcLocale]
CreateDatabase '[\l Oapr:i%'rblis String, Connect As String, Database (3.0 Creates a new database
CreateDatabase Name As String, Locale As String, Datsbase 135 Creates a new .mdb
[Option] database
Name As String, UserName As Creates a new Workspace
CreateWorkspace String, P. ord As String Workspace|3.0 object
Name As String, UserName As
CreateWorkspace |String, Password As String, Workspace|3.5 Creates anew Workspace
object
[UseType]
Idle [Action] Sub 3.0/3.5 |COMpletes pending engine
T Jtasks such aslock removal
. Name As String, [Optiong], . Opens a connectionto a
OpenConnection [ReadOnly], [Connect] Connection|3.5 database
Name As String, [Exclusive], e
OpenDatabase [ReadOnly], [Connect] Database (3.0 Opens a specified database
Name As String, [Optiong], -
OpenDatabase [ReadOnly], [Connect] Database (3.5 Opens a specified database
Dsn As String, Driver As String, Enters connection
RegisterDatabase |Silent As Boolean, Attributes As Sub 3.0/3.5 |information for an ODBC
String data source
. . Repairs a corrupted
RepairDatabase |Name As String Sub 3.0/35 database
Rolls back any changes
Rollback Sub 30535 since the last BeginTrans
. . Overrides Jet registry
SetOption Option AsLong, Value Sub 35 sattings
A.6.3 Properties
Property Type [Version Description

DefaultPassword|String

3.0/35

Password if a Workspace object is created without a password

DefaultType Long (3.5 Sets the default Workspace type
DefaultUser String |3.0/3.5 |Username if a Workspace object is created without a username
IniPath String [3.0/3.5 Path and filename of the initialization file (in Jet 3.0) or the complete

Registry path (Jet 3.5) containing Jet engine settings

ILogi nTimeout

|I nteger|3.0/3.5 |Number of seconds allowed for logging in to an ODBC database

368

FlyrHeart.com

TEAM FLY PRESENTS

SystemDB String |3.0/3.5 |Path to the system database
Version String {3.0/3.5 |Version number of the Jet database engine

A.7 Document Object

A.7.1 Methods

M ethod Parameters Returns|Version Description

[Name], [Typeg], [Vaug], Creates a new user-defined Property

CreateProperty [DDL] Property|3.0/3.5 object
A.7.2 Properties
| Property | Type |Version | Description
AllPermissions |[Long |3.0/3.5 |All permissions that apply to the current username
Container String [3.0/3.5 |Name of the Container object to which this Document object belongs

DateCreated |Variant |3.0/3.5 |Date and time the Document object was created

LastUpdated |Variant |3.0/3.5 |Dateand time of the most recent change to the Document object
Name String [3.0/3.5 |Name of this Document object

Owner String |3.0/3.5 |The owner of the object

Permissions Long |3.0/3.5 |Permissionsfor user or group accessing the Document object
UserName |Stri ng |3.0/3.5 |User or group for which the Permissions property applies

A.8 Error Object

A.8.1 Properties

| Property | Type | Version | Description
Description String |3.0/3.5 Description of the error

HelpContext Long (3.0/35 Help context ID for atopic describing the error
HelpFile String |3.0/3.5 Path to Help file describing the error

Number Long (3.0/35 Error code of the most recent error

Source String |3.0/3.5 Name of the object class that generated the error

369 - OM

TEAM FLY PRESENTS

A.9 Field Object

A.9.1 Collections

Property Type Version Description
Properties Properties 3.0/35 Collection of Property objects
A.9.2 Methods
| M ethod | Par ameters |Returns|Version| Description
AppendChunk (Val Sub 3.0/3.5 |Writeslong binary datato afield

[Name], [Typeg], [Vaug], Creates a new user-defined Property

CreateProperty [DDL] Property|3.0/3.5 object
FiedSize | Long [30 |Returnsthe FieldSize field
GetChunk (L)Lfget Aslong, ByteSAs g0 |30/35 |Readsbinary datafrom afield

A.9.3 Properties

I Property | Type |Version| Description
IAIIowZeroLength|Boolean|3.0/3.5 |I ndicates whether a zero-length string is valid for this field
Attributes Long [3.0/3.5 |Vaueindicating characteristics of this Field object

CollatingOrder |Long |3.0/3.5 |Language used for sorting and comparisons
DataUpdatable |Boolean|3.0/3.5 |Indicates whether the datain the field are updatable
DefaultValue String |3.0/3.5 |Default value of the field for a new record

IFieIdSize |Long |3.5 |Thesize of amemo field or along binary field
ForeignName String |3.0/3.5 |The name of the foreign field
Name String |3.0/3.5 |The name of this Field object

OrdinalPosition |Integer |3.0/3.5 |Therelative position of this field object

OrigindValue |Variant |3.5 Value stored in the database server at the start of a batch update
Required Boolean|3.0/3.5 |Indicates whether the Field requires a non-Null value

Size Long |3.0/3.5 |[Maximum size of thefield

SourceField String |3.0/3.5 |Name of the original source of datafor aField object
SourceTable String |3.0/3.5 |Name of the original sourcetable

Type Integer |3.0/3.5 |Datatype of thefield

Determines whether validation occurs immediately (a True value) or is
delayed until an update (a False value)

VadidationRule |String |3.0/3.5 |Expression that must evaluate to True for a successful update
VaidationText |String [3.0/3.5 |[Messageto display if validation with ValidationRule fails
Value Variant [3.0/3.5 |The Field object's data

VisibleValue Variant (3.5 Data currently stored in the database server

VaidateOnSet |Boolean|3.0/3.5

370 e e

TEAM FLY PRESENTS

A.10 Group Object
A.10.1 Collections

Property Type Version Description
Properties Properties 3.0/35 A collection of Property objects
IUsers |Users |3.0/3.5 |A collection of User objects
A.10.2 Methods
M ethod Parameters Returns | Version Description
CreateUser |[Name], [PID], [Password] User 3.0/35 Creates a new User object

A.10.3 Properties

| Property | Type | Version | Description
Name String (3.0/3.5 Name of the Group object
PID String (3.0/3.5 Personal identifier (PID) for the group or user account

A.11 Index Object

A.11.1 Collections

Property Type Version Description
Fields Fields 3.0/35 Collection of fieldsin the Index object
IProperties |Properties |3.0/3.5 |COIIection of Property objects
A.11.2 Methods

M ethod Parameters Returns|Version Description
CreateField |[Name], [Type], [Size] Field |3.0/3.5 |Createsanew Field object

[Name], [Type], [Valug], Creates a new user-defined Property

CreateProperty [DDL] Property|3.0/3.5 object
A.11.3 Properties

Property Type | Version Description
Clustered Boolean |3.0/3.5 |Indicates whether the index is clustered
DigtinctCount |Long 3.0/3.5 |Number of unique valuesin this Index object
Foreign Boolean |3.0/3.5 |Indicates whether an Index object represents aforeign key
IgnoreNulls Boolean |3.0/3.5 |Indicates whether Null values are stored in the index
Name String 3.0/3.5 |Name of thisIndex object
Primary Boolean |3.0/3.5 |Indicates whether thisisa primary index
Required Boolean |3.0/3.5 |Indicates whether the index requires a non-Null value
Unique Boolean |3.0/3.5 |Indicates whether thisis aunique index for atable

371

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

A.12 Parameter Object

A.12.1 Properties

|Pr0perty| Type |Version | Description

Direction |Integer (3.5 Indicates whether a Parameter is for input, output, or returned values

Name String |3.0/3.5 |Name of this Parameter object

Type Integer (3.0/3.5 |Datatype of the object

Value Variant |3.0/3.5 |[The object'svalue

A.13 Property Object
A.13.1 Properties

| Property | Type |Version | Description

Inherited |Boolean (3.0/3.5 |Indicates whether a property isinherited from an underlying object

Name String |3.0/3.5 |Name of the Property object

Type Integer |3.0/3.5 |[The Property object's datatype

Value Variant (3.0/3.5 |The property value

A.14 QueryDef Object

A.14.1 Collections

Property Type Version Description

Fields Fields 3.0/3.5 |Collection of fieldsin the QueryDef object

IParameters |Parameters |3.0/3.5 |Collection of Parameter objects in the QueryDef object

IPropertieﬁ |Properti$ |3.0/3.5 |COIIecti on of Property objects in the QueryDef object

A.14.2 Methods

| M ethod | Par ameters |Returns|Version| Description

Cancels execution of an asynchronous

Cancel Sub 35 OpenRecordset method

Close Sub 3.0/3.5 |Closes the open QueryDef object

CreateProperty [[Namel, [Typel, [Valuel, |Property |3.0/3.5 |Creates anew user-defined Property object

372 -

TEAM FLY PRESENTS

[DDL]
Execute [Optiong] Sub 3.0/3.5 |Execute the Querydef
OpenRecordset|[Type], [Options] Recordset|3.0 Creates a new Recordset object
OpenRecordset [Typel, [.O ptions], Recordset|3.5 Creates a new Recordset object
[LockEdit]

A.14.3 Properties

| Property | Type |Version| Description

CacheSize Long |35 Number of recordsto be locally cached from an ODBC data source
Connect String |13.0/3.5 |Value providing information about a data source for a QueryDef
IDateCreated |Variant |3.0/3.5 |Date and time the QueryDef was created

LastUpdated Variant |3.0/3.5 |Date and time of the most recent change to the QueryDef
MaxRecords Long |35 Maximum number of records to return from the query

Name String |13.0/3.5 |Name of this QueryDef object

ODBCTimeout |Integer |3.0/3.5 gl[j)meCerng a?acsc;nds to wait before a timeout occurs when querying an
Prepare Variant 135 lc;lgr c):/at&e whether to prepare atemporary stored procedure from the
RecordsAffected|Long |3.0/3.5 |Number of records affected by the last Execute method
ReturnsRecords (Boolean|3.0/3.5 |Indicates whether an SQL pass-through query returns records

SQL String |3.0/3.5 |SQL statement that defines the query

StillExecuting |Boolean|3.5 Indicates whether an asynchronous method call is still executing
Type Integer |3.0/3.5 |The datatype of the object

IUpdatabIe |Boo|ean|3.0/3.5 |I ndicates whether the query definition can be changed

A.15 Recordset Object

A.15.1 Collections

| Property | Type | Version | Description
Connection Connection 35 Indicates which Connection owns the Recordset
Fields Fields 3.0/35 Collection of fieldsin the Recordset object
A.15.2 Methods
| M ethod | Parameters | Returns |Version| Description
AddNew Sub 3.0/3.5 |Addsanew record to the Recordset
Cancels execution of an asynchronous Execute,
Cancel Sub 35 OpenRecordset, or OpenConnection method
Cancel Update Sub 3.0/35 Cancels any pending AddNew or Update
statements
Clone Recordset|3.0/3.5 |Creates a duplicate Recordset
Close Sub 3.0/3.5 |Closes an open Recordset object
373

) = -
FlyrHeart.com

TEAM FLY PRESENTS

Returns a copy of the QueryDef that created

CopyQueryDef QueryDef (3.0/3.5 the Recordset
Delete Sub 3.0/3.5 |Deletesarecord from the Recordset
Edit Sub 3.0/3.5 |Preparesarow of the Recordset for editing
FillCache |[ROWS], sub [3.035 [Fillsthe cache for an ODBC-derived Recordset
[StartBookmark]
FindFirst Criteria As String Sub 3.0/3.5 |Locatesthefirst record that satisfies the criteria
FindLast Criteria As String Sub 3.0/3.5 |Locatesthe last record that satisfies the criteria
FindNext Criteria As String Sub 3.0/35 L(_)cat.& the next record that satifies the
criteria
FindPrevious |Criteria As String Sub 3.0/3.5 Ic_r(i)tc:rti?the previous record that satisfies the
GetRows [cRows] Variant |3.0/3.5 |Writes multiple records into an array
Rows As Long, Repositions the record pointer relative to the
Move [StartBookmark] Sub 3.0/35 current position or to a bookmark
MoveFirst | |Sub |3.0/3.5 |M ovesto the first record in the Recordset
Movel ast Sub 3.0 Moves to the last record in the Recordset
Movel ast [Options As Long] Sub 35 Moves to the last record in the Recordset
MoveNext Sub 3.0/3.5 |Movesto the next record in the Recordset
MovePrevious Sub 3.0/3.5 |Movesto the previous record in the Recordset
NextRecordset Boolean 135 Retrieves the next recordset in a multiquery
Recordset
OpenRecordset|[Type], [Options] Recordset|3.0/3.5 |Creates a new Recordset object
Requery [NewQueryDef] Sub 3.0/35 Reexecutesthe guery on which the Recordset
isbased
Seek CK:(;;nlparlson As String, Sub 3.0/3.5 |Locatesarecord in atable-type Recordset
Update Sub 3.0/35 Saves changesinitiated by the Edit or AddNew
methods
A.15.3 Properties
| Property | Type |Versjon| Description
IAbsoI utePosition |L0ng |3.0/3.5 |Returns or sets the relative record number of the current record
BatchCollisionCount|Long 3.5 Iurrﬂ ;:Iaetes the number of rows having collisionsin the last batch
BatchCollisions Variant (3.5 Indicates which rows had collisions in the last batch update
BatchSize Long |35 Determines how many updatesto include in a batch
BOE Boolean|3.0/3.5 Indicates whether the current record position is before the first
record
Bookmark As Byte |3.0/3.5 |Uniquely identifies aparticular record in a Recordset
Bookmarkable Boolean|3.0/3.5 |Indicates whether a Recordset supports bookmarks
CacheSize Long |3.0/35 Indicates the number of records from an ODBC data source to be
cached locally
CacheStart As Byte |3.0/35 Bookmarks the first record to be cached from an ODBC data
source
DateCreated Variant 13.0/35 erlg;;ta% the date and time when the underlying base table was

374

FlyrHeart.com

TEAM FLY PRESENTS

EditMode Integer |3.0/3.5 |Indicates the state of editing for the current record

EOF Boolean|3.0/3.5 |Indicates whether the current record position is after the last record

Filter String |3.0/3.5 |Defines afilter to apply to a Recordset

Index Sring |3.0/3.5 lorrl:lj;/ (;ates the name of the current Index object (table-type Recordset

LastModified As Byte |3.0/3.5 |Bookmarksindicating the most recently added or changed record

L astUpdated Variant 13.0/35 Indlcate_ﬁ the date and time of the most recent change to the
underlying base table

L ockEdits Boolean|3.0/3.5 Ind!cates.the type of locking (optimistic or pessimistic) in effect
during editing

IName |String |3.0/3.5 |I ndicates the name of the Recordset object

NoMatch Boolean|3.0/3.5 Indicates whether the Seek or Find methods succeeded in finding a
record

PercentPosition Single |3.0/3.5 |Indicates or changes the approximate location of the current record

RecordCount Long [3.0/3.5 |Indicatesthe number of recordsin the Recordset object

RecordStatus Integer (3.5 Indicates the batch-update status of the current record

Restartable Boolean|3.0/3.5 |Indicates whether the Recordset supports the Requery method

Sort String |3.0/3.5 |Defines the sort order for recordsin a Recordset

StillExecuting Boolean|3.5 Indicates whether an asynchronous method call is still executing

Transactions Boolean|3.0/3.5 |Indicates whether the Recordset supports transactions

Type Integer |3.0/3.5 |Indicates the object's data type

IUpdatabIe |Boo|ean|3.0/3.5 |I ndicates whether recordsin the Recordset can be updated

UpdateOptions Long |35 Determines how a batch update query will be constructed

ValidationRule Sring |3.0/35 Sg;;taé ns an expression that must evaluate True for a successful

IVaIidamionText |String |3.0/3.5 |I ndicates the message to appear if VaidationRule fails

A.16 Relation Object

A.16.1 Collections

| Property | Type | Version | Description
Fields Fields 3.0/35 Collection of fieldsin this Relation object
Properties Properties 3.0/35 Collection of Property objects
A.16.2 Methods
| M ethod | Par ameters | Returns | Version | Description
CreateField |[Name], [Type], [Size] Field 13.0/35 |Createsanew Field object
A.16.3 Properties
Property | Type [Version Description
Attributes Long |3.0/3.5 |Miscellaneous characteristics of the Relation object

375

) = -
FlyiHeart.com 4

TEAM FLY PRESENTS

ForeignTable |String |3.0/3.5 |Specifies the name of the foreign (referencing) table in arelationship

Name String |3.0/3.5 |Name of this Relation object
PartialReplicalBoolean|3.5 Irzldgates whether the relation provides a partial replica's synchronizing
Table String |3.0/3.5 |Specifiesthe primary (referenced) TableDef or Querydef

A.17 TableDef Object

A.17.1 Collections

| Property | Type | Version | Description

Fields Fields 3.0/3.5 |Collection of fieldsin this TableDef object

Indexes Indexes 3.0/3.5 |Collection of indexes associated with this TableDef object
IPropertieﬁ |Properties |3.0/3.5 |COIIection of Property objects

A.17.2 Methods

M ethod Parameters Returns |Version Description
CreateField [Name], [Type], [Size] Field 3.0/3.5 |Createsanew Field object
Createlndex |[Name] Index 3.0/3.5 |Creates anew Index object
CreateProperty {gaDTT] [Type], [Value], Property |3.0/3.5 |Creates anew user-defined Property object
|OpenRecordset|[Type], [Optiong] |Recordset|3.0/3.5 |Creat$ anew Recordset object
. Updates connection information for an
RefreshLink Sub 3.0/35 attached table

A.17.3 Properties

| Property | Type |Version| Description

IAttri butes |Long |3.0/3.5 |M iscellaneous characteristics of the TableDef object
ConflictTable Sring 3.0/35 ls\lyirzﬁr?); sgtlii ﬁontal ning records that conflicted during replica
Connect String |3.0/3.5 |Data source for the TableDef

DateCreated Variant (3.0/3.5 |Date and time when the table was created

LastUpdated Variant [3.0/3.5 |Date and time when the TableDef was last changed

IName |String |3.0/3.5 |Name of the TableDef

RecordCount Long |3.0/3.5 |[Number of records

ReplicaFilter Variant (3.5 Indicates which records to include in a partial replica
SourceTableName|String (3.0/3.5 |Name of alinked table's original source table

Updatable Boolean|3.0/3.5 |Indicates whether the TableDef definition can be changed
ValidationRule |String |3.0/3.5 |Expression that must evaluate to True for a successful update
VadidationText [String |3.0/3.5 |Messageto display if ValidationRulefails

376 e e

TEAM FLY PRESENTS

A.18 User Object

A.18.1 Collections

| Property | Type | Version | Description

Groups Groups 3.0/35 Collection of Group objectsin a User object

Properties Properties 3.0/35 Collection of Property objects

A.18.2 Methods

| M ethod | Par ameters |Returns|Version| Description

CreateGroup ([Name], [PID] Group |3.0/3.5 |Createsanew Group object

NewP: ord bst_rOId As String, bstrNew As Sub 3.0/35 Changes the password of an existing user
String account

A.18.3 Properties

| Property | Type | Version | Description

Name String (3.0/3.5 The name of the User object

Password String (3.0/3.5 Password for the user account

IPI D |Stri ng |3.0/3.5 |Persona| identifier (PID) for agroup or user account

A.19 Workspace Object

A.19.1 Collections

| Property | Type | Version | Description
Connections |Connections |3.5 Collection of Connection objects
Databases Databases 3.0/3.5 |Coallection of open Database objects
Groups Groups Collection of Group objectsin a Workspace object
IUsers |Users |3.0/3.5 |Co||ection of User objects for a Workspace object
A.19.2 Methods
M ethod Parameters Returns |[Version Description
BeginTrans Sub 3.0/3.5 |Beginsanew transaction
Close Sub 3.0/3.5 |Close the Workspace object
CommitTrans Sub 3,0/3.5 |ENdsthetransaction and saves
any changes

Name As String, Connect As Creates a new Microsoft Jet

CreateDatabase String, [Option] Database |3.0/3.5 database (.mab)
377

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

CreateGroup [Name], [PID] Group 3.0/3.5 |Creates a new Group object
CreateUser [Nameg], [PID], [Password] User 3.0/3.5 |Creates anew User object

Name As String, [Optiong], . Opens a connection to a
[ReadOnly], [Connect] Connection'35 | 4 abase

Name As String, [Exclusive],
[ReadOnly], [Connect]

OpenConnection

OpenDatabase Database (3.0/3.5 |Opens adatabase

Undoes any changes since the

Rollback Sub 3.0/3.5 |ast BeginTrans

A.19.3 Properties

| Property | Type |Version | Description
DefaultCursorDriver (Long |3.5 Selects the ODBC cursor library
IsolateODBCTrans |Integer |3.0/3.5 |Indicates whether multiple transactions are isolated (ODBC only)

LoginTimeout Long |35 Number of seconds allowed for logging in to an ODBC database
Name String |3.0/3.5 |Name of this Workspace object
]UserName |Stri ng |3.0/3.5 |User that created the Workspace object

318 e e

TEAM FLY PRESENTS

Appendix B. The Quotient: An Additional Operation of the
Relational Algebra

The quotient of two tablesis not used often, but has avery specific use. It arises when we
wish to select those rows of atable that are sufficient to provide all possible valuesin
certain columns. As an example, imagine a business that makes furniture. The database
for this business has a table on the types of wood that they use, as well as on suppliers of
wood and which types they supply. Examples are shown in Table B-1 and Table B-2 (of
course, these tables would include more columns, but thisisjust to illustrate the point).

TableB-1. WOOD
Type

Mahogany
Red oak
Poplar
IWaI nut

Table B-2. SUPPLIER/TYPE
| Sname | Type
Jones Wood Supply mahogany
Austin Hardwoods red oak
Orange Coast mahogany
Jones Wood Supply poplar
West Lumber poplar
Jones Wood Supply wal nut
Austin Hardwoods wal nut
Jones Wood Supply red oak
Orange Coast wal nut
West Lumber red oak
Orange Coast poplar
IOrange Coast |red oak
]Fred's Woods |Wal nut

Note that there are four types of wood. Suppose we want to know which suppliers supply
all four types—a reasonable question. The answer, which is shown in Table B-3is called
the quotient of the table SUPPLIERS/TY PE by WOOD, written SUPPLIER/TY PE +
WOOD.

Table B-3. SUPPLIER/TYPE WOOD

| Sname
IJones Wood Supply

373 Byt M

TEAM FLY PRESENTS

|Orange Coast |

As you can see, the quotient can certainly come up in real-life situations. The reason for
defining a specific operation for this purpose is that expressing the quotient in terms of
the other relationsis a bit complex. Let'sdo it to illustrate the virtue of the quotient.

Theideaisactually relatively ssmple. Wefirst get atable, called T, containing all rows
that are not in the SUPPLIER/TY PE table. This new table will involve only those
suppliers who have not supplied all types of wood. (If a supplier suppliesall four types of
wood, then there will be four rowsin the SUPPLIER/TY PE table and therefore no rows
in T.) Then we subtract this from atable containing al (participating) suppliers. Hereis
the step-by-step procedure.

B.1Step 1

Form the table:

R = [projSName(SUPPLIER/TYPE) € WOOD] - SUPPLIER/TYPE

Table B-4, the table R, contains all rows of the form (SName, Type) that are not in the

SUPPLIER/TY PE table. Put another way, it is the set of "missing possibilities’ in the
Cartesian product (which isthe set of all possibilities).

TableB-4.R
Sname | Type
Austin Hardwoods poplar
West Lumber wal nut
Austin Hardwoods mahogany
West Lumber mahogany
Fred's Woods |Wal nut

B.2 Step 2
Form the table:
projSName(R)

That is, project the table R onto the SName column, giving the SUPPLIERS that do not
supply all types of wood, as shown in Table B-5.

380 =

FlyrHeart.com

TEAM FLY PRESENTS

Table B-5. projSName(R)

| SName

IAusti n Hardwoods

West Lumber

Fred's Woods

B.3 Step 3

Finally, form the table:

projSName(SUPPLIERS/TYPE) - projSName (R)

That is, subtract the table in Step 2 from the first column of the SUPPLIERS/TY PE table.
This gives the suppliers that supply all four types of wood, as Table B-6 illustrates.

Table B-6. SUPPLIER/TYPE + WOOD

SName

Jones Wood Supply

]Orange Coast

381

) = -
FlyrHeart.com

TEAM FLY PRESENTS

Appendix C. Open Database Connectivity (ODBC)

In this appendix, we take a close look at ODBC, which is a part of both DAO and ADO
and probably will be for some time to come, despite Microsoft's desire to replace all
previous database technologies with OLE DB and ADO.

ODBC ispart of DAO in the sense that DAO supports ODBC workspaces for connecting
to ODBC providers. Also, ODBC is part of OLE DB in the sense that the first OLE DB
data provider was for ODBC data sources and thisis still the most flexible OLE DB
provider.

Our discussion of ODBC will befairly detailed, but it will not be reference-like. However,
you should feel free to skim through this appendix for whatever information suits your
particular needs. If you get more deeply involved in database connectivity, you may find
that some of thisinformation will prove useful later on.

Incidentally, all of the code examplesin this chapter are available on my web site:
http://www.romanpress.com.

C.1 Introduction

Open Database Connectivity, or ODBC for short, is an Application Programming
Interface (API) for connecting to databases of varioustypes. (An APl isessentialy just a
set of functions, also called services, for performing various tasks. These functions are
usually contained in one or more dynamic link libraries (DLLS).) The term databaseis
used herein avery general sense to refer not only to traditiona relational databases, such
as Access or FoxPro databases, but also to less traditional "databases” such as delimited
text files or Excel worksheets.

Typicaly, the functions in the ODBC API are implemented in database-specific ODBC
drivers. In thisway, an application is shielded from having to know the specifics of the
various types of databases.

Figure C-1 shows the components involved in the use of ODBC.

Figure C-1. An overview of ODBC

ODBCAR ODBCDriver |=-=- pataSource
(¢ AR 3 .
‘ ODBC Driver | .-~ =
Application |----ccacan Manager [+ 77777 ODBCDriver F---- pata Source
ﬂﬂﬂ(ﬂrﬁl‘er I nmhm

Since most data access is done using the SQL language, the primary ODBC-related task
for an application isto submit SQL statements to the Driver Manager, which sends the

382 N

FlyrHeart.com 4

TEAM FLY PRESENTS

http://www.romanpress.com/

commands to the appropriate driver and also processes any datathat isreturned as a
result of the SQL statements.

C.2 The ODBC Driver Manager
The purpose of the ODBC Driver Manager isto manage communication between the
application and the driver. The application communicates directly with the Driver
Manager, which in turn either processes the command or sends it on (with or without
some modification) to the driver. (It is possible for an application to communicate
directly with adriver, but thisis not usual.)
Generaly, the Driver Manager just passes API function calls from the application to the
correct driver. However, it does implement some API functions and also performs some
basic error checking. In particular, it is responsible for implementing the following
driver/data source information functions:
SQLDataSources

Returns information about a data source
SQLDrivers

Lists driver descriptions and attributes
SQLGetFunctions

Determines whether a given driver supports a given ODBC function
The Driver Manager is aso responsible for managing the connection to and
disconnection from an ODBC driver. In particular, when an application wantsto use a
particular driver, the application calls one of the following connection functions:
SQLConnect

Establishes a connection to a driver and a data source
SQLDriverConnect

Establishes a connection using a connection string
SQLDriverBrowse

Establishes a connection iteratively

Each of these functions must include information about the driver in its parameters (in
different forms, however). Using this driver information, the Driver Manager loads the

383 =

FlyrHeart.com 4

TEAM FLY PRESENTS

driver (if it is not already loaded) and calls the appropriate connection function
(SQLConnect, SQLDriver Connect, or SQLDriverBrowse) in the driver.

When the application is done using the driver, it calls SQLDisconnect. The Driver
Manager passes this call to the driver, which disconnects from the data source.

C.3 The ODBC Driver

An ODBC driver is acode component that implements the functionsin the ODBC API.
Each driver is specific to a particular database type. Drivers expose the capabilities of the
underlying database management system (DBMS) but do not, in general, enhance its
capabilities. The main exception is that drivers for DBM Ssthat do not have standalone
database engines, asisthe case with dBASE, Xbase, and ASCI| text, for example, must
implement a database engine that supports a minimal amount of SQL.

In particular, an ODBC driver must implement the following tasks (among others):

Connecting to and disconnecting from the data source.

Sending data to and retrieving data from the data source.

Checking for API function errors that are not checked by the Driver Manager.
Submitting SQL statements to the data source for execution. For this, the driver
may need to modify the ODBC-style SQL statementsto aform of SQL that the
DBMS understands.

C.3.1Driver Types

In general, there are two types of ODBC drivers. A file-based driver accesses the

physical datain the database directly. Thus, it must process not only ODBC function calls,
but also SQL statements. Put another way, afile-based driver must also be a database
engine that can process ODBC SQL (at a minimum). For example, dBASE drivers are
file-based drivers because dBA SE does not provide a standal one database engine the
driver can use.

By contrast, a DBMS-based driver accesses the physical data only through a separate
database engine. In this case the driver processes ODBC calls but passes SQL statements
to the database engine for processing. For example, Microsoft Access provides a

standal one database engine called Jet, so an Access driver can be DBM S-based. (There
are also file-based Access database drivers that communicate directly with MDB files.)

The advantage of DBM S-based driversisthat they can accept and pass along the
DBMS's specific brand of SQL. For instance, a DBM S-based driver for Microsoft Access
can pass Access SQL statements to the Access database (Jet) engine for processing. On
the other hand, a file-based Access driver, which contains its own proprietary database
engine that accesses MDB files directly, may support only ODBC SQL, in which case
attempts to pass Access-specific SQL statementsto the driver arelikely to result in
errors.

FlyrHeart.com 4

TEAM FLY PRESENTS

C.4 Data Sources

A data sourceis, in general, a source of data. However, thisterm is one of the most
abused and inconsistently misused terms in database-related programming (at least in
Microsoft's arsenal). For instance, when the data is contained in atext file, then the term
"data source" refers simply to the physical datain the file. Similarly, when the datais
contained in an Access database file (extension .mbd) that is being accessed by a
file-based driver, the term data source refersto the MDB file. On the other hand, when
the data are contained in an Access database file that is being accessed by a DBM S-based
driver, then the data source is considered to be the combination of the Access DBMS and
the MDB file. On the other hand, in the context of the new VB6 DataBinding object
model, the term data source refersto a source for the data binding, which is often aVB6
class module that has its DataSourceBehavior property set to vbDataSource. In this case,
the data source itself contains no data whatsoever!

Thus, just what constitutes a data source depends upon the circumstances. In fact, since a
data source is always associated with a particular driver under ODBC, we will usually
think of the pair together. This view is supported by the fact that when configuring a data
source using the ODBC Administrator, we are first required to select adriver.

The term data source is a'so sometimes used (unfortunately) to stand for the description
of a data source—that is, the name and path of the database, password, user name,
connection attributes, and so on. What a mess.

C.4.1 DSNsand Data Source Types

The ODBC literature uses the term Data Source Name (DSN) quite frequently.
Unfortunately, it does not refer ssmply to the name of the data source! Rather, it refersto
adescription of the data source, the accompanying driver, and the attributes of a
connection between the two. For instance, a DSN includes the name of the data source,
the compl ete path of the data source, the name of the driver, and details about the
connection to the data source, such as whether or not the connection is read-only. We will
see examples of DSNs alittle later. The important thing to keep in mind is that the name
DSN is quite misleading. Perhaps a better term would have been Data Connection
Description (DCD).

C.4.1.1 M achine data sour ces

Data sources are said to fall into two categories: machine data sources and file data
sources. Note, however, that it isreally the DSNsthat fall into these categories. The
difference isin where and how the DSN (and not the data source itself) is stored.

For amachine data source, the DSN is stored in the system registry of a machine under a
specific name, called the Data Source Name name (DSN name). A machine data source
can be registered under one of two registry keys.

FlyrHeart.com 4

TEAM FLY PRESENTS

e HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBC. INI
e HKEY_CURRENT_USER/SOFTWARE/ODBC/ODBC. INI

In the former case, the DSN is available to all users of the machine. In the latter case, the
DSN isavailable only to the user under whose name it isregistered. When aDSN is
stored in the HKEY_LOCAL_MACHINE key, the data source is referred to as a system data
source, although again this term should really be applied to the DSN. When the DSN is
stored in the HKEY_CURRENT_USER key, the data source (actually DSN) isreferred to asa
user data source.

Incidentally, the registry key HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBCINST. INI
contains information about each installed ODBC component, including drivers. Thisisa
good place to find the filename of adriver, should you be interested.

C.4.1.2 Filedata sources

For afile data source, the DSN is kept in an ordinary text file, with extension .dsn, and is
accessible to anyone with access to thefile. Thisis so that afile data source (that is, afile
DSN) is not registered to any one user or machine. Thus, afile DSN does not have aDSN
name per se (under which it isregistered). It does have afilename, of course.

The main advantage of afile data sourceisthat it can be copied to any machine, so that
identical data sources can be used by several machines. A file data source can also be
shared by more than one application.

C.4.2 Creating DSNs: The ODBC Administrator

DSNs are generaly created by the user with a program called the ODBC Administrator.
This program is accessed by clicking on the ODBC icon in the Windows Control Panel.
The opening dialog box is shown in Figure C-2.

Figure C-2. The ODBC Administrator

386 =

FlyrHeart.com 4

TEAM FLY PRESENTS

£1 ODBC Data Source Administrotor

Lser DSN |System DSN | Fila DSN | Drivers | Tracing | Connedtion Poaling | sbout |

Lzer Data Sourcas: Add.. |
Dirmver |
= Access 70 Detabase ST ede=tab flnmn=t-=R 1T =5ty T b Bemove |
WS Acoess 97 Database Microsoft Access Drver (M mdb)
OLE_DB_Mwind_Jet Wicrozot Access Drer (* mdb) Configura... |

DJLE_DBE_MWind_SCIL S0L Server
wWisual FoxFro Database Microsoft Visual FoxPro Dnwver
“izual FoxPro Tebles Microsoft Yisual FoxFro Daver

indicated data provider. A User data sowrce i= only wisible o you, and can
only be used onthe curment maching.

QF, I Cancel | | Help |

Once the type of DSN (User, System, or File) is chosen and the user clicks the Add
button, the dialog box in Figure C-3 is displayed, prompting the user for the name of the
driver.

@ An ODEC User data source stores mformehon about how to connect io the

Figure C-3. Choose a driver

Create Hew Data Source

; Select a drver for which you want to set up & data source.

et Maime | Version | Conparny |

Al = 151171300 Mecrosoft Corporatfion |

: Microsoft dBase Driver (*.dbd) 151171300 Mecrosofl Corporafion |
Microsoft Excel Driver (*sds) 151171300 Microsofl Corporafion |
Microsoft FoxFro Drver (*cbi) 151171300 Mecrosofl Corporation |
Microsoft ODBC Drver for Oracle 200006325 Wcrosofl Corporation |
Mictosoft ODBC for Oracle 24573292700 Mecrosoft Cotporation |
Microsoft Paradox Driver (*.ob) 351171300 WMecrosofl Corporation |
Microsoft Text Driver [*tt *caw] 351171300 Mcrosoft Corporation —
Microsoft Visual FoxPrmo Drivar 600316700 hecrosoft Corporation *
S0L Serser 160003149 M crosofl Comoration T
i o]

| Finish I Cancel |

The ODBC Administrator then calls the driver so it can display any of its dialog boxes
that request specific information required by the driver to connect to the data source.
(Thus, these dialog boxes vary from driver to driver.) After the user enters the
information, the DSN datais stored in the appropriate place (the registry or aDSN file).

C.4.3 Example DSNs

It is helpful to take alook at afew examples of DSNs created using the ODBC
Administrator.

FlyrHeart.com

TEAM FLY PRESENTS

C.4.3.1 Excel system data sour ce

Hereis an example of the registry entries for a system DSN consisting of an Excel
workbook. The DSN name is ConnectExcel:

[HKEY_LOCAL_MACHINEN\SOFTWARE\ODBC\ODBC. INI\ConnectExcel]
"Driver"="C:\\WINNT\\System32\\odbcjt32.dl1"
"DBQ"'=""d:\\bkado\\connect.xlIs"

"DefaultDir"=""d:\\bkado"

"Description”="An example Excel data source"
"Driverld"=dword:00000316

"FIL"="excel 5.0;"

""ReadOnly''=hex:00

"SafeTransactions'=dword:00000000

“yipt="

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC. INI\ConnectExcel\Engines]

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC. INI\ConnectExcel\Engines\Excel]
“"ImplicitCommitSync'=""Yes"

""MaxScanRows"'=dword:00000008

"Threads'=dword:00000003

"UserCommitSync"'=""Yes""

"FirstRowHasNames''=hex:01

Asyou can see, the Driver value entry holds the name of the ODBC driver for Excel. The
DBQ value entry gives the name of the Excel workbook, which is the database in this
case. Each worksheet in the workbook is a database table. (For some reason, the value of
FIL isexcel 5.0, even though the version of Excel that | used hereis Excel 97.) The
Engines\Excel subkey reports, anong other things, whether the Excel tables
(worksheets) use the first row for field names.

The ODBC Administrator dialog boxes that created this data source are shown in Figures
C-4 and C-5.

C.4.3.2 Excdl file data source

The contents of an Excel file DSN are shown here:

[ODBC]
DRIVER=Microsoft Excel Driver (*.xls)
UlD=admin
UserCommitSync=Yes
Threads=3
SafeTransactions=0
ReadOnly=0
PageTimeout=5
MaxScanRows=8
MaxBufferSize=512
ImplicitCommitSync=Yes
FlL=excel 5.0
Driver1d=790

388 =

FlyrHeart.com 4

TEAM FLY PRESENTS

DefaultDir=D:\bkado
DBQ=D:\BkAccesslI\Connect.xls

Note that thisis not as extensive as the system DSN. For instance, it does not include the

FirstRowHasNames value.

Figure C-4. Creating an Excel data source, Part 1

‘-1 ODBC Data Source Administralor

User DSH System DS | File DS I Drwers] Tracing I Cannachon Pooling | Aboul]

System Data Sources!

MHarme I Diriver

Caonnectaccess hicrosoft Access Dmeer (= mdb)
| R hicrosoft Excel Driver (*xds)
Connect T exd hdicrosoft Teod Dirpeer (% b * cov)

Ad

Eemove

il

Configure..,

An ODEC System data source stores infarmation about how 1o connect to the
@ indicated data provider. & Systemn data source 15 visible 1o afl users an this

machime, including NT services

0K I Cancel |

| Help

Figure C-5. Creating an Excel data source, Part 2

ODEC Microsoft Excel Setup

Date Source Hame: |I2|:|nn eciExcel

Description: |An Example Excel Data Source
Database
“ersion |E1|:E| 97 lI

Wiorkbook: D:ABkACcessihConnechxls

Select Warkbook, |

r |

Biowes to Scan: E B Fiead Onky

(0%
Cancsl

Help

s

C.4.3.3 Text-system data sour ce

Hereis an example for atext data source. In this case, a"table" isatext file with

extension .txt, .csv, .tab, or .asc.

389

—_
FlyrHeart.com

TEAM FLY PRESENTS

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC. INI\ConnectText]
"Driver”="C:\\WINNT\\System32\\odbcjt32.dl1"
"DefaultDir"="D:\\bkado"

"Description”="A text data source"
"Driverld"=dword:0000001b

“"FIL"=""text;"
"SafeTransactions'=dword:00000000
“uiD=""""

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC . INI\ConnectText\Engines]

[HKEY_LOCAL_MACHINE\SOFTWAREN\ODBC\ODBC. INI\ConnectText\Engines\Text]
"Extensions''=""txt,csv, tab,asc"

“"ImplicitCommitSync'=""Yes"

"Threads"=dword:00000003

"UserCommitSync"'=""Yes""

Note that nowhere in the registry is there areference to the actual table (text file) or
tables for this data source. Thisinformation is placed in aspecia text file called
schema.ini that is created by the ODBC Administrator. Thefileis placed in the directory
DefaultDir. Here are the contents of the schema.ini file, which in this case actualy
describes two separate text connections:

[donna.txt]
ColNameHeader=True
Format=TabDelimited
MaxScanRows=25
CharacterSet=0EM
Col1=FIRSTNAME Char Width 255
Col2=LASTNAME Char Width 255

[textfile.csv]
ColNameHeader=False
Format=CSVDel imited
MaxScanRows=25
CharacterSet=0EM
Coll=F1 Char Width 255
Col2=F2 Char Width 255

Note that if new text "tables" are added to the connection, additional sections are created
in the schema.ini file. The ODBC dialog boxes that created the first connection are shown
in Figures C-6 and C-7.

Figure C-6. Text data-sour ce setup

390 =

FlyrHeart.com 4

TEAM FLY PRESENTS

ODHC Text Setup

Diate Source Mame |C|:|nnE|:1Texl Ik,
Description |4 sample text connection Cancel
Deatabase
Help
Liractony: dbkado
Seled Diractony...
[Use Current Direclony ‘:l

Files

Extensions List

Extansion: Add
™ oo -
“1ah asc
bt Remaove
I Default ™

Deafina Eormal... |

Figure C-7. Setup for the donna.txt sourcefile

Define Text Format

Tables Columnz

<defaults Guess
connect td LASTHAME

el bt
textfile. cav

¥ Column Hame Header

Eommat: |Tah Dialirmited ﬂ Diata Type |Char j

Eiows to Scan; 25

Characters; ANSI & OEM Wiclth: |?55 Fiemows
o) 4 | Cancal | Help |

C.4.4 Connecting to a Data Source

Mame: |FIF=STHAME Wadity

i

It is not my intention to go into the details of the ODBC API functions. However, | do
want to discuss the functions briefly that are used to establish a data-source connection,
since thiswill shed some light on the issues of DSNs and the infamous connection string.

391 .

FlyrHeart.com

TEAM FLY PRESENTS

The ODBC API has three functions for establishing data-source connections:
QL Connect, SQLDriver Connect, and SQLBrowseConnect. | will briefly discuss the first
two.

C.4.5 The SQL Connect Function

QL Connect is the simplest connection function. The parameters to this function consist
of aDSN and optionally auser ID and password. This function is the best choice when
the DSN contains all of the information required for the connection. Note that thisis not
always the case. For instance, suppose that the connection requires one password to log
on to a server and a second password to log onto a specific database on the server. The
first password can be included as an argument to SQLConnect, but the second password
must be stored in the DSN. If you don't want to store a password in a DSN, the DSN will
not be sufficient to make the connection, and so the SQLConnect function will not be

appropriate.

Since SQLConnect does not interact with the user (unlike the other connection functions),
it isthe correct choice when the programmer wants to write his own interaction code
(such as prompting the user for auser ID or passwords).

C.4.6 Connection Strings

A connection string is atext string that contains information used for establishing a
data-source connection. Note, however, that a connection string may or may not contain
all of the required information (just asa DSN may not be complete). A connection string
consists of a series of keyword/value pairs separated by semicolons. As you will see, a
connection string is used by SQLDriver Connect. Note that SQLConnect does not use a
connection string. Since DSNs serve essentially the same purpose, connection strings and
DSNs are basically just two sides of the same coin. (In fact, connection strings are built
from DSNs by ODBC.)

C.4.7 SQL Driver Connect

When the parameters to SQLConnect—a DSN, a password, and a user ID—are not
sufficient to make the desired connection, the SQLDriver Connect function may do the
job. There are two reasons to use SQLDriver Connect rather than SQLConnect. Firgt, if a
system DSN does not contain sufficent connection information, it is much simpler to
construct a custom connection string in code than it isto alter the registry entriesin a
DSN. (For afile DSN, thisissue is mitigated somewhat, but it is still easier to create a
connection string in code than to open and alter atext file.) Second, SQLDriver Connect is
capable of prompting the user for connection information by displaying ODBC dialog
boxes.

Toillustrate, if adriver requires two passwords (as discussed earlier), then a connection
string could contain these passwords (along with other data):

FlyrHeart.com 4

TEAM FLY PRESENTS

UlID=SRoman ; ServerPWD=SubRosa ; DBPWD=Secret;

Aswe mentioned, if a connection string is not complete, SQLDriver Connect may prompt
the user for additional connection information. For example, if the connection string is.

DSN=ConnectToWhatever ;

this might cause the driver to display a dialog box asking for the necessary user ID and
password.

In addition, if SQLDriver Connect receives an empty connection string, the Driver
Manager displays a dialog box prompting the user for the correct DSN.

C.5 Getting ODBC Driver Help

Y ou may be ableto get some limited help for an ODBC driver by starting the DSN
creation process through the ODBC Administrator and then clicking the Help button once
adriver-specific dialog box appears. This brings up the ODBC Microsoft Desktop
Database Drivers Help file. However, thisinformation is at best sketchy and often
misleading. For instance, under the topic Section C.4.6, the help file says that a connection
string includes the following keywords:

DSN
Name of the data source
DBQ
Name of the directory
DRIVERID
Aninteger ID for the driver
FIL
Filetype
However, as you will see in the upcoming examples, the DBQ value is the name of the
directory for the Microsoft Text Driver, but not the name of the actual workbook for the
Microsoft Excel Driver! The help file also does not give any indication as to when or

whether these keywords are always required. Nevertheless, the information contained in
the help file can be very useful.

393 =

FlyrHeart.com 4

TEAM FLY PRESENTS

C.6 Getting ODBC Information Using Visual Basic

It isclear that in order to use ODBC effectively, the programmer may need to know what
drivers and data sources exist on a particular computer. Thisinformation is accessible
through afew ODBC API cals.

The following code includes a procedure called ListODBCSources, which prints (to the
Immediate window) alist of all data sources on a system, and ListODBCDrivers, which
printsalist of ODBC drivers on the system. This code can be placed in an Access code
module:

Const SQL_NULL_HANDLE = 0

Const SQL_HANDLE_ENV = 1

Const SQL_FETCH_NEXT = 1

Const SQL_FETCH_FIRST = 2

Const SQL_SUCCESS = 0

Const SQL_ATTR_ODBC_VERSION = 200
Const SQL_OV_ODBC2 = 2

Const SQL_IS_INTEGER =

-6
Dim nRetCode As Long

Declare Function SQLDrivers Lib "odbc32.dll1" (Byval _
EnvironmentHandle As Long, ByVal Direction As Integer, _
ByVal DriverDescription As String, ByVal BufferLengthl As Integer, _
DescriptionLengthPtr As Integer, ByVal DriverAttributes As String, _
ByVal BufferLength2 As Integer, AttributeslLengthPtr As Integer) _
As Integer

" Note that pointers to numbers are passed as numbers by reference!
Declare Function SQLDataSources Lib "odbc32.dIl1" (Byval _
EnvironmentHandle As Long, ByVal Direction As Integer, _
ByvVal ServerName As String, ByVal BufferLengthl As Integer, _
NameLengthlPtr As Integer, ByVal Description As String, _
ByVal BufferLength2 As Integer, NameLength2Ptr As Integer) As Integer

Declare Function SQLFreeHandle Lib "odbc32.dll1" (Byval _
HandleType As Integer, ByVal Handle As Long) As Integer

Declare Function SQLAllocHandle Lib "odbc32.dIl1" (Byval _
HandleType As Integer, ByVal InputHandle As Long, _
OutputHandlePtr As Long) As Integer

Declare Function SQLSetEnvAttr Lib "odbc32.dll1" (Byval _
EnvironmentHandle As Long, ByVal EnvAttribute As Long, _
ByVal ValuePtr As Long, ByVal StringLength As Long) As Integer

Declare Function SQLDisconnect Lib "odbc32.dll1" (Byval _
ConnectionHandle As Long) As Integer

Public Function TrimO(sName As String) As String

" Keep left portion of string sName up to first O.

394 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

Dim x As Integer

X = InStr(sName, Chr$(0))

If x > 0 Then TrimO0 = Left$(sName, x - 1) Else TrimO = sName
End Function

Private Sub ListODBCSources()

" Prints a list of ODBC data soruces/drivers on system

Dim IHEnv As Long
Dim sServerName As String * 32
Dim sDescription As String * 128

Dim nServerNameLength As Integer
Dim nDescriptionLength As Integer

" Allocate an environment handle.
nRetCode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, IHEnv)

" Set ODBC behavior
nRetCode = SQLSetEnvAttr(IHEnv, SQL_ATTR_ODBC VERSION, _
SQL_OV_0DBC2, SQL_1S_INTEGER)

" Put First data source name in sServerName
nRetCode = SQLDataSources(lHEnv, SQL _FETCH_FIRST, sServerName, _

Len(sServerName), nServerNameLength, sDescription, _
Len(sDescription), nDescriptionLength)

Debug.Print "DATA SOURCE / DRIVER™
Do While nRetCode = SQL_SUCCESS

Debug.Print Left$(sServerName, _
nServerNameLength) & ' / " & TrimO(sDescription)

" Next data source
nRetCode = SQLDataSources(lHEnv, SQL FETCH NEXT, _
sServerName, Len(sServerName), nServerNamelLength,
sDescription, Len(sDescription), nDescriptionLength)
Loop
nRetCode = SQLFreeHandle(SQL_HANDLE ENV, IHEnv)
End Sub

Private Sub ListODBCDrivers()

" Prints a list of ODBC drivers on system

Dim IHEnv As Long
Dim sDriverDesc As String * 1024
Dim sDriverAttr As String * 1024

Dim sDriverAttributes As String
Dim nDriverDescLength As Integer

FlyrHeart.com 4

TEAM FLY PRESENTS

Dim nAttrLength As Integer
Dim x As Integer
Dim sAll As String

" Allocate an environment handle.
nRetCode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL HANDLE, IHEnv)

" Set ODBC behavior
nRetCode = SQLSetEnvAttr(IHEnv, SQL_ATTR_ODBC_VERSION, _
SQL_OV_0DBC2, SQL_IS_INTEGER)

" Get first driver

nRetCode = SQLDrivers(lHEnv, SQL_FETCH_FIRST, sDriverDesc, _
Len(sDriverDesc), nDriverDescLength, sDriverAttr, _
Len(sDriverAttr), nAttrLength)

sAIl = "
Do While nRetCode = SQL_SUCCESS

" Replace NULL separators with colons
sDriverAttributes = Left$(sDriverAttr, nAttrLength - 1)
Do
x = InStr(sDriverAttributes, Chr$(0))
IT x = 0 Then Exit Do
sDriverAttributes = Left$(sDriverAttributes, x - 1) & _
"o " & Mid$(sDriverAttributes, x + 1)
Loop

sAll = sAll & Left$(sDriverDesc, nDriverDescLength) & _
" / " & sDriverAttributes & vbCrLT

" Next data source

nRetCode = SQLDrivers(IHEnv, SQL_FETCH_NEXT, sDriverDesc, _
Len(sDriverDesc), nDriverDescLength, sDriverAttr, _
Len(sDriverAttr), nAttrLength)

Loop

Debug.-Print ""ODBC Drivers"
Debug.Print sAll

nRetCode = SQLFreeHandle(SQL_HANDLE ENV, IHEnv)

End Sub

The output produced by running ListODBCSources on my systemiis:

DATA SOURCE / DRIVER

MS Access 7.0 Database / Microsoft Access Driver (*.mdb)
Visual FoxPro Tables / Microsoft Visual FoxPro Driver
Visual FoxPro Database / Microsoft Visual FoxPro Driver
MS Access 97 Database / Microsoft Access Driver (*.mdb)
OLE_DB_NWind_Jet / Microsoft Access Driver (*.mdb)
OLE_DB_NWind_SQL / SQL Server

ConnectExcel / Microsoft Excel Driver (*.xls)
ConnectAccess / Microsoft Access Driver (*.mdb)

396 =

FlyrHeart.com 4

TEAM FLY PRESENTS

ConnectText / Microsoft Text Driver (*.txt; *.csv)

The output of ListODBCDrivers is:

ODBC Drivers

SQL Server / UsageCount=10 : SQLLevel=1 : FileUsage=0 :
DriverODBCVer=02.50 : ConnectFunctions=YYY : APlLevel=2 :
\Setup=sqlsrv32.dIl : .01= : s=YYN : DSNConverted=F : CPTimeout=60 :
FileExtns=Null

Microsoft ODBC Driver for Oracle / UsageCount=3 : SQLLevel=1 :
FileUsage=0 : DriverODBCVer=02.50 : ConnectFunctions=YYY : APlLevel=1

Microsoft Access Driver (*.mdb) / UsageCount=10 : APlLevel=1
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=2 :
FileExtns=*_.mdb : SQLLevel=0 : s=YYN

Microsoft dBase Driver (*.dbf) / UsageCount—6 : APlLevel=
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*_dbf,*.ndx,*.mdx - SQLLevel=0 : [g= : = : ;0= : g=
XXX

Microsoft FoxPro Driver (*.dbf) / UsageCount=6 : APlLevel=1 :
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*_.dbf,*.cdx,*.idx,*.ftp : SQLLevel=0

Microsoft Excel Driver (*.xIs) / UsageCount=4 : APlLevel=1 :
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*_.xls : SQLLevel=0

Microsoft Paradox Driver (*.db) / UsageCount=3 : APlLevel=1 :
ConnectFunctions YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*_db : SQLLeveI =0

Microsoft Text Driver (*.txt; *.csv) / UsageCount=4 : APlLevel=1
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*_,*_.asc,*.csv,*.tab,*.txt,*.csv : SQLLevel=0

Microsoft ODBC for Oracle / UsageCount=2 : SQLLevel=1 : FileUsage=0 :
DriverODBCVer=02.50 : ConnectFunctions=YYY : APlLevel=1 : CPTimeout=120

Microsoft Visual FoxPro Driver / UsageCount=2 : APlLevel=0 :
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*_.dbc,*.dbf : SQLLevel=0

Let us briefly describe the ODBC functions used in these procedures. Y ou can skip this
material if it does not interest you.

C.6.1 Preiminaries

Before using the ODBC functions we are interested in, we must first get a handle to the
ODBC environment. Obtaining an environment handle is done by calling
SQLAllocHandle, whose Visual Basic declaration is:

397 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

Declare Function SQLAllocHandle Lib "odbc32.dIl1" (
ByVal HandleType As Integer, _
ByVal InputHandle As Long, _
OutputHandlePtr As Long) As Integer

The actual call touseis:

nRetCode = SQLAIlocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, IHEnv)

Thereturn valueis an error code or O if no error has occured, in which case IHEnv will
receive the handle asa Long.

Once we have obtained an environment handle, we must set the environment attribute
known as ODBC behavior, using the SQLSetEnvAttr function, as follows:

" Set ODBC behavior
nRetCode = SQLSetEnvAttr(IHEnv, SQL_ATTR_ODBC VERSION, _
SQL_OV_ODBC2, SQL_IS_INTEGER)

Note the use of the IHEnv argument to identify the environment handle. This function call
sets the ODBC behavior to ODBC Version 2.x (SQL_OV_0DBC2). Actually, it does not
seem to matter whether we set the behavior to ODBC Version 2 or Version 3
(sQL_ov_oDBC3) aslong as we set it to one of these values!

C.6.2 Getting Driver Information

To get information about the installed ODBC drivers on a system, we use the SQLDrivers
function. The declaration for this functionis:

Declare Function SQLDriverConnect Lib "odbc32.dl1"™ (_
ByVal ConnectionHandle As Long, ByVal WindowHandle As Long, _
ByVal InConnectionString As String, ByVal StringlLengthl As Integer, _
ByVal OutConnectionString As String, ByVal BufferLength As Integer, _
StringLength2Ptr As Integer, ByVal DriverCompletion As Integer) As
Integer

The following is the complete procedure to list al drivers and their attributes in atext box.
(This procedure and the following ones are bare-bones, with no error checking. Fedl free
to augment them for your own use.)

Private Sub ListODBCDrivers()

Dim IHEnv As Long

Dim sDriverDesc As String * 1024
Dim sDriverAttr As String * 1024
Dim sDriverAttributes As String

Dim nDriverDescLength As Integer

Dim nAttrLength As Integer

Dim x As Integer

Dim sAll As String

398 =

FlyrHeart.com 4

TEAM FLY PRESENTS

txtDrivers =

" Allocate an environment handle.
nRetCode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, IHEnv)

" Set ODBC behavior
nRetCode = SQLSetEnvAttr(IHEnv, SQL_ATTR_ODBC_VERSION, _
SQL_OV_0DBC2, SQL_I1S_INTEGER)

" Get First driver

nRetCode = SQLDrivers(lIHEnv, SQL_FETCH FIRST, sDriverDesc, _
Len(sDriverDesc), nDriverDescLength, sDriverAttr, _
Len(sDriverAttr), nAttrLength)

sAll = "
Do While nRetCode = SQL_SUCCESS

" Replace NULL separators between atributes with colons
sDriverAttributes = Left$(sDriverAttr, nAttrLength - 1)
Do

X = InStr(sDriverAttributes, Chr$(0))

IT x = 0 Then Exit Do

sDriverAttributes = Left$(sDriverAttributes, x - 1) _

& " " & Mid$(sDriverAttributes, x + 1)

Loop

" Save it
sAll = sAll & Left$(sDriverDesc, nDriverDescLength) _
& "™ / " & sDriverAttributes & vbCrLT
" Next data source
nRetCode = SQLDrivers(IHEnv, SQL_FETCH_NEXT, sDriverDesc, _
Len(sDriverDesc), nDriverDescLength, sDriverAttr, _
Len(sDriverAttr), nAttrLength)
Loop
txtDrivers = sAll

nRetCode = SQLFreeHandle(SQL_HANDLE ENV, IHEnv)

End Sub

Some of the driver attributes are worth discussing briefly:

DriverODBCVersion
Gives the version of ODBC that the driver supports. Note that even though the
drivers on my system are Version 3.5 or later, their ODBC Versions are only 2.5.

Thus, they support only ODBC 2.5.

SQLLevel

399 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Describes, in general terms, the level of compliance of the driver to SQL. Level O
isbasic SQL-92 compliance. Level 1isFIPS127-2 Transitional (whatever that is);
Level 2is SQL-92 Intermediate; Level 3is SQL-92 Full.

ConnectionFunctions

Indicates which of the three connection-related functions (SQLConnect,
SQLDriverConnect, Or SQLBrowseConnect) are supported by thisdriver. The
value has the form XXX, where X isY or N. Thus, avalue of YYN means that
the driver supports SQLConnect and SQLDriverConnect but not
SQLBrowseConnect.

FileExtns

For file-based drivers (that access the physical data directly), indicates which
filename extensions the driver recogni zes.

FileUsage

Indicates how afile-based driver views the data in the physical database. A value
of O indicates that the driver is not file-based. A value of 1 indicatesthat a
file-based driver treats data-source files as tables. A value of 2 indicates that the
driver treats the datafiles as databases.

C.6.3 Getting Data Sour ces

The process of getting alist of all data sourcesis quite similar. It uses the function
L DataSources, whose syntax is similar to SQLDrivers. The Visual Basic declaration
is:

Declare Function SQLDataSources Lib "odbc32.dIl1" (Byval _
EnvironmentHandle As Long, ByVal Direction As Integer, _
ByVal ServerName As String, ByVal BufferLengthl As Integer, _
NameLengthlPtr As Integer, ByVal Description As String, _
ByVal BufferLength2 As Integer, NameLength2Ptr As Integer) As Integer

The complete codeis:

Private Sub ListODBCSources()

Dim IHEnv As Long
Dim sServerName As String * 32
Dim sDescription As String * 128

Dim nServerNameLength As Integer
Dim nDescriptionLength As Integer

IstDataSources.Clear

" Allocate an environment handle.

400 o

FlyrHeart.com 4

TEAM FLY PRESENTS

nRetCode = SQLAIlocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, IHEnv)

" Set ODBC behavior

nRetCode = SQLSetEnvAttr(IHEnv, SQL_ATTR_ODBC_VERSION, _
SQL_OV_ODBC2, SQL_IS_INTEGER)

" Put first data source name in sServerName

nRetCode = SQLDataSources(lHEnv, SQL_FETCH_FIRST, sServerName, _
Len(sServerName), nServerNameLength, sDescription, _
Len(sDescription), nDescriptionLength)

IstDataSources.Addltem ""DATA SOURCE / DRIVER"
Do While nRetCode = SQL_SUCCESS

IstDataSources.Addltem Left$(sServerName, _
nServerNameLength) & " / " & TrimO(sDescription)

" Next data source

nRetCode = SQLDataSources(lHEnv, SQL_FETCH_NEXT, _
sServerName, Len(sServerName), nServerNamelLength,
sDescription, Len(sDescription), nDescriptionLength)

Loop

nRetCode = SQLFreeHandle(SQL_HANDLE ENV, IHEnv)

End Sub

401

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Appendix D. Obtaining or Creating the Sample Database

The sampleflat file "database,” as well as the Access database and the sample programs,
are all available for free download from the O'Relilly Internet site. Y ou can choose from
any of the following methods to download the data that accompanies the book:

Via the World Wide Web

The samplefiles are available from
ftp://ftp.ora.com/published/oreill y/windows/access.des gn2/CodeA ccess3.zip.

Via an ftp client program

Y ou can use an ftp client such asWS_FTP32 to ftp to ftp.ora.com, change to the
directory published/oreilly/windows/access.design3/, and get the file example.zip.

In each case, the sample files are stored in a single file compressed using the PKZip file
format. If you don't own a utility program capable of decompressing the software (or if
you're still doing these things from the command line), | highly recommend that you
download an evaluation copy of the shareware utility WinZip, from Nico Mak
Computing, Inc.; it isavailable at http://www.winzip.com.

EXAMPLE.ZIP contains LIBRARY_FLAT.DOC (the flat database created with Microsoft
Word), as well as LIBRARY95.MDB (the sample Access database for Access for Office
95), and LIBRARY97.MBD (the sample Access database for Access for Office 97). (The
two versions perform optimally when using different file formats.) The .mbd file itself
contains the following:

e Thefour tables (BOOKS, AUTHORS, PUBLISHERS, and BOOK/AUTHOR)
and their primary indexes

e A code module, Examples, that contains all of the example programs from the
book

It does not, however, contain definitions of relationships, nor doesit include any query
definitions. The book assumes that you'll be creating these from scratch.

If you don't have access to the Internet or to an email account from a service provider
with agateway to the Internet, it is quite easy to create the sample files yourself. In the
remainder of this section, we'll guide you through the steps required to create each of the
tablesin the Library database, LIBRARY.MDB.

D.1 Creating the Database

Thefirst step isto create the database itself by doing the following:

402 s

FlyrHeart.com 4

TEAM FLY PRESENTS

ftp://ftp.ora.com/published/oreilly/windows/access.design2/CodeAccess3.zip
http://www.winzip.com/

Lo

Start Microsoft Access.
2. When the Microsoft Access dialog box appears over the main Microsoft Access

window, as shown in Figure D-1, select the Blank Database button, and Click OK.
Access opens the File New Database dialog box.

Figure D-1. The Microsoft Access dialog box

Microsalt Access EE
Create a Mew Databate Using

&, ‘ Blank Database

%\.‘ " Datsbase \wizend

é? = {0pen an Exizting D atabasef

Chuancofataieslvconlects mdb
Chbockshacces: dezignhbooke. mdo
Chwincghwbbest\compos mdb

ok, | Cancsl |

3. Navigate to the directory in which you'd like to save the databasefile. If the
directory doesn't exist, you can create it by clicking on the Create New Folder
button (the third button from the left on the toolbar); you should then navigate to

the newly created directory. In the File name text box, typein library.mdb.
Then click the Create button.

Access creates the new database and opens the Library Database window, which should
resemble Figure D-2. Thisis a completely empty database; it doesn't even contain any

tables that are capable of holding data. Our next step is to define each of those tables and
enter some data into them.

Figure D-2. The Library Database window

gl library - Databaze [_ [O] =]
E3 Tables | B Qussies I 8l Forms I B Aepols I B Macroz | 3 Modues |
o
ol
M eve
403 —~

FlyrHeart.com

TEAM FLY PRESENTS

D.2 Creating the BOOKS Table
To define the design of the BOOK S table, perform the following steps:
1. Click the New button in the Library Database window. Access opens the New
Table dialog box, which contains a listbox with a variety of options. Select

Design View, and click OK. Access opens the Tablel Table window, as shownin
Figure D-3, which alows you to define the fields in a new database table.

Figure D-3. The Tablel Table window

Bf Tahlel : Tahle | (O] x|
Field Mame Diata Type D ezcrphon -
3]
=
Field Properties
General] Lookup |

A held name can be up

to 64 characters long.

inchading spaces. Press

F1 for hielp om field
Fuliries

2. Enter the information shown in Table D-1 into the Field Name and Data Type
columns of the Tablel Table window. Note that you can select the data type from
adrop-down listbox.

Table D-1. Fields of the BOOK Stable
Field Name Data Type
ISBN Text
Title Text
PublD Text
}Price |Currency

3. When you select afield, its properties are displayed in the lower portion of the
dialog box. Next, enter the individual field properties shown in Table D-2 in the
Field Properties portion of the dialog box. Note that you don't have to add or
modify any properties of the Price field.

Table D-2. Nondefault properties of the BOOK Stable
Field Name | Property | Value

404 .

FlyrHeart.com

TEAM FLY PRESENTS

ISBN Indexed Y es (No Duplicates)
Title Field Size 200

Indexed Y es (Duplicates OK)
PublD Indexed Y es (Duplicates OK)
}Price |F0rmat |Currency

4. Designate ISBN asthe table's primary key. To do this, either click on the Primary
Key button on the toolbar (the 11th button from the left of the toolbar, and
immediately to the left of the Undo button), or right-click on the row selector (the
shaded gray field to the right of the ISBN's Field Name column) and select
Primary Key from the pop-up menu.

5. Savethe completed table design. Either click the Save button on the toolbar (the
second button from the left), or select the Save option from the File menu. When
Access opens the Save As dialog box, type BOOKS into the Table Name text box,

and click OK.
6. Closethe BOOKStablein Design View.

Y ou're now ready to begin entering datainto the table. Select the BOOKStable in the
database window, and click on the Open button. Access opens the BOOKS table in
Datasheet View, which allows you to input information into the database. Enter the data
shown in Table D-3. When you've finished, close the table. Note that you don't haveto
save the data explicitly that you've entered into the table; Access automatically takes care

of writing the records that you've entered to disk.

Table D-3. Data for the BOOK Stable
| ISBN | Title | PublD | Price
|0-555-55555-9 'Macbeth 2 112.00
0-91-335678-7 Faerie Queene 1 15.00
0-99-999999-9 Emma 1 20.00
0-91-045678-5 Hamlet 2 20.00
0-55-123456-9 Main Street 3 22.95
1-22-233700-0 Visual Basic 1 25.00
0-12-333433-3 On Liberty 1 25.00
0-103-45678-9 lliad 1 25.00
1-1111-1111-1 C++ 1 29.95
0-321-32132-1 Balloon 3 34.00
0-123-45678-0 Ulysses 2 34.00
0-99-777777-7 King Lear 2 49.00
0-12-345678-9 Jane Eyre 3 49.00
0-11-345678-9 'Moby-Dick 3 49.00
405 =-

FlyrHeart.com

TEAM FLY PRESENTS

D.3 Creating the AUTHORS Table

To create the AUTHORS table, follow the same basic steps listed in Section D.2. The field
definitions for the AUTHORS table are shown in Table D-4.

Table D-4. Fields of the AUTHORS table

| Field Name | Data Type
AulD Text
AuName Text
]AuPhone |Text

Thereisonly asingle property that you need to set, as shown in Table D-5.

Table D-5. Single property to be set in the AUTHORS table

Field Name:

AulD

Property:

Indexed

|Va| ue:

|Y05(N0 Duplicates)

When you've finished creating the fields and assigning their attributes, define AulD as
the table's primary key. Then save the table, assigning it the name AUTHORS.

Next, enter the author datainto the table; it is shown in Table D-6.

Table D-6. Datafor the AUTHORS table

AulD AuName AuPhone
1 Austen 111-111-1111
12 Grumpy 321-321-0000
3 Homer 333-333-3333
10 Jones 123-333-3333
6 Joyce 666-666-6666
2 Meville 222-222-2222
8 Mill 888-888-8888
4 Roman 444-444-4444
5 Shakespeare 555-555-5555
13 Sleepy 321-321-1111
9 'Smith 123-222-2222
11 Snoopy 321-321-2222
7 Spenser 7777777777

406

) = -
FlyrHeart.com

TEAM FLY PRESENTS

D.4 Creating the PUBLISHERS Table

Once again, follow the same basic steps listed in Section D.2 to create the PUBLISHERS
table. Field definitions for the PUBLISHERS table are shown in Table D-7.

Table D-7. Fields of the PUBLISHERS table

| Field Name | Data Type
PublD Text
PubName Text
IPubPhone |Text

Once again, there is only a single property that you need to set, as shown in Table D-8.

Table D-8. Single property to set for the PUBLISHERS table
Field Name: PublD

Property:
|Va| ue:

Indexed
|Y05(N0 Duplicates)

Designate PublD asthe primary key, and save the table as PUBLISHERS.

Once you've finished creating the PUBLISHERS table, you can enter datainto it. The

PUBLISHERS table contains records for only three publishers; these are shown in Table
D-9.

Table D-9. Data for the PUBLISHERS table
PubName | PubPhone

| PubID |

1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 'Small House 714-000-0000

D.5 Creating the BOOK/AUTHOR Table

The BOOK/AUTHOR tableisthe final table needed for our examples. Once again, create
it following the same basic steps described earlier in Section D.2. It consists of only two
fields, as shown in Table D-10. Once you've entered the field names and data types into
the table definition, change the two properties listed in Table D-11, and save the table as
BOOK/AUTHOR. When you save the table, Access will open the dialog box shownin

407

—_
FlyrHeart.com

TEAM FLY PRESENTS

Figure D-4. The table does not have a primary key, so click on the No button; Access will
save the table without designating a primary key.

Table D-10. Fields of the BOOK/AUTHOR table

Field Name Data Type
ISBN text
AulD text
Table D-11. Nondefault properties of the BOOK/AUTHOR table
Field Name Property Value
ISBN Indexed Y es (Duplicates OK)
AulD Indexed Y es (Duplicates OK)

! E There iz no primary key defired.

Although a pernary key sn't requined. it's highly recommended. 4 table
miust have a pimary key fol pou o define a redalionstep bebween this

table and other tables » the databaze.

Do pors weant to creste a prmany key row?

FigureD-4. The" no primary key" warning dialog box

Microzolt Accexx

Once you've created the BOOK/AUTHOR table, you can enter the data shown in Table

D-12 into it.

Table D-12. Data for the BOOK/AUTHOR table

ISBN

AulD

0-103-45678-9

0-11-345678-9

0-12-333433-3

0-12-345678-9

0-123-45678-0

0-321-32132-1

0-321-32132-1

0-321-32132-1

0-55-123456-9

0-55-123456-9

0-555-55555-9

0-91-045678-5

0-91-335678-7

0-99-777777-7

408

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

0-99-999999-9 1

1-1111-1111-1 4

1-22-233700-0 4

Once you've finished this data entry, you'll still have to define the relationships among
the tables. Thisis discussed in detail in Section 3.4.1, in Chapter 3. Once this detail is taken
care of, you can use the tablesto create the queries and to run the programs discussed in
the text of the book.

D.6 Backing Up the Database

Once you've created the BOOK S database, it's a good idea to make a backup copy of
each of the tables. That way, you can feel free to make modificationsto individual tables,
to try out the book's sample programs, and generally to experiment with the data, the
tables, and the database, without having to be concerned that you'll corrupt the data. Y ou
can make a backup copy by following this procedure for each of the four tables of the
BOOKS database:

1
2.

3.

Highlight the table you'd like to back up.

Select the Save As option from the File menu. Access opens the Save As... dialog
box shown in Figure D-5.

Select the Within the current database button. Access will suggest a filename for
your backup copy, such as Copy of BOOKS as shown in Figure D-5.

Click the OK button to create the backup copy. It will appear in the Tables
property sheet of the Database dialog box.

Figure D-5. The Save As... dialog box
Save As.. EHE

Save Table 'BOOKS"
" Toan grtemal File or Database ol

O Wikhin the curent database as

New Mame: [SEOERENASS

If the datain any of your tables does become lost or corrupted, you can restore the table
asfollows:

1.
2.

3.

Highlight the backup copy of the table in the database window.

Select the Save As option from the File menu. Access again opens the Save As...
dialog box shown in Figure D-5.

Select the Within the current database button.

Replace Access' suggested filename (Copy of Copy of...) with the name of the
original table, and click OK.

FlyHeart.com g4

TEAM FLY PRESENTS

5. Access displays a message warning that the name you entered has already been
assigned to another table and asking whether you want to replaceit. Click OK.

3
i

Before replacing any of the tablesthat participate in relationships
with other tables, you'll have to delete that table's relationships. To
4+ do this, select the Relationships option from the Tools menu. When
Access opens the Relationships window, right click on theline
depicting each relationship in which a table participates, then select
the Delete option from the pop-up menu.

+ 0 3
|

rdl g

D.7 Entering and Running the Sample Programs

If you've downloaded the samplefile from O'Rellly & Associates, your database already
includes a code module, Examples, that contains all of the book's sample VBA programs.
If not, you can create a code module yourself and enter programsinto it. To create the
code module:

1. Select the Modules tab when the Library database is open in the Database
window.

2. Click on the New button to create a new code module.

3. When Access opens a new code module (which it will usually name Modulel,
unless your database already contains code modules saved with their default
names), click on the Save button on the toolbar.

4. When Access displays the Save As dialog box, enter the name of your new code
module, Examples, in the Module Name text box, and click OK.

Y ou can then begin entering code for each of the program examples. To do this, for each
code example:

1. Select the Procedure option from the Insert menu.

2. When Access opens the Insert Procedure dialog box, enter the name of the
procedure in the Name text box. Since al of the programs listed in the book are
subroutines, you don't have to worry about the dialog box's other options. Just
click OK.

To run a program:

1. Select the Modules tab in the Database window, and open the Examples module.

2. Select the Debug Window option from the View menu.

3. When Access opens the Debug window, simply type in the name of the program
you'd liketo run.

410 g N

FlyrHeart.com 4

TEAM FLY PRESENTS

Appendix E. Suggestions for Further Reading
Hereisabrief list of some books on database theory:

1. Atzeni, P.,and V. De Antonellis. Relational Database Theory. Benjamin
Cummings: 1993. (A highly theoretical and mathematical treatment of the
subject.)

2. Codd, E. F. The Relational Model for Database Management: Version 2.
Addison-Wesley: 1990. (The classic exposition of the relational model by one of
its creators and chief proponents.)

3. Date, C. J. An Introduction to Database Systems, 6th Edition. Addison-Wesley:
1995. (A lessformal and highly readable book.)

4. Simovici, D., and R. Tenney. Relational Database Systems. Academic Press:
1995. (Thisisavery mathematical treatment of the subject. Much better written
than the Atzeni and De Antonellis book.)

5. Ullman, J. Principles of Database and Knowledge-Base Systems, Volume 1.
Classical Database Systems. Computer Science Press: 1988. (A book with a
somewhat different point of view. Not as mathematical as Atzeni or Simovici, but
more mathematical than Date.)

411 o

FlyrHeart.com 4

TEAM FLY PRESENTS

Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Access Database Design and Programming is a Southern
tamandua (Tamandua tetradactyla), one of three species comprising the anteater family.
The Southern tamandua is also known as the collared anteater (although vested anteater
might be a better name). Tamanduas live in the tropical rainforest. They spend much of
their timein the forest canopy, feasting on ants and termites; they often move awkwardly
when they descend to the ground. Tamanduas use their powerful forearms for
self-defense. When attacked, they will back up against arock or cling to atree branch
with their hind legs, while fighting and clawing with their forearms. Amazonian Indians
sometimes use tamanduas to clear their homes of ants and termites. Despite this useful
trait, the tamanduais an endangered species. They are often killed for their tails, the
tendons of which are used to make ropes.

Jeffrey Holcomb was the production editor and proofreader for Access Database Design
and Programming. Clairemarie Fisher O'Leary and Tatiana Apandi Diaz were the
copyeditors. Rachel Wheeler, Matt Hutchinson, and Claire Cloutier provided quality
control. Brenda Miller wrote the index.

Edie Freedman designed the cover of this book. The cover image is a 19th-century
engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout
with Quark TMXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. Mihagla Maier converted the files from
Microsoft Word to FrameMaker 5.5.6 using tools created by Mike Sierra. The text font is
Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Clairemarie Fisher O'Leary.

412 =

FlyrHeart.com 4

TEAM FLY PRESENTS

Annotation

Database > Access Database Design & Programming, 3rd Edition

View Notes

B.3 Step 3

Date:
Subject:
Type:
From:
Email:

Comment:

8/8/2002 - 5:17:06 AM Eastern Time
SQL to achieve this...

Public Annotation

jim

library@waiariki.ac.nz

select distinct SName from SupplierType where Sname not in (select SName from
(select s.SName & wood.type as wxy, s.SName, wood.Type from SupplierType s,
wood) where wxy not in (select s.SName & s.type from SupplierType s))

B.1 Step 1

Date:
Subject:
Type:
From:
Email:

Comment:

8/8/2002 - 5:12:37 AM Eastern Time
Error in table B.4 R

Public Annotation

jim

library@waiariki.ac.nz

Note that Table B.4 R has an error, in that there should be three entries for Fred,
one each for mahogany, poplar & red oak. jim

5.3 Details of the Relational Algebra

Date:
Subject:
Type:
From:

Email:

6/16/2002 - 4:15:54 PM Eastern Time
Wrong Font

Public Annotation

Drew Einhorn

drew.einhorn@starband.net

413

—

FlyrHeart.com

TEAM FLY PRESENTS

mailto:library@waiariki.ac.nz
mailto:library@waiariki.ac.nz
mailto:drew.einhorn@starband.net

Comment: Just below table 5-5, the relational algebra appears to have drifted into the Symbol
font (or some other font with the Greek alphabet), which makes it hard to read.

414 ——

FlyrHeart.com

TEAM FLY PRESENTS

	sample.pdf
	sterling.com
	Welcome to Sterling Software

	Access Database Design & Programming 3e.pdf
	Table of Content
	Preface
	Preface to the Third Edition
	Preface to the Second Edition
	The Book's Audience
	The Sample Code
	Organization of This Book
	Part I
	Part II
	Part III
	Part IV
	Part V
	Part VI
	Part VII
	Part VIII

	Conventions in This Book
	Obtaining Updated Information
	Request for Comments
	Acknowledgments

	Part I: Database Design
	Chapter 1. Introduction
	1.1 Database Design
	
	Table?1-1. The LIBRARY_FLAT sample database

	1.1.1 Why Use a Relational-Database Design?
	1.1.1.1 Redundancy
	Table?1-2. The BOOKS table from the LIBRARY_FLAT database
	Table?1-3. The AUTHORS table from the LIBRARY_FLAT database
	Table?1-4. The PUBLISHERS table from the LIBRARY_FLAT database
	Table?1-5. The BOOK/AUTHOR table from the LIBRARY_FLAT database
	1.1.1.2 Multiple-value problems
	1.1.1.3 Update anomalies
	1.1.1.4 Insertion anomalies
	1.1.1.5 Deletion anomalies

	1.1.2 Complications of Relational-Database Design
	1.1.2.1 Avoiding data loss
	1.1.2.2 Maintaining relational integrity
	1.1.2.3 Creating views

	1.1.3 Summary

	1.2 Database Programming

	Chapter 2. The Entity-Relationship Model of a Database
	2.1 What Is a Database?
	2.2 Entities and Their Attributes
	
	Table?2-1. The BOOKS table from the LIBRARY database

	2.3 Keys and Superkeys
	2.4 Relationships Between Entities
	
	Figure 2-1. The LIBRARY entity-relationship diagram

	2.4.1 Types of Relationships

	Chapter 3. Implementing Entity-Relationship Models: Relational Databases
	3.1 Implementing Entities
	3.1.1 Implementing Entity Classes—Table Schemes
	3.1.2 Implementing Entity Sets—Tables
	Table?3-1. The BOOKS table from the LIBRARY database

	3.2 A Short Glossary
	3.3 Implementing the Relationships in a Relational Database
	
	Figure 3-1. The LIBRARY entity-relationship diagram

	3.3.1 Implementing a One-to-Many Relationship—For
	Table?3-2. The BOOKS table sorted by PubID
	Figure 3-2. A one-to-many relationship shown in tables S and T

	3.3.2 Implementing a One-to-One Relationship
	3.3.3 Implementing a Many-to-Many Relationship—Ne
	Figure 3-3. A many-to-many relationship in the BOOK/AUTHOR table

	3.3.4 Referential Integrity
	3.3.5 Cascading Updates and Cascading Deletions

	3.4 The LIBRARY Relational Database
	
	Table?3-3. The AUTHORS table from the Access LIBRARY database
	Table?3-4. The BOOK/AUTHOR table from the LIBRARY database
	Table?3-5. The BOOKS table from the LIBRARY database
	Table?3-6. The PUBLISHERS Table from the LIBRARY Database

	3.4.1 Setting Up the Relationships in Access
	Figure 3-4. The Relationships view of the BOOKS table
	Figure 3-5. Relationship between the PUBLISHERS and BOOKS tables
	Figure 3-6. Error message due to dangling reference
	Figure 3-7. Relationships view showing various table relationships

	3.5 Index Files
	
	Figure 3-8. Index file between City and Publisher
	Figure 3-9. Index file between City, State, and Publisher

	3.5.1 Example
	Figure 3-10. Index view of the BOOKS table

	3.6 NULL Values

	Chapter 4. Database Design Principles
	4.1 Redundancy
	
	Table?4-1. A table with two informational attributes
	Table?4-2. A table with blank cells to illustrate attribute dependency

	4.2 Normal Forms
	4.3 First Normal Form
	4.4 Functional Dependencies
	4.5 Second Normal Form
	4.6 Third Normal Form
	
	Table?4-3. Redundant data in a table

	4.7 Boyce-Codd Normal Form
	
	Table?4-4. A table with dependencies

	4.8 Normalization
	
	Table?4-5. A table with redundant data
	Table?4-6. First table derived from Table 4-5 to eliminate redundancy
	Table?4-7. Second table derived from Table 4-5 to eliminate redundancy

	4.8.1 Decomposition
	Table?4-8. A table with two identical author names
	Table?4-9. Partial decomposition of Table 4-8
	Table?4-10. Partial decomposition of Table 4-8
	Table?4-11. An incorrect reconstruction of Table 4-8
	Table?4-12. Table example to show further decomposition
	Table?4-13. Partial decomposition of Table 4-12
	Table?4-14. Partial decomposition of Table 4-12
	Table?4-15. Decomposition example changing price
	Table?4-16. Looking at data by combining Table 4-12 through Table 4-15

	Part II: Database Queries
	Chapter 5. Query Languages and the Relational Algebra
	5.1 Query Languages
	
	Table?5-1. Books published by Big House costing over $20.00

	5.2 Relational Algebra and Relational Calculus
	
	Table?5-2. The BOOKS table from the LIBRARY database
	Table?5-3. The PUBLISHERS table from the LIBRARY database
	Table?5-4. Publishers with books under $20.00

	5.3 Details of the Relational Algebra
	
	Figure 5-1. The Access Query Design window

	5.3.1 Renaming
	Table?5-5. The BOOKS table with original fields
	Table?5-6. The BOOKS table with renamed fields

	5.3.2 Union
	Figure 5-2. The Access Paste Table As dialog box
	Figure 5-3. The Access Append dialog box
	Figure 5-4. The Access Append Query window

	5.3.3 Intersection
	5.3.4 Difference
	Figure 5-5. The Access Join Properties dialog box
	Figure 5-6. The Access Select Query design window showing a join between two properties
	Figure 5-7. The Access Select Query window showing the intersection of two tables

	5.3.5 Cartesian Product
	Figure 5-8. The Access Query window illustrating a Cartesian product of two tables

	5.3.6 Projection
	Figure 5-9. Creating a projection using the BOOKS table

	5.3.7 Selection
	Table?5-7. The BOOKS table in the LIBRARY databse
	Table?5-8. The resulting table
	Figure 5-10. Creating a selection in the Query Design window

	5.3.8 Joins
	5.3.8.1 Equi-join
	5.3.8.2 Natural join
	Table?5-9. The BOOKS table
	Table?5-10. The PUBLISHERS table
	Table?5-11. The PUBLISHERS nat-join BOOKS table
	5.3.8.3 �-Join

	5.3.9 Outer Joins
	5.3.10 Implementing Joins in Microsoft Access
	Table?5-12. The S table
	Table?5-13. The T table
	Figure 5-11. Establishing associations in the Access Query Design window
	Table?5-14. An equi-join of tables S and T
	Figure 5-12. The SQL statement generated from Figure 5-11
	Table?5-15. Result table from a �-join
	Figure 5-13. Access error for attempting to create unequal �-joins
	Figure 5-14. The Access dialog box for joining properties
	Figure 5-15. The SQL statement illustrating a left outer join
	Table?5-16. A left outer join

	5.3.11 Semi-Joins
	Table?5-17. The PUBLISHERS (new) table
	Table?5-18. Result table from an inner join
	Table?5-19. Result table from a semi-join

	5.3.12 Other Relational Algebra Operations
	5.3.13 Optimization

	Chapter 6. Access Structured Query Language (SQL)
	6.1 Introduction to Access SQL
	6.2 Access Query Design
	
	Figure 6-1. The Access Query Design View
	Figure 6-2. The Access SQL View of Figure 6-1

	6.3 Access Query Types
	
	Table?6-1. A CROSSTAB Query

	6.4 Why Use SQL?
	6.5 Access SQL
	6.5.1 Syntax Conventions
	6.5.1.1 Notes

	6.6 The DDL Component of Access SQL
	6.6.1 The CREATE TABLE Statement
	6.6.1.1 Column definition
	Table?6-2. Access SQL data types
	6.6.1.2 Constraints
	6.6.1.3 Notes

	6.6.2 The ALTER TABLE Statement
	6.6.2.1 Notes

	6.6.3 The CREATE INDEX Statement
	6.6.3.1 Note

	6.6.4 The DROP Statement
	6.6.4.1 Note

	6.7 The DML Component of Access SQL
	6.7.1 Updatable Queries
	6.7.2 Joins
	6.7.2.1 Inner joins
	6.7.2.2 Outer joins
	6.7.2.3 Nested joins
	Figure 6-3. A portion of the Relationships window in Access
	6.7.2.4 Self-joins
	6.7.2.5 Notes

	6.7.3 The SELECT Statement
	6.7.3.1 Predicate
	Table?6-3. The tblALL table
	Table?6-4. The tblDISTINCT table
	Table?6-5. The PUBLISHERS (altered) table
	Table?6-6. The tblDISTINCTROW table
	Table?6-7. Publishers with at least one book in BOOKS
	Table?6-8. The tblDISTINCT table
	Table?6-9. The tblDISTINCTROW table
	6.7.3.2 ReturnColumnDescription
	Table?6-10. The ISBN-PUB table
	6.7.3.3 FROM TableExpression
	6.7.3.4 WHERE RowCondition
	6.7.3.5 GROUP BY GroupByCriteria
	Table?6-11. Each publisher's least expensive book
	6.7.3.6 HAVING GroupCriteria
	Table?6-12. Each publisher's cheapest book under $20.00
	6.7.3.7 ORDER BY OrderByCriteria

	6.7.4 The UNION Statement
	6.7.4.1 Example
	6.7.4.2 Notes

	6.7.5 The UPDATE Statement
	6.7.5.1 Example

	6.7.6 The DELETE Statement
	6.7.7 The INSERT INTO Statement
	6.7.7.1 Note

	6.7.8 The SELECT...INTO Statement
	6.7.8.1 Notes

	6.7.9 TRANSFORM
	Table?6-13. Book prices by publisher
	Table?6-14. A cross-tabulation of book prices by publisher
	Table?6-15. Book prices and discount by publisher
	Table?6-16. Aggregating results in a crosstab table
	Table?6-17. Omitting columns from a crosstab table

	6.7.10 Subqueries
	6.7.10.1 Syntax 1
	6.7.10.2 Syntax 2
	6.7.10.3 Syntax 3
	6.7.10.4 Notes

	6.7.11 Parameters

	Part III: Database Architecture
	Chapter 7. Database System Architecture
	7.1 Why Program?
	7.2 Database Systems
	
	Figure 7-1. The three-level structure of a database system

	7.3 Database Management Systems
	7.4 The Jet DBMS
	
	Figure 7-2. The relationships and structure of the Jet Database Engine (DBMS)

	7.5 Data Definition Languages
	7.5.1 The Jet Data Definition Language
	Example 7-1. Use of the Jet data definition language

	7.6 Data Manipulation Languages
	7.6.1 The Jet Data Manipulation Language
	Example 7-2. Jet DML code altering the BOOKS table

	7.7 Host Languages
	7.8 The Client/Server Architecture
	
	Figure 7-3. The client/server mode example
	Figure 7-4. The distributed client/server model example
	Figure 7-5. The remote database example

	Part IV: Visual Basic for Applications
	Chapter 8. The Visual Basic Editor, Part I
	
	
	Figure 8-1. The Access VBA IDE

	8.1 The Project Window
	
	Figure 8-2. The Project Explorer

	8.1.1 Project Names
	8.1.2 Project Contents
	8.1.2.1 Standard modules
	8.1.2.2 Class modules

	8.2 The Properties Window
	
	Figure 8-3. The Properties window

	8.3 The Code Window
	8.3.1 Procedure and Full-Module Views
	8.3.2 The Object and Procedure Listboxes
	Figure 8-4. The events for a Workbook object

	8.4 The Immediate Window
	
	Figure 8-5. The Immediate window

	8.5 Arranging Windows
	
	Figure 8-6. A split-screen approach

	8.5.1 Docking
	Figure 8-7. The Docking options

	Chapter 9. The Visual Basic Editor, Part II
	9.1 Navigating the IDE
	9.1.1 General Navigation
	9.1.1.1 Navigating the code window at design time
	9.1.1.2 Tracing code
	9.1.1.3 Bookmarks

	9.2 Getting Help
	9.3 Creating a Procedure
	
	Figure 9-1. The Add Procedure dialog box

	9.4 Run Mode, Break Mode, and Design Mode
	
	Figure 9-2. An error message

	9.5 Errors
	9.5.1 Design-Time and Compile-Time Errors
	Figure 9-3. The Options dialog box
	Figure 9-4. A syntax error message

	9.5.2 Runtime Errors
	9.5.3 Logical Errors
	Figure 9-5. The result of a logical error

	9.6 Debugging
	9.6.1 Tracing
	Example 9-1. Sample code for tracing methods
	9.6.1.1 Step Into (F8 or choose Step Into from the Debug menu)
	9.6.1.2 Step Over (Shift+F8 or choose Step Over from the Debug menu)
	9.6.1.3 Step Out (Ctrl+Shift+F8 or choose Step Out from the Debug menu)
	9.6.1.4 Run to Cursor (Ctrl+F8 or choose Run To Cursor from the Debug menu)
	9.6.1.5 Set Next Statement (Ctrl+F9 or choose Set Next Statement from the Debug menu)
	9.6.1.6 Breaking out of Debug mode

	Chapter 10. Variables, Data Types, and Constants
	10.1 Comments
	10.2 Line Continuation
	10.3 Constants
	10.3.1 Enums
	Figure 10-1. Example message box

	10.4 Variables and Data Types
	
	Table?10-1. VBA data types

	10.4.1 Variable Declaration
	Table?10-2. Type-declaration suffixes

	10.4.2 The Importance of Explicit Variable Declaration
	10.4.2.1 Option Explicit

	10.4.3 Numeric Data Types
	10.4.4 Boolean Data Type
	10.4.5 String Data Type
	10.4.6 Date Data Type
	10.4.7 Variant Data Type
	10.4.8 Access Object Data Types
	10.4.8.1 The generic As Object declaration
	10.4.8.2 The Set statement

	10.4.9 Arrays
	10.4.9.1 The dimension of an array
	10.4.9.2 Dynamic arrays
	10.4.9.3 The UBound function

	10.4.10 Variable Naming Conventions
	Table?10-3. Naming convention for nonobject variables
	Table?10-4. Naming convention for some object variables

	10.4.11 Variable Scope
	10.4.11.1 Procedure-level (local) variables
	Figure 10-2. Examples of variable scope
	10.4.11.2 Module-level variables

	10.4.12 Variable Lifetime
	10.4.12.1 Static variables
	Example 10-1. Using a static variable

	10.4.13 Variable Initialization

	10.5 VBA Operators
	
	Table?10-5. VBA operators and relations

	Chapter 11. Functions and Subroutines
	11.1 Calling Functions
	
	Example 11-1. The AddOne function
	Figure 11-1. The message dialog box displayed by Example 11-1
	Example 11-2. Assigning a function's return value

	11.2 Calling Subroutines
	11.3 Parameters and Arguments
	11.3.1 Optional Arguments
	Example 11-3. Using an optional argument

	11.3.2 Named Arguments
	11.3.3 ByRef Versus ByVal Parameters
	Example 11-4. Testing the ByVal and ByRef keywords

	11.4 Exiting a Procedure
	
	Example 11-5. Using the Exit Sub statement

	11.5 Public and Private Procedures
	11.6 Fully Qualified Procedure Names

	Chapter 12. Built-in Functions and Statements
	
	
	Table?12-1. VBA functions
	Table?12-2. VBA statements

	12.1 The MsgBox Function
	
	Table?12-3. The MsgBox buttons argument values
	Figure 12-1. A MsgBox dialog box
	Table?12-4. MsgBox return values

	12.2 The InputBox Function
	
	Figure 12-2. An InputBox dialog box

	12.3 VBA String Functions
	12.4 Miscellaneous Functions and Statements
	12.4.1 The Is Functions
	12.4.1.1 The IsDate function
	12.4.1.2 The IsEmpty function
	12.4.1.3 The IsNull function
	12.4.1.4 The IsNumeric function

	12.4.2 The Immediate If Function
	12.4.3 The Switch Function
	Example 12-1. The Switch function

	12.4.4 The Beep Statement

	12.5 Handling Errors in Code
	12.5.1 The On Error Goto Label Statement
	Figure 12-3. An error dialog box

	12.5.2 Handling Errors in the Calling Procedure
	12.5.3 The Calls Stack
	12.5.4 The Error Object
	12.5.5 The On Error GoTo 0 Statement
	12.5.6 The On Error Resume Next Statement
	12.5.7 The Resume Statement
	Example 12-2. Error handling with the Resume statement

	Chapter 13. Control Statements
	13.1 The If ...Then Statement
	13.2 The For Loop
	13.3 The Exit For Statement
	
	Example 13-1. Finding the First Integer field

	13.4 The For Each Loop
	13.5 The Do Loop
	13.6 The Select Case Statement
	13.7 A Final Note on VBA
	13.7.1 File-Related Functions
	Table?13-1. Some VBA file and directory functions

	13.7.2 Date- and Time-Related Functions
	Table?13-2. Some date- and time-related functions

	13.7.3 The Format Function
	Table?13-3. Format function examples

	Part V: Data Access Objects
	Chapter 14. Programming DAO: Overview
	14.1 Objects
	14.1.1 Object Variables
	Figure 14-1. An example of the intVar variable
	Figure 14-2. An example of a pointer variable
	Example 14-1. An object variable example
	Figure 14-3. The message box from the exaObjectVar() example
	Figure 14-4. Error message from the exaObjectvar() example

	14.1.2 Object-Variable Naming Conventions
	Table?14-1. Standard-variable naming for VBA
	Table?14-2. Object-variable naming for VBA

	14.1.3 Referencing the Properties and Methods of an Object
	Example 14-2. A property and method example

	14.2 The DAO Object Model
	
	Figure 14-5. The DAO object model
	Figure 14-6. A detailed example of the object-collection relationship

	14.3 The Microsoft Access Object Model
	
	Figure 14-7. The Microsoft Access object model

	14.4 Referencing Objects
	14.4.1 Fully Qualified Object Names
	14.4.2 Using Object Variables to Your Advantage
	Example 14-3. An object variable example

	14.4.3 Default Collections
	Table?14-3. DAO and Access object default collections
	Example 14-4. A default collections example

	14.5 Collections Are Objects Too
	14.5.1 Properties and Methods of Access Collections
	14.5.2 Properties and Methods of DAO Collections
	14.5.3 Properties and Methods of User-Defined Collections
	Example 14-5. A collections example

	14.5.4 Say It Again
	Example 14-6. A TableDef example
	Figure 14-8. A list of TableDefs generated by exaCheckTableDefs()

	14.5.5 Refreshing Certain Collections

	14.6 The Properties Collection
	
	Figure 14-9. An Access properties collection diagram

	14.6.1 The Virtues of Properties Collections
	14.6.2 Types of Properties
	14.6.2.1 Property: Inherited
	14.6.2.2 Property: Name
	14.6.2.3 Property: Type
	Table?14-4. Constants for the Type property in VBA
	14.6.2.4 Property: Value
	Example 14-7. A Properties collection example
	Figure 14-10. Window generated from executing exaProperties

	14.6.3 User-Defined Properties
	Example 14-8. A user-defined properties example
	Figure 14-11. Window generated from executing exaUserDefinedProperty

	14.7 Closing DAO Objects
	14.8 A Look at the DAO Objects
	14.8.1 DBEngine Object
	14.8.2 Errors
	Example 14-9. An Errors collection example
	Figure 14-12. Error message from executing exaErrorsCollection

	14.8.3 Workspaces
	14.8.4 Users
	14.8.5 Groups
	14.8.6 Databases
	14.8.7 TableDefs
	14.8.8 QueryDefs
	14.8.9 Recordsets
	14.8.10 Relations
	14.8.11 Containers
	Figure 14-13. Container objects diagram of the MS Jet engine
	Example 14-10. A Containers collection example

	14.8.12 Documents
	Example 14-11. Properties of the Document object

	14.8.13 Fields
	14.8.14 Parameters
	Example 14-12. A parameter query example

	14.8.15 Indexes

	14.9 The CurrentDb Function
	
	Example 14-13. A CurrentDb function example
	Example 14-14. The dbOne and dbTwo variable example
	Figure 14-14. Message box from executing exaCurrentDb2
	Figure 14-15. Message box from executing exaCurrentDb2() when refreshing with dbTwo

	Chapter 15. Programming DAO: Data Definition Language
	15.1 Creating a Database
	15.1.1 Notes
	Example 15-1. A CreateDatabase method example

	15.2 Opening a Database
	15.3 Creating a Table and Its Fields
	15.3.1 Notes
	Table?15-1. Constants for the Type property
	15.3.1.1 Note
	Example 15-2. A CreateTableDef method example
	Figure 15-1. Design view of table generated from running exaCreateTable

	15.3.2 Changing the Properties of an Existing Table or Field

	15.4 Creating an Index
	
	Example 15-3. A CreateIndex method example
	Figure 15-2. Indexes view of BOOKS table from running exaCreateIndex

	15.5 Creating a Relation
	
	Table?15-2. Attributes for a Relation object

	15.5.1 Notes
	Table?15-3. The SALESREGIONS table
	Example 15-4. A CreateRelation method example
	Figure 15-3. Relationships window after running exaRelations

	15.6 Creating a QueryDef
	15.6.1 Notes
	15.6.2 Running a Query
	Example 15-5. A CreateQueryDef method example
	Example 15-6. A new action query example

	15.6.3 Properties of a QueryDef Object
	Table?15-4. Possible query-type constants
	Example 15-7. A RecordsAffected property example

	Chapter 16. Programming DAO: Data Manipulation Language
	16.1 Recordset Objects
	16.2 Opening a Recordset
	16.2.1 Note
	Example 16-1. An OpenRecordset method example

	16.2.2 Default Recordset Types

	16.3 Moving Through a Recordset
	16.3.1 BOF and EOF
	16.3.1.1 Notes on the BOF and EOF properties
	16.3.1.2 Notes on the Move methods
	Example 16-2. Moving through a Recordset
	Example 16-3. The modified Recordset position example

	16.4 Finding Records in a Recordset
	16.4.1 Finding Records in a Table-Type Recordset
	16.4.1.1 Notes
	Example 16-4. A Seek method example

	16.4.2 Finding Records in a Dynaset-Type or Snapshot-Type Recordset
	Example 16-5. A Find method example

	16.5 Editing Data Using a Recordset
	16.5.1 Editing an Existing Record
	Example 16-6. Editing data with Recordset

	16.5.2 Deleting an Existing Record
	16.5.2.1 Notes
	Example 16-7. Using the Delete method with Recordset

	16.5.3 Adding a New Record
	16.5.3.1 Notes
	Example 16-8. Adding a record with Recordset

	Part VI: ActiveX Data Objects
	Chapter 17. ADO and OLE DB
	17.1 What Is ADO?
	17.2 Installing ADO
	
	Figure 17-1. Reference to the ADO object library

	17.3 ADO and OLE DB
	
	Figure 17-2. OLE DB and ADO

	17.3.1 Data Stores
	17.3.2 Data Providers
	17.3.3 Data Consumers
	17.3.4 Service Providers

	17.4 The ADO Object Model
	
	Table?17-1. The ADO objects
	Figure 17-3. The ADO object model
	Figure 17-4. An "operation not supported" message

	17.4.1 The Three-Pronged Approach to Data Manipulation
	Example 17-1. Three methods of creating a Recordset object

	17.4.2 The Connection Object
	17.4.2.1 Properties of the Connection object
	17.4.2.2 Methods of the Connection object

	17.4.3 The Recordset Object
	17.4.3.1 Cursors
	17.4.3.2 LockType
	17.4.3.3 Properties of the Recordset object
	17.4.3.4 Methods of the Recordset object
	Example 17-2. The SupportsExample procedure

	17.4.4 The Command Object
	17.4.4.1 Command objects and connections
	17.4.4.2 Properties of the Command object
	17.4.4.3 Methods of the Command object

	17.4.5 The Property Object and Dynamic Properties
	Table?17-2. The values of the Type property
	Example 17-3. The PropertiesExample procedure

	17.4.6 The Field Object
	17.4.6.1 Properties of the Field object

	17.5 Finding OLE DB Providers
	
	Figure 17-5. Registry entry for an OLE DB provider
	Example 17-4. The ListDPs procedure

	17.6 A Closer Look at Connection Strings
	17.6.1 The Microsoft Jet 3.51 OLE DB Provider
	Example 17-5. The AccessExample procedure

	17.6.2 The Microsoft OLE DB Provider for ODBC Drivers
	Example 17-6. The GetODBCConnectString procedure
	17.6.2.1 Connecting to an Excel workbook
	Figure 17-6. A test Excel worksheet
	Example 17-7. The ExcelExample procedure
	17.6.2.2 Connecting to a text file
	Example 17-8. The TestExample procedure
	Figure 17-7. An error message
	17.6.2.3 ODBC support
	Table?17-3. Availability of properties by Recordset
	Table?17-4. Availability of methods by Recordset

	17.7 An Example: Using ADO over the Web
	
	Figure 17-8. A search page

	Chapter 18. ADOX: Jet Data Definition in ADO
	18.1 The ADOX Object Model
	
	Figure 18-1. The ADOX object model

	18.1.1 Creating a Database
	18.1.2 Creating Tables
	Table?18-1. DAO/ADOX field data type constants

	18.1.3 The Tables Collection
	Table?18-2. Return values of the Table object's Type property

	18.1.4 Creating Indexes
	Table?18-3. Comparison of constants for treating nulls

	18.1.5 Creating a Primary Key
	18.1.6 Creating a Query
	18.1.7 Conclusion

	Part VII: Programming Problems
	Chapter 19. Some Common Data Manipulation Problems
	19.1 Running Sums
	
	Table?19-1. A running sum

	19.1.1 Solution
	Example 19-1. Calculating running sums using nested SQL statements
	Example 19-2. Calculating a running sum using DAO

	19.2 Overlapping Intervals I
	
	Table?19-2. Overlap table: Rows denote time intervals
	Table?19-3. Hours table

	19.2.1 Solution

	19.3 Overlapping Intervals II
	
	Table?19-4. Superload table: Hours worked by supervisors and workers

	19.3.1 Solution
	Table?19-5. Number of workers working at a particular hour
	Table?19-6. Maximum number of workers per supervisor
	Example 19-3. Calculating the maximum number of workers per supervisor

	19.4 Making Assignments with Default
	
	Table?19-7. Assignment table

	19.4.1 Solution
	Example 19-4. Handling preregistered and default room assignments

	19.5 Time to Completion I
	
	Table?19-8. Widgets table: Time to completion for widgets

	19.5.1 Solution

	19.6 Time to Completion II
	
	Table?19-9. Widgets table: Time to completion of multimodule widgets

	19.6.1 Solution
	Example 19-5. TimeToCompletion example

	19.7 Time to Completion III—A MaxMin Problem
	
	Table?19-10. Widgets table: Time to completion of a widget whose modules consist of multiple parts

	19.7.1 Solution 1
	Table?19-11. Results table for qry1
	Table?19-12. Results table for qry2
	Table?19-13. Results table for qry3

	19.7.2 Solution 2

	19.8 Vertical to Horizontal
	
	Table?19-14. Composers table
	Table?19-15. ComposersData table
	Table?19-16. Combination of Table 19-14 and Table 19-15

	19.8.1 Solution
	Example 19-6. VerticalToHorizontal example

	19.9 A Matching Problem
	
	Table?19-17. Programmers table: Programmers and their language skills
	Table?19-18. ProgrammingJobs table

	19.9.1 Solution
	Table?19-19. Jobs and programmers qualified for these jobs

	19.10 Equality of Sets
	
	Table?19-20. Equality

	19.10.1 Solution

	Part VIII: Appendixes
	Appendix A. DAO 3.0/3.5 Collections, Properties, and Methods
	
	
	Figure A-1. The Object Browser

	A.1 DAO Classes
	A.2 A Collection Object
	A.2.1 Methods
	A.2.2 Properties
	A.2.3 Methods

	A.3 Connection Object (DAO 3.5 Only)
	A.3.1 Collections
	A.3.2 Methods
	A.3.3 Properties

	A.4 Container Object
	A.4.1 Collections
	A.4.2 Properties

	A.5 Database Object
	A.5.1 Collections
	A.5.2 Methods
	A.5.3 Properties

	A.6 DBEngine Object
	A.6.1 Collections
	A.6.2 Methods
	A.6.3 Properties

	A.7 Document Object
	A.7.1 Methods
	A.7.2 Properties

	A.8 Error Object
	A.8.1 Properties

	A.9 Field Object
	A.9.1 Collections
	A.9.2 Methods
	A.9.3 Properties

	A.10 Group Object
	A.10.1 Collections
	A.10.2 Methods
	A.10.3 Properties

	A.11 Index Object
	A.11.1 Collections
	A.11.2 Methods
	A.11.3 Properties

	A.12 Parameter Object
	A.12.1 Properties

	A.13 Property Object
	A.13.1 Properties

	A.14 QueryDef Object
	A.14.1 Collections
	A.14.2 Methods
	A.14.3 Properties

	A.15 Recordset Object
	A.15.1 Collections
	A.15.2 Methods
	A.15.3 Properties

	A.16 Relation Object
	A.16.1 Collections
	A.16.2 Methods
	A.16.3 Properties

	A.17 TableDef Object
	A.17.1 Collections
	A.17.2 Methods
	A.17.3 Properties

	A.18 User Object
	A.18.1 Collections
	A.18.2 Methods
	A.18.3 Properties

	A.19 Workspace Object
	A.19.1 Collections
	A.19.2 Methods
	A.19.3 Properties

	Appendix B. The Quotient: An Additional Operation of the Relational Algebra
	
	
	Table?B-1. WOOD
	Table?B-2. SUPPLIER/TYPE
	Table?B-3. SUPPLIER/TYPE WOOD

	B.1 Step 1
	
	Table?B-4. R

	B.2 Step 2
	
	Table?B-5. projSName(R)

	B.3 Step 3
	
	Table?B-6. SUPPLIER/TYPE ÷ WOOD

	Appendix C. Open Database Connectivity (ODBC)
	C.1 Introduction
	
	Figure C-1. An overview of ODBC

	C.2 The ODBC Driver Manager
	C.3 The ODBC Driver
	C.3.1 Driver Types

	C.4 Data Sources
	C.4.1 DSNs and Data Source Types
	C.4.1.1 Machine data sources
	C.4.1.2 File data sources

	C.4.2 Creating DSNs: The ODBC Administrator
	Figure C-2. The ODBC Administrator
	Figure C-3. Choose a driver

	C.4.3 Example DSNs
	C.4.3.1 Excel system data source
	C.4.3.2 Excel file data source
	Figure C-4. Creating an Excel data source, Part 1
	Figure C-5. Creating an Excel data source, Part 2
	C.4.3.3 Text-system data source
	Figure C-6. Text data-source setup
	Figure C-7. Setup for the donna.txt source file

	C.4.4 Connecting to a Data Source
	C.4.5 The SQLConnect Function
	C.4.6 Connection Strings
	C.4.7 SQLDriverConnect

	C.5 Getting ODBC Driver Help
	C.6 Getting ODBC Information Using Visual Basic
	C.6.1 Preliminaries
	C.6.2 Getting Driver Information
	C.6.3 Getting Data Sources

	Appendix D. Obtaining or Creating the Sample Database
	D.1 Creating the Database
	
	Figure D-1. The Microsoft Access dialog box
	Figure D-2. The Library Database window

	D.2 Creating the BOOKS Table
	
	Figure D-3. The Table1 Table window
	Table?D-1. Fields of the BOOKS table
	Table?D-2. Nondefault properties of the BOOKS table
	Table?D-3. Data for the BOOKS table

	D.3 Creating the AUTHORS Table
	
	Table?D-4. Fields of the AUTHORS table
	Table?D-5. Single property to be set in the AUTHORS table
	Table?D-6. Data for the AUTHORS table

	D.4 Creating the PUBLISHERS Table
	
	Table?D-7. Fields of the PUBLISHERS table
	Table?D-8. Single property to set for the PUBLISHERS table
	Table?D-9. Data for the PUBLISHERS table

	D.5 Creating the BOOK/AUTHOR Table
	
	Table?D-10. Fields of the BOOK/AUTHOR table
	Table?D-11. Nondefault properties of the BOOK/AUTHOR table
	Figure D-4. The "no primary key" warning dialog box
	Table?D-12. Data for the BOOK/AUTHOR table

	D.6 Backing Up the Database
	
	Figure D-5. The Save As... dialog box

	D.7 Entering and Running the Sample Programs

	Appendix E. Suggestions for Further Reading
	Colophon
	Annotation

