

Programming WPF
SECOND EDITION

Chris Sells and Ian Griffiths

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Programming WPF, Second Edition
by Chris Sells and Ian Griffiths

Copyright © 2007, 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Production Editor: Rachel Monaghan
Copyeditor: Audrey Doyle
Proofreader: Rachel Monaghan

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and

Jessamyn Read

Printing History:

August 2007: Second Edition.

September 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming WPF, the image of a kudu, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51037-3

ISBN-13: 978-0-596-51037-4

[C]

Abi:

Thank you for everything.

My parents:

Thank you for making it all possible.

—Ian Griffiths

My wife and my sons:

You define the heaven that exceeds my grasp.

Both my parents:

You made me love reading from the beginning. I

was happy that you passed on the secret writer

gene (not to mention surprised).

—Chris Sells

v

Table of Contents

Forewords . xi

Preface . xv

1. Hello, WPF . 1
WPF from Scratch 1
XAML Browser Applications (XBAPs) 14
Content Models 16
Layout 19
Controls 22
Data Binding 22
Dependency Properties 27
Resources 28
Styles 30
Animation 31
Control Templates 32
Graphics 33
3D 34
Documents and Printing 34

2. Applications and Settings . 36
Application Lifetime 36
Application Deployment 48
Settings 55

vi | Table of Contents

3. Layout . 61
Layout Basics 61
StackPanel 62
WrapPanel 65
DockPanel 66
Grid 69
Canvas 84
Viewbox 86
Common Layout Properties 89
When Content Doesn’t Fit 99
ScrollViewer 101
Custom Layout 105

4. Input . 109
Routed Events 109
Mouse Input 117
Keyboard Input 120
Ink Input 122
Commands 124
Code-Based Input Handling Versus Triggers 137

5. Controls . 139
What Are Controls? 139
Buttons 141
Slider and Scroll Controls 144
ProgressBar 145
Text Controls 146
ToolTip 149
GroupBox and Expander 150
List Controls 152
Menus 160
Toolbars 164
GridSplitter 166

6. Simple Data Binding . 168
Without Data Binding 168
Data Binding 177
Debugging Data Binding 198

Table of Contents | vii

7. Binding to List Data . 200
Binding to List Data 200
Data Source Providers 228
Master-Detail Binding 245
Hierarchical Binding 252

8. Styles . 257
Without Styles 257
Inline Styles 261
Named Styles 262
Element-Typed Styles 268
Data Templates and Styles 271
Triggers 275

9. Control Templates . 284
Beyond Styles 284
Logical and Visual Trees 305
Data-Driven UI 308

10. Windows and Dialogs . 314
Window 314
Dialogs 322

11. Navigation . 341
NavigationWindow 341
Pages 342
Frames 359
XBAPs 361
Navigation to HTML 363

12. Resources . 365
Creating and Using Resources 365
Resources and Styles 378
Binary Resources 383
Global Applications 389

13. Graphics . 395
Graphics Fundamentals 395
Shapes 406
Bitmaps 429

viii | Table of Contents

Brushes and Pens 439
Transformations 461
Visual Layer Programming 463

14. Text and Flow Documents . 468
Fonts and Text Styles 468
Text and the User Interface 478
Text Object Model 493
Typography 519

15. Printing and XPS . 522
XPS 522
XPS Document Classes 524
Generating XPS Output 533
XPS File Generation Features 543
System.Printing 555
Displaying Fixed Documents 561

16. Animation and Media . 563
Animation Fundamentals 563
Timelines 579
Keyframe Animations 593
Path Animations 598
Clocks and Control 601
Transition Animations 605
Audio and Video 608

17. 3D Graphics . 612
3D Content in a 2D World 612
Cameras 613
Models 618
Lights 629
Textures 635
Transforms 637
3D Data Visualization 642
Hit Testing 648

Table of Contents | ix

18. Custom Controls . 651
Custom Control Basics 651
Choosing a Base Class 652
Custom Functionality 655
Supporting Templates in Custom Controls 668
Default Styles 674
UserControl 676
Adorners 678

A. XAML . 683

B. Interoperability . 715

C. Asynchronous and Multithreaded WPF Programming 738

D. WPF Base Types . 750

E. Silverlight . 766

Index . 821

xi

Forewords1

First Edition
Over the past two-plus years, my day job has involved XAML-izing various parts of
the Microsoft universe. My standard refrain when encountering XAML newbies has
been “read the XAML appendix from Chris and Ian’s book.” That appendix (origi-
nally printed in the beta edition of this book) was easily the most direct and to-the-
point treatment of the topic I’ve seen, and several dozen of my coworkers got their
first taste of XAML from Ian’s excellent writing. (Ian wrote the XAML appendix.)
Over the past year, as I’ve started to make the transition from runtime plumber to
pixel pusher, the chapters on WPF proper were super-efficient in getting me off the
ground (things have changed a lot since I wrote my last WndProc).

At the time this edition hits the shelves, there are numerous books dedicated to
WPF, written by some pretty notable folks. This book is unique in that Ian has been
telling the story on the road for a couple of years getting the right balance of concep-
tual understanding and pragmatic “everyone screws this up” experience. I know
from personal experience that there’s nothing like teaching to hone a story to perfec-
tion—this book is evidence of that.

Ian’s co-author should thank his lucky stars that Ian was willing to travel the planet
trying out the material rather than taking a cushy job in Windows.

Now that they’ve gotten this book out, maybe Ian should take a cushy job, too.

He’s certainly earned it.

Second Edition
Wow, I can’t believe that after all that time in the chute, .NET 3.0 and Windows
Vista have finally shipped.

I vividly remember scrambling backstage at PDC 2003 with Chris trying to ready the
first live demonstration of .NET 3.0 (then called WinFX) for the keynote speaker,

xii | Forewords

Jim Allchin. It was an especially stressful keynote because Los Angeles was plagued
with brush fires at the time and Chris Anderson’s flight had been canceled; fortu-
nately Chris Sells had already arrived and was ready to pinch-hit both in preparation
and presentation if Chris, in fact, couldn’t make it to L.A. in time. At the time, Chris’
job at Microsoft was to make sure that Vista—including WPF—was a smashing suc-
cess. Little did he know it would take almost four years until the product actually
shipped (which of course is a prerequisite for success).

So, what’s the big deal with WPF?

Like its sister .NET 3.0 technology, Windows Workflow Foundation (WF), WPF
embraces the “it takes a village” approach to software development and uses XAML
to allow people with different skill sets to collaborate in the development process. In
the case of WF, XAML lets high-level process and rule descriptions integrate with
imperative code written in C# or Visual Basic. In the case of WPF, XAML is the
bridge between us code monkeys and the beret-wearing, black-turtleneck set who
design visuals that look like they weren’t designed by, well, us code monkeys.

WPF really is an impressive piece of technology: documents, forms, and multimedia
all wrapped up nicely in a markup- and code-friendly package.

What I find even more impressive is the fact that Chris found the time outside his
day job to pull together the book you’re holding in your hands right now, capturing
those four-plus years of experience with WPF (including screenshots!) into a digest-
ible and portable form.

I’ve had the good fortune of having many conversations with Chris over the years
about the nuances of WPF—sometimes on the phone, sometimes in his office (it’s
across the hall from mine), and sometimes at the poker table.

This book has taught me a whole lot more.

Now that it’s all shipped, let the light blinking begin!

—Don Box
Architect, Microsoft

When I joined Microsoft 11 years ago, I first worked in the IT group, building applica-
tions to help the Microsoft sales force analyze data. I developed using Visual Basic 4.0
on early versions of Windows 95 and Windows NT 3.51 before moving over to work on
the development team for Visual Basic 5.0, and later, 6.0. As time went on, I worked on
Visual J++, Windows Foundation Classes, .NET, Windows Forms, ASP.NET, and
eventually the Windows Presentation Foundation (WPF).

Forewords | xiii

When I learned to program Windows, I read the book that was considered the
“bible” of Windows programming at the time, Programming Windows 3.1 by Charles
Petzold (Microsoft Press). After helping to build the next-generation programming
platform for Microsoft—the .NET Framework—I was first introduced to Chris Sells
because he’d written the “bible” of programming .NET client applications: Windows
Forms Programming (Addison-Wesley). Later, while I was building WPF, Chris and
Ian were already writing the first book for that technology, too. As part of his work,
Chris provided feedback on early versions of WPF, drawing on his extensive experi-
ence as a preeminent author and educator for programming client applications for
Windows. In fact, based on his sensibilities, we actually refer to a customer-focused
style of system design used in my group as the “Sellsian” approach.

Of course, Chris didn’t write this book all by himself. Ian Griffiths is a tremen-
dously gifted technologist with a pedigree that includes working with Develop-
Mentor and now Pluralsight as a consultant, developer, speaker, and author (his
works include .NET Windows Forms in a Nutshell [O’Reilly]), focusing on a wide
range of technologies including Windows Forms and WPF. I’ve had less opportunity
to spend time with Ian; however, in every interaction with him, I have been amazed!

Chris and Ian have both followed client technology since the early days of Windows.
While I have spent my career building platforms, Chris and Ian have spent their
careers making them accessible to a broad range of developers. As Chris puts it,
they’ve been “following along behind [me] with a broom and a dustpan, cleaning up
[my] messes for years.”

This book is a thorough and comprehensive dive into WPF. Chris and Ian’s unique
approach to explaining and building software illuminates the corners and open vis-
tas of the platform. When they bump into its limitations, they don’t just explain
them, but they show you how to work around them and solve real-world problems.

If you are looking for an exhaustive treatment of how to build applications using the
Windows Presentation Foundation, this book deserves a spot on your shelf.

—Chris Anderson
Former architect of Windows Presentation Foundation

xv

Preface2

It’s been a long road to the Windows Presentation Foundation.

I learned to program Windows from Programming Windows 3.1, by Charles Petzold
(Microsoft Press). In those days, programming for Windows was about windows,
menus, dialogs, and child controls. To make it all work, we had WndProcs (window
procedure functions) and messages. We dealt with the keyboard and the mouse. If
we got fancy, we would do some nonclient work. Oh, and there was the stuff in the
big blank space in the middle that I could fill however I wanted with the graphics
device interface (GDI), but my 2D geometry had better be strong to get it to look
right, let alone perform adequately.

Later I moved to the Microsoft Foundation Classes (MFC), where we had this thing
called a “document,” which was separate from the “view.” The document could be
any old data I wanted it to be and the view, well, the view was the big blank space in
the middle that I could fill however I wanted with the MFC wrappers around GDI.

Later there was this thing called DirectX, which was finally about providing tools for
filling in the space with hardware-accelerated 3D polygons, but DirectX was built for
writing full-screen games, so using it to build content visualization and management
applications just made my head hurt.

Windows Forms, on the other hand, was such a huge productivity boost and I loved
it so much that I wrote a book about it (as did my coauthor). Windows Forms was
built on top of .NET, a managed environment that took a lot of programming minu-
tiae off my hands so that I could concentrate on the content. Plus, Windows Forms
itself gave me all kinds of great tools for laying out my windows, menus, dialogs, and
child controls. And the inside of the windows where I showed my content? Well, if
the controls weren’t already there to do what I wanted, I could draw the content
however I wanted using the GDI+ wrappers in System.Drawing, which was essen-
tially the same drawing model Windows programmers had been using for the past 20
years, before even hardware graphics acceleration in 2D, let alone 3D.

xvi | Preface

In the meantime, a whole other way of interacting with content came along: HTML.
HTML was great at letting me arrange my content, both text and graphics, and it
would flow it and reflow it according to the preferences of the user. Further, with the
recent emergence of AJAX (Asynchronous JavaScript and XML), this environment
gets even more capable. Still, HTML isn’t so great if you want to control more of the
user experience than just the content, or if you want to do anything Windows-specific,
both things that even Windows 3.1 programmers took for granted.

More recently, the Windows Presentation Foundation (WPF) happened. Initially it
felt like another way to create my windows, menus, dialogs, and child controls.
However, WPF shares a much deeper love for content than has yet been provided by
any other Windows programming framework.

To support content at the lowest levels, WPF merges controls, text, and graphics
into one programming model; all three are placed into the same element tree in the
same way. And although these primitives are built on top of DirectX to leverage the
3D hardware acceleration that is dormant when you’re not running the latest twitch
game, they’re also built into .NET, providing the same productivity boost to WPF
programmers that Windows Forms programmers enjoy.

One level up, WPF provides its “content model,” which allows any control to host
any group of other controls. You don’t have to build special BitmapButton or
IconComboBox classes; you put as many images, shapes, videos, 3D models, or what-
ever into a Button (or a ComboBox, ListBox, etc.) as suit your fancy.

To help you arrange the content, whether in fixed or flow layout, WPF provides con-
tainer elements that implement various layout algorithms in a way that is completely
independent of the content they’re holding.

To help you visualize the content, WPF provides data binding, control templates,
and animation. Data binding produces and synchronizes visual elements on the fly
based on your content. Control templates allow you to replace the complete look of
a control while maintaining its behavior. Animation brings your user interface con-
trol to life, giving your users immediate feedback as they interact with it. These fea-
tures give you the power to produce data visualizations so far beyond the capabilities
of the data grid, the pinnacle most applications aspire to, that even Edward Tufte
would be proud.

Combine these features with ClickOnce for the deployment and update of your
WPF applications, both as standalone clients and as blended with your web site
inside the browser, and you’ve got the foundation of the next generation of Win-
dows applications.

Preface | xvii

The next generation of applications is going to blaze a trail into the unknown. WPF
represents the best of the control-based Windows and content-based web worlds,
combined with the performance of DirectX and the deployment capabilities of Click-
Once, building for us a vehicle just itching to be taken for a spin. And like the intro-
duction of fonts to the PC, which produced “ransom note” office memos, and the
invention of HTML, which produced blinking online brochures, WPF is going to
produce its own accidents along the road. Before we learn just what we’ve got in
WPF, we’re going to see a lot of strange and wonderful sights. I can’t tell you where
we’re going to end up, but with this book, I hope to fill your luggage rack so that you
can make the journey.

The good news is that you will not be traveling alone. In the period between the first
and second editions of this book, a large user base has sprung up, providing all kinds
of information and real-world applications to inspire you. A tiny sampling of the best
of this information is listed here:

• Tim Sneath’s big list of great WPF applications: http://blogs.msdn.com/tims/
search.aspx?q=%22great+wpf+applications%22 (http://tinysells.com/114)

• Tim Sneath’s big list of WPF blogs: http://blogs.msdn.com/tims/articles/475132.aspx
(http://tinysells.com/115)

• Karsten Januszewski’s Five-Day Course for Hitting the WPF Curve/Cliff: http://
blogs.msdn.com/karstenj/archive/2006/06/15/632639.aspx (http://tinysells.com/116)

• Microsoft’s WPF community site: http://wpf.netfx3.com

• The MSDN WPF home page: http://msdn2.microsoft.com/en-us/netframework/
aa663326.aspx (http://tinysells.com/117)

• CodeProject’s WPF section: http://www.codeproject.com/WPF (http://tinysells.com/
118)

• thirteen23’s inspirational set of WPF lab experiments: http://www.thirteen23.com/
labs.html (http://tinysells.com/119)

• Lee Brimelow’s set of WPF designer tutorials: http://contentpresenter.com

—Chris Sells

Who This Book Is For
As much as I love the designers of the world, who are going to go gaga over WPF,
this book is aimed squarely at my people: developers. We’re not teaching program-
ming here, so having experience with some sort of programming environment is a
must before you read this book. Programming in .NET and C# is pretty much
required; Windows Forms, XML, and HTML are all recommended.

xviii | Preface

How This Book Is Organized
Here’s what each chapter of this book will cover:

Chapter 1, Hello, WPF
This chapter introduces the basics of WPF. It then provides a whirlwind tour of
the features that we will cover in the following chapters, so you can see how
everything fits together before we delve into the details.

Chapter 2, Applications and Settings
In this chapter, we show how WPF manages application-wide concerns, such as the
lifetime of your process, keeping track of open windows, and storing application-
wide states and settings. We also show your options for deploying applications to
end users’ machines using ClickOnce.

Chapter 3, Layout
WPF provides a powerful set of tools for managing the visual layout of your
applications. This chapter shows how to use this toolkit, and how to extend it.

Chapter 4, Input
This chapter shows how to make your WPF application respond to user input. We
illustrate low-level input event handling, and the higher-level command system.

Chapter 5, Controls
Controls are the building blocks of a user interface. This chapter describes the
controls built into the WPF framework.

Chapter 6, Simple Data Binding
All applications need to present information to the user. This chapter shows
how to use WPF’s data binding features to connect the user interface to your
underlying data.

Chapter 7, Binding to List Data
This chapter builds on the preceding one, showing how data binding works with
lists of items. It also shows how to bind to hierarchical data.

Chapter 8, Styles
WPF’s styling mechanism provides a powerful way to control your application’s
appearance while ensuring its consistency.

Chapter 9, Control Templates
WPF provides an astonishing level of flexibility in how you can customize the
appearance of your user interface and the controls it contains. This chapter
examines these facilities, showing how you can modify the appearance of built-
in controls.

Chapter 10, Windows and Dialogs
WPF’s Window class is the basis for your main application windows. It also pro-
vides the facilities necessary to build dialog windows.

Preface | xix

Chapter 11, Navigation
As well as supporting traditional single window and cascading window applica-
tions, WPF offers support for a web-like navigation style of user interface. This
chapter shows how to use these services either for your whole application, or
within a nested frame as part of a window. It also shows the “XBAP” deploy-
ment model, which allows a WPF application to be hosted in a web browser.

Chapter 12, Resources
This chapter describes WPF’s resource handling mechanisms, which are used for
managing styles, themes, and binary resources such as graphics.

Chapter 13, Graphics
WPF offers a powerful set of drawing primitives. It also offers an object model
for manipulating drawings once you have created them.

Chapter 14, Text and Flow Documents
WPF offers support for high-quality rendering of formatted text throughout the
user interface. This chapter explains the text services available wherever text is
used, and the text object model that defines how text is formatted. It also
describes how to use FlowDocuments to present large volumes of mixed text and
graphics, in a way that is optimized for on-screen viewing.

Chapter 15, Printing and XPS
This chapter describes WPF’s printing services. Printing in WPF is very closely
tied to XPS—the XML Paper Specification. This fixed-format document format
allows printable output to be written into a file. The chapter explores both the
XPS file format, and the APIs for printing and generating XPS documents.

Chapter 16, Animation and Media
This chapter describes WPF’s animation facilities, which allow most visible
aspects of a user interface, such as size, shape, color, and position, to be ani-
mated. It also describes the media playback services, which allow video and
audio to be synchronized with animations.

Chapter 17, 3D Graphics
WPF applications can host 3D models in their user interface. Two-dimensional
graphics and user interfaces can also be projected onto 3D surfaces. This chap-
ter describes the 3D API, and shows how the worlds of 2D and 3D come
together in WPF.

Chapter 18, Custom Controls
This chapter shows how to write custom controls and other custom element
types. It shows how to take full advantage of the WPF framework to build con-
trols as powerful and flexible as those that are built-in.

Appendix A, XAML
The eXtensible Application Markup Language (XAML) is an XML-based lan-
guage that can be used to represent the structure of a WPF user interface. This
appendix describes how XAML is used to create graphs of objects.

xx | Preface

Appendix B, Interoperability
WPF is able to coexist with old user interface technologies, enabling developers
to take advantage of WPF without rewriting their existing applications. This
appendix describes the interoperability features that make this possible.

Appendix C, Asynchronous and Multithreaded WPF Programming
Multithreaded code and asynchronous programming are important techniques
for making sure your application remains responsive to user input at all times.
This appendix explains WPF’s threading model, and shows how to make sure
your threads coexist peacefully with a WPF UI.

Appendix D, WPF Base Types
WPF has a large and complex class inheritance hierarchy. Understanding the
roles of all these types and the relationships between them can be very daunting
when you first approach WPF. This appendix singles out the most important
types, and explains how they fit into WPF.

Appendix E, Silverlight
Although WPF’s XBAP model allows WPF applications to run inside a web
browser, this requires that .NET 3.0 be installed on an end user’s machine. This
makes WPF unsuitable for applications that need to be accessible from platforms
other than Windows. However, WPF’s cousin, Silverlight, is a cross-platform solu-
tion, offering a subset of the services available in WPF. This appendix provides a
quick introduction to Silverlight from Shawn Wildermuth, Microsoft MVP.

What You Need to Use This Book
This book targets Visual Studio 2005 and the .NET Framework 3.0, which includes
WPF (among other things). You’ll also want the Visual Studio 2005 extensions that
provide WPF templates that are mentioned in this book. You can download all of
this for free* (even Visual Studio 2005, if you’re willing to limit yourself to Visual C#
2005 Express Edition†).

WPF itself is supported on Windows XP, Windows Server 2003, and Windows Vista
(and will be supported on future versions of Windows, of course).

* You can find the links to download the .NET Framework 3.0 and the WPF extensions to Visual Studio at
http://sellsbrothers.com/news/showTopic.aspx?ixTopic=2053 (http://tinysells.com/104).

† You can download Visual C# Express from http://msdn.microsoft.com/vstudio/express/downloads (http://
tinysells.com/105).

Preface | xxi

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms.

Constant width
Indicates code, commands, options, switches, variables, attributes, keys, func-
tions, types, classes, namespaces, methods, modules, properties, parameters, val-
ues, objects, events, event handlers, XML tags, HTML tags, macros, the contents
of files, or the output from commands.

Constant width bold
Shows code or other text that should be noted by the reader.

Constant width italic
Indicates code that should be replaced with user-supplied values.

Constant width ellipses (...)
Shows code or other text not relevant to the current discussion.

This icon signifies a tip, suggestion, or general note.

This icon signifies a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming WPF, Second Edition, by
Chris Sells and Ian Griffiths. Copyright 2007 O’Reilly Media Inc., 978-0-596-51037-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xxii | Preface

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

For the code samples associated with this book and for errata, visit the web site
maintained by the authors at:

http://sellsbrothers.com/writing/wpbook

To contact Ian Griffiths, visit:

http://www.interact-sw.co.uk/iangblog/

To contact Chris Sells, visit:

http://sellsbrothers.com

The publisher maintains a web page for this book at:

http://www.oreilly.com/catalog/9780596510374

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Preface | xxiii

Ian’s Acknowledgments
Writing this book wouldn’t have been possible without the support and feedback
generously provided by a great many people. I would like to thank the following:

The readers, without whom this book would have a rather sad, lonely, and pointless
existence.

My coauthor, Chris Sells, both for getting me involved in writing about WPF in the
first place, and for his superb feedback and assistance.

Shawn Wildermuth, for contributing the Silverlight appendix, and enduring Chris’s
and my uncompromising approach to technical review.

Tim Sneath, both for his feedback and for providing me with the opportunity to
meet and work with many members of the WPF team.

Microsoft employees and contractors, for producing a technology I like so much that
I just had to write a book about it. And in particular, thank you to those people at
Microsoft who gave their time to answer my questions or review draft chapters,
including Chris Anderson, Marjan Badiei, Jeff Bogdan, Mark Boulter, Ben Carter,
Dennis Cheng, Karen Corby, Vivek Dalvi, Nathan Dunlap, Ifeanyi Echeruo, Pablo
Fernicola, Filipe Fortes, Kevin Gjerstad, Aaron Goldfeder, John Gossman, Mark
Grinols, Namita Gupta, Henry Hahn, Robert Ingebretson, Kurt Jacob, David Jenni,
Michael Kallay, Amir Khella, Adam Kinney, Nick Kramer, Lauren Lavoie, Daniel
Lehenbauer, Kevin Moore, Elizabeth Nelson, Seema Ramchandani, Rob Relyea,
Chris Sano, Greg Schechter, Eli Schleifer, Ashish Shetty, Adam Smith, Michael
Stokes, Zhanbo Sun, David Teitlebaum, Stephen Turner, and Dawn Wood.

The following non-Microsoft people for their direct or indirect contributions to the
quality of this book: Matthew Adams, Craig Andera, Richard Blewett, Keith Brown,
Ryan Dawson, Kirk Fertitta, Kenny Kerr, Drew Marsh, Dave Minter, Brian Noyes,
Fritz Onion, Aaron Skonnard, Dan Sullivan, Bill Williams, and Zhou Yong.

John Osborn and Caitrin McCullough at O’Reilly for their support throughout the
writing process.

The technical review team: Chris Anderson, Elsa Bartley, Patrick Cauldwell, Dennis
Cheng, Arik Cohen, Beatriz de Oliveira Costa, Glyn Griffiths, Scott Hanselman,
Karsten Januszewski, Nikola Mihaylov, Mark Miller, Eric Stollnitz, and Jeff
Tentschert. And particular thanks to Mike Weinhardt for his extensive and thought-
ful feedback.

Finally, I especially want to thank Abi Sawyer for all her support, and for putting up
with me while I wrote this book—thank you!

xxiv | Preface

Chris’s Acknowledgments
I’d like to thank the following people, without whom I wouldn’t have been able to
write either the first or second edition of this book:

The readers. When you’ve got a story to tell, you’ve got to have someone to tell it to.
I’ve been writing about WPF in various forums for almost four years and the readers
have always pushed and encouraged me further.

My coauthor, Ian Griffiths. Ian has an extensive background in all things graphical
and video-related, including technologies so deep I can’t understand him half the
time. This, in addition to his vast experience teaching the WPF course and writing
real-world WPF applications, along with his wonderful writing style, made him the
perfect coauthor on this book. I couldn’t have asked for better.

Shawn Wildermuth, for the cutting-edge Silverlight appendix. Shawn’s been doing a
bunch of advanced Silverlight work, so when I asked him to add his knowledge to this
book, he graciously agreed, completely unaware of the buzz saw that is the Griffith/
Sells reviewing process. Sorry, Shawn, and thanks!

Kenny Kerr, for his most excellent Window Clippings tool. His tool, plus the fea-
tures he added at my request, saved me countless hours of work and produced much
higher-quality screenshots than I would’ve normally had the patience to capture.

Chango Valtchev and Michael Weinhardt, for their huge help on navigation and the
pitfalls thereof. The material in Chapter 11 was influenced very much by Chango
and Michael.

Microsoft employees and contractors (in the order in which I found them in my WPF
email folder): Mark Lawrence, Robert Wlodarczyk, Hua Wang, Worachai Chaowe-
eraprasit, Preeda Ola, Varsha Mahadevan, Larry Golding, Benjamin Westbrook, Ben
Constable, Brian Chapman, Niklas Borson, Ryan Molden, Hamid Mahmood, Lau-
ren Lavoie, Lars Bergstrom, Amir Khella, Kevin Kennedy, David Jenni, Elizabeth
Nelson, Beatriz de Oliveira Costa, Nick Kramer, Allen Wagner, Chris Sano, Tim
Sneath, Steve White, Matthew Adams, Eli Schleifer, Karsten Januszewski, Rob Rel-
yea, Mark Boulter, Namita Gupta, John Gossman, Kiran Kumar, Filipe Fortes, Guy
Smith, Zhanbo Sun, Ben Carter, Joe Marini, Dwayne Need, Brad Abrams, Feng
Yuan, Dawn Wood, Vivek Dalvi, Jeff Bogdan, Steve Makofsky, Kenny Lim, Dmitry
Titov, Joe Laughlin, Arik Cohen, Eric Stollnitz, Pablo Fernicola, Henry Hahn, Jamie
Cool, Sameer Bhangar, and Brent Rector. I regularly spammed a wide range of my
Microsoft brethren and instead of snubbing me, they answered my email questions,
helped me make things work, gave me feedback on the chapters, sent me additional
information without an explicit request, and in the case of John Gossman, for-
warded the chapters along to folks with special knowledge so that they could give me
feedback. This is the first book I’ve written “inside,” and with the wealth of informa-
tion and conscientious people available, it’d be very, very hard to go back to writing
“outside.”

Preface | xxv

The external technical reviewers, who provide an extremely important mainstream
point of view that Microsoft insiders can’t: Craig Andera, Chris Anderson, Elsa Bart-
ley, Patrick Cauldwell, Dennis Cheng, Arik Cohen, Beatriz de Oliveira Costa, Ryan
Dawson, Glyn Griffiths, Scott Hanselman, Karsten Januszewski, Adam Kinney,
Drew Marsh, Nikola Mihaylov, Mark Miller, Dave Minter, Brian Noyes, Eric
Stollnitz, and Jeff Tentschert.

Glyn Griffiths, not just for raising Ian right, but also for his eagle eye as the last
reviewer of what we thought was the “final” manuscript. Not only did he catch a
frightening number of grammatical errors, but he also pointed out the copyedits
from the first edition of the book that we’d failed to reverse-integrate into our Word
documents for the second edition. He literally did a three-way diff for us, which was
impressive and spooky at the same time...

Caitrin McCullough and John Osborn from O’Reilly Media, for supporting me in
breaking a bunch of the normal ORA procedures and guidelines to publish the book
I wanted.

Shawn Morrissey, for letting me make writing a part of my first two years at
Microsoft, and even giving me permission to use some of that material to seed this
book. Shawn put up with me, trusting me to do my job remotely when very few
Microsoft managers would.

Don Box, for setting my initial writing quality bar and hitting me squarely between
the eyes until I could clear it. Of course, thank you for the foreword and for acting as
my soundboard on this preface. You’re an invaluable resource and a dear friend.

Barbara Box, for putting me up in the Chez Box clubhouse while I balance work and
family in a way that wouldn’t be possible without you.

Chris Anderson, architect on WPF, for his foreword and a ton of illuminating con-
versations even after he wrote a competing book. Chris is a very generous man. After
I’d reviewed the first chapter of his book and realized that reading it was giving me
insights that would affect my own writing, he wouldn’t let me stop. He cared most
about getting the right story out there, and not at all about into which book it went.

Michael Weinhardt, as the primary developmental editor on both editions of this
book. His feedback is probably the single biggest factor in whatever quality we’ve
been able to cram in. As if that wasn’t enough, he produced many of the figures in
my chapters. (Ian, as a rule, is far more industrious than I.)

Tim Ewald, for that critical eye at the most important spots in the first edition.

My wife and sons. The first edition was the first book I’ve ever written while holding
a full-time job and, worse than that, while I was learning a completely new job.
Frankly, I neglected my family pretty thoroughly for about three solid months on the
first edition and nearly six months on the second, but they understood and sup-
ported me, like they have all of my endeavors over the years. I am very much looking
forward to getting back to them (again).

1

Chapter 1 CHAPTER 1

Hello, WPF1

WPF is a completely new presentation framework, integrating the capabilities of
many frameworks that have come before it, including User, GDI, GDI+, and HTML,
as well as being heavily influenced by toolkits targeted at the Web, such as Adobe
Flash, and popular Windows applications like Microsoft Word. This chapter will
give you the basics of WPF from scratch, and then a whirlwind tour of the things
you’ll read about in detail in the chapters that follow.

WPF from Scratch
Example 1-1 is pretty much the smallest WPF “application” you can write in C#.

The STAThread attribute signals .NET to make sure that when COM is
initialized on the application’s main thread, it’s initialized to be com-
patible with single-threaded UI work, as required by WPF applications.

Example 1-1. Minimal C# WPF application

// MyApp.cs
using System;
using System.Windows; // the root WPF namespace

namespace MyFirstWpfApp {
 class MyApp {
 [STAThread]
 static void Main() {
 // the WPF message box
 MessageBox.Show("Hello, WPF");
 }
 }
}

2 | Chapter 1: Hello, WPF

In fact, this is such a lame WPF application that it doesn’t even use any of the ser-
vices of WPF; the call to MessageBox.Show is just an interop call to Win32. However,
it does require the same infrastructure required of other WPF applications, so it
serves as a useful starting point for our explorations.

Building Applications
Building this application (Example 1-2) is a matter of firing off the C# compiler from
a command shell with the appropriate environment variables.* (The command line
here has been spread across multiple lines for readability, but you need to put it all
on one line.)

Here, we’re telling the C# compiler that we’d like to create a Windows application
(instead of a Console application, which we get by default), putting the result, 1st.exe,
into the current folder, referencing the three main WPF assemblies (WindowsBase,
PresentationCore, and PresentationFramework), along with the core .NET System
assembly, and compiling the MyApp.cs source file.

Running the resulting 1st.exe produces the world’s lamest WPF application, as
shown in Figure 1-1.

* Start ➝ All Programs ➝ Microsoft Windows SDK ➝ CMD Shell.

Example 1-2. Building a WPF application manually

C:\1st> csc /target:winexe /out:.\1st.exe
 /r:System.dll
 /r:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\WindowsBase.dll"
 /r:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\PresentationCore.dll"
 /r:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\
PresentationFramework.dll"
 MyApp.cs

Microsoft (R) Visual C# 2005 Compiler version 8.00.50727.312
for Microsoft (R) Windows (R) 2005 Framework version 2.0.50727
Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.

Figure 1-1. A lame WPF application

WPF from Scratch | 3

In anticipation of less lame WPF applications with more source files and more com-
pilation options, let’s refactor the compilation command line into an msbuild project
file (Example 1-3).

The msbuild tool is a .NET 2.0 command-line application that understands XML
files in the form shown in Example 1-3. The file format is shared between msbuild
and Visual Studio 2005 so that you can use the same project files for both command-
line and integrated development environment (IDE) builds. In this .csproj file (which
stands for “C# Project”), we’re saying the same things we said to the C# compiler—
in other words, we’d like a Windows application, we’d like the output to be 1st.exe
in the current folder, and we’d like to reference the System assembly and the main
WPF assemblies while compiling the MyApp.cs file. The actual smarts of how to turn
these minimal settings into a compiled .NET application are contained in the .NET
2.0 Microsoft.CSharp.targets file that’s imported at the bottom of the file.

Executing msbuild.exe on the 1st.csproj file looks like Example 1-4.

Example 1-3. A minimal msbuild project file

<!-- 1st.csproj -->
<Project
 DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <OutputType>winexe</OutputType>
 <OutputPath>.\</OutputPath>
 <Assembly>1st.exe</Assembly>
 </PropertyGroup>
 <ItemGroup>
 <Compile Include="MyApp.cs" />
 <Reference Include="System" />
 <Reference Include="WindowsBase" />
 <Reference Include="PresentationCore" />
 <Reference Include="PresentationFramework" />
 </ItemGroup>
 <Import Project="$(MsbuildBinPath)\Microsoft.CSharp.targets" />
</Project>

Example 1-4. Building using msbuild

C:\1st>msbuild 1st.csproj
Microsoft (R) Build Engine Version 2.0.50727.312
[Microsoft .NET Framework, Version 2.0.50727.312]
Copyright (C) Microsoft Corporation 2005. All rights reserved.

Build started 2/4/2007 2:24:46 PM.
___ _
Project "C:\1st\1st.csproj" (default targets):

Target PrepareForBuild:
 Creating directory "obj\Debug\".

4 | Chapter 1: Hello, WPF

As I mentioned, msbuild and Visual Studio 2005 share a project file format, so load-
ing the project file into Visual Studio is as easy as double-clicking on 1st.csproj (as
shown in Figure 1-2).

Unfortunately, as nice as the project file makes building our WPF application, the
application itself is still lame.

WPF Applications
A real WPF application is going to need more than a message box. WPF applica-
tions have an instance of the Application class from the System.Windows namespace.
The Application class provides methods like Run for starting the application, events
like Startup and SessionEnding for tracking lifetime, and properties like Current,
ShutdownMode, and MainWindow for finding the global application object, choosing
when it shuts down, and getting the application’s main window. Typically, the
Application class serves as a base for custom application-wide data and behavior
(Example 1-5).

Target CoreCompile:
 C:\Windows\Microsoft.NET\Framework\v2.0.50727\Csc.exe /noconfig /nowarn:1701
,1702 /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0
\PresentationCore.dll" /reference:"C:\Program Files\Reference Assemblies\Microso
ft\Framework\v3.0\PresentationFramework.dll" /reference:C:\Windows\Microsoft.NET
\Framework\v2.0.50727\System.dll /reference:"C:\Program Files\Reference Assembli
es\Microsoft\Framework\v3.0\WindowsBase.dll" /debug+ /out:obj\Debug\1st.exe /tar
get:winexe MyApp.cs
Target _CopyFilesMarkedCopyLocal:
 Copying file from "C:\Program Files\Reference Assemblies\Microsoft\Framework
\v3.0\PresentationCore.dll" to ".\PresentationCore.dll".
 Copying file from "C:\Program Files\Reference Assemblies\Microsoft\Framework
\v3.0\System.Printing.dll" to ".\System.Printing.dll".
 Copying file from "C:\Program Files\Reference Assemblies\Microsoft\Framework
\v3.0\PresentationCore.xml" to ".\PresentationCore.xml".
 Copying file from "C:\Program Files\Reference Assemblies\Microsoft\Framework
\v3.0\System.Printing.xml" to ".\System.Printing.xml".
Target CopyFilesToOutputDirectory:
 Copying file from "obj\Debug\1st.exe" to ".\1st.exe".
 1st -> C:\1st\1st.exe
 Copying file from "obj\Debug\1st.pdb" to ".\1st.pdb".

Build succeeded.
 0 Warning(s)
 0 Error(s)

Time Elapsed 00:00:04.15

Example 1-4. Building using msbuild (continued)

WPF from Scratch | 5

Figure 1-2. Loading the minimal msbuild project file into Visual Studio

Example 1-5. A less minimal WPF application

// MyApp.cs
using System;
using System.Windows;

namespace MyFirstWpfApp {
 class MyApp : Application {
 [STAThread]
 static void Main() {
 MyApp app = new MyApp();
 app.Startup += app.AppStartup;
 app.Run();
 }

 void AppStartup(object sender, StartupEventArgs e) {
 // By default, when all top level windows
 // are closed, the app shuts down
 Window window = new Window();
 window.Title = "Hello, WPF";
 window.Show();
 }
 }
}

6 | Chapter 1: Hello, WPF

Here, our MyApp class derives from the Application base class. In Main, we create an
instance of the MyApp class, add a handler to the Startup event, and kick things off
with a call to the Run method. Our Startup handler creates our sample’s top-level
window, which is an instance of the built-in WPF Window class, making our sample
WPF application more interesting from a developer point of view, although visually
less so, as shown in Figure 1-3.

Although we can create instances of the built-in classes of WPF, such as Window, pop-
ulating them and wiring them up from the application, it’s much more encapsulat-
ing (not to mention abstracting) to create custom classes for such things, like the
Window1 class (Example 1-6).

Figure 1-3. A less lame WPF application

Example 1-6. Window class declaring its own controls

// Window1.cs
using System;
using System.Windows;
using System.Windows.Controls; // Button et al

namespace MyFirstWpfApp {
 class Window1 : Window {
 public Window1() {
 this.Title = "Hello, WPF";

 // Do something interesting (sorta...)
 Button button = new Button();
 button.Content = "Click me, baby, one more time!";
 button.Width = 200;
 button.Height = 25;
 button.Click += button_Click;

 this.Content = button;
 }

 void button_Click(object sender, RoutedEventArgs e) {
 MessageBox.Show(
 "You've done that before, haven't you...",
 "Nice!");
 }
 }
}

WPF from Scratch | 7

In addition to setting its caption text, an instance of our Window1 class will include a
button with its Content, Width, and Height properties set, and its Click event han-
dled. With this initialization handled in the Window1 class itself, our app’s startup
code looks a bit simpler (even though the application behavior itself has gotten
“richer”; see Example 1-7).

The results (after updating the .csproj file appropriately) are shown in Figure 1-4 and
are unlikely to surprise you much.

Example 1-7. Simplified Application instance

// MyApp.cs
using System;
using System.Windows;

namespace MyFirstWpfApp {
 class MyApp : Application {
 [STAThread]
 static void Main(string[] args) {
 MyApp app = new MyApp();
 app.Startup += app.AppStartup;
 app.Run();
 }

 void AppStartup(object sender, StartupEventArgs e) {
 // Let the Window1 initialize itself
 Window window = new Window1();
 window.Show();
 }
 }
}

Figure 1-4. A slightly more interesting WPF application

8 | Chapter 1: Hello, WPF

As the Window1 class gets more interesting, we’re mixing two very separate kinds of
code: the “look,” represented by the initialization code that sets the window and
child window properties, and the “behavior,” represented by the event handling
code. As the look is something that you’re likely to want handled by someone with
artistic sensibilities (a.k.a. turtleneck-wearing designer types) whereas the behavior is
something you’ll want to leave to the coders (a.k.a. pocket-protector-wearing engi-
neer types), separating the former from the latter would be a good idea. Ideally, we’d
like to move the imperative “look” code into a declarative format suitable for tools to
create with some drag-and-drop magic. For WPF, that format is XAML.

XAML
XAML is an XML-based language for creating and initializing .NET objects. It’s used
in WPF as a human-authorable way of describing the UI, although you can use it for
a much larger range of CLR types than just those in WPF. Example 1-8 shows how
we declare the UI of our Window-derived class using XAML.

The root element, Window, is used to declare a portion of a class, the name of which is
contained in the Class attribute from the XAML XML namespace (declared with a
prefix of “x” using the “xmlns” XML namespace syntax). The two XML namespace
declarations pull in two commonly used namespaces for XAML work, the one for
XAML itself (the one with the “x” prefix) and the one for WPF (which we’ve
declared as the default for this XML file). You can think of the XAML in
Example 1-8 as creating the partial class definition in Example 1-9.

Example 1-8. Declaring a Window in XAML

<!-- Window1.xaml -->
<Window
 x:Class="MyFirstWpfApp.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Hello, WPF">

 <Button
 x:Name="button"
 Width="200"
 Height="25"
 Click="button_Click">Click me, baby, one more time!</Button>

</Window>

Example 1-9. C# equivalent of XAML from Example 1-8

namespace MyFirstWpfApp {
 partial class Window1 : Window {
 Button button;

WPF from Scratch | 9

XAML was built to be as direct a mapping from XML to .NET as possible. Gener-
ally, a XAML element is a .NET class name and a XAML attribute is the name of a
property or an event on that class. This makes XAML useful for more than just WPF
classes; pretty much any old .NET class that exposes a default constructor can be ini-
tialized in a XAML file.

Notice that we don’t have the definition of the click event handler in this generated
class. For event handlers and other initializations and helpers, a XAML file is meant
to be matched with a corresponding code-behind file, which is a .NET language code
file that implements behavior in code “behind” the look defined in the XAML. Tradi-
tionally, this file is named with a .xaml.cs extension and contains only the things not
defined in the XAML. With the XAML from Example 1-8 in place, we can reduce
our single-buttoned main window code-behind file to the code in Example 1-10.

 void InitializeComponent() {
 // Initialize Window1
 this.Title = "Hello, WPF";

 // Initialize button
 button = new Button();
 button.Width = 200;
 button.Height = 25;
 button.Click += button_Click;

 this.AddChild(button);
 }
 }
}

Example 1-10. C# code-behind file

// Window1.xaml.cs
using System;
using System.Windows;
using System.Windows.Controls;

namespace MyFirstWpfApp {
 public partial class Window1 : Window {
 public Window1() {
 InitializeComponent();
 }

 void button_Click(object sender, RoutedEventArgs e) {
 MessageBox.Show(...);
 }
 }
}

Example 1-9. C# equivalent of XAML from Example 1-8 (continued)

10 | Chapter 1: Hello, WPF

Notice the partial keyword modifying the Window1 class, which signals to the compiler
that the XAML-generated class is to be paired with this human-generated class to form
one complete class, each depending on the other. The partial Window1 class defined in
XAML depends on the code-behind partial class to call the InitializeComponent
method and to handle the click event. The code-behind class depends on the partial
Window1 class defined in XAML to implement InitializeComponent, thereby providing
the look of the main window (and related child controls).

Further, as mentioned, XAML is not just for visuals. For example, nothing is stop-
ping us from moving most of the definition of our custom MyApp class into a XAML
file (Example 1-11).

This reduces the MyApp code-behind file to the event handler in Example 1-12.

You may have noticed that we no longer have a Main entry point to create the
instance of the application-derived class and call its Run method. That’s because WPF
has a special project setting to specify the XAML file that defines the application
class, which appears in the msbuild project file (Example 1-13).

Example 1-11. Declaring an application in XAML

<!-- MyApp.xaml -->
<Application
 x:Class="MyFirstWpfApp.MyApp"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Startup="AppStartup">
</Application>

Example 1-12. Application code-behind file

// MyApp.xaml.cs
using System;
using System.Windows;

namespace MyFirstWpfApp {
 public partial class MyApp : Application {
 void AppStartup(object sender, StartupEventArgs e) {
 Window window = new Window1();
 window.Show();
 }
 }
}

Example 1-13. Specifying the application’s XAML in the project file

<!-- MyFirstWpfApp.csproj -->
<Project ...>
 <PropertyGroup>
 <OutputType>winexe</OutputType>
 <OutputPath>.\</OutputPath>
 <Assembly>1st.exe</Assembly>
 </PropertyGroup>

WPF from Scratch | 11

The combination of the ApplicationDefinition element and the .NET 3.0-specific
Microsoft.WinFX.targets file produces an application entry point that will create our
application for us. Also notice in Example 1-13 that we’ve replaced the MyApp.cs file
with the MyApp.xaml.cs file, added the Window1.xaml.cs file, and included the win-
dow’s corresponding XAML file as a Page element (we don’t do the same thing for
the application’s XAML file, as it’s already referenced in the ApplicationDefinition
element). The XAML files will be compiled into partial class definitions using the
instructions in the Microsoft.WinFX.targets file. The DependentUpon element is there
to associate a code-behind file with its XAML file. This isn’t necessary for the build
process, but it’s useful for tools that want to show the association. For example,
Visual Studio uses DependentUpon to show the code-behind file nested under the
XAML file.

This basic arrangement of artifacts (i.e., application and main windows each split
into a XAML and a code-behind file) is such a desirable starting point for a WPF
application that creating a new project using the “Windows Application (WPF)”
project template from within Visual Studio 2005 gives you the same initial configura-
tion, as shown in Figure 1-5.

Editing XAML
Now that we’ve seen the wonder that is declarative UI description in XAML, you
may wonder, “Do I get all the fun of editing the raw XML, or are there some tools
that can join in the fun, too?” The answer is “sort of.” For example, if you’ve got the
.NET Framework 3.0 extensions for Visual Studio 2005 (the same extensions that give
you the WPF project templates in VS05), you will have a visual editor for XAML files
that works very similarly to the built-in Windows Forms Designer. It will trigger by
default when you double-click a file in the Solution Explorer, or you can right-click on

 <ItemGroup>
 <ApplicationDefinition Include="MyApp.xaml" />
 <Page Include="Window1.xaml" />
 <Compile Include="Window1.xaml.cs">
 <DependentUpon>Window1.xaml</DependentUpon>
 </Compile>
 <Compile Include="MyApp.xaml.cs" />
 <DependentUpon>MyApp.xaml</DependentUpon>
 </Compile>
 <Reference Include="System" />
 <Reference Include="WindowsBase" />
 <Reference Include="PresentationCore" />
 <Reference Include="PresentationFramework" />
 </ItemGroup>
 <Import Project="$(MsbuildBinPath)\Microsoft.CSharp.targets" />
 <Import Project="$(MSBuildBinPath)\Microsoft.WinFX.targets" />
</Project>

Example 1-13. Specifying the application’s XAML in the project file (continued)

12 | Chapter 1: Hello, WPF

a XAML file in the Solution Expression and choose Open With. One of the options
offered will be “WPF Designer (Cider)” (where “Cider” is the codename for the WPF
Designer still under development). The WPF Designer allows for drag-and-drop-style
construction of XAML files with elements from the Toolbox and setting properties in
the property browser. In addition, you can see the XAML as the designer makes
changes, and in fact, you can make changes in the XAML view itself and see those
reflected in the designer. Figure 1-6 shows the WPF Designer in action.

Unfortunately, as of the writing of this book, the WPF Designer is still
very much under development and such basic features as visually add-
ing event handlers, let alone more advanced features like data bind-
ing, styles, control templates, and animation, are not supported,
which is why you’re unlikely to do much with it. If you’re following
along with the Visual Studio “Orcas” beta, you’ll get more current
(and more full-featured) versions of the WPF Designer, but if you can’t
wait, you have other choices, including two XAML designer tools
(Microsoft Expression Blend and Microsoft Expression Design), a third-
party XAML 3D editor (ZAM 3D), and several conversion tools from
other popular vector drawing formats (e.g., Adobe Illustrator and Flash),
all of which are currently downloadable at the time of this writing.*

Figure 1-5. The result of running the WPF Application project template

* Michael Swanson, the general manager of the Microsoft Platform Evangelist team, maintains a wonderful list of
WPF-related first- and third-party tools and controls for your development enjoyment at http://blogs.msdn.com/
mswanson/articles/WPFToolsAndControls.aspx (http://tinysells.com/88).

WPF from Scratch | 13

Another very useful tool for playing with XAML is the XamlPad tool that comes with
the Windows SDK. It actually shows the visual representation of your XAML as you
type it, as shown in Figure 1-7.

XamlPad has some limitations; the most important is that it doesn’t allow code (e.g.,
x:Class or event handler declarations), but as instant gratification, it can’t be beat.

Figure 1-6. The WPF Designer in action

Figure 1-7. XamlPad in action

14 | Chapter 1: Hello, WPF

WPF provides a number of services for applications that we haven’t covered, includ-
ing lifetime management and ClickOnce-based deployment. In addition, although
WPF doesn’t provide any direct support for application instance management or set-
tings, the .NET 2.0 support for both of these features integrates with WPF.
Chapter 2 covers all of these topics.

XAML Browser Applications (XBAPs)
While we’re talking about Visual Studio tools for WPF, you may notice that a few
icons away from the “Windows Application (WPF)” project template is another one
called “XAML Browser Application (WPF),” as shown in Figure 1-8.

WPF itself was created as a unified presentation framework, meant to enable build-
ing Windows applications with the best features from existing Windows application
practice and existing web application practice. One of the nice things that web appli-
cations provide is a single window showing the user one page of content/functionality
at a time, allowing for navigation among the pages. For some applications, including
Internet Explorer, the shell Explorer, Microsoft Money, and a bunch of Control Panel
applets, this is thought to be preferable to the more common Windows application
practice of showing more than one window at a time.

To enable more of these kinds of applications, WPF provides the page, which is the
unit of navigation in an XML Browser Application (XBAP). Instead of setting an
application’s StartupUri to a XAML file that defines a window, we point an XBAP’s
StartupUri at a XAML file that defines a page (Example 1-14).

A WPF page is a class that derives from the Page class, as shown in Example 1-15.

Figure 1-8. The WPF XAML Browser Application project template in VS05

Example 1-14. Starting with a Page instead of a Window

<!-- App.xaml -->
<Application
 x:Class="MyFirstXbapApp.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Page1.xaml" />

XAML Browser Applications (XBAPs) | 15

}

The primary way to allow the user to navigate in an XBAP is via the Hyperlink ele-
ment, setting the NavigateUri to a relative URL of another XAML page in the project.
The first page of our sample XBAP looks like Figure 1-9.

In Figure 1-9, the hyperlinked text is underlined in blue, and if you were to move
your mouse cursor over the hyperlink, it would show up as red. Further, the page’s
WindowTitle property is set as the window caption. Of course, the most obvious
thing to notice is that the XBAP is hosted inside the browser—Internet Explorer 7 to
be exact. The reason for this is simple: XBAPs are meant to be deployed via the Web
(which we’ll talk about later in this chapter) and to blend seamlessly with web pages.
As you navigate among the pages in an XBAP, those pages are added to the naviga-
tion history just as web pages would be, and you’re allowed to use the Internet
Explorer toolbar to go backward and forward, as you’re used to doing.

Example 1-15. A sample page

<!-- Page1.xaml -->
<Page
 x:Class="MyFirstXbapApp.Page1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
WindowTitle="Page1">

 <TextBlock FontSize="36">
 Check out <Hyperlink NavigateUri="page2.xaml">page 2</Hyperlink>, too.
 </TextBlock>
</Page>

 // Page1.xaml.cs
 ...
 namespace MyFirstXbapApp {
 public partial class Page1 : System.Windows.Controls.Page {
 public Page1() {
 InitializeComponent();
 }
 }
 }

Figure 1-9. A simple XBAP hosted in Internet Explorer 7

16 | Chapter 1: Hello, WPF

For example, let’s define page2.xaml as shown in Example 1-16.

Clicking on the hyperlink on page 1 navigates to page 2, as shown in Figure 1-10.

Notice in Figure 1-10 that the history for the back button is showing page 1, which is
where we were just before getting to page 2.

As you might imagine, there are many more topics to discuss to make your XBAPs
integrate with the browser and still provide the rich functionality we expect from
WPF applications. In addition, you can have any number of navigation windows in
your standalone WPF applications. We cover these topics and more in Chapter 11.

Content Models
Although the different kinds of WPF application types are useful, the core of any pre-
sentation framework is in the presentation elements themselves. In presentation sys-
tems of old, fundamentally we had “chunks of look and behavior” (often called
controls) and “containers of chunks of look and behavior.” In WPF, this character-
ization doesn’t really hold up very well. Many elements that provide their own con-
tent and behavior can also be containers of elements (and so on). As an example,
let’s take a look at a Button.

Example 1-16. Another simple page

<!-- Page2.xaml -->
<Page ... WindowTitle="Page2">
 <TextBlock FontSize="36">
 Hello and welcome to page 2.
 </TextBlock>
</Page>

Figure 1-10. XBAP and navigation history

Content Models | 17

The first thing that may surprise you about a WPF Button object is that you don’t
need to use a string as the content; it will take any .NET object. You’ve already seen
a string as a button’s content (see Example 1-17).

However, as Example 1-18 shows, you can also use an image (see Figure 1-11).

You can even use an arbitrary control, like a TextBox, as shown in Example 1-19 and
Figure 1-12.

Further, as you’ll see in Chapters 3 and 6, you can get fancy and show a collection of
nested elements in a Button or even nonvisual objects as the content of a Button. The
Button can take any object as content because it’s derived ultimately from a class
called ContentControl, as are many other WPF classes (e.g., Label, ListBoxItem,
ToolTip, CheckBox, RadioButton, and, in fact, Window itself).

Example 1-17. A button with string content

<Window ...>
 <Button Width="100" Height="100">Hi</Button>
</Window>

Example 1-18. A button with image content

<Window ...>
 <Button Width="100" Height="100">
 <Image Source="tom.png" />
 </Button>
</Window>

Figure 1-11. A button with image content

Example 1-19. A button with control content

<Window ...>
 <Button Width="100" Height="100">
 <TextBox Width="75">edit me</TextBox>
 </Button>
</Window>

18 | Chapter 1: Hello, WPF

A ContentControl knows how to hold anything that’s able to be rendered, not just a
string. A ContentControl gets its content from the Content property, so you could
specify a Button’s content like so (this is the longhand version of Example 1-17):

<Button Width="100" Height="100" Content="Hi" />

ContentControls are especially useful because you get all the behavior of the “thing”
(e.g., Button, Window, ListBoxItem), but you can display whatever you like in it with-
out having to build yourself a special class (e.g., ImageButton, TextBoxListBoxItem, etc.).

The content model is not relegated to just the ContentControl. For example, the
HeaderedContentControl is like a ContentControl, except it has two spots for content,
the header and the content. The GroupBox and TabItem controls both derive from the
HeaderedContentControl and both provide a header (i.e., the group title and the tab),
as well as content (i.e., the group contents and the tab contents). By using the con-
tent model, HeaderedContentControls allow any kind of content in either content
spot, allowing for much greater flexibility still within a simple model.

XAML Property Element Syntax
Although setting the Content property as an XML attribute works just fine for speci-
fying a string as a property, it doesn’t work at all well for specifying a subelement,
like the image example. For this reason, XAML defines the property element syntax,
which uses nested Element.Property elements for specifying objects as property val-
ues. For instance, Example 1-20 shows the property element syntax for the string set-
ting of a button’s content.

Example 1-21 shows the property element syntax using an image.

Figure 1-12. A button with control content

Example 1-20. Property element syntax with a string

<Button Width="100" Height="100">
 <Button.Content>Hi</Button.Content>
</Button>

Layout | 19

Because XML attributes can contain only one thing, property element syntax is espe-
cially useful when you’ve got more than one thing to specify. For example, you might
imagine a button with a string and an image defined, as in Example 1-22.

Although the property element syntax can be useful for this kind of thing, in this par-
ticular case it doesn’t work at all. This brings us to the second thing that may sur-
prise you about content containment in WPF: many content containers can take only
a single piece of content. For example, whereas a Button can take any old thing as
content, it can take only a single thing which, without additional instructions, it will
center and cause to fill up its entire client area. For more than one content element or
a richer layout policy, you’ll need a panel.

Layout
Taking another look at Example 1-22 with the TextBlock and the Image as content for
the Button, we don’t really have enough information to place them inside the area of
the button. Should they be stacked left to right or top to bottom? Should one be
docked on one edge and one docked to the other? How will things be stretched or
arranged if the button resizes? These are questions best answered with a panel.

A panel is a control that knows how to arrange its content. WPF comes with the fol-
lowing general-purpose panel controls:

Canvas
Arranges content by position and size with no automatic rearrangement when
the Canvas is resized

DockPanel
Arranges content according to the edge that each piece of content “docks” to,
except for the last, which fills the remaining area

Grid
Arranges content in rows and columns as specified by the developer

Example 1-21. Property element syntax with an image

<Button Width="100" Height="100">
 <Button.Content>
 <Image Source="tom.png" />
 </Button.Content>
</Button>

Example 1-22. You can’t have multiple things in a ContentControl

<Button Width="100" Height="100">
 <!-- WARNING: doesn't work! -->
 <Button.Content>
 <TextBlock>Tom: </TextBlock>
 <Image Source="tom.png" />
 </Button.Content>
</Button>

20 | Chapter 1: Hello, WPF

StackPanel
Arranges content top to bottom or left to right according to the orientation of
the panel

UniformGrid
Arranges content in a grid with the same number of rows and columns gener-
ated as needed to display the content

WrapPanel
Arranges things in a horizontal row until the next item won’t fit, in which case it
wraps to the next row

Grid Layout
The most flexible panel by far is the grid, which arranges content elements in rows
and columns, including the ability to span multiple rows and/or multiple columns,
as shown in Example 1-23.

Example 1-23 used the XAML property element syntax to define a grid with three
rows and three columns inside the RowDefinition and ColumnDefinition elements.
On each element, we’ve specified the Grid.Row and Grid.Column properties so that the
grid knows which elements go where (the grid can have multiple elements in the same
cell). One of the elements spans two rows and one spans two columns, as shown in
Figure 1-13.

Example 1-23. A sample usage of the Grid panel

<Window ...>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Button Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2">A</Button>
 <Button Grid.Row="0" Grid.Column="2">C</Button>
 <Button Grid.Row="1" Grid.Column="0" Grid.RowSpan="2">D</Button>
 <Button Grid.Row="1" Grid.Column="1">E</Button>
 <Button Grid.Row="1" Grid.Column="2">F</Button>
 <Button Grid.Row="2" Grid.Column="1">H</Button>
 <Button Grid.Row="2" Grid.Column="2">I</Button>
 </Grid>
</Window>

Layout | 21

Using the grid, we can be explicit about how we want to arrange an image with a text
caption (Example 1-24).

Figure 1-14 shows how the grid arranges the image and text for us.

Because we’re just stacking one element on top of another, we could’ve used the
stack panel, but the grid is so general-purpose that many WPF programmers find
themselves using it for most layout configurations.

XAML Attached Property Syntax
You may have noticed that in setting up the Grid.Row and Grid.Panel attributes of
the Button elements, we used another dotted syntax, similar to the property element
syntax, but this time on the attribute instead of on the element. This is the attached
property syntax, and it is used to set a property as associated with the particular ele-
ment (e.g., a Button), but as defined by another element (e.g., a Grid).

Figure 1-13. An example Grid panel in action

Example 1-24. Arranging an image and text in a grid

<Button Width="100" Height="100">
 <Button.Content>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Image Grid.Row="0" Source="tom.png" />
 <TextBlock
 Grid.Row="1"
 HorizontalAlignment="Center">Tom</TextBlock>
 </Grid>
 </Button.Content>
</Button>

22 | Chapter 1: Hello, WPF

The attached property syntax is used in WPF as an extensibility mechanism. We don’t
want the Button class to have to know that it’s being arranged in a Grid, but we do want
to specify Grid-specific attributes on it. If the Button was being hosted in a Canvas, the
Grid properties wouldn’t make any sense, so building Row and Column properties into the
Button class isn’t such a great idea. Further, when we define our own custom panel that
the WPF team never considered (e.g., HandOfCards), we want to be able to apply the
HandOfCards-related attached properties to arbitrary elements it contains.

This kind of extensibility is what the attached property syntax was designed for and
it is common when arranging content on a panel.

For the nitty-gritty of layout, including the other panels that I didn’t show, you’ll
want to read Chapter 3.

Controls
Although the layout panels provide the container, the controls are the important
things you’ll be arranging. So far, you’ve seen how to create instances of controls, set
properties, and handle events. You’ve also seen the basics of the content models that
make controls in WPF special. However, for the details of event routing, command
handling, mouse/keyboard input, and an enumeration of the controls in WPF, you’ll
want to check out Chapters 4 and 5. Further, for information about packaging up
custom UI and behavior, you’ll want to read Chapter 18.

Data Binding
Once we’ve got a set of controls and a way to lay them out, we still need to fill them
with data and keep that data in sync with wherever the data actually lives. (Controls
are a great way to show data but a poor place to keep it.) For example, imagine that
we’d like to build a WPF application for keeping track of people’s nicknames. Some-
thing like Figure 1-15 would do the trick.

Figure 1-14. A grid arranging an image and a text block

Data Binding | 23

In Figure 1-15, we’ve got two TextBox controls, one for the name and one for the
nickname. We’ve also got the actual nickname entries in a ListBox in the middle and
a Button to add new entries. We could easily build the core data of such an applica-
tion with a class, as shown in Example 1-25.

Figure 1-15. Data binding to a collection of custom types

Example 1-25. A custom type with data binding support

public class Nickname : INotifyPropertyChanged {
 // INotifyPropertyChanged Member
 public event PropertyChangedEventHandler PropertyChanged;
 void Notify(string propName) {
 if(PropertyChanged != null) {
 PropertyChanged(this, new PropertyChangedEventArgs(propName));
 }
 }

 string name;
 public string Name {
 get { return name; }
 set {
 name = value;
 Notify("Name"); // notify consumers
 }
 }

 string nick;
 public string Nick {
 get { return nick; }
 set {
 nick = value;
 Notify("Nick"); // notify consumers
 }
 }

 public Nickname() : this("name", "nick") { }
 public Nickname(string name, string nick) {
 this.name = name;
 this.nick = nick;
 }
}

24 | Chapter 1: Hello, WPF

This class knows nothing about data binding, but it does have two public properties
that expose the data, and it implements the standard INotifyPropertyChanged inter-
face to let consumers of this data know when it has changed.

In the same way that we have a standard interface for notifying consumers of objects
when they change, we also have a standard way to notify consumers of collections of
changes, called INotifyCollectionChanged. WPF provides an implementation of this
interface, called ObservableCollection, which we’ll use so that appropriate events are
fired when Nickname objects are added or removed (Example 1-26).

Around these classes, we could build nickname management logic that looks like
Example 1-27.

Notice that the window’s class constructor adds a click event handler to add a new
nickname and creates the initial collection of nicknames. However, the most useful
thing that the Window1 constructor does is set its DataContext property so as to make
the nickname data available for data binding.

Example 1-26. A custom collection type with data binding support

 // Notify consumers
 public class Nicknames : ObservableCollection<Nickname> { }

Example 1-27. Making ready for data binding

// Window1.xaml.cs
...
namespace DataBindingDemo {
 public class Nickname : INotifyPropertyChanged {...}
 public class Nicknames : ObservableCollection<Nickname> { }

 public partial class Window1 : Window {
 Nicknames names;

 public Window1() {
 InitializeComponent();
 this.addButton.Click += addButton_Click;

 // create a nickname collection
 this.names = new Nicknames();

 // make data available for binding
 dockPanel.DataContext = this.names;
 }

 void addButton_Click(object sender, RoutedEventArgs e) {
 this.names.Add(new Nickname());
 }
 }
}

Data Binding | 25

In WPF, data binding is about keeping object properties and collections of objects
synchronized with one or more controls’ views of the data. The goal of data binding
is to save you the time required to write the code to update the controls when the
data in the objects changes, and to update the data when the user edits the data in
the controls. The synchronization of the data to the controls depends on the
INotifyPropertyChanged and INotifyCollectionChanged interfaces that we’ve been
careful to use in our data and data collection implementations.

For example, because the collection of our example nickname data and the nickname
data itself both notify consumers when there are changes, we can hook up controls
using WPF data binding, as shown in Example 1-28.

This XAML lays out the controls as shown in Figure 1-15 using a dock panel to
arrange things top to bottom and a text block to contain the editing controls. The
secret sauce that takes advantage of data binding is the {Binding} values in the con-
trol attributes instead of hardcoded values. By setting the Text property of the
TextBox to {Binding Path=Name}, we’re telling the TextBox to use data binding to peek
at the Name property out of the current Nickname object. Further, if the data changes in
the Name TextBox, the Path is used to poke the new value back in.

The current Nickname object is determined by the ListBox because of the
IsSynchronizedWithCurrentItem property, which keeps the TextBox controls show-
ing the same Nickname object as the one that’s currently selected in the ListBox.
The ListBox is bound to its data by setting the ItemsSource attribute to {Binding}
without a Path statement. In the ListBox, we’re not interested in showing a single
property on a single object, but rather all of the objects at once.

But how do we know that both the ListBox and the TextBox controls are sharing the
same data? That’s where setting the dock panel’s DataContext comes in (back in
Example 1-27). In the absence of other instructions, when a control’s property is set
using data binding, it looks at its own DataContext property for data. If it doesn’t find

Example 1-28. An example data binding usage

<!-- Window1.xaml -->
<Window ...>
 <DockPanel x:Name="dockPanel">
 <TextBlock DockPanel.Dock="Top">
 <TextBlock VerticalAlignment="Center">Name: </TextBlock>
 <TextBox Text="{Binding Path=Name}" />
 <TextBlock VerticalAlignment="Center">Nick: </TextBlock>
 <TextBox Text="{Binding Path=Nick}" />
 </TextBlock>
 <Button DockPanel.Dock="Bottom" x:Name="addButton">Add</Button>
 <ListBox
 ItemsSource="{Binding}"
 IsSynchronizedWithCurrentItem="True" />
 </DockPanel>
</Window>

26 | Chapter 1: Hello, WPF

any, it looks at its parent and then its parent, and so on, all the way up the tree. Because
the ListBox and the TextBox controls have a common parent that has a DataContext
property set (the DockPanel), all of the data bound controls will share the same data.

XAML Markup Extensions
Before we take a look at the results of our data binding, let’s take a moment to dis-
cuss XAML markup extensions, which is what you’re using when you set an attribute
to something inside of curly braces (e.g., Text="{Binding Path=Name}"). Markup
extensions add special processing to XAML attribute values. For example, this:

<TextBox Text="{Binding Path=Name}" />

is just a shortcut for this (which you’ll recognize as the property element syntax):

<TextBox.Text>
 <Binding Path="Name" />
</TextBox.Text>

For a complete discussion of markup extensions, as well as the rest of the XAML
syntax, read Appendix A.

Data Templates
With the data binding markup syntax explained, let’s turn back to our example data
binding application, which so far doesn’t look quite like what we had in mind, as
seen in Figure 1-16.

It’s clear that the data is making its way into the application, because the currently
selected name and nickname are shown for editing. The problem is that, unlike the
TextBox controls, which were each given a specific field of the Nickname object to show,
the ListBox is expected to show the whole thing. Lacking special instructions, it’s call-
ing the ToString method of each object, which results in only the name of the type. To
show the data, we need to compose a data template, like the one in Example 1-29.

Figure 1-16. ListBox showing objects of a custom type without special instructions

Dependency Properties | 27

A data template is a set of elements that should be inserted somewhere. In our case,
we are specifying a data template to be inserted for each listbox item by setting the
ItemTemplate property. In Example 1-29, we’ve composed a data template from a
text block that flows together two other text blocks, each bound to a property on a
Nickname object separated by a colon, as shown back in Figure 1-15.

At this point, we’ve got a completely data-bound application. As data in the collec-
tion or the individual objects changes, the UI will be updated, and vice versa. How-
ever, there is a great deal more to say on this topic, including binding to XML and
relational data, master-detail binding, and hierarchical binding, which you’ll see in
Chapters 6 and 7.

Dependency Properties
Although our data source Nickname object made its data available via standard .NET
properties, we need something special to support data binding on the target ele-
ment. Even though the TextContent property of the TextBlock element is exposed
with a standard property wrapper, in order for it to integrate with WPF services like
data binding, styling, and animation, it also needs to be a dependency property. A
dependency property provides several features not present in .NET properties,
including the ability to inherit its value from a container element, provide for object-
independent storage (providing a potentially huge memory savings), and change
tracking.

Most of the time, you won’t have to worry about dependency properties versus .NET
properties, but when you need the details, you can read about them in Chapter 18.

Example 1-29. Using a data template

<ListBox
 ItemsSource="{Binding}"
 IsSynchronizedWithCurrentItem="True">

 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock>
 <TextBlock Text="{Binding Path=Name}" />:
 <TextBlock Text="{Binding Path=Nick}" />
 </TextBlock>
 </DataTemplate>
 </ListBox.ItemTemplate>

</ListBox>

28 | Chapter 1: Hello, WPF

Resources
Resources are named chunks of data defined separately from code and bundled with
your application or component. .NET provides a great deal of support for resources,
a bit of which we already used when we referenced tom.png from our XAML button
earlier in this chapter. WPF also provides special support for resources scoped to ele-
ments defined in the tree.

As an example, let’s declare some default instances of our custom Nickname objects in
XAML (see Example 1-30).

Notice the Window.Resources, which is property element syntax to set the Resources
property of the Window1 class. Here we can add as many named objects as we like,
with the name coming from the Key attribute and the object coming from the XAML
elements (remember that a XAML element is just a mapping to .NET class names).
In this example, we’re creating a Nicknames collection named names to hold three
Nickname objects, each constructed with the default constructor, and then setting
each of the Name and Nick properties.

Also notice the use of the StaticResource markup extension to reference the names
resource as the collection to use for data binding. With this XAML in place, our win-
dow construction reduces to the code shown in Example 1-31.

Example 1-30. Declaring objects in XAML

<!-- Window1.xaml -->
<Window ... xmlns:local="clr-namespace:DataBindingDemo" />

 <Window.Resources>
 <local:Nicknames x:Key="names">
 <local:Nickname Name="Don" Nick="Naked" />
 <local:Nickname Name="Martin" Nick="Gudge" />
 <local:Nickname Name="Tim" Nick="Stinky" />
 </local:Nicknames>
 </Window.Resources>

 <DockPanel DataContext="{StaticResource names}">
 <TextBlock DockPanel.Dock="Top" Orientation="Horizontal">
 <TextBlock VerticalAlignment="Center">Name: </TextBlock>
 <TextBox Text="{Binding Path=Name}" />
 <TextBlock VerticalAlignment="Center">Nick: </TextBlock>
 <TextBox Text="{Binding Path=Nick}" />
 </TextBlock>
 ...
 </DockPanel>
</Window>

Resources | 29

Now instead of creating the collection of names, we can pull it from the resources
with the FindResource method. Just because this collection was created in XAML
doesn’t mean that we need to treat it any differently than we treated it before, which
is why the Add button event handler is the exact same code. Also, there’s no need to
set the data context on the dock panel because that property was set in the XAML.

For the full scoop on resources, including resource scoping and lookup, static and
dynamic binding to resources, and using resources for theming and skinning, read
Chapter 12.

XAML Namespace Mapping Syntax
Before we go on with resource applications, we need to discuss a new XAML syntax
that’s come up: the mapping syntax. This provides the ability to bring in types not
already known by the XAML compiler (in fact, the XAML compiler knows about
only a couple of types). Our use of the mapping syntax looks like Example 1-32.

Example 1-31. Finding a resource in code

public partial class Window1 : Window {
 Nicknames names;

 public Window1() {
 InitializeComponent();
 this.addButton.Click += addButton_Click;

 // get names collection from resources
 this.names = (Nicknames)this.FindResource("names");

 // no need to make data available for binding here
 //dockPanel.DataContext = this.names;
 }

 void addButton_Click(object sender, RoutedEventArgs e) {
 this.names.Add(new Nickname());
 }
}

Example 1-32. XAML mapping syntax

<Window ... xmlns:local="clr-namespace:DataBindingDemo" />

 <Window.Resources>
 <local:Nicknames x:Key="names">
 <local:Nickname Name="Don" Nick="Naked" />
 ...
 </local:Nicknames>
 </Window.Resources>
 ...
</Window>

30 | Chapter 1: Hello, WPF

When bringing a new CLR namespace into XAML, we use the XML namespace prefix
mapping syntax. If we’ve got control of the CLR assembly in question, we can add an
attribute to tag it with any URI we like. Otherwise, we have to use a specific format:

xmlns:myPrefix="clr-namespace:MyNamespace[;assembly=MyAssembly]"

The XML prefix is how we access the CLR namespace when referring to a CLR type
in a XAML document (e.g., local:Nickname). I’ve chosen the XML namespace local
in this case because the CLR namespace to which I’m referring must be part of the
assembly being compiled along with the XAML in question. You can import CLR
namespaces for another assembly by specifying the optional assembly attribute as
part of the mapping. For a more thorough discussion of the namespace mapping syn-
tax, including the attribute you can use to tag your CLR assemblies with URIs for
more seamless mapping into XAML, read Appendix A.

Styles
One of the major uses for resources is to specify styles. A style is a set of property/
value pairs to be applied to one or more elements. For example, recall the two
TextBlock controls from our Nickname sample, each of which was set to the same
VerticalAlignment (Example 1-33).

If we wanted to bundle the VerticalAlignment setting into a style, we could do this
with a Style element in a Resources block (Example 1-34).

Example 1-33. Multiple TextBlock controls with the same settings

<!-- Window1.xaml -->
<Window ...>
 <DockPanel ...>
 <TextBlock ...>
 <TextBlock VerticalAlignment="Center">Name: </TextBlock>
 <TextBox Text="{Binding Path=Name}" />
 <TextBlock VerticalAlignment="Center">Nick: </TextBlock>
 <TextBox Text="{Binding Path=Nick}" />
 </TextBlock>
 ...
 </DockPanel>
</Window>

Example 1-34. An example TextBlock style

<Window ...>
 <Window.Resources>
 ...
 <Style x:Key="myStyle" TargetType="{x:Type TextBlock}">
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="2" />

Animation | 31

The Style element is really just a named collection of Setter elements for a specific
target type (and specified with the Type markup extension). The new TextBlock style
centers the vertical alignment property and, just for fun, sets the margin, font width,
and font style. With the style in place, you can use it to set the Style property of any
TextBlock that references the style resource. Figure 1-17 illustrates the use to which
we’ve put this style.

Styles provide one great way to set the look of a control without building a custom
control, by merely setting properties. There’s much more on this topic in Chapter 8.

Animation
If you’d like to apply property changes to a control (or other visual element) over
time, you can do so with styles that include animation information, which is dis-
cussed in Chapter 16 (although Figure 1-18 is a small taste of what WPF animations
can produce).

 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="FontStyle" Value="Italic" />
 </Style>
 </Window.Resources>
 <DockPanel ...>
 <TextBlock ...>
 <TextBlock Style="{StaticResource myStyle}">Name: </TextBlock>
 <TextBox Text="{Binding Path=Name}" />
 <TextBlock Style="{StaticResource myStyle}">Nick: </TextBlock>
 <TextBox Text="{Binding Path=Nick}" />
 </TextBlock>
 ...
 </DockPanel>
</Window>

Figure 1-17. Named style in action on two TextBlock controls

Example 1-34. An example TextBlock style (continued)

32 | Chapter 1: Hello, WPF

Control Templates
In addition to changing a control’s look by manipulating properties, you can replace
it with something completely different by setting a control’s Template property.

In Example 1-35, we’ve decided that our Add button is a yellow ellipse, as shown in
Figure 1-19.

The template of a control in WPF is what defines the look, whereas the code defines
the behavior. The default template comes from the system-scope resources (as
described in Chapter 12), but if you don’t like that one, you can replace it with what-
ever you like, using a content presenter to drop in the content provided by the devel-
oper using your control. However, the behavior remains the same (e.g., if you click
on the ellipse-shaped button in Figure 1-19, a Click event is still fired). We explore in
detail the power of replacing the look of a control in Chapter 9.

Figure 1-18. Buttons with animated glow (Color Plate 1)

Example 1-35. Replacing a control’s look completely with a control template

<Button DockPanel.Dock="Bottom" x:Name="addButton" Content="Add">
 <Button.Template>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Ellipse Width="128" Height="32" Fill="Yellow" Stroke="Black" />
 <ContentPresenter
 VerticalAlignment="Center" HorizontalAlignment="Center" />
 </Grid>
 </ControlTemplate>
 </Button.Template>
</Button>

Figure 1-19. A yellow ellipse button

Graphics | 33

Graphics
When building up a control’s template, you’ll likely build it with a set of graphics
primitives that WPF provides, including rectangles, polygons, lines, ellipses, and so
on. WPF also lets you affect the way it renders graphics in any element, offering facil-
ities that include bordering, rotating, or scaling another shape or control. WPF’s sup-
port for graphics is engineered to fit right into the content model we’re already
familiar with, as shown in Example 1-36, from Chapter 13.

Here we’ve got three ellipses and a path composed inside a canvas that is hosted
inside a stack panel with a text block that, when scaled via the LayoutTransform prop-
erty on the button, produces Figure 1-20.

Notice that there’s nothing special about the graphics primitives in XAML; they’re
declared and integrated as content just like any of the other WPF elements we’ve
discussed. The graphics and the transformation are integrated into the same presenta-
tion stack as the rest of WPF, which is a bit of a difference for experienced User/GDI
programmers.

For a complete discussion of how graphics primitives, retained drawings, color, lines,
brushes, and transformations happen in WPF, both declaratively and in code, and
for an introduction to 3D and video, read Chapter 13.

Example 1-36. Adding graphics to a Button

<Button>
 <Button.LayoutTransform>
 <ScaleTransform ScaleX="3" ScaleY="3" />
 </Button.LayoutTransform>
 <StackPanel Orientation="Horizontal">
 <Canvas Width="20" Height="18" VerticalAlignment="Center">
 <Ellipse Canvas.Left="1" Canvas.Top="1" Width="16" Height="16"
 Fill="Yellow" Stroke="Black" />
 <Ellipse Canvas.Left="4.5" Canvas.Top="5" Width="2.5" Height="3"
 Fill="Black" />
 <Ellipse Canvas.Left="11" Canvas.Top="5" Width="2.5" Height="3"
 Fill="Black" />
 <Path Data="M 5,10 A 3,3 0 0 0 13,10" Stroke="Black" />
 </Canvas>
 <TextBlock VerticalAlignment="Center">Click!</TextBlock>
 </StackPanel>
</Button>

Figure 1-20. A scaled button with a collection of graphics primitives

34 | Chapter 1: Hello, WPF

3D
Graphics in WPF are not limited to 2D; Figure 1-21 shows an example of a figure
that was defined using WPF’s 3D capabilities.

For an introduction to 3D and how it integrates with your WPF applications, you’ll
want to read Chapter 17.

Documents and Printing
The document support in WPF is about flowing all the different content types you’ve
seen in the rest of this chapter, along with special text-specific content types, into a
seamless whole, a small sample of which is shown in Figure 1-22.

Figure 1-21. 3D plot of data (Color Plate 2)

Figure 1-22. A flowing document

Where Are We? | 35

The text-specific content support is provided with the flow document and related ele-
ments that provide advanced typography; adaptive, flow-based layout; spellchecking;
hyphenation; and more, as described in Chapter 14.

In addition, the base of the flow document supports printing, as do the rest of the
WPF visual elements, via the XML Paper Specification (XPS), as covered in
Chapter 15.

Where Are We?
WPF applications have a great deal of power, at which this chapter can only hint.
The base services of the application aren’t too surprising, but the support for page-
based navigation and browser hosting certainly adds a new capability for Windows
applications, further enhanced with .NET 2.0 ClickOnce support.

Building your application is a matter of grouping controls in containers—either sin-
gle content containers, like windows or buttons, or multiple content containers that
provide layout capabilities, like the canvas and the grid.

When bringing your controls together, you’ll want to populate them with data that’s
synchronized with the in-memory home of the data, which is what data binding is
for, and keep them pretty, which is what styles are for. If you want to declare data or
styles in your XAML, you can do so using resources, which are just arbitrarily named
objects that aren’t used to render the WPF UI directly.

If no amount of data or style property settings makes you satisfied with the look of
your control, you can replace it completely with control templates, which can com-
prise other controls or graphics primitives. In addition, you can apply graphics
operations, like rotating, scaling, or animation, to 2D or 3D graphics primitives or
controls in WPF’s integrated way. These elements can further be gathered into doc-
uments for viewing or printing.

36

Chapter 2CHAPTER 2

Applications and Settings 2

A WPF application is a Windows process in which you have an instance of the WPF
Application object. The Application object provides lifetime services and integration
with ClickOnce deployment. Between application sessions, you’ll want to be able to
keep application and user settings in a way that integrates well with WPF applica-
tions. All of these topics are the focus of this chapter.

On the other hand, if you’re interested in XML Browser Applications (XBAPs)—
applications hosted in the browser and deployed over the Web—read Chapter 11.

Application Lifetime
In the Windows sense, an “application” is an address space and at least one thread of
execution (a.k.a. a “process”). In the WPF sense, an application is a singleton object
that provides services for UI components and UI programmers in the creation and
execution of a WPF program. More specifically, in WPF, an application is an
instance of the Application class from the System.Windows namespace.

Explicit Application Creation
Example 2-1 shows code for creating an instance of the Application class.

Example 2-1. Creating an application explicitly

using System;
using System.Windows; // the home of the Application class

class Program {
 [STAThread]
 static void Main() {
 Application app = new System.Windows.Application();
 Window1 window = new Window1();
 window.Show();
 app.Run();
 }
}

Application Lifetime | 37

Here, we’re creating an application inside an STA thread,* creating a window and
showing it, and then running the application. While the application is running, WPF
processes Windows messages and routes events to WPF UI objects as necessary.
When the Run method returns, messages have stopped being routed and generally
don’t start again (unless you show a modal window after the Run method returns, but
that’s not something you’ll usually do). During its lifetime, the application provides
various services.

Application Access
One of the services the Application class provides is access to the current instance.
Once an instance of the Application class is created,† it’s available via the Current
static property of the Application class. For example, the code in Example 2-1 is
equivalent to the code in Example 2-2.

Here, in the process’s entry point, we’re creating an application, creating and show-
ing the main window, and then running the application. Creation of the Application
object fills the static Application.Current property. Access to the current application
is very handy in other parts of your program where you don’t create the application
or when you let WPF create the application for you itself.

* The “Single Threaded Apartment” (STA) was invented as part of the native Component Object Model
(COM) to govern the serialization of incoming COM calls. All Microsoft presentation frameworks, native or
managed, require that they be run on a thread initialized as an STA thread so that they can integrate with
one another and with COM services (e.g., drag-and-drop).

† WPF makes sure that, at most, one Application object is created per application domain. For a discussion
of .NET application domains, I recommend Essential .NET, by Don Box with Chris Sells (Addison-Wesley
Professional).

Example 2-2. Implicitly filling in the Application.Current property

using System;
using System.Windows;

class Program {
 [STAThread]
 static void Main() {
 // Fills in Application.Current
 Application app = new System.Windows.Application();

 Window1 window = new Window1();
 window.Show();

 Application.Current.Run(); // same as app.Run()
 }
}

38 | Chapter 2: Applications and Settings

Implicit Application Creation
Because a Main method that creates and runs an application is pretty darn common,
WPF can provide the process’s entry point for you. WPF projects generally desig-
nate one XAML file that defines the application. For example, if we had defined our
application in a XAML file with code behind, it would look like Example 2-3.

Notice that Example 2-3 is defining a custom application class in this code
(ImplicitAppSample.App) that derives from the Application class. In the OnStartup
override, we’re only creating a window and showing it, assuming WPF is going to
create the Main for us that creates the instance of the App class and calls the Run
method (which calls the OnStartup method). The way that WPF knows which XAML
file contains the definition of the Application class is that the Build Action is set to
ApplicationDefinition, as shown in Figure 2-1.

The ApplicationDefinition Build Action lets WPF know which class is our applica-
tion and hooks it up appropriately in a Main method it generates for us, which saves
us from writing several lines of boilerplate code.

Example 2-3. Declaring an application in XAML

<!-- App.xaml -->
<Application
 x:Class="ImplicitAppSample.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" />

// App.xaml.cs
using System;
using System.Windows;

namespace ImplicitAppSample {
 public partial class App : System.Windows.Application {
 protected override void OnStartup(StartupEventArgs e) {
 // let the base class have a crack
 base.OnStartup(e);

 // WPF itself is providing the Main that creates an
 // Application and calls the Run method; all we have
 // to do is create a window and show it
 Window1 window = new Window1();
 window.Show();
 }
 }
}

Application Lifetime | 39

For msbuild aficionados, the standard XAML Build Action setting of
Page looks like this in the .csproj file:

<Project ...>
 ...
 <ItemGroup>

<Page Include="App.xaml" />
 <Compile Include="App.xaml.cs">
 <DependentUpon>App.xaml</DependentUpon>
 <SubType>Code</SubType>
 </Compile>
 ...
 </ItemGroup>
 ...
</Project>

When we switch the Build Action to ApplicationDefinition, it looks
like this:

<Project ...>
 ...
 <ItemGroup>

<ApplicationDefinition Include="App.xaml" />
 <Compile Include="App.xaml.cs">
 <DependentUpon>App.xaml</DependentUpon>
 <SubType>Code</SubType>
 </Compile>

Figure 2-1. Setting the Build Action for the application definition XAML file

40 | Chapter 2: Applications and Settings

 ...
 </ItemGroup>
 ...
</Project>

This setting causes the WPF build tasks to generate the following
code:

namespace ImplicitAppSample {
 public partial class App : Application {
 [System.STAThreadAttribute()]
 [DebuggerNonUserCodeAttribute()]
 public static void Main() {
 ImplicitAppSample.App app =
 new ImplicitAppSample.App();
 app.Run();
 }
 }
}

Except for the debugger attribute (which stops Visual Studio from
stepping into this method when debugging), this is equivalent to what
we were writing by hand a few code samples ago.

If our window class is defined in a XAML file itself (as most likely it will be), we can
save ourselves from overriding the OnStartup method by setting the StartupUri prop-
erty in the application’s XAML file (see Example 2-4).

The combination of setting the Build Action of the application’s XAML file to
ApplicationDefinition and the StartupUri property provides the following features:

• Creating an instance of the Application object and setting it as the value of the
Application.Current property

• Creating and showing an instance of the UI defined in the XAML designated in
the StartupUri property

• Setting the Application object’s MainWindow property

• Calling the Application object’s Run method, keeping the application running
until the main window is closed

This set of features makes more sense when we get a handle on what the “main win-
dow” is.

Example 2-4. Setting the StartupUri on the application

<!-- App.xaml -->
<Application
 x:Class="ImplicitAppSample.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml" />

Application Lifetime | 41

Top-Level Windows
A top-level window is a window that is not contained within or owned by another
window (window ownership is discussed in more detail later). A WPF application’s
main window is the top-level window that is set in the MainWindow property of the
Application object. This property is set by default when the first instance of the
Window class is created and the Application.Current property is set. In other words,
by default, the main window is the top-level window that’s created first after the
application itself has been created. If you like, you can override this default by set-
ting the MainWindow property manually.

In addition to the main window, the Application class provides a list of top-level
windows from the Windows property. This is useful if you’d like to implement a Win-
dow menu, like the one in Figure 2-2.

To implement the Window menu, we first start with a MenuItem element:

<!-- Window1.xaml -->
<Window ...>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition />
 <RowDefinition Height="auto" />
 </Grid.RowDefinitions>

Figure 2-2. Managing the top-level windows exposed by Application

42 | Chapter 2: Applications and Settings

 <Menu>
 <MenuItem Header="Window" x:Name="windowMenu">
 <MenuItem Header="dummy item" />
 </MenuItem>
 </Menu>
 </Grid>
</Window>

MenuItem is a HeaderedItemControl (as described in Chapter 5), which means that it
has header content that we’ll use to hold the name of the menu item (“Window”),
and subcontent that we’ll use to hold the menu items for each top-level window.
Notice the use of a dummy subitem to start with. Without this dummy item, you
won’t be able to get notification that the user has asked to show the menu items
(whether via mouse or via keyboard).

To populate the Window menu, we’ll handle the menu item’s SubmenuOpened event:

public partial class Window1 : Window {
 ...
 public Window1() {
 InitializeComponent();

 windowMenu.SubmenuOpened += windowMenu_SubmenuOpened;
 }

 void windowMenu_SubmenuOpened(object sender, RoutedEventArgs e) {
 windowMenu.Items.Clear();
 foreach (Window window in Application.Current.Windows) {
 MenuItem item = new MenuItem();
 item.Header = window.Title;
 item.Click += windowMenuItem_Click;
 item.Tag = window;
 item.IsChecked = window.IsActive;
 windowMenu.Items.Add(item);
 }
 }

 void windowMenuItem_Click(object sender, RoutedEventArgs e) {
 Window window = (Window)((MenuItem)sender).Tag;
 window.Activate();
 }
}

When the SubmenuOpened event is triggered, we use the Application object’s Windows
property to get a list of each top-level Window, creating a corresponding MenuItem for
each Window.

For those of you already steeped in data binding and data templates
who are wondering why we’re populating the Window menu manu-
ally, it’s because the WindowCollection class that the Windows property
returns doesn’t provide notifications when it changes, so once the
Window menu is populated initially, there’s no way to keep it up-to-
date. Maybe next version...

Application Lifetime | 43

Application Shutdown Modes
Some applications work naturally with the idea of a single main window. For example,
many applications (drawing programs, IDEs, Notepad, etc.) have a single top-level win-
dow that controls the lifetime of the application itself (i.e., when the main window goes
away, the application shuts down). On the other hand, some applications have multiple
top-level windows or some other kind of lifetime control that’s independent of a single
main window.* You can specify when your application shuts down by setting the appli-
cation’s ShutdownMode property to one of the values of the ShutdownMode enumeration:

namespace System.Windows {
 public enum ShutdownMode {
 OnLastWindowClose = 0, // default
 OnMainWindowClose = 1,
 OnExplicitShutdown = 2,
 }
}

The OnMainWindowClose value is useful when you’ve got a single top-level window,
and the OnLastWindowClose value is useful for multiple top-level windows (and is the
default). In either of these cases, in addition to the automatic application shutdown
the ShutdownMode policy describes, an application can also be shut down manually by
calling the Application object’s Shutdown method. However, in the case of
OnExplicitShutdown, the only way to stop a WPF application is by calling Shutdown:

public partial class Window1 : System.Windows.Window {
 ...
 void shutdownButton_Click(object sender, RoutedEventArgs e) {
 Application.Current.Shutdown();
 }
}

You can change the shutdown mode in code whenever you like, or you can set it in
the application definition XAML:

<Application
 x:Class="AppWindowsSample.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml"
 ShutdownMode="OnExplicitShutdown" />

Of course, there are a number of ways to shut down a Windows pro-
cess. The Application.Shutdown method is a nice way of doing it by
closing the top-level windows and returning from the Run method.
This lets the windows involved get their Closing and Closed notifica-
tions, although canceling the shutdown in the Closing event doesn’t
actually stop the application shutdown process.

* For example, if an Office application is serving OLE objects, closing the windows will not cause the process
to stop until those OLE objects are no longer needed.

44 | Chapter 2: Applications and Settings

Application Events
You can best see the life cycle of a standard application in the set of events that it
exposes:*

• Startup

• Activated

• Deactivated

• DispatcherUnhandledException

• SessionEnding

• Exit

Startup event

The Application object’s Startup event is fired when the application’s Run method is
called, and it is a useful place to do application-wide initialization, including the
handling of command-line arguments, which are passed in the StartupEventArgs:

void App_Startup(object sender, StartupEventArgs e) {
 for (int i = 0; i != e.Args.Length; ++i) {
 // do something useful with each e.Args[i]
 ...
 }
}

Activated and Deactivated events

The Activated event is called when one of the application’s top-level windows is acti-
vated (e.g., via a mouse click or Alt-Tab). Deactivated is called when your application is
active and another application’s top-level window is activated. These events are handy
when you want to stop or start some interactive part of your application:

void App_Activated(object sender, EventArgs e) {
 ResumeGame();
}

void App_Deactivated(object sender, EventArgs e) {
 PauseGame();
}

DispatcherUnhandledException event

The application’s dispatcher is an object that routes events to the correct place, includ-
ing unhandled exceptions. In the event that you’d like to handle an exception otherwise
unhandled in your application—maybe to give the user a chance to save his current
document and exit—you can handle the DispatcherUnhandledException event:

* Navigation events aren’t listed here, but are discussed in Chapter 11.

Application Lifetime | 45

void App_DispatcherUnhandledException(
 object sender, DispatcherUnhandledExceptionEventArgs e) {

 string err = "Oops: " + e.Exception.Message);

 MessageBox.Show(err, "Exception", MessageBoxButton.OK);

 // Only useful if you've got some way of guaranteeing that
 // your app can continue reliably in the face of an exception
 // without leaving this AppDomain in an unreliable state...
 //e.Handled = true; // stop exception from bringing down the app
}

The Exception property of the DispatcherUnhandledExceptionEventArgs event argu-
ment is useful to communicate to your users what happened, whereas the Handled
property is useful to stop the exception from actually bringing down the application
(although this is a dangerous thing to do and can easily result in data loss).

SessionEnding event

The SessionEnding event is called when the Windows session itself is ending (e.g., in
the event of a shutdown, logoff, or restart):

void App_SessionEnding(object sender, SessionEndingCancelEventArgs e) {
 if (MessageBox.Show(

e.ReasonSessionEnding.ToString(),
 "Session Ending",
 MessageBoxButton.OKCancel) == MessageBoxResult.Cancel) {
 e.Cancel = true; // stop the session from ending
 }
}

The ReasonSessionEnding property of the SessionEndingCancelEventArgs event argu-
ment is one value in the ReasonSessionEnding enumeration:

namespace System.Windows {
 public enum ReasonSessionEnding {
 Logoff = 0,
 Shutdown = 1,
 }
}

The Cancel property is useful if you’d like to stop the session from ending, although
this is considered rude, and more progressive versions of Windows (like Vista) may
not let you change its decision to end a session at all.

Exit event

The Exit event is called when the application is actually exiting, whether the last
window has gone away, the Application.Shutdown method is called, or the session is
ending. One of the overloads of the Shutdown method allows the programmer to pass
an integer exit code, which is ultimately exposed by the process for use by your

46 | Chapter 2: Applications and Settings

favorite Win32 process examination APIs. By default, this value is zero, but you can
observe or override it in the handlers for this event:

void App_Exit(object sender, ExitEventArgs e) {
 e.ApplicationExitCode = 452; // keep 'em guessing...
}

Application Instancing
While we’ve just been talking about the lifetime of an application, things get a bit
more interesting when you take into account that multiple instances of a single appli-
cation can be running at any one time simply because the user can double-click on
the same EXE multiple times. In fact, the default behavior in Windows and WPF
does nothing to hamper or support multiple instances of the same application. For
example, if we double-click on the AppWindowsSample.exe from Figure 2-2 more
than once, we get more than one instance, as Figure 2-3 shows.

Figure 2-3. Multiple instance applications

Application Lifetime | 47

In Figure 2-3, we’ve got several top-level windows, some associated with each of
three instances of the application. Sometimes more than one instance of a single
application is a good thing. However, sometimes it just confuses users. For example,
in Figure 2-3, even though we’ve got a Window menu, only the windows associated
with each instance of the application are shown, which can be confusing as heck to
the poor user faced with such an application.

Single instance applications

If you’d like your application to be single instance, it’s easy to detect an existing
instance and shut down any subsequent instances (see Example 2-5).

In Example 2-5, the key is to access a Windows mutex with a session-wide unique
name so that we can tell whether it was already created by an initial instance or
whether we’re the initial instance. The mutex name we’re using is one we pick to be
sufficiently unique for our needs. Once the mutex has been created, it’ll live for the
life of the WPF Application object itself, which will live for the life of the process, so
if we’re not the first one to create the mutex, we shut down our application, causing
our process to exit.

However, it’s at this point that we realize that single instance detection isn’t the only
feature we want; we also want the following:

• Passing command-line arguments to the initial instance (e.g., in case a subse-
quent instance was passed a filename that the user would like opened)

• Activating the main window of the initial instance

• Dealing properly with multiple users logging into a single computer (even the same
user logged in multiple times), giving each login an instance of the application

These are services that are not trivial to implement and we’d really love it if .NET
provided this functionality for us. The good news is that it does. The bad news is that
it’s provided only as part of the .NET 2.0 Visual Basic support for Windows Forms.

Example 2-5. Very simple existing instance detection

public partial class App : System.Windows.Application {
 Mutex mutex;
 protected override void OnStartup(StartupEventArgs e) {
 base.OnStartup(e);

 // Check for existing instance
 string mutexName = "MyCompanyName.MyAppName";
 bool createdNew;
 mutex = new Mutex(true, mutexName, out createdNew);

 // If there is an existing instance, shut down this one
 if(!createdNew) { Shutdown(); }
 }
}

48 | Chapter 2: Applications and Settings

If you’d like to take advantage of robust single instance management, you have to
load the Microsoft.VisualBasic assembly, and you have an interesting integration
challenge ahead of you, as both Visual Basic’s support for single instance manage-
ment and WPF want to be “the” application. However, it is possible and you get to
leverage Other People’s Code (OPC), of which I’m a big fan, especially when the
“other people” are a multibillion-dollar corporation with a record of framework
maintenance and upgrades.* For an example of how to integrate single instance
detection from Visual Basic into WPF, check out the “Single Instance Detection”
sample in the Windows Platform SDK.†

Other Application Services
In addition to what we’ve already discussed, the Application class provides access to
app-level resources and navigation services. Chapter 12 discusses resources and
Chapter 11 discusses navigation. The other major service that WPF applications sup-
port is ClickOnce deployment, which we’ll discuss right now.

Application Deployment
For the purposes of demonstration, let’s build something vital for procrastinators the
world over: an application to generate excuses. The application was started with the
“Windows Application (WPF)” project template in Visual Studio 2005 and was
implemented with some very simple code. When you run it, it gives you an excuse
from its vast database, as shown in Figure 2-4.

* Whether Microsoft has a “good” record of framework maintenance and updates, I’ll leave to you to decide....

† Available online at http://msdn2.microsoft.com/en-us/library/ms771662.aspx (http://tinysells.com/85).

Figure 2-4. A WPF excuse-generation application

Application Deployment | 49

Simple Publishing
For anyone to use this wonderful application, it must be published. The simplest
way to publish your WPF application is by right-clicking on the project in the Solu-
tion Explorer and choosing the Publish option, which will bring up the first page of
the Publish Wizard (shown in Figure 2-5).

Figure 2-5 asks you to choose where you’d like to deploy your application, including
to the disk, to a network share, to an FTP server, or to a web site. By default, the
Publish Wizard will assume you want to publish to the Publish subdirectory of your
project directory. Clicking the Next button yields Figure 2-6.

Because we’ve chosen to publish to something besides a web site, the Publish Wiz-
ard wants to know how users will access your published application—in other
words, from a URL, from a UNC path, or from some optical media. (If you choose to
publish to a web site, the only way to access the application is from a URL, so it
won’t bother to ask.) We’d like to test web deployment, so we pick that option and
leave the default URL alone. Clicking Next yields Figure 2-7.

For WPF applications, Figure 2-7 lets us choose whether we’d like this application to
be made available online (when the computer is able to connect to the application’s
URL) as well as offline (when the computer can’t connect to the URL), or whether
you’d like the application to be only available online. These two options corre-
spond to the ClickOnce terms locally installed and online only, respectively.

Figure 2-5. Publish Wizard publish location

50 | Chapter 2: Applications and Settings

Figure 2-6. Publish Wizard installation options

Figure 2-7. Install mode in the Publish Wizard

Application Deployment | 51

The job of the Publish Wizard is to bundle up the files needed to deploy an appli-
cation using ClickOnce, including the manifest files that ClickOnce needs to
deploy the application to a client machine after it’s been published.

This example assumes a standalone application, which provides its
own host window. WPF also supports the XBAP application type,
which is an application composed of one or more pages and hosted in
Internet Explorer 6+. You can also publish an XBAP via ClickOnce
from within Visual Studio, but the options are different. Chapter 11
discusses XBAP creation, publication, and deployment details.

Leaving the default “online or offline” option and clicking the Finish button yields
Figure 2-8.

Figure 2-8 reminds us what we get with a locally installed ClickOnce application (i.e.,
the application will appear in the Start menu and in the Add or Remove Programs
Control Panel). Clicking Finish causes Visual Studio to publish the application to the
filesystem, including a publish.htm file that you can use to test deployment. If you
happen to have an IIS application set up in the same folder to which Visual Studio
publishes, it will launch the publish.htm file for you, as shown in Figure 2-9.

For simple needs, this is the complete experience for publishing a WPF ClickOnce
locally installed application.

Figure 2-8. A summary of the chosen Publish options

52 | Chapter 2: Applications and Settings

The User Experience
The user experience for running a ClickOnce locally installed application begins with
a web page, such as the one shown in Figure 2-9, that includes a link to install the
ClickOnce application. Clicking the link for the first time shows a download
progress dialog similar to Figure 2-10.

Once the metadata file describing the application deployment settings has been
downloaded (this file is called the application manifest), it will be checked for a

Figure 2-9. The Visual Studio-generated HTML file for testing ClickOnce applications

Figure 2-10. Progress dialog for checking the application manifest

Application Deployment | 53

certificate, which is extra information attached to the application that identifies a val-
idated publisher name. ClickOnce requires all published applications to be signed,
so Visual Studio will generate a certificate file for you as part of the initial publica-
tion process if you haven’t already provided one.

If the certificate used to sign the application manifest identifies a publisher that is
already approved to install the application on the user’s machine (such as from a pre-
vious version or a IT-administered group policy), the application will be run without
further ado, as shown at the beginning of this chapter in Figure 2-4.

If, on the other hand, the publisher’s certificate cannot be verified or is not yet trusted
to run the application in question, a dialog similar to Figure 2-11 will be presented.

Figure 2-11 displays the name of the application, the source of the application, and
the publisher of the application according to the certificate (or “Unknown Pub-
lisher” if the certificate could not be verified). It also lists a summary of the reasons
this dialog is being shown, along with a link to more detailed warning information.
However, such information will likely be ignored by the user choosing between the
Install and Don’t Install buttons, from which the user will choose depending on the
level of trust she has for the publisher she sees in the Security Warning dialog.

If the user chooses Don’t Install, no application code will be downloaded or exe-
cuted. If she chooses Install, the application is downloaded, added to the Start menu,
and added to the Add or Remove Programs Control Panel, all under the umbrella of
the progress dialog shown in Figure 2-12, after which the application is executed.

Figure 2-11. The Application Install dialog with an unknown publisher

54 | Chapter 2: Applications and Settings

Subsequent runs of the same version of the application, as launched from either a
web site or the Start menu, will not ask for any additional user input (although
they may show a dialog if checking for updates), but will launch the installed appli-
cation directly.

WPF ClickOnce Specifics
There are a great number of additional details to ClickOnce application deployment,
including security considerations, command-line handling, updating and rollback,
prerequisite installation, access to external information sources, and certificate man-
agement, just to name a few. All of these details are beyond the scope of this book
and are covered in great detail by other sources.* However, following are some specif-
ics to standalone and XBAP ClickOnce deployment you might like to see all in one
place.

Standalone WPF applications deployed using ClickOnce:

• Can implement the main window with Window or NavigationWindow (although
only the former has a project template in Visual Studio—the “Windows Applica-
tion [WPF]” template)

• Can be online-only or online/offline

• If installed online/offline, can integrate with the Start menu, and can be rolled
back and uninstalled

• Must set “full trust” in the project’s Security settings (the Window class demands
this)

Figure 2-12. Progress dialog for installing a locally installed ClickOnce application

* The SDK does a pretty good job, as does Smart Client Deployment with ClickOnce: Deploying Windows
Forms Applications with ClickOnce, by Brian Noyes (Addison-Wesley Professional).

Settings | 55

XBAP applications deployed using ClickOnce:

• Provide their content with one or more Page objects to be hosted in the browser

• Must be online-only to deploy with ClickOnce

• There can be no “Security Warning” dialog, so must not attempt to elevate per-
missions beyond what is provided already on the client’s machine

• No custom pop-up windows are allowed (e.g., no dialogs); can use standard
page navigation, page functions, and message boxes instead

• Designated as XBAP by setting the HostInBrowser property to True in the project
file (will be set by the “XAML Browser Application (WPF)” project template in
Visual Studio)

For the details of navigation-based applications and XBAP browser hosting and
deployment, read Chapter 11.

Settings
WPF applications gain access to all the same application and user setting options
that any other .NET application can use (e.g., the Registry, .config files, special fold-
ers, isolated storage, etc.).

Designing Settings
The preferred settings mechanism for WPF applications is the one provided by
.NET 2.0 and Visual Studio 2005: the ApplicationSettingsBase class from the
System.Configuration namespace with the built-in designer. To access the set-
tings for your application, click on the Settings tab in your project settings. This
will bring up the Settings Designer shown in Figure 2-13.

Here we’ve defined two settings: a user setting of type System.String, called LastExcuse;
and an application setting of type System.Boolean, called ExcludeAnimalExcuses with a
default value of True. These two settings will be loaded automatically when I run my
application, pulled from the application’s configuration file (named MyApplication.exe.
config) and the user settings file saved from the application’s last session.

The Settings Designer manages a settings file and generates a class that allows you to
program against the settings. For instance, our settings example will result in the
class in Example 2-6 being generated (roughly).

56 | Chapter 2: Applications and Settings

Figure 2-13. The Settings Designer

Example 2-6. The Settings Designer-generated class

using namespace System.Configuration;

namespace excusegen.Properties {
 sealed partial class Settings : ApplicationSettingsBase {
 static Settings defaultInstance =
 ((Settings)(ApplicationSettingsBase.Synchronized(new Settings())));

 public static Settings Default {
 get { return defaultInstance; }
 }

 [UserScopedSettingAttribute()]
 [DefaultSettingValueAttribute("")]
 public string LastExcuse {
 get { return ((string)(this["LastExcuse"])); }
 set { this["LastExcuse"] = value; }
 }

 [ApplicationScopedSettingAttribute()]
 [DefaultSettingValueAttribute("True")]
 public bool ExcludeAnimalExcuses {

Settings | 57

There are several interesting things to notice about Example 2-6. The first is the
defaultInstance member, which is initialized with an instance of the generated
Settings class that’s been synchronized to allow for safe multithreaded access. Sec-
ond, notice that this defaultInstance member is static and exposed from the Default
static property, which makes it very easy to get to our settings, as we’ll soon see.
Finally, notice the two properties exposed from the Settings class, one property for
each of our settings in the Settings Designer. You can see that the mode of each prop-
erty, user versus application, the default value, and the type all match. Further,
although a user setting is read-write (it has a getter and a setter), because it can
change during an application session, the application setting is read-only (it has only
a getter). The implementations of the properties are just type-safe wrappers around
calls to the ApplicationSettingsBase base class, which does the work of reading and
writing your settings to the associated settings storage.

Using Settings
With these typed properties in place and the Default static property to expose an
instance of our generated Settings class, usage is no different from any other CLR
object, as you can see in Example 2-7.

 get { return ((bool)(this["ExcludeAnimalExcuses"])); }
 }
 }
}

Example 2-7. Using the Settings Designer-generated class

public partial class Window1 : Window {
 string[] excuses = {...};

 public Window1() {
 InitializeComponent();
 this.newExcuseButton.Click += newExcuseButton_Click;

 // If there is no "last excuse," show a random excuse
 if(string.IsNullOrEmpty(Properties.Settings.Default.LastExcuse)) {
 ShowNextExcuse();
 }
 // Show the excuse from the last session
 else {
 excuseTextBlock.Text = Properties.Settings.Default.LastExcuse;
 }
 }

 void newExcuseButton_Click(object sender, RoutedEventArgs e) {
 ShowNextExcuse();
 }

Example 2-6. The Settings Designer-generated class (continued)

58 | Chapter 2: Applications and Settings

In Example 2-7, we’re using the LastExcuse user setting to restore the last excuse the
user saw when running the application previously, changing it each time a new
excuse is generated. The ExcludeAnimalExcuses application setting is checked to
exclude animal-based excuses, but it is never set.* To store user settings that change
during an application’s session, we’re calling the Save method on the Settings object
from the ApplicationSettingsBase base class. This class does the magic of not only
keeping the settings in memory and notifying you when a setting changes (if you
choose to care), but also automatically loading the settings when the application is
loaded, saving on demand.

To help with the loading and saving, the ApplicationSettingsBase uses a settings
provider, which is a pluggable class that knows how to read/write application settings
(e.g., from the local filesystem, from the Registry, from a network server, etc.). The
only settings provider that comes out of the box in .NET 2.0 is the one that writes to
disk in a way that’s safe to use from even partial trust applications (like an XBAP), but
it’s not hard to plug in your own settings provider if you need other behavior.†

 Random rnd = new Random();
 void ShowNextExcuse() {
 // Pick a random excuse, saving it for the next session
 // and checking for animals
 do {
 Properties.Settings.Default.LastExcuse =
 excuses[rnd.Next(excuses.Length - 1)];
 }
 while(Properties.Settings.Default.ExcludeAnimalExcuses &&
 HasAnimal(Properties.Settings.Default.LastExcuse));

 // Show the current excuse
 excuseTextBlock.Text = Properties.Settings.Default.LastExcuse;
 }

 bool HasAnimal(string excuse) {...}

 protected override void OnClosed(EventArgs e) {
 base.OnClosed(e);

 // Save user settings between sessions
 Properties.Settings.Default.Save();
 }

}

* There is no configuration API to set an application setting.

† The SDK comes with custom settings provider samples that use a web service and the Registry. I didn’t
like the one based on the Registry, so I updated it and wrote a little article about the experience of writing
and using a custom settings provider. It’s available at http://www.sellsbrothers.com/writing/default.
aspx?content=dotnet2customsettingsprovider.htm (http://tinysells.com/86).

Example 2-7. Using the Settings Designer-generated class (continued)

Settings | 59

Integrating Settings with WPF
None of the basics of the ApplicationSettingsBase-inspired support for settings, or any
of the other mechanisms for doing settings in .NET, is specific to WPF. However,
because the ApplicationSettingsBase class supports data change notifications (specifi-
cally, it implements INotifyPropertyChanged), we can bind to settings data just like any
other data (for the details of data binding, see Chapters 6 and 7). For example, instead
of manually keeping the TextBlock that shows the excuse up-to-date, we can just bind
the Text property to the LastExcuse property, as shown in Example 2-8.

Example 2-8 shows a bit of an advanced use of the binding syntax, but basically it says
that we’re binding the Text property of the TextBlock to the LastExcuse property of the
excusegen.Properties.Settings.Default object. As the LastExcuse property changes,
so does the Text property, so we no longer need to keep the Text property manually
up-to-date; all we need to do is manage the LastExcuse property and the Text property
will follow. For example:

Random rnd = new Random();

void ShowNextExcuse() {
 // Pick a random excuse, saving it for the next session
 // and checking for animals
 do {
 // This updates the Text property on the TextBlock, too
 Properties.Settings.Default.LastExcuse =
 excuses[rnd.Next(excuses.Length - 1)];
 }
 while(Properties.Settings.Default.ExcludeAnimalExcuses &&
 HasAnimal(Properties.Settings.Default.LastExcuse));

 // No longer any need to manually update the TextBlock
 //excuseTextBlock.Text = Properties.Settings.Default.LastExcuse;
}

The ability to use settings to drive a WPF UI makes the new .NET 2.0
ApplicationSettingsBase and Settings Designer the preferred means for managing
settings in a WPF application.

Example 2-8. Data binding to a settings class

<Window ... xmlns:local="clr-namespace:excusegen">
 ...
 <TextBlock ...
 Text="{Binding
 Path=LastExcuse,
 Source={x:Static local:Properties.Settings.Default}}" />
 ...
</Window>

60 | Chapter 2: Applications and Settings

Where Are We?
In WPF, the application contains an instance of the Application object. This object
provides management services that let you control the lifetime of your application, as
well as resource management and navigation, covered in Chapter 12, Appendix C,
and Chapter 11, respectively. In this chapter, we also discussed deploying standalone
applications using ClickOnce. (XBAP deployment can be found in Chapter 11.) Finally,
to manage user and application settings between application sessions, we briefly dis-
cussed the ApplicationSettingsBase-related settings services provided by .NET 2.0 and
Visual Studio 2005.

61

Chapter 3 CHAPTER 3

Layout3

WPF provides a powerful and flexible array of tools for controlling the layout of the
user interface. These tools enable applications to present information to users in a
clear and logical way.

There is a fine line between giving developers or designers enough control over the
user interface’s layout, and leaving them to do all the work. A good layout system
should be able to automate common scenarios such as resizing, scaling, and adapta-
tion to localization, but should allow manual intervention where necessary. In this
chapter, we will look at how WPF’s layout system helps fulfill these goals.

Layout Basics
WPF provides a set of panels—special-purpose user interface elements whose job is to
arrange the elements they contain. Each individual panel type offers a straightforward
and easily understood layout mechanism. As with all WPF elements, layout objects
can be composed in any number of different ways, so although each individual panel
type is fairly simple, the flexible way in which they can be combined makes for a very
powerful layout system. And you can even create your own layout element types
should the built-in ones not meet your needs.

Table 3-1 describes the main panel types built into WPF.* Whichever panel you use,
the same basic rule always applies: an element’s position is always determined by the
containing panel. Most panels also manage the size of their children.

* A frequently asked question is “why do some of these type names end in ‘Panel’ when some do not? The
naming seems to be inconsistent.” The pattern appears to be that the names should be, unambiguously,
nouns. Stack, Wrap, and Dock can all be used as verbs, which is why “Panel” is appended. Grid and Canvas
are both nouns, so they don’t get “Panel” tacked on the end.

62 | Chapter 3: Layout

By default, panels have no appearance of their own, the only visible
effect of their presence being how they size and position their chil-
dren. However, they can be made visible by setting their Background
property.

We’ll start with one of the most basic panels, StackPanel.

StackPanel
StackPanel is a very simple panel that arranges its children in a row or a column. You
will not normally use StackPanel to lay out your whole user interface. It is most use-
ful for arranging small subsections. Example 3-1 shows how to build a simple search
user interface.

Figure 3-1 shows the results. As you can see, the UI elements have simply been
stacked vertically one after another. This example used the Margin property to space
the elements out a little. Most elements use a single number, indicating a uniform
margin all around. The Button uses a pair of numbers to specify different vertical and

Table 3-1. Main panel types

Panel type Usage

StackPanel Lays children out in a vertical or horizontal stack; extremely simple, useful for managing small-scale
aspects of layout.

WrapPanel Lays children out from left to right, moving onto a new line each time it fills the available width.

DockPanel Allocates an entire edge of the panel area to each child; useful for defining the rough layout of simple
applications at a coarse scale.

Grid Arranges children within a grid; useful for aligning items without resorting to fixed sizes and posi-
tions. The most powerful of the built-in panels.

Canvas Performs no layout logic—puts children where you tell it to; allows you to take complete control of
the layout process.

UniformGrid Arranges children in a grid where every cell is the same size.

Example 3-1. StackPanel search layout

<StackPanel Background="#ECE9D8">
 <TextBlock Margin="3">Look for:</TextBlock>
 <ComboBox Margin="3"/>
 <TextBlock Margin="3">Filtered by:</TextBlock>
 <ComboBox Margin="3"/>
 <Button Margin="3,5">Search</Button>
 <CheckBox Margin="3">Search in titles only</CheckBox>
 <CheckBox Margin="3">Match related words</CheckBox>
 <CheckBox Margin="3">Search in previous results</CheckBox>
 <CheckBox Margin="3">Highlight search hits (in topics)</CheckBox>
</StackPanel>

StackPanel | 63

horizontal margins. This is one of several standard layout properties available on all
WPF elements, which are all described in the “Common Layout Properties” section,
later in this chapter.

Many of the examples in this book represent typical snippets of
XAML, rather than complete self-contained programs. You can down-
load runnable versions of the examples from the book’s web site at
http://sellsbrothers.com/writing/wpfbook. If you would prefer to type in
the examples, you can do that using the XamlPad tool that ships with
the Windows SDK, but because the examples are only snippets, you
will need to host them in a suitable root element such as a Page.

There is one problem with this layout: the Search button is much wider than you
would normally expect a button to look. The default behavior of a vertical
StackPanel is to make all of the controls the same width as the panel. Likewise, a
horizontal StackPanel will make all of the controls the same height. For the ComboBox
controls, this is exactly what we want. For the TextBlock and CheckBox controls, it
doesn’t show that the controls have been stretched to be as wide as the panel,
because they look only as wide as their text makes them look. However, a Button’s
visuals always fill its entire logical width, which is why the button in Figure 3-1 is
unusually wide. (See the upcoming “Fixed Size Versus Size to Content” sidebar for
more details on how this process works.)

When an element has been given a fixed amount of space that is greater than
required by its content, the way in which the extra space gets used is determined by
the HorizontalAlignment and VerticalAlignment properties.

We can prevent the button from being stretched across the panel’s whole width by
setting its HorizontalAlignment property to Left:

<Button Margin="3,5" HorizontalAlignment="Left">Search</Button>

Figure 3-1. Search StackPanel with Margin

64 | Chapter 3: Layout

HorizontalAlignment determines an element’s horizontal position and width in situa-
tions where the containing panel gives it more space than it needs. The default is
Stretch, meaning that if more space is available than the child requires, it will be
stretched to fill that space. The alternatives—Left, Right, and Center—do not
attempt to stretch the element; these determine where the element will be placed
within the excess space, allowing the element to use its natural width. Here we are
using Left, meaning that the control will have its preferred width, and will be aligned
to the left of the available space (see Figure 3-2).

Fixed Size Versus Size to Content
WPF can tackle the layout of an element in one of two ways. The strategy is determined
by whether or not the amount of space available is fixed. For example, if the user
resizes a window, the size of the window’s content is whatever the user wants it to be.
From the point of view of the layout system, the size is fixed—it is imposed on the lay-
out system by the user. In such a case, the job of the layout system is to arrange the
contents as best it can in the space available.

On the other hand, if the available space is not predetermined, WPF uses a “size to con-
tent” approach, where the size is not dictated upfront, but is instead calculated based
on the content to be displayed. The most straightforward example of this is when a
Window whose SizeToContent property is set to WidthAndHeight is first displayed—
although the user may resize the window after it opens, its initial size is determined by
measuring the content.

A mixture of these two styles may be used—one in each direction. For example, if a
window’s SizeToContent is set to Height, the window height will be determined by
measuring the content, but the width will be fixed, as specified by the Width property.

A panel subject to fixed layout does not necessarily pass this layout style on to its chil-
dren. For example, suppose the user resizes a window that contains a vertical
StackPanel. The window will impose a fixed size on the StackPanel, but although the
StackPanel will pass the fixed width on to its children, it will use the size to content
approach to determine each element’s height.

The converse can also apply—unconstrained elements may constrain their children.
For example, if a vertical StackPanel is unconstrained (i.e., its parent asks it to size to
content), it must choose a width for itself. It does this by measuring each child’s pre-
ferred width, but it then picks the width of the widest child. This is then passed on as
a fixed width to every child in the panel. (This is exactly what’s happening in
Figure 3-1—the panel has made itself wide enough for the widest child, and has fixed
every child to that width. It might not look that way with the checkboxes, as they look
only as wide as their text. However, if they acquired the focus, the focus rectangle
would illustrate their full width.)

WrapPanel | 65

The preceding example used the default vertical orientation. StackPanel also supports
horizontal layout. Example 3-2 shows a StackPanel with its Orientation property set
to Horizontal.

These elements will be arranged in a horizontal line, as shown in Figure 3-3.

StackPanel is not very smart when it runs out of space. If you give it more elements
than will fit, it will just truncate the content. However, its close relative, the
WrapPanel, copes rather better.

WrapPanel
WrapPanel works just like a StackPanel until it runs out of space. If you provide a hor-
izontal WrapPanel with more children than will fit in the available width, it will
arrange its content in a way similar to how a word processor lays out words on a
line. It puts the children in a row from left to right until it runs out of space, at which
point it starts on the next line.

WrapPanel is very simple to use. Just as with a StackPanel, you add a sequence of chil-
dren, as Example 3-3 shows.

Figure 3-2. Search panel with unstretched Button

Example 3-2. Horizontal StackPanel layout

<StackPanel Orientation="Horizontal">
 <TextBlock>This is some text</TextBlock>
 <Button>Button</Button>
 <Button>Button (different one)</Button>
 <CheckBox>Check it out</CheckBox>
 <TextBlock>More text</TextBlock>
</StackPanel>

Figure 3-3. Horizontal StackPanel layout

66 | Chapter 3: Layout

As Figure 3-4 shows, the items are arranged from left to right. As you can see from
the panel’s filled-in background, it is not wide enough to accommodate all the items,
so the last three have been wrapped onto the next line.

WrapPanel also offers an Orientation property. Setting this to Vertical will arrange
the children in a sequence of vertical stacks, a layout style very similar to Windows
Explorer’s “List” view.

WrapPanel and StackPanel really are useful only for small-scale layout. You will need
to use a more powerful panel to define the overall layout of your application, such as
DockPanel.

DockPanel
DockPanel is useful for describing the overall layout of a simple user interface. You
can carve up the basic structure of your window using a DockPanel, and then use the
other panels to manage the details.

A DockPanel arranges each child element so that it fills a particular edge of the panel.
If multiple children are docked to the same edge, they simply stack up against that
edge in order. By default, the final child fills any remaining space not occupied by
controls docked to the panel’s edges.

Example 3-4 shows a simple DockPanel-based layout. Five buttons have been added
to illustrate each option. Notice that four of them have a DockPanel.Dock attribute
applied. This property is defined by DockPanel to allow elements inside a DockPanel
to specify their position. DockPanel.Dock is an attached property (as described in the
upcoming sidebar, “Attached Properties and Layout”).

Example 3-3. WrapPanel

<WrapPanel Background="Beige">
 <Button>One</Button>
 <Button>Two</Button>
 <Button>Three</Button>
 <Button>Four</Button>
 <Button>Five</Button>
 <Button>Six</Button>
 <Button>Seven</Button>
 <Button>Eight</Button>
</WrapPanel>

Figure 3-4. WrapPanel

DockPanel | 67

Figure 3-5 shows how the UI built in Example 3-4 looks on-screen. Notice how the
Top and Bottom buttons have filled the entire top and bottom edges of the window,
and yet the Left and Right buttons do not fill their edges—the Top and Bottom but-
tons have taken control of the corners. This is because Top and Bottom were added
to the panel first.

Example 3-4. Simple DockPanel layout

<DockPanel>
 <Button DockPanel.Dock="Top">Top</Button>
 <Button DockPanel.Dock="Bottom">Bottom</Button>
 <Button DockPanel.Dock="Left">Left</Button>
 <Button DockPanel.Dock="Right">Right</Button>
 <Button>Fill</Button>
</DockPanel>

Attached Properties and Layout
Most WPF panels allow child elements to specify their layout requirements. For example,
a child of a DockPanel needs to be able to specify to which edge it would like to dock.

The obvious solution would be for a base class such as FrameworkElement to define a
Dock property—all WPF user interface elements derive from FrameworkElement, so this
would enable anything to specify its dock position. However, DockPanel is not the only
panel type, so we would need to add properties for the benefit of other panels, too.
This would add a lot of clutter. Worse, it would also be inflexible—what if you want
to design a custom panel that implements some new layout mechanism? It might need
to define new attributes for its children to use.

Attached properties solve this problem. They allow one element to define properties
that can be “attached” to some other element. DockPanel defines a Dock property that
can be attached to any child. In XAML, the dotted attribute syntax (DockPanel.Dock)
signifies that an attached property is being used. Example 3-4 uses this technique. See
Appendix A for more detailed information about XAML and attached properties.

Figure 3-5. Simple DockPanel layout

68 | Chapter 3: Layout

If you swapped these over so that the Left and Right buttons came first in the
markup, as shown in Example 3-5, they would fill their whole edges, including the
corners, leaving the Top and Bottom buttons with just the remaining space.
Figure 3-6 shows the results.

Elements never overlap in a DockPanel, so each successive child only gets to use space
not already used by the previous children. By default, the final child takes all of the
remaining space, but if you would prefer to leave a blank space in the middle, you
can set the LastChildFill attribute of the DockPanel to False. (It defaults to True.)
The final child will dock to the left by default, leaving the center empty.

For items docked to the top or bottom, DockPanel sets the width to fill the space
available, but for the height, it sizes to content—as described in the earlier sidebar.
Likewise, items docked to the left or right have their heights fixed to fill the available
space, but size to content horizontally. In Figures 3-5 and 3-6, the buttons at the top
and bottom are just tall enough to contain their text. Likewise, the buttons docked to
the left and right are just wide enough to hold their text. If we put a lot more text into
one of the buttons, it will try to expand in order to make the text fit. We can see in
Figure 3-7 that the DockPanel is letting the button be exactly as wide as it wants to be.

The DockPanel is good for creating the top-level structure of a basic user interface.
For example, you could use it to position a menu and a toolbar at the top of the win-
dow, with other content filling the remaining space. However, if you have lots of
controls to arrange, it can be helpful to have table-like layout functionality. For this,
we turn to the powerful Grid panel.

Example 3-5. Docking Left and Right before Top and Bottom

<DockPanel>
 <Button DockPanel.Dock="Left">Left</Button>
 <Button DockPanel.Dock="Right">Right</Button>
 <Button DockPanel.Dock="Top">Top</Button>
 <Button DockPanel.Dock="Bottom">Bottom</Button>
 <Button>Fill</Button>
</DockPanel>

Figure 3-6. DockPanel layout, with Left and Right docked first

Grid | 69

Grid
Consider the document Properties dialog from Internet Explorer shown in Figure 3-8.
Notice how the main area of the form is arranged as two columns. The column on the
left contains labels, and the column in the middle contains information.

Figure 3-7. DockPanel layout, with an unusually wide button

Figure 3-8. Document Properties dialog

70 | Chapter 3: Layout

Achieving this kind of layout with any of the panels we’ve looked at so far is diffi-
cult, because they are not designed with two-dimensional alignment in mind. We
could try to use nesting—Example 3-6 shows a vertical StackPanel with three rows,
each with a horizontal StackPanel.

The result, shown in Figure 3-9, is not what we want at all. Each row has been
arranged independently, so we don’t get the two columns we were hoping for.

The Grid panel solves this problem. Rather than working a single row or a single col-
umn at a time, it aligns all elements into a grid that covers the whole area of the
panel. This allows consistent positioning from one row to the next. Example 3-7
shows the same elements as Example 3-6, but arranged with a Grid rather than
nested StackPanel elements.

Example 3-6. Ineffective use of StackPanel

<StackPanel Orientation="Vertical" Background="Beige">
 <StackPanel Orientation="Horizontal">
 <TextBlock>Protocol:</TextBlock>
 <TextBlock>HyperText Transfer Protocol</TextBlock>
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock>Type:</TextBlock>
 <TextBlock>HTML Document</TextBlock>
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock>Connection:</TextBlock>
 <TextBlock>Not Encrypted</TextBlock>
 </StackPanel>
</StackPanel>

Figure 3-9. Inappropriate use of StackPanel

Example 3-7. Grid layout

<Grid Background="Beige"
 ShowGridLines="True"> <!-- ShowGridLines for testing only -->
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

Grid | 71

The Grid needs to know how many columns and rows we require, and we indicate
this by specifying a series of ColumnDefinition and RowDefinition elements at the
start. This may seem rather verbose—a simple pair of properties on the Grid itself
might seem like a simpler solution. However, you will often need to control the char-
acteristics of each column and row independently, so in practice, it makes sense to
have elements representing them.

Notice that each element in the grid has its column and row specified explicitly using
attached properties. This is mandatory—without these, everything ends up in col-
umn 0, row 0. (Grid uses a zero-based numbering scheme, so 0,0 corresponds to the
top-left corner.)

 <TextBlock Grid.Column="0" Grid.Row="0">Protocol:</TextBlock>
 <TextBlock Grid.Column="1" Grid.Row="0">HyperText Transfer Protocol</TextBlock>
 <TextBlock Grid.Column="0" Grid.Row="1">Type:</TextBlock>
 <TextBlock Grid.Column="1" Grid.Row="1">HTML Document</TextBlock>
 <TextBlock Grid.Column="0" Grid.Row="2">Connection:</TextBlock>
 <TextBlock Grid.Column="1" Grid.Row="2">Not encrypted</TextBlock>

</Grid>

Grid, Element Order, and Z Order
You might be wondering why the Grid doesn’t simply put items into the grid in the order
in which they appear; this would remove the need for the Grid.Row and Grid.Column
attached properties. However, grids do not necessarily have exactly one element per cell.

Grid cells can be empty. If the grid’s children simply filled the cells in order, you would
need to provide placeholders of some kind to indicate blank cells. But because ele-
ments indicate their grid position, you can leave cells empty simply by providing no
content for those cells.

Elements may span multiple cells, by using the Grid.RowSpan and Grid.ColumnSpan
attached properties.

Cells can also contain multiple elements. In this case, the order in which the relevant
elements are listed in the markup determines which appears “on top.” Elements that
appear later in the document are drawn over those that appear earlier. The order in
which overlapping elements are drawn is usually referred to as the Z order. This is
because the x- and y-axes are traditionally the ones used for drawing on-screen, so the
z-axis, representing the third dimension, “sticks out” of the screen. This makes it the
logical axis to represent how overlapping elements stack up on top of one another.

In general, panels that allow their children to overlap (e.g., Grid and Canvas) rely on the
order in which elements appear in the XAML to determine the Z order. However, you
can override this: the attached Panel.ZIndex property allows the Z order to be specified
explicitly.

Example 3-7. Grid layout (continued)

72 | Chapter 3: Layout

Figure 3-10 shows the result of Example 3-7. This figure has lines showing the grid
outline, because we enabled the ShowGridLines property. You would not normally do
this on a finalized design—this feature is intended to make it easy to see how the
Grid has divided up the available space. With grid lines displayed, it is clear that the
Grid has made all the columns the same width, and all the rows the same height.

What may not be obvious from Figure 3-10 is that each element has
been given the full available cell space. It doesn’t show here because a
TextBlock looks only as large as the text it shows. But the behavior is
somewhat similar to a StackPanel—each element’s width is as wide as
its containing column, and its height is that of its containing row. As
always, you can use HorizontalAlignment and VerticalAlignment to
determine what elements do with excess space.

This default “one size fits all” behavior is useful when you want all the items in the
grid to be the same size, but it’s not what we want here. It would make more sense
for the column on the left to be wide enough to contain the labels, and for the col-
umn on the right to be allocated the remaining space. Fortunately, the Grid provides
a variety of options for managing column width and row height.

Column Widths and Row Heights
You configure the column widths and row heights in a Grid using the
ColumnDefinition and RowDefinition elements. There are three sizing options: fixed,
automatic, and proportional.

Fixed sizing is the simplest to understand, but often requires the most effort to use,
as you end up having to do all of the work yourself. You can specify the Width of a
column or the Height of a row in device-independent pixels. (These are 1/96th of an
inch. WPF’s coordinate system is described in Chapter 13.) Example 3-8 shows a
modified version of the column definitions in Example 3-7, specifying a fixed width
for the first column.

Figure 3-10. Grid layout

Example 3-8. Fixed column width

...
<Grid.ColumnDefinitions>
 <ColumnDefinition Width="50" />

Grid | 73

Figure 3-11 illustrates the main problem with using fixed column widths. If you
make the column too narrow, the contents will simply be cropped. Fixed widths and
heights may seem to be an attractive idea because they give you complete control, but
in practice they tend to be inconvenient. If you change the text or the font, you will
need to modify the sizes to match. You will need to be flexible on layout if you want
your application to fit in with the system look and feel, because the default font is not
the same on all versions of Windows. Localization of strings will also require the sizes
to be changed. (See Chapter 12 for more information about localization.) So in prac-
tice, fixed widths and heights are not what you will normally want to use. This is true
not only with grids and text blocks. In general, you should try to avoid fixed sizes in
WPF—the more you let the layout system do for you, the easier it is to adapt to local-
ization, different screen sizes, and display orientations.

The most appropriate sizing strategy for our label column will be automatic sizing.
This tells the Grid to make the column wide enough to contain the widest element (i.e.,
to size to content). Example 3-9 shows a modified version of the column and row defini-
tions from Example 3-7, specifying automatic width for the first column, and automatic
heights for all of the rows.

 <ColumnDefinition />
</Grid.ColumnDefinitions>
...

Figure 3-11. Fixed-width column truncation

Example 3-9. Automatic width and height

...
<Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>
...

Example 3-8. Fixed column width (continued)

74 | Chapter 3: Layout

This is not quite right yet—as you can see from Figure 3-12, the Grid has not left any
space around the text, so the results seem rather cramped. The solution is exactly
the same as it was for the StackPanel—we simply use the Margin property on the
TextBlock elements in the Grid to indicate that we want some breathing room
around the text. The Grid will honor this, giving us the layout we require.

If the idea of adding a Margin attribute to every single element sounds tedious, don’t
worry. We can give all of the TextBlock elements the same margin by defining a style.
Styles are discussed in Chapter 8. Example 3-10 does this to set a horizontal margin
of five device-independent pixels, and a vertical margin of three.

As Figure 3-13 shows, this provides the better-spaced layout we require.

The final mechanism for specifying width and height in a Grid is the proportional
method. This is sometimes called “star” sizing because of the corresponding XAML
syntax. If you set the width or height of a column or row to be *, this tells the Grid
that it should fill all the space left over after any fixed and automatic items have
taken their share. If you have multiple items set to *, the space is shared evenly
among them.

Figure 3-12. Automatic width and height

Example 3-10. Applying a consistent margin with a style

<Grid Background="Beige"
 ShowGridLines="True">
 <Grid.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Margin" Value="5,3" />
 </Style>
 </Grid.Resources>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
... as before

Figure 3-13. Using margins

Grid | 75

The default value for column width and row height is *, so you have already seen the
effect of this. As Figure 3-10 shows, when we don’t specify column widths or row
heights, each cell ends up with exactly the same amount of space.

The star syntax is a little more flexible than this. Rather than dividing up space
evenly among all the rows or columns marked with a star, we can choose a propor-
tional distribution. Consider the set of row definitions in Example 3-11.

Here, the first row has been set to size automatically, and the other two rows both
use proportional sizing. However, the middle row has been marked as 2*. This indi-
cates that it wants to be given twice as much of the available space as the row
marked with 1*. For example, if the grid’s total height was 350, and the first row’s
automatic height came out as 50, this would leave 300 for the other rows. The sec-
ond row’s height would be 200, and the third row’s height would be 100.
Figure 3-14 shows how this grid looks for a couple of different heights; the filled-in
background shows the size of the grid in each case. As you can see, the row with Auto
height is the same in both cases. The two star-sized rows share out the remaining
space, with the 2* row getting twice the height of the 1* row.

The numbers before the * specify relative sizes, not absolute sizes. If you modified
the preceding example to use 6* and 3* instead of 2* and 1*, the result would be
exactly the same. It’s equivalent to saying that you want the rows to use six-ninths
and three-ninths of the available space, instead of saying that you want them to use
two-thirds and one-third—it’s just two ways of expressing the same ratio.

Example 3-11. Mixing row height styles

<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="2*" />
 <RowDefinition Height="1*" />
</Grid.RowDefinitions>

Figure 3-14. Proportional Grid sizing

76 | Chapter 3: Layout

These numbers are floating point, so you can specify noninteger sizes such as 2.5*.
And if you specify just * without a number, this is equivalent to 1*.

If you are familiar with HTML, you may have been wondering
whether you can use percentage sizes. You can’t, but the star mecha-
nism lets you achieve similar effects.

You may have noticed that for all three grid-sizing strategies, we used the Width and
Height properties each time, although the property values looked quite different in
each case. Width and Height are both of type GridLength. The GridLength type holds a
number and a unit type. The number is stored as a Double and the unit type is repre-
sented by the GridUnitType enumeration.

For a fixed size, the unit type is Pixel. (As mentioned previously, in WPF pixel is
really a device-independent unit, meaning 1/96th of an inch.) In XAML, this is indi-
cated by providing just a number.* For automatic sizing, the unit type is Auto and no
number is required. In XAML, this is indicated by the string "Auto". For propor-
tional sizing, the unit type is Star. In XAML, this is indicated either by just * or a
number and a star (e.g., 3.5*). Example 3-12 shows the C# equivalent of the row set-
tings shown in XAML in Example 3-11.

Spanning Multiple Rows and Columns
Looking at the Properties dialog shown earlier in Figure 3-8, there is a feature we have
left out. The dialog has two horizontal lines dividing the UI into three sections. How-
ever, the aligned columns span the whole window, straddling these dividing lines.

It would be inconvenient to try to achieve a layout like this with multiple grids. If
you used one for each section of the window, you could keep the columns aligned in
all the grids by using fixed column widths. As discussed earlier, use of fixed widths is
inconvenient because it tends to require manual adjustment of the widths whenever

* In XAML, you can also use the suffix in, cm, or pt to specify inches, centimeters, or points. These will all be
converted to device-independent pixels, and the unit type will be Pixel. Sometimes these units don’t map
neatly into pixels (e.g., a value of 1pt will be converted into 1.3333 pixels).

Example 3-12. Setting row heights in code

Grid g = new Grid();
RowDefinition r = new RowDefinition();
r.Height = new GridLength(0, GridUnitType.Auto);
g.RowDefinitions.Add(r);
r = new RowDefinition();
r.Height = new GridLength(2, GridUnitType.Star);
g.RowDefinitions.Add(r);
r = new RowDefinition();
r.Height = new GridLength(1, GridUnitType.Star);
g.RowDefinitions.Add(r);

Grid | 77

anything changes. With this layout, it becomes triply inconvenient—you would have
to change all three grids every time anything changed.

Fortunately, it is possible to add these dividing lines without splitting the UI into
separate grids. The way to do this is to put the dividing lines into cells that span
across all of the columns in the grid. An element indicates to its parent Grid that it
would like to span multiple columns by using the attached Grid.ColumnSpan property.

Example 3-13 uses a single Grid to show three sets of properties. These sets are sepa-
rated by thin Rectangle elements, using Grid.ColumnSpan to fill the whole width of
the Grid. Because a single Grid is used for all three sections, the columns remain
aligned across all three sections, as you can see in Figure 3-15. If we had used three
separate grids with the leftmost column set to use automatic width, each would have
chosen its own width, causing the righthand columns to be misaligned.

Example 3-13. Using Grid.ColumnSpan

<Grid Background="Beige">
 <Grid.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Margin" Value="5,3" />
 </Style>
 </Grid.Resources>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Grid.Column="0" Grid.Row="0">Title:</TextBlock>
 <TextBlock Grid.Column="1" Grid.Row="0">Information Overload</TextBlock>

 <Rectangle Grid.Row="1" Grid.ColumnSpan="2" Margin="5"
 Height="1" Fill="Black" />

 <TextBlock Grid.Column="0" Grid.Row="2">Protocol:</TextBlock>
 <TextBlock Grid.Column="1" Grid.Row="2">Unknown Protocol</TextBlock>
 <TextBlock Grid.Column="0" Grid.Row="3">Type:</TextBlock>
 <TextBlock Grid.Column="1" Grid.Row="3">Not available</TextBlock>
 <TextBlock Grid.Column="0" Grid.Row="4">Connection:</TextBlock>
 <TextBlock Grid.Column="1" Grid.Row="4">Not encrypted</TextBlock>

78 | Chapter 3: Layout

The Grid class also defines a Grid.RowSpan attached property. This works in exactly
the same way as Grid.ColumnSpan, but vertically.

You are free to use both Grid.RowSpan and Grid.ColumnSpan on the same element—
any element may occupy as many grid cells as it likes. Also, note that you are free to
put multiple overlapping items into each cell.

Example 3-14 illustrates both of these techniques. It adds two Rectangle elements to
color in areas of the grid. The first spans multiple rows, and the second spans both
multiple rows and columns. Both Rectangle elements occupy cells in the Grid that
are also occupied by text.

Figure 3-16 shows the results. Note that, in the absence of a Panel.ZIndex property, the
order in which the elements appear in the markup is crucial, as it determines the Z order
for overlapping elements. In Example 3-14 the Rectangle elements were added before
the TextBlock items whose cells they share. This means that the colored rectangles
appear behind the text, rather than obscuring them. If the rectangles had been added at
the end of the Grid, after the text, they would have been drawn over the text.

 <Rectangle Grid.Row="5" Grid.ColumnSpan="2" Margin="5"
 Height="1" Fill="Black" />

 <TextBlock Grid.Column="0" Grid.Row="6">Created:</TextBlock>
 <TextBlock Grid.Column="1" Grid.Row="6">Not available</TextBlock>
 <TextBlock Grid.Column="0" Grid.Row="7">Modified:</TextBlock>
 <TextBlock Grid.Column="1" Grid.Row="7">Not available</TextBlock>

</Grid>

Figure 3-15. Dividing lines spanning multiple columns

Example 3-14. Multiple items in a Grid cell

<Rectangle Grid.Column="1" Grid.Row="2" Grid.RowSpan="3"
 Margin="5,3" Fill="White" />
<Rectangle Grid.Column="0" Grid.Row="6" Grid.ColumnSpan="2" Grid.RowSpan="2"
 Margin="5,3" Fill="White" />

<TextBlock Grid.Column="0" Grid.Row="0">Title:</TextBlock>
...as before

Example 3-13. Using Grid.ColumnSpan (continued)

Grid | 79

This example illustrates why the Grid requires the row and column of each item to be
specified explicitly, rather than being implied by the order of the elements. Cells can
be shared by multiple elements. Elements can span multiple cells. This makes it
impossible for the Grid to guess which element goes in which cell.

Consistency Across Multiple Grids
Although the row and column spanning features described in the preceding section
often make it possible to arrange your UI as you need, it will not always be possible
to put all of the information you wish to present into a single Grid element. For
example, consider a scrollable Grid with headings.* You could just put headings and
contents into a single Grid and then place that Grid in a ScrollViewer to make it
scrollable, but this suffers from a problem, which Example 3-15 illustrates.

Figure 3-16. Overlapping Grid items

* The ListView control provides just such a thing, so you don’t necessarily have to build your own. However,
it also entails certain interactive behaviors that you may not want in your application. For example, ListView
requires you to use data binding, whereas the alternative presented here does not.

Example 3-15. Grid in ScrollViewer

<ScrollViewer>
 <Grid>
 <Grid.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Margin" Value="5,3" />
 </Style>
 </Grid.Resources>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

80 | Chapter 3: Layout

Figure 3-17 shows the results. If you look at the righthand side, you can see that the
scroll bar runs the entire height of the Grid, including the header line with the titles.
This means that as soon as you scroll down, the headings will disappear. This is not
particularly helpful.

We could solve this by using two grids, one for the header and one for the main
results area. Only the second grid would be placed inside a ScrollViewer. Figure 3-18
shows the results.

 <Border Grid.Column="0" Grid.Row="0"
 Background="LightGray" BorderBrush="Gray"
 BorderThickness="1">
 <TextBlock>Title</TextBlock>
 </Border>
 <Border Grid.Column="1" Grid.Row="0"
 Background="LightGray" BorderBrush="Gray"
 BorderThickness="1">
 <TextBlock>Location</TextBlock>
 </Border>
 <Border Grid.Column="2" Grid.Row="0" Background="LightGray"
 BorderBrush="Gray" BorderThickness="1">
 <TextBlock>Rank</TextBlock>
 </Border>

 <TextBlock Grid.Column="0" Grid.Row="1" Text="Programming WPF" />
 <TextBlock Grid.Column="1" Grid.Row="1" Text="O'Reilly Media, Inc." />
 <TextBlock Grid.Column="2" Grid.Row="1" Text="1" />

 <TextBlock Grid.Column="0" Grid.Row="2" Text="IanG on Tap" />
 <TextBlock Grid.Column="1" Grid.Row="2" Text="The Internet" />
 <TextBlock Grid.Column="2" Grid.Row="2" Text="2" />
 </Grid>
</ScrollViewer>

Figure 3-17. Grid in ScrollViewer

Figure 3-18. Separate Grid for headers

Example 3-15. Grid in ScrollViewer (continued)

Grid | 81

The scroll bar is now applied just to the part that needs to be scrollable, but the
alignment is all wrong. Each Grid has arranged its columns independently, so the
headings no longer line up with the main contents.

The Grid supports shared size groups to solve this problem. A shared size group is
simply a named group of columns, all of which will have the same width, even if they
are in different grids.

You can use shared size groups either across multiple grids or within a
single grid.

We can use a shared size group to keep the headings Grid consistent with the scrollable
contents Grid. Example 3-16 illustrates the use of shared size groups.

Example 3-16. Shared size groups

<DockPanel Grid.IsSharedSizeScope="True">
 <DockPanel.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Margin" Value="5,3" />
 </Style>
 </DockPanel.Resources>
 <Grid DockPanel.Dock="Top">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" SharedSizeGroup="Location" />
 <ColumnDefinition Width="Auto" SharedSizeGroup="Rank" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Border Grid.Column="0" Grid.Row="0" BorderThickness="1"
 Background="LightGray" BorderBrush="Gray">
 <TextBlock>Title</TextBlock>
 </Border>
 <Border Grid.Column="1" Grid.Row="0" BorderThickness="1"
 Background="LightGray" BorderBrush="Gray">
 <TextBlock>Location</TextBlock>
 </Border>
 <Border Grid.Column="2" Grid.Row="0" BorderThickness="1"
 Grid.ColumnSpan="2"
 Background="LightGray" BorderBrush="Gray">
 </Border>
 <TextBlock Grid.Column="2" Grid.Row="0">Rank</TextBlock>

82 | Chapter 3: Layout

In this example, the overall layout is defined by a DockPanel, using the attached Dock.Top
property to position the header Grid at the top, and allowing the ScrollViewer to fill the
remaining space.

Shared size groups are identified by strings. Strings are prone to name collisions—it’s
quite possible that two developers independently working on different parts of the
user interface might end up choosing the same name for their shared size groups,
inadvertently causing unrelated columns to have the same size. To avoid this prob-
lem, Example 3-16 sets the Grid.IsSharedSizeScope attached property on the
DockPanel. This indicates that the DockPanel is the common ancestor, and prevents
the groups defined inside the DockPanel from being associated with any groups of the
same name defined elsewhere in the UI.

Grid.IsSharedSizeScope is not optional. If you do not specify a shared
size scope, WPF will ignore your shared size groups.

Having defined the scope of the names, using shared size groups is very straight-
forward. We just apply the SharedSizeGroup attribute to the “Location” and
“Rank” ColumnDefinition, and this ensures that the columns are sized consistently
across the two grids. Figure 3-19 shows the results.

 <FrameworkElement Grid.Column="3"
 Width="{DynamicResource
 {x:Static SystemParameters.VerticalScrollBarWidthKey}}" />

 </Grid>
 <ScrollViewer>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" SharedSizeGroup="Location" />
 <ColumnDefinition Width="Auto" SharedSizeGroup="Rank" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Grid.Column="0" Grid.Row="0" Text="Programming WPF" />
 <TextBlock Grid.Column="1" Grid.Row="0" Text="O'Reilly Media, Inc." />
 <TextBlock Grid.Column="2" Grid.Row="0">1</TextBlock>

 <TextBlock Grid.Column="0" Grid.Row="1">IanG on Tap</TextBlock>
 <TextBlock Grid.Column="1" Grid.Row="1">The Internet</TextBlock>
 <TextBlock Grid.Column="2" Grid.Row="1">2</TextBlock>
 </Grid>
 </ScrollViewer>
</DockPanel>

Example 3-16. Shared size groups (continued)

Grid | 83

The ScrollViewer adds a scroll bar to the display, and this means that a small hack is
required to get this layout to work correctly. This scroll bar takes away some space
from the main Grid, making it slightly narrower than the header Grid. Remember
that the “Title” column’s size is set to *, meaning that it should fill all available
space. The ScrollViewer’s scroll bar eats into this space, making the “Title” column
in the main Grid slightly narrower than the one in the header Grid, destroying the
alignment.

You might think that we could fix this by adding a shared size group for the “Title”
column. Unfortunately, specifying a shared size group disables the * behavior—the
column reverts to automatic sizing.

The fix for this is to add an extra column to the header row. This row needs to be
exactly the same width as the scroll bar added by the ScrollViewer. So we have
added a fourth column, containing a FrameworkElement, with its Width set to the sys-
tem scroll width metric in order to make sure that it is exactly the same width as a
scroll bar. (We are using a DynamicResource reference to retrieve this system parameter.
This technique is described in Chapter 12.) It’s unusual to use a FrameworkElement
directly, but because we just need something that takes up space but has no appear-
ance, it makes a good lightweight filler object. Its presence keeps all of the columns
perfectly aligned across the two grids.

The Grid is the most powerful of the built-in panels. You can get the Grid
to do anything that DockPanel and StackPanel can do—those simpler ele-
ments are provided for convenience. For nontrivial user interfaces, the
Grid is likely to be the best choice for your top-level GUI layout, as well
as being useful for detailed internal layout.

UniformGrid
Powerful though the Grid is, it’s occasionally a little cumbersome to use. There’s a
simplified version worth knowing about, called UniformGrid. All its cells are the same
size, so you don’t need to provide collections of row and column descriptions—just
set the Rows and Columns properties to indicate the size. In fact, you don’t even need
to set these—by default, it creates rows and columns automatically. It always keeps
the number of rows and columns equal to each other, adding as many as are required
to make space for the children. Each cell contains just one child, so you do not need
to add attached properties indicating which child belongs in which cell—you just
add children. This means you can use something as simple as Example 3-17.

Figure 3-19. Shared size groups

84 | Chapter 3: Layout

This contains nine elements, so the UniformGrid will create three rows and three col-
umns. Figure 3-20 shows the result.

Canvas
Occasionally, it can be necessary to take complete control of the precise positioning
of every element. For example, when you want to build an image out of graphical
elements, the positioning of the elements is dictated by the picture you are creating,
not by any set of automated layout rules. For these scenarios, you can use a Canvas.

Canvas is the simplest of the panels. It allows the location of child elements to be
specified precisely relative to the edges of the canvas. The Canvas doesn’t really do
any layout at all; it simply puts things where you tell it to. Also, Canvas will not size
elements to fill the available space—all its children are sized to content.

If you are accustomed to working with fixed layout systems such as
those offered by Visual Basic 6, MFC, and the most basic way of using
Windows Forms, the Canvas will seem familiar and natural. However,
it is strongly recommended that you avoid it unless you really need
this absolute control. The automatic layout provided by the other pan-
els will make your life much easier because they can adapt to changes
in text and font. They also make it far simpler to produce resizable
user interfaces. Moreover, localization tends to be much easier with
resizable user interfaces, because different languages tend to produce
strings with substantially different lengths. Don’t opt for the Canvas
simply because it seems familiar.

Example 3-17. UniformGrid

<UniformGrid TextBlock.TextAlignment="Center">
 <TextBlock Text="X" />
 <TextBlock Text="O"/>
 <TextBlock Text="X"/>
 <TextBlock Text="X"/>
 <TextBlock Text="X"/>
 <TextBlock Text="O"/>
 <TextBlock Text="O"/>
 <TextBlock Text="O"/>
 <TextBlock Text="X"/>
</UniformGrid>

Figure 3-20. UniformGrid

Canvas | 85

When using a Canvas, you must specify the location of each child element. If you
don’t, all of your elements will end up at the top-left corner. Canvas defines four
attached properties for setting the position of child elements. Vertical position is set
with either the Top or Bottom property, and horizontal position is determined by
either the Left or Right property.

Example 3-18 shows a Canvas containing two TextBlock elements. The first has been
positioned relative to the top-left corner of the Canvas: the text will always appear 10
pixels in from the left and 20 pixels down from the top. (As always, these are device-
independent pixels.) Figure 3-21 shows the result.

The second text element is more interesting. It has been positioned relative to the
bottom right of the form, which means that if the canvas gets resized, the element
will move with that corner of the canvas. For example, if the Canvas were the main
element of a window, the second TextBlock element would move with the bottom-
right corner of the window if the user resized it.

If you have used Windows Forms, you may be wondering whether set-
ting both the Top and Bottom properties (or both Left and Right prop-
erties) will cause the element to resize automatically when the
containing canvas is resized. But unlike with anchoring in Windows
Forms, this technique does not work. If you specify both Left and
Right, or both Top and Bottom, one of the properties will simply be
ignored. (Top takes precedence over Bottom, and Left takes precedence
over Right.)

Fortunately, it is easy to get this kind of behavior with a single-cell
Grid and the Margin property. If you put an element into a grid with a
margin of, say, “10,10,30,40”, its top-left corner will be at (10,10) rela-
tive to the top left of the grid, its righthand side will always be 30 pixels
from the right edge of the grid, and its bottom edge will always be 40
pixels from the bottom of the grid. This is another reason to prefer Grid
over Canvas.

Example 3-18. Positioning on a Canvas

<Canvas Background="Yellow" Width="150" Height="100">
 <TextBlock Canvas.Left="10" Canvas.Top="20">Hello</TextBlock>
 <TextBlock Canvas.Right="10" Canvas.Bottom="20">world!</TextBlock>
</Canvas>

Figure 3-21. Simple Canvas layout

86 | Chapter 3: Layout

The main use for Canvas is to arrange drawings. If you employ graphical elements
such as Ellipse and Path, which are discussed in Chapter 13, you will typically need
precise control over their location, in which case the Canvas is ideal.

When child elements are larger than their parent panel, most panels crop them, but
the Canvas does not by default, allowing elements to be partially or entirely outside of
its bounds. You can even use negative coordinates. The noncropping behavior is
sometimes useful because it means you do not need to specify the size of the canvas—
a zero-size canvas works perfectly well. However, if you want to clip the content, set
ClipToBounds to True.

The price you pay for the precise control offered by the Canvas is that it is inflexible.
However, there is one common scenario in which you can mitigate this rigidity. If
you’ve used a Canvas to arrange a drawing and you would like that drawing to be
automatically resizable, you can use a Viewbox in conjunction with the Canvas.

Viewbox
The Viewbox element automatically scales its content to fill the space available.
Strictly speaking, Viewbox is not a panel—it derives from Decorator. This means that
unlike most panels, it can have only one child. However, its capability to adjust the
size of its content in order to adapt to its surroundings makes it a useful layout tool.

Figure 3-22 shows a window that doesn’t use a Viewbox but probably should. The
window’s content is a Canvas containing a rather small drawing. Example 3-19 shows
the markup.

Figure 3-22. Canvas without Viewbox

Example 3-19. Canvas without Viewbox

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">

 <Canvas Width="18" Height="18" VerticalAlignment="Center">

Viewbox | 87

We can use a Viewbox to resize the content automatically. It will expand it to be large
enough to fill the space, as shown in Figure 3-23. (If you’re wondering why the draw-
ing doesn’t touch the edges of the window, it’s because the Canvas is slightly larger
than the drawing it contains.)

All we had to do to get this automatic resizing was wrap the Canvas element in a
Viewbox element, as shown in Example 3-20.

 <Ellipse Canvas.Left="1" Canvas.Top="1" Width="16" Height="16"
 Fill="Yellow" Stroke="Black" />
 <Ellipse Canvas.Left="4.5" Canvas.Top="5" Width="2.5" Height="3"
 Fill="Black" />
 <Ellipse Canvas.Left="11" Canvas.Top="5" Width="2.5" Height="3"
 Fill="Black" />
 <Path Data="M 5,10 A 3,3 90 0 0 13,10" Stroke="Black" />
 </Canvas>

</Window>

Figure 3-23. Canvas with Viewbox

Example 3-20. Using Viewbox

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">

 <Viewbox>
 <Canvas Width="18" Height="18" VerticalAlignment="Center">

 ...as before...

 </Canvas>
 </Viewbox>

</Window>

Example 3-19. Canvas without Viewbox (continued)

88 | Chapter 3: Layout

Notice how in Figure 3-23 the Canvas has been made tall enough to fill the window,
but not wide enough. This is because by default, the Viewbox preserves the aspect
ratio of its child. If you want, you can disable this so that it fills all the space, as
Figure 3-24 shows.

To enable this behavior we set the Stretch property. Its default value is Uniform. We
can make the Viewbox stretch the Canvas to fill the whole space by setting the prop-
erty to Fill, as Example 3-21 shows.

You can also set the Stretch property to None to disable stretching. That might seem
pointless, because the effect is exactly the same as not using a Viewbox at all. How-
ever, you might do this from code to flip between scaled and normal-size views of a
drawing. There is also a UniformToFill setting, which preserves the aspect ratio but
fills the space, clipping the source in one dimension, if necessary (see Figure 3-25).

The Viewbox can scale any child element—it’s not just for Canvas.
However, you would rarely use it to size anything other than a draw-
ing. If you were to use a Viewbox to resize some nongraphical part of
your UI, it would resize any text in there as well, making it look incon-
sistent with the rest of your UI. For a resizable user interface, you are
best off relying on the resizable panels shown in this chapter.

Figure 3-24. Viewbox with Stretch

Example 3-21. Specifying a Stretch

...
 <Viewbox Stretch="Fill">
...

Common Layout Properties | 89

Common Layout Properties
All user interface elements have a standard set of layout properties, mostly inherited
from the FrameworkElement base class. These properties are shown in Table 3-2. We
saw a few of these in passing in the preceding section, but we will now look at them
all in a little more detail.

Figure 3-25. UniformToFill

Table 3-2. Common layout properties

Property Usage

Width Specifies a fixed width

Height Specifies a fixed height

MinWidth The minimum permissible width

MaxWidth The maximum permissible width

MinHeight The minimum permissible height

MaxHeight The maximum permissible height

HorizontalAlignment Horizontal position if element is smaller than available space

VerticalAlignment Vertical position if element is smaller than available space

Margin Space around outside of element

Padding Space between element border and content

Visibility Allows the element to be made invisible to the layout system where necessary

FlowDirection Text direction

Panel.ZIndex Controls which elements are on top or underneath

RenderTransform Applies a transform without modifying the layout

LayoutTransform Applies a transform that affects layout

90 | Chapter 3: Layout

A couple of these properties are not from FrameworkElement. Padding is defined in sev-
eral places: Control, Border, and TextBlock each define this property. It has the same
meaning in all cases. It is not quite ubiquitous because padding is meaningful only
on elements that have content. Panel.ZIndex may be applied to any element, but it’s
not strictly inherited from FrameworkElement—it is an attached property.

Width and Height
You can set these properties to specify an exact width and height for your element.
You should try to avoid using these—in general it is preferable to let elements deter-
mine their own size where possible. It will take less effort to change your user interface
if you allow elements to “size to content.” It can also simplify localization. However,
you will occasionally need to provide a specific size.

If you specify a Width or Height, the layout system will always attempt to honor your
choices. Of course, if you make an element wider than the screen, WPF can’t make
the screen any wider, but as long as what you request is possible, it will be done.

MinWidth, MaxWidth, MinHeight, and MaxHeight
These properties allow you to specify upper and lower limits on the size of an ele-
ment. If you need to constrain your user interface’s layout, it is usually better to use
these than Width and Height where possible. By specifying upper and lower limits,
you can still allow WPF some latitude to automate the layout.

It is possible to mandate limits that simply cannot be fulfilled. For example, if you
request a MinWidth of "10000", WPF won’t be able to honor that request unless you
have some very exotic display hardware. In these cases, your element will be trun-
cated to fit the space available.

HorizontalAlignment and VerticalAlignment
These properties control how an element is placed inside a parent when more room
is available than is necessary. For example, a vertical StackPanel will normally be as
wide as the widest element, meaning that any narrower elements are given excess
space. Alignment is for these sorts of scenarios, enabling you to determine what the
child element does with the extra space.

The default setting for both of these properties is Stretch—when excess space is
available, the element will be enlarged to fill that space. The alternatives are Left,
Center, and Right for HorizontalAlignment, and Top, Center, and Bottom for
VerticalAlignment. If you choose any of these, the element will not be stretched—it
will use its natural height or width, and will then be positioned to one side or in the
center.

Common Layout Properties | 91

Margin
This property determines the amount of space that should be left around the ele-
ment during layout.

You can specify Margin as a single number, a pair of numbers, or a list of four num-
bers. When one number is used, this indicates that the same amount of space should
be left on all sides. With two numbers, the first indicates the space to the left and
right and the second indicates the space above and below. When four numbers are
specified, they indicate the amount of space on the left, top, right, and bottom sides,
respectively.

You can use the Margin property to control an element’s position. For example,
although Grid does not define attached properties to control the exact positioning of
an element, it will honor the Margin property relative to the element’s cell.
Example 3-22 shows a simple single-cell grid that uses this technique.

The rectangle it contains will be 20 device-independent pixels in from the left and 10
down from the top, as Figure 3-26 shows. Note that we’ve left the last two values of
the Margin property—the right and bottom margins—at zero. That’s because we only
want to use the margin to specify the position of the top left of the rectangle. The
position of the bottom right is determined by the rectangle’s size in this case.

Padding
Whereas Margin indicates how much space should be left around the outside of an ele-
ment, Padding specifies how much should be left between a control’s outside and its
internal content.

Example 3-22. Controlling an element’s position with Margin

<Border BorderBrush="Black" BorderThickness="1">
 <Grid>
 <Rectangle Margin="20, 10, 0, 0" Fill="Green"
 Width="80" Height="30"
 HorizontalAlignment="Left" VerticalAlignment="Top" />
 </Grid>
</Border>

Figure 3-26. Margin

92 | Chapter 3: Layout

Padding is not present on all WPF elements, because not all elements have internal
content. It is defined by the Control base class, and the Border and TextBlock classes,
as well as some of the text elements described in Chapter 14.

Example 3-23 shows three buttons, one with just a margin, one with both a margin
and padding, and one with just padding. It also fills the area behind the buttons with
color so that the effects of the margin can be seen.

Figure 3-27 shows the results. The button with a margin but no padding has
appeared at its normal size, but has space around it. The middle button is larger,
because the padding causes space to be added around its content. The third button is
larger still because it has more padding, but it has no space around it because it has
no margin.

Visibility
The Visibility property determines whether an element is visible. It has an impact
on layout, because if you set it to Collapsed, the preferred size of the element will
become zero. This is different from Hidden—this indicates that although the element
is not visible, the layout system should treat it in the same way as it would if it were
Visible.

Example 3-23. Margin versus Padding

<Grid ShowGridLines="True" Background="Cyan">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Button Grid.Column="0" Margin="20" Padding="0">Click me!</Button>
 <Button Grid.Column="1" Margin="10" Padding="10">Click me!</Button>
 <Button Grid.Column="2" Margin="0" Padding="20">Click me!</Button>

</Grid>

Figure 3-27. Buttons with a margin and padding

Common Layout Properties | 93

FlowDirection
The FlowDirection property controls how text flows; the default is based on the sys-
tem locale. For example, in English-speaking locales, it will be left to right, but many
cultures use the alternative right-to-left style. Setting the FlowDirection property to
RightToLeft affects the flow direction of all text, and of any WrapPanel elements con-
tained within that element. This is an inherited property, meaning that it applies to all
its descendants—setting this on a window implicitly sets it for all elements in the
window. Example 3-24 shows this property applied to a WrapPanel.

Figure 3-28 shows the results.

Although the WrapPanel offers the most straightforward way of illustrating
FlowDirection, the property’s main purpose is to control how text is arranged—its
impact on WrapPanel is of secondary importance. On the face of it, a property for
controlling text flow direction may seem to be unnecessary, because Unicode defines
the directionality of each codepoint. If a string contains, say, Hebrew letters, these
have an intrinsic right-to-left direction, and will be rendered in that direction regard-
less of the FlowDirection setting. Example 3-25 shows three Hebrew letters: Alef (),
Bet (), and Gimel ().

Example 3-24. FlowDirection

<StackPanel>
 <WrapPanel Orientation="Horizontal">
 <Button>One</Button>
 <Button>Two</Button>
 <Button>Three</Button>
 </WrapPanel>
 <WrapPanel Orientation="Horizontal" FlowDirection="RightToLeft">
 <Button>One</Button>
 <Button>Two</Button>
 <Button>Three</Button>
 </WrapPanel>
</StackPanel>

Figure 3-28. FlowDirection

Example 3-25. Intrinsic character direction

<TextBlock>
 אבג
</TextBlock>

94 | Chapter 3: Layout

This will appear as shown in Figure 3-29. Notice that the first character has appeared
on the right, with the second and third appearing to the left. This illustrates that
WPF doesn’t need to be told the flow direction for text with intrinsic directionality.
And even if we explicitly set the text block’s flow direction to LeftToRight, the direc-
tionality of these characters would override this setting.

However, problems emerge when using characters that do not have a strong direc-
tionality. Example 3-26 makes a subtle change.

This adds a colon to the end of the second line, after the Hebrew characters, and the
results will appear as shown in Figure 3-30. Although the three Hebrew characters
have been displayed from right to left as before, the colon has been shown to the
right. This is because the colon is not a right-to-left character. (Strictly speaking, Uni-
code considers its directionality to be “weak.”) But because the TextBlock doesn’t
have an explicit FlowDirection, the default flow direction applies—left to right, on
the authors’ machines. So the colon has appeared where it normally would with left-
to-right text, which is inconsistent with the right-to-left text it appears next to here.

To make the colon appear in a location consistent with the directionality of the
remaining text, we need to tell WPF that we would like right-to-left text flow here.
This won’t affect any text with an intrinsic directionality, but it will determine where
the colon appears. Example 3-27 contains a mixture of Hebrew and Latin characters
to illustrate this.

Figure 3-29. Right-to-left characters

Example 3-26. Mixed character directions

<TextBlock>
 אבג:
</TextBlock>

Figure 3-30. Mixed directions

Example 3-27. FlowDirection

<TextBlock FlowDirection="RightToLeft">
 אבג: Foo
</TextBlock>

Common Layout Properties | 95

The sequence of characters here is three Hebrew letters, a colon, a space, and then
three Latin letters. As Figure 3-31 illustrates, the Hebrew letters have been shown
from right to left as they were before. But this time, the colon has been shown to the
left of these letters rather than to the right, because of the FlowDirection setting.
The three Latin letters appear to the left of the other letters in accordance with the
RightToLeft flow direction, but because these letters all have an intrinsic left-to-right
directionality, this block of Latin letters has been displayed from left to right.

The full details of the algorithm used for bidirectional layout of Unicode text is given
in Annex 9 of the Unicode specification. It is too complex to describe in full detail
here, but you can find it at http://www.unicode.org/reports/tr9 (http://tinysells.com/99).

Panel.ZIndex
Panel defines an attached property, ZIndex, that determines which element appears
on top when two of them overlap. By default, the Z order of elements is determined
by the order in which they are defined. Of the elements inside a particular panel,
they will typically be rendered in the order in which they appear, causing the last one
to appear to be “on top.” Panel.ZIndex lets you control the rendering order indepen-
dently of the document order.

Elements with a higher Panel.ZIndex appear on top of those with a lower Panel.ZIndex.
The default value is 0, so elements with a positive Panel.ZIndex will appear on top of
those that do not specify one. Example 3-28 does not use Panel.ZIndex, so the element
overlapping order is determined by the order in which the elements appear.

Figure 3-31. Mixed directions with RightToLeft FlowDirection

Example 3-28. Without Panel.ZIndex

<Grid>
 <Button Width="75" Height="23" Margin="0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top">
 One
 </Button>
 <Button Width="75" Height="23" Margin="15,15"
 HorizontalAlignment="Left" VerticalAlignment="Top">
 Two
 </Button>
 <Button Width="75" Height="23" Margin="30,30"
 HorizontalAlignment="Left" VerticalAlignment="Top">
 Three
 </Button>
</Grid>

96 | Chapter 3: Layout

This is shown on the left of Figure 3-32. The version on the right comes from
Example 3-29.

Example 3-29 uses Panel.ZIndex to reverse the overlap.

RenderTransform and LayoutTransform
You can use both the RenderTransform and LayoutTransform properties to apply a trans-
form, such as scaling or rotation, to an element and all of its children. Transforms are
described in Chapter 13, but it is useful to understand their impact on layout.

If you apply a transform that doubles the size of an element, the element will appear
to be twice as large on-screen. You would normally want the layout system to take
this into account—if a Rectangle with a Width of 100 is scaled up to twice its size, it
will normally make sense for the layout system to treat it as having an effective width
of 200. However, you might sometimes want the transformation to be ignored for
layout purposes. For example, if you are using a transform in a short animation
designed to draw attention to a particular part of the UI, you probably don’t want
the entire UI’s layout to be changed as a result of that animation.

You can apply a transform to an object using either LayoutTransform or
RenderTransform. The former causes the transform to be taken into account by the
layout system, and the latter causes it to be ignored. Example 3-30 shows three but-
tons, one containing untransformed content, and the other two containing content
transformed with these two properties.

Figure 3-32. Panel.ZIndex

Example 3-29. With Panel.ZIndex

<Grid>
 <Button Width="75" Height="23" Margin="0,0" Panel.ZIndex="3"
 HorizontalAlignment="Left" VerticalAlignment="Top">
 One
 </Button>
 <Button Width="75" Height="23" Margin="15,15" Panel.ZIndex="2"
 HorizontalAlignment="Left" VerticalAlignment="Top">
 Two
 </Button>
 <Button Width="75" Height="23" Margin="30,30" Panel.ZIndex="1"
 HorizontalAlignment="Left" VerticalAlignment="Top">
 Three
 </Button>
</Grid>

Common Layout Properties | 97

Figure 3-33 shows the results. As you can see, the button with content scaled by
RenderTransform has the same size border as the unscaled one. The presence of the
transform has had no effect on layout, and the content no longer fits inside the space
allocated for it. However, the LayoutTransform has been taken into account by the lay-
out system—the third button has been enlarged in order for the scaled content to fit.

The layout system deals with LayoutTransform in a straightforward manner for simple
scaling transforms. The size allocated for the content is scaled up accordingly. But what
about rotations? Figure 3-34 shows a button whose content has a LayoutTransform that
rotates the content by 30 degrees. This is not a scaling transform, but notice that the
button has grown to accommodate the content—it is taller than a normal button.

Example 3-30. RenderTransform and LayoutTransform

<StackPanel>
 <Button>
 <TextBlock>
 Foo bar
 </TextBlock>
 </Button>
 <Button>
 <TextBlock>
 <TextBlock.RenderTransform>
 <ScaleTransform ScaleX="3" ScaleY="3" />
 </TextBlock.RenderTransform>
 Foo bar
 </TextBlock>
 </Button>
 <Button>
 <TextBlock>
 <TextBlock.LayoutTransform>
 <ScaleTransform ScaleX="3" ScaleY="3" />
 </TextBlock.LayoutTransform>
 Foo bar
 </TextBlock>
 </Button>
</StackPanel>

Figure 3-33. RenderTransform and LayoutTransform

Figure 3-34. LayoutTransform and rotation

98 | Chapter 3: Layout

When it encounters a LayoutTransform, the layout system simply applies that trans-
form to the bounding box, and makes sure that it provides enough space to hold the
transformed bounding box. This can occasionally lead to surprising results. Con-
sider the two buttons in Example 3-31.

These are shown in Figure 3-35. The top button looks as you would expect—the
button is large enough to contain the graphical content. But the bottom one is rather
surprising—the button appears to be taller than necessary.

This result makes sense only when you consider the bounding box—remember that
the layout system decides how much space to allocate by applying the
LayoutTransform to the bounding box. So let’s look at it again, this time with the
bounding boxes shown. Example 3-32 is a modified version of Example 3-31, with
Border elements added to show the bounding box of the lines.

Example 3-31. Rotation of content

<StackPanel>
 <Button HorizontalAlignment="Left">
 <Line Stroke="Blue" Y1="30" X2="100" />
 </Button>
 <Button HorizontalAlignment="Left">
 <Line Stroke="Blue" Y1="30" X2="100">
 <Line.LayoutTransform>
 <RotateTransform Angle="50" />
 </Line.LayoutTransform>
 </Line>
 </Button>
</StackPanel>

Figure 3-35. Rotated content

Example 3-32. Rotation showing bounding box

<StackPanel>
 <Button HorizontalAlignment="Left">
 <Border BorderBrush="Black" BorderThickness="1">
 <Line Stroke="Blue" Y1="30" X2="100" />
 </Border>
 </Button>
 <Button HorizontalAlignment="Left">

When Content Doesn’t Fit | 99

In Figure 3-36, we can now see the bounding box of the content. The button on the
bottom shows this bounding box with the same 50 degree rotation as has been
applied to the line. This makes it clear that the button is exactly large enough to hold
this rotated bounding box.

You might be wondering why WPF doesn’t simply calculate a new bounding box for
the transformed content instead of transforming the existing one. The reason is that
calculating a new bounding box may not be possible. Some elements, such as Canvas,
can declare a width and height that do not directly reflect their apparent size. The
only sensible way in which the layout system can deal with such elements is to treat
their logical shape as being rectangular. Using this approach of transforming the
bounding box everywhere ensures consistent behavior.

When Content Doesn’t Fit
Sometimes WPF will not be able to honor your requests because you have asked the
impossible. Example 3-33 creates a StackPanel with a Height of 100, which contains
a Button with a Height of 195.

 <Border BorderBrush="Black" BorderThickness="1">
 <Border.LayoutTransform>
 <RotateTransform Angle="50" />
 </Border.LayoutTransform>
 <Line Stroke="Blue" Y1="30" X2="100" />
 </Border>
 </Button>
</StackPanel>

Figure 3-36. Rotated content with bounding boxes

Example 3-33. Asking the impossible

<StackPanel Height="100" Background="Yellow" Orientation="Horizontal">
 <Button>Foo</Button>
 <Button Height="30">Bar</Button>
 <Button Height="195">Quux</Button>
</StackPanel>

Example 3-32. Rotation showing bounding box (continued)

100 | Chapter 3: Layout

Clearly that last button is too big to fit—it is taller than its containing panel.
Figure 3-37 shows how WPF deals with this.

The StackPanel has dealt with the anomaly by truncating the element that was too
large. When confronted with contradictory hardcoded sizes like these, most panels
take a similar approach, and will crop content where it simply cannot fit.

There is some variation in the way that panels handle overflow in situations where
sizes are not hardcoded, but there is still too much content to fit. Example 3-34 puts
two copies of a TextBlock and its content into a StackPanel and a Grid cell.

Figure 3-38 shows what happens when the available space is too narrow to hold the
TextBlock at its natural length.

The StackPanel has simply truncated the TextBlock. The Grid has been slightly more
intelligent. It has exploited the fact that the TextBlock had wrapping enabled, and
was able to flow the text into the narrow space available.* WrapPanel and DockPanel
both show the same behavior. Even this technique has its limits, of course—some-
times you really will have more content than fits in the space available. In that case, it
may be appropriate to use a ScrollViewer, discussed presently.

Figure 3-37. Truncation when content is too large

Example 3-34. Handling overflow

<Grid Background="Yellow" ShowGridLines="True">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <StackPanel Height="100" Orientation="Horizontal">
 <TextBlock TextWrapping="Wrap" FontSize="20">
 This is some text that is too long to fit.
 </TextBlock>
 </StackPanel>

 <TextBlock Grid.Row="1" TextWrapping="Wrap" FontSize="20">
 This is some text that is too long to fit.
 </TextBlock>
</Grid>

* The reason for the difference in behavior is that StackPanel uses a very simple layout mechanism. A horizon-
tal StackPanel always sizes its children to content horizontally, regardless of whether there is sufficient space.

ScrollViewer | 101

The reason StackPanel doesn’t result in wrapped text is that it does not attempt to
constrain its children in the stacking direction: a horizontal StackPanel lets each
child choose its preferred width, whether or not it fits. In effect, it pretends there is
an infinite amount of space, which is why the child TextBlock didn’t attempt to
wrap. StackPanel will constrain children in the other direction, though, so a vertical
StackPanel would pass on the horizontal constraint, causing the TextBlock in this
example to wrap. Canvas allows its children to determine both their width and their
height regardless of available space, so a Canvas would fail to wrap, just like the
StackPanel in this example.

ScrollViewer
The ScrollViewer control allows oversized content to be displayed by putting it into
a scrollable area. A ScrollViewer element has a single child. Example 3-35 uses an
Ellipse element, but it could be anything. If you want to put multiple elements into
a scrollable view, you would nest them inside a panel.

If the content of a ScrollViewer is larger than the space available, the ScrollViewer
can provide scroll bars to allow the user to scroll around the content, as Figure 3-39
shows. By default, a ScrollViewer provides a vertical scroll bar, but not a horizontal
one. In Example 3-35, the HorizontalScrollBarVisibility property has been set to
Auto, indicating that a horizontal scroll bar should be added if required.

This Auto visibility we’ve chosen for the horizontal scroll bar is different from the
default vertical behavior. The VerticalScrollBarVisibility defaults to Visible,
meaning that the scroll bar is present whether it is required or not.

Figure 3-38. Overflow handling

Example 3-35. ScrollViewer

<ScrollViewer HorizontalScrollBarVisibility="Auto">
 <Ellipse Fill="Green" Height="1000" Width="2000" />
</ScrollViewer>

102 | Chapter 3: Layout

There are two ways to make sure a scroll bar does not appear. You can set its visibil-
ity either to Disabled (the default for horizontal scroll bars) or to Hidden. The distinc-
tion is that Disabled constrains the logical size of the ScrollViewer’s contents to be
the same as the available space. Hidden allows the logical size to be unconstrained,
even though the user has no way of scrolling into the excess space. This can change
the behavior of certain layout styles.

To examine how these settings affect the behavior of a ScrollViewer, we’ll start with
the code shown in Example 3-36, and then show what happens as we change the
ScrollViewer properties.

This example shows a Grid containing three Button elements in a row. If the Grid is
given more space than it requires, it will stretch the buttons to be wider than neces-
sary. If it is given insufficient space, it will crop the buttons. If it is placed inside a
ScrollViewer, it will be possible for the ScrollViewer to provide enough virtual,
scrollable space for it, even if the space on-screen is insufficient.

Figure 3-39. ScrollViewer

Example 3-36. A resizable layout

<ScrollViewer ...>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Button Grid.Column="0">Stretched</Button>
 <Button Grid.Column="1">Stretched</Button>
 <Button Grid.Column="2">Stretched</Button>
 </Grid>
</ScrollViewer>

ScrollViewer | 103

Figure 3-40 shows how the Grid in Example 3-36 appears in a ScrollViewer when
there is more than enough space. All four options for HorizontalScrollBarVisibility
are shown, and in all four cases, the buttons have been stretched to fill the space.

Figure 3-41 shows the same four arrangements, but with insufficient horizontal
space. The top two ScrollViewer elements have horizontal scrolling enabled, with
Visible and Auto, respectively. As you would expect, the ScrollViewer has provided
enough space to hold all of the content, and allows the user to scroll the hidden part
into view. At the bottom left, where the horizontal scroll bar is set to Hidden, the lay-
out behavior is the same—it has arranged the elements as though there were enough
space to hold all of them. The only difference is that it has not shown a scroll bar.
(Scrolling will still occur if the user uses keyboard navigation to move the focus into
the hidden area.) At the bottom right, we can see that the behavior resulting from
Disabled is different. Here, not only is a scroll bar not shown, but also horizontal
scrolling is disabled completely. The Grid has therefore been forced to crop the but-
tons to fit into the available space.

Figure 3-40. HorizontalScrollBarVisibility settings with enough space

Figure 3-41. HorizontalScrollBarVisibility settings with insufficient space

HorizontalScrollbarVisibility.Visible HorizontalScrollbarVisibility.Auto

HorizontalScrollbarVisibility.Hidden HorizontalScrollbarVisibility.Disabled

HorizontalScrollbarVisibility.Hidden

HorizontalScrollbarVisibility.Visible HorizontalScrollbarVisibility.Auto

HorizontalScrollbarVisibility.Disabled

104 | Chapter 3: Layout

Scrollable Region and IScrollInfo
If you place a panel or any other ordinary element inside a ScrollViewer, the
ScrollViewer will measure its size in the normal way: the scrollable area essentially
sizes to content (unless the available area is surplus to requirements, in which case
the ScrollViewer gives the child all of the available space). It keeps track of the cur-
rently visible region, and moves the child content around as required. Most of the
time, this is exactly the behavior you require. However, occasionally you might need
to take a bit more control.

For example, if you have a large scrollable area containing lots of items, it might not
be very efficient to create all of the items upfront. You might be able to improve per-
formance significantly by creating items on demand only as they scroll into view.
Such tricks require you to get more deeply involved in the scrolling process.

If you want to take control of how scrolling functions, you must write a user inter-
face element that implements IScrollInfo. ScrollViewer looks for this interface on
its child element. If the child implements the interface, the ScrollViewer will no
longer pretend that the child has all the space it requires—instead, it will tell the
child exactly how much space is available on-screen for the viewport, and will defer
to the child for all scrolling operations. In this case, the ScrollViewer’s role is
reduced to showing scroll bars and notifying the child when the user attempts to
scroll.

This is not a step to be taken lightly. IScrollInfo has 24 members, and requires
you to do most of the work that ScrollViewer would otherwise have done for you.*

Fortunately, for the very common scenario of scrolling through a list, we can use
the built-in IScrollInfo implementation provided by VirtualizingStackPanel.
The VirtualizingStackPanel implements IScrollInfo so that it can show scroll
feedback for all of the data, even though it only generates UI elements to repre-
sent those items currently visible, “virtualizing” the view of the data. You don’t
need to take any special steps to enable virtualization—a data-bound ListBox
automatically displays its items using a VirtualizingStackPanel. You would need
to implement IScrollInfo only if you are not using data binding, or if you need
something other than a simple linear stack of items.

If you customize the appearance of an ItemsControl using the template
techniques described in Chapters 8 and 9, you might end up disabling
virtualization. To avoid this, you should ensure that if you change the
Template or ItemsPanelTemplate property of an ItemsControl, your
replacement template contains a VirtualizingStackPanel.

* For a full example of how to implement IScrollInfo, see a series of three articles on this subject, written by
a Microsoft developer, at http://blogs.msdn.com/bencon/archive/2006/01.aspx (http://tinysells.com/64).

Custom Layout | 105

We have now looked at all of the built-in mechanisms for helping you manage your
application’s layout. But what if you have unusual requirements that are not met by
the built-in panels? Sometimes it is necessary to customize the layout process by writ-
ing your own panel.

Custom Layout
Although WPF supplies a flexible set of layout elements, you might decide that none
of them suits your requirements. Fortunately, the layout system is extensible, and it
is fairly straightforward to implement your own custom panel. To write a panel, you
need to understand how the layout system works.

Layout occurs in two phases: measure and arrange. Your custom panel will first be
asked how much space it would like to have—that’s the measure phase. The panel
should measure each of its children to find out how much space they require, and
use this information to calculate how much space the panel needs in total.

Of course, you can’t always get what you want. If your panel’s measure phase decides
it needs an area twice the size of the screen, it won’t get that unless its parent happens
to be a ScrollViewer. Moreover, even when there is enough space on-screen, your
panel’s parent could still choose not to give it to you. For example, if your custom
panel is nested inside a Grid, the Grid may have been set up with a hardcoded width
for the column your panel occupies, in which case that’s the width you’ll get regard-
less of what you asked for during the measure phase.

It is only in the “arrange” phase that we find out how much space we have. During
this phase, we must decide where to put all of our children as best we can in the
space available.

You might be wondering why the layout system bothers with the mea-
sure phase when the amount of space we get during the arrange phase
may be different. The reason for having both is that most panels try to
take the measured size of their children into account during the
arrange phase. You can think of the measure phase as asking every ele-
ment in the tree what it would like, and the arrange phase as honoring
those measurements where possible, compromising only where physi-
cal or configured constraints come into play.

Let’s create a new panel type to see how the measure and arrange phases work in
practice. We’ll call this new panel DiagonalPanel, and it will arrange elements diago-
nally from the top left of the panel down to the bottom right, as Figure 3-42 shows.
Each element’s top-left corner will be placed where the preceding element’s bottom-
right corner went.

106 | Chapter 3: Layout

You don’t really need to write a new panel type to achieve this lay-
out—you could get the same effect with a Grid, setting every row and
column’s size to Auto. However, you could make the same argument
for StackPanel and DockPanel—neither of those does anything that you
couldn’t do with the Grid. It’s just convenient to have a simple single-
purpose panel, as the Grid equivalent is a little more verbose.

To implement this custom layout, we must write a class that derives from Panel, and
that implements the measure and arrange phases. As Example 3-37 shows, we do
this by overriding the MeasureOverride and ArrangeOverride methods.

Figure 3-42. Custom DiagonalPanel in action

Example 3-37. Custom DiagonalPanel

using System;
using System.Windows.Controls;
using System.Windows;

namespace CustomPanel {
 public class DiagonalPanel : Panel {

 protected override Size MeasureOverride(Size availableSize) {
 double totalWidth = 0;
 double totalHeight = 0;

 foreach(UIElement child in Children) {
 child.Measure(new Size(double.PositiveInfinity,
 double.PositiveInfinity));
 Size childSize = child.DesiredSize;
 totalWidth += childSize.Width;
 totalHeight += childSize.Height;
 }

 return new Size(totalWidth, totalHeight);
 }

 protected override Size ArrangeOverride(Size finalSize) {
 Point currentPosition = new Point();

 foreach(UIElement child in Children) {
 Rect childRect = new Rect(currentPosition, child.DesiredSize);
 child.Arrange(childRect);
 currentPosition.Offset(childRect.Width, childRect.Height);

Custom Layout | 107

Notice that the MeasureOverride method is passed a Size parameter. If the parent is
aware of size constraints that will need to be applied during the arrange phase, it
passes them here during the measure phase. For example, if this panel’s parent was a
Window with a specified size, the Window would pass in the size of its client area during
the measure phase. However, not all panels will do this. You may find the available
size is specified as being Double.PositiveInfinity in both dimensions, indicating that
the parent is not informing us of any fixed constraints at this stage. An infinite avail-
able size indicates that we should simply pick whatever size is appropriate for our
content. You must pick a finite size—returning an infinite size from your
MeasureOverride will cause an exception to be thrown.

Some elements ignore the available size, because their size is always determined by
their contents. For example, our panel’s simple layout is driven entirely by the natu-
ral size of its children, so it ignores the available size. Our MeasureOverride simply
loops through all of the children, adding their widths and heights. We pass in an infi-
nite size when calling Measure on each child in order to use its preferred size.

You must call Measure on all of your panel’s children. If your
MeasureOverride fails to measure all of its children, the layout process
may not function correctly. All elements expect to be measured before
they are arranged. Their arrange logic might rely on the results of calcu-
lations performed during the measure phase. When you write a custom
panel, it is your responsibility to ensure that child elements are mea-
sured and arranged at the appropriate times.

In our ArrangeOverride, we loop through all of the child elements, setting them to
their preferred size, basing the position on the bottom-righthand corner of the pre-
ceding element. Because this very simple layout scheme cannot adapt, it ignores the
amount of space it has been given. Any child elements that do not fit will be
cropped, as happens with StackPanel.

This measure and arrange sequence traverses the entire user interface tree—all ele-
ments use this mechanism, not just panels. A custom panel is the most appropriate
place to write custom layout logic for managing the arrangement of controls. How-
ever, there is one other situation in which you might want to override the
MeasureOverride and ArrangeOverride methods. If you are writing a graphical ele-
ment that uses the low-level visual APIs described in Chapter 13, you may want to
override these methods in order for the layout system to work with your element.

 }

 return new Size(currentPosition.X, currentPosition.Y);
 }
 }
}

Example 3-37. Custom DiagonalPanel (continued)

108 | Chapter 3: Layout

The code will typically be simpler than for a panel, because you will not have child
elements to arrange. Your MeasureOverride will simply need to report how much
space it needs, and ArrangeOverride tells you how much space you have been given.

Where Are We?
WPF provides a wide range of options for layout. Many panel types are available, each
offering its own layout style. You can then compose these into a single application in
any number of ways, supporting many different user interface styles. The top-level
layout will usually be set with either a Grid or a DockPanel. The other panels are typi-
cally used to manage the details. You can use the common layout properties on child
elements to control how they are arranged—these properties work consistently
across all panel types. And if none of the built-in layout mechanisms meets your
requirements, you can write your own custom panel.

109

Chapter 4 CHAPTER 4

Input4

A user interface wouldn’t be much use if it couldn’t respond to user input. In this chap-
ter, we will examine the input handling mechanisms available in WPF. There are three
main kinds of user input for a Windows application: mouse, keyboard, and ink.* Any
user interface element can receive input—not just controls. This is not surprising,
because controls rely entirely on the services of lower-level elements like Rectangle and
TextBlock in order to provide visuals. All of the input mechanisms described in the fol-
lowing sections are, therefore, available on all user interface element types.

Raw user input is delivered to your code through WPF’s routed event mechanism.
There is also a higher-level concept of a command—a particular action that might be
accessible through several different inputs such as keyboard shortcuts, toolbar but-
tons, and menu items.

Routed Events
The .NET Framework defines a standard mechanism for managing events. A class
may expose several events, and each event may have any number of subscribers.
WPF augments this standard mechanism to overcome a limitation: if a normal .NET
event has no registered handlers, it is effectively ignored.

Consider what this would mean for a typical WPF control. Most controls are made
up of multiple visual components. For example, suppose you give a button a very
plain appearance consisting of a single Rectangle, and provide a simple piece of text
as the content. (Chapter 9 describes how to customize a control’s appearance.) Even
with such basic visuals, there are still two elements present: the text and the rectan-
gle. The button should respond to a mouse click whether the mouse is over the text
or the rectangle. In the standard .NET event handling model, this would mean regis-
tering a MouseLeftButtonUp event handler for both elements.

* Ink is input written with a stylus, whether on a Tablet PC or a hand-held device, although the mouse can be
used in a pinch.

110 | Chapter 4: Input

This problem would get much worse when taking advantage of WPF’s content
model. A Button is not restricted to having plain text as a caption—it can contain any
object as content. The example in Figure 4-1 is not especially ambitious, but even
this has six visible elements: the yellow outlined circle, the two dots for the eyes, the
curve for the mouth, the text, and the button background itself. Attaching event
handlers for every single element would be tedious and inefficient. Fortunately, it’s
not necessary.

WPF uses routed events, which are rather more thorough than normal events. Instead
of just calling handlers attached to the element that raised the event, WPF walks the
tree of user interface elements, calling all handlers for the routed event attached to
any node from the originating element right up to the root of the user interface tree.
This behavior is the defining feature of routed events, and is at the heart of event
handling in WPF.

Example 4-1 shows markup for the button in Figure 4-1. If one of the Ellipse ele-
ments inside the Canvas were to receive input, event routing would enable the Button,
Grid, Canvas, and Ellipse to receive the event, as Figure 4-2 shows.

Figure 4-1. A button with nested content

Example 4-1. Handling events in a user interface tree

<Button PreviewMouseDown="PreviewMouseDownButton"
 MouseDown="MouseDownButton">

 <Grid PreviewMouseDown="PreviewMouseDownGrid"
 MouseDown="MouseDownGrid">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Canvas PreviewMouseDown="PreviewMouseDownCanvas"
 MouseDown="MouseDownCanvas"
 Width="20" Height="18" VerticalAlignment="Center">

 <Ellipse PreviewMouseDown="PreviewMouseDownEllipse"
 MouseDown="MouseDownEllipse"
 x:Name="myEllipse"
 Canvas.Left="1" Canvas.Top="1" Width="16" Height="16"
 Fill="Yellow" Stroke="Black" />

Routed Events | 111

A routed event can either be bubbling, tunneling, or direct. A bubbling event starts by
looking for event handlers attached to the target element that raised the event, and
then looks at its parent and then its parent’s parent, and so on until it reaches the
root of the tree; this order is indicated by the numbers in Figure 4-2. A tunneling
event works in reverse—it looks for handlers at the root of the tree first and works its
way down, finishing with the originating element.

Direct events work like normal .NET events: only handlers attached directly to the
originating element are notified—no real routing occurs. This is typically used for
events that make sense only in the context of their target element. For example, it
would be unhelpful if mouse enter and leave events were bubbled or tunneled—the
parent element is unlikely to care about when the mouse moves from one child ele-
ment to another. At the parent element, you would expect “mouse leave” to mean “the
mouse has left the parent element,” and because direct event routing is used, that’s
exactly what it does mean. If bubbling were used, the event would effectively mean
“the mouse has left an element that is inside the parent, and is now inside another ele-
ment that may or may not be inside the parent,” which would be less useful.

 <Ellipse Canvas.Left="4.5" Canvas.Top="5" Width="2.5" Height="3"
 Fill="Black" />
 <Ellipse Canvas.Left="11" Canvas.Top="5" Width="2.5" Height="3"
 Fill="Black" />
 <Path Data="M 5,10 A 3,3 0 0 0 13,10" Stroke="Black" />
 </Canvas>

 <TextBlock Grid.Column="1">Click!</TextBlock>
 </Grid>
</Button>

Figure 4-2. Routed events

Example 4-1. Handling events in a user interface tree (continued)

Button

Grid

Canvas TextBlock

Ellipse

Event

4

Event

3

Event

2

Event

1
Input

112 | Chapter 4: Input

You may be wondering whether there is a meaningful difference
between a direct routed event and an ordinary CLR event—after all, a
direct event isn’t really routed anywhere. The main difference is that
with a direct routed event, WPF provides the underlying implementa-
tion, whereas if you were to use the normal C# event syntax to declare
an event, the C# compiler would provide the implementation. The
C# compiler would generate a hidden private field to hold the event
handler, meaning that you pay a per-object overhead for each event
whether or not any handlers are attached. With WPF’s event imple-
mentation, event handlers are managed in such a way that you pay an
overhead only for events to which handlers are attached. In a UI with
thousands of elements each offering tens of events, most of which
don’t have handlers attached, this starts to add up. Also, WPF’s event
implementation offers something not available with ordinary C#
events: attached events, which are described later.

With the exception of direct events, WPF defines most routed events in pairs—one
bubbling and one tunneling. The tunneling event name always begins with Preview
and is raised first. This gives parents of the target element the chance to see the event
before it reaches the child (hence the Preview prefix). The tunneling preview event is
followed directly by a bubbling event. In most cases, you will handle only the bub-
bling event—the preview would usually be used only if you wanted to be able to
block the event, or if you needed a parent to do something in advance of normal
handling of the event.

In Example 4-1, most of the elements have event handlers specified for the
PreviewMouseDown and MouseDown events—the bubbling and tunneling events, respec-
tively. Example 4-2 shows the corresponding code-behind file.

Example 4-2. Handling events

using System;
using System.Windows;
using System.Diagnostics;

namespace EventRouting {
 public partial class Window1 : Window {
 public Window1() {
 InitializeComponent();
 }

 void PreviewMouseDownButton(object sender, RoutedEventArgs e)
 { Debug.WriteLine("PreviewMouseDownButton"); }

 void MouseDownButton(object sender, RoutedEventArgs e)
 { Debug.WriteLine("MouseDownButton"); }

Routed Events | 113

Each handler prints out a debug message. Here is the debug output we get when
clicking on the Ellipse inside the Canvas:

PreviewMouseDownButton
PreviewMouseDownGrid
PreviewMouseDownCanvas
PreviewMouseDownEllipse
MouseDownEllipse
MouseDownCanvas
MouseDownGrid

This confirms that the preview event is raised first. It also shows that it starts from
the Button element and works down, as we would expect with a tunneling event. The
bubbling event that follows starts from the Ellipse element and works up. (Interest-
ingly, it doesn’t appear to get as far as the Button. We’ll look at why this is shortly.)

This bubbling routing offered for most events means that you can register a single
event handler on a control, and it will receive events for any of the elements nested
inside the control. You do not need any special handling to deal with nested con-
tent, or controls whose appearance has been customized with templates—events
simply bubble up to the control and can all be handled there.

 void PreviewMouseDownGrid(
 object sender, RoutedEventArgs e)
 { Debug.WriteLine("PreviewMouseDownGrid"); }

 void MouseDownGrid(object sender, RoutedEventArgs e)
 { Debug.WriteLine("MouseDownGrid"); }

 void PreviewMouseDownCanvas(object sender, RoutedEventArgs e)
 { Debug.WriteLine("PreviewMouseDownCanvas"); }

 void MouseDownCanvas(object sender, RoutedEventArgs e)
 { Debug.WriteLine("MouseDownCanvas"); }

 void PreviewMouseDownEllipse(object sender, RoutedEventArgs e)
 { Debug.WriteLine("PreviewMouseDownEllipse"); }

 void MouseDownEllipse(object sender, RoutedEventArgs e)
 { Debug.WriteLine("MouseDownEllipse"); }

 }
}

Example 4-2. Handling events (continued)

114 | Chapter 4: Input

Halting Event Routing
There are some situations in which you might not want events to bubble up. For
example, you may wish to convert the event into something else—the Button ele-
ment effectively converts a MouseDown event followed by a MouseUp event into a single
Click event. It suppresses the more primitive mouse button events so that only the Click
event bubbles up out of the control. (This is why the event bubbling stopped at the but-
ton in the previous example.)

Any handler can prevent further processing of a routed event by setting the Handled
property of the RoutedEventArgs, as shown in Example 4-3.

If you set the Handled flag in a Preview handler, not only will the tunneling of the
Preview event stop, but also the corresponding bubbling event that would normally
follow will not be raised at all. This provides a way of stopping the normal handling
of an event.

Determining the Target
Although it is convenient to be able to handle events from a group of elements in a
single place, your handler might need to know which element caused the event to be
raised. You might think that this is the purpose of the sender parameter of your
handler. In fact, the sender always refers to the object to which you attached the
event handler. In the case of bubbled and tunneled events, this often isn’t the ele-
ment that caused the event to be raised. In Example 4-1, the MouseDownGrid handler’s
sender will always be the Grid itself, regardless of which element in the grid was
clicked.

Fortunately, it’s easy to find out which element was the underlying cause of the
event. The handler has a RoutedEventArgs parameter, which offers a Source property
for this purpose. This is particularly useful if you need to handle events from several
different sources in the same way. For example, suppose you create a window that
contains a number of graphical elements, and you’d like each to change shape when
clicked. Instead of attaching a MouseDown event handler to each individual shape, you
could attach a single handler to the window. All the events would bubble up from
any shape to this single handler, and you could use the Source property to work out
which shape you need to change. (Shapes are discussed in Chapter 13. Example 13-5
uses exactly this trick.)

Example 4-3. Halting event routing with Handled

void ButtonDownCanvas(object sender, RoutedEventArgs e) {
 Debug.WriteLine("ButtonDownCanvas");
 e.Handled = true;
}

Routed Events | 115

Routed Events and Normal Events
Normal .NET events (or, as they are often called, CLR events) offer one advantage over
routed events: many .NET languages have built-in support for handling CLR events.
Because of this, WPF provides wrappers for routed events, making them look just like
normal CLR events.* This provides the best of both worlds: you can use your favorite
language’s event handling syntax while taking advantage of the extra functionality
offered by routed events.

This is possible thanks to the flexible design of the CLR event mecha-
nism. Though a standard simple behavior is associated with CLR events,
CLR designers had the foresight to realize that some applications would
require more sophisticated behavior. Classes are therefore free to imple-
ment events however they like. WPF reaps the benefits of this design by
defining CLR events that are implemented internally as routed events.

Examples 4-1 and 4-2 arranged for the event handlers to be connected by using
attributes in the markup. But we could have used the normal C# event handling syn-
tax to attach handlers in the constructor instead. For example, you could remove the
MouseDown and PreviewMouseDown attributes from the Ellipse in Example 4-1, and
then modify the constructor from Example 4-2, as shown here in Example 4-4.

When you use these CLR event wrappers, WPF uses the routed event system on your
behalf. The code in Example 4-5 is equivalent to that in Example 4-4.

* If you write custom elements, you should do the same. Chapter 18 describes how to do this.

Example 4-4. Attaching event handlers in code

...
public Window1() {
 InitializeComponent();

 myEllipse.MouseDown += MouseDownEllipse;
 myEllipse.PreviewMouseDown += PreviewMouseDownEllipse;
}
...

Example 4-5. Attaching event handlers the long-winded way

...
public Window1() {
 InitializeComponent();

 myEllipse.AddHandler(Ellipse.MouseDownEvent,
 new MouseButtonEventHandler(MouseDownEllipse));
 myEllipse.AddHandler(Ellipse.PreviewMouseDownEvent,
 new MouseButtonEventHandler(PreviewMouseDownEllipse));
}
...

116 | Chapter 4: Input

Example 4-5 is more verbose and offers no benefit—we show it here only so that you
can see what’s going on under the covers. The style shown in Example 4-4 is preferred.

The code behind is usually the best place to attach event handlers. If your user inter-
face has unusual and creative visuals, there’s a good chance that the XAML file will
effectively be owned by a graphic designer. A designer shouldn’t have to know what
events a developer needs to handle, or what the handler functions are called. Ideally,
the designer will give elements names in the XAML and the developer will attach
handlers in the code behind.

Attached Events
It is possible to define an attached event. This is the routed-event equivalent of an
attached property: an event defined by a different class than the one from which the
event will be raised. This keeps the input system open to extension. If a new kind of
input device is invented, it could define new events as attached events, enabling them
to be raised from any UI element.

In fact, the WPF input system already works this way. The mouse, stylus, and key-
board events examined in this chapter are just wrappers for underlying attached
events defined by the Mouse, Keyboard, and Stylus classes in the System.Windows.Input
namespace. This means we could change the Grid element in Example 4-1 to use the
attached events defined by the Mouse class, as shown in Example 4-6.

This would have no effect on the behavior, because the names Example 4-1 used for
these events are aliases for the attached events used in this example.

Handling attached events from code looks a little different. Normal CLR events
don’t support this notion of attached events, so we can’t use the ordinary C# event
syntax like we did in Example 4-4. Instead, we have to call the AddHandler method,
passing in the RoutedEvent object representing the attached event (see Example 4-7).

Alternatively, we can use the helper functions provided by the Mouse class.
Example 4-8 uses this to perform exactly the same job as the preceding two examples.

Example 4-6. Attached event handling

<Grid Mouse.PreviewMouseDown="PreviewMouseDownGrid"
Mouse.MouseDown="MouseDownGrid">

Example 4-7. Explicit attached event handling

myEllipse.AddHandler(Mouse.PreviewMouseDownEvent,
 new MouseButtonEventHandler(PreviewMouseDownEllipse));
myEllipse.AddHandler(Mouse.MouseDownEvent,
 new MouseButtonEventHandler(MouseDownEllipse));

Mouse Input | 117

Example 4-8 is more compact than Example 4-7 because we were able to omit the
explicit construction of the delegate, relying instead on C# delegate type inference.
Example 4-7 cannot do this because AddHandler can attach a handler for any kind of
event, so in its function signature the second parameter is of the base Delegate type.
By convention, classes that define attached events usually provide corresponding
helper methods like these to let you use this slightly neater style of code.

Mouse Input
Mouse input is directed to whichever element is directly under the mouse cursor. All
user interface elements derive from the UIElement base class, which defines a number
of mouse input events. These are listed in Table 4-1.

Example 4-8. Attached event handling with helper function

Mouse.AddPreviewMouseDownHandler(myEllipse, PreviewMouseDownEllipse);
Mouse.AddMouseDownHandler(myEllipse, MouseDownEllipse);

Table 4-1. Mouse input events

Event Routing Meaning

GotMouseCapture Bubble Element captured the mouse.

LostMouseCapture Bubble Element lost mouse capture.

MouseEnter Direct Mouse pointer moved into element.

MouseLeave Direct Mouse pointer moved out of element.

PreviewMouseLeftButtonDown,

MouseLeftButtonDown

Tunnel, Bubble Left mouse button pressed while pointer inside element.

PreviewMouseLeftButtonUp,

MouseLeftButtonUp

Tunnel, Bubble Left mouse button released while pointer inside element.

PreviewMouseRightButtonDown,

MouseRightButtonDown

Tunnel, Bubble Right mouse button pressed while pointer inside element.

PreviewMouseRightButtonUp,

MouseRightButtonUp

Tunnel, Bubble Right mouse button released while pointer inside element.

PreviewMouseDown,

MouseDown

Tunnel, Bubble Mouse button pressed while pointer inside element
(raised for any mouse button).

PreviewMouseUp,

MouseUp

Tunnel, Bubble Mouse button released while pointer inside element
(raised for any mouse button).

PreviewMouseMove,

MouseMove

Tunnel, Bubble Mouse pointer moved while pointer inside element.

PreviewMouseWheel,

MouseWheel

Tunnel, Bubble Mouse wheel moved while pointer inside element.

QueryCursor Bubble Mouse cursor shape to be determined while pointer
inside element.

118 | Chapter 4: Input

In addition to the mouse-related events, UIElement also defines a pair of properties
that indicate whether the mouse pointer is currently over the element: IsMouseOver
and IsMouseDirectlyOver. The distinction between these two properties is that the
former will be true if the cursor is over the element in question or over any of its
child elements, but the latter will be true only if the cursor is over the element in
question but not one of its children.

Note that the basic set of mouse events shown in Table 4-1 does not include a Click
event. This is because clicks are a higher-level concept than basic mouse input—a
button can be “clicked” with the mouse, the stylus, the keyboard, or through the
Windows accessibility API. Moreover, clicking doesn’t necessarily correspond directly
to a single mouse event—usually, the user has to press and release the mouse button
while the mouse is over the control to register as a click. Accordingly, these higher-
level events are provided by more specialized element types. The Control class adds a
PreviewMouseDoubleClick and MouseDoubleClick event pair. Likewise, ButtonBase—the
base class of Button, CheckBox, and RadioButton—goes on to add a Click event.

Mouse Input and Hit Testing
WPF always takes the shapes of your elements into account when handling mouse
input. Many graphical systems just use the rectangular bounding box of elements to
perform hit testing (i.e., testing to see which element the mouse input “hit”). WPF does
not employ this shortcut, no matter what shapes your elements may be. For example, if
you create a donut-shaped control and click on the hole in the middle, the click will be
delivered to whatever was visible behind your control through the hole.

Occasionally it is useful to subvert the standard hit testing behavior. You might wish
to create a donut-shaped control with a visible hole, but which doesn’t let clicks pass
through it. Alternatively, you might want to create an element that is visible to the
user, but transparent to the mouse. WPF lets you do both of these things.

To achieve the first trick—transparent to the eye but opaque to the mouse—you can
paint an object with a transparent brush. For example, an Ellipse with its Fill set to
Transparent will be invisible to the eye, but not to the mouse. Alternatively, you can
use a nontransparent brush, but make the whole element transparent by setting its
Opacity property to 0. If a donut-shaped control paints such an ellipse over the hole,
this enables it to receive any clicks on the hole. As far as the mouse is concerned, an
element is a valid mouse target as long as it is painted with some kind of brush. The
mouse doesn’t even look at the level of transparency on the brush, so it treats a com-
pletely transparent brush in exactly the same way as a completely opaque brush.

If you want a shape with a transparent fill that does not receive mouse
input, simply supply no Fill at all. For example, you might want the
shape to have an outline but no fill. If the Fill is null, as opposed to
being a completely transparent brush, the shape will not act as an
input target.

Mouse Input | 119

WPF supports the second trick—creating a visible object that is transparent to the
mouse—with the IsHitTestVisible property, which can be applied to any element.
Setting this to false ensures that the element will not receive mouse input; instead,
input will be delivered to whatever is under the element. For example, suppose you
had written code to make some sort of graphical embellishment follow the mouse
around, such as a semi-transparent ellipse to act as a halo for the pointer. Setting
IsHitTestVisible to false would ensure that this visual effect had no impact on the
interactive behavior.

If you are using 3D (as described in Chapter 17), hit testing can be an
expensive process. If you don’t require hit testing for your 3D content,
making it invisible to hit testing can offer a useful performance boost.

Mouse State
As well as defining events, the Mouse class defines some static properties and meth-
ods that you can use to discover information about the mouse or modify its state.

The GetPosition method lets you discover the position of the mouse. As Example 4-9
shows, you must pass in a user interface element. It will return the mouse position
relative to the specified element, taking into account any transformations that may
be in effect.

The Capture method allows an element to capture the mouse. Mouse capture means
that all mouse input events are sent to the capturing element, even if the mouse is cur-
rently outside of that element.* Example 4-10 captures the mouse to an ellipse when a
mouse button is pressed, enabling it to track the movement of the mouse even if it
moves outside of the ellipse. In fact, it will continue to receive MouseMove events even if
the mouse moves outside of the window. This is useful for drag operations, as the
user will expect an item being dragged to follow the mouse for as long as the mouse
button is pressed. The capture is released by passing null to the Capture method.

Example 4-9. Retrieving the mouse position

Point positionRelativeToEllipse = Mouse.GetPosition(myEllipse);

* Capturing the mouse does not constrain its movement. It merely controls where mouse events are delivered.

Example 4-10. Mouse capture

public Window1() {
 InitializeComponent();

 myEllipse.MouseDown += myEllipse_MouseDown;
 myEllipse.MouseMove += myEllipse_MouseMove;
 myEllipse.MouseUp += myEllipse_MouseUp;
}

120 | Chapter 4: Input

The Mouse class provides a Captured property that returns the element that has cur-
rently captured the mouse; it returns null if the mouse is not captured. You can also
discover which element in your application, if any, the mouse is currently over, by
using the static Mouse.DirectlyOver property.

Mouse provides five properties that reflect the current button state. Each returns a
MouseButtonState enumeration value, which can be either Pressed or Released. Three of
these properties—LeftButton, MiddleButton, and RightButton—are self-explanatory.
The other two—XButton1 and XButton2—are perhaps less obvious. These are for the
extra buttons provided on some mice, typically found on the side. The locations of
these so-called extended buttons are not wholly consistent—one of the authors’ mice
has these two buttons on the lefthand side, and another has one on each side. This
explains the somewhat abstract property names.

Mouse also provides an OverrideCursor property that lets you set a mouse cursor to be
shown throughout your whole application, as shown in Example 4-11. This over-
rides any element-specific mouse cursor settings. You could use this to temporarily
show an hourglass cursor when performing some slow work.

Keyboard Input
The target for mouse input is always the element currently under the mouse, or the
element that has currently captured the mouse. This doesn’t work so well for key-
board input—the user cannot move the keyboard, and it would be inconvenient to
need to keep the mouse directly over a text field while typing. Windows therefore

void myEllipse_MouseDown(object sender, MouseButtonEventArgs e) {
 Mouse.Capture(myEllipse);
}

void myEllipse_MouseUp(object sender, MouseButtonEventArgs e) {
 Mouse.Capture(null);
}

void myEllipse_MouseMove(object sender, MouseEventArgs e) {
 Debug.WriteLine(Mouse.GetPosition(myEllipse));
}

Example 4-11. Temporary mouse cursor override

private void StartSlowWork() {
 Mouse.OverrideCursor = Cursors.AppStarting;
 ...
}

private void SlowWorkCompleted() {
 Mouse.OverrideCursor = null;
}

Example 4-10. Mouse capture (continued)

Keyboard Input | 121

uses a different mechanism for directing keyboard input. At any given moment, a
particular element is designated as having the focus, meaning that it acts as the target
for keyboard input. The user sets the focus by clicking the control in question with
the mouse or stylus, or by using navigation keys such as the Tab and arrow keys.

The UIElement base class defines an IsFocused property, so in princi-
ple, any user interface element can receive the focus. However, the
Focusable property determines whether this feature is enabled on any
particular element. By default, this is true for controls, and false for
other elements.

Table 4-2 shows the keyboard input events offered by user interface elements. Most
of these items use tunnel and bubble routing for the preview and main events,
respectively.

Strictly speaking, the TextInput event is not caused exclusively by keyboard input. It
represents textual input in a device-independent way, so this event can also be raised
as a result of ink input from a stylus.

As Table 4-2 shows, WPF makes a distinction between logical focus and keyboard
focus. Only one element can have the keyboard focus at any given instant. Often, the
focus will not even be in your application—the user may switch to another applica-
tion. However, applications typically remember where the focus was so that if the
user switches back, the focus returns to the same place as before. WPF defines the
logical focus concept to keep track of this: when an application loses the keyboard
focus, the last element that had the keyboard focus retains the logical focus. When
the application regains the keyboard focus, WPF ensures that the focus is put back
into the element with the logical focus.

Table 4-2. Keyboard input events

Event Routing Meaning

PreviewGotKeyboardFocus,

GotKeyboardFocus

Tunnel, Bubble Element received the keyboard focus.

PreviewLostKeyboardFocus,

LostKeyboardFocus

Tunnel, Bubble Element lost the keyboard focus.

GotFocus Bubble Element received the logical focus.

LostFocus Bubble Element lost the logical focus.

PreviewKeyDown,

KeyDown

Tunnel, Bubble Key pressed.

PreviewKeyUp,

KeyUp

Tunnel, Bubble Key released.

PreviewTextInput,

TextInput

Tunnel, Bubble Element received text input.

122 | Chapter 4: Input

Keyboard State
The Keyboard class provides a static property called Modifiers. You can read this at
any time to find out which modifier keys, such as the Alt, Shift, and Ctrl keys, are
pressed. Example 4-12 shows how you might use this in code that needs to decide
whether to copy or move an item according to whether the Ctrl key is pressed.

Keyboard also provides the IsKeyDown and IsKeyUp methods, which let you query the
state of any individual key, as shown in Example 4-13.

You can also discover which element has the keyboard focus, using the static
FocusedElement property, or set the focus into a particular element by calling the
Focus method.

The state information returned by Keyboard does not represent the cur-
rent state. It represents a snapshot of the state for the event currently
being processed. This means that if for some reason, your application
gets bogged down and gets slightly behind in processing messages, the
keyboard state will remain consistent.

As an example of why this is important, consider a drag operation
where the Ctrl key determines whether the operation is a move or a
copy. To behave correctly, your mouse up handler needs to know the
state the Ctrl key had when the mouse button was released, rather than
the state that it’s in now. If the user releases the Ctrl key after letting go
of the mouse button, but before your application has processed the
mouse up event, the user will expect a copy operation to be per-
formed, and he will be unhappy if the application performs a move
simply because your code couldn’t keep up. By returning a snapshot of
the keyboard state rather than its immediate state, the Keyboard class
saves you from this problem.

Ink Input
The stylus used on Tablet PCs and other ink-enabled systems has its own set of
events. Table 4-3 shows the ink input events offered by user interface elements.

Example 4-12. Reading keyboard modifiers

if (Keyboard.Modifiers & ModifierKeys.Control) != 0) {
 isCopy = true;
}

Example 4-13. Reading individual key state

bool homeKeyPressed = Keyboard.IsKeyDown(Key.Home);

Ink Input | 123

The Stylus class provides a static Capture method that works exactly the same as the
Mouse.Capture method described earlier. It also offers Captured and DirectlyOver
properties that do the same for the stylus as the matching properties of the Mouse
class do for the mouse.

There is an alternative way of dealing with stylus input. Instead of handling all of
these low-level events yourself, you can use WPF’s high-level ink handling element,
InkCanvas. Example 4-14 shows how little is required to add an ink input area to a
WPF application.

Table 4-3. Stylus and ink events

Event Routing Meaning

GotStylusCapture Bubble Element captured stylus.

LostStylusCapture Bubble Element lost stylus capture.

PreviewStylusButtonDown,

StylusButtonDown

Tunnel, Bubble Stylus button pressed while over element.

PreviewStylusButtonUp,

StylusButtonUp

Tunnel, Bubble Stylus button released while over element.

PreviewStylusDown,

StylusDown

Tunnel, Bubble Stylus touched screen while over element.

PreviewStylusUp,

StylusUp

Tunnel, Bubble Stylus left screen while over element.

StylusEnter Direct Stylus moved into element.

StylusLeave Direct Stylus left element.

PreviewStylusInRange,

StylusInRange

Tunnel, Bubble Stylus moved close enough to screen to be detected.

PreviewStylusOutOfRange,

StylusOutOfRange

Tunnel, Bubble Stylus moved out of detection range.

PreviewStylusMove,

StylusMove

Tunnel, Bubble Stylus moved while over element.

PreviewStylusInAirMove,

StylusInAirMove

Tunnel, Bubble Stylus moved while over element but not in contact with
screen.

PreviewStylusSystemGesture,

StylusSystemGesture

Tunnel, Bubble Stylus performed a gesture.

PreviewTextInput,

TextInput

Tunnel, Bubble Element received text input.

Example 4-14. InkCanvas

<InkCanvas />

124 | Chapter 4: Input

The InkCanvas accepts free-form ink input. Figure 4-3 shows the InkCanvas in action.
(It also demonstrates that I should probably stick to using the keyboard.) InkCanvas
makes all of the ink input available to your program through its Strokes property. It
is possible to connect this data to the handwriting recognition APIs in Windows, but
that is beyond the scope of this book.

Commands
The input events we’ve examined give us a detailed view of user input directed at
individual elements. However, it is often helpful to focus on what the user wants our
application to do, rather than how she asked us to do it. WPF supports this through
the command abstraction—a command is an action the application performs at the
user’s request.

The way in which a command is invoked isn’t usually important. Whether the user
presses Ctrl-C, selects the Edit ➝ Copy menu item, or clicks the Copy button on the
toolbar, the application’s response should be the same in each case: it should copy
the current selection to the clipboard. The event system we examined earlier in this
chapter regards these three types of input as being unrelated, but WPF’s command
system lets you treat them as different expressions of the same command.

The command system lets a UI element provide a single handler for a command,
reducing clutter and improving the clarity of your code. It enables a more declarative
style for UI elements; by associating a MenuItem or Button with a particular com-
mand, you are making a clearer statement of the intended behavior than you would
by wiring up Click event handlers. Example 4-15 illustrates how commands can sim-
plify things.

Figure 4-3. InkCanvas

Example 4-15. Commands with a menu and text box

<DockPanel>
 <Menu DockPanel.Dock="Top">
 <MenuItem Header="_Edit">

Commands | 125

Each menu item is associated with a command. This is all that’s required to invoke
these clipboard operations on the text box; we don’t need any code or event handlers
because the TextBox class has built-in handling for these commands. More subtly, key-
board shortcuts also work in this example: the built-in cut, copy, and paste commands
are automatically associated with their standard keyboard shortcuts, so these work
wherever you use a text box. WPF’s command system ensures that when commands are
invoked, they are delivered to the appropriate target, which in this case is the text box.

You are not obliged to use commands. You may already have classes
to represent this idea in your own frameworks, and if WPF’s com-
mand abstraction does not suit your needs, you can just handle the
routed events offered by menu items, buttons, and toolbars instead.
But for most applications, commands simplify the way your applica-
tion deals with user input.

There are five concepts at the heart of the command system:

Command object
An object identifying a particular command, such as copy or paste

Input binding
An association between a particular input (e.g., Ctrl-C) and a command (e.g.,
Copy)

Command source
The object that invoked the command, such as a Button, or an input binding

Command target
The UI element that will be asked to execute the command—typically the con-
trol that had the keyboard focus when the command was invoked

Command binding
A declaration that a particular UI element knows how to handle a particular
command

 <MenuItem Header="Cu_t" Command="ApplicationCommands.Cut" />
 <MenuItem Header="_Copy" Command="ApplicationCommands.Copy" />
 <MenuItem Header="_Paste" Command="ApplicationCommands.Paste" />
 </MenuItem>
 </Menu>
 <ToolBarTray DockPanel.Dock="Top">
 <ToolBar>
 <Button Command="Cut" Content="Cut" />
 <Button Command="Copy" Content="Copy" />
 <Button Command="Paste" Content="Paste" />
 </ToolBar>
 </ToolBarTray>

 <TextBox />
</DockPanel>

Example 4-15. Commands with a menu and text box (continued)

126 | Chapter 4: Input

Not all of these features are explicitly visible in Example 4-15—the command bind-
ings are buried inside the text box’s implementation, and although input bindings
are in use (Ctrl-C will work just fine, for example), they’ve been set up implicitly by
WPF. To make it a bit easier to see all of the pieces, let’s look at a slightly more com-
plex example that uses all five concepts explicitly (see Example 4-16).

This example uses the standard ApplicationCommands.Properties command object.
Applications that support this command would typically open a property panel or
window for the selected item. The XAML in this example associates a button with
this command object; clicking the button will invoke the command. The code
behind establishes an input binding so that the Alt-Enter shortcut may also be used to
invoke the command. Our example, therefore, has two potential command sources:
the button and the input binding. The command target in this particular example will
be the button; this is true even if the command is invoked with a keyboard shortcut,
because the button is the only element in the window capable of having the key-
board focus. However, the button doesn’t know how to handle this command, so it

Example 4-16. Basic command handling

<!-- XAML -->
<Window ...>
 <Grid>
 <Button Command="ApplicationCommands.Properties"
 Content="_Properties"/>
 </Grid>
</Window>

// Codebehind
public partial class Window1 : Window {

 public Window1() {
 InitializeComponent();

 InputBinding ib = new InputBinding(
 ApplicationCommands.Properties,
 new KeyGesture(Key.Enter, ModifierKeys.Alt));
 this.InputBindings.Add(ib);

 CommandBinding cb = new CommandBinding(ApplicationCommands.Properties);
 cb.Executed += new ExecutedRoutedEventHandler(cb_Executed);
 this.CommandBindings.Add(cb);
 }

 void cb_Executed(object sender, ExecutedRoutedEventArgs e) {
 MessageBox.Show("Properties");
 }

}

Commands | 127

will bubble up to the window, much like an input event. The window does know
how to handle the command; it has declared this by creating a command binding
with a handler attached to the binding’s Executed event. This handler will be called
when the user invokes the command.

Now that we’ve seen all five features in use, we’ll examine each one in more detail.

Command Objects
A command object identifies a particular command. It does not know how to
handle a command—as we’ve seen, that’s the job of a command binding. Com-
mand objects are typically made available through static properties, such as
ApplicationCommands.Properties.

There are several places from which you can get hold of a command object. Some
controls define commands. For example, the ScrollBar control defines one for each
of its actions, and makes these available in static fields, such as LineUpCommand and
PageDownCommand. However, most commands are not unique to a particular control.
Some correspond to application-level actions such as “new file” or “open.” Others
represent actions that could be implemented by several different controls. For exam-
ple, TextBox and RichTextBox can both handle clipboard operations.

WPF provides a set of classes that define standard commands. These classes are
shown in Table 4-4. This means you don’t need to create your own command
objects to represent the most common operations. Moreover, built-in controls
understand many of these commands.

Although the standard commands cover a lot of the common features found in many
applications, applications usually have functionality of their own not addressed by
the standard commands. You can use the command system for application-specific
actions by defining custom commands.

Table 4-4. Standard command classes

Class Command types

ApplicationCommands Commands common to almost all applications. Includes clipboard commands, undo and
redo, and document-level operations (open, close, print, etc.).

ComponentCommands Operations for moving through information, such as scroll up and down, move to end, and
text selection.

EditingCommands Text editing commands such as bold, italic, center, and justify.

MediaCommands Media-playing operations such as transport (play, pause, etc.), volume control, and track
selection.

NavigationCommands Browser-like navigation commands such as Back, Forward, and Refresh.

128 | Chapter 4: Input

Defining commands

Example 4-17 shows how to define a custom command. WPF uses object instances
to establish the identity of commands—if you were to create a second command of
the same name, it would not be treated as the same command. Because commands
are identified by their command objects rather than their names, commands are usu-
ally put in public static fields or properties.

The first RoutedUICommand constructor parameter is the name as it should appear in
the user interface. In a localizable application, you would use a mechanism such as
the .NET class library’s ResourceManager to retrieve a localized string rather than
hardcoding it. The second constructor parameter is the internal name of the com-
mand as used from code—this should match the name of the field in which the
command is stored, with the command suffix removed.

As with the built-in commands, your application command doesn’t do anything on
its own. It’s just an identifier. You will need to supply command bindings to imple-
ment the functionality. You will also typically want to associate the command with
menu items or buttons.

Using commands in XAML

Example 4-18 shows a Button associated with the standard Copy command.

Because this example uses a standard command from the ApplicationCommands class,
we can use this short form syntax, specifying nothing but the command name.

Example 4-17. Creating a custom command

...
using System.Windows.Input;

namespace MyNamespace {

 public class MyAppCommands {
 public static RoutedUICommand AddToBasketCommand;

 static MyAppCommands() {
 InputGestureCollection addToBasketInputs =
 new InputGestureCollection();
 addToBasketInputs.Add(new KeyGesture(
 Key.B, ModifierKeys.Control|ModifierKeys.Shift));
 AddToBasketCommand = new RoutedUICommand(
 "Add to Basket", "AddToBasket",
 typeof(MyAppCommands), addToBasketInputs);
 }
 }
}

Example 4-18. Invoking a command with a Button

<Button Command="Copy">Copy</Button>

Commands | 129

However, for commands not defined by the classes in Table 4-4, a little more infor-
mation is required. The full syntax for a command attribute in XAML is:

[[xmlNamespacePrefix:]ClassName.]EventName

If only the event name is present, the event is presumed to be one of the standard
ones. For example, Undo is shorthand for ApplicationCommands.Undo. Otherwise, you
must also supply a class name and possibly a namespace prefix. The namespace pre-
fix is required if you are using either custom commands, or commands defined by
some third-party component. This is used in conjunction with a suitable XML
namespace declaration to make external types available in a XAML file. (See
Appendix A for more information on clr-namespace XML namespaces.)

Example 4-19 shows the use of the command-name syntax with all the parts present.
The value of m:MyAppCommands.AddToBasketCommand means that the command in ques-
tion is defined in the MyNamespace.MyAppCommands class in the MyLib component, and is
stored in a field called AddToBasketCommand.

Because commands represent the actions performed at the user’s request, it’s likely
that some commands will be invoked very frequently. It is helpful to provide key-
board shortcuts for these commands in order to streamline your application for
expert users. For this, we turn to input bindings.

Input Bindings
An input binding associates a particular form of input gesture, such as a keyboard
shortcut, with a command. Two input gesture types are currently supported: a
MouseGesture is a particular mouse input such as a Shift-left-click, or a right-double-
click; a KeyGesture, as used in Example 4-16, is a particular keyboard shortcut. Many
of the built-in commands are associated with standard gestures. For example,
ApplicationCommands.Copy is associated with the standard keyboard shortcut for
copying (Ctrl-C in most locales).

Although a command can be associated with a set of gestures when it is created, as
Example 4-17 showed, you may wish to assign additional shortcuts for the com-
mand in the context of a particular window or element. To allow this, user interface
elements have an InputBindings property. This collection contains InputBinding
objects that associate input gestures with commands. These augment the default ges-
tures associated with the command. Example 4-16 illustrated this technique—it
bound the Alt-Enter shortcut to the built-in Properties command.

Example 4-19. Using a custom command in XAML

<Window xmlns:m="clr-namespace:MyNamespace;assembly=MyLib" ...>
 ...
 <Button Command="m:MyAppCommands.AddToBasketCommand">Add to Basket</Button>
 ...

130 | Chapter 4: Input

Occasionally, it can be useful to disable the default input bindings. A
common reason for doing this is that a particular application may have
a history of using certain nonstandard keyboard shortcuts, and you
wish to continue this to avoid disorienting users. For example, email
software has traditionally used Ctrl-F to mean “Forward,” even though
this is more commonly associated with “Find” in other applications.

In most cases, you can just add a new input binding to your window, and
that will override the existing binding. But what if you simply want to
disassociate a particular shortcut from any command? You can do this by
binding it to the special ApplicationCommands.NotACommand object. Estab-
lishing an input binding to this pseudocommand effectively disables the
binding.

Command Source
The command source is the object that was used to invoke the command. It might be
a user interface element, such as a button, hyperlink, or menu item. But it can also be
an input gesture. Command sources all implement the ICommandSource interface, as
shown in Example 4-20.

If you set the Command property to a command object, the source will invoke this com-
mand when clicked, or in the case of an input gesture, when the user performs the
relevant gesture.

The CommandParameter property allows us to pass information to a command when it
is invoked. For example, we could tell our hypothetical AddToBasket command what
we would like to add to the basket, as shown in Example 4-21.

The command handler can retrieve the parameter from the Parameter property of the
ExecutedRoutedEventArgs, as Example 4-22 shows. (This example is a command
handler for our hypothetical AddToBasketCommand. The handler would be attached
with a command binding as was shown in Example 4-16.)

Example 4-20. ICommandSource

public interface ICommandSource {
 ICommand Command { get; }
 object CommandParameter { get; }
 IInputElement CommandTarget { get; }
}

Example 4-21. Passing a command parameter

<MenuItem Command="m:MyAppCommands.AddToBasketCommand"
 CommandParameter="productId4823"
 Header="Add to basket" />

Commands | 131

Command parameters are slightly less useful if you plan to associate commands with
keyboard shortcuts. Input bindings are command sources, so they also offer a
CommandParameter property, but Example 4-23 shows the problem with this.

This adds an input binding, associating the Ctrl-Shift-B shortcut with our
AddToBasketCommand. The CommandParameter property of the binding will be passed to the
command handler just as it is when the input source is a button or menu item. But of
course, it will pass the same parameter every time, which limits the utility—you might
just as well hardcode the value into the command handler. So in practice, you would
normally use command parameters only for commands without a keyboard shortcut.

If you were building a real application with shopping-basket functionality, it would
probably make more sense to use data binding rather than command parameters. If
you arrange for the control that invokes the command to have its data context set to
the data you require, the command handler can retrieve the DataContext of the com-
mand target, as Example 4-24 shows.

This technique has the benefit of working even when a keyboard shortcut is used.
Chapter 6 explains data contexts.

The ICommandSource interface also offers a CommandTarget property. Although the inter-
face defines this as a read-only property, all of the classes that implement this interface
in WPF add a setter, enabling you to set the target explicitly. If you don’t set this,

Example 4-22. Retrieving a command parameter

void AddToBasketHandler(object sender, ExecutedRoutedEventArgs e) {
 string productId = (string) e.Parameter;
 ...
}

Example 4-23. Associating a command parameter with a shortcut

public Window1() {
 InitializeComponent();

 KeyBinding kb = new KeyBinding(MyAppCommands.AddToBasketCommand, Key.B,
 ModifierKeys.Shift|ModifierKeys.Control);
 kb.CommandParameter = "productId4299";
 this.InputBindings.Add(kb);
}

Example 4-24. Commands and data

void AddToBasketHandler(object sender, ExecutedRoutedEventArgs e) {
 FrameworkElement source = (FrameworkElement) e.Source;
 ProductInfo product = (ProductInfo) source.DataContext;
 ...
}

132 | Chapter 4: Input

the command target will typically be the element with the input focus (although, as
we’ll see later, there are some subtle exceptions). CommandTarget lets you ensure that
a particular command source directs the command to a specific target, regardless of
where the input focus may be. As an example of where you might use this, consider
an application that uses a RichTextBox as part of a data template (introduced in
Chapter 1)—you might use this to allow the user to add annotations to data items in
a list. If you provided a set of buttons right next to the RichTextBox to invoke com-
mands such as ToggleBold or ToggleItalic, you would want these to be applicable
only to the RichTextBox they are next to. It would be confusing to the user if she
clicked on one of these while the focus happened to be elsewhere in her application.
By specifying a command target, you ensure that the command only ever goes where
it is meant to go.

Command Bindings
For a command to be of any use, something must respond when it is invoked. Some
controls automatically handle certain commands—the TextBox and RichTextBox han-
dle the copy and paste commands for us, for example. But what if we want to pro-
vide our own logic to handle a particular command?

Command handling is slightly more involved than simply attaching a CLR event
handler to a UI element. The classes in Table 4-4 define 144 commands, so if
FrameworkElement defined CLR events for each distinct command, that would require
288 events once you include previews. Besides being unwieldy, this wouldn’t even be
a complete solution—many applications define their own custom commands as well
as using standard ones.

The obvious alternative would be for the command object itself to raise events. How-
ever, each command is a singleton—there is only one ApplicationCommands.Copy
object, for example. If you were able to add a handler to a command object directly,
that handler would run anytime the command was invoked anywhere in your appli-
cation. What if you want to handle the command only if it is executed in a particular
window or within a particular element?

The CommandBinding class solves these problems. A CommandBinding object associates a
specific command object with a handler function in the scope of a particular user
interface element. This CommandBinding class offers PreviewExecuted and Executed
events, which are raised as the command tunnels and bubbles through the UI.

Command bindings are held in the CommandBindings collection property defined by
UIElement. Example 4-25 shows how to handle the ApplicationCommands.New com-
mand in the code behind for a window.

Commands | 133

Enabling and disabling commands

As well as supporting execution of commands, CommandBinding objects can be used to
determine whether a particular command is currently enabled. The binding raises a
PreviewCanExecute and CanExecute pair of events, which tunnel and bubble in the
same way as the PreviewExecuted and Executed events. Example 4-26 shows how to
handle this event for the system-defined Redo command.

Example 4-25. Handling a command

public partial class Window1 : Window {
 public Window1() {
 InitializeComponent();

 CommandBinding cmdBindingNew = new CommandBinding(ApplicationCommands.New);
 cmdBindingNew.Executed += NewCommandHandler;
 CommandBindings.Add(cmdBindingNew);
 }

 void NewCommandHandler(object sender, ExecutedRoutedEventArgs e) {
 if (unsavedChanges) {
 MessageBoxResult result = MessageBox.Show(this,
 "Save changes to existing document?", "New",
 MessageBoxButton.YesNoCancel);

 if (result == MessageBoxResult.Cancel) {
 return;
 }
 if (result == MessageBoxResult.Yes) {
 SaveChanges();
 }
 }

 // Reset text box contents
 inputBox.Clear();
 }
 ...
}

Example 4-26. Handling QueryEnabled

public Window1() {
 InitializeComponent();

 CommandBinding redoCommandBinding =
 new CommandBinding(ApplicationCommands.Redo);
 redoCommandBinding.CanExecute += RedoCommandCanExecute;
 CommandBindings.Add(redoCommandBinding);
}

void RedoCommandCanExecute(object sender, CanExecuteRoutedEventArgs e) {
 e.CanExecute = myCustomUndoManager.CanRedo;
}

134 | Chapter 4: Input

Command bindings rely on the bubbling nature of command routing—the top-level
Window element is unlikely to be the target of the command, as the focus will usually
belong to some child element inside the window. However, the command will bub-
ble up to the top. This routing makes it easy to put the handling for commands in
just one place. For the most part, command routing is pretty straightforward—it
usually targets the element with the keyboard focus, and uses tunneling and bub-
bling much like normal events. However, there are certain scenarios where the
behavior is a little more complex, so we will finish off with a more detailed look at
how command routing works under the covers.

Command routing

All of the built-in command objects use a class called RoutedUICommand, and you will
normally use this if you define application-specific commands.* RoutedUICommand pro-
vides the mechanism for finding the right command binding when the command is
invoked. This often needs to be determined by context. Consider Example 4-27.

If the focus is in the text box when the Copy command is invoked, the text box han-
dles the command itself as you would expect, copying the currently selected text to
the clipboard. But not all controls have an obvious default Copy behavior. If the com-
mand were invoked while the focus was in the listbox, you would need to supply

* It is technically possible to provide a different class if you have special requirements. Command sources are
happy to use any implementation of the ICommand interface, so you are not obliged to use the normal com-
mand routing mechanism. But most applications will use RoutedUICommand.

Example 4-27. Multiple command targets

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <Menu Grid.Row="0">
 <MenuItem Header="_Edit">
 <MenuItem Header="Cu_t" Command="ApplicationCommands.Cut" />
 <MenuItem Header="_Copy" Command="ApplicationCommands.Copy" />
 <MenuItem Header="_Paste" Command="ApplicationCommands.Paste" />
 </MenuItem>
 </Menu>

 <TextBox Grid.Row="1" AcceptsReturn="True" />
 <ListBox Grid.Row="2">
 <TextBlock Text="One" />
 <TextBlock Text="Two" />
 </ListBox>
</Grid>

Commands | 135

application-specific code in order for the command to do anything. RoutedUICommand
supports this by providing a mechanism for identifying the command’s target and
locating the correct handler.

The target of the RoutedUICommand is determined by the way in which the command
was invoked. Typically, the target will be whichever element currently has the focus,
unless the command source’s CommandTarget has been set. Figure 4-4 shows the con-
trols and menu from Example 4-27. As you can see from the selection highlight, the
TextBox at the top had the focus when the menu was opened, so you would expect it
to be the target of the commands. This is indeed what happens, but it’s not quite as
straightforward as you might expect.

RoutedUICommand tries to locate a handler using a tunneling and bubbling system simi-
lar to the one used by the event system. However, command routing has an addi-
tional feature not present in normal event routing: if bubbling fails to find a handler,
RoutedUICommand may try to retarget the command. This is designed for the scenario
where commands are invoked by user interface elements such as menu or toolbar
items because these present an interesting challenge.

Example 4-27 is an example of this very scenario. It has a subtle potential problem.
While the menu is open, it steals the input focus away from the TextBox. It’s unlikely
that the menu item itself is the intended target for a command—it’s merely the
means of invoking the command. Users will expect the Copy menu item to copy
whatever was selected in the TextBox, rather than copying the contents of the menu
item. The menu deals with this by relinquishing the focus when the command is exe-
cuted. This causes the focus to return to the TextBox, and so the command target is
the one we expect. However, there’s a problem regarding disabled commands.

A command target can choose whether the commands it supports are enabled. A
TextBox enables copying only if there is some selected text. It enables pasting only if
the item on the clipboard is text, or can be converted to text. Menus gray out dis-
abled commands, as Figure 4-4 shows. To do this, a menu item must locate the com-
mand target. The problem is that the menu is in possession of the keyboard focus at
the point at which it needs to discover whether the command is enabled; the appro-
priate command target is therefore not the focused item in this case.

Figure 4-4. Command targets and focus

136 | Chapter 4: Input

The RoutedUICommand class relies on focus scopes to handle this situation. If a
RoutedUICommand fails to find a command binding, it checks to see whether the initial
target was in a nested focus scope. If it was, WPF finds the parent focus scope, which
will typically be the window. It then retargets the command, choosing the element in
the parent scope that has the logical focus (i.e., the last element to have the focus
before the menu grabbed it). This causes a second tunneling and bubbling phase to
occur. The upshot is that the command’s target is whichever element had the focus
before the menu was opened, or the toolbar button clicked.

If you are using menus or toolbars, you don’t need to do anything to make this work,
because Menu and ToolBar elements both introduce nested focus scopes automati-
cally. However, if you want to invoke commands from other elements, such as but-
tons, you’ll need to define the focus scope explicitly. Consider Example 4-28.

This associates two buttons with commands supported by a TextBox. And yet, as
Figure 4-5 shows, the buttons remain disabled even when the TextBox should be able
to process at least one of the commands.

We can fix this by introducing a focus scope around the buttons, as Example 4-29
shows.

Example 4-28. Without focus scope

<StackPanel>
 <Button Command="ApplicationCommands.Copy" Content="_Copy" />
 <Button Command="ApplicationCommands.Paste" Content="_Paste" />
 <TextBox />
</StackPanel>

Figure 4-5. Commands disabled due to missing focus scope

Example 4-29. Focus scope

<StackPanel>
 <StackPanel FocusManager.IsFocusScope="True">
 <Button Command="ApplicationCommands.Copy" Content="Copy" />
 <Button Command="ApplicationCommands.Paste" Content="Paste" />
 </StackPanel>
 <TextBox />
</StackPanel>

Code-Based Input Handling Versus Triggers | 137

Now when the buttons attempt to locate a handler in order to choose whether they
are enabled, the presence of the focus scope will cause the command routing to look
for the element with the focus. If the TextBox has the logical focus, it will become the
command target. As Figure 4-6 shows, this causes the buttons to reflect the availabil-
ity of the commands correctly, and it means they invoke the command on the cor-
rect target when clicked.

We don’t have to use focus scopes to solve the problem in this particular example.
You can use the more explicit, though slightly cumbersome, approach shown in
Example 4-30.

Here, each button specifies its command target explicitly. This makes it absolutely
clear what the target will be. However, it is more verbose, so the automatic com-
mand routing is often more convenient. And even if the thought of manually specify-
ing the command target for every item in a menu doesn’t strike you as unbearable,
command routing has the added benefit of working well when there are multiple
potential command targets (e.g., multiple text boxes on a form) and you want the
command to go to whichever one last had the focus.

Code-Based Input Handling Versus Triggers
The input handling techniques shown in this chapter all involve writing code that
runs in response to some user input. If your reason for handling input is simply to
provide some visible feedback to the user, be aware that writing an event handler or
a custom command is likely to be overkill. It is often possible to create the visual
feedback you require entirely within the user interface markup by using triggers.
Triggers offer a declarative approach, where WPF does more of the work for you.

Figure 4-6. Command enabled thanks to focus scope

Example 4-30. Explicit command targets

<StackPanel>
 <Button Command="Copy" Content="Copy"
 CommandTarget="{Binding ElementName=targetControl}" />
 <Button Command="Paste" Content="Paste"
 CommandTarget="{Binding ElementName=targetControl}" />
 <TextBox x:Name="targetControl" />
</StackPanel>

138 | Chapter 4: Input

Any discussion of input handling in WPF would be incomplete without some men-
tion of triggers. However, trigger-based input handling is radically different from the
more traditional approach shown in this chapter, and it depends on aspects of WPF
not yet described. Accordingly, it is dealt with later, in Chapters 8 and 9. So, for now
just be aware of the two techniques and their intended usage: triggers are best suited
for superficial responses, such as making a button change color when the mouse
moves over it; event handling is appropriate for more substantive behavior, such as
performing an action when the user clicks a button.

Where Are We?
Input is handled through events and commands, which use a routing system to allow
simple uniform event handling regardless of how complex the structure of the user
interface visuals might be. Input events are the lower level of these two mechanisms,
reporting the exact nature of the user’s input in detail. Commands allow us to work
at a higher level, focusing on the actions the user would like our applications to per-
form, rather than the specific input mechanism used to invoke the action.

139

Chapter 5 CHAPTER 5

Controls5

A control is a user interface component that provides a particular interactive behav-
ior. There are many familiar examples in Windows, such as text boxes, which offer
text editing, and radio buttons, which let the user choose from a set of options. Con-
trols are the building blocks of any WPF user interface.

Although controls are typically associated with a default appearance, WPF offers
many ways to alter or replace a control’s look. We can adjust properties to make
simple alterations such as setting foreground and background colors. With controls
that support the content model, we can put any mixture of graphics and text inside
the control. We can even use templates to replace the whole look of the control.
However, even if we replace the visuals of, say, a scroll bar, we have not changed its
fundamental role as an element for performing scrolling. In WPF, it is this behavior
that forms the essence of a control.

In this chapter, we will examine how to use controls to handle input, and we will
explore the set of behaviors offered by the built-in controls. We will cover creation of
custom controls in Chapter 18.

What Are Controls?
Whereas most popular UI frameworks offer an abstraction similar to a control, WPF
takes a slightly unusual approach, in that controls are typically not directly responsi-
ble for their own appearance. Controls in WPF are all about behavior, and they defer
to templates to provide their visuals. Many GUI frameworks require you to write a
custom control when customizing a control’s appearance, but in WPF, this is not
necessary—nested content and templates offer simpler yet powerful solutions. You
do not need to write a custom control unless you need interactive behavior that is
different from any of the built-in controls.

140 | Chapter 5: Controls

Many WPF user interface elements are not controls. For example,
shapes like Rectangle and Ellipse have no intrinsic behavior—they are
just about appearance. Lower-level elements do not derive directly
from Control. Usually they derive from FrameworkElement. See
Appendix D for a detailed description of these and other important
base types in WPF’s class hierarchy.

Figure 5-1 shows how a control fits into a program. As you can see, the visible parts
of the control are provided by its template, rather than the control itself. The control
is not completely disconnected from these visuals, of course. It uses them to present
information to the user. Moreover, because the visuals are all that the user can see,
they will be the immediate target of any user input. This means that although visuals
can be replaced, the replacement has certain responsibilities—there is a form of con-
tract between the control and its visuals. We discuss the use of templates to replace
visuals in Chapter 9.

You may be familiar with the Model View Controller (MVC) concept.
This is a way of structuring the design of interactive systems. MVC has
been interpreted in many different ways over the years, but broadly
speaking, it always breaks down the design into objects representing
the underlying data (the Model), objects that display that data (the
View), and objects that manage input from the user and interactions
between the model and the view (the Controller).

MVC is a concept that you can use at many different scales, and it is
somewhat unusual to apply it at the level of an individual control.
However, if you are accustomed to the MVC way of looking at things,
you may find it helpful to think of data binding as a way of attaching a
Model, the template as the View, and the control as the Controller.

Figure 5-1. A control’s relationship with its visuals and data

Logic

Commands

Properties

Events

Methods

Control visuals
from template

User
API Control

Data

User input Presentation

Output

Data binding

Buttons | 141

Although the control makes itself visible to the user through its template, it makes its
services available to developers mainly through an API, shown on the left side of
Figure 5-1. Controls may use commands to represent supported operations. For
example, text boxes support the cut, copy, and paste commands, among others.
Controls offer properties to provide a means of modifying either behavior or appear-
ance, or to manage information associated with the control, such as the text being
edited in a text box. Controls raise events when something important happens such
as receiving some form of input. Commands, properties, and events are the pre-
ferred mechanisms for exposing functionality because they can be used from
markup, and they are supported by design tools. However, for features that would
only ever be used from code, methods may be a more appropriate form of API.

WPF provides a range of built-in controls. Most of these correspond to standard
Windows control types that you will already be familiar with. Note that these con-
trols are not wrappers around old Win32 controls. Although they look like their
Win32 counterparts, they are all native WPF controls.* This means that they offer all
of the WPF functionality described in this book, including styling, resolution inde-
pendence, data binding, composition, and fully integrated support for WPF’s graphi-
cal capabilities.

Buttons
Buttons are controls that a user can click. The result of the click is up to the applica-
tion developer, but there are common expectations depending on the type of but-
ton. For example, clicking on a CheckBox or RadioButton expresses a choice, and does
not normally have any immediate effect beyond visually reflecting that choice. By
contrast, clicking on a normal Button usually has some immediate effect.

Using buttons is straightforward. Example 5-1 shows markup for a Button element.

The contents of the element (the text “Button” in this case) are used as the button
caption. An XML attribute specifies the handler for the Click event. This indicates
that the code behind for the XAML must contain a method with the name specified
in the markup, such as that shown in Example 5-2 (we could also attach the event
handler by giving the button an x:Name and using normal C# event handling syntax).

* An upshot of this is that tools that know how to deal with Win32 controls will often not understand WPF
controls. For example, the SDK Spy++ utility that lets you delve into the structure of a Win32 UI sees WPF
applications as just one big HWND filling the entire window. (Fortunately, the UISpy SDK tool and the
excellent WPF Snoop utility at http://www.blois.us/Snoop fills the gap left by Spy++.) However, WPF con-
trols integrate with the accessibility features in Windows, so screen reader and automated test tools that use
the automation APIs will typically continue to work.

Example 5-1. Markup for a Button

<Button Click="ButtonClicked">Button</Button>

142 | Chapter 5: Controls

Alternatively, a button’s Command property may be set, in which case the specified
command will be invoked when the button is clicked. Example 5-3 shows a button
that invokes the standard ApplicationCommands.Copy command.

Figure 5-2 shows the three button types provided by WPF, which offer the same
behavior as the standard push-button, radio button, and checkbox controls with
which any Windows user will be familiar. These all derive from a common base
class, ButtonBase. This in turn derives from ContentControl, meaning that they all
support its content model—you are not restricted to using simple text as the label for
a button.

As Figure 5-3 shows, you can use whatever content you like, although you will still get
the default look for the button around or alongside your chosen content. (If you wish
to replace the whole appearance of the button rather than just customize its caption,
you can use a control template; see Chapter 9 for more information on templates.)

It’s common practice in Windows to enable applications to be used easily from the
keyboard alone. One common way of doing this is to allow buttons to be invoked by
pressing the Alt key and an access key (also known as a mnemonic). The control typi-
cally provides a visual hint that you can do this by underlining the relevant key when
Alt is pressed. Figure 5-4 shows an example: this button can be “clicked” by press-
ing Alt-B.

Example 5-2. Handling a Click event

void ButtonClicked(object sender, RoutedEventArgs e) {
 MessageBox.Show("Button was clicked");
}

Example 5-3. Invoking a command with a Button

<Button Command="Copy">Copy</Button>

Figure 5-2. Button types

Figure 5-3. Buttons with nested content

Figure 5-4. Button with access key

Buttons | 143

WPF supports this style of keyboard access with the AccessText element. You can
wrap this around some text, putting an underscore in front of the letter that will act
as the access key, as shown in Example 5-4. If you really want an underscore, rather
than an underlined letter, just put two underscores in a row.

Earlier Windows UI frameworks used a leading ampersand to desig-
nate an access key character. However, ampersands are awkward to
use in XML because they have a special meaning. You need to use the
character entity reference & to add an ampersand to XML. Because
this is rather unwieldy, WPF uses a leading underscore instead.

The AccessText element raises the AccessKeyPressedEvent attached event defined by
the AccessKeyManager class. This in turn is handled by the Button, which then raises a
Click event.

In fact, you often don’t need to add an AccessText element explicitly. If the button’s
content is purely text, you can put an underscore in it and WPF will automatically
wrap it in an AccessText element for you. So in fact, Example 5-5 is all that you need.
An explicit AccessText element is necessary only if you are exploiting the content
model in order to put more than just text in a button.

This automatic generation of an AccessText wrapper is available on
controls for which access keys are likely to be useful.

Although the buttons derive from the common ButtonBase base class, RadioButton
and CheckBox derive from it indirectly via the ToggleButton class. This defines an
IsChecked property, indicating whether the user has checked the button. This is of
type bool? and returns null if the button is in an indeterminate state. Figure 5-5
shows how CheckBox appears for each IsChecked value.

Example 5-4. AccessText

<Button Width="75">
 <AccessText>_Button</AccessText>
</Button>

Example 5-5. Access key without AccessText

<Button Width="75">_Button</Button>

Figure 5-5. Checkbox IsChecked values

144 | Chapter 5: Controls

Radio buttons are normally used in groups in which only one button may be selected
at a time. The simplest way to group radio buttons is to give them a common parent.
In Example 5-6, the two radio buttons will form a group simply because they share
the same parent.

Sometimes you may want to create multiple distinct groups with a common parent.
You can do this by setting the GroupName property, as Example 5-7 shows.

This technique also works if you want to create a single group of buttons that do not
share a single parent.

Slider and Scroll Controls
WPF provides controls that allow a value to be selected from a range. They all offer a
similar appearance and usage: they show a track, indicating the range, and a dragga-
ble “thumb” with which the value can be adjusted. There is the Slider control,
shown in Figure 5-6, and the ScrollBar control, shown in Figure 5-7. The main dif-
ference is one of convention rather than functionality—the ScrollBar control is com-
monly used in conjunction with some scrolling viewable area, and the Slider control
is used to adjust values.

Example 5-6. Grouping radio buttons by parent

<StackPanel>
 <RadioButton>To be</RadioButton>
 <RadioButton>Not to be</RadioButton>
</StackPanel>

Example 5-7. Grouping radio buttons by name

<StackPanel>
 <RadioButton GroupName="Fuel">Petrol</RadioButton>
 <RadioButton GroupName="Fuel">Diesel</RadioButton>

 <RadioButton GroupName="Induction">Unforced</RadioButton>
 <RadioButton GroupName="Induction">Mechanical supercharger</RadioButton>
 <RadioButton GroupName="Induction">Turbocharger</RadioButton>
</StackPanel>

Figure 5-6. Horizontal and vertical sliders

ProgressBar | 145

Slider and ScrollBar are very similar in use. Both controls have an Orientation
property to select between vertical and horizontal modes. They both derive from a
common base class, RangeBase. This provides Minimum and Maximum properties, which
define the range of values the control represents, and a Value property holding the
currently selected value. It also defines SmallChange and LargeChange properties,
which determine by how much the Value changes when adjusted with the arrow
keys, or the Page Up and Page Down keys, respectively. The LargeChange value is also
used when the part of the slider track on either side of the thumb is clicked.

Whereas slider controls have a fixed-size thumb, the thumb on a scroll bar can change
in size. If the scroll bar is used in conjunction with a scrollable view, the relative size of
the thumb and the track is proportional to the relative size of the visible area and the
total scrollable area. For example, if the thumb is about one-third the length or height of
the scroll bar, this indicates that one-third of the scrollable area is currently in view.

You can control the size of a scroll bar’s thumb with the ViewportSize property. The
larger ViewportSize is, the larger the thumb will be. (WPF sets the ratio of the thumb
and track sizes to be ViewportSize/(ViewportSize + Maximum - Minimum).)

If you want to provide a scrollable view of a larger user interface area, you would not
normally use the scroll bar controls directly. It is usually easier to use the
ScrollViewer control, as described in Chapter 3.

ProgressBar
The ProgressBar control indicates how much of a long-running process the applica-
tion has completed. It provides the user with an indication that work is progressing,
and a rough idea of how long the user will need to wait for work to complete. As
Figure 5-8 shows, it is approximately rectangular, and the nearer to completion the
task is, the more of the rectangle is filled in by a color bar. If an operation is likely to
take much more than a second, you should consider showing a ProgressBar to let
users know how long they are likely to wait.

Figure 5-7. Horizontal and vertical scroll bars

Figure 5-8. ProgressBar control

146 | Chapter 5: Controls

ProgressBar derives from RangeBase, the same base class as the scroll bar and slider
controls discussed in the preceding section. From a developer perspective, it is very
similar to these other range controls, the main difference being that it does not
respond to user input—sadly, users cannot drag the progress bar indicator to the
right in order to make things run faster. The progress indicator’s size is based on
the Value property, so it is your application’s responsibility to update this as work
progresses.

Text Controls
WPF provides controls for editing and displaying text. The simplest text editing con-
trol is TextBox. By default, it allows a single line of text to be edited, but by setting
AcceptsReturn to true, it can edit multiple lines. It provides basic text editing facili-
ties: selection support, system clipboard integration (cut, paste, etc.), and multilevel
undo support.

Example 5-8 shows two TextBox elements, one with default settings and one in multi-
line mode. Figure 5-9 shows the results. (To illustrate the multiline text box, I typed
“Enter” in the middle of the text before taking the screenshot.) Example 5-8 and
Figure 5-9 also show PasswordBox, which is similar to TextBox, but is designed for
entering passwords. As you can see, the text in the PasswordBox has been displayed as
a line of identical symbols. This is common practice to prevent passwords from being
visible to anyone who can see the screen. You can set the symbol with the
PasswordChar property. The PasswordBox also opts out of the ability to copy its con-
tents to the clipboard.

Example 5-8. TextBox and PasswordBox

<StackPanel Orientation="Horizontal">

 <TextBox Margin="5" VerticalAlignment="Center" Text="Single line textbox" />

 <TextBox AcceptsReturn="True" Margin="5" Height="50"
 VerticalScrollBarVisibility="Visible"
 VerticalAlignment="Center" Text="Multiline textbox" />

 <PasswordBox Margin="5" VerticalAlignment="Center" Password="Un5ecure" />

</StackPanel>

Figure 5-9. TextBox and PasswordBox

Text Controls | 147

TextBox and PasswordBox support only plain text. This makes them easy to use for enter-
ing and editing simple data. TextBox provides a Text property that represents the con-
trol’s contents as a String. PasswordBox has a Password property, also of type String.

The simplicity of plain text is good if you require nothing more than plain text as
input. However, it is sometimes useful to allow more varied input. WPF therefore
offers the RichTextBox. This edits a FlowDocument, which can contain a wide variety of
content. If you want full control over the content inside a RichTextBox, you will need
to work with the FlowDocument class and corresponding text object model types,
which are described in Chapter 14. However, for simple formatted text support, the
RichTextBox has some useful built-in behavior that does not require you to delve into
the text object model.

RichTextBox supports all of the commands defined by the EditingCommands class. This
includes support for common formatting operations such as bold, italic, and under-
line. These are bound to the Ctrl-B, Ctrl-I, and Ctrl-U keyboard shortcuts. Most of
the editing commands have default keyboard input gestures, so you don’t need to do
anything special to enable keyboard access to formatting operations. You could enter
the example shown in Figure 5-10 entirely with the keyboard. The control also rec-
ognizes the RTF format for data pasted from the clipboard, meaning that you can
paste formatted text from Internet Explorer and Word, or syntax-colored code from
Visual Studio.

Both TextBox and RichTextBox offer built-in spellchecking. All you need to do is set
the SpellCheck.IsEnabled attached property to True. As Figure 5-11 shows, this
causes “red squiggly” underlines, similar to those in Microsoft Word, to appear
under misspelled words.

The dictionary used for spellchecking honors the standard xml:lang attribute.
Example 5-9 illustrates the use of this attribute to select French. From code, setting
the element’s Language property has the same effect.

Figure 5-10. RichTextBox

Figure 5-11. TextBox with SpellCheck.IsEnabled=“True”

Example 5-9. Selecting a language for spellchecking

<TextBox xml:lang="fr-FR" SpellCheck.IsEnabled="True"
 AcceptsReturn="True" />

148 | Chapter 5: Controls

As Figure 5-12 shows, this causes correctly spelled French to be accepted. But incor-
rect French and correct English will be underlined.

Label
Some controls do not have their own built-in caption; the most widely used example
is the TextBox control. Label is used to provide a caption for such controls. This
might appear to be redundant, because you can achieve the same visual effect with-
out a full control—you could just use the low-level TextBlock element. However,
Label has an important focus handling responsibility.

Well-designed user interfaces should be easy to use from the keyboard. A common
way of achieving this is to provide access keys. You’ve already seen how to add an
access key to a button, using either an underscore in the text, or an explicit
AccessText element. This is straightforward for controls with an integral caption,
such as a button. The TextBox poses slightly more of a challenge than a Button when
it comes to access keys. A TextBox does not have an intrinsic caption—the only text it
displays is the text being edited. The caption is supplied by a separate element to the
left of the TextBox, as shown in Figure 5-13.

This is where the Label control comes in. The purpose of the Label control is to pro-
vide a place to put a caption with an access key. When the access key is pressed, the
Label will redirect the focus to the relevant control, which in this case is a TextBox.

Just as with a Button, you can denote a Label control’s access key by
preceding the letter with an underscore.

How does the Label know to which control it should redirect its access key? Label
has a Target property, indicating the intended target of the access key. We use a
binding expression to connect the label to its target. (We discuss binding expres-
sions in detail in Chapter 6.) The expressions in Example 5-10 simply set the Target
properties to refer to the named elements.

Figure 5-12. French spellchecking

Figure 5-13. Access key underlines

ToolTip | 149

You must supply a Target. In the absence of this property, the Label control does
nothing useful. In particular, it does not choose the next element in the UI tree or the
Z order. Pressing the access key for a label without a target will just cause Windows
to play the alert sound, indicating that it was unable to process the input.

ToolTip
The ToolTip control allows a floating label to be displayed above some part of the
user interface. It is an unusual control in that it cannot be part of the normal user
interface tree—you can use it only in conjunction with another element. It becomes
visible only when the mouse pointer hovers over the target element, as Figure 5-14
shows.

To associate a ToolTip with its target element, you set it as the ToolTip property of its
target, as shown in Example 5-11.

In fact, you don’t need to specify the ToolTip object explicitly. You can just set the
ToolTip property to a string, as shown in Example 5-12.

If you set the property to anything other than a ToolTip, WPF creates the ToolTip
control for you, and sets its Content property to the value of the target element’s
ToolTip property. Examples 5-11 and 5-12 are therefore equivalent.

ToolTip derives from ContentControl, so its content is not restricted to simple
strings—we can put anything we like in there, as shown in Example 5-13.

Example 5-10. Label controls

<Label Target="{Binding ElementName=nameText}">_Name:</Label>
<TextBox x:Name="nameText" Width="70" />
<Label Target="{Binding ElementName=questText}">_Quest:</Label>
<TextBox x:Name="questText" Width="70" />

Figure 5-14. TextBox with ToolTip

Example 5-11. Using ToolTip the long way

<TextBox Width="100">
 <TextBox.ToolTip>
 <ToolTip Content="Type something here" />
 </TextBox.ToolTip>
</TextBox>

Example 5-12. Using ToolTip the short way

<TextBox Width="100" ToolTip="Type something here" />

150 | Chapter 5: Controls

Figure 5-15 shows the results. Note that the tool tip will normally close as soon as
the mouse pointer moves over it. This means that although it is possible to put inter-
active elements such as buttons inside a tool tip, it’s not typically a useful thing to
do, because it’s not possible to click on them. However, it is possible to subvert the
auto-close behavior: you can force the tool tip to open before the user hovers over
the target by setting its IsOpen property to True. This causes the tool tip to open
immediately, and to remain open for as long as the target element’s window has the
focus. Or if you set IsOpen to True and also set StaysOpen to False, it will open imme-
diately, and remain open until you click somewhere outside of the tool tip. In these
cases, you could host interactive content inside a tool tip.

The ToolTip is shown in its own top-level window. This is useful for
tool tips on elements near the edge of your window—if the tool tip is
large enough that it flows outside of the main window, it won’t be
cropped.

GroupBox and Expander
GroupBox and Expander are very similar controls: both provide a container for arbi-
trary content and a place for a header on top. Figure 5-16 shows both controls. Aside
from their different appearances, the main difference between these controls is that
the Expander can be expanded and collapsed; the user can click on the arrow at the
top left to hide and show the content. A GroupBox always shows its content.

Both controls derive from HeaderedContentControl, which in turn derives from
ContentControl. So, we can place whatever content we like directly inside the con-
trol, as shown in Example 5-14.

Example 5-13. Exploiting the content model in a tool tip

<TextBox Width="100">
 <TextBox.ToolTip>
 <TextBlock FontSize="25">
 <Ellipse Fill="Orange" Width="20" Height="20" />
 Plain text is <Italic>so</Italic>
 last century
 <Ellipse Fill="Orange" Width="20" Height="20" />
 </TextBlock>
 </TextBox.ToolTip>
</TextBox>

Figure 5-15. ToolTip with mixed content

GroupBox and Expander | 151

The HeaderedContentControl supports a dual form of content model: not only can the
body of an Expander or GroupBox be anything you like, so can the header.
Example 5-15 uses a mixture of text, video, graphics, and a control.

Figure 5-16. Header and Expander controls

Example 5-14. Using Header and Expander

<StackPanel Orientation="Horizontal">

 <GroupBox Header="Glass">
 <Border Margin="2" Background="White" Padding="3">
 <StackPanel>
 <RadioButton Content="Half-full" IsChecked="True" />
 <RadioButton Content="Half-empty" />
 </StackPanel>
 </Border>
 </GroupBox>

 <Expander Header="Glass" IsExpanded="True"
 Background="#def" VerticalAlignment="Center" MinWidth="90"
 Margin="10,0">
 <Border Margin="2" Background="White" Padding="3">
 <StackPanel>
 <RadioButton Content="Half-full" IsChecked="True" />
 <RadioButton Content="Half-empty" />
 </StackPanel>
 </Border>
 </Expander>

</StackPanel>

Example 5-15. Header with mixed content

<GroupBox>
 <GroupBox.Header>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Slightly " FontStyle="Italic" VerticalAlignment="Center" />
 <MediaElement Source="C:\Users\Public\Videos\Sample Videos\Butterfly.wmv"
 Width="80" />
 <TextBlock Text=" more " VerticalAlignment="Center" />
 <Ellipse Fill="Red" Width="20" Height="60" />
 <TextBlock Text=" interesting " VerticalAlignment="Center"
 FontWeight="Bold" />
 <Button Content="_header" VerticalAlignment="Center" />
 </StackPanel>
 </GroupBox.Header>
 <TextBlock Text="Boring content" />
</GroupBox>

152 | Chapter 5: Controls

Figure 5-17 shows the results.

List Controls
WPF offers several controls that can present multiple items. ListBox, ComboBox, and
ListView can all present a linear sequence of items. TreeView presents a hierarchy of
items. The TabControl may not seem like an obvious relative of the ListBox, but it
shares the basic features: it presents a sequence of items (tab pages) and lets the user
choose which is the current item. All of these controls share a common base class,
ItemsControl.

The simplest way to use any of these controls is to add content to their Items prop-
erty. Example 5-16 shows the markup for a ComboBox with various elements added to
its Items.* This example illustrates that all list controls allow any content to be used
as a list item—we’re not restricted to plain text. This content model makes these list
controls much more powerful than their Win32 equivalents.

You also can use this technique with ListBox, TabControl, and ListView. (TreeView is
a little more involved, as the whole point of that control is to show a tree of items,
rather than a simple list. We’ll see how to do that later.) As you can see in
Figure 5-18, each control presents our items in its own way. The ListBox and
ComboBox generate a line in the list for each item. The ListView does something simi-
lar, although the lines it generates can display one item for each column if necessary.
The TabControl puts each element in its own TabItem, in order to present it in its own
tab page. (Figure 5-18 shows just the third item, but the other three are accessible
through the three tab headers.)

Figure 5-17. Header with mixed content

* This example does not mention the Items property explicitly because children of a ComboBox element in XAML
get added to its Items property automatically. Appendix A details how XAML content is assigned to properties.

Example 5-16. Content in Items

<ComboBox>
 <Button>Click!</Button>
 <TextBlock>Hello, world</TextBlock>
 <StackPanel Orientation="Horizontal">
 <TextBlock>Ellipse:</TextBlock>
 <Ellipse Fill="Blue" Width="100" />
 </StackPanel>
</ComboBox>

List Controls | 153

All controls derived from ItemsControl wrap items in order to present them in a suit-
able way. This process is referred to as item container generation. Each control has a
corresponding container type, such as ComboBoxItem, ListBoxItem, TabItem,
ListViewItem, and TreeViewItem. Although the automatic container generation can be
convenient, in some cases you will want a little more control. For example, the
TabControl shown in Figure 5-18 isn’t particularly useful—it has wrapped our items
with tabs that have no title. To fix this, we simply provide our own TabItem elements
instead of letting the TabControl generate them for us. We can then set the Header
property in order to control the tab page caption, as Example 5-17 shows.

Figure 5-18. Content in list controls (left to right, top to bottom: ComboBox, ListBox, TabControl,
and ListView)

Example 5-17. Setting tab page headers

<TabControl>

 <TabItem Header="_Button">
 <Button>Click!</Button>
 </TabItem>

 <TabItem>
 <TabItem.Header>
 <TextBlock FontSize="18" FontFamily="Palatino Linotype">
 <AccessText>_Text</AccessText>
 </TextBlock>
 </TabItem.Header>

 <TextBlock>Hello, world</TextBlock>
 </TabItem>

 <TabItem>
 <TabItem.Header>
 <Ellipse Fill="Blue" Width="30" Height="20" />
 </TabItem.Header>

 <StackPanel Orientation="Horizontal">
 <TextBlock>Ellipse:</TextBlock>

154 | Chapter 5: Controls

This TabControl contains the same three items as before, but this time with the
TabItem elements specified explicitly. In the first of these, the Header property has
been set to the text “_Button”. This uses the header’s support of the content model:
this is why we can use underscores to denote accelerators. (TabItem derives from
HeaderedContentControl—the same base class as GroupBox and Expander.) The other
two items exploit the content model’s support for nested content—the first uses a
TextBlock to control the text appearance, and the second puts an Ellipse into the
header instead of text. Figure 5-19 shows the results.

Providing a fixed set of elements through the Items property makes sense for tab
pages and radio buttons, where you are likely to know what elements are required
when you design the user interface. But this may not be the case for combo boxes
and lists. To enable you to decide what items will appear at runtime, all list controls
offer an alternative means of populating the list: data binding. Instead of using Items,
you can provide a data source object through the ItemsSource property, and use data
templates to determine how the elements appear. These techniques are described in
Chapters 6 and 8.

Regardless of whether you use a fixed set of items or a bound data source, you can
always find out when the selected item changes by handling the relevant event:
SelectedItemChanged for the TreeView and SelectionChanged for the other controls.
You can then use either the SelectedItem property (supported by all controls), or
SelectedIndex (supported by everything except TreeView) to find out which item is
currently selected.

The ListView and TreeView controls have a few extra features that make them slightly
different to use than the other controls in this section. So, we will now look at the
differences.

 <Ellipse Fill="Blue" Width="100" />
 </StackPanel>
 </TabItem>

</TabControl>

Figure 5-19. TabItem headers

Example 5-17. Setting tab page headers (continued)

List Controls | 155

List View
ListView derives from ListBox, adding support for a grid-like view. To use this, you
must give the View property a GridView* object describing the columns in the list.
Example 5-18 shows a simple example.

Figure 5-20 shows the result. By default, the ListView sets the column sizes to be as
large as necessary—either as wide as the header or as wide as required by the col-
umn content. You can also specify a Width property if you prefer. The Header prop-
erty supports the content model, so you are not limited to text for column headers.

If you are using data binding, you will probably want to set the col-
umn widths manually, because virtualization makes the auto-sizing
behavior slightly unpredictable. By default, a data-bound ListView will
virtualize items (i.e., it only creates the UI elements for list rows when
they become visible). This significantly improves performance for lists
with large numbers of items, but it means the control cannot measure
every single list item upfront—it can measure only the rows it has cre-
ated. So if you use automatic sizing, the columns will be made large
enough to hold the rows that are initially visible. If there are larger
items further down the list and not yet in view, the columns will not
be large enough to accommodate these.

Our ListView isn’t very interesting yet, as it doesn’t contain any items. You can add
user interface elements as children, and they will be added to the Items property as
before. However, this isn’t terribly useful, because this doesn’t provide a way of filling

* GridView is the only view type defined in the current version of WPF. The other view types traditionally sup-
ported by the Windows list view control can all be achieved with ListBox, data binding, and the ItemsPanel
property, which is described in Chapter 9.

Example 5-18. Defining ListView columns

<ListView>
 <ListView.View>
 <GridView AllowsColumnReorder="true">
 <GridViewColumn Header="Name" />
 <GridViewColumn Header="Line Spacing" />
 <GridViewColumn Header="Sample" />
 </GridView>
 </ListView.View>
</ListView>

Figure 5-20. A ListView with column headers

156 | Chapter 5: Controls

in each column in the list. Providing explicit ListViewItem containers doesn’t help
either—these don’t do anything more than the basic ListBoxItem. ListView isn’t
designed to be used with user interface elements in its Items property: it is really
intended for data binding scenarios. We will cover data binding in detail in the next
two chapters, but in order to show the ListView in action, we must see a sneak pre-
view. Example 5-19 creates a populated ListView with three columns.

The control has been data-bound to the collection of FontFamily objects returned by
the static Fonts.SystemFontFamilies property. This effectively fills the control’s Items
collection with those FontFamily objects. The GridView then specifies three columns.
The first two use the DisplayMemberBinding property to indicate what should be dis-
played. The binding expressions here simply extract the Source and LineSpacing prop-
erties from the FontFamily object for each row. The third column uses the alternative
mechanism: the CellTemplate property. This allows you to define a DataTemplate spec-
ifying arbitrary markup to be instantiated for each row—in this case a TextBlock is
used, with its FontFamily property bound to the FontFamily object for the row. This
allows a preview sample of the font to be generated. Figure 5-21 shows the results.

Setting the DisplayMemberBinding property on a particular column
causes the CellTemplate property to be ignored on that column, because
the two are different mechanisms for controlling the same thing.
DisplayMemberBinding is provided for convenience—it offers an easy way
to display just a single piece of information from the source in a
TextBlock without having to provide a complete template.

Example 5-19. Populating ListView rows

<ListView ItemsSource="{x:Static Fonts.SystemFontFamilies}">
 <ListView.View>
 <GridView>
 <GridViewColumn Header="Name"

DisplayMemberBinding="{Binding Source}" />

 <GridViewColumn Header="Line Spacing"
DisplayMemberBinding="{Binding LineSpacing}" />

 <GridViewColumn Header="Sample">
 <GridViewColumn.CellTemplate>
 <DataTemplate>
 <TextBlock FontFamily="{Binding}" FontSize="20"
 Text="ABCDEFGabcdefg" />
 </DataTemplate>
 </GridViewColumn.CellTemplate>
 </GridViewColumn>
 </GridView>
 </ListView.View>
</ListView>

List Controls | 157

Because the CellTemplate property lets us put arbitrary content into a column, we are
not limited to displaying fixed content. As Figure 5-22 shows, we are free to create
columns that contain controls such as checkboxes and text boxes.

Again, this requires the ListView to be bound to a data source, a technique that will
be explained in the next chapter. But as a preview, the markup for Figure 5-22 is
shown in Example 5-20.

Figure 5-21. Populated ListView

Figure 5-22. ListView with CheckBox and TextBox columns

Example 5-20. ListView control with controls for columns

<Grid HorizontalAlignment="Center" VerticalAlignment="Center">
 <Grid.Resources>
 <XmlDataProvider x:Key="src" XPath="/Root">
 <x:XData>
 <Root xmlns="">
 <Item id="One" flag="True" value="A" />
 <Item id="Two" flag="True" value="B" />
 <Item id="Three" flag="False" value="C" />
 <Item id="Four" flag="True" value="D" />
 </Root>
 </x:XData>
 </XmlDataProvider>
 </Grid.Resources>

 <ListView DataContext="{StaticResource src}"
 ItemsSource="{Binding XPath=Item}">
 <ListView.View>

158 | Chapter 5: Controls

The data source in this case is an embedded XML data island, but any data source
would work. The interesting feature of this example is the use of the CellTemplate in
the GridViewColumn definitions. By providing templates with controls, we have made the
ListView editable. And by the wonder of data binding, when the user makes changes
with these controls, those changes will be written back into the data source. Binding
expressions and data templates will be explained in detail in the next two chapters.

Tree View
The TreeView control presents a hierarchical view, instead of the simple linear
sequence of items the other list controls present. This means the TreeViewItem con-
tainer needs to be able to contain nested TreeViewItem elements. Example 5-21
shows how this is done.

 <GridView>
 <GridViewColumn Header="ID"
 DisplayMemberBinding="{Binding XPath=@id}" />

 <GridViewColumn Header="Enabled">
 <GridViewColumn.CellTemplate>
 <DataTemplate>
 <CheckBox IsChecked="{Binding XPath=@flag}" />
 </DataTemplate>
 </GridViewColumn.CellTemplate>
 </GridViewColumn>

 <GridViewColumn Header="Value">
 <GridViewColumn.CellTemplate>
 <DataTemplate>
 <TextBox Text="{Binding XPath=@value}" Width="70" />
 </DataTemplate>
 </GridViewColumn.CellTemplate>
 </GridViewColumn>
 </GridView>
 </ListView.View>
 </ListView>
</Grid>

Example 5-21. TreeView control

<TreeView>
 <TreeViewItem Header="First top-level item" IsExpanded="True">
 <TreeViewItem Header="Child" />
 <TreeViewItem Header="Another child" IsExpanded="True">
 <TreeViewItem Header="Grandchild" />
 <TreeViewItem Header="Grandchild 2" />
 </TreeViewItem>
 <TreeViewItem Header="A third child" />
 </TreeViewItem>

Example 5-20. ListView control with controls for columns (continued)

List Controls | 159

As Figure 5-23 shows, this defines a TreeView with nested items. Each TreeViewItem
corresponds to a node in the tree, with the Header property supplying the caption for
each node. This is another form of content model, allowing us to use either plain
text, or, as the third of the top-level items illustrates, nested content.

As with the other list controls, you can discover which item is selected with the
SelectedItem property and the SelectedItemChanged event. But unlike the other con-
trols, there is no SelectedIndex. Such a property makes sense for controls that
present a linear list of items, but it would not work so well for a tree.

Because TreeView derives from ItemsControl, it supports data binding—you can point
its ItemsSource at a list of objects and it will generate a TreeViewItem for each item. Of
course, the point of a tree view is to display a hierarchy of items. TreeView therefore
supports hierarchical data binding, an extension of basic list binding that determines
how child items are discovered. Hierarchical binding is described in Chapter 7.

 <TreeViewItem Header="Second top-level item">
 <TreeViewItem Header="Child a" />
 <TreeViewItem Header="Child b" />
 <TreeViewItem Header="Child c" />
 </TreeViewItem>

 <TreeViewItem IsExpanded="True">
 <TreeViewItem.Header>
 <StackPanel Orientation="Horizontal">
 <Ellipse Fill="Blue" Width="15" Height="15" />
 <TextBlock Text="Third top-level item" />
 <Ellipse Fill="Blue" Width="15" Height="15" />
 </StackPanel>
 </TreeViewItem.Header>

 <TreeViewItem Header="Child a" />
 <TreeViewItem Header="Child b" />
 <TreeViewItem Header="Child c" />
 </TreeViewItem>
</TreeView>

Figure 5-23. TreeView

Example 5-21. TreeView control (continued)

160 | Chapter 5: Controls

Menus
Many windows applications provide access to their functionality through a hierar-
chy of menus. These are typically presented either as a main menu at the top of the
window, or as a pop-up “context” menu. WPF provides two menu controls. Menu is
for permanently visible menus (such as a main menu), and ContextMenu is for con-
text menus.

Menus in pre-WPF Windows applications are typically treated differ-
ently from other user interface elements. In Win32, menus get a dis-
tinct handle type and special event handling provisions. In Windows
Forms, most visible elements derive from a Control base class, but
menus do not. This means that menus tend to be somewhat inflexi-
ble—some user interface toolkits choose not to use the built-in menu
handling in Windows simply to avoid the shortcomings. In WPF,
menus are just normal controls, so they do not have any special fea-
tures or restrictions.

Both kinds of menus are built in the same way—their contents consist of a hierarchy
of MenuItem elements. Example 5-22 shows a typical example.

Example 5-22. A main menu

<Menu>
 <MenuItem Header="_File">
 <MenuItem Header="_New" />
 <MenuItem Header="_Open..." />
 <MenuItem Header="_Save" />
 <MenuItem Header="Sa_ve As..." />
 <Separator />
 <MenuItem Header="Page Se_tup..." />
 <MenuItem Header="_Print..." />
 <Separator />
 <MenuItem Header="E_xit" />
 </MenuItem>
 <MenuItem Header="_Edit">
 <MenuItem Header="_Undo" />
 <MenuItem Header="_Redo" />
 <Separator />
 <MenuItem Header="Cu_t" />
 <MenuItem Header="_Copy" />
 <MenuItem Header="_Paste" />
 <MenuItem Header="_Delete" />
 <Separator />
 <MenuItem Header="Select _All" />
 </MenuItem>
 <MenuItem Header="_Help">
 <MenuItem Header="Help _Topics" />
 <MenuItem Header="_About..." />
 </MenuItem>
</Menu>

Menus | 161

Figure 5-24 shows the results.

ContextMenu is used in a very similar way, although the appearance is different. The
top level of a Menu appears as a horizontal bar, which you would typically put at the
top of a window, but context menus do not have this bar, their top level consisting of
a pop up. This means that a context menu needs a UI element from which to launch
this pop up. You attach a context menu to an element by setting that element’s
ContextMenu property. Example 5-23 shows a Grid element with a ContextMenu.

With this context menu in place, a right-click anywhere on the grid will bring up the
context menu. (The grid’s Background property has been set to ensure that this will
work—if the Background has its default null value, the grid will effectively be invisi-
ble to the mouse unless the mouse is over one of the grid’s children. Using a
Transparent brush makes the grid visible to the mouse, without making it visually
opaque.) Figure 5-25 shows the context menu in action.

Figure 5-24. Menu

Example 5-23. Grid with ContextMenu

<Grid Background="Transparent">
 <Grid.ContextMenu>
 <ContextMenu>
 <MenuItem Header="Foo" />
 <MenuItem Header="Bar" />
 </ContextMenu>
 </Grid.ContextMenu>
...
</Grid>

Figure 5-25. Context menu

162 | Chapter 5: Controls

Each MenuItem has a Header property. For children of a Menu, the header determines
the label shown on the menu bar. For a MenuItem nested either in a ContextMenu or
inside another MenuItem, the Header contains the content for that menu line. The
Header property supports the content model, so it allows either plain text with
optional underscores to denote access keys, as shown in Example 5-22, or nested
content. Example 5-24 shows a modified version of one of the menu items, exploit-
ing the ability to add structure in order to add some graphics into the menu.

Note that it’s now necessary to supply an AccessText element if we want an access key.
With plain-text headers, this element was generated for us automatically, but once
nested content is in use, we need to define it explicitly. Figure 5-26 shows the results.

The menu in Example 5-22 doesn’t do anything useful, because there are no event
handlers or commands specified. There are two ways in which you can hook a
MenuItem up to some code. You can handle its Click event in much the same way that
you would handle a button click. Alternatively, you can set the Command property on
the MenuItem, as was described in Chapter 4.

Example 5-25 shows a modified version of the Edit submenu with menu items asso-
ciated with the relevant standard commands. As long as the focus is in a control such
as TextBox or RichTextBox that understands these standard commands, the com-
mands will be handled without needing any explicit coding. If the focus is not in
such a control, the commands will simply bubble up. For example, the command
can be handled by a command binding registered for the window. If nothing handles
the command, it will be ignored.

Example 5-24. Nesting content inside MenuItem.Header

<MenuItem>
 <MenuItem.Header>
 <StackPanel Orientation="Horizontal">
 <AccessText>_New...</AccessText>
 <Ellipse Fill="Blue" Width="40" Height="15" Margin="10,0" />
 </StackPanel>
 </MenuItem.Header>
</MenuItem>

Figure 5-26. Menu with nested content

Example 5-25. MenuItems with commands

<MenuItem Header="_Edit">
 <MenuItem Header="_Undo" Command="Undo" />
 <MenuItem Header="_Redo" Command="Redo"/>

Menus | 163

If you were to remove the Header properties from Example 5-25, you would find that
the menu items all still appear with the correct header text for the commands. This is
because RoutedUICommand knows the display name for the command it represents, and
MenuItem is able to extract the name. However, there is one problem with taking advan-
tage of this: you will lose the accelerators. RoutedUICommand cannot prescribe a particular
access key, because access keys should be unique within the scope of a particular menu.
If a menu assigns the same access key to more than one item in a menu, ambiguity
ensues, and pressing the access key will simply highlight the menu item rather than
selecting it, with further key presses alternating between the choices. This significantly
reduces how effectively access keys streamline user input.

To guarantee a unique key for each menu item, a developer must coordinate access
keys with knowledge of which commands are used in which menus. So, the appro-
priate place to assign access keys is the menu, not the command. Imagine you’re
writing a custom command of your own—how would you choose which access key
to use? You would be able to choose only if you knew what other commands will be
sharing a menu with your command. Now consider WPF’s built-in commands—
these will be used in all sorts of contexts in any number of applications, and because
there are considerably more built-in commands than there are keys on the keyboard,
Microsoft cannot possibly assign access keys in a way guaranteed to prevent ambigu-
ity. Commands therefore don’t get to specify the access key. So, in practice, you will
normally want to define the Header property for menu items associated with com-
mands, even though it may appear to be optional.

Menu items often have a shortcut key as well as an access key. The access key works
only when the menu is open. A shortcut such as Ctrl-S (for save) works whether the
menu is open or not. Of course, the menu isn’t responsible for binding the control
shortcut to the key gesture—as we saw in Chapter 4, we associate inputs with com-
mands using input bindings. However, menus conventionally display shortcuts in
order to help users discover them.

If a menu item’s Command has an associated shortcut key, WPF will automatically dis-
play this in the menu. Example 5-25 uses standard clipboard and undo/redo com-
mands, and these all have default shortcuts, so the menu reflects this, as you can see
in Figure 5-27.

 <Separator />
 <MenuItem Header="Cu_t" Command="Cut" />
 <MenuItem Header="_Copy" Command="Copy" />
 <MenuItem Header="_Paste" Command="Paste" />
 <MenuItem Header="_Delete" Command="Delete" />
 <Separator />
 <MenuItem Header="Select _All" Command="SelectAll" />
</MenuItem>

Example 5-25. MenuItems with commands (continued)

164 | Chapter 5: Controls

If, for some reason, you choose not to use WPF’s command system—maybe you
have an existing application framework that provides its own command abstrac-
tion—you can still display a shortcut. MenuItem provides an InputGestureText prop-
erty that lets you choose the text that appears in the normal place for such shortcuts.
Example 5-26 shows a menu item with both a shortcut and an access key.

Menu and ContextMenu both derive indirectly from ItemsControl, the same base class
as all of the list controls. This means that you can use the ItemsSource property to
populate a menu using hierarchical data binding rather than fixed content. This
could be useful if you want to make your menu structure reconfigurable. See
Chapter 6 for more details on how to use data binding.

Toolbars
Most Windows applications offer toolbars as well as menus. Toolbars provide faster
access for frequently used operations, because the user does not need to navigate
through the menu system—the toolbar is always visible on-screen. Figure 5-28
shows a pair of typical toolbars.

Figure 5-27. Automatic shortcut display

Example 5-26. Menu item with shortcut and access key

<MenuItem Header="_New" InputGestureText="Ctrl+N" />

Figure 5-28. Application with toolbars

Toolbars | 165

WPF supports toolbars through the ToolBarTray and ToolBar controls. ToolBarTray
provides a container into which you can add multiple ToolBar elements.
Example 5-27 shows a simple example with two toolbars; this is the markup for the
toolbars in Figure 5-28.

Example 5-27. ToolBarTray and ToolBar

<ToolBarTray>
 <ToolBar>
 <Button>
 <Canvas Width="16" Height="16" SnapsToDevicePixels="True">
 <Polygon Stroke="Black" StrokeThickness="0.5"
 Points="2.5,1.5 9.5,1.5 12.5,4.5 12.5,15 2.5,15">
 <Polygon.Fill>
 <LinearGradientBrush StartPoint="1,1" EndPoint="0.2,0.7">
 <GradientStop Offset="0" Color="#AAA" />
 <GradientStop Offset="1" Color="White" />
 </LinearGradientBrush>
 </Polygon.Fill>
 </Polygon>
 <Polygon Stroke="Black" Fill="DarkGray" StrokeThickness="0.5"
 StrokeLineJoin="Bevel"
 Points="9.5,1.5 9.5,4.5 12.5,4.5" />
 </Canvas>
 </Button>

 <Button>
 <Canvas Width="16" Height="16" >
 <Polygon Stroke="Black" StrokeThickness="0.5" Fill="Khaki"
 SnapsToDevicePixels="True"
 Points="0.5,14.5 0.5,4.5 1.5,3.5 6.5,3.5 8.5,5.5
 12.5,5.5 12.5,14.5" />
 <Polygon Stroke="Black" SnapsToDevicePixels="True"
 StrokeThickness="0.5"
 Points="1.5,14.5 4.5,7.5 15.5,7.5 12.5,14.5" >
 <Polygon.Fill>
 <LinearGradientBrush StartPoint="0.25,0" EndPoint="0.5,1">
 <GradientStop Offset="0" Color="#FF4" />
 <GradientStop Offset="1" Color="#CA7" />
 </LinearGradientBrush>
 </Polygon.Fill>
 </Polygon>
 <Path Stroke="Blue" StrokeThickness="1"
 Data="M 8,2 C 9,1 12,1 14,3" />
 <Polygon Fill="Blue" Points="15,1 15.5,4.5 12,4" />
 </Canvas>
 </Button>
 </ToolBar>
 <ToolBar>
 <Button>Second toolbar</Button>
 <CheckBox IsChecked="True">Choice</CheckBox>
 </ToolBar>
</ToolBarTray>

166 | Chapter 5: Controls

This contains just two toolbars, with a couple of buttons each. In this example, we
have used some simple vector graphics to draw the usual New and Open icons. The
graphical elements used are explained in more detail in Chapter 13. In practice, you
would rarely put graphics inline like this—you would usually expect drawings to be
resources that are simply referred to by the buttons in the toolbar. See Chapter 12 for
more details. The second toolbar just uses the default visuals for a Button and a
CheckBox. As you can see, these take on a flat, plain appearance when they appear in
a toolbar.

Because toolbar buttons are just normal Button or CheckBox elements with special-
ized visuals, there is nothing particularly special about their behavior. Toolbars just
provide a particular way of arranging and presenting controls. You can also add
other elements such as a TextBox or ComboBox. These will just be arranged on the tool-
bar along with the buttons.

GridSplitter
GridSplitter lets you offer the user a way to adjust the layout of your application, by
changing the size of a column or row in a grid. This lets you provide a similar feature
to Windows Explorer, where if you turn on the folder view, or one of the other pan-
els that can appear on the lefthand side of a window, you can change the amount of
space available to the panel by dragging on the vertical bar between the panel and
the main area. You can use GridSplitter only to rearrange a Grid panel (see
Example 5-28).

This puts a GridSplitter into the middle of the three columns. As Figure 5-29 shows,
if the user moves the mouse over the GridSplitter, the mouse pointer changes to the
horizontal resize arrow. Dragging the slider resizes the columns on either side.

Example 5-28. GridSplitter

<Grid Height="100" Width="400">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="1*" />
 <ColumnDefinition Width="6" />
 <ColumnDefinition Width="2*" />
 </Grid.ColumnDefinitions>

 <Ellipse Grid.Column="0" Fill="Red" />
 <GridSplitter Grid.Column="1" HorizontalAlignment="Stretch" />
 <Ellipse Grid.Column="2" Fill="Blue" />
</Grid>

Where Are We? | 167

Where Are We?
Controls are the building blocks of applications. They represent the features of the
interface with which the user interacts. Controls provide behavior, and they rely on
styling and templates to present an appearance. WPF provides a set of built-in controls
based on the controls commonly used in Windows applications. WPF significantly
reduces the need for custom controls. In part, this is enabled by content models, but
as we will see in Chapters 8 and 9, the extent to which built-in controls can be cus-
tomized means that custom controls are necessary only in the most specialized of
circumstances.

Figure 5-29. GridSplitter

168

Chapter 6CHAPTER 6

Simple Data Binding 6

The purpose of most applications is to display data to users and, often, to let them
edit that data. Your job as the application developer is to bring the data in from a
variety of sources that expose their data in object, hierarchical, or relational format.
Regardless of where the data comes from or the format it’s in, there are several things
that you’ll most likely need to do with the data, including showing it, converting it,
sorting it, filtering it, grouping it, relating one part of it to another part, and, more
often than not, editing it. Without some kind of engine for shuttling data back and
forth between data sources and controls, you’re going to be writing a great deal of
code. With WPF’s data binding engine, you get more features with less code, which
is always a nice place to be.

Without Data Binding
Consider a very simple application for editing a single person’s name and age, as
shown in Figure 6-1.

Figure 6-1 can be implemented with some simple XAML, as shown in Example 6-1.

Figure 6-1. An exceedingly simple application

Without Data Binding | 169

We can represent the data to be shown in our simple application in a simple class
(see Example 6-2).

With the Person class, Example 6-3 shows a naïve implementation of the UI of our
application.

Example 6-1. A simple Person editor layout

<!-- Window1.xaml -->
<Window ...>
 <Grid>
 ...
 <TextBlock ...>Name:</TextBlock>
 <TextBox Name="nameTextBox" ... />
 <TextBlock ...>Age:</TextBlock>
 <TextBox Name="ageTextBox" ... />
 <Button Name="birthdayButton" ...>Birthday</Button>
 </Grid>
</Window>

Example 6-2. A simple Person class

public class Person {
 string name;
 public string Name {
 get { return this.name; }
 set { this.name = value; }
 }

 int age;
 public int Age {
 get { return this.age; }
 set { this.age = value; }
 }

 public Person() {}
 public Person(string name, int age) {
 this.name = name;
 this.age = age;
 }
}

Example 6-3. Naïve Person editor code

// Window1.xaml.cs
...
public class Person {...}

public partial class Window1 : Window {
 Person person = new Person("Tom", 11);

170 | Chapter 6: Simple Data Binding

The code in Example 6-3 creates a Person object and initializes the text boxes with
the Person object properties. When the Birthday button is pressed, the Person
object’s Age property is incremented and the updated Person data is shown in a mes-
sage box, as shown in Figure 6-2.

Our simple application implementation is, in fact, too simple. The change in the
Person Age property does show up in the message box, but it does not show up in the
main window. One way to keep the application’s UI up-to-date is to write code that,
whenever a Person object is updated, manually updates the UI at the same time:

void birthdayButton_Click(object sender, RoutedEventArgs e) {
 ++person.Age;

 public Window1() {
 InitializeComponent();

 // Fill initial person fields
 this.nameTextBox.Text = person.Name;
 this.ageTextBox.Text = person.Age.ToString();

 // Handle the birthday button click event
 this.birthdayButton.Click += birthdayButton_Click;
 }

 void birthdayButton_Click(object sender, RoutedEventArgs e) {
 ++person.Age;
 MessageBox.Show(
 string.Format(
 "Happy Birthday, {0}, age {1}!",
 person.Name,
 person.Age),
 "Birthday");
 }
}

Figure 6-2. Our simple application is too simple

Example 6-3. Naïve Person editor code (continued)

Without Data Binding | 171

 // Manually update the UI
 this.ageTextBox.Text = person.Age.ToString();

 MessageBox.Show(
 string.Format(
 "Happy Birthday, {0}, age {1}!",
 person.Name,
 person.Age),
 "Birthday");
}

With a single line of code, we’ve “fixed” our application. This is a seductive and pop-
ular road, but it does not scale as the application gets more complicated and requires
more of these “single” lines of code. To get beyond the simplest of applications, we’ll
need something better.

Object Changes
A more robust way for the UI to track object changes is for the object to raise an
event when a property changes. The right way for an object to do this is with an
implementation of the INotifyPropertyChanged interface, as shown in Example 6-4.

Example 6-4. A class that supports property change notification

using System.ComponentModel; // INotifyPropertyChanged
...
public class Person : INotifyPropertyChanged {
 // INotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;

 protected void Notify(string propName) {
 if(this.PropertyChanged != null) {
 PropertyChanged(this, new PropertyChangedEventArgs(propName));
 }
 }

 string name;
 public string Name {
 get { return this.name; }
 set {
 if(this.name == value) { return; }
 this.name = value;
 Notify("Name");
 }
 }

 int age;
 public int Age {
 get { return this.age; }
 set {
 if(this.age == value) { return; }
 this.age = value;

172 | Chapter 6: Simple Data Binding

In Example 6-4, when either of the Person properties changes (due to the implementa-
tion of the Birthday button Click handler), a Person object raises the PropertyChanged
event. We could use this event to keep the UI synchronized with the Person properties,
as shown in Example 6-5.

 Notify("Age");
 }
 }

 public Person() {}
 public Person(string name, int age) {
 this.name = name;
 this.age = age;
 }
}

Example 6-5. Simple Person editor code

// Window1.xaml.cs
...
public class Person : INotifyPropertyChanged {...}

public partial class Window1 : Window {
 Person person = new Person("Tom", 11);

 public Window1() {
 InitializeComponent();

 // Fill initial person fields
 this.nameTextBox.Text = person.Name;
 this.ageTextBox.Text = person.Age.ToString();

 // Watch for changes in Tom's properties
 person.PropertyChanged += person_PropertyChanged;

 // Handle the birthday button click event
 this.birthdayButton.Click += birthdayButton_Click;
 }

 void person_PropertyChanged(
 object sender,
 PropertyChangedEventArgs e) {

 switch(e.PropertyName) {
 case "Name":
 this.nameTextBox.Text = person.Name;
 break;

 case "Age":
 this.ageTextBox.Text = person.Age.ToString();
 break;
 }

Example 6-4. A class that supports property change notification (continued)

Without Data Binding | 173

Example 6-5 shows an example of a single instance of the Person class that’s created
when the main window first comes into existence, initializing the name and age text
boxes with the initial person values and then subscribing to the property change
event to keep the text boxes up-to-date as the Person object changes. With this code
in place, the Birthday button Click event handler doesn’t have to manually update
the text boxes when it updates Tom’s age; instead, updating the Age property causes
a cascade of events that keeps the age text box up-to-date with the Person object’s
changes, as shown in Figure 6-3.

 }

 void birthdayButton_Click(object sender, RoutedEventArgs e) {
 ++person.Age; // person_PropertyChanged will update ageTextBox
 MessageBox.Show(
 string.Format(
 "Happy Birthday, {0}, age {1}!",
 person.Name,
 person.Age),
 "Birthday");
 }
}

Figure 6-3. Keeping the UI up-to-date with changes in the object

Example 6-5. Simple Person editor code (continued)

birthdayButton_Click

Window1 Person

person_PropertyChanged

Age TextBox

MessageBox.Show

Age
.getAge
.setAge

PropertyChanged

1

3

2

7

6

5

4

174 | Chapter 6: Simple Data Binding

The steps are as follows:

1. User clicks on button, which causes Click event to be raised.

2. Click handler gets the age (11) from the Person object.

3. Click handler sets the age (12) on the Person object.

4. Person Age property setter raises the PropertyChanged event.

5. PropertyChanged event is routed to event handler in the UI code.

6. UI code updates the age TextBox from “11” to “12.”

7. Button click event handler displays a message box showing the new age (“12”).

By the time the message box is shown with Tom’s new age, the age text box in the
window has already been updated, as shown in Figure 6-4.

By handling the PropertyChanged event, we ensure that when the data changes, the
UI is updated to reflect that change. However, that solves only half the problem; we
still need to handle changes in the UI and reflect them back to the object.

UI Changes
Without some way to track changes from the UI back into the object, we could eas-
ily end up with a case where the user has made some change (like changing the per-
son’s name), shows the object’s data (as happens when clicking the Birthday button),
and expects the change to have been made, only to be disappointed with Figure 6-5.

Notice in Figure 6-5 that the Name is “Thomsen Frederick” in the window, but “Tom”
in the message box, which shows that although the UI has been updated, the under-
lying object has not. To fix this problem, we need only watch for the Text property in
our TextBox object to change, updating the Person object as appropriate (see
Example 6-6).

Figure 6-4. Manually populating two WPF controls with two object properties

Without Data Binding | 175

Figure 6-5. The need to keep UI and data in sync

Example 6-6. Tracking changes in the UI

public partial class Window1 : Window {
 Person person = new Person("Tom", 11);

 public Window1() {
 InitializeComponent();

 // Fill initial person fields
 this.nameTextBox.Text = person.Name;
 this.ageTextBox.Text = person.Age.ToString();

 // Watch for changes in Tom's properties
 person.PropertyChanged += person_PropertyChanged;

 // Watch for changes in the controls
 this.nameTextBox.TextChanged += nameTextBox_TextChanged;
 this.ageTextBox.TextChanged += ageTextBox_TextChanged;

 // Handle the birthday button click event
 this.birthdayButton.Click += birthdayButton_Click;
 }

 ...

 void nameTextBox_TextChanged(object sender, TextChangedEventArgs e) {
 person.Name = nameTextBox.Text;
 }

 void ageTextBox_TextChanged(object sender, TextChangedEventArgs e) {
 int age = 0;
 if(int.TryParse(ageTextBox.Text, out age)) {
 person.Age = age;
 }
 }

176 | Chapter 6: Simple Data Binding

Figure 6-6 shows the name changes in the UI correctly propagating to the Person
object.

Now, regardless of where the data changes, both the Person object and the UI show-
ing the Person object are kept synchronized. And although we’ve gotten the function-
ality we wanted, we had to write quite a bit of code to make it happen:

• Window1 constructor code to set controls to initial values, converting data to
strings as appropriate

• Window1 constructor code to hook up the PropertyChanged event to track the
Person object’s property changes

• PropertyChanged event handler to grab the updated data from the Person object,
converting data to strings as appropriate

• Window1 constructor code to hook up the TextBox object’s TextChanged event to
track the UI changes

• TextChanged event handlers to push the updated TextBox data into the Person
object, converting the data as appropriate

 void birthdayButton_Click(object sender, RoutedEventArgs e) {
 ++person.Age;

 // nameTextBox_TextChanged and ageTextBox_TextChanged
 // will make sure the Person object is up-to-date
 // when it's displayed in the message box
 MessageBox.Show(
 string.Format(
 "Happy Birthday, {0}, age {1}!",
 person.Name,
 person.Age),
 "Birthday");
 }
}

Figure 6-6. Manually keeping properties and controls in sync

Example 6-6. Tracking changes in the UI (continued)

Data Binding | 177

This code allows us to write our Birthday button Event handler safe in the knowl-
edge that all changes are synchronized when we display the message box. However,
it’s easy to imagine how this code could quickly get out of hand as the number of
object properties or the number of objects we’re managing grows. Plus, this seems
like such a common thing to want to do that someone must have already provided a
simpler way to do this. And in fact, someone has; it’s called data binding.

Data Binding
Our manual code to keep the data and the UI synchronized has the effect of manu-
ally binding together two pairs of properties, each pair composed of one property on
the Person object and the Text property on a TextBox object. In WPF, data binding is
the act of registering two properties with the data binding engine and letting the
engine keep them synchronized, converting types as appropriate, as shown in
Figure 6-7.

Bindings
We can register two properties to be kept in sync by the data binding engine using an
instance of a Binding object, as shown in Example 6-7.

In Example 6-7, we’ve used the property element syntax introduced in Chapter 1 to
create an instance of the Binding markup extension class and initialize its Path prop-
erty to Age. This establishes the synchronization relationship with the Text property
of the TextBox object. Using the binding markup extension syntax (also introduced in
Chapter 1), we can shorten Example 6-7 to the code snippet shown in Example 6-8.

Figure 6-7. The synchronization and conversion duties of data binding

Example 6-7. Binding a UI target property to a data source property

<TextBox ...>
 <TextBox.Text>
 <Binding Path="Age" />
 </TextBox.Text>
</TextBox>

Example 6-8. The shortcut binding syntax

<TextBox Text="{Binding Path=Age}" />

Dependency
Property

Element Object

Property

Synchronization

Data binding

Conversion

178 | Chapter 6: Simple Data Binding

As an even shorter cut, you can drop the Path designation altogether and the Binding
will still know what you mean (see Example 6-9).

I prefer to be more explicit, so I won’t use the syntax in Example 6-9, but I won’t
judge if you like it. As an example of something more exotic, Example 6-10 sets more
than one attribute of a binding.

We’ll see what all of these Binding properties mean directly. You might also be inter-
ested in how to pack multiple binding attribute settings using the shortcut syntax.
To accomplish this, simply comma-delimit the name-value pairs, using spaces and
newlines as convenient (see Example 6-11).

Table 6-1 shows the list of available properties on a Binding object, many of which
you’ll see described in more detail later in this chapter.

Example 6-9. The shortest cut binding syntax

<TextBox Text="{Binding Age}" />

Example 6-10. A more full-featured binding example, longhand

<TextBox ...>
 <TextBox.Foreground>
 <Binding Path="Age" Mode="OneWay" Source="{StaticResource Tom}"
 Converter="{StaticResource ageConverter}" />
 </TextBox.Foreground>
</TextBox>

Example 6-11. A more full-featured binding example, shorthand

<TextBox ...
 Foreground="{Binding Path=Age, Mode=OneWay, Source={StaticResource Tom},
 Converter={StaticResource ageConverter}}" />

Table 6-1. The Binding class’s properties

Property Meaning

BindsDirectlyToSource Defaults to False. If set to True, indicates a binding to the parameters of a
DataSourceProvider (like the ObjectDataProvider discussed later in
this chapter), instead of to the data returned from the provider. See the
BindingToMethod sample included with this book for an example.

Converter An implementation of IValueConverter to use to convert values back and
forth from the data source. Discussed later in this chapter.

ConverterCulture Optional parameter passed to the IValueConverter methods indicating the
culture to use during conversion.

ConverterParameter Optional application-specific parameter passed to the IValueConverter meth-
ods during conversion.

ElementName Used when the source of the data is a UI element as well as the target. Discussed
later in this chapter.

Data Binding | 179

The Binding class has all kinds of interesting facilities for managing the binding
between two properties, but the one that you’ll most often set is the Path property.*

For most cases, you can think of the Path as the name of the property on the object
serving as the data source. So, the binding statement in Example 6-8 is creating a
binding between the Text property of the TextBox and the Name property of some
object to be named later, as shown in Figure 6-8.

FallbackValue The value to use in case retrieving the value from the data source has failed, one of
the parts of a multipart path is null, or the binding is asynchronous and the value
hasn’t yet been retrieved.

IsAsync Defaults to False. When set to True, gets and sets the data on the source asyn-
chronously. Uses the FallbackValue while the data is being retrieved.

Mode One of the BindingMode values: TwoWay, OneWay, OneTime,
OneWayToSource, or Default.

NotifyOnSourceUpdated Defaults to False. Whether to raise the SourceUpdated event or not.

NotifyOnTargetUpdated Defaults to False. Whether to raise the TargetUpdated event or not.

NotifyOnValidationError Defaults to False. Whether to raise the Validation.Error attached event or
not. Discussed later in this chapter.

Path Path to the data of the data source object. Use the XPath property for XML data.

RelativeSource Used to navigate to the data source relative to the target. Discussed later in this
chapter.

Source A reference to the data source to be used instead of the default data context.

UpdateSourceExceptionFilter Optional delegate to handle errors raised while updating the data source. Valid
only if accompanied by an ErrorValidationRule (discussed later in this
chapter).

UpdateSourceTrigger Determines when the data source is updated from the UI target. Must be one of the
UpdateSourceTrigger values: PropertyChanged, LostFocus,
Explicit, or Default. Discussed in Chapter 7.

ValidationRules Zero or more derivations of the ValidationRule class. Discussed later in this
chapter.

XPath XPath to the data on the XML data source object. Use the Path property for non-
XML data. Discussed in Chapter 7.

* Or XPath property, if your data is XML, which is discussed in Chapter 7.

Figure 6-8. Binding targets and sources

Table 6-1. The Binding class’s properties (continued)

Property Meaning

BindingTextBox.Text <unknown>.Name

Binding Target Binding Source

180 | Chapter 6: Simple Data Binding

In this binding, the TextBox control is the binding target, as it acts as a consumer of
changes to the binding source, which is the object that provides the data. The bind-
ing target can be any WPF element, but you’re only allowed to bind to the element’s
dependency properties (described in Chapter 1).

On the other hand, you can bind to any public CLR property or dependency prop-
erty on the binding source object.* The binding source is not named in this example
specifically so that we can have some freedom as to where it comes from at runtime
and so that it’s easier to bind multiple controls to the same object (like our name and
age text box controls bound to the same Person object).

Commonly, the binding source data comes from a data context.

Implicit Data Source
A data context is a place for bindings to look for the data source if they don’t have
any other special instructions (which we’ll discuss later). In WPF, every
FrameworkElement and every FrameworkContentElement has a DataContext property.
The DataContext property is of type Object, so you can plug anything you like into it
(e.g., string, Person, List<Person>, etc.). When looking for an object to use as the
binding source, the binding object logically traverses up the tree from where it’s
defined, looking for a DataContext property that has been set.†

This traversal is handy because it means that any two controls with a common logi-
cal parent can bind to the same data source. For example, both of our text box con-
trols are children of the grid, and they each search for a data context, as shown in
Figure 6-9.

* WPF data binding sources can also expose data via implementations of ICustomTypeDescriptor, which is how
ADO.NET’s data sources are supported.

† Actually, data binding doesn’t do any searching at runtime. Instead, it relies on the fact that the DataContext
property is inheritable, which means that the WPF property system itself implements the scoping/searching
behavior described here. (Inheritable dependency properties are described in Chapter 18.)

Figure 6-9. Searching the element tree for a non-null DataContext

<!--Window1.xaml-->
<Window...>
 <Grid Name="grid">
 ...
 <TextBlock...>Name:</TextBlock>
 <TextBox Text="{Binding Path=Name}".../>
 <TextBlock...>Age:</TextBlock>
 <TextBox Text="{Binding Path=Age}".../>
 <Button Name="birthdayButton"...>Birthday</Button>
 </Grid>
</Window>

1

2

3

Data Binding | 181

The steps work like this:

1. The binding looks for a DataContext that has been set on the TextBox itself.

2. The binding looks for a DataContext that has been set on the Grid.

3. The binding looks for a DataContext that has been set on the Window.

Providing a DataContext value for both of the text box controls is a matter of setting
the shared Person object as a value of the grid’s DataContext property in the Window1
constructor, as shown in Example 6-12.

So, although the functionality of our app is the same as shown in Figure 6-6, the data
synchronization code has been reduced to a binding object for each property in the
XAML where data is to be shown and a data context for the bindings to find the
data. There is no need for the UI initialization code or the event handlers that copy
and convert the data (notice that no code has been elided from Example 6-12).

To be clear, the use of the INotifyPropertyChanged implementation is a required part
of this example. This is the interface that WPF’s data binding engine uses to keep the

Example 6-12. Editor code simplified with data binding

// Window1.xaml.cs
using System;
using System.Windows;
using System.Windows.Controls;

namespace WithBinding {
 public partial class Window1 : Window {
 Person person = new Person("Tom", 11);

 public Window1() {
 InitializeComponent();

 // Let the grid know its data context
 grid.DataContext = person;

 this.birthdayButton.Click += birthdayButton_Click;
 }

 void birthdayButton_Click(object sender, RoutedEventArgs e) {
 // Data binding keeps person and the text boxes synchronized
 ++person.Age;
 MessageBox.Show(
 string.Format(
 "Happy Birthday, {0}, age {1}!",
 person.Name,
 person.Age),
 "Birthday");
 }
 }
}

182 | Chapter 6: Simple Data Binding

UI synchronized when an object’s properties change. Without it, a UI change can
still propagate to the object, but the binding engine will have no way of knowing
when the object changes outside of the UI.

It’s not quite true that the binding engine will have no way of knowing
when a change happens on an object that does not implement the
INotifyPropertyChanged interface. Another way it can know is if the
object implements the PropertyNameChanged events as proscribed in .NET
1.x data binding (e.g., SizeChanged, TextChanged, etc.), with which WPF
maintains backward compatibility. Another way is a manual call to the
UpdateTarget method on the BindingExpression object associated with
the Binding in question. For example:

BindingOperations.GetBindingExpression(
 ageTextBox, TextBox.TextProperty).UpdateTarget();

Without rebinding or setting the data again manually, the call to
UpdateTarget is your only option if the data source provides no notifi-
cations and you have no access to the source code. However, it’s safe
to say that an implementation of INotifyPropertyChanged is the recom-
mended way to enable property change notifications in WPF data
binding.

Data Islands
Although our application is attempting to simulate a more complicated application
that, perhaps, loads its “person data” from some serialized form and saves it between
application sessions, it’s not hard to imagine cases where some data is known at
compile time (e.g., sample data like our Tom).

As discussed in Chapter 1, XAML is a language for describing object graphs, so prac-
tically any type with a default constructor can be initialized in XAML (the default
constructor is needed because XAML has no syntax for calling a nondefault con-
structor).* Luckily, as you’ll recall from Example 6-4, our Person class has a default
constructor, so we can create an instance of it in our application’s XAML, as shown
in Example 6-13.

* If you want to get fancy, you can create a TypeConverter that can accept a string as input or a markup exten-
sion as well, but generally the default constructor route is the easiest way to provide XAML support for your
custom types.

Example 6-13. Creating an instance of a custom type in XAML

<Window ... xmlns:local="clr-namespace:WithBinding">
 <Window.Resources>
 <local:Person x:Key="Tom" Name="Tom" Age="11" />
 </Window.Resources>
 <Grid>...</Grid>
</Window

Data Binding | 183

Here we’ve created an “island” of data (sometimes called a data island) inside the
window’s Resources element, bringing the Person type in using the clr-namespace
syntax described in Chapter 1.

With a named Person in our XAML code, we can declaratively set the grid’s
DataContext instead of setting it in the code behind programmatically, as shown in
Example 6-14.

Now that we’ve moved the creation of the Person object to the XAML, we have to
update our Birthday button Click handler from using a member variable to using the
data defined in the resource (see Example 6-15).

In Example 6-15, we’re using the FindResource method (introduced in Chapter 1 and
detailed in Chapter 12) to pull the Person object from the main window’s resources.
With this minor change, the result is brought again into parity with Figure 6-6.

In practice, I haven’t found data islands as described here to be useful
for much beyond sample data. However, the facilities of XAML that
allow it to produce graphs of arbitrary objects have a great number of
uses beyond WPF.

Example 6-14. Binding to an object declared in XAML

<!-- Window1.xaml -->
<Window ... xmlns:local="clr-namespace:WithBinding">
 <Window.Resources>
 <local:Person x:Key="Tom" Name="Tom" Age="11" />
 </Window.Resources>
 <Grid DataContext="{StaticResource Tom}">
 ...
 <TextBlock ...>Name:</TextBlock>
 <TextBox ... Text="{Binding Path=Name}" />
 <TextBlock ...>Age:</TextBlock>
 <TextBox ... Text="{Binding Path=Age}" />
 <Button ... Name="birthdayButton">Birthday</Button>
 </Grid>
</Window>

Example 6-15. Using an object bound in XAML

public partial class Window1 : Window {
 ...
 void birthdayButton_Click(object sender, RoutedEventArgs e) {
 // Get the Person from the Window's resources
 Person person = (Person)this.FindResource("Tom");

 ++person.Age;
 MessageBox.Show(...);
 }
}

184 | Chapter 6: Simple Data Binding

Explicit Data Source
Once you’ve got yourself a named source of data, you can be explicit in the XAML
about the source in the binding instead of relying on implicitly binding to a
DataContext property set somewhere in the tree. Being explicit is useful if you’ve got
more than one source of data (e.g., two Person objects). Setting the source explicitly
is accomplished with the Source property in the binding, as shown in Example 6-16.

In Example 6-16, we’ve bound two text boxes to two different Person objects, set-
ting the Source property of the Binding object to each person explicitly.

Binding to Other Controls
As another example of using explicit data sources, WPF provides for binding one ele-
ment’s property to another element’s property. For instance, if we wanted to syn-
chronize the brush used to draw the Birthday button’s text with the foreground
brush of the age text box (this will be handy later when we change the age text box’s
color based on the person’s age), we can use the ElementName property of the Binding
object, as shown in Example 6-17.

Example 6-16. Data binding using the Source property

<!-- Window1.xaml -->
<Window ...>
 <Window.Resources>
 <local:Person x:Key="Tom" ... />
 <local:Person x:Key="John" ... />
 </Window.Resources>
 <Grid>
 ...
 <TextBox Name="tomTextBox"
 Text="
 {Binding
 Path=Name,
 Source={StaticResource Tom}}" />

 <TextBox Name="johnTextBox"
 Text="
 {Binding
 Path=Name,
 Source={StaticResource John}}" />
 ...
 </Grid>
</Window>

Example 6-17. Binding to another UI element

<TextBox Name="ageTextBox" Foreground="Red" ... />

<!-- keep button's foreground brush in sync w/ age text box's -->

Data Binding | 185

Now, no matter what means we use to change the foreground brush’s color of the
age text box—via binding, code, or triggers (as we’ll see in Chapter 8)—the button’s
foreground brush will always follow.

Value Conversion
In Example 6-17, we’ve bound the foreground brush of the Birthday button to what-
ever the foreground brush is for the age text box, but our text box never changes
color, so neither will the Birthday button. However, we might decide that anyone
over age 25 is hot, so should be marked in the UI as red.* When someone ages at the
click of the Birthday button, we want to keep the UI up-to-date, which means we’ve
got ourselves a perfect candidate for data binding—something along the lines of
Example 6-18.

In Example 6-18, we’ve bound the age text box’s Text property to the Person object’s
Age property, as we’ve already seen, but we’re also binding the Foreground property
of the text box to the same property on the Person object. As Tom’s age changes, we
want to update the foreground color of the age text box. However, because the Age is
of type Int32 and Foreground is of type Brush, a mapping from Int32 to Brush needs
to be applied to the data binding from Age to Foreground. That’s the job of a value
converter.

A value converter (or just “converter” for short) is an implementation of the
IValueConverter interface, which contains two methods: Convert and ConvertBack.

<Button ...
 Foreground="{Binding Path=Foreground, ElementName=ageTextBox}"
 >Birthday</Button>

* Or, anyone over 25 is in more danger of dying and red means “danger”—whichever makes you more likely
to recommend this book to your friends...

Example 6-18. Binding to a non-Text property

<!-- Window1.xaml -->
<Window ...>
 <Grid>
 ...
 <TextBox
 Text="{Binding Path=Age}"
 Foreground="{Binding Path=Age, ...}"
 ...
 />
 ...
 </Grid>
</Window>

Example 6-17. Binding to another UI element (continued)

186 | Chapter 6: Simple Data Binding

The Convert method is called when converting from the source data to the target UI
data (e.g., from Int32 to Brush). The ConvertBack method is called to convert back
from the UI data to the source data. In both cases, the current value and the type
wanted for the converted data are passed to the method.

To convert an Age Int32 into a Foreground Brush, we can implement whatever map-
ping in the Convert function we feel comfortable with (see Example 6-19).

In Example 6-19, in addition to deriving from IValueConverter, we’ve also applied
the optional ValueConversion attribute. The ValueConversion attribute is useful for
documenting the expected source and target types for developers and tools, but it is
not enforced by WPF, so don’t expect it to catch values that don’t match the source
or target types. The part that is required for our example is the implementation of
Convert, where we hand out the brush that’s appropriate for the age being displayed.
Because we haven’t provided any facility to change the Foreground brush being used
to display the age, there’s no reason to do anything useful in the ConvertBack
method—it won’t be called.

I chose the name AgeToForegroundConverter because I have specific
semantics I’m building into my converter class that go above simply
converting an Int32 to a Brush. Even though this converter could be
plugged in anywhere that converted an Int32 to a Brush, I might have
very different requirements for a HeightToBackgroundConverter, for
example.

Once you’ve got a converter class, it’s easy to create an instance of one in the XAML,
just like we’ve been doing with our Person object (see Example 6-20).

Example 6-19. A simple value converter

[ValueConversion(/*sourceType*/ typeof(int), /*targetType*/ typeof(Brush))]
public class AgeToForegroundConverter : IValueConverter {

 // Called when converting the Age to a Foreground brush
 public object Convert(object value, Type targetType, ...) {
 // Only convert to brushes...
 if(targetType != typeof(Brush)) { return null; }

 // DANGER! After 25, it's all downhill...
 int age = int.Parse(value.ToString());
 return (age > 25 ? Brushes.Red : Brushes.Black);
 }

 public object ConvertBack(object value, Type targetType, ...) {
 // Should not be called in our example
 throw new NotImplementedException();
 }
}

Data Binding | 187

In Example 6-20, once we have a named converter object in our XAML, we estab-
lish it as the converter between the Age property and the Foreground brush by set-
ting the Converter property of the binding object. Figure 6-10 shows the result of
our conversion.

In Figure 6-10, notice that as Tom’s age increases past the threshold, the converter
switches the foreground brush from black to red. This change happens when the Age
property changes. Because WPF detects the change, you do not need any explicit

Example 6-20. Binding with a value converter

<!-- Window1.xaml -->
<Window ... xmlns:local="clr-namespace:WithBinding">
 <Window.Resources>
 <local:Person x:Key="Tom" ... />
 <local:AgeToForegroundConverter x:Key="ageConverter" />
 </Window.Resources>
 <Grid DataContext="{StaticResource Tom}">
 ...
 <TextBox
 Text="{Binding Path=Age}"
 Foreground="
 {Binding
 Path=Age,
 Converter={StaticResource ageConverter}}"
 ... />
 ...
 <Button ...
 Foreground="{Binding Path=Foreground, ElementName=ageTextBox}"
 >Birthday</Button>
 </Grid>
</Window>

Figure 6-10. A value converter in action (Color Plate 3)

188 | Chapter 6: Simple Data Binding

code to force the color change, just as with any other kind of data binding. Notice
also that the foreground color of the Birthday button matches the age text box’s
color, because we’re using element binding to keep them in sync.

Editable Value Conversion
In addition to value conversion from the underlying data type to some other type for
display, like our age-to-foreground-brush converter, you may also use value conver-
sion for editing convenience. For example, although the Age property is automati-
cally converted for us between an Int32 and a String in base 10, maybe your users
would prefer base 16 (who wouldn’t?!). Enabling editing in base 16 is a matter of
converting to and from a string in hexadecimal format, as shown in Example 6-21.

Value Conversion Versus Type Conversion
You may have noticed that until we decided to bring brushes into the mix, we didn’t
need value converters at all. For example, with the Person class’s Age property in an
Int32, we didn’t have to use a value converter even though the TextBox class’s Text
property is of type String. This works because the Binding class uses the type converter
support that’s been built into .NET since Version 1.0. Type converters work on a type
basis (i.e., there’s a type converter that knows how to convert from integers to strings
and back [and there are many more type converters as well]). This works because there
is a reasonable general-purpose way to convert strings to integers (and vice versa).

On the other hand, a value converter works on an application-specific basis. Although
there is no built-in general-purpose conversion from integers to brushes, we can define
an application-specific conversion to handle a certain kind of integer (e.g., ages, in our
example) to brushes and apply that on a case-by-case basis.

Example 6-21. A value converter for integers in base 16

public class Base16Converter : IValueConverter {
 public object Convert(
 object value, Type targetType, ...) {
 // Convert to base 16
 return ((int)value).ToString("x");
 }

 public object ConvertBack(
 object value, Type targetType, ...) {
 // Convert from base 16
 return int.Parse(
 (string)value, System.Globalization.NumberStyles.HexNumber);
 }
}

Data Binding | 189

Hooking up this value converter works just like before, but this time we’re convert-
ing the Text property of the TextBox instead of the Foreground property:

<TextBox ...
 Text="
 {Binding
 Path=Age,
 Converter={StaticResource base16Converter}}" />

Figure 6-11 shows the base-16 converter in action.

One thing you’ll notice in our Base16Converter implementation of IValueConverter is
that we haven’t guarded against a user entering something that can’t be interpreted
as a hexadecimal number. If he does, the resulting exception is not handled by WPF,
but is instead shown to the user as an unhandled exception. Although you can spend
your time writing code to catch conversion errors, what you’ll really like to do is
catch those errors before they ever get to the value converter, and instead communi-
cate them to your users. For that, you’ll be best served by validation rules.

Validation
A validation rule is some code for validating a piece of data in the target before it’s
used to update the source. The validation code is realized as an instance of a class
that derives from the base ValidationRule class (from the System.Windows.Controls
namespace) and overrides the Validate method. A built-in validation rule called
ExceptionValidationRule (see Example 6-22) provides some measure of protection
against a user intent on entering data outside the range supported by our age-to-
foreground value converter.

Figure 6-11. The base-16 value converter in action

Example 6-22. Hooking up a validation rule

<Window ... xmlns:local="clr-namespace:WithBinding">
 <Window.Resources>
 ...

190 | Chapter 6: Simple Data Binding

In Example 6-22, we’re using the shortcut markup extension binding syntax to bind
the Foreground property to the Age (via the age-to-foreground value converter), but
using the longhand syntax to bind the Text property to the Age so that we can create
a list of validation rules. These validation rules will be executed in order when the
target property changes. If they all succeed, the object is updated and everyone’s
happy. If one of the rules fails, WPF highlights the offending data to make it easy to
see what to fix, as shown in Figure 6-12.

As nifty as the red outline around the offending text box is, it still doesn’t let the user
know what’s wrong (i.e., the error message associated with the exception isn’t
shown). To do that, we need to look under the hood a bit.

When a validation result indicates invalid data, a ValidationError object is created
that contains an object meant to describe the error, ideally for display by the UI. In
the case of the ExceptionValidationRule, this “error content” object contains the

 <local:AgeToForegroundConverter x:Key="ageConverter" />
 </Window.Resources>
...
<TextBox ...
 Foreground="
 {Binding
 Path=Age,
 Converter={StaticResource ageConverter}}">

 <TextBox.Text>
 <Binding Path="Age">
 <Binding.ValidationRules>
 <ExceptionValidationRule />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>

</TextBox>

Figure 6-12. A TextBox control highlighted as invalid (Color Plate 4)

Example 6-22. Hooking up a validation rule (continued)

Data Binding | 191

Message property of the Exception the validation rule catches. To gain access to those
errors, you can listen to the ValidationError attached event, which you can set up as
shown in Example 6-23.

<!-- Window1.xaml -->
...
<TextBox Name="ageTextBox" ...>
 <TextBox.Text>
 <Binding Path="Age" NotifyOnValidationError="True">
 <Binding.ValidationRules>
 <ExceptionValidationRule />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>
...

In Example 6-23, we’re calling the static AddErrorHandler method on the Validation
class so that when a validation event happens on the age text box, we’ll get a notifi-
cation. In that event handler, we can access the Error.ErrorContent property to get
to the string provided by the validation rule. This event fires, however, only if the
NotifyOnValidationError property is set to True on the Binding (the default is False).

Example 6-23. Handling the ValidationError event with a message box

// Window1.cs
...
public Window1() {
 InitializeComponent();

 this.birthdayButton.Click += birthdayButton_Click;

 // Listen for the validation error event on the age text box
 // (you can do this in XAML by handling the Validation.Error
 // attached event on the ageTextBox)
 Validation.AddErrorHandler(this.ageTextBox,
 ageTextBox_ValidationError);
}

void ageTextBox_ValidationError(
 object sender, ValidationErrorEventArgs e) {

 // Show the string pulled out of the exception by the
 // ExceptionValidationRule
 MessageBox.Show(
 (string)e.Error.ErrorContent, "Validation Error");
}
...

192 | Chapter 6: Simple Data Binding

With this event handler in place, we get our message box when there’s a validation
error, as shown in Figure 6-13.

And although “Input string was not in a correct format” is the message in the excep-
tion that the Parse method of the Int32 class throws when there’s a parse error, I
think we can do better—especially if we’d also like to set a range on the numbers
that our users can enter for age.*

Custom validation rules

To make sure that our person’s age is within a certain range, we simply derive
from the ValidationRule class and override the Validate method, as shown in
Example 6-24.

Figure 6-13. Handling the ValidationError event by showing a message box

* On August 4, 1997, the world’s oldest person so far, Jeanne Louise Calment, died at age 122, having taken
up fencing at age 85 and outlived the holder of her reverse-mortgage. Although I firmly believe that Ms. Cal-
ment is showing us the way to a richer, longer life, it’ll be a while yet before we need the full range supported
by the Int32 class (2,147,483,647 years young).

Example 6-24. A custom validation rule

public class NumberRangeRule : ValidationRule {
 int min;
 public int Min {
 get { return min; }
 set { min = value; }
 }

 int max;
 public int Max {
 get { return max; }
 set { max = value; }
 }

Data Binding | 193

In this case, we’re creating a custom class with two public properties that describe
the valid range of a number (specifically, an integer). The result of the validation is
always an instance of the ValidationResult class. The most important part of the
ValidationResult is the first argument to the constructor, which indicates whether
the data is valid (true) or invalid (false). After that, we’re free to pass whatever we
want as a CLR object. In our example, we check whether the string can be parsed
into an integer and is within our range, passing back False and an error string if it’s
not. Otherwise, we pass back True. (Because a valid result has little need for error
detail, the ValidationResult class provides the static ValidResult property—a
ValidationResult constructed by passing True and null—which you should use
instead of creating a new ValidationResult object for a valid result.)

To hook up our validation rule, we put it to the Binding object’s ValidationRules col-
lection instead of the ExceptionValidationRule, as shown in Example 6-25.

 public override ValidationResult Validate(
 object value, System.Globalization.CultureInfo cultureInfo) {
 int number;
 if(!int.TryParse((string)value, out number)) {
 return new ValidationResult(
 false,
 "Invalid number format");
 }

 if(number < min || number > max) {
 return new ValidationResult(
 false,
 string.Format("Number out of range ({0}-{1})", min, max));
 }

 //return new ValidationResult(true, null); // valid result
 return ValidationResult.ValidResult; // static valid result
 // to save on garbage
 }
}

Example 6-25. Hooking up a custom validation rule

<TextBox ...
 Foreground="
 {Binding
 Path=Age,
 Converter={StaticResource ageConverter}}">
 <TextBox.Text>
 <Binding Path="Age">
 <Binding.ValidationRules>
 <local:NumberRangeRule Min="0" Max="128" />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

Example 6-24. A custom validation rule (continued)

194 | Chapter 6: Simple Data Binding

Now, when there’s a problem with the data, we get a message such as those shown
in Figures 6-14 and 6-15.

And so, although we now have nicer, more meaningful messages for our user when
he enters invalid data, I am not a fan of the message box for validation error report-
ing (it stops the very activity you’re trying to enable). Instead, I prefer a tool tip, as in
Example 6-26.

At first, this code works just peachy keen, as shown in Figure 6-16.

Figure 6-14. A validation error from a custom validation rule

Figure 6-15. Another validation error from a custom validation rule

Example 6-26. Handling the ValidationError event with a tool tip

void ageTextBox_ValidationError(
 object sender, ValidationErrorEventArgs e) {

 // Show the string created in NumberRangeRule.Validate
 ageTextBox.ToolTip = (string)e.Error.ErrorContent;
}

Data Binding | 195

When there’s a validation error, the message is shown in the tool tip on the control
that’s holding invalid data. The problem is, once the user has corrected the data, the
tool tip continues to hang around, as shown in Figure 6-17.

Unfortunately, there’s no ValidationSuccess event that lets us clear the error message
from the tool tip. What we really want is to update the tool tip based on the changing
validation error data, whether it’s in error or success, which sounds like a job for data
binding. However, before we can do that, we need to take a closer look at Path syntax.

Binding Path Syntax
When you use Path=Something in a Binding statement, the Something can be in a num-
ber of formats, including the following commonly used variants:*

Path=Property
Bind to the property of the current object, whether the property is a CLR prop-
erty, a dependency property, or an attached property (e.g., Path=Age).

Path=(OwnerType.AttachedProperty)
Bind to an attached dependency property (e.g., Path=(Validation.HasError)).

Figure 6-16. Handling the ValidationError event by setting a tool tip

Figure 6-17. The tool tip hanging around after the validation error has been resolved

* The Windows Platform SDK has a more complete list of the WPF binding path syntax variants, including
escaping rules, on a page titled “Binding Declarations Overview,” available at http://msdn2.microsoft.com/
en-us/library/ms752300.aspx#Path_Syntax (http://tinysells.com/65).

196 | Chapter 6: Simple Data Binding

Path=Property.SubProperty
Bind to a subproperty (or a sub-subproperty, etc.) of the current object (e.g.,
Path=Name.Length).

Path=Property[n]
Bind to an indexer (e.g., Path=Names[0]).

Path=Property/Property
Master-detail binding, described later (e.g., Path=Customers/Orders).

Path=(OwnerType.AttachedProperty)[n].SubProperty
Bind to a mixture of properties, subproperties, and indexers (e.g.,
Path=(Validation.Errors)[0].ErrorContent).

So far, we’ve been using the Path=Property syntax, but if we want to get at an error
on the validation errors collection, we’ll need to use a mixed path that includes an
attached property, an indexer, and a subproperty, as shown in Example 6-27.

In Example 6-27, the tool tip has been bound to the first error from the attached
property Errors collection. When there are no errors, the tool tip is empty. When
there is an error, the ErrorContent property (which, you’ll recall, we pack with an
error string in NumberRangeRule.Validate) is used to populate the tool tip. We no
longer need to set the NotifyOnValidationError property or handle the
ValidationError event because as the Errors collection changes, the binding makes
sure that the tool tip is kept up-to-date. In other words, we use data binding to the
ToolTip property on the age text box to report a validation error on the Text prop-
erty. When the collection of errors is null, the binding engine will automatically null
out the tool tip, giving us the empty tool tip on success that we so deeply desire.

Example 6-27. Binding the ToolTip property to the validation error message

<TextBox
 Name="ageTextBox" ...
 ToolTip="{Binding
 ElementName=ageTextBox,
 Path=(Validation.Errors)[0].ErrorContent}">
 <TextBox.Text>
 <Binding Path="Age">
 <!-- No need for NotifyOnValidationError="true" -->
 <Binding.ValidationRules>
 <local:NumberRangeRule Min="0" Max="128" />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

Data Binding | 197

Relative Sources
One thing you may find a bit onerous in Example 6-27 is the use of the explicit
ElementName to bind to another part of the target as the data source. Wouldn’t it be
nicer if you could just say, “Bind to myself, please?” And in some cases, you may not
have a name for the thing to which you’d like to bind (e.g., to fulfill queries like
“Bind to the Border that’s the parent or grandparent [or great-grandparent] of me” or
even “Bind to the previous bit of data in the list instead of the current bit of data”).
All of these are available with the use of the RelativeSource property of a binding,
shown in Example 6-28.

In Example 6-28, we’re using the Self designator to use the TextBox currently serving as
the data binding UI target as the data source, so that we can bind to the validation errors
collection associated with it to compose the tool tip. For more information about Self
and the other relative sources—FindAncestor, Previous, and TemplatedParent (which is
also discussed in Chapter 9)—I recommend the SDK documentation.*

Update Source Trigger
If you’ve been following along, you may have noticed that validation, and therefore the
pushing of the updated data into the underlying object, doesn’t happen until the age
text box loses focus. On the other hand, you may decide that you’d like validation et al.
to happen immediately when the control state changes, long before the focus is lost.
This behavior is governed by the UpdateSourceTrigger property on the Binding object:

namespace System.Windows.Data {
 public enum UpdateSourceTrigger {
 Default = 0, // updates "naturally" based on the target control
 PropertyChanged = 1, // updates the source immediately
 LostFocus = 2, // updates the source when focus changes
 Explicit = 3, // must call BindingExpression.UpdateSource()
 }
}

The default value of UpdateSourceTrigger is UpdateSourceTrigger.Default, which means
that the trigger for updating the data source is based on the target property (e.g., the
trigger for the Text property of the TextBox is LostFocus). If you’d like to force another
kind of behavior, you can set it on the Binding, as shown in Example 6-29.

Example 6-28. Using a RelativeSource

<TextBox ...
 ToolTip="{Binding RelativeSource={RelativeSource Self},
 Path=(Validation.Errors)[0].ErrorContent}">

* A good place to continue your exploration of relative sources is the “RelativeSourceMode Enumeration”
page in the Windows Platform SDK, which is available at http://msdn2.microsoft.com/en-us/library/
system.windows.data.relativesourcemode.aspx (http://tinysells.com/66).

198 | Chapter 6: Simple Data Binding

In this case, instead of waiting for the focus to be lost to do validation, it happens on
each character entered.

Debugging Data Binding
You may have noticed that our age text box’s binding options have gotten fairly
involved:

<TextBox ...
 Foreground="{Binding Path=Age,
 Source={StaticResource Tom},
 Converter={StaticResource ageConverter}}"
 ToolTip="{Binding RelativeSource={RelativeSource Self},
 Path=(Validation.Errors)[0].ErrorContent}">
 <TextBox.Text>
 <Binding Path="Age" UpdateSourceTrigger="PropertyChanged">
 <Binding.ValidationRules>
 <local:NumberRangeRule Min="0" Max="128" />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

There’s a lot going on here and it would be easy to get some of it wrong. For exam-
ple, if we had a background in journalism, we might have used one-based indexing
instead of zero-based indexing to access the first error in our list of validation errors
when setting up the binding for the tool tip:

<TextBox ...
 ToolTip="{Binding RelativeSource={RelativeSource Self},
 Path=(Validation.Errors)[1].ErrorContent}">
 ...
</TextBox>

In this case, as in most others, the WPF data binding engine will simply swallow the
error so as not to disturb our user friends.* So, how are we to find it? Well, you need
only check the debug output to see the error shown in Example 6-30, and all will be
revealed.

Example 6-29. Changing the update source trigger

<TextBox ...>
 <TextBox.Text>
 <Binding Path="Age" UpdateSourceTrigger="PropertyChanged">
 ...
 </Binding>
 </TextBox.Text>
</TextBox>

* The swallowing of errors like these lets us declare data bindings before the data is actually available, simpli-
fying our programming chores considerably in this area.

Where Are We? | 199

In this case, we can see that the index is out of range, giving us a clue as to how to fix
it. The data binding debug output provides all kinds of helpful hints like this, and
you should check it if eyeballing your data binding expressions doesn’t yield the
source of the issue.*

Where Are We?
Data binding is about keeping two values synchronized. One value, the target, is a
dependency property, typically on a UI element. The other, the source, is a CLR
property—the result of an XPath expression, a dependency property, or a dynamic
property used by objects like those provided by ADO.NET that don’t know what the
data is going to be until runtime. By default, as either the target or the source
changes, the other value is updated, but you can control that with the alternate bind-
ing modes (e.g., one-way, one-time, etc.). As data changes, type conversion happens
automatically if a converter is available, although you can take full control of the
conversion and validation process if you so choose, doing things like restricting data
ranges and converting data formats, or even automatically showing errors in tool tips.
You might think that WPF data binding is powerful with these features, and you’d be
right, but we’ve just touched on the bare essentials associated with bindings to prop-
erties on a single object. When you’ve got a list of objects as your data source, you’ve
got all kinds of other facilities, which is the subject of the next chapter.

Example 6-30. Watch debug output for help debugging data binding problems

System.Windows.Data Error: 12 : Cannot get '' value (type 'ValidationError') from
'(Validation.Errors)' (type 'ReadOnlyObservableCollection`1').
BindingExpression:Path=(0).[1].ErrorContent; DataItem='TextBox'
(Name='ageTextBox'); target element is 'TextBox' (Name='ageTextBox');
target property is 'ToolTip' (type 'Object') TargetInvocationException:
'System.Reflection.TargetInvocationException: Exception has been thrown by the target of
an invocation. --->
System.ArgumentOutOfRangeException: Index was out of range. Must be non-negative and less
than the size of the collection.
Parameter name: index

* For more on the data binding debug output, see the SDK documentation for the PresentationTraceSources
class at http://msdn2.microsoft.com/en-us/library/system.diagnostics.presentationtracesources.aspx or http://
tinysells.com/79 and Mike Hillberg’s most excellent blog posting on this subject at http://blogs.msdn.com/
mikehillberg/archive/2006/09/14/WpfTraceSources.aspx or http://tinysells.com/78.

200

Chapter 7CHAPTER 7

Binding to List Data 7

In Chapter 6, we looked at the basics of data binding with respect to single objects.
However, when you’ve got lists of objects, you’ve got still more flexibility and power,
including managing the “current” object in a list, sorting, filtering, and grouping. Also,
WPF gives you the ability to expand a single data source object into a set of target UI
elements with data templates, bring in XML and relational data, and perform master-
detail binding and hierarchical binding. We discuss all of these topics in this chapter.

Binding to List Data
To kick things off, recall our Person class from Chapter 6; let’s add a new type for
keeping track of a list of Person objects (see Example 7-1).

Example 7-1. Declaring a custom list type

using System.Collections.Generic; // List<T>
...
namespace PersonBinding {
 public class Person : INotifyPropertyChanged {
 // INotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;

 protected void Notify(string propName) {
 if(this.PropertyChanged != null) {
 PropertyChanged(this, new PropertyChangedEventArgs(propName));
 }
 }

 string name;
 public string Name {
 get { return this.name; }
 set {
 if(this.name == value) { return; }
 this.name = value;
 Notify("Name");
 }
 }

Binding to List Data | 201

We can bind this new list data source in exactly the same way as if we were binding
to a single object data source (see Example 7-2).

 int age;
 public int Age {
 get { return this.age; }
 set {
 if(this.age == value) { return; }
 this.age = value;
 Notify("Age");
 }
 }

 public Person() {}
 public Person(string name, int age) {
 this.name = name;
 this.age = age;
 }
 }

 // Create an alias for a generic type so that we can
 // create a list of Person objects in XAML
 class People : List<Person> {}

 ...
}

Example 7-2. Declaring a collection in XAML

<!-- Window1.xaml -->
<Window ... xmlns:local="clr-namespace:ListBinding">
 <Window.Resources>
 <local:People x:Key="Family">
 <local:Person Name="Tom" Age="11" />
 <local:Person Name="John" Age="12" />
 <local:Person Name="Melissa" Age="38" />
 </local:People>
 <local:AgeToForegroundConverter
 x:Key="ageConverter" />
 </Window.Resources>
 <Grid DataContext="{StaticResource Family}">
 ...
 <TextBlock ...>Name:</TextBlock>
 <TextBox Text="{Binding Path=Name}" ... />
 <TextBox
 Text="{Binding Path=Age}"
 Foreground="{Binding Path=Age, Converter=...}" ... />
 <Button ...>Birthday</Button>
 </Grid>
</Window>

Example 7-1. Declaring a custom list type (continued)

202 | Chapter 7: Binding to List Data

In Example 7-2, we’ve created an instance of the People collection and populated it
with three Person objects. Running it will look just like running the Person object ver-
sion from Chapter 6 (Figure 7-1).

Even though we’re binding to a list of Person objects, each TextBlock can be bound
to a property from only a single Person object.

Current Item
While the text box properties can be bound to only a single object at a time, the
binding engine is giving them the current item in the list of possible objects they
could bind against, as illustrated in Figure 7-2.

By default, the first item in the list is the initial current item. Because the first item in
our list example is the same as the only item to which we were binding before, things
look and act in exactly the same way as our single Person object example, except for
the Birthday button.

Figure 7-1. Showing one person at a time from a list

Figure 7-2. Binding to a list data source

Binding
Name TextBox

.Text
Person
.Name = "Tom"
.Age = 11

Binding
Age TextBox

.Text

Person
.Name = "John"
.Age = 12

People

Binding to List Data | 203

Getting the current item

Recall the current Birthday button click event handler from Chapter 6 (see
Example 7-3).

Our Birthday button has always been about celebrating the birthday of the current
person, but so far the current person has always been the same, so we could just
shortcut things and go directly to a single Person object. Now that we’ve got a list of
objects, this no longer behaves acceptably (unless you consider an unhandled excep-
tion message box acceptable behavior). Further, pulling the collection out of the
resources won’t tell us which Person is currently being shown in the UI, because it
has no idea about such things (nor should it). For this information, we’re going to
have to go to the broker between the data bound control and the collection of items,
the collection view.

The job of the collection view (or just “view”) is to provide services on top of the data,
including sorting, filtering, grouping, and, most important for our purposes at the
moment, control of the current item. A view is an implementation of a data-specific
interface which, in our case, is going to be the ICollectionView interface. We can
access a view over our data with the static GetDefaultView method of the
CollectionViewSource class, as shown in Example 7-4.

Example 7-3. Finding a custom object declared in XAML

public partial class Window1 : Window {
 ...
 void birthdayButton_Click(object sender, RoutedEventArgs e) {
 Person person = (Person)this.FindResource("Tom"));
 ++person.Age;
 MessageBox.Show(...);
 }
}

Example 7-4. Getting a collection’s view

public partial class Window1 : Window {
 ...
 void birthdayButton_Click(object sender, RoutedEventArgs e) {
 // Get the current person out of the collection view
 People people = (People)this.FindResource("Family");
 ICollectionView view =
 CollectionViewSource.GetDefaultView(people);
 Person person = (Person)view.CurrentItem;

 ++person.Age;
 MessageBox.Show(...);
 }
}

204 | Chapter 7: Binding to List Data

To retrieve the view associated with the Family collection, Example 7-4 makes a call
to the GetDefaultView method of CollectionViewSource, which provides us with an
implementation of the ICollectionView interface associated with our bound data col-
lection. Our collection happens to have been created in a resource, but that doesn’t
matter to the GetDefaultView method; it only maps a bound collection to its associ-
ated view. With the collection view, we can grab the current item, cast it into an item
from our collection (the CurrentItem property returns an object), and use it for display.

Navigating between items

In addition to getting the current item, we can also change which item is current
using the MoveCurrentTo methods of the ICollectionView interface, as shown in
Example 7-5.

Example 7-5. Navigating between items via the view

public partial class Window1 : Window {
 ...
 ICollectionView GetFamilyView() {
 People people = (People)this.FindResource("Family");
 return CollectionViewSource.GetDefaultView(people);
 }

 void birthdayButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 Person person = (Person)view.CurrentItem;

 ++person.Age;
 MessageBox.Show(...);
 }

 void backButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 view.MoveCurrentToPrevious();
 if(view.IsCurrentBeforeFirst) {
 view.MoveCurrentToFirst();
 }
 }

 void forwardButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 view.MoveCurrentToNext();
 if(view.IsCurrentAfterLast) {
 view.MoveCurrentToLast();
 }
 }
}

Binding to List Data | 205

The ICollectionView methods MoveCurrentToPrevious and MoveCurrentToNext change
which item is currently selected by going backward and forward through the collec-
tion. If we walk off the end of the list in one direction or the other, the
IsCurrentBeforeFirst or IsCurrentAfterLast property will tell us that. The
MoveCurrentToFirst and MoveCurrentToLast help us recover after walking off the end
of the list, and would be useful for implementing the Back and Forward buttons
shown in Figure 7-3 as well as the First and Last buttons (this is an opportunity for
you to apply what you’ve learned...).

Figure 7-3 shows the effect of moving forward from the first Person in the collection,
including the color changing based on the Person object’s Age property (which still
works in exactly the same way).

List Data Targets
Of course, we can push the user of list data only so far without providing him with a
control that can actually show more than one item at a time—like the ListBox con-
trol, shown in Example 7-6.

Figure 7-3. Navigating between items in a list data source (Color Plate 5)

Example 7-6. Binding a list element to a list data source

<!-- Window1.xaml -->
<Window ... xmlns:local="clr-namespace:ListBinding2">
 <Window.Resources>
 <local:People x:Key="Family">...</local:People>
 ...
 </Window.Resources>
 <Grid DataContext="{StaticResource Family}">
 ...

206 | Chapter 7: Binding to List Data

In Example 7-6, the ItemsSource property of the ListBox is a Binding with no path,
which is the same as saying “bind to the entire current object.” Notice that there’s no
source, either, so the binding works against the first data context it finds that is set.
In this case, the first set data context is the one from the Grid, the same one as shared
between both the name and the age text boxes. Also, we’re setting the ListBox class’s
IsSynchronizedWithCurrentItem property to True so that as the selected item of the
listbox changes, it updates the current item in the view (and vice versa).*

With our ItemsSource binding in place, we should expect to see all three Person
objects in the listbox, as shown in Figure 7-4.

As you might have noticed, everything is not quite perfect in Figure 7-4. When you
bind against an object, data binding does its best to display it. Without special
instructions, it’ll use a type converter to get a string representation (falling back on
the ToString method when all else fails). In the case of both the Name and Age proper-
ties, the built-in conversions give us a string representation that works well for our
purposes. However, the Person object provides no special instructions, so the fall-
back does nothing but show the name of the type.

 <ListBox
 ItemsSource="{Binding}"
 IsSynchronizedWithCurrentItem="True" ... />
 <TextBlock ...>Name:</TextBlock>
 <TextBox Text="{Binding Path=Name}" ... />
 ...
</Window>

* By default, listboxes do not synchronize with the current item for reasons I have yet to fathom...

Figure 7-4. Person objects being displayed in a ListBox without help

Example 7-6. Binding a list element to a list data source (continued)

Binding to List Data | 207

Because binding uses an object’s ToString method if it has nothing
else, you may feel tempted to add a ToString method as a way to
decide how your data objects look in your WPF UIs. You should avoid
this temptation, for at least the following reasons:

• It is impossible to provide a string representation of a data object
that would be appropriate for every way that you might like to
display it.

• You lose all kinds of flexibility in how to display a data object if
all you have is the whole thing represented as a string (e.g.,
maybe you’d like some of it bold or some of it as the content of a
Button).

• There’s no way to fire a notification to WPF such that it will auto-
matically pull in the new data object’s data as it changes when
ToString is used, giving you a single, static view.

Display Members, Value Members, and Look-Up Bindings
If you want to show only one of the properties, the ListBox class (and the rest of the
ItemsControl-derived controls—e.g., Menu, ListBox, ListView, ComboBox, TreeView, etc.)
provides the DisplayMemberPath property:

<ListBox ... ItemsSource="{Binding}" DisplayMemberPath="Name" />

This at least gives us part of the data, as you can see in Figure 7-5.

In addition to the path describing the data to display, the ItemsControl class pro-
vides a path to describe the selected value of a piece of data:

<ListBox ... Name="lb" ItemsSource="{Binding}"
 DisplayMemberPath="Name" SelectedValuePath="Age" />

Figure 7-5. The DisplayMemberPath in action

208 | Chapter 7: Binding to List Data

The SelectedValue is exposed from the ItemsControl as an application-defined way
to separate the data from what’s displayed. By default, the SelectedValue, the
SelectedItem, and the object used to construct the item at that spot in the list are all
the same (e.g., a Person if we hadn’t changed it by setting the SelectedValuePath).
This data is often used when the selection changes or an item is double-clicked:

void lb_MouseDoubleClick(object sender, MouseButtonEventArgs e) {
 int index = lb.SelectedIndex;
 if(index < 0) { return; }

 Person item = (Person)lb.SelectedItem;
 int value = (int)lb.SelectedValue; // Age

 // Do something profitable with this data
 ...
}

The difference between display value and selected value becomes especially interest-
ing when you want to do something like a combo box with friendly names (e.g., sales-
person name), but key off of opaque values in the real data (e.g., salesperson ID).

For example, if we wanted to provide a UI that mapped ages represented in scary
numbers to soothing phrases, we could construct a NamedAge type for use in populat-
ing a look-up table, as shown in Example 7-7.

Example 7-7. A helper for populating a look-up table

public class NamedAge : INotifyPropertyChanged {
 // INotifyPropertyChangeIdINotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;
 protected void Notify(string propNameForAge) {
 if(this.PropertyChanged != null) {
 PropertyChanged(this, new PropertyChangedEventArgs(propNameForAge));
 }
 }

 string nameForAge;
 public string NameForAge {
 get { return this.nameForAge; }
 set {
 if(this.nameForAge == value) { return; }
 this.nameForAge = value;
 Notify("NameForAge");
 }
 }

 int ageId;
 public int AgeId {
 get { return this.ageId; }
 set {
 if(this.ageId == value) { return; }
 this.ageId = value;
 Notify("AgeId");

Binding to List Data | 209

Now we can populate the table for looking up an age’s name from its number, as in
Example 7-8.

This handy table is all we need to replace the TextBox for entering hard-to-format-
correctly ages into an easy-to-use combo box with all of the values filled in for us, as
shown in Figure 7-6.

OK, obviously this particular example isn’t useful, but mapping IDs to names is
something we want to do all the time in data binding applications. To get our combo
box to show the list of available options, we need to bind the set of options to our
look-up table, setting the display and value members appropriately, as in
Example 7-9.

 }
 }
}

class NamedAges : ObservableCollection<NamedAge> { }

Example 7-8. A look-up table suitable for binding

<local:NamedAges x:Key="NamedAgeLookup">
 <local:NamedAge NameForAge="zero" AgeId="0" />
 <local:NamedAge NameForAge="one" AgeId="1" />
 ...
</local:NamedAges>

Figure 7-6. Data binding to a look-up table

Example 7-7. A helper for populating a look-up table (continued)

210 | Chapter 7: Binding to List Data

Example 7-9 tells the combo box where the possible choices come from (the
NamedAgeLookup table), which property to show the user (the NameForAge property),
and which property is the real value (the AgeId property). The final step is the bit of
binding that tells the combo box where to get the currently selected value (in terms
that match our selected value path; in other words, Age), as in Example 7-10.

Just as before, where the TextBox object’s Text property was set to bind to the Age prop-
erty of the currently selected Person, so is the ComboBox object’s SelectedValue property
set. As the display value changes (due to interaction with the user), the selected value
is updated, as is the underlying Age. Likewise, as the Age changes (like when the
Birthday button is clicked), the binding synchronizes the selected value, causing the
value displayed in the combo box to change.

All of this is very handy, but in our case, we don’t really want to have named ages, nor
do we want to display a single property in the ListBox for each Person object it displays.

Data Templates
If you want to show more than one property from a custom class or mix things up
with more than just a plain TextBlock object (which is all the DisplayMemberPath gives
you), you want a data template. A data template is a tree of elements to expand in a
particular context. For example, for each Person object, you might like to be able to
concatenate the name and age together in a string like the following:

John (age:12)

We can think of this as a logical template that looks like this:

Name (age:Age)

To define this template for items in the listbox, we create a DataTemplate element, as
shown in Example 7-11.

Example 7-9. Data binding to a look-up table

<ComboBox ...
 ItemsSource="{Binding Source={StaticResource NamedAgeLookup}}"
 DisplayMemberPath="NameForAge" SelectedValuePath="AgeId" />

Example 7-10. Binding the look-up table to the selected value

<ComboBox ...
 ItemsSource="{Binding Source={StaticResource NamedAgeLookup}}"
 DisplayMemberPath="NameForAge" SelectedValuePath="AgeId"
 SelectedValue="{Binding Path=Age}" />

Example 7-11. Using a data template

<ListBox ... ItemsSource="{Binding}">
 <ListBox.ItemTemplate>
 <DataTemplate>

Binding to List Data | 211

In this case, the ListBox control has an ItemTemplate property, which accepts an
instance of the DataTemplate class. The DataTemplate allows us to specify a single
child element to repeat for every item that the ListBox control binds against
(although that child can have any number of children of its own, and so on). In our
case, we’re using a TextBlock to gather together some hardcoded text and two nested
TextBlock controls for text bound to properties on each Person object. Notice that
we’re also binding the Foreground to the Age property using the age-to-foreground
value converter so that Age properties show up black or red consistently between the
listbox and age text box.

With the use of the data template, our experience goes from Figure 7-4 to Figure 7-7.

Notice that the listbox shows all the items in the collection and keeps the view’s idea
of the current item synchronized with it as the selection moves or the back and for-
ward buttons are clicked (actually, you can’t really “notice” this based on the screen-
shot, but trust me, that’s what happens). In addition, as data changes on Person
objects, the listbox and the text boxes are all kept in sync, including the Age color.

 <TextBlock>
 <TextBlock Text="{Binding Path=Name}" />
 (age: <TextBlock
 Text="{Binding Path=Age}"
 Foreground="{Binding
 Path=Age,
 Converter={StaticResource ageConverter}}" />)
 </TextBlock>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Figure 7-7. Person objects being displayed in a ListBox with a data template (Color Plate 6)

Example 7-11. Using a data template (continued)

212 | Chapter 7: Binding to List Data

Typed data templates

In Example 7-11, we explicitly set the data template for items in our listbox by creat-
ing the DataTemplate inside the ListBox.ItemTemplate element. Using this technique,
if a Person object shows up in a button or in some other element, we’d have to spec-
ify the data template for those Person objects separately. On the other hand, if you’d
like a Person object to have a specific template no matter where it shows up, you can
do so with a typed data template, as shown in Example 7-12.

In Example 7-12, we’ve hoisted the data template definition into a resources block
and tagged it with a type using the DataType property.* Now, unless told otherwise,
whenever an element using the WPF content model† sees an instance of the Person
object within the scope of the data template, it will apply the appropriate data tem-
plate. This is a handy way to make sure that data shows in a consistent way through-
out your application without worrying about just where it shows.

DataTemplates and the DataContext

You’ll notice in Example 7-12 that we’re not setting the Source property. As you saw
in the preceding chapter, this means that the Binding object will use the DataContext
as its source.

You should also recall (from the preceding chapter) that the DataContext uses the
dependency property inheritance mechanism to travel the element tree to find its
value if it’s not set explicitly (i.e., if the element we’re binding has no explicit
DataContext set, we’ll use the one from the parent or the grandparent, etc.).

Example 7-12. A typed data template

<Window.Resources>
 <local:People x:Key="Family">...</local:People>
 ...
 <DataTemplate DataType="{x:Type local:Person}">
 <TextBlock>
 <TextBlock Text="{Binding Path=Name}" />
 (age: <TextBlock Text="{Binding Path=Age}" ... />)
 </TextBlock>
 </DataTemplate>
 ...
</Window.Resources>
...
<!-- no need for an ItemTemplate setting -->
<ListBox ItemsSource="{Binding}" ... />

* If you’ve skipped ahead to Chapter 12, you know that all resources, without exception, must have a Key. Cer-
tain resource types have a property that, when set, also sets the Key implicitly. In the case of the DataTemplate,
setting the DataType property also sets the Key property.

† As you’ll recall from Chapter 1, the content model of WPF allows you to put arbitrary content into most ele-
ments (e.g., Button supports the content model whereas the TextBox doesn’t).

Binding to List Data | 213

However, if you’ll look at the where the binding takes place on the text blocks inside
the data template in Example 7-12, you’ll notice that we don’t actually want the data
context to be on the parent of the DataTemplate, but rather to be on the individual
elements of the items source on the listbox where our Person data template is being
expanded. To enable the bindings in our data template to work as we expect the
template expansion engine in WPF will set the DataContext property of the root of
each element tree that it expands. For instance, in our example, we’ve got three
Person objects, so you can think of the logical expansion of the data template inside
the listbox as shown in Example 7-13.

As the data template is expanded for each item in the list referenced by the
ItemsSource property, the data context is set to the individual item so that when the
Binding objects are looking for their data sources, they find the data context of the
element at the root of the expanded data template, like the top-level TextBlock in our
example. Not only does this explain how data bindings work inside data templates,
but also this is something we can use. For example, we need to use the DataContext
property if we want to handle events on objects inside the data template and figure
out which data object was used to expand the template, as shown in Example 7-14.

Example 7-13. Logical expansion of the Person data template

<ListBox ...>
 <TextBlock DataContext="Family[0]">
 <TextBlock Text="{Binding Path=Name}" />
 (age: <TextBlock Text="{Binding Path=Age}" Foreground="..." />)
 </TextBlock>

 <TextBlock DataContext="Family[1]">
 <TextBlock Text="{Binding Path=Name}" />
 (age: <TextBlock Text="{Binding Path=Age}" Foreground="..." />)
 </TextBlock>

 <TextBlock DataContext="Family[2]">
 <TextBlock Text="{Binding Path=Name}" />
 (age: <TextBlock Text="{Binding Path=Age}" Foreground="..." />)
 </TextBlock>
</ListBox>

Example 7-14. DataTemplates and the DataContext

<!-- Window1.xaml.cs -->
...
<Window.Resources>
 <local:People x:Key="Family">...</local:People>
 ...
 <DataTemplate DataType="{x:Type local:Person}">
 <TextBlock>
 <TextBlock Text="{Binding Path=Name}" />
 (age: <TextBlock Text="{Binding Path=Age}" ... />)
 <Button Click="showButton_Click">Show</Button>

214 | Chapter 7: Binding to List Data

In this example, we added a Button to the data template with a Click event handler.
When the button is clicked, the event handler’s sender argument is the Button that
was generated when the template was expanded. Because of dependency property
inheritance, the DataContext property on the Button gets the same value of the
DataContext property on the root TextBlock in the DataTemplate for the item in the list
of Person objects that was used to populate the ListBox. Figure 7-8 shows the results of
clicking one of the Show buttons.

In Figure 7-8, the Show button in the second row was clicked, which means that
the same Person object in the second row of the listbox is the one that is available in
the DataContext on the Show button in that row.

 </TextBlock>
 </DataTemplate>
 ...
</Window.Resources>
...

// Window1.xaml.cs
...
void showButton_Click(object sender, RoutedEventArgs e) {
 // Get the button generated by the data template expansion
 Button showButton = (Button)sender;

 // Get the person associated with the generated button via the data context
 Person person = (Person)showButton.DataContext;

 // Do something with that person...
 MessageBox.Show(string.Format("{0} is {1} years old", person.Name, person.Age));
}
...

Figure 7-8. Using the DataContext associated with an expanded DataTemplate

Example 7-14. DataTemplates and the DataContext (continued)

Binding to List Data | 215

List Changes
Thus far, we’ve got a list of objects that we can edit in place and navigate among,
even highlighting certain data values with ease and providing an automatic look for
data that wasn’t shipped with a rendering from the manufacturer. In the spirit of
how far we’ve come, you might suspect that implementing an Add button, as in
Example 7-15, would be a breeze.

The problem with this code is that although the collection view associated with our list
data source can figure out the existence of a new item as you move to it, the listbox itself
has no idea that something new has been added, as shown in Figure 7-9.

In interacting with the state of the application shown in Figure 7-9, I ran the applica-
tion, clicked the Add button, and used the Forward button to navigate to it. How-
ever, just as data bound objects need to implement the INotifyPropertyChanged
interface, data bound lists need to implement the INotifyCollectionChanged inter-
face* (see Example 7-16).

Example 7-15. Adding an item to a data bound collection

public partial class Window1 : Window {
 ...
 void addButton_Click(object sender, RoutedEventArgs e) {
 People people = (People)this.FindResource("Family");
 people.Add(new Person("Chris", 37));
 }
}

Figure 7-9. The ListBox doesn’t know the collection has gotten bigger

* Again, this is not really a requirement; WPF data works even if the collection doesn’t implement
INotifyCollectionChanged, although it won’t know about changes to the collection. If you have to integrate
with collections that don’t implement this interface, or the .NET 1.x version of this interface—IBindingList
(which WPF still supports)—you’ll need to fall back on the manual updating technique mentioned in Chap-
ter 6 (i.e., BindingExpression.UpdateTarget).

216 | Chapter 7: Binding to List Data

The INotifyCollectionChanged interface is used to notify the data bound control that
items have been added or removed from the bound list. Although it’s common to imple-
ment INotifyPropertyChanged in your custom types to enable two-way data binding on
your type’s properties, it’s less common to implement your own collection classes,
which leaves you less opportunity to implement the INotifyCollectionChanged inter-
face. Instead, you’ll most likely be relying on one of the collection classes in the .NET
Framework Class Library to implement INotifyCollectionChanged for you. The num-
ber of such classes is small and unfortunately, List<T>, the collection class we’re
using to hold Person objects, is not among them. Although you’re more than wel-
come to spend your evenings and weekends implementing the
INotifyCollectionChanged interface, including hooking all of the methods that
change whatever base collection you use as a helper, WPF provides the
ObservableCollection<T> class, shown in Example 7-17, for those of us with more
pressing duties.

Because ObservableCollection<T> derives from Collection<T> and implements the
INotifyCollectionChanged interface, we can use it instead of List<T> for our Person
collection (see Example 7-18).

Now, when an item is added to or removed from the Person collection, those
changes will be reflected in the list data bound controls, as shown in Figure 7-10.

Example 7-16. The INotifyCollectionChanged interface

namespace System.Collections.Specialized {
 public interface INotifyCollectionChanged {
 event NotifyCollectionChangedEventHandler CollectionChanged;
 }
}

Example 7-17. WPF’s implementation of INotifyCollectionChanged

namespace System.Collections.ObjectModel {
 public class ObservableCollection<T> :
 Collection<T>, INotifyCollectionChanged, INotifyPropertyChanged {
 ...
 }
}

Example 7-18. ObservableCollection<T> in action

using System.ComponentModel; // INotifyPropertyChanged
using System.Collections.ObjectModel; // ObservableCollection<T>
...
class Person : INotifyPropertyChanged {...}
class People : ObservableCollection<Person> {}
...

Binding to List Data | 217

Here, we’ve clicked the Add button and clicked on the new Person object that the
listbox displayed for us (a newly added item in a collection does not become the
selected item automatically).

Sorting
Once we have data targets showing more than one thing at a time properly, a per-
son’s fancy turns to, well, fancier things, like sorting the view of the data, filtering the
data out of the view, or grouping related data. Recall that the view always sits
between the data bound target and the data source. The view allows us to do a num-
ber of things to the data before it’s displayed, including changing the order in which
the data is shown (a.k.a. sorting). The simplest way to sort is by manipulating the
SortDescriptions property of the view, as shown in Example 7-19.

Figure 7-10. Keeping the ListBox in sync with INotifyCollectionChanged

Example 7-19. Sorting

public partial class Window1 : Window {
 ...
 ICollectionView GetFamilyView() {
 People people = (People)this.FindResource("Family");
 return CollectionViewSource.GetDefaultView(people);
 }

 void sortButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 if(view.SortDescriptions.Count == 0) {
 view.SortDescriptions.Add(
 new SortDescription("Name", ListSortDirection.Ascending));
 view.SortDescriptions.Add(
 new SortDescription("Age", ListSortDirection.Descending));
 }

218 | Chapter 7: Binding to List Data

Here we’re toggling between sorted and unsorted views by checking the
SortDescriptionCollection exposed by the ICollectionView SortDescription prop-
erty. If there are no sort descriptions, we sort first by the Name property in ascending
order, then by the Age property in Descending order. If there are sort descriptions, we
clear them, restoring the order to whatever it was before we applied our sort. While
the sort descriptions are in place, any new objects added to the collection will be dis-
played in their proper sort position by the view, as Figure 7-11 shows.

A collection of SortDescription objects should cover most cases, but if you’d like a
bit more control, you can provide the view with a custom sorting object by imple-
menting the IComparer interface from the System.Collections namespace,* as shown
in Example 7-20.

 else {
 view.SortDescriptions.Clear();
 }
 }
}

Figure 7-11. Unsorted on the left and sorted on the right

* Unfortunately, WPF doesn’t use the generic IComparer<T> interface from the System.Collections.Generic
namespace.

Example 7-20. Custom sorting

class PersonSorter : IComparer {
 public int Compare(object x, object y) {
 Person lhs = (Person)x;
 Person rhs = (Person)y;

Example 7-19. Sorting (continued)

Binding to List Data | 219

In the case of setting a custom sorter, we cast the result of GetDefaultView to a
ListCollectionView, which is what WPF wraps around an implementation of IList
(which our ObserverableCollection provides) to provide view functionality. There
are other implementations of ICollectionView that don’t provide custom sorting, so
you’ll want to test this code before shipping it.*

Default Collection Views
The SDK documentation for the individual views will tell you how each different
kind of collection data is mapped to a default view, but Table 7-1 is a handy guide to
help you along.

 // Sort Name ascending and Age descending
 int nameCompare = lhs.Name.CompareTo(rhs.Name);
 if(nameCompare != 0) return nameCompare;
 return rhs.Age - lhs.Age;
 }
}

public partial class Window1 : Window {
 ...
 ICollectionView GetFamilyView() {
 People people = (People)this.FindResource("Family");
 return CollectionViewSource.GetDefaultView(people);
 }

 void sortButton_Click(object sender, RoutedEventArgs e) {
 ListCollectionView view = (ListCollectionView)GetFamilyView();
 if(view.CustomSort == null) {
 view.CustomSort = new PersonSorter();
 }
 else {
 view.CustomSort = null;
 }
 }
}

* Hopefully, you’ll test the rest of your code before shipping it, too, but it never hurts to point these things out...

Table 7-1. The default views for each collection data type

Collection data Default view

IEnumerable CollectionView

IList ListCollectionView

IBindingList BindingListCollectionView

Example 7-20. Custom sorting (continued)

220 | Chapter 7: Binding to List Data

If you don’t like the view that WPF provides, you can create your own implementa-
tion of ICollectionView and bind to that, too. In fact, this is handy for “stacking”
views, that is, using one view as the input to another—when you need to implement
custom views for features that WPF doesn’t support out of the box (like “top N”
functionality).

Filtering
Just because all of the objects are shown in an order that makes you happy doesn’t
mean that you want all of the objects to be shown. For those rogue objects that hap-
pen to be in the data but that shouldn’t be displayed, we need to feed the view an
implementation of the Predicate<object> delegate* that takes a single object parame-
ter and returns a Boolean indicating whether the object should be shown (see
Example 7-21).

Like sorting, with a filter in place, new things are filtered appropriately, as
Figure 7-12 shows.

The top window in Figure 7-12 shows no filtering, the middle window shows filter-
ing of the initial list, and the bottom window shows adding a new adult with filtering
still in place.

* Unlike sorting, which uses a single method interface implementation because of history, filtering uses a
generic delegate because the addition of anonymous delegates and generics to C# 2.0 has made them all the
rage.

Example 7-21. Filtering

public partial class Window1 : Window {
 ...
 ICollectionView GetFamilyView() {
 People people = (People)this.FindResource("Family");
 return CollectionViewSource.GetDefaultView(people);
 }

 void filterButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 if(view.Filter == null) {
 view.Filter = delegate(object item) {
 // Just show the over 25-year-olds
 return ((Person)item).Age >= 25;
 };
 }
 else {
 view.Filter = null;
 }
 }
}

Binding to List Data | 221

Grouping
Grouping is just what it sounds like—displaying data based on some criteria in a
named group. The grouping criteria can be anything you like, but the only criterion
that comes with WPF out of the box is grouping by property values. As we’ll see, this
one is pretty darn flexible, so you’ll rarely need anything else.

You have to do two things to set up grouping. The first is to establish the groups you’d
like to use, which you do by manipulating the GroupDescriptions collection on your
view (see Example 7-22).

Figure 7-12. Unfiltered, filtered for adults, and adding to a filtered view

222 | Chapter 7: Binding to List Data

The PropertyGroupDescription object takes the name of the property you’d like to use
for grouping. The groups themselves will be composed of all of the unique values pulled
from the designated property on the items in the collection (e.g., Tom: 11, John: 12,
Melissa: 38, and Penny: 38 will yield three named groups based on age: 11, 12, and 38).

All classes that derive from ItemsControl can display items in groups. To exploit this,
we need to provide the control with a group style. A group style is not related to a
normal style (as introduced in Chapter 1 and explored in depth in Chapter 8), but is
rather a collection of group visualization-related information, like the real style for
the container,* the data template for the header, and whether to hide empty groups.
A group style is an instance of the GroupStyle class, and ItemsControl objects won’t
group data visually without one. Luckily, the GroupStyle class itself provides a static
Default property that exposes a group style that works nicely to get us started, which
we can use as shown in Example 7-23.†

Example 7-22. Establishing data groups

public partial class Window1 : Window {
 ...
 ICollectionView GetFamilyView() {
 People people = (People)this.FindResource("Family");
 return CollectionViewSource.GetDefaultView(people);
 }

 void groupButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 if(view.GroupDescriptions.Count == 0) {
 // Group by age
 view.GroupDescriptions.Add(new PropertyGroupDescription("Age"));
 }
 else {
 view.GroupDescriptions.Clear();
 }
 }
}

* The ItemsControl generates containers for group items in the same way as the “item container generation”
mechanism described in Chapter 5.

† Unfortunately, the XAML compiler won’t accept the standard <ListBox ... GroupStyle="{x:Static
GroupStyle.Default}"/> shortcut syntax, but the long syntax works just fine. For the curious, the XAML
compiler is having trouble because the CLR GroupStyle property, defined on the ItemsControl base class, is
defined as a read-only collection, even though the underlying dependency property is read-write.

Example 7-23. Using the default group style

<ListBox ... ItemsSource="{Binding}" >
 <ListBox.GroupStyle>
 <x:Static Member="GroupStyle.Default" />
 </ListBox.GroupStyle>
</ListBox>

Binding to List Data | 223

This group style shows the name of the group above each indented group, as shown
in Figure 7-13.

The data template used in the default group style shows the Name of the
CollectionViewGroup constructed to reference the items in each group. If you’d like
to replace that data template with one that includes custom formatting of group
name data or other information from the CollectionViewGroup object (like the num-
ber of items in the group), you can do so with a custom data template, as shown in
Example 7-24.

Figure 7-13. Grouping with the default group style

Example 7-24. A custom group style

<ListBox ... ItemsSource="{Binding}">
 <ListBox.GroupStyle>
 <GroupStyle>
 <GroupStyle.HeaderTemplate>
 <DataTemplate>
 <TextBlock
 Background="Black" Foreground="White" FontWeight="Bold">

 <TextBlock Text="{Binding Name}" />
 (<TextBlock Text="{Binding ItemCount}" />)

 </TextBlock>
 </DataTemplate>
 </GroupStyle.HeaderTemplate>
 </GroupStyle>
 </ListBox.GroupStyle>
</ListBox>

224 | Chapter 7: Binding to List Data

Here we’ve set the header template of the group style to a data template containing a
TextBlock with a black background, a white foreground, and two nested TextBlock
objects, one to display the name of the group and another to display the number of
items, as Figure 7-14 shows.

Figure 7-14 shows grouping by each possible value of the Age property in all of the
data, automatically indenting the data in each group. Taking it one step further,
what if we’d like to group by ranges—say, over and under 25. If we wanted, we
could derive from the GroupDescription, overriding the GroupNamesFromItem method to
classify items as belonging to one or more groups. (The PropertyGroupDescription
class derives from GroupDescription, as do all data grouping policy implementations.)
However, the PropertyGroupDescription class itself provides this flexibility by allow-
ing for a custom IValueConverter implementation that groups items without the need
for a custom GroupDescription class. Example 7-25 shows a value converter that con-
verts values from the Age property into groups.

Figure 7-14. A custom group style in action

Example 7-25. A custom value converter for grouping

public class AgeToRangeConverter : IValueConverter {
 public object Convert(object value, Type targetType, ...) {
 return (int)value < 25 ? "Under the Hill" : "Over the Hill";
 }

 public object ConvertBack(object value, Type targetType, ...) {
 // should not be called in our example
 throw new NotImplementedException();
 }
}

Binding to List Data | 225

This code assumes that the PropertyGroupDescription class will take each Person
object and pass in the Age property, giving us the opportunity to group the data into
our two buckets. We can configure the PropertyGroupDescription object to do this
by passing the value converter to the constructor, as in Example 7-26.

Figure 7-15 shows the results.

In fact, the use of the converter is so flexible that it’s hard to imagine needing to
implement a custom group description at all. If you want an object to belong to more
than one group, you can return a collection of group names from the Convert method
instead of a single name. If you want to get at all of the object’s data instead of just a
single property, you can construct a PropertyGroupDescriptor with null as the prop-
erty name, which will pass in the entire object as the value parameter to Convert
instead of just a single property’s data. Finally, if you want to have control over the

Example 7-26. Using a custom value converter for grouping

void groupButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 if(view.GroupDescriptions.Count == 0) {
 // Group by range
 view.GroupDescriptions.Add(
 new PropertyGroupDescription("Age", new AgeToRangeConverter()));
 }
 else {
 view.GroupDescriptions.Clear();
 }
}

Figure 7-15. A custom value converter used for grouping

226 | Chapter 7: Binding to List Data

way string comparison is done, you can pass in a member of the StringComparison
enumeration. The PropertyGroupDescriptor can almost do it all.

One thing it can’t do, at least by itself, is group at multiple levels. However, if you’d
like to, you can add multiple group descriptors to the view’s GroupDescriptions list,
as shown in Example 7-27.

Grouping will be done in the order that the groups are described, indenting as appro-
priate, as shown in Figure 7-16.

Groups are pretty darn handy. They’re even handier if you’d like to combine them
with sorting in your XAML.

Example 7-27. Multiple groups

void groupButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 if(view.GroupDescriptions.Count == 0) {
 // Group by range, then age
 view.GroupDescriptions.Add(
 new PropertyGroupDescription("Age", new AgeToRangeConverter()));
 view.GroupDescriptions.Add(
 new PropertyGroupDescription("Age"));
 }
 else {
 view.GroupDescriptions.Clear();
 }
}

Figure 7-16. Grouping by more than one criterion

Binding to List Data | 227

Declarative Sorting and Grouping
Setting up sorting and grouping characteristics in code is handy if you want to flip
the characteristics programmatically, as we’ve been doing. However, if you’ve got a
predetermined set of data massaging you’d like to do, a CollectionViewSource is a
handy place to keep those settings (see Example 7-28).

Example 7-28. Declarative sorting and grouping

<Window ...
 xmlns:local="clr-namespace:CollectionViewSourceBinding"
 xmlns:compModel="clr-namespace:System.ComponentModel;assembly=WindowsBase"
 xmlns:data="clr-namespace:System.Windows.Data;assembly=PresentationFramework">
 <Window.Resources>
 <local:People x:Key="Family">
 <local:Person Name="Tom" Age="11" />
 <local:Person Name="John" Age="12" />
 <local:Person Name="Melissa" Age="38" />
 <local:Person Name="Penny" Age="38" />
 </local:People>

 <local:AgeToRangeConverter x:Key="ageConverter" />

 <CollectionViewSource x:Key="SortedGroupedFamily"
 Source="{StaticResource Family}">

 <CollectionViewSource.SortDescriptions>
 <compModel:SortDescription PropertyName="Name" Direction="Ascending" />
 <compModel:SortDescription PropertyName="Age" Direction="Descending" />
 </CollectionViewSource.SortDescriptions>

 <CollectionViewSource.GroupDescriptions>
 <data:PropertyGroupDescription PropertyName="Age"
 Converter="{StaticResource ageConverter}" />
 <data:PropertyGroupDescription PropertyName="Age" />
 </CollectionViewSource.GroupDescriptions>
 </CollectionViewSource>

 </Window.Resources>
 <Grid>
 <ListBox
 ItemsSource="{Binding Source={StaticResource SortedGroupedFamily}}"
 DisplayMemberPath="Name">

 <ListBox.GroupStyle>
 <x:Static Member="GroupStyle.Default" />
 </ListBox.GroupStyle>

 </ListBox>
 </Grid>
</Window>

228 | Chapter 7: Binding to List Data

In Example 7-28, we bring in the System.ComponentModel and System.Windows.Data
namespaces first so that we can create SortDescription and PropertyGroupDescription
objects. Then we create a CollectionViewSource object, which sorts and groups our data
(provided via the Source property) and exposes an ICollectionView implementation.

Inside the CollectionViewSource, we set up the sorting and grouping policies we’ve
been setting up programmatically. Notice the use of multiple group descriptors,
including one that brings in a custom value converter, just like our most advanced
grouping code sample.

Finally, we bind the listbox to the CollectionViewSource, so it can get the sorted and
grouped data, as shown in Figure 7-17.

Unfortunately, this technique isn’t quite as robust as the code-based technique; it
doesn’t allow custom sorting code, nor does it allow filtering of any kind. However,
it lets us go quite a way without imperative code (excluding the custom value con-
verter, of course).

Data Source Providers
So far, we’ve been dealing with simple, hardcoded objects. However, objects can
come from long operations for which we’d prefer not to wait, like over a network
connection or as translated from XML or relational data. For these cases, we’d really
like a layer of indirection for pulling objects from other sources and even pushing
that work off to a worker thread if said retrieval is a ponderous operation. For this
indirection, we turn to data source providers, whose job is (as the name suggests) to
provide data sources for use in binding scenarios.

Figure 7-17. Declarative sorting and grouping in action

Data Source Providers | 229

Object Data Provider
WPF ships with two data source providers, both derived from the DataSourceProvider
base class: ObjectDataProvider and XmlDataProvider. Data source providers create a
layer of indirection for any kind of operation that produces objects against which to
data-bind. For example, if we wanted to load a set of Person objects over the Web, we
could encapsulate that logic into a bit of code, as shown in Example 7-29.

In Example 7-29, the RemotePeopleLoader class exposes a method (LoadPeople) that
will load people however it feels and return that data for binding. To configure the
object data provider to create the RemotePeopleLoader and call the LoadPeople method
is a matter of a little XAML (see Example 7-30).

Here we’re creating an ObjectDataProvider as a named resource so that we can use it
as the data context for the grid, enabling binding at the listbox, text boxes, and so
on. The ObjectType property is the type of the class to create, but you can use a pre-
created object via the ObjectInstance property as well (e.g., if another resource was
an object that could load data for you). The MethodName property is the name of the
method to call to retrieve the data.

Example 7-29. A type to be used by ObjectDataProvider

...
public class Person : INotifyPropertyChanged {...}
public class People : ObservableCollection<Person> {}

public class RemotePeopleLoader {
 // ObjectDataProvider will expose results for binding
 public People LoadPeople() {
 // Load people from afar
 People people = new People();
 ...
 return people;
 }
}
...

Example 7-30. Using the ObjectDataProvider

<Window.Resources>
 ...
 <ObjectDataProvider
 x:Key="Family"
 ObjectType="{x:Type local:RemotePeopleLoader}"
 MethodName="LoadPeople" />
</Window.Resources>
<Grid DataContext="{StaticResource Family}">
 ...
 <ListBox ItemsSource="{Binding}" .../>
</Grid>

230 | Chapter 7: Binding to List Data

With an object data provider acting as an intermediary between the data and the
bindings, we need to update our code to retrieve the People collection from the
ObjectDataProvider resource, as shown in Example 7-31.

Because the Family resource is now an ObjectDataProvider, itself derived from
DataSourceProvider, in Example 7-31 when we need the People collection, we’re
casting to DataSourceProvider on the Family resource and pulling the collection out
of the Data property.

Even though the object data provider exposes its data from the Data
property, this does not mean you should bind to the Data property. If
you notice from Example 7-30, we’re still binding the listbox as
before:

<!-- Do not bind to Path=Data -->
<ListBox ItemsSource="{Binding}" ... />

This works because WPF has built-in knowledge of DataSourceProvider,
so there’s no need for you to do the indirection yourself.

Example 7-31. Accessing the data held by an object data provider

public partial class Window1 : Window {
 ...
 ICollectionView GetFamilyView() {
 DataSourceProvider provider =
 (DataSourceProvider)this.FindResource("Family");
 People people = (People)provider.Data;
 return CollectionViewSource.GetDefaultView(people);
 }

 void birthdayButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 Person person = (Person)view.CurrentItem;

 ++person.Age;
 MessageBox.Show(...);
 }

 void addButton_Click(object sender, RoutedEventArgs e) {
 DataSourceProvider provider =
 (DataSourceProvider)this.FindResource("Family");
 People people = (People)provider.Data;
 people.Add(new Person("Chris", 37));
 }
 ...
}

Data Source Providers | 231

Asynchronous data retrieval

In Example 7-30, the object data provider was retrieving the data from the remote
people loader synchronously, which means that if it took a long time, the UI thread
would block. Instead, we can use the IsAsynchronous property to get the most inter-
esting piece of functionality that the object data provider gives us and that we lack
when we declare objects directly in XAML:

<ObjectDataProvider
 x:Key="Family"
 ObjectType="{x:Type local:RemotePeopleLoader}"
 IsAsynchronous="True"
 MethodName="LoadPeople" />

When the IsAsynchronous property is set to True (the default is False), the task of
retrieving the data is handled on a worker thread, letting the user continue to inter-
act with the UI in the meantime and performing the binding on the UI thread only
when the data has been retrieved. This is not the same as binding to the data as it’s
retrieved (e.g., from a stream over the network), but it’s better than blocking the UI
thread while a long retrieval happens.

Passing parameters

The object data provider also provides the MethodParameters property, which is a col-
lection of objects to be passed to the method that retrieves the data. For example, if
we wanted to pass in a set of URLs from which to try to retrieve the data, we could
use the MethodParameters property as we do in Example 7-32.

Example 7-32. Passing method parameters via ObjectDataProvider

<Window ...
 xmlns:sys="clr-namespace:System"
 xmlns:local="clr-namespace:ObjectBinding">
 <Window.Resources>
 <ObjectDataProvider
 x:Key="Family"
 ObjectType="{x:Type local:RemotePeopleLoader}"
 IsAsynchronous="True"
 MethodName="LoadPeople">
 <ObjectDataProvider.MethodParameters>
 <sys:String>http://sellsbrothers.com/boys.dat</sys:String>
 <sys:String>http://sellssisters.com/girls.dat</sys:String>
 </ObjectDataProvider.MethodParameters>
 </ObjectDataProvider>
 ...
 </Window.Resources>
 ...
</Window>

232 | Chapter 7: Binding to List Data

In Example 7-32, we’ve added a list of two URLs, which will be translated into a call
to the LoadPeople method that takes two strings (see Example 7-33).

Using the object data provider and any method on any object that returns data, you
can retrieve data asynchronously and bind to it when it’s available. Although it’s pos-
sible to create your own custom data source provider (just derive from
DataSourceProvider and have a party), the flexibility of the object data provider
means that you almost certainly won’t need to.

The object data provider allows for another way to get the data as well
as from a named method. If you don’t provide a MethodName, the object
data provider will assume that the data is retrieved in the constructor
(either the default or as described by the ConstructorParameters list,
structured just like the MethodParameters list) and that the object itself
is the data. The use of the constructor and optional constructor
parameters is handy if you’re binding to one or more collections
exposed from properties on the constructed object. For example:

<Window ...
 <Window.Resources>
 <ObjectDataProvider
 x:Key="topLevel"
 ObjectType="{x:Type local:FinanceData}"/>
 </Window.Resources>
 ...
 <Grid DataContext="{StaticResource topLevel}">
 ...
 <ListBox ItemsSource="{Binding Path=Customers,
 IsAsync=True}" ... />
 ...
 <ListBox ItemsSource="{Binding Path=Partners,
 IsAsync=True}" ... />
 ...
 </Grid>
</Window>

In this case, you might want to use the IsAsync property on binding to
the lower-level data instead of the IsAsynchronous property on the top-
level data provider, as now the former is likely to take longer.

Example 7-33. Accepting arguments passed by ObjectDataProvider

namespace PersonBinding {
 public class RemotePeopleLoader : People {
 public People LoadPeople(string url1, string url2) {
 // Load People from afar using two URLs
 ...
 }
}

Data Source Providers | 233

Binding to Relational Data
Although UI designer support is still being developed to help bring relational data
into your WPF pages specifically, the tools we’ve already got can be pressed into ser-
vice for WPF work without issue. For example, assume a table like the one in
Figure 7-18 defined in an Access database (family.mdb).

Although we could write the ADO.NET code to bring this table into our project, we
don’t have to. Instead, we can bring in the data using the typed dataset designer,
which has been in Visual Studio since .NET 1.0. Bringing a new typed data set into
your project is as simple as right-clicking on your project, choosing Add ➝ New Item
➝ Dataset, choosing a name, and clicking Add. This brings up the typed dataset
designer, onto which you can drag any number of tables, setting up relationships and
specifying the way you’d like the data to be projected into your project. A ready source
of data for the data set design is the Server Explorer, which you can use to connect to
various databases. To connect to the Access database, family.mdb, I right-clicked on
Data Connections and chose Add Connection, configuring things properly for Access.
I then drilled in to the People table and dragged it onto the designer surface, as
shown in Figure 7-19.

Figure 7-18. A Person table in Access (family.mdb)

Figure 7-19. Creating a typed data set in a WPF project works just fine

234 | Chapter 7: Binding to List Data

All of these dragging and dropping shenanigans produced for me three interesting
classes: PeopleRow, PeopleDataTable, and PeopleTableAdapter, summarized in
Example 7-34 from the generated Family.Designer.cs file.

The PeopleRow class is a typed wrapper around the DataRow class built into ADO.NET.
It’s the thing that maps between the underlying database types and the CLR types.
When you bind to relational data in WPF, you’ll be binding to a DataTable full of these
DataRow-derived objects. Actually, just plain DataRow objects work, too—you don’t
have to use the typed dataset designer to make this work. However, if you do, you
also get the benefit of the generated table adapters, like our PeopleDataTable, which
knows the shortest way to create and find PeopleRow objects, and the
PeopleTableAdapter, which knows how to read and write data to and from Access (in
our case), to get the data and track updates for pushing back to the database.

The one other thing we get is the connection string plopped into the app.config so
that it can be maintained separately from the code, as you can see in Example 7-35.

Example 7-34. The interesting class the typed dataset designer generates

namespace AdoBinding {
 ...
 public partial class Family : System.Data.DataSet {
 ...
 public partial class PeopleRow : System.Data.DataRow {
 ...
 public int ID { get {...} set {...} } }
 public string Name { get {...} set {...} } }
 public int Age { get {...} set {...} } }
 ...
 }

 public partial class PeopleDataTable :
 System.Data.DataTable, System.Collections.IEnumerable {
 ...
 public PeopleRow AddPeopleRow(string Name, int Age) {...}
 public PeopleRow FindByID(int ID) {...}
 public void RemovePeopleRow(PeopleRow row) {...}
 ...
 }
 }

 namespace FamilyTableAdapters {
 ...
 public partial class PeopleTableAdapter :
 System.ComponentModel.Component {
 ...
 public virtual Family.PeopleDataTable GetData() {...}
 ...
 }
 }
}

Data Source Providers | 235

With these two wrappers in place, and the connection string all set up for us in the
app’s .config file, all we really have to do is create an instance of the PeopleTableAdapter
and call GetData, binding to the results. We could do this in the main window’s con-
structor if we wanted to, as shown in Example 7-36.

In Example 7-36, the GetData call is synchronous, which is fine for our simple sam-
ple. However, because in a real app we’re often accessing data that is located over a
network connection, synchronously retrieving the data and blocking the UI thread
while we wait isn’t such a good idea. This is an excellent use of the asynchronous
support we’ve got in the object data provider (see Example 7-37).

Example 7-35. The connection string we get when we add a new data connection

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <add name="AdoBinding.Properties.Settings.familyConnectionString"
 connectionString="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=family.mdb"
 providerName="System.Data.OleDb" />
 </connectionStrings>
</configuration>

Example 7-36. Using the classes generated by the dataset designer

public Window1() {
 InitializeComponent();

 // Get the data for binding synchronously
 DataContext = (new FamilyTableAdapters.PeopleTableAdapter()).GetData();

 ...
}

Example 7-37. Binding to relational data declaratively

<!-- Window1.xaml -->
<Window ...
 xmlns:local="clr-namespace:AdoBinding"
 xmlns:tableAdapters="clr-namespace:AdoBinding.FamilyTableAdapters">
 <Window.Resources>
 <ObjectDataProvider
 x:Key="Family"
 ObjectType="{x:Type tableAdapters:PeopleTableAdapter}"
 IsAsynchronous="True"
 MethodName="GetData" />

 <local:AgeToForegroundConverter x:Key="ageConverter" />
 </Window.Resources>
 <Grid DataContext="{StaticResource Family}">
 ...
 <ListBox ... ItemsSource="{Binding}">
 <ListBox.ItemTemplate>
 <DataTemplate>

236 | Chapter 7: Binding to List Data

At the top of Example 7-37, we’re doing just what we did in code—that is, creating
an instance of the PeopleTableAdapter type, calling GetData, and binding to the
results. The difference is that we’re doing it declaratively, which makes it very easy to
bind asynchronously—all we have to do is set the IsAsynchronous property to True
and the data retrieval happens on a worker thread, keeping the UI from freezing.

Another thing to notice is that the bindings are all the same as before, although in this
case, we’re using the names of the columns as properties and trusting ADO.NET and
WPF to negotiate properties dynamically at runtime via the ICustomTypeDescriptor
interface.* Finally, notice that our use of the age to foreground brush value converter
remains the same.

Example 7-37 uses a template created specifically for use by the
ListBox object’s ItemTemplate property instead of a typed data tem-
plate to automatically share across content controls. This is because
we’re no longer dealing with objects of the custom Person class at the
top level of a namespace, but objects of type DataRowView.

Because we’ve got the ADO.NET DataRowView type and the typed dataset designer-
generated PeopleDataTable and PeopleDataRow types instead of our custom Person
and People types, implementing our data management code is a little different, as
you can see in Example 7-38.

 <TextBlock>
 <TextBlock Text="{Binding Path=Name}" />
 (age: <TextBlock Text="{Binding Path=Age}"
 Foreground="
 {Binding
 Path=Age,
 Converter=
 {StaticResource ageConverter}}" />)
 </TextBlock>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 ...
 </Grid>
</Window>

* The ICustomTypeDescriptor interface has been with us since .NET 1.0 for data bound objects to expose prop-
erties not known until runtime (e.g., the dynamic results of an SQL query). In the case of ADO.NET, even
though we used the typed dataset designer to get typed properties, WPF will still use the DataRowView class’s
implementation of ICustomTypeDescriptor, which is why typed and untyped data sets work equally well.

Example 7-37. Binding to relational data declaratively (continued)

Data Source Providers | 237

Example 7-38. Accessing the data held by ADO.NET

// Window1.xaml.cs
...
using System.Data;
using System.Data.OleDb;

public partial class Window1 : Window {

 public Window1() {
 InitializeComponent();

 this.birthdayButton.Click += birthdayButton_Click;
 this.backButton.Click += backButton_Click;
 this.forwardButton.Click += forwardButton_Click;
 this.addButton.Click += addButton_Click;
 this.sortButton.Click += sortButton_Click;
 this.filterButton.Click += filterButton_Click;
 this.groupButton.Click += groupButton_Click;
 }

 ICollectionView GetFamilyView() {
 DataSourceProvider provider =
 (DataSourceProvider)this.FindResource("Family");
 return CollectionViewSource.GetDefaultView(provider.Data);
 }

 void birthdayButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();

 // Each item is a DataRowView, which we can use to access
 // the typed PersonRow
 AdoBinding.Family.PeopleRow person =
 (AdoBinding.Family.PeopleRow)((DataRowView)view.CurrentItem).Row;

 ++person.Age;
 MessageBox.Show(
 string.Format(
 "Happy Birthday, {0}, age {1}!",
 person.Name,
 person.Age),
 "Birthday");
 }

 void backButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 view.MoveCurrentToPrevious();
 if(view.IsCurrentBeforeFirst) {
 view.MoveCurrentToFirst();
 }
 }

 void forwardButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();

238 | Chapter 7: Binding to List Data

 view.MoveCurrentToNext();
 if(view.IsCurrentAfterLast) {
 view.MoveCurrentToLast();
 }
 }

 void addButton_Click(object sender, RoutedEventArgs e) {
 // Creating a new PeopleRow
 DataSourceProvider provider =
 (DataSourceProvider)this.FindResource("Family");
 AdoBinding.Family.PeopleDataTable table =
 (AdoBinding.Family.PeopleDataTable)provider.Data;
 table.AddPeopleRow("Chris", 37);
 }

 void sortButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 if(view.SortDescriptions.Count == 0) {
 view.SortDescriptions.Add(
 new SortDescription("Name", ListSortDirection.Ascending));
 view.SortDescriptions.Add(
 new SortDescription("Age", ListSortDirection.Descending));
 }
 else {
 view.SortDescriptions.Clear();
 }
 }

 void filterButton_Click(object sender, RoutedEventArgs e) {
 // Can't set the Filter property, but can set the
 // CustomFilter on a BindingListCollectionView
 BindingListCollectionView view =
 (BindingListCollectionView)GetFamilyView();
 if(string.IsNullOrEmpty(view.CustomFilter)) {
 view.CustomFilter = "Age > 25";
 }
 else {
 view.CustomFilter = null;
 }
 }

 void groupButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 if(view.GroupDescriptions.Count == 0) {
 // Group by age
 view.GroupDescriptions.Add(new PropertyGroupDescription("Age"));
 }
 else {
 view.GroupDescriptions.Clear();
 }
 }
}

Example 7-38. Accessing the data held by ADO.NET (continued)

Data Source Providers | 239

In Example 7-38, you’ll notice that manipulating and displaying a person is different
because we’re dealing with a DataRowView object’s Row property to get the typed
PeopleRow we want. Also, adding a new person is different because we’re dealing with a
PeopleDataTable. Finally, filtering is different because the BindingListCollectionView
doesn’t support the Filter property (setting it causes an exception at runtime). How-
ever, we set the CustomFilter string on the BindingListCollectionView using the ADO.
NET filter syntax. Everything else, though—including accessing the collection view,
navigating the rows, and even sorting and grouping—is the same, as shown in
Figure 7-20.

So, although there was no relational data-specific data provider, none is needed—the
object data provider works just fine for data binding to relational data in WPF.

XML Data Source Provider
In addition to object and relational data, WPF also supports binding to XML data.
For instance, Example 7-39 shows some family data represented in XML.

With this file available in the same folder as the executing application, we can bind
to it using the XmlDataProvider, as shown in Example 7-40.

Figure 7-20. ADO.NET data binding in action

Example 7-39. A random family rendered in XML

<Family xmlns="http://sellsbrothers.com">
 <Person Name="Tom" Age="11" />
 <Person Name="John" Age="12" />
 <Person Name="Melissa" Age="38" />
</Family>

240 | Chapter 7: Binding to List Data

The first thing I want to point out in Example 7-40 is the use of the XmlDataProvider
with a relative URL that points to the family.xml file. The first thing you’ll probably
notice, though, is the large amount of XAML to deal with namespaces. Looking back at
the XML file (Example 7-39), you’ll notice that no prefix was used, only a default
namespace of http://sellsbrothers.com. Using namespace prefixes in the XAML makes
it possible to construct the XPath statement to find the set of Person elements in our sam-
ple XML. Finally, notice the use of the XPath property in the Binding objects instead of
the Path property, and the @ symbol to designate binding to an XML attribute.*

Example 7-40. An XmlDataProvider in action

<!-- Window1.xaml -->
<Window ...>
 <Window.Resources>
 <XmlDataProvider
 x:Key="Family"
 Source="family.xml"
 XPath="/sb:Family/sb:Person">
 <XmlDataProvider.XmlNamespaceManager>
 <XmlNamespaceMappingCollection>
 <XmlNamespaceMapping Uri="http://sellsbrothers.com" Prefix="sb" />
 </XmlNamespaceMappingCollection>
 </XmlDataProvider.XmlNamespaceManager>
 </XmlDataProvider>

 <local:AgeToForegroundConverter
 x:Key="ageConverter" />
 </Window.Resources>
 <Grid DataContext="{StaticResource Family}">
 ...
 <ListBox ... ItemsSource="{Binding}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding XPath=@Name}" />
 <TextBlock Text=" (age: " />
 <TextBlock Text="{Binding XPath=@Age}"
 Foreground="{Binding
 XPath=@Age,
 Converter=
 {StaticResource ageConverter}}" />
 <TextBlock Text=")" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 ...
 </Grid>
</Window>

* An explanation of the XPath syntax is beyond the scope of this book, but for a good reference, I’d start with
Essential XML Quick Reference, by Aaron Skonnard and Martin Gudgin (Addison-Wesley Professional).

Data Source Providers | 241

XML data islands

If you happen to know your data at compile time, the XML data provider also sup-
ports XML data islands, as shown in Example 7-41.

In Example 7-41, we’ve copied the contents of family.xml under the XmlDataProvider
element and wrapped it in an XData element to designate it as separate from the rest
of how XAML is parsed (Appendix A is a good place to read up on that topic). We’ve
also dropped the Source attribute (because the data is embedded), but left the XPath
statement as it was.

And as you might expect, now that we’re using XML instead of object data, some of
the operations in our sample application need to be changed (see Example 7-42).

Example 7-41. An XML data island in XAML

<XmlDataProvider x:Key="Family" XPath="/sb:Family/sb:Person">
 <XmlDataProvider.XmlNamespaceManager>
 <XmlNamespaceMappingCollection>
 <XmlNamespaceMapping Uri="http://sellsbrothers.com" Prefix="sb" />
 </XmlNamespaceMappingCollection>
 </XmlDataProvider.XmlNamespaceManager>

 <x:XData>
 <Family xmlns="http://sellsbrothers.com">
 <Person Name="Tom" Age="11" />
 <Person Name="John" Age="12" />
 <Person Name="Melissa" Age="38" />
 </Family>
 </x:XData>
</XmlDataProvider>

Example 7-42. Managing XML bound data

// Window1.xaml.cs
...
using System.Xml;

public partial class Window1 : Window {

 public Window1() {
 InitializeComponent();

 this.birthdayButton.Click += birthdayButton_Click;
 this.backButton.Click += backButton_Click;
 this.forwardButton.Click += forwardButton_Click;
 this.addButton.Click += addButton_Click;
 this.sortButton.Click += sortButton_Click;
 this.filterButton.Click += filterButton_Click;
 this.groupButton.Click += groupButton_Click;
 }

242 | Chapter 7: Binding to List Data

 ICollectionView GetFamilyView() {
 DataSourceProvider provider =
 (DataSourceProvider)this.FindResource("Family");
 return CollectionViewSource.GetDefaultView(provider.Data);
 }

 void birthdayButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();

 // Each "person" is an XmlElement and attribute
 // values come from a string-based indexer
 XmlElement person = (XmlElement)view.CurrentItem;
 person.SetAttribute("Age",
 (int.Parse(person.Attributes["Age"].Value) + 1).ToString());
 MessageBox.Show(
 string.Format(
 "Happy Birthday, {0}, age {1}!",
 person.Attributes["Name"].Value,
 person.Attributes["Age"].Value),
 "Birthday");
 }

 void backButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 view.MoveCurrentToPrevious();
 if(view.IsCurrentBeforeFirst) {
 view.MoveCurrentToFirst();
 }
 }

 void forwardButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 view.MoveCurrentToNext();
 if(view.IsCurrentAfterLast) {
 view.MoveCurrentToLast();
 }
 }

 void addButton_Click(object sender, RoutedEventArgs e) {
 // Creating a new XmlElement
 XmlDataProvider provider =
 (XmlDataProvider)this.FindResource("Family");
 XmlElement person =
 provider.Document.CreateElement("Person", "http://sellsbrothers.com");
 person.SetAttribute("Name", "Chris");
 person.SetAttribute("Age", "37");
 provider.Document.ChildNodes[0].AppendChild(person);
 }

Example 7-42. Managing XML bound data (continued)

Data Source Providers | 243

Whereas in the ADO.NET example we used PeopleDataTable, PeopleDataRow, and
DataRowView, in the XML example we use XmlDocument and XmlElement. For updating
and accessing values, Example 7-42 uses the XmlElement SetAttribute method to
change a value and the Attributes collection to get one. When adding a new person,
we get the XmlDocument from the XmlDataProvider, ask it to create a new XmlElement,
set the attributes, and add it to the child node collection of the document. When
filtering, we simply cast to an XmlElement to access the attributes we need to make filter-
ing decisions. Finally, when sorting or grouping, the descriptions include paths as XPath
expressions (e.g., @Age). The results look just like Figure 7-20.

 void sortButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 if(view.SortDescriptions.Count == 0) {
 view.SortDescriptions.Add(
 new SortDescription("@Name", ListSortDirection.Ascending));
 view.SortDescriptions.Add(
 new SortDescription("@Age", ListSortDirection.Descending));
 }
 else {
 view.SortDescriptions.Clear();
 }
 }

 void filterButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();

 if(view.Filter == null) {
 view.Filter = delegate(object item) {
 return
 int.Parse(((XmlElement)item).Attributes["Age"].Value) > 25;
 };
 }
 else {
 view.Filter = null;
 }
 }

 void groupButton_Click(object sender, RoutedEventArgs e) {
 ICollectionView view = GetFamilyView();
 if(view.GroupDescriptions.Count == 0) {
 // Group by age
 view.GroupDescriptions.Add(new PropertyGroupDescription("@Age"));
 }
 else {
 view.GroupDescriptions.Clear();
 }
 }
}

Example 7-42. Managing XML bound data (continued)

244 | Chapter 7: Binding to List Data

XML binding without the data source provider

If you’ve already got a source of XML data that isn’t readily available for use by the
XML data source provider,* you can programmatically bind to it instead, as shown in
Example 7-43.

* For example, if you need to retrieve XML data via an HTTP POST, you can’t use the XML data source pro-
vider, as it can only use HTTP GET.

Example 7-43. XML binding without the data source provider

<!-- Window1.xaml -->
<Window ...>
 <Window.Resources>
 <!-- no XmlDataProvider -->
 <local:AgeToForegroundConverter x:Key="ageConverter" />
 </Window.Resources>

 <!-- DataContext set in code-behind -->
 <Grid Name="grid">...</Grid>
</Window>

// Window1.xaml.cs
...
public partial class Window1 : Window {
 // the family XML document
 XmlDocument doc;

 public Window1() {
 ...
 LoadFamilyXml();
 }

 void LoadFamilyXml() {
 // Load the XML using an XmlDocument
 doc = new XmlDocument();
 doc.Load("family.xml");

 // Make the namespace prefix mappings available for use in binding
 XmlNamespaceManager manager = new XmlNamespaceManager(doc.NameTable);
 manager.AddNamespace("sb", "http://sellsbrothers.com");
 Binding.SetXmlNamespaceManager(grid, manager);

 // Make the XML available for data binding. We use a binding here
 // because it will detect when the source document changes so it can
 // refresh the set of nodes returned by the XPath query
 Binding b = new Binding();
 b.XPath = "/sb:Family/sb:Person";
 b.Source = doc;
 grid.SetBinding(Grid.DataContextProperty, b);
 }

Master-Detail Binding | 245

In Example 7-43, we’re loading the XML manually from a file, but you can get access
to the XML in whatever way is convenient, as long as you have an XmlNode or
XmlNodeList to which to bind. Here we’re creating the XmlDocument as a member
variable so that we can use it again to create and add a new XmlElement in the
addButton_Click event handler. Notice also that we’re populating an
XmlNamespaceManager and binding it to the grid so that binding knows how to trans-
late XPath strings that use namespace prefixes. And finally, instead of setting the
XML data directly as the grid’s DataContext, we’re actually binding it, along with
the XPath to filter the set of nodes available in the XML data. The binding is there
so that when the underlying XML data changes, resulting in a new set of nodes
returned from the XPath expression, the grid’s data context is updated appropriately.
Also, as this data context changes, the view may change, so we’re using the
DataContext property of the grid to get the view in GetFamilyView each time we need it.

The rest of the XML-related code in this sample does not have to change, as we’ve
just done manually what the XML data source provider was doing for us (although
we did leave out support for asynchronous access to the data, if it happens to be far
away).

Master-Detail Binding
We’ve seen binding to a single object. We’ve seen binding to a single list of objects.
Another very popular thing to do is to bind to more than one list, especially related
lists. For example, if you’re showing your users a list of customers and then, when they
select one, you’d like to show that customer’s related orders, you’ll want master-detail
binding.

 ICollectionView GetFamilyView() {
 // The default view comes directly from the data
 return CollectionViewSource.GetDefaultView(grid.DataContext);
 }

 ...

 void addButton_Click(object sender, RoutedEventArgs e) {
 // Creating a new XmlElement
 XmlElement person =
 doc.CreateElement("Person", "http://sellsbrothers.com");

 person.SetAttribute("Name", "Chris");
 person.SetAttribute("Age", "37");

 doc.DocumentElement.AppendChild(person);
 }
 ...
}

Example 7-43. XML binding without the data source provider (continued)

246 | Chapter 7: Binding to List Data

Master-detail binding is a form of filtering, where the selection in the master list (e.g.,
customer 452) sets the filtering parameters for the associated detail data (e.g., orders
for customer 452).

In our discussion thus far, we don’t have customers and orders, but we do have fami-
lies and people, which we could further formalize as shown in Example 7-44.

In Example 7-44, we’ve got our familiar Person class with Name and Age properties,
collected into a familiar People collection. Further, we have a Family class with a
FamilyName property and a Members property of type People. Finally, we have a Families
collection, which collects Family objects. In other words, families have members, which
consist of people with names and ages.

You could imagine instances of Families, Family, People, and Person that looked like
Figure 7-21.

Example 7-44. Master-detail data for binding

public class Person {
 string name;
 public string Name {
 get { return name; }
 set { name = value; }
 }

 int age;
 public int Age {
 get { return age; }
 set { age = value; }
 }
}

public class People : ObservableCollection<Person> {}

public class Family {
 string familyName;
 public string FamilyName {
 get { return familyName; }
 set { familyName = value; }
 }

 People members;
 public People Members {
 get { return members; }
 set { members = value; }
 }
}

public class Families : ObservableCollection<Family> {}

Master-Detail Binding | 247

In Figure 7-21, the Families collection forms the master data, holding instances of
the Family class, each of which holds a Members property of type People, which holds
the detail Person data. You could populate instances of these data structures as
shown in Example 7-45.

Figure 7-21. Example master-detail data

Example 7-45. Declaring example master-detail data

<!-- Window1.xaml -->
<Window ... xmlns:local="clr-namespace:MasterDetailBinding">
 <Window.Resources>
 <local:Families x:Key="Families">
 <local:Family FamilyName="Stooge">
 <local:Family.Members>
 <local:People>
 <local:Person Name="Larry" Age="21" />
 <local:Person Name="Curly" Age="22" />
 <local:Person Name="Moe" Age="23" />
 </local:People>
 </local:Family.Members>
 </local:Family>

Family
.Name = "Stooges"
.Members

Family
.Name = "Addams"
.Members

Families (Master)

Person
.Name = "Larry"
.Age = 21

Person
.Name = "Moe"
.Age = 23

People (Details)

Person
.Name = "Curly"
.Age = 22

Person
.Name = "Gomez"
.Age = 135

Person
.Name = "Morticia"
.Age = 121

People (Details)

Person
.Name = "Fester"
.Age = 137

248 | Chapter 7: Binding to List Data

Binding to this data at the top level (i.e., to show the family names) could look like
Example 7-46.

In Example 7-46, we’re setting two things in the Families column (column 0). The
first is the header, which is set to the constant string Families. The second forms
the body, which is a list of Family objects in the Families collection, showing each
family’s FamilyName property, as shown in Figure 7-22.

Figure 7-22 isn’t master-detail yet, because selecting a master family doesn’t show its
associated details. To do that, we need to bind to the next level, as shown in
Example 7-47.

 <local:Family FamilyName="Addams">
 <local:Family.Members>
 <local:People>
 <local:Person Name="Gomez" Age="135" />
 <local:Person Name="Morticia" Age="121" />
 <local:Person Name="Fester" Age="137" />
 </local:People>
 </local:Family.Members>
 </local:Family>
 </local:Families>
 </Window.Resources>
 ...
</Window>

Example 7-46. Binding to master Family data

<!-- Window1.xaml -->
<Window ...>
 <Window.Resources>
 <local:Families x:Key="Families">...</local:Families>
 </Window.Resources>
 <Grid DataContext="{StaticResource Families}">
 ...
 <!-- Families Column -->
 <TextBlock Grid.Row="0" Grid.Column="0">Families:</TextBlock>
 <ListBox Grid.Row="1" Grid.Column="0"
 IsSynchronizedWithCurrentItem="True"
 ItemsSource="{Binding}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=FamilyName}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Window>

Example 7-45. Declaring example master-detail data (continued)

Master-Detail Binding | 249

In the Members column (column 1), we’re also setting a header and body, but this
time the header is bound to the FamilyName of the currently selected Family object.

Also, recall that in the Families column, our listbox’s items source was bound to the
entire collection via a Binding statement without a Path. In the details case, however,
we want to tell the data binding engine that we’d like to bind to the Members prop-
erty of the currently selected Family object, which is itself a collection of Person
objects. Figure 7-23 shows master-detail binding in action.

But wait; there’s more! Master-detail binding doesn’t stop at just two levels, oh no.
You can go as deep as you like, with each detail binding becoming the master bind-
ing for the next level. To see this in action, let’s add one more level of detail to our
data classes (see Example 7-48).

Figure 7-22. Showing family data

Example 7-47. Binding to detail Person data

<Grid DataContext="{StaticResource Families}">
 ...
 <!-- Families Column -->
 ...
 <!-- Members Column -->
 <StackPanel Grid.Row="0" Grid.Column="1" Orientation="Horizontal">
 <TextBlock Text="{Binding Path=FamilyName}" />
 <TextBlock Text=" Family Members:" />
 </StackPanel>
 <ListBox Grid.Row="1" Grid.Column="1"
 IsSynchronizedWithCurrentItem="True"
 ItemsSource="{Binding Path=Members}" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Path=Name}" />
 <TextBlock Text=" (age: " />
 <TextBlock Text="{Binding Path=Age}" />
 <TextBlock Text=")" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

250 | Chapter 7: Binding to List Data

Now, not only do families have family names and members that consist of people
with names and ages, but each person also has a set of traits, each with its own
description. Expanding our XAML a bit to include traits would look like
Example 7-49.

Figure 7-23. Showing master Family and detail Person data

Example 7-48. Adding a third level of detail

public class Person {
 string name;
 public string Name {
 get { return name; }
 set { name = value; }
 }

 int age;
 public int Age {
 get { return age; }
 set { age = value; }
 }

 Traits traits;
 public Traits Traits {
 get { return traits; }
 set { traits = value; }
 }
}

public class Traits : ObservableCollection<Trait> {}

public class Trait {
 string description;
 public string Description {
 get { return description; }
 set { description = value; }
 }
}

Example 7-49. Declaring a third level of detail

<local:Families x:Key="Families">
 <local:Family FamilyName="Stooge">
 <local:Family.Members>

Master-Detail Binding | 251

With a third level of detail, we bind as shown in Example 7-50.

In the case of the Families column header, recall that we had no binding at all; the
text was hardcoded:

<TextBlock ...>Families:</TextBlock>

 <local:People>
 <local:Person Name="Larry" Age="21">
 <local:Person.Traits>
 <local:Traits>
 <local:Trait Description="In Charge" />
 <local:Trait Description="Mean" />
 <local:Trait Description="Ugly" />
 </local:Traits>
 </local:Person.Traits>
 </local:Person>
 <local:Person Name="Curly" Age="22" >...</local:Person>
 ...
 </local:People>
 </local:Family.Members>
 ...
 </local:Family>
 ...
</local:Families>

Example 7-50. Binding to a third level of detail data

<Grid DataContext="{StaticResource Families}">
 ...

 <!-- Families Column -->
 ...

 <!-- Members Column -->
 ...

 <!-- Traits Column -->
 <StackPanel Grid.Row="0" Grid.Column="2" Orientation="Horizontal">
 <TextBlock Text="{Binding Path=Members/Name}" />
 <TextBlock Text=" Traits:" />
 </StackPanel>
 <ListBox Grid.Row="1" Grid.Column="2"
 IsSynchronizedWithCurrentItem="True"
 ItemsSource="{Binding Path=Members/Traits}" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=Description}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

Example 7-49. Declaring a third level of detail (continued)

252 | Chapter 7: Binding to List Data

In the case of the Members column header, we bound to the FamilyName of the cur-
rently selected Family object like so:

<TextBlock ... Text="{Binding Path=FamilyName}" />

Logically, you could think of that as expanding to the following:

<TextBlock ... Text="{Binding Path=family.FamilyName}" />

where family is the currently selected Family object.

Taking this one level deeper, in the case of the traits column header, we’re binding to
the Name property of the currently selected Person from the Members property of the
currently selected Family, which binds like this:

<TextBlock ... Text="{Binding Path=Members/Name}" />

Again, logically you could think of it expanding like this:

<TextBlock ... Text="{Binding Path=family.Members.person.Name}" />

where family is the currently selected Family object and person is the currently
selected Person object. The / in the binding statement acts as the separator between
objects, with the object at each level assumed to be “currently selected.”

The binding for the listbox’s items source works the same way, except we want the
Traits collection from the currently selected Person, not the Name. Our trilevel master-
detail example looks like Figure 7-24.

Hierarchical Binding
Master-detail binding is one step away from true hierarchical binding in that it generally
involves a known set of levels. For example, when we wanted to go from two levels to
three levels, we added another column to the table and manually set up the relationship
at the new level. On the other hand, hierarchical binding (sometimes called tree binding)
generally involves some number of levels that aren’t known until runtime and a control
that can expand itself as appropriate, like a menu or a tree. WPF has built-in support for
hierarchical binding using a special kind of data template that knows both how to dis-
play the current level of data and where to go for the next level. It’s a bit involved,
though, so let’s go back to first principles with our family data (see Example 7-51).

Figure 7-24. Showing master-detail–more detail data

Hierarchical Binding | 253

In Example 7-51, we’re binding a TreeView control’s root item to the top level of the
families data, labeling the root “Families,” as shown in Figure 7-25.

Because the Families collection contains two Family objects, but we haven’t pro-
vided a template, WPF shows them as their type. If we want to show something
more meaningful, we already know to provide a data template (see Example 7-52).

The result is that we see the family name for each family in the collection, as shown
in Figure 7-26.

Example 7-51. The beginnings of hierarchical data binding

<Window ...>
 <Window.Resources>
 <local:Families x:Key="Families">
 ...
 </local:Families>
 </Window.Resources>

 <TreeView DataContext="{StaticResource Families}">
 <TreeViewItem ItemsSource="{Binding}" Header="Families" />
 </TreeView>
</Window>

Figure 7-25. The beginnings of hierarchical data binding

Example 7-52. Slightly better hierarchical data binding

<Window ...>
 <Window.Resources>
 <local:Families x:Key="Families">
 ...
 </local:Families>
 <DataTemplate DataType="{x:Type local:Family}">
 <TextBlock Text="{Binding Path=FamilyName}" />
 </DataTemplate>
 </Window.Resources>

 <TreeView DataContext="{StaticResource Families}">
 <TreeViewItem ItemsSource="{Binding}" Header="Families" />
 </TreeView>
</Window>

254 | Chapter 7: Binding to List Data

Figure 7-26 looks better, but now we’ve dead-ended our tree because the TreeViewItem
element doesn’t know where to get the next level of data. To provide this data, we have
the hierarchical data template, shown in Example 7-53.

In Example 7-53, the HierarchicalDataTemplate element is exactly the same as the
normal DataTemplate element, except that it provides the ItemsSource property so
that the tree can keep digging into the data, as shown in Figure 7-27.

Figure 7-26. Slightly better hierarchical data binding

Example 7-53. The next level of hierarchical data binding

<Window ...>
 <Window.Resources>
 <local:Families x:Key="Families">
 ...
 </local:Families>

 <HierarchicalDataTemplate DataType="{x:Type local:Family}"
 ItemsSource="{Binding Path=Members}">
 <TextBlock Text="{Binding Path=FamilyName}" />
 </HierarchicalDataTemplate>

 </Window.Resources>

 <TreeView DataContext="{StaticResource Families}">
 <TreeViewItem ItemsSource="{Binding}" Header="Families" />
 </TreeView>
</Window>

Figure 7-27. The next level of hierarchical data binding

Hierarchical Binding | 255

Once again, the default behavior is to show the type name. We need to provide one last
template to show something more useful for the Person objects. Because these are the
leaves on our tree, we can use an ordinary data template, as shown in Example 7-54.

Notice in Example 7-54 that we have two hierarchical data templates (one for Family,
which contain Person objects, and one for Person, which contains Trait objects) and
one normal data template (for the Trait object, which doesn’t contain anything else).
With these templates in place, we get a tree that looks like Figure 7-28.

In you take another look at Example 7-54, you’ll notice that we’re not describing the
overall structure of the tree, but only how to get from any one object to its children.
This means that wherever an object of a type that has a hierarchical data template
appears in the tree, we can get to its children. For example, if you had Folder and
File, where Folder had a collection that contained both Files and Folders, Folders
would open to arbitrary levels in the tree given a single hierarchical data template
that told WPF how to get to those children. This makes hierarchical data binding
much more flexible than master-detail binding.

Example 7-54. Plumbing all of the hierarchical nodes

<Window ...>
 <Window.Resources>
 <local:Families x:Key="Families">
 ...
 </local:Families>

<HierarchicalDataTemplate DataType="{x:Type local:Family}"
 ItemsSource="{Binding Path=Members}">
 <TextBlock Text="{Binding Path=FamilyName}" />
 </HierarchicalDataTemplate>

<HierarchicalDataTemplate DataType="{x:Type local:Person}"
 ItemsSource="{Binding Path=Traits}">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Path=Name}" />
 <TextBlock Text=" (age: " />
 <TextBlock Text="{Binding Path=Age}" />
 <TextBlock Text=")" />
 </StackPanel>
 </HierarchicalDataTemplate>

<DataTemplate DataType="{x:Type local:Trait}">
 <TextBlock Text="{Binding Path=Description}" />
 </DataTemplate>

 </Window.Resources>

 <TreeView DataContext="{StaticResource Families}">
 <TreeViewItem ItemsSource="{Binding}" Header="Families" />
 </TreeView>
</Window>

256 | Chapter 7: Binding to List Data

Where Are We?
Whereas the preceding chapter dealt with the fundamentals of data binding, in this
chapter we discussed those topics necessary to make the most of binding to lists of
data, including list data sources in object, relational, and XML data formats; manag-
ing the current item; value conversion; sorting; filtering; grouping; data templates;
and even master-detail and hierarchical relationships. It may seem hard to believe,
but there are things that WPF’s data binding engine supports that we haven’t dis-
cussed (some of which we’ll get to in the next chapter, but some of which are beyond
the scope of this book*).

The thorough support for data binding at every level of WPF makes it a first-class
feature in a way that data binding has never been before. You’ll find that it perme-
ates pretty much every aspect of your WPF programming, including styles and con-
trol templates, which are the topics of the next two chapters.

Figure 7-28. Hierarchical data binding in action

* PriorityBinding and MultiBinding are the two topics that leap to mind as being uncovered in this book; for
details, refer to the Windows Platform SDK documentation at http://msdn2.microsoft.com/en-us/library/
default.aspx (http://tinysells.com/68).

257

Chapter 8 CHAPTER 8

Styles8

In a word-processing document, a style is a set of properties to be applied to ranges
of content (e.g., text, images, etc.). For example, the name of the style I’m using now
is called Normal,Body,b and for this document in prepublication, that means a font
family of Times, a size of 10, and full justification. Later in the document, I’ll be
using a style called Code,x,s, which will use a font family of Courier New, a size of 9,
and left justification. Styles are applied to content to produce a certain look when the
content is rendered.

In WPF, a style is also a set of properties applied to content used for visual render-
ing, like setting the font weight of a Button control. In addition to the features in
word-processing styles, WPF styles have specific features for building applications,
including the ability to apply different visual effects based on user events. All of these
features come without the need to build a custom control (although that’s still a use-
ful thing to be able to do, as discussed in Chapter 18).

Without Styles
As an example of how styles can make themselves useful in WPF, let’s look at a sim-
ple implementation of tic-tac-toe (see Example 8-1).

Example 8-1. A simple tic-tac-toe layout

<!-- Window1.xaml -->
<Window
 x:Class="TicTacToe.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="TicTacToe"
 Height="300"
 Width="300">
 <!-- the black background lets the tic-tac-toe -->
 <!-- crosshatch come through on the margins -->
 <Grid Background="Black">

258 | Chapter 8: Styles

This grid layout arranges a set of nine buttons in a 3 × 3 grid of tic-tac-toe cells, using
the margins on the button for the tic-tac-toe crosshatch. A simple implementation of
the game logic in the XAML code-behind file looks like Example 8-2.

 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Button Margin="0,0,2,2" Grid.Row="0" Grid.Column="0" Name="cell00" />
 <Button Margin="2,0,2,2" Grid.Row="0" Grid.Column="1" Name="cell01" />
 <Button Margin="2,0,0,2" Grid.Row="0" Grid.Column="2" Name="cell02" />
 <Button Margin="0,2,2,2" Grid.Row="1" Grid.Column="0" Name="cell10" />
 <Button Margin="2,2,2,2" Grid.Row="1" Grid.Column="1" Name="cell11" />
 <Button Margin="2,2,0,2" Grid.Row="1" Grid.Column="2" Name="cell12" />
 <Button Margin="0,2,2,0" Grid.Row="2" Grid.Column="0" Name="cell20" />
 <Button Margin="2,2,2,0" Grid.Row="2" Grid.Column="1" Name="cell21" />
 <Button Margin="2,2,0,0" Grid.Row="2" Grid.Column="2" Name="cell22" />
 </Grid>
</Window>

Example 8-2. A simple tic-tac-toe implementation

// Window1.xaml.cs
...
namespace TicTacToe {
 public partial class Window1 : Window {
 // Track the current player (X or O)
 string currentPlayer;

 // Track the list of cells for finding a winner, etc.
 Button[] cells;

 public Window1() {
 InitializeComponent();

 // Cache the list of buttons and handle their clicks
 this.cells = new Button[] { this.cell00, this.cell01, ... };
 foreach(Button cell in this.cells) {
 cell.Click += cell_Click;
 }

 // Initialize a new game
 NewGame();
 }

Example 8-1. A simple tic-tac-toe layout (continued)

Without Styles | 259

 // Wrapper around the current player for future expansion,
 // e.g., updating status text with the current player
 string CurrentPlayer {
 get { return this.currentPlayer; }
 set { this.currentPlayer = value; }
 }

 // Use the buttons to track game state
 void NewGame() {
 foreach(Button cell in this.cells) {
 cell.ClearValue(Button.ContentProperty);
 }
 CurrentPlayer = "X";
 }

 void cell_Click(object sender, RoutedEventArgs e) {
 Button button = (Button)sender;

 // Don't let multiple clicks change the player for a cell
 if(button.Content != null) { return; }

 // Set button content
 button.Content = CurrentPlayer;

 // Check for winner or a tie
 if(HasWon(this.currentPlayer)) {
 MessageBox.Show("Winner!", "Game Over");
 NewGame();
 return;
 }
 else if(TieGame()) {
 MessageBox.Show("No Winner!", "Game Over");
 NewGame();
 return;
 }

 // Switch player
 if(CurrentPlayer == "X") {
 CurrentPlayer = "O";
 }
 else {
 CurrentPlayer = "X";
 }
 }

 // Use this.cells to find a winner or a tie
 bool HasWon(string player) {...}
 bool TieGame() {...}
 }
}

Example 8-2. A simple tic-tac-toe implementation (continued)

260 | Chapter 8: Styles

Our simple tic-tac-toe logic uses strings to represent the players and uses the buttons
themselves to keep track of the game state. As each button is clicked, we set its content
to the string indicating the current player and switch players. When the game is over,
the content for each button is cleared.* The middle of a game looks like Figure 8-1.

Notice in Figure 8-1 how the grid background comes through from the margin.
These spacers almost make the grid look like a drawn tic-tac-toe board (although
we’ll do better later). However, if we’re really looking to simulate a hand-drawn
game, we have to do something about the size of the font used on the buttons; it
doesn’t match the thickness of the lines.

One way to fix this problem is by setting the font size and weight for each Button
object, as shown in Example 8-3.

The results, shown in Figure 8-2, look nicer.

Setting the font size and weight properties makes the Xs and Os look better accord-
ing to my visual sensibilities today. However, if I want to change it later, I’ve now
committed myself to changing both properties in nine separate places, which is a
duplication of effort that offends my coding sensibilities. I’d much prefer to refactor
my decisions about the look of my tic-tac-toe cells into a common place for future
maintenance. That’s where styles come in handy.

Figure 8-1. A simple tic-tac-toe game

* We clear the content of each button by using the ClearValue method instead of setting the CLR property to
null so that setting the Content property in the triggers works later on.

Example 8-3. Setting control properties individually

<Button FontSize="32pt" FontWeight="Bold" ... Name="cell00" />
<Button FontSize="32pt" FontWeight="Bold" ... Name="cell01" />
...
<Button FontSize="32pt" FontWeight="Bold" ... Name="cell22" />

Inline Styles | 261

Inline Styles
A style in WPF is expressed as zero or more Setter objects inside a Style object. Every
element in WPF that derives from either FrameworkElement or FrameworkContentElement
has a Style property, which you can set inline using standard XAML property element
syntax, as shown in Example 8-4.

Because we want to bundle two property values into our style, we have a Style ele-
ment with two Setter subelements, one for each property we want to set (i.e.,
FontSize and FontWeight), both with the Button prefix to indicate the class that con-
tains the property. Properties suitable for styling must be dependency properties.

Due to the extra style syntax and because inline styles can’t be shared across ele-
ments, inline styles actually involve more typing than just setting the properties. For
this reason, inline styles aren’t used nearly as often as named styles.*

Figure 8-2. A nicer-looking tic-tac-toe board

Example 8-4. Setting an inline style

<Button ... Name="cell00">
 <Button.Style>
 <Style>
 <Setter Property="Button.FontSize" Value="32pt" />
 <Setter Property="Button.FontWeight" Value="Bold" />
 </Style>
 </Button.Style>
</Button>

* However, an inline style is useful if you want to add property and data triggers to an individual element. We
discuss triggers later in this chapter.

262 | Chapter 8: Styles

Named Styles
By hoisting the same inline style into a resource (as introduced in Chapter 1), we can
award it a name and use it by name in our button instances, as shown in
Example 8-5.

In Example 8-5, we’ve used the class name as a prefix on our properties so that the style
knows what dependency property we’re talking about. We used Control as the prefix
instead of Button to allow the style to be used more broadly, as we’ll soon see.

The Target Type Attribute
As a convenience, if all of the properties can be set on a shared base class, like
Control in our example, we can promote the class prefix into the TargetType attribute
and remove it from the name of the property (see Example 8-6).

When providing a TargetType attribute, you can only set properties available on that
type. If you’d like to expand to a greater set of properties down the inheritance tree,
you can do so by using a more derived type (see Example 8-7).

Example 8-5. Setting a named style

<!-- Window1.xaml -->
<Window ...>
 <Window.Resources>
 <Style x:Key="CellTextStyle">
 <Setter Property="Control.FontSize" Value="32pt" />
 <Setter Property="Control.FontWeight" Value="Bold" />
 </Style>
 </Window.Resources>
 ...
 <Button Style="{StaticResource CellTextStyle}" ... Name="cell00" />
 ...
</Window>

Example 8-6. A target-typed style

<Style x:Key="CellTextStyle" TargetType="{x:Type Control}">
 <Setter Property="FontSize" Value="32pt" />
 <Setter Property="FontWeight" Value="Bold" />
</Style>

Example 8-7. A more derived target-typed style

<Style x:Key="CellTextStyle" TargetType="{x:Type Button}">
 <!-- IsCancel is a Button-specific property -->
 <Setter Property="IsCancel" Value="False" />
 <Setter Property="FontSize" Value="32pt" />
 <Setter Property="FontWeight" Value="Bold" />
</Style>

Named Styles | 263

In this case, the IsCancel property is available only on Button, so to set it, we need to
switch the target type attribute for the style.

Reusing Styles
In addition to saving you from typing out the name of the class prefix for every prop-
erty name, the TargetType attribute will also confirm that all classes that have the style
applied are an instance of that type (or derived type). That means that if we leave
TargetType set to Control, we can apply it to a Button element, but not to a TextBlock
element, as the former derives ultimately from Control but the latter does not.

However, if we’d like to define a style that contains properties not shared by every
element to which we’d like to apply them, we can do that by dropping the
TargetType and putting back the property prefix, as shown in Example 8-8.

In Example 8-8, we’ve added the Button.IsCancel property to the CellTextStyle and
applied it to the Button element, which has this property, and the TextBlock element,
which doesn’t. This is OK. At runtime, WPF will apply the dependency properties
and the elements themselves will ignore those values that don’t apply to them.*

WPF’s ability to apply styles to objects that don’t have all of the prop-
erties defined in the style is analogous to applying the Word Normal
style, which includes a font size property of its own, to both a range of
text and an image. Even though Word knows that images don’t have a
font size, it applies the portions of the Normal style that do make
sense (like the justification property), ignoring the rest.

Getting back to our sample, we can use the CellTextStyle on the Buttons to show nice
Xs and Os, and on a TextBlock in a new row to show whose turn it is (see Example 8-9).

Example 8-8. Styles can have properties that targets don’t have

<Style x:Key="CellTextStyle">
 <Setter Property="TextElement.FontSize" Value="32pt" />
 <Setter Property="Button.IsCancel" Value="False" />
</Style>
...
<!-- has an IsCancel property -->
<Button Style="{StaticResource CellTextStyle}" ... />

<!-- does *not* have an IsCancel property -->
<TextBlock Style="{StaticResource CellTextStyle}" ... />

* The ability to set a value for a property that an element doesn’t have is useful for inheritable properties,
because those values will flow on through to child elements. See Chapter 18 for a description of dependency
property inheritance.

264 | Chapter 8: Styles

With our new text block in place, we can inform the next player of her turn by
updating the CurrentPlayer property setter:

string CurrentPlayer {
 get { return this.currentPlayer; }
 set {
 this.currentPlayer = value;
 this.statusTextBlock.Text =
 "It's your turn, " + this.currentPlayer;
 }
}

This reuse of the style across controls of different types gives us a consistent look in
the application, as shown in Figure 8-3.

One thing you’ll notice is that the status text in Figure 8-3 is white, whereas the text
in the buttons is black. Because black is the default text color, if we want the status
text to show up against a black background, we have to change the color to some-
thing else, hence the need to set the Foreground property to white on the TextBlock.
Setting per-instance properties works just fine in combination with a style, and you
can combine the two techniques of setting property values as you see fit.

Example 8-9. Applying a style to Button and TextBlock elements

<Window.Resources>
 <Style x:Key="CellTextStyle">
 <Setter Property="Control.FontSize" Value="32pt" />
 <Setter Property="Control.FontWeight" Value="Bold" />
 </Style>
</Window.Resources>
<Grid Background="Black">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Button Style="{StaticResource CellTextStyle}" ... />
 ...
 <TextBlock
 Style="{StaticResource CellTextStyle}"
 Foreground="White"
 Grid.Row="3"
 Grid.ColumnSpan="3"
 Name="statusTextBlock" />
</Grid>
</Window>

Named Styles | 265

Overriding Style Properties
Further, if we wanted to override a style property on a specific instance, we can do so
by setting the property on the instance (see Example 8-10).

In Example 8-10, the TextBlock instance property setting of FontWeight takes prece-
dence over the style property setting of FontWeight.

Extending Styles
In addition to the abilities to reuse and override existing styles, you can also extend a
style, adding new properties or overriding existing ones (see Example 8-11).

Figure 8-3. A tic-tac-toe game with style

Example 8-10. Overriding the FontWeight property from the style

<Style x:Key="CellTextStyle">
 <Setter Property="TextElement.FontSize" Value="32pt" />
 <Setter Property="TextElement.FontWeight" Value="Bold" />
</Style>
...
<TextBlock
 Style="{StaticResource CellTextStyle}"
 FontWeight="Normal" ... />

Example 8-11. Extending a style

<Style x:Key="CellTextStyle">
 <Setter Property="Control.FontSize" Value="32pt" />
 <Setter Property="Control.FontWeight" Value="Bold" />
</Style>
<Style x:Key="StatusTextStyle" BasedOn="{StaticResource CellTextStyle}">
 <Setter Property="TextBlock.FontWeight" Value="Normal" />
 <Setter Property="TextBlock.Foreground" Value="White" />
 <Setter Property="TextBlock.HorizontalAlignment" Value="Center" />
</Style>

266 | Chapter 8: Styles

The BasedOn style attribute is used to designate the style being extended. In
Example 8-11, the StatusTextStyle style gets all of the CellTextStyle property setters,
overrides the FontWeight, and adds setters for Foreground and HorizontalAlignment. Our
current use of styles causes our tic-tac-toe game to look like Figure 8-4.

Our application so far is looking pretty good, but we can do better.

Setting Styles Programmatically
Once a style has a name, it’s easily available from our code. For example, we might
decide that we’d like each player to have his own style:

<Style x:Key="XStyle" BasedOn="{StaticResource CellTextStyle}">
 <Setter Property="Control.Foreground" Value="Red" />
</Style>
<Style x:Key="OStyle" BasedOn="{StaticResource CellTextStyle}">
 <Setter Property="Control.Foreground" Value="Green" />
</Style>

In this case, applying named styles to each button in XAML at compile time won’t
do the trick, because we want to set the style based on the content, and in this appli-
cation, the content changes when a button is clicked at runtime. However, nothing
requires us to set the Style property of a control statically; we can set it programmat-
ically as well, as we do in Example 8-12.

Figure 8-4. A tic-tac-toe game with more style

Example 8-12. Setting styles programmatically

public partial class Window1 : Window {
 ...
 void cell_Click(object sender, RoutedEventArgs e) {
 Button button = (Button)sender;
 ...

Named Styles | 267

In Example 8-12, whenever the player clicks, in addition to setting the button’s con-
tent, we pull a named style out of the window’s resources with the FindResource
method and use that to set the button’s style, as shown in Figure 8-5.

Notice that the Xs and Os are colored according to the named player styles. In this
particular case (and in many other cases, too), data triggers should be preferred to
setting styles programmatically, but we’ll get to that later.

As with all XAML constructs, you are free to create styles themselves
programmatically. Appendix A is a good introduction on how to think
about going back and forth between XAML and code.

 // Set button content
 button.Content = this.CurrentPlayer;
 ...
 if(this.CurrentPlayer == "X") {
 button.Style = (Style)FindResource("XStyle");
 this.CurrentPlayer == "O";
 }
 else {
 button.Style = (Style)FindResource("OStyle");
 this.CurrentPlayer == "X";
 }
 ...
 }
 ...
}

Figure 8-5. Setting styles programmatically based on an object’s content (Color Plate 7)

Example 8-12. Setting styles programmatically (continued)

268 | Chapter 8: Styles

Element-Typed Styles
Named styles are useful when you have a set of properties to be applied to a specific
element instance. However, if you’d like to apply a style uniformly to all instances of
a certain type of element, set the TargetType without a Key (see Example 8-13).

In Example 8-13, we have two styles, one with a TargetType of Button and no Key,
and another with a TargetType of TextBlock and a Key. The TextBlock style works just
as we’ve seen (i.e., you have to assign a TextBlock Style property explicitly to the
style using the key for it to take effect). On the other hand, when an instance of
Button is created without an explicit Style attribute setting, it uses the style that
matches the target type of the style to the type of the control. Our element-typed
styles return our game to looking again like Figure 8-4.

Element-typed styles are handy whenever you’d like all instances of a certain ele-
ment to share a look, depending on the scope. For example, we’ve scoped the but-
ton style in our sample thus far at the top-level Window (see Example 8-14).

Example 8-13. Element-typed styles

...
<!-- without a Key -->
<Style TargetType="{x:Type Button}">
 <Setter Property="FontSize" Value="32pt" />
 <Setter Property="FontWeight" Value="Bold" />
</Style>
<!-- with a Key -->
<Style x:Key="StatusTextStyle" TargetType="{x:Type TextBlock}">
 <Setter Property="FontSize" Value="32pt" />
 <Setter Property="FontWeight" Value="Normal" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="HorizontalAlignment" Value="Center" />
</Style>
...
<!-- no need to set the Style -->
<Button Grid.Row="0" Grid.Column="0" x:ID="cell00" />
...
<!-- need to set the Style -->
<TextBlock Style="{StaticResource StatusTextStyle}" ... />
...

Example 8-14. Style scoped to the Window

<!-- Window1.xaml -->
<Window ...>
 <!-- every Button in the Window is affected -->
 <Window.Resources>
 <Style TargetType="{x:Type Button}">...</Style>
 </Window.Resources>
 ...
</Window>

Element-Typed Styles | 269

However, you may want to reduce the scope of an element-typed style. In our sam-
ple, it would work just as well to scope the button style inside the grid so that only
buttons in the grid are affected (see Example 8-15).

Alternatively, if you want to make your style have greater reach in your project, you
can put it into the application scope (see Example 8-16).

In general, it’s useful to understand the scoping rules of element-typed styles so that
you can judge their effect on the various pieces of your WPF object model.
Chapter 12 discusses resource scoping of all kinds, including styles, in more detail.

Element-Typed Styles and Derived Types
When you define a style with only a TargetType, that style will be applied only to ele-
ments of that exact type and not to derived types. For example, if you’ve got a single
style that you’d like to apply to both the CheckBox and the RadioButton types, you might
think to create a style for their common base type (ToggleButton), as in Example 8-17.

Example 8-15. Style scoped below the Window

<!-- Window1.xaml -->
<Window ...>
 <Grid ...>
 <!-- only Buttons in the Grid are affected -->
 <Grid.Resources>
 <Style TargetType="{x:Type Button}">...</Style>
 </Grid.Resources>
 ...
 </Grid>
 <!-- Buttons outside the Grid are unaffected -->
 ...
</Window>

Example 8-16. Style scoped to the application

<!-- MyApp.xaml -->
<Application ...>
 <!-- every Button in the Application is affected -->
 <Application.Resources>
 <Style TargetType="{x:Type Button}">...</Style>
 </Application.Resources>
</Application>

Example 8-17. Element-typed styles aren’t applied to derived types

<Window ...>
 <Window.Resources>
 <!-- this isn't going to be applied to RadioButton or CheckBox -->
 <Style TargetType="ToggleButton">
 <Setter Property="FontSize" Value="32" />
 </Style>

270 | Chapter 8: Styles

As Figure 8-6 shows, the style associated with the ToggleButton type will not be
applied to either the radio button or the checkbox.

This limitation keeps styles from leaking to unknown derived types. However, if
you’d like to centralize the settings for a style on a base type and apply it to known
derived types, you can do so with a little extra work (see Example 8-18).

In Example 8-18, we gave our toggle button style a key and then used it with the
BasedOn property of our element-typed styles for RadioButton and CheckBox, as shown
in Figure 8-7.

Using this technique, we’re able to define element-typed styles and reuse settings
across known derived types.

 </Window.Resources>
 <StackPanel Margin="5">
 <TextBlock FontSize="32">two toggle buttons:</TextBlock>
 <CheckBox>my checkbox</CheckBox>
 <RadioButton>my radio button</RadioButton>
 </StackPanel>
</Window>

Figure 8-6. Element-typed styles aren’t applied to derived types

Example 8-18. Manually applying element-typed styles to derived types

<Window ...>
 <Window.Resources>
 <Style x:Key="toggleButtonStyle" TargetType="ToggleButton">
 <Setter Property="FontSize" Value="32" />
 </Style>
 <Style TargetType="RadioButton"
 BasedOn="{StaticResource toggleButtonStyle}" />
 <Style TargetType="CheckBox"
 BasedOn="{StaticResource toggleButtonStyle}" />
 </Window.Resources>
 ...
</Window>

Example 8-17. Element-typed styles aren’t applied to derived types (continued)

Data Templates and Styles | 271

Data Templates and Styles
Let’s imagine that we want to implement a variant of tic-tac-toe that’s more fun to
play (an important feature in most games). For example, one variant of tic-tac-toe
only allows players to have three of their pieces on at any one time, dropping the first
move off when the fourth move is played, dropping the second move when the fifth is
played, and so on. To implement this variant, we need to keep track of the sequence
of moves, with each move represented by a PlayerMove object, as shown in
Example 8-19.

Figure 8-7. You can mix TargetType and BasedOn for good effect

Example 8-19. A custom type suitable for tracking tic-tac-toe moves

public class PlayerMove : INotifyPropertyChanged {
 string playerName;
 public string PlayerName {
 get { return playerName; }
 set {
 if(string.Compare(playerName, value) == 0) { return; }
 playerName = value;
 Notify("PlayerName");
 }
 }

 int moveNumber;
 public int MoveNumber {
 get { return moveNumber; }
 set {
 if(moveNumber == value) { return; }
 moveNumber = value;
 Notify("MoveNumber");
 }
 }

272 | Chapter 8: Styles

Now, instead of using a simple string for each button object’s content, we’ll use an
instance of PlayerMove, as shown in Example 8-20.

 bool isPartOfWin = false;
 public bool IsPartOfWin {
 get { return isPartOfWin; }
 set {
 if(isPartOfWin == value) { return; }
 isPartOfWin = value;
 Notify("IsPartOfWin");
 }
 }

 public PlayerMove(string playerName, int moveNumber) {
 this.playerName = playerName;
 this.moveNumber = moveNumber;
 }

 // INotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;
 void Notify(string propName) {
 if(PropertyChanged != null) {
 PropertyChanged(this, new PropertyChangedEventArgs(propName));
 }
 }
}

Example 8-20. Adding the PlayerMove as Button content

namespace TicTacToe {
 public partial class Window1 : Window {
 ...
 int moveNumber;

 void NewGame() {
 ...
 this.moveNumber = 0;
 }

 void cell_Click(object sender, RoutedEventArgs e) {
 ...
 // Set button content
 //button.Content = this.CurrentPlayer;
 button.Content =
 new PlayerMove(this.CurrentPlayer, ++this.moveNumber);
 ...
 }
 ...
 }
}

Example 8-19. A custom type suitable for tracking tic-tac-toe moves (continued)

Data Templates and Styles | 273

Figure 8-8 shows the brilliance of such a change (after turning off the button style so
that the text isn’t too large to read).

As you’ll recall from Chapter 6, in Figure 8-8 the button doesn’t have enough infor-
mation to render a PlayerMove object, but we can fix that with a data template.

Data Templates Redux
As you already know from Chapter 7, WPF allows you to define a data template, which
is a tree of elements to expand in a particular context. We use data templates to provide
an application with the capability to render nonvisual objects (see Example 8-21).

Figure 8-8. PlayerMove objects displayed without any special instructions

Example 8-21. Setting a PlayerMove data template without styles

<Window ... xmlns:local="clr-namespace:TicTacToe">
 <Window.Resources>
 ...
 <Style TargetType="{x:Type Button}">
 <Setter Property="HorizontalContentAlignment" Value="Stretch" />
 <Setter Property="VerticalContentAlignment" Value="Stretch" />
 <Setter Property="Padding" Value="8" />
 </Style>
 <DataTemplate DataType="{x:Type local:PlayerMove}">
 <Grid>
 <TextBlock
 Text="{Binding Path=PlayerName}"
 FontSize ="32pt"
 FontWeight="Bold"
 VerticalAlignment="Center"
 HorizontalAlignment="Center" />

274 | Chapter 8: Styles

Using the XAML mapping syntax described in Chapter 1, we’ve mapped the
PlayerMove type into the XAML with the xmlns attribute, which we’ve used as the data
type of the data template. Now, when a WPF element that uses the content model sees
a PlayerMove object, like the content of all of our buttons, the data template will be
expanded.* In our case, the template consists of a grid to arrange two text blocks, one
showing the player name in the middle of the button and one showing the move
number in the bottom right, along with some other settings to make things pretty. In
addition, we’ve changed our button style to give the grid the entire space of the con-
tent area, less some padding around the edge (otherwise, things get a little cramped).
Figure 8-9 shows the result.

 <TextBlock
 Text="{Binding Path=MoveNumber}"
 FontSize="16pt"
 FontStyle="Italic"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Right" />
 </Grid>
 </DataTemplate>
 </Window.Resources>
 ...
</Window>

* Controls that use the content model in WPF are those with control templates that use a ContentPresenter,
as discussed in Chapter 9.

Figure 8-9. Showing objects of a custom type using data templates and styles

Example 8-21. Setting a PlayerMove data template without styles (continued)

Triggers | 275

Data Templates with Style
Just as it’s a good idea to take “magic numbers” out of your code, pulling them out
and giving them names for easy maintenance, it’s a good idea to move groups of set-
tings into styles,* as shown in Example 8-22.

As nice as Figure 8-9 is, the interaction is kind of boring given the capabilities of
WPF. Let’s see what we can do with style properties as the application is used.

Triggers
So far, we’ve seen styles as a collection of Setter elements. When a style is applied,
the settings described in the Setter elements are applied unconditionally (unless
overridden by per-instance settings). On the other hand, property triggers are a way
to wrap one or more Setter elements in a condition. With a property trigger, if the
condition is true, the corresponding Setter elements are executed to set one or more
element properties. When the condition becomes false, the property values revert to
their pre-trigger values.

* Moving groups of settings into styles also allows for easier skinning and theming, as described in Chapter 12.

Example 8-22. Setting a PlayerMove data template with styles

<Window.Resources>
 ...
 <Style x:Key="CellTextStyle" TargetType="{x:Type TextBlock}">
 <Setter Property="FontSize" Value="32pt" />
 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 </Style>
 <Style x:Key="MoveNumberStyle" TargetType="{x:Type TextBlock}">
 <Setter Property="FontSize" Value="16pt" />
 <Setter Property="FontStyle" Value="Italic" />
 <Setter Property="VerticalAlignment" Value="Bottom" />
 <Setter Property="HorizontalAlignment" Value="Right" />
 </Style>
 <DataTemplate DataType="{x:Type local:PlayerMove}">
 <Grid>
 <TextBlock
 Text="{Binding Path=PlayerName}"
 Style="{StaticResource CellTextStyle}" />
 <TextBlock
 Text="{Binding Path=MoveNumber}"
 Style="{StaticResource MoveNumberStyle}" />
 </Grid>
 </DataTemplate>
</Window.Resources>

276 | Chapter 8: Styles

Property triggers are not the only kinds of triggers that WPF supports, however.
With an event trigger, the trigger is activated when an event is fired, which fires off
another event to start or stop an animation.

Property Triggers
The simplest form of a trigger is a property trigger, which watches for a dependency
property on the element to have a certain value. For example, we might want to set
the tool tip over a button if neither player has yet chosen it for a move. We can do so
by watching for the Content property to have a value of null,* as shown in
Example 8-23.

Triggers are grouped together under the Style.Triggers element. In this case, we’ve
added a Trigger element to the button style. When the Content property of our but-
ton is null, the ToolTip property of the button will be set to “click to move here,” as
shown in Figure 8-10.

* The null value is set via a XAML markup extension, which you can read more about in Appendix A.

Example 8-23. A simple property trigger

<Style TargetType="{x:Type Button}">
 ...
 <Style.Triggers>
 <Trigger Property="Content" Value="{x:Null}" >
 <Setter Property="ToolTip" Value="click to move here" />
 </Trigger>
 </Style.Triggers>
</Style>

Figure 8-10. A property trigger in action (Color Plate 8)

Triggers | 277

There’s no need to worry about setting a property back when the trigger is no longer
true (e.g., watching for Content to be non-null). The WPF dependency property sys-
tem watches for the property trigger to become inactive and reverts the property to
the previous value.

You can set property triggers to watch any of the dependency properties on the con-
trol to which your style is targeted and to set any of the dependency properties on
the control while the condition is true. In fact, you can use a single trigger to set mul-
tiple properties if you like.

Multiple Triggers
Although you can set as many properties as you like in a property trigger, there can be
more than one trigger in a style. When grouped together under the Style.Triggers ele-
ment, multiple triggers act independently of one another.

For example, we can update our example so that if the content is null on one of our
buttons, it’ll have one tool tip, but if the button has focus (the Tab and arrow keys
move focus around), it’ll have another tool tip, as shown in Example 8-24.

Figure 8-11 shows the result of one cell having both focus and the mouse hovering.

If multiple triggers set the same property, the last one wins. For example, in
Figure 8-11, because the button has no content and focus, the tool tip will be the one
associated with the keyboard focus because the trigger for the IsFocused trigger is last
in the list.

Multicondition Property Triggers
One thing you may have noticed about Example 8-24 is that it checks only for key-
board focus. However, just checking for the focus isn’t enough; we also need to
check whether the button already has content. If you’d like to check more than one
property before a trigger condition is activated, you can combine multiple condi-
tions with a multiple condition property trigger, as shown in Example 8-25.

Example 8-24. Multiple property triggers

<Style TargetType="{x:Type Button}">
 ...
 <Style.Triggers>
 <Trigger Property="Content" Value="{x:Null}" >
 <Setter Property="ToolTip" Value="click to move here" />
 </Trigger>
 <Trigger Property="IsFocused" Value="True" >
 <Setter Property="ToolTip" Value="click or spacebar to move here" />
 </Trigger>
</Style>

278 | Chapter 8: Styles

Multicondition property triggers check all of the properties’ values to be set as speci-
fied, not just one of them. Here, we’re watching for both keyboard focus and the con-
tent to be null, reflecting the game logic that new moves can happen only in empty cells.

Property triggers are great for noticing when the user is interacting with an element
displaying your program’s state. However, we’d also like to be able to notice when
the program’s state itself changes—such as when a particular player makes a move—
and update our style settings accordingly. For that, we have data triggers.

Data Triggers
Unlike property triggers, which check only WPF dependency properties, data trig-
gers can check any old thing to which you can bind (e.g., a CLR object property, an
XPath statement, etc.). Whereas property triggers are generally used to check WPF
visual element properties, data triggers are normally used to check the properties of
nonvisual objects used as content, like our PlayerMove objects (see Example 8-26).

Figure 8-11. Multiple property triggers in action (Color Plate 9)

Example 8-25. A multiproperty trigger

<Style TargetType="{x:Type Button}">
 ...
 <Style.Triggers>
 <Trigger Property="Content" Value="{x:Null}" >
 <Setter Property="ToolTip" Value="click to move here" />
 </Trigger>
 <MultiTrigger>
 <MultiTrigger.Conditions>
 <Condition Property="IsFocused" Value="True" />
 <Condition Property="Content" Value="{x:Null}" />
 </MultiTrigger.Conditions>
 <Setter Property="ToolTip" Value="click or spacebar to move here" />
 </MultiTrigger>
 </Style.Triggers>
</Style>

Triggers | 279

DataTrigger elements go under the Style.Triggers element just like property trig-
gers, and also just like property triggers, more than one of them can be active at any
one time. Whereas a property trigger operates on the properties of the visual ele-
ments displaying the content, a data trigger operates on the content itself. In our
case, the content of each cell is a PlayerMove object. In both of the data triggers, we’re
binding to the PlayerName property. If the value is “X,” we’re setting the foreground
to red, and if it’s “O,” we’re setting it to green.

We haven’t had per-player colors since moving to data templates after setting styles
programmatically in Figure 8-5, but data triggers bring that feature right back, along
with all of the other features we’ve been building up, as shown in Figure 8-12.

Unlike property triggers, which rely on the change notification of dependency prop-
erties, data triggers can also use an implementation of the standard property change
notification patterns built into .NET and discussed in Chapter 6 (e.g.,
INotifyPropertyChanged). Even our simple class needs to raise such notifications as
the IsPartOfWin property changes (it’s set when a win is detected). If you’re using data
triggers, chances are that you’ll need to expose notifications from your data classes.

Example 8-26. Two data triggers

<Window.Resources>
 <Style TargetType="{x:Type Button}">
 ...
 </Style>
 <Style x:Key="CellTextStyle" TargetType="{x:Type TextBlock}">
 ...
 <Style.Triggers>
 <DataTrigger Binding="{Binding Path=PlayerName}" Value="X">
 <Setter Property="Foreground" Value="Red" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Path=PlayerName}" Value="O">
 <Setter Property="Foreground" Value="Green" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 <Style x:Key="MoveNumberStyle" TargetType="{x:Type TextBlock}">
 ...
 </Style>
 ...
 <DataTemplate DataType="{x:Type l:PlayerMove}">
 <Grid>
 <TextBlock
 TextContent="{Binding Path=PlayerName}"
 Style="{StaticResource CellTextStyle}" />
 <TextBlock
 TextContent="{Binding Path=MoveNumber}"
 Style="{StaticResource MoveNumberStyle}" />
 </Grid>
 </DataTemplate>
</Window.Resources>

280 | Chapter 8: Styles

One other especially handy feature of data triggers is that there’s no need for an
explicit check for null content. If the content is null, the trigger condition is automat-
ically false, which is why the application isn’t crashing trying to dereference a null
PlayerMove to get to the PlayerName property.

Multicondition Data Triggers
Just as we can combine property triggers into “and” conditions using the
MultiTrigger element, we can combine data triggers using the MultiDataTrigger ele-
ment. For example, if we wanted to watch for winning moves and match the move
number to the color of the player that won, we’d need two multicondition data trig-
gers, one for each player, as shown in Example 8-27.

Figure 8-12. Data triggers in action (Color Plate 10)

Example 8-27. A multidata trigger

<Style x:Key="MoveNumberStyle" TargetType="{x:Type TextBlock}">
 ...
 <Style.Triggers>
 <MultiDataTrigger>
 <MultiDataTrigger.Conditions>
 <Condition Binding="{Binding Path=PlayerName}" Value="X" />
 <Condition Binding="{Binding Path=IsPartOfWin}" Value="True" />
 </MultiDataTrigger.Conditions>
 <Setter Property="BitmapEffect">
 <Setter.Value>
 <OuterGlowBitmapEffect GlowColor="Red" GlowSize="10" />
 </Setter.Value>
 </Setter>
 </MultiDataTrigger>

 <MultiDataTrigger>
 <MultiDataTrigger.Conditions>
 <Condition Binding="{Binding Path=PlayerName}" Value="O" />
 <Condition Binding="{Binding Path=IsPartOfWin}" Value="True" />

Triggers | 281

Here we’re setting a glow around the winning move numbers to make the crucial
moves clear.* Figure 8-13 shows the results after a win.

The multicondition data trigger in Example 8-27 sets the move number to match the
color of the winner to connote a cause for celebration, but you can use multicondition
data triggers for celebrations of your own kinds. Also, I didn’t show it in this example,
but because data triggers support CLR property change notifications as well as depen-
dency property change notifications, they are very handy inside the Triggers element
of a data template.

Event Triggers
Whereas property triggers check for values on dependency properties and data triggers
check for values on CLR properties, event triggers watch for events. When an event (like
a Click event) happens, an event trigger responds by raising an animation-related event.

 </MultiDataTrigger.Conditions>
 <Setter Property="BitmapEffect">
 <Setter.Value>
 <OuterGlowBitmapEffect GlowColor="Green" GlowSize="10" />
 </Setter.Value>
 </Setter>
 </MultiDataTrigger>
 </Style.Triggers>
</Style>

Figure 8-13. The winner aglow with pride (Color Plate 11)

* For more information about bitmap effects, read Chapter 13.

Example 8-27. A multidata trigger (continued)

282 | Chapter 8: Styles

Although animation is interesting enough to deserve its own chapter (Chapter 16),
Example 8-28 shows a simple animation that will transition a button from transparent
to opaque over two seconds when it’s clicked.

To add an animation to a style requires two things. The first is an event trigger with
the name of the event that caused the trigger to fire (the Click event, in our case).
The second is a storyboard, which is a grouping for animations. When the Click
event happens, we begin the storyboard. Our storyboard happens to contain one ani-
mation, which animates the Opacity property on the button from fully transparent to
fully opaque. Figure 8-14 shows the results of clicking the button in the upper left
about halfway through the fade-in animation.

Event triggers let you trigger animations when events happen. Property and data trig-
gers let you set properties when properties change, but they also let you start or stop
animations (discussed in Chapter 16). Both types of triggers let you add a degree of
interactivity to your applications in a wonderfully declarative way with little or no code.

Example 8-28. An event trigger

<Style TargetType="{x:Type Button}">
 ...
 <Style.Triggers>
 ...
 <EventTrigger RoutedEvent="Click">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetProperty="Opacity"
 From="0" To="1" Duration="0:0:2" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Style.Triggers>
</Style>

Figure 8-14. The event trigger and our fade-in animation (Color Plate 12)

Where Are We? | 283

Where Are We?
Styles enable you to define a policy for setting the dependency properties of visual
elements. You can apply sets of properties manually by name, programmatically by
name, or automatically using element-typed styles. In addition to providing constant
dependency property values, styles can contain condition-based property values
based on other dependency properties, data properties, or events.

But that’s not all there is to styles. For information about how animations work,
you’ll want to read Chapter 16, and for information about styles as related to
resources, themes, and skins, you’ll want to read Chapter 12. Finally, if setting style
properties isn’t enough to give your control the look you want, the very next chapter
shows you how to replace the look of a control completely.

284

Chapter 9CHAPTER 9

Control Templates 9

Styles, as described in Chapter 8, are great if the changes you’d like to make to a con-
trol’s look can be adjusted by the control’s properties (according to your keen aes-
thetic sense), but what if the control author didn’t leave you enough knobs to get the
job done? Rather than diving in to build a custom control, as other presentation
libraries would have you do, WPF provides the ability to replace the complete look
of the built-in controls while maintaining the existing behavior.

Beyond Styles
Recall from Chapter 8 that we built a nice little tic-tac-toe game. However, if we take
a closer look at it, we’ll see that the Button isn’t quite doing the job for us. What
tic-tac-toe board has rounded inset corners (Figure 9-1)?

What we really want here is to be able to keep the behavior (i.e., holding content and
firing click events), but to take over the look of it. WPF allows this kind of thing

Figure 9-1. Tic-tac-toe boards don’t have rounded insets!

Beyond Styles | 285

because the intrinsic controls are built to be lookless (i.e., they provide behavior, but
the control’s user can swap out the look completely). The default look comes from
the system-provided template, as described in Chapter 12.

Remember from Chapters 6 and 8 how we used data templates to provide the look of a
nonvisual object? We can do the same to a control using a control template—a set of
triggers, resources, and most important, elements that provide the look of a control.

To fix our buttons’ looks, we’ll build ourselves a control template resource. Let’s
start things off with a simple rectangle (see Example 9-1).

Figure 9-2 shows the results of setting a single button’s Template property.

Notice that no vestiges of how the button used to look remain in Figure 9-2. Unfor-
tunately, we can see no vestige of our rectangle, either. The problem is that without a
fill explicitly set, the rectangle defaults to no fill, showing the grid’s black back-
ground. Let’s set it to our other favorite Halloween color instead:

<ControlTemplate>
 <Rectangle Fill="Orange" />
</ControlTemplate>

Example 9-1. A minimal control template

<!-- let's just try one button for now... -->
<Button Margin="0,0,2,2" Grid.Row="0" Grid.Column="0" Name="cell00">
 <Button.Template>
 <ControlTemplate>
 <Grid>
 <Rectangle />
 </Grid>
 </ControlTemplate>
 </Button.Template>
</Button>

Figure 9-2. Replacing the control template with something less visual than we’d like…

286 | Chapter 9: Control Templates

Now we’re getting somewhere, as Figure 9-3 shows.

Notice how square the corners are now? Also, if you click, you won’t get the depres-
sion that normally happens with a button (and I don’t mean “a sad feeling”). We
have taken complete control over the look of the button or, to paraphrase some
ancient pop culture, “all your button are belong to us...”

Control Templates and Styles
Now that we’re making some progress on the control template, let’s replicate it to
the other buttons. We could do that by setting each button’s Template property by
hand, either to a copy of the control template or with a reference to a
ControlTemplate element that’s been created in a Resource element. However, it’s
often most convenient to bundle the control template with the button’s style, as
Example 9-2 illustrates.

Figure 9-3. Replacing the button’s control template with an orange rectangle (Color Plate 13)

Example 9-2. Putting a control template into a style

<Window.Resources>
 <Style TargetType="{x:Type Button}">
 ...
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate>
 <Rectangle Fill="Orange" />
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 ...
</Window.Resources>
...

Beyond Styles | 287

As Example 9-2 shows, the Template property is the same as any other and can be set
with a style. Figure 9-4 shows the results.

Here we have the classic crosshatch we’ve been aiming for, but the orange is kind of
jarring. What if the Button object’s Background property was set to something more
reasonable (maybe white?) and we’re ignoring it, favoring colors from scary holidays
not known for their design sense? We can solve this problem with template bindings.

Template Binding
If we wanted white buttons, we could hardcode the rectangle’s fill to be white, but
what happens when a style wants to change it (maybe somebody really wants an
orange tic-tac-toe board)? Instead of hardcoding the fill of the rectangle, we can
reach out of the template into the properties of the control by using template bind-
ing, as shown in Example 9-3.

<!-- No need to set the Template property for each button -->
<Button ... Name="cell00" />
...

Figure 9-4. Spreading the orange (Color Plate 14)

Example 9-3. Template binding to the Background property

<Style TargetType="{x:Type Button}">
 <Setter Property="Background" Value="White" />
 ...
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate>
 <Rectangle Fill="{TemplateBinding Property=Background}" />
 </ControlTemplate>
 </Setter.Value>
</Style>

Example 9-2. Putting a control template into a style (continued)

288 | Chapter 9: Control Templates

Template binding is like data binding, except that the properties to bind come from
the control whose template you’re replacing (called the templated parent). In our
case, any dependency property on the Button class is fair game as a template binding
source. And like data binding, template binds are smart enough to keep the proper-
ties of the items inside the template up-to-date with changing properties on the out-
side as set by styles, animations, and so on.

If you need the expanded options provided by a full binding, you use a Binding
object inside a template with a RelativeSource of TemplatedParent to indicate how to
resolve the Path (see Example 9-4).

You should choose template binding over standard binding inside a template if it
meets your needs, as template binding is optimized for just that use.

If you like, you can separate the control template from the style into a separate
resource altogether:

<ControlTemplate x:Key="ButtonTemplate">
 <Grid>
 <Rectangle Fill="{TemplateBinding Property=Button.Background}" />
 </Grid>
</ControlTemplate>
<Style TargetType="{x:Type Button}">
 ...
 <Setter
 Property="Template"
 Value="{StaticResource ButtonTemplate}" />
</Style>

Example 9-4. Binding inside a template using a RelativeSource of TemplatedParent

<Style TargetType="{x:Type Button}">
 <Setter Property="Background" Value="White" />
 ...
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate>
 <Rectangle
 Fill="{Binding Path=Background,
 RelativeSource={RelativeSource TemplatedParent}}" />
 </ControlTemplate>
 </Setter.Value>
</Style>

Beyond Styles | 289

As with styles, we can avoid prefixing template binding property names with classes
by setting the TargetType attribute on the ControlTemplate element:

<ControlTemplate x:Key="ButtonTemplate" TargetType="{x:Type Button}">
 <Grid>
 <Rectangle Fill="{TemplateBinding Property=Background}" />
 </Grid>
</ControlTemplate>

We’re not quite through with our tic-tac-toe board yet, of course. If we’re going to
change the study in pumpkin that Figure 9-4 has become into a playable game, we
have to show the moves. To do that, we’ll need a content presenter.

Content Presenters
If you’ve ever driven by a billboard or a bus-stop bench that says “Your advertise-
ment here!” that’s all you need to know to understand content presenters. A content
presenter is the WPF equivalent of “your content here” that allows content held by a
ContentControl to be plugged in at runtime.

In our case, the content is the visualization of our PlayerMove object. Instead of repro-
ducing all of that work inside the button’s new control template, we’d just like to plug it
in at the right spot. The job of the content presenter is to take the content provided by
the templated parent and do all of the things necessary to get it to show up properly,
including styles, triggers, and so on. You can drop the content presenter itself into your
template wherever you’d like to see it. For this application, we’ll compose a content pre-
senter with the rectangle inside a grid, using techniques from Chapter 3:

<ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Rectangle Fill="{TemplateBinding Property=Background}" />
 <ContentPresenter
 Content="{TemplateBinding Property=Content}" />
 </Grid>
</ControlTemplate>

Further, with the TargetType property in place, we can drop the explicit template
binding on the Content property altogether, as it can be set automatically:

<ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Rectangle Fill="{TemplateBinding Property=Background}" />
 <!-- with TargetType set, the template binding for the -->
 <!-- Content property is no longer required -->
 <ContentPresenter />
 </Grid>
</ControlTemplate>

290 | Chapter 9: Control Templates

I used the Grid here because it’s an obvious way to compose the
Rectangle and the ContentPresenter together into one cell that takes
up the entire available space. However, I also used it to illustrate a
possible performance issue.

When you’re building control templates, you’ve got to keep in mind
that they’re likely to be used in multiple places—sometimes hundreds
of places. Every element you include will be used each time your con-
trol template is expanded, so you want to make sure to use the mini-
mum number of elements.

For example, in our simple control template, there’s no reason to have
a Rectangle to share the same cell in the Grid just to give the
ContentPresenter a background color—instead, we can just use a
Border, which has a background color and can contain our
ContentPresenter. And because the Border is only one element, we
don’t need to use the Grid to arrange it. An optimized version of this
template looks like this:

<ControlTemplate TargetType="{x:Type Button}">
 <Border Background="{TemplateBinding Property=Background}">
 <ContentPresenter />
 </Border>
</ControlTemplate>

For the purposes of our example, the control template is expanded
only nine times, so there’s no problem, but you should keep element
count in mind when you’re composing your content templates.

The content presenter is all we need to get our game back to being functional, as
shown in Figure 9-5.

The last little bit of work in our sample is to get the padding to work. Because the
content presenter doesn’t have its own Padding property, we can’t bind the Padding

Figure 9-5. Adding a content presenter to our control template (Color Plate 15)

Beyond Styles | 291

property directly (it doesn’t have a Background property, either, which is why we used
the Rectangle and its Fill property). For properties that don’t have a match on the
content presenter, you have to find mappings or compose the elements that provide
the functionality you’re looking for. For example, Padding is an amount of space
inside a control. Margin, on the other hand, is the amount of space around the out-
side of a control. Because they’re both of the same type, System.Windows.Thickness, if
we could map the Padding from the inside of our button to the outside of the con-
tent presenter,* our game would look very nice:

<ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Rectangle Fill="{TemplateBinding Property=Background}" />
 <ContentPresenter Margin="{TemplateBinding Property=Padding}" />
 </Grid>
</ControlTemplate>
<Style TargetType="{x:Type Button}">
 <Setter Property="Background" Value="White" />
 <Setter Property="Padding" Value="8" />
 <Setter Property="Template" Value="{StaticResource ButtonTemplate}" />
 ...
</Style>

Figure 9-6 shows our completed tic-tac-toe variation.

Like the mapping between Padding and Margin, building up the elements that give
you the look you want and binding the appropriate properties from the templated
parent is going to be a lot of the work of creating your own control templates.

* You might be wondering whether we also need to bind our Margin property into the control template. It’s a
special case: WPF implements Margin for all elements as part of the layout process, so it’s not something our
template needs to worry about.

Figure 9-6. Binding the Padding property to the Margin property

292 | Chapter 9: Control Templates

Template Triggers
Just like styles, control templates support triggers. These let us set up actions in the
template itself, regardless of what other triggers the content of the control may or
may not also have. For example, if we wanted to add a glow to our buttons as the
user hovers, we can do so with a template trigger, as Example 9-5 illustrates.

In Example 9-5, we’re setting a yellow glow whenever the mouse is hovered over the
rectangle that fills the button. We’re using a property trigger, so the value we’re
watching for is a property on the control itself (the IsMouseOver property, to be pre-
cise). However, we don’t want to set a property on the button; instead, we want to
set the BitmapEffect property on some inner part of the template (the rectangle, in
our case). This is a very common thing to want to do, and because of that, a Setter
object inside a control template allows an extra property to be set that can’t be set in
a style’s Setter: the TargetName property. The TargetName is the name of some ele-
ment in the template on which we’d like to set a property (e.g., the element named
rect in our example).

Figure 9-7 shows the effect in all its glory.

Example 9-5. Control template triggers

<Style TargetType="{x:Type Button}">
 ...
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Rectangle Fill="{TemplateBinding Property=Background}"

Name="rect" />
 <ContentPresenter Margin="{TemplateBinding Property=Padding}" />
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter TargetName="rect" Property="BitmapEffect">
 <Setter.Value>
 <OuterGlowBitmapEffect GlowColor="Yellow" GlowSize="10" />
 </Setter.Value>
 </Setter>
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 ...
</Style>

Beyond Styles | 293

Extending Templates
Take another look at the glow effect in which we swaddled our buttons:

<OuterGlowBitmapEffect GlowColor="Yellow" GlowSize="10" />

Do you notice a problem we’ve run into before? That’s right—in the same way we
were hardcoding the orange fill color a few pages ago, now we’re hardcoding the
glow color and size. “Oh,” you think. “That’s no problem. I’ll just do what I did
before and map the appropriate properties of the Button class to the GlowColor and
GlowSize properties in the template.” And I applaud you in the application of your
recent learnin’, but there ain’t no properties on the Button that map to “glow.” In
fact, it is often the case in building control templates that there are more variables
you’d like to expose than there are properties on the control being “templated.”

Repurposing an existing property

One popular technique to let us default a custom property for use by the control
template is to hijack an existing property for our purposes, as shown in Example 9-6.

Figure 9-7. A control template trigger in action (Color Plate 16)

Example 9-6. Extending a template by repurposing an existing property

<Style TargetType="{x:Type Button}">
 ...
 <Setter Property="Tag">
 <Setter.Value>
 <OuterGlowBitmapEffect GlowColor="Yellow" GlowSize="10" />
 </Setter.Value>
 </Setter>
 <Setter Property="Template">
 <Setter.Value>

294 | Chapter 9: Control Templates

In Example 9-6, our Button style uses the Tag property to pass in a bitmap effect
object to use when the mouse is overhead. The control template’s trigger uses the
value of the Tag property when the IsMouseOver property is True. Notice that we’re
using normal binding (with the TemplatedParent RelativeSource) instead of template
binding because the normal binding object has casting support at runtime, whereas
template binding checks the types statically at compile time. The use of a normal bind-
ing enables us to pull a BitmapEffect out of the Tag property, which is of type Object.

When we create a button using this style, the Tag value acts as a default value, which
we can override with any bitmap effect that tickles our fancy (as shown on the mid-
dle button in Example 9-6).

Defining a custom dependency property

The problem with repurposing any of the Button’s properties is that somebody might
actually use the one you pick for something (e.g., the Tag property is generally a place
to store app-specific data). If this is a worry, the safest thing to do (short of defining
your own custom control type) is to take a page from Chapter 18 and define your
own custom dependency property:

namespace TicTacToe {
 public class MouseOverEffectProperties {
 public static DependencyProperty MouseOverEffectProperty;
 static MouseOverEffectProperties() {

 <ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 ...
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter TargetName="rect" Property="BitmapEffect"
 Value="{Binding Path=Tag,
 RelativeSource={RelativeSource TemplatedParent}}" />
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
...
<!-- use default bitmap effect set in the style -->
<Button Margin="2,0,2,2" Grid.Row="0" Grid.Column="1" Name="cell01" />
...
<!-- use custom bitmap effect, overriding the style's default -->
<Button Margin="2,2,2,2" Grid.Row="1" Grid.Column="1" Name="cell11">
 <Button.Tag>
 <BevelBitmapEffect BevelWidth="10" />
 </Button.Tag>
</Button>
...

Example 9-6. Extending a template by repurposing an existing property (continued)

Beyond Styles | 295

 OuterGlowBitmapEffect defaultEffect = new OuterGlowBitmapEffect();
 defaultEffect.GlowColor = Colors.Yellow;
 defaultEffect.GlowSize = 10;

 MouseOverEffectProperty =
 DependencyProperty.RegisterAttached(
 "MouseOverEffect",
 typeof(BitmapEffect),
 typeof(MouseOverEffectProperties),
 new PropertyMetadata(defaultEffect));
 }
 }
 public static BitmapEffect
 GetMouseOverEffect(DependencyObject target) {

 return (BitmapEffect)target.GetValue(MouseOverEffectProperty);
 }

 public static void
 SetMouseOverEffect(DependencyObject target, BitmapEffect value) {

 target.SetValue(MouseOverEffectProperty, value);
 }
}

Notice that this dependency property is registered as an attached property that can
be attached to any DependencyObject. Also notice that it has a built-in default, which
simplifies our style, as it needs to list a value for our new property only if it wants to
override the default. The static GetMouseOverEffect and SetMouseOverEffect methods
allow us to set the property value on any dependency object, including our buttons.
With this dependency property in place, we can write our control template trigger as
shown in Example 9-7.

Example 9-7. Using the custom attached dependency property to pass extra info

<Window ... xmlns:local="clr-namespace:TicTacToe">
 ...
 <ControlTemplate.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter ...
 Property="BitmapEffect"
 Value="{Binding
 Path=(local:MouseOverEffectProperties.MouseOverEffect),
 RelativeSource={RelativeSource TemplatedParent}}" />
 </Trigger>
 </ControlTemplate.Triggers>
 ...
 <Button ...
 Tag="howdy"
 local:MouseOverEffectProperties.MouseOverEffect="{x:Null}">
 ...
</window>

296 | Chapter 9: Control Templates

Notice that the Path expression in the Binding is surrounded by parentheses, which,
as you’ll recall from Chapter 6, means an explicit dependency property reference.
Notice also that we’ve defined an XML namespace pointing to the CLR namespace
where the class lives and that we use this to specify the path to the dependency prop-
erty. However, instead of using the name of the dependency property field (which
has a “Property” suffix), we use the name we registered with the RegisterAttached
method (which doesn’t have the “Property” suffix).

Also notice how Example 9-7 overrides the default value for the property by setting the
attached property on an individual button (to null, in this example), while taking
advantage of the newly available Tag property for a friendly Western U.S. greeting.

Instead of creating a new attached dependency property, you can use
one of the existing ones, even if it has nothing to do with your con-
trol. However, it can be difficult to find an attached property that a)
will never be used for anything else on your control; b) is of the cor-
rect type; and c) has a name that suggests some kind of semantic rela-
tionship with the use of that property in your control template. It does
save code, though, if you can use an existing property.

The simple usage of your custom template properties will always be a custom con-
trol that has those properties built in, of course. I recommend checking out
Chapter 18 for more information about that.

The Control Template Contract
We haven’t been explicit about this yet, but controls expect their templates to pro-
vide certain features. The exact set of features varies from one control to the next,
but a contract is always in effect between the control and the template. The control’s
side of the contract is essentially the set of properties and commands it offers. The
template’s side of the contract is less obvious, and is sometimes implicit.

Remember that a control’s job is to provide behavior. The control template provides
the visuals. A control may provide a default set of visuals, but it should allow these
to be replaced in order to offer the same flexibility as the built-in controls. If you
need to provide both custom behavior and custom visuals, build two components: a
control, and an element designed to be incorporated into the control’s template. A
control that conforms to this approach—where the visuals are separated from the
control—is often described as lookless, because the control has no intrinsic appear-
ance or “look.” All of the controls built into WPF are lookless.

Of course, it is not possible for the control to be entirely independent of its visuals.
Any control will impose some requirements that the template must satisfy if the con-
trol is to operate correctly. The extent of these requirements varies from one control
to another. Button has fairly simple requirements: it needs nothing more than a

Beyond Styles | 297

placeholder in which to inject the content. The slider controls have much more
extensive requirements: the visuals must supply two buttons (increase and decrease),
the “thumb,” and a track for the thumb to run in. Moreover, they need to be able to
respond to clicks or drags on any of these elements, and to be able to position the
thumb.

There is an implied contract between any control type and the style or template.
The control allows its appearance to be customized by replacing the visual tree, but
the tree must in turn provide certain features on behalf of the control. The nature of
the contract will depend on the control—the built-in controls use several different
techniques depending on how tightly they depend on the structure of their visuals.
The following sections describe the various ways in which a control and its tem-
plate can be related.

Property binding

The loosest form of contract between control and template is where the control sim-
ply defines public properties, and allows the template to decide which of these prop-
erties to make visible using the TemplateBinding markup extension. The control does
not care what is in the template.

This is effectively a one-way contract: the control provides properties and demands
nothing in return. Despite this, such a control can still respond to user input if neces-
sary—event routing allows events to bubble up from the visuals to the control. The
control can handle these events without needing to know anything about the nature
of the visuals from which they originated.

Named parts

Sometimes it is necessary for a control to locate specific elements in the template. For
example, if you write a template for a ProgressBar, the control will look for two
parts: the element that it should resize to indicate progress, and a second so-called
“track” element that represents the full extent of the control. The control modifies
the progress indicator part to be a proportion of the size of the track, according to
the current progress. When the bar’s Value property is equal to the Maximum property,
the indicator will be the same size as the track; when the Value is at Minimum, the indica-
tor’s size will be zero; and for values in between, the size is interpolated appropriately.

The ProgressBar locates these two template parts by name. It will expect the tem-
plate to contain an element named PART_Indicator, and another element named
PART_Track. Example 9-8 shows a very simple control template with these parts.

Example 9-8. Control template with named parts

<ProgressBar Width="100" Height="25" Value="4" Maximum="10">
 <ProgressBar.Template>
 <ControlTemplate TargetType="{x:Type ProgressBar}">

298 | Chapter 9: Control Templates

Figure 9-8 shows the results. As you can see, the rectangle with the rounded corners
and the white fill has been sized in proportion to the control’s Value—it’s filling
about 40 percent of the space provided by the track.

The intrinsic WPF controls mark their part usage with the TemplatePartAttribute,
which makes it handy to figure out which controls have which parts (assuming
you’re handy with the metadata API in .NET). Table 9-1 shows the current set of
template parts and their expected type for each WPF control.

 <Grid>
 <Rectangle Name="PART_Track" Fill="LightGray" Stroke="Black" />
 <Rectangle Name="PART_Indicator" HorizontalAlignment="Left"
 Margin="2" RadiusX="5" RadiusY="5"
 Fill="White" Stroke="Blue" />
 </Grid>
 </ControlTemplate>
 </ProgressBar.Template>
</ProgressBar>

Figure 9-8. ProgressBar with template

Table 9-1. Controls with template parts

Control Template part name Expected type

ComboBox PART_Popup Popup

PART_EditableTextBox TextBox

DocumentViewer PART_ContentHost ScrollViewer

PART_FindToolBarHost ContentControl

FlowDocumentPageViewer PART_FindToolBarHost Decorator

FlowDocumentReader PART_ContentHost Decorator

PART_FindToolBarHost Decorator

FlowDocumentScrollViewer PART_FindToolBarHost Decorator

PART_ToolBarHost Decorator

PART_ContentHost ScrollViewer

Frame PART_FrameCP ContentPresenter

GridViewColumnHeader PART_HeaderGripper Thumb

PART_FloatingHeaderCanvas Canvas

MenuItem PART_Popup Popup

NavigationWindow PART_NavWinCP ContentPresenter

PasswordBox PART_ContentHost FrameworkElement

Example 9-8. Control template with named parts (continued)

Beyond Styles | 299

Content placeholders

Some controls expect to find a placeholder element of a certain type in the template.
Controls that support the content model by deriving from ContentControl use the
element type approach. They expect to find a ContentPresenter element in the tem-
plate, as you’ve already seen.

In practice, this is a loosely enforced contract. A ContentControl will
not usually complain if there is no ContentPresenter in the template.
The control doesn’t absolutely depend on the content being presented
in order to function.

In fact, some controls may require more than one placeholder. For example, con-
trols derived from HeaderedContentControl require two—one for the body and one
for the header. In this case, we can simply be explicit about which property the
ContentPresenter presents, as Example 9-9 shows.

ProgressBar PART_Track FrameworkElement

PART_Indicator FrameworkElement

ScrollBar PART_Track Track

ScrollViewer PART_HorizontalScrollBar ScrollBar

PART_VerticalScrollBar ScrollBar

PART_ScrollContentPresenter ScrollContentPresenter

Slider PART_Track Track

PART_SelectionRange FrameworkElement

StickyNoteControl PART_CopyMenuItem MenuItem

PART_CloseButton Button

PART_ResizeBottomRightThumb Thumb

PART_IconButton Button

PART_ContentControl ContentControl

PART_TitleThumb Thumb

PART_PasteMenuItem MenuItem

PART_InkMenuItem MenuItem

PART_SelectMenuItem MenuItem

PART_EraseMenuItem MenuItem

TabControl PART_SelectedContentHost ContentPresenter

TextBoxBase PART_ContentHost FrameworkElement

ToolBar PART_ToolBarPanel ToolBarPanel

PART_ToolBarOverflowPanel ToolBarOverflowPanel

TreeViewItem PART_Header FrameworkElement

Table 9-1. Controls with template parts (continued)

Control Template part name Expected type

300 | Chapter 9: Control Templates

WPF defines two more placeholder types:

• ScrollContentPresenter indicates where the content hosted by a scroll viewer
will go.

• You can use ItemsPresenter in an ItemsControl to indicate where generated
items should be added.

In addition, if you don’t want to replace the entire control template, ItemsControl
lets you replace bits and pieces of itself, which it references in its default templates
(and which you can reference in your own custom ItemsControl templates). In fact,
there are two other options for templates on an ItemsControl. The first we’ve already
seen in Chapter 7: you can supply a DataTemplate as the ItemTemplate property and
this will customize the appearance of each individual item. The second alternative is
that you can set the ItemsPanel property. This allows you to customize just the panel
used to lay out the list contents. This uses another template class:
ItemsPanelTemplate. Notice that neither the ItemTemplate property nor the ItemsPanel
property is of the ControlTemplate type, but anyone customizing an ItemsControl will
want to be familiar with all of the template types that WPF provides.

At this point, we’ve rounded out the different kinds of templates avail-
able in WPF: data templates, hierarchical data templates, control tem-
plates, and items panel templates. Fundamentally, they’re all about
expanding a template as required (and they all derive from the
FrameworkTemplate base class), but the specifics are different and you
can’t mix and match them.

The ItemsPanelTemplate lets you change the default panel that lays out items in the
list:

<ListBox ItemsSource="{Binding}">
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
</ListBox>

Example 9-9. ContentPresenter and HeaderedContentControl

<ControlTemplate TargetType="{x:Type local:MyContentControl}">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <ContentPresenter Grid.Row="0" Content="{TemplateBinding Content}" />
 <ContentPresenter Grid.Row="1" Content="{TemplateBinding Header}" />
 </Grid>
</ControlTemplate>

Beyond Styles | 301

<ComboBox ItemsSource="{Binding}">
 <ComboBox.ItemsPanel>
 <ItemsPanelTemplate>
 <UniformGrid />
 </ItemsPanelTemplate>
 </ComboBox.ItemsPanel>
</ComboBox>

In this code, we’ve replaced the vertical StackPanel provided by default in a ListBox
with a horizontal one. This code also uses a UniformGrid to perform a grid layout of
the list items in a combo box. These two changes produce the results you see in
Figure 9-9.

You can use any type derived from the Panel class as the panel template, including a
custom panel if you’ve written such a thing to perform custom layout. The interest-
ing thing about using a panel in this way is that although none of the panels sup-
ports data binding directly (e.g., none of them has an ItemsSource property like an
ItemsControl), the ItemsControl knows how to manage items in a panel, so it effec-
tively gives you data binding over the panel of your choice.

Placeholders indicated by properties

Some controls look for elements marked with a particular property. For example,
controls derived from ItemsControl, such as ListBox and MenuItem, support tem-
plates containing an element with the Panel.IsItemsHost property set to true. This
identifies the panel that will act as the host for the items in the control. ItemsControl
uses an attached property instead of a placeholder to allow you to decide what type
of panel to use to host the items. (ItemsControl also supports the use of the
ItemsPresenter typed placeholder element. This is used when the template does not
wish to impose a particular panel type, and wants to use whatever panel the
ItemsPanelTemplate has specified in the ItemsPanel property.) Example 9-10 is a sample.

Figure 9-9. The items panel template in action

Example 9-10. Using IsItemsHost to indicate the items host

<ListBox ItemsSource="{StaticResource items}" Width="120" Height="67">
 <ListBox.Template>
 <ControlTemplate TargetType="{x:Type ListBox}">
 <Border BorderThickness="1" BorderBrush="Black" CornerRadius="10">

302 | Chapter 9: Control Templates

Example 9-10 shows the use of a full control template replacing the entire set of visuals
for a ListBox. Notice that we have provided a ScrollViewer; the default ListBox tem-
plate supplies one of these, so we need to provide our own if we want scrolling to work.
Notice also that we’ve provided a panel with the IsItemsHost property set to True.
We could have used the ItemsPresenter instead, as we mentioned earlier, if we
wanted the ItemsPanel property to work. Instead, this sample ignores the ItemsPanel
and uses the IsItemsHost property, indicating to the ItemsControl to which panel it
should add the list items. In this case, we’ve used a VirtualizingStackPanel, a spe-
cial form of StackPanel optimized for a large number of items in the data source.*

This is the same panel type that the default template for a ListBox uses. Figure 9-10
shows the results.

If your goal is to re-create the default look and tweak it, you will want to use some-
thing like the template in Example 9-10. (Here we’re just tweaking the template by
supplying a Clip geometry in order to make the control an unusual shape.) How-
ever, if you want to radically change the appearance, the ScrollViewer is optional.
The only hard requirement is that you supply a panel with the IsItemsHost property
set to True or that you provide an ItemsPresenter.

The use of properties to indicate a content placeholder is effectively equivalent to the
named parts approach described earlier. However, the named parts approach is far
more common—few of the built-in controls use this property-based approach. We
describe it here mainly for completeness.

 <ScrollViewer>
 <ScrollViewer.Clip>
 <RectangleGeometry Rect="0, 0, 118, 65" />
 </ScrollViewer.Clip>
 <VirtualizingStackPanel IsItemsHost="True" />
 </ScrollViewer>
 </Border>
 </ControlTemplate>
 </ListBox.Template>
</ListBox>

* The VirtualizingStackPanel supports item virtualization, which is the ability to contain a large number of
logical children, but instantiating UI elements only for the ones currently visible.

Figure 9-10. Setting the IsItemsHost property

Example 9-10. Using IsItemsHost to indicate the items host (continued)

Beyond Styles | 303

Special-Purpose Elements
Some controls define custom element types designed for use as a part of their tem-
plate, which does more than merely marking the place where content is to be
injected. For example, the Slider control requires the template to contain elements
to represent the draggable thumb, and the clickable track in which the thumb runs.
The control cannot function unless the template conforms to the required structure.
To enforce this, Slider requires that the template contain elements of the special-
purpose Thumb and Track types.

Neither of these control types is designed for use in isolation. To emphasize this,
both Thumb and Track are defined in the System.Windows.Controls.Primitives
namespace. The only places you would normally use Track are in the templates for a
Slider or a ScrollBar. Thumb is slightly more general-purpose—you can use it any-
where you require something draggable. But it’s still designed to be used as part of
something else, and is not a control in its own right.

The Track control defines a fixed structure for part of a control template. It has
three properties that contain nested controls. DecreaseRepeatButton and
IncreaseRepeatButton must contain RepeatButton controls—these represent the
clickable areas to either side of the thumb. The Thumb property contains the Thumb
control itself. The Track manages the sizes and positions of all three controls, ensur-
ing that they reflect the current properties of the control at all times.

Example 9-11 shows this technique in action. Notice that the slider uses the named
part idiom as well as special-purpose element types.

Figure 9-11 shows the rather unadventurous results. In a real application, you would
also provide templates for the two repeat buttons and the thumb.

Example 9-11. Slider template using special-purpose elements

<Slider Width="100" Height="20" Value="20" Maximum="100">
 <Slider.Template>
 <ControlTemplate TargetType="{x:Type Slider}">
 <Track x:Name="PART_Track">
 <Track.DecreaseRepeatButton>
 <RepeatButton Content="<" />
 </Track.DecreaseRepeatButton>
 <Track.Thumb>
 <Thumb Width="10" />
 </Track.Thumb>
 <Track.IncreaseRepeatButton>
 <RepeatButton Content=">" />
 </Track.IncreaseRepeatButton>
 </Track>
 </ControlTemplate>
 </Slider.Template>
</Slider>

304 | Chapter 9: Control Templates

The benefit of this approach is that it allows you to enforce relationships between
different parts of the control template. Sliders and scroll bars use the Track element
to keep the Thumb correctly positioned and sized in relation to the two clickable
regions that form the track. In addition, this approach enforces the fact that the
clickable regions are, in turn, represented by RepeatButtons. The downside is that it
is more complex for the developers using the control because anyone wishing to
define a template for the control must discover and understand the multiple element
types involved.

Examining the Built-in Templates
A lot of the examples in this section talked about how one WPF template does one
thing, while another WPF template does something else. If you’re curious what the
intrinsic WPF templates do, you can check out the ShowMeTheTemplate sample pro-
vided with this book, as seen in Figure 9-12.

On the lefthand side of the template tool are all of the framework elements that have
template properties of any type. When one of them is selected, the template proper-
ties are shown on the right. For example, in Figure 9-12, we can see the Template

Figure 9-11. Customized slider

Figure 9-12. The ShowMeTheTemplate tool

Logical and Visual Trees | 305

property (of type ControlTemplate) of the GridSplitter. The templates shown on the
right are produced by the XAML serializer, so you should be able to copy and paste
them into your own code as a starting place if you’d prefer to tweak an existing tem-
plate instead of starting over from scratch.

Logical and Visual Trees
The existence of templates leads to an API design dilemma that the WPF architects
had to resolve. If a developer wishes to access the elements in the UI, should she see
the fully expanded tree, containing all the instantiated templates? Although this
would put the developer in full control, it might be rather cumbersome; often a
developer only really cares that there is a Button present, not about the structure of
its appearance. On the other hand, to present the simple pre-expansion view would
be unnecessarily limiting.

To solve this problem, WPF lets you work with either the logical tree or the visual
tree. The visual tree contains most* of the elements originally specified (either in
markup or in code) plus all the extra elements added as a result of template instantia-
tion. The logical tree is a subset of the visual tree that omits the elements added as a
result of control template instantiation. WPF provides two helper classes for work-
ing with these two trees: VisualTreeHelper and LogicalTreeHelper.

For example, consider the following snippet of XAML:

<WrapPanel Name="rootPanel">
 <Button>_Click me</Button>
</WrapPanel>

Walking this logical tree at runtime using the LogicalTreeHelper looks like
Example 9-12.

* As one example, no FrameworkContentElement objects, as described in Chapter 14, will show up in the visual
tree even though they’re in the logical tree.

Example 9-12. Dumping the logical tree

public Window1() {
 InitializeComponent();

 // Can dump the logical tree anytime after InitComp
 DumpLogicalTree(rootPanel, 0);
}

void DumpLogicalTree(object parent, int level) {
 string typeName = parent.GetType().Name;
 string name = null;
 DependencyObject doParent = parent as DependencyObject;

306 | Chapter 9: Control Templates

Notice that we’re watching for objects that aren’t instances of the DependencyObject
class (almost the lowest level in the WPF type hierarchy—only the DispatcherObject
is lower). Not everything in the logical tree is part of the WPF type hierarchy (e.g.,
the string we pass in as the text content of the Button is going to stay a string when
we examine it):

WrapPanel: rootPanel
 Button:
 String: _Click me

The code to walk the instantiated objects with the VisualTreeHelper is simpler
because everything it encounters is at least a DependencyObject (see Example 9-13).

 // Not everything in the logical tree is a dependency object
 if(doParent != null) {
 name = (string)(doParent.GetValue(FrameworkElement.NameProperty) ?? "");
 }
 else {
 name = parent.ToString();
 }

 Debug.Write(" ".Substring(0, level * 2));
 Debug.WriteLine(string.Format("{0}: {1}", typeName, name));
 if(doParent == null) { return; }

 foreach(object child in LogicalTreeHelper.GetChildren(doParent)) {
 DumpLogicalTree(child, level + 1);
 }
}

Example 9-13. Dumping the visual tree

protected override void OnContentRendered(EventArgs e) {
 base.OnContentRendered(e);

 // Need to wait for layout before visual tree is ready
 Debug.WriteLine("Visual tree:");
 DumpVisualTree(rootPanel, 0);
}

void DumpVisualTree(DependencyObject parent, int level) {
 string typeName = parent.GetType().Name;
 string name = (string)(parent.GetValue(FrameworkElement.NameProperty) ?? "");
 Debug.Write(" ".Substring(0, level * 2));
 Debug.WriteLine(string.Format("{0}: {1}", typeName, name));

 for(int i = 0; i != VisualTreeHelper.GetChildrenCount(parent); ++i) {
 DependencyObject child = VisualTreeHelper.GetChild(parent, i);
 DumpVisualTree(child, level + 1);
 }
}

Example 9-12. Dumping the logical tree (continued)

Logical and Visual Trees | 307

In Example 9-13, you’ll notice that we’re careful to only walk the visual tree in the
OnContentRendered event, which guarantees that at least a portion of the visual tree
has been rendered. This is important, because the visual tree isn’t expanded until it
needs to be. However, once it’s instantiated, the visual tree is considerably more ver-
bose than the logical tree:

WrapPanel: rootPanel
 Button:
 ButtonChrome: Chrome
 ContentPresenter:
 AccessText:
 TextBlock:

The difference, of course, is that the button control template was instantiated. If
you’d like to explore the visual tree produced by a bit of XAML interactively, I sug-
gest the XamlPad tool that comes with the Windows Platform SDK. XamlPad lets
you type in XAML and shows you the results as soon as you’ve entered valid XAML.
It also has a button that will show you the visual tree of the XAML you’ve typed in.
Figure 9-13 shows the visual tree for our sample XAML in a slightly nicer way.

Figure 9-13. Showing the visual tree inside XamlPad

308 | Chapter 9: Control Templates

Data-Driven UI
Templates enable a certain kind of UI programming sometimes called data-centric UI
and sometimes called data-driven UI. The idea is that the data is the most important
thing in our application, and through the use of declarative UI techniques (as
enabled by XAML) we shape the data into something suitable for presentation to the
user. Ideally, we do this without changing the underlying data at all, but by instead
transforming the data on its way to the user as appropriate.

For example, getting back to our tic-tac-toe program, we haven’t been very data-driven
at all, instead bundling up the manipulation of the data with the UI code (a.k.a. “put-
ting your logic in the click handler”). A better way to start is to move our game logic
into a class of its own that has nothing at all to do with the UI:*

class TicTacThree : INotifyPropertyChanged {
 public TicTacThree(int dimension) {...}
 public void NewGame() {...}
 public void Move(int cellNumber) {...}
 public IEnumerable<Cell> Cells { get {...} }
 public string CurrentPlayer { get {...} }
 public bool HasWinner { get {...} }
}

class Cell : INotifyPropertyChanged {
 public Cell(int cellNumber) {...}
 public int CellNumber { get {...} }
 public PlayerMove Move { get {...} set {...} }
}

class PlayerMove : INotifyPropertyChanged {
 public string PlayerName { get {...} set {...} }
 public int MoveNumber { get {...} set {...} }
 public bool IsPartOfWin { get {...} set {...} }
 public PlayerMove(string playerName, int moveNumber) {...}
}

With this change, the code to hook up our UI to the new game logic is reduced
significantly:

class Window1 : Window {
 TicTacThree game = new TicTacThree(3); // 3x3 grid
 public Window1() {
 InitializeComponent();
 DataContext = game;
 }

 void cell_Click(object sender, RoutedEventArgs e) {
 Button cell = (Button)sender;

* In fact, this has nothing whatever to do with data-driven UI; as a good coding practice, you should separate
your data and your logic from your UI.

Data-Driven UI | 309

 int cellNumber = int.Parse(cell.Tag.ToString());
 game.Move(cellNumber);
 if(game.HasWinner) {
 MessageBox.Show("Winner!");
 game.NewGame();
 }
 }
}

However, in addition to the styles and templates we’ve built up over the course of
our discussion, our XAML is augmented with data binding to show the player moves
and the current player:

<Window ...>
 ... <!-- styles and templates as before -->
 <Button ... Tag="0" Content="{Binding Cells[0].Move}" Click="cell_Click" />
 <Button ... Tag="1" Content="{Binding Cells[1].Move}" Click="cell_Click" />
 ...
 <TextBlock ...>
 It's your move, <TextBlock Text="{Binding CurrentPlayer}" />
 </TextBlock>
</Window>

At this point, we’ve moved further toward data-driven UI, as we’ve separated the
data manipulation out of the UI code and are relying on our styles, templates, and
data binding to translate the data appropriately for user interaction. However, we
have hardcoded knowledge about how much data we are going to get: nine cells.
That works great until we add an option to create a tic-tac-toe game of 4 × 4 or 5 × 5
cells, at which point it’s clear we’re not as data-driven as we’d like to be. Luckily, it’s
not hard to update our code-behind file:

class Window1 : Window {
 TicTacThree game = new TicTacThree(3); // 3x3 grid
 public Window1() {
 ...
 threeByThreeMenuItem.Click += gameDimensionMenuItem_Click;
 fourByFourMenuItem.Click += gameDimensionMenuItem_Click;
 fiveByFiveMenuItem.Click += gameDimensionMenuItem_Click;
 }

 void gameDimensionMenuItem_Click(object sender, RoutedEventArgs e) {
 if(sender == threeByThreeMenuItem) { game = new TicTacThree(3); }
 if(sender == fourByFourMenuItem) { game = new TicTacThree(4); }
 if(sender == fiveByFiveMenuItem) { game = new TicTacThree(5); }
 DataContext = game;
 }

 ...
}

Updating the XAML is a bit trickier, however, as we need to handle a variable num-
ber of cells. In our case, the UniformGrid—which arranges things in even rows and
columns—is exactly what we need, but the other panels will be useful for other kinds
of data-driven layouts:

310 | Chapter 9: Control Templates

<Window ...>
 ...
 <Menu ...>
 <MenuItem Header="_Game">
 <MenuItem Header="_3x3 Game" Name="threeByThreeMenuItem" />
 <MenuItem Header="_4x4 Game" Name="fourByFourMenuItem" />
 <MenuItem Header="_5x5 Game" Name="fiveByFiveMenuItem" />
 </MenuItem>
 </Menu>
 ...
 <ItemsControl ... ItemsSource="{Binding Cells}">
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <UniformGrid />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>

 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Button Content="{Binding Move}" Tag="{Binding CellNumber}"

Margin="2" Click="cell_Click" />
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
 ...
</Window>

Here, we’ve added the menu so that the user can control the dimensions of the game,
and we’ve bound the cells in the game as the data source to drive our items control.
(We’re using an ItemsControl instead of a ListBox or a ListView because we don’t
want the selection behavior those controls provide.) For the panel, we’re using a uni-
form grid, which will take however many items we provide and turn them into an
even number of rows and columns. Likewise, for each item, we’re expanding a data
template into a button to show the current cell’s move (or nothing, if no move has
yet been made). We’re also binding the Tag property of each Button to the CellNumber
property of the cell so that we can use the same button Click event handler. How-
ever, as we saw in Chapter 7, we could just as easily use the DataContext of the
sender, as it will point to the Cell that was used to instantiate the data template.

Figure 9-14 shows the results of our data-driven UI work.

The interesting thing to notice is that once we’ve structured our XAML to be free of
the hardcoded amount of data to expect, the XAML itself doesn’t get any more com-
plicated, although it does have more functionality as the data changes, as Figure 9-14
shows.

If you decide you need even more control, you are of course free to take over the con-
trol templates as well:

<ItemsControl ... ItemsSource="{Binding Cells}">
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>

Data-Driven UI | 311

 <UniformGrid />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>

 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Button Margin="2"
 Content="{Binding Move}"
 Tag="{Binding CellNumber}"
 Click="cell_Click" />
 </DataTemplate>
 </ItemsControl.ItemTemplate>

 <ItemsControl.Template>
 <ControlTemplate TargetType="{x:Type ItemsControl}">
 <Grid>
 <Rectangle Fill="Green" RadiusX="20" RadiusY="20" />
 <ItemsPresenter Margin="20" />
 </Grid>
 </ControlTemplate>
 </ItemsControl.Template>

</ItemsControl>

Figure 9-14. A data-driven game of tic-tac-toe

312 | Chapter 9: Control Templates

Here, we’re replacing the control template with a border containing an
ItemsPresenter, which, as you’ll recall from earlier in this chapter, will display the
items according to the templates set by the ItemsPanel and ItemsTemplate properties,
as Figure 9-15 shows.

This use of the control template isn’t particularly fancy (although it does give our
game a nice felt-tabletop look), but it does illustrate just how much control we have
over the UI using templates, even when our data is completely UI-agnostic.

Ultimately, driving your UI by the data means making a choice from a range of possi-
bilities. We started by dropping data objects into buttons and using styles and tem-
plates to present those objects to the user. Moving to data binding and away from
mingling the data manipulation code in with UI code moved us farther along the
continuum, as did binding the cells to an items control hosting a uniform grid. How-
ever, there are always going to be trade-offs. For example, our menu supports only
three dimension choices, no matter how many our game object might support. Fur-
ther, we haven’t supported the case where the game object might arrange the cells in
nonuniform rows and columns. Like all software design choices, how “data-driven”
you want your UI to be depends on the goals of your application.

However, whatever trade-offs you make, it is definitely the case that the various tem-
plates that WPF provides—data, control, and panel—all give us far more options
than we’ve had in desktop presentation frameworks available before now. In fact, the
reason I make a point of data-driven UI design is so that you don’t approach WPF
programming using the same techniques you used to program user interfaces of old.

Figure 9-15. Replacing the control template in a data-driven application (Color Plate 17)

Where Are We? | 313

As an example of where other UI frameworks don’t quite provide the
kind of data-driven capabilities we’d like, consider another UI frame-
work that both authors are big fans of: Windows Forms. In Windows
Forms, you absolutely have the ability to bind data to your controls. In
fact, Windows Forms has more controls than WPF has, including the
GridView, which has no equivalent in WPF v1.0.

However, although Windows Forms has more controls, each control
has more limited support for what it can display. For example,
although I can hand the Windows Forms ListBox a list of strings, I
can’t hand it a list of CheckBox objects or PlayerMove objects and have
it do anything more than call each object’s ToString method. If I want
a container to meaningfully bind to a list of PlayerMove objects in Win-
dows Forms, I have to build the custom PlayerMove container.

With WPF, on the other hand, I can plug custom data types and cus-
tom UI frameworks into existing containers by providing data and
control templates. This turns out to be considerably less work for the
same functionality. WPF is not your father’s UI framework...

Where Are We?
If the control author didn’t give you the right properties to tailor a control’s look to
your liking, you can replace the look completely with a control template (assuming
the control author has allowed such a thing). To this end, all of the built-in controls
are “lookless,” picking up their default look from the system-wide theme, but leav-
ing you to take it over completely, while keeping the existing behavior intact. If you
want to plug into the existing behavior properly, however, some controls have more
requirements, which we called the control template “contract.”

If a custom template still doesn’t give you enough control—perhaps you’d like cus-
tomized behavior—you’ll want to think about building a custom control, which is
described in Chapter 18, along with how to support custom control templates on
your own custom controls.

314

Chapter 10CHAPTER 10

Windows and Dialogs 10

The Window class, mentioned in Chapter 2, is the required class for the application’s
main window. To fit in with the rest of the Windows applications, the WPF Window
class is flexible. It supports building top-level style main windows and dialogs, which
we’ll discuss in this chapter, as well as serving as the base class for the
NavigationWindow, which we’ll discuss in the next chapter.

Window
In Chapter 2, we looked at the lifetime and services of an application, often as related
to the windows that constitute the UI of the application. However, we didn’t talk
much about the windows themselves. The Window class derives from the
ContentControl (described in Chapter 5) and adds the chrome around the edges that
contains the title; the minimize, maximize, and close buttons; and so on. The con-
tent can look however you want. The chrome itself has more limited options.

Window Look and Feel
The look and feel of the frame of a window is largely determined by the Icon, Title,
and WindowStyle properties, the latter of which has four options (None,
SingleBorderWindow, ThreeDBorderWindow, and ToolWindow), shown in Figure 10-1 (the
default is SingleBorderWindow).

You’ll notice that the icon and/or title are shown or not depending on the window
style. You’ll also notice that the None WindowStyle still contains a border. This is
because, by default, a window can be resized, so it needs resizing edges. If you turn
off resizing with the ResizeMode property, as discussed later in this chapter, the None
WindowStyle will remove all window “crust,” leaving only the “gooey center.”

Window | 315

Window Lifetime
Before you can see a window, you need to create it and show it. Creating a window is
as easy as calling new on the Window class or a class derived from Window. As you can
see in Example 10-1, if you’ve defined a custom window in XAML—Visual Studio
2005 does this when you right-click on a project in the Solution Explorer and select
Add ➝ New Item and then choose Window (WPF)—the constructor will need to call
the InitializeComponent method (as the Visual Studio 2005-generated Window classes
already do).

Figure 10-1. Window styles in Windows Vista and Windows XP

316 | Chapter 10: Windows and Dialogs

In the presence of the x:Class property, the WPF build task will generate a partial
class with an InitializeComponent implementation. This will load the window’s
XAML and use it to initialize the properties that make up the window object and
hook up the events. If you forget to call InitializeComponent or do something else
before calling InitializeComponent, your window object will not be fully initialized.

After the window has been constructed, you can show it modally or modelessly (see
Example 10-2).

When a window is shown modelessly using the Show method, the Show method
returns immediately, not waiting for the newly shown window to close. This is the
method to use to create a new top-level window in your application.

When a window is shown modally using the ShowDialog method, the ShowDialog
method doesn’t return until the newly shown window is closed, disabling the other
windows in your application. The ShowDialog method is mostly used to show win-
dows that act as dialogs, which we’ll see in the “Dialogs” section, later in this chapter.

Once a window is created, it exposes a series of events to let you monitor and affect
its lifetime, as shown in Figure 10-2.

Example 10-1. Calling InitializeComponent

<!-- Window1.xaml -->
<Window x:Class="WindowsApplication1.Window1" ...>
 ... <!-- XAML to initialize instance of custom Window class -->
</Window>

// Window1.xaml.cs
...
namespace WindowsApplication1 {
 public partial class Window1 : System.Windows.Window {
 public Window1() {
 // Use XAML to initialize object of custom Window class first
 InitializeComponent();
 ...
 }
 ...
 }
}

Example 10-2. Showing a window modelessly and modally

Window1 window = new Window1();

// Show modelessly
window.Show();

// Show modally
if(window.ShowDialog() == true) {
 // user clicked OK (or the equivalent)
}

Window | 317

The following is a description of these events:

Initialized
Raised when the FrameworkElement base of the Window is initialized (essentially
when the InitializeComponent method is called).

LocationChanged
Fired when the window is moved.

Figure 10-2. Window lifetime

Construction

Show[Dialog]

Initialized

LocationChanged

Activated

Loaded

ContentRendered

Deactivated

Activated

Closing

Deactivated

Closed

Unloaded

318 | Chapter 10: Windows and Dialogs

Activated
Raised when the window is activated (e.g., clicked on). If the window is never
activated, you won’t get this event (or the corresponding Deactivated event).

Deactivated
Raised when some other window in the system is activated.

Loaded
Raised just before the window is shown.

ContentRendered
Raised when the window’s content is visually rendered.

Closing
Raised when the window attempts to close itself. You can cancel this by setting
the CancelEventArgs argument’s Cancel property to true.

Closed
Raised when the window has been closed (cannot be canceled).

Unloaded
Raised after the window has been closed and removed from the visual tree. If clos-
ing the window causes the application to shut down, you won’t see this event.

Window Location and Size
You can manage the x and y locations of a window with the Top and Left properties,
whereas you can influence the Z order with the TopMost property. Across the entire
desktop, all windows with the TopMost property set to true appear above all of the
windows with the TopMost property set to false, although the Z order of the windows
within their layer is determined by user interaction. For example, clicking on a non-
topmost window will bring it to the top of the non-topmost layer of windows, but
will not bring it in front of any topmost windows.

If you’d like to set the startup location of a window manually, you can do so by set-
ting the Top and Left properties before showing the window. However, if you’d pre-
fer to simply have the window centered on the screen or on the owner, you can set
the WindowStartupLocation property to CenterScreen or CenterOwner as appropriate
before showing the window:

Window1 window = new Window1();
window.WindowStartupLocation = WindowStartupLocation.CenterScreen;
window.Show(); // will be centered on the screen

If you don’t change the WindowStartupLocation, Manual is the default. Manual lets you
determine the initial position by setting Top and Left. If you don’t care about the initial
position, the Manual value lets the Windows shell determine where your window goes.

You can get the size of the window from the ActualWidth and ActualHeight proper-
ties of the Window class after (not during) the Initialized event (e.g., Loaded is a good
place to get them). The actual size properties are expressed (like all Window-related

Window | 319

sizes) in device-independent pixels measuring 1/96th of an inch.* However, the
ActualWidth and ActualHeight properties are read-only, and therefore, you cannot use
them to set the width and height. For that, you need the Width and Height properties.

The size properties (Width and Height) are separate from the “actual” size properties
(ActualWidth and ActualHeight) because the actual size is calculated based on the
size, the minimum size (MinWidth and MinHeight), and the maximum size (MaxWidth
and MaxHeight). For example:

Window1 window = new Window1();
window.Show(); // render window so ActualWidth is calculated
window.MinWidth = 200;
window.MaxWidth = 400;
window.Width = 100;
Debug.Assert(window.Width == 100); // regardless of min/max settings
Debug.Assert(window.ActualWidth == 200); // bound by min/max settings

Here, we’ve set the width of the window outside the min/max bounds. The value of
the Width property doesn’t change based on the min/max bounds, but the value of
the ActualWidth property does. This behavior lets you set a size outside of the min/
max bounds, and that size will stick and potentially take effect if the min/max
bounds change. This behavior also means that you should set the Width and Height
properties to influence the size of your window, but you’ll probably want to get the
ActualWidth and ActualHeight properties to see what kind of influence you’ve had.

If, instead of sizing the window manually, you’d like the size of the window to be ini-
tially governed by the size of the content, you can change the SizeToContent prop-
erty from the default SizeToContent enumeration value Manual to one of the other
three enumeration values: Width, Height, or WidthAndHeight. If the content size falls
outside the min/max bounds for one or both dimensions, the min/max bounds will
still be honored. Likewise, if Width or Height is set manually, the SizeToContent set-
ting will be ignored.

By default, all windows are resizable; however, you can change the behavior by set-
ting the ResizeMode property with one of the values from the ResizeMode enumeration:
NoResize, CanMinimize, CanResize, or CanResizeWithGrip, as shown in Figure 10-3.

You’ll notice from Figure 10-3 that the NoResize resize mode causes the Minimize
and Maximize buttons to go away. It also doesn’t resize at the edges. Likewise,
CanMinimize doesn’t allow resizing at the edges, but it shows the Minimize and Maxi-
mize buttons (although only the Minimize button is functional). On the other hand,
the CanResize mode makes the window fully resizable, whereas CanResizeWithGrip is
just like CanResize except that it puts the grip in the lower-righthand corner. Because
of the huge advances that WPF has provided in the area of layout functionality, there
should be almost no reason to use a resize-disabling resize mode.

* For example, if you set the size of a WPF window to 400 × 400 in 120dpi mode, according to Spy++, the size
of that window will be 500 × 500 as far as the operating system is concerned. However, at 96dpi, 400 × 400
is 400 × 400 for both WPF and the OS.

320 | Chapter 10: Windows and Dialogs

Window Owners
We use the CenterOwner value of the WindowStartupLocation enumeration only if we
also set the window’s Owner property. The owner of a window dictates certain charac-
teristics of the windows that are owned by it:

• An owned window always shows in front of its owner unless the owned window
is minimized.

• When an owner window is minimized, all of the owned windows are minimized
(and likewise for restoration).

• When the owner window is closed, so are all of the windows the owner owns.

• When an owner window is activated, all of the owned windows are brought to
the foreground with it.

In practice, the chief visual use of an owned window is to create a
floating tool window or modeless dialog (i.e., something that has min-
imizing and restoration behavior shared with the owner window).

However, you should get into the practice of setting the Owner prop-
erty because it enables better accessibility support in WPF (which you
can read about at http://msdn2.microsoft.com/en-us/library/ms753388.
aspx or http://tinysells.com/102).

An owner window’s set of owned windows is available from the OwnedWindows collec-
tion property.

Figure 10-3. Window resize modes

Window | 321

Window Visibility and State
You can control the visibility of a window with the Visibility property, which has
the following values from the Visibility enumeration: Visible, Hidden, and
Collapsed. (The Window class treats Hidden and Collapsed as the same.) You can also
use the Show and Hide methods. In addition to stopping the window from rendering,
the Hide method takes it out of the taskbar (assuming the ShowInTaskbar property is
set in the first place).

If you’d like to hide the window but leave it in the taskbar, you can set the
WindowState property to the WindowState enumeration value Minimized. To restore it
or make it take up the whole desktop (minus the taskbars and the sidebar), you can
use Normal or Maximized.

Likewise, as the user interacts with the window, the WindowState will reflect the cur-
rent state of the window. If, while the window is minimized or maximized, you’d like
to know the location and size of what it will be upon restoration, you can use the
RestoreBounds property. Unlike Left, Top, Width, Height, ActualWidth, and
ActualHeight, all of which will reflect the current window state within the min/max
bounds, RestoreBounds changes only if the window is moved or resized while it’s in
the Normal state. This makes RestoreBounds a handy property to keep in a user set-
ting for window restoration,* as you can see in Example 10-3.

* Chapter 2 describes user settings.

Example 10-3. Saving and restoring window state

public partial class MainWindow : System.Windows.Window {
 public MainWindow() {
 InitializeComponent();

 try {
 // Restore state from user settings
 Rect restoreBounds = Properties.Settings.Default.MainRestoreBounds;
 WindowState = WindowState.Normal;
 Left = restoreBounds.Left;
 Top = restoreBounds.Top;
 Width = restoreBounds.Width;
 Height = restoreBounds.Height;

 WindowState = Properties.Settings.Default.MainWindowState;
 }
 catch { }

 // Watch for main window to close
 Closing += window_Closing;
 }

322 | Chapter 10: Windows and Dialogs

This code assumes a couple of user settings variables named MainRestoreBounds and
MainWindowState of type Rect and WindowState, respectively. With these in place,
when the main window starts up, we set the window state temporarily to Normal so
that we can set the left, top, width, and height from the restored bounds. After we do
that, we can set the window state to whatever it was when we last ran the applica-
tion, all of which happens before the window is shown, so there’s no shake ‘n’
shimmy as the window goes between normal and another state. When the window is
closing (but before it’s closed), we tuck the data away for the next session and save
the settings. Now, no matter what state the main window is in when we close it, we
properly remember that state and the restored state.*

So far, we’ve talked about windows in the abstract, referring to some usages (e.g.,
top-level windows, toolbox windows, main windows, etc.). One other large use for
windows in Windows applications is the humble dialog, which is the subject of the
rest of this chapter.

Dialogs
Unlike the main window, where users can interact with any number of menu items,
toolbar buttons, and data controls at will, a dialog is most often meant to be a short,
focused conversation with the user to get some specific data before the rest of the
application can continue. The File dialog is the classic example; when the applica-
tion needs the name of a file, the File dialog provides a way for the user to specify it.

In Windows, dialogs were originally designed as modal (i.e., the application has
entered a “mode” where the user must answer the questions posed by the dialog and
click OK, or must abort the operation by clicking the Cancel button). However, it
didn’t take long for dialogs to need to continue running in concert with other acces-
sible windows, leading to modeless operation, where the user can go back and forth
between the dialog and other windows, using each at will. The Find dialog is the
exemplar in this area. As users find something they’ve specified in the Find dialog,
they’re free to interact with that data without dismissing the Find dialog so that they
can find the next thing that matches their query without starting over.

 // Save state as window closes
 void window_Closing(object sender, System.ComponentModel.CancelEventArgs e) {
 Properties.Settings.Default.MainRestoreBounds = RestoreBounds;
 Properties.Settings.Default.MainWindowState = WindowState;
 Properties.Settings.Default.Save();
 }
 ...
}

* For a multiple-monitor-safe version of this sample, check out the “Save Window Placement State Sample”
in the SDK: http://msdn2.microsoft.com/en-gb/library/aa972163.aspx (http://tinysells.com/103).

Example 10-3. Saving and restoring window state (continued)

Dialogs | 323

In WPF, there is no special dialog class. Dialog interactions, both modal and mode-
less, are provided by either the Window or the NavigationWindow (discussed in the next
chapter) as you choose. However, there is built-in support for dialog-like interac-
tions with WPF application users, including modal operation, dialog styles, and data
validation, as we’ll explore in this chapter. And there are a few common dialog
classes, which we’ll explore now.

Common Dialogs
Since Windows 3.1, the operating system itself has provided common dialogs for use
by applications to keep a consistent look and feel. WPF has three intrinsic dialogs
that map to those provided by Windows—OpenFileDialog, SaveFileDialog, and
PrintDialog—and they work the way you’d expect them to.* Example 10-4 shows
the OpenFileDialog in action.

If you’d like access to other common Windows Forms dialogs, like the folder
browser dialog, you can bring in the System.Windows.Forms assembly† and use them
without much trouble,‡ as shown in Example 10-5.

* Unlike the common dialogs provided by Windows Forms, the WPF ShowDialog returns a nullable Boolean
value, not an enumerated value. We’ll talk more about that later.

Example 10-4. Using the OpenFileDialog common dialog

using Microsoft.Win32; // home of OpenFileDialog and SaveFileDialog
using System.Windows.Controls; // home of PrintDialog
...
string filename;

void openFileDialogButton_Click(...) {
 OpenFileDialog dlg = new OpenFileDialog();
 dlg.FileName = filename;

 if (dlg.ShowDialog() == true) {
 filename = dlg.FileName;
 // open the file...
 }
}

† Of course, now you’re paying the cost of loading an additional assembly into your process, but that beats
reimplementing the Windows Forms common dialogs in many scenarios.

‡ If you’d like to take advantage of new Vista features in your common dialog usage, you can do so with sam-
ples provided in the SDK in the topic titled “Vista Bridge Samples,” available at http://msdn2.microsoft.com/
en-us/library/ms756482.aspx (http://tinysells.com/95).

Example 10-5. Showing the FolderBrowserDialog common Windows Forms dialog

string folder;

void folderBrowserDialogButton_Click(...) {

324 | Chapter 10: Windows and Dialogs

In Example 10-5, we’re creating an instance of the FolderBrowserDialog class from
the System.Windows.Forms namespace. The fully qualified type name is useful instead
of the typical using statement at the top of the file so that we don’t collide with any
of the WPF types and thereby require those to be fully qualified, too.

After creation, the code in Example 10-5 calls the ShowDialog method, which shows
the dialog modally until the dialog has closed. When that happens, ShowDialog
returns with a result—generally, OK or Cancel (not true or false, like WPF dialogs).
When it’s OK, we can use the properties of the dialog set by the user.

Available common dialogs

Here’s the list of common dialogs provided by a combination of WPF and Windows
Forms (in case it isn’t available in your personal short-term storage):

• ColorDialog (Windows Forms, but not good for use in WPF)

• FolderBrowserDialog (Windows Forms)

• FontDialog (Windows Forms, but not good for use in WPF)

• OpenFileDialog (WPF)

• SaveFileDialog (WPF)

• PageSetupDialog (Windows Forms)

• PrintDialog (WPF)

• PrintPreviewDialog (Windows Forms, but not good for use in WPF)

Most of them work exactly the way you’d expect them to because they deal in types
that you can easily use in either Windows Forms or WPF (e.g., strings containing
folder names or filenames work equally well in either). On the other hand, three of
them (ColorDialog, FontDialog, and PrintPreviewDialog) don’t work very well at all
with WPF.

The problem with the ColorDialog is that it passes colors in and out using the GDI+ 4-
byte representation of color from the System.Drawing namespace’s Color class. WPF, on
the other hand, has a much higher-fidelity Color class from the System.Windows.Media
class that uses a four-float representation. Although it’s possible to “dumb down” a

 System.Windows.Forms.FolderBrowserDialog dlg =
 new System.Windows.Forms.FolderBrowserDialog();
 dlg.SelectedPath = folder;

 if(dlg.ShowDialog() == System.Windows.Forms.DialogResult.OK) {
 folder = dlg.SelectedPath;
 // do something with the folder...
 }
}

Example 10-5. Showing the FolderBrowserDialog common Windows Forms dialog (continued)

Dialogs | 325

WPF color to work with the Windows Forms color dialog,* that’s not your best
option. Instead, if I were you, I’d check out the Color Picker Dialog sample that
the WPF SDK team has put together and hosted on their blog.†

Things are similarly mismatched with the Windows Forms FontDialog, which relies
on the GDI+ Font class from System.Drawing. WPF has many more font-rendering
options than GDI+ and groups them differently, as individual properties instead of
together into a single Font property (e.g., FontFamily, FontSize, FontStretch,
FontWeight, etc.). It’s possible to shoehorn some of the WPF font properties into the
Windows Forms font dialog, and again, you’ll want to check out a sample—this time
bundled with the SDK itself.‡

Although it’s possible to use the Windows Forms color and font dia-
log from within your WPF programs (and in fact, the samples that
come with this book show how to do it), I never did find a reasonable
way to use the Windows Forms PrintPreviewDialog from WPF. The
problem is that Windows Forms uses a completely different printing
model than the one WPF uses, so you should check out Chapter 15 for
the best way to render WYSIWYG documents to the screen in WPF.

Custom Dialogs
When the standard dialogs in WPF don’t do the trick, you can, of course, imple-
ment your own custom dialogs. You can most easily define a custom dialog in WPF
as a Window, like the Settings dialog for a mythical reporting application shown in
Example 10-6.

* The FromArgb method and the A, R, G, and B properties on both Color classes is the key to making the conver-
sion between the GDI+ and WPF Color classes work.

† You can download it from http://blogs.msdn.com/wpfsdk/archive/2006/10/26/Uncommon-Dialogs--Font-
Chooser-and-Color-Picker-Dialogs.aspx (http://tinysells.com/89).

‡ You can search for the “Font Dialog Box Demo” topic in your offline SDK or download it from http://
msdn2.microsoft.com/en-gb/library/ms771765.aspx (http://tinysells.com/90).

Example 10-6. A simple custom settings dialog

<!-- SettingsDialog.xaml -->
<Window ...
 ResizeMode="CanResizeWithGrip"
 SizeToContent="WidthAndHeight"
 WindowStartupLocation="CenterOwner">
 <Window.Resources>
 <Style TargetType="Label">
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>
 <Style TargetType="TextBox">
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>

326 | Chapter 10: Windows and Dialogs

In Example 10-6, we haven’t done anything that you wouldn’t want to do in any
window layout, as you’ve seen previously in this book. About the only thing we’ve
done with a nod toward building a modal dialog box is to set the CenterOwner startup

 <Style TargetType="Button">
 <Setter Property="Margin" Value="10" />
 <Setter Property="Padding" Value="5,2" />
 </Style>
 </Window.Resources>
 <Grid>
 <Grid.Resources>
 <SolidColorBrush x:Key="reportBrush" Color="{Binding ReportColor}" />
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition MinWidth="200" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <!-- 1st row: report folder setting -->
 <Label Grid.Row="0" Grid.Column="0"
 Target="{Binding ElementName=reportFolderTextBox}">Report _Folder</Label>
 <TextBox Grid.Row="0" Grid.Column="1" Name="reportFolderTextBox"
 Text="{Binding ReportFolder}" />
 <Button Grid.Row="0" Grid.Column="2" Name="folderBrowseButton">...</Button>

 <!-- 2nd row: report color setting -->
 <Button Grid.Row="1" Grid.Column="1" HorizontalAlignment="Left"
 Name="reportColorButton">
 <StackPanel Orientation="Horizontal">
 <Rectangle Width="15" Height="15" SnapsToDevicePixels="True"
 Fill="{StaticResource reportBrush}" />
 <AccessText Text="Report _Color..." Margin="10,0,0,0" />
 </StackPanel>
 </Button>

 <!-- 3rd row: buttons -->
 <StackPanel Grid.Row="2" Grid.ColumnSpan="3" Orientation="Horizontal"
 HorizontalAlignment="Right" VerticalAlignment="Bottom">
 <Button Name="okButton" Width="72">OK</Button>
 <Button Name="cancelButton" Width="72">Cancel</Button>
 </StackPanel>
 </Grid>
</Window>

Example 10-6. A simple custom settings dialog (continued)

Dialogs | 327

location and use a horizontal stack panel to keep the OK and Cancel buttons clus-
tered together along the bottom right of the dialog. We’re also using labels, access
keys, and a resize grip, but those are just good practices and not dialog-specific. With
the grid lines turned on, our settings dialog looks like Figure 10-4.

To take advantage of our custom dialog, we have but to create an instance and show
it modally, as in Example 10-7.

Although we’ve gotten a pretty good dialog using standard window techniques, dia-
logs need more to fit into a Windows world:

• The initial focus is set on the correct element.

• The dialog doesn’t show in the taskbar.

• Data is passed in and out of the dialog.

• The OK button is shown as the default button (and is activated when the Enter
key is pressed).

• Cancel is activated when the Esc key is pressed.

• Data is validated before “OK” is really “OK.”

Figure 10-4. Using standard WPF techniques on a dialog

Example 10-7. Showing a custom dialog

void settingsButton_Click(object sender, RoutedEventArgs e) {
 // Create dialog and show it modally, centered on the owner
 SettingsDialog dlg = new SettingsDialog();
 dlg.Owner = this;
 if (dlg.ShowDialog() == true) {
 // Do something with the dialog properties
 ...
 }
}

328 | Chapter 10: Windows and Dialogs

Dialog look and feel

Addressing issues on this list, we realize our dialog doesn’t really feel like a dialog (e.g.,
the initial focus isn’t set). Plus, like any window, the dialog shows as another window
in the taskbar (which it shouldn’t). We can fix both of these by setting two properties
on the window, as shown in Example 10-8.

In Example 10-8, the FocusedElement property allows us to bind to the element that
we’d like to give the initial focus, and the ShowInTaskBar lets us keep the dialog out of
the taskbar. Figure 10-5 shows the results.

The only traditional dialog feature that WPF doesn’t support is the ? icon on the cap-
tion bar. However, as alternatives you can handle F1 (as described in Chapter 4), add
a Help button, or use tool tips (as we’ll see) as alternatives.

Example 10-8. Setting dialog-related Window properties

<!-- SettingsDialog.xaml -->
<Window ...
 ResizeMode="CanResizeWithGrip"
 WindowStartupLocation="CenterOwner"
 FocusManager.FocusedElement="{Binding ElementName=reportFolderTextBox}"
 ShowInTaskbar="False">
 ...
</Window>

Figure 10-5. A good-looking dialog in WPF

Dialogs | 329

Dialog data exchange

Now that we’ve got our dialog looking like a dialog, we also want it to behave like
one. A dialog’s behavior is governed by its lifetime, which looks roughly like the
following:

1. Create and initialize the dialog with initial values.

2. Show the dialog, letting the user choose new, validated values.

3. Harvest the values for use in your application.

Modal dialogs are generally provided to get data from a user so that some operation
can be handled on his behalf. In the case of the sample settings dialog, I’m asking for
a folder to store reports and specifying what color those reports should be. That
information, like the information exposed from the standard dialogs, should be
exposed as properties that I can set with initial values before showing the dialog and
get after the user has changed them and clicked OK, as shown in Example 10-9.

You’ll notice that we’re using a degree of good old-fashioned object-oriented encap-
sulation here, passing in and harvesting the values using .NET properties, but hav-
ing no say about how the dialog shows those values to the user or how they’re
changed. All of this happens during the call to ShowDialog (which we’ll get to
directly). If the user clicks the OK button (or equivalent), we trust the dialog to let us
know by returning a result of True so that we know to make use of the approved new
values.

Example 10-9. Exchanging data with a modal dialog

class Window1 : Window {
 ...
 Color reportColor;
 string reportFolder;

 void settingsButton_Click(object sender, RoutedEventArgs e) {
 // 1. Create and initialize the dialog with initial values
 SettingsDialog dlg = new SettingsDialog();
 dlg.Owner = this;
 dlg.ReportColor = reportColor;
 dlg.ReportFolder = reportFolder;

 // 2. Show the dialog, letting the user choose new, validated values
 if (dlg.ShowDialog() == true) {
 // 3. Harvest the values for use in your application
 reportColor = dlg.ReportColor;
 reportFolder = dlg.ReportFolder;
 // Do something with these values...
 }
 }
}

330 | Chapter 10: Windows and Dialogs

When you’re implementing a custom dialog, how you implement the dialog proper-
ties is a matter of taste. Because I want to use data binding as part of the dialog
implementation, I built a little class (Example 10-10) to hold the property data and
fire change notifications.

Example 10-10. Managing custom dialog data

public partial class SettingsDialog : System.Windows.Window {

 // Data for the dialog that supports notification for data binding
 class DialogData : INotifyPropertyChanged {
 Color reportColor;
 public Color ReportColor {
 get { return reportColor; }
 set { reportColor = value; Notify("ReportColor"); }
 }

 string reportFolder;
 public string ReportFolder {
 get { return reportFolder; }
 set { reportFolder = value; Notify("ReportFolder"); }
 }

 // INotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;
 void Notify(string prop) {
 if(PropertyChanged != null) {
 PropertyChanged(this, new PropertyChangedEventArgs(prop));
 }
 }
 }

 DialogData data = new DialogData();

 public Color ReportColor {
 get { return data.ReportColor; }
 set { data.ReportColor = value; }
 }

 public string ReportFolder {
 get { return data.ReportFolder; }
 set { data.ReportFolder = value; }
 }

 public SettingsDialog() {
 InitializeComponent();

 // Allow binding to the data to keep UI bindings up-to-date
 DataContext = data;

 reportColorButton.Click += reportColorButton_Click;
 folderBrowseButton.Click += folderBrowseButton_Click;
 ...
 }

Dialogs | 331

The DialogData class in Example 10-10 is private to the dialog class and only serves
as storage for the data that allows binding, which we enable by setting the
DataContext to an instance of the class in the dialog’s constructor. The dialog proper-
ties expose the data with properties that merely redirect to the instance of the
DialogData class. When the data changes during the operation of the dialog (like
when the user browses to a new folder or changes the color in a subdialog), setting
the ReportColor and ReportFolder properties triggers a change notification, updating
the dialog UI, which you’ll recall is data bound as shown in Example 10-11.

 void reportColorButton_Click(object sender, RoutedEventArgs e) {
 // Set the ReportColor property, triggering a change notification
 // and updating the dialog UI
 ...
 }

 void folderBrowseButton_Click(object sender, RoutedEventArgs e) {
 // set the ReportFolder property, triggering a change notification
 // and updating the dialog UI
 ...
 }
 ...
}

Data Binding and Dialogs
You’ll want to avoid binding directly to reference type objects passed into a dialog. The
problem is that you could well be in a situation where the user makes changes to data
and then clicks the Cancel button. In that case, WPF provides no facilities for rolling
back changes made via data binding. That’s why our example settings dialog keeps its
own copies of the color and folder information.

Example 10-11. Binding property data in a custom dialog’s GUI

<Window ...>
 ...
 <Grid>
 <Grid.Resources>
 <SolidColorBrush
 x:Key="reportBrush" Color="{Binding ReportColor}" />
 </Grid.Resources>
 ...
 <TextBox ... Text="{Binding ReportFolder}" />
 ...
 <Button ...

Background="{StaticResource reportBrush}">Report _Color...</Button>
 ...
 </Grid>
</Window>

Example 10-10. Managing custom dialog data (continued)

332 | Chapter 10: Windows and Dialogs

In Example 10-11, the report folder text box is binding to the ReportFolder property
of the DialogData object. The button’s background brush is binding to the brush
(using the StaticResource markup extension described in Chapter 12) constructed
via a binding to the ReportColor property (also of the DialogData object).

Figure 10-6 shows our settings dialog in various stages of data change.

Handling OK and Cancel

Now that we know how to get the dialog running the way we want it to, we need to
let the calling code know whether to process the data exposed after the dialog is
closed. You can always close a dialog with the Window object’s Close method, shown
in Example 10-12.

By default, when calling the Close method, or if the user clicks the Close button or
presses Alt-F4, the result from ShowDialog will be false, indicating “cancel.” If you’d
like the return from ShowDialog to be true, to indicate “OK,” you need to set the dia-
log’s DialogResult property, as shown in Example 10-13.

Figure 10-6. The custom settings dialog in action (Color Plate 18)

Example 10-12. Closing a dialog manually

class SettingsDialog : Window {
 ...
 void cancelButton_Click(object sender, RoutedEventArgs e) {
 // The result from ShowDialog will be false
 Close();
 }
}

Dialogs | 333

The DialogResult property is public, so it’s available to users of your custom dia-
logs. The vast majority of the time, the dialog’s DialogResult property will be the
same as the return from ShowDialog. To understand the corner case, let’s look at
Example 10-14, which shows the definitions of ShowDialog and DialogResult.

If you’re not familiar with the ? syntax, it designates the Boolean type of ShowDialog
and DialogResult to be nullable (i.e., one of the legal values is null). However, even
though both ShowDialog and DialogResult are of type bool?, ShowDialog will always
return true or false.* Likewise, DialogResult will always be true or false after the dia-
log has been closed. Only after a dialog has been shown but before it’s been closed is
DialogResult null. This is useful when you’re dealing with a modeless dialog while
the dialog itself is still showing.

You’ll notice that ShowDialog doesn’t return an enum with OK, Cancel,
Yes, No, and so on, like Windows Forms does. ShowDialog indicates only
whether the user OK’d the operation of the dialog in some way—what
way that was is up to the implementer of the dialog to communicate.

Because DialogResult is null while the dialog is shown, WPF checks the
DialogResult property after each Window event so that when it transitions to some-
thing non-null, the dialog will be closed (see Example 10-15).

Example 10-13. Changing the return value of ShowDialog

class SettingsDialog : Window {
 ...
 void okButton_Click(object sender, RoutedEventArgs e) {
 // The result from ShowDialog will be true
 DialogResult = true;
 Close();
 }
}

Example 10-14. The nullable results of showing a dialog

namespace System.Windows {
 public class Window : ... {
 ...
 public bool? ShowDialog();
 public bool? DialogResult { get; set; }
 ...
}

* I wish the return type from ShowDialog was just a plain bool to indicate that it can return only true or false
and never null.

334 | Chapter 10: Windows and Dialogs

As a further shortcut, you can set the IsCancel property on the Cancel button to true,
causing the Cancel button to automatically close the dialog without handling the
Click event, as Example 10-16 illustrates.

In addition to closing the dialog, setting IsCancel to true enables the Esc key as a
shortcut to closing the dialog (and setting the DialogResult to false). However,
whereas setting IsCancel is enough to cause the dialog to close when the Cancel but-
ton is clicked, the corresponding setting on the OK button, IsDefault, isn’t enough
to do the same. Transitioning the DialogResult to true, causing the dialog to close,
must be handled manually, as shown in Example 10-17.

Setting IsDefault provides a visual indication of the default button and enables the
Enter key as a shortcut to the OK button (assuming the control with focus doesn’t
use the Enter key itself).

Data validation

Just because the user clicks the OK button doesn’t mean that everything’s OK: the
data the user entered generally needs validation. You’ll recall from Chapter 6 that
WPF provides per-control validation as part of the binding engine. Dialogs, an exam-
ple of which is shown in Example 10-18, are an excellent place to apply this technique.

Example 10-15. Closing a modal dialog automatically by changing DialogResult

void okButton_Click(object sender, RoutedEventArgs e) {
 // The return from ShowDialog will be true
 DialogResult = true;

 // No need to explicitly call the Close method
 // when DialogResult transitions to non-null
 //Close();
}

Example 10-16. Cancel buttons transition DialogResult automatically

<!-- no need to handle the Click event to close dialog -->
<Button Name="cancelButton" IsCancel="True">Cancel</Button>

Example 10-17. Default buttons still need to transition DialogResult manually

...
<Button Name="okButton" IsDefault="True" ...>OK</Button>
...
void okButton_Click(object sender, RoutedEventArgs e) {
 // Need this to reflect "OK" back to dialog owner
 DialogResult = true;
}

Dialogs | 335

In Example 10-18, I’ve added a validation rule to the report folder field that requires
it to exist on disk. I’ve also added another field, this time to keep track of who’s
reporting the reports. The validation rule for this field is a class that makes sure
something is entered in this field. The validation rule implementations, some of
which are shown in Example 10-19, should not surprise you.

Example 10-18. Data validation and dialogs

...
<!-- 1st row: report folder setting -->
<Label ...>Report _Folder</Label>
<TextBox ...
 Name="reportFolderTextBox"
 ToolTip="
 {Binding
 RelativeSource={RelativeSource Self},
 Path=(Validation.Errors)[0].ErrorContent}">
 <TextBox.Text>
 <Binding Path="ReportFolder">
 <Binding.ValidationRules>
 <local:FolderMustExist />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>
...
<!-- 3rd row: reporter setting -->
<Label ...>_Reporter</Label>
<TextBox ...
 Name="reporterTextBox"
 ToolTip="
 {Binding
 RelativeSource={RelativeSource Self},
 Path=(Validation.Errors)[0].ErrorContent}">
 <TextBox.Text>
 <Binding Path="Reporter">
 <Binding.ValidationRules>
 <local:NonZeroLength />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>
...

Example 10-19. Some example validation rules

public class FolderMustExist : ValidationRule {
 public override ValidationResult Validate(object value, ...) {
 if (!Directory.Exists((string)value)) {
 return new ValidationResult(false, "Folder doesn't exist");
 }

336 | Chapter 10: Windows and Dialogs

With these rules in place, as the user makes changes to the fields, the validation rules
are fired and the controls are highlighted and tool-tipped with error indications, as
shown in Figure 10-7.

However, if we don’t make any changes or if we skip some fields before clicking the
OK button, the user will have no way of knowing that some of the fields are invalid.
Even worse, in the OK button handler, the Window class provides no facilities for man-
ually checking all of the bindings to see whether there is any invalid data on the dia-
log. I assume a future version of WPF will provide this functionality, but in the
meantime, I’ve built a little method called ValidateBindings that provides a first cut
at this functionality, which you can use in your own custom dialogs in the OK but-
ton handler, as shown in Example 10-20.

 return new ValidationResult(true, null);
 }
}

public class NonZeroLength : ValidationRule {
 public override ValidationResult Validate(object value, ...) {
 if (string.IsNullOrEmpty((string)value)) {
 return new ValidationResult(false, "Please enter something");
 }

 return new ValidationResult(true, null);
 }
}

Figure 10-7. An error in a dialog validation rule (Color Plate 19)

Example 10-20. Validate all controls in the OK button

// This is here 'til future versions of WPF provide this functionality
public static bool ValidateBindings(DependencyObject parent) {

Example 10-19. Some example validation rules (continued)

Dialogs | 337

With our validation helper method in place, when the user clicks the OK button, she
gets a notification of all of the fields in error, not just the ones she’s changed or the
ones she’s given focus to, as shown in Figure 10-8.

Modeless dialogs

We’ve been talking about modal dialogs so far, mostly because the similarities between
a modal and a modeless dialog outweigh the differences. We still create an instance of a
dialog class with style choices that make it look like a dialog. We still pass the data into
and out of the dialog with properties. We still validate the data before notifying anyone
that it’s available. The only real differences between a modal and modeless dialog is that
with a modeless dialog, we need some slightly different UI choices (generally “Apply”
and “Close” instead of “OK” and “Cancel”), and we need to fire an event when the
Apply button is clicked so that interested parties can pull out validated data.

 // Validate all the bindings on the parent
 bool valid = true;
 LocalValueEnumerator localValues = parent.GetLocalValueEnumerator();
 while(localValues.MoveNext()) {
 LocalValueEntry entry = localValues.Current;
 if(BindingOperations.IsDataBound(parent, entry.Property)) {
 Binding binding = BindingOperations.GetBinding(parent, entry.Property);
 foreach(ValidationRule rule in binding.ValidationRules) {
 ValidationResult result =
 rule.Validate(parent.GetValue(entry.Property), null);
 if(!result.IsValid) {
 BindingExpression expression =
 BindingOperations.GetBindingExpression(parent, entry.Property);
 Validation.MarkInvalid(expression,
 new ValidationError(rule, expression, result.ErrorContent, null));
 valid = false;
 }
 }
 }
 }

 // Validate all the bindings on the children
 for(int i = 0; i != VisualTreeHelper.GetChildrenCount(parent); ++i) {
 DependencyObject child = VisualTreeHelper.GetChild(parent, i);
 if(!ValidateBindings(child)) { valid = false; }
 }

 return valid;
}

void okButton_Click(object sender, RoutedEventArgs e) {
 // Validate all controls
 if (ValidateBindings(this)) {
 DialogResult = true;
 }
}

Example 10-20. Validate all controls in the OK button (continued)

338 | Chapter 10: Windows and Dialogs

Updating our settings dialog to operate modelessly starts with new buttons, as
shown in Example 10-21.

Handling the button clicks is slightly different, too, as you can see in Example 10-22.

Figure 10-8. Validating all controls in the OK button handler (Color Plate 20)

Example 10-21. Apply and Close buttons for a modeless dialog

<StackPanel ...>
 <Button Name="applyButton" IsDefault="True" ...>Apply</Button>
 <Button Name="closeButton" IsCancel="True" ...>Close</Button>
</StackPanel>

Example 10-22. Handling the Apply and Close buttons in a modeless dialog

public partial class SettingsDialog : System.Windows.Window {
 ...

 public SettingsDialog() {
 ...
 applyButton.Click += applyButton_Click;
 closeButton.Click += closeButton_Click;
 }

 // Fired when the Apply button is clicked
 public event EventHandler Apply;

 void applyButton_Click(object sender, RoutedEventArgs e) {
 // Validate all controls
 if (ValidateBindings(this)) {

 // Let modeless clients know
 if (Apply != null) { Apply(this, EventArgs.Empty); }

Dialogs | 339

In Example 10-22, we use the ValidateBindings helper method, and if everything is
valid, we fire the Apply event to let the owner know, keeping the dialog open until
the Close button is clicked. In the handler for the Close button, there’s no more
automatic closing of the dialog in the modeless case, so we close it ourselves.

The owner of the dialog changes a bit as well, as Example 10-23 illustrates.

 // Don't close the dialog 'til Close is clicked
 // DialogResult = true;
 }
 }

 void closeButton_Click(object sender, RoutedEventArgs e) {
 // The IsCancel button doesn't close automatically
 // in the modeless case
 Close();
 }
}

Example 10-23. Handling the Apply event on a custom modeless dialog

public partial class Window1 : System.Windows.Window {
 ...
 Color reportColor;
 string reportFolder;
 string reporter;

 void settingsButton_Click(object sender, RoutedEventArgs e) {
 // Initialize the dialog
 SettingsDialog dlg = new SettingsDialog();
 dlg.Owner = this;
 dlg.ReportColor = reportColor;
 dlg.ReportFolder = reportFolder;
 dlg.Reporter = reporter;

 // Listen for the Apply button and show the dialog modelessly
 dlg.Apply += dlg_Apply;
 dlg.Show();
 }

 void dlg_Apply(object sender, EventArgs e) {
 // Pull the dialog out of the event args and apply the new settings
 SettingsDialog dlg = (SettingsDialog)sender;

 reportColor = dlg.ReportColor;
 reportFolder = dlg.ReportFolder;
 reporter = dlg.Reporter;

 // Do something with the dialog properties
 }
}

Example 10-22. Handling the Apply and Close buttons in a modeless dialog (continued)

340 | Chapter 10: Windows and Dialogs

In Example 10-23, when the user asks to see the settings dialog, it’s initialized as
before, but because it’s shown modelessly, we need to know when the user clicks
Apply (and the data has been validated), so we subscribe to the Apply event. When
that’s fired, we pull the SettingsDialog object back out of the sender argument to the
Apply event and pull out our settings as before. The only other thing you might want
to do is to set a flag that a settings dialog is being shown so that you don’t show
more than one of them.

Where Are We?
The base class for top-level window functionality is Window, providing the features
and flexibility you need to fit in with the rest of the applications on your desktop. In
addition, the Window class provides for dialog-style user interactions, both modal and
modeless. Finally, the NavigationWindow class, which derives from the Window class,
forms the core of most standalone navigation-based applications, which we’ll cover
in the next chapter.

341

Chapter 11 CHAPTER 11

Navigation11

One of the mantras of the WPF team was “best of Windows, best of the Web,”
which drove much of the innovation in the platform. In the preceding chapter, we
looked at windows in a very Windows-centric way, but there’s one innovation that
the Web has made popular that we haven’t discussed: navigation between content
one page at a time.

NavigationWindow
The idea of navigation in WPF is that instead of showing multiple windows in a cas-
cading style—a popular Windows application style used in the preceding chapter—
we show pages of content inside a single frame, using standard navigation meta-
phors, like the Back and Forward buttons, to go between pages. If you want to build
an application that does this, you can derive from the NavigationWindow class instead
of the Window class and navigate to any WPF content you like (see Example 11-1).

// Window1.xaml.cs
...
using System.Windows.Navigation; // home of the NavigationWindow

public partial class Window1 : NavigationWindow {
 public Window1() {
 InitializeComponent();

 // Navigate to some content
 Navigate("Hello, World.");
 }
}

Example 11-1. Navigation basics

<!-- Window1.xaml -->
<NavigationWindow ...
 x:Class="NavigationBasics.Window1"
 Title="NavigationBasics" />

342 | Chapter 11: Navigation

In Example 11-1, we’ve defined a custom NavigationWindow that sets its initial content to
a string using the Navigate method, which works as you’d expect (Figure 11-1).

Notice in Figure 11-1 the presence of the Back and Forward buttons, as well as the
little triangle. These controls are provided and enabled/populated as appropriate
based on the navigation history. In this case, we’ve navigated only once, so the navi-
gation buttons are disabled (there’s nowhere to go backward or forward to). The
thing that navigates to our content, displays it, and shows the navigation controls is
called a navigation host. The NavigationWindow is one of the three navigation hosts
we’ll discuss in this chapter.

Pages
If we want to get a little fancier than a string, we can create multiple “pages” of con-
tent, which is specifically what the Page class was invented for (see Example 11-2).

Figure 11-1. The simplest navigation application

Example 11-2. Packaging content with a Page object

<!-- Page1.xaml -->
<Page ...
 x:Class="NavigationBasics.Page1"

Title="Page 1"
 WindowTitle="Welcome to Page 1">
 <TextBlock VerticalAlignment="Bottom">

<Hyperlink NavigateUri="Page2.xaml">Click to see page 2</Hyperlink>
 </TextBlock>
</Page>

// Page1.xaml.cs
...
using System.Windows.Controls; // home of the Page

public partial class Page1 : Page {
 public Page1() {
 // Initialize page from XAML
 InitializeComponent();
 }
}

Pages | 343

To get the basic skeleton of a new Page class, you can right-click on your project in
the Visual Studio 2005 Solution Explorer, choosing Add ➝ New Item, and select
Page (WPF). Example 11-2 was started that way, adding the WindowTitle, the Title,
and the content. The WindowTitle is what shows up in the caption of the navigation
host. The Title property is what shows up in the history drop-down. If you don’t set
a page’s Title property, it will be composed for you as WindowTitle (foo.xaml),
which isn’t particularly friendly.

The content in Example 11-2 uses a Hyperlink, which is a nice little element that
handles clicking for navigation applications.* We’re setting the NavigateUri property
to point to the page resource we’d like it to load for us. The NavigateUri supports the
normal URI format (e.g., a URL to an HTTP file on the Web), as well as the pack
URI format described in Chapter 12. Page two of our content is another custom Page
class defined in XAML, as shown in Example 11-3.

// Page2.xaml.cs
...
public partial class Page2 : Page {
 public Page2() {
 InitializeComponent();

 // Handle the button Click event
 backButton.Click += backButton_Click;
 }

 void backButton_Click(object sender, RoutedEventArgs e) {
 // The Page class provides direct access to navigation services
 this.NavigationService.GoBack();
 }
}

Example 11-3 looks pretty much like Example 11-2, except that in this case, we’re
assigning the hyperlink a name in the XAML so that we can handle the Click
event and handle the “go back” navigation as though the user had clicked the
Back button (which is enabled as soon as the user has navigated to another page).

* We describe the Hyperlink element and its role as part of the WPF text object model in Chapter 14.

Example 11-3. Using the navigation service

<!-- Page2.xaml -->
<Page ...
 x:Class="NavigationBasics.Page2"
 Title="Page 2"
 WindowTitle="Welcome to Page 2">
 <Button Name="backButton"

VerticalAlignment="Center" HorizontalAlignment="Center">
 Click to go back to page 1
 </Button>
</Page>

344 | Chapter 11: Navigation

To navigate programmatically, each navigation host provides a navigation service.
The navigation service is responsible for fulfilling navigation requests, tracking his-
tory, providing events for handling navigation events (e.g., Navigating, Navigated,
NavigationFailed, etc.), as well as methods of navigating history (e.g., GoBack,
GoForward, Navigate, etc.).* To access the navigation service associated with a
dependency object, you can use the static GetNavigationService method of the
NavigationService class:

public Page2() {
 ...
 void backButton_Click(object sender, RoutedEventArgs e) {
 // get the page's navigation service
 NavigationService
 navService = NavigationService.GetNavigationService(this);
 navService.GoBack();
 }
}

As a shortcut, the Page class provides the NavigationService property. In addition,
the Page class supports the set of navigation commands (as described in Chapter 4)
on the NavigationCommands class (e.g., BrowseBack, BrowseForward, Refresh, etc.). You
can use the commands to eliminate the need for any Click event handler code in our
example Page 2, as shown in Example 11-4.

// Page2.xaml.cs
...
public partial class Page2 : Page {
 public Page2() {
 InitializeComponent();
 }
}

With our content hosted in pages, we can use the URI trick, shown in Example 11-5,
to navigate to the first page from the navigation window.

* For a wonderful picture of the navigation events and when they happen, I recommend the SDK topic “Nav-
igation Overview,” available at http://msdn2.microsoft.com/en-gb/library/ms750478.aspx#NavigationService
(http://tinysells.com/92).

Example 11-4. Using navigation commands

<!-- Page2.xaml -->
<Page ...
 x:Class="NavigationBasics.Page2"
 Title="Page 2"
 WindowTitle="Welcome to Page 2">
 <Button Command="NavigationCommands.BrowseBack"

VerticalAlignment="Center" HorizontalAlignment="Center">
 Click to go back to page 1
 </Button>
</Page>

Pages | 345

In fact, the desire to define an entire application as a set of pages and to simply navi-
gate to the first page without any muss or fuss is something that the Application
object’s StartupUri property supports directly, removing the need for a main win-
dow to host page content at all (see Example 11-6).

In the case of a standalone Windows application, the application will create a
NavigationWindow for you and navigate to the page specified by the StartupUri prop-
erty, as Figure 11-2 shows (after we’ve navigated to the second page).*

Notice that setting the Title property on each Page has resulted in the name of the
page instead of the WindowTitle property.

Example 11-5. Navigating to the first page from the main window

// Window1.xaml.cs
...
public partial class Window1 : NavigationWindow {
 public Window1() {
 InitializeComponent();

 // Show first page
 this.Navigate(new Uri("Page1.xaml", UriKind.Relative));
 }
}

Example 11-6. Navigating to the first page using the StartupUri

<!-- App.xaml -->
<Application ... StartupUri="Page1.xaml">
 <!-- no need for a main window at all -->
</Application>

Figure 11-2. Populating the history with the Title property

* In the case of an XBAP, the application will not create a NavigationWindow, as it doesn’t have the permissions
in partial trust to do so. Instead, it will create another navigation host that knows how to show your pages
just like a page of HTML in Internet Explorer 6+, as you’ll see later, in the “XBAPs” section.

346 | Chapter 11: Navigation

Although setting the StartupUri property is a useful shortcut if your
application’s main window is going to be navigation-based, nothing is
stopping you from using NavigationWindow-like dialogs to build wiz-
ards, even if your main window is not navigation-based. The WPF fac-
toring of NavigationWindow allows it to be used like any other window.

Loose XAML
If you’re willing to limit what you put in your XAML (e.g., removing all code-behind
files, including the x:Class declaration), stick to only XAML filenames as navigation
targets, and so on, you can double-click on XAML files in the shell and navigate
between them. Example 11-7 is an updated Page2.xaml to start navigation directly
from the shell.

Notice that I am no longer using a Button here. This is because the navigation com-
mands don’t work from loose XAML and because I have no code-behind file in
which to handle the Click event myself. Double-clicking on Page1.xaml and then
clicking on the link yields Figure 11-3.

Example 11-7. Limitations of loose XAML

<!-- Page2.xaml -->
<Page ...
 x:Class="NavigationBasics.Page2"
 Title="Page 2"
 WindowTitle="Welcome to Page 2">
 <TextBlock VerticalAlignment="Bottom">
 <Hyperlink NavigateUri="Page1.xaml">
 Click to go back to page 1</Hyperlink>
 </TextBlock>
</Page>

Figure 11-3. Navigating loose XAML pages in IE7

Pages | 347

Due to these limitations, navigating between pages of loose XAML is largely a nov-
elty. Instead, if you want to host your pages in the browser, you’ll want to package
them into an XBAP, discussed later in this chapter.

Fragment Navigation
If you’re navigating to a page with a great deal of content (for example, a document
such as one could construct using the techniques in Chapter 14), you might want to
navigate not just to a page, but to a specific section of a page. You can do this with
fragment navigation, which you can perform by composing the URI with a trailing
fragment identifier, like so:

content.xaml#fragmentName

The fragment name maps to a named element on the target page. For instance, con-
sider Example 11-8, which shows a piece of XAML that defines a longish chunk of
text.

Example 11-8 includes some named elements. We can refer to these names from a
table of contents (see Example 11-9).

When navigation is performed against a fragment URI and the section is contained in
a navigation target that supports scrolling, the section’s content will be brought into
view (or at least as much as will fit into the navigation host), as shown in
Figure 11-4, after Topic 4 has been scrolled into view.

Example 11-8. A document with names suitable for fragment navigation

<Page x:Class="NavigationToFragments.Page2" ...>
 ...
 <ScrollViewer>
 <TextBlock TextWrapping="Wrap">
 <TextBlock Name="topic1">
 <TextBlock ...>Topic 1</TextBlock>
 <TextBlock>Lorem ipsum dolor sit amet, ...</TextBlock>
 </TextBlock>
 <TextBlock Name="topic2">...</TextBlock>
 ...
 </TextBlock>
 </ScrollViewer>
</Page.

Example 11-9. A set of hyperlinks for fragment navigation

<Page x:Class="NavigationToFragments.Page1" ...>
 <TextBlock>
 <Hyperlink NavigateUri="Page2.xaml#topic1">Topic 1</Hyperlink>
 <Hyperlink NavigateUri="Page2.xaml#topic2">Topic 2</Hyperlink>
 ...
 </TextBlock>
</Page>

348 | Chapter 11: Navigation

For those of you familiar with HTML name fragment navigation, note that the simi-
larity of mechanism is not a coincidence. Because navigation in both WPF and
HTML is based on URIs and the URI syntax supports fragments, we get the same
syntax for both.*

Page Lifetime
As you begin to string several pages together, you may begin to wonder about the life-
time of a page. For example, consider a very simple guessing game that lets you guess
a number, and if you don’t get it in one guess, you lose. The idea is that you can have
multiple guesses by backing up and trying again. The implementation of our first page
isn’t surprising, as you can see in Example 11-10.

Figure 11-4. Fragment navigation

* The URI syntax is defined by RFC 2396 and is available at http://www.ietf.org/rfc/rfc2396.txt (http://
tinysells.com/96).

Example 11-10. Exploring page state

<!-- Page1.xaml -->
<Page ...>
 <StackPanel Margin="10">
 <Label>Please guess a number between 0 and 2147483647:</Label>
 <TextBox Name="guessBox" />
 <TextBlock>
 (shh... the answer is <TextBlock Name="answerBox" />.)
 </TextBlock>
 <TextBlock HorizontalAlignment="Right">
 <Hyperlink NavigateUri="Page2.xaml">Guess</Hyperlink>
 </TextBlock>
 </StackPanel>
</Page>
// Page1.xaml.cs

Pages | 349

In the XAML, we’re laying out the elements in a straightforward way, naming the
guess and answer text boxes so that we can manipulate them. (Also, notice that we
put the answer on the page so that we can see what’s happening to the page’s state as
we navigate around.) In the code, when the page is created, we generate a random
number, keep it in the page’s state for subsequent guesses, and populate the text
box. Figure 11-5 shows the results of showing the first page, navigating to the sec-
ond page, and then navigating back.

...
public partial class Page1 : Page {
 int answer = (new Random()).Next();

 public Page1() {
 InitializeComponent();
 answerBox.Text = answer.ToString();
 }
 ...
}

Figure 11-5. Navigating and page state

Example 11-10. Exploring page state (continued)

350 | Chapter 11: Navigation

You’ll notice that the answer the second time the first page is shown is different from
the answer the first time. This is because, as a memory usage optimization, the navi-
gation services of WPF do their best to keep the smallest amount of data associated
with each page as they can get away with. In our case, because we’re navigating
between pages using a URI, the navigation services keeps the URI,* throwing away
the page object itself (and all of the visuals associated with the page). What this
means for us, of course, is that every time the user navigates to the first page, a new
Page1 object is created, generating a new answer and making it even more difficult
for the user to guess.

If you’d like to track the lifetime of a Page, you can do so with the Loaded and
Unloaded events, shown in Example 11-11.

For example, the navigation sequence in Figure 11-5 looks like this:

Page1 constructed
Page1_Loaded
Page1_Unloaded
Page1 constructed
Page1_Loaded

One other thing that you’ll notice about Figure 11-5 is that although the answer was
regenerated along with the Page1 object, the answer text box state was properly
restored the second time the first page is shown. This is because the WPF navigation

* The navigation service also keeps any data associated with navigation-aware controls using a mechanism
we’ll see in a moment.

Example 11-11. Page lifetime

public partial class Page1 : Page {
 int answer = (new Random()).Next();

 public Page1() {
 Debug.WriteLine("Page1 constructed");
 InitializeComponent();
 answerBox.Text = answer.ToString();
 Loaded += Page1_Loaded;
 Unloaded += Page1_Unloaded;
 }

 void Page1_Loaded(object sender, RoutedEventArgs e) {
 Debug.WriteLine("Page1_Loaded");
 }

 void Page1_Unloaded(object sender, RoutedEventArgs e) {
 Debug.WriteLine("Page1_Unloaded");
 }
}

Pages | 351

services provide all kinds of different ways to keep state between page navigations
while still maintaining the optimization of not actually keeping the page:*

• Adding to your page a custom dependency property marked with the
FrameworkPropertyMetadataOptions.Journal flag. Several of the WPF controls,
including TextBox, use this mechanism so that they can restore their state
between navigations.

• Implementing the IProvideCustomContentState interface on your page, either
with or without a corresponding CustomContentState object.

For large applications of navigation, you should absolutely take advantage of this
navigation optimization (provided by default). Otherwise, the user could just keep
navigating around in your application, adding pages to the history that he may never
get back to, even though the visuals associated with those pages continue to take up
memory.

However, for simpler applications, if you would like to turn off this optimization,
you can with a flip of the KeepAlive switch (see Example 11-12).

The KeepAlive flag defaults to false, which means that the navigation history will
attempt to destroy the page object (and all of the associated visuals) if it can, provid-
ing the hooks I listed to keep track of state between navigations. However, in certain
cases, the navigation optimization can’t be applied. For example, if we call the
Navigate method with an object instead of a URI, the navigation service doesn’t
know how to re-create the object, so it caches it instead, which has the same effect as
setting KeepAlive to true manually, as we did in Example 11-12.

Keeping data between navigations to a single page is only part of the story. If you’re
going to implement the second page that checks the answer, we’ll need to pass it and
the user’s current guess from the first page.

Passing Data Between Pages
It’s easy enough to define our Page2 class with a couple of properties to accept
incoming data, as shown in Example 11-13.

* The various techniques for keeping state between page navigations are discussed in detail in the SDK topic “Nav-
igation Overview,” available at http://msdn2.microsoft.com/en-gb/library/ms750478.aspx#NavigationService
(http://tinysells.com/92).

Example 11-12. Setting KeepAlive to true

<!-- Page1.xaml -->
<Page ...
 KeepAlive="True"> <!-- keep the page between navigations -->
 ...
</Page>

352 | Chapter 11: Navigation

KeepAlive = False + Data Binding Considered Harmful
If you’re planning to use data binding in your pages, you should set KeepAlive to True.
Unfortunately, out of the box, the navigation optimization doesn’t work with data
binding and will not restore data binding options properly on instantiations. Because
data binding is so darn useful (not only is it the foundation of keeping data in sync
between your data objects and your UI, but it’s also how the validation and data tem-
plates features are exposed, among others), it’s likely you’ll feel the tension between
them, picking one or the other on any single page, but not both.

The good news is that, as of this writing, this is a high-priority issue scheduled to be
fixed in the next version of the .NET Framework (code name “Orcas”) as well as the
next service pack for .NET 3.0.

Example 11-13. Accepting data into a page via properties

<!-- Page2.xaml -->
<Page ...> <!-- KeepAlive not set -->
 <StackPanel Margin="10">
 <TextBlock>
 You guessed: <TextBlock Name="guessBlock" />
 </TextBlock>
 <TextBlock FontSize="32" FontWeight="Bold" Name="resultBlock" />
 <TextBlock HorizontalAlignment="Right" VerticalAlignment="Bottom">
 <Hyperlink Name="tryAgainLink">Try Again</Hyperlink>
 </TextBlock>
 </StackPanel>
</Page>

// Page2.xaml.cs
...
public partial class Page2 : Page {
 public Page2() {
 InitializeComponent();
 Loaded += Page2_Loaded;
 backButton.Click += backButton_Click;
 playAgainLink.Click += playAgainLink_Click;
 }

 int answer;
 public int Answer {
 get { return answer; }
 set { answer = value; }
}

 int guess;
 public int Guess {
 get { return guess; }
 set { guess = value; }
 }

Pages | 353

In Example 11-13, we’re defining two properties to be passed in from the first
page—the answer we’re looking for and the current guess.* When the page is loaded,
we use those values to populate the UI.

You’ll also notice that we’re not setting KeepAlive to anything in Page2.xaml. By
default, it’s False, but that setting will be ignored because we’re navigating to the
page as an object and not as a URI (see Example 11-14).

Figure 11-6 shows the state of an incorrect guess, and Figure 11-7 shows the history
after a couple of successes.

The technique of passing in parameters directly to a new page object works fine,
especially when you’ve got several instances of the same object to keep track of.

 void Page2_Loaded(object sender, RoutedEventArgs e) {
 guessBlock.Text = guess.ToString();

 if(answer == guess) { resultBlock.Text = "You win!"; }
 else if(answer < guess) { resultBlock.Text = "Guess lower..."; }
 else { resultBlock.Text = "Guess higher..."; }
 }

 void backButton_Click(object sender, RoutedEventArgs e) {
 // Let them guess again
 NavigationService.GoBack();
 }

 void playAgainLink_Click(object sender, RoutedEventArgs e) {
 // Start a new game
 NavigationService.Navigate(new Uri("Page1.xaml", UriKind.Relative));
 }
 }

* Giving the Page2 class a constructor that takes arguments instead of passing them in via properties would
work as well.

Example 11-14. Passing data to a page

// Page1.xaml.cs
...
public partial class Page1 : Page {
 ...
 void guessLink_Click(object sender, RoutedEventArgs e) {
 Page2 page2 = new Page2();
 page2.Answer = answer;
 page2.Guess = int.Parse(guessBox.Text);
 NavigationService.Navigate(page2);
 }
}

Example 11-13. Accepting data into a page via properties (continued)

354 | Chapter 11: Navigation

However, sometimes you’d like to keep more “global” state (i.e., state that spans
even multiple instances of a particular page type). For example, it would be inconve-
nient to have to pass the count of games played through every single page, not least
because we’d have to stop navigating to the first page by URI, instead passing in a
parameter. For these situations, WPF has provided the Properties dictionary on the
Application, shown in Example 11-15.

Figure 11-6. Guessing incorrectly

Figure 11-7. The results of guessing correctly in the history

Example 11-15. Keeping track of wins in the application’s Properties collection

// Page2.xaml.cs
...
public partial class Page2 : Page {
 ...
 void Page2_Loaded(object sender, RoutedEventArgs e) {
 guessBlock.Text = guess.ToString();

Pages | 355

In Example 11-15, we’re tracking the number of games won by using a key of
GamesWon and incrementing it on every win. The Properties dictionary is an object-to-
object mapping, so you can keep whatever you want in there. By using a string, and a
short one at that, we’re risking the possibility of stepping on someone else’s data,
which is the problem with global data in general.

Page Functions
In the world of standard Windows applications, if you want to ask the user a quick
question without disturbing the rest of your careful arrangement of visuals and
windows, you simply pop up a modal dialog and ask ‘im. However, in the world of
navigation-based applications, external windows of any kind are considered rude
at the very least (remember the pop-ad craze of the early 2000s?) and verboten in
the worst case (XBAPs don’t allow pop-up windows). So, the question is, how do
we ask the user a quick question, returning him to whence he came, none the
worse for wear? The answer is page functions.

A page function is a page that you call like a function, passing in input and getting
output as desired. When the page function returns, the return value is provided to
the calling page, where it can pick up where it left off. You can think of page func-
tions as the modal dialog equivalent in navigation-based applications.

As a simple example, let’s imagine that we wanted the user to say the magic word
before she is allowed to play the guessing game. The UI for our page function looks
like Figure 11-8.

Our page function to ask the user for the magic word looks like a page, but with a
few minor differences, as shown in Example 11-16.

 if(answer == guess) { resultBlock.Text = "You win!"; TrackWin(); }
 else ...
 }

 // NOTE: uniqueness testing to make sure that every won game
 // is only tracked once is left as an exercise to the reader
 // (Send answers to csells@sellsbrothers.com...)
 void TrackWin() {
 IDictionary properties = Application.Current.Properties;
 if(!properties.Contains("GamesWon")) { properties["GamesWon"] = 0; }
 properties["GamesWon"] = (int)properties["GamesWon"] + 1;
 }
}

Example 11-15. Keeping track of wins in the application’s Properties collection (continued)

356 | Chapter 11: Navigation

The skeleton for Example 11-16 was generated in Visual Studio 2005 by right-clicking
on the project, choosing Add ➝ New Item, selecting PageFunction (WPF), entering a
name, and clicking the OK button. Notice that Example 11-16 has a PageFunction ele-
ment at the root to match the PageFunction<T> base class name. However, because the
PageFunction<T> class is generic, we set the x:TypeArguments property to the type argu-
ment to use to construct the generic PageFunction<T> type.* The type passed will be the
type of the result from our page “function call.” The code needs to have a matching
type argument, as shown in Example 11-17.

Figure 11-8. A page function UI

Example 11-16. Declaring a page function

<!-- MagicWordPageFunction.xaml -->
<PageFunction ... x:TypeArguments="sys:String">
 <StackPanel Margin="10">
 <Label>What's the magic word?</Label>
 <TextBox Name="wordBox" />
 <TextBlock HorizontalAlignment="Right">
 <Hyperlink Name="playLink">Play</Hyperlink>
 <Hyperlink Name="quitLink">Quit</Hyperlink>
 </TextBlock>
 </StackPanel>
</PageFunction>

* The x:TypeArguments property is XAML’s nod to generics and works only on elements at the root of a XAML
document.

Example 11-17. Implementing a page function

// MagicWordPageFunction.xaml.cs
...
public partial class MagicWordPageFunction : PageFunction<string> {
 public MagicWordPageFunction() {
 InitializeComponent();
 playLink.Click += playLink_Click;

Pages | 357

In addition to taking in the magic word to check for as a property (just like our page
example earlier), we’re checking the word the user enters when she clicks on the Play
link. If the word is sufficiently magic, we return from the page function by calling the
OnReturn method provided by the PageFunction<T> base class, passing the word the user
entered so that the caller of the page function can inspect it. This is the page function
equivalent of setting a modal dialog’s DialogResult to true, and will trigger the page
function to remove itself from the history and return to the caller.* In addition, we’re
storing the magic word the user entered into the application’s Properties function so
that she won’t have to enter it again (as you’ll see).

On the other hand, if the user clicked the Quit link, we call OnReturn, passing null to
indicate the equivalent of the user clicking the Cancel button on a modal dialog, also
returning to the caller.

 quitLink.Click += quitLink_Click;
 Loaded += MagicWordPageFunction_Loaded;
 }

 string magicWord;
 public string MagicWord {
 get { return magicWord; }
 set { magicWord = value; }
 }

 void playLink_Click(object sender, RoutedEventArgs e) {
 // Check to see if the magic word is the right one
 if(wordBox.Text == magicWord) {
 OnReturn(new ReturnEventArgs<string>(wordBox.Text));
 Application.Current.Properties["MagicWordEntered"] = wordBox.Text;
 }
 }

 void quitLink_Click(object sender, RoutedEventArgs e) {
 OnReturn(null); // Cancel
 }

 void MagicWordPageFunction_Loaded(object sender, RoutedEventArgs e) {
 if(Application.Current.Properties.Contains("MagicWordEntered") &&
 (string)Application.Current.Properties["MagicWordEntered"] == magicWord) {
 // No need to re-enter the magic word for subsequent games
 OnReturn(new ReturnEventArgs<string>(magicWord));
 }
 }
}

* It often makes the most sense for a page function’s page to be removed from the navigation history when it
returns, just like a modal dialog removes itself from the screen. However, if you’d prefer to leave it in, you
can set the page function’s RemoveFromJournal property to false (it defaults to true).

Example 11-17. Implementing a page function (continued)

358 | Chapter 11: Navigation

Finally, so that the user doesn’t have to enter the magic word more than once—no
matter how many times the page function is navigated to in the application’s life-
time—in the page function’s Loaded event, we check for the presence of the magic
word in the application’s Properties collection, calling OnReturn right away if the
user has already entered it.

Calling the page function from a “zeroth” page I’ll show you presently looks like
Example 11-18.

Page Functions and KeepAlive
If you look at Example 11-16, you’ll notice that we’re not setting the KeepAlive prop-
erty at all. Just like a Page, a PageFunction class will default the KeepAlive property to
false. Further, even though we navigate to a page function by object instead of by URI,
the WPF navigation service uses magic to figure out how to tear it down and rebuild it
between navigations. This means that you’ll have to keep in mind all of the KeepAlive
issues mentioned earlier, but because page functions are meant to be short-lived, there
is less chance of a memory usage problem if you want to set KeepAlive to true. (All of
the page function’s visuals will be torn down by default when you call OnReturn.)

Example 11-18. Using a page function

// Page0.xaml.cs
...
public partial class Page0 : Page {
 ...
 void playLink_Click(object sender, RoutedEventArgs e) {
 MagicWordPageFunction fn = new MagicWordPageFunction();
 fn.MagicWord = "please";
 fn.Return += fn_Return;
 NavigationService.Navigate(fn);
 }

 void fn_Return(object sender, ReturnEventArgs<string> e) {
 // Get the navigation service from the sender
 // (the current page's hasn't yet been restored and
 // this.NavigationService is null
 NavigationService
 navService = ((PageFunctionBase)sender).NavigationService;

 // User canceled
 if(e == null) {
 navService.Navigate(new Uri("QuitterPage.xaml", UriKind.Relative));
 }
 // Double-check the magic word
 else if(e.Result == "please") {
 navService.Navigate(new Uri("Page1.xaml", UriKind.Relative));

Frames | 359

At the click of a hyperlink, we create an instance of the page function, passing in the
preferred magic word,* subscribing to the Return event (for the page equivalents of
both “OK” and “Cancel”), and navigating to the page function just as though it were
a normal page (and in fact, Page is in the inheritance hierarchy of the
PageFunction<T> class).

In the Return event handler, the first thing we do is grab the current navigation ser-
vice from the sender. Unfortunately, at this point in the action, the
NavigationService property of the page function caller hasn’t yet been set, so we
have to rely on the one from the page function itself (the sender). Next, we check to
see whether the ReturnEventArgs<T> (where T is String in our case) event argument is
null. If it is, the page function called OnReturn passes null, and we should respond
appropriately. On the other hand, if the return event argument isn’t null, we can
check the Result property for the data passed to OnReturn. In our example, we
double-check that it was indeed the magic word we were looking for and navigate
to the first page of our guessing game.

Figure 11-9 shows a nominal navigation session.

Clicking the Play link on the Welcome page causes the magic word page function to
show and take its answer. When that returns, the Welcome page navigates to the
first page of our guessing game. Notice that the history in Figure 11-9 doesn’t show
the magic word page function at all. Further, because the magic word page function
keeps track of whether the magic word was already entered and short-circuits itself
as appropriate, if we were to go back to the Welcome page and click the Play link
again, the magic word UI would never show, the Return event handler would be fired
immediately, and the user would go directly to the guessing page.

Frames
Thus far, we’ve spent a lot of time talking about the NavigationWindow, how it han-
dles navigation, and how it integrates with pages and page functions. However, the
navigation window is but one navigation host. A navigation host in WPF is anything
that provides navigation support. Besides the navigation window, which provides
top-level window navigation support, WPF also provides the Frame, for contained
navigation support. For example, nothing is stopping us from hosting our guessing
game in a frame, which is itself contained by something else, as shown in
Example 11-19.

 }
 }
}

* You were perhaps expecting “abracadabra”?

Example 11-18. Using a page function (continued)

360 | Chapter 11: Navigation

In Example 11-19, we’re hosting a Frame in a window, but you can host it equally
well in a page. The main property you’ll care about on the Frame class is the Source,
which indicates where you’d like to start navigation. Figure 11-10 shows the results
of making one guess on the history for the frame.

Frames are useful when you’d like to add navigation to part of your window (or to
multiple parts), but you don’t want the entire window dedicated to it. For example,
your average web site is composed of a set of content that goes inside a navigation
frame, including menus, graphics, and so on. The Frame element is one way to imple-
ment the content inside the outer navigation frame.

Figure 11-9. A page function in action

Example 11-19. Using a frame navigation host

<!-- Window1.xaml -->
<Window ...>
 <Border BorderBrush="Green" BorderThickness="10">
 <Frame Source="Page1.xaml" />
 </Border>
</Window>

XBAPs | 361

XBAPs
The final navigation host that WPF provides is an internal class called
RootBrowserWindow. Like NavigationWindow and Frame, the RootBrowserWindow knows
how to host content for navigation. However, RootBrowserWindow does it by integrating
with versions 6 and later of Internet Explorer* in order to implement XAML Browser
Applications (XBAPs). An XBAP is a WPF application with these characteristics:

• Hosted in IE6+ like loose XAML pages (although they’re compiled), whether at
the top level or inside an IFRAME. In fact, you’re meant to be able to click back
and forth between HTML and XBAPs without knowing that you’re doing so
(except that the XBAP pages are “better”).

• No custom top-level windows. You must use the RootBrowserWindow provided
and no other custom top-level windows (e.g., custom dialogs).

• Runs in partial trust that can’t be elevated by users like normal ClickOnce
applications.

• Can be deployed like ClickOnce “online-only” applications. The standard Click-
Once “offline/online” deployment is available if your main window is a
NavigationWindow, but it won’t be hosted in Internet Explorer.

You can get a new XBAP application skeleton in Visual Studio 2005 by choosing the
“XAML Browser Application (WPF)” project template. It will give you a standard
navigation application without any window definition, just a page. The chief differ-
ence between an XBAP and a standard navigation-based application is the
HostInBrowser property set in the project file:

<Project ...>
 <PropertyGroup>
 <HostInBrowser>true</HostInBrowser>

Figure 11-10. Using a frame navigation host

* Only IE7+ has an integrated navigation UI.

362 | Chapter 11: Navigation

 ...
 </PropertyGroup>
 ...
</Project>

In addition, an XBAP’s ClickOnce manifests must be signed to build, which will be set
up for you when you use Visual Studio 2005’s project template. In fact, for the pur-
poses of testing and debugging, you can execute an XBAP directly from Visual Studio
2005 (using Debug ➝ Start Debugging or Debug ➝ Start Without Debugging) to see it
running inside the browser without first publishing, as shown in Figure 11-11.

Notice that after a guess, the IE7 history looks pretty much like we’d expect from
both the navigation window and the frame.

XBAP Publication and Deployment
The publication of an XBAP happens exactly like the publication of a WPF applica-
tion via ClickOnce, as discussed in the Chapter 2. (I’ll wait here while you refresh
your memory.) Right-clicking on your XBAP project and choosing Publish brings up
the Publish Wizard, which leads you through the publication process. Unlike the
Publish Wizard for standalone ClickOnce applications, this time you won’t get a
publish.htm, but here’s a template to get you started:

<html>
<head><title>Welcome to XBAP Fun!</title></head>
<body>
 XBAP Fun!
</body>
</html>

Notice that the link to your XBAP ends in .xbap, unlike a standalone ClickOnce
application, which ends in .application. Further, if you surf to this publish.htm file

Figure 11-11. Hosting an XBAP in IE7

Navigation to HTML | 363

and click on the link, you’ll get the download progress as you expect, but then noth-
ing else (no security dialog) before the application shows itself. In fact, XBAPs are
true “one-click” deployment, regardless of whether you’ve run the application
before.* In addition, because we’re surfing to it via URLs, the histories of both XBAP
and HTML are merged, as shown in Figure 11-12.

XBAPs are your “best of the Web, best of Windows” WPF deployment mode of
choice (assuming you can live with the limitations laid out earlier).

Navigation to HTML
To further drive home the integration between WPF navigation and Internet
Explorer, if you navigate to an HTML URL inside of a navigation host, the core OLE
control that hosts HTML in IE will be used to show the content. For example:

<TextBlock>
 <Hyperlink
 NavigateUri="http://sellsbrothers.com">sellsbrothers.com</Hyperlink>
</TextBlock>

* Of course, that “one click” works only if your XBAP doesn’t try to get more permissions than it’s been
awarded, in which case, you can click all day long and it still ain’t gonna run.

Figure 11-12. Mixing XAML and HTML in a single navigation history

KeepAlive and XBAPs
Although the rules about KeepAlive and XBAPs still apply, there is one more wrinkle.
If you navigate away from an XBAP and navigate back, the pages will have been flushed
regardless of your KeepAlive settings.

364 | Chapter 11: Navigation

If you do this from within a standalone application using the navigation window or
frame hosts, the HTML page will become part of the history along with everything
else. If you do this within an XBAP, however, a new instance of IE will be spun up to
handle the navigation (it’s just too weird to host IE inside an XBAP hosted inside IE).

Where Are We?
Building on base Window functionality, the NavigationWindow forms the core of most
standalone navigation-based applications, with Frame for navigating content while
controlling the chrome, and RootBrowserWindow for providing XBAP Internet Explorer
6+ navigation integration.

365

Chapter 12 CHAPTER 12

Resources12

WPF offers us great flexibility in how we construct an application’s user interface.
But with great power comes great responsibility—we must avoid bewildering the
user with a garish and inconsistent frontend. Styles and templates allow us to take
control of our application’s visuals, but these features depend on the resource sys-
tem in WPF to make it easy to build visually consistent applications without sacrific-
ing flexibility. If you want to build a graphically distinctive application, the resource
system provides a straightforward way to skin your applications with customized yet
consistent visuals. But by default, the resource mechanism simply ensures consis-
tency with the system-wide OS theme chosen by the user.

In this chapter, we will look at how the resource system lets us plug in visual fea-
tures where they are needed. Not only will we see how to ensure that the right look
and feel is applied to our application at runtime, but we will also look at how the
resource system lets you reuse objects or groups of objects such as drawings. Fur-
thermore, we will look at how to manage binary resource streams and how to local-
ize applications.

Creating and Using Resources
The term resource has a very broad meaning—in WPF, any object can be a resource.
A brush or a color used in various parts of a user interface could be a resource. Snip-
pets of graphics or text can be resources. An object does not have to do anything spe-
cial to qualify as a resource. The resource handling infrastructure is entirely dedicated
to making it possible to get hold of the resource you require, and it doesn’t care what
the resource is. It simply provides a mechanism for identifying and locating objects.

At the heart of resource management is the ResourceDictionary class. Outwardly,
this is just a simple collection class. It behaves much like an ordinary Hashtable—it
allows objects to be associated with keys, and it provides an indexer that lets you
retrieve those objects using these keys. So, in theory, you could use the
ResourceDictionary like a Hashtable, as Example 12-1 shows.

366 | Chapter 12: Resources

In practice, you will not often create your own ResourceDictionary in this way.
Instead, you will normally use ones provided by WPF. For example, the
FrameworkElement base class, from which most user interface elements derive, pro-
vides a resource dictionary in its Resources property. The calls to Add in
Example 12-1 illustrate the usual way to add resources from code-behind files, but
this dictionary can also be populated from markup, as Example 12-2 shows.

The x:Key attribute specifies the key that identifies the resource in the dictionary. It is
equivalent to the first parameter of the calls to Add in Example 12-1. You can use any
object as a key. Strings are the most common choice, although distinct object
instances are often used to identify very broadly scoped resources, such as system
resource.

When you use compiled XAML to populate a resource dictionary,
WPF defers creation of the resources. It leaves each resource in its seri-
alized form (known as BAML), and expands this into real objects only
on demand. This can significantly improve the startup time for a user
interface in cases where not all of the objects are needed as soon as the
UI appears. For the most part, this optimization will not have any
direct effect on your code’s behavior other than speeding it up. How-
ever, if there is something wrong with your markup, this deferred cre-
ation can cause the resulting errors to emerge later than you might
have expected.

Example 12-3 shows code retrieving the resources defined in Example 12-2.

Example 12-1. Naïve ResourceDictionary programming

ResourceDictionary myDictionary = new ResourceDictionary();
myDictionary.Add("myBrush", Brushes.Green);
myDictionary.Add("HW", "Hello, world");

Console.WriteLine(myDictionary["myBrush"]);
Console.WriteLine(myDictionary["HW"]);

Example 12-2. Populating a ResourceDictionary from XAML

<Window x:Class="ResourcesExample.Window1" Title="Resources"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:s="clr-namespace:System;assembly=mscorlib">

 <Window.Resources>
 <SolidColorBrush x:Key="myBrush" Color="Green" />
 <s:String x:Key="HW">Hello, world</s:String>
 </Window.Resources>

 <Grid x:Name="myGrid">
 </Grid>
</Window>

Creating and Using Resources | 367

This code accesses the ResourceDictionary using this.Resources. This is all very well
for the code-behind file for the markup that defined the resources. However, it is not
always this convenient to get hold of the right dictionary. What if we want to define
resources accessible to all windows in the application? It would be both tedious and
inefficient to copy the same resources into every window in the application. And
what if we want a custom control to pick up resources specified by its parent win-
dow, rather than baking them into the control? To solve these problems, and to
make it easy to achieve consistency across your user interface, FrameworkElement
extends the basic ResourceDictionary facilities with a hierarchical resource scope.

Resource Scope
As well as providing a ResourceDictionary for every element, FrameworkElement also
provides a FindResource method to retrieve resources. Example 12-4 shows the use of
this to retrieve the same resources as Example 12-3.

This may seem pointless—why does this FindResource method exist when we could
just use the dictionary’s indexer as we did in Example 12-3? The reason is that
FindResource doesn’t give up if the resource is not in the specified element’s resource
dictionary. It will search elsewhere. Example 12-5 illustrates the difference between
these two approaches.

This code uses the myGrid element from Example 12-2 instead of this. The Grid doesn’t
have any resources, so the b1 variable will be set to null. However, because b2 is set
using FindResources instead of the resource dictionary indexer, WPF considers all of the
resources in scope, not just those directly set on the Grid. It starts at the Grid element,
but then examines the parent, the parent’s parent, and so on, all the way to the root ele-
ment. (In this case, the parent happens to be the root element, so this is a short search.
But in general, it searches as many elements as it needs to.) The result is that the b2 vari-
able is set to the same Brush object as was retrieved in Examples 12-3 and 12-4.

Example 12-3. Retrieving resources from an element’s ResourceDictionary the wrong way

// NOT the best way to retrieve resources
Brush b = (Brush) this.Resources["myBrush"];
String s = (String) this.Resources["HW"];

Example 12-4. Using FindResource

Brush b = (Brush) this.FindResource("myBrush");
String s = (String) this.FindResource("HW");

Example 12-5. FrameworkElement.Resources versus FindResource

// Returns null
Brush b1 = (Brush) myGrid.Resources["myBrush"];

// Returns SolidColorBrush from Window.Resources
Brush b2 = (Brush) myGrid.FindResource("myBrush");

368 | Chapter 12: Resources

It doesn’t stop here. If FindResource gets all the way to the root of the UI without find-
ing the specified resource, it will then look in the application. Not only do all frame-
work elements have a Resources property, so does the Application object. Example 12-6
shows how to define application-scope resources in markup. (If you are using the nor-
mal Visual Studio WPF project template, you would put this in the App.xaml file.)

The application scope is helpful for objects that are used throughout your applica-
tion. For example, if you use styles or control templates, you would typically put
these in the application resources, to ensure that you get a consistent look across all
the windows in your application.

Resource searching doesn’t even stop at the application level. If a resource is not
present in the UI tree or the application, FindResource will finally consult the system
scope, which contains resources that represent system-wide settings, such as the con-
figured color for selected items, the correct width for a scroll bar, and styles for built-
in controls. The control styles WPF adds to the system scope will be based on the
user’s chosen “theme” (or “visual style”).

Figure 12-1 shows a typical hierarchy of resource sources. Several applications are
running, each application may have several windows, and each window has a tree
consisting of multiple elements. If FindResource is called on the element labeled “1”
in the figure, it will first look in that element’s resource dictionary. If that fails, it will
keep working its way up the hierarchy through the numbered items in order, until it
reaches the system resources.

WPF uses the system scope to define brushes, fonts, and metrics that the user can
configure at a system-wide level. The keys for these are provided as static properties
of the SystemColors, SystemFonts, and SystemParameters classes, respectively. (These
classes define more than 400 resources, so they are not listed here—consult the SDK
documentation for each class to see the complete set.) Example 12-7 uses the system
scope to retrieve a brush for the currently configured tool tip background color. (See
Chapter 13 for more information on brushes.)

Example 12-6. Resources at application scope

<!-- App.xaml -->
<Application x:Class="MyResourcesExample.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml"
 >
 <Application.Resources>
 <LinearGradientBrush x:Key="myBrush" StartPoint="0,0" EndPoint="1,1">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0" Color="Red"/>
 <GradientStop Offset="1" Color="Black"/>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Application.Resources>
</Application>

Creating and Using Resources | 369

These system resource classes use objects rather than strings as
resource keys. This avoids the risk of naming collisions—system
resources are always identified by a specific object, so there will never
be any ambiguity between them and your own named resources.

Defining custom system-scope resources

All the built-in controls rely on the system scope to provide styles and templates suit-
able for the current OS theme. Without these resources, the controls would have no
appearance by default. If you are writing a custom control, you will usually want to
do the same thing. By providing a style for your control, you ensure that it has a
default appearance. By putting that style into the system scope, you give developers
the opportunity to customize the control by putting an alternative style in a nar-
rower scope such as the application scope.

Figure 12-1. Resource hierarchy

Example 12-7. Retrieving a system scope resource

Brush toolTipBackground = (Brush) myGrid.FindResource(SystemColors.InfoBrushKey);

System
resources

Application
resources

Window
resources

Element
resources

Element
resources

Element
resources

Element
resources

Element
resources

6

5

4

3

2

1

Application

Window

370 | Chapter 12: Resources

To add custom resources to the system scope, you must annotate your component
with the ThemeInfo custom attribute. This indicates two things: whether your compo-
nent has non-theme-specific system-scope resources, and whether it has theme-specific
system-scope resources. As Example 12-8 shows, this is an assembly-level attribute. It
would typically go in the AssemblyInfo.cs source file.

This example declares that the component has generic resources, but no theme-
specific resources. This instructs WPF to look in the component for an embedded
ResourceDictionary called themes\generic.xaml, and to add any resources in that
dictionary to the system scope. (We will show how to embed resource streams
later in this chapter.)

You can also specify that theme-specific resources are present by setting the first
parameter of the attribute to SourceAssembly. This would cause WPF to look for an
embedded resource named after the currently selected theme. Table 12-1 shows the
names of the embedded resources WPF will look for. If it cannot find a resource for
the current theme, it will fall back to the generic resources instead.

The ResourceDictionaryLocation enumeration has one more value besides the two
shown in Example 12-8: ExternalAssembly. This will cause WPF to look in a separate
assembly for the resources. It will look for an assembly with a name formed by adding
a period and then the current theme name to your assembly’s name (which means you
can specify this only for the theme-specific resources). It uses only the base theme
name, without the color scheme appended. For example, if your component is called
MyLibrary, and the user is running with the Windows Vista Aero theme, WPF will look
for a MyLibrary.Aero component containing the themes\Aero.NormalColor.xaml
resources.

Example 12-8. Declaring custom system-scope resources

[assembly:ThemeInfo(
 ResourceDictionaryLocation.None, // Theme-specific resources
 ResourceDictionaryLocation.SourceAssembly // Generic resources
)]

Table 12-1. Themes and resource names

Theme Embedded resource name

Aero (Windows Vista) themes\Aero.NormalColor.xaml

Luna Blue (Windows XP) themes\Luna.NormalColor.xaml

Luna Silver (Windows XP) themes\Luna.Metallic.xaml

Luna Olive Green (Windows XP) themes\Luna.Homestead.xaml

Royale (Windows Media Center) themes\Royale.NormalColor.xaml

Classic (Any Windows version) themes\Classic.xaml

Creating and Using Resources | 371

For WPF to be able to find a custom system-scope resource, you must use a suitable
key type: the key must incorporate information about which assembly contains the
resource. For a custom control’s style, you will normally use the control’s Type object
as a key. You typically do this by specifying a TargetType, as in Example 12-9. This
automatically uses that type as the key, as well as the style’s target type.

When looking up a resource by type, WPF will locate the assembly referred to by the
Type object’s Assembly property. If the assembly has a ThemeInfo attribute indicating
that system-scope resources are present, WPF will look for an embedded resource dic-
tionary. In short, you simply add the ThemeInfo attribute, and put the resource
streams in the same component as the custom control, and it all just works.

Sometimes it’s useful to put resources other than styles into the system scope. You
can do this, but you can’t use a string to name the resource—a simple string won’t
tell WPF in which assembly it should be looking. WPF therefore provides the
ComponentResourceKey type. This is a class designed to be used as a resource name. It
incorporates both an identifier (which may be a string) and a Type object to indicate
which assembly defines the type. WPF also defines a corresponding markup exten-
sion, offering a syntax for using these keys from XAML, which is shown in
Example 12-10.

With a resource defined this way in your themes\generic.xaml, or in one of the
theme-specific dictionaries, you can refer to the resource using the same syntax that
Example 12-10 uses to name it. Because the ComponentResourceKey incorporates a
type object, WPF will know which assembly defines the resource, and will be able to
find it.

Using system-scope resources

The system resource classes also define static properties that let you retrieve the rele-
vant object directly rather than having to go via the resource system. For example,
SystemColors defines an InfoBrush property that returns the same value that
FindResource returns when passed SystemColors.InfoBrushKey. So rather than writ-
ing the code in Example 12-7, we could have written the code in Example 12-11.

Example 12-9. Style using a Type object as key

<Style TargetType="{x:Type local:MyCustomControl}">
 ...
</Style>

Example 12-10. Naming custom system-scope resources

<SolidColorBrush x:Key="{ComponentResourceKey {x:Type local:MyCustomType},
myBrush}" />

372 | Chapter 12: Resources

When writing code, these properties are likely to be simpler to use than the resource
system. However, using the resource key properties offers three advantages. First, if
you want to let the user change your application’s color scheme away from the system-
wide default, you can override these system settings by putting resources into the
application scope. Example 12-12 shows an application resource section that defines a
new application-wide value for the InfoBrushKey resource.

This replacement value would be returned in Example 12-7, but not in
Example 12-11. This is because in Example 12-11, SystemColors has no way of
knowing what scope you would like to use, so it always goes straight to the system
scope.

The second advantage offered by resource keys is that they provide a straightforward
way of using system-defined resources from markup. Third, you can make your
application respond automatically to changes in system resources. Both of these last
two benefits come from using resource references.

Resource References
So far, we have seen how to retrieve the current value of a named resource in code.
Because we usually use resource values to set element properties, we will now look at
how to set an element’s property to the value of a resource. This may seem like a
ridiculously trivial step. You might expect it look like Example 12-13.

This is fine for some resource types, but here it will work only up to a point—it will
successfully set the Background property to a brush that paints with whatever the cur-
rently selected color for control backgrounds is at the moment when this line of code
runs. However, if the user changes the system color scheme, this Background prop-
erty will not be updated automatically. The code in Example 12-13 effectively takes a
snapshot of the resource value.

The code in Example 12-14 does not suffer from this problem. Instead of taking a
snapshot, it associates the Background property with the resource.

Example 12-11. Retrieving a system resource through its corresponding property

Brush toolTipBackground = SystemColors.InfoBrush;

Example 12-12. Application overriding system colors

// (Hypothetical function for retrieving settings)
Color col = GetColorFromUserSettings();

Application.Current.Resources[SystemColors.InfoBrushKey] =
 new SolidColorBrush(Colors.Red);

Example 12-13. How not to use a system resource value

this.Background = (Brush) this.FindResource(SystemColors.ControlBrushKey);

Creating and Using Resources | 373

Unlike Example 12-13, if the system resource value changes, the property will auto-
matically receive the new value. The practical upshot of this is that if the user
changes the color scheme using the Display Properties Control Panel applet,
Example 12-14 will ensure that your user interface is updated automatically.

WPF defines markup extensions that are the XAML equivalent of the code in the previ-
ous two examples. (See Appendix A for more information on markup extensions.)
These are the StaticResource and DynamicResource extensions. If you are using a system
resource, or any other resource that might change at runtime, choose DynamicResource.
If you know the resource will never change, use StaticResource, which takes a snap-
shot, avoiding the costs associated with tracking the resource for changes. (The cost is
small, but you may as well avoid it for resources that never change.) Example 12-15
shows the use of both resource reference types.

A StaticResource reference must appear after the resource to which it
refers. Forward references are not allowed.

The top-level Window defines a brush as a resource named myBrush. The TextBlock
uses this for its Background property via a StaticResource reference. This has a simi-
lar effect to the code in Example 12-13. It takes a snapshot, and is appropriate for
resources that will not change while the application runs.

The grid’s Background has been set to the system “control” color. (This is typically
battleship gray—the color often used as the background for dialogs.) Because this is
a user-configurable color and could therefore change at runtime, we’ve used a
DynamicResource, which has the same effect as the call to SetResourceReference in
Example 12-14.

Example 12-14. Self-updating system resource reference

this.SetResourceReference(Window.BackgroundProperty, SystemColors.ControlBrushKey);

Example 12-15. Using resources from markup

<Window x:Class="ResourcesExample.Window2" Title="Resources"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Window.Resources>
 <SolidColorBrush x:Key="myBrush" Color="LightGreen" />
 </Window.Resources>

 <Grid Background="{DynamicResource {x:Static SystemColors.ControlBrushKey}}">
 <TextBlock FontSize="36" Width="200" Height="200"
 Background="{StaticResource myBrush}">Hello!</TextBlock>
 </Grid>
</Window>

374 | Chapter 12: Resources

The DynamicSource syntax is a little more complex than for the StaticResource. This
complexity is not because we are using DynamicResource. It is because the resource
we wish to use is identified by an object, returned by the static SystemColors.
ControlBrushKey property. We could have tried this:

<!-- This will not work as intended -->
<Grid Background="{DynamicResource SystemColors.ControlBrushKey}">

This is syntactically correct, but doesn’t do what we want. It will be interpreted as a
dynamic reference to a resource named by the string SystemColors.ControlBrushKey.
There is no such resource, so the background will not be set. To use the real resource
key (the object returned by the ControlBrushKey static property), we have to use the
x:Static markup extension as Example 12-15 does—this tells the XAML compiler
that the text should be treated as the name of a static property, not as a string.

Reusing Drawings
It is often useful to put drawings and shapes into resources. There are two main rea-
sons for doing this. One is that drawings can be quite complex, and putting them
inline as part of the main markup for a user interface can make the XAML hard to
read. By putting drawings into the resources section, or even a separate file, the over-
all UI structure can be clearer. Another reason is to enable reuse; you may want to
use the same graphic in multiple places. Performance can also be a factor—reusing
drawing resources is much more efficient than duplicating them.

You can represent shapes and drawings in many different ways, as Chapter 13
shows, and all of them can be used as resources. Example 12-16 defines an Ellipse
resource called “shape.” It also shows how to use the resource.

The StaticResource element here will be replaced at runtime with the resource it
names. The result will look like Figure 12-2.

There is a problem with this technique: if you use any element that derives from
FrameworkElement as a resource, by default you can reference it only once. The rea-
son for this restriction is that FrameworkElement is the basis of the user interface tree.

Example 12-16. Using a FrameworkElement resource

<Window.Resources>
 <Ellipse x:Key="shape" Fill="Blue" Width="100" Height="80" />
</Window.Resources>

...

<StackPanel>
 <Button>Foo</Button>
 <StaticResource ResourceKey="shape" />
 <Button>Bar</Button>
</StackPanel>

Creating and Using Resources | 375

An element knows what its parent is and what children it has, so it is not possible for
it to be in more than one place in the tree—its Parent property can point to only one
element, after all. So if you were to add a second reference to the ellipse in Example
12-16, WPF would throw an exception complaining that the ellipse is already in use.
However, there is a simple solution to this. By default, when you use a resource, you
are not using a copy of the object, you are using the object itself, but you can change
this behavior with the x:Shared attribute. Example 12-17 shows a modified version
of Example 12-16. By enabling sharing of the ellipse resource, we can use the
resource as many times as we like.

WPF will now build a new copy of the resource each time you use it.* As Figure 12-3
shows, this enables us to use the ellipse multiple times over. This is effective, but it is
not the most efficient approach available, because it builds a new copy of the
resource for each reference. For simple graphics this will not be a problem. How-
ever, if you are working with complex drawings containing many hundreds or even
thousands of elements, the overhead of copying for each use can introduce perfor-
mance problems.

Figure 12-2. Reference to element resource

Example 12-17. Disabling sharing

<Window.Resources>
 <Ellipse x:Key="shape" Fill="Blue" Width="100" Height="80"
 x:Shared="False" />
</Window.Resources>

...

<StackPanel>
 <Button>Foo</Button>
 <StaticResource ResourceKey="shape" />
 <StaticResource ResourceKey="shape" />
 <Button>Bar</Button>
</StackPanel>

* Copies are built using the deferred resource-loading mechanism described earlier—WPF goes back to the
BAML each time it makes a new copy. Consequently, you can use this technique only in compiled XAML.
It will not work in XamlPad because that parses the XAML at runtime.

376 | Chapter 12: Resources

The Drawing classes, such as GeometryDrawing or DrawingGroup, are better candidates
for storing drawings as resources. Because Drawing does not derive from
FrameworkElement, you are free to use one instance in multiple places. DrawingGroup
lets you put as many shapes and images into a single drawing as you like, and the
various other types derived from Drawing provide access to all of WPF’s graphics
facilities. (See Chapter 13 for more details.)

Example 12-18 shows how to define and use a drawing resource. It uses a
DrawingBrush to display the Drawing. Figure 12-4 shows the result.

Figure 12-3. Multiple references to a single element resource

Example 12-18. Using a Drawing resource

<Window.Resources>
 <GeometryDrawing x:Key="drawing" Brush="Green">
 <GeometryDrawing.Geometry>
 <EllipseGeometry RadiusX="200" RadiusY="10" />
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
</Window.Resources>

...

<StackPanel Orientation="Vertical">
 <Rectangle Width="250" Height="50">
 <Rectangle.Fill>
 <DrawingBrush Drawing="{StaticResource drawing}" />
 </Rectangle.Fill>
 </Rectangle>
 <Rectangle Width="250" Height="50">
 <Rectangle.Fill>
 <DrawingBrush Drawing="{StaticResource drawing}" />
 </Rectangle.Fill>
 </Rectangle>
</StackPanel>

Creating and Using Resources | 377

You can also define the DrawingBrush as a resource. This moves some of the complex-
ity into the Resources section, making the markup considerably simpler at the point
at which you use the resource, as Example 12-19 shows. The results are the same as
the preceding example, as shown in Figure 12-4, but the markup that uses the
resource is just one line long instead of five.

If you want the same shape to appear in multiple drawings, you might want to drop
down a level and use individual geometry objects as resources. You can then refer to
these from within drawings. Example 12-20 shows the use of a DrawingBrush with a
GeometryDrawing that uses an EllipseGeometry resource. (Because this is yet another
ellipse, we won’t waste your time with another picture—it’ll look much like
Figure 12-4, only in cyan.)

Figure 12-4. References to Drawing resource

Example 12-19. Using a DrawingBrush resource

<Window.Resources>
 <GeometryDrawing x:Key="drawing" Brush="Green">
 <GeometryDrawing.Geometry>
 <EllipseGeometry RadiusX="200" RadiusY="10" />
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 <DrawingBrush x:Key="dbrush" Drawing="{StaticResource drawing}" />
</Window.Resources>

...

<StackPanel Orientation="Vertical">
 <Rectangle Width="250" Height="50" Fill="{StaticResource dbrush}" />
 <Rectangle Width="250" Height="50" Fill="{StaticResource dbrush}" />
</StackPanel>

Example 12-20. Using a Geometry resource

<Window.Resources>
 <EllipseGeometry x:Key="geom" RadiusX="200" RadiusY="30" />
</Window.Resources>

...

378 | Chapter 12: Resources

In this particular example, the use of resources may seem a little extreme—it would
probably have required less effort just to create a new geometry from scratch. How-
ever, some geometries, such as PathGeometry, can become quite complex, in which
case this kind of reuse makes more sense.

Although drawings and geometries are powerful, reusable, and lightweight, they
have one disadvantage. They are not framework elements, so they cannot take
advantage of WPF’s layout system. You can scale them using the brush scaling fea-
tures described in Chapter 13, but drawings cannot contain framework elements, so
you cannot make them adapt their layout intelligently using the panels described in
Chapter 3. If you need these framework-level features, use framework elements as
Example 12-17 showed. But if you don’t need to use FrameworkElement-based types in
your drawing (maybe because you don’t need the shapes laid out by a panel), the
more lightweight DrawingBrush class is more efficient. And, if you are creating lots of
drawings, all containing similar shapes, you can even go as far as sharing individual
geometry objects as resources. Chapter 13 describes all of these drawing mecha-
nisms in more detail.

Resources and Styles
WPF’s styling mechanism depends on the resource system to locate styles. As you
already saw in Chapter 8, styles are defined in the Resources section of an element
and can be referred to by name, as Example 12-21 shows.

<Rectangle Width="250" Height="50">
 <Rectangle.Fill>
 <DrawingBrush>
 <DrawingBrush.Drawing>
 <GeometryDrawing Brush="Cyan" Geometry="{StaticResource geom}" />
 </DrawingBrush.Drawing>
 </DrawingBrush>
 </Rectangle.Fill>
</Rectangle>

Example 12-21. Referencing a Style resource

<Window x:Class="ResourcesExample.Window1" Title="Resources"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Window.Resources>
 <Style x:Key="myStyle">
 <Setter Property="Button.FontSize" Value="36" />
 </Style>
 </Window.Resources>

Example 12-20. Using a Geometry resource (continued)

Resources and Styles | 379

Further, it is also possible to define a style that is applied automatically to an ele-
ment without the need for the explicit resource reference. This is useful if you want
the style to be applied to all elements of a particular type without having to add
resource references to every element. Example 12-22 shows a version of
Example 12-21 modified to take advantage of this.

Notice that the Button no longer has its Style property specified. However, the style
will still be applied to the button because of its TargetType. If you were to add more
buttons to the window, they would all pick up this style. Instead of defining a key,
the style now has a TargetType set with the x:Type markup extension, which instructs
XAML to provide the named class’s System.Type object.

If a FrameworkElement does not have an explicitly specified Style, it will always look
for a Style resource, using its own type as the key.

When you create a Style with a TargetType and do not specify the
x:Key, the x:Key is implicitly set to be the same as the TargetType.
This key is used to locate the style. Data templates use a similar
mechanism. In general, you should avoid setting the x:Key to a Type
object unless the resource is a Style or DataTemplate that you want
to be applied automatically.

Because elements look for their styles in resources, you can take advantage of the
resource scoping system. You can define a style resource at a local scope if you
wish to affect just a small number of elements, or at a broader scope such as in

 <Grid>
 <Button Style="{StaticResource myStyle}">Hello</Button>
 </Grid>
</Window>

Example 12-22. Implicit use of a Style

<Window x:Class="ResourcesExample.StyleExplicitReference" Title="Resources"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Window.Resources>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Button.FontSize" Value="36" />
 </Style>
 </Window.Resources>

 <Grid>
<Button>Hello</Button>

 </Grid>
</Window>

Example 12-21. Referencing a Style resource (continued)

380 | Chapter 12: Resources

Window.Resources, or at the application scope. If your application doesn’t define a
style for a particular element, its styles will be retrieved from the system scope.
This relationship between styling and resources is the key to both theming and
skinning.

Skins and Themes
Skinning and theming are both techniques for controlling the look and feel of a UI. A
theme* is a system-wide look, such as the Classic Windows 2000 look, the Luna
theme in Windows XP, and the Aero theme in Windows Vista. A skin is a look spe-
cific to a particular application, such as the distinctive styles available with media
programs like WinAmp and Windows Media Player.

In WPF, skins and themes are both defined as sets of resources that apply the
required styles to controls. By setting each resource key to the Type for the control to
which the style applies, styles will apply themselves consistently and automatically.
These styles will usually set the Template property in order to define the appearance
of the control, and may also set other properties such as those for font handling.
(Templates were discussed in Chapter 9.) The main difference between a skin and a
theme is one of scope—a skin would typically be stored in the application’s
Resources property, whereas a theme lives at the system scope, and is not directly
associated with any one application.

There is currently no documented way of defining a new theme. All
you can do is add features to the built-in themes. As we saw in the
“Resource Scope” section, earlier in this chapter, you can provide sets
of theme-specific resources that will be added to the system scope.

Because a skin’s purpose is to control the appearance of a particular application, it may
well provide more than just styles for standard controls. It might define various other
named resources for use in specific parts of the application. For example, a music player
application might present a ListBox whose purpose is to present a list of songs. A skin
might well want to provide a particular look for this list without necessarily affecting all
listboxes in the application. So the application would probably set that ListBox to use a
specific named style, enabling the skin to define a style just for that ListBox.

A skin doesn’t necessarily have to provide a comprehensive set of styles. If the appli-
cation doesn’t use every single WPF control type, the skin needs to supply styles only
for the controls the application uses. Example 12-23 shows the XAML for an
extremely simple skin.

* Strictly speaking, the proper name is Visual Style. According to official terminology, a theme can include
other features, such as system sounds and mouse cursors, as well as the visual style. However, this distinction
is rarely observed in practice, so we’ll stick with the shorter name.

Resources and Styles | 381

This sets the foreground and background for a Button. It also defines a brush—skins
often define graphical resources such as brushes or drawings, as it sometimes takes
more than just customizing controls to achieve a harmonious look for your applica-
tion. A more complex skin would target more element types and set more proper-
ties. Most skins include some Template property setters in order to customize the
appearance of controls. But even in this simple example, the underlying principles
remain the same. Example 12-24 shows a UI, and Example 12-25 shows the corre-
sponding code-behind file that allows skins to be switched. (This example assumes
that two skins, BlueSkin and GreenSkin, have been defined* using the technique
shown in Example 12-23.)

Example 12-23. BlueSkin.xaml—a very simple skin

<!-- BlueSkin.xaml -->
<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Style TargetType="{x:Type Button}">
 <Setter Property="Background" Value="Blue" />
 <Setter Property="Foreground" Value="White" />
 </Style>

 <SolidColorBrush x:Key="appBackground" Color="#EEF" />
</ResourceDictionary>

* I haven’t shown the GreenSkin.xaml file, as it’s identical to BlueSkin.xaml, except the word Green replaces
the word Blue.

Example 12-24. Window1.xaml—switching skins

<Window x:Class="SimpleSkin.Window1" Title="SimpleSkin"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Background="{DynamicResource appBackground}">

 <Grid Margin="1">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <RadioButton x:Name="chooseGreenSkin" Grid.Row="0" Content="Green" />
 <RadioButton x:Name="chooseBlueSkin" Grid.Row="1" Content="Blue" />

 <Button Grid.Row="2">Hello</Button>
 </Grid>
</Window>

382 | Chapter 12: Resources

Example 12-25. Window1.xaml.cs—code-behind file for switching skins

using System;
using System.Collections.ObjectModel;
using System.Diagnostics;
using System.Windows;
using System.Windows.Controls;

namespace SimpleSkin {

 public partial class Window1 : Window {

 public Window1() {
 InitializeComponent();

 EnsureSkins();

 chooseGreenSkin.Click += SkinChanged;
 chooseBlueSkin.Click += SkinChanged;
 }

 static ResourceDictionary greenSkin;
 static ResourceDictionary blueSkin;

 void EnsureSkins() {
 // This method is called each time a new Window1 is constructed,
 // so make sure we only load the resources the first time
 if (greenSkin !- null) {
 greenSkin = new ResourceDictionary();
 greenSkin.Source = new Uri("GreenSkin.xaml", UriKind.Relative);
 blueSkin = new ResourceDictionary();
 blueSkin.Source = new Uri("BlueSkin.xaml", UriKind.Relative);
 }
 }

 void SkinChanged(object o, EventArgs e) {
 if (chooseGreenSkin.IsChecked.Value) {
 ApplySkin(greenSkin);
 } else {
 ApplySkin(blueSkin);
 }
 }

 void ApplySkin(ResourceDictionary newSkin) {
 Collection<ResourceDictionary> appMergedDictionaries =
 Application.Current.Resources.MergedDictionaries;

 // Remove the old skins (MergedDictionary.Clear won't do the trick)
 if (appMergedDictionaries.Count != 0) {
 appMergedDictionaries.Remove(appMergedDictionaries [0]);
 }

Binary Resources | 383

This class contains some code to ensure that the skins get created just once. The code
that changes skins over simply ensures that the application resource dictionary’s
MergedDictionaries collection contains the ResourceDictionary for the selected skin.
The styling and resource systems react automatically to the change in resources,
updating all of the affected controls and all DynamicResource references when you
switch skins, so this is all the code that is required. Figure 12-5 shows the code in
action.

Binary Resources
Although ResourceDictionary and the resource scope system are fine for data that can
easily be contained in an object, not all resources fit comfortably into this model. Often
we need to deal with binary streams. For example, images, audio, and video have effi-
cient binary representations, but they are not particularly at home in markup, and in
the world of objects they are usually represented by wrappers for the underlying data.
Markup itself also presents a challenge: XAML pages must somehow get built into our
applications. So a means of dealing with binary streams is needed.

WPF does not introduce any new technology for dealing with binary data. The .NET
Framework has always provided mechanisms for dealing with embedded binary
streams, and WPF simply uses these.

The lowest level of stream support lets you embed resource streams into any assem-
bly. This is a simple matter of supplying the files you would like to embed to the
compiler. In Visual Studio, you do this by setting a file’s Build Action property to
Embedded Resource. This copies the contents of the file into the assembly as an
embedded stream. The stream can be retrieved at runtime using the Assembly class’s
GetManifestResourceStream method, as Example 12-26 shows.

 // Add the new skin
 appMergedDictionaries.Add(newSkin);
 }
 }
}

Figure 12-5. Changing skins (Color Plate 21)

Example 12-25. Window1.xaml.cs—code-behind file for switching skins (continued)

384 | Chapter 12: Resources

Streams embedded in this way are called assembly manifest resources. Although WPF
ultimately depends on this embedded resource mechanism, it uses it indirectly
through the ResourceManager class in the System.Resources namespace. The resource
manager builds on the embedded resource system, adding two features: localization,
and the ability to store multiple named streams in a single low-level stream. The
ResourceManager API allows you to ask for resources by name, and it will attempt to
locate the most appropriate resource based on the UI culture. The “Global Applica-
tions” section, later in this chapter, describes this in more detail.

By convention, a WPF application or component puts all of its resources into a sin-
gle assembly manifest resource stream called Appname.g.resources, where Appname is
the name of the component or executable without the file extension. We can learn
how WPF uses this resource stream by examining it using a ResourceManager. (In a
real application, you use a WPF-supplied wrapper for the ResourceManager that we’ll
look at shortly. We’re just using ResourceManager to look under the hood.)
Example 12-27 shows how to retrieve a list of resource names.

Let’s use this to look at the resources found inside a typical application. Figure 12-6
shows the Visual Studio Solution Explorer view for a simple WPF project. It con-
tains the usual App.xaml file defining the application, and a single Window1.xaml
file defining the user interface. This application also has an Images directory,
which contains two bitmap files. As you can see from the Properties panel in the
bottom half of Figure 12-6, the Build Action of Sunset.jpg has been set to Resource.*

Example 12-26. Retrieving assembly manifest resources

Assembly asm = Assembly.GetExecutingAssembly();
Stream s = asm.GetManifestResourceStream("StreamName");

Example 12-27. Listing binary resources

static List<string> GetResourceNames(Assembly asm,
 System.Globalization.CultureInfo culture) {

 string resourceName = asm.GetName().Name + ".g";
 ResourceManager rm = new ResourceManager(resourceName, asm);
 ResourceSet resourceSet = rm.GetResourceSet(culture, true, true);
 List<string> resources = new List<string>();
 foreach (DictionaryEntry resource in resourceSet) {
 resources.Add((string) resource.Key);
 }
 rm.ReleaseAllResources();
 return resources;
}

* This has a different effect than the Embedded Resource action we saw earlier. Embedded Resource embeds the
file in its own distinct assembly manifest resource. Resource embeds the file inside the Appname.g.resources
assembly manifest resource that is shared by all the files with a build action of Resource.

Binary Resources | 385

When you add a bitmap file to a project using Add ➝ New Item or Add ➝ Existing
Item from the context menu in the Solution Explorer, its Build Action will be set to
Resource automatically, because this is the simplest way to work with binary
resources in WPF. Wheel.jpg has the same setting.

If we were to call the GetResourceNames function in Example 12-27, and print out
each string it returns, we would see the following output:

window1.baml
images/wheel.jpg
images/sunset.jpg

As you can see, both of the bitmaps are present. You can use these embedded bit-
maps from any element with a property of type ImageSource, as Example 12-28
shows.

Figure 12-6. An application with resources

Example 12-28. Using a bitmap resource

<Image Source="images/wheel.jpg" />

386 | Chapter 12: Resources

Using a relative URL such as this one indicates that the resource is local—relative URLs
can be used either when the bitmap file is in the same directory, or when it is compiled
in as a resource. Because the bitmap data is embedded inside the resource stream in the
application binary, there is no need to ship a separate file containing bitmap data.

The resource list also shows a window1.baml resource. This corresponds to the
Window1.xaml file.

BAML is a binary representation of a XAML file—XAML is compiled
into BAML during the compilation process. BAML is significantly
more compact than XAML, so your executables are much smaller than
they would be if XAML were built in.

In a WPF project, any file with a Build Action of Page is assumed to be
XAML. It will be compiled into a BAML resource.

Although it’s easy to load a resource with the Image element’s Source property, or any
property of type ImageSource, what if we want to use a resource from code? We
shouldn’t use the ResourceManager directly in a real application, because we would be
depending on an implementation detail of WPF’s resource handling. Instead, we
should use the wrapper functionality provided by the Application class, because it’s
significantly simpler, as well as being the official documented mechanism.

Binary Resources and the Application Class
The Application class provides four helper functions for retrieving resources:
GetResourceStream, GetContentStream, GetRemoteResource, and LoadComponent.

GetResourceStream is the proper way to retrieve resources compiled into the execut-
able. This wraps the ResourceManager behavior described earlier. You simply need to
pass in the URI of the resource, as shown in Example 12-29.

The method returns a StreamResourceInfo. This has two properties: Stream contains the
resource stream, and ContentType is a string containing the MIME type of the stream.

GetContentStream is almost identical to GetResourceStream, as Example 12-30 shows.
The only difference is that it retrieves streams stored in files in the same directory on
disk as the executable.

Example 12-29. Using GetResourceStream

Uri resourcePath = new Uri("Images/Sunset.jpg", UriKind.Relative);
StreamResourceInfo ri = Application.GetResourceStream(resourcePath);
Stream data = ri.Stream;

Example 12-30. Using GetContentStream

Uri resourcePath = new Uri("Images/Sunset.jpg", UriKind.Relative);
StreamResourceInfo ri = Application.GetContentStream(resourcePath);
Stream data = ri.Stream;

Binary Resources | 387

GetContentStream won’t open just any old stream that happens to be on the disk. The
application is required to declare upfront which streams it expects to find. For each
content stream you want to load, your executable must contain an assembly-level
AssemblyAssociatedContentFile custom attribute specifying the filename. If you set a
file’s Build Action to Content, Visual Studio adds this attribute automatically when it
builds the file.

GetRemoteResource looks just like the previous two methods. Again, the only differ-
ence is where it expects the resource to be. This method is intended for applications
deployed to a web server (e.g., an XBAP; XBAPs are described in Chapter 11). The
method can download files stored on the same web server from which the applica-
tion itself came. You would use this method if your application has large resource
files that would take a long time to download, not all of which are necessarily needed
upfront. By separating the resources out into separate downloads, you can improve
the initial startup time of your application.

The LoadComponent method is the odd one out here—this does more than simply
retrieve a stream. It expects the stream to contain BAML—compiled XAML. It will
parse the stream, and generate the tree of objects described by the XAML. The return
value is the root of this tree. Example 12-31 uses this to load a resource dictionary.

The LoadComponent method is aware of code behind. If the XAML you load has a cor-
responding code-behind class, it will create an instance of that. Otherwise, the object
returned will be of the type specified by the root element of the XAML file.

LoadComponent has an overload that takes two parameters: an object and a URI. This
loads and parses the XAML as before, but does not create the root object for you.
Instead, you create the root object and pass this in to LoadComponent, which will then
load all of the remaining content into the root you supply. This is how XAML nor-
mally gets loaded. The generated partial class that Visual Studio creates for a XAML
file with code behind uses LoadComponent to populate your object with the objects
described by the XAML, as this excerpt in Example 12-32 shows.

As we saw earlier, XAML gets compiled into binary files with a .baml extension. It’s
therefore slightly surprising to see a .xaml extension in these last two examples.

Example 12-31. Application.LoadComponent

Uri resourcePath = new Uri("MyResources.xaml");
ResourceDictionary rd = (ResourceDictionary)
 Application.LoadComponent(resourcePath);

Example 12-32. Use of LoadComponent in generated code

System.Uri resourceLocater =
 new System.Uri("/BinaryResources;component/window1.xaml",
 System.UriKind.Relative);
System.Windows.Application.LoadComponent(this, resourceLocater);

388 | Chapter 12: Resources

We use a .xaml extension because BAML is essentially an implementation detail.
We always refer to resources by their original names, and we don’t need to con-
cern ourselves with the exact runtime representation. This is a good reason to use
the methods provided by the Application class instead of going straight to
ResourceManager.

The URI in Example 12-32 is a little more complex than the ones in the previous
examples. WPF accepts several different forms of URI for resources. They are all
variations around the pack URI scheme.

Pack URIs
Microsoft has defined a new URI scheme—the pack scheme. URIs that use this
scheme are called pack URIs. This URI scheme is part of the Open Packaging Con-
ventions, which are the basis of the Office 2007 file formats, and also the XPS file for-
mat. (The XPS file format is described in Chapter 15.) This URI scheme defines a
convention for referring to resources embedded in files. We can use pack URIs to
refer to resources in WPF. This is supported by the various resource methods defined
by the Application class, and also within XAML files. For example, the Image ele-
ment’s Source property is set as a pack URI.

The most straightforward form of pack URI is a relative pack URI—all the examples
we’ve looked at so far have been of this form. With a relative pack URI, we can spec-
ify just the name of the embedded resource. Example 12-31 used this form.

Example 12-32 illustrates a slightly more complex form of relative pack URI. It incor-
porates the name of the component that contains the resource. This makes it possi-
ble to refer to other components that are loaded by the application—you simply start
the URI with /ComponentName;component. The URI in Example 12-32 explicitly refers
to a resource defined by a component named BinaryResources. Example 12-33 uses
this same technique to refer to a system component (your code should appear on one
line; here it’s been split across two lines due to space constraints).

This example grabs the resource dictionary containing the theme resources for the
default Windows XP Luna color scheme. The controls inside this StackPanel will all
have the Luna look regardless of which theme the user has selected.

Example 12-33. Relative pack URI referring to external component

<StackPanel>
 <StackPanel.Resources>
 <ResourceDictionary
Source="/PresentationFramework.Luna;v3.0.0.0;31bf3856ad364e35;component/themes/
luna.normalcolor.xaml" />
 </StackPanel.Resources>

 <Button Content="Luna" />
 <CheckBox Content="Theme" />
</StackPanel>

Global Applications | 389

Example 12-33 will work only in compiled XAML. If you are using runtime XAML
parsing, such as XamlPad performs, you will need to use an absolute pack URI. The
absolute form of a pack URI must begin with the text “pack://application:,,,/” in
order to refer to a resource embedded in an assembly or a component used by the
application. This verbose and slightly peculiar syntax is used because pack URIs sup-
port several different source types, not just embedded resources. The full capabilities
of pack URIs are beyond the scope of this book.*

One of the main benefits WPF derives from using the ResourceManager mechanism to
manage bitmaps, BAML files, and any other embedded binary resources is that it
provides a way of making your application localizable. So, we will now look at how
to take advantage of this.

Global Applications
If you plan to distribute your applications worldwide, you may need to prepare dif-
ferent versions of the user interface for different regions. At a minimum, this would
involve translating text into the appropriate language. It may also involve other UI
changes. You might need to adapt certain visuals to local cultural conventions. Or
you might find that the original layout doesn’t quite work after translation, because
the words are of different lengths. (Although WPF’s layout system makes it easy to
build flexible layouts that can help to avoid that last problem.)

An extreme solution would be to build different versions of your software for differ-
ent markets. However, a more common approach is to build a single version that can
adapt to different locales, usually by selecting suitable resource files at runtime. The
ResourceManager infrastructure that WPF uses makes this fairly straightforward.

Microsoft draws a distinction between localization and globaliza-
tion. Localization is the process of enabling an application to be used
in a particular locale, by creating culture-specific resources such as
translated text. Globalization is the process of ensuring that an appli-
cation can be localized without needing to be recompiled. Using
ResourceManager helps to globalize your application, because its run-
time resource selection enables a single build of the application to be
localized by supplying suitable resources. For more information on
recommended globalization and localization practices in Windows,
see Microsoft’s internationalization site: http://msdn2.microsoft.com/
library/1021kkz0.aspx (http://tinysells.com/107).

When a ResourceManager is asked to retrieve a named resource stream, the first
thing it does is determine which culture it should use. A culture is the combina-
tion of a language and location, and it is typically represented as a short string.

* For full details on this URI scheme see http://msdn2.microsoft.com/en-gb/library/aa970069.aspx, or http://
tinysells.com/67.

390 | Chapter 12: Resources

For example, en-US means the English language, as spoken in the United States. The
en-GB culture represents English as spoken in Great Britain. The first two letters indi-
cate the language and the last two, the region. Both language and location are speci-
fied because there are often variations in dialect and idiom where two cultures
ostensibly share a language. For example, one of the authors of this book hails from
en-GB, and therefore prefers color to be spelled colour.

The ResourceManager.GetStream method takes a CultureInfo object as a parameter. If
you wish to use the end user’s configured culture, you can simply pass null—this
causes the ResourceManager to use the CultureInfo from the CurrentUICulture prop-
erty of Thread.CurrentThread.

Although executables usually have resources compiled in, the ResourceManager will
look for culture-specific resources before resorting to the built-in ones. It will look in
the directory containing the application for a subdirectory named for the culture. So if
you are running in a French Canadian culture it will look for an fr-CA subdirectory
containing a file called MyApp.resources.dll, where MyApp is the name of your applica-
tion or component. If that doesn’t exist, it will then look for the same file in a directory
called fr. This means that if your translation budget doesn’t stretch to producing differ-
ent versions for all of the various French-speaking regions of the world, you can instead
provide a single set of French resources that will be used in any French-speaking region.
If neither of these subdirectories exists, it will resort to using the built-in resources.

The resource DLLs that the ResourceManager looks for are called satellite resource
assemblies, so called because they are small assemblies associated with a larger
assembly nearby.

Note that if you supply a satellite assembly, you are not required to provide localized
versions of all of the resources. It might be that some of the resources you embed in your
main assembly work just fine for all cultures. For example, the application shown in
Figure 12-6 had an embedded bitmap called Sunset.jpg. The sun sets in most parts of the
world, so although you might need to do something special for Arctic and Antarctic edi-
tions, the basic Sunset.jpg probably works for most cultures. It would be a bit of a waste
of space for every satellite resource assembly to contain a copy of the same image. Fortu-
nately, they don’t have to—if a particular named resource is not present in a satellite
resource assembly, the ResourceManager will fall back to the built-in resources.

You can think of satellite resource assemblies as containing just the differences
between the built-in resources and those required for the target culture. Any com-
mon resources will live in the main assembly alone. An assembly in a language-specific
but location-generic subdirectory (e.g., in the fr subdirectory) contains resources that
need to be different for the specified language. And then the fully culture-specific sub-
directories (e.g., fr-CA, fr-FR, fr-BE, etc.) contain only those resources that need to be
adjusted to take into account local idioms. (In this context, a resource is a single
stream as retrieved by the ResourceManager, rather than an object retrieved from a
ResourceDictionary.)

Global Applications | 391

Building Localizable Applications with XAML
Because XAML is compiled into BAML resources that are retrieved using a
ResourceManager, localizability is an intrinsic feature of any WPF application built
using XAML. If a satellite resource assembly for the current culture is present, and it
contains a localized BAML resource, WPF will use that instead of the one in the
main assembly. However, there is no built-in support for localizing WPF applica-
tions in Visual Studio 2005, so a few manual steps are involved.

The localization process will no doubt be better streamlined and inte-
grated in some future version of Visual Studio.

If you build a UI in XAML, localization effectively occurs one XAML file at a time—
the ResourceManager cannot go more fine-grained than a single BAML resource, so
each BAML resource is either localized or not. Because there is a close relationship
between a XAML file and its code-behind file, however, it is important that the local-
ized BAML resource has the same essential structure as the original. In principle, you
could achieve this by writing a new XAML file for the localized version, and trying to
keep its structure the same. However, there is a more robust way of guaranteeing
consistency.

Instead of authoring a set of XAML files for every culture, you can write one master
set of XAML files—one for each window or page in your application. Then, for each
culture you wish to support, you can use a tool to generate culture-specific satellite
resource assemblies containing localized resources. You supply the tool with configu-
ration files indicating how the resources should be modified in order to create the
localized versions. Figure 12-7 illustrates the overall process.

First, you must make sure the project is set up to build a localizable application by
specifying a default UI culture. Visual Studio provides no UI for doing this, so you
must edit the .csproj file using a text editor. Add a UICulture element inside the
PropertyGroup element. (It doesn’t matter where it appears within this section.)

Figure 12-7. Localization process

Localization Tool

MyApp.exe

Default satellite
resource DLL

MyApp.resources.dll

Satellite resource
assemblies

Localization
configuration

392 | Chapter 12: Resources

Set it to the default culture for your application—the culture in which you will
create the main resources. This will cause Visual Studio to put all of the binary
resources into a satellite resource assembly for this default culture (see
Example 12-34).

Next, you must add Uids to your XAML. A Uid (unique identifier) is a special
attribute on a XAML element indicating content that may require localization. The
localization configuration file containing localization instructions uses Uids to indicate
which elements are being changed. Example 12-35 shows a TextBlock with a Uid.

You can add these by hand if you want. Or, you can generate them automatically
using msbuild. To add Uids to your XAML automatically, run this command:

msbuild /t:updateuid MyProject.csproj

If you have done this already, and have subsequently edited your XAML, you may
want to check that you’ve not ended up with any duplicated Uids. You can do this
with the following command:

msbuild /t:checkuid MyProject.csproj

Now you can build the project, either using Visual Studio or by running msbuild
from the command line, passing just the project filename as a parameter. You should
now find that as well as building an EXE or DLL, your project also adds a satellite
resource assembly in a subdirectory. (The subdirectory will be the one you named
when you added the UICulture element to the project file.)

The next step is to create the configuration file that will direct the localization pro-
cess. This file will contain all localized items such as translated strings. You can cre-
ate the skeleton of this file using the LocBaml command-line tool. This examines
resource assemblies for BAML streams, and builds a file containing one line for each
localizable piece of information in the file. You can then put your translated strings
and whatever else is required into this file.

Example 12-34. Specifying a UI culture for your project

<Project DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 ...
 <UICulture>en-US</UICulture>
 </PropertyGroup>
 ...

Example 12-35. A Uid

<TextBlock x:Uid="TextBlock_1">Hello, world</TextBlock>

Global Applications | 393

LocBaml is supplied in source code form only, so you will need to build
it before you can run it. You can find the code in the SDK documenta-
tion’s “Localize an Application” topic at http://msdn2.microsoft.com/
library/ms746621.aspx or http://tinysells.com/106. This provides the
code for LocBaml. Once a version of Visual Studio with integrated WPF
support ships, this “some assembly required” approach will hopefully
no longer be necessary.

Example 12-36 shows how to run LocBaml to generate the skeleton configuration file.
You should run this from the directory containing the built application (e.g., the bin\
Debug directory). You will need to copy the LocBaml executable into that directory in
order for it to run without error.

This will create a CSV file. Table 12-2 describes each column. To localize the
resource, edit the “Value” column. (Note that the CSV file doesn’t contain a heading
line—it depends entirely on the column positions.)

Example 12-37 shows a line from one of these configuration files. (It has been split
across several lines here to make it fit on the page. In a real file, this would be on a
single line.)

Example 12-36. Generating a CSV file with LocBaml

LocBaml /parse en-US\MyApp.resources.dll /out:MyAppResources.csv

Table 12-2. Columns generated by LocBaml

Column Description

Baml Name Identifies the BAML stream; the value will be of the form AssemblyName:Stream Name

Resource Key Identifies the localizable resource; the value will be of the formUid:ElementType.$Property

Localization Category An entry from the LocalizationCategory enumeration, indicating what kind of content
this is

Readable Indicates whether the resource is visible for translation

Modifiable Indicates whether this value can be modified during translation

Comments Localization comments

Value The value of this resource (modify this field when localizing your WPF applications)

Example 12-37. Example configuration file

HelloApp.g.fr-FR.resources:window1.baml,
TextBlock_1:System.Windows.Controls.TextBlock.Text,
Text,True,True,,"Bonjour monde"

394 | Chapter 12: Resources

Once you have translated the Value column for each row, you can then run LocBaml
again to generate the new resource DLL. You must pass in the path of the original
resource DLL, the path of the CSV file containing translations, a target directory, and
the target culture, as shown in Example 12-38. You must ensure that the target direc-
tory exists before running the tool—it will not create it for you. (Note that this exam-
ple has been split across multiple lines to fit into the book. You should enter it as a
single line in practice.)

This will generate a new satellite resource assembly in the specified directory, target-
ing the chosen culture. (If you want to build several resource assemblies, create one
CSV file for each culture, and run LocBaml once for each file.) If you place the result-
ing resource assembly in a subdirectory of the application’s directory named after the
culture, it will automatically be picked up at runtime if the application is run with
that particular culture selected.

Where Are We?
WPF provides resource facilities that let us plug bits of our user interface together
dynamically but consistently. We can store any objects in resource dictionaries and
then refer to these resources throughout our applications. WPF’s styling mechanism
relies on resource dictionaries to set properties and templates for our controls, based
either on an application’s skin or on the currently configured system theme. And, for
binary resources—including the compiled BAML versions of our XAML files—WPF
uses the localization-aware ResourceManager system, which chooses the most appro-
priate resources for the end user’s chosen user interface culture.

Example 12-38. Generating a resource DLL with LocBaml

LocBaml /generate en-US\MyApp.resources.dll /trans:MyAppResource.csv
 /out:fr-FR /cul:fr-FR

395

Chapter 13 CHAPTER 13

Graphics13

WPF makes it easy to build visually stunning applications. It offers a rich array of
drawing capabilities, and it is built to exploit the full power of modern graphics
cards. This enables designers to create intricate designs and use animation to bring
the UI to life much more easily than before.

WPF’s graphics architecture is not just for designers. The key aspect of the graphics
system is its deep integration with the rest of the programming model. It is easy to
add graphical elements to any part of your application without the disconcerting
change in programming techniques required by many user interface technologies.

Because WPF is a presentation technology, graphics are an important and substan-
tial part of the framework. It would be possible to fill a whole book on WPF’s graph-
ical capabilities alone, so we can only really scratch the surface here. In this chapter,
we will look at the fundamental concepts behind using graphics in WPF applica-
tions. In later chapters we will look at animation, media, and 3D support.

Graphics Fundamentals
WPF makes it easy to use graphics in your application, and to exploit the power of
your graphics hardware. Many aspects of the graphics architecture contribute to this
goal. The most important of these is integration.

Integration
Graphical elements can be integrated into any part of your user interface. Many GUI
technologies split graphics into a separate world. This requires a “gearshift” when
moving from a world of buttons, text boxes, and other controls into a world of
shapes and images, because in many systems, these two worlds have different pro-
gramming models.

396 | Chapter 13: Graphics

For example, Windows Forms and Mac OS X’s Cocoa both provide the ability to
arrange controls within a window and build a program that interacts through those
controls. They also both provide APIs offering advanced, fully scalable, two-
dimensional drawing facilities (GDI+ in the case of Windows Forms, and Quartz
2D on OS X). But these drawing APIs are distinct from the control APIs. Drawing
primitives are very different from controls in these systems—you cannot mix the
two freely.

WPF, on the other hand, offers shape elements that can participate in the UI tree like
any other. So we are free to mix them in with any other kind of element.
Example 13-1 shows various examples of this.

As you can see, you can mix graphical elements seamlessly with other elements in
the markup. Layout works with graphics exactly as it does for any other element.
You can see the results in Figure 13-1.

Although this example is in XAML, you can also use code to create
elements. Most of the examples in this chapter use XAML because the
structure of the markup directly reflects the structure of the objects
being created. However, whether you use markup or code will depend
on what you are doing. If you are creating drawings, you will most
likely use a design program to create the XAML for these drawings.
But if you are building up graphics from data, it might make more
sense to do everything from code.

You can use most of the techniques in this chapter in either code or
markup. See Appendix A for more information on the relationship
between XAML and code.

Example 13-1. Mixing graphics with other elements

<DockPanel>
 <StackPanel DockPanel.Dock="Top" Orientation="Horizontal">
 <TextBlock Text="Mix text, " />

<Ellipse Fill="Blue" Width="40" />
 <TextBlock Text=" and " />
 <Button>Controls</Button>
 </StackPanel>
<Ellipse DockPanel.Dock="Left" Fill="Green" Width="100" />

 <Button DockPanel.Dock="Left">Foo</Button>
 <TextBlock FontSize="24" TextWrapping="Wrap">
 And of course you can put graphics into
 your text: <Ellipse Fill="Cyan" Width="50" Height="20" />
 </TextBlock>
</DockPanel>

Graphics Fundamentals | 397

Not only can graphics and the other content live side by side in the markup, but they
can even be intermingled. Notice how in Figure 13-1 the ellipse on the righthand side
has been arranged within the flow of the containing TextBlock. If you want to
achieve this sort of effect in Windows Forms, it is not possible with its Label con-
trol—you would have to write a whole new control from scratch that draws both the
text and the ellipse. This mixing goes both ways—not only can you mix controls into
your graphics, but you can also use graphical elements inside controls. For example,
Figure 13-2 shows a button with mixed text and graphics as its caption.

Traditionally in Windows, you would get this effect by relying on the button’s abil-
ity to display a bitmap. But bitmaps are just a block of fixed graphics—you can’t eas-
ily make parts of a bitmap interactive, or animate selected pieces in response to user
input. So, in WPF putting graphics in buttons works a little differently, as you can
see in Example 13-2.

Figure 13-1. Mixed content

Figure 13-2. Button with graphical content

Example 13-2. Adding graphics to a Button

<Button>
 <StackPanel Orientation="Horizontal">
 <Canvas Width="20" Height="18" VerticalAlignment="Center">
 <Ellipse Canvas.Left="1" Canvas.Top="1" Width="16" Height="16"
 Fill="Yellow" Stroke="Black" />
 <Ellipse Canvas.Left="4.5" Canvas.Top="5" Width="2.5" Height="3"
 Fill="Black" />
 <Ellipse Canvas.Left="11" Canvas.Top="5" Width="2.5" Height="3"
 Fill="Black" />
 <Path Data="M 5,10 A 3,3 0 0 0 13,10" Stroke="Black" />
 </Canvas>
 <TextBlock VerticalAlignment="Center">Click!</TextBlock>
 </StackPanel>
</Button>

398 | Chapter 13: Graphics

Of course, buttons with images are not a new idea. For example, the Windows
Forms Button has an Image property, and in Cocoa, NSButton has a setImage method.
But this is pretty inflexible—these controls allow a single caption and a single image
to be set. Compare this to Example 13-2, which uses a StackPanel to lay out the inte-
rior of the button and just adds the content it requires. You can use any layout panel
inside the Button, with any kind of content. Example 13-3 uses a Grid to arrange text
and some ellipses within a Button. Figure 13-3 shows the results.

In WPF, there is rarely any need for controls to provide properties, such as Text or
Image. If it makes sense for a control to present nested content, it’ll do just that by
offering a content model—it will present whatever mixture of elements you choose
to provide.

If you are familiar with two-dimensional drawing technologies such as Quartz 2D,
GDI+, and GDI32, you may have been struck by another difference in the way draw-
ing is done. We no longer need to write a function to respond to redraw requests—

Example 13-3. Layout within a Button

<Button HorizontalAlignment="Center" VerticalAlignment="Center">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <Ellipse Grid.Column="0" Grid.Row="0" Fill="Blue" Width="10" Height="10" />
 <Ellipse Grid.Column="2" Grid.Row="0" Fill="Blue" Width="10" Height="10" />
 <Ellipse Grid.Column="0" Grid.Row="2" Fill="Blue" Width="10" Height="10" />
 <Ellipse Grid.Column="2" Grid.Row="2" Fill="Blue" Width="10" Height="10" />

 <Ellipse Grid.ColumnSpan="3" Grid.RowSpan="3" Stroke="LightGreen"
 StrokeThickness="3" />

 <TextBlock Grid.Column="1" Grid.Row="1" VerticalAlignment="Center"
 Text="Click!" />
 </Grid>
</Button>

Figure 13-3. Button with Grid content

Graphics Fundamentals | 399

WPF can keep the screen repainted for us. This is because WPF lets us represent
drawings as objects.

Drawing Object Model
With many GUI technologies, applications that want customized visuals are required
to be able to re-create their appearance from scratch. The usual technique for show-
ing a custom appearance is to write code that performs a series of drawing opera-
tions in order to construct the display. This code runs when the relevant graphics
first need to be displayed. In some systems, the OS does not retain a copy of what
the application draws, so this method ends up running anytime an area needs
repainting—for example, if a window was obscured and then uncovered.

Updating individual elements is often problematic in systems that use this on-
demand rendering style. Even where the OS does retain a copy of the drawing, it is
often retained as a bitmap. This means that if you want to change one part of the
drawing, you often need to repaint everything in the area that has changed.

WPF offers a different approach: you can add objects representing graphical shapes
to the tree of user interface elements. Shape elements are objects in the UI tree like
any other, so your code can modify them at any time. If you change some property
that has a visual impact—such as the size, location, or color—WPF will automati-
cally update the display.

To illustrate this technique, Example 13-4 shows a simple window containing sev-
eral ellipses. Each is represented by an Ellipse object, which we will use from the
code-behind file to update the display.

Example 13-4. Changing graphical elements

<Window x:Class="ChangeItem.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Change Item">

 <Canvas x:Name="mainCanvas">
 <Ellipse Canvas.Left="10" Canvas.Top="30" Fill="Indigo"
 Width="40" Height="20" />
 <Ellipse Canvas.Left="20" Canvas.Top="40" Fill="Blue"
 Width="40" Height="20" />
 <Ellipse Canvas.Left="30" Canvas.Top="50" Fill="Cyan"
 Width="40" Height="20" />
 <Ellipse Canvas.Left="40" Canvas.Top="60" Fill="LightGreen"
 Width="40" Height="20" />
 <Ellipse Canvas.Left="50" Canvas.Top="70" Fill="Yellow"
 Width="40" Height="20" />
 </Canvas>
</Window>

400 | Chapter 13: Graphics

Example 13-5 shows the code-behind file for this window. It attaches a handler to
the main canvas’s MouseLeftButtonDown event. Thanks to event bubbling, this OnClick
handler method will be called whenever any of the ellipses is clicked. This method
simply increases the Width property of whichever Ellipse raised the event. The result
is that clicking on any ellipse will make it wider.

If we were using the old approach of drawing everything in a single rendering func-
tion, this code would not be sufficient to update the display. It would normally be
necessary to tell the OS that the screen is no longer valid, causing it to raise a repaint
request. But in WPF, this is not necessary—when you set a property on an Ellipse
object, it ensures that the screen is updated appropriately. Moreover, WPF is aware
that the items overlap, as shown in Figure 13-4, so it will also redraw the items
beneath and above as necessary to get the right results. All you have to do is adjust
the properties of the object.

Example 13-5. Changing a shape at runtime

using System.Windows;
using System.Windows.Shapes;

namespace ChangeItem {
 public partial class MainWindow : Window {
 public MainWindow() : base() {
 InitializeComponent();
 mainCanvas.MouseLeftButtonDown += OnClick;
 }

 private void OnClick(object sender, RoutedEventArgs e) {
 Ellipse r = e.Source as Ellipse;
 if (r != null) {
 r.Width += 10;
 }
 }
 }
}

Figure 13-4. Changing overlapping ellipses

Graphics Fundamentals | 401

Even though computer memory capacities have increased by orders of
magnitude since GUIs first started to appear, in some situations this
object model approach for drawing still might be too expensive. In
particular, for applications dealing with vast data sets such as maps,
having a complete set of objects in the UI tree mirroring the structure
of the underlying data could use too much memory. Also, for certain
kinds of graphics or data, it may be more convenient to use the old
style of rendering code.

Because of this, WPF also supports some lighter weight modes of opera-
tion. The “Visual Layer Programming” section, later in this chapter,
describes the on-demand rendering mechanisms. The “DrawingBrush”
section, also later in this chapter, describes a third technique that is
somewhere in between the two, trading off a little flexibility in exchange
for better performance—it offers many of the benefits of a retained
model, but without the overhead of a full WPF framework element.

You may have noticed that all of the drawing we’ve done so far has been with shapes
and not bitmaps. WPF supports bitmaps, of course, but there is a good reason to use
shapes—you can scale and rotate geometric shapes without losing image quality. This
ability to perform high-quality transforms is an important feature of drawing in WPF.

Resolution Independence
Not only have graphics cards improved dramatically since the first GUIs appeared,
but so have screens. For a long time, the only mainstream display technology was the
CRT (cathode-ray tube). Color CRTs offer fairly low resolution—they struggle to
display images with higher definition than about 100 pixels per inch. However, flat
panel displays, which now outsell CRTs, can exceed this by a large margin.

One of the authors’ laptops has a display with a resolution of 150 pixels per inch.
Displays are available with more than 200 pixels per inch. It is technically possible to
create even higher pixel densities. However, there is a potential problem with using
these screens: either everything ends up being so small that it becomes unusable or, if
the OS is able to scale things up, it may only be able to do so imperfectly, introduc-
ing blurring or other problems. This is because of a pixel-based development cul-
ture—the vast majority of applications measure their user interfaces in pixels.

This is not entirely the result of technical limitations. From the very first version of
Windows NT, Win32 has made it possible to draw things in a resolution-independent
way, because the drawing API—GDI32—allows you to apply transformations to all of
your drawings. GDI+, introduced in 2001, offers the same facility. But just because a
feature is available doesn’t mean applications will use it—most applications don’t fully
exploit this scalability.

402 | Chapter 13: Graphics

Unfortunately, the split between graphics and other UI elements in Win32 means
that even if an application does exploit the scalability of the drawing APIs, the rest of
the UI won’t automatically follow. Figure 13-5 shows a Windows Forms application
that uses GDI+ to draw text and graphics scaled to an arbitrary size.

Notice in Figure 13-5 that although the star and the “Hello, world!” text have been
scaled, the track bar and label controls have not. This is because drawing transforma-
tions affect only what you draw with GDI+—they do not affect the entire UI. And
although Windows Forms offers some features to help with scaling the rest of the UI,
it’s not completely automatic; you have to take deliberate and nontrivial steps to
build a resolution-independent UI in Windows Forms.

Scaling and rotation

WPF solves this problem by supporting transformations at a fundamental level.
Instead of providing scalability just at the 2D drawing level, it is built into the under-
lying composition engine. The result is that everything in the UI can be transformed,
not just the user-drawn graphics. Going back to our smiley face button in
Figure 13-2, we can exploit this scalability with a simple addition just after the first
line:

<Button>
 <Button.LayoutTransform>
 <ScaleTransform ScaleX="3" ScaleY="3" />
 </Button.LayoutTransform>
 ... as before ...
</Button>

The LayoutTransform property is available on all user interface elements in WPF, so
you can scale the contents of an entire window just as easily as a single button. Many
kinds of transformations are available, and we will discuss them in more detail later.
For now, we are simply asking to enlarge the button by a factor of three in both x
and y dimensions.

Figure 13-5. Incomplete UI scaling in Windows Forms

Graphics Fundamentals | 403

Figure 13-6 shows the enlarged button. When compared to the original Figure 13-2,
it is larger, obviously. More significantly, the details have become crisper. The
rounded edges of the button are easier to see than in the small version. The shapes of
the letters are much better defined. And, our graphic is clearer. We get this clarity
because WPF has rendered the button to look as good as it can at the specified size.
Compare this with the examples in Figure 13-7.

Figure 13-7 shows what happens if you simply enlarge a bitmap of the original small
button. There are several different ways of enlarging bitmaps. The example on the
left uses the simplest algorithm, known as nearest neighbor or, sometimes, pixel
doubling. To make the image larger, pixels have been repeated. This lends a very
square feel to the image. The example on the right uses a more sophisticated interpo-
lation algorithm. It has done a better job of keeping rounded edges looking round,
and doesn’t suffer from the chunky pixel effect, but it ends up looking very blurred.
Clearly, neither of these comes close to Figure 13-6.

Resolution, coordinates, and “pixels”

This support for scaling graphics means that there is no fixed relationship between
the coordinates your application uses and the pixels on-screen. This is true even if
you do not use scaling transforms yourself—a transform may be applied automati-
cally to your whole application if it is running on a high-DPI display.

What are the default units of measurement in a WPF application if not physical pix-
els? The answer is, somewhat confusingly, pixels! To be more precise, the real
answer is device-independent pixels.

WPF defines a device-independent pixel as 1/96th of an inch. If you specify the width
of a shape as 96 pixels, this means that it should be exactly 1 inch wide. WPF will use
as many physical pixels as are required to fill 1 inch. For example, high-resolution lap-
top screens typically have a resolution of 150 pixels per inch. So, if you make a
shape’s width 96 “pixels,” WPF will render it 150 physical pixels wide.

Figure 13-6. Enlarged button with graphics

Figure 13-7. Enlarged bitmaps

404 | Chapter 13: Graphics

WPF discovers the physical pixel size from the system-wide display
settings, so these need to be set accurately in order for elements to be
displayed at the correct size. However, very few systems have this con-
figured correctly, so the physical dimensions are often arbitrary in
practice. But it’s easy enough to configure your system correctly if you
know the pixel density.

On Windows Vista, you can change this setting by right-clicking on
the desktop, selecting Personalize, and then choosing “Adjust font size
(DPI)” from the list of options that appears on the left. In the DPI scal-
ing window that appears, click the Custom DPI button. Or in Win-
dows XP, right-click on your desktop and select Properties to display
the applet, and then go to the Settings tab. Click on the Advanced but-
ton, and in the dialog that opens, select the General tab. This lets you
tell Windows your screen resolution. If you set the number to match
the physical characteristics of your screen, WPF will render content at
the correct physical size.

You might be wondering why WPF uses the somewhat curious choice of 1/96th of
an inch, and why it calls this a “pixel.” The reason is that 96 dpi is the default dis-
play DPI in Windows when it is running with Small Fonts, so this has long been con-
sidered the “normal” size for a pixel. This means that on screens with a normal pixel
density, a device-independent pixel will correspond to a physical pixel. On screens
with a high pixel density, if the system DPI is correctly configured, WPF will scale
your drawings for you so that they remain at the correct physical size, so a device-
independent pixel may not correspond to an exact number of physical pixels.

WPF’s capability to optimize its rendering of graphical features for any scale means it
is ideally placed to take advantage of increasing screen resolutions. For the first time,
on-screen text and graphics will be able to compete with the crisp clarity we have
come to expect from laser printers. Of course, for all of this to work in practice, we
need a comprehensive suite of scalable drawing primitives.

Shapes, Brushes, and Pens
Most of the classes in WPF’s drawing toolkit fall into one of three categories: shapes,
brushes, and pens. There are many variations on these themes, and we will examine
them in detail later. However, to get anywhere at all with graphics, we need a basic
understanding.

Shapes are objects in the user interface tree that provide the basic building blocks for
drawing. The Ellipse, Path, and Rectangle elements we have seen already are all
examples of shape objects. There is also support for lines, both single- and multi-
segment, using Line and Polyline, respectively. Polygon creates closed shapes
whose edges are all straight. The Path class supports both open and closed shapes
with any mixture of straight and curved edges. Figure 13-8 shows each of these
shapes in action.

Graphics Fundamentals | 405

Regardless of which shape you choose, you’ll need to decide how it should be col-
ored in. For this, you use a brush. Many brush types are available. The simplest is the
single-color SolidColorBrush. You can achieve more interesting visual effects using
the LinearGradientBrush or RadialGradientBrush. These allow the color to change
over the surface of a shape, which can be a great way of providing an impression of
depth. You can also create brushes based on images—the ImageBrush uses a bitmap,
and the DrawingBrush uses a scalable drawing. Finally, the VisualBrush lets you take
any visual tree—any chunk of user interface you like—and use that as a brush to paint
some other shape. This makes it easy to achieve effects such as reflections of whole sec-
tions of your user interface, or wrapping a user interface around a 3D model.

Finally, pens are used to draw the outline of a shape. A pen is really just an aug-
mented brush. When you create a Pen object, you give it a Brush to tell it how it
should paint onto the screen. The Pen class just adds information like line thickness,
dash patterns, and end cap details. Figure 13-9 shows a few of the effects available
using brushes and pens.

Composition
The final key feature of the graphics architecture is composition. In computer graph-
ics, the term composition refers to the process of combining multiple shapes or
images together to form the final output. WPF’s composition model is very different
from how Windows has traditionally worked, and it is crucial to enabling the cre-
ation of high-quality visuals.

In the classic Win32 model, each user interface element (each HWND) has exclusive
ownership of some region of the application’s window. Within each top-level win-
dow, any given pixel in that window is controlled completely by exactly one ele-
ment. This prevents elements from being partially transparent. It also precludes the
use of anti-aliasing around the edges of elements, a technique which is particularly
important when combining nonrectangular elements. Although various hacks have

Figure 13-8. Rectangle, Ellipse, Line, Polyline, Polygon, and Path

Figure 13-9. Brushes and pens

406 | Chapter 13: Graphics

been devised to provide the illusion of transparency in Win32, they all have limita-
tions, and can be somewhat inconvenient to work with.

WPF’s composition model supports elements of any shape, and allows them to
overlap. It also allows elements to have any mixture of partially and completely
transparent areas. This means that any given pixel on-screen may have multiple con-
tributing visible elements. Moreover, WPF uses anti-aliasing around the edges of all
shapes. This reduces the jagged appearance that simpler drawing techniques can pro-
duce on-screen, resulting in a smooth-looking image. Finally, the composition engine
allows any element to have a transformation applied before composition.

WPF’s composition engine makes use of the capabilities of modern graphics cards to
accelerate the drawing process. Internally, it is implemented on top of Direct3D.
This may seem odd because the majority of WPF’s drawing functionality is two-
dimensional, but most of the 3D-oriented functionality on a modern graphics card
can also be used to draw 2D shapes. For example, WPF exploits the same ultra-fast
polygon-drawing facilities used by 3D games to render primitive shapes.

Now that we’ve seen the core concepts underpinning the WPF graphics system, let’s
take a closer look at the details.

Shapes
The System.Windows.Shapes namespace defines drawing primitives that act as ele-
ments in the user interface tree. WPF supports a variety of different shapes, and pro-
vides element types for each of them, which are shown in Table 13-1. These integrate
with framework-level functionality such as layout, styling, and data binding. These
services are not without their costs, so it’s useful to be aware that the shape classes
provide a layer of abstraction on top of a lower-level set of services. See the “Shape
Objects Versus Geometries” sidebar for details.

Table 13-1. Shapes

Shape Type Usage

Ellipse An ellipse

Line A single straight line

Path A shape using any mixture of straight lines and curves

Polygon A closed shape made from straight lines

Polyline An open shape made from straight lines

Rectangle A rectangle, optionally with rounded corners

Shapes | 407

Base Shape Class
All of the elements described in this section derive from a common abstract base
class, Shape. Shape defines a common set of features that you can use on all shapes.
These common properties are mainly concerned with the way in which the interior
and outline of the shape are painted.

The Fill property specifies the Brush that will be used to paint the interior. (The Line
class doesn’t have an interior, so it ignores this property. This was simpler than com-
plicating the inheritance hierarchy by having separate Shape and FilledShape base
classes.) The Stroke property specifies the Brush that will be used to paint the out-
line of the shape.

If you do not specify either a Fill or a Stroke for your shape, it will be
invisible, because both of these properties are null by default.

Shape Objects Versus Geometries
A common source of confusion for people learning WPF is that it appears to have two sets
of graphical classes. For example, as well as Rectangle, there is RectangleGeometry, and we
have Path as well as PathGeometry. Most of the shape classes in the System.Windows.Shapes
namespace have corresponding geometry classes in the System.Windows.Media namespace.
Although this may seem redundant, the two kinds of classes serve different purposes.

Geometries are just descriptions of shapes. For example, a LineGeometry defines a
StartPoint and an EndPoint. A LineGeometry does not know what color it should be. It
cannot raise mouse or stylus events. It cannot interact with the layout system. It has no
concept of where it is in the UI tree or even which window it is in. (Indeed, geometries
can be shared simultaneously and efficiently by many different windows.)

The classes in the System.Windows.Shapes namespace provide a way to host geometries
in the UI tree. They provide brushes and pens with which to paint the geometries. They
are able to adjust geometries to adapt to layout changes. These shape types provide a
route through which animations and data binding expressions can target geometries.

Shape objects are not the only way of using geometries. Indeed, they are a relatively
expensive way to do so. Geometries are also the basis of drawings and of visual layer
programming, which provide less convenient but more efficient ways of displaying
graphics. The choice of which to use will typically be driven by your requirements—if
you need layout, data binding, or other framework features for individual shapes, use
the classes derived from Shape. If you are building up a picture out of several static
shapes, geometries and drawings are likely to be a better choice.

408 | Chapter 13: Graphics

It may seem peculiar that the Stroke property is of type Brush. As we saw earlier,
WPF defines a Pen class for specifying a line’s thickness, dash patterns, and the like,
so it would make more sense if the Stroke property were of type Pen. WPF does in
fact use a Pen internally to draw the outline of a shape. The Stroke property is of type
Brush mainly for convenience—all of the Pen features are exposed through separate
properties on Shape, as shown in Table 13-2. This simplifies the markup in scenarios
where you’re happy to use the default pen settings—you don’t need to provide a full
Pen definition just to set the outline color.

The “Brushes and Pens” section, later in this chapter, describes brushes and pens in
detail.

The Shape class also defines a Stretch property, which determines how a shape will
be adjusted if the available space doesn’t match its preferred size. None means that
the shape will simply be whatever size and shape you ask for. If you set this to Fill,
the shape will be adjusted to fill the available space. Fill allows the shape to be dis-
torted if necessary in order to fit exactly. Uniform and UniformToFill scale equally, in
both directions. The former scales until the shape is large enough in at least one
dimension to fill the available space, but will leave spare space on the other dimen-
sion if necessary so as to avoid cropping. You can see this on the lefthand side of
Figure 13-10. The latter scales the shape until it’s large enough to completely fill the
space in both dimensions, even if this means cropping in one, as shown on the right
of Figure 13-10.

Table 13-2. Shape Stroke properties and Pen equivalents

Shape property Equivalent Pen property

Stroke Brush

StrokeThickness Thickness

StrokeLineJoin LineJoin

StrokeMiterLimit MiterLimit

StrokeDashArray DashArray

StrokeDashCap DashCap

StrokeDashOffset DashOffset

StrokeStartLineCap StartLineCap

StrokeEndLineCap EndLineCap

Figure 13-10. Uniform (left) and UniformToFill (right)

Shapes | 409

Rectangle and Ellipse default to a Stretch of Fill, whereas the other shapes all
default to None.

The classes that derive from Shape all add properties specific to the kind of shape
they represent. So, we will now look at each of these types, starting with Rectangle.

Rectangle
Rectangle does what its name suggests. As with any shape, it can be drawn either
filled in, as an outline, or both filled in and outlined. As well as drawing a normal
rectangle, it can also draw one with rounded corners.

Rectangle doesn’t provide any properties for setting its location. It relies on the same
layout mechanisms as any other UI element. The location is determined by the con-
taining panel. The width and height can either be set automatically by the parent, or
they can be set explicitly using the standard layout properties, Width and Height.

Example 13-6 shows a Rectangle on a Canvas panel. Here the Width and Height have
been set explicitly, and the location has been specified using the attached Canvas.Left
and Canvas.Top properties.

Example 13-7 shows the other approach; none of the rectangles has its location or
size set explicitly. They are relying on the containing Grid to do this. Figure 13-11
shows the result.

Example 13-6. Rectangle with explicit size and position

<Canvas>
 <Rectangle Fill="Yellow" Stroke="Black"
 Canvas.Left="30" Canvas.Top="10"
 Width="100" Height="20" />
</Canvas>

Example 13-7. Rectangles with size and position controlled by parent

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <Rectangle Grid.Column="0" Grid.Row="0" Fill="LightGray" />
 <Rectangle Grid.Column="1" Grid.Row="0" Fill="Black" />
 <Rectangle Grid.Column="0" Grid.Row="1" Fill="DarkGray" />
 <Rectangle Grid.Column="1" Grid.Row="1" Fill="White" />
</Grid>

410 | Chapter 13: Graphics

A Rectangle will usually be aligned with the coordinate system of its parent panel.
This means that its edges will normally be horizontal and vertical, although if the
parent panel has been rotated, Rectangle will of course be rotated along with it. If
you want to rotate a Rectangle relative to its containing panel, you can use the
RenderTransform property available on all user interface elements, as Example 13-8
shows.

Figure 13-11. Rectangles arranged by a Grid

Example 13-8. Rotating rectangles

<Canvas>
 <Rectangle Canvas.Left="50" Canvas.Top="50" Width="40" Height="10"
 Fill="Indigo" />
 <Rectangle Canvas.Left="50" Canvas.Top="50" Width="40" Height="10"
 Fill="Violet">

<Rectangle.RenderTransform>
 <RotateTransform Angle="45" />

</Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle Canvas.Left="50" Canvas.Top="50" Width="40" Height="10"
 Fill="Blue">

<Rectangle.RenderTransform>
 <RotateTransform Angle="90" />

</Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle Canvas.Left="50" Canvas.Top="50" Width="40" Height="10"
 Fill="Cyan">

<Rectangle.RenderTransform>
 <RotateTransform Angle="135" />
</Rectangle.RenderTransform>

 </Rectangle>
 <Rectangle Canvas.Left="50" Canvas.Top="50" Width="40" Height="10"
 Fill="Green">

<Rectangle.RenderTransform>
 <RotateTransform Angle="180" />

</Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle Canvas.Left="50" Canvas.Top="50" Width="40" Height="10"
 Fill="Yellow">

<Rectangle.RenderTransform>
 <RotateTransform Angle="225" />
</Rectangle.RenderTransform>

 </Rectangle>
 <Rectangle Canvas.Left="50" Canvas.Top="50" Width="40" Height="10"
 Fill="Orange">

Shapes | 411

This uses RenderTransform to rotate a series of rectangles. Figure 13-12 shows the
result.

To draw a rectangle with rounded corners, use the RadiusX and RadiusY properties, as
Example 13-9 illustrates.

Figure 13-13 shows the result.

Ellipse
Ellipse is similar to Rectangle. Obviously it draws an ellipse rather than a rectangle,
but the size, location, rotation, fill, and stroke of an Ellipse are controlled in exactly
the same way as for a Rectangle, as Example 13-10 shows.

Figure 13-14 shows the result.

<Rectangle.RenderTransform>
 <RotateTransform Angle="270" />
</Rectangle.RenderTransform>

 </Rectangle>
 <Rectangle Canvas.Left="50" Canvas.Top="50" Width="40" Height="10"
 Fill="Red">

<Rectangle.RenderTransform>
 <RotateTransform Angle="315" />
</Rectangle.RenderTransform>

 </Rectangle>
</Canvas>

Figure 13-12. Rotated rectangles

Example 13-9. Rounded rectangle

<Rectangle Width="100" Height="50" Fill="Black" RadiusX="30" RadiusY="20" />

Figure 13-13. Rectangle with rounded corners

Example 13-10. Ellipse

<Ellipse Width="100" Height="50" Fill="Yellow" Stroke="Black" />

Example 13-8. Rotating rectangles (continued)

412 | Chapter 13: Graphics

Line
The Line element draws a straight line from one point to another. It has four proper-
ties controlling the location: X1 and Y1 define the start point, and X2 and Y2 deter-
mine the end point. These coordinates are relative to wherever the parent panel
chooses to locate the Line. Consider Example 13-11.

This uses a vertical StackPanel to arrange an alternating sequence of TextBlock and
Line elements. The TextBlock elements have gray backgrounds to make it easier to
see the vertical extent of each element (see Figure 13-15).

As you can see from Figure 13-15, the Line elements have been placed in the stack
just like any other element. The StackPanel has allocated enough height to hold the
line. The first of the lines is interesting in that there is some space between the
TextBlock above it, and the start of the line. This is because the line’s Y1 property has
been set to 10, indicating that the line should start slightly below the top of the loca-
tion allocated for the Line element. (In WPF, positive Y means down, unlike with a
typical mathematical graph.) The second Line element goes all the way to the top
because its Y2 property is set to 0, again illustrating that the coordinate system of the
line end points is relative to the area allocated to the Line by the containing panel.

You can use the Stretch property to make the Line resize automatically with your
layout. The Line in Example 13-12 has start and end points of 0,0 and 1,0. However,
because its Stretch is set to Fill, the points will automatically be adjusted to fill the
available width.

Figure 13-14. Ellipse

Example 13-11. Two Line elements in a StackPanel

<StackPanel Orientation="Vertical">
 <TextBlock Background="LightGray">Foo</TextBlock>
 <Line Stroke="Green" X1="20" Y1="10" X2="100" Y2="40" />
 <TextBlock Background="LightGray">Bar</TextBlock>
<Line Stroke="Green" X1="0" Y1="10" X2="100" Y2="0" />

</StackPanel>

Figure 13-15. Two Line elements in a StackPanel

Shapes | 413

Polyline
A Polyline lets you draw a connected series of line segments. Instead of having prop-
erties for start and end points, Polyline has a Points property, containing a list of
coordinate pairs, as Example 13-13 illustrates.

WPF simply draws a line that goes through each point in turn, as shown in
Figure 13-16.

As with the Line class, the point coordinates in a Polyline are relative to wherever
the containing panel chooses to locate the Polyline.

Polygon
Polygon is very similar to Polyline. It has a Points property that works in exactly the
same way as Polyline’s. The only difference is that whereas Polyline always draws
an open shape, Polygon always draws a closed shape. To illustrate the difference,
Example 13-14 contains a Polyline and a Polygon. They have all of the same proper-
ties set.

As you can see in Figure 13-17, the Polyline has been left open. The Polygon, on the
other hand, has closed the shape by drawing an extra line segment between the last
and first points. Both shapes have painted interiors.

Example 13-12. Auto-sizing line

<Line Stroke="Black" X1="0" X2="1" Stretch="Fill" />

Example 13-13. Polyline

<Polyline Stroke="Blue"
 Points="0,30 10,30 15,0 18,60 23,30 35,30 40,0 43,60 48,30 160,30" />

Figure 13-16. A Polyline

Example 13-14. A Polyline and a Polygon

<StackPanel Orientation="Horizontal">
 <Polyline Fill="Orange" Stroke="Blue" StrokeThickness="2"
 Points="40,10 70,50 10,50" />
 <Polygon Fill="Orange" Stroke="Blue" StrokeThickness="2"
 Points="40,10 70,50 10,50" />
</StackPanel>

414 | Chapter 13: Graphics

Because we are free to add points wherever we like to a Polygon, it is easy to end up
with a self-intersecting shape (one whose edge crosses itself). With such shapes, what
counts as the interior of the shape can be ambiguous. Figure 13-18 shows such a
shape, and two possible ways of filling it.

The Polygon class provides a FillRule property that tells WPF how to deal with
ambiguous regions.* WPF supports two fill rules. Example 13-15 is the markup for
Figure 13-18, and shows both fill rules in use.

The default rule is EvenOdd, and this is used on the left of Figure 13-18. This is the
simplest rule to understand. To determine whether a particular enclosed region is
inside or outside the shape, the EvenOdd rule counts the number of lines you have to
cross to get from that point to one completely outside the shape. If this number is
odd, the point was inside the shape. If it is even, the point is outside the shape. For
example, if you start from inside the middle area of the star in Figure 13-18, you will
need to cross over an even number of lines in order to get to the outside of the shape.
This is why the central area of the star is unfilled when the EvenOdd rule is used.

The second fill rule, Nonzero, is subtler. From Figure 13-18, you might have thought
that any enclosed area was deemed to be inside the shape, but it’s not quite that sim-
ple. The Nonzero rule performs a similar process to EvenOdd, but rather than simply
counting the number of lines, it takes into account the direction in which the line is
running. It either increments or decrements the count for each line it crosses,

Figure 13-17. A Polyline (left) and a Polygon (right)

Figure 13-18. Fill rules: EvenOdd (left) and Nonzero (right)

* In some graphics systems, this is described as the “winding” rule.

Example 13-15. Fill rules

<StackPanel Orientation="Horizontal">
 <Polygon Fill="Orange" Stroke="Blue" StrokeThickness="2" FillRule="EvenOdd"
 Points="50,30 13,41 36,11 36,49 14,18" />
 <Polygon Fill="Orange" Stroke="Blue" StrokeThickness="2" FillRule="Nonzero"
 Points="50,30 13,41 36,11 36,49 14,18" />
</StackPanel>

Shapes | 415

depending on the direction.* If the total at the end is nonzero, the point is consid-
ered to be inside the shape. The points making up the stars in Example 13-15 always
proceed clockwise. This means that if you start from the center of the star, the two
lines you must cross to get to the outside of the shape will always point in the same
direction. This results in a count of 2 (or –2, depending on which direction you go),
which is why the star on the right of Figure 13-18 has its central region filled.

In Figure 13-18, the Nonzero rule has resulted in all enclosed regions being part of the
interior. However, if the outline of the shape follows a slightly more convoluted
path, the results can be a little more mixed, as Example 13-16 shows.

Figure 13-19 shows the results of Example 13-16. This illustrates that the nonzero
rule is not quite as straightforward as it may at first seem.

The nonzero rule is a bit of an oddity. It was popularized by PostScript, so most
drawing systems support it, but it’s not always easy to get useful results from a
Polygon with this fill rule. It makes more sense in the context of the Path element,
which supports multiple figures in a single shape.

Path
Path is by far the most powerful shape. All of the shapes we have looked at up to
now have been supplied for convenience, because it is possible to draw all of them
with a Path. Path also makes it possible to draw considerably more complex shapes
than is possible with the previous shapes we have seen.

As mentioned earlier, the various classes derived from Shape are essentially high-level
wrappers around underlying geometry objects. Path is explicit about this—its shape
is defined by its Data property, which is of type Geometry. As we saw in the sidebar
earlier, a Geometry object describes a particular shape. Table 13-3 shows the various
concrete classes for representing different kinds of shapes.

* WPF doesn’t document whether the positive direction is clockwise or counterclockwise. This is because it
doesn’t matter—as long as you are consistent, the final outcome is the same either way.

Example 13-16. Nonzero fill rule with more complex shape

<Polygon Fill="Orange" Stroke="Blue" StrokeThickness="2" FillRule="Nonzero"
 Points="10,10 60,10 60,25 20,25 20,40 40,40 40,18 50,18 50,50 10,50" />

Figure 13-19. Nonzero rule in action

416 | Chapter 13: Graphics

Three geometry types—RectangleGeometry, EllipseGeometry, and LineGeometry—
correspond to the Rectangle, Ellipse, and Line shape types shown earlier. So this
Rectangle:

<Rectangle Fill="Blue" Width="40" Height="80" />

is effectively shorthand for this Path:

<Path Fill="Blue">
 <Path.Data>
 <RectangleGeometry Rect="0, 0, 40, 80" />
 </Path.Data>
</Path>

You might be wondering when you would ever use the RectangleGeometry,
EllipseGeometry, or LineGeometry in a Path instead of the simpler Rectangle, Ellipse,
and Line. One reason is that Path lets you use a special kind of geometry object
called a GeometryGroup to create a shape with multiple geometries.

There is a significant difference between using multiple distinct shapes, and having a
single shape with multiple geometries. Look at Example 13-17, for instance.

This draws two ellipses, one on top of the other. They both have a black outline, so
you can see the smaller one inside the larger one, as Figure 13-20 shows.

Because the Ellipse shape is just a simple way of creating an EllipseGeometry, the
code in Example 13-17 is equivalent to the code in Example 13-18. (As you can see,
using a Path is considerably more verbose. This is why the Ellipse and other simple
shapes are provided.)

Table 13-3. Geometry types

Type Usage

CombinedGeometry Combines two geometry objects using set operations such as intersection or union

EllipseGeometry An ellipse

GeometryGroup Combines multiple geometries into one multifigure geometry

LineGeometry A single straight line

PathGeometry Defines shapes with any combination of straight lines, elliptical arcs, and Bézier curves

RectangleGeometry A rectangle

StreamGeometry More efficient alternative to PathGeometry—can define all the same shapes, but
cannot modify the shapes after creation

Example 13-17. Two Ellipse elements

<Canvas>
 <Ellipse Fill="Cyan" Stroke="Black" Width="40" Height="80" />
 <Ellipse Canvas.Left="10" Canvas.Top="10" Fill="Cyan" Stroke="Black"
 Width="20" Height="60" />
</Canvas>

Shapes | 417

Because the code in Example 13-18 is equivalent to that in Example 13-17, it results
in exactly the same output, as previously shown in Figure 13-20. So far, using geom-
etries instead of shapes hasn’t made a difference in the rendered results. This is
because we are still using multiple shapes. So we will now show how you can put
both ellipses into a single Path, and see how this affects the results. Example 13-19
shows the modified markup.

This version has just a single path. Its Data property contains a GeometryGroup. This
allows any number of geometry objects to be added to the same path. Here we have
added the two EllipseGeometry elements that were previously in two separate paths.
The result, shown in Figure 13-21, is clearly different from the one in Figure 13-20—
there is now a hole in the middle of the shape. Because the default even-odd fill rule
was in play, the smaller ellipse makes a hole in the larger one. (GeometryGroup has a
FillRule property that lets you choose the nonzero rule instead if you need to.)

Figure 13-20. Two Ellipse elements

Example 13-18. Two Paths with EllipseGeometry elements

<Canvas>
 <Path Fill="Cyan" Stroke="Black">
 <Path.Data>
 <EllipseGeometry Center="20, 40" RadiusX="20" RadiusY="40" />
 </Path.Data>
 </Path>
 <Path Fill="Cyan" Stroke="Black">
 <Path.Data>
 <EllipseGeometry Center="20, 40" RadiusX="10" RadiusY="30" />
 </Path.Data>
 </Path>
</Canvas>

Example 13-19. One Path with two EllipseGeometry elements

<Canvas>
 <Path Fill="Cyan" Stroke="Black">
 <Path.Data>
 <GeometryGroup>
 <EllipseGeometry Center="20, 40" RadiusX="20" RadiusY="40" />
 <EllipseGeometry Center="20, 40" RadiusX="10" RadiusY="30" />
 </GeometryGroup>
 </Path.Data>
 </Path>
</Canvas>

418 | Chapter 13: Graphics

You can create shapes with holes only by combining multiple figures into a single
shape. You could try to get a similar effect to that shown in Figure 13-21 by drawing
the inner Ellipse with a Fill color of White, but that trick fails to work as soon as
you draw the shape on top of something else, as Figure 13-22 shows.

You might be wondering whether you could just draw the inner ellipse
using the Transparent color, but that doesn’t work either—if you tried
this, you’d still see all of the larger ellipse, rather than what is behind
it. Drawing something as totally transparent has the same effect as
drawing nothing at all—that’s what transparency means. Only by
knocking a hole in the shape can we see through it.

To understand why, think about the drawing process. When it ren-
ders our elements to the screen, WPF draws the items one after the
other. It starts with whatever’s at the back—the text, in this case.
Then it draws the shape on top of the text, which effectively obliter-
ates the text that was underneath the shape. (It’s still there in the ele-
ment tree, of course, so WPF can always redraw it later if you change
or remove the shape.) Because you just drew over the text, you can’t
draw another shape on top to “undraw” a hole into the first shape. So,
if you want a hole in a shape, you’d better make sure that the hole is
there before you draw it!

This is not to say you’d never use the Transparent color. It has a cou-
ple of uses. An animation might fade from a nontransparent color to
Transparent in order to make an element disappear gradually. Also,
objects that are Transparent are invisible to the eye, but not to the
mouse—WPF’s input system (which was described in Chapter 4)
treats all brushes as equal, ignoring transparency. So the Transparent
color provides a way of making invisible clickable targets.

We have not yet looked at the most flexible geometry: PathGeometry. This is the
underlying geometry used by Polyline and Polygon, but it can draw many more
shapes besides.

Figure 13-21. Path with two geometries

Figure 13-22. Spot the fake hole

Shapes | 419

A PathGeometry contains one or more PathFigure objects, and each PathFigure repre-
sents a single open or closed shape in the path. To define the shape of each figure’s
outline, you use a sequence of PathSegment objects. Like GeometryGroup, PathGeometry
also has a FillRule property to set the behavior for overlapping figures. Again, this
defaults to the even-odd rule.

PathGeometry’s ability to contain multiple figures overlaps slightly with
GeometryGroup’s ability to contain multiple geometries. This is just for
convenience—if you need to make a shape where every piece will be a
PathGeometry object, it is more compact to have a single PathGeometry
with multiple PathFigures. If you just want a group of simpler geome-
tries like LineGeometry or RectangleGeometry, it is simpler to use a
GeometryGroup and avoid PathGeometry altogether.

Example 13-20 shows a simple path. This contains just a single figure in the shape of
a square.

Figure 13-23 shows the result. This seems like a vast amount of effort for such a sim-
ple result—we’ve used 15 lines of markup to achieve what we could have achieved
with a single Rectangle element. This is why WPF supplies classes for the simpler
shapes and geometries. You don’t strictly need any of them because you can use Path
and PathGeometry instead, but the simpler shapes require much less effort. Normally
you would use Path only for more complex shapes.

Example 13-20. A square Path

<Path Fill="Cyan" Stroke="Black">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="0,0" IsClosed="True">
 <PathFigure.Segments>
 <LineSegment Point="50,0" />
 <LineSegment Point="50,50" />
 <LineSegment Point="0,50" />
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

Figure 13-23. A square Path

420 | Chapter 13: Graphics

Even though Example 13-20 produces a very simple result, it illustrates most of the
important features of a Path with a PathGeometry. As with all the previous examples,
the geometry is in the path’s Data property. The PathGeometry is a collection of
PathFigures, so all of the interesting data is inside its Figures property. This example
contains just one PathFigure, but you can add as many as you like. The shape of the
PathFigure is determined by the items in its Segments property.

The starting point of a PathFigure is determined by its StartPoint property. One or
more segments describe the figure’s shape. In Example 13-20, these are all
LineSegments because the shape has only straight edges, but several types of curves
are also on offer. This particular figure is a closed shape, which is determined by the
IsClosed property.

You might be wondering why LineSegments don’t work like the Line
shape or a LineGeometry. With those types, we specify start and end
points, as in Example 13-11. This seems simpler than LineSegment,
which needs us to specify a StartPoint in the PathFigure.

However, line segments in a PathFigure can’t work like that because
there cannot be any gaps in the outline of a figure. With the Line ele-
ment, each Line is a distinct shape in its own right, but with a
PathFigure, each segment is a part of the shape’s outline. To define a
figure fully and unambiguously, each segment must start off from
where the previous one finished. This is why the LineSegment only spec-
ifies an end point for the line. All of the segment types work this way.

Example 13-20 isn’t very exciting; it just uses straight line segments. We can create
much more interesting shapes by using one of the curved segment types instead.
Table 13-4 shows all of the segment types.

ArcSegment lets you add elliptical curves to the edge of a shape. ArcSegment is a little
more complex to use than a simple LineSegment. As well as specifying the end point
of the segment, we must also specify two radii for the ellipse with the Size property.

Table 13-4. Segment types

Segment type Usage

LineSegment Single straight line

PolyLineSegment Sequence of straight lines

ArcSegment Elliptical arc

BezierSegment Cubic Bézier curve

QuadraticBezierSegment Quadratic Bézier curve

PolyBezierSegment Sequence of cubic Bézier curves

PolyQuadraticBezierSegment Sequence of quadratic Bézier curves

Shapes | 421

The ellipse size and the line start and end points don’t provide enough information
to define the curve unambiguously, because there are several ways to draw an ellipti-
cal arc given these constraints. Consider a segment with a particular start and end
point, and a given size and orientation of ellipse. For this segment, there will usually
be two ways in which we can position the ellipse so that both the start and end
points lie on the boundary of the ellipse, as Figure 13-24 shows. In other words,
there will be two ways of “slicing” an ellipse with a particular line.

For each way of slicing the ellipse, there will be two resulting arc segments, a small
one and a large one. This means that there are four ways in which the curve could be
drawn between two points.

The ArcSegment provides two flags that enable you to select which of the curves you
require. IsLargeArc determines whether you get the larger or smaller slice size.
SweepDirection chooses on which side of the line the slice is drawn. Example 13-21
shows markup for all four combinations of these flags. It also shows the whole ellipse.

Figure 13-24. Potential ellipse positions

Example 13-21. ArcSegments

<Canvas>
 <Ellipse Fill="Cyan" Stroke="Black" Width="140" Height="60" />
 <Path Fill="Cyan" Stroke="Black" Canvas.Left="180">
 <Path.Data>
 <PathGeometry>
 <PathFigure StartPoint="0,11" IsClosed="True">
 <ArcSegment Point="50,61" Size="70,30"
 SweepDirection="Counterclockwise" IsLargeArc="False" />
 </PathFigure>
 <PathFigure StartPoint="30,11" IsClosed="True">
 <ArcSegment Point="80,61" Size="70,30"
 SweepDirection="Clockwise" IsLargeArc="True" />
 </PathFigure>
 <PathFigure StartPoint="240,1" IsClosed="True">
 <ArcSegment Point="290,51" Size="70,30"
 SweepDirection="Counterclockwise" IsLargeArc="True" />
 </PathFigure>
 <PathFigure StartPoint="280,1" IsClosed="True">
 <ArcSegment Point="330,51" Size="70,30"
 SweepDirection="Clockwise" IsLargeArc="False" />
 </PathFigure>
 </PathGeometry>
 </Path.Data>
 </Path>
</Canvas>

422 | Chapter 13: Graphics

You may be wondering why the Ellipse has a width of 140 and a
height of 60, which is double the Size of each ArcSegment. This is
because the ArcSegment interprets the Size as the two radii of the
ellipse, whereas the Width and Height properties on the Ellipse indi-
cate the total size.

Figure 13-25 shows the results, and as you can see, each shape has one straight diag-
onal line and one elliptical curve. The straight line edge has the same length and ori-
entation in all four cases. The curved edge is from different parts of the same ellipse.

In Figure 13-25, the ellipse’s axes are horizontal and vertical. Sometimes you will
want to use an ellipse where the axes are not aligned with your main drawing axes.
ArcSegment provides a RotationAngle property, allowing you to specify the amount of
rotation required in degrees.

Figure 13-26 shows four elliptical arcs. These use the same start and end points as
Figure 13-25, and the same ellipse size. The only difference is that a RotationAngle of
45 degrees has been specified, rotating the ellipse before slicing it.

There are two degenerate cases in which there will not be two ways of
slicing the ellipse. The first is when the slice cuts the ellipse exactly in
half. In this case, the IsLargeArc flag is irrelevant, because both slices
are exactly the same size.

The other case is when the ellipse is too small—if the widest point at
which the ellipse could be sliced is narrower than the segment is long,
there is no way in which the segment can be drawn correctly. (If you
do make the ellipse too small, WPF seems to scale the ellipse so that it
is large enough, preserving the aspect ratio between the x- and y-axes.)
You should avoid this.

Figure 13-25. An ellipse and four arcs from that ellipse

Figure 13-26. Four arcs from a rotated ellipse

Shapes | 423

The remaining curve types (BezierSegment, PolyBezierSegment, QuadraticBezierSegment,
and PolyQuadraticBezierSegment) are variations on the same theme. They all draw Béz-
ier curves.

Bézier curves

Bézier curves are curved line segments joining two points using a particular mathe-
matical formula. It is not necessary to understand the details of the formula in order
to use Bézier curves. What makes Bézier curves useful is that they offer a fair amount
of flexibility in the shape of the curve. This has made them very popular—most vec-
tor drawing programs offer them.*

Figure 13-27 shows a variety of Bézier curve segments. Each of the five lines shown
here is a single BezierSegment.

As with all of the segment types, a BezierSegment starts from where the preceding
segment left off, and defines a new end point. It also requires two “control points” to
be defined, and it is these that determine the shape of the curve. Figure 13-28 shows
the same curves again, but with the control points drawn on. It also shows lines con-
necting the control points to the segment end points, because this makes it easier to
see how the control points affect the curve shapes.

The most obvious way in which the control points influence the shapes of these
curves is that they determine the tangent. At the start and end of each segment, the
direction in which the curve runs at that point is exactly the same as the direction of
the line joining the start point to the corresponding control point.

There is a second, less obvious way in which control points work. The distance
between the start or end point and its corresponding control point (i.e., the length of

* If you’d like to understand the formula for Bézier curves, http://mathworld.wolfram.com/BezierCurve.html
(http://tinysells.com/69) and http://en.wikipedia.org/wiki/B%C3%A9zier_curve (http://tinysells.com/70) both
provide good descriptions.

Figure 13-27. Bézier curve segments

Figure 13-28. Bézier curves with control points shown

424 | Chapter 13: Graphics

the straight lines added on Figure 13-28) also has an effect. This essentially deter-
mines how extreme the curvature is.

Figure 13-29 shows a set of Bézier curves similar to those in Figure 13-28. The tan-
gents of both ends of the lines remain the same, but in each case, the distance
between the start point and the first control point is reduced to one-quarter of what
it was before, whereas the other is the same as before. As you can see, this reduces
the influence of the first control point. In all four cases, the shape of the curve is
dominated by the control point that is farther from its end point.

Example 13-22 shows the markup for the second curve segment in Figure 13-28. The
Point1 property determines the location of the first control point—the one associ-
ated with the start point. Point2 positions the second control point. Point3 is the end
point. (To keep things clear, the examples in this section just show the relevant
PathFigure elements. If you want to see these shapes, you would of course need to
put them inside a PathGeometry inside a Path, just as with the previous examples.)

Flexible though Bézier curves are, you will rarely use just a single one. When defin-
ing shapes with curved edges, it is normal for a shape to have many Bézier curves
defining its edge. WPF therefore supplies a PolyBezierSegment type, which allows
multiple curves to be represented in a single segment. It defines a single Points prop-
erty, which is an array of Point structures. Each Bézier curve requires three entries in
this array: two control points and an end point. (As always, each segment starts from
where the previous one left off.) Example 13-23 shows an example segment with two
curves. Figure 13-30 shows the results.

Figure 13-29. Bézier curves with less extreme control points

Example 13-22. BezierSegment

<PathFigure StartPoint="0,50">
 <BezierSegment Point1="60,50" Point2="100,0" Point3="100,50" />
</PathFigure>

Example 13-23. PolyBézierSegment

<PathFigure StartPoint="0,0">
 <PolyBezierSegment>
 <PolyBezierSegment.Points>
 <Point X="0" Y="10"/>
 <Point X="20" Y="10"/>
 <Point X="40" Y="10"/>
 <Point X="60" Y="10"/>

Shapes | 425

This markup is less convenient than simply using a sequence of BezierSegment ele-
ments, which rather defeats the point. Fortunately, you can provide all of the point
data in string form. This is equivalent to Example 13-23:

<PathFigure StartPoint="0,0">
 <PolyBezierSegment Points="0,10 20,10 40,10 60,10 120,15 100,50" />
</PathFigure>

Also, if you are generating coordinates from code, dealing with a single
PolyBezierSegment and passing it an array of Point data is often easier than working
with lots of individual segments.

Cubic Bézier curves provide a lot of control over the shape of the line. However, you
might not always need that level of flexibility. The QuadraticBezierSegment uses a
simpler equation that uses just one control point to define the shape of the curve.
This does not offer the same range of curve shapes as a cubic Bézier curve, but if all
you want is a simple shape, this reduces the number of coordinate pairs you need to
provide by one-third.

QuadraticBezierSegment is similar in use to the normal BezierSegment. The only dif-
ference is that it has no Point3 property—just Point1 and Point2. Point1 is the single
control point, and Point2 is the end point. PolyQuadraticBezierSegment is the multi-
curve equivalent. You use this in exactly the same way as PolyBezierSegment, except
you need to provide only two points for each segment.

Combining shapes

Geometries can perform one more trick that we have not yet examined. We can com-
bine geometries to form new geometries. This is different from adding two geome-
tries to a GeometryGroup—it is possible to combine pairs of geometries in a way that
forms a single geometry with a whole new shape.

Examples 13-24 and 13-25 define paths, both of which make use of the same
RectangleGeometry and EllipseGeometry. The difference is that Example 13-24 puts
both into a GeometryGroup, while Example 13-25 puts them into a CombinedGeometry.

 <Point X="120" Y="15"/>
 <Point X="100" Y="50"/>
 </PolyBezierSegment.Points>
 </PolyBezierSegment>
</PathFigure>

Figure 13-30. PolyBezierSegment

Example 13-23. PolyBézierSegment (continued)

426 | Chapter 13: Graphics

Figure 13-31 shows the results of Examples 13-24 and 13-25. Whereas the
GeometryGroup has resulted in a shape with multiple figures (taking the default fill
rule into account), the CombinedGeometry has produced a single figure. The ellipse
geometry has taken a bite out of the rectangle geometry. This is just one of the ways
in which geometries can be combined. The GeometryCombineMode property deter-
mines which is used, and Figure 13-32 shows all four available modes.

Example 13-24. Multiple geometries

<Path Fill="Cyan" Stroke="Black">
 <Path.Data>
 <GeometryGroup>
 <RectangleGeometry Rect="0,0,50,50" />
 <EllipseGeometry Center="50,25" RadiusX="30" RadiusY="10" />
 </GeometryGroup>
 </Path.Data>
</Path>

Example 13-25. Combined geometries

<Path Fill="Cyan" Stroke="Black">
 <Path.Data>
 <CombinedGeometry GeometryCombineMode="Exclude">
 <CombinedGeometry.Geometry1>
 <RectangleGeometry Rect="0,0,50,50" />
 </CombinedGeometry.Geometry1>
 <CombinedGeometry.Geometry2>
 <EllipseGeometry Center="50,25" RadiusX="30" RadiusY="10" />
 </CombinedGeometry.Geometry2>
 </CombinedGeometry>
 </Path.Data>
</Path>

Figure 13-31. Grouping and combining geometries

Figure 13-32. Combine modes: Union, Intersect, Xor, and Exclude

Union Intersect Xor Exclude

Shapes | 427

Union builds a shape in which any point that was inside either of the two original
shapes will also be inside the new shape. Intersect creates a shape where only points
that were inside both shapes will be in the new shape. Xor creates a shape where
points that were in one shape or the other, but not both, will be in the new shape.
Exclude creates a shape where points inside the first shape but not inside the second
will be included.

Path geometry text format

We have now looked at all of the features that Path has to offer. As you have seen,
we can end up with some pretty verbose markup. Fortunately, there is a shorthand
mechanism that allows us to exploit most of the features we have seen without hav-
ing to type quite so much.

So far, we have been setting the Data property using XAML’s property element syn-
tax. (See Appendix A for more details on this syntax.) However, we can supply a
string instead. Example 13-26 shows both techniques. As you can see, the string
form is some 12 lines shorter.

The syntax for the text form of the Path.Data property is simple. The string must
contain a sequence of commands. A command is a letter followed by some numeric
parameters. The number of parameters required is determined by the chosen com-
mand. Lines require just a coordinate pair. Curves require more data.

Example 13-26. Path.Data as text

<!-- Longhand -->

<Path Fill="Cyan" Stroke="Black">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="0,0" IsClosed="True">
 <LineSegment Point="50,0" />
 <LineSegment Point="50,50" />
 <LineSegment Point="0,50" />
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
</Path.Data>

</Path>

<!-- Shorthand -->

<Path Fill="Cyan" Stroke="Black" Data="M 0,0 L 50,0 50,50 0,50 Z" />

428 | Chapter 13: Graphics

If you omit the letter, the same command will be used as last time. For instance,
Example 13-26 uses the L command—this is short for Line, and it represents a
LineSegment. This requires only two numbers: the coordinates of the line end point.
And yet, in our example, there are six numbers. This simply indicates that there are
three lines in a row. Table 13-5 lists the commands, their equivalent segment types
where applicable, and their usage.

The commands M, Z, F0, and F1 do not correspond to segments. The M command
causes a new PathFigure to be started, enabling multiple figures to be represented in
this compact text format. Z sets the current figure’s IsClosed property to true. F0 and
F1 set the FillRule of the PathGeometry.

Notice that there are two ways to specify a BezierSegment. The C command lets you
provide all of the control points. The S command generates the first control point
for you—it looks at the preceding segment and makes the first control point a mir-
ror image of the preceding one. This ensures that the segment’s tangent aligns with
the preceding segment’s tangent, resulting in a smooth join between the lines.

Table 13-5. Path.Data commands

Command Command name Segment type Parameters

M (or m) Move Coordinate pair: the StartPoint for
a new PathFigure

L (or l) Line LineSegment Coordinate pair: end point

H (or h) Horizontal line LineSegment Single coordinate: end x coordinate (y
coordinate will be the same as before)

V (or v) Vertical line LineSegment Single coordinate: end y coordinate (x
coordinate will be the same as before)

C (or c) Cubic Bézier curve BezierSegment Three coordinate pairs: two control
points and one end point

Q (or q) Quadratic Bézier curve QuadraticBezierSegment Two coordinate pairs: control point and
end point

S (or s) Smooth Bézier curve BezierSegment Two coordinate pairs: second control
point and end point (first control point
generated automatically)

T (or t) Smooth quadratic Bézier
curve

QuadraticBezierSegment One coordinate pair: end point (control
point generated automatically)

A (or a) Elliptical arc ArcSegment Seven numbers: x radius, y radius,
RotationAngle, IsLargeArc,
SweepDirection, and end point
coordinate pair

Z (or z) Close path None

F0 Even-odd fill rule None

F1 Nonzero fill rule None

Bitmaps | 429

Quadratic Bézier segments have a similar facility: the Q command lets you specify the
control point, whereas the T command generates the control point for you in a way
that guarantees a smooth line.

You can specify any of these commands in either uppercase or lowercase. In the
uppercase form, coordinates are relative to the position of the Path element. If the
command is lowercase, the coordinates are taken to be relative to the end point of
the preceding segment in the path.

As well as being offered for the Path.Data property, this path syntax can also be used
directly with a PathGeometry—its Figures property supports the same syntax.
Another geometry type also supports this mini path language: StreamGeometry. This
geometry type can represent all the same shapes as a PathGeometry, but you cannot
modify it once it has been created. This is because it does not support the object
model of path figures and segments—from markup, it only supports the path syn-
tax. (If you are using code, you also can build a StreamGeometry with a
StreamGeometryContext object, which lets you describe the shape with a series of
method calls.)

Because a StreamGeometry is immutable and because it does not maintain a tree of
objects representing the shape, it can use a more efficient internal representation
than a PathGeometry. If you are working with very complex shapes, or a large num-
ber of shapes, this can significantly improve performance. If you are using XAML in
such scenarios, you should prefer the path syntax over the object tree, because when
you set Path.Data with the path syntax, WPF creates a StreamGeometry instead of a
PathGeometry.

We have now examined all of the shapes on offer. However, not all visuals are best
represented with scalable shapes—sometimes we need to work with bitmap images.

Bitmaps
WPF supports bitmaps in any of the following formats:* BMP, JPEG, PNG, TIFF,
Windows Media Photo, GIF, and ICO (Windows icon files). You can use any image
format to create a brush with which to paint any shape or text, as discussed later in
the “ImageBrush” section of this chapter. The System.Windows.Media.Imaging
namespace provides classes that let you work with the pixels and metadata of image
files. However, the simplest way to use a bitmap is with the Image element.

* The imaging system is extensible, so it’s possible to add support for custom formats. This requires unman-
aged COM components to be written, and is beyond the scope of this book. See http://msdn2.microsoft.com/
en-us/library/ms737408.aspx (http://tinysells.com/111) for information about the API for extending WPF
imaging.

430 | Chapter 13: Graphics

Image
Image simply displays an image. It derives from FrameworkElement, so you can place it
anywhere in the visual tree, and it obeys the normal layout rules. You tell it what
image to display by setting its Source property, as shown in Example 13-27.

Setting the Source property to an absolute URL causes the image to be downloaded
and displayed. Alternatively, if you embed an image file in your application as a
resource, as described in Chapter 12, you can refer to it with a relative URL, as
Example 13-28 illustrates.

The Image element is able to resize the image. The exact behavior depends on your
application’s layout. If your layout permits the Image element to size to content, it
will show the image at its natural size. (We discussed sizing to content in Chapter 3.)
For example, the Canvas panel never imposes a particular size on its children, so the
code in Example 13-29 will display the image at its native size.

However, if your layout provides the Image element with a specific amount of space,
by default the bitmap will be scaled to fill that space. A window’s content is con-
strained by the size of the window, so Example 13-30 will enlarge or reduce the
image to fill the window.

The default scaling behavior is to use the same scale factor horizontally and verti-
cally. If the available space is the wrong shape for the image, it will be made as large
as possible without being too large in either dimension. Figure 13-33 shows the
result of Example 13-30, and even though the Image element fills the whole window,

Example 13-27. Image element

<Image Source="http://www.interact-sw.co.uk/images/M3/BackOfM3.jpeg" />

Example 13-28. Using an image resource

<Image Source="/MyEmbeddedImage.jpeg" />

Example 13-29. Showing an image at its natural size

<Canvas>
 <Image Source="/MyEmbeddedImage.jpeg" />
</Canvas>

Example 13-30. Scaling an image to fill the available space

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">
 <Image Source="http://www.interact-sw.co.uk/images/M3/BackOfM3.jpeg" />
</Window>

Bitmaps | 431

the window’s white background is visible above and below when the window is too
tall, or to the left and right where the window is too wide.

Images with a transparency channel are handled correctly—whatever is
behind the image is visible through the transparent parts of the bitmap.

If you want the image to fill all of the space even when it is the wrong shape, you
can set the element’s Stretch property. This defaults to Uniform, but Fill or
UniformToFill will cause the image to fill the full space. These values mean exactly
the same as they do for the Shape types—Shape and Image use the same Stretch enu-
meration type. So, as Figure 13-34 shows, Fill will distort the image if necessary to
make it fit, whereas UniformToFill scales uniformly and then crops if required.

The examples we’ve seen so far set the Image element’s Source property with a URL.
In fact, the Source property’s type is ImageSource. XAML automatically uses the
appropriate type converter to turn the URL into an ImageSource, but when working
in code, you will use image source objects directly.

Figure 13-33. Uniform stretching

Figure 13-34. Fill (left) and UniformToFill (right)

432 | Chapter 13: Graphics

ImageSource
ImageSource is an abstract base class used throughout WPF to represent an image.
Not only does the Image element’s Source property use this type, but so do the
ImageBrush class and the visual layer’s DrawingContext.DrawImage method, both of
which are described later.

Two classes derive from ImageSource: DrawingImage and BitmapSource. DrawingImage
has nothing to do with bitmaps—it wraps a resolution-independent drawing object.
(Drawings are described later.) This means that elements capable of using an image
source can work with either resolution-independent drawings or bitmaps. But
because we’re looking at bitmaps right now, BitmapSource is the more interesting
class. It too is abstract. Table 13-6 lists the derived concrete bitmap source types.

BitmapImage is the simplest to use of these sources. You can give it a URL just as you
would in XAML, as shown in Example 13-31.

As you can see from Table 13-6, many of the bitmap source types are wrappers
around other bitmap sources. You can chain sources together to perform operations
such as rotation and cropping. This chaining model is used because you are often not
able to modify the original image in any way—it might be compiled into your appli-
cation as a resource, or it might live on an external web site. It might seem that the
obvious way to handle this would be to load a bitmap and then modify it. However,
this is at odds with how images are normally handled. In-memory copies are typi-
cally transient—WPF does not cache images unless you explicitly tell it to, either by
using CachedBitmap or by setting the CacheOptions property of a BitmapImage.

Table 13-6. BitmapSource types

Type Usage

BitmapFrame A single frame from a bitmap file (some file formats support multiple frames).

BitmapImage Represents a bitmap at a specified URL; this is the type created when specifying a URL in XAML.

CachedBitmap Wraps around any BitmapSource and caches it.

ColorConvertedBitmap Wraps around any BitmapSource and converts it from one color space to another.

CroppedBitmap Wraps around any BitmapSource and presents a cropped version.

FormatConvertedBitmap Wraps around any BitmapSource and generates a copy with a different pixel format
(e.g., grayscale).

RenderTargetBitmap A bitmap whose contents are generated from a Visual.

TransformedBitmap Wraps around any BitmapSource and presents a scaled and/or rotated copy.

WriteableBitmap A bitmap whose contents can be modified at runtime.

Example 13-31. Using BitmapImage

Image imageElement = new Image();
imageElement.Source = new BitmapImage(new Uri(
 "http://www.nasa.gov/images/content/136054main_bm_072004.jpg"));

Bitmaps | 433

That’s not to say you can’t use a load-then-modify approach; it’s just that it’s not
necessary for cropping, transformation, color conversion, or pixel format conver-
sion. Indeed, the chaining approach offers some advantages. For example, suppose
you were writing an application that showed an image and allowed the user to crop
it interactively. If you were cropping the image by modifying it, you’d need to keep a
copy of the original around just in case the user decided he had cropped a little too
much and wanted to go back. If you crop by chaining, say, a BitmapImage to a
CroppedBitmap, you never modify the original image, so resetting the cropping is easy.
(It’s also more efficient—where possible, WPF avoids generating a copy, and just
applies cropping or transformations as it renders.)

Sometimes building or modifying bitmaps at runtime is necessary. For example,
maybe you want to do something to the image that you cannot achieve by chaining
together the built-in image sources, or perhaps you need to build a brand-new image
from scratch. RenderTargetBitmap and WriteableBitmap enable you to construct your
own bitmaps either from scratch or by modifying a copy of an existing bitmap.

Creating Bitmaps
RenderTargetBitmap lets you create a new a bitmap from any visual. Example 13-32
renders a red ellipse into a bitmap.

You can choose any resolution you like for the output—in this case, we’re creating a
300 dpi bitmap that’s 1 inch wide and 0.5 inches high. Of course, WPF’s coordinate
system is resolution-independent—a device-independent pixel is always 1/96 of an
inch regardless of the output resolution, so we make the ellipse’s size 96 × 48 device-
independent pixels in order to fill the bitmap.

Although the RenderTargetBitmap constructor takes a parameter of
type PixelFormat, it can create images in the Pbgra32 format only. If
you specify anything other than that or PixelFormats.Default, it will
throw an exception. Pbrga32 is a 32-bit-per-pixel format, with a pre-
multiplied alpha channel.

Example 13-32. Using RenderTargetBitmap

RenderTargetBitmap bmp = new RenderTargetBitmap(
 300, 150, // Dimensions in physical pixels
 300, 300, // Pixel resolution (dpi)
 PixelFormats.Pbgra32);

Ellipse e = new Ellipse();
e.Fill = Brushes.Red;
e.Measure(new Size(96, 48));
e.Arrange(new Rect(0, 0, 96, 48));

bmp.Render(e);

434 | Chapter 13: Graphics

Example 13-32 renders just one element, but because you can pass any visual, you
are free to pass elements that have children, such as Grid and Canvas, enabling you to
render multiple elements. However, there are two things to be aware of:

• If the visual is not already a visible part of a UI, it is your responsibility to call
Measure and Arrange so that it knows how big it needs to be. The generated bit-
map will be empty if you fail to do this.

• If you create a standalone visual with no parent, as Example 13-32 does, con-
trols will not pick up their default styles and will be invisible. Consequently,
only primitive elements such as Ellipse or TextBlock will appear. If you want to
generate a bitmap of a UI, showing the UI in a real window before passing it to
the Render method will fix this.

RenderTargetBitmap lets you build a bitmap out of any combination of WPF visuals.
This provides a way to modify existing bitmaps. For example, if you want to overlay
a text caption onto a bitmap, you could create a Grid containing an Image element
displaying the original image, as well as a TextBlock containing the caption, and pass
the Grid to the Render method, as shown in Example 13-33.

Example 13-33. Adding a caption to a bitmap

BitmapImage originalBmp = new BitmapImage();
originalBmp.BeginInit();
originalBmp.UriSource = new Uri(
 "http://www.interact-sw.co.uk/images/M3/BackOfM3.jpeg");
originalBmp.DownloadCompleted += delegate {
 Grid rootGrid = new Grid();
 Image img = new Image();
 img.Source = originalBmp;
 rootGrid.Children.Add(img);
 TextBlock caption = new TextBlock();
 caption.Text = "Ian’s car";
 caption.FontSize = 35;
 caption.Foreground = Brushes.White;
 caption.Background = new SolidColorBrush(Color.FromArgb(128, 0, 0, 0));
 caption.VerticalAlignment = VerticalAlignment.Bottom;
 caption.HorizontalAlignment = HorizontalAlignment.Center;
 caption.Margin = new Thickness(5);
 caption.Padding = new Thickness(5);
 caption.TextAlignment = TextAlignment.Center;
 caption.textWrapping = TextWrapping.Wrap;
 rootGrid.Children.Add(caption)

 RenderTargetBitmap bmp = newRenderTargetBitmap(
 originalBmp.PixelWidth, originalBmp.PixelHeight,
 originalBmp.DpiX, originalBmp.DpiY, PixelFormats.Pbgra32);
 rootGrid.Measure(new Size(originalBmp.Width, originalBmp.Height));
 rootGrid.Arrange(new Rect(0, 0, originalBmp.Width, originalBmp.Height));
 bmp.render(rootGrid);

Bitmaps | 435

This brings to the surface something that was not previously evident: bitmaps are
downloaded from the Web in the background. Normally this isn’t a problem—if you
connect a BitmapImage directly into an Image or ImageBrush, WPF automatically
updates the display once the image is available. However, we’re now trying to build a
new image based on the original, so we must wait for the original image to arrive
before we start. This is why most of the work is done in the BitmapImage object’s
DownloadCompleted event handler.

Example 13-33 does not modify the original bitmap file—in this case, it’s up on a
public web server, so there’s no way the code could change it. Instead, the newly cre-
ated RenderTargetBitmap contains the modified image. Figure 13-35 shows how it
looks. (If you want to write the modified image out to disk, we’ll see how to do that
shortly.)

RenderTargetBitmap is great if you want to build or modify a bitmap using WPF ele-
ments. However, if you want to work with raw pixel data, WriteableBitmap is a bet-
ter choice. Example 13-34 uses this technique to invert all of the colors in a bitmap
to form a negative image—something you could not do with a RenderTargetBitmap.

 // bmp now ready for use
 ...
};
originalBmp.EndInit();

Figure 13-35. Bitmap modified with caption

Example 13-34. Modifying pixels

BitmapImage originalBmp = new BitmapImage();
originalBmp.BeginInit();
originalBmp.UriSource = new Uri(
 "http://www.interact-sw.co.uk/images/M3/BackOfM3.jpeg");
originalBmp.DownloadCompleted += delegate {

 BitmapSource prgbaSource = new FormatConvertedBitmap(originalBmp,
 PixelFormats.Pbgra32, null, 0);
 WriteableBitmap bmp = new WriteableBitmap(prgbaSource);

Example 13-33. Adding a caption to a bitmap (continued)

436 | Chapter 13: Graphics

As before, the code waits until the image has been downloaded before proceeding.
Once the image is available, the first thing the code does is ensure that the pixel data
will be available in the format our code expects by wrapping the original in a
FormatConvertedBitmap. If the original image uses a different pixel format, this will
convert it for us.

Next, we load the results into a WriteableBitmap. We read out the pixel values using
CopyPixels. CopyPixels is not unique to WriteableBitmap—you can read pixel values
from any bitmap source—but only WriteableBitmap offers a WritePixels method to
change the image. After we’ve flipped the bits of the red, green, and blue channels of
the pixel, we use WritePixels to put these modified pixels back into the bitmap.
Finally, we can use the WriteableBitmap as an image source—for example, we could
set it as an Image element’s Source property. Figure 13-36 shows the resulting nega-
tive image.

If you are generating bitmaps with either WriteableBitmap or RenderTargetBitmap,
you may not want to put the results on-screen—you might want to write them out to
disk. You can do this with a bitmap encoder.

 int w = bmp.PixelWidth;
 int h = bmp.PixelHeight;
 int[] pixelData = new int[w * h];
 int widthInBytes = 4 * w;

 bmp.CopyPixels(pixelData, widthInBytes, 0);
 for (int i = 0; i < pixelData.Length; ++i) {
 pixelData[i] ^= 0x00ffffff;
 }
 bmp.WritePixels(new Int32Rect(0, 0, w, h),
 pixelData, widthInBytes, 0);

 // bmp now ready for use
 ...
};

originalBmp.EndInit();

Figure 13-36. Bitmap with inverted colors

Example 13-34. Modifying pixels (continued)

Bitmaps | 437

Bitmap Encoders and Decoders
A bitmap encoder is a class that knows how to generate a bitmap stream in a particu-
lar format. WPF provides encoders for all the image formats listed earlier. Encoders
are named after their format (e.g., PngBitmapEncoder, JpegBitmapEncoder, etc.).

Example 13-35 shows how to write a bitmap out to disk as a JPEG file. This func-
tion works with any BitmapSource.

Decoders work in the opposite direction—they know how to read bitmap streams of
a particular format. Decoders are used implicitly whenever you load a bitmap stream
into a BitmapImage, but you can also use them explicitly. This is necessary if you wish
to access bitmap metadata or retrieve all the frames in a multiframe image file.

Example 13-36 shows how to load a JPEG image with a decoder to discover the type
of camera used to take the image.

Notice that both the encoder and the decoder have a property called Frames to repre-
sent the frames of the image. For single-frame formats, this cannot contain more
than one frame, but an animated GIF would contain multiple frames.

Metadata is returned only at the level of individual frames. The
decoder classes all offer a Metadata property, but it is always null for all
of the decoders that ship as part of the first release of WPF. Use the
Metadata property of the frame instead.

Example 13-35. Creating a JPEG file

static void WriteJpeg(string fileName, int quality, BitmapSource bmp) {

 JpegBitmapEncoder encoder = new JpegBitmapEncoder();
 BitmapFrame outputFrame = BitmapFrame.Create(bmp);
 encoder.Frames.Add(outputFrame);
 encoder.QualityLevel = quality;

 using (FileStream file = File.OpenWrite(fileName)) {
 encoder.Save(file);
 }
}

Example 13-36. Reading bitmap metadata

static string GetCamera(string myJpegPath) {
 JpegBitmapDecoder decoder = new JpegBitmapDecoder(new Uri(myJpegPath),
 BitmapCreateOptions.None, BitmapCacheOption.None);
 BitmapMetadata bmpData = (BitmapMetadata) decoder.Frames[0].Metadata;
 return bmpData.CameraModel;
}

438 | Chapter 13: Graphics

There is one last bitmap feature we will examine. It is a little different from the
rest, because it allows bitmap processing to be applied to any part of the UI, not
just bitmaps.

Bitmap Effects
All user interface elements have a BitmapEffects property. You can use it to apply a
visual effect to the element and all of its children. All of these effects use bitmap pro-
cessing algorithms, hence the name. Example 13-37 applies a BlurBitmapEffect to
one of its StackPanel elements.

As you can see in Figure 13-37, the righthand side is out of focus, thanks to the blur
effect. Despite this, it’s still live—as you can see, the radio button on the righthand
side has been selected. Even if you made the panel completely illegible by cranking
up the blur’s Radius property to 10, the controls would continue to function because
WPF’s input handling completely ignores bitmap effects.

Table 13-7 lists all of the built-in effects. It is possible to write custom effects, but
this requires an unmanaged COM component to be written, and is beyond the scope
of this book.*

Example 13-37. Bitmap effect

<StackPanel Orientation="Horizontal">
 <StackPanel Orientation="Vertical">
 <TextBlock Text="Abcdef" TextAlignment="Center" FontWeight="Bold" />
 <RadioButton Content="Better in position 1?" GroupName="r" />
 </StackPanel>
 <StackPanel Orientation="Vertical" Margin="10,0">
 <StackPanel.BitmapEffect>
 <BlurBitmapEffect Radius="1" />
 </StackPanel.BitmapEffect>
 <TextBlock Text="Abcdef" TextAlignment="Center" FontWeight="Bold" />
 <RadioButton Content="Or position 2?" GroupName="r" />
 </StackPanel>
</StackPanel>

Figure 13-37. BlurBitmapEffect

* See http://msdn2.microsoft.com/en-us/library/ms735322.aspx (http://tinysells.com/108) for information on
the API for building custom WPF bitmap effects.

Brushes and Pens | 439

Bitmap effects are expensive. Use them sparingly.

To apply a bitmap effect, WPF must first render the content to which
the effect will be applied, and then run the bitmap effect algorithm
over the rendered content in order to generate the final results. This
has two significant performance implications. First, it involves the cre-
ation of an intermediate render target—a block of memory in which to
build the rendered content prior to processing. This increases mem-
ory usage. Second, many bitmap effects run in software. This in turn
means that the content to which the effect is applied will be rendered
in software.

Tempting though it may be, applying a bitmap effect to a large region
(e.g., the whole window) is a very bad idea. It disables hardware ren-
dering for the whole region, which is likely to reduce performance
drastically.

So far, we’ve seen how to use bitmaps and define simple shapes, but we have been
rather unadventurous in our choice of fills and outlines for our shapes. We have used
nothing but standard named colors and simple outline styles. And although we’ve
seen how to render bitmaps as standalone rectangles of content, we’ve not yet seen
how we can combine bitmaps with shapes. So, it’s time to look at how WPF’s brush
and pen classes enable more interesting drawing styles.

Brushes and Pens
To draw a shape on the screen, WPF needs to know how you would like that shape
to be colored in and how its outline should be drawn. WPF provides several Brush
types supporting a variety of painting styles. The Pen class extends this to provide
information about stroke thickness, dash patterns, and the like.

In this section, we will look at all of the available brush types and the Pen class. How-
ever, because all brushes and pens are ultimately about deciding what colors to use
where and how they are combined, we must first look at how colors are represented.

Table 13-7. BitmapEffects

Type Usage

BevelBitmapEffect Creates a pseudo-3D relief effect at the edges of the content

BitmapEffectGroup Allows multiple effects to be used on a single element

BlurBitmapEffect Makes the image look out of focus

DropShadowBitmapEffect Draws a soft shadow around the outline of the content

EmbossBitmapEffect Performs a bump mapping algorithm to apply a pseudo-3D relief across the whole
of the content

OuterGlowBitmapEffect Adds a soft halo around the outline of the content

440 | Chapter 13: Graphics

Color
WPF uses the Color structure in the System.Windows.Media namespace to represent a
color. If you have worked with Windows Forms, ASP.NET, or GDI+ in the past,
note that this is not the same structure as those technologies use. They use the Color
structure in the System.Drawing namespace. WPF introduces this new Color struc-
ture because it can work with floating-point color values, enabling much higher color
precision and greater flexibility.

The Color structure uses four numbers or “channels” to represent a color. These
channels are red, green, blue, and alpha. Red, green, and blue channels are the tradi-
tional way of representing color in computer graphics. (This is because color screens
work by adding these three primary colors together.) A value of 0 indicates that the
color component is not present at all; 0 on all three channels corresponds to black.
The alpha channel represents the level of opacity—a Color can be opaque, com-
pletely transparent, or anywhere in between these two extremes. WPF’s composi-
tion engine allows anything to be drawn with any level of transparency. A value of 0
is used to represent complete transparency, and 1 means completely opaque.

Windows has traditionally used 24 bits of color information (8 bits per channel) to
represent “true” or “full” color, and 32 bits for full color with transparency. This is
just about sufficient for the average computer screen. The color and brightness range
of most computer displays means that 24 bits of color has always been adequate
(albeit barely) for most purposes, although a sufficiently good screen can reveal the
limitations. However, for many imaging applications, this is not sufficient. For exam-
ple, film can accommodate a much wider range of brightness than a computer
screen, so 24-bit color is simply not good enough for graphics work with film as its
output medium. The same is true for many medical imaging applications. And, even
for computer or video images, 24-bit color can cause problems—if images are going
through many stages of processing, these can amplify the limitations of 24-bit source
material.

WPF therefore supports a much higher level of detail in its representation of color.
Each color channel uses 16 bits instead of 8. The Color structure still supports the
use of 8-bit channels where required, because a lot of imaging software depends on
such a representation. Color exposes the 8-bit channels through the A, R, G, and B
properties, which accept values in the range of 0–255.* The higher definition repre-
sentations are available through the ScA, ScR, ScG, and ScB properties, which present
the channels as single-precision floating-point values ranging from 0–1.

* The old GDI+ Color structure exposed 8-bit properties of the same names, which may be useful if you need
to port code.

Brushes and Pens | 441

The “Sc” in the ScA, ScR, ScG, and ScB properties refers to the fact that
these support the standard “Extended RGB colour space—scRGB”
color space defined in the IEC 61966-2-2 specification. (This is an
international specification, hence the u in colour.) Strangely, the sc is
not officially short for anything. During its development, the scRGB
spec went through various names. As is often the way with standards
committees, various parties had objections to the names that made any
sense, so they settled on something unobjectionable but meaningless.

Various post hoc theories as to what sc might stand for have been
developed. One is that it is an abbreviation of specular, suggesting the
high-headroom support offered by the out-of-gamut capability.
Another theory is that it could be short for standard compositing, to
indicate that the color space is designed for compositing rather than
for physical devices. This same thinking informed the theory that it is
short for scene referred (although one member of the standards com-
mittee maintains that this last theory is absolutely wrong).

The Color class also allows color values to go out of range. This can lead to counter-
intuitive color values where a particular color channel may be negative, or more than
100 percent. Even though this may seem to make no sense, it can be useful to accom-
modate excursions outside of the 0–1 range if you are performing several image pro-
cessing steps. For example, suppose you want to increase the brightness but decrease
the contrast of an image—the first step might take the brightness over 100 percent,
but the second step could bring it back into range. As long as your final output val-
ues are within the 0–1 range, it doesn’t necessarily matter where they went during
image processing. However, if a color system is unable to accommodate out-of-range
values, it must clip all colors to be within the valid range at every single stage. This
range limiting can result in a degradation of image quality.

There is also a Colors class. This provides a set of standard named colors, with all the
old favorites such as PapayaWhip, BurlyWood, LightGoldenrodYellow, and Brown.

You cannot use a Color directly for drawing. To draw, you need either a Brush or a Pen.

SolidColorBrush
SolidColorBrush is the simplest brush. It uses one color across the whole area being
painted. It has just one property, Color. Note that this color is allowed to use trans-
parency, despite what the word Solid suggests.

We have already been using the SolidColorBrush extensively even though we have
not yet referred to it by name. This is because WPF creates this kind of brush if you
specify the name of a color in markup—if you work mostly with XAML, you very
rarely need to specify that you require a SolidColorBrush, because you’ll get one by
default. (The only reason you would normally specify it in full is if you want to use
data binding with the brush’s properties.) Consider this example:

<Rectangle Fill="Yellow" Width="100" Height="20" />

442 | Chapter 13: Graphics

The XAML compiler will recognize Yellow as one of the standard named colors from
the Colors class, and will supply a suitable SolidColorBrush. (See Appendix A for
more information on how XAML maps from strings to property values.) It does not
need to create the brush, because there is a Brushes class, providing a set of brushes
for each of the named colors in Colors.

You will also be provided with a SolidColorBrush if your markup uses a numeric
color value. Example 13-38 shows various examples of numeric colors. All but the
last two begin with a # symbol and contain hexadecimal digits. A three-digit num-
ber is taken to be one digit each of red, green, and blue. A four-digit number is inter-
preted as alpha, red, green, and blue. These are compact formats providing just 4 bits
per channel. Six- or eight-digit numbers allow 8 bits per channel for RGB or ARGB,
respectively. To exploit the full accuracy of scRGB, you provide a string that starts
with “sc#” followed by a space, and then four comma-separated decimal numbers
representing the A, R, G, and B values. Finally, if the string starts with ContextColor,
you can define a color that refers to a specific International Color Consortium (ICC)
or Image Color Manager (ICM) color profile file.

The SolidColorBrush is lightweight and straightforward. However, it makes for fairly
flat-looking visuals. WPF offers some more interesting brushes if you want to make
your user interface look a little more appealing.

LinearGradientBrush
With a LinearGradientBrush, the painted area transitions from one color to another,
or even through a sequence of colors. Figure 13-38 shows a simple example.

This brush fades from black to white, starting at the top-left corner and finishing at
the bottom-right corner. The fade always runs in a straight line—this brush cannot
do curved transitions, hence the name “linear.” Example 13-39 shows the markup
for Figure 13-38.

Example 13-38. Numeric color values

<Rectangle Fill="#8f8" Width="100" Height="20" />
<Rectangle Fill="#1168ff" Width="50" Height="40" />
<Rectangle Fill="#8ff0" Width="130" Height="10" />
<Rectangle Fill="#72ff8890" Width="70" Height="30" />
<Rectangle Fill="sc# 0.8,0.1442,0.429,0.94" Width="10" Height="20" />
<Rectangle Fill="ContextColor
file://C:/Windows/System32/spool/drivers/color/sRGB%20Color%20Space%20Profile.icm
 1.0,0.0,1.0,0.0" Width="10" Height="20" />

Figure 13-38. LinearGradientBrush

Brushes and Pens | 443

The StartPoint and EndPoint properties indicate where the color transition begins
and ends. These coordinates are relative to the area being filled, so 0,0 is the top left
and 1,1 is the bottom right, as shown in Figure 13-39. (Note that if the brush is
painting an area that is narrow or wide, the coordinate system is squashed accord-
ingly.) You are allowed to put the StartPoint and EndPoint outside of the rectangle.
For example, you could change the StartPoint of Figure 13-39 to –1,0. This would
mean that only half of the fill’s color range would be used. This might seem point-
less—setting the first gradient stop’s color to a shade of gray would have the same
effect. However, sometimes it’s easier to tweak the look of a fill by adjusting the end
points rather than by adjusting the colors.

Each GradientStop has an Offset property as well as a Color. This enables the fill to
pass through multiple colors. Example 13-40 shows a LinearGradientBrush with mul-
tiple colors.

Figure 13-40 shows the result.

Example 13-39. Using a LinearGradientBrush

<Rectangle Width="80" Height="60">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
 <GradientStop Color="Black" Offset="0" />
 <GradientStop Color="White" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Figure 13-39. Fill coordinate system

Example 13-40. Multiple gradient stops

<Rectangle Width="80" Height="60">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
 <GradientStop Color="Black" Offset="0" />
 <GradientStop Color="Orange" Offset="0.2" />
 <GradientStop Color="Red" Offset="0.4" />
 <GradientStop Color="Black" Offset="0.6" />
 <GradientStop Color="Blue" Offset="0.8" />
 <GradientStop Color="White" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

0, 0 0, 1

1, 0 1, 1

444 | Chapter 13: Graphics

LinearGradientBrush is often used to provide a feeling of depth to a user interface.
Example 13-41 shows a typical example. It uses just two shapes—a pair of rounded
Rectangle elements. (The Grid doesn’t contribute directly to the appearance. It is
there to make it easy to resize the graphic—changing the grid’s Width and Height will
cause both rectangles to resize appropriately.) The second rectangle’s gradient fill
fades from a partially transparent shade of white to a completely transparent color,
which provides an interesting visual effect.

Figure 13-41 shows the result. This is an extremely simple graphic, containing just
two shapes. The use of gradient fills has added an impression of depth that these
shapes would otherwise not have conveyed.

Figure 13-40. Multiple gradient stops (Color Plate 22)

Example 13-41. Simulating lighting effects with linear fills

<Grid Width="80" Height="26">
 <Grid.RowDefinitions>
 <RowDefinition Height="2*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Rectangle Grid.RowSpan="2" RadiusX="13" RadiusY="13">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="Green" Offset="0" />
 <GradientStop Color="DarkGreen" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 <Rectangle.Stroke>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="Black" Offset="0" />
 <GradientStop Color="LightGray" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Stroke>
 </Rectangle>

 <Rectangle Margin="3,2" RadiusX="8" RadiusY="12">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#dfff" Offset="0" />
 <GradientStop Color="#0fff" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
</Grid>

Brushes and Pens | 445

RadialGradientBrush
RadialGradientBrush is very similar to LinearGradientBrush. Both transition through
a series of colors. But whereas LinearGradientBrush paints these transitions in a
straight line, the RadialGradientBrush fades from a starting point out to an elliptical
boundary. This opens more opportunities for making your user interface appear less
flat. Example 13-42 shows an example.

The RadialGradientBrush takes a list of GradientStop objects to determine the colors
that the fill runs through, just like LinearGradientBrush. This example uses the
RadiusX and RadiusY properties to determine the size of the elliptical boundary, and
the Center property to set the position of the ellipse. The values chosen here make
the fill boundary fit entirely into the shape, as Figure 13-42 shows. The area of the
shape that falls outside of this boundary is filled with the color of the final
GradientStop. Notice that the focal point of the fill is to the left. This is because the
GradientOrigin has been set. (By default, the focal point is in the center of the ellipse.)

Example 13-42 makes it easy to see the effects of the properties of the
RadialGradientBrush, but it’s not a very exciting example. Example 13-43 shows
something a little more adventurous. It is similar to Example 13-41—both use a

Figure 13-41. Simple lighting effects with linear fills (Color Plate 23)

Example 13-42. Using a RadialGradientBrush

<Rectangle Width="200" Height="150">
 <Rectangle.Fill>
 <RadialGradientBrush Center="0.45,0.5" RadiusX="0.3" RadiusY="0.5"
 GradientOrigin="0.25,0.4">
 <GradientStop Color="White" Offset="0" />
 <GradientStop Color="DarkBlue" Offset="1" />
 </RadialGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Figure 13-42. Simple radial fill (Color Plate 24)

446 | Chapter 13: Graphics

small number of shapes with gradient fills to convey a feeling of depth and reflec-
tion—but this example uses radial fills as well as a linear fill.

This time, three ellipses have been used. Two have RadialGradientBrush fills, and
one has a LinearGradientBrush stroke. The fill in the first ellipse creates the glow at
the bottom of the drawing. The second adds the reflective highlight at the top. The
third draws a bezel around the outside. Figure 13-43 shows the result. The radial fills
suggest a curved surface and give the graphic a slightly translucent look.

Example 13-43. Radial gradient fills

<Grid Width="16" Height="16" Margin="0,0,5,0" >
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="10*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="20*" />
 <RowDefinition Height="6*" />
 </Grid.RowDefinitions>

 <Ellipse Grid.RowSpan="3" Grid.ColumnSpan="3" Margin="0.5">
 <Ellipse.Fill>
 <RadialGradientBrush Center="0.5,0.9" GradientOrigin="0.5,0.9"
 RadiusX="0.7" RadiusY="0.5">
 <GradientStop Color="PaleGreen" Offset="0" />
 <GradientStop Color="Green" Offset="1" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Ellipse Grid.Row="1" Grid.Column="1">
 <Ellipse.Fill>
 <RadialGradientBrush Center="0.5,0.1" GradientOrigin="0.5,0.1"
 RadiusX="0.7" RadiusY="0.5">
 <GradientStop Color="#efff" Offset="0" />
 <GradientStop Color="Transparent" Offset="1" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Ellipse Grid.RowSpan="3" Grid.ColumnSpan="3">
 <Ellipse.Stroke>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="Gray" Offset="0" />
 <GradientStop Color="LightGray" Offset="1" />
 </LinearGradientBrush>
 </Ellipse.Stroke>
 </Ellipse>
</Grid>

Brushes and Pens | 447

ImageBrush, DrawingBrush, and VisualBrush
The ability to fill shapes with a pattern or image of some kind is often useful. WPF
provides three brushes that allow us to paint shapes with whatever graphics we
choose. The ImageBrush lets us paint with a bitmap. With DrawingBrush, we use a
scalable drawing. VisualBrush allows us to use any UI element as the brush image—
we can in effect use one piece of our user interface to paint another.

All of these brushes have a certain amount in common, so they all derive from the
same base class, TileBrush.

TileBrush

ImageBrush, DrawingBrush, and VisualBrush all paint using some form of source pic-
ture. Their base class, TileBrush, decides how to stretch the source image to fill the
available space, whether to repeat (tile) the image, and how to position the image
within the shape. TileBrush is an abstract base class, so you cannot use it directly. It
exists to define the features common to the ImageBrush, DrawingBrush, and
VisualBrush.

Figure 13-44 shows the default TileBrush behavior. This figure shows three rectan-
gles so that you can see what happens when the brush is made narrow or wide, as
well as how it looks when the brush shape matches the target area shape. All three
are rectangles painted with an ImageBrush specifying just the image.

Figure 13-43. Radial fills (Color Plate 25)

Figure 13-44. Default stretching and placement (Stretch.Fill)

448 | Chapter 13: Graphics

The stretching behavior would be exactly the same for any of the tile brushes—we
are using ImageBrush just as an example. Indeed, all the features discussed in this sec-
tion apply to any TileBrush. Example 13-44 shows the markup used for each rectan-
gle in Figure 13-44.

Because this specifies nothing more than which image to display, it gets the default
TileBrush behavior: the brush has stretched the source image to fill the available
space. We can change this behavior by modifying the brush’s Stretch property. It
defaults to Fill, but we can show the image at its native size by specifying None, as
Example 13-45 shows.

The None stretch mode preserves the aspect ratio, but if the image is too large, it will
simply be cropped to fit the space available, as Figure 13-45 shows.

For displaying images, you may want to stretch the image to match the available
space without distorting the aspect ratio. TileBrush supports this with the Uniform
stretch mode, shown in Figure 13-46. This scales the source image so that it fits
entirely within the space available.

Example 13-44. Using an ImageBrush

<Rectangle>
 <Rectangle.Fill>
 <ImageBrush ImageSource="Images\Moggie.jpg" />
 </Rectangle.Fill>
</Rectangle>

Example 13-45. Specifying a Stretch of None

<Rectangle>
 <Rectangle.Fill>
 <ImageBrush ImageSource="Images\Moggie.jpg" Stretch="None" />
 </Rectangle.Fill>
</Rectangle>

Figure 13-45. Stretch.None

Brushes and Pens | 449

The Uniform stretch mode typically results in the image being made smaller than the
area being filled, leaving the remainder of the space transparent. Alternatively, you
can scale the image so that it completely fills the space available while preserving the
aspect ratio, cropping in one dimension if necessary. The UniformToFill stretch
mode does this, and it is shown in Figure 13-47.

UniformToFill is most appropriate if you are filling an area with some nonrepeating
textured pattern, because it guarantees to paint the whole area. It is probably less
appropriate if your goal is simply to display a picture—as Figure 13-47 shows, this
stretch mode will crop images where necessary. If you want to show the whole pic-
ture, Uniform is the best choice.

All of the stretch modes except for Fill present an extra question: how should the
image be positioned? With None and UniformToFill, cropping occurs, so WPF needs
to decide which part of the image to show. With Uniform, the image may be smaller
than the space being filled, so WPF needs to decide where to put it.

Images are centered by default. In the examples where the image has been cropped
(Figures 13-45 and 13-47) the most central parts are shown. In the case of Uniform,
where the image is smaller than the area being painted, it has been placed in the mid-
dle of that area (Figure 13-46). You can change this with the AlignmentX and

Figure 13-46. Stretch.Uniform

Figure 13-47. Stretch.UniformToFill

450 | Chapter 13: Graphics

AlignmentY properties. You can set these to Left, Middle, or Right, and Top, Middle, or
Bottom, respectively. Example 13-46 shows the UniformToFill stretch mode again,
but this time with alignments of Left and Bottom. Figure 13-48 shows the results.

The stretch and alignment properties are convenient to use, but they do not allow
you to focus on any arbitrary part of the image, or choose specific scale factors.
TileBrush supports these features through the Viewbox, Viewport, ViewboxUnits, and
ViewportUnits properties.

The Viewbox property chooses the portion of the image to be displayed. By default,
this property is set to encompass the whole image, but you can change it to focus on
a particular part. Figure 13-49 shows the UniformToFill stretch mode, but with a
Viewbox set to zoom in on the front of the car.

Example 13-46. Specifying a Stretch and alignment

<Rectangle>
 <Rectangle.Fill>
 <ImageBrush ImageSource="Images\Moggie.jpg" Stretch="UniformToFill"

AlignmentX="Left" AlignmentY="Bottom" />
 </Rectangle.Fill>
</Rectangle>

Figure 13-48. Stretch.UniformToFill, bottom-left-aligned

Figure 13-49. Stretch.UniformToFill with Viewbox

Brushes and Pens | 451

As Example 13-47 shows, the Viewbox is specified as four numbers. The first two are the
coordinates of the upper-lefthand corner of the Viewbox; the second two are the width
and height of the box. By default, coordinates of 1,1 represent the entire source image.

Sometimes it can be more convenient to work in the coordinates of the source image
itself. As Example 13-48 shows, you can do this by setting the ViewboxUnits property
to Absolute. (It defaults to RelativeToBoundingBox.)

In this case, because an ImageBrush is being used, these are coordinates in the source
bitmap. In the case of a DrawingBrush or VisualBrush, the Viewbox would use the
coordinate system of the source drawing.

Although the last two examples chose which portion of the source image to focus on
by specifying a Viewbox, they still relied on the Stretch property to choose how to
size and position the output. If you want more precise control, you can use Viewport
to choose exactly where the image should end up in the brush.

Figure 13-50 illustrates the relationship between Viewbox and Viewport. On the left is the
source image—a bitmap, in this case, but it could also be a drawing or visual tree. The
Viewbox specifies an area of this source image. On the right is the brush. The Viewport
specifies an area within this brush. WPF will scale and position the source image so that
the area specified in Viewbox ends up being painted into the area specified by Viewport.

Example 13-47. Specifying a Viewbox

<ImageBrush Stretch="UniformToFill" Viewbox="0.75,0.42,0.25,0.34"
 ImageSource="Images\Moggie.jpg" />

Example 13-48. Viewbox with absolute units

<ImageBrush Stretch="UniformToFill"
ViewboxUnits="Absolute" Viewbox="593,250,200,200"

 ImageSource="Images\Moggie.jpg" />

Figure 13-50. Viewbox and Viewport

452 | Chapter 13: Graphics

As well as indicating where the contents of the Viewbox end up, the Viewport speci-
fies the extent of the brush; it will be clipped to the size of the Viewport.
Example 13-49 shows Viewport and Viewbox settings that correspond to the areas
highlighted in Figure 13-50.

Like the Viewbox, by default the Viewport coordinates range from 0–1. The position
0,0 is the top left of the brush, and 1,1 is the bottom right. This means that the part
of the image shown by the brush will always be the same, regardless of the brush size
or shape. This results in a distorting behavior similar to the default StretchMode of
Fill, as shown in Figure 13-51. (In fact, the Fill stretch mode is equivalent to set-
ting the Viewbox and Viewport to be 0,0,1,1.)

As with the Viewbox, you can specify different units for the Viewport. The
ViewportUnits property defaults to RelativeToBoundingBox, but if you change it to
Absolute, the Viewport is measured using output coordinates. Note that setting the
Viewport in absolute units means the image will no longer scale as the brush resizes.

In several of the preceding examples, the source image has not completely filled the
area of the brush. By default, the brush is transparent in the remaining space. How-
ever, if you have specified a Viewport, you can choose other behaviors for the spare
space with the TileMode property. The default is None, but if you specify Tile, as
Example 13-50 does, the image will be repeated to fill the space available.

Example 13-49. Using Viewbox and Viewport

<ImageBrush ViewboxUnits="Absolute" Viewbox="380,285,308,243"
Viewport="0.1,0.321,0.7, 0.557"

 ImageSource="Images\Moggie.jpg" />

Figure 13-51. Viewbox and Viewport

Example 13-50. Specifying a Stretch and a TileMode

<Rectangle>
 <Rectangle.Fill>
 <ImageBrush ImageSource="Images\Moggie.jpg"
 Viewport="0,0,100,100" ViewportUnits="Absolute"

TileMode="Tile" />
 </Rectangle.Fill>
</Rectangle>

Brushes and Pens | 453

Figure 13-52 shows the effect of the Tile tile mode. There is one potential problem
with tiling. It can often be very obvious where each repeated tile starts. If your goal is
simply to fill in an area with a texture, these discontinuities can jar somewhat. To
alleviate this, TileBrush supports three other modes of tiling: FlipX, FlipY, and
FlipXY. These mirror alternate images as shown in Figure 13-53. Although mirroring
can reduce the discontinuity between tiles, for some source images it can change the
look of the brush quite substantially. Flipping is typically better suited to more uni-
form texture-like images than pictures.

Remember that all of this scaling and positioning functionality is common to all of
the brushes derived from TileBrush. However, some features are specific to the indi-
vidual brush types, so we will now look at each in turn.

ImageBrush

ImageBrush paints areas of the screen using a bitmap. The ImageBrush was used to cre-
ate all of the pictures in the preceding section. This brush is straightforward—you
simply need to tell it what bitmap to use with the ImageSource property, as
Example 13-51 shows.

Figure 13-52. Tiling

Figure 13-53. FlipXY tiling

454 | Chapter 13: Graphics

To make a bitmap file available to the ImageBrush, you can add one to your project in
Visual Studio. The file in Example 13-51 was in a subdirectory of the project called
Images, and was built into the project as a resource. To do this, select the bitmap file in
Visual Studio’s Solution Explorer and then, in the Properties panel, make sure the
Build Action property is set to Resource. This embeds the bitmap into the executable,
enabling the ImageBrush to find it at runtime. (See Chapter 12 for more information on
how binary resources are managed.) Alternatively, you can specify an absolute URL for
this property—you could, for example, display an image from a web site.*

ImageBrush is quite happy to deal with images with a transparency
channel (also known as an alpha channel). Not all image formats sup-
port partial transparency, but some—such as the PNG, WMP, and
BMP formats—can. (And, to a lesser extent, GIF. It supports only fully
transparent or fully opaque pixels. This is effectively a 1-bit alpha
channel.) Where an alpha channel is present, the ImageBrush will
honor it.

DrawingBrush

The ImageBrush is convenient if you have a bitmap you need to paint with. However,
bitmaps do not fit in well with resolution independence. The ImageBrush will scale
bitmaps correctly for your screen’s resolution, but bitmaps tend to become blurred
when scaled. DrawingBrush does not suffer from this problem, because you usually
provide a scalable vector image as its source. This enables a DrawingBrush to remain
clear and sharp at any size and resolution.

The vector image is represented by a Drawing object. This is an abstract base class.
You can draw shapes with a GeometryDrawing—this allows you to construct draw-
ings using all of the same geometry elements supported by Path. You can also use bit-
maps and video with ImageDrawing and VideoDrawing. Text is supported with
GlyphRunDrawing. Finally, you can combine these using the DrawingGroup.

Even if you use nothing but shapes, you will still probably want to group the shapes
with a DrawingGroup. Each GeometryDrawing is effectively equivalent to a single Path,
so if you want to draw using different pens and brushes, or if you want your shapes to
overlap rather than combine, you will need to use multiple GeometryDrawing elements.

Example 13-51. Using an ImageBrush

<Rectangle>
 <Rectangle.Fill>
 <ImageBrush ImageSource="Images\Moggie.jpg" />
 </Rectangle.Fill>
</Rectangle>

* If you don’t use an absolute URL, a property of type ImageSource will be treated as a relative pack URI. So,
the image in Example 13-51 is handled as a relative pack URI, which resolves to a resource compiled into the
component. Pack URIs and resources were described in Chapter 12.

Brushes and Pens | 455

Example 13-52 shows a Rectangle that uses a DrawingBrush for its Fill. This brush
paints the same visuals seen earlier in Figure 13-41. Because each rectangular ele-
ment that makes up the drawing uses different linear gradient fills, they both get
their own GeometryDrawing, nested inside a DrawingGroup.

Example 13-52. Using DrawingBrush

<Rectangle Width="80" Height="30">
 <Rectangle.Fill>
 <DrawingBrush>
 <DrawingBrush.Drawing>
 <DrawingGroup>
 <DrawingGroup.Children>
 <GeometryDrawing>
 <GeometryDrawing.Brush>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="Green" Offset="0" />
 <GradientStop Color="DarkGreen" Offset="1" />
 </LinearGradientBrush>
 </GeometryDrawing.Brush>

 <GeometryDrawing.Pen>
 <Pen Thickness="0.02">
 <Pen.Brush>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="Black" Offset="0" />
 <GradientStop Color="LightGray" Offset="1" />
 </LinearGradientBrush>
 </Pen.Brush>
 </Pen>
 </GeometryDrawing.Pen>
 <GeometryDrawing.Geometry>
 <RectangleGeometry RadiusX="0.2" RadiusY="0.5"
 Rect="0.02,0.02,0.96,0.96" />
 </GeometryDrawing.Geometry>
 </GeometryDrawing>

 <GeometryDrawing>
 <GeometryDrawing.Brush>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#dfff" Offset="0" />
 <GradientStop Color="#0fff" Offset="1" />
 </LinearGradientBrush>
 </GeometryDrawing.Brush>
 <GeometryDrawing.Geometry>
 <RectangleGeometry RadiusX="0.1" RadiusY="0.5"
 Rect="0.1,0.07,0.8,0.5" />
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 </DrawingGroup.Children>
 </DrawingGroup>
 </DrawingBrush.Drawing>
 </DrawingBrush>
 </Rectangle.Fill>
</Rectangle>

456 | Chapter 13: Graphics

With a DrawingBrush, the Viewbox defaults to 0,0,1,1. All of the coordinates and sizes
in Example 13-52 are relative to this coordinate system. If you would prefer to work
with coordinates over a wider range, you can simply set the Viewbox to the range you
require, and the ViewboxUnits to Absolute. We already saw how to use the Viewbox in
Example 13-47. The only difference with DrawingBrush is that you’re using it to indi-
cate an area of the drawing, rather than a bitmap.

Note that we can use the Viewbox to focus on some subsection of the picture, just
as we did earlier with the ImageBrush. We can modify the DrawingBrush in
Example 13-52 to use a smaller Viewbox, as shown in Example 13-53.

The result of this is that most of the drawing is now outside of the Viewbox, so the
brush shows only a part of the whole drawing, as Figure 13-54 shows.

DrawingBrush is very powerful, as it lets you use more or less any graphics you like as a
brush, and because it is vector-based, the results remain crisp at any scale. It does have
one drawback if you are using it from markup, though: it is somewhat cumbersome to
use from XAML. Consider that Example 13-52 produces the same appearance as
Example 13-41, but these examples are 48 lines long and 30 lines long, respectively.

The DrawingBrush is much more verbose because it requires us to work with geome-
try objects rather than higher-level constructs such as the Grid or Rectangle used in
Example 13-41. (Note that this problem is less acute when using this brush from
code, where the higher-level objects are not much more convenient to use than
geometries. The verbosity is really only a XAML issue.) Moreover, higher-level features
such as the ability to exploit layout or controls are not available in a DrawingBrush. For-
tunately, VisualBrush allows us to paint with these higher-level elements.

VisualBrush

The VisualBrush can paint with the contents of any element derived from Visual.
Because Visual is the base class of all WPF user interface elements, this means that in
practice, you can plug any markup you like into a VisualBrush. The brush is “live” in
that if the brush’s source visual changes, anything painted with the brush will auto-
matically update.

Example 13-53. Viewbox and DrawingBrush

<DrawingBrush Viewbox="0.5,0,0.5,0.25">

Figure 13-54. DrawingBrush with small Viewbox

Brushes and Pens | 457

Example 13-54 shows a Rectangle filled using a VisualBrush. The brush’s visuals
have been copied directly from Example 13-41, resulting in a much simpler brush
than the equivalent DrawingBrush. (The results look exactly the same as
Figure 13-41—the whole point of the VisualBrush is that it paints areas to look just
like the visuals it wraps.)

Example 13-54. Using a VisualBrush

<Rectangle Width="80" Height="30">
 <Rectangle.Fill>
 <VisualBrush>
 <VisualBrush.Visual>
 <Grid Width="80" Height="26">
 <Grid.RowDefinitions>
 <RowDefinition Height="2*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Rectangle Grid.RowSpan="2" RadiusX="13" RadiusY="13">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="Green" Offset="0" />
 <GradientStop Color="DarkGreen" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 <Rectangle.Stroke>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="Black" Offset="0" />
 <GradientStop Color="LightGray" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Stroke>
 </Rectangle>

 <Rectangle Margin="3,2" RadiusX="8" RadiusY="12">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#dfff" Offset="0" />
 <GradientStop Color="#0fff" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>

 </Grid>
 </VisualBrush.Visual>
 </VisualBrush>
 </Rectangle.Fill>
</Rectangle>

458 | Chapter 13: Graphics

You might be wondering why on earth you would ever use a
DrawingBrush when VisualBrush is so much more flexible—
VisualBrush can support any element, whereas DrawingBrush supports
only the low-level Drawing and Geometry classes. However,
DrawingBrush is more efficient. A drawing doesn’t carry the overhead
of a full FrameworkElement for every drawing primitive. Although it
takes more effort to create a DrawingBrush, it consumes fewer resources
at runtime. If you want your user interface to have particularly intri-
cate visuals, the DrawingBrush will enable you to do this with lower
overhead. If you plan to use animation, this low overhead may trans-
late to smoother-looking animations.

VisualBrush makes it very easy to create a brush that looks exactly like some part of
your user interface. You could use this to create effects such as reflections, as
Figure 13-55 shows, or to project the user interface onto a 3D surface. (We show this
latter technique in Chapter 17.)

Example 13-55 shows how to create a reflection effect with a VisualBrush. The user
interface to be reflected has been omitted for clarity—you would place this inside the
Grid named mainUI. The important part is the Rectangle, which has been painted
with a VisualBrush based on mainUI. This example also uses a ScaleTransform to flip
the image upside down.

Figure 13-55. Reflection effect with VisualBrush

Example 13-55. Simulating a reflection with VisualBrush

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="40"/>
 </Grid.RowDefinitions>

 <Grid x:Name="mainUI">

 ...User interface to be reflected goes here...

 </Grid>

Brushes and Pens | 459

The reflection is live in only one direction: if the main UI updates, the
reflection will update to match, but you cannot interact with it.

As you can see from Figure 13-55, the image fades out toward the bottom. We
achieved this by applying an OpacityMask. All user interface elements support this
OpacityMask property. Its type is Brush. Only the transparency channel of the brush is
used; the opacity of the element to which the mask is applied is determined by the
opacity of the brush. In this case, we’ve used a LinearGradientBrush that fades to
transparent, and this is what causes the Rectangle to fade to transparency.

Remember that VisualBrush derives from TileBrush. This means that you are not
obliged to paint the target element with the whole of the source visual—you can use
Viewport and Viewbox to be more selective. For example, you could use this to imple-
ment a magnifying glass feature.*

Pen
Brushes are used to fill the interior of a shape. To draw the outline of a shape, WPF
needs a little more information—not only does it need a brush in order to color in
the line, but it also needs to know how thick you would like the line to be drawn,
and whether you want a dash pattern and/or end caps. The Pen class provides this
information.

 <Rectangle Grid.Row="1">
 <Rectangle.LayoutTransform>
 <ScaleTransform ScaleY="-1" />
 </Rectangle.LayoutTransform>

 <Rectangle.Fill>
 <VisualBrush Visual="{Binding ElementName=mainUI}" />
 </Rectangle.Fill>

 <Rectangle.OpacityMask>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="Transparent" />
 <GradientStop Offset="1" Color="White" />
 </LinearGradientBrush>
 </Rectangle.OpacityMask>
 </Rectangle>

</Grid>

* For an example of this technique, see http://www.interact-sw.co.uk/iangblog/2007/03/28/wpfmagnifyupdate,
or http://tinysells.com/100.

Example 13-55. Simulating a reflection with VisualBrush (continued)

460 | Chapter 13: Graphics

A Pen is always based on a brush, meaning that we can use all of the drawing effects
we’ve seen so far when drawing outlines. You set the brush using the Brush property
of the Pen class.

Remember that if you are working with any of the high-level shape ele-
ments, you will not work with a Pen directly. A Pen is used under the
covers; you set all of the properties indirectly. Table 13-2 showed how
Shape properties correspond to Pen properties.

You will typically deal directly with a Pen only if you work at a lower
level, such as with the GeometryDrawing in a DrawingBrush.

You set the line width with the Thickness property. For simple outlines, this and
Brush may be the only properties you set. However, Pen has more to offer. For exam-
ple, you can set a dash pattern with the DashArray property. This is simply an array of
numbers. Each number corresponds to the length of a particular segment in the dash
pattern. Example 13-56 illustrates the simplest possible pattern.

This indicates that the first segment in the dash pattern is of length 1. The dash pat-
tern repeats, and because only one segment has been specified, every segment will be
of length 1. Figure 13-56 shows the result.

Example 13-57 shows two slightly more interesting pattern sequences. Note that the
second case supplies an odd number of segments. This means that the first time
around, the solid segments will be of size 6 and the gap will be of size 1, but when
the sequence repeats, the solid segment will be of length 1 and the gaps of size 6. So
the effective length of the dash pattern is doubled. Figure 13-57 shows the results of
both patterns.

Example 13-56. DashArray

<Rectangle Stroke="Black" StrokeThickness="5" StrokeDashArray="1" />

Figure 13-56. Simple dash pattern

Example 13-57. Dash patterns

<Rectangle Stroke="Black" StrokeThickness="5" StrokeDashArray="10 1 3 1" />
<Rectangle Stroke="Black" StrokeThickness="5" StrokeDashArray="6 1 6" />

Figure 13-57. Longer dash patterns

Transformations | 461

WPF can draw corners in three different ways. You can set the LineJoin property to
Miter, Bevel, or Round. These are shown in Figure 13-58.

For open shapes such as Line and PolyLine, you can specify the shape of the starts
and ends of lines with the StartLineCap and EndLineCap properties. The DashCap
property specifies the shape with which dashes start and end. These properties sup-
port four styles of caps: Round, Triangle, Flat, and Square. These are shown in
Figure 13-59. Flat and Square both square off the ends of lines. The distinction is
that with Flat, the flat end intersects the end point of the line, but with Square, it
extends beyond it. The amount by which it overshoots the line is equal to half the
line thickness.

Transformations
Support for high-resolution displays is an important feature of WPF. This is enabled
in part by the emphasis on the use of scalable vector graphics rather than bitmaps.
But as experience with GDI+ and GDI32 has shown, if scalability is not integrated
completely into the graphics architecture, resolution independence is very hard to
achieve consistently in practice.

WPF’s support for scaling is built in at a fundamental level. Any element in the user
interface can have a transformation applied, making it easy to scale or rotate any-
thing in the user interface.

As we saw in Chapter 3, all user interface elements have RenderTransform and
LayoutTransform properties. These are of type Transform, which is an abstract base
class. There are derived classes implementing various affine transformations,* listed
in Table 13-8.

Figure 13-58. LineJoin types: Miter, Bevel, and Round

Figure 13-59. Line cap styles: Round, Triangle, Flat, and Square

* An affine transformation is one in which features arranged in a straight line before the transform remain in a
straight line after the transform. Note that 3D perspective transformations do not preserve straight lines.

462 | Chapter 13: Graphics

Most of these are just convenience classes—you can represent all supported transfor-
mations by the MatrixTransform class. This contains a 3 × 3 matrix, allowing any
affine transformation to be used. However, the other transform types are often easier
to work with than the set of numbers in a matrix.

Example 13-58 shows the use of a TransformGroup to apply a ScaleTransform and a
RotateTransform to the RenderTransform property of a TextBlock.

Notice that we have used a TransformGroup here to combine the effects of two trans-
forms. (Note that the rotation angle is specified in degrees in a RotateTransform,
rather than radians, which are slightly more common in computational geometry.
Likewise, positive numbers are clockwise, contrary to the usual mathematical con-
vention.) Figure 13-60 shows the results.

The order in which you apply transforms is usually significant, because each trans-
form in a TransformGroup builds on the ones before it. For example, if you add a
TranslateTransform to Example 13-58 to move the Hello text right by 30 device-
independent pixels, the effect is different depending on whether it appears before

Table 13-8. Transform types

Transform class Usage

MatrixTransform General-purpose transform based on 3 × 3 matrix

RotateTransform Rotates around a point

ScaleTransform Scales in x and/or y

SkewTransform Shears (e.g., converts a square into a rhombus)

TransformGroup Combines several transforms into one

TranslateTransform Moves items by a specified vector

Example 13-58. Using RenderTransform

<StackPanel Orientation="Horizontal">
 <TextBlock>
 <TextBlock.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleX="2" ScaleY="2" />
 <RotateTransform Angle="10" />
 </TransformGroup>
 </TextBlock.RenderTransform>
 Hello,
 </TextBlock>
 <TextBlock>world</TextBlock>
</StackPanel>

Figure 13-60. RenderTransform

Visual Layer Programming | 463

or after the other transforms. The lefthand side of Figure 13-61 shows the result
when the translation occurs first, and the righthand side shows the result when it
occurs last. In the first case, the text has moved twice as far to the left; this is
because the ScaleTransform was applied after the translation, doubling its effects.

Visual Layer Programming
The shape elements can provide a convenient way to work with graphics. However,
in some situations, creating all the shape elements required to represent a drawing,
and adding them to the UI tree, may be more trouble than it’s worth. Data binding
can often provide a solution—the shape classes all derive from FrameworkElement, so
they can participate in data binding like any other user interface element. However,
sometimes your data may be structured in such a way that it’s easier or more effi-
cient to write code that performs a series of drawing operations based on the data.
For this reason, WPF provides a “visual layer” API as a lower-level alternative to
shape elements. (In fact, the shape elements are all implemented on top of this visual
layer.) This API lets us write code that renders content on demand.

A visual is a visible object. A WPF application’s appearance is formed
by composing all of its visuals onto the screen. Because WPF builds on
top of the visual layer, every element is a visual—the FrameworkElement
base class derives indirectly from Visual. Programming at the visual
layer simply involves creating a visual and writing code that tells WPF
what we’d like to appear in that visual.

Even at this low level, WPF behaves very differently from Win32. The way in which
graphics acceleration is managed means that your on-demand rendering code is
called much less often than it would be in a classic Windows application.

Rendering On Demand
The key to custom on-demand rendering is the OnRender method. WPF calls this
method when it needs your component to generate its appearance. (This is how the
built-in shape classes render themselves.)

The virtual OnRender method is defined by the UIElement class. Most
elements derive from this indirectly via FrameworkElement, which adds
core features such as layout and data binding.

Figure 13-61. Adding a TranslateTransform before (left) and after (right)

464 | Chapter 13: Graphics

Example 13-59 shows a custom element that overrides OnRender.

The OnRender method is passed a single parameter of type DrawingContext. This is the
low-level drawing API in WPF. It provides a set of primitive drawing operations,
which are listed in Table 13-9. Example 13-59 uses the DrawRectangle and DrawText
methods.

Note that the DrawingContext uses the Brush and Pen classes to indicate how shapes
should be filled and outlined. We can also pass in the same Geometry and Drawing
objects we saw earlier in the chapter.

Example 13-59. A custom OnRender implementation

class MyFramedTextRenderer : FrameworkElement {
protected override void OnRender(DrawingContext drawingContext) {

 Debug.WriteLine("OnRender");

 drawingContext.DrawRectangle(Brushes.Red, null, new Rect(0, 0, 100, 50));

 FormattedText text = new FormattedText("Hello, world",
 CultureInfo.CurrentUICulture, FlowDirection.LeftToRight,
 new Typeface("Verdana"), 24, Brushes.Black);
 drawingContext.DrawText(text, new Point(3, 3));
 }
}

Table 13-9. DrawingContext drawing operations

Operation Usage

DrawDrawing Draws a Drawing object.

DrawEllipse Draws an ellipse.

DrawGeometry Draws any Geometry object.

DrawGlyphRun Draws a series of glyphs (i.e., text elements) offering detailed control over typography.

DrawImage Draws a bitmap image.

DrawLine Draws a line (a single segment).

DrawRectangle Draws a rectangle.

DrawRoundedRectangle Draws a rectangle with rounded corners.

DrawText Draws text.

DrawVideo Draws a rectangular region that can display video.

PushTransform Sets a transform that will be applied to all subsequent drawing operations until Pop is
called; if a transform is already in place, the net effect will be the combination of all the
transforms currently pushed.

PushClip Sets a clip region that will be applied to all subsequent drawing operations until Pop is
called; as with PushTransform, multiple active clip regions will combine with one
another.

PushEffect Applies a BitmapEffect to all subsequent drawing operations until Pop is called; as
with transforms and clips, multiple calls to this method will combine effects.

Visual Layer Programming | 465

Because our custom element derives from FrameworkElement, it integrates naturally
into any WPF application. Example 13-60 shows markup for a window that uses this
custom element—we can use it just like we’d use any custom element. Figure 13-62
shows this window.

Notice that the OnRender function in Example 13-59 calls Debug.WriteLine. If the pro-
gram is run inside a debugger, this will print a message to the debugger output win-
dow each time OnRender is called. This enables us to see how often WPF asks our
custom visual to render itself. If you are accustomed to how the standard on-demand
painting in Win32 and Windows Forms works, you might expect to see this called
regularly whenever the window is resized, or partially obscured and uncovered. In
fact, it is called just once!

It turns out that on-demand rendering is not as similar to old-style Win32 rendering
as you might think. WPF will call your OnRender function when it needs to know
what content your visual displays, but the way graphics acceleration works in WPF

PushOpacity Sets a level of opacity that will be applied to all subsequent drawing operations until
Pop is called; as with transforms and clips, multiple opacities are combined.

Pop Removes the transform, clip region, or opacity added most recently by
PushTransform, PushClip, or PushOpacity. If those methods have been called
multiple times, calls to Pop remove their effects in reverse order. (The transforms, clip
regions, and opacities behave like a stack.)

Example 13-60. Loading a custom visual into a window

<Window x:Class="VisualRender.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:VisualRender"
 Title="Visual Layer Rendering">
 <Canvas>
 <local:MyFramedTextRenderer Canvas.Top="10" Canvas.Left="10"
 x:Name="customRender" />
 </Canvas>
</Window>

Figure 13-62. Visual layer rendering in action

Table 13-9. DrawingContext drawing operations (continued)

Operation Usage

466 | Chapter 13: Graphics

means that this happens far less often than the equivalent repaints in Win32. WPF
caches the rendering instructions. (This rendering style is sometimes referred to as
retained mode, whereas the Win32 style is immediate mode.) The extent and form of
this caching are not documented, but caching clearly occurs. Moreover, it is subtler
than simple bitmap-based caching. We can add this code to the host window in
Example 13-60 (this would go in the code-behind file):

protected override void OnMouseLeftButtonDown(MouseButtonEventArgs e) {
 customRender.RenderTransform = new ScaleTransform(6, 6);
}

This applies a transform to our element, scaling it up by a factor of 6. When clicking
on the user interface, the custom visual expands as you would expect, and yet OnRender
is not called. Moreover, the enlarged visual does not show any of the pixelation or blur-
ring artifacts you would see with a simple bitmap scale—it continues to be sharp, as
you can see in Figure 13-63.

This outcome indicates that WPF is retaining scalable information about the contents of
the visual. It is able to redraw our visual’s on-screen appearance without bothering our
OnRender method, even when the transformation has changed. This is in part due to the
acceleration architecture, but also because transformation support is built into WPF at
the most fundamental levels. WPF’s ability to redraw without calling OnRender allows
the user interface to remain intact on-screen even if our application is busy.

If the state of our object should change in a way that needs the appearance to be
updated, we can call the InvalidateVisual method. This will cause WPF to call our
OnRender method, allowing us to rebuild the appearance.

Note that when you override OnRender, you would typically also override the
MeasureOverride and ArrangeOverride methods. Otherwise, WPF’s layout system will
have no idea how large your element is. The only reason we got away without doing
this here is that we used the element on a Canvas, which doesn’t care how large its
children are. To work in other panels, it is essential to let the layout system know
your size. Example 13-61 shows custom rendering of text along with layout logic.

Figure 13-63. Scaled custom rendering

Where Are We? | 467

Chapter 3 described the MeasureOverride and ArrangeOverride methods in more
detail. Example 13-61 defers to the FormattedText class to work out how much space
is required. We describe FormattedText in the next chapter.

Where Are We?
WPF provides a range of high-quality rendering and composition services. A set of
shape elements supports various drawing primitives. Several brush types are avail-
able for determining how shapes are painted, and pens augment brushes to define
how outlines are drawn. Transformability is supported at all levels, making it easy to
scale a user interface to any resolution or size. And, a low-level API is available for
working at the “visual” layer when necessary.

Example 13-61. Custom rendering with layout logic

class CustomTextRenderer : FrameworkElement {
 FormattedText text = new FormattedText("Hello, world",
 CultureInfo.CurrentUICulture, FlowDirection.LeftToRight,
 new Typeface("Verdana"), 24, Brushes.Black);

 protected override void OnRender(DrawingContext drawingContext) {
 drawingContext.DrawText(text, new Point(0, 0));
 }

 protected override Size MeasureOverride(Size availableSize) {
 text.MaxTextWidth = availableSize.Width;
 text.MaxTextHeight = availableSize.Height;
 return new Size(text.Width, text.Height);
 }

 protected override Size ArrangeOverride(Size finalSize) {
 text.MaxTextWidth = finalSize.Width;
 text.MaxTextHeight = finalSize.Height;
 return finalSize;
 }
}

468

Chapter 14CHAPTER 14

Text and Flow Documents 14

Text in WPF applications need never be plain. Any place a user interface displays
text, all of WPF’s text rendering features are available. Basic text formatting is
offered, including word wrapping, text alignment, and any mixture of fonts and text
styles. Nontextual UI elements such as controls or graphics may be intermingled
with text. ClearType text rendering is used on flat-panel screens, significantly
enhancing the clarity, shape, and readability of characters. The various typography
features available in OpenType fonts can be exploited. And, as you would expect,
there is full support for international applications.

As well as enabling fine control over textual details, WPF also defines types that rep-
resent documents. It offers two kinds: fixed documents and flow documents. Fixed
documents have a fixed layout and size, and are often created in order to be printed.
These are described in Chapter 15. Flow documents are more flexible—instead of
prescribing a particular layout, they are formatted dynamically to fit the space avail-
able. This makes them ideal for presenting text on-screen, because most applications
cannot know in advance the exact dimensions of the end user’s screen, or whether
the user will resize her window.

In this chapter, we will explore the options for presenting text, and we will examine
the object model used by flow documents.

Fonts and Text Styles
You can work with text at several levels in WPF, but regardless of which level you
choose, there are some common types and properties that control features—such as
typeface, font weight, underlines, and so on—that you should know about. Because
these types and properties crop up throughout the API, we will look at them first.

Fonts and Text Styles | 469

Common Text Properties
WPF defines a class called TextElement. This is part of the text object model used to
define the structure and appearance of text, which we describe later in this chapter,
but TextElement also defines a set of attached properties for formatting text. Many of
these are inherited properties, meaning that if you apply them to some containing
element, such as the Button in Example 14-1, the setting applies to any text inside
that element. For example, if you were to apply these properties to a Window element,
they would affect all text inside the window.

As Figure 14-1 shows, the font settings applied to the button have had an impact on
the text element inside the button that provides the caption.*

Although an inherited property applies to all of the children of the ele-
ment to which it is applied, it can be overruled. Obviously, giving the
property a different value on a child element overrules the inherited
value. More subtly, a property setter in a style will overrule an inher-
ited property value, even if the style is picked up implicitly.

A few controls have default styles that set common TextElement prop-
erties, which results in inconsistencies if you set these properties on a
Window. One example is Menu, which ignores the inherited font family
and font size properties because its style sets the font to the system’s
configured font menu. It does this because users are allowed to change
this font with the Windows Control Panel. StatusBar and ToolTip also
set the font in their styles for the same reason. Consequently, these
elements will ignore window-level font settings.

Table 14-1 lists the inherited attached properties defined by TextElement.

Example 14-1. Using common TextElement attached properties

<Button TextElement.FontFamily="Parchment" TextElement.FontSize="80">
 Cancel
</Button>

* Recall that the default template for a Button includes a ContentPresenter to host the content. If the content
is plain text, a ContentPresenter will generate a TextBlock to display that text. This TextBlock inherits the
two TextElement properties set on the Button.

Figure 14-1. TextElement properties applied to descendents of a button

470 | Chapter 14: Text and Flow Documents

Because the need to control text properties crops up so often, several elements pro-
vide aliases for these properties. For instance, we can rewrite Example 14-1 as shown
in Example 14-2.

The two examples are exactly equivalent—we are setting the FontFamily and
FontSize properties defined by TextElement in both cases. The Control.
FontFamilyProperty field refers to the very same DependencyProperty object as the
field of the same name in TextElement. The Control, AccessText, and TextBlock
classes all provide aliases for the properties in Table 14-1. Page provides aliases for
FontFamily, FontSize, and Foreground.

The following sections describe these properties and the associated types.

Fonts and Font Families
The common FontFamily property’s type is FontFamily. This is one of the three
classes WPF offers for working with fonts, which are listed in Table 14-2.

Table 14-1. TextElement inherited properties

Property Usage

FontFamily Typeface family (e.g., Palatino Linotype, or Arial).

FontSize Font size in device-independent pixels. (XAML can specify alternative units with a suffix: in,
cm, px, and pt indicate inches, centimeters, pixels, and points, respectively. These are all
converted at compile-time to a numeric value in pixel units.)

FontStretch A value from FontStretches, such as Condensed, Normal or Expanded.

FontStyle A value from FontStyles, such as Italic or Normal.

FontWeight A value from FontWeights, such as Normal, Bold, or Light.

Foreground Brush with which text is painted.

Example 14-2. Using text format property aliases

<Button FontFamily="Parchment" FontSize="80">
 Cancel
</Button>

Table 14-2. WPF font classes

Class Usage

FontFamily Represents a named family of fonts such as Arial, Times New Roman, or Palatino Linotype.

GlyphTypeface Wraps a specific font file on disk, such as C:\Windows\Fonts\timesbi.ttf. This will contain a partic-
ular weight and style of a font family, such as the bold, italic version of Times New Roman.

Typeface Encapsulates a FontFamily, weight (e.g., bold), style (e.g., italic), and stretch (e.g., con-
densed). This is just a description, and unlike GlyphTypeface, you can create a Typeface
representing a font that is not present on your system (e.g., one used by a document created on
some other machine that has the font).

Fonts and Text Styles | 471

FontFamily just identifies a named family of fonts, rather than any particular weight
or style. Example 14-1 used this to select the Parchment font family. In order to ren-
der text, WPF needs more than this—most font families have variants such as bold
and italic. For elements using the common text properties in Table 14-1, these facets
are managed by separate properties. This is useful because it lets you control fea-
tures such as weight and italics independently—if you just choose a font weight of bold
without specifying a font family, the element will inherit the family from its parent.

Property inheritance does not apply automatically to the low-level text handling APIs.
These offer very fine control, but they require the font to be specified comprehensively
and explicitly. This is why WPF offers the other two types, Typeface and GlyphTypeface.
We will illustrate their use later when we look at the visual-level text APIs.

You should not count on all variants of a font being available for any particular font
family. For example, some fonts do not have bold versions, or may be available only
in bold. You can discover which variants are available by retrieving the list of
Typeface objects from a FontFamily object’s GetTypefaces method.

FontSize
The FontSize property is of type Double. It specifies the font’s size in pixels. If you’re
working in XAML, you can specify other units by adding a suffix, as Example 14-3
shows.

Stretch
The FontStretch property lets you choose a condensed or expanded variant of the
typeface. It accepts any of the values provided by the FontStretches class. These are:
UltraCondensed, ExtraCondensed, Condensed, SemiCondensed, Normal, Medium,
SemiExpanded, Expanded, ExtraExpanded, and UltraExpanded.

Stretched variants of fonts are not created simply by scaling. Doubling or halving the
width of a character would distort it, changing the width of horizontal features with-
out changing vertical aspects to match. Each stretch type requires a separate font file. A
font family will not normally offer all of the stretch types listed previously. Most fonts
offer either exactly one (usually Normal), or a handful. For example, the Gill Sans MT
font that ships with various versions of Microsoft Office comes in Normal, Condensed,

Example 14-3. FontSize units

<StackPanel>
 <TextBlock Text="10 pixels" FontSize="10" />
 <TextBlock Text="10 points" FontSize="10pt" />
 <TextBlock Text="1 centimetre" FontSize="1cm" />
 <TextBlock Text="0.2 inches" FontSize="0.2in" />
</StackPanel>

472 | Chapter 14: Text and Flow Documents

and ExtraCondensed, but the latter is available only in bold.* If the font family does not
offer the stretch you request, WPF will choose the nearest matching stretch.

Style
The FontStyle property indicates whether a font should be upright or slanted. This
can be any of the three values from the FontStyles class: Normal, Italic, or Oblique.
The distinction between italic and oblique is that an italic font is a distinct font,
where the character shapes are typically different from (but harmonious with) the
normal version, and are defined in a separate file. An oblique style is formed by
skewing a normal font—it does not require a separate font file, as it just transforms
the shapes of an existing font. Figure 14-2 shows the Palatino Linotype font family in
all three styles.

As you can see, the italic font has letters that are of a significantly different shape
from the equivalent characters in the normal style. This is partly because italic fonts
typically have a slightly more decorative style, but also because simply skewing the
character shapes—which is what an oblique font does—produces rather low-quality
results, distorting the letter shapes. You would normally use an oblique font only as
a fallback when an italic font is missing for some reason.

Weight
The FontWeight property determines how dark the text appears. You specify one of
the values from the FontWeights class. Where two values are listed in the same table
entry, it means they are different names for the same weight—for historical reason-
scertain weights go by more than one name. The available FontWeights are Thin,
ExtraLight/UltraLight, Light, Normal/Regular, Medium, DemiBold/SemiBold, Bold,
ExtraBold/UltraBold, Black/Heavy, and ExtraBlack/UltraHeavy.

As with FontStretch, most font families do not offer variants for every weight. WPF
will choose the nearest match. It has no facility for adjusting character shapes to

* Just to confuse matters, Office also provides a font called Gill Sans, which is a different family—note the
missing “MT.” This offers only Normal and Condensed, and only in ultra-bold.

Figure 14-2. Normal, Italic, and Oblique

Fonts and Text Styles | 473

“lighten” or “embolden” text—each font weight requires a font file defining the
character shapes for that weight.

The properties discussed so far in this section are all defined by the TextElement
class. There are a few properties that are widely used by WPF’s text facilities, but
which are defined by other more specialized types because they apply only to certain
types of textual element—text alignment makes sense for paragraphs or blocks of
text, but not for an individual word, for example. The following sections examine
these properties.

Decorations
A decoration is a line drawn through a piece of text, such as an underline or
strikethrough. The Inline class, which is part of the text object model described later
in this chapter, defines an attached TextDecorations property, which is aliased by
both AccessText and TextBlock. This property supports the four decoration styles
shown in Example 14-4.

Figure 14-3 shows the results. As you can see from the final item, it is possible to use
multiple decorations. This is because the TextDecorations property is of type
TextDecorationCollection.

The syntax shown in Example 14-4 is easy to use but slightly limited. If you create
the TextDecoration elements explicitly, you can control the pen used to paint the
decoration, and its exact vertical position. Example 14-5 sets two decorations on an
element: a blue underline and a thicker green strikethrough.

Example 14-4. Text decorations

<TextBlock TextWrapping="Wrap" TextAlignment="Center">
 Underline,
 Baseline,
 Strikethrough,
 Overline,

 Full house

</TextBlock>

Figure 14-3. Text decorations

474 | Chapter 14: Text and Flow Documents

Figure 14-4 shows the results.

The shorter syntax shown in Example 14-4 is available only in XAML—it’s provided by
a type converter class. However, WPF makes it just as easy to set simple decorations
from code. It provides the TextDecorations class, which offers static properties contain-
ing text decoration collections holding exactly one decoration, such as an underline or a
strikethrough. Example 14-6 uses this to apply a simple underline decoration.

As this example shows, the static properties offered by TextDecorations make it as
simple to set a single decoration from code as it is from XAML.

Text Trimming
If you try to display more text than fits in the space available, something has to give.
Some of the text viewing elements described later in this chapter deal with this by
scrolling or paging through the text. However, the TextBlock and AccessText ele-
ments both simply crop the text. They each offer a TextTrimming property, shown in
Example 14-7, which takes a value from the TextTrimming enumeration, allowing the
cropping behavior to be modified.

Example 14-5. Setting text decorations

 <Span.TextDecorations>
 <TextDecoration Location="Underline" PenOffset="4">
 <TextDecoration.Pen>
 <Pen Brush="Blue" Thickness="1" />
 </TextDecoration.Pen>
 </TextDecoration>
 <TextDecoration Location="StrikeThrough">
 <TextDecoration.Pen>
 <Pen Brush="LightGreen" Thickness="2" />
 </TextDecoration.Pen>
 </TextDecoration>
 </Span.TextDecorations>
 Highly decorated

Figure 14-4. Underline and strikethrough decorations (Color Plate 26)

Example 14-6. Simple underline decoration

text.TextDecorations = TextDecorations.Underline;

Example 14-7. TextTrimming

<TextBlock TextTrimming="None" Text="Too much text." />

Fonts and Text Styles | 475

The effect of the None setting (which is the default) is shown in Figure 14-5—the text
has been cut off mid-character. A black border has been added to the edges of the
figures in this section to illustrate where cropping occurs relative to the available
space, and with this setting, the whole space is used.

Figure 14-6 shows one of the other two options: CharacterEllipsis. This crops to an
exact number of characters. It also adds an ellipsis to indicate that cropping has
occurred, which has the side effect of reducing the number of visible characters. It
also means that the space available is not filled completely—with this setting, WPF
cannot show a partial character in order to fill the space, as it did in Figure 14-5.

The final option is WordEllipsis, which crops at a word boundary. As Figure 14-7
shows, this can reduce the amount of text that is shown further still, particularly
when only a handful of words will fit. WPF has had to cut the text off after the first
word because where wasn’t room to fit both much and an ellipsis, resulting in a lot of
unused space. However, even though this is the least space-efficient option, it can
sometimes lead to less confusing results—cropping text at a word boundary reduces
the chances of changing the apparent meaning of the text.

Text Wrapping and Hyphenation
Often, a UI layout will have insufficient horizontal width to show some text, but
spare vertical space. Not all text elements will exploit this space by default.
Figure 14-8 shows a traditional English tongue twister displayed by a TextBlock, and
as you can see, it has failed to use the available vertical space.

Figure 14-5. TextTrimming.None

Figure 14-6. TextTrimming.CharacterEllipsis

Figure 14-7. TextTrimming.WordEllipsis

476 | Chapter 14: Text and Flow Documents

To use the vertical space, we must enable text wrapping. Both TextBlock and
AccessText offer a TextWrapping property, which takes a value from the TextWrapping
enumeration. This defaults to NoWrap, but Figure 14-9 shows the effect of setting it to
Wrap.

The TextWrapping enumeration offers a third value: WrapWithOverflow. The distinc-
tion between the two wrapping styles is in the way they deal with individual words
that are longer than the available space. Figure 14-10 shows a piece of text with this
problem.

The left of Figure 14-10 shows how Wrap deals with this—it simply breaks the word
across multiple lines. On the right, we see the WrapWithOverflow behavior: over-long
words are cropped.

A more elegant solution to this problem is commonly used in print: hyphenation.
Splitting words with hyphens can enable word wrapping to work better in confined
spaces. The Block class, which is part of the text object model described later in this

Figure 14-8. Vertical space not used by default

Figure 14-9. Word wrapping

Figure 14-10. Wrap (left) and WrapWithOverflow (right)

Fonts and Text Styles | 477

chapter, defines an attached IsHyphenationEnabled property, and TextBlock provides
an alias for this, as Example 14-8 shows.

As Figure 14-11 shows, hyphenation enables the text to fit on fewer lines than in
Figure 14-10, and with less compromise. Because hyphenation seems to be better in
every respect, it may seem strange that it is disabled by default. However, the
hyphenation algorithm is complex, and there are nontrivial costs to enabling it.
Because hyphenation is appropriate only for certain scenarios—presenting bodies of
text in relatively narrow spaces—it makes sense for it to be off by default.

Hyphenation is a language-specific process. WPF takes the element
tree’s language into account for both hyphenation and spellchecking.
In XAML, you can set the language using the standard xml:lang
attribute—you can set this to any culture string, such as en-GB or fr-
CA, which represent British English and French Canadian, respec-
tively. From code, you can set the Language property of any
FrameworkElement or FrameworkContentElement object. Text editing con-
trols with the SpellCheck.IsEnabled attached property set to True also
honor the language setting.

Hyphenation and spelling dictionaries are shipped as part of the .NET
3.0 language packs provided by Microsoft. At the time of this writing,
dictionaries are provided for English, German, French, and Spanish.

Text Alignment
TextAlignment is an attached property defined by the Block class. The property
accepts any value from the TextAlignment enumeration type. This offers four values,
all of which will be familiar to you if you’ve ever used a word processor: Left, Right,
Center, and Justify.

Figure 14-12 shows the effect of the Justify setting. As you can see, the righthand
edge is now flush with the available space, as opposed to the ragged-right edge
shown in Figure 14-9.

Example 14-8. Enabling hyphenation

<TextBlock TextWrapping="Wrap" IsHyphenationEnabled="True">
 A cumbersome word.
</TextBlock>

Figure 14-11. Hyphenation

478 | Chapter 14: Text and Flow Documents

We’ve looked at the mechanisms available for describing how text should be format-
ted. However, a description of formatted text isn’t much use unless we can some-
how display that text, so it is time to look at the elements available to us for
presenting text in a user interface.

Text and the User Interface
As we saw in the Introduction and Chapter 13, a WPF application’s appearance is
defined by its visual tree—a tree of objects derived from the Visual base class. Text
must fit into this model, but we have several different options for adding text into the
visual tree depending on the balance we require between control and ease of use.

The lowest level at which we can work with text is to use the visual layer drawing
techniques introduced in Chapter 13. The next level up is to use the Glyphs class,
which offers a similar level of control as visual layer programming, but packaged into
a framework element. This enables it to be used from markup and to provide the
usual framework-level features, such as event support and participation in layout.
The GlyphRunDrawing class offers similar features, but you can incorporate it into a
drawing. Finally, you can use the text object model in conjunction with one of the
elements that knows how to render this form of text, such as TextBlock or
FlowDocumentReader. TextBlock is the most widely used, as it offers a good balance
between simplicity and flexibility.

TextBlock
The TextBlock element is usually the best choice for presenting simple text. It can
handle both plain text and formatted text, and can cope easily with anything from a
single character to a few paragraphs. Example 14-9 shows TextBlock at its simplest.

Figure 14-12. Justified text

Example 14-9. Simple TextBlock

<TextBlock Text="Some text" />

Text and the User Interface | 479

Because TextBlock derives from FrameworkElement, its position and size will be deter-
mined by WPF’s normal layout mechanisms (which we described in Chapter 3).

A TextBlock can span multiple lines. A straightforward though inflexible way to do
this is to put either a carriage return or a linefeed (character values 13 and 10) or
both* into the Text property. Example 14-10 shows this technique. Note that because
all three of the popular representations for a new line are treated equivalently, there’s
no need to use .NET’s Environment.NewLine property in WPF.

Although this hardcoded line break works fine, a better solution might be to switch
on word wrapping, enabling the TextBlock to choose where to put line breaks. This
is controlled with the TextWrapping property, one of the common text properties,
described earlier in this chapter, in the “Fonts and Text Styles” section. TextBlock
defines aliases for all of these common properties.

As an alternative to setting the Text property of a TextBlock, you can supply content
inside the element. Example 14-11 uses this technique to create the same result as
Example 14-9.

Moving the text inside the element doesn’t add anything very useful for this particu-
lar example. However, by representing the text as content, we can go beyond plain
strings, as Example 14-12 shows.

As Figure 14-13 shows, this renders the word “Some” in bold, and the word “text”
with the normal font weight.

* A carriage return followed directly by a line feed is treated as a single new line. This is the most common
convention for representing line ends in Windows. It originates from the days when computer terminals had
a keyboard and printer but no screen. The printer used separate control characters to feed a new line of paper
(10), and to return the print head to the start of the line (13). This character sequence is completely redun-
dant today, but it is still the norm in Windows thanks to backward compatibility and developer inertia.

Example 14-10. Multiline Text value

<TextBlock Text="Some
text" />

Example 14-11. Text as content

<TextBlock>Some text</TextBlock>

Example 14-12. Text with mixed content

<TextBlock><Bold>Some</Bold> text</TextBlock>

Figure 14-13. Mixed bold and ordinary text

480 | Chapter 14: Text and Flow Documents

When you add content to a TextBlock in this way, you are adding items to its Inlines
property. This is a collection of objects, all derived from Inline. This class and its
derivatives (such as Bold and Italic) are described in detail in the “Text Object
Model” section, later in this chapter. For now, it is enough to think of an Inline as
some formatted text contained within a single paragraph. This means that a good
way to think of TextBlock is as a framework element that renders a sequence of
Inline text elements.

Label and AccessText

WPF defines a Label control, which is also able to display text. If you have used Win-
dows Forms, Label might look like the obvious choice for displaying text, because
Windows Forms also defined a Label control, which was used for displaying simple
text. However, the purpose of WPF’s Label control is different.

As mentioned in Chapter 5, WPF’s Label control’s purpose is to place the focus into
another control such as a TextBox when an access key is pressed. Using a Label con-
trol simply as a plain-text label is wasteful—it creates a TextBlock internally to ren-
der plain text for you, so you might as well just create the TextBlock yourself.

Label has one other trick: you can use it to add underlines for access keys when the
user presses the Alt key. As Example 14-13 shows, you denote the access key with an
underscore.

When the user presses the Alt key (or if he has configured Windows to show access
key underlines at all times), the relevant letter will be underlined, as shown in
Figure 14-14.

However, if the only reason you’re using Label is to show an access key underline,
there’s a better alternative. When you provide Label (or any control that supports the
content model) with a string containing an underscore, it generates an AccessText
element to present that string instead of a TextBlock. So, it would be more efficient to
use this directly, as Example 14-14 does.

Example 14-13. Access key underline with Label

<Label Content="S_hortcut" />

Figure 14-14. Access key underline

Example 14-14. Access key underline with AccessText

<AccessText Text="S_hortcut" />

Text and the User Interface | 481

The rule is simple: use the Label control if you need its focus management. If all you
need to do is present text, use a text presentation element: AccessText if you need the
underline and TextBlock otherwise.

The TextBlock is designed for fairly small volumes of text. It is possible to put multi-
ple paragraphs into a TextBlock either by embedding suitable line break characters in
its Text property, or by using the LineBreak inline element. However, WPF provides
other elements that are better suited to presenting large quantities of text.

Flow Documents and Viewer Controls
The full text object model of WPF supports more than just the inline elements sup-
ported by TextBlock. It contains types that represent paragraphs, lists, and tables;
collectively these are known as block types, and we will describe them in detail in the
“Text Object Model” section. These elements can only appear inside a FlowDocument.
WPF provides three controls for displaying flow documents.

FlowDocumentScrollViewer is the simplest of the flow document controls. Its behavior is
very similar to the HTML control: it formats the document to fill the available width,
and provides a vertical scroll bar if the document is taller than the available height.
This is a very simple element to use, as Example 14-15 shows.

All you need to do is set the viewer’s Document property to a FlowDocument. We will
show how to write a FlowDocument in the “Text Object Model” section, but for
now assume that your application contains a XAML file called MyFlowDocument.
xaml* containing a FlowDocument in XAML form. You could load it in the code-
behind file for the file that contains the viewer in Example 14-15 with the code in
Example 14-16.

Example 14-15. Using a FlowDocumentScrollViewer

<Window ...>
 <FlowDocumentScrollViewer x:Name="viewer" />
</Window>

* This example flow document is provided in the examples for this book, which you can download from http://
sellsbrothers.com/writing/wpfbook.

Example 14-16. Loading a FlowDocument into a viewer

partial class Window1 : Window {
 public Window1() {
 InitializeComponent();
 viewer.Document = (FlowDocument) Application.LoadComponent(
 new Uri("MyFlowDocument.xaml", UriKind.Relative));
 }
}

482 | Chapter 14: Text and Flow Documents

Figure 14-15 shows how the FlowDocumentScrollViewer presents a document.

A problem with this control is that it doesn’t make very effective use of wide spaces. As
the available width increases, it simply makes the lines of text wider to match. This can
be unhelpful because wide lines are hard to read—when we reach the end of one line
and our eyes track back to the start of the next line, the likelihood of missing a line gets
higher with longer lines. Ideally you don’t want more than 15 words per line.

The traditional solution to this problem in the world of printed media is to split the
text into multiple columns. This keeps the line length readable, while exploiting the
available width. On paper, a column’s height is fixed, being dictated by the page size
and layout. On screen, we need to be a little more flexible—columns need to be as
tall as the available space, which can change as the user resizes the application. The
worst thing we could do is create columns that are too tall, requiring the user to
scroll up and down to read across the columns. If you’ve ever had to read a column-
formatted PDF file on a computer, you’ll know what a horrible reading experience
that is. Even with suitably sized columns, there may be too much text to fit, in which
case we’ll need some mechanism for moving from page to page.

WPF provides the FlowDocumentPageViewer to solve these problems. It splits text into
columns of the appropriate height, reformatting the text should the layout change for
any reason (such as the user resizing the window). And, it provides paging controls
to navigate through the document. In markup and code, it is used in exactly the
same way as the FlowDocumentScrollViewer, as you can see from Example 14-17.
Figure 14-16 shows how it looks.

Figure 14-15. FlowDocumentScrollViewer

Example 14-17. FlowDocumentPageViewer

<FlowDocumentPageViewer x:Name="viewer" />

Text and the User Interface | 483

Figure 14-16 shows two columns because that was how many happened to fit for
that window size. As Figure 14-17 shows, the control will add more columns if space
permits. Notice that the viewer also provides a set of controls at the bottom. In the
center are the paging controls, indicating the current page, the total number of pages,
and buttons for moving backward and forward. To the right is a zoom control,
allowing the user to adjust the magnification.

If you want to let the user choose whether to have a scrolling view or a column-based
paginated view, you can use the FlowDocumentReader control. This provides buttons
that let the user choose between scrolling and pagination. As Figure 14-18 shows,
these appear to the left of the zoom control.

Figure 14-16. FlowDocumentPageViewer

Figure 14-17. FlowDocumentPageViewer with more columns

Figure 14-18. FlowDocumentReader controls

484 | Chapter 14: Text and Flow Documents

FlowDocumentReader provides three modes. The leftmost button selects paginated
viewing, and the rightmost selects scrolling. The middle button selects the double-
page view shown in Figure 14-19, which is reminiscent of reading a double-sided
printed and bound material such as a book or a magazine.

WPF provides a fourth document viewer: the DocumentViewer control.
This displays a FixedDocument instead of a FlowDocument. It is described
in Chapter 15.

Whether you are using simple formatted text in a TextBlock or a full flow document
in one of the viewer controls, you will be making use of WPF’s text object model in
order to manage the structure and formatting of the text. We describe this in detail
in the “Text Object Model” section. However, before we look at that, there are some
lower-level options for rendering text. These offer finer control than the text object
model, but are considerably harder to use.

Visual Layer Text
The visual layer is the lowest level at which you can work with text. In practice, you
will probably not use this approach very often—it is most useful when you are
already writing visual layer graphics code and need to present some text. However,
the visual layer underpins all forms of text rendering in WPF, so it is useful to under-
stand how it works.

Even at the visual layer, two levels of abstraction are available. At the very lowest
level, we work with glyph runs, which are sequences of characters sharing a single
font and style. A glyph run offers very precise control over how text is rendered, but
it is a lot of work to use. Alternatively, you can work with the higher-level
FormattedText class, which provides simple formatting for small blocks of text.

Figure 14-19. FlowDocumentReader in dual-page view

Text and the User Interface | 485

Glyph runs

Glyph runs are the lowest-level representation of text in WPF. They provide extremely
precise control, but they are very inconvenient to use as a result, as Example 14-18
shows.

Example 14-18. “Hello, world” with GlyphRuns

public class MyGlyphsElement : FrameworkElement {
 protected override void OnRender(DrawingContext drawingContext) {
 GlyphRun run = BuildGlyphRun("Hello, world!");
 if (run != null) {
 drawingContext.DrawGlyphRun(Brushes.Black, run);
 }
 }

 public static GlyphRun BuildGlyphRun(string text) {
 double fontSize = 50;
 GlyphRun glyphs = null;

 Typeface font = new Typeface("Calibri");
 GlyphTypeface glyphFace;
 if (font.TryGetGlyphTypeface(out glyphFace)) {
 glyphs = new GlyphRun();
 ISupportInitialize isi = glyphs;
 isi.BeginInit();
 glyphs.GlyphTypeface = glyphFace;
 glyphs.FontRenderingEmSize = fontSize;

 char[] textChars = text.ToCharArray();
 glyphs.Characters = textChars;
 ushort[] glyphIndices = new ushort[textChars.Length];
 double[] advanceWidths = new double[textChars.Length];

 for (int i = 0; i < textChars.Length; ++i) {
 int codepoint = textChars[i];
 ushort glyphIndex = glyphFace.CharacterToGlyphMap[codepoint];
 double glyphWidth = glyphFace.AdvanceWidths[glyphIndex];

 glyphIndices[i] = glyphIndex;
 advanceWidths[i] = glyphWidth * fontSize;
 }
 glyphs.GlyphIndices = glyphIndices;
 glyphs.AdvanceWidths = advanceWidths;

 glyphs.BaselineOrigin = new Point(0, glyphFace.Baseline * fontSize);
 isi.EndInit();
 }
 return glyphs;
 }
}

486 | Chapter 14: Text and Flow Documents

This example overrides OnRender in order to work with the visual layer API. As we
saw in Chapter 13, WPF passes this method a DrawingContext, with which we define
the appearance of our element. Here, we call the DrawGlyphRun method to render text.
Figure 14-20 shows the result.

The bulk of the work is done in the BuildGlyphRun method, which creates the
GlyphRun object. A GlyphRun needs to know which font to use, specified by a
GlyphTypeface object. As mentioned earlier, in the “Fonts and Font Families” sec-
tion, WPF offers three classes for working with fonts. GlyphTypeface is the lowest-
level one, representing a specific font file.

If you know the exact location of the font file on disk, you can build a GlyphTypeface
from scratch. However, Example 14-18 does not presume the location of the font.
Instead, it creates a Typeface object that describes the font, and then uses its
TryGetGlyphFace method to do the work of locating the relevant font file and creat-
ing a GlyphTypeface object.

We have to provide the GlyphRun with detailed information about the characters we
would like it to draw. Not only must we provide an array containing the characters
themselves, but we also need to tell it where to find each character in the font file—
this is the purpose of the glyphIndices array in Example 14-18. We obtain the glyph
index by looking it up in the GlyphTypeface object. Note that glyph indices are not
standardized—a particular character’s glyph index will change from one font file to
another.

GlyphRun also requires us to be explicit about horizontal character positioning: the
advanceWidths array contains the nominal width of each character. The visible width
of a character is always determined by its shape, and the advance widths do not
change this—characters are not squashed or stretched to fit. These so-called widths
simply determine where each character is positioned. If you imagine a typewriter, the
advance width for a character would indicate how far the paper should be advanced
horizontally after that character is typed. GlyphRun gives us control over this to allow
nonstandard spacing where necessary. We could use this to perform tracking (i.e.,
reducing or increasing the spacing uniformly for every letter). We might also use this
to perform kerning, where the spacing between a particular pair of characters is
adjusted. We could also place multiple characters on top of one another by using a

Figure 14-20. Rendered GlyphRun

Text and the User Interface | 487

zero advance width. Example 14-18 does none of these things—it simply asks the
GlyphTypeface for each character’s default width.

Finally, we set the BaselineOrigin property to indicate where we would like the text
to be rendered. Because we just want to render text in a straightforward fashion, we
use the GlyphTypeface object to look up the baseline offset, just as we did for the
glyph indices and advance widths.

Example 14-18 passes the GlyphRun object to the DrawGlyphRun method of the
DrawingContext. You can also use a GlyphRun with a GlyphRunDrawing, in order to
incorporate text into a drawing. Example 14-19 calls the BuildGlyphRun method
defined in Example 14-18 and wraps it as a drawing, which it then presents in a win-
dow. (We described drawing objects in Chapter 13.) Because this uses the same text
as the previous example, the results will look much the same as Figure 14-20.

Although GlyphRun gives you very fine control over text rendering, it involves a lot of
work. You will probably not want to write code like that in Example 14-18 every
time you want to put some text on the screen. So even down at the visual layer, we
have a higher-level alternative: FormattedText.

FormattedText

The most convenient way to work with text at the visual layer is to use the
FormattedText class. As Example 14-20 shows, we can build a FormattedText object
representing the text we would like to render, and then pass it to the DrawingContext.
This is considerably simpler than building a GlyphRun.

Example 14-19. GlyphRunDrawing

public class FontDrawingWindow : Window {
 public FontDrawingWindow() {

 GlyphRunDrawing drawing = new GlyphRunDrawing(
 Brushes.Blue, MyGlyphsElement.BuildGlyphRun("Hello, world!"));

 // Host drawing in an Image so we can see it.
 Image imageElement = new Image();
 imageElement.Stretch = Stretch.None;
 imageElement.Source = new DrawingImage(drawing);
 this.Content = imageElement;
 }
}

Example 14-20. Visual layer text rendering

public class MyTextElement : FrameworkElement {
 protected override void OnRender(DrawingContext drawingContext) {
 FormattedText text = new FormattedText(
 "Hello, world!",
 Thread.CurrentThread.CurrentUICulture,

488 | Chapter 14: Text and Flow Documents

As you can see, the FormattedText object contains the text to be displayed, but it also
contains some other settings. We provide culture and text direction information—
WPF’s text rendering takes the culture into account, as certain text features may
need to be handled differently in different cultures. (For example, a particular Uni-
code character can have different shapes in different regions.) The FormattedText
object also needs to know the font, font size, and brush to be used. Figure 14-21
shows the results.

FormattedText is able to perform word wrapping. This is off by default—text will
simply be cropped if it doesn’t fit. The result is the same as the default TextBlock
behavior shown earlier in Figure 14-8. To use wrapping, we must tell WPF how
much space is available. All we need to do is add one line of code, shown in
Example 14-21, before passing the FormattedText object to DrawText.

Specifying a width has the effect of turning on word wrapping, so the results will
look the same as those shown earlier in Figure 14-9.

This example may have you wondering whether FormattedText also has a
MaxTextHeight property. Indeed it does. Figure 14-22 shows the result of specifying a
maximum width and height, and then making the window slightly too small to hold
the text.

 FlowDirection.LeftToRight,
 new Typeface("Candara"),
 60, // Font size in pixels
 Brushes.Black);

 drawingContext.DrawText(text, new Point(0, 0));
 }
}

Figure 14-21. FormattedText results

Example 14-21. Specifying the text width

text.MaxTextWidth = this.ActualWidth;

Example 14-20. Visual layer text rendering (continued)

Text and the User Interface | 489

WPF will render only as much text as fits completely. The cropping behavior is
determined by setting the FormattedText object’s Trimming property to a value from
the TextTrimming enumeration. We described the available enumeration values ear-
lier, in the “Text Trimming” section of this chapter.

FormattedText also offers a TextAlignment property that supports the four alignment
styles defined by the TextAlignment enumeration, as described earlier in the “Text
Alignment” section of the chapter.

Example 14-20 specified only the typeface name. The Typeface object passed to the
FormattedText constructor can contain more information. Example 14-22 shows a
more detailed typeface description.

This creates a Typeface object that incorporates two font families: the first (Candara)
will be used if available, but the second one (Verdana) indicates the family to use if
the first is unavailable. The constructor used here also takes FontStyle, FontWeight,
and FontStretch values, all of which work in the same way as the font style, weight,
and stretch properties described earlier in the chapter, in the “Fonts and Text Styles”
section. In this case, we have asked for an italic, bold, unstretched version of the font.

If you need a mixture of fonts or styles, you will need to create a
FormattedText object for each distinct style, and make multiple calls to
DrawText.

Figure 14-22. Cropped text

Example 14-22. Typeface

FontFamily preferredFont = new FontFamily("Candara");
FontFamily fallbackFont = new FontFamily("Verdana");

Typeface tf = new Typeface(
 preferredFont,
 FontStyles.Italic,
 FontWeights.Bold,
 FontStretches.Normal,
 fallbackFont);

490 | Chapter 14: Text and Flow Documents

FormattedText also supports lines, such as underlines and strikethroughs. As we saw
earlier, in the “Decorations” section of the chapter, UI elements support this with
the TextElement class’s attached TextDecorations property, which is of type
TextDecorationCollection. FormattedText offers a SetTextDecoration method that
uses this same collection type. Example 14-23 uses this in conjunction with one of
the predefined simple text decoration collections to apply an underline.

The FormattedText class offers a useful service that is not directly related to text ren-
dering, but which is well worth knowing about: it can convert text into a Geometry.
As we saw in Chapter 13, geometries define shapes, and you can use them at the
visual layer or in conjunction with a Path object, as well as to specify clip regions for
any UI element. The FormattedText class’s BuildGeometry method does the work, as
Example 14-24 shows.

This example builds a geometry from some text and then applies it as the Clip prop-
erty of a button element. Figure 14-23 shows the results.

The visual layer API offers powerful text rendering services—all of WPF’s text ren-
dering builds on either GlyphRun or FormattedText. However, you will not want to
write code every time you need to get text to appear. In many cases, TextBlock or the
various flow document viewers will be ideal, but sometimes it is useful to exploit the full
control offered by glyph runs from markup. This is the purpose of the Glyphs element.

Example 14-23. Simple underline decoration

FormattedText text = ...; // As before

text.SetTextDecorations(TextDecorations.Underline);

Example 14-24. Converting text to geometry

FormattedText text = new FormattedText(
 "CLIP!",
 Thread.CurrentThread.CurrentUICulture,
 FlowDirection.LeftToRight,
 new Typeface("Gill Sans Ultra Bold"),
 20,
 Brushes.Black);

Geometry textGeometry = text.BuildGeometry(new Point(0,0));
button1.Clip = textGeometry;

Figure 14-23. Text as a clip geometry

Text and the User Interface | 491

Glyphs
The Glyphs class allows a glyph run to be incorporated into an application’s UI tree.
It is very similar in nature to the Path class we saw in Chapter 13. Both types derive
from Shape (which in turn derives from FrameworkElement). Whereas Path lets you
add any geometry object to the visual tree, Glyphs lets you add any glyph run.

You don’t build the GlyphRun object yourself—Glyphs constructs it for you. Glyphs
can use exactly the same information as we used when building a GlyphRun earlier in
this chapter. However, it is quite happy to generate default glyph indices, advance
widths, and cluster maps for us. This makes it simpler to use—as Example 14-25
shows, we need to provide only a font, the font size, the text, the fill brush, and the
position.

Note that as with GlyphRuns, Glyphs needs to know the location of the font file. In
Example 14-18, we were able to get Typeface to find the file for us by calling its
TryGetGlyphTypeface method. In code, you could do the same thing with a Glyphs
object. But if you are using Glyphs from markup, there is no straightforward way to
look up the font location, which is why Example 14-25 hardcodes the path. In prac-
tice, you should avoid doing this unless the path is a relative URI referring to a font
embedded in your application as a resource. (You can package a font into your appli-
cation just as you would any other binary resource.* See Chapter 12 for information
on embedding binary resources.) If you need to use a system font in a Glyphs ele-
ment, you will unfortunately need to write some code to look up the URI.
Example 14-26 shows one general-purpose solution to this problem.

Example 14-25. Glyphs

<Glyphs FontUri="C:\Windows\Fonts\Calibri.ttf" FontRenderingEmSize="40"
 UnicodeString="Hello, world" Fill="Black" OriginY="30" />

* You should of course check whether the license for your font permits you to do this.

Example 14-26. Font URI markup extension

using System;
using System.Windows.Markup;
using System.Windows.Media;

namespace GlyphsUriLookup {
 public class FontUriExtension : MarkupExtension {
 string fontFamilyName;

 public FontUriExtension(string fontFamilyName) {
 this.fontFamilyName = fontFamilyName;
 }

492 | Chapter 14: Text and Flow Documents

This is a markup extension—a class that contains code used to determine the value of a
property. (See Appendix A for more information about XAML and markup extensions.)
It contains the code necessary to map from a font name to a font URI. You can use this
to set the FontUri property of a Glyphs element, as Example 14-27 shows.

Although Glyphs will generate sensible default values for glyph indices and advance
widths, you can specify nonstandard values manually if necessary, as you would for a
GlyphRun. However, the way you specify these values looks a little different. GlyphRun
takes separate arrays for indices and widths, but with Glyphs, these are encoded into
a single text property, Indices, shown in Example 14-28.

The Indices property consists of semicolon-separated sets of numbers. Each set cor-
responds to one character in the text. The first number is the glyph index.

Remember that glyph indices are specific to a particular font file. If
you change the FontUri without updating the Indices, you are likely to
see complete garbage as a result.

The number after the glyph index is the advance width (i.e., the nominal width of the
character). Example 14-28 sets this to 60 for every single character. Figure 14-24

 public override object ProvideValue(IServiceProvider serviceProvider) {
 Typeface tf = new Typeface(this.fontFamilyName);
 GlyphTypeface gtf = null;
 if (!tf.TryGetGlyphTypeface(out gtf)) {
 throw new ArgumentException("Font family not found");
 }
 return gtf.FontUri;
 }
 }
}

Example 14-27. Setting FontUri with a custom markup extension

<Canvas xmlns:loc="clr-namespace:GlyphsUriLookup">
 <Glyphs FontUri="{loc:FontUri Calibri}" FontRenderingEmSize="40"
 UnicodeString="Hello, world" Fill="Black" OriginY="30" />
</Canvas>

Example 14-28. Using Indices

<Glyphs FontUri="C:\Windows\Fonts\Calibri.ttf"
 FontRenderingEmSize="40"
 Indices="44,60;286,60;367,60;367,60;381,60;853,60;3,60;
 449,60;381,60;396,60;367,60;282,60;842,60"
 UnicodeString="Hello, world!"
 Fill="Black"
 OriginY="30" />

Example 14-26. Font URI markup extension (continued)

Text Object Model | 493

shows the results. It looks pretty horrible because this particular font is designed for
proportional spacing, and not the monospaced layout shown here.

You can optionally supply two more numbers for each entry in Indices to control the
position of combining characters. Some characters, such as accents, are designed to
be added to other characters. Their default position is usually appropriate, but occa-
sionally it’s useful to adjust them. You would do this by providing an x and y offset
after the advance width.

Now that we’ve seen all of the elements available for rendering text, it’s time to look
at this text object model in more detail.

Text Object Model
Text has distinctive layout requirements. With most user interface elements, the goal
of layout is typically to define the basic UI structure (e.g., menu and toolbars at the
top, status bar at the bottom, tree view on the left, scrollable work area on the right)
and have the layout system make simple adjustments to the size and position of each
element in order to fit the available space. But with text, we typically have a continu-
ous stream of content where sequencing is more important than exact position. For
example, we often don’t care whether a particular figure appears at the top, bottom,
or middle of a page as long as it is adjacent to the paragraph that refers to the figure.

There is some overlap between the requirements of text layout and UI layout. For
example, the WrapPanel arranges elements in a similar manner to word-wrapped text
layout. Although it would have been technically possible to use a single layout sys-
tem for both textual content and user interface structure, this would have involved
compromises on both sides. WPF’s object model for representing formatted text is
therefore separate from the layout panels and controls we’ve seen in previous chapters.

The element types that make up the text model all derive from a common abstract
base class: TextElement. As you saw in Table 14-1, this defines a set of properties for
controlling aspects of the text’s appearance, such as its font and color. The
TextElement type does not derive from FrameworkElement. Instead, it derives from
FrameworkContentElement, meaning that all text objects are not intrinsically visible—
they rely on some hosting element derived from Visual, such as TextBlock or
FlowDocumentPageViewer, in order to render them. But although text elements do not
form part of the visual tree, they are still a part of the logical tree—if you walk the

Figure 14-24. Nondefault character spacing

494 | Chapter 14: Text and Flow Documents

tree using the LogicalTreeHelper class, it will report all textual content. We described
the distinction between the logical and visual trees in Chapter 9.

Text elements fall into two main categories: inline elements and block elements.
We’ll start by looking at inlines.

Inline
Inline text elements represent a stretch of text contained within a paragraph. They
derive from the Inline base class, which in turn derives from TextElement. Some
inlines simply apply formatting to their content, and some do a little more than that.

Because Inline derives from TextElement, it supports all the standard properties
shown in Table 14-1. It also defines a few more, listed in Table 14-3.

We covered the TextDecorations property earlier because decorations are also used in
the low-level text rendering APIs. FlowDirection is straightforward enough—in some
languages text runs from left to right, whereas in others it runs from right to left—but it
may seem surprising for this to be applied to an inline rather than, say, a paragraph. The
reason is that a paragraph might contain a mixture of languages, so each inline can have
a different flow direction if necessary. BaselineAlignment supports these values:
Baseline, Bottom, Center, Subscript, Superscript, TextBottom, TextTop, and Top.

Example 14-29 illustrates the use of BaselineAlignment.

We made one piece of text in this example larger than the rest in order to highlight
the difference between Center and Baseline. If every item in a line is the same height,
these two values have the same effect. Figure 14-25 shows the results.

Example 14-29 does not show the TextTop and TextBottom settings, because in this
particular example, they behave in the same way as Top and Bottom. The distinction

Table 14-3. Inline text formatting properties

Property Usage

BaselineAlignment Determines vertical alignment relative to the current line of text

FlowDirection LeftToRight or RightToLeft

TextDecorations Controls lines such as underlining and strikethrough

Example 14-29. BaselineAlignment

<TextBlock Background="LightGreen">
 Alignment:
 Baseline
 Center
 Top
 Superscript
 Bottom
 Subscript
</TextBlock>

Text Object Model | 495

matters only if you take the fairly unusual step of forcing the effective line height to
be different from the natural height of the text. You can do this by setting the
LineStackingStrategy property to BlockLineHeight, and setting the BlockLineHeight
property, as shown in Example 14-30.

As Figure 14-26 shows, Top and Bottom appear at the top and bottom of the
TextBlock. TextTop and TextBottom appear at the top and bottom of the text’s natural
vertical extent.

The following sections describe each concrete type derived from Inline.

Run

Run is the most widely used text element type, because it’s the only one capable of con-
taining actual text. This can come as a surprise, as you rarely see the type used explic-
itly in XAML. However, Run elements are generated automatically. For example, this:

<TextBlock>
 Simple text
</TextBlock>

is equivalent to this:

<TextBlock>
 <Run Text="Simple text" />
</TextBlock>

Figure 14-25. BaselineAlignment

Example 14-30. Top and Bottom versus TextTop and TextBottom

<TextBlock Background="LightGreen"
 LineStackingStrategy="BlockLineHeight" LineHeight="40">
 Alignment:
 Baseline
 TextTop
 Top
 TextBottom
 Bottom
</TextBlock>

Figure 14-26. Top and Bottom versus TextTop and TextBottom

496 | Chapter 14: Text and Flow Documents

The XAML compiler knows to generate the Run element automatically thanks to cus-
tom attributes applied to the relevant classes. As Example 14-31 shows, the
TextBlock element is annotated with a ContentProperty attribute indicating that child
content should be added to its Inlines property. That property is of type
InlineCollection, and as you can see, that is annotated with two ContentWrapper
attributes. We describe the process by which XAML is converted into objects in
Appendix A; the net result of these attributes is that plain text inside any
InlineCollection will automatically be wrapped in Run elements, whereas user inter-
face elements will automatically be wrapped in InlineUIContainer elements.

Because Run elements are generated automatically, you don’t often use them in
XAML. However, they offer one advantage over bare text: XML parsers often ignore
whitespace in element content, but will never ignore it inside an attribute. Consider
Example 14-32.

This TextBlock looks like it should contain the same text twice. The plain-text con-
tent will automatically be wrapped with a Run element, which is then followed by
another Run with the same text. However, as Figure 14-27 shows, the text has been
handled differently. The spaces in the first block of text have collapsed into a single
space. Only in the second case, where the text was wrapped explicitly in a Run, is the
whitespace preserved.

This reduction of whitespace is often useful. It enables us to indent text and add new
lines without affecting the final outcome. Indeed, although we can disable this
behavior, doing so illustrates why we often don’t want to. Example 14-33 uses a
standard XML attribute to force whitespace to be preserved.

Example 14-31. Attributes responsible for Run element generation

[ContentProperty("Inlines"), ...]
public class TextBlock : FrameworkElement, ...

[ContentWrapper(typeof(Run)), ContentWrapper(typeof(InlineUIContainer)),
 WhitespaceSignificantCollection]
public class InlineCollection : TextElementCollection<Inline>, ...

Example 14-32. Whitespace as content and as attribute

<TextBlock>
 A B
 <Run Text="A B" />
</TextBlock>

Figure 14-27. Whitespace handling

Text Object Model | 497

Figure 14-28 shows the results. A background color has been specified to make it
clear what is happening. Although both blocks of text now correctly preserve the
amount of space between the two letters, the example also preserves some things we
may not have wanted. There is now some space to the left of both As—this is
because we indented the contents of the TextBlock. If we want the content to be flush
to the left of the TextBlock, we would have to avoid indenting it wherever xml:
space="preserve" is used. This can be inconvenient because a lot of XML editors will
automatically indent both elements and their content based on the depth of nesting.

The example also now spans multiple lines. As you can see from the empty areas
painted with the background color, we have blank lines at the top and the bottom.
This is because the content is defined on separate lines from the opening and clos-
ing TextBlock tags—there are line end characters in our XAML after the opening
TextBlock, before the Run, and before the closing TextBlock, and these have all been
faithfully preserved. If you use the xml:space="preserve" attribute, the only way to
get just one line of output is to make sure that the TextBlock is all on one line in your
XAML source. In practice, it’s often more convenient to use explicit Run elements
instead when you need to control whitespace.

The XAML compiler automatically generates Run wrapper elements for text content.
If you are working with the text object model from code, you will need to deal with
Run elements regardless of whether you need precise control over whitespace.

Because Run derives from TextElement, it can use all of the TextElement formatting
properties shown in Table 14-1. Run elements are always the leaves of a tree of text
elements—they cannot have children. This can make them a little cumbersome for
mixing styles together. It may be easier to use Span or one of its derivatives.

Example 14-33. Preserving whitespace in mixed content

<TextBlock xml:space="preserve" Background="LightBlue">
 A B
 <Run Text="A B" />
</TextBlock>

Figure 14-28. Preserved whitespace

498 | Chapter 14: Text and Flow Documents

Span

Span allows you to apply text formatting properties to a range of text. Unlike Run, a
Span can contain child elements. This allows you to combine styles, as shown in
Example 14-34.

The Span class has an Inlines property. Just as with TextBlock, child content will be
added to this property, which is of type InlineCollection. This means that plain text
will automatically be wrapped with Run elements, just as it is inside a TextBlock. So
the XAML in Example 14-34 is equivalent to the code in Example 14-35.

Figure 14-29 shows the results.

For convenience, WPF defines four types derived from Span that apply common for-
matting to their contents: Bold, Hyperlink, Italic, and Underline.

These allow the content in Example 14-34 to be expressed more compactly.
Example 14-36 will produce the same result as that shown in Figure 14-29.

Example 14-34. Nested Span elements

<TextBlock>

 This uses a
 mixture of styles.

</TextBlock>

Example 14-35. Nested Span elements in code

TextBlock txt = new TextBlock();
Span rootSpan = new Span();
rootSpan.FontFamily = new FontFamily("Cambria");
rootSpan.Inlines.Add(new Run("This uses "));

Span boldSpan = new Span();
boldSpan.FontWeight = FontWeights.Bold;
boldSpan.Inlines.Add(new Run("a "));

Span italicSpan = new Span();
italicSpan.Inlines.Add(new Run("mixture"));

boldSpan.Inlines.Add(italicSpan);
boldSpan.Inlines.Add(new Run(" of"));

rootSpan.Inlines.Add(boldSpan);
rootSpan.Inlines.Add(new Run(" styles"));

Figure 14-29. Nested Span elements

Text Object Model | 499

Unlike Bold and Italic, the Hyperlink class does more than define a standard look. It
also offers a NavigateUri property. If you set this on a Hyperlink in a navigation
application, the application will navigate to the specified URI if the element is
clicked. It also offers a Click event and a Command property, both of which behave in
exactly the same way as the equivalently named members of the Button class, which
we described in Chapter 5.

LineBreak

The LineBreak element is a bit of an oddball. It derives from Inline, meaning that it
is for use within a paragraph, but it appears to introduce a new paragraph. Strictly
speaking, from the point of view of the text object model, it introduces a new line in
the middle of a paragraph. Example 14-37 shows LineBreak in use.

Figure 14-30 shows the results. As you can see, it certainly looks like two paragraphs.
But as far as the text object model is concerned, it is treated as a single paragraph.

Although this may seem to be a rather pedantic distinction, it is a useful one. A
TextBlock is not capable of dealing with WPF’s Paragraph element, but it can deal
with LineBreak because that’s an Inline. By using LineBreak, you can show what
appear to be multiple paragraphs of text without having to use a full FlowDocument in
a reader control. In performance-sensitive scenarios, this can be important, because
TextBlock uses fewer resources than any of the FlowDocument viewers.

Example 14-36. Using the derived span types

<TextBlock>

 This uses <Bold>a <Italic>mixture</Italic> of</Bold> styles.

</TextBlock>

Example 14-37. LineBreak

<TextBlock TextWrapping="Wrap">
 This is the first sentence in a paragraph.
 <LineBreak />
 This is technically the second sentence of the same paragraph.
</TextBlock>

Figure 14-30. LineBreak

500 | Chapter 14: Text and Flow Documents

InlineUIContainer

Although types derived from TextElement use a different layout strategy from those
derived from FrameworkElement, it is possible to mix both element types. Just as ele-
ments such as TextBlock or FlowDocumentReader can host text in a visual tree, there
are also text elements that can host UI elements in a text tree. The InlineUIContainer
type wraps any object derived from UIElement. Because InlineUIContainer derives
from Inline, you can place it in any element that contains inlines, such as a
TextBlock or a Span. Example 14-38 uses this to host a Button.

Figure 14-31 shows the result. Elements hosted by an InlineUIContainer will size to
content unless the containing element has its LineHeight property set. In that case,
the hosted element will size to content horizontally, but would be vertically con-
strained to the line height.

As you can see in Figure 14-31, the default alignment for a hosted element is that its
bottom is aligned with the baseline of the text. Because InlineUIContainer derives
from Inline, you can modify this by setting the BaselineAlignment property
described earlier, as Example 14-39 shows.

Figure 14-32 shows the results.

Example 14-38. InlineUIContainer

<TextBlock>
 Text with a
 <InlineUIContainer>
 <Button Content="Control" />
 </InlineUIContainer>
 in the middle.
</TextBlock>

Figure 14-31. InlineUIContainer

Example 14-39. Positioning a hosted element with BaselineAlignment

<TextBlock TextWrapping="Wrap">
 Text with a
 <InlineUIContainer BaselineAlignment="Center">
 <Button Content="Control" />
 </InlineUIContainer>
 in the middle.
</TextBlock>

Text Object Model | 501

InlineUIContainer offers all the same properties as any other inline element. If you
do not need to set any of these, you can omit it from your XAML because, as we saw
in Example 14-31, the InlineCollection class is annotated with a ContentWrapper
attribute. This instructs the XAML compiler to wrap UI elements in
InlineUIContainer elements automatically. So, instead of the markup in
Example 14-38, we can use the shorter equivalent in Example 14-40.

InlineUIContainer is not limited to controls. It enables you to integrate any content
type into your text—you can host video, bitmaps, and 2D and 3D graphics in an
InlineUIContainer.

We’ve now looked at all of the text element types that we can use within a single
paragraph. However, for any reasonable quantity of text, you will want to break the
text into multiple paragraphs, and maybe add features such as lists and tables. This
is where the Block type comes in.

Block
Block is an abstract base class that derives from TextElement. It represents blocks of
text such as paragraphs, tables, and lists. You can’t use a Block inside a TextBlock—
that can contain only inline elements. Blocks belong inside a FlowDocument, and must
therefore be presented by one of the flow document viewer controls described earlier
in this chapter.

The Block base class defines a set of common properties. This includes all of those
from TextElement, of course, which are listed in Table 14-1. Block adds many more
properties common to all elements derived from Block. Two of these, TextAlignment
and IsHyphenationEnabled, are aliased by TextBlock and were described earlier.
Table 14-4 shows the complete set.

Figure 14-32. InlineUIContainer aligned centrally

Example 14-40. Automatic InlineUIContainer generation

<TextBlock>
 Text with a
 <Button Content="Control" />
 in the middle.
</TextBlock>

502 | Chapter 14: Text and Flow Documents

We describe the block element types in the following sections.

Paragraph

The Paragraph element groups a collection of Inline elements into a paragraph.
Example 14-41 shows a FlowDocument containing two paragraphs.

Figure 14-33 shows the results. As you can see, each paragraph starts on a new line.

There is also space between the paragraphs—by default, a paragraph has a vertical
margin that is the same as the line height. You can override this by setting an explicit
Margin property value. Figure 14-34 shows the effect of changing the Margin to 0 on
both paragraphs.

Table 14-4. Common block properties

Property Usage

BorderBrush Brush with which to paint a border around the block; null if no border
required.

BorderThickness Thickness of border.

BreakColumnBefore True if this block should start in a new column.

BreakPageBefore True if this block should start on a new page.

ClearFloaters Controls how floaters for this block are positioned—see the “Figures and
Floaters” section, later in this chapter, for details on floaters.

FlowDirection Sets text flow direction for block—either LeftToRight or
RightToLeft.

IsHyphenated If True, enables words to be hyphenated when word wrapping.

LineHeight Line height in device-independent pixels. (XAML can specify other units with
a suffix: in, cm, and pt indicate inches, centimeters, and points, respectively.)
A value of NaN (Auto in XAML) means the default height for the font.

LineStackingStrategy Determines whether the actual line height is determined by LineHeight,
or the height of the tallest element on the line.

Margin Space to be left between this block and its neighbors.

Padding Space to be left between the block’s border and its content.

TextAlignment One of the TextAlignment enumeration values: Left, Right, Center,
or Justify.

Example 14-41. Paragraph elements

<FlowDocument>
 <Paragraph>
 This is a paragraph.
 </Paragraph>
 <Paragraph>
 <Italic>This</Italic> is <Bold>another</Bold> paragraph. It
 contains more text than the first, and with more
 styles.
 </Paragraph>
</FlowDocument>

Text Object Model | 503

The contents of a Paragraph are contained in its Inlines property. Just as with
TextBlock and Span, this is of type InlineCollection, so again, Run and
InlineUIContainer elements will be generated automatically for nested text and
FrameworkElements when the XAML is processed.

List

The List block defines a numbered or bulleted list. The list’s contents are held in the
ListItems property—a collection of ListItem elements. The ListItemCollection type
is not annotated with a ContentWrapper attribute, so you are required to define the
ListItem elements explicitly, as Example 14-42 shows.

ListItem derives directly from TextElement, because the only place in which it occurs
is inside a List—it is neither an Inline nor a Block. Its content is held in the Blocks
property, which is a collection of Block elements. In Example 14-42, the two items

Figure 14-33. FlowDocument with two paragraphs

Figure 14-34. Paragraphs with margin of 0

Example 14-42. List with ListItems

<List>
 <ListItem>
 <Paragraph>
 This is an item.
 </Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>
 This item contains two paragraphs. This is the first.
 </Paragraph>
 <Paragraph>
 This is the second.
 </Paragraph>
 </ListItem>
</List>

504 | Chapter 14: Text and Flow Documents

contain a paragraph and a pair of paragraphs, respectively, but any block type will
do. You can even nest lists, as Example 14-43 shows.

This example also illustrates the use of the MarkerStyle property, as Figure 14-35
shows. The top-level list uses a hollow square, but more interestingly, the nested lists
are numbered. There is no way to get one list to automatically pick up the number-
ing from where another left off, but this example gets the required result by manu-
ally specifying the StartIndex for the second nested list.

MarkerStyle supports a variety of styles, which are shown in Figure 14-36.

Example 14-43. Nested lists

<List MarkerStyle="Square">
 <ListItem>
 <Paragraph>
 This item contains a paragraph followed by a nested list.
 </Paragraph>
 <List MarkerStyle="Decimal">
 <ListItem>
 <Paragraph>
 This is a nested list item.
 </Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>
 This is a second nested list item.
 </Paragraph>
 </ListItem>
 </List>
 </ListItem>
 <ListItem>
 <Paragraph>
 Is the second item in the first list.
 </Paragraph>
 <List MarkerStyle="Decimal" StartIndex="3">
 <ListItem>
 <Paragraph>
 This nested list carries on from the previous list numbering.
 </Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>
 This is the second item in the second nested list.
 </Paragraph>
 </ListItem>
 </List>
 </ListItem>
</List>

Text Object Model | 505

There is no direct support for customizing the marker—MarkerStyle accepts values
only from the TextMarkerStyle enumeration, so the set of values is closed, and there
is no “custom” style. However, you could easily create your own list by defining a
two-column Table, with the list items in the second column and the custom markers
in the first.

Table

The Table element presents information in tabular form. Its capabilities overlap
somewhat with the Grid. Think of it as the TextElement equivalent of the Grid—you
would only use a Table inside a FlowDocument, whereas a UI would use a Grid. How-
ever, not only are these elements designed for use in different contexts, but also the
style of use is slightly different. Whereas the position of an element within a Grid is
set by attached Grid.Column and Grid.Row properties, table elements’ positions are
based on the order in which they are added—Example 14-44 contains no explicit
positioning information.

Figure 14-35. Nested and numbered lists

Figure 14-36. Marker styles

506 | Chapter 14: Text and Flow Documents

Figure 14-37 shows the results. Each item in the table is defined in a TableCell ele-
ment, which is contained by a TableRow. The first cell in a row will be in the first col-
umn, the second cell in the second column, and so on. You can make a single item
span multiple cells using the ColumnSpan or RowSpan property—the title on the first
row has a ColumnSpan of 3 in order to fill the whole width. But unlike the Grid, a sin-
gle Table cell cannot contain multiple overlapping items.

Example 14-44. Table

<Table CellSpacing="6">
 <TableRowGroup FontWeight="Bold">
 <TableRow FontSize="24">
 <TableCell ColumnSpan="3" TextAlignment="Center" >
 <Paragraph>Ice Cream</Paragraph>
 </TableCell>
 </TableRow>
 <TableRow FontSize="18" Background="LightGray">
 <TableCell><Paragraph>Type</Paragraph></TableCell>
 <TableCell><Paragraph>Description</Paragraph></TableCell>
 <TableCell><Paragraph>Availability</Paragraph></TableCell>
 </TableRow>
 </TableRowGroup>
 <TableRowGroup>
 <TableRow>
 <TableCell><Paragraph>Chocolate</Paragraph></TableCell>
 <TableCell><Paragraph>Yummy</Paragraph></TableCell>
 <TableCell><Paragraph>Widespread</Paragraph></TableCell>
 </TableRow>
 <TableRow>
 <TableCell><Paragraph>Cookie Dough</Paragraph></TableCell>
 <TableCell><Paragraph>Extra yummy</Paragraph></TableCell>
 <TableCell><Paragraph>Scarce - Ian ate it all</Paragraph></TableCell>
 </TableRow>
 <TableRow>
 <TableCell><Paragraph>Artichoke</Paragraph></TableCell>
 <TableCell><Paragraph>Gruesome</Paragraph></TableCell>
 <TableCell><Paragraph>Rarely available</Paragraph></TableCell>
 </TableRow>
 </TableRowGroup>
</Table>

Figure 14-37. Table

Text Object Model | 507

The rows in a table are always contained by a TableRowGroup. This provides a single
place to apply formatting to multiple rows. Example 14-44 uses a TableRowGroup to
set the FontWeight of the first two rows to Bold. The remaining rows use the default
font weight because they are in a separate TableRowGroup that does not specify any
formatting.

A Table must always contain at least one TableRowGroup even if you do
not need to apply formatting to groups of rows. The object model
requires this—the Table class’s content is held in its RowGroups property.

The number of columns in a table is determined automatically unless you choose to
specify columns explicitly. Example 14-45 defines the columns explicitly in order to
fix the first column’s width. The TableColumn.Width property is of type GridLength,
meaning it supports the same sizing mechanisms as Grid: fixed size, star sizing, and
automatic sizing. We described these in Chapter 3.

Figure 14-38 shows the results. Example 14-45 sets a border on the table so that you
can see its bounds. This makes the effect of the fixed-width column clear; by default,
the two columns would have been the same width.

The only other property offered by TableColumn is Background, enabling you to set a
background brush for the column.

Example 14-45. Explicit table columns

<Table BorderThickness="1" BorderBrush="Black">
 <Table.Columns>
 <TableColumn Width="25" />
 <TableColumn />
 </Table.Columns>
 <TableRowGroup>
 <TableRow>
 <TableCell><Paragraph>♥</Paragraph></TableCell>
 <TableCell><Paragraph>Raspberry</Paragraph></TableCell>
 </TableRow>
 <TableRow>
 <TableCell><Paragraph>♥</Paragraph></TableCell>
 <TableCell><Paragraph>Vanilla</Paragraph></TableCell>
 </TableRow>
 </TableRowGroup>
</Table>

Figure 14-38. Table with fixed-width column

508 | Chapter 14: Text and Flow Documents

In Examples 14-44 and 14-45, each cell contains a Paragraph. A TableCell can con-
tain any sequence of block elements, so you can also nest lists, or even other tables,
inside a table cell.

Section

The Section block type contains a sequence of other blocks. A Section has no default
intrinsic behavior: wrapping some blocks in a Section will not change their appear-
ance unless you set some formatting properties on the Section. The purpose of
Section is to allow you to apply a set of formatting properties to several blocks at
once. Example 14-46 uses a Section to apply an italic font style to two paragraphs.

As you can see from Figure 14-39, both paragraphs pick up the italic style from their
parent section. The second paragraph combines this inherited italic style with a
locally specified bold font weight.

BlockUIContainer

Earlier, we saw the InlineUIContainer, which allows any UIElement to be hosted
inside a paragraph. This allowed controls, video, bitmap, 2D graphics, or 3D graph-
ics to be integrated into a document. BlockUIContainer is similar: it can host any
UIElement, but it wraps it as a Block instead of an Inline. Example 14-47 uses this to
put a Button between two paragraphs.

Example 14-46. Section

<Section FontStyle="Italic">
 <Paragraph>
 This paragraph is in italics because the containing section's
 FontStyle property is set to Italic.
 </Paragraph>
 <Paragraph FontWeight="Bold">
 This paragraph is in bold italics because its FontWeight is set
 to Bold, and it inherits the Italic FontStyle from its containing
 section.
 </Paragraph>
</Section>

Figure 14-39. Section

Text Object Model | 509

Figure 14-40 shows the result. As you can see, the button has turned out rather wide.
This is because a BlockUIContainer will offer the entire column width to the element it
contains. The contained element will size to content vertically, but not horizontally.

If you don’t want the contained element to fill the whole width, you must use
FrameworkElement layout settings. For example, setting the HorizontalAlignment prop-
erty of the Button to Left will cause the button to left-align within the container, as
Figure 14-41 shows. Setting the TextAlignment property of the BlockUIContainer to
Left will not work—this block type always fills the full width of the column, so the
horizontal alignment options mean nothing on the BlockUIContainer itself.

We have now looked at all of the block types. However, there are two remaining text
element types we’ve not yet looked at: Figure and Floater. These are not blocks, but
they are normally used from within blocks.

Example 14-47. BlockUIContainer

<Paragraph>
 This is a paragraph.
</Paragraph>
<BlockUIContainer>
 <Button Content="Button" />
</BlockUIContainer>
<Paragraph>
 This is another paragraph.
</Paragraph>

Figure 14-40. BlockUIContainer

Figure 14-41. BlockUIContainer content alignment

510 | Chapter 14: Text and Flow Documents

Figures and Floaters
The Figure and Floater types are used to host blocks of content around which other
content flows. They are typically used for hosting figures, sidebars, or tables. Both
types derive from the AnchoredBlock abstract base class. This derives from Inline, so
these are technically inline elements. However, their content is a collection of Block
elements, so you cannot use them in a TextBlock—figures and floaters must appear
inside a flow document. Example 14-48 shows a Floater.

Example 14-48. Floater

<FlowDocument>
 <Paragraph>
 This paragraph contains a 'floater'. It is the table you can see to
 the right.

 <Floater HorizontalAlignment="Right" Width="150">
 <Table BorderThickness="1" BorderBrush="Black">
 <Table.Columns>
 <TableColumn Width="25" />
 <TableColumn />
 </Table.Columns>
 <TableRowGroup>
 <TableRow>
 <TableCell><Paragraph>♥</Paragraph></TableCell>
 <TableCell><Paragraph>Raspberry</Paragraph></TableCell>
 </TableRow>
 <TableRow>
 <TableCell><Paragraph>♥</Paragraph></TableCell>
 <TableCell><Paragraph>Vanilla</Paragraph></TableCell>
 </TableRow>
 <TableRow>
 <TableCell ColumnSpan="2">
 <Paragraph TextAlignment="Center" FontStyle="Italic"
 Margin="0,5,0,0">
 Example ice cream flavors
 </Paragraph>
 </TableCell>
 </TableRow>
 </TableRowGroup>
 </Table>
 </Floater>

 This table is anchored to this paragraph because the Floater element
 appears inside of this paragraph.
 </Paragraph>
 <Paragraph>
 This second paragraph also flows around the Floater because the table
 is tall enough to span two paragraphs.
 </Paragraph>
</FlowDocument>

Text Object Model | 511

Notice that the Floater element appears inside the first Paragraph. The position at
which the Floater or Figure appears determines the anchor point, which will have an
impact on where the hosted block appears—WPF will try to position it as close to
the anchor point as possible. In Figure 14-42, the table appears on the line immedi-
ately after the one containing the anchor point.

Whereas a Floater is positioned vertically as close as possible to its anchor point, its
horizontal position is determined by the HorizontalAlignment property. In
Example 14-48, this is set to Right. Figure 14-43 shows the effect of setting this to
Center. The other options are Left and Stretch. The latter causes the block to fill the
whole column width, preventing text from flowing around either side.

Figure is very similar to Floater, the main difference being that it offers more flexibil-
ity in specifying the position relative to the anchor point. The horizontal position is
set with the HorizontalAnchor property. This can be any of the values in the
FigureHorizontalAnchor enumeration, which are shown in Table 14-5.

Figure 14-42. Floater

Figure 14-43. Floater with HorizontalAlignment of Center

512 | Chapter 14: Text and Flow Documents

You can control the vertical position using the VerticalAnchor property. Table 14-6
shows the available values.

Notice that almost all of the available anchor values are concerned with columns or
pages. This means that some of the higher level of control offered by a Figure over a
Floater is significant only if you are using a column-based paginated view. If you
are using the FlowDocumentScrollViewer, there is no distinction between ColumnLeft
and ContentLeft, because there is just one big scrolling column. Both of these do the
same thing as a Floater with a HorizontalAlignment of Left. Likewise, the
FigureVerticalAnchor settings are meaningful only in a paginated view. So, you would
normally use Figure only on a document likely to be viewed in pages (e.g., a document
you intend to print or one that will be viewed in a FlowDocumentPageViewer).

The horizontal column-based positions in Table 14-5 are self-explanatory. The dif-
ference between the page-based position and the positions relative to the “content”
area is less obvious. This distinction exists because a FlowDocument does not necessar-
ily fill the entire page. If you set its PagePadding property, WPF will leave space
between the edge of the page and the document. Choosing a page-relative alignment
such as PageLeft will position a figure relative to the page, ignoring the space added

Table 14-5. FigureHorizontalAnchor enumeration

Value Figure position

ColumnCenter The center of the current column

ColumnLeft The left of the current column

ColumnRight The right of the current column

ContentCenter The center of the content-holding area of the page

ContentLeft The left of the content-holding area of the page

ContentRight The right of the content-holding area of the page

PageCenter The center of the page

PageLeft The left of the page

PageRight The right of the page

Table 14-6. FigureVerticalAnchor enumeration

Value Figure position

ContentBottom The bottom of the content-holding area of the page

ContentCenter The center of the content-holding area of the page

ContentTop The top of the content-holding area of the page

PageBottom The bottom of the page

PageCenter The center of the page

PageTop The top of the page

ParagraphTop The top of the current paragraph

Text Object Model | 513

due to PagePadding. Figure 14-44 shows a document with 50 pixels of page padding,
and a figure horizontally aligned with PageLeft. As you can see, this causes the fig-
ure to appear outside of the horizontal bounds of the column. Had we specified
ContentLeft, the figure would have remained within the column’s bounds.

Figure offers extra flexibility for specifying the Width and Height of a figure. Whereas
with a Floater these properties are of type Double—representing the absolute size in
pixels—on a Figure they are of type FigureLength. This value type has a
FigureUnitType property, indicating the units in which the size is specified. You can
set this to Pixel in order to specify absolute dimensions. But you can also set it to
Column, Content, or Page to specify the size relative to the column, content, or page
size. For example, a width of 0.25 and unit of Page mean the figure should be one-
quarter the width of the page. When using Page or Content, the size must be less than
or equal to one. But you can specify multiple columns. Example 14-49 shows the
XAML syntax for specifying a figure width in columns.

This example would place a figure at the top left of the page content area, and it
would span two columns. Figure 14-45 shows how this would look when the docu-
ment is displayed in a paginated viewer wide enough to show three columns.

Figure 14-44. PageLeft horizontal anchor

Example 14-49. Specifying figure widths in “columns” units

<Figure HorizontalAnchor="ContentLeft" VerticalAnchor="ContentTop"
 Width="2 columns">
 ...figure content...
</Figure>

Figure 14-45. Figure width of two columns

514 | Chapter 14: Text and Flow Documents

We’ve now seen all of the types in the text object model, and yet we’ve not yet seen
how to add an image to a document. It turns out that we can embed images easily
using features we’ve already seen.

Images
The text object model doesn’t have any direct support for hosting images. Although
this is hardly surprising for a text object model, hosting images is a reasonably com-
mon requirement. There is no explicit support for images because you can use either
of the UI container elements to add an Image element to the document.

By default, the images will try to fill the entire width available. If this is not what you
require, you should specify the width or height as Example 14-50 does. Figure 14-46
shows the results.

All of the text object model examples we’ve seen so far have shown hardcoded
content. Because text is represented with objects, you are of course free to gener-
ate content from code. As you saw in Chapters 6 and 7, data binding can offer a
powerful way to generate content dynamically from data with a minimal amount of
code. However, although data binding is supported in the text object model, it is
somewhat limited.

Text and Data Binding
All types in the text object model derive from FrameworkContentElement. This provides
data binding support, including a DataContext property, just like its counterpart,
FrameworkElement. Data binding relies on the dependency property system: a data

Example 14-50. FlowDocument with images

<FlowDocument>
 <Paragraph>
 This paragraph is followed by an image in a block container:
 </Paragraph>

 <BlockUIContainer>
 <Image Source="Picture.jpg" Width="200" />
 </BlockUIContainer>

 <Paragraph>
 This paragraph uses an inline UI container to host an image:
 <InlineUIContainer BaselineAlignment="Center">
 <Image Source="Picture2.jpg" Height="40" />
 </InlineUIContainer>
 </Paragraph>
</FlowDocument>

Text Object Model | 515

binding target must be a dependency property. Unfortunately, the Text property of
the Run class, which is where all the text in any tree of text objects is ultimately
defined, is an ordinary CLR property and not a dependency property. This means it
cannot be the target of a data binding expression. Indeed, the dependency properties
available in the text object model are mainly concerned with formatting rather than
textual content.

The only elements that offer dependency properties that you can use to display text
are not text elements at all—they derive from FrameworkElement. You can use
TextBlock—its Text property can be the target for a binding expression. Alterna-
tively, you can use any type derived from ContentControl—if you bind text to its
Content property, it will host that text in a TextBlock for you. Example 14-51 shows
data binding with TextBlock elements.

This example contains two binding expressions, bound to a hypothetical data source
offering two properties, FirstName and LastName. In order to provide a binding target
for each property, we’ve used two TextBlock elements. These are nested inside a
third TextBlock, allowing us to mix data-bound content with fixed content. As we
saw earlier, the content of a TextBlock is a collection of inline elements, so this is
really shorthand for the markup in Example 14-52.

Figure 14-46. Images in a flow document

Example 14-51. Text and data binding

<TextBlock>
 Name:
 <TextBlock Text="{Binding FirstName}" />
 <TextBlock Text="{Binding LastName}" />
</TextBlock>

516 | Chapter 14: Text and Flow Documents

You don’t need to specify the InlineUIContainer elements explicitly—as we saw ear-
lier, they are generated automatically for you thanks to the ContentWrapper attributes
on the InlineCollection class. So, Examples 14-51 and 14-52 are functionally equiv-
alent. There is one problem with this: each nested TextBlock element will be treated
by the top-level TextBlock as a single indivisible element for word-wrapping purposes.
To see why this is a problem, consider the following two examples. Example 14-53
uses a nested TextBlock to display the title of a book. (It’s not data-bound, but you
could easily imagine wanting to retrieve a book title with data binding.)

Example 14-54 displays the same text, but without using a nested TextBlock. Instead,
it uses a Bold span to make the book title bold.

Figure 14-47 shows the results. The nested TextBlock version is shown on the left,
and as you can see, some things have gone wrong. It has wrapped the entire “Pro-
gramming WPF” string into a new line, even though there was space to fit the word
“Programming” on the first line. WPF was unable to break the line in between “Pro-
gramming” and “WPF” because the text was inside an InlineUIContainer. It has
failed to keep the opening apostrophe adjacent to the word “Programming” for
exactly the same reason. As far as the text layout engine is concerned, the “Program-
ming WPF” content is part of a completely different body of text than the rest of the
sentence. By contrast, the example on the right has just the one text tree, so it has
been able to break the text in the right place. (And, if we were to force it to break the
line earlier by narrowing the space, it would keep each apostrophe on the same line
as the word to which it belongs.)

Example 14-52. Text and data binding in full

<TextBlock>
 <Run Text="Name: " />
 <InlineUIContainer>
 <TextBlock Text="{Binding FirstName}" />
 </InlineUIContainer>
 <Run Text=" " />
 <InlineUIContainer>
 <TextBlock Text="{Binding LastName}" />
 </InlineUIContainer>
</TextBlock>

Example 14-53. Nested TextBlock

<TextBlock Margin="5" Background="PaleGreen" TextWrapping="Wrap">
 This book is called
 ‘<TextBlock FontWeight="Bold" Text="Programming WPF" />’
</TextBlock>

Example 14-54. Simple content

<TextBlock Margin="5" Background="PaleGreen" TextWrapping="Wrap">
 This book is called
 ‘<Bold>Programming WPF</Bold>’
</TextBlock>

Text Object Model | 517

Unfortunately, there is no straightforward solution to this problem. None of the ele-
ment types in the text object model provides a way to bind data into a text tree, so if
you want to inject code into the middle of a body of text without disrupting the for-
matting, you will need to write some code to do it instead of relying on data binding.*

In the FrameworkElement world, ItemsControl provides powerful support for binding
to list-like data sources, and generating multiple UI items from those sources. Unfor-
tunately, there is no equivalent of this in the text object model world: you cannot
generate either a Table or a List from a list-like data source with data binding. If you
want to build data-driven textual lists, you will need to write code.

Coding with the Text Object Model
Generating a flow document from code is straightforward. It is slightly more long-
winded than using XAML, because you need to create the Run elements that hold the
text explicitly. Example 14-55 shows how to build a FlowDocument containing a List
in code.

This creates a list of numbered items, as Figure 14-48 shows.

Creating text object models from scratch in code is very similar to creating text in
markup. However, manipulating existing text gets special handling. You can just add
and remove items from the collections of blocks and inlines, but the text object
model also provides features for navigating and modifying trees of text, using the
TextPointer type.

Figure 14-47. Nested TextBlock

* You can find an example of how to do this at http://fortes.com/2007/03/20/bindablerun (http://tinysells.com/
109).

Example 14-55. Building a List in code

FlowDocument doc = new FlowDocument();
List myList = new List();
for (int item = 1; item <= 5; ++item) {
 string itemText = "Item " + item;
 Run itemRun = new Run(itemText);
 Paragraph itemBlock = new Paragraph(itemRun);
 ListItem listItem = new ListItem(itemBlock);
 myList.ListItems.Add(listItem);
}
doc.Blocks.Add(myList);

518 | Chapter 14: Text and Flow Documents

TextPointer

A TextPointer object represents a particular position within either a FlowDocument or
a TextBlock. You can retrieve a TextPointer from any TextElement—the ContentStart
and ContentEnd properties return pointers to the start and end of the content repre-
sented by the element. Or, you can ask a TextBlock to return a pointer for a particu-
lar location (e.g., the current mouse pointer position) using its GetPositionFromPoint
method. TextPointer is also used anywhere an API needs to indicate a position
within a body of text, such as the start and end of the current selection in a
RichTextBox.*

TextPointer provides methods for navigating through the text structure.
Example 14-56 iterates through a range of text represented by a start and end pair of
text pointers by calling GetNextContextPosition. It builds a string by appending the
text from all of the runs it finds, and it uses GetPointerContext to discover which of
the elements it encounters are Run elements.

As well as being able to examine the text, a TextPointer allows you to insert text.
Not all points in a text tree can accept new content, so TextPointer offers a
GetInsertionPosition method that returns the nearest place where new text may be
added. Example 14-57 uses this to insert text at the beginning of the current selec-
tion in a RichTextBox. (If there is no selected text, the Selection property returns the
location of the caret.)

Figure 14-48. Generated List

* RichTextBox uses a FlowDocument to represent the text being edited.

Example 14-56. Extracting text content

static string GetText(TextPointer textStart, TextPointer textEnd) {
 StringBuilder output = new StringBuilder();

 TextPointer tp = textStart;

 while (tp != null && tp.CompareTo(textEnd) < 0) {
 if (tp.GetPointerContext(LogicalDirection.Forward) ==
 TextPointerContext.Text) {
 output.Append(tp.GetTextInRun(LogicalDirection.Forward));
 }
 tp = tp.GetNextContextPosition(LogicalDirection.Forward);
 }
 return output.ToString();
}

Typography | 519

The RichTextBox type’s Selection property is of type TextRange. TextRange encapsu-
lates a pair of TextPointer objects to denote a range of text that is available through
the Start and End properties. It also offers a helper Text property that extracts all of
the text in the range as a string (so in practice, you wouldn’t need to write the code
in Example 14-56—you can use a TextRange to do the work for you).

Sometimes it is useful to get from a TextPointer to an element in the tree of text
objects. TextPointer therefore offers a GetAdjacentElement method, enabling you to
retrieve the object containing the location to which the pointer refers. Alternatively,
you can use the TextPointer object’s Paragraph property. If the TextPointer points to
a Paragraph, or an element contained by a Paragraph, this property gives you access
to that Paragraph.

Whether you’re using the full text object model as supported by flow documents, or
just the inline subset available with a TextBlock, you can take advantage of WPF’s
typography support.

Typography
WPF supports both TrueType and OpenType fonts. OpenType fonts often contain
many alternates to the basic set of character shapes in order to support advanced
typographical functionality. If you are using a low-level text-handling feature such as
GlyphRun, you can use these alternates directly, referring to them by glyph index. But
if you are using the higher-level elements, such as TextBlock or the FlowDocument
viewers, these can locate and use the appropriate glyphs for you. You can control
which character shapes are used with the attached properties defined by the
Typography class.

Because WPF supports all of OpenType’s typography features, we will not provide a
complete list here.* We’ll show just one example: ligatures.

Most fonts offer ligatures: single shapes representing a group of letters. Historically, lig-
atures were invented out of necessity. In the past, typesetting involved an individual
block of metal or wood for each letter. Certain combinations were problematic. For
example, the top of a lowercase letter f extends to the right of the main stem of the let-
ter. If you put two of them next to each other, with some typefaces this results in too
much space between the stems—you couldn’t get the letters close enough together
to look right. To solve this, printers used a single block of metal with two fs on it.

Example 14-57. Inserting text with a TextPointer

TextPointer insertionPoint =
 richTextBox.Selection.Start.GetInsertionPosition(LogicalDirection.Forward);
insertionPoint.InsertTextInRun("Text added from code");

* The MSDN documentation already does a fine job of that. For details, see http://msdn2.microsoft.com/en-us/
system.windows.documents.typography.aspx or http://tinysells.com/74.

520 | Chapter 14: Text and Flow Documents

This single block is called a ligature. Figure 14-49 shows an example from the
Palatino Linotype typeface: the two lowercase fs are displayed as a single shape
here because the font offers them as a standard ligature, and WPF will use a font’s
standard ligatures by default.

Digital printing technology renders ligatures unnecessary. However, they are still
widely used, mainly because we have become accustomed to seeing them. When
reading at full speed, we recognize words as much by their overall shape as by the
shapes of the individual letters in the words, and getting rid of ligatures can have a
negative impact on reading speed. Moreover, most fonts are designed with the use of
ligatures in mind, so they tend to look better with ligatures than without. Palatino
Linotype is a case in point—as you can see from Figure 14-49, its lowercase f is rela-
tively narrow at the top, so a ligature is not strictly necessary, but the font has still
been designed to use a ligature for this case.

OpenType fonts can designate ligatures for various purposes. Some are standard,
meaning they should be used by default. This set will typically include “ff,” “fi,” and
“ffi.” Some are marked as discretionary, meaning their use is optional. Palatino Lino-
type defines a discretionary ligature for the “Th” pair. Figure 14-50 shows the default
appearance for this pair, as well as the discretionary ligature.

The Typography class defines various attached properties for controlling the use of lig-
atures, which are listed in Table 14-7. Each is a Boolean property. StandardLigatures
defaults to True, and you can enable the rest in the way shown in Example 14-58.

Figure 14-49. Ligature

Figure 14-50. Default “Th” and discretionary “Th” ligature

Table 14-7. Typography class ligature attached properties

Attached property Usage

ContextualLigatures Ligatures to be used only in specific contexts (e.g., only after certain letters)

DiscretionaryLigatures Decorative ligatures, not necessarily appropriate in ordinary text

HistoricalLigatures Decorative ligatures using old-fashioned styles

StandardLigatures Ligatures suitable for use in ordinary text

Where Are We? | 521

All of the typography features are controlled in a similar way: the Typography class
defines attached properties that you can set on any TextElement. All of these are
inherited properties, so you can set them on the root FlowDocument or TextBlock ele-
ment in order to apply a consistent typography style to all of the text.

Where Are We?
WPF supports any mixture of typefaces and formatting styles anywhere text is used.
If you need fine control, you can work at a very low level with glyphs, using either
GlyphRun at the visual layer, or Glyphs at the FrameworkElement level. It is typically eas-
ier to work at a higher level. TextBlock provides a simple but powerful way to incor-
porate small volumes of formatted text into an application, and it is the workhorse of
basic text presentation for most WPF applications. But if you need to represent a
multiparagraph document, FlowDocument is the way to go, as it supports the full WPF
text object model. The document viewer controls offer either a simple single-column
scrolling view, or a column-based paginating viewer. Whichever representation you
use, WPF provides access to all the typographical features of your fonts.

Example 14-58. Enabling discretionary ligatures

Th

522

Chapter 15CHAPTER 15

Printing and XPS 15

WPF provides powerful printing support, allowing you to use the majority of its
graphical features in print as well as on-screen. Dynamic features such as animation
and event handling don’t translate to static paper output, of course, but you can use
any stationary graphics. You can also use framework services such as data binding
and layout to construct output for printing.

For many years, Windows has used a print spool system based on the Win32
Enhanced Meta File (EMF) format. This does not support the full WPF rendering
feature set, so a new format has been introduced: XPS, the XML Paper Specification.
This enables WPF-based graphics to be sent for printing without any loss of fidelity.

XPS is a fixed-layout page description format, and not only is it the basis for WPF
print spooling, but also you can use it as a standalone file format. For example, you
might build an XPS file so that you can email it to someone as a preview of what the
printed output will look like.

Whether your WPF application is sending output directly to the printer or creating
an XPS file containing the output, you will use the XPS APIs. So, in order to look at
printing in WPF, we must begin by looking at XPS.

XPS
XPS is an open specification* for a file format designed to hold printable output from
a WPF application. As the name suggests, an XPS file describes exactly how the doc-
ument should look on paper.

The XPS format has been designed to be easy to create and consume. It builds on
two very widely supported standards: the ZIP file format and XML. There are a few
binary elements of an XPS file, such as embedded fonts and bitmaps, but these also

* You can download the specification from http://www.microsoft.com/whdc/xps/default.mspx (http://
tinysells.com/72).

XPS | 523

use common standards—OpenType and TrueType for fonts, and TIFF, PNG, JPEG,
and WMP for bitmaps.

The way XPS uses ZIP and XML is very similar to the XML-based file formats intro-
duced in Office 2007. This is no coincidence. All of these files share a common sys-
tem, described by the Open Packaging Conventions.

Open Packaging Conventions
The Open Packaging Conventions (OPC) specification is part of the Office Open
XML suite of standards. These standards are owned by ECMA.* OPC describes a
consistent scheme for packaging multiple streams into a single ZIP file, and a stan-
dard mechanism by which one stream can refer to the contents of another stream.
For example, in XPS, each page is represented by a stream of XML. If the page uses a
bitmap, the bitmap would be stored in a separate stream, and the page XML would
point to that stream with a relative URL. As well as defining the means by which one
stream refers to another, the packaging conventions also define mechanisms for
incorporating common file properties (title, creator, etc.), thumbnail images, and
digital signatures.

OPC makes it very easy to inspect the contents of a file manually. If you change the
extension of an XPS file to .zip, you can then extract its contents as you would any
normal ZIP file. Although this offers a very useful way to learn about an OPC-based
format by inspecting example files, it’s important not to presume too much about
the exact structure of the file. Even though you might observe common patterns, you
often cannot count on these. For example, XPS files often contain a FixedDocSeq.
fdseq stream in the root of the package, which typically defines the overall structure
of the document. Similarly, Word files typically contain a document.xml stream in
the word subdirectory in which you will find the document contents. However, you
should not rely on these parts always having these names, as the names are of no sig-
nificance. Parts are always located by relationships or references embedded within
other parts. Only one well-known part will always be present: a stream called _rels/.
rel. Applications start by opening this, and work out where to go next from there.
Example 15-1 shows the contents of this stream from an XPS file. (A couple of lines
have been split because they are too long to fit across the page.)

* You can find the specifications at http://www.ecma-international.org/memento/TC45.htm (http://tinysells.com/
110).

Example 15-1. Package relationships

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Relationships
 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
 <Relationship Id="rId3"
 Type="http://schemas.openxmlformats.org/package/2006/relationships/metadata/

524 | Chapter 15: Printing and XPS

This shows where to locate three parts of the document. Each is identified with a
fixed URI. To find the thumbnail image for this file, for example, an application
would open this well-known _rels/.rel stream, locate the Relationship element with
the relevant Type URI, and then open the stream to which it refers with its Target
property.

So, although you can learn a lot about the structure of an OPC-based file by looking
inside it, you should never rely on the parts having particular names or locations.
You should always use relationships to locate the parts. Moreover, if you’re using
XPS, this issue will typically be dealt with for you, because WPF will use relation-
ships and locate parts on your behalf if you use the XPS-specific classes it provides.

XPS Document Classes
The classes for working with XPS documents are spread across several namespaces,
because there are several different levels at which you may wish to work. Table 15-1
shows the various namespaces that contain XPS functionality, and the scenarios for
which they are intended.

core-properties"
Target="docProps/core.xml"/>

 <Relationship Id="rId2"
 Type="http://schemas.openxmlformats.org/package/2006/relationships/metadata/
thumbnail"

Target="docProps/thumbnail.jpeg"/>
 <Relationship Id="rId1"
 Type="http://schemas.microsoft.com/xps/2005/06/fixedrepresentation"

Target="FixedDocSeq.fdseq"/>
</Relationships>

Table 15-1. Namespaces for working with XPS

Namespace Purpose of classes

System.Windows.Documents Contains classes that represent the logical internal structure of
XPS documents, and which also add extra runtime functionality
for constructing documents

System.Windows.Xps Abstract API for creating XPS documents, for either printing or
writing to disk

System.Windows.Xps.Serialization Provides fine-grained control of how the XPS file’s contents are
generated

System.Windows.Xps.Packaging Provides access to package-level aspects of XPS, such as loading
and saving XPS documents, or adding thumbnail images

System.IO.Packaging Allows reading and writing of any OPC file (not limited to XPS)

Example 15-1. Package relationships (continued)

XPS Document Classes | 525

XPS file structure is most directly represented by the classes in the System.Windows.
Xps.Packaging namespace. If you want to work directly with the streams of data that
make up an XPS file, these classes will give you the most control. However, they are
not all that convenient to use because of their low-level nature. There is an even
lower level beneath the XPS packaging classes: the System.IO.Packaging namespace
implements OPC. This is the foundation on which the XPS packaging classes are
built. Although you could use the lowest-level classes to open an XPS file or any
other OPC file, they don’t give you any more control—they merely take more work.
In practice, the XPS-specific packaging classes are as low-level as you need. We men-
tion System.IO.Packaging here because the System.Windows.Xps.Packaging classes use
it—some types from the lower-level packaging API crop up in the XPS packaging API.

The classes in System.Windows.Documents also reflect the physical structure of the file,
but add higher-level WPF services such as data binding and layout. So, we will start
by looking at these higher-level classes.

The basic structure of an XPS file is very simple: a single XPS file contains one or
more documents, and each document consists of one or more pages. (In printing
terms, you could think of an XPS file as analogous to a print job containing one or
more documents.) The System.Windows.Documents namespace represents this struc-
ture with three classes. FixedDocumentSequence represents the set of documents in the
file. This contains a collection of FixedDocument objects, one for each document.
These in turn contain a collection of FixedPage objects, one for each page.

All of the XPS document structure classes begin with Fixed to make it
clear that the formatting of any XPS document is frozen. This distin-
guishes these classes from the flow document classes, which are also in
the System.Windows.Documents namespace.

If you unzip an XPS file, its physical structure will typically embody this logical struc-
ture. For example, Figure 15-1 shows the parts in an XPS file that correspond to the
classes just discussed. (The file we dissected here happens to be the XPS 1.0 specifi-
cation itself—it is distributed as an XPS file.) In the root is a file corresponding to the
FixedDocumentSequence: FixedDocSeq.fdseq, in this case. (Remember, this root file
may not always have this name. The reliable way to find it is to follow the link in the
_rels/.rel file.) The root also contains a Documents folder, with a subdirectory for
each document in the sequence.

This particular file contains just one document, so there is a single subdirectory, 1.
This contains a FixedDoc.fdoc file, which would be represented by a corresponding
FixedDocument object if you loaded the XPS file into memory. The directory also has a
Pages subfolder. This contains a series of .fpage files, each corresponding to a
FixedPage object. Each page file contains graphical elements describing the exact
appearance of the page.

526 | Chapter 15: Printing and XPS

All three levels—fixed document sequence, fixed document, and fixed page—are
stored as XAML. We will now look at the classes WPF supplies for working with
each of these structural levels, and the corresponding XAML in the XPS file.

FixedDocumentSequence
Logically, a FixedDocumentSequence is a collection of FixedDocument objects. Very
often, it will contain just one FixedDocument, but the structure supports any number.
Although this logical structure is simple, the details are slightly more involved.
Example 15-2 shows the steps required to create a FixedDocumentSequence and add a
single FixedDocument to it.

The slightly surprising part of this example is that we are required to wrap the
FixedDocument in a DocumentReference object. Surely it would be simpler if documents
could be added directly to a collection in some property of the document sequence.

Figure 15-1. Example XPS file contents

Example 15-2. Creating a FixedDocumentSequence containing a FixedDocument

FixedDocumentSequence fds = new FixedDocumentSequence();
FixedDocument doc = new FixedDocument();

DocumentReference docReference = new DocumentReference();
docReference.SetDocument(doc);

fds.References.Add(docReference);

XPS_1_0

Pages

FixedDocSeq.fdseq

1

FixedDoc.fdoc

1.fpage

2.fpage

...

Documents

XPS Document Classes | 527

However, the XAML in Example 15-3 offers a clue to why this would not be a good
idea. This is the FixedDocSeq.fdseq stream from an XPS file—the serialized version of a
FixedDocumentSequence.

If the documents were held directly inside a property of the fixed document
sequence, they would need to appear inline in this XAML. If this approach were used
consistently throughout the file, the fixed pages would appear inline, too—the entire
structure of the document would be stored in one huge XAML stream. This would
be unwieldy for large documents, particularly for a viewer that wants to start display-
ing a document before the file is completely downloaded. To avoid having one huge
XAML stream for the whole document, each FixedPage and each FixedDocument gets
its own stream. (Separation of documents is typically less critical than separation of
pages because it’s more common to have a high page count than a large number of
documents in a single file, but it’s more consistent to have distinct streams at all levels.)

The purpose of the DocumentReference is to provide an extra level of indirection that
enables this separation. The exact location of the relevant XAML stream in the file is
determined by a relative URL—the Source property of the DocumentReference, in this
case. The physical structure is not required to mirror the logical structure, even
though it often does in practice.

Example 15-2 showed how to create from scratch a FixedDocumentSequence contain-
ing a FixedDocument. You can also use these classes to inspect an existing XPS file—
Example 15-4 shows how to load a file from disk into these objects.

The XpsDocument class reads the file and is able to return a FixedDocumentSequence
object representing the top level of the file structure. We can then iterate through
the DocumentReference objects in the References property. We call GetDocument,
passing false to tell WPF that we don’t require it to reload the document from

Example 15-3. FixedDocumentSequence XAML

<FixedDocumentSequence xmlns="http://schemas.microsoft.com/xps/2005/06">
 <DocumentReference Source="/Documents/1/FixedDoc.fdoc"/>
</FixedDocumentSequence>

Example 15-4. Extracting FixedDocument objects from an XPS file

FixedDocumentSequence fds;
using (XpsDocument xpsDocumentFile = new XpsDocument("MyXpsDoc.xps",
 FileAccess.Read)) {
 fds = xpsDocumentFile.GetFixedDocumentSequence();
}

foreach (DocumentReference docRef in fds.References) {
 FixedDocument document = docRef.GetDocument(false);

 ...use document...
}

528 | Chapter 15: Printing and XPS

disk—WPF caches parts of the file in memory, and if you expect the file to have
changed, you can pass true here instead. We don’t expect the file to have changed in
between constructing the XpsDocument and calling GetDocument—you would normally
pass true here only if you kept the document open for long enough that changes
might have occurred. GetDocument returns the FixedDocument object representing the
document to which the reference points.

FixedDocument
The FixedDocument class represents a single document. Logically, it consists of a
sequence of pages, but as with the FixedDocumentSequence, an extra level of indirec-
tion enables its children to be defined in separate streams in the package.

Adding pages to a document is very similar to adding documents to a document
sequence. Just as each document must be wrapped in a DocumentReference, each page
must be wrapped in a PageContent object, although as Example 15-5 shows, the way
you provide a PageContent with its FixedPage is slightly different. You need to call the
IAddChild.AddChild method.

Example 15-6 shows how the FixedDocument created in Example 15-5 looks in
XAML.

Although we now have enough code to create a complete document, it’s not very
interesting because all the pages are empty. For a document to be worth printing or
viewing, the pages will need some content. This means working with the FixedPage
class.

Example 15-5. Adding FixedPages to a FixedDocument

FixedDocument doc = new FixedDocument();

FixedPage page1 = new FixedPage();
PageContent page1Content = new PageContent();
((IAddChild)page1Content).AddChild(page1);
doc.Pages.Add(page1Content);

FixedPage page2 = new FixedPage();
PageContent page2Content = new PageContent();
((IAddChild) page2Content).AddChild(page2);
doc.Pages.Add(page2Content);

Example 15-6. FixedDocument in XAML

<FixedDocument xmlns="http://schemas.microsoft.com/xps/2005/06">
 <PageContent Source="Pages/1.fpage" />
 <PageContent Source="Pages/2.fpage" />
</FixedDocument>

XPS Document Classes | 529

FixedPage
The XPS specification places very strict limitations on what is allowed inside a
FixedPage. Page content must be built from just three element types: Canvas, Glyphs,
and Path. Of course, Canvas has no intrinsic appearance—it is a layout panel. In XPS,
it is used simply to group items, enabling a single transform to be applied to a collec-
tion of objects. So, we are left with just two elements for describing the page con-
tent: Glyphs, the lowest-level mechanism in WPF for presenting text, and Path, the
general-purpose shape element.

At first glance, the FixedPage class seems not to enforce these restrictions.
Example 15-7 populates a FixedPage with a Canvas containing a TextBlock. This
appears to contravene the XPS specification, which requires us to represent text with
Glyphs, not TextBlock.

In fact, the FixedPage class fully supports the XPS specification. But instead of impos-
ing restrictions on the FixedPage object’s contents, WPF meets the XPS requirements
by converting page content into the lower-level types when necessary. This conver-
sion occurs when you print, or when you write a FixedDocument into an XPS file.
Example 15-8 shows the results of the conversion.

The TextBlock has been replaced by a Glyphs element. And, because WPF has deter-
mined that the Canvas we added was serving no purpose beyond positioning the text,
it has omitted that entirely.

Example 15-7. Adding content to a FixedPage

FixedPage page1 = new FixedPage();

Canvas content1 = new Canvas();
page1.Children.Add(content1);
TextBlock text1 = new TextBlock();
text1.Text = "Hello, world!";
text1.FontFamily = new FontFamily("Palatino Linotype");
text1.FontSize = 50;
Canvas.SetLeft(text1, 100);
Canvas.SetTop(text1, 200);
content1.Children.Add(text1);

Example 15-8. Text content converted into Glyphs in XPS file

<FixedPage xmlns="http://schemas.microsoft.com/xps/2005/06"
 xmlns:x="http://schemas.microsoft.com/xps/2005/06/resourcedictionary-key"
 xml:lang="en-us" Width="816" Height="1056">
 <Glyphs OriginX="100" OriginY="252.49" FontRenderingEmSize="50"
 FontUri="/Resources/53698881-83d0-479f-a8a4-5e5a58691f15.ODTTF"
 UnicodeString="Hello, world!" Fill="#FF000000" />
</FixedPage>

530 | Chapter 15: Printing and XPS

This illustrates that the conversion to XPS is a one-way trip. WPF pre-
serves just the information required to create the right appearance and
discards everything else. You cannot reconstruct the original UI from
the XPS file—there is no way to tell from Example 15-8 that it started
life as a TextBlock. The output would have looked exactly the same if
we had used a Label or a Glyphs element in Example 15-7 to create the
text. So, if you load a generated XPS file back in, its structure will usually
not be the same as the original—only the appearance will be preserved.

Note that although the OriginX property matches the position we specified with a
call to Canvas.SetLeft, the OriginY property is slightly different from the position we
set. This is because the attached Canvas.Top property indicates where the top of an
element’s bounding box should be, whereas the OriginY property indicates the posi-
tion of the text baseline for the Glyphs.

The FixedPage itself has a Width and Height of 816 × 1056. As always in WPF, these
are in units of device-independent pixels, which are 1/96th of an inch in size. So
these dimensions correspond to 8.5 × 11 inches. This is the default size for a
FixedPage, even if you live in a country where, say, A4 is more popular. You are free
to set any size you like, although if you are generating XPS for the purposes of print-
ing, you would normally set the size to match the target media, which is the topic of
the next section.

Page sizing

FixedPage allows you to specify three sizes for your page. The Width and Height prop-
erties are obvious enough—these specify the size of the paper for which the output is
intended. The other two sizes are necessary to deal with the technical limitations of
printing.

Most printers cannot print right to the edge of the paper. Control over the paper
position is somewhat approximate, so printers always leave a blank area near the edge
of the paper to ensure that they don’t attempt to deposit ink or toner onto the rollers
that feed the paper. A FixedPage can designate the area of the page in which it is
intending to print by setting the ContentBox property. As Figure 15-2 shows, the
ContentBox typically identifies an area smaller than the physical page.

By default, this is just information—setting ContentBox does not imply any particular
behavior. However, a helpful XPS viewer application could use this to check that a
document’s content fits into the printable area of the target printer, and scale the
output to fit if necessary or at least alert users of a potential problem.

XPS Document Classes | 531

The final page size measure relates to the standard workaround for printing to the
edge of the page. If you really need ink all the way to the edge of a page, you simply
print onto a larger sheet of paper and then trim it down. As long as the printable area
of the printer is bigger than the size to which you will be trimming, you will be able
to print across the entire area of your final output. However, it’s not quite as simple
as printing something the exact size of the final, trimmed page—if you did that, even
the slightest paper misalignment during the trimming process would result in an
annoying white gap at the edge of the page. The standard solution to this is to print a
slightly larger image than is required. This is referred to as bleed—the content bleeds
out of the page area and into the area destined to be trimmed. Often, the bleed area
also contains marks used in the print production process, such as crop lines and reg-
istration marks. The BleedBox indicates how large this area is, as Figure 15-3 shows.

Figure 15-2. ContentBox indicating location of printable content

Figure 15-3. BleedBox indicates printing outside of target page size

Physical paper size:
Width and Height properties

Printable content:
ContentBox property

Final physical paper size:
Width and Height properties

Printable content:
ContentBox property

Printed area:
BleedBox property

532 | Chapter 15: Printing and XPS

If the bleed area is being used only to hold production features such as
printing marks, the content box may still be smaller than the physical
page size, as shown in Figure 15-3. However, if the bleed box is being
used in order to allow ink all the way to the edge of the page, this
implies that the page is completely full, so the content box will fill the
whole page.

Again, the BleedBox is usually just for information. But it could be important infor-
mation for a print bureau producing the finished output—it could use this to verify
that everything is set up correctly before committing to a print run.

Page content limitations

It is convenient to be able to add any WPF content to a FixedPage and have it auto-
matically converted to the element types supported in XPS. However, this conver-
sion process has its limitations. WPF offers a couple of features that cannot be
represented directly with the limited repertoire available in an XPS file’s FixedPage:
3D and bitmap effects.

You can use these features in a FixedPage, but if you print the page or save it to an
XPS file, then all 3D content, and all elements that use the BitmapEffect property,
will be converted into bitmaps. They will be represented in the FixedPage as a Path
object with a rectangular shape and a bitmap fill. This does not guarantee perfect
fidelity—the image quality for such features is only as good as the resolution of the
generated bitmap.

If you want to print content that uses effects such as drop shadows, you might be
better off trying to approximate the effects you require using opacity masks and gra-
dient brushes. Although these are not as convenient as the bitmap effects, they can
be represented in an XPS file without any loss of fidelity.

Fonts, bitmaps, and other resources

The Glyphs element in Example 15-8 indicates the font through its FontUri property.
This does not name the font—instead it refers to a font file embedded in the XPS file.
Fonts, bitmaps, thumbnails, color profiles, and any other necessary resources are
embedded as separate streams in the package. These are then referred to by path. For
example, the FontUri in Example 15-8 is:

/Resources/53698881-83d0-479f-a8a4-5e5a58691f15.ODTTF

This indicates that the XPS package contains a Resources folder, and that this con-
tains an embedded font file with the specified name. In general, you do not need to
worry about creating these resources, unless you choose to work with the lower-level
System.Windows.Xps.Packaging API. If you print or save a fixed document using the
higher-level API, WPF adds the necessary resources for you.

Generating XPS Output | 533

It is important to be aware that WPF can automatically embed font
files, or subsets of a font file. It does this to guarantee that a document
can be displayed or printed correctly. However, it is your responsibil-
ity to ensure that you do not generate XPS files that contravene font
licensing terms.

We have now seen all the high-level classes that represent the structure of an XPS
document. We saw in Example 15-4 how to read an existing XPS file off the disk and
into a tree of objects representing its structure. But what about the creation process,
where we build an XPS document structure, and want to either print it or save it to
disk? For this, we must use the XpsDocumentWriter class.

Generating XPS Output
Whether you are printing, or writing your output to an XPS file, you can use the
same API: the XpsDocumentWriter class. If you wish to print, you can obtain one of
these from the printing API, as Example 15-9 shows.

This will cause the standard print dialog to be shown, allowing the user to select a
printer. If the user cancels the dialog, CreateXpsDocumentWriter returns null, but oth-
erwise it returns an XpsDocumentWriter, along with an object that describes the size of
the target’s paper and the margins of the printable area. If you wish to exercise more
control over the print dialog and printer selection, there are several variations on this
theme, described later in this chapter.

If you wish to send your output to an XPS file instead of a printer, you can obtain the
document writer using the code shown in Example 15-10.

Once you have obtained an XPS document writer, you can use the same code
whether you are writing to an XPS file or to a printer. For clarity, we will use the
term printing to refer to both kinds of output; unless otherwise specified, any discus-
sion of printing in the following sections also applies to generating XPS files.

Example 15-9. Obtaining an XpsDocumentWriter for printing

PrintDocumentImageableArea imageArea = null;
XpsDocumentWriter xpdw = PrintQueue.CreateXpsDocumentWriter(ref imageArea);
if (xpdw != null) {
 ...provide XpsDocumentWriter with output here...
}

Example 15-10. Obtaining an XpsDocumentWriter for file output

using (XpsDocument xpsFile = new XpsDocument(xpsOutputPath, FileAccess.Write)) {
 XpsDocumentWriter xpdw = XpsDocument.CreateXpsDocumentWriter(xpsFile);

 ...provide XpsDocumentWriter with output here...

}

534 | Chapter 15: Printing and XPS

You can provide an XpsDocumentWriter with content in many forms. For most of the
supported content types, you call a suitable overload of the Write method. This is a
one-shot process: once you’ve called Write, it will print the document straight away,
and any further calls to Write will throw an exception. The following sections
describe the various types of content accepted by a document writer.

Printing Fixed Documents
XpsDocumentWriter offers overloads of its Write method that accept a FixedPage, a
FixedDocument, or a FixedDocumentSequence. These allow you to submit a single page,
a whole document, or a job containing several documents for printing, respectively.
If you want to print more than one fixed page you must pass either a FixedDocument
or a FixedDocumentSequence, because you get to call the Write method only once.
Example 15-11 creates and prints a FixedDocument.

Example 15-11. Creating and printing a FixedDocument

FixedDocument doc = new FixedDocument();

// Add first page to document
FixedPage page1 = new FixedPage();
PageContent page1Content = new PageContent();
((IAddChild)page1Content).AddChild(page1);
doc.Pages.Add(page1Content);

// Add content to first page
Canvas content1 = new Canvas();
page1.Children.Add(content1);
TextBlock text1 = new TextBlock();
text1.Text = "Hello";
text1.FontSize = 50;
Canvas.SetLeft(text1, 100);
Canvas.SetTop(text1, 200);
content1.Children.Add(text1);

// Add second page to document
FixedPage page2 = new FixedPage();
PageContent page2Content = new PageContent();
((IAddChild) page2Content).AddChild(page2);
doc.Pages.Add(page2Content);

// Add content to second page
Canvas content2 = new Canvas();
page2.Children.Add(content2);
TextBlock text2 = new TextBlock();
text2.Text = "World";
text2.FontSize = 50;

Generating XPS Output | 535

This builds a FixedDocument with two FixedPages. The first contains the text “Hello,”
and the second contains the text “World”. The user will be shown the print dialog at
the point at which the code asks PrintQueue for the document writer. The print job
will be submitted to the print queue when it calls Write—when that method returns,
print spooling will already be complete, and the job will be in the Windows print
queue for the target printer.

If your FixedPage objects use any WPF element types other than Canvas, Glyphs, or
Path, the conversion to these simple element types occurs when you call the
XpsDocumentWriter.Write method.

Printing Visuals
You do not need to create FixedDocument or FixedPage objects explicitly. WPF is able
to generate a fixed page automatically from any object that derives from Visual.
Because Visual is the base class of all WPF user interface elements, this means you
can print any element. It will even accept elements that are already part of a visual
tree, enabling you to print a screenshot of a user interface.

Unlike the ordinary bitmap-based screenshots you get by pressing
PrtScn or Alt-PrtScn in Windows, these screenshots will be resolution-
independent. Also, they aren’t screenshots in the sense of being a
direct copy of what’s visible on-screen—they will contain your appli-
cation’s visuals and nothing else, even if your application is currently
obscured by other programs.

To print a Visual, just pass it to the relevant overload of the Write method.
Example 15-12 shows how to print a TextBlock element.

Canvas.SetLeft(text2, 100);
Canvas.SetTop(text2, 200);
content2.Children.Add(text2);

// Print document
PrintDocumentImageableArea imageArea = null;
XpsDocumentWriter xpsdw = PrintQueue.CreateXpsDocumentWriter(ref imageArea);
if (xpsdw != null) {
 xpsdw.Write(doc);
}

Example 15-12. Printing a single Visual

PrintDocumentImageableArea area = null;
XpsDocumentWriter xpsdw = PrintQueue.CreateXpsDocumentWriter(ref area);
if (xpsdw != null) {
 TextBlock myVisual = new TextBlock();

Example 15-11. Creating and printing a FixedDocument (continued)

536 | Chapter 15: Printing and XPS

This example performs layout on the TextBlock explicitly. WPF does this automati-
cally for elements in a user interface, but because this TextBlock is not hosted in a win-
dow, it is our responsibility to perform the layout. Otherwise, it would not have a
valid width and height, so it would be invisible when we try to print it. If we were try-
ing to print an element that was already in the visual tree of a window, this layout step
would not be necessary.

Note that the margin and size of the TextBlock have been based on the page size
information in the PrintDocumentImageableArea returned by PrintQueue, ensuring
that the TextBlock doesn’t fall into the unprintable area around the edge of the
paper. PrintDocumentImageableArea reports the total page size with its MediaSizeWidth
and MediaSizeHeight properties. The top-left position of the printable area within the
page is indicated by the OriginWidth and OriginHeight properties. The ExtentWidth
and ExtentHeight properties describe the size of the printable area.

Although basing the print margins on the physical capabilities of the printer guaran-
tees to make full use of the available space, it means that output will vary from one
printer to another. In practice, it’s common to choose fixed margins with sufficiently
conservative values that the content is likely to fit with any printer’s printable region.
Example 15-13 shows modifications to Example 15-12 that hardcode the margins.
For some applications it may be appropriate to provide the user with a way to mod-
ify the margins; WPF doesn’t have a built-in page setup dialog,* so it’s up to you how
to present such settings.

 double leftMargin = area.OriginWidth;
 double topMargin = area.OriginHeight;
 double rightMargin = area.MediaSizeWidth - area.ExtentWidth - leftMargin;
 double bottomMargin = area.MediaSizeHeight - area.ExtentHeight - topMargin;
 myVisual.Margin = new Thickness(leftMargin, topMargin,
 rightMargin, bottomMargin);

 myVisual.Text = "Hello, world";

 Size outputSize = new Size(area.MediaSizeWidth, area.MediaSizeHeight);
 myVisual.Measure(outputSize);
 myVisual.Arrange(new Rect(outputSize));
 myVisual.UpdateLayout();

 xpsdw.Write(myVisual);
}

* You could always use the PageSetupDialog class provided by Windows Forms. However, be aware that you
will pay the usual working set overhead for using Windows Forms features on top of the costs of using WPF.
If you are already using Windows Forms in your application (e.g., you are hosting Windows Forms controls
via interop, as described in Appendix B), incremental cost of using this dialog will be low. But if it’s the only
Windows Forms feature you use, you might want to consider whether it’s worth the impact.

Example 15-12. Printing a single Visual (continued)

Generating XPS Output | 537

The use of Debug.Assert in Example 15-13 is for illustration only. In
practice, there is no one correct way to respond if the configured mar-
gins fail to place the content entirely within the printable area. An
application might show the user a warning dialog the first time the
problem occurs for a particular document. Alternatively, it might
choose to adjust the content to fit.

Because the overload of the Write method used in Example 15-12 accepts any object
that has Visual as a base class, we are free to pass in whole trees of objects. For
example, Grid derives from Visual, so you can pass any Grid, and it will print the grid
and all its contents.

However, if you need to print multiple pages, you need to take a slightly different
approach. As with the previous examples, you are allowed to call this overload of the
Write method only once, meaning you can print only a single page. If you want to
print multiple pages as visuals, you need to use a different method of the
XpsDocumentWriter class: CreateVisualsCollator.

CreateVisualsCollator returns a SerializerWriterCollator object. This offers a
Write method that accepts a visual, just like XpsDocumentWrite.Write. The difference
is that you can call it several times in a row, once for each page. Example 15-14 uses
this technique to print 10 pages, with a TextBlock showing each page’s number.

Example 15-13. Setting fixed print margins

...

TextBlock myVisual = new TextBlock();

double leftMargin = 96; // 1 inch
double topMargin = 144; // 1.5 inches
double rightMargin = 96; // 1 inch
double bottomMargin = 144; // 1.5 inches

// Making sure that we're inside the physical
// limitations of the printer

Debug.Assert(leftMargin >= area.OriginWidth);
Debug.Assert(topMargin >= area.OriginHeight);
Debug.Assert(rightMargin <= area.OriginWidth + area.ExtentWidth);
Debug.Assert(topMargin <= area.OriginHeight + area.ExtentHeight);

myVisual.Margin = new Thickness(leftMargin, topMargin,
 rightMargin, bottomMargin);

...

538 | Chapter 15: Printing and XPS

We must indicate the start and end of the range of pages by calling BeginBatchWrite
and EndBatchWrite so that WPF knows when to start and complete the print spool-
ing process. Once you have called EndBatchWrite, you cannot perform any more out-
put with either the collator or the document writer.

Printing with Document Paginators
Some WPF classes have an intrinsic ability to split their content into pages. The
FlowDocument, FixedDocument, and FixedDocumentSequence classes all advertise this capa-
bility by implementing the IDocumentPaginatorSource interface. XpsDocumentWriter can
work with self-paginating objects directly, which can make multipage printing much
simpler than the previous example. Example 15-15 shows a function that you can use to
print an instance of any type that implements IDocumentPaginatorSource.

If the document paginator source is a fixed document or a fixed document sequence,
Example 15-15 will generate an output page for each fixed page in the source.

Example 15-14. Printing multiple Visuals

PrintDocumentImageableArea area = null;
XpsDocumentWriter xpsdw = PrintQueue.CreateXpsDocumentWriter(ref area);
if (xpsdw != null) {
 SerializerWriterCollator c = xpsdw.CreateVisualsCollator();
 c.BeginBatchWrite();
 for (int i = 1; i <= 10; ++i) {
 TextBlock tb = new TextBlock();
 tb.Text = i.ToString();
 tb.TextAlignment = TextAlignment.Center;
 tb.VerticalAlignment = VerticalAlignment.Center;
 tb.FontSize = 500;
 tb.FontFamily = new FontFamily("Verdana");

 tb.Margin = new Thickness(area.OriginWidth, area.OriginHeight, 0, 0);
 Size outputSize = new Size(area.ExtentWidth, area.ExtentHeight);
 tb.Measure(outputSize);
 tb.Arrange(new Rect(outputSize));
 tb.UpdateLayout();

 c.Write(tb);
 }
 c.EndBatchWrite();
}

Example 15-15. Printing with DocumentPaginator

public static void PrintPaginatedDocument(IDocumentPaginatorSource dps) {
 PrintDocumentImageableArea area = null;
 XpsDocumentWriter xpsdw = PrintQueue.CreateXpsDocumentWriter(ref area);
 if (xpsdw != null) {
 xpsdw.Write(dps.DocumentPaginator);
 }
}

Generating XPS Output | 539

This is not usefully different from just passing the fixed document or fixed docu-
ment sequence directly to the Write overload that accepts those types, so in practice,
you will not usually print fixed documents this way. However, if the source docu-
ment is a FlowDocument (which was described in Chapter 14), it will not have a fixed
idea of how many pages it contains. In this case, the paginator is more useful,
because you can use it to split the document into pages that fit the target media.

You might expect the FlowDocument pagination to be based automatically on the tar-
get page size. In fact, this is not the case: the paginator it returns defaults to a page
size of 816 × 1056 pixels (i.e., 8.5 × 11 inches regardless of the real paper size). You
can inspect or change the paginator’s page size using its PageSize property. If you are
writing to an XPS file instead of printing, the generated XPS file will have pages of
this size. If you are printing, the flow document will be split into pages of this size
regardless of whether they fit onto the target paper. If you want to be sure that the
flow document’s output will fit the available space offered by the target printer, you
should use the information returned in the PrintDocumentImageableArea to adjust the
PageSize property, as shown in Example 15-16.

This will ensure that the flow document is broken into pages that fit into the avail-
able space, whatever the paper size may be.

There is a limitation with printing a FlowDocument in this way: you cannot add other
features to the page, such as page numbers, without doing a little more work. You
have two options: either you can implement your own DocumentPaginator as a wrap-
per around the one provided by the FlowDocument, or you can call into the provided
paginator directly to retrieve the pages, and incorporate this into the content you
require to represent the whole page.

Example 15-17 shows some code that uses the second technique to print a
FlowDocument with page numbers.

Example 15-16. Setting a DocumentPaginator’s PageSize

PrintDocumentImageableArea area = null;
XpsDocumentWriter xpsdw = PrintQueue.CreateXpsDocumentWriter(ref area);
if (xpsdw != null) {
 DocumentPaginator paginator = dps.DocumentPaginator;
 paginator.PageSize = new Size(area.ExtentWidth, area.ExtentHeight);
 xpsdw.Write(paginator);
}

Example 15-17. Printing a FlowDocument with page numbers

public static void PrintFlowDocWithPageNumbers(FlowDocument myFlowDoc) {
 PrintDocumentImageableArea area = null;
 XpsDocumentWriter xpsdw = PrintQueue.CreateXpsDocumentWriter(ref area);
 if (xpsdw != null) {
 IDocumentPaginatorSource dps = myFlowDoc;
 DocumentPaginator sourceFlowDocPaginator = dps.DocumentPaginator;

540 | Chapter 15: Printing and XPS

This obtains an XpsDocumentWriter in the usual way. It then retrieves the docu-
ment paginator for the flow document we wish to print. Next, it sets the PageSize
on the paginator, specifying the full width of the printable page area, but reducing
the height in order to allow space for a header and footer to be added. This ensures
that the content, header, and footer fit within the printable area of the page.

Next, we make sure the paginator has an up-to-date page count—we changed the
page size, which is likely to have changed the number of pages required for the docu-
ment. If IsPageCountValid indicates that the page count is no longer up-to-date, we
call ComputePageCount.

Finally, Example 15-17 builds a FixedDocument to hold the paginated output, com-
bined with the header and footer, and prints it by calling the Write method of the
XpsDocumentWriter. The document is created by the BuildFixedDocument helper
method, which is shown in Example 15-18.

 const int HeaderFooterHeight = 30;
 sourceFlowDocPaginator.PageSize = new Size(area.ExtentWidth,
 area.ExtentHeight - 2 * HeaderFooterHeight);

 if (!sourceFlowDocPaginator.IsPageCountValid) {
 sourceFlowDocPaginator.ComputePageCount();
 }

 FixedDocument outputFixedDoc = BuildFixedDocument(myFlowDoc, area,
 sourceFlowDocPaginator, HeaderFooterHeight);

 xpsdw.Write(outputFixedDoc);
 }
}

Example 15-18. Building a FixedDocument from a FlowDocument

static FixedDocument BuildFixedDocument(FlowDocument myFlowDoc,
 PrintDocumentImageableArea area, DocumentPaginator sourceFlowDocPaginator,
 int headerFooterHeight) {

 FixedDocument outputFixedDoc = new FixedDocument();

 for (int pageNo = 0; pageNo < sourceFlowDocPaginator.PageCount; ++pageNo) {
 Canvas pageCanvas = new Canvas();
 pageCanvas.Margin = new Thickness(192);

 AddHeaderAndFooter(myFlowDoc, area, sourceFlowDocPaginator,
 headerFooterHeight, pageNo, pageCanvas);
 AddPageBody(sourceFlowDocPaginator,
 headerFooterHeight, pageNo, pageCanvas);

 AddPageToDocument(area, outputFixedDoc, pageCanvas);

 }

Example 15-17. Printing a FlowDocument with page numbers (continued)

Generating XPS Output | 541

This iterates through the pages provided by the paginator, creating a Canvas for each
page. The Canvas will hold the page content, and the header and footer. We set the
Margin on this canvas to ensure that it appears within the printable area of the page.
The fixed margin of 2 inches (192 device-independent pixels) all around should be
enough for any normal printer.

Next, we add the header and footer to the canvas, making sure they appear horizon-
tally centered, and at the appropriate vertical position on the page. We add these
with the AddHeaderAndFooter helper function, which is shown in Example 15-19.

Finally, we need to incorporate the page content from the flow document. WPF
offers a special element type, DocumentPageView, for hosting content from a particular
page of a paginated document, which is used by the AddPageBody helper function
shown in Example 15-20.

 return outputFixedDoc;
}

Example 15-19. Adding the header and footer

static void AddHeaderAndFooter(FlowDocument myFlowDoc,
 PrintDocumentImageableArea area,
 DocumentPaginator sourceFlowDocPaginator,
 int headerFooterHeight, int pageNo, Canvas pageCanvas) {

 TextBlock header = new TextBlock();
 header.Text = "My Document";
 header.FontSize = 20;
 header.FontWeight = FontWeights.Bold;
 header.TextAlignment = TextAlignment.Center;
 header.Width = sourceFlowDocPaginator.PageSize.Width;
 pageCanvas.Children.Add(header);

 TextBlock footer = new TextBlock();
 footer.Text += "Page " + (pageNo + 1);
 footer.TextAlignment = TextAlignment.Center;
 footer.FontFamily = myFlowDoc.FontFamily;
 footer.Width = sourceFlowDocPaginator.PageSize.Width;
 Canvas.SetTop(footer, area.ExtentHeight - headerFooterHeight);
 pageCanvas.Children.Add(footer);
}

Example 15-20. Adding the page body

static void AddPageBody(DocumentPaginator sourceFlowDocPaginator,
 int headerFooterHeight, int pageNo, Canvas pageCanvas) {

 DocumentPageView dpv = new DocumentPageView();
 dpv.DocumentPaginator = sourceFlowDocPaginator;
 dpv.PageNumber = pageNo;

Example 15-18. Building a FixedDocument from a FlowDocument (continued)

542 | Chapter 15: Printing and XPS

The Canvas defining the appearance of our page is now complete. The last thing the
loop in Example 15-18 does is to create a FixedPage to host the Canvas, wrap it in a
PageContent, and add that to the FixedDocument that will be returned to
Example 15-17. This is accomplished by the AddPageToDocument helper shown in
Example 15-21.

You can use the code in Example 15-17, along with its various helper functions, to
print any flow document. It will add a header to each page with the text “My Docu-
ment,” and a footer showing the page number.

Asynchronous Printing
Printing a large document can be a slow process. The Write methods shown in the
previous sections are synchronous (i.e., they do not return until the document has
been completely spooled out to the print queue). This can be bad news for the
user—if you print from the main thread, the application will become unresponsive
until printing finishes. Fortunately, WPF offers asynchronous versions of all of these
Write methods. Each overload of Write has a corresponding WriteAsync method.

The WriteAsync methods return immediately. Printing will then progress during idle
time. However, because WPF will be using the objects you passed in, you should
make sure you don’t attempt to change them until printing is complete. The sim-
plest way to ensure that is to create objects especially for printing. For example,
build a FixedDocument that will be passed to an XPS document writer’s WriteAsync
method, and which will never be used for anything else. (This rule also applies to
each FixedPage object and all the objects that make up the page content.)

 Canvas.SetTop(dpv, headerFooterHeight);
 pageCanvas.Children.Add(dpv);
}

Example 15-21. Adding pages to the FixedDocument

static void AddPageToDocument(PrintDocumentImageableArea area,
 FixedDocument outputFixedDoc, Canvas pageCanvas) {

 FixedPage fp = new FixedPage();
 fp.Width = area.MediaSizeWidth;
 fp.Height = area.MediaSizeHeight;
 fp.Children.Add(pageCanvas);

 PageContent pc = new PageContent();
 ((IAddChild) pc).AddChild(fp);
 outputFixedDoc.Pages.Add(pc);
}

Example 15-20. Adding the page body (continued)

XPS File Generation Features | 543

The XpsDocumentWriter will periodically raise the WritingProgressChanged event to
tell you how far along it is. It will raise its WritingCompleted event once printing has
completed spooling. The document may still be in the print queue at this point, so
this event doesn’t necessarily mean the document is sitting on the printer awaiting
collection; it just means that the application has finished generating the printer out-
put—the application could exit without losing the output. Example 15-22 shows a
version of Example 15-17 modified to use asynchronous printing.

Sometimes users need to cancel print jobs. They can, of course, do this via the print-
ing user interface in Windows. Alternatively, your application could call the
CancelAsync method on the XpsDocumentWriter anytime before it signals completion.
If the document is cancelled, the WritingCancelled event will be raised instead of the
WritingCompleted event.

Everything in the preceding sections applies equally to generating XPS files and send-
ing output to a printer. However, some tasks are specific to XPS file generation, and
some apply only in printing scenarios. The next section describes parts of the .NET
3.0 API that are concerned solely with XPS file generation.

XPS File Generation Features
As we’ve seen, you can use the same code path to generate both printed output and
XPS files by using the XpsDocumentWriter class. However, you can build some extra
features into an XPS file that would not be useful for print output, but which can
enhance its usefulness as a standalone file. Indeed, unless you plan to exploit some of
these features, there’s probably not much point in adding a “save as XPS” feature to
your application—Windows automatically offers basic XPS generation to any appli-
cation that can print.

Example 15-22. Asynchronous printing

void PrintPaginatedDocument(IDocumentPaginatorSource dps) {
 PrintDocumentImageableArea area = null;
 XpsDocumentWriter xpsdw = PrintQueue.CreateXpsDocumentWriter(ref area);
 xpsdw.WritingCompleted += OnPrinted;
 if (xpsdw != null) {
 xpsdw.WriteAsync(dps.DocumentPaginator);
 }
}

void OnPrinted(object sender, WritingCompletedEventArgs e) {
 MessageBox.Show("Printing completed!");
}

544 | Chapter 15: Printing and XPS

Any machine with either .NET 3.0 or the Microsoft XPS Essentials
Pack* installed will have a “Microsoft XPS Document Writer” printer.
Windows Vista has .NET 3.0 built in. You can install .NET 3.0 on
Windows XP or Windows Server 2003. You can install the XPS Essen-
tials Pack on these systems, and on Windows 2000 machines.

When an application “prints” to this printer, an XPS file is created. At
the start of the print process, a dialog opens asking the user where
he’d like to save the XPS file, and once printing is complete, the XPS
viewer application will run, displaying the results.

This is very useful because it means that any print-enabled application can generate
an XPS file. However, it is possible for applications to build a richer, more useful XPS
file than this pseudoprinter can. An application knows things about its documents
that the print system cannot, and can use this to enhance the XPS file. For example,
XPS files can contain hyperlinks to allow easy navigation within documents. An appli-
cation may also wish to control aspects of the file creation process, such as whether
the compression strategy favors speed of decoding, or minimizing the file size.

Package-Level XPS API
The XpsDocumentWriter class is convenient in that it lets us use functionality not
directly supported by the XPS file format itself. As we’ve seen, if we use non-XPS ele-
ments in a FixedPage, or we choose to work with Visual objects directly, the docu-
ment writer will convert these objects to glyphs and paths for us. However, there is a
price to pay: XpsDocumentWriter does not give you complete control over all XPS file
features.

WPF provides a lower-level API that lets you work directly with the streams of an XPS
file, giving you full control over all of the features, while still providing XPS-specific
features that you don’t get from the low-level System.IO.Packaging classes, such as an
intrinsic understanding of the parts and relationships required in an XPS file. Of
course, the downside is that you have to do more work to build up a complete docu-
ment from scratch. Fortunately, in a lot of cases, you can use both techniques: you
can build the basic document using the higher-level API, and then use the lower-level
API on the same file to add the XPS features you require.

The package-level API is defined in the System.Windows.Xps.Packaging namespace.
Table 15-2 shows the types it provides for dealing with the core XPS structural ele-
ments, and the nearest equivalents in the high-level API.

* See http://www.microsoft.com/whdc/xps/viewxps.mspx (http://tinysells.com/71).

XPS File Generation Features | 545

Working with the package-level API requires a procedural style. Instead of building
up a data structure in memory representing the documents and their pages, you issue
a series of instructions in strict order, describing which things to write out.
Example 15-23 shows how to create a document from scratch at this level.

Figure 15-4 shows how this generated page looks in the XPS viewer.

Table 15-2. Package-level XPS API

Document structures Type System.Windows.Documents
equivalent

XPS file XpsDocument None

Document sequence IXpsFixedDocumentSequenceReader,
IXpsFixedDocumentSequenceWriter

FixedDocumentSequence

Document IXpsFixedDocumentReader,
IXpsFixedDocumentWriter

FixedDocument

Page IXpsFixedPageReader,
IXpsFixedPageWriter

FixedPage

Example 15-23. Generating an XPS file from scratch

using (XpsDocument xpsDoc = new XpsDocument("Out.xps", FileAccess.Write)) {
 IXpsFixedDocumentSequenceWriter sequenceWriter =
 xpsDoc.AddFixedDocumentSequence();
 IXpsFixedDocumentWriter docWriter = sequenceWriter.AddFixedDocument();
 IXpsFixedPageWriter pageWriter = docWriter.AddFixedPage();

 XmlWriter pageXml = pageWriter.XmlWriter;
 pageXml.WriteStartElement("FixedPage");
 pageXml.WriteAttributeString("xmlns",
 "http://schemas.microsoft.com/xps/2005/06");
 pageXml.WriteAttributeString("Width", "793.7");
 pageXml.WriteAttributeString("Height", "1122.5");
 pageXml.WriteAttributeString("xml:lang", "en-GB");

 pageXml.WriteStartElement("Path");
 pageXml.WriteAttributeString("Data",
 "M 10,550 L 396,164 782,550 396,936 z");
 pageXml.WriteAttributeString("Fill", "#ffff0000");

 pageXml.WriteEndElement();

 pageXml.WriteEndElement();

 pageWriter.Commit();
 docWriter.Commit();
 sequenceWriter.Commit();
}

546 | Chapter 15: Printing and XPS

As you can see, you need to generate the raw XML for the fixed page content by
hand if you are working at this level, and it is your responsibility to ensure that it
conforms to the requirements laid out in the XPS specification. You cannot use the
FixedPage class or any WPF elements with these APIs. Life gets even more complex if
you wish to use text, as you need to generate embedded font resources. This is why
it’s often preferable to use a hybrid approach. Example 15-24 shows how to gener-
ate the basic output with XpsDocumentWriter, and then use the package-level API to
set a file property.

There are some limitations to this technique, because you are leaving certain parts
of the XPS file generation to the XpsDocumentWriter. For example, if you want fine
control over the generated XML, you will have to stick to the lower-level technique.

Figure 15-4. XPS file generated from scratch

Example 15-24. Using both XPS API styles

using (Package xpsPackage = Package.Open("Out.xps", FileMode.Create,
 FileAccess.ReadWrite))
using (XpsDocument doc = new XpsDocument(xpsPackage)) {
 FixedPage page = new FixedPage();
 Path p = new Path();
 p.Data = StreamGeometry.Parse("M 10,550 L 396,164 782,550 396,936 z");
 p.Fill = Brushes.Red;
 page.Children.Add(p);

 TextBlock text = new TextBlock();
 text.Text = "XPS Output";
 text.FontSize = 150;
 page.Children.Add(text);

 XpsDocumentWriter dw = XpsDocument.CreateXpsDocumentWriter(doc);
 dw.Write(page);

 doc.CoreDocumentProperties.Description = "Some text and a red square";
}

XPS File Generation Features | 547

However, most of the techniques described in the following sections can use this
hybrid approach, where the bulk of the XPS file is generated with XpsDocumentWriter,
and then a few details are edited with the System.Windows.Xps.Packaging API.

Core Document Properties
OPC defines a representation for a set of document properties. These enable docu-
ments to supply common properties such as title, description, and keywords in a
standard way. These properties are embedded in an XML stream in the package,
with one element per property.

Several of the supported properties are defined by the Dublin Core Metadata Initia-
tive,* a standard that defines how to represent certain common types of metadata in
markup. There are also a number of properties not found in the Dublin Core, but
which are common to all OPC-based file formats, including XPS and all of the Office
Open XML file formats. Table 15-3 shows all the properties, indicating which are
shared with the Dublin Core.

You’re not obliged to set any of these properties—set just those that make sense for
your application. You do so using the XpsDocument class’s CoreDocumentProperties

* http://dublincore.org.

Table 15-3. Core document properties shared with Dublin Core

Property Usage In Dublin Core

Category Categorization of document No

ContentStatus Status of document (e.g., “Draft”) No

ContentType Type of content, such as “Whitepaper” (note: this is not a MIME content type) No

Created Creation date Yes

Creator Entity primarily responsible for creating document Yes

Description Short description of the content Yes

Identifier An unambiguous reference to the document within a given context Yes

Keywords Set of keywords to facilitate searching No

Language Language in which document is written Yes

LastModifiedBy User who last modified the document No

LastPrinted Date on which the document was last printed No

Modified Date of last change Yes

Revision Revision number No

Subject Topic of document Yes

Title Name of document Yes

Version Version number No

548 | Chapter 15: Printing and XPS

property. This contains an instance of the PackageProperties type that defines CLR
properties corresponding to each available core document property. Example 15-25
shows how to use this.

Once you have set these properties, Windows Explorer is able to extract them,
because it knows how to retrieve core properties from XPS files. Figure 15-5 shows
how this looks. The labels Windows uses do not always correspond to the underlying
property names. This is because Windows has some long-standing conventions for
property names that predate the adoption of the Dublin Core properties by the OPC.

Windows Explorer allows the user to edit metadata on certain file formats. (Applica-
tions can register handlers to enable this editing. There is a built-in handler for XPS
files.) You can see this in Figure 15-5: look at the “Content type” entry. Our code did
not set this property, so the shell has shown an “Add text” prompt. If the user moves
the mouse over this or any of the other editable properties, the value will take on a

Example 15-25. Setting core document properties

PackageProperties props = xpsOutput.CoreDocumentProperties;

props.Creator = "Ian Griffiths";
props.Title = "XPS Output";
props.Subject = "Example XPS output document";
props.Description = "XPS document generated by example from " +
 "the book 'Programming WPF' published by O'Reilly";
props.Category = "Demo output";
props.ContentStatus = "Final";
props.Keywords = "XPS; Demo; WPF";

Figure 15-5. XPS core properties shown by Windows Explorer

XPS File Generation Features | 549

text-box-like appearance to let the user know she can edit the value. If she edits or
adds values, a Save button appears, allowing her to commit the changes to disk. So
be aware that the properties you write into an XPS file at creation time are not neces-
sarily the properties that it will have for its lifetime.

Thumbnails
OPC defines a way to embed thumbnail bitmap images. A thumbnail is a small bit-
map containing a preview of the document. Windows Vista can use this as the docu-
ment’s icon in Explorer. Thumbnails enable a rough image of a document to be
presented quickly, because they require very little processing—loading and render-
ing a small bitmap is likely to be faster than loading and rendering a FixedPage for all
but the most trivial of documents.

The most common style of thumbnail is a small view of the first page of the docu-
ment (or if the XPS file contains multiple fixed documents, the first page of the first
document). XPS allows thumbnails to be provided for each page, but the default
viewer does not use these, and neither the XPS Print Driver nor Microsoft Office’s
XPS export feature generates them. In practice, a single thumbnail for the file should
suffice.

To set the file’s thumbnail, you just call the XpsDocument object’s AddThumbnail
method, passing an XpsImageType value to specify the image type. Although the
XpsImageType enumeration lists four bitmap types, the specification requires thumb-
nails to be in either JPEG or PNG format, so you should not use the other types
here—the enumeration includes the TIFF and WDP types because those are sup-
ported in other parts of an XPS document. AddThumbnail returns an object of type
XpsThumbnail, which provides a method called GetStream. We then write the bitmap
into that stream. It is our job to provide the raw JPEG or PNG byte stream.
Example 15-26 shows how to generate a suitable bitmap and add it as a thumbnail.

Example 15-26. Adding a thumbnail to an XPS document

void AddThumbnailToXpsDocument(XpsDocument xpsOutput) {
 Size thumbnailSize = new Size(256, 256);
 Visual thumbnailVisual = CreateThumbnailVisual(thumbnailSize);

 XpsThumbnail docThumbnail = xpsOutput.AddThumbnail(XpsImageType.JpegImageType);
 WriteVisualAsThumbnail(thumbnailSize, thumbnailVisual, docThumbnail);

}

Visual CreateThumbnailVisual(Size thumbnailSize) {
 Grid myThumbnail = new Grid();
 myThumbnail.Background = new LinearGradientBrush(
 Colors.LightBlue, Colors.White, 90);

550 | Chapter 15: Printing and XPS

Most of the code in this example is there to generate a JPEG bitmap. Only two lines
of code are XPS-specific: the call to XpsDocument.AddThumbnail near the top, and the
call to GetStream near the bottom.

This example generates a 256 × 256-pixel bitmap. The XPS specification doesn’t
mandate any particular size, beyond saying that it should be “small.” However,
Explorer in Windows Vista expects high-resolution icons to be 256 × 256, and
because it is able to extract the thumbnail from an XPS and show it, 256 × 256 seems
like a sensible default for an XPS thumbnail. Figure 15-6 shows how Windows
Explorer displays the thumbnail created by Example 15-26 in its Large Icons view.

 TextBlock thumbText = new TextBlock();
 thumbText.FontSize = 50;
 thumbText.Text = "My XPS Document";
 thumbText.TextAlignment = TextAlignment.Center;
 thumbText.VerticalAlignment = VerticalAlignment.Center;
 thumbText.TextWrapping = TextWrapping.Wrap;
 myThumbnail.Children.Add(thumbText);

 myThumbnail.Measure(thumbnailSize);
 myThumbnail.Arrange(new Rect(new Point(), thumbnailSize));

 return myThumbnail;
}

void WriteVisualAsThumbnail(Size thumbnailSize, Visual thumbnailVisual,
 XpsThumbnail thumbnail) {

 RenderTargetBitmap bmp = new RenderTargetBitmap(
 (int) thumbnailSize.Width, (int) thumbnailSize.Height,
 96, 96, PixelFormats.Default);
 bmp.Render(thumbnailVisual);

 JpegBitmapEncoder encoder = new JpegBitmapEncoder();
 encoder.Frames.Add(BitmapFrame.Create(bmp));

 encoder.Save(thumbnail.GetStream());
}

Figure 15-6. XPS document thumbnail shown by Explorer in Windows Vista

Example 15-26. Adding a thumbnail to an XPS document (continued)

XPS File Generation Features | 551

Hyperlinks
XPS documents can contain hyperlinks. These may be either internal links within the
document or links to external sites. If you are building an XPS document using
XpsDocumentWriter, the simplest way to generate hyperlinks is to use the WPF
Hyperlink element.

In practice, navigation with XPS is slightly more complicated than what we saw in
Chapter 11 because the XPS file format itself does not support the Hyperlink ele-
ment directly. Instead, it requires you to set the FixedPage.NavigateUri attached
property on the Canvas, Glyph, or Path elements that you would like to act as links.
However, the XpsDocumentWriter can convert a Hyperlink into suitably annotated ele-
ments. It generates three elements for each hyperlink: the link text, a Path represent-
ing the underline, and a rectangular Path element with a transparent fill. This covers
the whole area of the Hyperlink to ensure that it functions correctly as a click target
even if the Hyperlink itself has a transparent background. Without this, the link
would be much harder to click—clicking in, say, the space in the middle of a letter o
or anywhere outside of the letter shapes would fail to activate the link.*

Adding a hyperlink to an external resource, such as a web site, is simple: just set the
link’s NavigateUri to an absolute URL. But if you want a link on one page to be able
to refer to another page, you must use a fragment URI (i.e., one beginning with a #
character). The text following the # refers to a named element somewhere in the
document.

For an element to be a valid target for a link, you must do two things. First, you must
set the element’s Name property to match the fragment URI in the link. (For example, if
the link’s NavigateUri is “#Heading_1” its target is an element named “Heading_1”.)
Second, you must advertise the existence of the target with a LinkTarget object associ-
ated with the containing page’s PageContent object.

This second requirement exists to make sure XPS document viewers don’t need to
parse every single page in order to find the link target. As we saw earlier, the
FixedDocument part of an XPS file contains a sequence of PageContent elements
describing the pages that make up the document, such as the one shown in
Example 15-6. If you are using hyperlinks, this part must declare which pages con-
tain which link targets. Example 15-27 shows such a document.

* If you choose to generate an XPS document with the package-level APIs, you will need to do something sim-
ilar when creating hyperlinks in order to make them usable.

Example 15-27. FixedDocument with LinkTargets

<FixedDocument xmlns="http://schemas.microsoft.com/xps/2005/06">
 <PageContent Source="Pages/1.fpage" />
 <PageContent Source="Pages/2.fpage">

552 | Chapter 15: Printing and XPS

By declaring link targets in the FixedDocument part, it becomes possible for an XPS
reader to follow internal links quickly. When the user clicks on a link, an XPS docu-
ment viewer needs to scan only the FixedDocument to find the named link, and then
open the containing page. Without this structure, it would need to scan every single
page looking for the named element. This is not an optional performance enhance-
ment—you are required to advertise link targets. Failure to do this will cause the
links not to work.

This linking mechanism requires you to ensure that your fragment
names are unique across the scope of the whole document. Indeed, the
XPS specification recommends (but does not absolutely require) that if
a single XPS file contains multiple documents, the fragment names
should be unique across the scope of the whole file.

The code in Examples 15-28 through 15-30 creates a document with a table of con-
tents as its first page, containing a set of links to 10 more pages that make up the
remainder of the document. Figure 15-7 shows how this first page will look. Click-
ing on any of these links in an XPS document viewer will jump directly to the rele-
vant page.

Example 15-28 builds this FixedDocument. It begins by adding a page to contain the
table of contents. This first page contains a TextBlock, which is initially empty.

 <PageContent.LinkTargets>
 <LinkTarget Name="FirstItem" />
 </PageContent.LinkTargets>
 </PageContent>
 <PageContent Source="Pages/3.fpage">
 <PageContent.LinkTargets>
 <LinkTarget Name="SecondTarget" />
 <LinkTarget Name="Third" />
 </PageContent.LinkTargets>
 </PageContent>
</FixedDocument>

Figure 15-7. Links in an XPS document

Example 15-27. FixedDocument with LinkTargets (continued)

XPS File Generation Features | 553

The for loop builds 10 more pages and creates hyperlinks to these pages, adding
those links to the TextBlock on the first page, and building up the list of links as
shown in Figure 15-7.

This code relies on a helper function, MakePage, to generate each page. Although a
single page can contain any number of targets, Example 15-29 keeps things simple
by creating a page for each target. It adds a TextBlock to act as the target itself. The
fragment IDs* take the form Page1, Page2, and so on.

Example 15-28. Using hyperlinks: creating the document

public static FixedDocument MakeDocWithToc() {
 FixedDocument doc = new FixedDocument();

 FixedPage tocPage = new FixedPage();
 TextBlock tableOfContents = new TextBlock();
 tocPage.Children.Add(tableOfContents);

 PageContent pc = new PageContent();
 ((IAddChild) pc).AddChild(tocPage);
 doc.Pages.Add(pc);

 for (int pageNumber = 1; pageNumber <= 10; ++pageNumber) {
 pc = MakePage(pageNumber);
 doc.Pages.Add(pc);

 Hyperlink link = MakeLink(pageNumber);
 tableOfContents.Inlines.Add(link);
 tableOfContents.Inlines.Add(new LineBreak());
 }
 return doc;
}

* Fragment IDs are the part of the URL following a # symbol. These are a standard URL feature. WPF uses
these for much the same purpose as web pages: to identify a particular target location within a page.

Example 15-29. Using hyperlinks: creating pages with targets

static PageContent MakePage(int pageNumber) {
 PageContent pc;
 string fragmentId = "Page" + pageNumber;

 TextBlock tb = new TextBlock();
 tb.Text = "This is page " + pageNumber;
 tb.Name = fragmentId;

 FixedPage page = new FixedPage();
 page.Children.Add(tb);
 pc = new PageContent();
 ((IAddChild) pc).AddChild(page);

554 | Chapter 15: Printing and XPS

We must also advertise the existence of the targets in the PageContent so that an XPS
reader can find the targets without opening all of the FixedPage parts. This is why
Example 15-29 creates a LinkTarget for each page.

After calling MakePage, Example 15-28 creates a Hyperlink for each page, using the
MakeLink helper function shown in Example 15-30. This sets the NavigateUri prop-
erty to a fragment URI matching the Name of the target.

If the FixedDocument created by Examples 15-28 through 15-30 is written to an XPS
file using an XpsDocumentWriter, the table of contents pages will contain the hyper-
link, converted into Glyphs and Path elements as the XPS specification requires. If the
user opens the file in the XPS viewer provided with .NET 3.0 and clicks on a link, it
will take him straight to the target. Example 15-31 shows an excerpt from the first
fixed page in the XPS file that the preceding example generates.

 LinkTarget lt = new LinkTarget();
 lt.Name = tb.Name;
 pc.LinkTargets.Add(lt);
 return pc;
}

Example 15-30. Using hyperlinks: creating the Hyperlink

static Hyperlink MakeLink(int pageNumber) {
 string fragmentId = "Page" + pageNumber;
 Run linkText = new Run("Go to page " + pageNumber);
 Uri linkTarget = new Uri("#" + fragmentId, UriKind.Relative);

 Hyperlink link = new Hyperlink(linkText);
 link.NavigateUri = linkTarget;

 return link;
}

Example 15-31. Generated FixedPage with hyperlink

<FixedPage xmlns="http://schemas.microsoft.com/xps/2005/06"
 xmlns:x="http://schemas.microsoft.com/xps/2005/06/resourcedictionary-key"
 xml:lang="en-us" Width="816" Height="1056">
 <Glyphs OriginX="0" OriginY="12.95" FontRenderingEmSize="12"
 FontUri="/Resources/19775d40-e839-41d3-a9fe-ca4670f35840.ODTTF"
 UnicodeString="Go to page 1" Fill="#FF0000FF" />
 <Path Fill="#FF0000FF" Data="M0,13.65L69.19,13.65 69.19,14.34 0,14.34Z" />
...
 <Path FixedPage.NavigateUri="../FixedDocument.fdoc#Page1" Fill="#00000000"
 Data="F1M0,0L69.19,0 69.19,15.96 0,15.96Z" />
...
</FixedPage>

Example 15-29. Using hyperlinks: creating pages with targets (continued)

System.Printing | 555

This shows only the elements for the first link. The Glyphs element presents the text
of the link: “Go to page 1.” The first Path renders the underline—hyperlinks are dis-
played in the usual “blue with underline” style by default. The second Path defines a
rectangle that covers the area occupied by the hyperlink, ensuring that the whole area
is clickable. (It has a transparent fill, ensuring that it is invisible, but still presents a
click target.) As you can see, this final Path element has the FixedPage.NavigateUri
attached property. The XpsDocumentWriter has replaced our fragment URI with a rela-
tive URI pointing to the LinkTarget as declared in the fixed document part—this is
the URI form that XPS readers will expect to see in the final output to represent a
hyperlink. The result is that when the user clicks on a link in the contents page, he is
taken to the corresponding target page.

Compression
When you create an XpsDocument, you have the option to specify the type of compres-
sion you would like to use. If you do not pass a CompressionOption, it will default to
maximum compression. However, if you would like to favor speed over file size, you
can pass in either Fast (as in Example 15-32) or SuperFast.

In this section, we saw that many XPS features are of interest only when the output is
destined for a file. The .NET 3.0 Framework also provides a number of features that
are concerned solely with printing.

System.Printing
The System.Printing namespace defines types that provide printing services includ-
ing managing settings of print jobs, discovering and selecting print queues, and con-
figuring printers and print servers. We will explore the most commonly used types
from this namespace.

PrintQueue
PrintQueue represents an output destination for printing—anytime you print some-
thing, you are sending it to a PrintQueue. The standard print dialog presents a list of
available printers, and each printer in this list corresponds to a PrintQueue.

You have already seen several examples using PrintQueue—it offers a static
CreateXpsDocumentWriter method that can return an XpsDocumentWriter. Although
this method does not explicitly return a PrintQueue object, the writer it returns is
implicitly bound to the PrintQueue of the printer the user selected in the print dialog.

Example 15-32. Choosing fast compression

XpsDocument doc = new XpsDocument("out.xps", FileAccess.Write,
 CompressionOption.Fast);

556 | Chapter 15: Printing and XPS

The examples shown earlier in this chapter call an overload of CreateXpsDocumentWriter
that does not specify a target PrintQueue, causing a print dialog to be shown automati-
cally. However, if you have a PrintQueue object, you can call one of the overloads that
accepts a PrintQueue, in which case no dialog will be shown, and the document writer
will target the specified queue. Example 15-33 shows one way to do this.

This example uses the default queue on the local machine. You can also obtain a
PrintQueue from the PrintServer or the PrintDialog class. PrintQueue provides
numerous properties (more than 60). Some of these provide static information about
the queue, such as its name (FullName) and print speed (AveragePagesPerMinute).
Others provide dynamic status information, such as IsPaperJammed and IsTonerLow.

PrintServer
PrintServer represents a machine offering one or more print queues. It provides a
GetPrintQueues method that can return a collection of all the PrintQueue objects asso-
ciated with the machine.

You can create a PrintServer by passing the machine name to the constructor. An alter-
native is a special derived class we saw in Example 15-33, called LocalPrintServer,
which provides access to the local machine. This derived class adds a DefaultPrintQueue
property, which returns the PrintQueue currently configured as the default print target.

GetPrintQueues offers overloads that enable you to filter the list of print queues. You
can pass in an array of EnumeratedPrintQueueTypes values, specifying the kinds of
printers you would like to see (e.g., print queues representing faxes, or print queues
published in directory services).

If you already know exactly which print queue you want, you can call GetPrintQueue,
passing in the queue name.

PrintServer even enables suitably privileged users to add and remove print queues.
InstallPrintQueue allows you to specify the queue name, driver name, port names,
processor name, and optionally the share name, comment, and location description.
DeletePrintQueue removes a print queue.

Example 15-33. Creating a document writer with a specific PrintQueue

LocalPrintServer local = new LocalPrintServer();
PrintQueue pq = local.DefaultPrintQueue;

XpsDocumentWriter xpsdw = PrintQueue.CreateXpsDocumentWriter(pq);

System.Printing | 557

PrintSystemJobInfo
The PrintQueue class defines a GetPrintJobInfoCollection method. This returns a
collection of PrintSystemJobInfo objects. This collection provides roughly the same
information you can see by opening the window showing active print jobs for the
printer in Windows.

Some of the information in PrintSystemJobInfo is static for the job lifetime, such as
JobName and NumberOfPages. Some properties provide status information; for example,
IsPrinting, TimeSinceStartedPrinting, and IsPaperOut. PrintSystemJobInfo also offers
a Cancel method to cancel the print job, and Pause and Resume methods to allow a job
to be suspended and then resumed.

PrintTicket and PrintCapabilities
When you print from a Windows application, the print dialog provides access to var-
ious printing options. These include generic features such as the number of copies to
be printed and collation settings. There may also be features common to many print-
ers but not universally supported, such as double-sided printing. In some cases, you
may wish to configure features specific to your particular printer type. A PrintTicket
object encapsulates all such print settings.

The PrintCapabilities class is related to PrintTicket. Given a PrintQueue, you can
call its GetPrintCapabilities method to discover the supported set of features you
can add to a PrintTicket for that queue (see Example 15-34). If you call the overload
of GetPrintCapabilities that takes no parameters, it will return a PrintCapabilities
object with properties indicating which common features are available.

The PrintCapabilities class is convenient. However, it does not provide a complete
list of the features the printer has to offer. It defines only the properties for common
features. To get the complete set, you need to call the GetPrintCapabilitiesAsXml
method. This returns an XML document containing all of the features, including
those specific to the model of printer attached to the queue. This document will con-
tain XML elements named Feature for each available feature. Example 15-35 shows
one such element.

Example 15-34. Examining print capabilities

PrintCapabilities caps = pq.GetPrintCapabilities();
foreach (Duplexing duplexType in caps.DuplexingCapability) {
 Console.WriteLine(duplexType);
}

558 | Chapter 15: Printing and XPS

Example 15-36 uses XPath to extract all of the Feature elements, and to print their
DisplayName properties in order to show the names of the features. It then retrieves
the Option elements inside each Feature to display the available settings.

Example 15-35. Feature from a PrintCapabilities XML document

<psf:Feature name="ns0000:JobEnhancedPCL5Enable">
 <psf:Property name="psf:SelectionType">
 <psf:Value xsi:type="xsd:QName">psk:PickOne</psf:Value>
 </psf:Property>
 <psf:Property name="psk:DisplayName">
 <psf:Value xsi:type="xsd:string">EnhancedPCL5Enable</psf:Value>
 </psf:Property>
 <psf:Option name="ns0000:False" constrained="psk:None">
 <psf:Property name="psk:DisplayName">
 <psf:Value xsi:type="xsd:string">False</psf:Value>
 </psf:Property>
 </psf:Option>
 <psf:Option name="ns0000:True" constrained="psk:None">
 <psf:Property name="psk:DisplayName">
 <psf:Value xsi:type="xsd:string">True</psf:Value>
 </psf:Property>
 </psf:Option>
</psf:Feature>

Example 15-36. Working with print capabilities in XML form

Stream capsStream = pq.GetPrintCapabilitiesAsXml();
XmlDocument capsDoc = new XmlDocument();
capsDoc.Load(capsStream);

XmlNamespaceManager nsm = new XmlNamespaceManager(capsDoc.NameTable);
nsm.AddNamespace("psf",
 "http://schemas.microsoft.com/windows/2003/08/printing/printschemaframework");

XmlNodeList features = capsDoc.SelectNodes("//psf:Feature", nsm);
foreach (XmlElement feature in features) {
 XmlNode featureName = feature.SelectSingleNode(
 "psf:Property[@name='psk:DisplayName']/psf:Value/text()", nsm);
 Console.WriteLine("Feature: " + featureName.Value);

 XmlNodeList options = feature.SelectNodes("psf:Option", nsm);
 foreach (XmlElement option in options) {
 XmlNode optionName = option.SelectSingleNode(
 "psf:Property[@name='psk:DisplayName']/psf:Value/text()", nsm);
 if (optionName != null) {
 Console.WriteLine(" option: " + optionName.Value);
 }
 }
}

System.Printing | 559

Running this against a real printer generates a lot of output—about 40 features, each
with a few options. Because that wouldn’t make very interesting reading,
Example 15-37 shows just a short excerpt that corresponds to the XML in
Example 15-35. It shows a printer-specific feature from one of the authors’ printers,
along with the possible settings for that feature.

If you are interested in only certain features (e.g., you wish to know whether the
printer at the end of the PrintQueue supports color and duplex printing), you can
build a PrintTicket containing the features you are interested in and pass that to
either of the methods for retrieving capabilities. This filters the results, listing only
features that are both supported by the target printer and that were in your
PrintTicket.

It is sometimes appropriate to specify print settings on a more fine-grained level than
an entire print job. For example, if you are printing to a color printer, you might
require color only on certain pages, and could indicate to the printer that black-and-
white printing should be used on the rest. To exploit this, you would associate a
PrintTicket for each FixedPage and FixedDocument, as well as providing one for the
whole job. You would set the ticket’s OutputColor property to OutputColor.Color for
the color pages, and OutputColor.Grayscale for the other tickets. (For the job-level
ticket, either you can let the user provide the settings via a print dialog, or you can
pass one in to PrintQueue.CreateXpsDocumentWriter.)

Although print tickets are used to control print settings, it may be appropriate to
provide them when writing an XPS file. For example, your application may generate
XPS file output that is ultimately destined for a print bureau. In this case, either you
can set the ticket on the FixedPage, FixedDocument, and FixedDocumentSequence classes
(just as you would for printing) or you can use the package-level API. The writer
interfaces for fixed pages, documents, and document sequences offer a settable
PrintTicket property.

PrintDialog
As we’ve already seen, if you ask the PrintQueue class to create an XpsDocumentWriter
without passing in a specific PrintQueue, it automatically shows the standard print
dialog. However, sometimes you will need to exercise more control. For example,
you may wish to enable the page range selection functionality, allowing the user to
print a specific range of pages from the document. You may also wish to select an

Example 15-37. Printer-specific feature

Feature: EnhancedPCL5Enable
 option: False
 option: True

560 | Chapter 15: Printing and XPS

initial print queue and print ticket—rather than accepting the current defaults, you
might wish to show the same settings the user chose the last time a particular docu-
ment was printed, for example. Alternatively, although you may be happy with the
default print dialog behavior, you might want to examine the PrintQueue or
PrintTicket chosen by the user. In these cases, you will need to write code to display
the PrintDialog.

Example 15-38 shows how to enable user page range selection in the PrintDialog.
This also sets an initial selected range of pages.

If the user clicks the Print button, ShowDialog will return true. (The return type is a
nullable bool, hence explicit comparison with true in the if statement.) The code
goes on to retrieve the print queue and ticket reflecting the user’s chosen print set-
tings. These could then be passed to PrintQueue.CreateXpsDocumentWriter, in order
to start printing to the chosen queue with the configured settings.

Media Description
Several classes are available in the System.Printing namespace for working with the
size and resolution of the output media. These are described in Table 15-4. The rea-
son for having several different classes to represent “paper size” is that different sce-
narios require different amounts of information.

Example 15-38. Using PrintDialog

PrintDialog pd = new PrintDialog();
pd.MinPage = 1;
pd.MaxPage = 20;
pd.UserPageRangeEnabled = true;
pd.PageRangeSelection = PageRangeSelection.UserPages;
pd.PageRange = new PageRange(4, 8);

if (pd.ShowDialog() == true) {
 PrintQueue pq = pd.PrintQueue;
 PrintTicket pt = pd.PrintTicket;
 ...
}

Table 15-4. Media description types

Class Usage

PageMediaSize Describes the paper size

PageImageableArea Describes the area of the paper in which printing is possible

PrintDocumentImageableArea Combines a description of the paper size and the printable area

PageResolution Describes the horizontal and vertical resolution of the target, and contains a
“qualitative” resolution such as Draft or High

Where Are We? | 561

Displaying Fixed Documents
The easiest way to display an XPS file is to use the XPS viewer application supplied
with the .NET 3.0 Framework. This viewer runs when you double-click on an XPS
file. As mentioned earlier, Microsoft also supplies a free viewer for displaying docu-
ments on machines without the framework installed. However, it is sometimes use-
ful to be able to display an XPS file within an application. WPF supplies the
DocumentViewer control for this. Simply set its Document property to refer to either a
FixedDocument or a FixedDocumentSequence, and it will render the document, provid-
ing navigation and zoom controls. Example 15-39 shows a simple window contain-
ing a DocumentViewer.

Given this XAML, the code-behind file can load an XPS document as shown in
Example 15-40.

This reads the XPS file specified by the first command-line parameter. You could also
use a FixedDocument or FixedDocumentSequence built from scratch. Figure 15-8 shows
the XPS specification itself loaded into this UI.

Where Are We?
The XML Paper Specification is at the heart of printing in WPF. It also acts as a file
format for accurately capturing an application’s printable output. WPF lets us work
with XPS files at various levels. There are the high-level FixedDocumentSequence,
FixedDocument, and FixedPage classes, which mirror the basic structure of an XPS file
but allow us to use WPF elements such as layout primitives that are not directly sup-
ported in XPS. The XpsDocumentWriter maps between this framework element world
and the lower-level world of the XPS file.

Example 15-39. Window with DocumentViewer

<Window x:Class="ShowFixedDocument.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Show FixedDocument" Height="300" Width="300">

 <DocumentViewer x:Name="viewer" />

</Window>

Example 15-40. Loading an XPS document into a DocumentViewer

string docPath = Environment.GetCommandLineArgs()[1];
XpsDocument doc = new XpsDocument(docPath, FileAccess.Read);
viewer.Document = doc.GetFixedDocumentSequence();

562 | Chapter 15: Printing and XPS

We can either build an XPS file on disk or send it directly to the print system. If we
provide a “save as XPS” feature, we may choose to add extra structure to enhance
the resulting XPS files, typically working directly at the XPS package level with the
System.Windows.Xps.Packaging namespace. Or, if we wish, we can go lower still,
using the System.IO.Packaging namespace to work directly at the OPC level.

The System.Printing namespace provides us with various types to control the print-
ing process, such as choosing output servers and queues, and configuring the print
settings.

Figure 15-8. DocumentViewer control

563

Chapter 16 CHAPTER 16

Animation and Media16

Imagine an application with a completely static appearance, which offers no visible
reaction to mouse clicks or other input—it would sometimes be hard to tell whether
that application was functioning or had frozen. We depend on visual feedback to
assure us that applications are responding to input. Adding movement to your user
interface can bring it to life, enhancing the interactive feel of the application. Anima-
tion can improve the realism of visual transitions intended to suggest physical move-
ment, such as buttons that become visibly pushed in when clicked.

Animation is also useful for dealing with transitions from one view to another. In the
real world, we are not used to seeing items materialize instantaneously out of
nowhere, but computer programs often use abrupt transitions. In the very early days
of cinema, editing shots to make objects or people appear suddenly was an effective
way of scaring the audience, because it was such an unnatural thing to see. These
days we are accustomed to unreal imagery and are not so easily shocked, but sudden
transitions can still jar. Careful and subtle use of animation can make it much easier
for a user to follow visual transitions, such as a move from one page to another or the
appearance and disappearance of UI features.

For many years, Windows has been able to play video clips, but only as isolated
islands of moving content. Animating features of ordinary controls has typically been
much harder. WPF makes it easy to add animation to your application, by providing
comprehensive support for animating almost any visible aspect of any user interface
element. It can, of course, play video and audio clips as well, and it can even syn-
chronize media playback with animations.

Animation Fundamentals
Animation involves changing some visible characteristic of part of a user interface, such
as its size, position, or color, over some period of time. You could do this the hard way,
by creating a timer and modifying the user interface’s appearance on each timer tick.
Indeed, this is how animation is typically done in Win32 and Windows Forms.

564 | Chapter 16: Animation and Media

Fortunately, WPF takes care of these low-level details. Animation, like many features
of WPF, simply requires us to declare what we would like to happen. The system takes
care of doing it for us.

All of WPF’s animation support boils down to changing one or more properties over
time. This means that there are some limitations on what WPF’s animation system
can do for you. For example, the structure of the visual tree remains the same
throughout. An animation will not add and remove elements for you (although it is
possible for animation to set properties that will change elements’ visibility). You
cannot provide “before” and “after” scenes, and have WPF interpolate between the
two. This means there is no automatic way to animate a transition from one layout to
another so that all of the elements slide from their start positions to their end posi-
tions—you would need to write a special-purpose custom panel to make that happen.*

The key to knowing what WPF animation can or cannot do is to understand its
property-focused nature—it changes only those properties you tell it to change.
When deciding how to animate a UI, ask yourself what you would expect to see half-
way through the animation, and work out how the properties would need to be set
in order to capture that intermediate point. If you apply this thought process for ani-
mating from a horizontal to a vertical StackPanel, it’s obvious that there’s a prob-
lem. You can’t set a property on a StackPanel to make it display something halfway
between horizontal and vertical—and if you can’t, neither can the animation system.

Before we look at any of the parts of the animation framework in detail, let’s exam-
ine a simple example. Example 16-1 shows the markup for a single red ellipse that
will act as the target for an animation.

Example 16-2 creates an animation object and applies it to the ellipse’s Width prop-
erty in order to make the ellipse grow wider over five seconds.

The animation in this example is of type DoubleAnimation, which is defined in the
System.Windows.Media.Animation namespace. The significance of the Double is that
the property being animated is of type Double, as opposed to Int32, Point, Size, or

* You can find an example of an animating panel in Kevin Moore’s WPF Bag-O-Tricks at http://wpf.netfx3.com/
files/folders/controls/entry8196.aspx or http://tinysells.com/112.

Example 16-1. A target to be animated

<Ellipse Name="myEllipse" Fill="Red" Height="100" Width="10" />

Example 16-2. A simple animation

DoubleAnimation animate = new DoubleAnimation();
animate.To = 300;
animate.Duration = new Duration(TimeSpan.FromSeconds(5));
animate.RepeatBehavior = RepeatBehavior.Forever;
myEllipse.BeginAnimation(Ellipse.WidthProperty, animate);

Animation Fundamentals | 565

some other type. Not all types are animated in the same way. For example, Point is a
two-dimensional value, meaning we may want control over aspects of its animation
that wouldn’t make sense for a one-dimensional type such as Double.

The DoubleAnimation describes how the animated property should change over time.
Example 16-2 sets the To property to 300, and it sets a Duration of five seconds. As
you might guess, this means the width will start from the initial value of 10 specified
in Example 16-1, and will gradually change to 300 over the course of five seconds.
The RepeatBehavior property has been set to Forever, indicating that once the anima-
tion reaches the end, it should go back to the start and repeat indefinitely.

The animation created by Example 16-2 will start to run the moment it calls the
BeginAnimation method. Note that BeginAnimation requires us to pass an object identi-
fying the property to be animated—this must be a DependencyProperty object; types
that define dependency properties usually make the corresponding DependencyProperty
object available in a static read-only field, such as the WidthProperty field used in
Example 16-2. Figure 16-1 shows how the ellipse appears at various stages during the
animation.

As we will see, there are several ways to choose exactly how the properties change.
For example, we can use curved motion and changes in speed. But these are just
ways of getting WPF to set properties to the right value at the right time.

You can animate the majority of properties that have an impact on an element’s
appearance. There are just three requirements to be able to animate a property: the
property must be a dependency property, a suitable animation type must be avail-
able, and the target type that defines the property must implement IAnimatable.

The animation system relies on the dependency property system to be able to update
property values automatically. The main reason for this is that animations are always
transient—they never change the underlying value of the property, they just tempo-
rarily change the effective value. This means that if your code decides to change the
underlying property value halfway through an animation, the property will correctly
revert to this new underlying value when the animation completes, rather than
reverting to the old value and thereby losing your change. Dependency properties
have special support to allow the animation system to temporarily change the effec-
tive property value without modifying the underlying value. Chapter 18 describes
dependency properties in detail. The majority of properties of WPF elements are
dependency properties, so in practice this first requirement is rarely a problem.

Figure 16-1. Animation at start, after two and a half seconds, and after five seconds

566 | Chapter 16: Animation and Media

The second requirement, that the property’s type must have a corresponding anima-
tion type, refers to types such as DoubleAnimation and PointAnimation. (We’ll look at
the third requirement, IAnimatable, after we’ve looked at the animation types.)

Animation Types
An animation type defines how a property should change over time. WPF provides
many animation types, each one designed to animate properties of a particular type.
For example, you can animate properties of type Double using a DoubleAnimation,
whereas for a Color property, you can use ColorAnimation. All of these types follow
the same naming convention of TypeAnimation, as you can see from the list in
Table 16-1. All animation types conform to the same design, so although there are
many examples, you need to learn only the one basic pattern.

Although this list covers most of the common types needed to influence the appear-
ance of a WPF UI, it does not include any enumeration types. For example, the
Orientation type used by StackPanel has no corresponding animation type. This
makes sense when you consider that this enumeration supports just two values:
Horizontal and Vertical. There is no way to represent some intermediate value
between these choices.

If you really need to change such properties during the course of an animation, you
can do so using DiscreteObjectKeyFrame, which allows you to set properties of any
type. You can only use this inside a keyframe animation, as described later in the
“Keyframe Animations” section. However, the fundamental limitation that enumera-
tions support only discrete values still applies—all you can do is perform abrupt
changes from one value to another at the moment of your choosing.

You can write your own animation types. This can be useful if you
write a custom element that has properties of some custom type that
you would like to animate. Your animation type would derive from
AnimationTimeline, the base class of the built-in animation types, and
would implement the features described in this section. For more
information about custom animations, see http://msdn2.microsoft.com/
library/aa970564.aspx (http://tinysells.com/113).

Table 16-1. Animation types

ByteAnimation Int64Animation SingleAnimation

ColorAnimation Point3DAnimation SizeAnimation

DecimalAnimation PointAnimation ThicknessAnimation

DoubleAnimation QuaternionAnimation Vector3DAnimation

Int16Animation RectAnimation VectorAnimation

Int32Animation Rotation3DAnimation

Animation Fundamentals | 567

All of the built-in animation types provide To and From properties to set the start and
end values. Example 16-2 used the To property; if you use this without setting From,
the animation takes the current property value as its starting point. As an alterna-
tive, they also offer a By property, which lets you modify the property without need-
ing to know its current value. Example 16-3 makes the target ellipse 100 logical
pixels wider than its initial Width, whatever that might be.

The target property must have a valid value for a By animation to
work. Some properties have no value at all by default, so you may get
an error if you apply such an animation if the target property has not
previously been set. The same is true of animations that specify only To
or only From. Animations that specify both To and From can safely be
applied to an unset property.

The types of these To, From, and By properties match the target type—on a
ColorAnimation, these properties are of type Color, whereas on a DoubleAnimation they
are of type Double. The essential behavior is the same in all cases. The animation simply
interpolates from the initial value to the final value over the animation’s duration.

By default, this interpolation is linear—the value changes with constant speed over
the duration of the whole animation. However, you can change this with the
AccelerationRatio and DecelerationRatio properties. Example 16-4 uses these to
provide a “soft” start and finish to the animation.

Both properties are of type double. The AccelerationRatio of 0.2 causes the anima-
tion’s rate of change to start at zero, and then gradually accelerate up to full speed
over the first one-fifth of the animation’s duration. Likewise, the DecelerationRatio
of 0.1 means progress will slow to a halt over the last one-tenth of the animation.

AccelerationRatio and DecelerationRatio do not change the effective
duration of the animation. An animation will run for the time speci-
fied in its Duration property regardless of acceleration or deceleration.

There is one last requirement for animation support. The target element for anima-
tion must implement the IAnimatable interface.

Example 16-3. Animating “by” with By

DoubleAnimation animate = new DoubleAnimation();
animate.By = 100;
animate.Duration = new Duration(TimeSpan.FromSeconds(5));
myEllipse.BeginAnimation(Ellipse.WidthProperty, animate);

Example 16-4. Acceleration and deceleration

animate.AccelerationRatio = 0.2;
animate.DecelerationRatio = 0.1;

568 | Chapter 16: Animation and Media

IAnimatable
IAnimatable provides an API for controlling animation. Example 16-5 shows the
interface definition. The methods for starting animations include the BeginAnimation
method used in Example 16-2. Recall that AnimationTimeline is the base class of all
animation types, so you can pass any animation object into the overloaded
BeginAnimation method. There are other methods to allow the use of clocks and hand-
off, techniques we will look at later. GetAnimationBaseValue allows you to retrieve the
value an animated property would have had if it were not being animated.

A wide range of WPF classes implement IAnimatable. The UIElement and
ContentElement base classes both provide implementations, enabling you to apply
animations to the majority of user interface elements. IAnimatable is also imple-
mented by Animatable, which is the base class of many graphical elements such as
Drawing, Geometry, Brush, and classes used to build 3D models. (See Appendix D for
more information about these core base types.) In practice, you can animate almost
any UI feature in WPF.

If you want a custom type to support animation, you should derive
from one of WPF’s existing implementations. IAnimatable defines a
consistent API for controlling animations, but it is not intended as an
interface that your own types would ever implement from scratch. If
you try to build your own implementation, it won’t work, because
WPF will animate only the implementations it knows about.

The examples we’ve seen so far used code to launch the animation. Although this is
often an appropriate technique, it can sometimes be easier to let WPF launch the ani-
mation automatically. We can tell WPF when we would like an animation to run by
defining a trigger.

Example 16-5. IAnimatable interface

public interface IAnimatable {
 void ApplyAnimationClock(DependencyProperty dp, AnimationClock clock);
 void ApplyAnimationClock(DependencyProperty dp, AnimationClock clock,
 HandoffBehavior handoffBehavior);
 void BeginAnimation(DependencyProperty dp, AnimationTimeline animation);
 void BeginAnimation(DependencyProperty dp, AnimationTimeline animation,
 HandoffBehavior handoffBehavior);
 object GetAnimationBaseValue(DependencyProperty dp);
 bool HasAnimatedProperties { get; }
}

Animation Fundamentals | 569

Triggers
WPF can start animations automatically when events are raised. Example 16-6
defines an animation identical to the one created in Example 16-2, but arranges for
WPF to start it anytime the ellipse raises the MouseEnter event. Triggers enable us to
use just XAML—the techniques shown previously involve calling a method, which
required code.

When defining an animation in markup, any duration value should be
specified as at least three parts: hours, minutes, and seconds. The
value "0:0:5" in Example 16-6 means five seconds. You may option-
ally specify the number of days (e.g., the value "1.10:0:15" means one
day, 10 hours, and 15 seconds). If you specify just a single number,
WPF treats that as the number of days, so if we had just written “5,” it
would mean five days!

This markup adds an EventTrigger to the ellipse. An EventTrigger can be associated
with any routed event. (We described routed events in Chapter 4.) In this case, we’ve
chosen Ellipse.MouseEnter, meaning that this trigger will fire when the mouse
pointer enters the ellipse.

An event trigger contains a collection of actions that define what happens when the
trigger is activated. These must be of a type derived from the TriggerAction base
class. Table 16-2 lists the available action types and their usage.

Example 16-6. Starting an animation with a trigger

<Ellipse Name="myEllipse" Fill="Red" Height="100" Width="10">
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Ellipse.MouseEnter">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetProperty="(Ellipse.Width)"
 To="300" Duration="0:0:5" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
</Ellipse>

Table 16-2. Trigger action types and usage

Type Usage

BeginStoryboard Starts an animation storyboard

PauseStoryboard Pauses a running storyboard

RemoveStoryboard Removes a storyboard and the resources it consumes

ResumeStoryboard Allows a paused storyboard to continue

570 | Chapter 16: Animation and Media

Example 16-6 uses a BeginStoryboard as the trigger’s only action. This action runs a
storyboard, which is a collection of animations. The purpose of storyboards is to let
you orchestrate several animations, enabling a single trigger to launch anything from
the simplest possible transition to a feature-length extravaganza. The Storyboard in
Example 16-6 contains just one animation, but it could contain as many as you like.
For example, you could add a second DoubleAnimation to animate the ellipse’s height
at the same time as its width, or you could add more animations to change these
properties further after the first animations are complete.

Although the animation in Example 16-6 has the same effect as that in
Example 16-2, we use a different technique to indicate the target property. In code,
we just pass the DependencyProperty object for the target property as a parameter to
BeginAnimation. But in markup, we must set the Storyboard.TargetProperty attached
property. Notice that this attached property requires us to specify both the property
to be animated and the class that defines the property (i.e., "(Ellipse.Width)"
instead of just "Width"). This is because properties do not always have to be defined
by the class to which they are applied—you might want to animate attached proper-
ties such as Canvas.Left. For consistency, you are required to always specify both
class and property, even when the property is a member of the target object, as it is
in this case.

Although BeginStoryboard lets you start an animation, most of the other trigger
action types let you control a storyboard after it has been started. To use these, you
must give the BeginStoryboard action a name so that the other actions can indicate
which storyboard they are controlling. Example 16-7 uses this technique—as before,
it starts animating the width when the mouse enters the ellipse, but it also pauses
and resumes the animation when the left mouse button is pressed and released,
respectively.

SeekStoryboard Moves a storyboard to a particular moment in time

SetStoryboardSpeedRatio Changes the speed at which a storyboard plays

SkipStoryboardToFill Advances a storyboard to the end

SoundPlayerAction Plays a sound

StopStoryboard Stops a running storyboard, allowing any animated properties to revert to
their original values

Example 16-7. Pausing and resuming a storyboard with triggers

<Ellipse Name="myEllipse" Fill="Red" Height="100" Width="10">
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Ellipse.MouseEnter">
 <BeginStoryboard Name="changeWidth">

Table 16-2. Trigger action types and usage (continued)

Type Usage

Animation Fundamentals | 571

Although most of the storyboard trigger types are straightforward, the distinction
between StopStoryboard and RemoveStoryboard is not so obvious. The difference is
that you can use a seek action with a stopped storyboard to rewind to an earlier posi-
tion, allowing it to run again. You cannot do this (or anything else) to a storyboard
once it has been removed, because the storyboard effectively no longer exists.
RemoveStoryboard is slightly more efficient, because it allows WPF to free up all
resources associated with the storyboard. For simple animations, the resource costs
are not high, but there is one case where it is important to ensure that storyboards
are removed. You should do so when using the “compose” style of handoff behavior
(which we will describe later in this chapter).

One of the trigger action types is not concerned with storyboards. SoundPlayerAction
just plays a sound. Example 16-8 plays the system “ding” sound whenever the mouse
enters a rectangle.

You can add triggers to any FrameworkElement, DataTemplate, ControlTemplate, or
Style. Other trigger types besides EventTrigger can control animations. In
Chapter 8, you saw data and property triggers being added to the Triggers collec-
tion of templates and styles. We used these to set properties of elements, but you
also can use them to control animations.

 <Storyboard>
 <DoubleAnimation Storyboard.TargetProperty="(Ellipse.Width)"
 To="300" Duration="0:0:5" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>

 <EventTrigger RoutedEvent="Ellipse.MouseLeftButtonDown">
 <PauseStoryboard BeginStoryboardName="changeWidth" />
 </EventTrigger>

 <EventTrigger RoutedEvent="Ellipse.MouseLeftButtonUp">
 <ResumeStoryboard BeginStoryboardName="changeWidth" />
 </EventTrigger>
 </Ellipse.Triggers>
</Ellipse>

Example 16-8. Playing a sound with a trigger

<Rectangle Fill="Green">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.MouseEnter">

<SoundPlayerAction Source="c:\windows\media\ding.wav" />
 </EventTrigger>
 </Rectangle.Triggers>
</Rectangle>

Example 16-7. Pausing and resuming a storyboard with triggers (continued)

572 | Chapter 16: Animation and Media

Using animation is slightly different with DataTrigger and Trigger. This is because of
a fundamental difference between these trigger types and EventTrigger. An
EventTrigger is not active for any length of time—it simply fires at the moment its
corresponding event is raised, invoking its actions at that instant. But the other trig-
ger types are not instantaneous—they are active for as long as their conditions are
met.* Despite this, the other trigger types can still run animations. They have two sets
of actions associated with them: one to be used when the trigger moves from being
inactive to active, and a second set to be used when it returns to the inactive state.
These are called the enter actions and the exit actions, respectively. Example 16-9
shows these in use in a style.

This style causes an element’s width to be animated when it acquires the focus. The
animation is removed when it loses the focus.

The Triggers property of a FrameworkElement can contain only
EventTriggers. You can use enter and exit actions only with styles and
templates.

When using triggers, you may find yourself in a situation where one storyboard starts
before the preceding one has finished. This is not a problem, but it does raise a ques-
tion regarding what happens when both storyboards contain animations that target
the same property. The behavior depends on the nature of the second animation. If it
specifies a From value, the preceding animation is stopped and has no further effect.

* If you are familiar with electronics terminology, you could think of EventTrigger as being edge-driven, and
all the other triggers as level-driven.

Example 16-9. Enter and exit actions

...
<Style x:Key="widthOnFocus">
 <Style.Triggers>
 <Trigger Property="FrameworkElement.IsFocused" Value="True">

<Trigger.EnterActions>
 <BeginStoryboard Name="changeWidth">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetProperty="(FrameworkElement.Width)"
 To="300" Duration="0:0:5" />
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 <Trigger.ExitActions>
 <RemoveStoryboard BeginStoryboardName="changeWidth" />

</Trigger.ExitActions>
 </Trigger>
 </Style.Triggers>
</Style>
...

Animation Fundamentals | 573

However, it might have no From value, specifying either By, To, or none of these (the final
case indicating that the animation returns the value to its original unanimated state).
In these cases, a process called handoff occurs.

There are two forms of handoff. If you are starting animations from code, there are
overloads of the members of the IAnimatable interface, which was shown in
Example 16-5, that take a HandoffBehavior enumeration value. Alternatively, you can
set the HandoffBehavior property of a BeginStoryboard object. The default handoff
behavior is SnapshotAndReplace, which means that the preceding animation stops,
but its current value is used as the starting point for the new animation. The alterna-
tive is Compose. When new storyboards or animations are started with this behavior,
existing animations targeting the same properties are not stopped. Instead, the ani-
mations run simultaneously, and their results are combined. The second storyboard
in Example 16-10 uses this technique.

The first storyboard is run normally, launched by a trigger when the mouse moves
into the ellipse. The second runs when the mouse leaves. Both target the ellipse’s
Width property, but they animate it in opposite directions—the first animates by 400,
and the second animates by –400. If you move the mouse into the ellipse and then
wait for the first animation to complete before removing the mouse, the animations do
not overlap. However, if you remove the mouse before the first animation completes,
handoff will occur because we have two animations targeting the same property.

Example 16-10. HandoffBehavior.Compose

<Ellipse Fill="Green" Width="20" Height="100">
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Ellipse.MouseEnter">
 <BeginStoryboard Name="enterAnim">
 <Storyboard>
 <DoubleAnimation By="400" Duration="0:0:4"
 Storyboard.TargetProperty="Width" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 <EventTrigger RoutedEvent="Ellipse.MouseLeave">
 <BeginStoryboard HandoffBehavior="Compose" Name="leaveAnim">
 <Storyboard>
 <DoubleAnimation By="-400" Duration="0:0:4"
 Storyboard.TargetProperty="Width" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 <EventTrigger RoutedEvent="Ellipse.Unloaded">
 <RemoveStoryboard BeginStoryboardName="enterAnim" />
 <RemoveStoryboard BeginStoryboardName="leaveAnim" />
 </EventTrigger>
 </Ellipse.Triggers>
</Ellipse>

574 | Chapter 16: Animation and Media

Because we are using the Compose handoff behavior, the effect of the two animations
will be combined. Because they are working in equal and opposite ways, the effect
will be that the ellipse’s width will stop changing while both animations are active,
and will start to shrink only when the first animation completes.

As mentioned earlier, it is recommended that you remove storyboards
that use this Compose behavior as early as you can. WPF cannot shut
down the original animation when the new one starts, because its
effect must be taken into account. It would be worse if both story-
boards in Example 16-10 had used this behavior, because a new set of
animations would have to be created every time the mouse enters and
leaves the ellipse! Because (as will become clear later) most anima-
tions have an infinite effective duration by default, continuing to apply
their final value on completion, this would mean that the animations
would never go away. Example 16-10 explicitly removes the anima-
tions when the ellipse unloads. But if you are making heavy use of
multiple composing animations, you may need to remove storyboards
a little earlier.

Animations in a single storyboard can target properties of multiple elements. By
default, the target is determined by the storyboard’s location—if the containing trig-
ger belongs to an element, that element will be the target; if the trigger belongs to a
style or a template, the style or template’s target will be the animation’s target. How-
ever, it is often useful to target some other element.

For example, if you define a template for a control, it might contain features that do
not correspond directly to properties on the element, but that you may want to ani-
mate nonetheless. For example, Figure 16-2 shows two pairs of buttons. On the top
row, the buttons are shown with custom visuals with a rounded reflective look. The
bottom row is similar, but a radial fill has been added to suggest an inner glow to the
button. We might want to animate that glow to make the button pulsate gradually.

The Button type does not provide a property we can use to represent the glow color,
so in order to animate the glow, the animation needs to target that specific element
within the control template. If we set the x:Name attribute on the relevant element in the
template, we can then refer to this in the animation using the Storyboard.TargetName
attached property. Example 16-11 shows the markup for Figure 16-2.

Figure 16-2. Buttons with animated glow (Color Plate 1)

Animation Fundamentals | 575

Example 16-11. Templates and animation targets

<StackPanel Orientation="Horizontal">
 <StackPanel.Resources>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Background" Value="CornflowerBlue" />
 <Setter Property="Height" Value="26" />
 <Setter Property="Template">
 <Setter.Value>

 <ControlTemplate TargetType="{x:Type Button}">
 <Grid Height="{TemplateBinding Height}">
 <Grid.RowDefinitions>
 <RowDefinition Height="1.8*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Rectangle Grid.RowSpan="2" RadiusX="13" RadiusY="13"
 Fill="{TemplateBinding Background}">
 <Rectangle.Stroke>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="Black" />
 <GradientStop Offset="1" Color="LightGray" />
 </LinearGradientBrush>
 </Rectangle.Stroke>
 </Rectangle>

 <!-- Glow -->

 <Rectangle Grid.RowSpan="2" RadiusX="13" RadiusY="13">
 <Rectangle.Fill>
 <RadialGradientBrush Center="0.5, 1" GradientOrigin="0.5,1"
 RadiusX="0.7" RadiusY="0.8">
 <RadialGradientBrush.GradientStops>
 <GradientStop x:Name="glowStop" Offset="0" Color="White" />
 <GradientStop Offset="1" Color="Transparent" />
 </RadialGradientBrush.GradientStops>
 </RadialGradientBrush>
 </Rectangle.Fill>
 </Rectangle>

 <Rectangle Margin="3,1.1" RadiusX="11" RadiusY="12">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#dfff" />
 <GradientStop Offset="1" Color="#0fff" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>

576 | Chapter 16: Animation and Media

Most of the template is static, but the glow is animated. Note the x:Name attribute
with a value of glowStop on the relevant gradient stop. The animation targets this
item. This technique is not limited to templates. You can use it from storyboards in
an element’s Triggers property. Example 16-12 shows a storyboard defined in a grid
that applies animations to a couple of named ellipses.

 <ContentPresenter Grid.RowSpan="3" Margin="13,2,13,4"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 </Grid>

 <ControlTemplate.Triggers>
 <EventTrigger RoutedEvent="Button.Loaded">
 <BeginStoryboard>
 <Storyboard>

 <ColorAnimation From="#1fff" To="#cfff"
 Storyboard.TargetName="glowStop"

 Storyboard.TargetProperty="(GradientStop.Color)"
 Duration="0:0:1"
 AutoReverse="True" RepeatBehavior="Forever"
 AccelerationRatio="0.4" DecelerationRatio="0.6"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </StackPanel.Resources>

 <Button Margin="4,0">Click me!</Button>
 <Button Background="DarkRed" Foreground="White">And me!</Button>
</StackPanel>

Example 16-12. Targeting named elements

<Grid>
 <Grid.Triggers>
 <EventTrigger RoutedEvent="Grid.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation To="300" Duration="0:0:1"

Storyboard.TargetName="left"
 Storyboard.TargetProperty="Width" />

 <DoubleAnimation To="300" Duration="0:0:1"
 Storyboard.TargetName="right"

 Storyboard.TargetProperty="Height" />

Example 16-11. Templates and animation targets (continued)

Animation Fundamentals | 577

Sometimes it can be convenient to animate nested properties of properties. For
example, the ellipse in Example 16-1 is red, and we might want to animate this color.
This is not quite as straightforward as it may seem, because the Fill property’s type
is Brush. So, we cannot target it directly with a ColorAnimation, and there is no
BrushAnimation type. One way to deal with this is to make the Brush the animation
target, just as we made a GradientStop the target in Example 16-11. All we would
need to do is give the brush a name, as shown in Example 16-13.

Here we’ve expanded the Fill property. This is effectively the same as the original in
Example 16-1—the XAML compiler interprets the value of Red as shorthand for a
SolidColorBrush property. (We discuss how XAML converts strings to objects in
Appendix A.)

We could now make this named brush the target of an animation using the tech-
nique already shown in Example 16-12. However, there is a more succinct option.
An animation can target nested properties—Storyboard.TargetProperty can drill into
subobjects inside a property. We can use that to animate properties of brushes, and
other types, without having to expand them out and name them. Example 16-14
uses this technique to animate the color of an ellipse.

 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Grid.Triggers>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Ellipse Name="left" Grid.Column="0" Fill="Red" Width="100" Height="10" />
 <Ellipse Name="right" Grid.Column="1" Fill="Green" Width="100" Height="10" />

</Grid>

Example 16-13. Ellipse with explicit SolidColorBrush

<Ellipse Name="myEllipse" Height="100">
 <Ellipse.Fill>

<SolidColorBrush x:Name="myBrush" Color="Red" />
 </Ellipse.Fill>
</Ellipse>

Example 16-14. Animating nested properties

<Ellipse Fill="Red" Height="100" Width="200">
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Ellipse.Loaded">
 <BeginStoryboard>
 <Storyboard>

Example 16-12. Targeting named elements (continued)

578 | Chapter 16: Animation and Media

The StoryBoard.TargetProperty property first identifies the Ellipse.Fill property,
then indicates that it wants to drill into that property, which is a SolidColorBrush, and
set its nested Color property. The ColorAnimation then specifies that the color should
fade between red and purple every seven seconds.

All Brush properties set to Red in XAML will share the same
SolidColorBrush instance: the one returned by Brushes.Red. So, you
could be forgiven for worrying that Example 16-14 would change the
color of everything using this brush, and not just our ellipse. In fact,
this doesn’t happen. The brush returned by Brushes.Red is “frozen,”
meaning that it cannot be changed. When you ask the animation sys-
tem to animate properties that contain frozen objects, it replaces them
with unfrozen copies. (The Freezable base class defines a Clone method
to enable this.) Example 16-14 therefore ends up animating a local copy
of the brush, and not the original one returned by Brushes.Red.

Storyboard.TargetProperty can drill down to any depth. It can also index into collec-
tions. Example 16-15 shows this technique—this is how a ColorAnimation for a
LinearGradientBrush might look.

The [index] syntax indicates an item at a particular zero-based offset inside a collec-
tion. This example uses it to animate the color of the brush’s third gradient stop.

We’ve now looked at the core features of WPF’s animation system: the property-centric
approach, launching of animations either from code or via triggers, the animation types
that describe the animations to be performed, and how we can use storyboards to group
animations. Animation types and storyboards share a certain amount in common. They
are both timelines. Timelines are a critical concept for managing complex animations in
WPF.

 <ColorAnimation
 Storyboard.TargetProperty="(Ellipse.Fill).(SolidColorBrush.Color)"
 Duration="0:0:7" From="Red" To="Purple"
 RepeatBehavior="Forever" AutoReverse="True" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
</Ellipse>

Example 16-15. Animation path with index

<ColorAnimation Storyboard.TargetName="gradientBrush"
 Storyboard.TargetProperty="

 (LinearGradientBrush.GradientStops)[2].(GradientStop.Color)"
 To="Green" Duration="0:0:4" />

Example 16-14. Animating nested properties (continued)

Timelines | 579

Timelines
A timeline represents a stretch of time. It usually also describes one or more things
that happen during that time. All timeline types derive from the Timeline base class,
which defines various common properties. For example, the animation types
described in the preceding section are timelines. Consider this DoubleAnimation:

<DoubleAnimation From="10" To="300" BeginTime="0:0:2" Duration="0:0:5" />

Timelines of all kinds have a start time and a duration identifying the particular
stretch of time they describe. The Duration property indicates that this
DoubleAnimation represents a five-second stint. As the BeginTime property indicates, it
starts at an offset of two seconds. BeginTime is relative to the timeline’s container. For
example, if an animation is defined inside a storyboard, the start time is relative to
when the storyboard begins. If the start time is not specified, it defaults to 0:0:0.
BeginTime and Duration are just two of the standard properties available on every
timeline. Table 16-3 shows the properties common to all timelines.

All of the animation types described earlier are timelines, but these are not the only
kinds. Later, when we look at playback of media such as audio and video, we will
use the MediaTimeline type. There are also timelines used for grouping. These enable
you to orchestrate complex animations by combining multiple simpler ones into a
hierarchy of timelines.

Hierarchy
Timelines are often arranged in a hierarchy. We’ve already seen the Storyboard as a
parent of a DoubleAnimation, but it is common to have deeper nesting than this to
manage more complex animations. For example, if you want the first part of an ani-
mation to repeat a few times before the second phase begins, it would be best to

Table 16-3. Timeline properties

Property Usage

AccelerationRatio Causes the timeline to ramp up to speed at the start

AutoReverse Makes the timeline run in reverse once it reaches the end

BeginTime Start time, relative to parent

DecelerationRatio Causes the timeline to slow down toward the end

Duration The length of the timeline

FillBehavior How the timeline behaves when it reaches its natural end

Name An optional name

RepeatBehavior Indicates whether the timeline repeats

SpeedRatio The speed at which this timeline runs relative to its parent’s speed

580 | Chapter 16: Animation and Media

define this first part as a single group and make that group repeat, rather than dupli-
cating the relevant animations. We do this using ParallelTimeline, a type of time-
line intended for grouping other timelines.

Storyboard derives from ParallelTimeline. It’s a special case of a
ParallelTimeline, found only at the root of an animation hierarchy.

The storyboard in Example 16-16 uses two ParallelTimeline elements to group sev-
eral animations together.

Example 16-16. A hierarchy of timelines

<StackPanel Orientation="Horizontal" VerticalAlignment="Center">
 <StackPanel.Triggers>
 <EventTrigger RoutedEvent="StackPanel.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ParallelTimeline RepeatBehavior="Forever">

 <DoubleAnimation BeginTime="0:0:0" Duration="0:0:0.2"
 Storyboard.TargetName="button1"
 Storyboard.TargetProperty="(Button.Height)"
 By="30" AutoReverse="True" />

 <DoubleAnimation BeginTime="0:0:1" Duration="0:0:0.2"
 Storyboard.TargetName="button2"
 Storyboard.TargetProperty="(Button.Height)"
 By="30" AutoReverse="True" />

 <ParallelTimeline BeginTime="0:0:2">

 <DoubleAnimation BeginTime="0:0:0" Duration="0:0:0.2"
 Storyboard.TargetName="button3"
 Storyboard.TargetProperty="(Button.Height)"
 By="30" AutoReverse="True" />

 <DoubleAnimation BeginTime="0:0:1" Duration="0:0:0.2"
 Storyboard.TargetName="button4"
 Storyboard.TargetProperty="(Button.Height)"
 By="30" AutoReverse="True" />

 </ParallelTimeline>

 </ParallelTimeline>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </StackPanel.Triggers>

Timelines | 581

The animation modifies each button’s height in sequence, enlarging the button and
then shrinking it back to its initial size. Figure 16-3 shows the animation partway
through the sequence.

This illustrates that using a “parallel” timeline doesn’t necessarily pre-
vent you from making your animations run sequentially. The default
behavior for a ParallelTimeline is to run all its child animations
simultaneously, but we’ve chosen to stagger them here by giving each
one a different BeginTime.

The storyboard’s structure is not as straightforward as this simple sequence sug-
gests—it has a somewhat contrived structure in order to show the effects of a time-
line hierarchy. Each button has a DoubleAnimation animating its height. The first two
of these are simple enough—they are both children of the first ParallelTimeline, and
their BeginTime properties are set to 0:0:0 and 0:0:1, respectively. This means that
the second button expands and contracts one second after the first button. How-
ever, the third and fourth buttons are slightly surprising—they also have their
BeginTime properties set to 0:0:0 and 0:0:1. Despite this, they do not expand and
contract at the same time as the first two buttons—if they did, Figure 16-3 would
show the fourth button at the same size as the second one.

The buttons animate one after the other from left to right. This works even though
the third and fourth buttons have the same BeginTime as the first and second because
they are nested inside another ParallelTimeline, which is in turn nested inside the top-
level ParallelTimeline. The third and fourth animations’ BeginTime properties are rela-
tive to this nested ParallelTimeline, rather than the top-level ParallelTimeline. This
nested ParallelTimeline has a BeginTime of 0:0:2, meaning that it will not start to run

 <Button Name="button1" Height="25">One</Button>
 <Button Name="button2" Height="25">Two</Button>
 <Button Name="button3" Height="25">Three</Button>
 <Button Name="button4" Height="25">Four</Button>
</StackPanel>

Figure 16-3. Hierarchical animation in action

Example 16-16. A hierarchy of timelines (continued)

582 | Chapter 16: Animation and Media

until two seconds into the top-level timeline, after the first two buttons have been ani-
mated. The BeginTime properties of the nested animations for the third and fourth but-
tons will be relative to this second ParallelTimeline.

Figure 16-4 illustrates the structure of the storyboard in Example 16-16. Each time-
line (including the DoubleAnimation timelines) is represented as a horizontal line,
with a dot at the start and end. Its horizontal position indicates when the timeline
runs—as the scale along the top shows, the further to the right a timeline appears,
the later it runs. This scale is relative to when the storyboard started (i.e., when the
StackPanel raises its Loaded event).

This hierarchical structure makes it easy to change when an animation sequence
starts, without having to edit any of the details of that sequence. Because each
BeginTime property refers to its parent, we can move sequences around by adjusting a
single BeginTime. For example, we can change when the third and fourth buttons are
animated by changing only the BeginTime of their parents. One way to picture this is
to imagine picking up part of the structure in Figure 16-4 by one of the vertical
arrows labeled BeginTime—if you move the line from side to side, everything beneath
the line moves with it.

Notice in Figure 16-4 that to the righthand side of the diagram, all three active time-
lines come to an end at exactly the same moment. This is not mere coincidence. It’s
not even the result of careful coding. In Example 16-16, you’ll see that the only time-
lines with a specified duration are the DoubleAnimation elements. All of the other
timelines’ durations are determined automatically.

Figure 16-4. Animation hierarchy structure

1 2 4
Time

(seconds)

Be
gi

nT
im

e

3

ParallelTimeline (top-level)

DoubleAnimation

Target: button1

Be
gi

nT
im

e

DoubleAnimation

Target: button2

Be
gi

nT
im

e

DoubleAnimation

Target: button3

Be
gi

nT
im

e
Be

gi
nT

im
e

ParallelTimeline (nested)

DoubleAnimation

Target: button4

Be
gi

nT
im

e

Timelines | 583

Duration
If you do not provide a Duration property, a parallel timeline will attempt to work
out what its duration should be. It will base this on the duration of its children, set-
ting its own duration to be just long enough to contain whichever child timeline fin-
ishes last. Consider Example 16-17.

Each DoubleAnimation has an explicit Duration, but the parent ParallelTimeline
does not. Its duration will be determined by its children. It contains two
DoubleAnimation elements, both with durations of 0.2 seconds. The second of the
two DoubleAnimation objects has a BeginTime of 0:0:1 (i.e., one second after its par-
ent ParallelTimeline begins). Because this child’s duration is 0.2 seconds, it will
not finish until 1.2 seconds after its parent begins, meaning its parent has an
implicit duration of 1.2.

All timelines offer an AutoReverse property. If this is set to true, the
timeline will run in reverse when it reaches the end. This doubles its
duration. This can be slightly confusing when used in conjunction with
an explicit Duration. An element with an explicit Duration of 0:0:0.2
and an AutoReverse set to true has an effective duration of 0.4 seconds.
This is why the timelines in Figure 16-4 are slightly longer than you
might have expected.

In general, the implicit duration mechanism works well, and it can save you a lot of
effort. However, in some situations it can cause surprises. Indeed, it causes a slight
glitch in one of the earlier examples. If you try out Example 16-16, you will notice
that there is a gap of just over half a second between each button expanding and con-
tracting, except for when the sequence repeats. There is no gap between when the
fourth button finishes contracting and the first button starts to expand. This glitch is
visible in Figure 16-4—you can see that each DoubleAnimation starts a whole number
of seconds into the sequence. The first button animates immediately, the next after

Example 16-17. Implicit duration of parent timeline

<ParallelTimeline>

 <DoubleAnimation BeginTime="0:0:0" Duration="0:0:0.2"
 Storyboard.TargetName="button1"
 Storyboard.TargetProperty="(Button.Height)"
 By="30" />

 <DoubleAnimation BeginTime="0:0:1" Duration="0:0:0.2"
 Storyboard.TargetName="button2"
 Storyboard.TargetProperty="(Button.Height)"
 By="30" />

</ParallelTimeline>

584 | Chapter 16: Animation and Media

one second, the third after two, and the fourth after three. But the animation has a
total length of 3.4 seconds. This causes a slightly lopsided feel when it repeats—it
would be better if it repeated after four seconds.

There are two easy ways to fix this. We could just set the duration of the top-level
ParallelTimeline to be four seconds. More subtly, we could set the duration of the
nested ParallelTimeline to be two seconds long. Because this starts two seconds in,
this would make the top-level ParallelTimeline four seconds long. Although this
second approach looks less straightforward, it avoids hardcoding the duration of the
top-level timeline, meaning that if you were to add more child animations later, you
wouldn’t need to go back and adjust the top-level duration.

Repetition
By default, a timeline starts at the offset specified by its BeginTime, and then stops
when it reaches the end of its Duration. However, all timelines have a RepeatBehavior
property, enabling them to repeat one or more times.

We have seen this already in Example 16-16, where the top-level ParallelTimeline
had a RepeatBehavior of Forever. This has a straightforward enough meaning for top-
level elements: they will repeat for as long as the UI is running. For nested timelines,
it is not quite this simple. When a nested timeline with a RepeatBehavior of Forever
reaches the end of its duration, it goes back to the start and continues to repeat until
the end of time, but only for small values of “the end of time.”

Remember that any nested timeline’s BeginTime is relative to its parent. In fact, its
whole view of time is determined by its parent. So for a nested timeline, “the end of
time” means the end of its parent’s duration. Example 16-18 shows how a
RepeatBehavior of Forever can be cut off after only a short time.

Example 16-18. When “forever” isn’t

<Button Background="Red" VerticalAlignment="Center"
 HorizontalAlignment="Center" Content="I feel fine">
 <Button.Triggers>
 <EventTrigger RoutedEvent="Button.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ParallelTimeline Duration="0:0:5">

 <ColorAnimation BeginTime="0:0:2" Duration="0:0:1"
 Storyboard.TargetProperty="
 (Button.Background).(SolidColorBrush.Color)"
 From="Red" To="Yellow" AutoReverse="True"

RepeatBehavior="Forever" />

 </ParallelTimeline>
 </Storyboard>
 </BeginStoryboard>

Timelines | 585

In this example, a button’s background is animated to fade between red and yellow.
It uses a ColorAnimation with a RepeatBehavior of Forever. Running this shows a but-
ton that is red for two seconds, fades to yellow and back once, fades to yellow one
more time, and then stays that way indefinitely. The two-second delay is caused by
the BeginTime of 0:0:2. The animation stops after only one and a half cycles (three
seconds) because the top-level ParallelTimeline has an explicit duration of 0:0:5.
Once this is reached, the timeline and all of its descendants are finished, so the ani-
mation stops.

Figure 16-5 shows the structure of the timeline in Example 16-18. As you can see,
the ColorAnimation starts after two seconds because its BeginTime is 0:0:2. Its
Duration property is set to 0:0:1, but this is not the effective duration. First, the
AutoReverse property is set to True, doubling the effective length. Moreover, because
its RepeatBehavior is Forever, it will run for as long as it is allowed to, so its effective
duration is constrained only by its context: the explicit five-second duration of the
parent ParallelTimeline.

If you use a RepeatBehavior of Forever and do not cut it off with an
explicit duration in the parent, the implicit duration of the parent ele-
ment will be indefinite. Removing the Duration property from the
ParallelTimeline in Example 16-18 allows the color animation to run
indefinitely.

 </EventTrigger>
 </Button.Triggers>
</Button>

Figure 16-5. Cutting off RepeatBehavior.Forever

Example 16-18. When “forever” isn’t (continued)

1 2 3 4 5
Time

(seconds)

Be
gi

nT
im

e

ParallelTimeline (top-level)

Be
gi

nT
im

e

ColorAnimation

Repeat

Key

Normal timeline

Timeline cut off
by parent

586 | Chapter 16: Animation and Media

The RepeatBehavior property also supports finite repetition. You can instruct a time-
line to repeat either for a particular length of time or for a fixed number of iterations.
Example 16-19 shows examples of both techniques.

The ColorAnimation in Example 16-19 has a RepeatBehavior of 3x. This indicates that
the animation should repeat three times and then stop. The effective duration of the
animation ends up being three seconds—three times longer than it would be with-
out repetition. The DoubleAnimation has a RepeatBehavior of 0:0:2. This means the
animation will repeat until two seconds have elapsed.

Filling
Many animations have finite duration. This raises a question: what happens to the
animated property when the animation finishes? Many of the examples presented so
far have either repeated forever or put the property back to its original value before
they ended, but Example 16-20 uses neither of these tricks.

When you run this program, the ellipse will initially be invisible because no Width
property is set. After two seconds, it appears, and then gradually it expands as
before. At the end of the five-second animation, the ellipse stays at its final size. We
can add some code to look at this in a little more detail, such as that shown in
Example 16-21.

Example 16-19. Repetition count and duration

<ColorAnimation From="Red" To="Yellow" Duration="0:0:1"
 Storyboard.TargetProperty="(Ellipse.Fill).(SolidColorBrush.Color)"

RepeatBehavior="3x" />
...
<DoubleAnimation By="20" Duration="0:0:0.25"
 Storyboard.TargetProperty="(Ellipse.Width)"

RepeatBehavior="0:0:2" />

Example 16-20. A simple, finite animation

<Canvas>
 <Ellipse Name="myEllipse" Height="100" Fill="Red">
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Ellipse.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation BeginTime="0:0:2" Duration="0:0:5"
 Storyboard.TargetProperty="(Ellipse.Width)"
 From="10" To="300" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
 </Ellipse>
</Canvas>

Timelines | 587

This sets up a timer to call our OnTimerTick function twice per second. The
DispatcherTimer is a special WPF timer guaranteed to call our timer function in a con-
text where it is safe to do UI work. This means we don’t need to worry about whether
we’re on the right thread. See Appendix C for more information on threading in WPF.

On each timer tick, the ellipse’s width is printed with the Debug class. Running the
program in Visual Studio 2005 lets us see these messages in the Output panel. Here’s
the output I get:

00:00:00.4911795: NaN
00:00:00.9931005: NaN
00:00:01.4891625: NaN
00:00:02.0369790: NaN
00:00:02.5408530: 28.1700834
00:00:03.0417975: 59.1043138
00:00:03.5407890: 87.1383412
00:00:04.0358745: 116.139565
00:00:04.5358425: 145.1403364
00:00:05.0397165: 174.1407308
00:00:05.5426140: 204.1083274
00:00:06.0396525: 232.1420242
00:00:06.5347380: 261.1428652
00:00:07.0366590: 290.1434162
00:00:07.5366270: 300
00:00:08.0375715: 300

Example 16-21. Code-behind file for Example 16-20

using System;
using System.Windows;
using System.Windows.Threading;
using System.Diagnostics;

namespace Holding {
 public partial class Window1 : Window {
 public Window1() {
 InitializeComponent();

 t = new DispatcherTimer();
 t.Tick += new EventHandler(OnTimerTick);
 t.Interval = TimeSpan.FromSeconds(0.5);
 t.Start();
 start = DateTime.Now;
 }

 DispatcherTimer t;
 DateTime start;

 void OnTimerTick(object sender, EventArgs e) {
 TimeSpan elapsedTime = DateTime.Now - start;
 Debug.WriteLine(elapsedTime.ToString() + ": " +
 myEllipse.Width);
 }
 }
}

588 | Chapter 16: Animation and Media

This illustrates two potentially surprising points. First, don’t rely on a DispatcherTimer
to be especially precise about when it calls you back, particularly if you’re running in
the debugger. Second, before the animation runs, the actual width reported by the
ellipse is “NaN.” This is short for Not a Number, and it indicates that the Width prop-
erty doesn’t have a value.

NaN is one of a few special values supported by the Double floating-
point type. This is not particular to WPF—the IEEE standard for float-
ing point defines special values for positive and negative infinities, and
this “not a number” value. NaN usually arises from questionable opera-
tions such as attempting to divide zero by zero, or subtracting infinity
from infinity.

Although NaN is a standard value, WPF’s use of it here is slightly
unusual. It is acting as a kind of sentinel value, indicating that the
Width property is not set.

We shouldn’t be surprised that the ellipse initially has no width, because we haven’t
set the ellipse’s Width property directly in the markup. We set it indirectly using the
animation, so the Width property has a meaningful value only once that animation
starts. We can fix this by setting the ellipse’s Width:

<Ellipse Name="myEllipse" Height="100" Fill="Red" Width="42" />

Having made this change, the ellipse is visible before the animation starts—it is ini-
tially 42 pixels wide. (As it was before, it is 300 pixels wide once the animation has
finished.) The debug output reflects this, showing the value 42 for the width at the
start of the animation, instead of NaN:

00:00:00.4921560: 42
00:00:00.9911475: 42
00:00:01.4920920: 42
00:00:01.9910835: 42
00:00:02.5320645: 31.7818768
00:00:03.0212910: 60.7827294
00:00:03.5437185: 90.7498562
00:00:04.0534515: 119.7509988
00:00:04.5534195: 148.7517702
00:00:05.0533875: 177.7524082
00:00:05.5562850: 206.7534232
00:00:06.0533235: 235.7539336
00:00:06.5542680: 264.7546876
00:00:07.0532595: 293.7556968
00:00:07.5532275: 300
00:00:08.0541720: 300

This is the default behavior of animations—when they reach their end, their final
value continues to apply for as long as their parent timeline continues to be active.
This may not always be the behavior you require—in some circumstances, you might
want to be sure that the property returns to its original value. Even when the default
behavior is what you require, it’s not quite as straightforward as it may seem.

Timelines | 589

When an animation reaches the end of its duration, it isn’t quite finished yet. We see
the animation’s final value applied in the earlier example because the animation is still
active, even though it has reached the end of its duration. This twilight zone between
the end of the animation’s duration and its final deactivation is called the fill period.

All timelines have a FillBehavior property that specifies what happens after the time-
line reaches the end of its effective duration. The default value is HoldEnd, meaning
the animation will continue to apply its final value until the UI closes, unless some-
thing causes it to be deactivated. The alternative FillBehavior, shown in
Example 16-22, is Stop. This deactivates the animation as soon as it reaches the end
of its duration, meaning the relevant property will revert to the value it had before
the animation began.

As the following output shows, the property now reverts to 42 at the end of the
animation:

00:00:00.4980150: 42
00:00:00.9999360: 42
00:00:01.4950215: 42
00:00:01.9949895: 42
00:00:02.5232760: 31.3482572
00:00:03.0427740: 61.3153898
00:00:03.5495775: 90.3162598
00:00:04.0475925: 119.3171878
00:00:04.5426780: 148.3175996
00:00:05.0455755: 177.3179012
00:00:05.5484730: 206.3190264
00:00:06.0425820: 235.3201864
00:00:06.5435265: 263.3539528
00:00:07.1050140: 296.2216596
00:00:07.6088880: 42
00:00:08.1049500: 42

Note that unlike RepeatBehavior, the FillBehavior property has no impact on the
effective duration of a timeline. A fill behavior of HoldEnd means something only if
the parent timeline runs for longer than the duration of the child timeline.
Example 16-23 shows such a scenario—the parent ParallelTimeline has a duration of
10 seconds, whereas the child has a duration of five seconds, leaving it a fill period of
five seconds. The child’s FillBehavior has not been set, so it will default to HoldEnd.

Example 16-22. Stop in fill period

<DoubleAnimation BeginTime="0:0:2" Duration="0:0:5"
 Storyboard.TargetProperty="(Ellipse.Width)"
 From="10" To="300" FillBehavior="Stop" />

Example 16-23. A child with a fill period

<ParallelTimeline Duration="0:0:10" FillBehavior="Stop">
 <DoubleAnimation From="10" To="300" Duration="0:0:5"
 Storyboard.TargetProperty="(Ellipse.Width)" />
</ParallelTimeline>

590 | Chapter 16: Animation and Media

Figure 16-6 illustrates this pair of timelines. Because the parent timeline’s
FillBehavior is Stop, it deactivates at the end of its natural duration. When a parent
deactivates, all its children are deactivated, so this causes the child’s fill period to
come to an end, meaning that all the corresponding properties will revert to the val-
ues they had before the animation started.

If a parent timeline has the default FillBehavior of HoldEnd, its fill period will be
indefinite. This in turn means its children’s fill periods will also be indefinite.
Example 16-24 shows such a timeline hierarchy.

Here, neither the DoubleAnimation nor the ParallelTimeline has an explicit
FillBehavior, so they default to HoldEnd. This means that both animations have an
indefinite fill period—they will run until the UI closes or a containing timeline stops.
This is indicated by the double-headed arrows in Figure 16-7. The upshot is that
with the storyboard in Example 16-24, the ellipse’s width grows from 10 to 300, and
then stays at 300.

The default fill behavior means animations typically end up with an indefinite fill
period. This results in what is usually the desired behavior: an animation’s final value
is the value that remains in place once the animation’s duration is over.

Figure 16-6. A fill period

Example 16-24. Parent and child timelines with default HoldEnd FillBehavior

<ParallelTimeline BeginTime="0:0:2">
 <DoubleAnimation From="10" To="300" Duration="0:0:5"
 Storyboard.TargetProperty="(Ellipse.Width)" />
</ParallelTimeline>

2 4 6 8 10
Time

(seconds)

Be
gi

nT
im

e
Be

gi
nT

im
e

ParallelTimeline

DoubleAnimation Fill Period

Timelines | 591

Speed
You may sometimes find that you want to change the speed at which some part of an
animation runs. For a simple animation consisting of a single element, you can just
change the duration. For a more complex animation consisting of many timelines, it
would become tedious to adjust each duration by hand. A simpler solution is to
warp time, using the SpeedRatio property available on any timeline.

SpeedRatio allows you to change the rate at which a timeline is played back. Its
default value is 1, meaning that all timelines advance by one second for each second
of real time that elapses. However, if you modify one of your timelines to have a
SpeedRatio of 2, that timeline and all its children will be advanced by two seconds for
each second of real time that elapses.

Strictly speaking, SpeedRatio is relative to the rate at which the parent timeline
progresses, rather than absolute elapsed time. This becomes important if you modify
speed in multiple places in a timeline hierarchy. Example 16-25 shows a modified
version of the animations from Example 16-16, with a SpeedRatio attribute added to
some of the timelines.

Figure 16-7. An indefinite fill period

Example 16-25. Using SpeedRatio in a hierarchy

<ParallelTimeline RepeatBehavior="Forever">

 <DoubleAnimation BeginTime="0:0:0" Duration="0:0:0.2"
 Storyboard.TargetName="button1"
 Storyboard.TargetProperty="(Button.Height)"
 By="30" AutoReverse="True" />

2 4 6 8 10
Time

(seconds)

Be
gi

nT
im

e
Be

gi
nT

im
e

ParallelTimeline

DoubleAnimation Indefinite Fill Period

Indefinite Fill Period

12

592 | Chapter 16: Animation and Media

Figure 16-8 shows the effect of these changes. The top-level timeline’s speed is not
specified, so it will default to 1 and will progress at a normal rate. So will its first
DoubleAnimation child. The second DoubleAnimation has a SpeedRatio of 2. This does
not affect the time at which this timeline starts—its BeginTime is relative to its parent
and therefore depends on its parent’s speed. But the DoubleAnimation itself will run
twice as fast as normal, so it will be as though this animation’s duration is set to 0.1
rather than 0.2 seconds. The result is that the second button expands and contracts
in half the time that the first one expands and contracts.

The third and final child of the top-level timeline is a ParallelTimeline element with
a SpeedRatio of 4. This quadruples the rate at which it runs its child timelines. How-
ever, its first child is a DoubleAnimation with a SpeedRatio of 0.25. Consequently, the
animation will run at normal speed. The next nested DoubleAnimation, which con-
trols the fourth button, has a BeginTime of 0:0:1, but because its parent’s SpeedRatio
is 4, it will start only one-quarter of a second into that timeline, causing it to overlap
slightly with the preceding animation, as Figure 16-8 shows. Its speed is 0.125, but that
is relative to its parent’s speed of 4, meaning that this timeline runs at half speed and its
effective duration is therefore 0.4. And, because its AutoReverse property is set to true,
it will run in reverse after completing, so its total duration will in fact be 0.8 seconds.

SpeedRatio is compatible with AccelerationRatio and DecelerationRatio.
These properties are similar, in that each allows you to adjust the rate
at which an animation runs. The difference is that SpeedRatio applies
uniformly to the whole animation, whereas the other two cause the
speed to vary as the animation progresses. If you modify the SpeedRatio
of an animation that uses acceleration or deceleration, the animation will
still accelerate or decelerate; it will just do everything faster or slower.

 <DoubleAnimation SpeedRatio="2" BeginTime="0:0:1" Duration="0:0:0.2"
 Storyboard.TargetName="button2"
 Storyboard.TargetProperty="(Button.Height)"
 By="30" AutoReverse="True" />

 <ParallelTimeline BeginTime="0:0:2" SpeedRatio="4">

 <DoubleAnimation SpeedRatio="0.25" BeginTime="0:0:0" Duration="0:0:0.2"
 Storyboard.TargetName="button3"
 Storyboard.TargetProperty="(Button.Height)"
 By="30" AutoReverse="True" />

 <DoubleAnimation SpeedRatio="0.125" BeginTime="0:0:1" Duration="0:0:0.2"
 Storyboard.TargetName="button4"
 Storyboard.TargetProperty="(Button.Height)"
 By="30" AutoReverse="True" />

 </ParallelTimeline>

</ParallelTimeline>

Example 16-25. Using SpeedRatio in a hierarchy (continued)

Keyframe Animations | 593

You can use the animation types and other timelines we’ve looked at so far to build
fairly complex animations. However, for animations that need to make a series of
changes to the same property, a set of animation types is available that enables us to
be more succinct: keyframe animations.

Keyframe Animations
So far, we have looked at only simple point-to-point animations. Whether we use the
To and From properties, or the By property, animations run from some start value to
an end value. This is fine for simple animations, and although we could create more
complex animations by building sequences of simple animations, this would be very
cumbersome. Fortunately, there is a better way. WPF provides animation objects
that allow us to specify a series of times and values.

In traditional animation in television and cinema, it is common to start by drawing the
most important steps of the animation. These keyframes define the basic flow of the
scene, capturing its most important points. Only once these keyframes are satisfactory
are the remaining frames drawn. The drawings in between the keyframes do not
require much creative input—they are simply meant to interpolate from one keyframe
to the next. WPF uses the same concept. You could consider the simple From and To
approach to be equivalent to providing just two keyframes: a “before” frame and an
“after” frame where WPF interpolates between the two for you. Keyframe animations
simply extend this concept to multiple frames.

Figure 16-8. Speed in a timeline hierarchy

1 2 4
Time

(seconds)

Be
gi

nT
im

e

3

ParallelTimeline (top-level)
SpeedRatio=1

DoubleAnimation
SpeedRatio=1

Target: button1

Be
gi

nT
im

e

Target: button2

Be
gi

nT
im

e

Target: button3

Be
gi

nT
im

e
Be

gi
nT

im
e

ParallelTimeline (nested)
SpeedRatio=4

Target: button4
Be

gi
nT

im
e

DoubleAnimation
SpeedRatio=2

DoubleAnimation
SpeedRatio=0.25

DoubleAnimation
SpeedRatio=0.125

594 | Chapter 16: Animation and Media

As with the simpler animation types, keyframe animations still target
one property at a time. So, they are not quite the same as keyframes in
traditional animation where each frame would consist of a whole
drawing. You cannot provide two drawings and tell WPF to morph
from one to the other.

Keyframe animation types use the naming convention of TypeAnimationUsingKeyFrames.
Example 16-26 shows a simple animation of a bouncing rectangle. The horizontal posi-
tion is controlled by an ordinary DoubleAnimation, but the vertical position is set by a
DoubleAnimationUsingKeyFrames.

The DoubleAnimationUsingKeyFrames controlling the vertical position contains five
keyframes, specifying the required vertical position of the rectangle at half-second
intervals. As Figure 16-9 shows, the keyframes show the rectangle at the top and bot-
tom of its bounce, with the midway point being slightly higher than halfway up to
indicate the gradual change in speed over time. WPF interpolates between these
positions for us.

Example 16-26. Keyframe animation

<Canvas>
 <Rectangle Fill="Red" Width="20" Height="20">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>

 <DoubleAnimation From="0" To="800" Duration="0:0:10"
 Storyboard.TargetProperty="(Canvas.Left)"
 RepeatBehavior="Forever" AutoReverse="True" />

 <DoubleAnimationUsingKeyFrames Duration="0:0:2"
 Storyboard.TargetProperty="(Canvas.Top)"
 RepeatBehavior="Forever">
 <DoubleAnimationUsingKeyFrames.KeyFrames>
 <LinearDoubleKeyFrame Value="0" KeyTime="0:0:0" />
 <LinearDoubleKeyFrame Value="50" KeyTime="0:0:0.5" />
 <LinearDoubleKeyFrame Value="200" KeyTime="0:0:1" />
 <LinearDoubleKeyFrame Value="50" KeyTime="0:0:1.5" />
 <LinearDoubleKeyFrame Value="0" KeyTime="0:0:2" />
 </DoubleAnimationUsingKeyFrames.KeyFrames>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
 </Rectangle>
</Canvas>

Keyframe Animations | 595

Each keyframe value in Example 16-26 is specified with a LinearDoubleKeyFrame. This
indicates that linear interpolation should be used—the rate of change will be con-
stant between any two frames. This results in motion that is not especially smooth.
The rectangle speeds up as it falls, but the changes in speed take place in visible
“steps” moving from one stage of the animation to the next. We could reduce this
effect by adding more keyframes, but there is an easier way. Rather than the simple
linear interpolation shown on the left of Figure 16-10, it is possible to get a curved
interpolation like that shown on the right, improving the smoothness without need-
ing to add more keyframes.

To get the smoother changes in animation speed we want, we can use
SplineDoubleKeyFrame. With a spline keyframe, a Bézier curve specifies how the ani-
mation value should change. However, the way in which the curve is used is not
completely straightforward. As we saw in Chapter 13, you can use Bézier curves to
define curved shapes. However, the animation does not simply follow the path
defined by the Bézier curve in this example. It’s possible to do that by using path ani-
mations, which we describe later, but that’s not what happens with a spline key-
frame.

Instead of defining the path of a point, the Bézier curve in a spline keyframe defines
the shape of a mathematical function. This function takes as its input the proportion
of the keyframe’s time that has elapsed. As its output, it provides a number indi-
cating the proportion in which the previous and current values should be mixed.

Figure 16-9. Keyframes

Figure 16-10. Smoothness of interpolation

596 | Chapter 16: Animation and Media

The curve always moves from 0,0 to 1,1, but you position the two control points that
determine its shape in between these extremes. You can set these using the KeySpline
property of the keyframe.

Figure 16-11 shows three example animation splines, with the control points marked
as small squares. Remember that these curves simply determine the rate at which the
animation progresses. The first “curve” is a straight line, meaning that the animation
progresses at a constant rate. This is equivalent to a LinearDoubleKeyFrame. The sec-
ond indicates that the animation should start slowly and then speed up. The third
shows that the animation should start quickly and then gradually slow to a halt.

Example 16-27 is a modified version of the keyframe animation in Example 16-26.
The animation passes through the same keyframe values, but uses splines to indicate
that the rate of animation should gradually change. This makes the animation feel
much smoother without needing to add more keyframes.

The first frame still uses a LinearDoubleKeyFrame, because there is no “before” frame
from which to interpolate. The two “downward” keyframes use curve shapes simi-
lar to the one in the middle of Figure 16-11. This causes the animation to start
slowly and then speed up, as you would expect in an animation of a falling object.

Figure 16-11. Spline animation curves

Example 16-27. Keyframe spline animation

<DoubleAnimationUsingKeyFrames Duration="0:0:2" RepeatBehavior="Forever"
 Storyboard.TargetProperty="(Canvas.Top)">
 <DoubleAnimationUsingKeyFrames.KeyFrames>
 <LinearDoubleKeyFrame Value="0" KeyTime="0:0:0" />
 <SplineDoubleKeyFrame Value="50" KeyTime="0:0:0.5"
 KeySpline="0.4,0 0.7,0.7" />
 <SplineDoubleKeyFrame Value="200" KeyTime="0:0:1"
 KeySpline="0.2,0.2 0.7,0.4" />
 <SplineDoubleKeyFrame Value="50" KeyTime="0:0:1.5"
 KeySpline="0,0.3 0.75,0.75" />
 <SplineDoubleKeyFrame Value="0" KeyTime="0:0:2"
 KeySpline="0.25,0.25 0.6,1" />
 </DoubleAnimationUsingKeyFrames.KeyFrames>
</DoubleAnimationUsingKeyFrames>

Time

Pr
op

or
tio

n

Time

Pr
op

or
tio

n

Time

Pr
op

or
tio

n

Keyframe Animations | 597

The two “upward” keyframes use curve shapes similar to the one on the right of
Figure 16-11, causing the animation to slow gradually as the object rises to the top.
This provides a more convincing visual approximation of how a real object would
move.

There is one more keyframe style available: discrete. If you use a discrete keyframe,
WPF doesn’t interpolate at all—it jumps instantaneously to the specified value. This
makes it easy to introduce discontinuities into your animation if necessary.

Note that WPF provides keyframe versions of most of the animation types it sup-
ports, not just Double. Table 16-4 lists these types.

Notice that four of these keyframe animation types do not have a corresponding sim-
ple animation type. This is because the target types in question—Char, Matrix,
Object, and String—cannot be usefully interpolated. You can use them only with
discrete keyframes. Example 16-28 shows one way of using discrete object keyframe
animations.

This sets the value of a button’s Visibility property. This property’s type,
Visibility, is an enumeration type. As mentioned earlier, you cannot set such prop-
erties with ordinary animation types, because enumeration values cannot meaning-
fully be interpolated. But here, we are using a discrete keyframe, avoiding the need
for interpolation.

Table 16-4. Keyframe animation types

BooleanAnimationUsingKeyFrames Point3DAnimationUsingKeyFrames

ByteAnimationUsingKeyFrames PointAnimationUsingKeyFrames

CharAnimationUsingKeyFrames QuaternionAnimationUsingKeyFrames

ColorAnimationUsingKeyFrames RectAnimationUsingKeyFrames

DecimalAnimationUsingKeyFrames Rotation3DAnimationUsingKeyFrames

DoubleAnimationUsingKeyFrames SingleAnimationUsingKeyFrames

Int16AnimationUsingKeyFrames SizeAnimationUsingKeyFrames

Int32AnimationUsingKeyFrames StringAnimationUsingKeyFrames

Int64AnimationUsingKeyFrames ThicknessAnimationUsingKeyFrames

MatrixAnimationUsingKeyFrames Vector3DAnimationUsingKeyFrames

ObjectAnimationUsingKeyFrames VectorAnimationUsingKeyFrames

Example 16-28. Setting enumeration values with discrete animations

<ObjectAnimationUsingKeyFrames Storyboard.TargetProperty="(Button.Visibility)">
 <DiscreteObjectKeyFrame KeyTime="0:0:1.5">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Hidden</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>

598 | Chapter 16: Animation and Media

You can mix different keyframe types freely within a single keyframe
animation. You can also mix keyframe animations and simple anima-
tions within a storyboard or parallel timeline. Use whichever is most
convenient for the task at hand.

Although keyframe animations are good at defining animations through a series of
snapshot values, there’s an alternative way of defining animations that move items
around. Path animations can sometimes make this task much simpler.

Path Animations
A path animation lets you animate an object so that its position follows a path
defined by a PathGeometry. This is often a more convenient way of defining the
motion of an object than using keyframe animations.

DoubleAnimationUsingPath, MatrixAnimationUsingPath, and PointAnimationUsingPath
are the three path animation types. As their names suggest, they can target proper-
ties of type Double, Matrix, and Point, respectively.

PointAnimationUsingPath is the most straightforward type. It targets a property of
type Point, and it will move the location of that point along the path described by the
animation’s PathGeometry property. Example 16-29 shows this technique being used
to animate one end of a LineGeometry.

Example 16-29. Point path animation

<Path Stroke="Black" StrokeThickness="4">
 <Path.Data>
 <LineGeometry StartPoint="50,50" EndPoint="0,0" />
 </Path.Data>
 <Path.Triggers>
 <EventTrigger RoutedEvent="Path.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <PointAnimationUsingPath AutoReverse="True"
 RepeatBehavior="Forever" Duration="0:0:2"
 Storyboard.TargetProperty="(Path.Data).(LineGeometry.EndPoint)">
 <PointAnimationUsingPath.PathGeometry>
 <PathGeometry Figures="M 14.64,14.64 A 50,50 90, 0 1 85.36,14.64" />
 </PointAnimationUsingPath.PathGeometry>
 </PointAnimationUsingPath>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Path.Triggers>
</Path>

Path Animations | 599

The PathGeometry describing the animation path contains a single elliptical arc seg-
ment. This sweeps out a 90 degree angle, and its center coincides with the fixed
StartPoint of the LineGeometry. The result is that the line swings from side to side
like a metronome. Figure 16-12 shows three snapshots from the animated line’s
progress.

Not all of the properties you might wish to animate in this way will be of type Point.
For example, you might want to use a path animation to modify an object’s position
on a Canvas. This requires you to set two properties: Canvas.Left and Canvas.Top.
Both are of type Double. Example 16-30 shows how to animate these using
DoubleAnimationUsingPath.

Figure 16-12. Point animation with path

Example 16-30. Double animation with path

<Canvas>
 <Canvas.Resources>
 <PathGeometry x:Key="animPath"
 Figures="M 0,30 A 30,30 180 0 1 60,30 30,30 180 0 1 0,30" />
 </Canvas.Resources>

 <Path Stroke="Blue" StrokeThickness="2" Data="{StaticResource animPath}" />

 <Path Stroke="Black" StrokeThickness="2" Data="M0,0 H20 M15,-5 L20,0 15,5">
 <Path.Triggers>
 <EventTrigger RoutedEvent="Line.Loaded">
 <BeginStoryboard>
 <Storyboard>

 <DoubleAnimationUsingPath Source="X"
 RepeatBehavior="Forever" Duration="0:0:5"
 Storyboard.TargetProperty="(Canvas.Left)"
 PathGeometry="{StaticResource animPath}" />

 <DoubleAnimationUsingPath Source="Y"
 RepeatBehavior="Forever" Duration="0:0:5"
 Storyboard.TargetProperty="(Canvas.Top)"
 PathGeometry="{StaticResource animPath}" />

 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Path.Triggers>
 </Path>
</Canvas>

600 | Chapter 16: Animation and Media

The storyboard in this example contains two animations, one for each property. The
Source property indicates whether the DoubleAnimationUsingPath is to provide the x
or y position for the current location. Because both animations need to share the
same PathGeometry, it is defined as a resource. The first Path in the example displays
this same path so that we can see its shape. The second Path is in the shape of an
arrow, and its position is animated around this PathGeometry. Figure 16-13 shows
three snapshots from this animation.

Figure 16-13 highlights an extra feature we might want from a path animation. In all
three snapshots in the figure, the arrow points in the same direction. But what if we
would like to have it pointing in the direction of travel? In general, when animating
an object along a path, it might make sense for it to face in the direction it’s moving.
To enable this, DoubleAnimationUsingPath supports a third option for its Source prop-
erty: Angle. We could add a RotateTransform to the animation target, and animate its
Angle property with such a DoubleAnimationUsingPath. However, in this case there’s
an easier way.

A MatrixAnimationUsingPath can animate a single object’s position and orientation in
one step. It builds a transformation matrix that includes the necessary translation,
and if you set its DoesRotateWithTangent property to true, the matrix also incorpo-
rates rotation. Example 16-31 shows a version of the arrow-shaped second Path from
Example 16-30 modified to use this technique.

Figure 16-13. Point animation with path

Example 16-31. Matrix animation with path

...
<Path Stroke="Black" StrokeThickness="2" Data="M0,0 H20 M15,-5 L20,0 15,5">
 <Path.RenderTransform>
 <MatrixTransform />
 </Path.RenderTransform>
 <Path.Triggers>
 <EventTrigger RoutedEvent="Line.Loaded">
 <BeginStoryboard>
 <Storyboard>

 <MatrixAnimationUsingPath DoesRotateWithTangent="True"
 RepeatBehavior="Forever" Duration="0:0:5"
 Storyboard.TargetProperty="
 (Path.RenderTransform).(MatrixTransform.Matrix)"
 PathGeometry="{StaticResource animPath}" />

Clocks and Control | 601

The path’s RenderTransform property contains a MatrixTransform. By default, this will
apply the identity matrix—it will have no effect. However, it is present because the
animation modifies this transform’s Matrix property to set the position and rotation
of the element. Figure 16-14 shows the result.

You can use any segment type in the PathGeometry for a path animation—see
Chapter 13 for more information on the available path segment types. However,
there is one thing to watch out for if you are using Bézier curves: if you animate the
tangent, it’s tricky to keep this smooth when transitioning from one Bézier segment
to the next. It’s not sufficient to keep the control point tangents of adjacent seg-
ments aligned—this produces a smooth-looking join, but it can result in a visible jolt
in the rate at which the rotation changes. Tangent alignment guarantees only first
order continuity, or C1 continuity as it’s sometimes called. For smooth tangent ani-
mation, you require second order, or C2, continuity. The mathematics for guarantee-
ing C2 continuity is beyond the scope of this book. However, if you have a drawing
tool that is able to draw B-splines and can export them to XAML as Bézier curves,
that will provide the continuity required for smooth tangent animation.

Now that we’ve seen all of the ways in which timelines can describe animations, it’s
time to look at how we can control the execution of timelines from code.

Clocks and Control
When launching an animation from code, we’ve had only a limited amount of con-
trol over the progress of the animation. We may have defined the sequence and
structure of events we require in great detail, but then we just kicked them off by
calling BeginAnimation, leaving the animation system to deal with them. To gain
more control, we have two options. Either we can use the control features offered by
storyboards, or we can work with a timeline’s clock.

 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Path.Triggers>
</Path>
...

Figure 16-14. Animating both position and tangent rotation

Example 16-31. Matrix animation with path (continued)

602 | Chapter 16: Animation and Media

Controlling Animations with Storyboards
We’ve already seen how to exercise a little control by using event triggers. These
offer actions to pause, stop, or resume an animation, or even to seek to a particular
location within an animation. Example 16-7 showed how to use these. One limita-
tion with triggers is that they always run the same storyboard. Sometimes it can be
useful to write code that decides which storyboard to use at runtime. This means
controlling the storyboards from code.

Trigger actions rely on control features offered by storyboards, so if you wish to con-
trol animations from code rather than with triggers, you can use these same services.
The Storyboard class provides a set of methods for controlling the execution of the
animations it contains: Begin, Pause, Remove, Resume, Seek, SeekAlignedToLastTick,
SetSpeedRatio, SkipToFill, and Stop.

The majority of these correspond directly to the trigger action types listed in
Table 16-2, with two exceptions. There is no counterpart to the SoundPlayerAction,
because that trigger type does not correspond to a Storyboard—it plays sounds
rather than animations. Also, Storyboard offers a variation on the Seek method,
called SeekAlignedToLastTick, for which there is no corresponding trigger action.

These two seek methods do more or less the same thing. The only distinction is the
instant at which they will take effect. Seek sets the storyboard’s position for the next
time the animation system updates all of the animated properties.
SeekAlignedToLastTick updates the animation system’s state so that everything looks
as though the storyboard had been moved to the specified position on the most
recent tick to have occurred. This means that if you call SeekAlignedToLastTick, its
effect will immediately be visible to your code if you should read the current value of
any animated property. But if you call Seek, any affected properties will not change
until the next animation update. In general, you should prefer Seek unless you really
need to see the effects straight away, because SeekAlignedToLastTick requires the ani-
mation system to do more work. The distinction between these two methods typi-
cally matters only from code, which is why trigger actions offer only one kind of seek.

To use these control methods, you must create a storyboard outside a trigger. You
could do this from code, but a common approach is to define the storyboard as a
resource, as shown in Example 16-32.

Example 16-32. Storyboard resources

<Window.Resources>
 <Storyboard x:Key="sunrise">
 <DoubleAnimation Storyboard.TargetProperty="(Canvas.Top)"
 From="100" To="0" Duration="0:0:3" />
 <ColorAnimation Storyboard.TargetProperty="
 (Ellipse.Fill).(SolidColorBrush.Color)"
 From="Red" To="Yellow" Duration="0:0:3" />
 </Storyboard>

Clocks and Control | 603

Having defined the storyboards, you can then retrieve them from code and launch
them with the Begin method. You must pass a parameter to Begin indicating the ani-
mation target of the storyboard, as Example 16-33 shows.

This example chooses which storyboard to run based on the time of day, something
an event trigger cannot do.

As well as controlling a Storyboard, you can also monitor its progress. Table 16-5
lists the methods for doing this. Because you can apply a Storyboard to multiple dif-
ferent targets, you must pass in the target for which you wish to examine the state.
Note that these facilities are available only if you make the storyboard controllable.
You do this by using an overload of the Begin method that accepts a Boolean as well
as a target element, and pass in True for this final parameter. Storyboards are not
controllable by default.

 <Storyboard x:Key="sunset">
 <DoubleAnimation Storyboard.TargetProperty="(Canvas.Top)"
 From="0" To="100" Duration="0:0:3" />
 <ColorAnimation Storyboard.TargetProperty="
 (Ellipse.Fill).(SolidColorBrush.Color)"
 From="Yellow" To="Red" Duration="0:0:3" />
 </Storyboard>
</Window.Resources>

Example 16-33. Selecting a storyboard at runtime

bool isMorning = DateTime.Now.Hour < 12;
string storyboardKey = isMorning ? "sunrise" : "sunset";
Storyboard sb = (Storyboard) FindResource(storyboardKey);

sb.Begin(myEllipse);

Table 16-5. Methods for monitoring storyboard progress

Method Usage

GetCurrentGlobalSpeed Returns the rate of progress of this storyboard relative to real time. Returns null if the
animation has stopped.

GetCurrentIteration 1-based iteration count. (Useful only if the storyboard repeats.) Returns null if the ani-
mation has stopped.

GetCurrentProgress Returns a number from 0 to 1 indicating how far the storyboard is through its current
iteration. If the storyboard has an indefinite duration, this will always be 0. Returns null
if the animation has stopped.

GetCurrentState Indicates whether the animation is in the Active, Filling, or Stopped state.

GetCurrentTime Indicates the current time relative to the start of the storyboard. Returns null if the ani-
mation has stopped.

GetIsPaused Returns true if the storyboard is paused.

Example 16-32. Storyboard resources (continued)

604 | Chapter 16: Animation and Media

Storyboard provides the members listed previously for convenience. All of the same
services are available on any timeline if you obtain the timeline’s clock. In fact,
Storyboard defers to its own clock to provide each of these methods.

Controlling Animations with Clocks
Sometimes it is useful to have control over an individual animation’s progress with-
out having to wrap it in a Storyboard. You can do this by working with the anima-
tion’s clock.

A clock is an object created at runtime that keeps track of the current position in a
timeline and executes whatever actions the timeline defines. If you refer back to one
of the timeline diagrams, such as Figure 16-8, the clock is the thing that knows
where we are on the time scale at the top of the diagram. All running timelines have
clocks associated with them.

The relationship between timelines and clocks is similar to the rela-
tionship between code and threads. Executable code defines what
operations are to be performed, but a thread is required to execute the
code. Likewise, a timeline describes what happens over a particular
length of time, but a clock is required to run the timeline.

If you use BeginAnimation or a Storyboard, WPF will create the clock for you, but if
you want the same kind of control over an individual animation object as you can
have with the storyboard control methods, you must create the clock yourself.
Example 16-34 creates an animation identical to the one in Example 16-2, but it cre-
ates a clock explicitly and starts the animation using ApplyAnimationClock.

Example 16-34. Controlling animations with a clock

AnimationClock clock;

void StartAnimation() {
 DoubleAnimation animate = new DoubleAnimation();
 animate.To = 300;
 animate.Duration = new Duration(TimeSpan.FromSeconds(5));
 animate.RepeatBehavior = RepeatBehavior.Forever;

 clock = animate.CreateClock();
 myEllipse.ApplyAnimationClock(Ellipse.WidthProperty, clock);
}

void PauseAnimation() {
 clock.Controller.Pause();
}

void ResumeAnimation() {
 clock.Controller.Resume();
}

Transition Animations | 605

This example contains methods that can pause and resume the animation, using the
clock’s Controller property. The operations offered by the clock controller are iden-
tical to the control methods offered by Storyboard; it also has a set of properties that
correspond closely to the methods shown in Table 16-5. These properties are shown
in Table 16-6, which also shows how they correspond to the Storyboard methods.

One kind of animation you would normally control from code is a transition
animation—an animation from one part of a UI to another.

Transition Animations
Sometimes it can be useful to use animations to ease the transition between one part
of the user interface and another. Many user interfaces present multiple different
contexts and allow the user to navigate between them. For example, a modal dialog
presents a different context from the main user interface. In navigation-style applica-
tions, each page is its own context. Most applications switch between these contexts
more or less instantaneously. However, we can provide a smoother experience for
the user if we animate the transition from one part of the UI to another (e.g., fade).

Unfortunately, the current version of WPF does not provide any automatic support
for transition animations. For example, you can’t simply supply a NavigationWindow
or Frame with an animation to use when moving from one page to another. You need
to do a little more work.

To provide transition animations in a navigation application, we need to handle both
the Navigating and the Navigated events. In the Navigating event handler, we can
capture a copy of the current page’s appearance in the form of a VisualBrush. In the
Navigated event, we can use this to provide a transition animation.

We can’t handle it all in a single event. In the Navigated event hand-
ler, it’s too late to get hold of the old page. And, in the Navigating
handler, it’s too early to start the animation: we don’t yet know
whether navigation will definitely occur, because it may be cancelled.

Table 16-6. Properties for monitoring clock progress

Property Storyboard equivalent

CurrentGlobalSpeed GetCurrentGlobalSpeed

CurrentIteration GetCurrentIteration

CurrentProgress GetCurrentProgress

CurrentState GetCurrentState

CurrentTime GetCurrentTime

IsPaused GetIsPaused

606 | Chapter 16: Animation and Media

Example 16-35 shows the markup for an application that will perform navigation
transition animation. It contains a Frame, which will host the application’s pages. It
also contains a Canvas element placed on top of the Frame. This will hold the copied
page as it is animated out of view. The IsHitTestVisible property has been used to
make the element invisible to the mouse—we want this Canvas to be a cosmetic ele-
ment whose presence has no effect on the application’s behavior. This example also
contains the Storyboard that will be used to perform the transition animation.

In the code-behind file, the Navigating event handler makes a copy of the outgoing
page’s appearance in the form of a VisualBrush, as Example 16-36 shows.

Example 16-35. Markup for navigation transition animations

<Window ...>

 <Window.Resources>
 <Storyboard x:Key="transitionAnimation"
 TargetName="transitionPlaceholder">
 <DoubleAnimation Storyboard.TargetProperty="Opacity"
 From="1" To="0" DecelerationRatio="1"
 Duration="0:0:0.4" />
 </Storyboard>
 </Window.Resources>

 <Grid>
 <Frame Name="mainFrame" Source="Page1.xaml" />
 <Canvas Name="transitionPlaceholder" IsHitTestVisible="False" />
 </Grid>

</Window>

Example 16-36. Copying the outgoing page to a VisualBrush

VisualBrush lastPageBrush;
void mainFrame_Navigating(object sender, NavigatingCancelEventArgs e) {
 Page lastPage = mainFrame.Content as Page;
 if (lastPage != null) {
 lastPageBrush = new VisualBrush(lastPage);
 lastPageBrush.Viewbox = new Rect(0, 0, lastPage.ActualWidth,
 lastPage.ActualHeight);
 lastPageBrush.ViewboxUnits = BrushMappingMode.Absolute;
 lastPageBrush.Stretch = Stretch.None;

 // Page won't be at origin, thanks to navigation bar.
 // Discover the offset.
 Point pageOffset =
 lastPage.TransformToVisual(this).Transform(new Point());
 transitionPlaceholder.Margin = new Thickness(pageOffset.X, pageOffset.Y,
 0, 0);

Transition Animations | 607

This code also discovers the position of the page relative to the window by calling
TransformToVisual. We need to do this because the navigation bar provided by the
Frame will push the page down, and we want to make sure that the copy of the page
we use for animation is in the same location. Our navigation placeholder Canvas is a
child of the main Grid—we can’t make it a child of the Frame because the Frame con-
tains just one child: the Page. So, we need to adjust the placeholder’s position to
match that of the Page. We do this by adjusting the placeholder’s Margin.

In the Navigated event handler, we display the copy of the previous page in the place-
holder and run the transition animation, as shown in Example 16-37.

Now, when the user navigates from one page to another, the preceding page will fade
away instead of vanishing immediately. Figure 16-15 shows a snapshot of a transi-
tion. This fading is fairly unambitious, but with this code in place, we could create
more exciting transitions by changing the storyboard in Example 16-35.

 }
 else {
 lastPageBrush = null;
 }
}

Example 16-37. Running the transition animation

void mainFrame_Navigated(object sender, NavigationEventArgs e) {
 if (lastPageBrush != null) {
 transitionPlaceholder.Background = lastPageBrush;
 lastPageBrush = null;

 Storyboard sb = (Storyboard) FindResource("transitionAnimation");
 sb.Begin(this);
 }
}

Figure 16-15. Transition animation

Example 16-36. Copying the outgoing page to a VisualBrush (continued)

608 | Chapter 16: Animation and Media

All of the animation examples we’ve looked at so far have involved properties of
ordinary elements. However, the animation’s timing system can also integrate with
that of media playback.

Audio and Video
WPF can incorporate video and audio into a user interface. The relationship between
video and animation goes deeper than the superficial fact that they are both ways of
showing moving images. The timeline and clock mechanisms you use in animation
you can also use to control video and audio playback.

The fact that video or audio can connect with the animation timing system is useful
if you want to synchronize animation with media. For example, suppose you wanted
to present a recording in an application with a series of clickable bookmarks to jump
directly to key points in the recording. You might want to arrange for these book-
marks to change appearance as the playback reaches the relevant point, allowing the
user to see at a glance where the playback has reached. One way to do this is to cre-
ate a timeline that changes each bookmark item at the appropriate time. By connect-
ing this timeline with the media playback, you could guarantee that the visual
changes to the bookmarks were always properly synchronized with the video or
audio playback.

It’s not always necessary to synchronize media and animations. WPF also lets you
play media in a simpler “independent” mode. We’ll look at this simple usage before
seeing how to synchronize playback with animations.

Simple Media Playback
The easiest way to play video or audio media in WPF is to use the MediaElement,
pointing its Source property at the media file you wish to play. Example 16-38 shows
a MediaElement that will play one of the sample videos that ship with Windows Vista.

Used this way, the MediaElement will play the material as soon as it loads, and you
will have no control over its progress. You can change this by setting the
LoadedBehavior property. This defaults to Play, but if you set it to Manual, you can
control the media element from the code-behind file, using the Play, Pause, and Stop
methods, and you can jump to a particular position in the media by setting the
Position property.

You can use these control methods only if LoadedBehavior is set to
Manual. They will throw exceptions otherwise. LoadedBehavior has a
default value of Play.

Example 16-38. Simple MediaElement

<MediaElement Source="C:\Users\Public\Videos\Sample Videos\Butterfly.wmv" />

Audio and Video | 609

By default, the MediaElement will resize video content to match the space available.
Its Stretch property supports the same stretch styles we saw in Chapter 13—None,
Fill, Uniform, and UniformToFill. The default is Uniform, meaning it will enlarge the
content as far as possible without clipping it, but will preserve the aspect ratio.

The MediaElement will have a width and height of 0 until it has loaded
the video. It does not take on a size until it knows the size of the video
stream. It raises the MediaOpened event once it has successfully opened
the stream and determined the size. You can discover the size of the
source material by reading the element’s NaturalVideoWidth and
NaturalVideoHeight properties after the MediaOpened event has been
raised.

If a MediaElement is playing audio content, its size will be zero even
once the stream starts to play.

When you use a MediaElement in this fashion, it is said to be running in independent
mode—it plays the media at its own rate, independent of the animation timing sys-
tem. Although the MediaElement provides basic control methods when used in inde-
pendent mode, you will need to use it in clock mode if you want to synchronize
animation events with media playback.

Using MediaElement in Clock Mode
To use a media element in clock mode, you must create a MediaTimeline with the
media element as its target. The MediaTimeline is responsible for specifying the source
media. Example 16-39 shows a MediaTimeline in a storyboard that contains several
other animations. (Note that this example presumes that a VoiceRecording.wma file
containing an audio recording exists.)

Example 16-39. Media element in clock mode

<StackPanel>
 <TextBlock Name="ten" Text="10 seconds" Background="White" />
 <TextBlock Name="fifteen" Text="15 seconds" Background="White" />
 <TextBlock Name="twentyfive" Text="25 seconds" Background="White" />

 <MediaElement Name="media" />

 <StackPanel.Triggers>
 <EventTrigger RoutedEvent="StackPanel.Loaded">
 <BeginStoryboard>
 <Storyboard SlipBehavior="Slip">

 <MediaTimeline Source="VoiceRecording.wma"
 Storyboard.TargetName="media" />

 <ColorAnimation BeginTime="0:0:10" Duration="0:0:0.2"
 Storyboard.TargetName="ten" To="PaleGreen"

610 | Chapter 16: Animation and Media

This example contains three TextBlock elements. The storyboard contains anima-
tions that change these elements’ background colors at various points during the
timeline. Figure 16-16 shows three snapshots from this UI, illustrating how the back-
ground is filled in as time progresses.

Because these animations are part of the same storyboard as the MediaTimeline, they
will be synchronized—the first animation has a BeginTime of 0:0:10, so it will run
exactly 10 seconds into the animation, and therefore also 10 seconds into the media
playback. If you were to pause the storyboard, both the media playback and the anima-
tions would be paused. They would remain in sync when you resumed the storyboard.

Slipping

One problem with media playback is that it is sometimes not possible to play the
source material in real time. If the material is being downloaded, network problems
may prevent the data from arriving in time to be played. In this case, the system has
no option but to suspend playback for a while. There may be delays even when the
material is local—there is often a short delay from when you ask to play material to
when playback begins. The net result is that a MediaTimeline may occupy more real
time than the theoretical natural duration of the source material. This is referred to
as slipping.

 Storyboard.TargetProperty=
 "(TextBlock.Background).(SolidColorBrush.Color)" />

 <ColorAnimation BeginTime="0:0:15" Duration="0:0:0.2"
 Storyboard.TargetName="fifteen" To="PaleGreen"
 Storyboard.TargetProperty=
 "(TextBlock.Background).(SolidColorBrush.Color)" />

 <ColorAnimation BeginTime="0:0:25" Duration="0:0:0.2"
 Storyboard.TargetName="twentyfive" To="PaleGreen"
 Storyboard.TargetProperty=
 "(TextBlock.Background).(SolidColorBrush.Color)" />

 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </StackPanel.Triggers>
</StackPanel>

Figure 16-16. Highlights indicating media progress

Example 16-39. Media element in clock mode (continued)

Where Are We? | 611

Slipping causes a problem when playing media in clock mode: it can compromise the
relationship between the media playback and any synchronized animations. WPF can
deal with slipping in two ways, chosen by the SlipBehavior property of the storyboard.

The default SlipBehavior is Grow. In this mode, timelines that slip are treated as
though they have simply grown in length. So, if media playback starts one second
late due to startup delays, it will be one second behind throughout and will finish
one second late—the MediaTimeline has effectively grown one second longer. This
means that all the other animations will be unaffected by the slippage, which can
minimize visual disruption. However, this has the unfortunate effect that any syn-
chronized animations will appear to run early. In fact, they’re running exactly on
time and it’s the media that’s late, but if the user attention is focused on the media, it
will look like the animations are coming in ahead of cue.

To avoid this timing mismatch, Example 16-39 sets the SlipBehavior to Slip. With
this setting, when the MediaTimeline slips, the Storyboard forces all of its other time-
lines to slip with it—any animations that were in progress when slippage began will
be suspended until the MediaTimeline is able to progress. This increases the disrup-
tion when slippage occurs—the whole storyboard grinds to a halt instead of just the
media playback. But it keeps the animations in sync, and because synchronization of
animations and media playback is the normal reason for using a media element in
clock mode, the Slip mode will normally make more sense.

If you want some of the animations to slip in order to remain synchro-
nized, but other animations to progress as normal, you can use two
separate storyboards.

Where Are We?
Animation can enhance an application’s interactive feel. It can make for smoother
transitions when items appear and disappear. Of course, you should use animation
with taste and restraint—if you animate everything in your application, it will be a
bewildering mess. You should also take care not to frustrate your users by forcing
them to wait for animations to finish before proceeding. Fortunately, WPF keeps all
user interface elements active while animations are in progress.

All animations are described by timelines, which are objects that describe what hap-
pens over some particular stretch of time. Timelines form a hierarchy, allowing the
relationships between different parts of an animation to be expressed. The execution
of animations is controlled by “clocks,” which provide us with a means of starting
and stopping animations. You can add animations to the triggers section of any ele-
ment, and to styles and templates. The animation’s timing system can synchronize
with media playback, enabling animations to coincide with events in audio or video
sources.

612

Chapter 17CHAPTER 17

3D Graphics 17

WPF applications can incorporate three-dimensional content. A data visualization
application might use this to produce a 3D plot of a field of values. A shopping appli-
cation could offer a 3D model of a product in order to give potential customers a bet-
ter idea of what the item looks like. WPF provides a simple mechanism for
integrating such 3D content into your application.

Note that if you wish to fully exploit your graphics card’s 3D capabilities, WPF is
unlikely to be the best choice of technology. The main benefits WPF offers in 3D are
ease of use and the ability to integrate 3D content anywhere in a WPF application.
The performance cannot compete with lower-level APIs such as DirectX and
OpenGL, and you should continue to use these if your application has very demand-
ing 3D requirements. But if you wish to incorporate fairly simple models into an oth-
erwise two-dimensional application, WPF’s 3D features make this easy.

This chapter is not an introduction to 3D graphics in general, or the mathematics
behind it. We will focus just on how WPF does 3D graphics.*

3D Content in a 2D World
WPF is essentially a two-dimensional technology. The panel-based layout system
knows how to arrange 2D elements onto a 2D screen. Likewise, the flow document
system knows how to flow text onto a two-dimensional page. So how does 3D con-
tent fit into this world?

The Viewport3D element bridges the gap between 2D and 3D. As far as the WPF lay-
out system is concerned, Viewport3D is just a rectangular element. It is similar in
nature to the MediaElement type: both are rectangular elements that can display mov-
ing images. Whereas MediaElement displays a recorded video stream, a Viewport3D
works more like a live video feed from a camera—a virtual camera in a 3D model.

* You can find a thorough tutorial on the mathematics and geometry of 3D graphics at http://chortle.ccsu.edu/
VectorLessons/index.html (http://tinysells.com/81).

Cameras | 613

Viewport3D fits into the WPF layout model like any other element. You can give it an
explicit width and height, or you can let it pick up its height from a containing panel
such as a Grid. You can host it inside a panel or a content control just like any other
element. And, of course, all the normal layout properties, such as Margin and
HorizontalLayout, are available.

Viewport3D requires us to supply three things: a camera description, one or more
light sources, and a 3D model. Without a model, there is nothing to display. With-
out a light source, there is no way to see the model. And, the Viewport3D needs a
camera description so that it knows the point of view from which it should render
the scene.

Cameras
You must set the Viewport3D’s Camera property to one of the three available camera
types: PerspectiveCamera, OrthographicCamera, or MatrixCamera. The type of cam-
era determines how the 3D model will be turned into a 2D image on-screen.

The PerspectiveCamera is often the most natural choice. With this camera, the far-
ther away objects are, the smaller they appear. Because that’s how things look in real
life, this produces a reasonably natural-looking image.

The OrthographicCamera uses a more simplistic approach. A 3D object of a particular
size will always be rendered at exactly the same size, regardless of how far away it is.
This tends to produce rather unnatural-looking images, but it can occasionally be
useful—sometimes consistency is more important than a natural appearance. If you
are rendering 3D models representing the design of something physical, such as a
planned piece of woodwork or the layout of a room, you might want objects of the
same size in the model to appear the same size on-screen. Likewise, if you are pro-
ducing a 3D graph, consistency of size might be more important than realism. An
OrthographicCamera can guarantee this, whereas a PerspectiveCamera can, by design,
show equal-size objects as different sizes on-screen. Figure 17-1 shows an example—
on the left is a series of identical columns rendered with a PerspectiveCamera, and on
the right is the same model as shown by an OrthographicCamera.

Figure 17-1. PerspectiveCamera and OrthographicCamera

614 | Chapter 17: 3D Graphics

If you are using either the PerspectiveCamera or the OrthographicCamera, you need to
provide information about the camera’s position and orientation. You set its loca-
tion relative to the coordinate space of the Viewport3D’s model with the Position
property. The LookDirection property indicates which direction the camera is point-
ing. This isn’t quite enough to establish the camera’s orientation—a camera in a par-
ticular location pointed in a particular direction can still be rotated around the axis
in which it is pointing. For example, when taking a photograph with a real camera,
you can rotate it to choose between a portrait or landscape shot. So, you must also
specify an UpDirection.

This pins down the location and orientation of the camera, but you still need to indi-
cate how wide a shot you require. (In real camera terms, this is equivalent to adjust-
ing the focal length of a zoom lens.) With the PerspectiveCamera, you do this with
the FieldOfView property, specifying an angle in degrees. Narrowing the angle has
the effect of zooming in, and increasing the angle zooms out.

Example 17-1 shows a PerspectiveCamera. This is positioned and oriented such that
the model’s x- and y-axes will appear horizontal and vertical in the Viewport3D,
respectively. The camera is looking directly at the origin, and it is positioned on the
z-axis itself, four units away from the origin in the positive z direction. The position
we’ve chosen for this camera means that lower values of z are farther away from the
camera.

To demonstrate the impact of the various camera settings, we’ll look at how making
small changes to each property affects what the camera sees. The model in all cases
will be the same. It will consist of five cylinders, similar to those shown in
Figure 17-1, but with a couple of the cylinders colored black to make it easier to see
which way around things are—with a 3D view it is possible to look at a scene from
any angle, so it’s useful to have something to help keep your bearings. Figure 17-3
shows a plan view of the model viewed from above.

The cylinders are positioned in a line near the center. Figure 17-3 also shows a sym-
bol that appears three times toward the bottom—a circle with a cross through it.
These indicate camera locations, and the arrow indicates the direction in which the
camera is pointing (i.e., the LookDirection). The middle one corresponds to the cam-
era in Example 17-1, and the ones on either side correspond to similar cameras, but
with the Position property modified to –1,0,4 and 1,0,4. This is equivalent to mov-
ing the camera one unit to the left or one unit to the right. Figure 17-2 shows the
three camera positions. The leftmost image shows the leftmost camera position,
which results in the leftmost column appearing in the center of the frame, because
that column appears directly in front of the camera. Likewise, the rightmost image

Example 17-1. PerspectiveCamera

<PerspectiveCamera Position="0,0,4" LookDirection="0,0,-1"
 UpDirection="0,1,0" FieldOfView="45" />

Cameras | 615

has the rightmost column dead center, as it is directly in front of the camera. The
middle image may look surprising, as it appears slightly lopsided. However, this is
just the effect of perspective. The central column is in the center of the frame, and
the columns on the right appear nearer to the center than those on the left simply
because they are farther away.

By changing just the Position, we adjust the camera location without changing the
direction in which it is pointing. In cinematic terminology, this is equivalent to a
tracking shot, in which the camera is typically on rails so that it can move around.
With a real camera, an alternative to moving around is to use a panning shot,
where the camera remains stationary, but the direction in which it points changes.
We can achieve this effect in WPF by changing the camera’s LookDirection. In
Figure 17-4, the Position is the same for all three shots—it is back at 0,0,4.

Figure 17-2. Position: –1,0,4; 0,0,4; and 1,0,4

Figure 17-3. Model and camera positions

1

2

3

-1-2 1 2

-1

-2

x

z

616 | Chapter 17: 3D Graphics

Instead, the LookDirection has been adjusted to point the camera at the leftmost col-
umn, the central column, and the rightmost column. The difference between this
and Figure 17-2 is subtle, but clear—the effect of perspective is different. In
Figure 17-2, the columns in the lefthand shot are bunched together fairly closely, and
the spacing increases as the camera moves to the right. This effect is sometimes
called parallax, and it occurs with any tracking shot. But in Figure 17-4 this effect
does not occur, because the camera has not moved; again, with a real camera, paral-
lax effects do not occur with panning shots.

The third property in Example 17-1 is UpDirection. On a real camera, this would cor-
respond to tilting the camera while keeping it pointed in the same direction.
Figure 17-5 shows the effect of changing this property.

The final property in Example 17-1 is FieldOfView. This has the same effect as chang-
ing the focal length of the lens on a real camera, either by adjusting the zoom or by
changing lenses. Figure 17-6 shows three shots where all the parameters are the same
as in Example 17-1, except for the FieldOfView.

A zoom facility may seem redundant in a virtual 3D model, because it’s very easy to
move the camera around. However, moving a camera close to an item has a different
effect than zooming in. The closer a camera gets to its subject, the more distortion is
caused by perspective effects. Fitting a very wide angle lens, such as a so-called “fish-
eye” lens, to a real camera will take this to extremes, producing strangely distorted-
looking images. Moving a PerspectiveCamera farther away from a subject and then
zooming back in by narrowing the FieldOfView will reduce the effects of perspective.

Figure 17-4. LookDirection: –0.33,0,–1; 0,0,–1; and 0.33,0,–1

Figure 17-5. UpDirection: –0.5,1,0; 0,1,0; and 0.5,1,0

Cameras | 617

Figure 17-7 shows three shots where the Position has been adjusted to move the
camera away from or toward the scene, but the FieldOfView has been adjusted so
that the whole model remains in shot and at about the same size, in all three cases.
As you can see, the farther away from the model the camera is, the less effect per-
spective has.

Although most of the camera settings described apply to the OrthographicCamera, the
OrthographicCamera doesn’t adjust objects’ sizes for perspective, so a field-of-view
angle would make no sense for this camera. Instead, it has a Width property, which
serves a similar purpose—it determines how wide a view the camera takes—but
rather than taking an angle, it takes a size, measured in the coordinate space of the
3D model. Figure 17-8 shows the same scene as the previous examples, with the same
Position, LookDirection, and UpDirection, but shown by an OrthographicCamera with
various Width settings.

Figure 17-6. FieldOfView: 65; 45; and 25

Figure 17-7. Position/FieldOfView: 0,0,2/108; 0,0,4/45; and 0,0,8/20

Figure 17-8. Width: “5”; “4”; and “3”

618 | Chapter 17: 3D Graphics

The other camera type is MatrixCamera. This lets you define the camera with a pair of
matrix transformations. The first, the ViewMatrix, determines the position and orien-
tation of the camera (i.e., it has the same effect as the Position, LookDirection, and
UpDirection). The second, the ProjectionMatrix, determines how the image is pro-
jected onto the 2D output, including any adjustments for perspective.* You can re-
create the effect of either a PerspectiveCamera or an OrthographicCamera.

The MatrixCamera is harder to set up than the other two camera types—4 × 4 matrix
values are rather cryptic compared to position and direction properties. The main
reason the MatrixCamera exists is that this matrix representation is fairly common in
3D graphics packages. If you already have code that knows how to set up a camera
this way, you can plug the matrices it generates directly into a MatrixCamera.

In 2D, WPF’s coordinate system is arranged so that increasing the x
position moves to the right and increasing the y position moves down.
In 3D, the orientation of x and y depends entirely on the camera’s
position and orientation.

For example, you can place the camera so that increasing x values are
to the right, and increasing y values are down, making these axes con-
sistent with 2D. This will mean that increasing z values will move
away from the camera, because WPF uses a so-called right-handed
coordinate system. If you orient your thumb, index finger, and middle
finger of your right hand at right angles to each other and label them
x, y, and z, respectively, they are arranged in the same way as the 3D
axes in WPF. This is inconsistent with WPF’s convention for Z order
in 2D. As discussed in Chapter 3, even in 2D there is some notion of a
third dimension in the form of Z order. The Z order uses the conven-
tion that a higher Z index is nearer to the viewer. And because posi-
tive x means right and positive y means down, this tells us that 2D
effectively uses a left-handed system.

A camera is not much use without something to look at. So, we must add a model to
the Viewport3D.

Models
We describe three-dimensional objects in WPF by building a tree of Model3D objects.
Model3D is an abstract class, and we use the derived GeometryModel3D type to define a
particular 3D shape. Another derived type, Model3DGroup, allows us to combine sev-
eral Model3D objects into one composite Model3D. There are also various light source
types derived from Model3D, which we describe later in the “Lights” section.

* This may seem rather surprising, because perspective transformations are nonaffine and are therefore some-
thing you can’t do with matrix multiplication. The trick is that all of these matrices work with four-dimensional
coordinates, where the fourth dimension is used for perspective. After the matrix multiplication has been done,
these 4D coordinates are then turned back into 3D coordinates by dividing each of the first three dimensions
by the value in the fourth dimension. It’s this division operation that enables perspective.

Models | 619

Example 17-2 shows the basic structure of a very simple model.

This uses a Model3DGroup to build a model containing a light source (a DirectionalLight,
in this case) and a GeometryModel3D. The example is not complete, as we need to pro-
vide the GeometryModel3D with two pieces of information. It needs to know what the sur-
face of the shape should look like—what color it should be, and whether its finish
should be matte or reflective. It also needs a description of the shape, which a
Geometry3D provides.

Geometry3D
As you saw in Chapter 13, WPF defines 2D shapes with the various types derived
from Geometry. It should therefore come as no surprise that 3D shapes are defined by
classes derived from Geometry3D. However, whereas the 2D world offers various dif-
ferent kinds of geometries, such as EllipseGeometry, RectangleGeometry, and
PathGeometry, WPF currently offers only one concrete Geometry3D: MeshGeometry3D.

A MeshGeometry3D defines the shape of a surface as a collection of triangles. A so-
called “mesh” of triangles is a very common way to represent shapes in 3D, because
modern graphics cards are designed to render triangles very quickly, and it’s possi-
ble to build all sorts of complex shapes by stitching enough triangles together. Any
modern 3D modeling software will be able to generate triangle-based representa-
tions of the 3D models you design. In WPF, you create a mesh by specifying a collec-
tion of 3D points and then describing how those points are joined up as triangles.
We also provide surface normals for each point—vectors indicating the direction in
which the surface is facing at that particular point. Example 17-3 shows the simplest
possible MeshGeometry3D.

This defines a single triangle. The Positions property contains three sets of three
numbers. Each group of three numbers in the XAML is turned into a Point3D value.

Example 17-2. A simple 3D model

<Model3DGroup>

 <DirectionalLight Direction="0,0,-1" />

 <GeometryModel3D>
 ...
 </GeometryModel3D>

</Model3DGroup>

Example 17-3. MeshGeometry3D

<MeshGeometry3D Positions="0,1,0 1,-1,0 -1,-1,0"
 Normals="0,0,1 0,0,1 0,0,1"
 TriangleIndices="0,2,1" />

620 | Chapter 17: 3D Graphics

The Normals property is a collection of Vector3D values that indicate the direction in
which the surface is facing at each point. WPF needs to know this in order to per-
form lighting calculations—the angle between a surface and a light source can have
an impact on how the surface should be rendered. In this example, all three vectors
are pointing in the same direction, because this is a flat surface.

The TriangleIndices property is a collection of integers, indexing into the Positions
collection. This serves two purposes. The first is that it indicates how the points are
joined into triangles. (In this case, it’s trivial: there are only three points, so there’s
only one possible triangle. But for meshes containing hundreds of points, WPF needs
to know how you want them joined together.)

More subtly, the TriangleIndices property also indicates which way each triangle is
facing. Surfaces have a front and a back, which may be painted in different ways.
(For a completely enclosed shape, you wouldn’t bother painting the back at all,
because all the triangle backs are on the inside of the shape.) The ordering of the
points determines which side is which: if the points appear in counterclockwise
order, you’re looking at the front.

Figure 17-9 shows the triangle described by Example 17-3, drawn so that x and y are
horizontal and vertical, viewed from the positive z direction. The TriangleIndices in
Example 17-3 list the points in the order 0,2,1—a counterclockwise order. This
means that the triangle’s front is the one facing us in Figure 17-9 (i.e., the one facing
in the positive z direction). If TriangleIndices had been set to 0,1,2, the triangle
would be facing away from us, and Figure 17-9 would be showing its back.

Figure 17-9. Mesh points

x

y

z

Position: 0,1,0
Index: 0

Position: -1,-1,0
Index: 2

Position: 1,-1,0
Index: 1

Models | 621

Now that we have defined a shape, albeit a very simple one, we can plug this
MeshGeometry3D into the unfinished GeometryModel3D in Example 17-2. Example 17-4
shows this fleshed-out version.

We’re not done yet, though. A GeometryModel3D requires two pieces of information:
the shape and a description of how to paint the surface. For this second part, we
need to supply a Material object.

Materials
A Material is the 3D equivalent of a Brush. Just as a Brush describes how to paint a
2D shape, a Material describes how to paint a 3D shape. In fact, a Material incorpo-
rates at least one 2D Brush to define the surface’s coloring, but it also provides infor-
mation such as whether it is shiny or matte.

Material is an abstract class. WPF provides four concrete subclasses.
DiffuseMaterial defines a surface with a matte finish. SpecularMaterial defines a
somewhat shiny finish—one that will have reflective highlights. An EmissiveMaterial
is one that lights up of its own accord—it does not need a light source in order to be
visible. Finally, MaterialGroup allows multiple material types to be combined into a
single material.

DiffuseMaterial

DiffuseMaterial describes a surface with a matte finish. This means the brightness
for any particular part of the surface is determined only by how the various light
sources strike it. The position of the camera does not have any impact.

You set the surface color or texture by setting the Brush property. This will accept
any WPF brush, so you can use a solid color, a gradient, a bitmap, a drawing, or
even a Visual to paint the 3D surface. Example 17-5 shows a DiffuseMaterial based
on a SolidColorBrush.

Example 17-4. GeometryModel3D with MeshGeometry3D

<GeometryModel3D>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D Positions="0,1,0 1,-1,0 -1,-1,0"
 Normals="0,0,1 0,0,1 0,0,1"
 TriangleIndices="0,2,1" />
 </GeometryModel3D.Geometry>

 ...
</GeometryModel3D>

Example 17-5. DiffuseMaterial

<DiffuseMaterial Brush="#00FFFF" />

622 | Chapter 17: 3D Graphics

Figure 17-10 shows this material applied to a model of a sphere. (The sphere model
itself is not shown because it contains several thousand triangles, and is therefore
rather large.)

SpecularMaterial

SpecularMaterial models a shiny surface. A SpecularMaterial shows highlights
where it reflects the light source, and as with a real object, these highlights will shift
as the point of view moves around. Example 17-6 shows a SpecularMaterial.

Figure 17-11 shows this material applied to the same sphere as in Figure 17-10. (Two
highlights have appeared because this particular example scene contains two light
sources.) This has been rendered onto a black background because the material
would be invisible on a white background.

Figure 17-11 looks a little odd. This is because you would not normally use a
SpecularMaterial in isolation. The material is designed to be used in a MaterialGroup
in combination with other material types such as a DiffuseMaterial. The highlights
provided by a SpecularMaterial are added onto whatever is underneath.

The way a SpecularMaterial combines with what is underneath is different from
ordinary transparency. Normal transparent rendering in 2D graphics in WPF gener-
ates weighted averages of colors. But a SpecularMaterial is additive. For example,
suppose a specular material’s brush is bright green—a color of #00FF00. Imagine it
appears on top of something bright red (i.e., #FF0000); for example, it is part of a
material group, on top of a red diffuse material. The resultant highlight will be the
color you get when adding red to green: #FFFF00, which is yellow. This is a dif-
ferent result from the averaging used by ordinary semitransparent alpha blending.

Figure 17-10. Sphere with DiffuseMaterial

Example 17-6. SpecularMaterial

<SpecularMaterial SpecularPower="30" Brush="White" />

Figure 17-11. Sphere with SpecularMaterial

Models | 623

If you had a rectangle of color #FF0000 and then painted one on top of it with the
color #00FF00 and an Opacity of 0.5, the outcome for this combination would be
the average of the R, G, and B channels for those colors, #808000, which is a rather
dull shade of brown.

If adding in the highlight takes any of the red, green, or blue color channels past 100
percent, they will simply be clipped at 100 percent. This causes the highlight to
bleach out, a bit like an overexposed area of a photograph. This is why Figure 17-11
has been rendered on a black background—a white background is already at maxi-
mum brightness, and attempting to add highlights won’t make it any whiter.

As with the DiffuseMaterial, you can provide any 2D Brush object to determine the
color or texture of the material. In addition, you can specify a SpecularPower. This
determines how much the highlights are spread out. A low number results in a wide
spread, and a high number results in a more tightly focused highlight.

Figure 17-12 shows the same sphere as Figure 17-11 twice, with different
SpecularPower values. On the left, the low value of 5 has caused the two highlights to
spread out so far that they have merged into one. On the right, the high value of 100
has caused the two highlights to become very small.

Lighting calculations are performed on a per-point basis. If you choose a
high specular power, meaning that the highlights should look small and
focused, you will need a fairly detailed model for the highlights to look
correct. The triangles that make up the surface need to be significantly
smaller than the size of the specular highlights in order to avoid strange
artifacts. The example on the righthand side of Figure 17-12 is pushing
it a little—the highlights look a little uneven, even though the sphere
model contains 4,000 facets and fills more than 400 KB of XAML.

EmissiveMaterial

Both DiffuseMaterial and SpecularMaterial require external light sources to be visi-
ble. If all your light is coming from one direction, these materials will look com-
pletely black on the shadow side. But an EmissiveMaterial is its own light source.

An emissive material contributes to the output in the same way as a specular material:
it adds to whatever was behind it. However, whereas a specular material’s contribu-
tion is based on viewing angles and light positions, an emissive material is unaffected
by the light sources in a scene—it always contributes evenly across the whole surface.

Figure 17-12. SpecularPower of 5 (left) and 100 (right)

624 | Chapter 17: 3D Graphics

Although an EmissiveMaterial illuminates itself, it does not act as a
light source to other objects in the same 3D model. Shaped light
sources are computationally complex to render and are beyond the
3D capabilities offered by WPF. However, if you want to create a 3D
object that looks like a light source, you can fake it by placing a light
source in the scene at the same location.

Example 17-7 shows a simple EmissiveMaterial. In practice, you would not nor-
mally use as simple a brush as this. As Figure 17-13 shows, when this is applied to
the same sphere as the earlier examples, it produces a rather dull result.

As with the SpecularMaterial example, this figure has been rendered onto a black
background—additive rendering onto white only ever results in white.

In practice, an EmissiveMaterial would usually be used only with a more varied
brush, such as an ImageBrush. Also, like a SpecularMaterial, it would typically be
used as part of a MaterialGroup.

MaterialGroup

MaterialGroup allows multiple materials to be combined into a single material. For
example, you might want to use a DiffuseMaterial to define the basic solid appear-
ance, but provide a less dull finish by adding a SpecularMaterial. Example 17-8
shows such a material.

Figure 17-14 shows the results. Note that the diffuse material provides a complete
solid basic finish for the shape to which the specular material can add highlights. We
no longer need a black background to be able to see the highlights. This is the nor-
mal way to use a specular material.

Example 17-7. EmissiveMaterial

<EmissiveMaterial x:Key="emissiveBlueMaterial" Brush="#00FFFF" />

Figure 17-13. Sphere with EmissiveMaterial

Example 17-8. Diffuse and specular materials in a MaterialGroup

<MaterialGroup>
 <DiffuseMaterial Brush="#00FFFF" />
 <SpecularMaterial SpecularPower="30" Brush="White" />
</MaterialGroup>

Models | 625

By combining with other materials in a MaterialGroup, EmissiveMaterial can play a
more convincing role than the rather dull example in Figure 17-13. Figure 17-15
shows a sphere with a similar material group to that in Figure 17-14, but with an
added EmissiveMaterial.

Notice how the text “glow” is visible and bright even though it runs into the part of
the sphere that is in shadow. This is because it is rendered as an EmissiveMaterial
and is therefore unaffected by the scene’s lighting. This illustrates EmissiveMaterial’s
main purpose: to make areas of a shape “light up.” Example 17-9 shows the material
for Figure 17-15.

Figure 17-14. Sphere with MaterialGroup

Figure 17-15. MaterialGroup with EmissiveMaterial (Color Plate 27)

Example 17-9. MaterialGroup with EmissiveMaterial

<MaterialGroup>
 <DiffuseMaterial Brush="#0000FF" />
 <SpecularMaterial SpecularPower="30" Brush="White" />
 <EmissiveMaterial>
 <EmissiveMaterial.Brush>
 <VisualBrush ViewboxUnits="Absolute" Viewbox="0,0,150,50">
 <VisualBrush.Transform>
 <TransformGroup>
 <TranslateTransform X="0.35" Y="0.5" />
 </TransformGroup>
 </VisualBrush.Transform>
 <VisualBrush.Visual>
 <Grid Width="150" Height="50">
 <TextBlock FontSize="8" Text="Glow!" Foreground="#ff80a0"
 HorizontalAlignment="Center">
 <TextBlock.BitmapEffect>

626 | Chapter 17: 3D Graphics

Now that we have seen how to define materials, we can finally complete the
GeometryModel3D we started building earlier. Example 17-10 shows the full model
item, with both a geometry and a material.

Notice that we’ve added two materials, one for the front and one for the back. This is
because our shape is open, so the surface can be seen from either side. Some shapes,
such as a sphere, are closed, so only one side of the mesh will ever be visible (assum-
ing you don’t move the camera into and out of the shape). For such shapes, you
would supply just a single material.

Now that have a complete model, we need to connect this into the Viewport3D. How-
ever, we can’t connect it in directly—there’s one more step.

ModelVisual3D
The various classes derived from Model3D that make up our model are just a description
of the scene. They are in many ways analogous to the elements that make up a Drawing
in the 2D world: both are descriptions of visual content; both are shareable objects that
derive from Freezable;* and neither can render something on-screen of its own accord.

 <OuterGlowBitmapEffect GlowColor="#ff8000" GlowSize="1" />
 </TextBlock.BitmapEffect>
 </TextBlock>
 </Grid>
 </VisualBrush.Visual>
 </VisualBrush>
 </EmissiveMaterial.Brush>
 </EmissiveMaterial>
</MaterialGroup>

Example 17-10. Complete GeometryModel3D

<GeometryModel3D>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D Positions="0,1,0 1,-1,0 -1,-1,0"
 Normals="0,0,1 0,0,1 0,0,1"
 TriangleIndices="0,2,1" />
 </GeometryModel3D.Geometry>

 <GeometryModel3D.Material>
 <DiffuseMaterial Brush="Red" />
 </GeometryModel3D.Material>

 <GeometryModel3D.BackMaterial>
 <DiffuseMaterial Brush="Green" />
 </GeometryModel3D.BackMaterial>
</GeometryModel3D>

* We describe the Freezable base class in Appendix C.

Example 17-9. MaterialGroup with EmissiveMaterial (continued)

Models | 627

A Drawing needs to be connected to some kind of Visual object to be rendered and to
enable input handling. Likewise, a Model3D needs to be connected to a ModelVisual3D
in order to be rendered and to support hit testing.

ModelVisual3D does not derive from Visual. It derives from Visual3D
instead. However, it does form part of the visual tree. If you use the
VisualTreeHelper class to navigate the tree, it reports both kinds of ele-
ments. We described VisualTreeHelper in Chapter 9.

Example 17-11 brings together the various other pieces we’ve looked at so far to
form a complete, if rather simple, example. This adds the completed GeometryModel3D
from Example 17-10 to the Model3DGroup in Example 17-2. This Model3DGroup pro-
vides the Content of a ModelVisual3D. This in turn is the child of a Viewport3D, which
lets us host this 3D content in a 2D WPF user interface. Finally, in order to describe
the point of view from which we would like to render the scene, we have added the
PerspectiveCamera from Example 17-1.

Example 17-11. Complete 3D example

<Viewport3D>
 <Viewport3D.Camera>
 <PerspectiveCamera Position="0,0,10" LookDirection="0,0,-1"
 UpDirection="0,1,0" FieldOfView="45" />
 </Viewport3D.Camera>

 <ModelVisual3D>
 <ModelVisual3D.Content>
 <Model3DGroup>

 <DirectionalLight Direction="0,0,-1" />

 <GeometryModel3D>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D Positions="0,1,0 1,-1,0 -1,-1,0"
 Normals="0,0,1 0,0,1 0,0,1"
 TriangleIndices="0,2,1" />
 </GeometryModel3D.Geometry>

 <GeometryModel3D.Material>
 <DiffuseMaterial Brush="Red" />
 </GeometryModel3D.Material>

 <GeometryModel3D.BackMaterial>
 <DiffuseMaterial Brush="Green" />
 </GeometryModel3D.BackMaterial>
 </GeometryModel3D>

 </Model3DGroup>
 </ModelVisual3D.Content>
 </ModelVisual3D>
</Viewport3D>

628 | Chapter 17: 3D Graphics

For all our efforts, we might have expected something slightly more impressive than
the result shown in Figure 17-16. But remember, we did set out to create the sim-
plest possible MeshGeometry3D, so we cannot be too surprised at the modest results.

Creating 3D shapes by typing in mesh data is a slow and awkward process. In prac-
tice, most 3D models will be designed in interactive modeling applications or gener-
ated by code. However, Figure 17-16 is so flat that before moving on, we should at
least tweak the model so that it looks like it’s three-dimensional. Example 17-12
shows modified versions of the camera and mesh.

Figure 17-17 shows the resulting tetrahedron. To make the faces more visually dis-
tinctive, alternate faces in the model have been turned backward by reversing the
index order in TriangleIndices. So, the front face in this example is red, but the face
visible on the side is green—the color of the back material. (Although this is a conve-
nient hack for making the faces stand out, it has the unfortunate side effect of invert-
ing the lighting calculations for those faces, so the shading looks inconsistent. In
practice, if you want different faces of your model to have different materials, using
multiple Geometry3D objects would be a better technique.)

Figure 17-16. Rendered 3D content

Example 17-12. Tweaking the model

<PerspectiveCamera Position="-4,1,10" LookDirection="4,-1,-10"
 UpDirection="0,1,0" FieldOfView="45" />
...
<MeshGeometry3D Positions="0,1,0 1,-1,1 -1,-1,1 1,-1,-1 -1,-1,-1"
 Normals="0,1,0 -1,0,1 1,0,1 -1,0,-1 1,0,-1"
 TriangleIndices="0,2,1 0,3,1 0,3,4 0,2,4" />

Figure 17-17. Visibly three-dimensional content

Lights | 629

We have now examined the core types at the heart of WPF’s 3D API. As you’ve seen,
many of these are analogous to WPF’s 2D types. Table 17-1 summarizes the similari-
ties between these types. (For completeness, the table also contains a type we have
not covered yet: Transform3D, which we will describe later.)

Now that we’ve looked at the basics, it’s time to look at a few of the ways we can
enhance the appearance of our 3D visuals. We’ll start by looking at the various kinds
of light sources.

Lights
A 3D model can incorporate any number of light sources. It should include at least
one so that you are able to see the objects in the model. In practice, you might want
to add a few—a single light source can produce a somewhat stark appearance. WPF
offers four different kinds of light.

Although lights form part of the model—the base Light class derives
from Model3D—they are not visible. They affect only the way in which
other elements in the 3D scene are rendered. If you want a bright-
looking object to be visible, representing the light, you would need to
add one or more 3D shapes to provide that appearance.

AmbientLight
The simplest light source is AmbientLight. This provides an even illumination of all
objects in the scene regardless of their location or orientation. Example 17-13 shows
an AmbientLight.

Table 17-1. Analogous 3D and 2D types

3D type 2D equivalent Purpose

Visual3D Visual Abstract base class for elements in the visual tree

ModelVisual3D Canvas A visual element that can contain a group of visual elements

Model3D Drawing Abstract base class for model or drawing parts

GeometryModel3D GeometryDrawing A shape plus a material or brush (part of a model or drawing)

Model3DGroup DrawingGroup A collection of model or drawing parts

Geometry3D Geometry Abstract base class for shapes

MeshGeometry3D PathGeometry A shape

Material Brush Abstract base of classes describing how to paint a shape

Transform3D Transform Abstract base class of transformations such as scaling or rotation

Example 17-13. AmbientLight

<AmbientLight Color="White" />

630 | Chapter 17: 3D Graphics

The only property to set on an ambient light is Color. This property is present on all
lights, and it indicates the color of the light emitted by the source. Note that the
Color property determines not just the color of illumination, but also the intensity—
White is the brightest color; a darker color such as Gray will provide less illumina-
tion. Figure 17-18 shows the results. This makes it clear that you would not nor-
mally use an AmbientLight as your only source of illumination. The sphere rendered
in this example is the same one shown in Figure 17-14, but in that earlier figure, we
could see reflected highlights and shadows thanks to the SpecularMaterial and
DiffuseMaterial in the object’s material group. The same material is in use here, but
because AmbientLight illuminates the scene in a completely uniform way, the sphere
looks flat.

You would not normally use an AmbientLight in isolation like this unless your goal
was to create an exaggeratedly artificial look. AmbientLight is designed to be used in
conjunction with some directional or positional light sources. The other sources
would provide most of the light, with a dim AmbientLight ensuring that any parts of
the model in shadow are not plunged into complete darkness.

DirectionalLight
DirectionalLight provides a slightly more natural form of illumination. It models a
bright distant light source such as the sun. So, you do not specify a position for
DirectionalLight, you merely configure the direction from which it illuminates, as
Example 17-14 shows. The light in this example arrives from behind and slightly
above the viewer. (This assumes that the camera is positioned so that a positive y
direction means up, and positive z means toward the viewer.)

Figure 17-19 shows the same sphere as Figure 17-18, but illuminated with this direc-
tional light. As you can see, the materials are now able to do their job. The upper half
is brighter than the lower half thanks to the diffuse material, and there is a reflective
highlight from the specular material. These effects reveal the curvature of the surface.

Figure 17-18. Ambient lighting

Example 17-14. DirectionalLight

<DirectionalLight Color="White" Direction="0,-1,-0.5" />

Lights | 631

Although the sphere clearly has a side that is in shadow, this is simply
a result of how the DiffuseMaterial works: parts of the shape that face
away from any light source will be painted dark, giving the appear-
ance of a shadow. However, objects cannot cast shadows onto each
other. For example, if we added a flat surface representing the ground
to the model in Figure 17-19, it would not show a shadow of the
sphere. This is because WPF uses a simple lighting model—each
object’s illumination is calculated in isolation, so one object cannot
cast a shadow on another.

PointLight
PointLight is useful for simulating a local light source, such as a lamp in a room. The
relative position of a PointLight and an object has an impact on how the one illumi-
nates the other. The simplest use of a PointLight involves setting its color and posi-
tion, as shown in Example 17-15.

Figure 17-20 shows the effect of this on a scene containing two spheres. The spheres
are centered on the x-axis, at x positions of –0.6 and 0.6. This means the PointLight
is slightly above and in front of the spheres, but horizontally centered between them.
This positioning is evident in the shadows and highlights on the spheres—the high-
lights point toward the position of the PointLight.

If you were to animate the position of the light, the highlights would follow the light
around. Figure 17-21 shows the same scene with the Position of the PointLight
changed to 4, –2, 1.5.

Figure 17-19. Directional lighting

Example 17-15. PointLight

<PointLight Color="White" Position="0,1,1.5" />

Figure 17-20. Point lighting

632 | Chapter 17: 3D Graphics

Real light sources provide more illumination when they are nearby than when they
are distant. By default, a PointLight does not behave this way—a very distant
PointLight illuminates just as brightly as a nearby one. However, you can configure
it to attenuate the brightness over distance in order to model a real light source more
realistically.

Attenuation of a PointLight is calculated as a quadratic function of distance (i.e., a
function with three terms: the square of the distance, the distance itself, and a con-
stant). This is designed to correspond to how light sources attenuate naturally. Two
factors contribute to how real light sources diminish with distance.

The first factor is that light spreads out. For example, put a light in a small room
with dimensions of 10 × 10 × 10 feet. The area of each wall is 100 square feet, so
including the floor and ceiling as well as the walls, the light has to illuminate a total
surface area of 600 square feet. Now put the same light in a larger room with dimen-
sions of 30 × 30 × 30 feet. Each wall is now 900 square feet, a total area of 5,400
square feet to illuminate. We increased the dimensions by a factor of 3, but the total
area to be illuminated by our lamp went up by a factor of 9—the square of the
change. Because it’s the same lamp, it’ll be giving out just as much light as before,
but as this light is spread over an area nine times larger, the walls would appear nine
times darker.

You can model this by setting the QuadraticAttenuation property—this sets the mul-
tiplier for the square term of the attenuation equation. Figure 17-22 shows the effect
of this. The two spheres’ centers are 1.6 units apart, and the light source is just to the
right of the rightmost sphere. The QuadraticAttenuation has been set to 0.2, and as
you can see, this causes the left sphere to be darker than the right sphere.

The second cause of natural attenuation is dust and other small airborne obstacles.
These gradually diminish the intensity of light over distance. The effect of this is pro-
portional to the distance the light has traveled—the farther it has to go, the more
stuff gets in its way. You can model this by setting the LinearAttenuation property.

Figure 17-21. Moving a point light

Figure 17-22. Attenuation

Lights | 633

There is a third term for the attenuation equation, set by the ConstantAttenuation
property. By default, this is set to 1, and the other two attenuation properties default
to 0. This ensures that the level of attenuation is constant by default. (A sum total
attenuation of 1 means no attenuation—only values higher than 1 will cause attenua-
tion to occur.)

PointLight is more expensive than either AmbientLight or
DirectionalLight, because it requires more complex lighting calcula-
tions. If you have more than a handful of such lights and you encoun-
ter performance problems with 3D content, try reducing the number
of point lights. The same applies to the SpotLight described in the next
section.

SpotLight
SpotLight is very similar to PointLight—it supports all the same properties. However,
whereas a PointLight casts light in all directions, a SpotLight casts a cone of light in a
specific direction. You specify the direction with the Direction property. You set the
width of the cone with InnerConeAngle and OuterConeAngle properties. Everything inside
InnerConeAngle is fully illuminated, and then the degree of illumination fades to nothing
by the time the OuterConeAngle is reached. Example 17-16 shows a SpotLight.

Figure 17-23 shows the result. As you can see, only a circular region to the upper left
of the sphere has been illuminated. The rest falls outside of the OuterConeAngle, so it
is in darkness.

Remember that WPF performs illumination calculations on a per-point basis. So if
you take a surface that contains very few points, and you shine a spotlight onto the
surface expecting to see a spot appear, you will be disappointed. Figure 17-24 illus-
trates this. Both of the images are of a simple flat square surface. Both surfaces have

Example 17-16. SpotLight

<SpotLight Color="White" Position="-2,2,6" Direction="2,-2,-6"
 InnerConeAngle="8" OuterConeAngle="12" />

Figure 17-23. SpotLight

634 | Chapter 17: 3D Graphics

the same material and have been lit with the same spotlight from the same angle. The
two models are identical in every respect except one: the surface on the left has been
subdivided into a 64 × 64 grid of evenly spaced points, whereas the surface on the
right is defined by just the four corner points. Figure 17-25 gives an impression of the
difference between the two models—it shows the outlines of the triangles that make
up the two squares. (In fact, the model on the left of Figure 17-25 is only a 16 × 16
grid—Figure 17-24 has been subdivided into pieces one-quarter the height and
width. However, those would have been too small to see what’s going on.)

Geometrically speaking, the two surfaces have exactly the same shape: the grid of
points making up the first surface lies in the same plane and within the same bounds.
But as you can see, the two look very different. The surface on the left has suffi-
ciently densely packed points that you can easily make out the shape of the spot cast
by the SpotLight. With the shape on the right, however, only four lighting calcula-
tions have been performed—one for each corner—and the results have been interpo-
lated across the shape, so the result is just a gradual color fade to one corner. (If we
point the spotlight directly in the middle of the surface on the right, it remains com-
pletely black, because none of the four points falls inside the spotlight’s cone.)

Figure 17-24. Impact of point density on illumination

Figure 17-25. Highly tessellated square (left) and four-point square (right)

Textures | 635

Although you need a fairly dense mesh for detailed lighting effects to work, you
might be able to achieve a similar effect using materials instead. Rather than using a
spotlight to project a spot onto a surface, you could use an EmissiveMaterial in con-
junction with a suitable brush texture. Texture mapping does not require a high
point density to work correctly, as you’re about to see.

Textures
Because DiffuseMaterial, SpecularMaterial, and EmissiveMaterial are based on
brushes, we need not be limited to plain colors for our surfaces. We are free to paint
3D objects with gradient brushes, bitmaps, or drawings. We can even use any part of
a user interface as a brush with which to paint a 3D object. An image or pattern used
to paint a 3D surface is often referred to as a texture.

To use a textured material, we must tell WPF exactly how the brush should be posi-
tioned on the surface. With a solid color, this is a nonissue—the entire surface is of
uniform color. But with a bitmap, we need to specify exactly where the image is pro-
jected onto the surface.

MeshGeometry3D provides the TextureCoordinates property for exactly this purpose.
For each 3D point in the Positions, you can specify a 2D texture coordinate.
Example 17-17 defines a simple square surface with four points, joined together with
two triangles.

Figure 17-26 shows the texture coordinates specified for each corner of the square,
and how the TriangleIndices collection joins these together with triangles. Texture
coordinates are specified in the coordinate space of the brush’s Viewport. As we saw
in Chapter 13, by default tile brushes use a mapping mode of RelativeToBoundingBox,
which means that their viewport ranges from 0,0 to 1,1. So, the texture coordinates
in Example 17-17 tell the brush to fill the surface area completely.

Example 17-17. MeshGeometry3D with TextureCoordinates

<MeshGeometry3D Positions="-1,1,0 1,1,0 -1,-1,0, 1,-1,0"
 Normals="0,0,1 0,0,1 0,0,1 0,0,1"
 TextureCoordinates="0,0 1,0 0,1 1,1"
 TriangleIndices="0,2,3 0,3,1" />

Figure 17-26. Texture coordinate positions

0, 0 1, 0

1, 10, 1

636 | Chapter 17: 3D Graphics

With the texture coordinates specified, we can now use any tile brush to form the
material for this shape. Example 17-18 uses an ImageBrush to paint the surface with a
bitmap.

Figure 17-27 shows the results.

A common practice in 3D applications is to use a mixture of textures
and bump mapping to enhance the realism of a surface. (Bump maps
allow the basic shape defined by a mesh to be modulated in order to
give a richer impression of texture.) However, although WPF sup-
ports textures, it does not currently support bump maps.

Alternatively, you could paint the surface with a video by using the Material in
Example 17-19.

Example 17-18. Painting a 3D surface with a bitmap

<GeometryModel3D>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D Positions="-1,1,0 1,1,0 -1,-1,0, 1,-1,0"
 Normals="0,0,1 0,0,1 0,0,1 0,0,1"
 TextureCoordinates="0,0 1,0 0,1 1,1"
 TriangleIndices="0,2,3 0,3,1" />
 </GeometryModel3D.Geometry>

 <GeometryModel3D.Material>
 <DiffuseMaterial>
 <DiffuseMaterial.Brush>
 <ImageBrush ImageSource="MyImage.jpg" />
 </DiffuseMaterial.Brush>
 </DiffuseMaterial>
 </GeometryModel3D.Material>
</GeometryModel3D>

Figure 17-27. Material with ImageBrush

Example 17-19. Painting a surface with video

<DiffuseMaterial>
 <DiffuseMaterial.Brush>
 <VisualBrush>
 <VisualBrush.Visual>
 <MediaElement Source="MyVideo.wmv" />

Transforms | 637

This example uses a VisualBrush to create a material based on a MediaElement. We
can use the same brush type with any UI element. For example, we could map a
whole 2D UI onto a 3D surface. Figure 17-28 shows an ordinary data entry UI
mapped onto our simple square surface and viewed from an angle.

Although this technique makes for nifty-looking demos, it has a fundamental limita-
tion: you cannot click on any of the controls on the 3D surface. VisualBrush lets us
paint 2D or 3D elements with the contents of a visual, but it only lets us create an
image. It does not provide a built-in way to route mouse input aimed at the surface
back to the original visual. The user interface in this example is strictly a “look but
don’t touch” affair.

Although WPF does not provide any built-in means of routing user
input back to the original visual, it is possible to make this happen
with a little extra work. Microsoft has released a library of WPF 3D
tools that include the necessary code. This library also contains other
useful utilities such as a “trackball” that allow the user to rotate 3D
models with a mouse. You can download the library (including source
code) from http://www.codeplex.com/3DTools (http://tinysells.com/76).

Transforms
Just as you can apply a transform to any 2D element in WPF, you can also transform
any ModelVisual3D, or any of the types derived from Model3D. The set of transforms is
much the same—you can rotate, scale, shear, or translate any part of the 3D model.
However, to effect these operations in three dimensions requires slightly more infor-
mation than it does in two dimensions, so we cannot simply use the 2D transform
classes in 3D. WPF therefore defines a set of 3D transform types, all of which derive
from the abstract Transform3D class.

 </VisualBrush.Visual>
 </VisualBrush>
 </DiffuseMaterial.Brush>
</DiffuseMaterial>

Figure 17-28. 2D UI mapped onto a 3D surface

Example 17-19. Painting a surface with video (continued)

638 | Chapter 17: 3D Graphics

TranslateTransform3D
TranslateTransform3D changes the position of an object. It has three properties:
OffsetX, OffsetY, and OffsetZ, indicating the distance to move in each direction.

Translation can provide a convenient means of reusing the same 3D shape many
times over. Example 17-20 shows an example of this—it defines the scene that was
shown in Figure 17-1, consisting of five identical cylinders in a row.

In this example, the cylinder model has been defined just once as a resource. The
resource is not shown here, because the mesh defining the shape is about 100 KB of
XAML. (The model is this big because it uses a large number of small triangles to
approximate the cylinder’s curved surface.) With a model this large, it’s obviously
preferable to use one copy five times over than to create separate models for each of
the five positions. By using a TranslateTransform3D, we can place multiple instances
of the same model into the scene in different locations.

ScaleTransform3D
A ScaleTransform3D enlarges or reduces an object. The scale factors are specified
independently for each dimension with the ScaleX, ScaleY, and ScaleZ properties.

Example 17-20. Positioning models with TranslateTransform3D

<ModelVisual3D Content="{StaticResource cylinderModel}">
 <ModelVisual3D.Transform>
 <TranslateTransform3D OffsetX="-1" OffsetZ="0" />
 </ModelVisual3D.Transform>
</ModelVisual3D>
<ModelVisual3D Content="{StaticResource cylinderModel}">
 <ModelVisual3D.Transform>
 <TranslateTransform3D OffsetX="-0.5" OffsetZ="-0.5" />
 </ModelVisual3D.Transform>
</ModelVisual3D>
<ModelVisual3D Content="{StaticResource cylinderModel}">
 <ModelVisual3D.Transform>
 <TranslateTransform3D OffsetX="0" OffsetZ="-1" />
 </ModelVisual3D.Transform>
</ModelVisual3D>
<ModelVisual3D Content="{StaticResource cylinderModel}">
 <ModelVisual3D.Transform>
 <TranslateTransform3D OffsetX="0.5" OffsetZ="-1.5" />
 </ModelVisual3D.Transform>
</ModelVisual3D>
<ModelVisual3D Content="{StaticResource cylinderModel}">
 <ModelVisual3D.Transform>
 <TranslateTransform3D OffsetX="1" OffsetZ="-2" />
 </ModelVisual3D.Transform>
</ModelVisual3D>

Transforms | 639

There are also three properties to specify the center of scaling: CenterX, CenterY, and
CenterZ. (The center of scaling is the point that remains in the same place before
and after the scale operation.)

Example 17-21 uses a ScaleTransform3D to display a model stretched to double its
normal width and depth, and one-quarter its normal height. This will use the default
scale center of 0,0,0.

Figure 17-29 shows the results. This is the same cylinder model as used for
Figure 17-1, but the scaling has made it look shorter and squatter.

RotateTransform3D
RotateTransform3D allows objects to be rotated. Two pieces of information are
required: the angle of rotation and the axis around which to rotate. Example 17-22
rotates a model by 45 degrees around the x-axis. WPF follows the usual mathemati-
cal convention that a positive angle indicates a counterclockwise rotation.

Figure 17-30 shows the original unrotated model on the left. In the center is the
model as rotated by Example 17-22. The righthand side shows how the model would
look if rotated around the z-axis (i.e., if the Axis property had been set to 0,0,1).
Rotation around the y-axis is not shown, because this particular model has rota-
tional symmetry about that axis, so there would be no visible difference. (If the

Example 17-21. ScaleTransform3D

<ModelVisual3D Content="{StaticResource cylinderModel}">
 <ModelVisual3D.Transform>
 <ScaleTransform3D ScaleX="2" ScaleY="0.25" ScaleZ="2" />
 </ModelVisual3D.Transform>
</ModelVisual3D>

Figure 17-29. ScaleTransform3D

Example 17-22. Rotation around the x-axis

<ModelVisual3D Content="{StaticResource cylinderModel}">
 <ModelVisual3D.Transform>
 <RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D Axis="1,0,0" Angle="45" />
 </RotateTransform3D.Rotation>
 </RotateTransform3D>
 </ModelVisual3D.Transform>
</ModelVisual3D>

640 | Chapter 17: 3D Graphics

object had a bitmap texture material instead of a plain color, such a rotation would
have a visible effect.)

Many 3D graphics systems use quaternions to represent rotations. A quaternion is a
number with four components, and there are some standard rules for how to per-
form mathematical operations on quaternions. There is also a widely adopted sys-
tem for encoding a 3D rotation into a quaternion.* Example 17-23 shows how to
apply a rotation expressed as a quaternion. This particular quaternion happens to cor-
respond to a rotation of 120 degrees around the axis –1,1,1.

The relationship between the numbers in a quaternion and the resultant rotation is
somewhat opaque compared to the AxisAngleRotation3D representation. However,
there are two useful characteristics of quaternions that explain their ubiquity in 3D
graphics systems. First, it is easy to concatenate multiple rotations—you can simply
multiply two quaternions together, and the result is a quaternion that represents the
combined rotations. Second, there is a fairly straightforward way of interpolating
between two quaternions that guarantees to offer the shortest transition between any
two rotations. Without quaternions, this is not always straightforward if the two
rotations are around different axes.

RotateTransform3D therefore accepts for the Rotation property either an
AxisAngleRotation3D or a QuaternianRotation3D. WPF defines a Quaternion structure
to represent a quaternion. This supports interpolation between two quaternions
with its Slerp method. (Slerp is short for Spherical Linear intERPolation.) The
QuaternionAnimation class also uses this interpolation method to animate between
two rotations.

Figure 17-30. 2D Rotation

* The details are beyond the scope of this chapter, but there is an excellent explanation of quaternions and
how they are used in 3D graphics at http://www.sjbrown.co.uk/?article=quaternions (http://tinysells.com/77).

Example 17-23. QuaternionRotation

<RotateTransform3D>
 <RotateTransform3D.Rotation>
 <QuaternionRotation3D Quaternion="-0.5,0.5,0.5,0.5" />
 </RotateTransform3D.Rotation>
</RotateTransform3D>

Transforms | 641

Transform3DGroup
It is sometimes useful to combine a sequence of transformations. For example, you
might wish to translate and rotate a model. The Transform3DGroup makes this sim-
ple—it can combine any number of individual transforms. Example 17-24 concate-
nates a scale transform and a translation.

The order in which you specify transforms is significant. If we moved the
TranslateTransform3D before the ScaleTransform3D, the scale would then have the effect
of scaling up the translation as well as enlarging the objects in the scene. In general, if
you need to combine all three of the previous transform types into a group, the easiest
order is scale, rotate, translate—this produces the results most people intuitively
expect.

MatrixTransform3D
All of the transforms discussed so far are provided mainly for convenience. There is
a single type of transform capable of representing any of these transforms, includ-
ing transform groups: the MatrixTransform3D. This uses a Matrix3D to encode the
transformation.

A Matrix3D is a set of 16 numbers, arranged into four columns. The mathematics
behind matrices is beyond the scope of this book, but it is sufficient to know that
each basic transform type can be represented in such a matrix, and that transforms
can be combined into a single matrix by multiplying together the matrices for the
individual transforms. To apply the transformation to a point, you simply multiply
the point by the matrix. Matrices are very widely used in graphical systems.

Example 17-25 shows a MatrixTransform3D that reverses an object in the x direction.
This is equivalent to a ScaleTransform3D with ScaleX set to –1, and with ScaleY and
ScaleZ set to 1.

Example 17-24. Transform3DGroup

<Transform3DGroup>
 <ScaleTransform3D ScaleX="2" ScaleY="2" />
 <TranslateTransform3D OffsetX="1" OffsetZ="-2" />
</Transform3DGroup>

Example 17-25. MatrixTransform3D

<MatrixTransform3D Matrix="-1,0,0,0
 0,1,0,0
 0,0,1,0
 0,0,0,1" />

642 | Chapter 17: 3D Graphics

Strange though it may seem to have a 4 × 4 matrix to represent three-
dimensional operations, this is normal practice in 3D graphics. The
fourth dimension is a kind of hack, and it is used for two purposes.
The first three columns of the fourth row encode offsets; this is how
translations are performed—you cannot perform 3D translations with
a 3 × 3 matrix. The fourth column would normally be left as three
zeros and a 1 because this column is reserved for perspective opera-
tions. The one place you’d normally put other numbers in here is in
the ProjectionMatrix of a MatrixCamera. However, if you want to play
eye-bending tricks with perspective, you can put other numbers in
there for any MatrixTransform3D.

3D Data Visualization
You can represent some kinds of data as a three-dimensional graph. For example,
certain mathematical functions can be visualized this way. So can some sets of physi-
cal measurements (e.g., height information from map data). Figure 17-31 shows an
example.

To display data in this form, you need to write code that will generate a mesh from
the data. Let’s look at an example that creates the MeshGeometry3D shown in
Figure 17-31 from a two-dimensional array of floating-point numbers. To be able to
display a 3D model, we will of course need a Viewport3D. Example 17-26 shows the
XAML for a window containing a Viewport3D with a camera and some light sources.

Figure 17-31. 3D plot of data (Color Plate 2)

Example 17-26. XAML to host 3D model

<Window x:Class="Generate3DMesh.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Generate3DMesh" Height="400" Width="400">

 <Grid x:Name="mainGrid">
 <Viewport3D x:Name="vp">
 <Viewport3D.Camera>

3D Data Visualization | 643

Notice that this example contains an empty ModelVisual3D element named modelHost.
This is where we will add the 3D model that we build to represent the graph.
Example 17-27 shows how the code-behind file initializes the window: it builds the
data for the graph, builds a 3D model from the data, and then adds that model to
the modelHost placeholder.

Example 17-28 shows the function that generates the data. It contains no 3D-specific
code—it just builds a suitable two-dimensional array, using the mathematical sinc
function, a popular function in signal processing applications that also happens to
look good in 3D graphs. (.NET doesn’t provide a built-in implementation of sinc, so
this code provides its own. The sinc function is defined to be sin(x)/x, except for when
x is 0, where it is defined to be 1.)

 <PerspectiveCamera Position="5,4,6" LookDirection="-5,-3.75,-6"
 UpDirection="0,1,0" FieldOfView="10" />
 </Viewport3D.Camera>

 <ModelVisual3D>
 <ModelVisual3D.Content>
 <Model3DGroup>
 <AmbientLight Color="#222" />
 <DirectionalLight Color="#aaa" Direction="-1,-1,-1" />
 <DirectionalLight Color="#aaa" Direction="1,-1,-1" />
 </Model3DGroup>
 </ModelVisual3D.Content>

 <ModelVisual3D x:Name="modelHost" />

 </ModelVisual3D>
 </Viewport3D>
 </Grid>
</Window>

Example 17-27. Adding a generated model to the view

public partial class Window1 : Window {

 public Window1() {
 InitializeComponent();

 double[,] points = GraphDataBuilder.BuildSincFunction(100, 100, 2.5, 5);
 ModelVisual3D vis3D = BuildModelVisual3DFromPoints(points);
 modelHost.Children.Add(vis3D);
 }
 ...
}

Example 17-26. XAML to host 3D model (continued)

644 | Chapter 17: 3D Graphics

After calling this BuildSincFunction method to generate the data, Example 17-27
calls the BuildModelVisual3DFromPoints method shown in Example 17-29 to convert
this into a ModelVisual3D.

The structure of this method reflects the structure of elements we need to create in
order to build a complete 3D model. We need a mesh to represent the shape of the
surface. This must be connected to a GeometryModel3D in order to define the materi-
als for the surface. This model is then wrapped in a ModelVisual3D, allowing the
InitializeComponent method in Example 17-27 to add it to the 3D visual tree.

Example 17-29 calls a helper method to build the mesh: BuildMeshFromPoints. This is
shown in Example 17-30.

Example 17-28. Generating data for the graph

class GraphDataBuilder {
 public static double[,] BuildSincFunction(int xPoints, int yPoints,
 double cycles, double height) {
 double[,] points = new double[xPoints, yPoints];
 for (int yIndex = 0; yIndex < yPoints; ++yIndex) {
 double y = yIndex; y /= ((yPoints - 1) / 2.0); y -= 1;
 for (int xIndex = 0; xIndex < xPoints; ++xIndex) {
 double x = xIndex; x /= ((xPoints - 1) / 2.0); x -= 1;

 double d = Math.Sqrt(x * x + y * y) * 2 * Math.PI * cycles;
 points[xIndex, yIndex] = (d == 0 ? 1 : Math.Sin(d) / d) * height;
 }
 }
 return points;
 }
}

Example 17-29. Creating the ModelVisual3D

public partial class Window1 : Window {
 ...
 static ModelVisual3D BuildModelVisual3DFromPoints(double[,] points) {
 MeshGeometry3D mesh = MeshBuilder.BuildMeshFromPoints(points, 1, 1);
 GeometryModel3D model = BuildModel3DFromMesh(mesh);
 ModelVisual3D vis3D = new ModelVisual3D();
 vis3D.Content = model;
 return vis3D;
 }

Example 17-30. Creating a mesh: Initialization

class MeshBuilder {
 public static MeshGeometry3D BuildMeshFromPoints(double[,] data,
 double textureWidth, double textureHeight) {
 Point3DCollection points;
 PointCollection textureCoordinates;
 Int32Collection triangleIndices;
 BuildMeshData(data, textureWidth, textureHeight,
 out points, out textureCoordinates, out triangleIndices);

3D Data Visualization | 645

This assembles the constituent parts of a MeshGeometry3D—the points and triangle
indices defining the surface shape, and the texture coordinates that define how a tex-
ture is mapped onto the surface. Notice that this code freezes the collections contain-
ing the data. Calling Freeze tells WPF that we will not be changing any of these
collections again. This enables it to handle the data more efficiently—it doesn’t need
to do any of the housekeeping that would be necessary to be able to respond to
changes to the data.

BuildMeshData, another helper function, shown in Example 17-31, performs all of the
work of generating the mesh data.

 points.Freeze();
 textureCoordinates.Freeze();
 triangleIndices.Freeze();

 MeshGeometry3D mesh = new MeshGeometry3D();
 mesh.Positions = points;
 mesh.TextureCoordinates = textureCoordinates;
 mesh.TriangleIndices = triangleIndices;

 return mesh;
 }
 ...
}

Example 17-31. Building the mesh data

class MeshBuilder {
 ...

 static void BuildMeshData(double[,] data,
 double textureWidth, double textureHeight,
 out Point3DCollection points,
 out PointCollection textureCoordinates,
 out Int32Collection triangleIndices) {

 // 1: initialization
 int width = data.GetLength(0);
 int height = data.GetLength(1);

 int pointCount = width * height;
 points = new Point3DCollection(pointCount);
 textureCoordinates = new PointCollection(pointCount);

 int triangleCount = 2 * (width - 1) * (height - 1);
 triangleIndices = new Int32Collection(3 * triangleCount);

 // 2: iteration
 for (int yDataIndex = 0; yDataIndex < height; ++yDataIndex) {
 double yProportion = yDataIndex; yProportion /= (height - 1);

Example 17-30. Creating a mesh: Initialization (continued)

646 | Chapter 17: 3D Graphics

The function begins by working out how many points and triangles will be required
in the mesh to present all the data in the array. It also allocates the various collec-
tions to hold the mesh data.

The code tells each collection how many items will be created
through the constructor parameter. This enables the collection to
allocate exactly enough space upfront. We don’t have to do this—the
collections can automatically allocate space on demand. But without
preallocation, the collections will initially allocate a fairly small
amount of space, and will then reallocate as we populate the collec-
tions, possibly causing several reallocations. That would make unnec-
essary work, both for the collection class and for the garbage collector.
And because 3D work can involve large quantities of data, efficiency is
often particularly important. So, you should usually tell the collec-
tions in advance how many items you intend to provide.

 // Adding points from top to bottom.
 // In 3D up means increasing Y, but in
 // 2D 0 is at the top.
 double outY = 0.5 - yProportion;
 double textureY = textureHeight * yProportion;

 for (int xDataIndex = 0; xDataIndex < width; ++xDataIndex) {
 double xProportion = xDataIndex; xProportion /= (width - 1);
 double outX = xProportion - 0.5;
 double textureX = textureWidth * xProportion;

 // 3: adding points
 points.Add(new Point3D(outX, outY, data[xDataIndex, yDataIndex]));
 textureCoordinates.Add(new Point(textureX, textureY));

 // Add triangles for everything but the last row and column.
 if (xDataIndex < (width - 1) && yDataIndex < (height - 1)) {
 int topLeftIndex = xDataIndex + yDataIndex * width;
 int bottomLeftIndex = topLeftIndex + width;

 triangleIndices.Add(bottomLeftIndex);
 triangleIndices.Add(bottomLeftIndex + 1);
 triangleIndices.Add(topLeftIndex);

 triangleIndices.Add(bottomLeftIndex + 1);
 triangleIndices.Add(topLeftIndex + 1);
 triangleIndices.Add(topLeftIndex);
 }
 }
 }
 }
}

Example 17-31. Building the mesh data (continued)

3D Data Visualization | 647

Next, we start the nested loops that will iterate over the point data in the two-
dimensional input array—we do this with the two for loops in the part of
Example 17-31 labeled “2: iteration.”

The xProportion and yProportion variables track how far we are through the data,
expressed as a number from 0 to 1. We then calculate two coordinates. The outX and
outY coordinates are in 3D space, and will range over a unit square centered on the ori-
gin. The textureX and textureY coordinates will be used to generate the
TextureCoordinates entries, and will range over the texture size passed into the func-
tion. Note that these coordinate systems use different conventions. The 3D coordinates
use the common convention that increasing values of y mean “up,” but the texture coor-
dinates use the TileBrush convention that increasing y values mean “down.”

Finally, the inner part of the loop adds the points—this is the part of Example 17-31
labeled “3: add points.” It creates both a 3D point for the mesh’s Positions collec-
tion, and the corresponding 2D point for the TextureCoordinates collection. The lat-
ter enables us to use a textured material to paint the mesh, should we wish to.

The inner loop also generates the triangles that join the points to form the surface by
adding entries to the triangleIndices collection. (We skip this for the final row and
column of points, because those will already have been joined to triangles from the
previous line and column.)

We have not defined any surface normals. This is OK, because WPF
will build them for us based on the shape of the surface described by
the positions.

Our work is nearly done. The mesh data returned by BuildMeshData will be wrapped
in a MeshGeometry3D by BuildMeshFromPoints. As we saw in Example 17-29, our
BuildModelVisual3DFromPoints helper will then wrap this in a GeometryModel3D by
calling another helper, BuildModel3DFromMesh, shown in Example 17-32.

This adds red and green materials for the front and back of the surface. As we saw
in Example 17-29, this will then be wrapped in a ModelVisual3D by the
BuildModelVisual3DFromPoints helper function. And, as Example 17-27 showed, this
is added to the modelHost placeholder defined in the XAML shown in
Example 17-26, enabling our generated model to be displayed by the Viewport3D.

Example 17-32. Creating a GeometryModel3D

public partial class Window1 : Window {
 ...
 private static GeometryModel3D BuildModel3DFromMesh(MeshGeometry3D mesh) {
 Material front = new DiffuseMaterial(Brushes.Red);
 GeometryModel3D model = new GeometryModel3D(mesh, front);
 model.BackMaterial = new DiffuseMaterial(Brushes.Green);
 return model;
 }
}

648 | Chapter 17: 3D Graphics

Hit Testing
The normal WPF mouse events and properties work when the mouse is over a
Viewport3D just like they do for any other UI element. The shapes of the elements in
the model will be taken into account—if your scene has areas with nothing in it, the
Viewport3D will effectively be transparent in those areas, and if you move the mouse
over those, it will be considered to be over whatever is behind the Viewport3D rather
than over the Viewport3D itself. But as long as the mouse is over some 3D object, all
the usual mouse events will be reported.

You can disable hit testing by setting IsHitTestVisible to false on the
Viewport3D. This is recommended for very complex 3D models if hit
testing is not required, as 3D hit testing can be expensive.

Sometimes it is useful to know exactly which part of your 3D model the mouse is
over. For example, in an application that displays the graph shown in Figure 17-31,
you might want to display the exact coordinates and value for the point currently
under the mouse. You can call the VisualTreeHelper.HitTest method to retrieve all
the necessary information. You can pass in a 2D position relative to the Viewport3D
(e.g., the current mouse location), as Example 17-33 shows.

This shows an event handler for the MouseMove event of a Viewport3D. It uses the
VisualTreeHelper class’s HitTest method in exactly the same way as you would for
2D hit testing. HitTest calls a callback method (the anonymous method in this exam-
ple) for each item it finds at the specified position, and if one of the items is part of a
3D model, it will pass a RayMeshGeometry3DHitTestResult object as the parameter.
This provides information about the item that was hit.

Example 17-33. Hit testing with a 2D starting point

public partial class Window1 : Window {
 ...
 void myViewport_MouseMove(object sender, MouseEventArgs e) {
 Point mousePos = e.GetPosition(vp);
 PointHitTestParameters hitParams = new PointHitTestParameters(mousePos);
 VisualTreeHelper.HitTest(vp, null, delegate (HitTestResult hr) {
 RayMeshGeometry3DHitTestResult rayHit = hr as
 RayMeshGeometry3DHitTestResult;
 if (rayHit != null) {
 Debug.WriteLine(rayHit.PointHit);
 }
 return HitTestResultBehavior.Continue;
 }, hitParams);
 }
}

Hit Testing | 649

This particular example just prints the 3D location to the debugger by printing out
the PointHit property. The result object also contains information about which
Visual3D contained the model, and which Model3D and mesh were hit. It even tells
you which triangle in the mesh was hit, and the position within that triangle. In the
graph example, you can use this information to calculate the corresponding coordi-
nates in the original graph data. Example 17-34 illustrates how to modify
Example 17-33 to use this technique.

This uses the RayMeshGeometry3DHitTestResult object’s VertexIndex1 property to dis-
cover which point in the mesh has been hit. It then works out which of the entries in
the points array created in Example 17-31 this corresponds to.

The mouse will rarely be exactly over a vertex—it will usually be somewhere within
the area of one of the mesh’s triangles. In this example, we don’t care about this
because we’re just trying to correlate the mouse position back to one of the original
data points, so we don’t need to know the exact location within the triangle. How-
ever, sometimes extra precision is necessary.

To enable you to work out the exact 3D position of the mouse,
RayMeshGeometry3DHitTestResult provides a property for each corner of the triangle
the mouse was over: VertexIndex1, VertexIndex2, and VertexIndex3. The relative
position of the mouse within the triangle is indicated by the VertexWeight1,
VertexWeight2, and VertexWeight3 properties. To calculate the exact position, you
would calculate the sum of the three vertex positions, multiplied by the three weight
properties, as shown in Example 17-35.

Example 17-34. Extracting hit test details

void myViewport_MouseMove(object sender, MouseEventArgs e) {
 Point mousePos = e.GetPosition(vp);
 PointHitTestParameters hitParams = new PointHitTestParameters(mousePos);
 VisualTreeHelper.HitTest(vp, null, delegate (HitTestResult hr) {
 RayMeshGeometry3DHitTestResult rayHit = hr as
 RayMeshGeometry3DHitTestResult;
 if (rayHit != null) {
 MeshGeometry3D mesh = rayHit.MeshHit as MeshGeometry3D;
 if (mesh != null) {
 int pointsWidth = points.GetLength(0);
 int y = rayHit.VertexIndex1 / pointsWidth;
 int x = rayHit.VertexIndex1 - (y * pointsWidth);

 Debug.WriteLine(string.Format("Point: {0},{1} value = {2}",
 x, y, points[x, y]));
 }
 }
 return HitTestResultBehavior.Continue;
 }, hitParams);
}

650 | Chapter 17: 3D Graphics

Where Are We?
The Viewport3D class allows you to add simple 3D models your user interface. The
scene is built up with shapes defined by mesh geometries. These might be imported
from a 3D modeling program, or generated at runtime from data. The appearance of
the shapes is described by materials—combinations of 2D brushes and various light-
ing models. Because you can use any 2D brush, you can paint 3D surfaces with bit-
maps, drawings, videos, or even a visual copy of a user interface. Finally, hit testing
services enable you to find out with which part of a 3D model the user is interacting.

Example 17-35. Calculating the exact hit position

Point3D pointInMesh1 = mesh.Positions[rayHit.VertexIndex1];
Point3D pointInMesh2 = mesh.Positions[rayHit.VertexIndex2];
Point3D pointInMesh3 = mesh.Positions[rayHit.VertexIndex3];
double x = pointInMesh1.X * rayHit.VertexWeight1 +
 pointInMesh2.X * rayHit.VertexWeight2 +
 pointInMesh3.X * rayHit.VertexWeight3;
double y = pointInMesh1.Y * rayHit.VertexWeight1 +
 pointInMesh2.Y * rayHit.VertexWeight2 +
 pointInMesh3.Y * rayHit.VertexWeight3;
double z = pointInMesh1.Z * rayHit.VertexWeight1 +
 pointInMesh2.Z * rayHit.VertexWeight2 +
 pointInMesh3.Z * rayHit.VertexWeight3;

Point3D exactLocation = new Point3D(x, y, z);

651

Chapter 18 CHAPTER 18

Custom Controls18

One of the benefits of WPF is that you don’t need to write custom controls as often
as you would have to in many user interface frameworks. If you need to customize
the appearance of an existing control or adjust its superficial interactive behavior,
WPF provides various tools that can let you do this. In earlier chapters, we saw fea-
tures such as composability, content models, styling, templates, animation, and inte-
grated graphics support. These let you customize existing controls extensively
without having to write a new control type.

Custom controls still have a place, of course. As we saw in Chapter 5, the role of a
control is to define essential behavior. For example, although you can customize and
animate the visuals of a button to your heart’s content, it still retains its essence—it
is just something clickable. If the behavior you require is not provided by any exist-
ing controls, and you cannot create it by bolting a few controls together, you will
need to write a custom control.

If you want your control to be reusable, you will want it to have the same kind of
flexibility that the built-in controls offer, such as support for rich content, styling,
and templates. In this chapter, we will see how to make your custom controls take
advantage of the same powerful flexibility as the built-in controls.

Custom Control Basics
Before you write a custom control, the first question you should ask is:

Do I really need a custom control?

One of the main reasons for writing custom controls in older user interface technolo-
gies is to modify the appearance of a control, but as we’ve seen in earlier chapters,
content models and templates mean this is often unnecessary. WPF offers a progres-
sive scale of customization techniques that you should bear in mind when consider-
ing writing a custom control:

652 | Chapter 18: Custom Controls

1. Use properties to modify the appearance or behavior of an existing control.

2. Compose existing controls.

3. Nest content in an existing control.

4. Replace the template of an existing control.

5. Create a custom control or other custom element.

This sequence offers increasing levels of power in exchange for slightly more effort at
each step. Only if 1–4 don’t meet your needs is writing some kind of custom ele-
ment such as a custom control likely to be the answer.

An important indicator of whether you need to write a new control (or some other
custom visual element type) is whether you plan to add new API features. Even in
this case, you should consider carefully what type of custom element to write—con-
trols are not the only kind of element. You might get more flexibility by writing a
lower-level element that you can integrate into the visuals of an existing control. For
example, a lot of the elements that make WPF so flexible, such as layout classes and
shapes, derive from FrameworkElement, but are not in fact controls (i.e., they do not
derive from the Control base class).

If you are certain that a custom element is the best way to proceed, you will need to
work through a number of design steps. First, you must pick the base class—will it
derive from FrameworkElement, Control, or one of the other base types provided by
WPF? Then you must define the API, deciding what properties, events, and com-
mands your class will provide. Finally, if your new element is to provide the same
flexibility that built-in classes offer, you will need to pay careful attention to the
interface between the element and its template.

Choosing a Base Class
WPF provides many classes from which you can derive when creating custom ele-
ments. Figure 18-1 shows a set of classes that are most likely to be suitable base
classes, and illustrates the inheritance relationship between them. Note that this is by
no means a complete inheritance diagram—it simply shows the classes you should
consider as possible base classes.

Whichever base class you choose, your element will derive directly or indirectly from
FrameworkElement. This offers event routing, advanced property handling, anima-
tion, data binding, layout support, styling, and logical tree integration.

Choosing a Base Class | 653

It is not an absolute requirement to derive from FrameworkElement.
Chapter 13 discussed the low-level visual layer graphics API, and
although the example in that chapter derived from FrameworkElement,
you can derive directly from UIElement when using the low-level draw-
ing API. However, you would lose all of the services FrameworkElement
offers. The main reason UIElement exists is that Microsoft wanted to
make it possible to use WPF’s low-level rendering services without
being obliged to use the whole WPF framework. In practice, you
would not normally do this.

Deriving directly from FrameworkElement might be appropriate for an element
designed to be composed into other elements. For example, consider an element that
binds to a data source and renders the data as a graph. You might be tempted to
make this derive from Control. However, the raw graph drawing element would usu-
ally be used in conjunction with other elements such as TextBlock to provide labels
for the graph and its axes. It might therefore make more sense to separate the graph
drawing into a low-level element, which could then be incorporated into the visuals
of any number of different controls.

It is possible to use controls inside the template of other controls. But
if you find yourself writing a custom control purely to be used in the
template of another custom control, you probably need to review your
choice of base class.

Figure 18-1. Partial class hierarchy, showing candidate base classes for custom elements

FrameworkElement

ControlAdorner Decorator

ItemsControl

SelectorHeaderedItemsControl

Panel Shape

ContentControl

HeaderedContentControlUserControl

654 | Chapter 18: Custom Controls

If you are writing an element that performs custom layout logic, you should derive
from Panel to be consistent with the built-in layout elements.

If you are writing an element that wraps around another element, augmenting it in
some way, consider deriving from Decorator. Many built-in elements derive from
Decorator. For example, there is Border, which adds a border around an element.
There is also ViewBox, which automatically scales the element that it wraps to fill the
available space. If you wish to provide some kind of wrapper that adds functionality
around other content, consider deriving from Decorator.

The Adorner base class is designed for elements such as selection outlines and drag
handles. WPF renders adorners so that they appear on top of all other elements. For
example, if a selected shape in a drawing program were mostly obscured by other
shapes on top of it, its selection outline would still be visible if rendered as an ador-
ner. The “Adorners” section, later in this chapter, describes how to write an adorner.

Shape is the base class of elements such as Rectangle and Path. If your application
makes heavy use of some shape that can be represented with a PathGeometry, you can
derive your own shape class instead of having to use the Path type every time. For
example, if you wanted lots of stars in your application, you could derive a Star class
from Shape. When writing your own shape, you generate the appearance by overrid-
ing the DefiningGeometry property. The base Shape class’s OnRender will render the
Geometry you provide, and will automatically handle the Stretch property for you by
applying a transform. If you want to handle how your object changes shape when
stretched—the default behavior might distort the shape in an unacceptable way—
you can take complete control by overriding the OnRender method, as shown in
Chapter 13.

If your element provides behavior, or supports user interactions not available from
built-in components, it is appropriate to derive from Control, either directly or indi-
rectly. For example, if you want to make an interactive graphing component, where
the user can click on items in the graph to inspect them, or zoom around, you would
typically write this as a control (and its template might use the lower-level graph ren-
dering element you wrote earlier).

Control offers several derived classes, augmenting the basic control functionality. If
you are writing a control that provides a space in which the user can place some con-
tent (e.g., a caption), you should derive from ContentControl—this provides your
control with support for the content model. If your control supports content in both
a header caption and the main area (like a tab page), consider deriving from
HeaderedContentControl.

If you need to present multiple child items, first consider whether the combination of
ListBox, data binding, templates, and styles will meet your requirements. Data binding
and styling enable WPF’s list controls such as ListBox and TreeView to handle a wide
range of scenarios for which their Win32 and Windows Forms forebears are unsuited.

Custom Functionality | 655

If you need extra functionality not provided by the built-in list controls, you should
consider deriving your custom element type from either Selector or its base class,
ItemsControl. ItemsControl provides the basic support for controls containing lists of
items, including optional data binding functionality. Selector augments this with the
ability to track a currently selected item or set of items.

Custom Functionality
Once you have picked a base class, you will need to devise an API for your control.
WPF elements usually expose the majority of their functionality through properties,
events, and commands, because these get extensive support from the framework and
are easily used from XAML. WPF can provide automatic support for routing of
events and commands, and its dependency property system provides support for
many framework features such as data binding, styling, triggers, and animation. You
can, of course, write methods as well, and for certain kinds of functionality, meth-
ods are the best approach. (For example, the ListBox has a ScrollIntoView method
that ensures that a particular item is visible. This is a useful thing to be able to do
from code.) But, you should prefer properties, events, and commands where they are
a reasonable fit.

Properties
The .NET type system provides a standard way of defining properties for an object. It
prescribes a convention for supplying get and set accessor methods, but the imple-
mentation of these, and the way in which the property value is stored, is left up to the
developer.* In WPF, elements normally use the dependency property system. .NET-
style property accessors are typically provided, but these are just wrappers around
dependency properties (DPs), added for convenience.

The get and set accessors required to wrap the DP system are trivial—just a single
method call for each, as you’ll see shortly. In exchange for this minimal amount of
code, the DP system adds a number of features that standard .NET properties do not
normally offer. For example, a DP can inherit its value from a parent element. Con-
fusingly, this is different from the classic OO meaning of inheritance, where a
derived class inherits features from its base class (although DPs also support inherit-
ance in that sense). Property value inheritance is a more dynamic feature, allowing a
property to be set on a single element and automatically propagate to all of its chil-
dren. For example, all elements have a Cursor property to control the mouse cursor.
This property uses value inheritance, meaning that if you set the Cursor on an ele-
ment, all of the child elements will automatically get the same Cursor property value.

* Some languages, including VB.NET and C++/CLI, provide a default implementation of properties. This
consists simply of a field wrapped by get and set accessors.

656 | Chapter 18: Custom Controls

(You will be familiar with this idea if you’ve used Windows Forms, in which ambient
properties offer the same feature.)

Besides supporting inheritance, DPs can also pick up their values automatically from
elsewhere, such as data binding expressions, triggers, or styles. The animation sys-
tem also relies on DPs—it uses the DP infrastructure to adjust property values over
time. They also provide a mechanism for defining a default value. That’s a lot of
functionality in exchange for a tiny amount of code.

By implementing your element’s properties as DPs, not only do you get all of these
features automatically, but also the DP system manages the storage of the value for
you—you do not need to define any instance fields to hold property values.

Storage management may seem like a small thing—after all, how hard
is it to add a field to a class? However, this feature can offer surpris-
ingly significant memory savings.

Simply by inheriting from Control, your element will support more
than 80 properties (plus any attached properties) of varying complex-
ity, most of which are likely to be left at their default values on most
objects. If each element had its own set of fields to hold these values,
this would take hundreds of bytes per element. A complex user inter-
face may have hundreds or even thousands of elements. (Even if the
logical tree is not that complex, the visual tree can multiply the num-
ber of elements greatly.)

If most of the properties on these many elements are either inheriting
values from their parents or are set to their default values, using per-
element fields to hold these values could waste hundreds of kilobytes
of memory. DPs use a more sophisticated storage approach that
exploits the fact that most properties are left unset. And although
memory is cheap, moving data into and out of the CPU is expensive.
The CPU can execute code far faster than it can fetch data from main
memory. Only cache memory is fast enough to keep up with the pro-
cessor, and most modern processors typically have only a few hun-
dred kilobytes of cache. Even high-end systems have only a few
megabytes of cache. Saving a few hundred kilobytes can therefore
sometimes improve performance dramatically.

By deferring to the DP system, we can let it handle the information
more efficiently by storing just the property values that have been set
explicitly.

Finally, the DP system tracks changes to values. This means that if any interested
party wants to know when a property value changes, it can register for notifications
with the DP system. (Data binding relies on this.) We do not need to write any spe-
cial code to make this happen—the DP system manages storage of our property val-
ues, so it knows whenever a property changes.

Any custom WPF element you create will automatically have everything it requires to
support DPs, because FrameworkElement derives indirectly from the DependencyObject

Custom Functionality | 657

base class. To define a new property on our custom element, we must create a new
DependencyProperty object in the element’s static constructor. This object acts as an
identifier for the property—all the DPs of built-in controls have a corresponding
DependencyProperty object. By convention, this property object is stored in a public
static field of our class, and the field’s name is formed by adding Property to the end
of the property’s name (see Example 18-1).

This custom control defines a single DP called StripeBrush, of type Brush with a
default color of green. The control’s template could use this to determine the color of
a stripe drawn as part of its appearance, using a TemplateBinding as described in
Chapter 9. It is common to define properties whose only purpose is to provide
TemplateBinding sources. Many common properties of built-in controls, such as
Foreground and Background, have no intrinsic behavior of their own—they just pro-
vide a place for users of the control to set information that will be relayed to the con-
trol’s template. For such properties, it is common for the control class itself to do
nothing with the property other than defining it. So, although Example 18-1 is a
pretty minimal implementation, it is entirely sufficient for its purpose.

It is often useful to define a default value for a property. The control in Example 18-1
specifies a default value of Brushes.Green by passing in a PropertyMetadata object
when registering the StripeBrush property.

You might wonder why WPF invents these new DependencyProperty
and PropertyMetadata types to represent properties and associated
metadata when the Reflection API already provides the PropertyInfo
class, and an extension mechanism in the form of custom attributes.
Unfortunately, the Reflection API was unable to provide the combina-
tion of flexibility and performance WPF requires, which is why there is
some overlap between the DP metadata system and reflection.

Example 18-1. Defining a dependency property

public class MyCustomControl : ContentControl {

 public static readonly DependencyProperty StripeBrushProperty;

 static MyCustomControl() {
 PropertyMetadata stripeBrushMetadata =
 new PropertyMetadata(Brushes.Green); // default value
 StripeBrushProperty = DependencyProperty.Register("StripeBrush",
 typeof(Brush), typeof(MyCustomControl), stripeBrushMetadata);
 }

 public Brush StripeBrush {
 get { return (Brush) GetValue(StripeBrushProperty); }
 set { SetValue(StripeBrushProperty, value); }
 }
}

658 | Chapter 18: Custom Controls

Example 18-1 also defines normal .NET get and set property accessors. These are not
strictly necessary—you could access the properties using the public GetValue and
SetValue methods inherited from DependencyObject like so:

myControl.SetValue(MyCustomControl.StripeBrushProperty, Brushes.Red);

However, in most .NET languages it is easier to use a normal CLR property, and
more important, the XAML compiler will complain if you use a DP that has no corre-
sponding CLR property, so you would normally provide a property wrapper as
Example 18-1 does. As you can see, the accessors simply defer to the GetValue and
SetValue methods inherited from the DependencyObject base class.

The Visual Studio Extensions for .NET 3.0 define a code snippet to help
write dependency properties. Put the caret inside the class to which you
would like to add a DP. Type propdp and then press the Tab key. (If the
IntelliSense pop up is open, you’ll need to press Tab twice—once to get
rid of the pop up and once to expand the snippet.) This will insert code
very similar to Example 18-1.

Example 18-2 shows how to use this custom property from XAML. (This assumes
that the namespace containing this control has been associated with the XML
namespace prefix local. See Appendix A for more information on the relationship
between .NET namespaces and XML namespaces.)

Because our property’s type is Brush, we can use the same text format for representing
brushes as we saw in Chapter 13. Example 18-2 exploits this to create a brush based on
a named color, but you could also use one of the numerical formats, such as #0000FF.

Attached properties

If you wish to define an attached property—one that you can apply to elements other
than the defining element—you register it with a different call: RegisterAttached. As
Example 18-3 shows, this is called in much the same way as the normal Register
method.

Example 18-2. Using properties from XAML

<local:MyCustomControl StripeBrush="Blue" />

Example 18-3. Registering attached properties

public class ElementWithAttachedProp : Panel {

 public static readonly DependencyProperty IsSkewedProperty;

 static ElementWithAttachedProp () {
 PropertyMetadata isSkewedMetadata = new PropertyMetadata(false);
 IsSkewedProperty = DependencyProperty.RegisterAttached("IsSkewed",
 typeof(bool), typeof(ElementWithAttachedProp), isSkewedMetadata);
 }

Custom Functionality | 659

Note that the accessors look different. .NET does not specify a standard way for
properties defined by one type to be applied to another. XAML and WPF recognize
the idiom used in Example 18-3, where we define a pair of static methods called
GetPropName and SetPropName. Both of the set methods are passed the target object to
which the property is to be attached.

The class in Example 18-3 derives from Panel, indicating that it offers some kind of
custom layout service, as described in Chapter 3. Although any custom element can
define attached properties, it is particularly common for custom panels to do so, to
enable child elements to tell the panel how they would like to be arranged.
Example 18-3 is just a hypothetical example, so the layout implementation is not
shown, but the name suggests that when the panel encounters a child with the
IsSkewed attached property set to true, it will arrange it askew. Example 18-4 shows
how to apply this custom attached property to a Button element in XAML.

XAML also offers the property element syntax, which is useful for when the prop-
erty value is too complex to express as an attribute. This works in the same way for
attached properties as it does for ordinary properties: use an element name of the
form <ClassName.PropertyName> to set a property. Example 18-5 uses this syntax to
set three properties: the unattached Background property, the built-in Grid.Row
attached property, and the custom IsSkewed attached property.

 public static bool GetIsSkewed(DependencyObject target) {
 return (bool) target.GetValue(IsSkewedProperty);
 }

 public static void SetIsSkewed(DependencyObject target, bool value) {
 target.SetValue(IsSkewedProperty, value);
 }
 ...
}

Example 18-4. Using an attached property from XAML

<Button local:ElementWithAttachedProp.IsSkewed="True" />

Example 18-5. Property element syntax

<Button>
 <Button.Background>
 <SolidColorBrush Color="Blue" />
 </Button.Background>
 <Grid.Row>1</Grid.Row>
 <local:ElementWithAttachedProp.IsSkewed>
 True
 </local:ElementWithAttachedProp.IsSkewed>
</Button>

Example 18-3. Registering attached properties (continued)

660 | Chapter 18: Custom Controls

Value change notification

Your properties will not always be set using the accessor methods. For example, data
binding and animation use the DP system to modify property values directly. If you
need to know when a property value is changed, you must not depend on your acces-
sors being called, because they often won’t be—this is true for both instance proper-
ties and attached properties. Instead, you should register for change notifications. You
do this by passing a callback to the PropertyMetadata during property registration.

You can register a change handler for both normal and attached prop-
erties. The same technique is used in either case.

Example 18-6 shows the modifications you would make to Example 18-3 in order to
be notified when the property value changes.

The change handler function will be called whenever the property is changed,
whether it is altered by a call to the static SetIsSkewed method shown in
Example 18-3, or by code that uses the DP system to change the value directly, such
as a trigger in a style. Your change handler is passed two parameters. The first indi-
cates the target object to which the property has been attached. If your property’s
behavior requires you to do something to target objects, you would do it in the prop-
erty change handler. For example, when you set the built-in SpellCheck.IsEnabled
attached property to a text editing control, this hooks up dynamic spellchecking
functionality. Because you are given a reference to the target, your property change
handler can do whatever it deems fit.

The second parameter is a simple struct containing self-explanatory OldValue and
NewValue properties. The NewValue property is just for convenience—Example 18-6
could also have retrieved the new value by calling the GetIsSkewed accessor.

Example 18-6. Handling property changes

...
static ElementWithAttachedProp () {
 PropertyChangedCallback isSkewedChanged =
 new PropertyChangedCallback(OnIsSkewedChanged);
 PropertyMetadata isSkewedMetadata =
 new PropertyMetadata(false, isSkewedChanged);
 IsSkewedProperty = DependencyProperty.RegisterAttached("IsSkewed",
 typeof(bool), typeof(ElementWithAttachedProp), isSkewedMetadata);
}
...
static void OnIsSkewedChanged(DependencyObject target,
 DependencyPropertyChangedEventArgs e) {
 Debug.WriteLine("IsSkewed just changed: " + e.NewValue);
}
...

Custom Functionality | 661

Whether you need a property change handler depends on the nature of the attached
property. Some attached properties are passive. For example, panel layout proper-
ties have no intrinsic behavior of their own and have no direct effect on the elements
to which they are applied—instead, they tell the containing panel what to do with
the elements. Moreover, layout properties mean anything only when they are applied
to children of the panel that defined them. For this kind of panel, you don’t need a
property change handler. However, for a more proactive property, such as
SpellCheck.IsEnabled, you would need to supply a change handler in order to dis-
cover to which elements your property has been applied.

Change notifications for property consumers

The change handling technique shown in the preceding section is perfect for custom
properties. But what if you want to be notified of changes to dependency properties
you didn’t create? For example, if you’ve written a custom control, you might want
to know when the Background property changes. (There is no BackgroundChanged
event, because most controls rely on templates to render their background, and tem-
plate bindings handle property changes for you.) There are two options, depending
on whether you wish to receive notifications for properties on an object of a custom
type written by you, or properties on an object of a type you do not control.

A custom type can have two types of properties not written by you: attached proper-
ties, and properties defined by the base class. You can handle changes for both kinds
of properties by overriding the OnPropertyChanged method. This virtual method is
defined by DependencyObject, and it will be called anytime any of the object’s proper-
ties change. Example 18-7 uses this to change the background color anytime the
IsMouseOver property changes. (This is just to illustrate the OnPropertyChanged
method. In practice, you would normally use a Style with a Trigger if you want one
property’s value to be changed by another, as described in Chapter 8.)

You can override the OnPropertyChanged method only if you are writing a custom type.
What if you want to be notified of property changes on an object of a type you do not
control, such as Button? In this case, we must rely on the PropertyDescriptor class.

Example 18-7. Handling change notifications in a custom type

partial class MyWindow : Window {
 ...
 protected override void OnPropertyChanged(
 DependencyPropertyChangedEventArgs e) {

 base.OnPropertyChanged(e);
 if (e.Property == UIElement.IsMouseOverProperty) {
 this.Background = this.IsMouseOver ? Brushes.Red : Brushes.Blue;
 }

}
}

662 | Chapter 18: Custom Controls

You can retrieve a property descriptor for any CLR property using the
TypeDescriptor class’s static GetProperties method. You pass it either a type or an
object, and it returns a complete list of descriptors, one for each property. By default,
the .NET Framework generates property descriptors automatically, using reflection
to discover the available properties. However, one of the most important features of
the property descriptor system is that objects are allowed to provide their own
descriptors if they want to.* DependencyObject offers custom property descriptors for
all dependency properties. This enables us to retrieve them in the same way we
would for any object.

Example 18-8 shows how we can provide the property descriptor with a change
handler. The OnButtonIsPressedChanged method in this example will be called when-
ever the myButton object’s IsPressed property changes.

Although the normal mechanism for retrieving a property descriptor used by
Example 18-8 works fine, WPF provides a more direct mechanism, as Example 18-9
shows.

This is a little more verbose than Example 18-8, but it offers a useful advantage.
Instead of passing in a property name, we pass in the DependencyProperty object for
the property we require. This removes the potential for a runtime error. If we
mistype the property name, we will get a compiler error, whereas if we use the tech-
nique in Example 18-8, the mistake will not be detected until runtime.

* The DataRow class in ADO.NET uses this to advertise what columns it has, for example.

Example 18-8. Obtaining a PropertyDescriptor from TypeDescriptor

partial class Window1 : Window {

 public Window1() {
 InitializeComponent();

 // myButton refers to a <Button> in the XAML (not shown)
 PropertyDescriptor buttonIsPressedProp =
 TypeDescriptor.GetProperties(myButton)["IsPressed"];

 buttonIsPressedProp.AddValueChanged(myButton, OnButtonIsPressedChanged);
 }

 void OnButtonIsPressedChanged(object sender, EventArgs e) {
 this.Background = myButton.IsPressed ? Brushes.Red : Brushes.Blue;
 }
}

Example 18-9. Obtaining a PropertyDescriptor from a DependencyProperty

PropertyDescriptor buttonIsPressedProp =
 DependencyPropertyDescriptor.FromProperty(Button.IsPressedProperty,
 typeof(Button));

Custom Functionality | 663

You would use the techniques shown in Examples 18-8 and 18-9 only
when you are not deriving from the class that defines the DP. The pre-
vious techniques are preferable when you are able to use them, for two
reasons. First, your handler will be notified if you use XAML to set the
property’s initial value—the PropertyDescriptor technique won’t do
that because you can attach the handler only after initialization is com-
plete. Second, using the earlier techniques you will be passed both the
old and the new values, whereas with the PropertyDescriptor, you will
be able to see only the new value.

Property metadata options

Certain common property behaviors crop up time and time again. For example, if
you are writing a custom element that overrides OnRender in order to work at the
visual layer, it is likely to have properties that affect its appearance. Suppose you had
written a custom element called Star that renders a star shape, with a Points prop-
erty defining how many points the star should have. The obvious thing to do would
be to register a change handler, and to call InvalidateVisual in this handler in order
to trigger another call to OnRender. In fact, you don’t have to do this. Example 18-10
shows how to get WPF to do this work for you.

Instead of using the basic PropertyMetadata class, we’ve used the derived
FrameworkPropertyMetadata type. This is designed for properties defined by a
FrameworkElement, and it adds various features not available to dependency properties
defined on types that derive directly from lower-level base classes such as UIElement.
You can pass in any of the flags defined by the FrameworkPropertyMetadataOptions
enumeration, which are described in Table 18-1.

Example 18-10. Automatic visual invalidation

public class Star : FrameworkElement {
 public static readonly DependencyProperty PointsProperty;

 public int Points {
 get { return (int) GetValue(PointsProperty); }
 set { SetValue(PointsProperty, value); }
 }

 static Star() {
 FrameworkPropertyMetadata pointsMetadata =
 new FrameworkPropertyMetadata(5, // default value
 FrameworkPropertyMetadataOptions.AffectsRender);

 PointsProperty = DependencyProperty.Register("Points",
 typeof(int), typeof(Star), pointsMetadata);
 }
 ...
}

664 | Chapter 18: Custom Controls

By enabling metadata options, you can often avoid the need to write a property
change handler.

You should not use the AffectsRender flag unless your element over-
rides OnRender. You do not need to set this for all properties that have
an impact on appearance. If the property affects a control’s appear-
ance via a TemplateBinding in the template—which is how the prop-
erty defined in Example 18-1 is intended to be used—the template
binding will automatically detect property changes without you need-
ing to set AffectsRender.

FrameworkPropertyMetadata also defines a couple of properties that can affect prop-
erty behavior. DefaultUpdateSourceTrigger lets you specify when two-way data bind-
ings to this property will normally update the source. The usual default is LostFocus,
but by setting this to PropertyChanged, you can force the source to be updated every
time the property changes. Alternatively, you can set it to Explicit, indicating that
the source will be updated only if the code calls the binding’s UpdateSource method.

Finally, you can disable the use of animation with the property by setting the
IsAnimationProhibited property to true. This might be appropriate if changing the prop-
erty would be a calamitously expensive thing to try to do tens of times per second.

Table 18-1. FrameworkPropertyMetadataOptions

Flag Meaning

AffectsArrange The arrange layout phase will be redone when the property changes.

AffectsMeasure The layout will be completely redone when the property changes.

AffectsParentArrange The arrange layout phase of the parent will be redone when the property
changes.

AffectsParentMeasure The parent’s layout will be completely redone when the property changes.

AffectsRender The element’s visuals will be invalidated when the property changes,
causing OnRender to be called if the element is visible.

BindsTwoWayByDefault Data binding expressions will use a Mode of TwoWay by default. (The
default is usually OneWay.)

Inherits The property’s value will be inherited by child elements.

Journal The property value will be stored in the navigation journal when navigat-
ing away, and restored when returning.

NotDataBindable Data binding expressions will not be allowed to target this property.

OverridesInheritanceBehavior The property is inherited by descendants even when a child element dis-
ables inheritance with the InheritanceBehavior property.

SubPropertiesDoNotAffectRender Used in conjunction with AffectsRender. Changes to nested proper-
ties defined by this property’s value do not affect rendering—OnRender
should be called only if the property value itself changes (i.e., the property
value is replaced with a new object).

Custom Functionality | 665

Events
We looked at the handling of routed events in Chapter 4. If you wish to define cus-
tom events for your control, it makes sense to implement them as routed events. Not
only will this make your element consistent with other WPF elements, but also you
can take advantage of the same bubbling and tunneling routing strategies where
appropriate.

Creating custom routed events is similar to creating custom properties. You simply
create them in your class’s static constructor. For convenience, you would normally
also add a .NET style event to wrap the underlying routed event handling.

Example 18-11 shows the definition of a pair of events: a tunneling PreviewAlarm
event and a bubbling Alarm event. It provides .NET event accessors for conve-
nience—these just defer to the AddHandler and RemoveHandler methods built into the
base class.

This example also provides an OnAlarm method to raise the event. This raises the pre-
view event, and if that isn’t marked as handled, it goes on to raise the main Alarm
event. The RaiseEvent method provided by the base UIElement class does the work of
event routing and calling any registered handlers. Note that just as with normal CLR
events, routed events are raised synchronously—RaiseEvent will call the event hand-
lers sequentially, and will not return until all of them have run.

Example 18-11. Defining a custom RoutedEvent

public class ClockControl : ContentControl {

 public static RoutedEvent AlarmEvent;
 public static RoutedEvent PreviewAlarmEvent;

 static ClockControl() {
 AlarmEvent = EventManager.RegisterRoutedEvent(
 "Alarm", RoutingStrategy.Bubble,
 typeof(RoutedEventHandler), typeof(ClockControl));
 PreviewAlarmEvent = EventManager.RegisterRoutedEvent(
 "PreviewAlarm", RoutingStrategy.Tunnel,
 typeof(RoutedEventHandler), typeof(ClockControl));
 }

 public event RoutedEventHandler Alarm {
 add { AddHandler(AlarmEvent, value); }
 remove { RemoveHandler(AlarmEvent, value); }
 }
 public event RoutedEventHandler PreviewAlarm {
 add { AddHandler(PreviewAlarmEvent, value); }
 remove { RemoveHandler(PreviewAlarmEvent, value); }
 }

 protected virtual void OnAlarm() {
 RoutedEventArgs args = new RoutedEventArgs(PreviewAlarmEvent);

666 | Chapter 18: Custom Controls

Example 18-11 used the built-in RoutedEventArgs class. If you want to
pass extra information about the event, as with normal .NET events
you are free to define your own custom event argument type. It should
derive from RoutedEventArgs, because this incorporates some routing
functionality required by WPF to route events correctly.

Attached events

Just as some properties can be attached to types other than their defining types, so
can events. Unlike dependency properties, routed events do not need to be regis-
tered in a different way in order to work as attached events. For example, you could
attach a handler for the ClockControl.Alarm event defined in Example 18-11 to a
Button using the code shown in Example 18-12.

The MyAlarmHandlerMethod referred to in this example is the event handler method
that will get called when the Alarm event is raised on this button. Of course, the but-
ton knows nothing about the Alarm event, so we would need to write the code to
raise the event. This is shown in Example 18-13.

Attached events enable you to introduce your own events into the UI tree even
though the source element may have no intrinsic understanding of the event.

Commands
We saw in Chapter 4 that WPF’s RoutedUICommand class represents a particular user
action, which may be invoked through any number of different inputs. There are two
ways in which a custom control might want to interact with the command system. It
might define new command types. Or, it could handle commands defined elsewhere.

 RaiseEvent(args);
 if (!args.Handled) {
 args = new RoutedEventArgs(AlarmEvent);
 RaiseEvent(args);
 }
 }
 ...
}

Example 18-12. Attached event handler

RoutedEventHandler handler = MyAlarmHandlerMethod;
myButton.AddHandler(ClockControl.AlarmEvent, handler);

Example 18-13. Raising an attached event

RoutedEventArgs re = new RoutedEventArgs(ClockControl.AlarmEvent);
myButton.RaiseEvent(re);

Example 18-11. Defining a custom RoutedEvent (continued)

Custom Functionality | 667

Example 18-14 shows how to register a custom command. Note that we provide two
strings to name the command. The first is a display name. Because this may appear
in the UI (e.g., if the command is associated with a menu item), you would not hard-
code the string like this if the application were localizable. Instead, you would typi-
cally read the value from a ResourceManager, as with any localizable string. The
second name is not localized—this is the real name of the command, and should
always be the same regardless of locale.

Example 18-15 shows XAML that configures a Button to invoke this custom com-
mand when it is clicked.

You will often want to make your control handle any custom commands it defines.
You might also want it to handle other commands. For example, you might wish to
respond to some of the standard commands provided by classes such as
ApplicationCommands. In Chapter 4, we saw how to achieve this by adding a
CommandBinding to our custom control’s CommandBindings collection. However,
although this technique will work, it is usually not an appropriate technique for a
custom control. You will normally want all instances of your control to respond to
the command in the same way, so instead of setting up command bindings for every
instance, it would be better to register a class handler. This lets you set up a com-
mand handling association just once in your static constructor, and it will work for
all instances of your custom element. Example 18-16 shows how.

Example 18-14. Registering a custom command

public class ClockControl : Control {
 public static RoutedUICommand SnoozeCommand;

 static ClockControl() {
 InputGestureCollection boomInputs = new InputGestureCollection();
 boomInputs.Add(new KeyGesture(Key.F,
 ModifierKeys.Control|ModifierKeys.Shift));
 SnoozeCommand = new RoutedUICommand("Snooze", "Snooze",
 typeof(ClockControl), boomInputs);
 }
 ...
}

Example 18-15. Invoke a command from XAML

<Button Command="local:ClockControl.SnoozeCommand">Click me</Button>

Example 18-16. Adding a class-level command handler

public class MyCustomControl : ContentControl {

 static MyCustomControl() {
 CommandBinding copyCommandBinding = new CommandBinding(
 ApplicationCommands.Copy,
 HandleCopyCommand);

668 | Chapter 18: Custom Controls

Note that the handler must be a static method—when your static constructor runs,
there will not yet be any instances of your custom element. Besides, this handler will
be registered once on behalf of all instances, so it would not make sense for it to be
an instance method. When the command is invoked, the handler will be passed a ref-
erence to the target element as its first parameter.

Supporting Templates in Custom Controls
The final design consideration for any custom element is how it will connect with its
visuals. If the element derives directly from FrameworkElement, it might be appropri-
ate for it to generate its own visuals. (Chapter 13 described how to create a graphical
appearance.) In particular, if you are creating an element whose purpose is to pro-
vide a particular form of visualization—such as an element that renders a three-
dimensional graph—the element should take complete control of how this is
managed. However, if you are writing a control, you would not normally hard-wire
the graphics into the control.

Remember that a control’s job is to provide behavior. The visuals are provided by the
control template. A control may provide a default set of visuals, but it should allow
these to be replaced in order to offer the same flexibility as the built-in controls.
(Chapter 9 described how to replace a control’s visuals with a template.) A control
that conforms to this approach, where the visuals are separated from the control, is
often described as lookless, because the control has no intrinsic appearance or “look.”
All of the controls built into WPF are lookless.

Of course, it is not possible for the control to be entirely independent of its visuals.
As we saw in Chapter 9, there is an implied contract between a control and its tem-
plate. The control allows its appearance to be customized by replacing the template,
but the template should in turn provide certain features on behalf of the control.
Chapter 9 described the various styles of contract; some controls use a mixture of
these styles. The following sections describe how to support these contract types in a
custom control.

 CommandManager.RegisterClassCommandBinding(typeof(MyCustomControl),
 copyCommandBinding);
 }

 static void HandleCopyCommand(object target,
 ExecutedRoutedEventArgs e) {
 MyCustomControl myControl = (MyCustomControl) target;
 ...

}
}

Example 18-16. Adding a class-level command handler (continued)

Supporting Templates in Custom Controls | 669

Property Binding
Property binding is where the control template projects properties from the control
onto properties of elements in the control template. It does this with the
TemplateBinding markup extension.

To support this model, all you need to do is implement properties using the depen-
dency property mechanism described earlier in this chapter. Example 18-1 showed a
custom control that defined a single dependency property called StripeBrush, of type
Brush. This enables users of this control to refer to it in a template, as Example 18-17
shows.

All dependency properties automatically support property binding. The “contract” in
this case is implied by the set of dependency properties your control offers.

Named Parts
The named parts style is where the control locates required template parts by name.
Example 18-18 shows a very simple control template with two named parts.

Writing a control that uses this style of template is straightforward. First, you should
declare which parts your control expects by annotating the class with the
TemplatePartAttribute custom attribute, which is defined in the System.Windows
namespace. This indicates the names and types of elements you expect to see. Design
tools can use this information to ensure that a template is correct. To hook your con-
trol to these named parts, you should override the OnApplyTemplate method (see
Example 18-19).

Example 18-17. Using property binding

<ControlTemplate TargetType="{x:Type local:MyCustomControl}">
 <Grid>
 <Line Stroke="{TemplateBinding StripeBrush}" StrokeThickness="1"
 X1="0" Y1="0" X2="100" Y2="100" />
 </Grid>
</ControlTemplate>

Example 18-18. Control template with named parts

<ControlTemplate TargetType="{x:Type loc:ControlWithNamedParts}">
 <Grid Width="80" Height="100">
 <Ellipse Fill="Black" Stroke="Gray" StrokeThickness="3" Margin="0,20,0,0" />
 <ContentControl x:Name="PART_Body"
 Foreground="White" HorizontalAlignment="Center"
 VerticalAlignment="Center" Margin="0,15,0,0" />
 <Line x:Name="PART_Fuse"
 Stroke="Blue" StrokeThickness="3" X1="55" Y1="40" X2="75" Y2="5" />
 </Grid>
</ControlTemplate>

670 | Chapter 18: Custom Controls

This retrieves the ControlTemplate from the Template property, and calls its FindName
method to locate named elements within the template. Notice that we have to pass
in the this reference—this is because one ControlTemplate object is typically shared
by many controls, so it needs to know which particular instance of the template we’d
like to connect with. The method returns null if it cannot find the element.

In general, you should try to make your control robust in the face of missing ele-
ments. The built-in controls do not raise errors when parts are missing; they simply
stop providing the functionality that depended on the part in question (even if that
means becoming completely nonfunctional). For example, the Button control
requires its template to contain a ContentPresenter in order for the Content prop-
erty to work. If the template does not contain a ContentPresenter, the Content
property stops doing anything, but otherwise the control continues to function as
normal. Users of your control may not be interested in exploiting all the available
features, and so may give you an incomplete template. Even if they intend to pro-
vide a full template, it is likely that at the start of the design process, the template
will be incomplete.

Your template may be replaced during the lifetime of your control. If you do things
to the template parts, such as hooking up event handlers, you must be prepared to
undo this work in the event that your template is replaced. Example 18-20 shows
how to do this.

Example 18-19. Connecting with named parts

[TemplatePart(Name="PART_Body", Type=typeof(ContentControl))]
[TemplatePart(Name="PART_Fuse", Type=typeof(FrameworkElement))]
public class ControlWithNamedParts : Control {
 ContentControl body;
 FrameworkElement fuse;

 public override void OnApplyTemplate() {
 base.OnApplyTemplate();

 body = Template.FindName("PART_Body", this) as ContentControl;
 fuse = Template.FindName("PART_Fuse", this) as FrameworkElement;
 }
 ...
}

Example 18-20. Handling a change of template

[TemplatePart(Name="PART_Target", Type=typeof(FrameworkElement))]
public class MyControl : Control {
 private FrameworkElement targetPart;

 public override void OnApplyTemplate() {
 base.OnApplyTemplate();

 FrameworkElement oldTargetPart = targetPart;
 targetPart = Template.FindName("PART_Target", this) as FrameworkElement;

Supporting Templates in Custom Controls | 671

Content Placeholders
Some controls expect the template to provide a placeholder for content, typically
using a ContentPresenter element. You do not need to do anything special to enable
the use of a ContentPresenter—if you derive from ContentControl, it will just work.
Users of your control will be able to write templates such as that shown in
Example 18-21.

Your control may require more than one placeholder. For example, controls derived
from HeaderedContentControl require two—one for the body and one for the header.
In this case, we can simply be explicit about which property the ContentPresenter
presents, as Example 18-22 shows.

 if (!object.ReferenceEquals(oldTargetPart, targetPart)) {
 if (oldTargetPart != null) {
 oldTargetPart.MouseEnter -=
 new MouseEventHandler(targetPart_MouseEnter);
 oldTargetPart.MouseLeave -=
 new MouseEventHandler(targetPart_MouseLeave);
 }

 if (targetPart != null) {
 targetPart.MouseEnter +=
 new MouseEventHandler(targetPart_MouseEnter);
 targetPart.MouseLeave +=
 new MouseEventHandler(targetPart_MouseLeave);
 }
 }
 }

 void targetPart_MouseLeave(object sender, MouseEventArgs e) {
 ...
 }
 void targetPart_MouseEnter(object sender, MouseEventArgs e) {
 ...
 }
 ...
}

Example 18-21. Using a ContentPresenter

<ControlTemplate TargetType="{x:Type local:MyContentControl}">
 <Grid>
 <Rectangle Fill="White" />
 <ContentPresenter />
 </Grid>
</ControlTemplate>

Example 18-20. Handling a change of template (continued)

672 | Chapter 18: Custom Controls

ContentPresenter does not require the template control to derive from
ContentControl. You can use this technique in the template of any custom control,
although you get to omit the Content property template binding as in Example 18-21
only if your control derives from ContentControl—all other control types will require
the template to contain explicit bindings as in Example 18-22.

WPF defines two more placeholder types. You can use ItemsPresenter in an
ItemsControl in order to show where generated items should be added. And,
ScrollContentPresenter is designed for use in the scroll viewer control, indicating
where the scrollable content will go. If you were defining a new kind of control that
hosts content in some way (e.g., a paginating viewer), it might be appropriate to
define a custom placeholder type. However, you should do this only if the built-in
ones do not meet your needs.

Placeholders Indicated by Properties
There is an alternative to the named parts approach described earlier: you can define
attached properties whose job is to mark certain elements as special. For example,
Panel.IsItemsHost is an attached property used in an ItemsControl template to indi-
cate the panel that will hold generated items. The advantage of this property-based
technique is that it is more amenable to compile-time checking: if you misspell the
name of a named part, the failure is typically not detected until runtime. A misspelled
property name is detected at compile time. The TemplatePartAttribute provides a
mechanism by which a template could be verified for the correct named parts, but the
current WPF build tools do not make use of this. However, the named part approach
is far more common and simpler to implement. The marker property approach is
described here mainly for completeness.

To implement a control that denotes a placeholder with a marker property, you will
need to define a custom attached dependency property. This should be a Boolean
property. Example 18-23 registers such an attached property and defines the usual
accessor functions.

Example 18-22. ContentPresenter and HeaderedContentControl

<ControlTemplate TargetType="{x:Type local:MyHeaderedContentControl}">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <ContentPresenter Grid.Row="0" Content="{TemplateBinding Content}" />
 <ContentPresenter Grid.Row="1" Content="{TemplateBinding Header}" />
 </Grid>
</ControlTemplate>

Supporting Templates in Custom Controls | 673

Notice that in Example 18-23, a PropertyChangedCallback is supplied to the
PropertyMetadata. This denotes a method that is to be called anytime this attached
property is set or modified on any element. It is in this method that our control will
discover which element was set as the placeholder. Example 18-24 shows the
method.

Example 18-23. Registering the attached placeholder property

public class ControlWithPlaceholder : Control {
 public static readonly DependencyProperty IsMyPlaceholderProperty;

 static ControlWithPlaceholder() {

 PropertyMetadata isMyPlaceholderMetadata = new PropertyMetadata(false,
 new PropertyChangedCallback(OnIsMyPlaceholderChanged));

 IsMyPlaceholderProperty = DependencyProperty.RegisterAttached(
 "IsMyPlaceholder", typeof(bool),
 typeof(ControlWithPlaceholder), isMyPlaceholderMetadata);
 }

 public static bool GetIsMyPlaceholder(DependencyObject target) {
 return (bool) target.GetValue(IsMyPlaceholderProperty);
 }
 public static void SetIsMyPlaceholder(DependencyObject target, bool value) {
 target.SetValue(IsMyPlaceholderProperty, value);
 }
...

Example 18-24. Discovering when the placeholder property is applied

 ...
 static void OnIsMyPlaceholderChanged(DependencyObject target,
 DependencyPropertyChangedEventArgs e) {

 FrameworkElement targetElement = target as FrameworkElement;
 if (targetElement != null && GetIsMyPlaceholder(targetElement)) {
 ControlWithPlaceholder containingControl =
 targetElement.TemplatedParent as ControlWithPlaceholder;
 if (containingControl != null) {
 containingControl.placeholder = targetElement;
 }
 }

}

 FrameworkElement placeholder;

 ...
}

674 | Chapter 18: Custom Controls

This example starts by checking that the property was applied to an object derived
from FrameworkElement. Remember that we’re expecting this to be applied to a partic-
ular element inside the control template, so if it is applied to something other than a
FrameworkElement, there’s nothing useful we can do with it.

Next, we check the value of the property by calling the GetIsMyPlaceholder accessor
method we defined for the attached property in Example 18-23. It would be slightly
odd if someone explicitly set this property to false, but if he does, we definitely
shouldn’t treat the element as the placeholder.

If the property was set to true, we go on to retrieve the target element’s
TemplatedParent property. For elements that are part of a control’s template, this
returns the control that owns the template. (It returns null if the element is not a
member of a control. Because our property only has any meaning for elements inside
a template, we just do nothing when there is no templated parent.) We also check
that the parent is an instance of our control type, and ignore the property if it is
applied to an element in the template of some other kind of control.

If the target element was a member of a template for an instance of this custom control
type, we know we’ve found the placeholder. This example stores a reference to the
placeholder in a private field of the control so that the control can then go on to do
whatever it needs to do with the placeholder, such as add child elements or set its size.

Example 18-25 shows how you would use this property in a control template to indi-
cate which element is the placeholder.

Default Styles
Although the ability to provide a custom look for a control is useful, developers
should be able to use a control without having to supply custom visuals. The control
should just work when used in its most straightforward way, which means that it
should supply a default set of visuals. This is normally done by providing a style that
sets default property values, including a default control template.

Logically speaking, these default styles live in the system resource scope. As we saw
in Chapter 12, this scope contains system-defined resources such as system colors,
and default styles for built-in controls. If you write a custom control, you can add
your own resources to this scope by adding a themes\generic.xaml file to your project.
See Chapter 12 for more information on custom system-scope resources.

Example 18-25. Specifying a placeholder with a property

<ControlTemplate TargetType="{x:Type local:ControlWithPlaceholder}">
 <Grid local:ControlWithPlaceholder.IsMyPlaceholder="True" />
</ControlTemplate>

Default Styles | 675

For each custom control, you should define a system-scope style with a TargetType
specifying your control. This style must set the Template property with a
ControlTemplate defining the default visuals for your control, such as the one shown
in Example 18-26. See Chapters 8 and 9 for more information on how to define a
style that supplies a template.

To make sure your control picks up this default theme, you need to let the depen-
dency property system know that the style is there. If you don’t, the control will just
pick up the default style for its base class. Example 18-27 shows how to ensure that
the correct style is used.

Note that the Visual Studio extensions for .NET 3.0 generate this code for you when
you add a new custom control to a WPF project.

Example 18-26. Default visuals

<!-- themes/generic.xaml -->
<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:CustomControlLib">
 <Style TargetType="{x:Type local:MyCustomControl}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type local:MyCustomControl}">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">
 <ContentPresenter />
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

Example 18-27. Ensuring that your default style is used

public class MyCustomControl : ContentControl {
 static MyCustomControl() {
 ...
 DefaultStyleKeyProperty.OverrideMetadata(typeof(MyCustomControl),
 new FrameworkPropertyMetadata(typeof(MyCustomControl)));
 }
 ...
}

676 | Chapter 18: Custom Controls

UserControl
User controls offer a way of building custom controls that works rather differently
than everything we’ve looked at so far. These are intended to offer a similar model to
user controls in other UI frameworks such as Windows Forms and ASP.NET. In
those technologies, user controls are built with the visual designer in the same way as
a window or page would be created, using the same event handling and code-behind
mechanisms.

UserControl is a very simple class that derives from ContentControl and adds very lit-
tle. It defines no new public members, and merely makes minor changes to some
default behaviors: it prevents the control from acting as a target for focus and tab
navigation (we typically want the elements inside the user control to act as focus tar-
gets, not the containing user control itself). The main purpose of UserControl is to
signal intent: by deriving from UserControl, you are indicating to the development
environment how you would like to build and edit the control. It also offers a clue to
developers using your control that it is unlikely to be lookless—user controls use the
same tightly coupled relationship between markup and code behind as a window or
page, so they do not usually support customization through templates.

Strictly speaking, user controls have templates—all controls do. How-
ever, the default template contains just a single ContentPresenter,
which hosts the UI defined in your markup. So in practice, a user con-
trol supplies its own visuals.

Example 18-28 shows the XAML and code behind for a very simple user control.

Example 18-28. Markup and code behind for UserControl

<!-- CustomElement.xaml -->
<UserControl x:Class="CustomElement"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid>
 <Button Click="OnButtonClick" Content="_Click me" />
 </Grid>
</UserControl>

// CustomElement.xaml.cs
public partial class CustomElement : UserControl {
 public CustomElement(){
 InitializeComponent();
 }

 void OnButtonClick(object sender, RoutedEventArgs e) {
 MessageBox.Show("Clicked");
 }
}

UserControl | 677

Having written a user control, you use it in the same way as any other custom
element. Example 18-29 shows how you might use the control defined in
Example 18-28.

One of the reasons UserControl is so simple is that we don’t technically need it—fea-
tures intrinsic to user controls in other UI frameworks are supported throughout all
of WPF, so you can build custom elements using markup with code behind without
deriving from UserControl. XAML is quite happy to use any root element type, so
you can derive from any base class you like. Example 18-30 shows a pair of markup
and code-behind files for a custom element that derives directly from Grid. This
behaves in much the same way as the user control defined in Example 18-28.

As you can see, we add elements and attach event handlers to this code in the same
way as with a user control. The current preview .NET 3.0 extensions for Visual Stu-
dio 2005 will even let you edit the design of such an element interactively—it doesn’t
care that it’s not a user control.

Today, there is very little difference between these two ways of creating custom ele-
ments. This illustrates that the UserControl class doesn’t offer any unique functionality.

Example 18-29. Using a user control

<Window ...
 xmlns:local="clr-namespace:MyNamespace">
 <Grid>
 <local:CustomElement />
 </Grid>
</Window>

Example 18-30. Markup and code behind without UserControl

<!-- CustomElement.xaml -->
<Grid x:Class="CustomElement"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Button Click="OnButtonClick" Content="_Click me" />

</Grid>

// CustomElement.xaml.cs
public partial class CustomElement : Grid {
 public CustomElement(){
 InitializeComponent();
 }

 void OnButtonClick(object sender, RoutedEventArgs e) {
 MessageBox.Show("Clicked");
 }
}

678 | Chapter 18: Custom Controls

It exists mainly to signal explicitly that you are using the markup and code-behind
idiom. And this is A Good Thing—the minimal functionality doesn’t mean that class
is useless. If another developer is using your element, she might be misled if it derives
directly from Grid—she could reasonably think that it is intended as a custom layout
element. But if it derives from UserControl, that provides a clear indication of its nature.

Adorners
An adorner is a special-purpose custom element whose purpose is to add visual fea-
tures to a UI element. An adorner appears at the same position as the element it
adorns, but it will be at top of the Z order—it appears above all nonadorner ele-
ments in the window. Adorners are typically used in interactive editing scenarios to
display selection outlines or handles. Figure 18-2 shows a typical example from
Microsoft Expression Blend.

Figure 18-2 shows two rounded rectangles. The one with the white fill is on top of
the gray one, partially obscuring it. The gray one underneath has been selected, caus-
ing various handles, shapes, and labels to light up. For example, there’s a rectangle
showing the bounding box, with small, square resize handles at each corner, and
there’s an outline version of the shape itself. Notice that the white rectangle has
obscured none of these features. Even though the gray rectangle is beneath the white
rectangle, all of the handles appear on top, making it easy to edit the shape even
though it is mostly obscured. These handles and other features appear on top
because they use WPF’s adorner system.

Adorners are able to appear on top because WPF creates a special AdornerLayer ele-
ment at the top of the Z order. There is nothing magic about this—you could achieve
the same effect without using the adorner infrastructure simply by creating a suit-
ably placed panel to host your adorners. However, it would require a considerable

Figure 18-2. Adorners in action

Adorners | 679

amount of work to ensure that the elements on this panel appeared in the correct
position. This is what makes the adorner system attractive—it ensures that the
objects in the adorner layer are always in the same position as the elements they
adorn, despite being in completely different parts of the UI tree.

The AdornerLayer can contain multiple elements, so you might expect it to be a
panel. However, it derives directly from FrameworkElement, not Panel, for a couple of
reasons. First, it can only contain elements that derive from Adorner, whereas panels
can contain any UI elements. Second, AdornerLayer has no layout logic of its own—
adorners are positioned on the adorner layer according to the location of the ele-
ments they adorn. This means that adorners do not participate in layout in the nor-
mal way.

No public classes are derived from the Adorner abstract base class, so you are obliged
to derive your own. And, because the Adorner class does not provide a way to define
the appearance through properties, you can’t simply use XAML. A common
approach for writing adorners is to use visual layer programming, which we
described in Chapter 13. Example 18-31 shows an example of this approach.

This adorner will render a blue box 100 device-independent pixels wide and 40 high.
Notice that the constructor takes as its parameter the element to be adorned. All
adorners must do this because the Adorner base class has no default constructors—
you must provide it with a reference to the element being adorned. Example 18-32
shows the XAML and code behind for a window that uses this adorner.

Example 18-31. Adorner using visual layer

class BoxingAdorner : Adorner {
 public BoxingAdorner(UIElement adornedElement)
 : base(adornedElement) { }

 protected override void OnRender(DrawingContext drawingContext) {
 drawingContext.DrawRectangle(null, new Pen(Brushes.Blue, 2),
 new Rect(0, 0, 100, 40));
 }
}

Example 18-32. Using an adorner

<Window ... >
 <Grid>
 <TextBlock x:Name="targetElement" Margin="40,40,0,0" Text="Test" />
 </Grid>
</Window>

// Code behind
partial class Window1 : Window {

 public Window1() {
 InitializeComponent();

680 | Chapter 18: Custom Controls

The work is done in the Loaded event handler, because the adorner layer is not avail-
able until then. In the event handler, we ask WPF for the AdornerLayer to use for the
target element, we create an instance of our adorner class, and then we add that to
the adorner layer. Figure 18-3 shows the results: a box around the text block.

Note that the adorner is significantly larger than the content of the TextBlock. Ador-
ners are often larger than the element they adorn. The resize box in Figure 18-2 is a
typical example. You can draw your adorner outside the adorned element’s area by
passing in suitable coordinates when drawing—modifying Example 18-31 to pass
negative x and y values would move the top left of the adorner above and to the left
of the text block. Alternatively, you can override the GetDesiredTransform method,
returning the transform you would like to have applied to your adorner. (We dis-
cussed transforms in Chapter 13.) Either way, the adorner can fill the whole adorner
layer if it wants.

Example 18-32 had to do its work in the Loaded event handler because the adorner
layer wasn’t ready sooner. This raises the question: where does the adorner layer
come from? The answer is the AdornerDecorator class.

AdornerDecorator
The adorner layer’s location in the visual tree of an application is always determined
by an AdornerDecorator element. Window provides an AdornerDecorator by default,
which is why we didn’t need to supply one earlier. It’s part of the window’s default
template, which is why we needed to wait until the Loaded event before trying to use
it—any earlier, and the template would not yet have been instantiated.

 this.Loaded += new RoutedEventHandler(Window1_Loaded);
 }

 void Window1_Loaded(object sender, RoutedEventArgs e) {
 AdornerLayer al = AdornerLayer.GetAdornerLayer(targetElement);
 BoxingAdorner myAdorner = new BoxingAdorner(targetElement);
 al.Add(myAdorner);
 }
}

Figure 18-3. TextBlock with adorner

Example 18-32. Using an adorner (continued)

Adorners | 681

AdornerDecorator is a potentially confusing name—you could be for-
given for thinking that it might be used to decorate an element with an
adorner, or that it might decorate an adorner. The reason for the name
is that it derives from the Decorator class, which we describe in
Appendix D. Decorators provide their content with a service.
AdornerDecorator is a decorator that provides its content with an ador-
ner layer, hence the name.

Sometimes it can be useful to provide your own adorner decorator. For example, you
might want to crop the adorner layer so that it doesn’t fill the whole window. A
drawing program would typically want to do this to make sure that its selection han-
dles did not encroach into the tool palettes. Example 18-33 shows how to use
AdornerDecorator to supply your own adorner layer.

If an adorner is applied to the targetElement, as before, WPF will now use the
AdornerDecorator supplied here, instead of the one that the Window provided. When
asked for an adorner layer, WPF walks the tree starting from the adorned element
and uses the first adorner decorator it finds. It generates an AdornerLayer as a child of
the decorator in the visual tree. You are free to have multiple adorner layers. WPF
uses the first one it finds for each adorner you create. Because the decorator in
Example 18-33 is in the second column of the grid, the adorners will be cropped if
necessary to ensure that they only appear inside that grid column, whereas by
default, they would have been able to appear anywhere in the window.

Example 18-33. Using AdornerDecorator

<Window ... >
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <AdornerDecorator Grid.Column="1">
 <TextBlock x:Name="targetElement" Margin="40,40,0,0" Text="Test" />
 </AdornerDecorator>
 </Grid>
</Window>

682 | Chapter 18: Custom Controls

Where Are We?
You should write a custom element only if the underlying behavior you require is not
offered by any of the built-in types, and you cannot build it by composing existing
elements. Even if you do write a custom type, it will not necessarily be a control.
When you write a custom element of any kind, you will use the dependency prop-
erty system to provide properties that support data binding and animation. You will
use the routed event infrastructure to expose events. If your element defines a partic-
ular interactive behavior, it should be a control. If you want to write a “lookless”
control that allows its visuals to be replaced just like the built-in controls, you must
consider how your control and template will interact with one another. You will also
most likely want to supply a default style with a template that provides a default set
of visuals.

683

Appendix A APPENDIX A

XAML1

XAML—the eXtensible Application Markup Language—is an XML-based language
for creating trees of .NET objects. XAML provides a convenient way of constructing
WPF user interfaces. This appendix explores the syntax of XAML and its relation-
ship to .NET code.

Although XAML is seen as being strongly associated with WPF, the two are, strictly
speaking, separate. You do not have to use XAML in order to write a WPF applica-
tion, and it is possible to use XAML for technologies other than WPF. For example,
the Windows Workflow Foundation can use XAML to represent workflows. WPF is
designed to be convenient to use from XAML, but to understand XAML fully, it’s
important to realize that it has no special connection with the WPF framework. As
we said, XAML is essentially just a language for constructing trees of .NET objects.

XAML Essentials
To examine the relationship between XAML and .NET, we will work through a sim-
ple XAML example (see Example A-1).

Example A-1. Simple XAML file

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="XamlProj.Window1"
 Title="Main Window">

 <Grid>
 <Ellipse Fill="LightBlue" />
 <TextBlock>
 Name: <TextBlock Text="{Binding Name}" />
 </TextBlock>
 </Grid>
</Window>

684 | Appendix A: XAML

Example A-1 is a simple but typical XAML file. Let’s look at it in detail to under-
stand what the XAML compiler will do with it.

Namespaces
The first thing to examine is the file’s use of XML namespaces. There are two here:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="XamlProj.Window1"
 Title="Main Window">

XAML relies on XML namespaces to determine the meaning of elements. For exam-
ple, the root element of this file is a Window, but WPF needs to know to what .NET
type this corresponds. Many class names are ambiguous. For example, there are
three different classes called Control in the .NET 3.0 class library. The .NET Frame-
work has a namespace system that is used for disambiguation. Standard XML also
has a namespace system that is used for the same purpose. XAML uses XML
namespaces to represent .NET namespaces.

There is not a one-to-one correspondence between XML namespaces in XAML and
.NET namespaces. One XML namespace can encompass several .NET namespaces.
This makes XAML less verbose—WPF’s types are spread across a number of
namespaces, so a one-to-one mapping would require XAML to contain a lot more
XML namespace boilerplate. This one-to-many mapping is workable because no
naming collisions result from merging these particular .NET namespaces into a sin-
gle XML namespace.

To define the relationship between an XML namespace and one or more .NET
namespaces, you apply the XmlnsDefinitionAttribute to the assembly that contains
the types you would like to make accessible in XAML. As Example A-2 shows, you
can apply the attribute several times in order to add multiple .NET namespaces to a
single XML namespace, or to define multiple XML namespaces.

When you build a WPF project, the XAML compiler will look for these XML
namespace definition attributes on all of the libraries your project uses, including any
system libraries. WPF’s WindowsBase, PresentationCore, and PresentationFramework
assemblies use this attribute to define certain XML namespaces, including the two
in Example A-1. The first indicates types that are part of the WPF framework.

Example A-2. XmlnsDefinitionAttribute

[assembly:XmlnsDefinition("http://example.com/mywpftypes",
 "MyNamespace")]
[assembly:XmlnsDefinition("http://example.com/mywpftypes",
 "MyNamespace.NestedNamespace")]
[assembly:XmlnsDefinition("http://example.com/otherwpftypes",
 "MyOtherNamespace ")]

XAML Essentials | 685

(This particular XML namespace encompasses several .NET namespaces, including
System.Windows and many of its children.) Because this is declared as the default
XML namespace in our XAML file (there is no colon after the xmlns), this indicates
that unless specified otherwise, all elements in this file are WPF elements.

The second namespace used by Example A-1, associated here with the x prefix,
represents various XAML utility features not specific to WPF, such as the ability to
represent type objects, or a null reference. This is a special namespace, in that not
everything in it corresponds to a type—some features in this namespace are used
to control the XAML compiler’s behavior.

There is no particular significance to XML namespace prefixes—you
are free to associate any prefix with any namespace. Prefixes are local
to the XML within the element that declares the prefix, and there is no
requirement that you use the same prefixes from one file to the next.
However, the usual convention in XAML is to associate x with the
XAML namespace. Nothing depends on this convention,* but it makes
it easier for others to understand your XAML.

XAML also supports a way to refer to types in namespaces for which the
XmlnsDefinitionAttribute has not been used. This lets you refer to types in existing
assemblies that may not have been designed with XAML in mind; you might want to do
this when defining a DataTemplate keyed off a particular type—the target data type
might be from a component that knows nothing about the UI. Also, WPF projects in
Visual Studio 2005 cannot use namespaces introduced by XmlnsDefinitionAttribute
from XAML that lives in the same assembly. If you want to refer to locally defined types,
you must use the alternative mechanism, which is shown in Example A-3.

The XAML compiler recognizes a special URI scheme. If an XML namespace URI
begins with clr-namespace: it will not be treated as a simple opaque identifier, as
namespace URIs normally are—the XAML compiler will parse the URI to extract the
.NET namespace, and optionally an assembly name.

* At least, nothing in WPF depends on it. Given the ubiquity of the convention, it wouldn’t be wholly surpris-
ing to come across tools elsewhere that do in fact depend on this, so it would be wise to follow the conven-
tion in your own XAML.

Example A-3. Namespace mapping URI syntax

<Grid xmlns:local="clr-namespace:MyProject"
xmlns:mylib="clr-namespace:MyLibraryNamespace;assembly=MyLibrary">

 <!-- MyProject.MyLocalType in local assembly -->
 <local:MyLocalType />

 <!-- MyLibraryNamespace.MyLibraryType in MyLibrary assembly -->
 <mylib:MyLibraryType />
</Grid>

686 | Appendix A: XAML

If the URI contains no semicolon, the text following the clr-namespace: is interpreted
as a .NET namespace. The XML namespace is deemed to contain all types in that
namespace that are defined in the same assembly as the XAML file. So, in
Example A-3, the namespace prefix local provides access to any types in the local
assembly in the MyProject namespace. The first child element of the Grid is of type
MyProject.MyLocalType, as defined in the same assembly as the XAML file.

If the URI string contains a semicolon, the text up to the semicolon is treated as a .NET
namespace, and the text that follows is expected to begin with assembly= and be fol-
lowed by the assembly name. The second namespace declaration in Example A-3 is of
this form. So, the second child of the Grid is an instance of a type called
MyLibraryNamespace.MyLibraryType, which is defined in an assembly called MyLibrary.
The assembly name can be fully qualified (i.e., containing the version culture and pub-
lic key token as shown in Example A-4), but this is not necessary for assemblies to
which the project has a reference.

Again, the XML namespace prefix has no particular significance. We could change
every instance of the text “local” in Example A-3 to “foo” without changing the
XAML’s meaning. However, it is a fairly common convention to use either “local” or
“loc” to signify local types.

You must not include any whitespace in a clr-namespace URI.

Because the root Window element in Example A-1 is qualified by the WPF XML
namespace, the XAML compiler knows that this refers to the System.Windows.Window
class. The XAML compiler imposes no restrictions on the type of the top-level ele-
ment, although in WPF applications, the most common choices are Window, Page,
FlowDocument, UserControl, and Application.

Example A-4. Fully qualified namespace mapping URI

<!-- Split onto multiple lines in order to fit in book. Must appear
 on one line in practice. -->
<DataTemplate
 xmlns:dat="clr-namespace:System.Data;assembly=System.Data,
 Version=2.0.0.0,Culture=Neutral,PublicKeyToken=b77a5c561934e089"
 DataType="{x:Type dat:DataRow}">

 <TextBlock Text="{Binding Path=ItemArray[0]}" />
</DataTemplate>

XAML Essentials | 687

Generating Classes
Example A-1 has an x:Class attribute on the root element, shown again here:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="XamlProj.Window1"
 Title="Main Window">

The x: prefix is standard XML shorthand to indicate that this particular attribute is
in the namespace specified by the xmlns:x attribute. As explained earlier, this is the
XAML namespace. The x:Class attribute is a signal to the XAML compiler that it
should generate a class definition based on this XAML file. The x:Class attribute
determines the name of the generated class, and it will derive from the type of the
root element.

You do not have to specify an x:Class attribute. If we were to omit the attribute from
this example, the root object’s type would be Window, rather than the generated
Window1 class.

It is possible to parse XAML at runtime. This technique, which is
shown later, has certain limitations compared to build-time XAML
compilation. You can use code generation features only at build time.
If you use the x:Class attribute with runtime parsing, you will cause
an error. You will see this if you try to use the x:Class attribute in the
XamlPad utility that comes with the Windows SDK.

When you opt to generate a class, this provides an easy way to build the tree of
objects represented by the XAML. Each Window1 instance we generated will contain a
set of objects as specified by the XAML, so we can just use normal object construc-
tion syntax:

Window1 myWindow = new Window1();

If you do not provide an x:Class attribute, creating the object tree is a little more
involved. There are several ways to do this, and we discuss them later in the “Load-
ing Compiled XAML (BAML)” section.

Properties
Next, consider the Title attribute on the Window element:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="XamlProj.Window1"
 Title="Main Window">

688 | Appendix A: XAML

This attribute has no namespace qualifier. In XAML, unqualified attributes usually
correspond to properties on the .NET object to which the element refers. (They can
also refer to events, as we’ll see later.) The Title attribute indicates that when an
instance of this generated XamlProj.Window1 class is constructed, it should set its own
Title property to "Main Window". This is equivalent to the following code:

myWindow.Title = "Main Window";

Children
Next, consider the contents of the Window element in Example A-1:

 <Grid>
 <Ellipse />
 <TextBlock>
 Name: <TextBlock Text="{Binding Name}" />
 </TextBlock>
 </Grid>

The default XML namespace specified by the xmlns attribute in the Window element is in
scope for all of the XML file, so these elements are also in the WPF XML namespace.
The Grid element therefore corresponds to the System.Windows.Controls.Grid class. But
what does it mean for this to be “inside” the window? There isn’t any single model for
nesting one object inside another in .NET, so there are potentially many different inter-
pretations. XAML does not impose a model—instead it lets the parent object decide
how to deal with child elements.

Whenever you attempt to provide nested content, the XAML compiler will require
the parent type (Window, in this case) or its base class to be annotated with the
ContentPropertyAttribute. In this particular case, Window does not have this attribute,
but its base type, ContentControl, does, as Example A-5 shows.

This attribute tells the XAML compiler the name of the property that will contain the
child content. So, in this example, the compiler will arrange for a Grid object to be cre-
ated and assigned to the Content property. Example A-6 shows the code equivalent.

Example A-5. Handling child content

[ContentProperty("Content"), ...]
public class ContentControl : Control {
 ...
 public Object Content { get { ... } set { ... } }
}

Example A-6. Window content

Grid g = new Grid();
myWindow.Content = g;

XAML Essentials | 689

The Content property is of type Object, which means that the Window element sup-
ports only a single child. Elements that can contain multiple children, such as pan-
els, simply designate a property with a collection type as the content property, as
Example A-7 shows.

Panel is the base class of Grid, so this tells us how the XAML compiler will add the
children inside the Grid in our example. It will be equivalent to Example A-8.

The TextBlock in Example A-1 has further nested content—some text and a second
TextBlock. This particular example turns out to be a little more complex, because in
this case, the XAML compiler will generate automatic wrapper objects for the chil-
dren. As Chapter 14 shows, if you add plain text inside a text element, such as a
TextBlock or a Paragraph, it will automatically be wrapped in a Run object. Likewise,
FrameworkElement children will automatically be wrapped in InlineUIContainer ele-
ments. The TextBlock from our example here, shown again in Example A-9, exploits
both of these features.

This is shorthand for the markup in Example A-10.

Example A-7. Handling multiple children

[ContentProperty("Children"), ...]
public class Panel : FrameworkElement {
 ...
 public UIElementCollection Children { get { ... } }
}

Example A-8. Adding content to the Grid

Grid g = new Grid();
myWindow.Content = g;
Ellipse e = new Ellipse();
TextBlock t = new TextBlock();
...
g.Children.Add(e);
g.Children.Add(t);

Example A-9. Implicit Run and InlineUIContainer

<TextBlock>
 Name: <TextBlock Text="{Binding Name}" />
</TextBlock>

Example A-10. Explicit Run and InlineUIContainer

<TextBlock>
 <Run Text="Name: " />
 <InlineUIContainer>
 <TextBlock Text="{Binding Name}" />
 </InlineUIContainer>
</TextBlock

690 | Appendix A: XAML

This works because of a couple of custom attributes. TextBlock is annotated with
ContentPropertyAttribute, indicating that its child content should go into its Inlines
property. That property’s type is InlineCollection, which is annotated with a cou-
ple of ContentWrapperAttribute custom attributes, as Example A-11 shows.

This tells us that Example A-9 is equivalent to the code shown in Example A-12.

This example illustrates one last feature of XAML: markup extensions. The nested
TextBlock in Example A-9 sets the Text property with a data binding expression, and
Example A-12 shows the equivalent code. We described binding expressions in Chap-
ters 6 and 7, but they are an example of a more general XAML construct: a markup
extension. Markup extensions allow you to customize the way in which a property is
set—in this case, the markup extension sets the property by calling SetBinding on
the target TextBlock. Each markup extension’s behavior is different, and we describe
all the built-in ones in detail later in this appendix.

The steps we’ve just seen illustrate more or less all of what XAML does. The XAML
file causes a type to be defined, and the contents cause objects to be created and
properties to be set. Everything else is just a refinement of these basics. Now let’s
look at each feature in more depth.

Properties
In Example A-1, we set the Window element’s Title property. This property’s type was
String. Pure text properties are a natural fit with XML, because XML is a text-based
format. But what about other property types? Example A-13 uses a slightly wider
range of types.

Example A-11. ContentWrapperAttribute

[ContentWrapper(typeof(Run)), ContentWrapper(typeof(InlineUIContainer)),
 WhitespaceSignificantCollection]
public class InlineCollection : TextElementCollection<Inline>, ...

Example A-12. TextBlock equivalent code

TextBlock t = new TextBlock();
t.Inlines.Add(new Run("Name: "));
TextBlock t2 = new TextBlock();
t.Inlines.Add(new InlineUIContainer(t2));
t2.SetBinding(new Binding("Name"));

Example A-13. Nonstring properties

<Rectangle Width="100"
 Height="20"
 Stroke="Black"
 Fill="#80FF40EE" />

Properties | 691

None of the properties set here is a string. Both Width and Height are of type Double,
whereas both Stroke and Fill require a Brush. In order to support diverse property
types, XAML relies on .NET’s TypeConverter system. This has been around since v1.0
of .NET, and it is used in design-time scenarios. A TypeConverter maps between dif-
ferent representations of a value, most commonly between String and a property’s
native type.*

The Width and Height properties are converted using the LengthConverter type. (WPF
knows to use this type because the FrameworkElement class’s Width and Height proper-
ties are marked with a TypeConverterAttribute indicating which converter to use.)
The BrushConverter class is used for the other two properties, because although they
do not have a TypeConverterAttribute, they are of type Brush, and the Brush type has a
TypeConverterAttribute indicating that BrushConverter should be used. Example A-14
illustrates how the attribute was applied in each case.

The Stroke is set to a standard named color, so this will cause the relevant
SolidColorBrush to be fetched from the Brushes class. The Fill in this example uses
one of the numerical color formats described in Chapter 13. This causes a new
SolidColorBrush of the specified color to be created. Example A-15 shows the equiva-
lent code for the whole of Example A-13.

Custom components can provide their own type converters if they wish to allow
properties with nonstandard types to be set easily from XAML.

* You should not confuse type converters with value converters, which are strictly for data binding scenarios.

Example A-14. Specifying a TypeConverter

public class FrameworkElement : UIElement, ... {
 ...
 [TypeConverter(typeof(LengthConverter)) ...]
 public double Width { ... }
 [TypeConverter(typeof(LengthConverter)) ...]
 public double Height { ... }
 ...
}

[TypeConverter(typeof(BrushConverter)) ...]
public abstract class Brush : Animatable, ...

Example A-15. Nonstring properties, equivalent code

Rectangle r = new Rectangle();
r.Width = 100.0;
r.Height = 20.0;
r.Stroke = Brushes.Black;
r.Fill = new SolidColorBrush(Color.FromArgb(0x80, 0xff, 0x40, 0xEE));

692 | Appendix A: XAML

Property Element Syntax
Although the type converter system often makes it possible to specify property val-
ues using attributes in your XAML, it sometimes falls short; either a suitable type
converter is not available, or you need to do something too complex to fit into a
string. For example, the BrushConverter does not provide a way of specifying a gradi-
ent fill. For these situations, XAML supports the property element syntax.

With the property element syntax, you set the property using a nested element instead
of an attribute. The nested element’s name is of the form Parent.PropertyName, where
Parent is the name of the element whose property is being set, and PropertyName is the
name of the property, as Example A-16 shows. This dotted syntax marks the element
as being a property value rather than child content.

Example A-16 uses the property element syntax to set a Button element’s Background
property. It is equivalent to this code:

Button btn = new Button();
SolidColorBrush brush = new SolidColorBrush();
brush.Color = Color.FromArgb(0xFF, 0x44, 0x44, 0xFF);
btn.Background = brush;
btn.Content = "Click me";

This particular example has the same effect as a simple Background="#FF4444FF"
attribute would—if you specify a numeric color value as a brush, the BrushConverter
converts it into a SolidColorBrush. Although this property element version is a lot
more verbose, it is also more explicit—we can see exactly what kind of a brush will
be created here.

Although this more verbose syntax can help demystify some of the magic that type
converters do behind the scenes, this is not the normal reason for using the property
element syntax. It is typically necessary because we need to nest more complex defi-
nitions inside the property. Example A-17 uses property element syntax for a Button
element’s Background in order to use a relatively complex brush. The brush itself also
uses property element syntax for a list of GradientStops.

Example A-16. Property element syntax

<Button>
 <Button.Background>
 <SolidColorBrush Color="#FF4444FF" />
 </Button.Background>
 Click me
</Button>

Example A-17. Nested property elements

<Button VerticalAlignment="Center" HorizontalAlignment="Center">
<Button.Background>

 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <LinearGradientBrush.GradientStops>

Properties | 693

Example A-18 shows the equivalent code.

Note that in Example A-17, we could have left out the lines that open and close the
LinearGradientBrush.GradientStops element. This is because the LinearGradientBrush
has the ContentPropertyAttribute applied, meaning you can just add the GradientStop
elements directly as children of the brush. We used the more verbose approach here
simply to illustrate that the nested property elements syntax works for collection-like
properties as well as singular properties. Normally, you would use the more compact
syntax here.

Attached Properties
As well as allowing normal .NET properties to be set, XAML also supports attached
properties. An attached property is one where the property is defined by a different
type than the element to which the property is applied. Most of WPF’s layout ele-
ments exploit this to allow attributes specific to the layout type to be applied to child
elements, as Example A-19 shows.

 <GradientStop Offset="0" Color="#800" />
 <GradientStop Offset="0.35" Color="Red" />
 <GradientStop Offset="1" Color="#500" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
</Button.Background>

 Click me
</Button>

Example A-18. Code equivalent of property elements

Button b = new Button();
b.VerticalAlignment = VerticalAlignment.Center;
b.HorizontalAlignment = HorizontalAlignment.Center;
LinearGradientBrush brush = new LinearGradientBrush();
brush.StartPoint = new Point(0,0);
brush.EndPoint = new Point(0,1);
GradientStop gs = new GradientStop();
gs.Offset = 0;
gs.Color = Color.FromRgb(0x80, 0, 0);
brush.GradientStops.Add(gs);
gs = new GradientStop();
gs.Offset = 0.35;
gs.Color = Colors.Red;
brush.GradientStops.Add(gs);
gs = new GradientStop();
gs.Offset = 0.35;
gs.Color = Color.FromRgb(0x50, 0, 0);
brush.GradientStops.Add(gs);
b.Background = brush;
b.Content = "Click me";

Example A-17. Nested property elements (continued)

694 | Appendix A: XAML

The syntax for attached properties is straightforward—they are always of the form
DefiningType.PropertyName, where DefiningType is the name of the type that defines
the property, and PropertyName is the name of the property. XAML interprets this as
a call to the static DefiningType.SetPropertyName method, passing in the target object
and value. Example A-20 shows the code for setting the same attached property set
in markup in Example A-19.

Attached properties are not a standard .NET feature—they are a useful idiom recog-
nized by XAML. Attached properties are used extensively in WPF and make an
important contribution to its flexibility.

For example, the use of attached properties helps keep the layout system open to
extension. Properties specific to a particular layout style are always attached proper-
ties. Otherwise, properties such as Grid.Row, DockPanel.Dock, and Canvas.Left would
have to be built into the base FrameworkElement class, making it difficult to add new
layout algorithms. With attached properties, you can define your own new layout
systems with a corresponding set of attachable properties. All you need to do is pro-
vide a pair of static SetPropertyName and GetPropertyName methods on the defining
class for each attached property.

Example A-21 defines an attached property called Foo.Bar, of type Brush. (The
XAML compiler doesn’t care how you implement these accessors, so the details have
not been shown.)

To use this property from XAML you would need a suitable XML namespace decla-
ration to get access to the type, just as you would to use a custom element.
Example A-22 shows this syntax.

Example A-19. Attached properties

<Button Grid.Row="1" Name="myButton" />

Example A-20. Setting an attached property in code

Grid.SetRow(myButton, 1);

Example A-21. Defining a custom attached property

namespace MyNamespace {
 public class Foo {
 public void SetBar(DependencyObject target, Brush b) { ... }
 public Brush GetBar(DependencyObject target) { ... }
 }
}

Example A-22. Using a custom attached property

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Properties | 695

This example shows the syntax required to use a custom attached property. As with any
attached property, it follows the TypeName.PropertyName pattern. But because the defin-
ing type is not in the default namespace, the TypeName must be qualified by a namespace
prefix. So, the syntax is, in effect, xmlNamespacePrefix:TypeName.PropertyName.

Attached properties and the property element syntax

The property element syntax shown earlier works for attached properties as well as
normal ones. For example, we could write Example A-19 as shown in Example A-23.

You can also use property element syntax with custom attached properties. You sim-
ply include the relevant XML namespace, just as you do for the normal attached
property syntax. Example A-24 shows how to use the custom property defined in
Example A-21 with the property element syntax.

 xmlns:my="clr-namespace:MyNamespace">

 <Button my:Foo.Bar="Blue" />

</Window>

Example A-23. Attached property as property element

<Button Name="myButton">
 <Grid.Row>1</Grid.Row>
</Button>

Example A-24. Custom attached property element

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:my="clr-namespace:MyNamespace">

 <Button>
 <my:Foo.Bar>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0" Color="#800" />
 <GradientStop Offset="0.35" Color="Red" />
 <GradientStop Offset="1" Color="#500" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </my:Foo.Bar>
 </Button>
</Window>

Example A-22. Using a custom attached property (continued)

696 | Appendix A: XAML

Markup Extensions
Type converters and property elements let us initialize most properties to constant
values or fixed structures. However, in certain situations we need a little more flexi-
bility. For example, we might want to set a property to be equal to the value of some
particular static property, but we don’t know at compile time what that value will be,
like the properties representing user-configured colors. XAML provides a powerful
solution in the form of markup extensions. A markup extension is a class that decides
at runtime how to set a property’s value.

Markup extension classes derive from MarkupExtension, the nonprivate members of
which are shown in Example A-25. This class is defined in the System.Windows.Markup
namespace.

Example A-26 shows an example of a markup extension in use.

The TargetType property of the Style has a value enclosed in curly braces. This indi-
cates to the XAML compiler that a markup extension is being used. The first string
inside the curly braces is the name of the markup extension class, and the remaining
contents are passed to the markup extension during initialization.

We are using x:Type in Example A-26. There is no class called Type in any of the .NET
namespaces represented by the XAML namespace, but when the XAML compiler fails
to find the markup extension class, it appends Extension to the name and tries again.
There is a TypeExtension class, so the XAML compiler will use that, passing the string
"Button" to its constructor. Then it will call the extension’s ProvideValue method, to
obtain the real value to be used for the property. The TypeExtension will return the Type
object for the Button class.

As you can see from Example A-25, ProvideValue takes a single parameter of type
IServiceProvider. This is a standard .NET interface that allows a set of services to be
made available, where each service is an implementation of some interface. In this
case, the provider will typically offer two services: IProvideValueTarget and
IXamlTypeResolver. The former allows the extension to discover for which object

Example A-25. MarkupExtension class

public abstract class MarkupExtension {
 protected MarkupExtension () { }

 public abstract object ProvideValue(IServiceProvider serviceProvider);
}

Example A-26. Using a markup extension

...
<Style TargetType="{x:Type Button}">
...

Markup Extensions | 697

and which property it is providing a value (the Style object’s TargetType property,
in this scenario). The latter converts type names to types, taking into account the set
of XML namespaces in scope where the markup extension was used. The
TypeExtension uses this to convert its parameter to a Type object.

The XAML compiler singles out certain markup extension classes for special treat-
ment, evaluating them at compile time, because the compiler writers know those
extensions will always return the same value for a particular input. (Most extensions
are evaluated at runtime, including any custom extensions you write.) TypeExtension
is one of these special cases. So, at compile time, the compiler will do the equivalent
of the code in Example A-27. (The service provider passed to ProvideValue is an
implementation detail of the XAML compiler, and is not shown here.)

The runtime effect of using the TypeExtension in Example A-26 is equivalent to the
code in Example A-28. The main reason for this special handling is efficiency—
TypeExtension is widely used, so looking up type names at runtime would slow
things down.

XAML can pass data into a markup extension in two ways. One is to provide con-
structor parameters as Example A-26 shows—TypeExtension offers a constructor that
takes a string, and this example passes the string "Button" to that constructor. (You
can pass multiple parameters, separating each one with a comma.) The other is to set
properties, which you can do by putting PropertyName=Value pairs into the list, as
Example A-29 shows.

Properties passed to a type extension are parsed using type converters, just like all
other properties. Example A-29 is equivalent to the code in Example A-30.

You can nest markup extensions, enabling you to set an extension’s property with
another extension, as shown in Example A-31.

Example A-27. Compile-time effect of TypeExtension

TypeExtension te = new TypeExtension("Button");
object val = te.ProvideValue(serviceProviderImpl);

Example A-28. Runtime effect of TypeExtension

Style s = new Style();
s.TargetType = typeof(Button);

Example A-29. Using Name=Value pairs with a markup extension

<TextBlock Text="{Binding Path=SimpleProperty, Mode=OneTime}"/>

Example A-30. Setting properties on a Binding

Binding b = new Binding();
b.Path = new PropertyPath("SimpleProperty");
b.Mode = BindingMode.OneTime;

698 | Appendix A: XAML

You can create your own markup extension type by writing a class that derives from
MarkupExtension. (You will need to introduce a namespace prefix using the tech-
niques described earlier in the “Namespaces” section to make sure the XAML com-
piler can find your extension type.) To enable data to be passed to your extension,
you can either provide one or more constructors that take strings, or define suitable
properties. Your extension will be instantiated and its ProvideValue method called
when the object tree corresponding to the relevant XAML is instantiated at runtime.

Built-in Markup Extensions
WPF supplies a number of useful built-in markup extensions. Some of them are
defined in the XAML XML namespace, so by convention you access them using the
x: prefix. Others are specific to WPF and are in the WPF namespace. The most com-
monly used built-in extensions are listed in Table A-1, and are described in the fol-
lowing sections. (The “Type” column follows the convention that the x: prefix
denotes the XAML XML namespace and that the lack of a prefix denotes the WPF
XML namespace.)

NullExtension

The NullExtension provides a way to set a property to null. In some cases, the dis-
tinction between not setting a property and setting it explicitly to null is important.
For example, a Style might be setting the Background property on all elements of a
particular value, and you might want to disable this on a specific element. If you
wanted to remove the background entirely rather than setting it to some other color,
you would do so by setting that element’s Background explicitly to null.

Example A-31. Nested markup extensions

<TextBlock Text="{Binding Path=MyProp, Source={StaticResource Foo}}" />

Table A-1. Commonly used markup extensions

Type Usage

x:NullExtension Used to indicate null (evaluated at compile time)

x:TypeExtension Retrieves type object (evaluated at compile time)

x:ArrayExtension Creates an array

x:StaticExtension Retrieves static property value

StaticResourceExtension Performs one-shot resource lookup

DynamicResourceExtension Sets up resource binding

ComponentResourceKey Creates a resource key for cross-component system resource references

Binding Creates a data binding

RelativeSource Creates a RelativeSource for use in a data binding

TemplateBinding Connects a property in a control template to a property of the templated
control

Markup Extensions | 699

This extension always evaluates to null, so it does not require any parameters.
Example A-32 uses the NullExtension to set a button’s background—this prevents
the button from filling in its background.

This is equivalent to the code in Example A-33.

TypeExtension

TypeExtension returns a System.Type object for the named type. It always takes a single
parameter: the type name. TypeExtension uses the IServiceProvider passed to its
ProvideValue method to obtain information about the XAML parsing context in which
it appears, enabling it to resolve type names in the same way that the XAML compiler
does for element names. This means that you do not need to provide a fully qualified
type name including the .NET namespace extension. Instead, you use it like this:

<Style TargetType="{x:Type Button}">...

The TypeExtension will resolve the string "Button" to a type in the same way the
XAML compiler will—it will take into account the default XML namespace, and any
namespace mappings that are present. The effect of this extension is equivalent to
the code in Example A-34.

Again, the reality is slightly more complex, as we showed in Example A-28. How-
ever, Example A-34 expresses the intent and effect of the extension.

ArrayExtension

ArrayExtension allows you to create an array of elements. This is a slightly unusual
markup extension in that you do not use the brace syntax—you write it as a full ele-
ment instead. This is because an array can contain multiple items, and with the
ArrayExtension these are represented as children of the extension. (You could use the
brace syntax if you wanted an empty array, though.)

Example A-35 uses ArrayExtension to create an array as a resource. It then uses this
array as the data source for a ListBox. The ArrayExtension requires the array type to

Example A-32. Using the NullExtension

<Button Background="{x:Null}">Click</Button>

Example A-33. Effect of NullExtension

Button b = new Button();
b.Background = null;
b.Content = "Click";

Example A-34. Effect of TypeExtension

Style s = new Style();
s.TargetType = typeof(Button);

700 | Appendix A: XAML

be specified through its Type property, for which we use the TypeExtension discussed
previously. Here we are creating an array of type Brush.

This is effectively equivalent to the code in Example A-36.

Example A-35. Creating an array resource with ArrayExtension

<Grid>
 <Grid.Resources>
 <x:ArrayExtension Type="{x:Type Brush}" x:Key="brushes">
 <SolidColorBrush Color="Blue" />
 <LinearGradientBrush StartPoint="0,0" EndPoint="0.8,1.5">
 <LinearGradientBrush.GradientStops>
 <GradientStop Color="Green" Offset="0" />
 <GradientStop Color="Cyan" Offset="1" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <LinearGradientBrush.GradientStops>
 <GradientStop Color="Black" Offset="0" />
 <GradientStop Color="Red" Offset="1" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </x:ArrayExtension>
 </Grid.Resources>

 <ListBox ItemsSource="{StaticResource brushes}" Name="myListBox">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Rectangle Fill="{Binding}" Width="100" Height="40" Margin="2" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

Example A-36. Effect of ArrayExtension

Brush[] brushes = new Brush[3];
SolidColorBrush scb = new new SolidColorBrush();
scb.Color = Colors.Blue;
brushes[0] = scb;

LinearGradientBrush lgb = new LinearGradientBrush();
lgb.StartPoint = new Point(0,0);
lgb.EndPoint = new Point(0.8, 1.5);
GradientStop gs = new GradientStop();
gs.Offset = 0;
gs.Color = Colors.Green;
lgb.GradientStops.Add(gs);
gs = new GradientStop();
gs.Offset = 1;
gs.Color = Colors.Cyan;
lgb.GradientStops.Add(gs);
brushes[1] = lgb;

Markup Extensions | 701

Figure A-1 shows the results.

Note that this is an example of where markup may not be the best choice.
Example A-36 is a literal translation of the markup in Example A-35. However, it is
possible to write much more succinct code to build an equivalent array:

Brush[] brushes = new Brush[3];
brushes[0] = Brushes.Blue;
brushes[1] = new LinearGradientBrush(Colors.Green, Colors.Cyan,
 new Point(0, 0), new Point(0.8, 1.5));
brushes[2] = new LinearGradientBrush(Colors.Black, Colors.Red,
 new Point(0, 0), new Point(0, 1));

If you have a choice between putting something in markup and putting it in code, code
can often offer a more compact representation. The main reason ArrayExtension exists
is for the benefit of XAML-based tools. It enables such tools to create an array without
needing to be able to generate code.

StaticExtension

StaticExtension sets the target property to the value of a specified static property or
field. This markup extension always takes a single parameter, which names the
source property or field. The parameter is of the form ClassName.MemberName.

lgb = new LinearGradientBrush();
lgb.StartPoint = new Point(0,0);
lgb.EndPoint = new Point(0, 1);
gs = new GradientStop();
gs.Offset = 0;
gs.Color = Colors.Black;
lgb.GradientStops.Add(gs);
gs = new GradientStop();
gs.Offset = 1;
gs.Color = Colors.Red;
lgb.GradientStops.Add(gs);
brushes[2] = lgb;

myGrid.Resources["brushes"] = brushes;
...
myListBox.ItemsSource = myListBox.Resources["brushes"];

Figure A-1. Array of brushes presented by a ListBox (Color Plate 28)

Example A-36. Effect of ArrayExtension (continued)

702 | Appendix A: XAML

Example A-37 uses this extension to retrieve the value of one of the SystemColors
properties.

You can retrieve properties defined in your own code with this exten-
sion. If you have introduced an XML namespace mapping for the
namespace containing your custom type, you simply make the exten-
sion’s parameter myNamespace:ClassName.MemberName, where myNamespace
is your XML namespace prefix.

Note that in practice, you would not normally use the markup shown in this exam-
ple. It does not integrate properly with the resource system, so if the application
resources contained a brush overriding this system brush, this example would bypass
that application-level resource. Also, Example A-37 does not update the property
automatically when the property changes—StaticExtension takes a snapshot of the
property value. Its effect is equivalent to the following code:

TextBlock tb = new TextBlock();
tb.Background = SystemColors.ActiveCaptionBrush;
tb.Text = "Foo";

However, you can use the StaticExtension in conjunction with the resource markup
extensions described in the next two sections in order to overcome one or both of
these issues.

StaticResourceExtension

StaticResourceExtension returns the value of the specified resource. It is equivalent
to calling the FindResource method on the element with which you use the exten-
sion. (See Chapter 12 for more information on resource lookup.)

Example A-38 shows how to use this element to retrieve a named resource. Note that
StaticResource must not be qualified with an x: prefix. This is because resource man-
agement is a WPF feature, rather than a generic XAML feature, so the resource
markup extensions are in the WPF namespace.

Example A-37. Retrieving a static property

<TextBlock Background="{x:Static SystemColors.ActiveCaptionBrush}" Text="Foo" />

Example A-38. Using a resource with StaticResource

<Grid>
 <Grid.Resources>
 <SolidColorBrush x:Key="fooBrush" Color="Yellow" />
 </Grid.Resources>

 <Button Background="{StaticResource fooBrush}" Name="myButton" />
</Grid>

Markup Extensions | 703

The use of StaticResource in this markup is effectively equivalent to the following
code:

myButton.Background = (Brush) myButton.FindResource("fooBrush");

This is a one-time resource lookup. The property value will be set to the resource
value during initialization. If the value associated with the resource name changes,
the property will not be updated automatically. For Example A-38, that might not be
a problem, but consider Example A-39.

This is similar to Example A-37, except this performs a resource lookup, enabling
this resource’s value to be overridden by an application skin. It is equivalent to the
following code:

myText.Background = (Brush)
 myText.FindResource(SystemColors.ActiveCaptionBrushKey);

Although this uses the resource lookup system to retrieve the value, it still takes a
snapshot—if the user changes the OS color scheme, this element’s background will
not be updated automatically. When using resources whose values might change, the
DynamicResourceExtension is a better choice.

DynamicResourceExtension

DynamicResourceExtension associates the value of the property with the specified
resource. This extension is similar to StaticResourceExtension, except that it tracks
changes. Example A-40 shows the dynamic equivalent of Example A-39.

This is equivalent to the following code:

myText.SetResourceReference(TextBlock.BackgroundProperty,
 SystemColors.ActiveCaptionBrushKey);

Instead of taking a snapshot of the resource, this tracks the value of the resource, and
will update the text block’s background automatically if the value changes. The
resource system tracks changes the user makes to the OS color scheme, so this will
automatically update if the user changes the relevant color. This tracking doesn’t
come for free, so if you know the resource will never change, the static resource
extension is a better choice.

Example A-39. Using a system resource with StaticResource

<TextBlock Name="myText"
Background="{StaticResource

 {x:Static SystemColors.ActiveCaptionBrushKey}}" />

Example A-40. Using a system resource with DynamicResource

<TextBlock Name="myText"
Background="{DynamicResource

 {x:Static SystemColors.ActiveCaptionBrushKey}}" />

704 | Appendix A: XAML

ComponentResourceKey

When using either the static or the dynamic resource markup extension, you can use
any object as the key. Although this works well for resources defined within an appli-
cation, there is an issue for resources defined at system scope by external assemblies.
As described in Chapter 12, for cross-component system-scope resource references to
work, the key must contain information about the target assembly. One option is to use
a Type object as the key. For example, the default Style for a control uses the control’s
Type as the key. WPF can use the Type object to discover the assembly in which the
control is defined, and it looks for system-scope resources in that assembly.

This works well when resources relate naturally to classes—each control type has an
associated Style resource. But for some resources, suitable types may not exist. For
example, a component might provide 30 drawings as system-scope resources to be
used as icons on toolbars. These might not have any types directly associated with
them. It would be tedious to define 30 types whose only purpose was to act as
resource keys.

ComponentResourceKey solves this problem. It combines a type and a string identifier,
enabling you to create many distinct resource key objects associated with a particu-
lar assembly without having to define a separate type for each key.

Although it is common practice to make ComponentResourceKey objects available
through static properties—for example, the key properties offered by SystemColors—
this is not the only option. ComponentResourceKey derives from MarkupExtension,
enabling you to create instances directly from XAML. You can do this at the point
where the resource is defined; for example, in your component’s themes\generic.xaml
file, as Example A-41 shows.

This is equivalent to the code shown in Example A-42.

Example A-41. ComponentResourceKey

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:local="clr-namespace:MyComponent">

 <SolidColorBrush x:Key="{ComponentResourceKey {x:Type local:MyType}, brush1}"
 Color="Red" />
 <SolidColorBrush x:Key="{ComponentResourceKey {x:Type local:MyType}, brush2}"
 Color="Green" />

</ResourceDictionary>

Example A-42. ComponentResourceKey equivalent code

ResourceDictionary rd = new ResourceDictionary();
rd.Add(new ComponentResourceKey(typeof(MyType), "brush1"),
 new SolidColorBrush(Colors.Red));

Markup Extensions | 705

You can also use the markup extension in Example A-43 at the point at which you
refer to a resource.

This is equivalent to the code shown in Example A-44.

Binding

The Binding markup extension is used for data binding. Example A-45 shows a very
simple example.

This binds the Text property to the Foo property on whatever object is in the data
context. It is effectively equivalent to the following code:

Binding b = new Binding("Foo");
BindingOperations.SetBinding(txt, TextBlock.TextProperty, b);

Chapters 6 and 7 provide a full explanation of how data binding works, and they
describe the use of the Binding extension.

RelativeSource

The RelativeSource markup extension lets you set the RelativeSource property of a
Binding. This allows a binding expression to choose an element as a data source
based on the location of the binding expression rather than setting the binding’s
ElementName to the source element’s name. Example A-46 uses this to bind a
Rectangle element’s Height to its own ActualWidth property, ensuring that the rectan-
gle is always square.

rd.Add(new ComponentResourceKey(typeof(MyType), "brush2"),
 new SolidColorBrush(Colors.Green));

Example A-43. Resource reference with ComponentResourceKey

<TextBlock Background="{DynamicResource
{ComponentResourceKey {x:Type local:MyType}, brush1}}" />

Example A-44. Resource reference with ComponentResourceKey equivalent code

TextBlock myText = new TextBlock();
myText.SetResourceReference(TextBlock.Background,

new ComponentResourceKey(typeof(MyType), "brush1"));

Example A-45. Binding markup extension

<TextBlock Text="{Binding Foo}" Name="txt" />

Example A-46. RelativeSource

<Rectangle Fill="Red"
 Height="{Binding Path=ActualWidth,RelativeSource={RelativeSource Self}}" />

Example A-42. ComponentResourceKey equivalent code (continued)

706 | Appendix A: XAML

A RelativeSource can walk up the UI tree to locate its source. For example, instead
of specifying Self, we can pass TemplatedParent to the markup extension. This is use-
ful only for elements appearing inside a template, as it looks for the element to which
the template has been applied.

Alternatively, you can search up the UI tree for an element of a particular type.
Example A-47 uses RelativeSource with a mode of FindAncestor to find the nearest
ancestor of type Grid.

Finally, the PreviousData mode allows you to choose the previous item in a list of
data bound items as the source. Example A-48 shows the use of this in an
ItemsControl data template.

Example A-47. FindAncestor mode

<TextBlock Text="{Binding Path=Margin,
 RelativeSource={RelativeSource FindAncestor,AncestorType={x:Type Grid}}}" />

Example A-48. PreviousData mode

<ItemsControl>
 <ItemsControl.ItemsSource>
 <x:Array xmlns:sys="clr-namespace:System;assembly=mscorlib"
 Type="{x:Type sys:String}">
 <sys:String>toe</sys:String>
 <sys:String>foot</sys:String>
 <sys:String>ankle</sys:String>
 <sys:String>knee</sys:String>
 <sys:String>thigh</sys:String>
 </x:Array>
 </ItemsControl.ItemsSource>

 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <WrapPanel>
 <TextBlock Text="The " />

 <TextBlock Text="{Binding RelativeSource={RelativeSource PreviousData}}" />
 <TextBlock Text=" bone's connected to the " />
 <TextBlock Text="{Binding}" />
 <TextBlock Text=" bone" />
 </WrapPanel>
 <DataTemplate.Triggers>
 <DataTrigger Value="{x:Null}"
 Binding="{Binding RelativeSource={RelativeSource PreviousData}}">
 <Setter Property="Visibility" Value="Collapsed" />
 </DataTrigger>
 </DataTemplate.Triggers>
 </DataTemplate>
 </ItemsControl.ItemTemplate>

</ItemsControl>

Markup Extensions | 707

Figure A-2 shows the results. Note that on the first row, there is no “previous” row,
so a data trigger has been added to detect the first row and hide it. See Chapters 6
and 7 for more information on data bindings, templates, and triggers.

TemplateBindingExtension

TemplateBindingExtension is used in control templates to indicate where properties
from the source object are to be mapped into properties of objects in the template.
Example A-49 shows a simple example.

This binds the Rectangle element’s Fill property to the underlying control’s
Background property. It is equivalent to the following:

ControlTemplate template = new ControlTemplate(typeof(Button));
FrameworkElementFactory factory = new FrameworkElementFactory(typeof(Rectangle));
factory.SetValue(Rectangle.WidthProperty, 100);
factory.SetValue(Rectangle.HeightProperty, 200);
TemplateBindingExtension tb =
 new TemplateBindingExtension(Button.BackgroundProperty);
factory.SetValue(Rectangle.FillProperty, tb);
template.VisualTree = factory;

This code looks different from the previous examples of how XAML maps onto code,
because a template element handles its child content differently than other elements. It
generates a FrameworkElementFactory that is capable of building the content, rather than
simply building the content. A factory is required because a template may be instanti-
ated any number of times. We explained the use of control templates in Chapter 9.

It is possible to use an ordinary data binding Binding expression to per-
form the same job as a TemplateBinding—just provide a RelativeSource
set to TemplatedParent. TemplateBinding is considerably less verbose, and
it’s slightly more efficient—WPF handles template bindings using a dif-
ferent, less flexible but lighter weight mechanism than data bindings.
However, there is one reason for using a full Binding instead of a
TemplateBinding—only a Binding supports two-way binding. Some con-
trol templates require this. For example, a TreeViewItem needs two-way
binding between the IsExpanded property and the ToggleButton that the
user clicks on to expand or collapse the node.

Figure A-2. PreviousData

Example A-49. TemplateBinding markup extension

<ControlTemplate TargetType="{x:Type Button}">
 <Rectangle Width="100" Height="200" Fill="{TemplateBinding Background}" />
</ControlTemplate>

708 | Appendix A: XAML

Code Behind
Separate handling of appearance and behavior is an important design principle for
keeping UI code manageable. To help with this separation, XAML supports the con-
cept of code behind, where a XAML file has a corresponding source file containing
executable code. The idea is that the XAML file defines the structure of the user
interface, and the code-behind file provides its behavior.

The exact definition of behavior can look a little different in WPF
applications compared with what you may be used to. It is possible to
use styling and event triggers to make a UI respond automatically to
simple stimuli. In older UI technologies, you would typically have
used code to achieve this, but in WPF we normally use markup.
Although this is behavior in the sense that it is something the applica-
tion does in response to input, it is essentially superficial behavior—it
is part of the look and feel of the application, rather than the function-
ality. This superficial behavior usually lives in the control template,
and you can therefore replace it without altering the underlying behav-
ior of the control, as described in Chapter 9.

In the context of code behind, behavior usually means the application
functionality invoked when you click a button, rather than what the
button looks like when it is clicked.

Of course, you won’t want to put much application logic in your code
behind if you care about maintainability and testability. In practice,
the code behind is likely to act as the glue between the UI and the
code that implements the bulk of the application logic.

XAML supports code behind through the use of partial classes. Partial classes allow a
class definition to be spread across multiple source files—each individual file con-
tains only a partial definition of the class. At compile time, the compiler combines
these to form the full class definition. The main purpose of partial classes is to allow
generated code and handwritten code to share a class without having to share a
source file.

When you add the x:Class attribute to the root element, the XAML compiler gener-
ates a partial class definition from the markup. You can then put your code behind in
another partial definition for the same class. At compile time, the compiler will
merge these two partial definitions into a single, complete class. This lets the XAML
compiler add members into the class. These are internal members, making them
inaccessible to code outside the component that defines the class, but they are
directly accessible to your code.

If you have defined an element in XAML that you wish to use from the code behind,
just set the Name attribute as in Example A-50.

Code Behind | 709

The XAML compiler will add a myButton field to the class, and will set this to refer to
the button during initialization. This enables you to write code in the code behind
that uses the element directly, such as Example A-51.

Not all types have a Name property. For example, the various brush types described in
Chapter 13 do not. However, you can still generate a field for them in the code
behind by using an x:Name attribute instead, with x: being the prefix for the XAML
namespace, as Example A-52 shows.

In fact, you can use this x:Name style even on elements where Name is valid. Replacing
Name with x:Name in Example A-50 would not change its behavior. This is because
FrameworkElement identifies the Name property as mapping to the x:Name attribute.
This is done using the RuntimeNamePropertyAttribute, as Example A-53 shows.

If a type is annotated with this attribute, the named property is interchangeable with
x:Name in XAML. But if the type does not have this custom attribute, you must use
the x:Name attribute in XAML to generate a field in the code behind, even if the tar-
get type has a Name property.

If you are using .NET 3.0 extensions for Visual Studio 2005, you will
need to compile your project after adding an x:Name or Name attribute
to an element in XAML before IntelliSense will work in the current
WPF preview. This is because IntelliSense depends on being able to
see the code that the XAML compiler generates in order to know that
the field is present.

Example A-50. Named element

<Button Name="myButton">Click</Button>

Example A-51. Using a named element from code behind

myButton.Background = Brushes.Green;

Example A-52. x:Name attribute

<Button Content="Click">
 <Button.Background>
 <SolidColorBrush x:Name="bgBrush" Color="Yellow" />
 </Button.Background>
</Button>

Example A-53. Mapping Name to x:Name

[RuntimeNameProperty("Name"),...]
public class FrameworkElement : UIElement, ...

710 | Appendix A: XAML

One of the main jobs of the code behind is to enact application functionality in
response to user input. So, you will often need to attach event handlers to elements
in the XAML. The preferred approach is to write code that attaches handlers during
initialization in your code behind. (Chapter 4 discussed why this is the preferred
technique.) However, XAML can attach event handlers for you, and this can be
slightly more convenient for a simple UI where both the code and the XAML are
maintained by the same individual. And, in some cases, you have little choice—if the
element lives inside a template, the x:Name attribute doesn’t create a field you can use
to refer to the element from code behind, because the name is considered to be local
to the template. You could still hook up events from the code behind, but you’d first
have to call the template’s FindName method to locate the element. It might be sim-
pler just to use the XAML event syntax. The syntax is similar to that for properties—
we use attributes in the XAML:

<Button x:Name="myButton" Click="ButtonClicked">Click</Button>

This is equivalent to attaching the handler in the code behind:

class MyWindow : Window {
 public MyWindow() {
 InitializeComponent();
 myButton.Click += ButtonClicked;
 }
}

Although this looks similar to the property syntax, the XAML compiler will detect
that the Click member is an event, not a property. It will expect your code behind to
provide a function called ButtonClicked, and it will add that function as a handler for
the button’s Click event. You must make sure that the function has the correct signa-
ture—all .NET events expect a particular kind of function signature. Example A-54
shows a suitable method declaration for the Click event handler, and many event
handlers will look something like this, but you should consult the documentation for
the event you wish to handle to determine the exact signature required.

WPF’s command handling architecture can often provide a more ele-
gant and flexible way of responding to user input than handling events
directly from elements, so you should consider using commands
where possible. Chapter 4 describes handling input with events and
commands in more detail.

The class generated by the XAML compiler clearly has a fair amount of work to do
during initialization. It needs to create the tree of objects specified by elements in the
XAML. It needs to assign values to properties. It needs to populate fields for named
elements. It must attach any specified event handlers. All of this work is done by a

Example A-54. Event handler

void ButtonClicked(object sender, RoutedEventArgs e) { ... }

Code Behind | 711

method called InitializeComponent, which gets generated at compile time as a result
of specifying the x:Class attribute. This is why when you create a new XAML page in
Visual Studio, the class in the code behind always looks something like
Example A-55.

You must not delete the call to InitializeComponent. This does all of the work the
XAML document specifies. All of the fields referring to elements on the page will be
null until you call this function, so you will normally want to leave it as the very first
thing your constructor does. If you add overloaded constructors in order to allow
parameters to be passed, make sure you call InitializeComponent from these, too.

Code in XAML
You will normally keep all of your source code in the code behind. This separation of
code from UI structure usually makes code maintenance easier. However, it is possi-
ble to put code onto the XAML page, although there is rarely any reason to do so.
The authors of this book aren’t fans of this technique, which is described here only
for completeness.

You can embed source into the XAML file by adding a Code element in the XAML
XML namespace. Example A-56 shows an example.

The XAML compiler takes any such Code elements and simply adds the content
directly to the class it generates.

Example A-55. Code behind and initialization

public partial class Window1 : Window {
 public Window1() {
 InitializeComponent();
 }
}

Example A-56. Inline code

<Window x:Class="XamlProj.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="XamlProj">

 <Grid>
 <Button Name="myButton" Click="InlineClickHandler">Click!</Button>

 </Grid>
 <x:Code><![CDATA[
 void InlineClickHandler(object sender, RoutedEventArgs e) {
 myButton.Background = Brushes.Blue;
 }
]]></x:Code>
</Window>

712 | Appendix A: XAML

The XML CDATA section is a standard XML feature indicating that a
section of non-XML content follows, and it saves us from adding
escape sequences to prevent the code from being misinterpreted. You
are not obliged to use CDATA—you could instead manually escape any
characters that would otherwise be misinterpreted. But CDATA is usu-
ally easier—it allows blocks of non-XML text to be inserted verbatim.

If you try this yourself in Visual Studio, you will find this to be an unsatisfactory way
of working. Because the file type is .xaml, the editor offers no syntax highlighting or
IntelliSense for embedded C# code. And, because the code in question is simply
injected into the partial class that the XAML compiler creates, it is equivalent to put-
ting the same code into your code behind. This means you can use it only when
XAML is being compiled—if you try this in a scenario where XAML is parsed at run-
time, such as in the XamlPad utility, you will get an error. So, inline code offers no
compelling benefits and some considerable disadvantages.

Why does this feature exist if it is of such limited value? Its only attractive feature is
that it allows the UI structure and functionality to be combined into a single source
file rather than being split across two. For very short example code, this simple pack-
aging might look more attractive than splitting the code across two files. But in gen-
eral, you should avoid this style of coding—for anything nontrivial it will just cause
pain.

Loading XAML
If you use the x:Class attribute to generate a class from your XAML file, you can
instantiate the tree of objects defined in the XAML by creating an instance of the rel-
evant class. However, you are not required to generate a class.

If you do not generate a class, there are two ways in which you can get from XAML
to a tree of objects. You can either parse the XAML at runtime, or you can precom-
pile it at build time into a binary form called BAML and load that BAML at runtime.
The precompiled approach performs better and offers the benefit of being able to use
code behind. However, runtime XAML parsing gives you the freedom to decide at
runtime what XAML to use. Tools such as XamlPad obviously need to use runtime
parsing, but it could also be useful if you want to generate XAML by running an
underlying XML data source through an XSLT (although data binding often pro-
vides better solutions than runtime XAML generation—see the section on data-
driven UI in Chapter 7).

Loading XAML | 713

Parsing XAML at Runtime
The System.Windows.Markup namespace defines a XamlReader class. This has a Load
method, which takes either a Stream or an XmlReader. Example A-57 passes an
XmlTextReader, which derives from XmlReader.

This is a slightly contrived example, as it loads the XAML as a string constant. It
would have been simpler just to create the relevant objects from code. But you could
load the XAML from elsewhere, at which point this becomes a much more powerful
technique.

Note that if you put an x:Class attribute into XAML loaded in this way, you will get
an error. You can generate a class for a XAML file only as part of a build process.

Loading Compiled XAML (BAML)
The XamlReader.Load method has to parse your XAML at runtime. This makes it flex-
ible, but it is also expensive. If your XAML is not being dynamically generated, this
overhead serves no useful purpose. Fortunately, you can precompile the XAML into
a binary form called BAML by adding a XAML file to a Visual Studio project and set-
ting its Build Action to Page. By parsing the XAML at compile time, you can mini-
mize the runtime costs.

As we saw in Chapter 12, this is exactly what happens by default when
you add a XAML file to a project—Visual Studio runs the XAML com-
piler on it and adds the resulting BAML to your executable as an
embedded resource.

If your compiled XAML file has a code-behind file, you can load the BAML by sim-
ply creating an instance of the corresponding class. But if you have a compiled
XAML file without code behind in your project, you can load it by calling
Application.LoadComponent. This takes a Uri object, which should contain a relative
URI referring to the original XAML filename within the project, as Example A-58
shows.

Example A-57. Parsing XAML at runtime

StringReader sr = new StringReader(@"
 <Canvas xmlns='http://schemas.microsoft.com/winfx/2006/xaml/presentation'>
 <Rectangle Width='30' Height='100' Fill='Red' />
 </Canvas>");
XmlTextReader xr = new XmlTextReader(sr);

Canvas tree = (Canvas) XamlReader.Load(xr);

714 | Appendix A: XAML

(Even though the compiled resource has a .baml extension, you must pass in the
original .xaml name to this method.) This method works just like XamlReader.Load—
it will build a tree of objects corresponding to the original XAML.

Example A-58. Application.LoadComponent

Uri uri = new Uri("MyFlowDocument.xaml", UriKind.Relative);
FlowDocument doc = (FlowDocument) Application.LoadComponent(uri);

715

Appendix B APPENDIX B

Interoperability2

A few lucky souls have the luxury of building their applications using only WPF,
ignoring the long history of Windows presentation frameworks that have come
before. Unfortunately, the rest of us have presentation logic built up in Win32,
Microsoft Foundation Classes (MFC), Windows Forms, ActiveX, and HTML that
we’d like to keep, whether that means bringing new WPF-based controls into our
existing application or bringing in existing controls built with other frameworks into
our new WPF applications.

There are two gaps of interoperability that we have to worry about. The first is the
core abstraction that defines the regions of functionality we’d like to use as a host or
as a control: the HWND versus the WPF element. Raw Win32 applications are built
in terms of HWNDs, as are MFC, Windows Forms, and ActiveX-based applications.
HTML applications are built in terms of pages, which are served up with an instance
of the Web Browser ActiveX control and which host other ActiveX controls as con-
tent. On the other side of this gap, we have the WPF element, which is a new thing
that breaks the long tradition of Windows-based presentation stacks by not being
HWND-based.

The second interoperability gap is characterized as native versus managed code. Raw
Win32, MFC, and even HTML applications and controls are native whereas both
Windows Forms and WPF are managed. Bridging the native/managed gap requires
the Platform/Invoke (P/Invoke) capabilities of .NET.

Whether you have to cross one or both of these bridges depends on what techniques
you need to bring to bear in hosting or being hosted. For example, moving between
Windows Forms and WPF requires us to worry about HWNDs versus WPF ele-
ments, but the code for both of these presentation stacks is managed, which eases
the journey. On the other hand, hosting a WPF control in an MFC dialog requires
keeping in mind the coding conventions of both a specific managed library (WPF)
and a specific native library (MFC), as well as the specifics of making them work
together, most often with C++/CLI (the latest version of Microsoft’s C++ that sup-
ports .NET).

716 | Appendix B: Interoperability

WPF and HWNDs
Whether the existing code you’re integrating with WPF is managed or not, it’s going
to be HWND-based if it was built on Windows. If you run a normal Windows appli-
cation, like Calc, it will be composed of a parent window and several child windows.
If you run the developer tool Spy++ and examine Calc, you’ll see that the buttons
and the calculation display are all windows, as shown in Figure B-1.

Each window in Figure B-1 is an instance of the HWND type exposed by the User
API, which is what has put the “windows” in Windows since 1985 (when Microsoft
Windows version 1.0 was released). The top-level window, 00530862, is the parent
window for the child button and the edit box windows that make up the calculator UI.

If you run Spy++ against the WPF calculator sample in the SDK, you’ll see a very dif-
ferent picture, as shown in Figure B-2.

In Figure B-2, notice that there’s a top-level window (001E0954), but no “+” to click
on to drill into the WPF calculator’s child windows because there is none. In fact, the
only visible HWND in the entire application is the one provided for the main win-
dow. Every child on the main window is a Visual, not an HWND, and is managed
directly by WPF. By default, only top-level window elements get HWNDs (this
includes menus, pop ups, tool tips, and combo box drop downs so that they can
extend past the main window’s borders if necessary).

Figure B-1. Using Spy++ on Calc to see the HWNDs

Hosting a Windows Form Control in WPF | 717

The lack of HWNDs in WPF leads to somewhat of a problem for interoperability
between WPF and the Windows applications that have come before it. If you want
to host an HWND in WPF, whether it’s the edit control provided by Win32 or the
TextBox class provided by Windows Forms, you’re going to first need to introduce an
HWND into the WPF tree to serve as the control’s parent, which is exactly what the
HwndHost is for.

The HwndHost class is an abstract class that provides much of the functionality
required to interop with HWND-based windowing, including message hooks, mea-
suring, positioning, keyboard handling, and, of course, the ever-important window
procedure (WndProc) into which all windowing messages come.

Hosting a Windows Form Control in WPF
On top of this core functionality of the HwndHost class, deriving classes handle details
germane to their specific framework. As of this writing, WPF exposes only one such spe-
cialization: the WindowsFormsHost class from the System.Windows.Forms.Integration
namespace and the WindowsFormsIntegration assembly. The WindowsFormsHost class has
properties for background, font, and tab index properties to provide integration at those
points with WPF. Example B-1 shows how to declaratively add a WindowsFormsHost ele-
ment to a Window.

Figure B-2. Exposing the single HWND in a WPF version of Calc

718 | Appendix B: Interoperability

Example B-1 creates an instance of the WindowsFormsHost control, which introduces
an HWND into WPF’s tree, as shown in Figure B-3.

With an HWND injected into the WPF tree, we can now host a control from the
HWND-based UI framework with which WPF integrates best: Windows Forms. For
example, after adding a reference to the System.Windows.Forms assembly to the
project, we can host a DataGridView control, as shown in Example B-2.

Here we’ve mapped in the System.Windows.Forms namespace so that we have access
to the DataGridView control. We’ve also named the control in the same way that you
would any element in WPF, which gives us programmatic access to the DataGridView
from our code, as Example B-3 shows.

Example B-1. Adding an HWND host to a WPF tree

<!-- Window1.xaml -->
<Window ...>
 <Grid>
 <WindowsFormsHost />
 </Grid>
</Window>

Figure B-3. Adding an HWND to a WPF application using the WindowsFormsHost

Example B-2. Hosting a Windows Forms DataGridView in WPF

<!-- Window1.xaml -->
<Window ...
 xmlns:wf="clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms">
 <Grid>
 <WindowsFormsHost>
 <wf:DataGridView x:Name="gridView" />
 </WindowsFormsHost>
 </Grid>
</Window>

Example B-3. Populating the DataGridView from code

// Window1.xaml.cs
...
public class Person {...}
public class People : System.Collections.Generic.List<Person> { }

Hosting a Windows Form Control in WPF | 719

In Example B-3, we’re using normal Windows Forms data binding by setting the
data source to a collection of Person objects. Because both WPF and Windows
Forms are managed, we can call from one to the other without any special consider-
ations. Figure B-4 shows the hosted DataGridView control in action.

In the case of the DataGridView control, you can go even further when taking advan-
tage of XAML, as Example B-4 illustrates.

public partial class Window1 : Window {
 public Window1() {
 InitializeComponent();

 gridView.DataSource = new Person[] {
 new Person("Tom", 11),
 new Person("John", 12),
 new Person("Melissa", 37)
 };
 }
}

Figure B-4. Hosting a Windows Forms DataGridView in a WPF application

Example B-4. Hosting and populating the DataGridView from XAML

<!-- Window1.xaml -->
<Window ...
 xmlns:wf="clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms"
 xmlns:local="clr-namespace:HostingAWinFormsControl">
 <Grid>
 <Grid.Resources>
 <local:People x:Key="Family">
 <local:Person Name="Tom" Age="11" />
 <local:Person Name="John" Age="12" />
 <local:Person Name="Melissa" Age="37" />
 </local:People>
 </Grid.Resources>
 <WindowsFormsHost>
 <wf:DataGridView DataSource="{StaticResource Family}" />
 </WindowsFormsHost>
 </Grid>
</Window>

Example B-3. Populating the DataGridView from code (continued)

720 | Appendix B: Interoperability

Notice that in Example B-4, we’ve mapped our local namespace into the XAML so
that we could create our collection declaratively. With this in place, we can set the
DataSource property of the DataGridView to this named resource with no special con-
sideration for Windows Forms. In fact, as far as the DataSource property is con-
cerned, it’s just being handed a preinitialized collection, which is what it needs to
drive its data binding implementation; it has no idea that the collection was declared
in XAML and couldn’t care less. It’s not the case that every Windows Forms control
“won’t care” that it’s being created in XAML, but sometimes you get lucky.

The WindowsFormsHost can hold only a single child control, so if you
want to host more than one Windows Forms control inside a single
WindowsFormsHost, you can do so by creating a custom Windows Forms
User Control and use that as a container for your Windows Forms con-
trols. This allows you the benefits of the Windows Forms Designer for
visual layout of the Windows Forms controls inside the User Control
and separates you from the limitations of XAML when accessing Win-
dows Forms controls.

You should know that there are a number of limitations with the integration between
HWND-based Windows Forms and WPF, which we discuss at the end of this
appendix. However, the ability to host an existing Windows Forms control in WPF
can be a huge timesaver if you’ve got working code that you’d like to put to immedi-
ate use inside WPF. Still, hosting Windows Forms controls inside a WPF host is only
half the story; you may also want to host WPF controls in a Windows Forms host,
which is what we’ll discuss next.

Hosting a WPF Control in Windows Forms
Hosting a WPF control in Windows Forms is much the same as hosting a Windows
Forms Control in WPF: we need a host. In WPF, we needed a host that was an element
that could fit into WPF, but that also provided an HWND for use by the Windows
Forms control. In Windows Forms, we need a Windows Forms Control-derived class
so that it can fit into a container’s Controls collection. For that, we have the
ElementHost class, also from the System.Windows.Forms.Integration namespace and
the WindowsFormsIntegration assembly.

The ElementHost class derives from ContainerControl to enable hosting other Win-
dows Forms controls. The element host knows about HWNDs, how to size and
paint itself, and how to handle keystrokes and focus. As an example, let’s say we’ve
got a form all laid out in the Windows Forms Designer, as shown in Figure B-5.

In Figure B-5, we’ve got a form with two group boxes: one with a Windows Forms
button laid out on the left using the Windows Forms Designer and one blank on the
right, all ready for a WPF button to be added at runtime, which is what the code in
Example B-5 does.

Hosting a WPF Control in Windows Forms | 721

To compile Windows Forms code with WPF added, you’ll need to add the WPF
assemblies to your project, including at least WindowsBase, PresentationCore, and
PresentationFramework. Also, because you’re integrating Windows Forms and WPF
as before, you’ll need to add a reference to the WindowsFormsIntegration assembly.

Figure B-5. A Windows Forms form with space for a WPF button

Example B-5. Creating a WPF button in a Windows Forms application

// Form1.cs
...
using System.Windows.Forms.Integration;

public partial class Form1 : Form {
 public Form1() {
 InitializeComponent(); // group boxes created in here

 // Create WPF button
 System.Windows.Controls.Button
 wpfButton = new System.Windows.Controls.Button();
 wpfButton.Content = "WPF Button";
 wpfButton.Click += wpfButton_Click;

 // Host the WPF button
 ElementHost host = new ElementHost();
 host.Left = 39;
 host.Top = 72;
 host.Width = 165;
 host.Height = 40;
 host.Child = wpfButton;

 // Add the element host to the groupbox
 rightGroup.Controls.Add(host);
 }

 // Handle the WPF button's Click event
 void wpfButton_Click(object sender, System.Windows.RoutedEventArgs e) {
 System.Windows.MessageBox.Show("Hello from WPF!", "Hello");
 }
}

722 | Appendix B: Interoperability

With the appropriate assemblies referenced, Example B-5 creates a WPF Button from
the System.Windows.Controls namespace. However, as there’s a Button class in the
System.Windows.Forms namespace too, you’ll have to be explicit when mixing WPF
and Windows Forms code. After creating the button, setting its properties, and
handling its Click event, we create an instance of the ElementHost class. Then we add
the button to the host and the host to the group box, and we’re all set to see our
WPF button right next to the Windows Forms button, as shown in Figure B-6.

Figure B-6 doesn’t show much benefit from going to the trouble of hosting a WPF
control in a Windows Forms application, but we could update the code to use one of
the features that make WPF special, as we do in Example B-6.

This gives us something a bit fancier, as Figure B-7 shows.

Figure B-6. A WPF control hosted on a Windows Forms form

Example B-6. Creating a fancier WPF button

System.Windows.Controls.Button wpfButton =
 new System.Windows.Controls.Button();
...
wpfButton.Background =
 new System.Windows.Media.LinearGradientBrush(
 System.Windows.Media.Colors.White,
 System.Windows.Media.Colors.Red,
 new System.Windows.Point(0, 0),
 new System.Windows.Point(1, 1));
...

Hosting WPF in Native HWND Apps | 723

Although there is not yet any designer support for hosting WPF elements in a Win-
dows Forms form, the code-based basics are still the same (i.e., setting properties,
calling methods, and handling events). In addition, notice that the font family, size,
and weight are the same for both buttons, even though we didn’t do anything font-
specific in the creation of our WPF control. This is because the concept of ambient
properties in Windows Forms is mapped to the concept of inherited properties in
WPF, giving us a consistent look and feel (unless we choose to override it).

Hosting WPF in Native HWND Apps
Things can get a bit wackier when hosting a managed WPF control in a native Win-
dows application, like a raw Win32 application or an MFC application. The first bar-
rier to entry is that WPF is managed .NET code, whereas your non-Windows Forms
HWND applications are likely written in native C/C++. There are various ways to inter-
act programmatically between native and managed code (e.g., P/Invoke) and COM (the
Component Object Model). For example, one way to use a WPF element in a native
HWND-based application is to host the WPF element in a custom Windows Forms
User Control and use the support in MFC 7.1+ for hosting Windows Forms controls.*

However, your smoothest interoperability experience is to use Visual Studio 2005’s
capability to switch your native C++ application to a managed one. For example,
consider an MFC application, like the simple one shown in Figure B-8.

To compile this application as managed code, right-click on the project in the Solu-
tion Explorer, choose Configuration Properties ➝ General, and set the “Common
Language Runtime support” option to “Common Language Runtime Support /clr.”

Figure B-7. A WPF button getting jiggy with it

* Hosting a Windows Forms control in an MFC v7.1 application is described in “Windows Forms: .NET
Framework 1.1 Provides Expanded Namespace, Security, and Language Support for Your Projects,” written
by Chris Sells and printed in MSDN Magazine, March 2003 (http://msdn.microsoft.com/msdnmag/issues/03/
03/WindowsForms/default.aspx or http://tinysells.com/87).

724 | Appendix B: Interoperability

Compiling this sample MFC application and running it yields the same behavior as
Figure B-8 (in fact, Figure B-8 is the managed version—fooled ya...). Once the appli-
cation is compiled as a managed application, you can reference managed assemblies
to bring in ADO.NET, System.XML, Indigo, Windows Forms, and of course, WPF.

For example, maybe we want the About box in our simple MFC sample to have
some fancy WPF control in it. To start, you’re going to need to add the WPF assem-
blies to your project. The simplest way to do that is to right-click on your MFC
project in the Solution Explorer and choose References. This will bring up the
project’s property pages prenavigated to the Common Properties ➝ References sec-
tion, where you can add the WindowsBase, PresentationCore, PresentationFramework,
and System assemblies, as shown in Figure B-9.

If this were a normal Win32 application, complete with a WinMain function, I’d tell
you to add a managed attribute to it so that your main thread was marked as an STA
thread, as shown in Example B-7.

The STAThreadAttribute attribute is required on the UI thread for .NET-based UI
stacks (i.e., Windows Forms and WPF). However, because MFC applications don’t
have a custom WinMain (MFC implements the WinMain method for you), that means
you need to go another route to mark your entry point as STA-threaded. To do this,
set the Configuration Properties ➝ Linker ➝ Advanced ➝ CLR Thread Attribute
property to “STA threading attribute (/CLRTHREADATTRIBUTE:STA)” in your
project’s properties.

Figure B-8. A managed MFC application

Example B-7. Setting the UI thread to single-threaded mode

#include "stdafx.h"
...
[System::STAThreadAttribute]
int APIENTRY _tWinMain(...) { // MFC apps don't have these...
 ...
}

Hosting WPF in Native HWND Apps | 725

With the appropriate thread settings, we can now create a WPF control host suit-
able as an HWND child to host our WPF control. The host class is called HwndSource
and is part of WPF in the System.Windows namespace. The C++/CLI code in
Example B-8 creates a WPF button and hosts it in an instance of HwndSource.

Figure B-9. Adding the appropriate .NET assemblies to interop with WPF

Example B-8. Creating a WPF button in C++/CLI

HwndSource^ CreateWpfOkButton(
 HWND hwndParent, int x, int y, int width, int height) {

 // Create a fancy WPF OK button
 Button^ wpfButton = gcnew Button();
 wpfButton->Content = "OK";
 wpfButton->Background =
 gcnew LinearGradientBrush(
 Colors::White, Colors::Red, Point(0, 0), Point(1, 1));

 // Host the button in the border to fill in the background
 Border^ wpfBorder = gcnew Border();
 wpfBorder->SetResourceReference(Border::BackgroundProperty,
 System::Windows::SystemColors::ControlBrushKey);
 wpfBorder->Child = wpfButton;

 // Host the border in an HwndSource and return the host
 HwndSourceParameters params;

726 | Appendix B: Interoperability

Example B-8 shows a helper function that uses the C++/CLI syntax enabled by the
CLR setting we enabled earlier.* The helper creates an instance of a WPF Button, and
then creates an instance of a Border to host the button. The Border object’s
Background property is set to a resource reference to the brush for the dialog back-
ground color (called the “control” color for programmers and the “3D Object” color
for Vista users†). With the resource reference set (which is the same as using a
DynamicResource markup extension in XAML), if the user changes the color, the bor-
der around the button will update as appropriate. Without the border, the button
will be surrounded with black, which ruins the whole “integration” experience we’re
going for. The border hosts the button, and the border in turn is hosted by an
instance of the HwndSource via the RootVisual property. Using the helper function in
the About box’s OnInitDialog method, we replace the native OK button with our
managed WPF button, as shown in Example B-9.

 params.ParentWindow = IntPtr(hwndParent);
 params.WindowStyle = WS_CHILD | WS_VISIBLE;
 params.PositionX = x;
 params.PositionY = y;
 params.Width = width;
 params.Height = height;
 HwndSource^ src = gcnew HwndSource(params);
 src->RootVisual = wpfBorder;

 return src;
}

* For more information on the C++/CLI syntax in VS2005, I recommend starting here: http://msdn.microsoft.com/
msdnmag/issues/06/00/PureC/default.aspx (http://tinysells.com/97).

† Start ➝ Control Panel ➝ Personalization ➝ Windows Color and Appearance ➝ Open classic appearance
properties for more color options ➝ Advanced.

Example B-9. Hosting a WPF button in an MFC application

BOOL CAboutDlg::OnInitDialog() {
 // Get position of the native OK button relative to the About box
 HWND hwndParent = this->GetSafeHwnd();
 HWND hwndOkButton = ::GetDlgItem(hwndParent, IDOK);
 RECT rect = { 0 };
 ::GetWindowRect(hwndOkButton, &rect);
 // The violence inherent in the system...
 ::MapWindowPoints(0, hwndParent, (POINT*)&rect, 2);

 // Hide the native OK button
 ::ShowWindow(hwndOkButton, SW_HIDE);

 // Create and show the WPF button
 HwndSource^ srcWpfButton = CreateWpfOkButton(
 hwndParent,

Example B-8. Creating a WPF button in C++/CLI (continued)

Hosting WPF in Native HWND Apps | 727

After doing some pedestrian Win32 dialog math to find the location of the native OK
button relative to the client area of its parent and hiding it, we create our managed
WPF button using the helper function and hook up its Click event to a member
function of the CAboutDlg class that closes the dialog just like our native OK button
was doing.

We construct the click handler with the MAKE_DELEGATE macro that VC++ provides to
help map a native member function to a managed delegate. To make this work, we
need to bring in the msclr\event.h header file and add a DELEGATE_MAP to our
CAboutDlg class declaration, as Example B-10 illustrates.

Figure B-10 shows the result.

One final note: although it’s also possible to host HWND controls inside WPF appli-
cations, custom HWND controls have largely gone the way of the dodo in favor of
ActiveX controls and Windows Forms controls (and hopefully, someday soon, WPF
controls).

 rect.left,
 rect.top,
 rect.right - rect.left,
 rect.bottom - rect.top);

 // Handle the Click event
 Button^ wpfButton = (Button^)((Border^)srcWpfButton->RootVisual)->Child;
 wpfButton->Click += MAKE_DELEGATE(RoutedEventHandler, okButton_Clicked);

 ::ShowWindow((HWND)srcWpfButton->Handle.ToPointer(), SW_SHOW);
 return TRUE;
}

void CAboutDlg::okButton_Clicked(Object^ sender, RoutedEventArgs^ e) {
 EndDialog(IDOK);
}

Example B-10. Enabling the MAKE_DELEGATE macro

// stdafx.h
...
#include <msclr\event.h>

// MfcHostingAnWPFControl.cpp
...
class CAboutDlg : public CDialog {
 ...
public: // VS05b1 requires the delegate map to be public
 BEGIN_DELEGATE_MAP(CAboutDlg)
 EVENT_DELEGATE_ENTRY(okButton_Clicked, Object^, RoutedEventArgs^)
 END_DELEGATE_MAP()
};

Example B-9. Hosting a WPF button in an MFC application (continued)

728 | Appendix B: Interoperability

WPF and ActiveX Controls
For hosting ActiveX controls, WPF relies completely on Windows Forms and its
capability to host ActiveX controls. In other words, hosting ActiveX controls inside
WPF is a matter of hosting a Windows Forms user control in your WPF element that
itself hosts the ActiveX control of your dreams.

If you want to go the other way—that is, hosting WPF as an ActiveX control—you
can do so by hosting a WPF control on a Windows Forms User Control as described
earlier, because a Windows Forms control can be hosted as an ActiveX control,
although this is technically supported only in MFC 7.1+.*

WPF and HTML
Unlike ActiveX or Windows Forms controls, WPF elements cannot be hosted
directly on an HTML page (i.e., there’s nothing to support this kind of thing in
HTML), as shown in Example B-11.

Figure B-10. Hosting a WPF button in a managed MFC application

* If you need to explore this space, “Hosting Windows Forms Controls in COM Control Containers” at http://
www.ondotnet.com/pub/a/dotnet/2003/01/20/winformshosting.html is a place to start (http://tinysells.com/94).

Example B-11. WPF controls can’t be hosted directly in HTML

<html>
 <body>
 <h1>WPF doesn't support anything like this!</h1>
 <object
 id="wpfctrl"
 classid="wpfctrl.dll#wpfctrl.MyWpfControl"
 width="100"
 height="100">
 </object>
 </body>
</html>

Limitations of WPF/HWND Interop | 729

You can get around this issue again by hosting a WPF control on a custom Win-
dows Forms User Control. Or, if you’ve got a WPF XBAP as described in
Chapter 11, you can host it as a frame as shown in Example B-12.

The downside of this approach is that the WPF application cannot provide any pro-
grammatic interface (e.g., properties, methods, or events) to the surrounding HTML,
like an ActiveX control would.

To go the other way and host HTML inside WPF is a matter of bringing either the
COM or the Windows Forms Web Browser control into your WPF app and feeding
it HTML. Or, if the HTML is available via a URL, you can navigate to it on a naviga-
tion host, as Example B-13 illustrates.

Because the link references HTML, the WebBrowser control will be brought in auto-
matically to host the content, as Figure B-11 shows.

For much more on the topic of navigation, see Chapter 11.

Limitations of WPF/HWND Interop
As useful as WPF’s integration with other presentation technologies is, because
WPF’s approach to rendering and composition is radically different from the way
Win32 UIs have previously worked, there are some limitations to how you can mix
the two. Essentially, the new features that WPF offers do not translate back into the
old world. The old UI technologies still have the same limitations they always did,
even when being hosted by a WPF application.

Example B-12. WPF XBAP hosted in an HTML iframe

<html>
 <body>
 <h1>WPF supports this!</h1>
 <iframe src="MyWpfApp.xbap"></iframe>
 </body>
</html>

Example B-13. Navigating to an URL using a WPF navigation host

<Page ...>
 <Grid>
 <TextBlock>
 Check out
 <Hyperlink
 NavigateUri="http://sellsbrothers.com">sellsbrothers.com</Hyperlink>.
 </TextBlock>
 </Grid>
</Page>

730 | Appendix B: Interoperability

Airspace
The most important thing to understand is the principle of airspace: within any sin-
gle top-level window, each pixel belongs to exactly one technology. So, a single pixel
must belong either to WPF or to Win32.*

One of the upshots of the airspace principle is that the clip region of a UI element
does not apply to any HWND-based children. This is a nonobvious restriction, and
it applies because clipping is a composition feature. (Internally, it depends on a UI
element and all its children being rendered, and then having the rendered output
clipped. A Win32 element cannot render into the internal intermediate buffers that
WPF uses to perform clipping.) For example, here we’re nesting three Windows
Forms controls inside a clipped WPF Grid:

<Grid ...>
 ...

 <Grid.Clip>
 <StreamGeometry>M174,0 348,174 174,348 0,174 z</StreamGeometry>
 </Grid.Clip>

Figure B-11. Navigation to HTML inside a navigation host

* Or DirectX, but that’s beyond the scope of this book.

Limitations of WPF/HWND Interop | 731

 <!-- properly clipped -->
 <Rectangle ...>...</Rectangle>

 <!-- properly clipped -->
 <TextBlock ...>
 WPF<LineBreak />
 WPF<LineBreak />
 WPF
 </TextBlock>

 <!-- not clipped -->
 <wfi:WindowsFormsHost ...>
 <wf:Label ... Text="Windows Forms" />
 </wfi:WindowsFormsHost>

 <wfi:WindowsFormsHost ...>
 <wf:Label ... Text="Windows Forms" />
 </wfi:WindowsFormsHost>

 <wfi:WindowsFormsHost ...>
 <wf:Label ... Text="Windows Forms" />
 </wfi:WindowsFormsHost>

</Grid>

Figure B-12 shows a WPF Grid clipped to a diamond with three Windows Forms
controls drawn inside, but they are not clipped.

You could set the Region property of the Windows Forms controls so that they are
clipped to the same shape as the WPF element. However, be careful with this—you
might end up making the join between Win32 and WPF more visible. Win32 enables
controls to be arbitrary shapes with its region facility, but this is accurate only to the
nearest pixel—any given pixel in a window is either inside a particular control or not.

Figure B-12. HWND-based controls are not clipped to the clipping area set by their WPF parent

732 | Appendix B: Interoperability

For certain shapes, this can give rise to visible “jaggies” around the edges of the
shape. A WPF clip region, on the other hand, can be any Geometry, and Geometrys
define shapes in a pixel-independent fashion. WPF renders the boundaries of clipped
elements with anti-aliasing to reduce jaggies, so the boundary of the clip region
would alternate between smooth and jagged as you went between WPF and Win32
elements.

Also, keeping a WPF clip in sync with a Win32 region isn’t straightforward—you
need to build the region yourself. Because this requires a lot of effort, and the results
may be of disappointing quality, it’s probably best to prevent this if you can. Try to
avoid UI designs that require this.

Another consideration associated with airspace is that HWNDs always appear to be
on top of WPF content. Consider Example B-14.

Example B-14. Airspace and HWNDs

<Grid ...>
 ...

 <!-- z-order = 0 -->
 <Rectangle ...>...</Rectangle>

 <!-- z-order = 1 -->
 <TextBlock ...>
 WPF<LineBreak />
 WPF<LineBreak />
 WPF
 </TextBlock>

 <!-- z-order = 2 -->
 <wfi:WindowsFormsHost ...>
 <wf:Label ... Text="Windows Forms" />
 </wfi:WindowsFormsHost>

 <!-- z-order = 3 -->
 <wfi:WindowsFormsHost ...>
 <wf:Label ... Text="Windows Forms" />
 </wfi:WindowsFormsHost>

 <!-- z-order = 4 -->
 <wfi:WindowsFormsHost ...>
 <wf:Label ... Text="Windows Forms" />
 </wfi:WindowsFormsHost>

 <!-- z-order = 5 -->
 <Ellipse ... />

 <!-- z-order = 6 -->
 <TextBlock ...>
 On Top
 </TextBlock>
</Grid>

Limitations of WPF/HWND Interop | 733

As shown in Figure B-13, the red rectangle in Example B-14 contains the text “On
Top” because it is at the top of the Z stack. The pink circle is directly behind it, and
in front of everything else. The text labels on the left have been correctly obliterated
because WPF rendered those. However, the Windows Forms controls on the right
have rendered above the rectangle and the circle, despite the fact that in the XAML,
they appeared beneath them in the Z order.

The Windows Forms controls are in front of the WPF controls, in spite of the Z
order, because HWNDs use a strategy for dealing with Z order that’s different than
WPF. WPF uses the painters algorithm: all UI elements are (logically speaking)
painted onto a single target canvas, starting from the elements at the back and work-
ing forward to the ones at the front. Win32, on the other hand, doesn’t support
transparency, nor does it support anti-aliasing at control boundaries, so it can use a
much simpler approach: it assumes that for the region occupied by a particular HWND,
the only control that needs to do any rendering is the one that owns the HWND. This
causes two problems.

The first problem is that HWNDs tend to fill in their own background, so you can’t
see what’s behind them (although there are ways around that, as we’ll see). Second,
you can’t position WPF elements on top of HWNDs. This is a direct consequence of
the airspace principle, combined with the different ways that WPF and Win32 deal
with Z order.

Further, if an animated feature attempts to move in front of a Win32-based element,
it will end up appearing behind it, as the ellipse disappearing behind the Windows
Forms content shows in Figure B-14.

Figure B-14 is just another manifestation of the Z order problem that is shown in
Figure B-13.

Figure B-13. HWND-based controls positioned in the background but rendered in the foreground

734 | Appendix B: Interoperability

Another basic issue with WPF/HWND interop is that although WPF elements offer an
Opacity property that allows them to be made partially or completely transparent, any
Win32 elements that may be children of the UI element in question ignore this prop-
erty. For example, the following constructs a checkerboard background, and then every-
thing else is contained by a partially opaque Grid placed on top of the background:

<Page.Background>
 <DrawingBrush ...>...</DrawingBrush>
</Page.Background>

<Grid ... Opacity="0.8">
 ...
 <!-- opacity set by parent honored -->
 <Rectangle ...>...</Rectangle>
 <TextBlock FontSize="80" VerticalAlignment="Center">
 WPF<LineBreak />
 WPF<LineBreak />
 WPF
 </TextBlock>

 <!-- opacity set by parent ignored -->
 <wfi:WindowsFormsHost ...>
 <wf:Label ... Text="Windows Forms" />
 </wfi:WindowsFormsHost>

 <wfi:WindowsFormsHost ...>
 <wf:Label ... Text="Windows Forms" />
 </wfi:WindowsFormsHost>

 <wfi:WindowsFormsHost ...>
 <wf:Label ... Text="Windows Forms" />
 </wfi:WindowsFormsHost>

</Grid>

Figure B-14. WPF element animation improperly drawing behind the HWND-based controls

Limitations of WPF/HWND Interop | 735

Figure B-15 shows the results.

This Grid has its Opacity set to 0.8. Consequently, all the WPF features—the gradi-
ent fill and the three lines of text—have rendered with partial transparency. How-
ever, the three Windows Forms controls, which are also elements of this same Grid,
have rendered completely opaque.

Windows Forms has always offered a form of pseudotransparency, where a control
could ask its parent to render itself into the child area before the child began to render.
This allowed the appearance of transparency for simple designs (although it was fairly
easy to construct a design for which this did not work correctly—anything with over-
lapping peer controls would produce wrong-looking results). The WindowsFormsHost
element offers a similar feature:

<Grid Margin="2">
 ...

 <Rectangle Grid.ColumnSpan="2">...</Rectangle>

 <TextBlock FontSize="80" VerticalAlignment="Center">
 WPF<LineBreak />
 WPF<LineBreak />
 WPF
 </TextBlock>

 <wfi:WindowsFormsHost ... Background="Transparent">
 <wf:Label TextAlign="MiddleCenter" Text="Windows Forms" />
 </wfi:WindowsFormsHost>

 <wfi:WindowsFormsHost ... Background="Transparent">
 <wf:Label TextAlign="MiddleCenter" Text="Windows Forms" />
 </wfi:WindowsFormsHost>

Figure B-15. Opacity property on WPF parent ignored by HWND-based children

736 | Appendix B: Interoperability

 <wfi:WindowsFormsHost ... Background="Transparent">
 <wf:Label TextAlign="MiddleCenter" Text="Windows Forms" />
 </wfi:WindowsFormsHost>

 <Ellipse Fill="#afaa" Grid.ColumnSpan="2" />
</Grid>

If you set the WindowsFormsHost object’s Background to Transparent, it works out what
WPF would have rendered where the Windows Forms control is, and then provides
that as its background, as Figure B-16 shows.

Unfortunately, this is not a complete solution. In this example, the Windows Forms
controls are at the same place in the Z order as the three lines of WPF text: they are
in front of the background, but behind the semitransparent circle. But as you can
see, the Windows Forms controls have been rendered in front of the circle, unlike
the WPF text. Still, although the opaque appearance has now gone, there is a cost to
this: this form of rendering runs noticeably slower than the normal style.

You can sidestep a number of these airspace issues by using multiple top-level win-
dows, as each one gets its own HWND. WPF opens new top-level windows for pop
ups of any kind, which avoids the “Win32 is always on top” issue we’ve seen in this
appendix. Win32 elements appear at the top of the Z order of their containing top-
level window, but because pop ups like Menus and ToolTips get their own top-level
windows, they can appear above even these Win32 elements.

Also, because WPF supports use of a transparent client area in top-level windows,
you can render shaped and/or partially transparent WPF features on top of Win32
elements by putting them in a second window that sits on top of the first one and has
its AllowsTransparency property set to True. Such a window will be completely trans-
parent in its client area except for areas containing a WPF element. You could even
use this to run an animation that is overlaid on top of Win32 elements.

Figure B-16. Setting a transparent background on the WindowsFormsHost helps

Limitations of WPF/HWND Interop | 737

However, be aware that transparent top-level windows have performance issues: in
Windows XP and Windows 2003, such windows will be rendered in software. Due
to a limitation in DirectX on those versions of Windows, it is not possible for WPF
to render a transparent window with hardware acceleration. And, although Win-
dows Vista can use hardware acceleration with transparent windows, the results can
still be substantially slower than with normal windows under both Windows XP and
Windows Vista.*

Transforms, Events, and Nested Interop
In addition to airspace and Z-order issues, WPF’s ability to apply transforms such as
rotation and skews to any UI element does not apply to hosted Win32-based ele-
ments. Scaling is a special case: the Windows Forms host can apply scale transforms to
its content, because Windows Forms itself has some scaling support built in. But
because Win32-based components are generally intrinsically incapable of supporting
such transforms, there’s no way WPF can magically imbue them with such capabilities.

Also, the use of interop introduces some inconsistencies in the input events you see.
When the mouse goes over a non-WPF element, you will stop seeing mouse events,
and IsMouseOver for the containing element will return false, even though the mouse
is inside a child of the element. Likewise, if a hosted Win32 element has the key-
board focus, you will not see keyboard or focus events bubbling out to the contain-
ing WPF element.

Finally, nested interop is not supported. This means that if you have, say, a Win-
dows Forms control that uses interop to host WPF content, this Windows Forms
control cannot be hosted via interop inside a WPF app. This would mean WPF
wrapping Windows Forms wrapping more WPF, and this nesting is not supported.

For more information on the limitations of WPF interop, I recommend the SDK arti-
cle “WPF and Win32 Interoperation Overview.”†

* Hardware versus software rendering performance does depend on your hardware, however, as Seema Ram-
chandani points out at http://blogs.msdn.com/seema/archive/2006/10/25/layered-windows-sw-is-sometimes-
faster-than-hw.aspx (http://tinysells.com/98).

† http://msdn2.microsoft.com/en-us/library/ms742522.aspx (http://tinysells.com/93).

738

Appendix CAPPENDIX C

Asynchronous and Multithreaded WPF
Programming 3

If you like to write applications that annoy your users, a good way to do this is to
make the user interface stop responding to input from time to time. For extra frustra-
tion, you can compound the problem by not giving any visible indication that work
might be progressing, leaving the user to wonder whether the application is busy or
has simply crashed. Because you’ll get this behavior by default if you don’t take cer-
tain steps to maintain responsiveness, you can stop reading now. Unless, that is,
you’d prefer not to annoy your users.

Unfortunately, it’s all too easy to write your application in such a way that it
becomes unresponsive when it performs time-consuming work such as accessing a
server over a network or reading files off disk. In Windows, all messages regarding
user input for a particular window are delivered to the same thread. In general, this is
a good thing, because it means your code has to deal with input events only one at a
time, and does not have to worry about thread safety. The downside is that the appli-
cation can respond to input only if this thread is available to process it.

Many APIs are synchronous—they do not return until they have completed the work
you asked them to perform. (Such APIs are said to block.) If you write a handler for a
button’s Click event that makes a synchronous API call to retrieve data from a data-
base, that call will not return until the database returns the data. The thread cannot
do anything else until that synchronous call returns, so the application will be unable
to respond to any other user input for the duration of the call.

Even if you avoid synchronous APIs, you could still cause sluggishness simply
through slow code. Code risks being slow if it performs either CPU-intensive or
memory-intensive work. Slow CPU-intensive work is fairly uncommon—computers
are fast enough these days that you need to find a considerable amount of work for
processing to seem anything less than instantaneous, and only a handful of applica-
tions do this. However, excessive memory use is much more common, and it can
have a drastic effect on speed, particularly once paging to disk occurs. If the OS has
to load a page off disk back into memory, the amount of time this takes is long
enough to execute tens of millions of instructions. This has to happen only a couple

The WPF Threading Model | 739

of times before it adds up to a perceptible delay. Whether code is slow due to mem-
ory or CPU usage, running slow code on the same thread that handles user input will
make the UI unresponsive.

There are two ways to solve this problem. One is to use asynchronous APIs. Some
parts of the .NET Framework offer asynchronous invocation, where the API call
returns immediately without waiting for the work to complete. For example, instead
of using the Stream class’s blocking Read method, you could call the nonblocking
BeginRead, passing in a callback to be notified when the read operation completes.
Alternatively, you can use multithreaded programming—if you execute code on
some thread other than the thread that handles input, it doesn’t matter whether this
other thread executes slow code or calls synchronous APIs, because the input hand-
ling thread is free to respond to other user input.

Multithreaded programming in WPF works in the same way as in any
other .NET application. Because this appendix deals only with multi-
threading issues specific to WPF applications, we won’t be showing
any of the general-purpose .NET threading techniques. For more gen-
eral information on .NET’s multithreading facilities, consult the
“Managed Threading” topic in the SDK documentation at http://
msdn2.microsoft.com/library/3e8s7xdd.aspx (http://tinysells.com/80).

Using asynchronous APIs often results in the use of multiple threads. Although you
might not explicitly create any new threads, you may be notified of the completion of
some asynchronous operation on a different thread from the one that started the work.
So, regardless of whether you choose to use asynchronous APIs or multithreading to
keep your application responsive, an understanding of WPF’s threading model will be
necessary.

The WPF Threading Model
Many WPF objects have thread affinity, meaning that they belong to a particular
thread. Your code must always use a WPF user interface element on the same thread
that created it. It is illegal to attempt to use any WPF element from any other thread.

If you are familiar with Windows Forms, you will be used to this
threading model. If you are familiar with COM (the Component
Object Model), you will recognize this as resembling the Single
Threaded Apartment (STA) model.

WPF uses this model for various reasons. One is simplicity—the model is straight-
forward and does not introduce any complications for applications that have no
need for multiple threads. This simplicity also makes it fairly straightforward for
WPF to detect when you have broken the rules so that it can alert you to the problem

740 | Appendix C: Asynchronous and Multithreaded WPF Programming

with an exception. There are also performance benefits: thread affinity avoids lock-
ing, which is usually required with multithreaded models, and locks add both com-
plexity and performance overhead.

Another important reason for using a single-threaded model is to support interop
with Win32, which also has thread affinity requirements. (It is not quite as strict, in
that it is possible to perform many operations from the “wrong” thread. However,
such operations are often handled very differently than the same operations per-
formed on the right thread, and numerous pitfalls are associated with cross-thread
window usage.) By adopting a strict thread affinity model, you can mix WPF, Win-
dows Forms, and Win32 user interface elements freely within a single application.

DispatcherObject
You might be wondering how you can be sure which types have thread affinity and
which don’t. Although all user interface elements have this requirement, it does not
apply to every single type you use in a WPF application. For example, built-in types
not specific to WPF, such as Int32, do not care which thread you use them on, as
long as you use them from only one thread at a time.

But what about types that are specific to WPF but are not user interface elements,
such as Brush, Color, and Geometry? How are we to tell which types have thread affin-
ity requirements? The answer is to look at the base class. WPF types with thread
affinity derive from the DispatcherObject base class. Brush and Geometry both derive
from DispatcherObject, so usually you can use them only on the thread that created
them.* Color does not, and therefore you can use it on a different thread from the one
on which it was created.

The DispatcherObject class defines a few members, all of which are
exempt from the thread affinity rule—you can use them from any
thread. Only the functionality added by classes that derive from
DispatcherObject is subject to thread affinity.

DispatcherObject provides a couple of methods that let you check whether you are
on the right thread for the object: CheckAccess and VerifyAccess. CheckAccess returns
true if you are on the correct thread, false otherwise. VerifyAccess is intended for
when you think you are already on the right thread, and it would be indicative of a
problem in the program if you were not. It throws an exception if you are on the
wrong thread. Example C-1 shows a method that uses this to ensure that it has been
called on the right thread.

* It’s slightly more complex than that for these particular types. Brush and Geometry derive from
DispatcherObject indirectly via the Freezable base class. This means they can be frozen, which has the effect
of detaching them from their dispatcher and removing the thread affinity requirement. We discuss freezing
in more detail in Appendix D.

The Dispatcher | 741

Many WPF types call VerifyAccess when you use them. They do not do this for
every single public API, because such comprehensive checking would impose a sig-
nificant performance overhead. However, it checks in enough places that you are
unlikely to get very far on the wrong thread before the problem becomes apparent.

If your application causes multiple threads to be created, either through explicit
thread creation or implicitly through the use of asynchronous APIs, you should avoid
touching any user interface objects on those threads. If you need to update the user
interface as a result of work done on a different thread, you must use the dispatcher
to get back onto the UI thread.

The Dispatcher
Each thread that creates user interface objects needs a Dispatcher object. This effec-
tively owns the thread, running a loop that dispatches input messages to the appro-
priate handlers. (It performs a similar role to a message pump in Win32.) As well as
handling input, the dispatcher enables us to get calls directed through to the right
thread.

The Dispatcher class lives in the System.Windows.Threading namespace
along with all other WPF-specific threading classes, including
DispatcherObject.

Obtaining a Dispatcher
Recall that all WPF objects with thread affinity derive from the DispatcherObject
base class. This class defines a Dispatcher property, which returns the Dispatcher
object for the thread to which the object belongs.

You can also retrieve the Dispatcher for the current thread by using the
Dispatcher.CurrentDispatcher static property.

Getting Onto the Right Thread with a Dispatcher
If you need to update the user interface after doing some work on a worker thread,
you must make sure the update is done on the UI thread. The Dispatcher provides
methods that let you invoke the code of your choice on the dispatcher’s thread.

Example C-1. Use of VerifyAccess

public void Frobnicate(FrobLevel fl) {
 // Ensure we're on the UI thread
 VerifyAccess();

 ...
}

742 | Appendix C: Asynchronous and Multithreaded WPF Programming

You can use either Invoke or BeginInvoke. Both of these accept any delegate and an
optional list of parameters. They both invoke the delegate’s target method on the dis-
patcher’s thread, regardless of which thread you call them from. Invoke does not
return until the method has been executed, whereas BeginInvoke queues the request
to invoke the method, but returns straight away without waiting for the method to
run.

Invoke can be simpler to understand, because you can be certain of the order in
which things happen. However, it can lead to subtle problems—by making a worker
thread wait for the UI thread, there is a risk of deadlock. The worker thread may be
in possession of locks or other resources that the UI thread is waiting for, and each
will wait for the other indefinitely, causing the application to freeze. BeginInvoke
avoids this risk, but adds the complexity that the order of events is less predictable.

Example C-2 shows the use of the dispatcher’s BeginInvoke method. This is a typi-
cal way of structuring code that is not running on the UI thread, but which needs to
do something to the UI. In this case, the code sets the background color of the win-
dow. The RunsOnWorkerThread method in this example runs on a worker thread.
(The mechanism by which that worker thread was created is not shown here,
because the techniques used for creating worker threads in WPF applications are
exactly the same as those used in any other .NET application.)

We’re using the C# anonymous delegate syntax here. You don’t have to use this—
you could just put the code in a separate method. However, anonymous delegates
are often particularly convenient in this kind of scenario, because you can use any of
the variables that are in scope in the containing method. In this case, we are setting
the bgColor variable in the containing method, and then using that value in the nested
anonymous method that will run on the UI thread. This sharing of lexical scope
across two methods makes moving from one thread to another relatively painless.

Example C-2. Using Dispatcher.BeginInvoke

partial class MyWindow : Window {
 ...
 public delegate void MyDelegateType();

 void RunsOnWorkerThread(){

 Color bgColor = CalculateBgColor();
 MyDelegateType methodForUiThread = delegate {
 this.Background = new SolidColorBrush(bgColor);
 };
 this.Dispatcher.BeginInvoke(DispatcherPriority.Normal, methodForUiThread);
 }

 ...
}

The Dispatcher | 743

The first parameter passed to BeginInvoke indicates the priority with which we would
like the message to be handled. The Dispatcher does not operate a strict “first in first
out” policy, because some messages need to be handled with higher priority than
others. For example, suppose two work items are queued up with the dispatcher,
where one is a message representing keyboard input and the other is a timer event
that will poll some remote service for status. The remote polling is likely to take a
while to complete, so delaying the poll a little won’t have any visible effect. How-
ever, even fairly small delays in processing user input tend to make an application
feel unresponsive, so you would normally want the key press to be handled before
background tasks such as polling. The dispatcher therefore handles messages accord-
ing to their specified priority to allow those that are sensitive to latency, such as
input messages, to be handled ahead of less urgent tasks.

The Normal priority level is relatively high—it runs ahead of input processing and
even rendering. For quick operations, this is not a problem, but in some cases you
may want the work to run as a “background” operation—something that will run
only when there is nothing more important to do. For this kind of processing, use
either the ApplicationIdle or the SystemIdle priority level. ApplicationIdle will not
process the message until the application has nothing else to do. SystemIdle consid-
ers activity across the whole machine, and processes the message only when a CPU
would otherwise be idle.

The second parameter to BeginInvoke is the delegate. The Dispatcher will invoke this
at some point in the future on the dispatcher thread. If we had used a delegate type
that required parameters to be passed to the target function, we would have used one
of the overloads of BeginInvoke that accepts extra parameters, as Example C-3
shows.

Here we have defined a custom delegate type called UsesColor. It requires its target
function to take a single parameter of type Color. The delegate was defined to match
the signature of SetBackgroundColor, the method we want to call. This method sets
the window background color, so it needs to run on the UI thread. We’re assuming
that the RunsOnWorkerThread method isn’t on the right thread, so it uses the
Dispatcher.BeginInvoke method to call SetBackgroundColor on the correct thread.

Example C-3. Passing parameters with BeginInvoke

delegate void UsesColor(Color c);
void SetBackgroundColor(Color c) {
 this.Background = new SolidColorBrush(c);
}

void RunsOnWorkerThread() {
 UsesColor methodForUiThread = SetBackgroundColor;
 this.Dispatcher.BeginInvoke(DispatcherPriority.Normal, methodForUiThread,

Colors.Blue);
}

744 | Appendix C: Asynchronous and Multithreaded WPF Programming

However, there are a couple of differences between Examples C-2 and C-3. One is
cosmetic—we are no longer using the C# anonymous delegate syntax. The other is
that we are now passing an extra parameter to BeginInvoke. You can pass as many
extra parameters as you like—one of the BeginInvoke overloads accepts a variable
length argument list. All of these parameters will be passed into the target function
on the dispatcher thread.

If you are familiar with the .NET asynchronous pattern, you might be wondering
whether there is an EndInvoke method. Typically, any call to a BeginXxx method has
to be matched with a corresponding EndXxx call. But the Dispatcher does not use the
standard asynchronous pattern. BeginInvoke has no corresponding EndInvoke
method, nor does it provide a way of passing in a completion callback function to
BeginInvoke as you would expect to see with a normal implementation of the .NET
asynchronous pattern. However, it is possible to discover when an operation is exe-
cuted by using the DispatcherOperation class. This class also supports cancellation,
which is not available in the standard asynchronous pattern.

DispatcherOperation
The Dispatcher.BeginInvoke method returns a DispatcherOperation object. This rep-
resents the work item sent to the dispatcher. You can use it to determine the current
status of the operation. Its Status property will be one of the values from the
DispatcherOperationStatus enumeration, shown in Table C-1.

You will see the Aborted status only if you cancel the operation. You can cancel an
operation by calling the DispatcherOperation.Abort method. As long as the opera-
tion has not already started, this removes it from the dispatcher’s queue. This
method returns true if the operation was cancelled, and false if it had already started
by the time you called abort.

You can wait for the operation to complete by calling the Wait method. This blocks
the worker thread until the UI thread has executed the method. (This carries the same
risk of deadlock as Invoke.) Alternatively, you can add a handler to the Completed
event, which will be raised when the method completes. However, this is slightly
tricky to use, because it’s possible that the operation will already have run by the
time you get around to adding the handler. It may be simpler just to write your code
in a way that avoids using either of these. Remember that BeginInvoke calls the

Table C-1. DispatcherOperationStatus values

Value Meaning

Pending The dispatcher has not yet called the method.

Executing The method is currently executing on the dispatcher thread.

Completed The method has finished executing.

Aborted The operation was aborted.

The Dispatcher | 745

method you tell it to. If you need to do some work after the dispatcher has called
your code, just add that to the method, as Example C-4 shows.

Of course, both methods called in Example C-4 will run on the UI thread. If the sec-
ond method is slow, just use a suitable multithreading or asynchronous invocation
mechanism to move it back onto a worker thread.

When you call BeginInvoke, the dispatcher will run your method as soon as it is able
to. If the UI thread is idle, this will happen immediately. This is not always desir-
able—it can be useful to be called back after a delay, which is what makes the dis-
patch timer useful.

DispatcherTimer
Applications often create timers in order to perform housekeeping tasks on a regular
basis. You could use either of the Timer classes in the .NET class library, but both of
these would notify you on a thread from the CLR thread pool, meaning you’d have
to call Dispatcher.BeginInvoke to get back onto the right thread.

It is simpler to use the WPF-aware DispatcherTimer class. This raises timer notifica-
tions via the dispatcher, meaning your timer handler will always run on the correct
thread automatically. This enables you to do things to the user interface directly
from the handler, as Example C-5 shows.

Example C-4. Avoiding Wait and Completed

MyDelegateType work = delegate {

 DoWorkOnUIThread();

 DoWhateverWeNeedToDoNowTheMainWorkHasBeenDone();
};
this.Dispatcher.BeginInvoke(DispatcherPriority.Normal, work);

Example C-5. Using a DispatcherTimer

partial class MyWindow : Window {

 DispatcherTimer dt;
 public MyWindow() {
 dt = new DispatcherTimer();
 dt.Tick += dt_Tick;
 dt.Interval = TimeSpan.FromSeconds(2);
 dt.Start();
 }

 Random rnd = new Random();
 void dt_Tick(object sender, EventArgs e) {
 byte[] vals = new byte[3];
 rnd.NextBytes(vals);
 Color c = Color.FromRgb(vals[0], vals[1], vals[2]);

746 | Appendix C: Asynchronous and Multithreaded WPF Programming

By default, the DispatcherTimer uses the Background priority level to deliver notifica-
tions. If necessary, you can change this by passing in a value from the
DispatcherPriority enumeration when you construct the timer. You can also pass in
a Dispatcher, although by default it will use the Dispatcher.CurrentDispatcher prop-
erty to retrieve the dispatcher for the current thread. However, you will need to pass
the dispatcher explicitly if you are creating the timer from a different thread than the
UI thread.

Multiple UI Threads and Dispatchers
It is not strictly necessary for there to be just one UI thread—it is possible for an
application to create user interface objects on several threads. However, all of the ele-
ments in any given window must belong to the same thread. So, in practice, you can
have at most one UI thread per top-level window.

It is fairly rare to use more than one UI thread—the user can interact
with only one window at a time, so there is normally no need for con-
current dispatchers. However, if for some reason, you cannot avoid
blocking the UI thread, it might be appropriate to use multiple UI
threads in order to localize the blocking to a single window. For exam-
ple, suppose you need to host an unreliable or slow third-party UI
component. Using one thread per top-level window would mean that
if the component should freeze, it would take out only one window
rather than the whole application. Internet Explorer uses multiple UI
threads for this very reason. (Of course, IE isn’t a WPF application,
but the same principle applies to Win32 applications.)

Each thread that hosts UI objects needs a dispatcher in order for those UI objects
to function. In a single-threaded application, you don’t need to do anything spe-
cial to create a dispatcher. The Application class creates one for you at startup, and
shuts it down automatically on exit. However, if you create multiple user interface
threads, you will need to start up and shut down the dispatcher for those manually.
Example C-6 shows how to start a dispatcher.

 // OK to touch UI elements, as the DispatcherTimer
 // calls us back on the UI thread
 this.Background = new SolidColorBrush(c);
 }
}

Example C-6. Starting a dispatcher on a new UI thread

void StartDispatcher() {
 Thread thread = new Thread(MyDispatcherThreadProc);
 thread.SetApartmentState(ApartmentState.STA);
 thread.Start();
}

Example C-5. Using a DispatcherTimer (continued)

The Event-Based Asynchronous Pattern | 747

The Dispatcher for a thread is created automatically the first time an object derived
from the DispatcherObject base class is created. All WPF classes derive from this
base class. So, the Dispatcher for the new thread will come into existence when the
Window is created. All we have to do is call the static Dispatcher.Run method to ensure
that messages are delivered to any UI objects created on the thread. This method will
not return until you call InvokeShutdown or BeginInvokeShutdown on the dispatcher.

WPF will call InvokeShutdown for you on the dispatcher it creates for
the application’s main thread. However, it is your responsibility to call
this method for any other thread on which you call Dispatcher.Run. If
you fail to do this, your application will continue to run even after the
Application object shuts down the main thread.

The Dispatcher requires that you set the COM threading model to STA. Although a
thread’s COM threading model is used only in COM interop scenarios, many sys-
tem features rely on COM interop under the covers. The Dispatcher therefore
requires the model to be set even if your application does not use any COM compo-
nents directly. The call to SetApartmentState in Example C-6 ensures that the cor-
rect model is used.

Although WPF does support the use of multiple UI threads, it does
not support UI in multiple AppDomains. All the UI threads in a given
process must be in the same AppDomain.

The Event-Based Asynchronous Pattern
Some components allow you to perform asynchronous work without having to worry
about the details of the dispatcher. This is possible thanks to the event-based
asynchronous pattern, which was introduced in NET 2.0. Components that implement
this pattern manage the necessary thread switching for you. They do so using the
AsyncOperationManager family of classes,* which abstract away the details of UI thread-
ing requirements, supporting both Windows Forms and WPF through a common API.

void MyDispatcherThreadProc() {

 Window1 w = new Window1();
 w.Show();

 // Won't return until dispatcher shuts down
 System.Windows.Threading.Dispatcher.Run();
}

* See http://msdn2.microsoft.com/en-us/library/system.componentmodel.asyncoperationmanager.aspx (http://
tinysells.com/91) for details.

Example C-6. Starting a dispatcher on a new UI thread (continued)

748 | Appendix C: Asynchronous and Multithreaded WPF Programming

This means that classes designed for use in Windows Forms applications will also
work correctly in WPF applications.

The event-based asynchronous pattern is fairly simple. A class will provide one or
more methods whose names end in Async. For example, the WebClient class in the
System.Net namespace offers an UploadFileAsync method. Each asynchronous
method has a corresponding event to signal completion—UploadFileCompleted, in
this case. There may optionally be other events to indicate partial progress, such as
the UploadProgressChanged event offered by WebClient. The crucial feature of the
event-based asynchronous pattern is that the events are raised on the UI thread. For
example, if you call UploadFileAsync from the UI thread of a WPF application, the
object will raise the UploadFileCompleted event on the same thread.

Not all components offer this pattern. Fortunately, .NET provides an implementa-
tion of the pattern that you can use to wrap slow, synchronous code: the
BackgroundWorker class.

BackgroundWorker
The BackgroundWorker class is defined in the System.ComponentModel namespace. It
makes it easy to move slow work onto a worker thread in order to avoid making the
UI unresponsive. It also provides a very simple way of sending progress and comple-
tion notifications back to the UI thread. It uses the AsyncOperationManager internally
to implement the event-based asynchronous pattern, so in a WPF application it will
use the Dispatcher under the covers when raising events.

Example C-7 shows the BackgroundWorker class in use. We start by attaching a hand-
ler to the DoWork event. This event will be raised on a worker thread, so we can do
slow work in this event handler without causing the UI to become unresponsive.
This example also handles the ProgressChanged and RunWorkerCompleted events. Your
code can cause these to be raised to indicate that the work is progressing or has com-
pleted. Note that you will not get ProgressChanged events automatically. First, you
must enable them by setting the WorkerReportsProgress property to true. Having
enabled them, they will be raised only if the DoWork handler calls the ReportProgress
method from time to time.

Example C-7. Using a BackgroundWorker

partial class MyWindow : Window {

 BackgroundWorker bw;

 public MyWindow() {
 bw = new BackgroundWorker();
 bw.DoWork += new DoWorkEventHandler(bw_DoWork);
 bw.ProgressChanged += bw_ProgressChanged;

The Event-Based Asynchronous Pattern | 749

When we call the RunWorkerAsync method, the BackgroundWorker raises the DoWork
event on a worker thread. This means the DoWork handler can take as long as it likes,
and will not cause the UI to freeze. Of course, it must not do anything to the user
interface because it is not on the right thread. However, the ProgressChanged and
RunWorkerCompleted events will always be raised on the UI thread, so it is always safe
to use UI objects from these.

The RunWorkerCompleted handler is passed a RunWorkerCompletedEventArgs object. If
there is a possibility that your DoWork method might throw an exception, you should
check the Error property of this object. It will be null if the work completed success-
fully, and it will contain the exception otherwise.

 bw.RunWorkerCompleted += bw_RunWorkerCompleted;
 bw.WorkerReportsProgress = true;
 bw.RunWorkerAsync();
 }

 void bw_DoWork(object sender, DoWorkEventArgs e) {

 // Running on a worker thread
 for (int i = 0; i < 10; ++i) {
 int percent = i * 10;
 bw.ReportProgress(percent);
 Thread.Sleep(1000);
 }

 // The BackgroundWorker will raise the RunWorkerCompleted
 // event when this method returns.
 }

 void bw_ProgressChanged(object sender, ProgressChangedEventArgs e) {
 // Running on a UI thread
 this.Title = "Working: " + e.ProgressPercentage + "%";
 }

 void bw_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e) {
 // Running on a UI thread
 this.Title = "Finished";
 }

Example C-7. Using a BackgroundWorker (continued)

750

Appendix DAPPENDIX D

WPF Base Types 4

WPF defines a large number of types, forming an extensive class hierarchy. This
appendix describes the roles of the most important types. It does not provide a
detailed description of each type—the MSDN documentation already does that.
Instead, this is a high-level guide offering a broad view of how the various types fit
together. Figure D-1 shows the inheritance relationships among the types described
in this appendix.

DispatcherObject
System.Object

System.Windows.Threading.DispatcherObject

DispatcherObject is the base class of any type associated with a Dispatcher. The dis-
patcher mechanism is WPF’s message processing system. It underpins critical ser-
vices including input handling, and certain aspects of layout and data binding. It is
also at the heart of the WPF threading model. Threading and the dispatcher system
are described in Appendix C.

All of the base types examined in this appendix derive from DispatcherObject,
reflecting the dispatcher’s central role. Although DispatcherObject is the most com-
mon base class in WPF, few classes derive from it directly. Most derive indirectly via
DependencyObject.

DependencyObject
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

DependencyObject | 751

Classes derive from DependencyObject to employ WPF’s dependency property (DP)
system. The majority of WPF element types implement their properties using the
GetValue and SetValue helper functions provided by DependencyObject. Chapter 18
illustrates this technique.

By handing control of a property to the dependency property system, we can take
advantage of data binding, styling, animation, property value inheritance, default
values, per-type metadata, and property change notifications.

It is fairly unusual to derive directly from DependencyObject—your classes will nor-
mally derive from one of the other classes described in this appendix, inheriting from
DependencyObject indirectly. However, one scenario where deriving directly from this
class can be useful is if you are writing a class whose only job is to act as a data bind-
ing source, with values that change on a regular basis. Although WPF supports ordi-
nary CLR properties and can use the .NET Framework class library’s
INotifyPropertyChange interface to discover when properties change, it needs to use
reflection to read ordinary properties. However, when binding to a dependency

Figure D-1. WPF core types inheritance diagram

FrameworkElement

ControlDecorator

ItemsControl

Selector HeaderedItemsControl

Panel Shape

ContentControl

HeaderedContentControlUserControl

UIElementFrameworkContentElement

VisualContentElement Visual3D Freezable

Animatable

DependencyObject

DispatcherObject

SystemObject

752 | Appendix D: WPF Base Types

property, WPF provides the property implementation, so it does not need to use
reflection to read properties, nor does it need to rely on property change events. This
makes binding to a dependency property slightly more efficient than binding to an
ordinary CLR property. However, the difference is slight, so you would typically use
this approach only if you had identified performance problems in this area.

Visual
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

The Visual class is the abstract base class of all 2D elements in the visual tree. It pro-
vides rendering services, as well as transformation and hit testing support.

This class is not an extensibility point—you cannot usefully derive your own classes
from it, because all the rendering services it provides are defined by members marked
as internal. You must inherit from UIElement if you wish to exploit the rendering
services. However, it is important to be aware of Visual because it crops up in vari-
ous APIs. For example, the VisualBrush, which we describe in Chapter 13, lets you
create a brush that can paint using a copy of the appearance of any object derived
from Visual.

Most types derived from Visual derive from UIElement, which we describe later. One
useful exception is the DrawingVisual class. This provides a lightweight way of host-
ing a drawing. We describe drawings in Chapter 13.

WPF provides a class called VisualTreeHelper. This provides methods for navigating
the visual tree. Surprisingly, these are not defined in terms of the Visual class. This is
because 3D elements have an independent branch of the class hierarchy, but are still
considered part of the visual tree. VisualTreeHelper therefore works with both Visual
and Visual3D objects. We describe the VisualTreeHelper class in Chapter 9.

Visual3D
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Media3D.Visual3D

UIElement | 753

The abstract Visual3D class fulfills the same role for 3D content as Visual does in 2D.
All 3D elements in the visual tree derive from Visual3D, which provides transforma-
tion and hit testing services.

In the current version of WPF, only one type is derived from Visual3D:
ModelVisual3D. As with the 2D Visual class, you cannot usefully derive directly from
Visual3D because the mechanisms by which content is rendered are internal. None-
theless, you need to be aware of the class because it crops up in certain APIs, includ-
ing the 3D hit testing APIs. We describe 3D hit testing in Chapter 17, along with the
Visual3D and ModelVisual3D types.

UIElement
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

UIElement provides access to the rendering services implemented by Visual by offer-
ing protected wrappers around the relevant internal features of Visual. UIElement
also implements input handling and WPF’s routed event system. It provides the low-
level aspects of the layout system, although this goes only as far as basic sizing and
positioning—FrameworkElement extends this to provide the full layout system we
describe in Chapter 3. Finally, UIElement provides basic animation support, although
FrameworkElement builds on this to provide the full set of services we describe in
Chapter 16.

UIElement may seem like a strange halfway house, providing an incomplete set of ser-
vices to be finished off by FrameworkElement. This structure arises because WPF is
built in layers—there is a split between the so-called core and framework parts. The
core classes are defined in PresentationCore.dll and the framework classes are defined
in PresentationFramework.dll. This split is designed to enable developers to use the
low-level rendering and animation services of WPF without having to use the full
framework. For example, it would technically be possible to write an HTML engine
that uses the WPF core for rendering (although no such thing has been built at the
time of this writing). That particular example would have no use for framework-level
services—HTML defines its own layout rules; the API HTML presents to script is very
different from WPF’s, so it would be hard to map features of one to the other.

Most applications will not write classes that derive directly from UIElement, because it
makes sense to do so only if you wish to use your own UI framework in place of WPF’s.

754 | Appendix D: WPF Base Types

This would be an unusual and radical choice, because a great deal of what WPF has to
offer (and the bulk of what this book is about) is provided at the framework level,
including layout, data binding, styling, templates, and most of the animation sys-
tem. Most ordinary applications will therefore use UIElement via FrameworkElement.

FrameworkElement
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

FrameworkElement is the base class of the majority of visible elements in WPF. It
derives from UIElement, so types that derive from FrameworkElement are able to ren-
der their own appearance and respond to user input. FrameworkElement adds data
binding, styling, and resource handling, and it builds the full set of layout and ani-
mation services on top of the primitive services provided by UIElement.

FrameworkElement also provides a great deal of the infrastructure for data templates
and control templates, although you must use more specialized classes to exploit
these features. Only a Control (or a type derived from Control) can have a control
template. You can use data templates either from a ContentPresenter or from certain
control types.*

FrameworkElement is arguably WPF’s nearest equivalent to the Windows Forms
Control class. WPF has a Control class too (which we describe later), but its role is
more specialized.

Types that derive directly from FrameworkElement are typically all-code
affairs. Although you could create a XAML file for a FrameworkElement
with a corresponding code-behind file, you can’t use this to construct
the appearance of the element. This is because adding child elements
at this level requires code—you need to override the GetVisualChild
method and the VisualChildrenCount properties so that WPF can dis-
cover and render these elements. XAML can only set properties. How-
ever, WPF offers various derived types such as Control, Decorator, and
Panel, which provide the necessary code to let you define their con-
tent in markup.

* The control types in question are ContentControl, HeaderedContentControl, ItemsControl, and
HeaderedItemsControl, or any type deriving from any of those classes. In fact, ContentPresenter is the key in
all these cases, as these controls rely on ContentPresenter to instantiate data templates. ContentPresenter
derives directly from FrameworkElement.

Panel | 755

Decorator
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Decorator

Decorator is the base class for elements that contain a single child, and which either
apply some kind of effect or offer a service. For example, Border adds an outline and
optional padding around an element. ViewBox scales its child to fit the space avail-
able. InkPresenter enables ink rendering on its child.

Despite being defined in the System.Windows.Controls namespace, a
Decorator is not technically a control, as it does not derive from the
Control class. Indeed, many of the types in the System.Windows.Controls
namespace are not controls. This namespace contains many utility
types typically used in conjunction with controls in order to build a
user interface.

Decorator is a very simple class—it just defines a public Child element and performs
the necessary work to ensure that the child is added to the logical and visual trees. Its
layout implementation simply defers to the child element. You should use either this
or ContentControl when writing a custom element that wraps a single child. See the
“ContentControl” section, later in this appendix, for a discussion on how to choose
between these two types.

Panel
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

 System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Panel

756 | Appendix D: WPF Base Types

Panel is the abstract base class of elements that contain and arrange multiple child
elements. Each derived type implements a particular layout strategy. For example,
StackPanel arranges items in a single column or a row. We describe the panel types
and their layout mechanisms in Chapter 3.

Shape
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Shapes.Shape

Shape is the abstract base class of graphical shape elements that can be added to the
UI tree. The derived types include Rectangle, Ellipse, and Path. WPF defines two
sets of classes for working with graphical shapes: those derived from Shape and
another set derived from Geometry. We describe both sets in Chapter 13. The distinc-
tion is that Shape-based elements derive from FrameworkElement and are therefore part
of the UI tree, and can use data binding, handle input, raise events, employ styles,
and participate in layout. Shape provides properties for controlling the fill and out-
line of a shape, so if you want to define your own custom shape types, you should
derive from Shape to take advantage of these.

Control
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Control

Control is the base class for elements that offer a particular interactive behavior. For
example, a TextBox allows the user to enter and edit text; a ListBox presents a list of
items, allowing the user to scroll through and select items.

ContentControl | 757

Not all visual elements derive from Control. Elements with no intrinsic interactive
behavior derive either directly from FrameworkElement or from one of the other non-
control base classes described in this appendix.

Controls are typically visible to the user as a single coherent interac-
tive entity in the user interface. Elements that do not fit this mold tend
not to be controls. For example, the Grid type is extremely useful to
developers as a means of managing layout, but it is not something
directly recognizable to a user, so it is not a control. Likewise,
although a Border element will be visible on-screen, it has no interac-
tive behavior and no standard appearance. Normal users don’t recog-
nize Border elements in the way that they will recognize and
understand a Button, so Border is also not a control (but Button is).

Control defines a Template property. This contains a reference to a ControlTemplate
that defines the appearance of the control. Most controls are lookless—they have no
intrinsic appearance and rely entirely on their templates to provide their visuals. This
further emphasizes that the role of a control is to define behavior, not appearance.
Chapter 9 describes the use of control templates.

ContentControl
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Control

System.Windows.Controls.ContentControl

ContentControl is a specialization of Control. It’s the base class for any control that can
host a single piece of content, which goes in the Content property. The content can be
plain text or a tree of user interface elements (e.g., a nested control, or a panel contain-
ing several child items). The content can also be any .NET object, in which case WPF
will attempt to display it using a data template: if you set the ContentTemplate or
ContentTemplateSelector property, WPF will use the template you supply, but other-
wise it will attempt to locate a template automatically. If it can’t find a template, it
will display the value returned by the object’s ToString method. We describe data
templates in Chapter 6.

758 | Appendix D: WPF Base Types

Some controls derive from ContentControl in order to offer a caption. For example, the
various button types (e.g., Button, CheckBox, RadioButton; see Chapter 5 for details)
typically contain either text or graphics. By deriving from ContentControl, these but-
tons are able to host any mixture of text and graphics.

An alternative reason to derive from ContentControl is to offer a service wrapped
around arbitrary content. For example, ScrollViewer can host any content, provid-
ing scroll bars for when the content is larger than the available physical space. This
wrapping scenario may seem like the same job for which Decorator was designed.
However, there is one critical difference: ContentControl derives from Control. This
means it should provide some interactive behavior (e.g., scrolling in the case of
ScrollViewer). Also, a ContentControl can use a ControlTemplate to define its appear-
ance. This makes it possible to define a custom appearance for a ScrollViewer,
whereas you cannot replace the visuals of a Decorator such as a Border.
ContentControl is therefore the base class for wrapper-like elements that provide a
specific interactive behavior around their content, allowing the container’s visuals to
be customized, whereas Decorator is the base class for lower-level wrapper elements
with no particular interactive behavior, and which either have no appearance or have
a fixed appearance.

HeaderedContentControl
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Control

System.Windows.Controls.ContentControl

System.Windows.Controls.HeaderedContentControl

Some controls offer two placeholders for content instead of just one.
HeaderedContentControl supports this by adding a Header property alongside the
ContentControl type’s Content property. This is the base class of Expander, GroupBox,
and TabItem, and it enables all three controls to host arbitrary content both in the
main body of the control and as the header.

UserControl | 759

UserControl
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Control

System.Windows.Controls.ContentControl

System.Windows.Controls.UserControl

The UserControl class is designed to provide an easy way to build a custom control
using the same techniques and tools you would use to create a window: the appear-
ance is defined with markup, and the behavior is defined in a code-behind file. This
provides an easy way to build a reusable chunk of user interface. It also offers a use-
ful tool for managing complexity: if a window has become too complex, it may be
easier to split its content into a set of user controls, allowing developers to work on
individual pieces independently.

UserControl is almost identical to its base class, ContentControl. It adjusts the default
values for a few properties. For example, a UserControl disables keyboard focus and
tab stop navigation for itself, although not for its content—the assumption is that a
UserControl will typically contain focus targets such as text boxes and buttons, so the
containing control itself will usually not need to act as a distinct focus target.

UserControl is not strictly necessary for building elements through markup, composi-
tion, and code behind. You can also use this style if you derive directly from
ContentControl, or any other element that accepts one or more children, such as
Decorator or Grid. The main contribution of UserControl is to signal intent: it is clear
to any developer looking at a control derived from UserControl that it is intended to
be a chunk of UI that forms part of a window, designed to be used as is. This makes
it clear that replacing the template is unlikely to be useful—user controls are typi-
cally not lookless, because their appearance is defined by their hardcoded content
rather than by their template.

760 | Appendix D: WPF Base Types

ItemsControl
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Control

System.Windows.Controls.ItemsControl

ItemsControl is the base class for all controls that present lists or trees of items,
including ListBox, TreeView, and Menu. Because it is a concrete class, it can also be
used in its own right. ItemsControl provides item presentation and data binding sup-
port, but does not offer item selection—this lets you present a list of items without
being forced to make them selectable. Use the Selector base class if you require
selection.

Chapter 5 describes how to use ItemsControl and the various list controls derived
from it. Chapter 7 describes how to use data binding with these controls.

HeaderedItemsControl
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Control

System.Windows.Controls.ItemsControl

System.Windows.Controls.HeaderedItemsControl

HeaderedItemsControl derives from ItemsControl, so it does everything that Control
does, but it also adds a Header property designed to hold a single item of content.
This works in the same way as the Content property of ContentControl.

ContentElement | 761

Elements derive from HeaderedItemsControl if they need to present both a caption
and a set of children. For example, both MenuItem and TreeViewItem derive from this
class.

Selector
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Control

System.Windows.Controls.ItemsControl

System.Windows.Controls.Primitives.Selector

Selector adds item selection functionality to its base class, ItemsControl. The selec-
tion management is designed to work with a single linear list of items, so although
this is the base class of ComboBox, ListBox, and ListView, it is not the base class of
TreeView. TreeView derives directly from ItemsControl and implements its own selec-
tion management.

ContentElement
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.ContentElement

Text has distinctive layout requirements that are unlike those of the rest of the user
interface. Consequently, there is a separate part of the class hierarchy for managing
textual content. ContentElement is at the root of this hierarchy, and it derives directly
from DependencyObject, not Visual.

ContentElement is the base class of FrameworkContentElement, which is the base
class of all the types in WPF’s text object model. The split between ContentElement
and FrameworkContentElement exists for the same reason as the split between
UIElement and FrameworkElement: ContentElement is part of WPF’s core API, whereas

762 | Appendix D: WPF Base Types

FrameworkContentElement is part of WPF’s framework API. The separation of respon-
sibilities is similar—ContentElement provides basic event handling and animation
support, and FrameworkContentElement adds data binding and layout.

As with UIElement, you would derive directly from ContentElement only if you were
writing your own UI framework on top of WPF’s core services. Most WPF applica-
tions will only use types derived from FrameworkContentElement.

FrameworkContentElement
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.ContentElement

System.Windows.FrameworkContentElement

FrameworkContentElement is the base class of all types in WPF’s text object model.
Because this class does not derive from Visual, elements of this type do not generate
their own appearance. Instead, a tree of content elements is merely a description of
some textual content, and it requires some element derived from Visual to present
the content. WPF provides four such elements. TextBlock presents simple textual
content, whereas the three flow document readers—FlowDocumentScrollViewer,
FlowDocumentPageViewer, and FlowDocumentReader—present larger bodies of text.

Chapter 14 describes the text object model and the visual elements that can present
text.

Freezable
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Freezable

Many types in WPF describe features of the user interface rather than being UI ele-
ments in their own right. For example, the various brush types described in
Chapter 13 describe how a particular UI feature should be colored; geometries
describe shapes of graphical elements. Most of these descriptive classes derive from
the common Freezable base class. You would not normally derive your own types
from Freezable; it is an important class in the WPF class hierarchy because so many
important types derive from it.

Freezable | 763

One of the most important characteristics of a freezable object is that you can use it
in multiple places. Example D-1 contains a single description of an ellipse shape,
which is shared by three UI elements.

As you can see from Figure D-2, this example has three distinct elements—the three
ellipses correspond to the three Path elements. This highlights the fact that Path is
more than just a description of a shape. The identity of a Path object is significant—
each of the three shapes visible in the UI corresponds to exactly one of the three
Shape objects created by Example D-1. However, all three share a single description
of the shape: they all use the same EllipseGeometry object.

An EllipseGeometry does not belong to any part of the visual tree. On the contrary,
this one instance is used from multiple places in the tree. All types that derive from
Freezable, such as geometries and brushes, can be shared in this way.

The significance of the name Freezable is that it is possible to freeze such an object,
preventing any further changes from occurring. By default, a newly created Freezable
will not be frozen—it is possible to change the object.* For example, you could write
code that modified the RadiusX of the EllipseGeometry in Example D-1. This would
cause all three ellipses in Figure D-2 to change. WPF has to do a certain amount of
tracking to enable such changes to work correctly, and this does not come for free.

Example D-1. Freezables and elements

<StackPanel Orientation="Horizontal">
 <StackPanel.Resources>
 <EllipseGeometry x:Key="pathDescription"
 RadiusX="100" RadiusY="50" Center="100,50" />
 </StackPanel.Resources>

 <Path Data="{StaticResource pathDescription}" Fill="Green" />
 <Path Data="{StaticResource pathDescription}" Fill="Cyan" />
 <Path Data="{StaticResource pathDescription}" Fill="Black" />

</StackPanel>

Figure D-2. One geometry shared by three elements

* In early previews of WPF, this type was called Changeable. Confusingly, the old name is just as accurate a
description as Freezable, despite seemingly having almost the opposite meaning. To clarify: these objects
start life as changeable objects, but you can freeze them, preventing further changes.

764 | Appendix D: WPF Base Types

If you don’t need to be able to make such changes, you can opt out of the corre-
sponding costs by freezing the object.

Freezing a Freezable in code is simple: just call the Freeze method. You can also
freeze objects from markup. Example D-2 shows a version of Example D-1 modified
to freeze the EllipseGeometry.

Freezing a Freezable has three effects. First, any attempt to change a frozen object
will cause an InvalidOperationException to be thrown. Second, WPF will no longer
keep track of the relationship between the object and the places where it is used.
This reduces the memory and CPU consumption of your application, and it may also
enable WPF to perform some internal optimizations. Third, freezing detaches the
Freezable from its Dispatcher, making it possible to use the object on a different
thread than the one on which it was created.

Because freezing frees an object from thread affinity, this can help improve the
responsiveness of an application that builds complex visualizations. If you are build-
ing a drawing, bitmap, or 3D model that is sufficiently complex that it takes a notice-
able amount of time to create (e.g., anything more than 0.1 seconds), you should
avoid doing this on the UI thread, because it will make the application unrespon-
sive. Moving such work to a worker thread is the obvious response, but if you create
objects derived from DispatcherObject on the wrong thread, they will be associated
with the wrong dispatcher, and you will get an error when you try to use them in the
UI thread. Freezing objects avoids this problem. You can use this technique with
drawings, brushes, geometries, the various 3D model and geometry classes, and bit-
maps, because the relevant classes, which we describe in Chapters 13 and 17, all
derive from Freezable.

Example D-2. Freezing from XAML

<StackPanel Orientation="Horizontal"
 xmlns:po="http://schemas.microsoft.com/winfx/2006/xaml/presentation/options"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="po">
 <StackPanel.Resources>
 <EllipseGeometry x:Key="pathDescription"
 po:Freeze="True"
 RadiusX="100" RadiusY="50" Center="100,50" />
 </StackPanel.Resources>

 <Path Data="{StaticResource pathDescription}" Fill="Green" />
 <Path Data="{StaticResource pathDescription}" Fill="Cyan" />
 <Path Data="{StaticResource pathDescription}" Fill="Black" />

</StackPanel>

Animatable | 765

Sometimes it can be useful to obtain a modifiable copy of a frozen Freezable.
Freezable offers a Clone method for this purpose. It performs a deep copy—it copies
any nested objects. For example, consider a frozen GeometryDrawing object with a
Brush property referring to a frozen SolidColorBrush. Calling Clone would make
unfrozen copies of both the drawing and the brush.

Animatable
System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Freezable

System.Windows.Media.Animation.Animatable

Many of the Freezable types describe aspects of an element’s appearance such as its
shape or color, which makes them candidates for animation. Most Freezable types
therefore derive from Freezable indirectly through the Animatable class. This class
provides WPF’s animation system with the hooks it needs to change properties over
time.

If necessary, the animation system will call Clone to create an unfrozen copy of a
value in order to animate the value.

Example D-2 shows the public types that derive from Animatable.

Table D-1. Public types derived from Animatable

BitmapEffect GuidelineSet Rotation3D

Brush ImageSource TextEffect

Camera Material TextDecoration

DashStyle MediaPlayer Timeline

Drawing Model3D Transform

Geometry PathFigure Transform3D

Geometry3D PathSegment

GradientStop Pen

766

Appendix EAPPENDIX E

Silverlight 5

WPF provides a rich model for creating user interfaces. At the core of WPF is the
XAML markup language. The use of XAML to describe user interfaces as well as
some interaction is a model that works well for developing desktop applications.
Formerly known as WPF/E, Silverlight leverages XAML markup to create user inter-
faces for use as part of web application development. As you will see in this appen-
dix, you will be able to take the skills learned here and apply them to create web
content.

Why Silverlight?
The World Wide Web is growing up before our eyes. No, that is not quite correct.
The users of the Web are growing up. They are no longer content to fly from one
static page to another hoping to read some new tidbit of information. Today’s users
want a better Web.

When I received my first copy of WordPerfect many years ago, it came with a huge
user manual. Before I could really work with it, I needed to be instructed in how it
worked. Learning all the arcane key combinations to perform simple tasks like bold-
ing words, printing, and saving files was unavoidable.

As operating systems have evolved into the graphical powerhouses that we use
today, the need for user manuals has diminished but has not disappeared. Many
applications (e.g., Microsoft Office, iTunes, and Acrobat Reader) supply user inter-
faces that are intuitive enough that users can dive right in to do most of what they
want to do. This is possible because the mouse/keyboard combination, along with
the near-standard elements of the graphical user interfaces that are part of current
operating systems, make it clearer how to accomplish everyday tasks.

When the Web was formed, HTML was just fine. It presented a common markup that
you could use to define content that a variety of browsers could consume. HTML was

What Is Silverlight? | 767

critical to the success of the Web. That was a long time ago. The difficulty with HTML
today is that it uses markup that supports text and images well, but falls down on cre-
ating content such as video, animations, and complex user interaction.

Various alternatives are available for augmenting content in HTML. One of these
alternatives is client-side script, but although scripting can get the job done, doing
everything with scripts on the client is difficult, error-prone, and labor-intensive.

Another alternative to using raw HTML is to use custom programming, like Java
applets or ActiveX controls. These technologies require the developer to write spe-
cial code just to enable the applet or control to be embedded in the web browser.
The appearance is determined entirely by the code. And, in the case of ActiveX con-
trols, security is up to you. Further, because custom development relies on develop-
ers, there is no way for designers to take control of the user interface’s appearance.

A popular solution for creating content has been plug-in-based solutions such as
Adobe’s Flash products. Web developers use these products to create everything
from simple interactive content to animations and video. Flash allows you to create
complex user interfaces, but creating Flash-based content requires skills that are spe-
cific to Flash and do not have much adaptability to other programming contexts.

Silverlight attempts to redress these limitations to empower developers and design-
ers to build great content without the limitations of the other approaches. In Silver-
light, the markup is XAML, which means you can describe complex and compelling
content without the limitations inherent to HTML. The XAML markup is separate
from the code, which makes it easier to build secure, dynamic content that is emit-
ted either on the client or by servers. Lastly, Silverlight uses the same skills and tools
that WPF uses, so when you work with Silverlight you can apply what you know
from WPF to the new problem of web content.

What Is Silverlight?
Silverlight is a browser plug-in that allows rendering of elements described with
XAML in a web browser. Currently, this browser plug-in supports several browsers
and operating systems (Internet Explorer and Firefox on Windows; Firefox and
Safari on Mac OS X). For example, Figures E-1 and E-2 show the same HTML and
Silverlight code running in Internet Explorer and Firefox, respectively. Figure E-3
shows it in Safari on Mac OS X. Silverlight supports both JavaScript and managed
code (e.g., C# and Visual Basic) to interact with the XAML. At this writing, Java-
Script Silverlight support is in beta (referred to as Silverlight 1.0) and the managed
support is in alpha (referred to as Silverlight 1.1). Because Silverlight 1.1 is only in
alpha, our examples use the more mature Silverlight 1.0 (JavaScript model).

768 | Appendix E: Silverlight

Figure E-1. Silverlight in Internet Explorer (on Windows Vista)

Figure E-2. Silverlight hosted in Firefox (on Windows Vista)

What Is Silverlight? | 769

Hello, Silverlight
Showing XAML-based content in a browser is not revolutionary (WPF supports this
out of the box, as discussed in Chapter 11). What is revolutionary is that Silverlight
does not require a Windows operating system (or even Windows Media Player for
media functionality). One of the main capabilities of Silverlight is to make user inter-
faces for web sites. Silverlight’s scope is not to replace HTML-based web sites, but
instead to augment HTML. You should think of Silverlight as something that enables
you to create content inside a web page, not something you would use to create
replacement content for your existing web pages.

For instance, Example E-1 shows a simple XAML document that displays a smiley
face, some text, and some shading.

Figure E-3. Silverlight hosted in Safari (on Mac OS X)

Example E-1. Smiley face XAML

<!-- scene.xaml -->
<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <!-- Background Rectangle -->
 <Rectangle Width="400" Height="400" Stroke="Black">
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop Color="LightGray" Offset="0" />
 <GradientStop Color="Snow" Offset=".75" />
 <GradientStop Color="LightGray" Offset="1" />
 </LinearGradientBrush>

770 | Appendix E: Silverlight

To show this XAML in an HTML page, we use a script file called Silverlight.js. This
script file, the entry point into the Silverlight API, contains a JavaScript class called
Sys.Silverlight that is used to create the Silverlight plug-in object in the browser.
You can use the createObject function on the Sys.Silverlight object to load the Sil-
verlight object into the HTML document. Example E-2 shows an HTML page that
hosts our scene.xaml document.

 </Rectangle.Fill>
 </Rectangle>

 <!-- Smiley Face -->
 <Ellipse Canvas.Top="50" Canvas.Left="50"
 Width="300" Height="300"
 Fill="Yellow" Stroke="Black" />
 <Ellipse Canvas.Top="150" Canvas.Left="100"
 Width="50" Height="50"
 Fill="Black" />
 <Ellipse Canvas.Top="150" Canvas.Left="250"
 Width="50" Height="50"
 Fill="Black" />
 <Path Stroke="Black" StrokeThickness="5"
 Data="M 100,275 S 200,325 300,275" />

 <!-- Text Message (with Drop Shadow) -->
 <TextBlock Canvas.Top="352" Canvas.Left="152"
 FontFamily="Comic Sans MS"
 FontSize="36" Foreground="Gray"
 Text="Smile!" />
 <TextBlock Canvas.Top="350" Canvas.Left="150"
 FontFamily="Comic Sans MS"
 FontSize="36" Foreground="Black"
 Text="Smile!" />
</Canvas>

Example E-2. Hello Silverlight default HTML

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Hello Silverlight</title>
 <!-- Load the Script that is used to
 show XAML in the browser -->
 <script type="text/JavaScript" src="silverlight.js"></script>
</head>
<body>
 <form>
 <div>
 <h3>Hello Silverlight</h3>
 <p>This is just plain HTML Code.</p>
 <p>Below you'll find XAML Hosted in the Browser:</p>
 </div>

Example E-1. Smiley face XAML (continued)

Silverlight XAML | 771

The createObject method of the Sys.Silverlight object is the key to showing XAML
in the browser.* When you browse to the HTML page detailed in Example E-2, you
will see our smiley face XAML on a web page (as shown in Figure E-4).

Silverlight XAML
Even though the XAML defined for use in Silverlight is not tied to WPF XAML, the
Silverlight team has made an effort to use WPF XAML as a starting place for its
XAML design. In this first release of Silverlight, all the XAML tags used in Silverlight
are also compatible with WPF.

Compatibility will be a priority in future releases. However, because
WPF and Silverlight are evolving in parallel, you can expect that some
innovations in the markup introduced on one platform may or may
not appear on the other.

For the WPF developer, the most glaring omission is that it does not offer any built-
in controls. Silverlight aims to provide the maximum functionality for the smallest
download cost. Because of this design goal, no WPF controls are supported initially.
This means no text boxes, no buttons, no combo boxes, and, in fact, nothing from
WPF that derives from the Control base class at all.

 <div id="theHost">
 <script type="text/JavaScript">
 Sys.Silverlight.createObject(
 "Scene.xaml", // Url to the Xaml File
 document.getElementById("theHost"), // The Host element
 "SilverlightControl", // Silverlight Object Name
 { // Properties object
 width: "400", // Width of the Host
 height: "400", // Height of the Host
 version: "0.9" // Silverlight Plug-in
 // Version
 },
 {} // Event to wire
 // (onLoad and onError)
);
 </script>
 </div>
 </form>
</body>
</html>

* The version numbers used in the createObject method are a bit confusing. You would specify version 0.90
to use Silverlight 1.0 and Version 0.95 to use Silverlight 1.1. I hope that once the release versions are available
the versions will become 1.0 and 1.1, respectively.

Example E-2. Hello Silverlight default HTML (continued)

772 | Appendix E: Silverlight

As developers (and designers), it may seem that the exclusion of controls from the
XAML is a show-stopper. Silverlight’s goals are to have a small runtime and to be
cross-platform-compatible. In this first release, Silverlight is attempting to fulfill
some very specific web-related use cases:

• Video (e.g., sites like YouTube.com and Soapbox.msn.com)

• Animation (e.g., sites like Jibjab.com and Funnyflash.com)

• User interaction (e.g., sites like Gamespot.com)

These use cases mean that in addition to no control support, there is no 3D support
or templates, and there is limited resource use, event support, layout modes, and
text handling (e.g., no XPS support directly, although one can translate an XPS docu-
ment’s XAML to “Silverlight” XAML with some effort).

Figure E-4. Our first Silverlight page

Silverlight XAML | 773

Layout Model
Silverlight applications normally contain a number of visual elements to display to a
user. Being able to lay out these visual elements in a precise way is one benefit of using
Silverlight (as opposed to HTML). That’s where the Silverlight layout model fits in.

Unlike WPF, Silverlight supports only a single layout model: all elements have fixed
positions. You specify positions by using Canvas elements as the only layout model
supported. This means that the first tag in every Silverlight XAML document has to
be a Canvas. For example:

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 ...
</Canvas>

Within a Canvas, you can specify the position of any tag by using the Left and Top
attached properties:

<Canvas ...>
 <Rectangle Canvas.Left="10"

Canvas.Top="10"
 Width="100"
 Height="100"
 Fill="Blue" />
</Canvas>

You can also use the Canvas element to create groups of elements within the root
Canvas. Because the Left and Top attached properties point to the parent Canvas, you
can use the Canvas element to create sets of objects that are moved together. For
instance, Example E-3 shows a simplified version of our smileyface.xaml from earlier.

Example E-3. Simplified smiley face

<!-- scene.xaml -->
<Canvas ... >

 <!-- Smiley Face -->
 <Ellipse Canvas.Top="50" Canvas.Left="50"
 Width="300" Height="300"
 Fill="Yellow" Stroke="Black" />
 <Ellipse Canvas.Top="150" Canvas.Left="100"
 Width="50" Height="50"
 Fill="Black" />
 <Ellipse Canvas.Top="150" Canvas.Left="250"
 Width="50" Height="50"
 Fill="Black" />
 <Path Stroke="Black" StrokeThickness="5"

Data="M 100,275 S 200,325 300,275" />

 <!-- Some Text -->
 <TextBlock Canvas.Top="400" Canvas.Left="50">Smile!</TextBlock>
</Canvas>

774 | Appendix E: Silverlight

We place each piece of the smiley face on our main canvas by specifying the Top and
Left attached properties (or specific coordinates for drawing elements such as Path).
This works well, except that when we want to move our smiley face, we need to
change each of the Top and/or Left properties as well as the coordinates in the Path
element individually, as shown in the following code:

<!-- scene.xaml -->
<Canvas ...>

 <!-- Smiley Face -->
 <Ellipse Canvas.Top="75" Canvas.Left="75"
 Width="300" Height="300"
 Fill="Yellow" Stroke="Black" />
 <Ellipse Canvas.Top="175" Canvas.Left="125"
 Width="50" Height="50"
 Fill="Black" />
 <Ellipse Canvas.Top="175" Canvas.Left="275"
 Width="50" Height="50"
 Fill="Black" />
 <Path Stroke="Black" StrokeThickness="5"
 Data="M 125,300 S 225,350 325,300" />

 <!-- Some Text -->
 <TextBlock Canvas.Top="400" Canvas.Left="50">Smile!</TextBlock>

</Canvas>

Instead of changing all the coordinate positions, we can use a Canvas to “group” the
entire smiley face into one logical object, as shown in the following code:

<!-- scene.xaml -->
<Canvas ...>

 <!-- Smiley Face: coordinates relative to parent -->
<Canvas Canvas.Top="50" Canvas.Left="50">

 <!-- nested elements positioned relative to parent -->
 <Ellipse Canvas.Top="0" Canvas.Left="0"
 Width="300" Height="300"
 Fill="Yellow" Stroke="Black" />
 <Ellipse Canvas.Top="100" Canvas.Left="50"
 Width="50" Height="50"
 Fill="Black" />
 <Ellipse Canvas.Top="100" Canvas.Left="200"
 Width="50" Height="50"
 Fill="Black" />
 <Path Stroke="Black" StrokeThickness="5"
 Data="M 50,225 S 150,275 250,225" />
</Canvas>

 <!-- Some Text -->
 <TextBlock Canvas.Top="400" Canvas.Left="50">Smile!</TextBlock>

</Canvas>

Silverlight XAML | 775

Moving the smiley face becomes as simple as changing the Top and Left attached
properties of the Canvas that holds the smiley face:

<!-- scene.xaml -->
<Canvas ... >

 <!-- Smiley Face -->
 <Canvas Canvas.Top="75" Canvas.Left="75">
 <!-- same as before, but now moved 25 right and 25 down -->
 ...
 </Canvas>

 <!-- Some Text -->
 <TextBlock Canvas.Top="400" Canvas.Left="50">Smile!</TextBlock>

</Canvas>

This grouping of objects into logical units becomes crucial as you start to work with
objects as atomic units. In Silverlight, you will be creating objects that users will need
to interact with logically as a single object. For example, you could create a play but-
ton for a video player, and even if that button comprises multiple objects (e.g., an
Ellipse and a Polygon), you will want to handle mouse events as though the button
were a single object (you’ll see how to handle mouse events later).

Namespaces
You may have noticed that in all the examples so far, we are using a new namespace
for Silverlight content:

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
</Canvas>

This new namespace is the official namespace, but the WPF namespace is supported
as well:

<Canvas xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
</Canvas>

The reason for continuing to support the WPF namespace is less about technology
and more about tool support. Tools are available for creating or converting XAML.
By supporting the WPF namespace (at least in these early releases of Silverlight), you
should be able to use a variety of XAML-powered tools to create Silverlight-compliant
assets. We will list tools for Silverlight XAML creation later in this appendix.

Graphics
In Silverlight, drawing with XAML’s graphics tags is important for creating visual ele-
ments that are not included by default. Although the breadth of the 2D graphics
stack in Silverlight is on par with WPF, you will need to rely on it more often than

776 | Appendix E: Silverlight

you would in WPF. For example, the Button element does not exist in Silverlight
XAML, so to create a button you will need to draw it manually. As an example, let’s
consider a simple button that looks like Figure E-5.

First, we create a Canvas for our button:

 <Canvas Canvas.Left="25" Canvas.Top="25">

 </Canvas>

Next, we can add a Rectangle for our button:

 <Canvas Canvas.Left="25" Canvas.Top="25">
<Rectangle Height="32" Width="100"

Stroke="LightGray" StrokeThickness="2">
</Rectangle>

 </Canvas>

To make the button a little more polished, we could round the corners subtly by set-
ting the RadiusX and RadiusY attributes:

 <Canvas Canvas.Left="25" Canvas.Top="25">
 <Rectangle Height="32" Width="100"
 Stroke="LightGray" StrokeThickness="2"

RadiusX="25" RadiusY="25">
 </Rectangle>
 </Canvas>

Now we can add a gradient fill to the background of our rectangle:

 <Canvas Canvas.Left="25" Canvas.Top="25">
 <Rectangle Height="32" Width="100"
 Stroke="LightGray" StrokeThickness="2"
 RadiusX="25" RadiusY="25" >

<Rectangle.Fill>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<GradientStop Color="#EEEEEE" Offset="0"/>
<GradientStop Color="#444444" Offset="1"/>

</LinearGradientBrush>
</Rectangle.Fill>

 </Rectangle>
 </Canvas>

Lastly, we can add a TextBlock to provide the text in our button. Example E-4 shows
our complete button.

Figure E-5. A Silverlight button

Silverlight XAML | 777

Because of the limited palette of XAML tags in Silverlight, you will need to use the
graphics tags to create the look and feel of objects that are not natively part of Silver-
light XAML. Using the graphics tags usually requires that you implement behavior
that is normally implicit in controls. For example, drawing the button in this exam-
ple really requires that you handle not only when the button is clicked, but also
when a mouse hovers over it and what the button looks like when you click on it.
Later we will see how to add these features.

Mouse Cursors
Because Silverlight does not support common controls, it would be nice if we could
indicate to the user that certain elements acting as controls are clickable. We can do
this by using mouse cursors. The Canvas, MediaElement, TextBlock, Rectangle,
Ellipse, Polygon, and PolyLine elements support a Cursor property that specifies
which cursor to show while the mouse is over a particular element. The supported
cursors are Arrow, Hand, Wait, IBeam, None, and Default. For example:

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Canvas Width="100" Height="25"
 Cursor="Arrow"
 Canvas.Top="0" Canvas.Left="0"
 Background="Gray">
 <TextBlock Text="Arrow" />
 </Canvas>
</Canvas>

Example E-4. The complete button

 <Canvas Canvas.Left="25" Canvas.Top="25">
 <Rectangle Height="32" Width="100"
 Stroke="LightGray" StrokeThickness="2"
 RadiusX="25" RadiusY="25" >
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
 <GradientStop Color="#EEEEEE" Offset="0"/>
 <GradientStop Color="#444444" Offset="1"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>

<TextBlock Canvas.Top="3" Canvas.Left="13"
FontSize="18" Foreground="Black"
Text="Press Me"/>

 </Canvas>

778 | Appendix E: Silverlight

Measuring Text
Silverlight offers only coordinate-based layout (using the Canvas to lay out elements).
Because of this, all text in our XAML documents is left-justified. To get around the
limitation of not supporting the full text handling subsystem that is available in
WPF, Silverlight enables you to measure the text so that you can do your own calcu-
lations to center or right-justify text. You measure text by using the actualWidth and
actualHeight properties on the TextBlock element. For example, to center a piece of
text within the Silverlight host, you could do this:

function root_Loaded(sender, args) {

 // Center Header
 var text = sender.findName("headerText");
 var host = sender.getHost();

 // Center it by measuring the text (with actualWidth)
 // and comparing to the host size
 text.setValue("Canvas.Left", (host.actualWidth - text.actualWidth)/2);
}

Transformations
Transformations allow users to manipulate the way parts of the visual tree are ren-
dered. Like WPF, Silverlight XAML supports a number of transformations that you
can use to manipulate the look of XAML elements. The RenderTransform property of
every visual XAML element supports using transformations to change the way a tag
(or a group of tags) is rendered. (There are no layout transforms because there is no
real layout in Silverlight.) For instance, Example E-5 uses a ScaleTransform to stretch
the button that we created in Example E-4.

Example E-5. Using RenderTransform

<Canvas xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
 <Canvas.RenderTransform>
 <ScaleTransform ScaleX="1" ScaleY="2" />
 </Canvas.RenderTransform>
 <Canvas
Canvas.Left="25" Canvas.Top="25">
 <Rectangle Height="32" Width="175"
 Stroke="LightGray" StrokeThickness="2"
 RadiusX="25" RadiusY="25" >
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0.5,2.109" EndPoint="0.5,-1.109">
 <GradientStop
Color="#EEEEEE" Offset="0"/>
 <GradientStop
Color="#444444" Offset="1"/>
 </LinearGradientBrush>

Silverlight XAML | 779

By using a ScaleTransform to stretch our button to twice its size vertically (i.e.,
ScaleY), our button now looks like Figure E-6.

Silverlight XAML supports the same transformations that WPF does, as shown in
Table E-1.

Animations
Animation support is a key component of Silverlight. Like WPF, Silverlight supports
two styles of animations: simple and keyframe animations.

Simple animations include DoubleAnimation, ColorAnimation, and PointAnimation. These
three animations support animating different types of properties on XAML elements.
Unlike WPF XAML, the only number-based animation is the DoubleAnimation, as all
numeric properties in Silverlight XAML are double values. The keyframe animations fol-
low the pattern of the simple animations by supporting DoubleAnimationUsingKeyFrames,
ColorAnimationUsingKeyFrames, and PointAnimationUsingKeyFrames. These keyframe ani-
mations are structured just like WPF keyframe animations.

For example, imagine that we want to fade an Ellipse into view when the Canvas loads.
To do this, we add a new EventTrigger to our Canvas element’s Triggers property.

 </Rectangle.Fill>
 </Rectangle>
 <TextBlock Canvas.Top="3" Canvas.Left="13"
 FontSize="18" Foreground="Black"
 Text="Press Me"/>
 </Canvas>
</Canvas>

Figure E-6. Our button with a ScaleTransform

Table E-1. Transformations supported by Silverlight XAML

Transform class Usage

MatrixTransform An affine transformation (See Chapter 13 for more information)

RotateTransform Rotates or spins an element

ScaleTransform Resizes or stretches an element

SkewTransform Tilts or slants an element

TransformGroup Any mix of transformations

TranslateTranform Moves an element

Example E-5. Using RenderTransform (continued)

780 | Appendix E: Silverlight

EventTrigger is the only trigger supported in Silverlight. The EventTrigger allows you to
specify a RoutedEvent to use as the triggering mechanism, but in this release of Silver-
light, the only RoutedEvent supported for triggering is Canvas.Loaded. Here is a Canvas
element with an EventTrigger added:

<Canvas xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
<Canvas.Triggers>
<EventTrigger RoutedEvent="Canvas.Loaded">

 ...
</EventTrigger>

</Canvas.Triggers>
 <Ellipse x:Name="theCircle" Width="200" Height="200" Fill="Blue" />
</Canvas>

Inside an EventTrigger, you need an action that the event trigger fires. In Silverlight,
the only action supported is a BeginStoryboard action. Inside the BeginStoryboard
tag, we also need a Storyboard. The Storyboard is the container for any animations
we want to show:

<Canvas xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">

<BeginStoryboard>
<Storyboard>

 ...
</Storyboard>

</BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>
 <Ellipse x:Name="theCircle" Width="200" Height="200" Fill="Blue" />
</Canvas>

Last, we will need an animation to fade the opacity of the ellipse from zero to one (i.e.,
from invisible to visible):

<Canvas xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <BeginStoryboard>
 <Storyboard>

<DoubleAnimation
Storyboard.TargetName="theCircle"
Storyboard.TargetProperty="Opacity"
From="0" To="1" Duration="0:0:2" />

 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>
 <Ellipse x:Name="theCircle" Width="200" Height="200" Fill="Blue" />
</Canvas>

Silverlight and WPF | 781

Additionally, Storyboards can contain more than one animation:

<Canvas xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <BeginStoryboard>
 <Storyboard>

<DoubleAnimation
Storyboard.TargetName="theCircle"
Storyboard.TargetProperty="Opacity"
From="0" To="1" Duration="0:0:2" />

<DoubleAnimation
Storyboard.TargetName="theCircle"
Storyboard.TargetProperty="Width"
From="100" To="200" Duration="0:0:5" />

 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>
 <Ellipse x:Name="theCircle" Width="200" Height="200" Fill="Blue" />
</Canvas>

Like WPF, Storyboards in Silverlight can exist in resources. As we will see later, we
can delay an animation by placing it in the resources of one of our XAML elements.
See the “Delaying storyboards” section, later in this appendix, for more information
about how this works.

Silverlight and WPF
In .NET 3.0, XAML is used as an object graph serialization technology. For WPF,
this allows XAML to be used as a user interface markup language that is then serial-
ized into CLR objects. But it is important to note that WPF does not require XAML
at all. You can create user interface objects by writing CLR code like so:

Canvas myCanvas = new Canvas(); // You can't do this in Silverlight 1.0

Silverlight 1.0 is different in this respect, as it requires XAML. There is no way to cre-
ate XAML objects from code without using XAML. Silverlight is about showing ele-
ments described with XAML on a web page. There are other differences between the
two technologies, as detailed in Table E-2.

Table E-2. Silverlight and WPF

Silverlight Windows Presentation Foundation

Web-based Desktop applications, click-once deployment, or XBAP
applications

Works across different operating systems (Windows and Mac
OS X in the first release)

Requires Windows XP SP2, Windows Server 2003 SP1, or
Windows Vista

Supports multiple web browsers (Internet Explorer and Fire-
fox on Windows; Firefox and Safari on Mac OS X)

Internet Explorer 6+ for XBAP applications

782 | Appendix E: Silverlight

Development Model
Now that you have a sense of what Silverlight XAML is, we can look at how to use
that XAML in a browser. Unlike WPF, with Silverlight 1.0 applications, you will add
programmatic logic to your XAML in the JavaScript browser language.

Hosting in HTML
To show and interact with XAML in the browser, Silverlight loads a plug-in into the
HTML document. An OBJECT tag is used in Internet Explorer and an EMBED tag in
Firefox (on both Windows and Mac OS X). You can specify this tag manually, as
shown in this code example:

<!-- Only works in IE6+ -->
<object
 id="WpfeControl"
 width="400"
 height="100"
 classid="CLSID:32C73088-76AE-40F7-AC40-81F62CB2C1DA"
 <param name="BackgroundColor" value="#ffebcd" />
 <param name="SourceElement" value=null />
 <param name="Source" value="HelloWorld.xaml" />
 <param name="WindowlessMode" value="true" />
 <param name="MaxFrameRate" value="30" />
 <param name="OnError" value="myErrorHandler" />
</object>

Although this works perfectly well for Internet Explorer, you want your XAML to work
in every supported browser equally well. To address this, the Silverlight team has sup-
plied a script called Silverlight.js that is used to host the XAML across all supported
browsers, eliminating the need for you to use an OBJECT tag, an EMBED tag, or something

No .NET Framework requirements Requires .NET 3.0 Framework

No Windows Media Player required for media support Requires Windows Media Player 10 for media support

Uses XAML for design markup, but the library of tags is
smaller

Uses XAML for design markup, but supports a large library of
tags

Supports JavaScript or managed languages (C#, Visual Basic,
etc.) for Silverlight applications

Supports managed languages (C#, Visual Basic, etc.)

Plug-in download size approximately 4 MB (though on Mac
OS X, size is slightly larger to accommodate Intel and PPC
processors)

.NET 3.0 Framework size is fairly large (approximately 50 MB
for x86, and 90 MB for x64)

Release of Silverlight 1.0 is scheduled for mid-2007, with Sil-
verlight 1.1 slated for later than that (no dates had been
announced as of this writing)

Released in November 2006

Table E-2. Silverlight and WPF (continued)

Silverlight Windows Presentation Foundation

Development Model | 783

dynamically generated according to server-side browser detection.* To take advantage of
this script, you import it and use the Sys.Silverlight class to load your XAML:

<!-- Loading the script locally -->
<script type="text/JavaScript" src="silverlight.js"></script>
...
<div id="agContainer" >
 <script type="text/JavaScript">

 Sys.Silverlight.createObject(
 "Scene.xaml", // Url to the Xaml File
 document.getElementById("theHost"), // The Host element
 "SilverlightControl", // Silverlight Object Name
 { // Properties object
 width: "400", // Width of the Host
 height: "400", // Height of the Host
 version: "0.9" // Silverlight Plug-in
 // Version
 },
 {} // Event to wire
 // (onLoad and onError)
); </script>
</div>

The newly created object hosts the XAML and attempts to display it. Note that
either you can specify the XAML as a separate file (as shown in the previous exam-
ple), or you can specify a source element name from which to get the XAML. When
you specify the name of a source element, you would create an XML island inside the
HTML page by adding a new script tag with a type of text/xaml:

<script type="text/xaml" id="myInlineXaml">
 <Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 ...
 </Canvas>
</script>

When using inline XAML, you would change your call to createObject,† to specify
passing XAML by using the hash symbol (#) and the name of the script tag, like so:

<div id="agContainer" >
 <script type="text/JavaScript">

 Sys.Silverlight.createObject(
 "#myInlineXaml", // The Inline XAML
 document.getElementById("theHost"), // The Host element
 "SilverlightControl", // Silverlight Object Name
 { // Properties object

* Although the current version of the Silverlight SDK includes the Silverlight.js script, the ASP.NET Futures
Preview includes several ASP.NET controls that can eliminate this necessity.

† In all of the JavaScript examples, we are styling the code to conform to the convention of using camel casing
for variables, functions, and method names. For example, use of the FindHost method of the plug-in object
appears as findHost in the JavaScript example. JavaScript is not case-sensitive, so using this convention does
not introduce any issues.

784 | Appendix E: Silverlight

 width: "400", // Width of the Host
 height: "400", // Height of the Host
 version: "0.9" // Silverlight Plug-in
 // Version
 },
 {} // Event to wire
 // (onLoad and onError)
);
 </script>
</div>

The Silverlight.js file contains the JavaScript Sys.Silverlight class that generates the
right HTML tags for the different browsers. For example, on Internet Explorer 6 and
above, the Sys.Silverlight class generates an OBJECT tag. On Firefox and Safari
browsers, it uses an EMBED tag.

End-User Installation
At this point in Silverlight development, when users go to a web page that contains
an embedded Sys.Silverlight class, the browser will attempt to download the run-
time like other ActiveX solutions (e.g., Flash), including support for upgrading the
runtime as necessary.

Handling XAML Errors
As you work with XAML, errors are likely to occur from time to time. Many of these
will be XAML parsing errors. By default, the Silverlight.js script file will show the error in
an alert window. If you want more control over how to tell your users about this prob-
lem, you can specify the name of a function in the creation of the Sys.Silverlight class
in your HTML markup:

Sys.Silverlight.createObject(
 "#myInlineXaml", // The Inline XAML
 document.getElementById("theHost"), // The Host element
 "SilverlightControl", // Silverlight Object Name
 properties: { // Properties object
 width: "400", // Width of the Host
 height: "400", // Height of the Host
 version: "0.9" // Silverlight Plug-in
 // Version
 },
 events: {onError:"myErrorHandler"} // Events to wire
 // (onLoad and onError)

By specifying in the events object the name of a function to use as the onError hand-
ler, you are telling Silverlight to call that function on any Silverlight error. The Silver-
light host control passed several arguments to the error handler, including the line
number, the column number, the error number, and a text message that explains the
nature of the error.

Development Model | 785

The error handler is used only for Silverlight errors. Any script errors are handled by
normal scripting error handling. Example E-6 shows a sample error handler.

Event Model
In Silverlight, all code interaction with the XAML elements revolves around using the
events in the XAML object model. You wire events to JavaScript by specifying the name
of the event, and the name of the handler function:

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Loaded="root_Loaded">
 <Ellipse x:Name="theCircle" Width="200" Height="200" Fill="Blue" />
</Canvas>

In this example, we are specifying that a JavaScript function called root_Loaded should
be called when the Canvas has completed loading. For example, the root_Loaded func-
tion would look like Example E-7.

By convention, all event handling functions specify two parameters for the function
signature: sender and args. The first parameter is the sender of the event and the sec-
ond parameter is an optional object that contains data specific to the event.

Most UI elements (e.g., Canvas, Rectangle, Ellipse, etc.) support six common events,
listed in Table E-3.

Example E-6. Sample error handler

function myErrorHandler(line, col, errorNum, desc) {
 var str = "Silverlight Error: " + desc + "\n";
 str += "(line: " + line + ", col: " + col + ")\n";
 str += "HRESULT: " + errorNum;
 alert(str);
}

Example E-7. Event handling function

function root_Loaded(sender, args) {
 alert("Canvas has been loaded");
}

Table E-3. Events supported by UI elements

Event Usage

Loaded Fired after the element has completed loading, but before it is rendered

MouseEnter Fired when the mouse moves from the outside to the inside of an element

MouseLeave Fired when the mouse moves from the inside to the outside of an element

MouseMove Fired as the mouse is moved within an element

MouseLeftButtonDown Fired when the left mouse button is pressed while over an element

MouseLeftButtonUp Fired when the left mouse button is released while over an element

786 | Appendix E: Silverlight

In addition to these six common events, the root Canvas of any Silverlight document
also supports keyboard handling events, listed in Table E-4.

These events represent the primary methods for user interactivity with the XAML
loaded in the browser.

Working with XAML Properties
Once you have a reference to an individual XAML element in JavaScript, you can use
simple property assignment to specify properties on the individual elements:

function root_Loaded(sender, args) {
 // Getting and setting Canvas properties
 if (sender.width == 200) {
 sender.width = 250;
 }
sender.height = 300;

 sender.background = "#888888";
}

For attached properties, you use the getValue and setValue methods to get and set
the values on the object:

sender.setValue("Canvas.Top", 5);
var top = sender.getValue("Canvas.Top");

You can register for events using the property syntax as well, by calling the
addEventListener method of a XAML element. You call the method using the name
of the event and the name of the function to call when the event is fired:

 sender.addEventListener("mouseEnter", "canvas_MouseEnter");
 sender.addEventListener("mouseLeave", "canvas_MouseLeave");

Table E-4. Keyboard handling events supported by Canvas

Event Usage

KeyDown Fired when a keyboard key is pressed

KeyUp Fired when a keyboard key is released

GotFocus Fired when the Silverlight Canvas (or any of its children) receives keyboard focus

LostFocus Fired when the Silverlight Canvas (or any of its children) loses keyboard focus

Bubbling, Tunneling, and Direct Events
Like WPF, mouse events in Silverlight support bubbling up the object hierarchy. How-
ever, Silverlight does not support canceling bubbling. All other events are supported as
direct events (e.g., Loaded). Also, unlike WPF, there are no tunneling events in Silverlight.

Development Model | 787

Once you register for events, you must have functions to handle events, such as the
methods in Example E-8.

The Plug-in
Working with individual XAML elements is useful, but sometimes you will need to
work directly with the Silverlight plug-in. Every XAML object has a getHost method
that will return the Silverlight plug-in object, as Example E-9 illustrates.

In addition, you can obtain the plug-in by calling the HTML document’s
getElementById method. When doing so, use the name you specified in the
createObject function call that was used to instantiate the Silverlight object in the
HTML, as shown in Example E-10.

The Silverlight host has a number of properties that describe the plug-in object, listed
in Table E-5.

Example E-8. Event handlers

function canvas_MouseEnter(sender, args) {
 sender.background = "#FF0000";
}

function canvas_MouseLeave(sender, args) {
 sender.background = "#888888";
}

Example E-9. Retrieving the host from a XAML element

function root_Loaded(sender, args) {
var theHost = sender.getHost();

}

Example E-10. Retrieving the host

function root_Loaded(sender, args) {
var theHost = document.getElementById("SilverlightControl");

}

Table E-5. Properties describing the plug-in object

Property Meaning

background The color of the background of the Silverlight host

source A URL to a XAML document to load into the Silverlight host

windowlessMode A Boolean value that indicates whether the Silverlight host should be windowless;
windowless controls support alpha-channel colored backgrounds to enable HTML to
display through the Silverlight control

enableFramerateCounter Displays a number that reports the current frame rate

788 | Appendix E: Silverlight

In addition, the Silverlight host has properties that are available once the plug-in has
loaded, listed in Table E-6.

The difference between the width and height values used in the initialization and their
actual counterparts is how they are set initially. For example, if the width and height
are set to static values (e.g., 400 × 400) the actual values will be identical. Alterna-
tively, if you set the width and/or height to a percentage value (e.g., 50 percent), the
actual height and/or width will be the actualWidth and actualHeight properties.

Silverlight allows you to display an asset over the entire screen. The fullscreen prop-
erty is available only after the Silverlight host has loaded the XAML. For example, a
mouse click on a canvas could cause the host to show itself full-screen, as shown in
Example E-11.

In addition to the loaded event, the host also supports the events listed in Table E-7.

enableHtmlAccess Allows the Silverlight object to interact with the HTML DOM

enableRedrawRegions Displays colored regions on the plug-in that are currently being redrawn (for debug-
ging of XAML performance)

initParams A structure that contains the initialization properties, like height, width, and so on

isLoaded Returns a Boolean value that reports whether the plug-in is completely loaded

maxFrameRate The maximum frame rate to display content

Table E-6. Properties available once the plug-in has loaded

Property Meaning

actualWidth The actual computed width of the host

actualHeight The actual computed height of the host

fullScreen A Boolean that specifies whether the Silverlight host should be shown over the entire
screen instead of embedded in the HTML object

Example E-11. Retrieving the host

function makeFullScreen_MouseLeftButtonUp(sender, args) {
var theHost = sender.getHost();

 theHost.fullScreen = true;
}

Table E-7. Supported events

Event Usage

resized Fired when the actual size (actualWidth and/or actualHeight) is changed

fullScreenChanged Fired when the Silverlight host changes the state of the fullScreen property

Table E-5. Properties describing the plug-in object (continued)

Property Meaning

Development Model | 789

When looking for objects in the HTML DOM, you normally use the document’s
getElementById method. Silverlight’s findName method provides the same functional-
ity, allowing you to find objects anywhere in the XAML document by name. The
findName method exists on all Silverlight XAML elements as well as on the plug-in
object. If you use it from a XAML element, you can call it directly. For example, we
could use it in our root_Loaded function to find the ellipse and set its stroke (outline)
to white, as shown in Example E-12.

If you want to use the findName method on the plug-in object, you will need to prefix
the content property of the plug-in object:

 // Check the entire XAML document
var theHost = sender.getHost();
var theCircle = theHost.content.findName("theCircle");

The findName method searches the entire document for the named element. An ele-
ment’s findName does not limit the search to just part of the document tree. In fact,
the findName on a XAML element is a shortcut to the host’s findName method. So,
these two calls to findName are functionally identical:

// Check the entire XAML document
var theHost = sender.getHost();
var theCircle = theHost.content.findName("theCircle");

// Also check the entire XAML document
var theCircle = sender.findName("theCircle");

Working with the XAML Object Model
The XAML object model is a hierarchy built from the XAML loaded into the host.
You can traverse this hierarchy using collections of contained objects. For the Canvas
element, use its children property. To iterate through the collection, use the count
property in conjunction with the getItem method of the children property, like so:

for (var x = 0; x < sender.children.count; ++x) {
 var child = sender.children.getItem(x);
 ...
}

XAML elements support a variety of collections. Table E-8 shows the parent ele-
ments and the collections they support.

Example E-12. Using findName

function root_Loaded(sender, args) {
var theCircle = sender.findName("theCircle"); // from XAML DOM
theCircle.stroke = "#000000";

}

790 | Appendix E: Silverlight

Each collection provides the methods listed in Table E-9.

You can also use the getParent method of any XAML object to retrieve its container:

var parent = sender.getParent();

An Example: Creating a Button
Earlier in this appendix, we saw how we could create the beginnings of a button
using XAML. With a little additional XAML, we can make it act like a real button:

<Canvas xmlns="..."
 xmlns:x="..."
 Loaded="root_Loaded">

 <!-- The button -->
 <Canvas x:Name="button1"
 Canvas.Left="25" Canvas.Top="25"
 Cursor="Hand">
 <Rectangle Height="32" Width="100"
 Stroke="LightGray" StrokeThickness="2"
 RadiusX="2" RadiusY="2" >
 <Rectangle.Fill>
 <LinearGradientBrush>

Table E-8. Parent elements and supported collections

Parent element Collection name

Canvas Children

PathGeometry Figures

LinearGradientBrush GradientStops

RadialGradientBrush GradientStops

ColorAnimationUsingKeyFrames KeyFrames

DoubleAnimationUsingKeyFrames KeyFrames

PointAnimationUsingKeyFrames KeyFrames

PathFigure Segments

Canvas Triggers

EventTrigger Actions

Table E-9. Methods provided by each collection

Method Usage

getItem Retrieves a specific element in the collection by index

add Adds an item to the end of the collection

insert Adds an item to the collection at a specific position by index

remove Removes a specific element from the collection

removeAt Removes the element in the collection at a specific position by index

Development Model | 791

 <GradientStop x:Name="button1_gradientStop1"
 Color="#EEEEEE" Offset="0"/>
 <GradientStop x:Name="button1_gradientStop2"
 Color="#444444" Offset="1"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <TextBlock Canvas.Top="4" Canvas.Left="14"
 FontSize="18" Foreground="#BBBBBB"
 Text="Press Me"/>
 <TextBlock Canvas.Top="3" Canvas.Left="13"
 FontSize="18" Foreground="#444444"
 Text="Press Me"/>
 </Canvas>

</Canvas>

Notice the root_Loaded event handler for the main Canvas, where we will set up our
button’s events. We have also given the button Canvas a name so that we can refer-
ence it with the findName method. Lastly, we have named the GradientStops so that
we can manipulate them. The GradientStop names begin with the button name for a
reason that will become apparent shortly.

The following setupButton function registers four event handlers for a button, and it
is invoked by the root_Loaded function:

function setupButton(button) {
 button.addEventListener("mouseEnter", "handleMouseEnter");
 button.addEventListener("mouseLeave", "handleMouseLeave");
 button.addEventListener("mouseLeftButtonUp", "handleMouseUp");
 button.addEventListener("mouseLeftButtonDown", "handleMouseDown");
}

function root_Loaded(sender, args) {
 setupButton(sender.findName("button1"));
}

In each mouse event handler, we can change the offset for the gradient stop to make
the button act like a real button (i.e., change the look when you move the mouse
over the button as well as when the button is clicked and released). Notice that we
are using the name of the sender of this event (the button’s Canvas) to prefix our
name to find the correct gradient stop for our button. In our MouseUp event handler,
we will display an alert to show that the button was clicked:

function handleMouseEnter(sender, eventArgs) {
 var gradientStop1 = sender.findName(sender.Name +
 "_gradientStop1");
 var gradientStop2 = sender.findName(sender.Name +
 "_gradientStop2");
 gradientStop1.offset = 1;
 gradientStop2.offset = .203;
}

792 | Appendix E: Silverlight

function handleMouseLeave(sender, eventArgs) {
 var gradientStop1 = sender.findName(sender.Name +
 "_gradientStop1");
 var gradientStop2 = sender.findName(sender.Name +
 "_gradientStop2");
 gradientStop1.offset = 0;
 gradientStop2.offset = 1;
}

function handleMouseUp(sender, eventArgs) {
 var gradientStop1 = sender.findName(sender.Name +
 "_gradientStop1");
 var gradientStop2 = sender.findName(sender.Name +
 "_gradientStop2");
 gradientStop1.offset = 1;
 gradientStop2.offset = .203;

 alert("clicked: " + sender.Name);
}

function handleMouseDown(sender, eventArgs) {
 var gradientStop1 = sender.findName(sender.Name +
 "_gradientStop1");
 var gradientStop2 = sender.findName(sender.Name +
 "_gradientStop2");
 gradientStop1.offset = 1;
 gradientStop2.offset = 1;
}

The mouse handlers retrieve the name of the button from the sender argument and
use it to construct the names of that button’s GradientStops. By using the same nam-
ing pattern for each button, the same event handlers can work for all of them.
Because the mouse event handlers are generic enough to work for more than one
button, we can add a new button to our XAML document, like so:

...
 <!-- The second button -->
 <Canvas x:Name="button2"
 Canvas.Left="25" Canvas.Top="75"
 Cursor="Hand">
 <Rectangle Height="32" Width="100"
 Stroke="LightGray" StrokeThickness="2"
 RadiusX="2" RadiusY="2" >
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop x:Name="button2_gradientStop1"
 Color="#EEEEEE" Offset="0"/>
 <GradientStop x:Name="button2_gradientStop2"
 Color="#444444" Offset="1"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>

Development Model | 793

 <TextBlock Canvas.Top="4" Canvas.Left="14"
 FontSize="18" Foreground="#BBBBBB"
 Text="Press Me"/>
 <TextBlock Canvas.Top="3" Canvas.Left="13"
 FontSize="18" Foreground="#444444"
 Text="Press Me"/> </Canvas>
...

Finally, we can add code to the root_Loaded function to set up a new button:

function root_Loaded(sender, args) {
 setupButton(sender.findName("button1"));
 setupButton(sender.findName("button2"));
}

We can see the button’s various states in Figures E-7, E-8, and E-9.

Creating Dynamic XAML
So far, we have been working with largely static XAML, but Silverlight supports
dynamic XAML as well. You can use the host object to create elements from XAML
fragments. For example, we can create a new rectangle by using a string representa-
tion of the XAML fragment to call the createFromXaml method (on the host’s content
property), as shown in the following code snippet:

function root_Loaded(sender, args) {
 // Get a reference to the Host
 var host = sender.getHost();

 // The XAML
 var xaml = '<Rectangle Fill="Blue" Width="100" Height="100" />';

 // Create a new object from the fragment
 var newRect = host.content.createFromXaml(xaml);

 // Add it to the children of our root Canvas
 sender.children.add(newRect);
}

Figure E-7. Our button (normal state)

Figure E-8. Our button (MouseEnter state)

Figure E-9. Our button (MouseLeftButtonDown state)

794 | Appendix E: Silverlight

Calling createFromXaml creates the element but does not add it to the document.
Once the element is created, you can use the Children collection to add it to any
children collection in the XAML object model. If you want to name an element, you
must use the Name attribute prefix, as shown in the following fragment:

// The XAML
var xaml =
'<Rectangle
Name="aRect" Fill="Blue" Width="100" Height="100" />';

Silverlight does not include control templates or data templates; instead, we can use
createFromXaml to create templates in JavaScript code. For example, if we were to
create an HTML button that creates new rectangles every time it was clicked:

<input id="addButton" type="button"
 onclick="return addButton_click()"
 value="Add Rectangle" />

the code to create the rectangles dynamically would look like Example E-13.

By using a template, we can create any number of the objects we need at runtime
using the host’s createFromXaml method. When we run the page, we start with just

Example E-13. Dynamic XAML as templates

var currentTop = 0;
var currentLeft = 0;
var template = '<Rectangle Width="50" Height="50" ' +
 ' Canvas.Top="%1" Canvas.Left="%2" ' +
 ' Fill="Gray" Stroke="Black" />';

function addButton_click() {

 // Get the host and the root canvas
 var theHost = document.getElementById("theHost");
 var root = theHost.content.findName("theRoot");

 // Get a copy of the template and replace the
 // placeholders with the top and left values
 var newTemplate = template.replace("%1", currentTop);
 newTemplate = newTemplate.replace("%2", currentLeft);

 // Create the new rectangle from the template
 var newRect = theHost.content.createFromXaml(newTemplate);

 // Add it to the root canvas
 root.children.add(newRect);

 // Increment the top and left for the next rectangle
 currentTop += 10;
 currentLeft += 10;
}

Development Model | 795

our button and no rectangles. Clicking the button a few times gives us multiple rect-
angles, as shown in Figure E-10.

Controlling Media
Now that you are comfortable building your Silverlight XAML, you should learn how
to use some of the more interesting tags. The first of these is the MediaElement tag.
Using media (e.g., video and audio) is a key use case for Silverlight. To that end, Sil-
verlight has rich support for media playback. The core of this support is the
MediaElement tag. The MediaElement tag provides the following types of media:

• Windows Media Video (WMV)

• Windows Media Audio (WMA)

• MPEG-1 Audio Layer-3 (MP3)

To specify the media to be played you specify the URL from which to download the
media, like so:

<MediaElement x:Name="theVideo"
 Width="450.222" Height="280"
 Source="xbox.wmv"/>

To control the flow of the media, the MediaElement provides three methods, listed in
Table E-10.

Figure E-10. Dynamic XAML—after

Table E-10. Methods provided by the MediaElement

Method Usage

play Starts or restarts the media (if paused)

pause Stops the media at the current position, allowing play to continue where it was paused

stop Ends playing the video and resets its current position to the beginning of the media

796 | Appendix E: Silverlight

MediaElement provides a number of events that are specific to playing media, listed in
Table E-11.

MediaElement can download and play prerecorded video and audio files from a web
server, and it supports streaming media sources such as live webcasts. For downloads,
MediaElement supports a DownloadProgress property and a DownloadProgressChanged
event. You can use these to track a download’s progress. MediaElement also provides a
BufferingProgress property and a BufferingProgressChanged event to allow you to show
the buffering progress of streamed media.

MediaElement allows access to media time through the position property. This allows
you to get and set the current playing position (in seconds), as follows:

function root_Loaded(sender, args) {
 // Get a reference to the video
 var video = host.content.findName("theVideo");

 // Get the current Position
 var seconds = video.position.seconds;
 alert("Current Location: " + seconds);

 // Change the position to 2 minutes in
 video.position.seconds = 120;
}

MediaElement also provides the actual duration of the media by using the
naturalDuration property. Similar to the position property, naturalDuration exposes
the number of seconds, but the value is read-only. naturalDuration is useful for deter-
mining the difference between position and duration to see how much of the video
has played. naturalDuration is valid only after the MediaOpened event has fired.

In addition to controlling the duration, MediaElement also provides volume control
through the properties listed in Table E-12.

Table E-11. Events provided by the MediaElement

Event Usage

MediaOpened Fired when the media has been opened and is about to play (which is normally after the
MediaElement is loaded)

MediaEnded Fired when the media has completed playing

MediaFailed Fired if the media did not load correctly or could not be found

Table E-12. Volume control properties provided by the MediaElement

Property Meaning

Volume The current level of volume for the media.

Balance The position in stereo space for the two audio channels (where –1 is left, 1 is right, and 0, the default, is
the middle position).

IsMuted A Boolean value that controls whether audio can be heard. Setting this property has no effect on the
Volume property.

Development Model | 797

Controlling Animations
In addition to controlling media, Silverlight allows you to control animations. For
example, here is a simple piece of XAML that displays a circle and then animates the
opacity from visible to invisible, then back to visible:

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="480" Height="320"
 Loaded="root_Loaded">
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard Completed="circleAnimation_Complete">
 <DoubleAnimation Storyboard.TargetName="theCircle"
 Storyboard.TargetProperty="Opacity"
 From="1" To="0"
 Duration="0:0:2"
 AutoReverse="True" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Canvas.Triggers>
 <Ellipse x:Name="theCircle"
 Canvas.Left="50" Canvas.Top="50"
 Width="100" Height="100"
 Fill="Blue" />
</Canvas>

The Storyboard element provides a Completed event that fires when the storyboard has
finished. This allows us to alert the user when the circle animation has completed:

function circleAnimation_Complete(sender, args) {
 alert("Circle Animation done");
}

A storyboard is not complete until all animations in a storyboard have
finished.

Controlling animation execution

Storyboards provide a number of methods to allow you to control their playback.
These methods are listed in Table E-13.

Table E-13. Storyboard playback methods

Method Usage

begin Starts an animation

stop Stops an animation

798 | Appendix E: Silverlight

For example, we can add an event handler for the mouse’s left button on the Ellipse
from our earlier example (allowing us to respond to a mouse click on the circle):

...
<Ellipse x:Name="theCircle"
 Canvas.Left="50" Canvas.Top="50"
 Width="100" Height="100"
 Fill="Blue"

MouseLeftButtonUp="theCirle_MouseLeftButtonUp" />
...

To be able to stop the animation, we need to name the storyboard that contains the
animation:

...
 <Storyboard x:Name="circleStoryboard">
 <DoubleAnimation Storyboard.TargetName="theCircle"
 Storyboard.TargetProperty="Opacity"
 From="1" To="0"
 Duration="0:0:2"
 AutoReverse="True" />
 </Storyboard>
...

Having named the storyboard, we can stop the animation in the mouse event:

function theCircle_MouseLeftButtonUp(sender, args) {
var circleStoryboard = sender.findName("circleStoryboard");

 // Stop our Storyboard
circleStoryboard.stop();

}

Delaying storyboards

In our earlier examples, we showed only storyboards starting within a Canvas (when
the Canvas is loaded, in fact). More often, we will want to delay the start of a story-
board until some user interaction (e.g., a mouse click). To accomplish this, Silver-
light supports placing Storyboards inside a Canvas.Resources section. This prevents
the storyboard from starting immediately:

...
 <Canvas.Resources>
 <Storyboard x:Name="circleStoryboard"
 Completed="cirlceAnimation_Complete">

pause Temporarily stops an animation at any point; allows resume to be called to continue the animation

resume Continues an animation after calling pause

seek Moves an animation to a particular position in time

Table E-13. Storyboard playback methods (continued)

Method Usage

Development Model | 799

 <DoubleAnimation Storyboard.TargetName="theCircle"
 Storyboard.TargetProperty="Opacity"
 From="1" To="0"
 Duration="0:0:2"
 AutoReverse="True" />
 </Storyboard>
 </Storyboard>
...

Like our earlier example, we can get the storyboard (by name), but this time we can
tell it to start in reaction to our mouse event:

function theCircle_MouseLeftButtonUp(sender, args) {
var circleStoryboard = sender.findName("circleStoryboard");

 // Start our Storyboard
circleStoryboard.begin();

}

Mixing Silverlight and HTML
Although it is possible to create entire XAML-based user interfaces using Silverlight
in your own projects, more likely you will want to use XAML and HTML together.
For example, you might have an HTML button that starts a storyboard, as shown in
Example E-14.

Example E-14. Mixing XAML and HTML

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <script type="text/JavaScript" src="js/silverlight.js"></script>
 <script type="text/JavaScript">

 function startButton_Clicked() {
 var host = document.getElementById("theHost");
 var theStoryboard = host.content.findName("theStoryboard");
 theStoryboard.stop();
 theStoryboard.begin();
 }

 </script>
</head>
<body>
 <form>
 <input id="theButton" type="button" value="Click to Start"
 onclick="startButton_Clicked();"></input>
 <div id="theContainer">
 <script type="text/JavaScript">
 Sys.Silverlight.createObject(
 "plugin.xaml",
 document.getElementById("theContainer"),
 "theHost",

800 | Appendix E: Silverlight

Mixing HTML and Silverlight elements in the same page is the most likely model for
adding Silverlight content to your web pages. You can host more than one piece of
Silverlight content in a single HTML page by simply creating more than one host on
your page. The containing HTML element and the host object must have unique
names, but otherwise you can just add multiple elements to a single HTML page, as
shown in the following example:

...
<div id="firstContainer">
 <script type="text/JavaScript">
 Sys.Silverlight.createObject(
 "first.xaml",
 document.getElementById("firstContainer"),
 "firstHost",
 { width: "400", height: "400", version: "0.9"},
 {});
 </script>
</div>
<div id="secondContainer">
 <script type="text/JavaScript">
 Sys.Silverlight.createObject(
 "second.xaml",
 document.getElementById("secondContainer"),
 "secondHost",
 { width: "400", height: "400", version: "0.9"},
 {});
 </script>
</div>
...

Although you can mix Silverlight into HTML simply by adding it to the markup of
the page, you cannot mix HTML into XAML. Each XAML document must contain
only XAML. For instance, the following does not work:

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Rectangle Width="100" Height="100" Fill="Black" />
 <!-- THIS DOES NOT WORK -->
 <input type="button" value="Click to Start"></input>
</Canvas>

The Silverlight host contains the XAML object model. The Silverlight host is just
another object within the HTML DOM. This allows us to use JavaScript to change

 { width: "400", height: "400", version: "0.9"},
 {});
 </script>
 </div>
 </form>
</body>
</html>

Example E-14. Mixing XAML and HTML (continued)

Development Model | 801

both XAML and HTML objects from within the same script. For example, if we want
to disable the HTML button in the page once we have used it to start our story-
board, we can use the HTML DOM:

...
function startButton_Clicked() {
 var host = document.getElementById("theHost");
 var theStoryboard = host.content.findName("theStoryboard");
 theStoryboard.stop();
 theStoryboard.begin();

 var button = document.getElementById("theButton");
 button.disabled = true;
}
...

In the real world, it is best to allow each technology to do what it does best. Attempt-
ing to create text layouts and flows using Silverlight XAML is just not feasible with
the current state of Silverlight. Likewise, using HTML to create complex drawings is
possible, but it is not the best tool for that job.

The Silverlight Downloader
A typical Silverlight application may comprise a number of different parts, including
images, media, XAML, and code. Although Silverlight will typically download these
pieces of the application for you, in some cases it is helpful to be able to control the
download process (i.e., to give the user feedback regarding how long the download
will take).

Silverlight provides a special type of object that gives you control over the download-
ing of content. This object is the Silverlight Downloader* (it works similarly to the
XmlHttpRequest object). Before you can use the Downloader to make a request, you
must create it with the Silverlight host object, like so:

function root_Loaded(sender, args) {
 var host = sender.getHost();
 var downloader = host.createObject("downloader");
 ... // do something with the downloader
}

The Downloader works by specifying a file to download. The Downloader then fires
events both during the file’s retrieval and at completion. For example:

// Setup some event handling
downloader.addEventListener("downloadProgressChanged",
 "onDownloadProgressChanged");
downloader.addEventListener("completed", "onCompleted");

* Although Silverlight contains a Downloader, there is no corresponding object to facilitate uploading to the server.

802 | Appendix E: Silverlight

To specify the file to retrieve, call the open method:

// Initialize the Downloader request.
downloader.open("GET", "addme.xaml");

To start the download, call the send method:

// Execute the Downloader request.
downloader.send();

Once downloading has started, the downloadProgressChanged event will fire periodically,
allowing you to report progress to the user, as shown by the downloadProgress property:

function onDownloadProgressChanged(sender, args) {
 var progressText = sender.findName("progressText");
 progressText.Text = Math.floor(sender.downloadProgress * 100) + "%";
}

The completed event fires when the download is finished. You then use the
responseText property to get the text of the downloaded file:

function onCompleted(sender, args) {
 // Get the result of our request
 var response = sender.responseText;

 // Use the host object to create our new XAML object
 var host = sender.getHost();
 var newObject = host.content.createFromXaml(response);

 // Find the root so we can add the new object
 var root = host.content.findName("root");
 root.children.add(newObject);
}

ASP.NET and Silverlight
Hosting Silverlight content in a plain HTML file is an interesting exercise, but most
.NET web developers will want to be able to integrate Silverlight with their ASP.
NET projects. Have no fear, Silverlight and ASP.NET work well together.

Commingling with ASP.NET
In the most basic case of integration between Silverlight and ASP.NET, you will want
to add Silverlight content to existing .aspx pages. Because ASP.NET is a server-side
technology and Silverlight is client-side, you can simply add the Silverlight to the
markup of any .aspx page, as shown in Example E-15.

Example E-15. Silverlight on an ASP.NET page

<%@ Page Language="C#"
 AutoEventWireup="true"
 CodeFile="Default.aspx.cs"
 Inherits="_Default" %>

ASP.NET and Silverlight | 803

The example shows a simple XAML document on an ASP.NET web page alongside
HTML and server-side content. Much as you used the createFromXaml method of the
Silverlight host to create dynamic XAML, ASP.NET allows you to create dynamic
XAML on the server as well.

Dynamic XAML
HTML is markup. XAML is markup. If we can emit HTML dynamically with ASP.NET,
we should be able to do the same with XAML. For example, we can create a new .aspx
page that emits a new XAML document, as shown in Example E-16.

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>ASP.NET and Silverlight - Together!</title>
 <script type="text/JavaScript" src="js/silverlight.js"></script>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h3>ASP.NET and Silverlight</h3>
 <p><asp:Button ID="clickMe" runat="server" Text="Click me!" /></p>
 </div>
 <div id="agContainer">
 <script type="text/JavaScript">
 Sys.Silverlight.createObject(
 "xaml/plugin.xaml",
 document.getElementById("agContainer"),
 "theHost",
 { width: "200", height: "200", version: "0.9"},
 {});
 </script>
 </div>
 </form>
</body>
</html>

Example E-16. MyXAML.aspx

<!-- MyXAML.aspx -->
<%@ Page Language="C#"
 AutoEventWireup="true"
 CodeFile="MyXaml.aspx.cs"
 Inherits="MyXaml"

ContentType="text/xaml" %>

<Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="400">
<%= GenerateCircles(10) %>

</Canvas>

Example E-15. Silverlight on an ASP.NET page (continued)

804 | Appendix E: Silverlight

Note that we change the content type to text/xaml to indicate the content we are gen-
erating. Also, note that we are calling a code-behind method called GenerateCircles,
which creates a number of Ellipse elements and returns a string of all the circles. This
method is shown in Example E-17.

If you run this new page, it will display in the browser as an XML file, as shown in
Figure E-11.

Example E-17. GenerateCircles method

// MyXAML.aspx.cs
...

public partial class MyXAML : System.Web.UI.Page {
 ...
 protected string GenerateCircles(int numCircles) {
 StringBuilder bldr = new StringBuilder();
 int left = 10;
 int top = 10;
 for (int x = 0; x < numCircles; ++x) {
 int size = top;
 bldr.AppendFormat("<Ellipse Width=\"{0}\" Height=\"{0}\" ", size);
 bldr.AppendFormat("Canvas.Top=\"{0}\" ", top);
 bldr.AppendFormat("Canvas.Left=\"{0}\" ", left);
 bldr.AppendFormat("Fill=\"#{0:X6}\" ", top * 100);
 bldr.Append(" />");

 top += 10;
 left += 10;
 }

 return bldr.ToString();
 }
}

Figure E-11. MyXAML.aspx in the browser

ASP.NET and Silverlight | 805

We now have an ASP.NET page that generates the XAML we want to show in the
browser. We can use that as the source of XAML on the original page:

<!-- MyXAML.aspx -->
...
 <div id="agContainer">
 <script type="text/JavaScript">
 Sys.Silverlight.createObject(
 "MyXAML.xaml",
 document.getElementById("theContainer"),
 "theHost",
 { width: "400", height: "400", version: "0.9"},
 {});
 </script>
 </div>
...

The default.aspx page now uses dynamic XAML to show the multiple circles, as
shown in Figure E-12.

XAML and User Controls
Just as we created an .aspx page that could create dynamic content, we can do the same
for user controls. This allows us to create componentized XAML content, much as we
do with HTML in ASP.NET today. To illustrate this, we can create a new ASP.NET
user control to emit a XAML button (based on the earlier button examples).
Example E-18 shows a simple user control that creates XAML representing our button.

Figure E-12. Default.aspx with dynamic XAML (Color Plate 29)

806 | Appendix E: Silverlight

Notice that we’re using the ASP.NET <%= %> construct to replace certain values in our
control (e.g., Width, Height, Name, etc.). In the code behind shown in Example E-19, we
can specify the different attributes of our control so that users can use simple attributes.

Example E-18. XAML user control

<%-- XamlButton.ascx --%>
<%@ Control Language="C#"
 AutoEventWireup="true"
 CodeFile="XamlButton.ascx.cs"
 Inherits="XamlButton" %>
<Canvas x:Name="<%= Name %>"
 Canvas.Left="<%= Left %>"
 Canvas.Top="<%= Top %>"
 Loaded="root_Loaded"
 Cursor="Hand">
 <Rectangle Height="<%= Height %>" Width="<%= Width %>"
 Stroke="LightGray" StrokeThickness="2"
 RadiusX="25" RadiusY="25">
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop x:Name="<%= Name %>_gradientStop1"
 Color="#EEEEEE" Offset="0"/>
 <GradientStop x:Name="<%= Name %>_gradientStop2"
 Color="#444444" Offset="1"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <TextBlock Canvas.Top="4" Canvas.Left="14"
 FontSize="<%= FontSize %>" Foreground="#BBBBBB"
 Text="<%= Text %>"/>
 <TextBlock Canvas.Top="3" Canvas.Left="13"
 FontSize="<%= FontSize %>" Foreground="#444444"
 Text="<%= Text %>"/>
</Canvas>

Example E-19. XAML user control code behind

// XAMLButton.ascx.cs

...

public partial class XamlButton : System.Web.UI.UserControl {
 string _name;
 int _width = 100;
 int _height = 25;
 int _top = 0;
 int _left = 0;
 string _text = "";
 int _fontSize = 14;

 public string Name {
 get { return _name; }
 set { _name = value; }
 }

ASP.NET and Silverlight | 807

Now that we have a user control, we can register it in our XAML page, like so:

<%-- UsingAscx.aspx --%>
<%@ Page ... >
<%@ Register Src="~/XamlButton.ascx"
 TagPrefix="myxaml"
 TagName="Button" %>
<html>
...
 <script type="text/xaml"id="theXaml"><?xml version="1.0"?>
 <Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="400">
 <myxaml:Button Name="button1"
 Text="Click Me"
 runat="server" />
 <myxaml:Button Name="button2"
 Text="Click me too"
 Top="50" Left="50"
 Width="175" Height="35"
 FontSize="18"
 runat="server" />

 public int Width {
 set { _width = value; }
 get { return _width; }
 }

 public int Height {
 set { _height = value; }
 get { return _height; }
 }

 public int Top {
 set { _top = value; }
 get { return _top; }
 }

 public int Left {
 set { _left = value; }
 get { return _left; }
 }

 public string Text {
 set { _text = value; }
 get { return _text; }
 }

 public int FontSize {
 set { _fontSize = value; }
 get { return _fontSize; }
 }
}

Example E-19. XAML user control code behind (continued)

808 | Appendix E: Silverlight

 </Canvas>
 </script>
...
</html>

In this example, new buttons are created within a XAML script block in a standard
ASP.NET page. This allows us to create dynamic, componentized XAML content on
the server. Our resulting page looks like Figure E-13.

Our new user control emits the right XAML to show our buttons, but we are not
done. We will need to wire each button to mouse events to make them work as real
buttons do. To do this, we need to add the following:

// XamlButton.js
function setupButton(button) {
 button.addEventListener("mouseEnter", "handleMouseEnter");
 button.addEventListener("mouseLeave", "handleMouseLeave");
 button.addEventListener("mouseLeftButtonUp", "handleMouseUp");
 button.addEventListener("mouseLeftButtonDown", "handleMouseDown");
}

function handleMouseEnter(sender, eventArgs) {
 var gradientStop1 = sender.findName(sender.Name +
 "_gradientStop1");
 var gradientStop2 = sender.findName(sender.Name +
 "_gradientStop2");
 gradientStop1.offset = 1;
 gradientStop2.offset = .203;
}

function handleMouseLeave(sender, eventArgs) {
 var gradientStop1 = sender.findName(sender.Name +
 "_gradientStop1");
 var gradientStop2 = sender.findName(sender.Name +
 "_gradientStop2");

Figure E-13. XAML user control in action

ASP.NET and Silverlight | 809

 gradientStop1.offset = 0;
 gradientStop2.offset = 1;
}

function handleMouseUp(sender, eventArgs) {
 var gradientStop1 = sender.findName(sender.Name +
 "_gradientStop1");
 var gradientStop2 = sender.findName(sender.Name +
 "_gradientStop2");
 gradientStop1.offset = 1;
 gradientStop2.offset = .203;
}

function handleMouseDown(sender, eventArgs) {
 var gradientStop1 = sender.findName(sender.Name +
 "_gradientStop1");
 var gradientStop2 = sender.findName(sender.Name +
 "_gradientStop2");
 gradientStop1.offset = 1;
 gradientStop2.offset = 1;
}

To make sure this script is included on each page that needs it, we can use the ASP.NET
Page object’s ClientScript property in the Page_Load event handler:

// XamlButton.ascx.cs
public partial class XamlButton : System.Web.UI.UserControl {
 ...

 protected void Page_Load(object sender, EventArgs e) {
 // Set up the shared XAML Script
 Page.ClientScript.RegisterClientScriptInclude(this.GetType(),
 "XAMLBUTTON.JS",
 "js/XamlButton.js");
 }
}

This call to RegisterClientScriptInclude ensures that every page that uses this con-
trol will have the js/XamlButton.js script included. If this is called with the same type
and key (the first and second parameters), the script is not included more than once.

Now that the script is included, we also need a way to call the setup function in the
script. We do this in several steps. In the XAML markup for the button’s canvas, we
target the event handler in the Loaded attribute:

<%--XamlButton.ascx--%>
<%@ Control ... %>
<Canvas x:Name="<%= Name %>"
 Canvas.Left="<%= Left %>"
 Canvas.Top="<%= Top %>"

Loaded="<%= LoadedFunctionName %>"
Cursor="Hand">

 ...
</Canvas>

810 | Appendix E: Silverlight

Notice that we have replaced the name of the Loaded event handler with a control prop-
erty called LoadedFunctionName. We now need to add this property to our user control:

// XamlButton.ascx.cs
public partial class XamlButton : System.Web.UI.UserControl {
 ...

 public string LoadedFunctionName {
 get { return string.Concat(Name, "_Loaded"); }
 }
}

This returns the button’s name with _Loaded appended to it, so the button Canvas’s
Loaded event will look for an event handler with this tailor-made name.

For each button, we now need a handler with the name we have created. The follow-
ing code, added to the button class’s PageLoad method, will create (at runtime) a tai-
lored script function for the button. Because this code uses the LoadedFunctionName
property again, the function will receive the required custom name. Its purpose is
simply to call the setupButton function we defined earlier, passing it a reference to
the button. When setupButton is called, it hooks up the four mouse event handlers
that were also defined earlier:

// XamlButton.ascx.cs
public partial class XamlButton : System.Web.UI.UserControl {
 ...

 protected void Page_Load(object sender, EventArgs e) {
 ...

 // Add Button Script
 string script =
 string.Format(@"
 function {0}(sender, args) {{
 setupButton(sender);
 }}",
 LoadedFunctionName);
 string key = string.Format("{0}_BUTTONSETUP", Name);
 Page.ClientScript.RegisterClientScriptBlock(
 this.GetType(), key, script, true);
 }
}

Now that we have all the mouse events wired up to each button, we’re almost done.
The only remaining task is to add support for a named function to call when the button
is clicked. We can’t simply add a MouseLeftButtonUp event handler, because one already
exists in the button’s JavaScript (to return the button’s look and feel to normal once the
button has been clicked). To get around this problem, we add a new function name that
is optionally called when the button’s MouseLeftButtonUp event is fired in the button.
One solution to this is to modify the setupButton function to add a click event handler:*

* See the Silverlight SDK’s “VideoLibrary” sample for an example of how to do this using classes and prototypes.

ASP.NET and Silverlight | 811

// XamlButton.js
var clickEvents = new Array();

function setupButton(button, clickHandler) {
 button.addEventListener("mouseEnter", "handleMouseEnter");
 button.addEventListener("mouseLeave", "handleMouseLeave");
 button.addEventListener("mouseLeftButtonUp", "handleMouseUp");
 button.addEventListener("mouseLeftButtonDown", "handleMouseDown");

 // If handler is specified, store the name to look up later
 if (clickHandler != null) {
 clickEvents.push(new Array(button.Name, clickHandler));
 }
}

...

function handleMouseUp(sender, eventArgs) {
 var gradientStop1 = sender.findName(sender.Name +
 "_gradientStop1");
 var gradientStop2 = sender.findName(sender.Name +
 "_gradientStop2");
 gradientStop1.offset = 1;
 gradientStop2.offset = .403;

 // Look for click event and fire it if necessary
 for (var x = 0; x < clickEvents.length; ++x) {
 var clickEvent = clickEvents[x];
 var buttonName = clickEvent[0];
 if (buttonName == sender.Name) { // This is our button
 var handler = clickEvent[1];
 handler.call(sender, eventArgs);
 }
 }
}

...

Because each button will have its own click handling function, we collect them all in
an array (clickEvents). Then, in the shared handleMouseUp function, we search this
collection to find the right function for the button that was clicked.

Now we need to pass the new parameter to setupButton. So, we add a ClickHandler
property, which we will use to hold the name of the function. We then adapt the
script-generating code in Page_Load to pass this to setupButton:

// XamlButton.ascx.cs
public partial class XamlButton : System.Web.UI.UserControl {
 protected void Page_Load(object sender, EventArgs e) {
 ...

 // Add Button Script
 string script =
 string.Format(

812 | Appendix E: Silverlight

 @"function {0}(sender, args) {{
 setupButton(sender, {1});
 }}",
 LoadedFunctionName,
 ClickHandler.Length > 0 ? ClickHandler : "null");
 string key = string.Format("{0}_BUTTONSETUP", Name);
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(), key, script, true);
 }

 string _clickHandler = "";
 public string ClickHandler {
 set { _clickHandler = value; }
 get { return _clickHandler; }
 }
}

Lastly, we use the Page markup to fill in the ClickHandler property with the name of
the function to be called:

<%-- UsingAscx.aspx --%>
<%@ Page ... %>
<%@ Register Src="~/XamlButton.ascx"
 TagPrefix="xaml"
 TagName="Button" %>
<html>
...
 <script type="text/xaml"id="theXaml"><?xml version="1.0"?>
 <Canvas xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="400">
 <xaml:Button Name="button1"
 Text="Click Me"
 runat="server" />
 <xaml:Button Name="button2"
 Text="Click me too"
 Top="50" Left="50"
 Width="175" Height="35"
 FontSize="18"

ClickHandler="button2_Clicked"
 runat="server" />
 </Canvas>
 </script>

 <script type="text/JavaScript">
 function button2_Clicked(sender, args) {
 alert("button2 was clicked");
 }
 </script>
...
</html>

The button2_Clicked function will now be called when a user clicks on our button,
and it will carry out whatever actions are needed.

A Taste of Silverlight 1.1 | 813

In most cases, when using ASP.NET controls to emit XAML, you will
want to use inline XAML instead of external XAML resources. This is
because when emitting XAML, you will likely want to emit JavaScript
to the page as well. If you want to use ASP.NET controls that emit
XAML on XAML-only pages (as shown in the dynamic XAML exam-
ple earlier), you will not be able to emit the JavaScript to the page
directly.

A Taste of Silverlight 1.1
Microsoft recently announced the availability of an alpha (think pre-CTP) version of
Silverlight 1.1. This new version allows you to write your logic in .NET-compliant
languages, including C#, Visual Basic, and IronPython. This new version supports a
mini version of .NET. This means Silverlight 1.1 is still cross-platform and cross-
browser and still uses a small runtime component.

Using Silverlight 1.1 is very similar to Silverlight 1.0. Hosting Silverlight in HTML still
requires the Silverlight.js, but you specify the 0.95 version to specify Silverlight 1.1, as
shown in Example E-20.

Example E-20. Silverlight 1.1 hosting

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Hello Silverlight 1.1</title>
 <script type="text/JavaScript" src="silverlight.js"></script>
</head>
<body>
 <form>
 <div id="theHost">
 <script type="text/JavaScript">
 Sys.Silverlight.createObject(
 "Scene.xaml", // Url to the Xaml File
 document.getElementById("theHost"), // The Host element
 "SilverlightControl", // Silverlight Object Name
 { // Properties object
 width: "400", // Width of the Host
 height: "400", // Height of the Host
 version: "0.95" // Silverlight Plug-in
 // Version
 },
 {} // Event to wire
 // (onLoad and onError)
);
 </script>
 </div>
 </form>
</body>
</html>

814 | Appendix E: Silverlight

Creating your XAML is also similar to Silverlight 1.0, except that you can specify the
class that controls your particular XAML document. You specify the class by using
the x:Class attribute of the root Canvas. This attribute includes both the name of the
class (MyProject.Page) and the location of the assembly that contains the class
(ClientBin/MyProject.dll). This assembly is downloaded to the client and run in a
mini version of .NET:

<Canvas x:Name="parentCanvas"
 xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Loaded="Page_Loaded"

x:Class="MyProject.Page;assembly=ClientBin/MyProject.dll"
 Width="640"
 Height="480"
 >
 <MediaElement x:Name="thePlayer" Width="400" Height="250" />
</Canvas>

If the x:Class attribute exists, all the event handlers must exist in the class you spec-
ify (instead of the name of the JavaScript functions as we saw earlier). As you saw in
the preceding example, the Loaded event uses Page_Loaded as the event handler. This
means our class must have a Page_Loaded method:

namespace SilverlightProject2 {
 public partial class Page : Canvas {
 public void Page_Loaded(object o, EventArgs e) {
 // Required to initialize variables
 InitializeComponent();
 }
 }
}

In addition, Silverlight 1.1 also provides automatic access to named elements in the
managed code. For example, let’s add a MediaElement (named thePlayer):

<Canvas ...>
 <MediaElement x:Name="thePlayer" Width="400" Height="250" />
</Canvas>

Our Page_Loaded event handler can now access the MediaElement by the local field
(called thePlayer):

namespace SilverlightProject2 {
 public partial class Page : Canvas {
 public void Page_Loaded(object o, EventArgs e) {
 // Required to initialize variables
 InitializeComponent();

thePlayer.Source = "bear.wmv";
thePlayer.MediaEnded += new EventHandler(thePlayer_MediaEnded);

 }

void thePlayer_MediaEnded(object sender, EventArgs e) {
// Do Something...

Tool Support | 815

}
 }
}

The .NET integration with Silverlight includes key features of both the CLR and the
BCL to allow for a rich programming model. This includes key features in the BCL as
well as support for writing custom controls to be hosted in your XAML. Much of the
support is still in flux, and what Silverlight 1.1 ultimately delivers may be very different
from this early alpha release. Understanding that a real .NET runtime is part of the Sil-
verlight 1.1 story is the important piece of information. The specifics will change.

Tool Support
In most of the examples in this appendix, the XAML I have shown is fairly small and
straightforward. The reality is that most interesting XAML is much more complex
than what I can show you in a simple code example. Hand-coding complex XAML
can be difficult, but that is where tools come in.

There are several tools to help you work with Silverlight XAML:

• The Expression Toolset (including Design and Blend)

• Visual Studio (including the Silverlight JavaScript Application Project)

• Third-party tools (e.g., Photoshop and Illustrator)

Expression Toolset
New to the Microsoft family of products is the Expression set of tools:

Expression Design
An Adobe Illustrator-like tool for creating vector-based designs

Expression Blend
A design tool that works directly against XAML and interoperates with developer-
level tools (e.g., Visual Studio)

Expression Web
A professional web design tool

Expression Media
A multimedia asset management tool as well as a video/audio editing and
transcoding tool

For the Silverlight developer, the three parts of Expression that are of most interest
are Expression Design, Expression Media, and Expression Blend. Currently, Design
and Media are compatible with Silverlight. A new version of Blend (Version 2) is also
compatible with Silverlight. At the time of this writing, prerelease versions of Expres-
sion Media and Expression Blend Version 2 are available.*

* http://microsoft.com/expression

816 | Appendix E: Silverlight

Expression Design

You use Design to mix vector and raster (i.e., bitmap) designs together. Expression
Design allows you to create complex designs. The tool is geared primarily toward
designers, rather than developers. Figure E-14 shows Expression Design (loaded with
the Popcan sample).

Expression Design is a complex tool that we do not have the space to cover in
depth. But for creating Silverlight XAML, it is necessary to be aware of one key
Design capability.

Design can export files directly as Silverlight-compliant XAML. To take a Design file
and export it for XAML, you would select File ➝ Export ➝ XAML from the main
menu. When exporting from Design, open the Document Format drop down and
select Silverlight, as shown in Figure E-15.

Figure E-14. Expression Design

Tool Support | 817

Expression Blend

Whereas Expression Design is the right tool for creating static designs, Expression
Blend is a tool for working with native XAML. You use Blend for creating anima-
tions for Silverlight (as well as WPF). The Expression Blend window looks similar to
the Expression Design window. Instead of working on an individual design file,
Blend works with projects. Figure E-16 shows the Expression Blend user interface.

Expression Blend Version 2 fully supports the use of Silverlight for development. It
creates new Silverlight projects and generates fully Silverlight-compatible XAML.

Expression Media

For applications that include video and audio streams, Expression Media is a tool for
transcoding video and audio to the right format (cropping, trimming, adding metadata
and alpha channels, and more). The preview version of Expression Media is also avail-
able now and supports encoding video packaged in several different Silverlight skins.

Visual Studio
The Silverlight 1.0 SDK includes an additional installer for adding a new project type
in Visual Studio. You can find this installer in the Tools folder of the SDK (usually C:\
Program Files\Microsoft SDKs\Silverlight). Installing it will add a new project type to
Visual Studio. Once you install the new project type, you can access it (it’s called a
Silverlight JavaScript Application) inside Visual Studio. You can find this project type
under Visual C# projects. Figure E-17 shows you the New Project dialog with this
project template.

Figure E-15. Exporting for Silverlight from Expression Design

818 | Appendix E: Silverlight

This new project type is a simple test bed for a XAML file hosted in HTML. Even
though this project is hosted under the Visual C# project type, it creates a simple
HTML page where you can specify and test your Silverlight assets before you inte-
grate them into an ASP.NET project. When you run the project, it will run the
HTML file hosting your XAML and allow you to set breakpoints to debug the Java-
Script. Figure E-18 shows the Solution Explorer for a newly created project using the
template.

Figure E-16. Expression Blend

Figure E-17. Silverlight JavaScript Application project type

Examples in the World | 819

Other Tools
Designers are used to working with tools such as Adobe’s Photoshop and Illustrator.
To use the output from these tools, you need a way to create XAML files that are
compatible with Silverlight. The key is to use Expression Design as the way to create
XAML from these tools. Expression Design can import both Photoshop and Illustrator
files. Once the files are imported into Design, it is simple to export them as Silverlight-
compatible XAML (as we saw earlier in this appendix).

Examples in the World
Beyond the resources that are available from the Silverlight DevCenter* or the Silver-
light web site,† there are several very good examples of Silverlight on the Web today.
They include:

Mike Harsh’s Lumines Hi-Score
http://blogs.msdn.com/mharsh/archive/2007/03/26/lumines-live-60-second-top-
score-in-wpf-e.aspx (http://tinysells.com/82)

ScreenEdit
http://www.screenedit.co.uk/sevideo/9992/9992.htm (http://tinysells.com/83)

Airline Demo
http://blogs.msdn.com/delay/archive/2007/05/01/the-web-just-got-even-better-
silverlight-announced-at-mix07.aspx (http://tinysells.com/84)

Figure E-18. Application project items

* http://www.microsoft.com/silverlight

† http://silverlight.net

820 | Appendix E: Silverlight

Where Are We?
Silverlight is a technology that allows use of XAML to design web content that works
across different browsers and operating systems. By delivering XAML to the browser
and using scripts to automate the XAML, we can create compelling content for a web
audience.

Though named similarly, WPF and Silverlight are very different technologies. Silver-
light’s entire programming model is based on writing client-side scripts for use in a
web browser. Although WPF XAML and Silverlight XAML have a lot in common,
we still need to learn how to automate Silverlight’s XAML assets in a completely dif-
ferent way.

One main question remains unanswered: when should I use WPF and when
should I use Silverlight? You should use Silverlight when your intended audience
is widely distributed across operating systems and web browsers. Because WPF
requires Windows and the large .NET 3.0 runtime, it is perfect in scenarios where
you have more control over your users’ environment. Silverlight, on the other hand,
is useful for true Internet applications. Although it does require a runtime, that run-
time is very small in comparison and will be delivered in a way with which web users
are comfortable (in the style of Adobe Flash’s runtime).

—Shawn Wildermuth
Microsoft MVP (C#)

821

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
& (ampersand), 143
* (asterisk), 74
{...} (curly braces), 696
⁄ (forward slash), 252
_ (underscore), 143

Numbers
3D graphics, 34, 612

3D data visualization, 642–647
analogous 3D and 2D types, 629
cameras, 613–618

MatrixCamera, 618
OrthographicCamera, 613, 617
PerspectiveCamera, 613–617

coordinate system, 618
hit testing, 648–650
lights (see lights)
models, 618–629

Geometry3D, 619–621
Materials (see Materials)
ModelVisual3D, 626–629

textures, 635–637
transforms, 637–642

MatrixTransform3D, 641
RotateTransform3D, 639
ScaleTransform3D, 638
Transform3DGroup, 641
TranslateTransform3D, 638

A
AccelerationRatio and DecelerationRatio

properties, 567
access keys, 142

menus and, 163
AccessText element, 143
Activated event, 44
ActiveX controls and WPF, 728
AdornerDecorator, 680
adorners, 678–681
airspace, 730
ambient properties, 656
AmbientLight, 629
ampersand (&), 143
AnchoredBlock abstract base class, 510
Animatable class, 765
animation, 31, 563–566

animating nested properties of
properties, 577

audio and video, 608
clocks, controlling with, 604

properties for monitoring clock
progress, 605

custom animations, 566
dependency properties and, 565
handoffs, 573
IAnimatable interface, 568
keyframe animations, 593–598
path animations, 598–601

DoubleAnimationUsingPath, 599
MatrixAnimationUsingPath, 600
PointAnimationUsingPath, 598

822 | Index

animation (continued)
Silverlight, using for, 779
storyboards, controlling with, 602–604

methods for monitoring storyboard
progress, 603

timelines, 579–593
duration, 583–584
filling, 586–590
hierarchies, 579–582
repetition, 584
speed, 591–593
timeline properties, 579

transition animations, 605–608
triggers, 569–578

action types and usage, 569
DataTrigger and Trigger, 572

types, 566–567
Application class, 4, 36, 386
application manifests, 52
Application object, 36
applications, 4–8, 36–60

application lifetime, 36–48
Activated and Deactivated events, 44
application access, 37
application events, 44–46
application instancing, 46–48
application instancing, desirable

features, 47
dispatcher events, 44
Exit events, 45
implicit creation, 38–40
main windows, 41
SessionEnding events, 45
shutdown modes, 43
single instance applications, 47
Startup events, 44
top-level windows, 41

application settings, 55–59
designing, 55
integration with WPF, 59
using, 57

building, 2–4, 35
content models, 16–18
controls (see controls)
data binding, 22–27
dependency properties, 27
deployment, 48–55

publishing, 49
excuse generator, 48–59
layout, 19–22
resources, 28
styles, 30
user experience, 52

ApplicationSettingsBase class, 55
ArcSegment, 420
arrange phase, layout, 105
ArrangeOverride method, 106
ArrayExtension, 699
ASP.NET and Silverlight, 802

dynamic XAML, 803
Assembly class, 383
assembly manifest resources, 384
asterisk (*), 74
asynchronous APIs, 739
asynchronous printing, 542
AsyncOperationManager classes, 747
attached events, 116, 666
attached properties, 66, 67, 658, 693–695

property element syntax and, 695
attached property syntax, 21

B
BackgroundWorker class, 748
BAML, 713
base classes, 652–655, 750–765

Animatable class, 765
ContentControl class, 757
ContentElement class, 761
Control class, 756
core versus framework parts, 753
Decorator class, 755
DependencyObject class, 750
DispatcherObject class, 750
FrameworkContentElement class, 762
FrameworkElement class, 754
Freezable class, 762
HeaderedContentControl class, 758
HeaderedItemsControl class, 760
ItemsControl class, 760
Panel class, 755
Selector class, 761
Shape class, 756
UIElement class, 753
UserControl class, 759
Visual class, 752
Visual3D class, 752

BasedOn style attribute, 266
BaselineAlignment, 494
BeginAnimation method, 565
BeginInvoke method, 742

lack of corresponding EndInvoke, 744
BeginStoryboard, 570
behavior, 708
Bézier curves, 423–425
binary resources, 383–389

Index | 823

Binding class properties, 178
Binding markup extension, 705
binding path syntax, 195
bindings, 177–180
bitmaps, 429–439

BitmapEffects, 438
creating, 433–436
encoders and decoders, 437
thumbnails and, 549–550

Block base class, 501–509
BlockUIContainer, 508
common block properties, 502
List, 503–505
Paragraph, 502
Section, 508
Table, 505–508
TextAlignment, 477

blocking APIs, 738
Brimelow, Lee, xvii
bubbling routed events, 111

code-behind file, 112
built-in markup extensions, 698–707

ArrayExtension, 699
Binding, 705
ComponentResourceKey, 704
DynamicResourceExtension, 703
NullExtension, 698
RelativeSource, 705
StaticExtension, 701
StaticResourceExtension, 702
TemplateBindingExtension, 707
TypeExtension, 699

bump maps, 636
ButtonBase base class, 118, 143
buttons, 141–144

C
C# minimal WPF application, 1
C1 and C2 continuity, 601
cameras, 613–618
Canvas, 19, 62, 84–86

Silverlight, usage in, 773
Capture method, 119, 123
Captured property, 120
CellTemplate property, 156
certificates, 53
CharacterEllipsis, 475
CheckBox, 143
Cider, 12
classes, generating in XML, 687
Click events, 118

ClickOnce deployment, 48–55
important features, 54–55
locally installed and online only, 49
user experience, 52

client-side script, 767
clock mode, 609
CLR events, 115

CLR event wrappers, 115
direct routed events, contrasted with, 112

code behind, 708–712
behavior, 708
code in XAML, 711
partial classes, 708

code-behind files, 9
CodeProject, xvii
collection views, 203
ColumnDefinition elements, 71, 72
commands, 109, 124–137

controls, use in, 141
ComponentResourceKey, 704
composition, 405
compression, 555
containers, 35
content models, 16–18
content presenters, 289–291
ContentControl class, 17, 150, 757
ContentElement class, 761
ContextMenu control, 160
Control class, 118, 756
control templates, 32, 285

built-in templates, examining, 304
content presenters, 289–291
data-driven UIs, 308–313
extending templates, 293–296

custom dependency properties,
defining, 294–296

repurposing existing properties, 293
graphics, 33
logical and visual trees, 305–307
lookless controls, 285, 296
minimal control template, 285
performance concerns, 290
required features, 296–302

content placeholders, 299–301
controls with template parts, 298
named parts, 297
placeholders indicated by

properties, 301
property binding, 297

special-purpose elements, 303
styles and, 286–287
template binding, 287–289
template triggers, 292–293

824 | Index

controllable storyboards, 603
controls, 22, 35, 139–141

access keys, 142
buttons (see buttons)
commands, use of, 141
ContextMenu, 160
control templates (see control templates)
custom controls (see custom controls)
events and, 141
GridSplitter, 166
GroupBox and Expander controls, 150
list controls (see list controls)
lookless controls, 285, 296
menus, 160–164
methods, use in, 141
ProgressBar, 145
properties, 141
RichTextBox, 147
slider and scroll controls, 144
text controls (see text controls)
toolbars, 164–166
ToolTip control, 149

.csproj files, 3
cultures, 389
curly braces ({...}), 696
current item, 202
custom animations, 566
custom classes, 6
custom control templates, 668–674

content placeholders, 671
named parts, 669–671
placeholders indicated by properties, 672
property binding, 669

custom controls, 651
adorners, 678–681

AdornerDecorator, 680
base classes, 652–655
commands, 666
default styles, 674
design and storage management, 656
design steps, 652
events

attached event handlers, 666
custom RoutedEvent, 665

FrameworkPropertyMetadataOptions,
664

functionality, 655–668
attached events, 666
change notifications for property

consumers, 661
events, 665
property metadata options, 663

properties, 655–664
attached properties, 658
value change notification, 660

UserControl, 676–678
XAML, using properties from, 658

D
data binding, 22–27, 168, 177–180

application example without data
binding, 168–177

object changes, 171
UI changes, 174

Binding class’s properties, 178
binding one element’s property to another

element’s property, 184
binding path syntax, 195
binding target and binding source, 180
bindings, 177–180
data context, 180
data islands, 182–183
data templates, 26
debugging, 198
dialogs and, 331
explicit data source, 184
implicit data source, 180–182
list data (see list data binding)
relative sources, 197
settings classes, 59
text and, 514–517
UpdateSourceTrigger, 197
using in pages with KeepAlive, 352
validation rules, 189–195
value conversion, 185–189
WPF, in, 25
XAML markup extensions, 26

data islands, 183
data source providers, 228–245

ObjectDataProvider, 229–232
asynchronous data retrieval, 231
passing parameters, 231

relational data, binding to, 233–239
XML data source providers, 239–245

XML dat islands, 241
data templates, 210, 273

DataContext and, 212
styles and, 271–275

setting data templates with, 275
typed data templates, 212

data triggers, 278
data-centric UIs, 308
DataContext property, 180
data-driven UIs, 308–313

Index | 825

DataSourceProvider base class, 229
Deactivated event, 44
debugging and data binding, 198
DecelerationRatio and AccelerationRatio

properties, 567
declarative sorting and grouping of list

data, 227
decorations, 473
Decorator class, 755

custom controls and, 654
Viewbox element, 86–88

default collection views, list data, 219
default styles, 674
dependency properties, 27

animation and, 565
dependency property system, 655
DependencyObject, 750
DependencyProperty object, 565
DependentUpon element, 11
device-independent pixels, 72, 76, 403
dialogs, 322

common dialogs, 323–325
custom dialogs, 325–340

data exchange, 329–332
data validation, 334–338
look and feel, 328
modeless dialogs, 337–340
OK and Cancel, 332–334
showing a custom dialog, 327

data binding and, 331
direct routed events, 111

CLR events, contrast with, 112
DirectionalLight, 630
discrete keyframes, 597
DiscreteObjectKeyFrame, 566
dispatchers, 741

Dispatcher class, 741
DispatcherObject, 740, 750
DispatcherOperation object, 744
DispatcherTimer class, 745
getting onto the right thread, 741–744
multiple UI threads and, 746
obtaining, 741

DispatcherUnhandledExcexception
events, 44

display members of data lists, 207
DisplayMemberBinding property, 156
DockPanel, 19, 62, 66–68

DockPanel.Dock attribute, 66
DoubleAnimation, 564
DoubleAnimationUsingPath, 598

Downloader, 801
DrawGlyphRun method, 486
drawing object model, 399–401

updating of images, 399
DrawingBrush class, 447, 454
DrawingContext drawing operations, 464
DynamicResourceExtension, 703

E
element-typed styles, 268–270

derived types and, 269–270
scoped below the Window, 269
scoped to the application, 269
scoped to the Window, 268

Ellipse, 411
Enhanced Meta File (EMF) format, 522
enter actions, 572
event handling, sender and args

parameters, 785
event triggers, 281

using in animation, 569
event-based asynchronous pattern, 747–749

BackgroundWorker class, 748
events

attached events, 666
controls, raising in, 141
custom controls and, 665

ExceptionValidationRule, 189, 190
exit actions, 572
Exit events, 45
Expander control, 150
explicit data source, 184
Expression toolset, 815–817

Expression Blend, 817
Expression Design, 816
Expression Media, 817

extended buttons, 120
eXtensible Application Markup Language

(see XAML)

F
FieldOfView, 616
Figure, 510
Fill property, 407
filtering list data, 220
findName method, 789
FindResource method, 367
FixedDocument class, 528
FixedDocumentSequence class, 525,

526–528

826 | Index

FixedPage class, 529–533
default size, 530
fonts, bitmaps, and resources, 532
page content limitations, 532
page sizing, 530–532

Flash, 767
Floater, 510
flow documents, 481–484
FlowDirection property, 93–95
focus, 121
Focusable and IsFocused properties, 121
FolderBrowserDialog, 323
FontFamily class, 470
fonts

font classes, 470
FontSize, 471
FontStretch, 471
FontStyle, 472
FontWeight, 472
OpenType fonts, 519

forward slash(/), 252
fragment navigation, 347
frames, 359–360
FrameworkContentElement class, 261, 762
FrameworkElement base class, 261, 366, 754

FindResource method, 367
reference to element resources, 374

FrameworkElement base class properties, 89
FrameworkPropertyMetadataOptions, 664
FrameworkPropertyMetadataOptions.Journal

flag, 351
Freezable class, 626, 762

G
Geometry types, 415

PathGeometry, 418
Geometry3D, 619–621
GeometryGroup object, 416
GeometryModel3D, 618
GetAnimationBaseValue, 568
GetManifestResourceStream method, 383
GetNavigationService method, 344
GetPosition method, 119
global applications, 389–394

satellite resource assemblies, 390
XAML, building localizable applications

with, 391–394
Glyphs element, 529
GlyphTypeface class, 470

graphics, 33, 395
2D transformations, 461–463
3D graphics, 34

(see also 3D graphics)
bitmaps (see bitmaps)
brushes, 405, 439

color, 440
LinearGradientBrush, 442
RadialGradientBrush, 445
SolidColorBrush, 441

composition, 405
drawing object model, 399–401

memory issues, 401
updating of images, 399

DrawingBrush class, 454
ImageBrush class, 453
integration, 395–399

adding graphics to a button, 397
drawing APIs and control APIs, 396
XAML and code, 396

Pen class, 459
pens, 405
rendering on demand, 463–467
resolution independence, 401–404

resolution, coordinates, and
pixels, 403

scaling and rotation, 402
Shape Stroke properties and Pen

equivalents, 408
shapes, 404, 406–429

Ellipse, 411
Line, 412
Path (see Path)
Polygon, 413
Polyline, 413
Rectangle, 409–411
Shape base class, 407
shape objects versus geometrics, 407

Silverlight, using for, 775
TileBrush base class, 447
visual layer programming, 463
VisualBrush class, 456

Grid, 19, 62
column widths and row heights, 72–76

automatic sizing, 73
proportional method, 74

ColumnDefinition and RowDefinition
elements, 71, 72

consistency across multiple grids, 79–83

Index | 827

ShowGridLines property, 72
spanning multiple rows and

columns, 76–79
UniformGrid, 83
Z order and element order, 71
zero-based numbering, 71

grid layout, 20
GridSplitter control, 166
GroupBox control, 150
grouping list data, 221–226

custom group style, 223
custom value converters, 224
declarative sorting and grouping, 227
default group style, 222
establishing data groups, 222
multiple groups, 226

H
Handled property, 114
handoffs, 573
HeaderedContentControl class, 150, 758
HeaderedItemsControl class, 760
Height property, 90
hierarchical binding of list data, 252–256
HierarchicalDataTemplate element, 254
hit testing, 118, 648–650
HorizontalAlignment property, 90
HTML, 766

client-side script and, 767
Java and ActiveX enhancements, 767
navigation to, 363
WPF and, 728

HWND applications
hosting WPF in, 723–727
interoperability limitations, 729–737

airspace, 730
transforms, events, and nested

interoperability, 737
Hyperlink element, 343
hyperlinks, 551–555
hyphenation, 476

language and, 477

I
IAnimatable interface, 568
ICollectionView interface, 203, 204
ICollectionView methods, 205
ICustomTypeDescriptor, 180

Image class, 430
ImageBrush class, 447, 453
images and the text object model, 514
ImageSource class, 432
implicit data source, 180–182
independent mode, 609
inherited properties, 469
InitializeComponent method, 315
ink, 109
ink input, 122

stylus and ink events, 123
InkCanvas, 124
Inline base class, 473, 494
inline styles, 261
inline text, 494–501

InlineUIContainer, 500–501
LineBreak, 499
Run, 495–497
Span, 498

INotifyCollectionChanged interface, 215
INotifyPropertyChanged interface, 171, 181
input, 109

code-based handling versus triggers, 137
commands, 124–137
extension openess, 116

integration, 395–399
interoperability, 715

ActiveX controls, 728
HTML, 728
HWND limitations, 729–737

airspace, 730
transforms, events, and nested

interoperability, 737
HWNDs

hosting WPF in, 723–727
WPF and, 716

Windows Form Controls, hosting in
WPF, 717–720

WPF controls, hosting in Windows
Forms, 720–723

Invoke method, 742
IProvideCustomContentState interface, 351
IScrollInfo, 104
IsFocused and Focusable properties, 121
IsHitTestVisible property, 606
item container generation, 153
items panel templates, 300
ItemsControl base class, 152, 760
ItemsControl-derived controls, 207

828 | Index

J
Januszewski, Karsten, xvii
JPEG bitmap, creating, 549

K
KeepAlive switch, 351

page functions and, 358
XBAPS and, 363

keyboard input, 120–122
keyboard input events, 121
keyboard state, 122

keyframe animations, 593–598
animation types, 597
discrete style, 597
Silverlight, usage in, 779

L
layout, 19–22, 61

attached properties and, 67
common layout properties, 89–99

FlowDirection, 93–95
HorizontalAlignment and

VerticalAlignment, 90
Margin, 91
MinWidth, MaxWidth, MinHeight,

and MaxHeight, 90
Padding, 91
Panel.ZIndex property, 95
RenderTransform and

LayoutTransform, 96–99
Visibility, 92
Width and Height, 90

custom layout, 105–108
measure and arrange, 105
non-fitting content, 99–105
panels (see panels)
rotation of content, 98
ScrollViewer control, 101–105

IScrollInfo, 104
Viewbox element, 86–88

layout model, Silverlight, 773
LayoutTransform property, 96–99, 402
Left property, 318
ligatures, 519

standard and discretionary, 520
lights, 629–635

AmbientLight, 629
calculations, specular power and model

detail, 623
DirectionalLight, 630

PointLight, 631–633
SpotLight, 633

Line, 412
list controls, 152–159

ListView, 155–158
TreeView, 158

list data binding, 200
adding items to data bound

collections, 215
binding list elements to list data

sources, 205
current item, 202

getting the current item, 203
navigating between items, 204

data source providers (see data source
providers)

data templates, 210
DataContext and, 212
typed data templates, 212

declarative sorting and grouping, 227
default collection views, 219
display members, value members, and

look-up bindings, 207
filtering, 220
grouping, 221–226

custom group style, 223
custom value converters, 224
default group style, 222
establishing data groups, 222
multiple groups, 226

hierarchical binding, 252–256
INotifyCollectionChanged interface, 215
list changes, 215–217
list data targets, 205
ListBox control, 205
look-up tables, binding to, 209
master-detail binding, 245–252
SelectedValue, 208
sorting, 217–219
ToString method and, 207

ListBox class, 207
locally installed applications, 49
logical focus, 121
logical trees, 305
LookDirection property, 615
lookless controls, 285, 296
look-up bindings, 207
look-up tables

binding to selected values, 210
data, binding to, 209
helper for populating, 208
suitable for binding, 209

Index | 829

M
Main entry point, 10
main windows, 41
Margin property, 91
markup extensions, 26, 696–707

built-in markup extensions, 698–707
ArrayExtension, 699
Binding, 705
ComponentResourceKey, 704
DynamicResourceExtension, 703
NullExtension, 698
RelativeSource, 705
StaticExtension, 701
StaticResourceExtension, 702
TemplateBindingExtension, 707
TypeExtension, 699

master-detail binding, 245–252
forward slash (⁄), 252

Materials
DiffuseMaterial, 621
EmissiveMaterial, 623
MaterialGroup, 624–626
SpecularMaterial, 622–623

MatrixAnimationUsingPath, 598
MatrixCamera, 618
MatrixTransform3D, 641
MaxHeight property, 90
MaxWidth property, 90
measure phase, layout, 105
MeasureOverride method, 106
measuring text, using Silverlight for, 778
media playback, 608
MediaElement, 608, 609

clock mode, 609
slipping, 610

MediaElement tag, 795
MediaTimeline, 579, 609
menus, 160–164

access keys and, 163
MeshGeometry3D, 619, 642
methods, using controls in, 141
Microsoft Expression Blend and Microsoft

Expression Design, 12
Microsoft WPF community site, xvii
MinHeight property, 90
MinWidth property, 90
mnemonics, 142
modal dialogs, 322
Model View Controller (MVC), 140
Model3D, 618
Model3DGroup, 618

modeless dialogs, 322
ModelVisual3D, 626–629, 643
Mouse class, 119, 120
mouse cursors, usage in Silverlight, 777
mouse input, 117–120

hit testing and, 118
mouse input events, 117
mouse state, 119
OverrideCursor property, 120

MoveCurrentTo methods, 204
msbuild tool, 3
multicondition data triggers, 280
multicondition property triggers, 277
multiple triggers, 277
MVC (Model View Controller), 140
MyApp.resources.dll file, 390

N
named styles, 262
namespaces, 684–686

Silverlight, using for, 775
XPS, for working with, 524

Navigate method, 342
NavigateUri property, 343
navigation hosts, 359

frames (see frames)
HTML, navigation to, 363
navigation windows (see navigation

windows)
RootBrowserWindow (see

RootBrowserWindow)
navigation services, 344
navigation windows, 341

fragment navigation, 347
loose XAML, 346
pages (see pages)
(see also frames)

NavigationService class, 344
NavigationWindow class, 341
nearest neighbor algorithm, 403
.NET Framework 3.0, xx

Visual Studio 2005 extensions, 11
NullExtension, 698

O
ObjectDataProvider, 229
online only applications, 49
OnRender method, 463
Open Packaging Conventions (OPC), 523
OpenFileDialog, 323

830 | Index

OpenType fonts, 519
standard and discretionary ligatures, 520

Orientation property, 66
OrthographicCamera, 613, 617
OverrideCursor property, 120
overriding style properties, 265
owner (windows), 320

P
pack URIs, 388
Padding property, 89, 91
Page class, 342
pages, 14, 342–345

data binding and KeepAlive, 352
page functions, 355–359

KeepAlive switch and, 358
page lifetime, 348–351
passing data between pages, 351–355
pop-up windows, 355

painters algorithm, 733
Panel class, 755
Panel.ZIndex, 95
panels, 19, 61

panel types, 62–86
Canvas, 84–86
DockPanel, 66–68
Grid, 69–84
StackPanel, 62–65
WrapPanel, 65

panning shots, 615
parallax, 616
ParallelTimeline, 580
partial classes, 708
partial keyword, 10
Path, 415–429

Bézier curves, 423–425
combining shapes, 425
Geometry types, 415
Path geometry text format, 427–429
transparency, 418

path animations, 598–601
DoubleAnimationUsingPath, 599
MatrixAnimationUsingPath, 600
PointAnimationUsingPath, 598

PathGeometry, 418
Pen class, 459
PerspectiveCamera, 613–617
pixels, 72, 76

device-independent pixels, 72, 76, 403
pixel doubling algorithm, 403
resolution and, 403

PointAnimationUsingPath, 598
PointLight, 631–633

attenuation, 632
Polygon, 413
Polyline, 413
pop-up windows, 355
presentation frameworks, 1
Preview, 112
PrintDialog, 323, 559
printing, 34

asynchronous printing, 542
FixedDocuments, 534–535
visuals, 535–538
with document paginators, 538–542
(see also XPS)

PrintQueue, 555
PrintServer, 556
PrintSystemJobInfo, 557
PrintTicket and PrintCapabilities

classes, 557–559
ProgressBar, 145
ProjectionMatrix, 618
properties, 141, 655–664

ambient properties, 656
attached properties, 693–695

property element syntax and, 695
inherited properties, 469

property element syntax, XAML, 18,
692–695

attached properties, 695
property triggers, 275
Publish Wizard, 51
publish.htm file, 51

R
RadioButton, 143
RangeBase class, 145, 146
relative sources, 197
RelativeSource markup extension, 705
RelativeSource property, 197
RemoveStoryboard and StopStoryboard, 571
rendering on demand, 463–467
RenderTargetBitmap, 433
RenderTransform property, 96–99, 778
RepeatBehavior property, 584
resolution independence, 401–404

resolution, coordinates, and pixels, 403
scaling and rotation, 402

ResourceDictionary class, 365
ResourceManager.GetStream method, 390

Index | 831

resources, 28, 365–367, 390
binary resources, 383–389

Application class and, 386–388
assembly manifest resources, 384
pack URIs, 388

global applications, 389–394
cultures, 389
satellite resource assemblies, 390
XAML, building localizable

applications with, 391–394
references, 372–374

resources from markup, using, 373
self-updating system resource

reference, 373
reusing drawings, 374–378
scope, 367–372

system-scope resources, defining, 369
system-scope resources, using, 371

styles and, 30, 378–383
implicit use of styles, 379
skins and themes, 380–383

retained mode rendering, 466
RichTextBox control, 147
right-handed coordinate system, 618
RootBrowserWindow, 361
RotateTransform class, 462
RotateTransform3D, 639
routed events, 109–117

attached events, 116
bubbling, tunneling, and direct routed

events, 111
CLR events and, 115
halting event routing, 114
normal events and, 115
target, determining, 114

RowDefinition elements, 71, 72

S
satellite resource assemblies, 390
SaveFileDialog, 323
ScaleTransform, 462
ScaleTransform3D, 638
scroll controls, 144
ScrollViewer control, 101–105

IScrollInfo, 104
SeekAlignedToLastTick, 602
segment types, 420
SelectedItem and SelectedIndex

properties, 154
SelectedValue, 208

Selector class, 761
senders, 114
SessionEnding events, 45
Settings Designer, 55
Shape base class, 407, 408, 756
Show method, 316
ShowDialog method, 316, 324
ShowGridLines property, 72
ShowMeTheTemplate sample, 304
Silverlight, 766–771, 820

animations, controlling, 797
execution, 797
storyboards, delaying, 798

ASP.NET and, 802
dynamic XAML, 803

compatibility with WPF, 771
controlling media, 795
createObject function, 770
development model, 782

end-user installation, 784
Event model, 785
hosting in HTML, 782
XAML errors, handling, 784

dynamic XAML, 793–795
event handling, 785

bubbling, tunneling, and direct
events, 786

examples, 819
creating a button, 790–793

HTML, mixing with, 799
plug-in, 787
sample document, 769
Silverlight downloader, 801
supported transformations, 779
tool support, 815

Expression toolset, 815–817
Photoshop and Illustrator files,

importing, 819
Visual Studio, 817

Version 1.1 (alpha), 813–815
WPF and, 767, 781
WPF, contrasted with, 820
XAML and user controls, 805–813
XAML markup, 767, 771–781

animations, 779
graphics, 775
layout model, 773
measuring text, 778
mouse cursors, 777
namespaces, 775
transformations, 778

832 | Index

Silverlight (continued)
XAML object model, working with, 789

parent elements and supported
collections, 790

XAML properties, working with, 786
simple animations, 779
SizeToContent property, 319
SkewTransform class, 462
slider controls, 144

control templates and, 303
slipping, 610
smiley face XAML, 769
Sneath, Tim, xvii
sorting list data, 217–219

declarative sorting and grouping, 227
SpecularPower, 623
SpeedRatio property, 591
spellchecking in TextBox and

RichTextBox, 147
SpotLight, 633
STA thread, 37, 739, 747
StackPanel, 20, 62–65
star sizing, 74
Startup events, 44
StartupUri property, 345
STAThread attribute, 1
StaticExtension, 701
StaticResourceExtension, 702
StopStoryboard and RemoveStoryboard,

compared, 571
Storyboard class, 602
Storyboard element, 797
Stretch property, 88
Stroke property, 407
Style element, 31
Style.Triggers element, 276
styles, 30, 257

control templates and, 286–287
data templates and, 271–275

setting with styles, 275
element-typed styles, 268–270

derived types and, 269–270
scoped below the Window, 269
scoped to the application, 269
scoped to the Window, 268

extending, 265
inline styles, 261
named styles, 262
programming example without

styles, 257–260
control properties, setting

individually, 260

reusing, 263–264
setting programmatically, 266–267
style properties, overriding, 265
TargetType attribute, 262
triggers, 275–282

data triggers, 278
event triggers, 281
multicondition data triggers, 280
multicondition property triggers, 277
multiple triggers, 277
property triggers, 276

Stylus class, 123
stylus events, 123
Swanson, Michael, 12
synchronous APIs, 738
System.Boolean setting, 55
System.IO.Packaging namespace, 525
System.Printing namespace, 555
System.String setting, 55
System.Windows.Controls.Primitives

namespace, 303
System.Windows.Documents, 525
System.Windows.Shapes namespace, 406
SystemColors, SystemFonts, and System

Parameters classes, 368

T
TabControl, 152
TargetType attribute, 262
template binding, 287
Template property, 32
TemplateBindingExtension, 707
templated parent, 288
templates

control templates (see control templates)
custom control templates (see custom

control templates)
data templates (see data templates)
item panel templates, 300

text, 468
common text properties, 469
decorations, 473
flow documents, 481–484
FlowDirection property and, 93–95
fonts, 470

FontSize, 471
FontStretch, 471
FontStyle, 472
FontWeight, 472

Glyphs class, 491–493
hyphenation, 476

language and, 477

Index | 833

text alignment, 477
text controls, 146–149
text object model (see text object model)
text wrapping, 475

WrapWithOverflow, 476
TextBlock element, 478–481

Label and AccessText, 480
text with mixed content, 479

trimming, 474
typography, 519
underlines and strikethroughs, 473
user interface and, 478
visual layer text, 484–490

FormattedText, 487–490
GlyphRuns, 485–487

text controls, 146–149
Label, 148

text object model, 493–519
Block, 501–509

BlockUIContainer, 508
common block properties, 502
List, 503–505
Paragraph, 502
Section, 508
Table, 505–508

coding with, 517–519
Figures and Floaters, 510–514
images, 514
inline text, 494–501

InlineUIContainer, 500–501
LineBreak, 499
Run, 495–497
Span, 498

text and data binding, 514–517
TextBlock style, 31
TextDecorations property, 473
TextElement class, 469

inherited properties, 470
TextInput events, 121
textures, 635–637
themes/generic.xaml files, 674
thirteen23, xvii
thread affinity, 739
thumbnails, 549–550
TileBrush base class, 447
timelines, 579–593

duration, 583–584
filling, 586–590
hierarchies, 579–582
ParallelTimeline, 580
repetition, 584

speed, 591–593
timeline properties, 579

ToggleButton class, 143
toolbars, 164–166
ToolTip control, 149

top-level windows of, 150
Top property, 318
top-level windows, 41
TopMost property, 318
ToString method and list data binding, 207
Track controls and control templates, 303
tracking shots, 615
TransformGroup class, 462
transforms, 96

2D graphics, 401, 461–463
transform types, 462
TranslateTransform class, 462

3D graphics, 637–642
MatrixTransform3D, 641
RotateTransform3D class, 639
ScaleTransform3D class, 638
Transform3DGroup class, 641
TranslateTransform3D class, 638

tree binding, 252
TreeView control, 158

data binding and, 159
TriangleIndices property, 620
triggers, 275–282

animation, in, 569–578
control template triggers, 292–293
data triggers, 278
event triggers, 281
multicondition data triggers, 280
multicondition property triggers, 277
multiple triggers, 277
property triggers, 276

tunneling routed events, 111
code-behind file, 112

type conversion versus value conversion, 188
typed dataset designer, 233
TypeExtension, 699
Typeface class, 470

U
UI elements, 62

content and size, 64
content space and properties, 63

UIElement base class, 753
command bindings, 132
focus properties, 121
mouse input events, 117

834 | Index

UIs (user interfaces)
data-driven UIs, 308–313

Windows Forms UI framework,
compared to, 313

description in XAML, 8
input (see input)
layout (see layout)
text and, 478

underscore (_), 143
Unicode and text flow, 93
UniformGrid, 20, 62, 83
UpdateSourceTrigger, 197
UpDirection property, 616
UserControl class, 676–678, 759

V
validation, 189–195
ValidationError, 191
ValidationResult class, 193
ValidationRule base class, 189, 192
value conversion, 185–189

editable value conversion, 188
type conversion, versus, 188

value members of data lists, 207
VerticalAlignment property, 90
VerticalAnchor property, 512
Viewbox element, 86–88

Stretch property, 88
viewer controls and flow documents, 481
ViewMatrix property, 618
Viewport3D element, 612
Viewport3D, Camera property, 613
VirtualizingStackPanel, 104
Visibility property, 92, 321
Visual class, 752
visual layer programming, 463
visual layer text, 484–490

FormattedText, 487–490
GlyphRuns, 485–487

Visual Studio, xx, 817
binary resource streams, embedding into

applications, 383
custom windows, defining in XAML, 315
DependentUpon element and, 11
file format, 3
getting a Page class skeleton, 343

getting an XBAP application
skeleton, 361

interoperability, 723
lack of WPF localization support, 391
.NET Framework 3.0 extensions, 11
Silverlight project type installer, 817
typed dataset designer, 233
WPF applications settings mechanism, 55
WPF extensions and .NET Framework

3.0, download sites, xx
XBAP execution, 362
XBAP publication, 51

visual trees, 305
Visual3D class, 752
VisualBrush class, 447, 456
visuals, printing, 535–538

W
Width property, 90
Window class, 314
Window1 class, 6
windows, 314–322

lifetime, 315–318
associated events, 317

location and size, 318–319
look and feel, 314
modal and modeless showing, 316
navigation windows (see navigation

windows)
owners, 320
resize modes, 319
visibility and state, 321–322

Windows Application (WPF) project
template, 11

Windows form controls, hosting in
WPF, 717–720

Windows Forms compared to data-driven UI
frameworks, 313

WindowStartupLocation property, 318
WindowState property, 321
WordEllipsis, 475
WPF assemblies, 2
WPF Designer, 12
WrapPanel, 20, 62, 65

Orientation property, 66
WrapWithOverflow, 476

Index | 835

X
x:Class property, 316
XAML, 8–16, 683

attached property syntax, 21
code behind, 708–712
code in XAML, 711
collections, declaring in, 201
custom controls, using properties in, 658
editing, 11–14
example file, 683–690

children, 688–690
classes, generating, 687
namespaces, 684–686
properties, 687

examples, 63
loading, 712

loading compiled XAML (BAML), 713
parsing at runtime, 713

loose XAML, 346
markup extensions, 26, 696–707

built-in markup extensions, 698–707
namespace mapping syntax, 29
navigation windows and, 346
properties, 690–695

attached properties, 693–695
property element syntax, 18, 692
ResourceDictionary, populating, 366
Silverlight and, 767, 771–781

smiley face, 769
user controls and, 805–813
WPF and, 683
XBAPs (XAML Browser

Applications), 14–16
.xaml.cs files, 9
XamlPad tool, 13
XBAPs (XAML Browser Applications), 361

KeepAlive switch and, 363
NavigationWindow and, 345
publication and deployment, 362

XML
namespace prefixes, 685
Office Open XML standards suite, 523
XML data binding, 239

programmatic binding, 244

XML data source providers, 239–245
XML data islands, 241

XML Paper Specification (see XPS)
XmlDataProvider, 229
XmlnsDefinitionAttribute, 684
XPS (XML Paper Specification), 522,

522–524
displaying fixed documents, 561
file structure, 525
FixedDocument class, 528
FixedDocumentSequence, 526–528
FixedPage, 529–533
FixedPage class

fonts, bitmaps, and resources, 532
page content limitations, 532
page sizing, 530–532

namespaces for working with, 524
outputting to files, 533
XPS document classes, 524–533
XPS file generation features, 543–555

compression, 555
core document properties, 547–549
hyperlinks, 551–555
package-level XPS API, 544–547
thumbnails, 549–550

XPS output, generating, 533–543
XPS viewer application, 561
XpsDocumentWriter class, 533–535
(see also printing)

XPS, System.Printing namespace, 555–560
media description, 560
PrintDialog, 559
PrintQueue, 555
PrintServer, 556
PrintSystemJobInfo, 557
PrintTicket and

PrintCapabilities, 557–559

Z
Z order, 71
ZAM 3D, 12

Color Plate 1 (Figures 1-18, 16-2). Buttons with animated glow

Color Plate 2 (Figures 1-21, 17-31). A 3D plot of data

Color Plate 3 (Figure 6-10). A value converter in action

Color Plate 4 (Figure 6-12). A TextBox control highlighted as invalid

,color_insert.3907 Page 37 Friday, August 17, 2007 12:18 PM

Color Plate 5 (Figure 7-3). Navigating between items in a list data source

Color Plate 6 (Figure 7-7). Person objects being displayed in a ListBox with a data template

Color Plate 7 (Figure 8-5). Setting styles programmatically based on an object’s content

,color_insert.3907 Page 38 Friday, August 17, 2007 12:18 PM

Color Plate 8 (Figure 8-10). A property trigger in action

Color Plate 9 (Figure 8-11). Multiple property triggers in action

Color Plate 10 (Figure 8-12). Data triggers in action

,color_insert.3907 Page 39 Friday, August 17, 2007 12:18 PM

Color Plate 11 (Figure 8-13). The winner aglow with pride

Color Plate 12 (Figure 8-14). The event trigger and our fade-in animation

Color Plate 13 (Figure 9-3). Replacing the button’s control template with an orange rectangle

,color_insert.3907 Page 40 Friday, August 17, 2007 12:18 PM

Color Plate 14 (Figure 9-4). Spreading the orange

i

Color Plate 15 (Figure 9-5). Adding a content presenter to our control template

Color Plate 16 (Figure 9-7). A control template trigger in action

,color_insert.3907 Page 41 Friday, August 17, 2007 12:18 PM

Color Plate 17 (Figure 9-15). Replacing the control template in a data-driven application

Color Plate 18 (Figure 10-6). The custom settings dialog in action

Color Plate 19 (Figure 10-7). An error in a dialog validation rule

,color_insert.3907 Page 42 Friday, August 17, 2007 12:18 PM

Color Plate 20 (Figure 10-8). Validating all controls in the OK button handler

Color Plate 21 (Figure 12-5). Changing skins

Color Plate 22 (Figure 13-40). Multiple gradient stops

Color Plate 23 (Figure 13-41). Simple lighting effects with linear fills

Color Plate 24 (Figure 13-42). Simple radial fill

Color Plate 25 (Figure 13-43). Radial fills

,color_insert.3907 Page 43 Friday, August 17, 2007 12:18 PM

Color Plate 26 (Figure 14-4). Underline and strikethrough decorations

Color Plate 27 (Figure 17-15). MaterialGroup with EmissiveMaterial

Color Plate 28 (Figure A-1). Array of brushes provided by a ListBox

Color Plate 29 (Figure E-12). Default .aspx with dynamic XAML

,color_insert.3907 Page 44 Friday, August 17, 2007 12:18 PM

About the Authors
Chris Sells is a Program Manager for the Connected Systems Division at Microsoft.
He’s written several books, including the first edition of Programming WPF as well as
Windows Forms 2.0 Programming and ATL Internals (both Addison-Wesley). In his
free time, Chris hosts various conferences and makes a pest of himself on Microsoft
internal product team discussion lists. More information about Chris, and his
various projects, is available at http://www.sellsbrothers.com.

Ian Griffiths is a WPF course author and instructor with Pluralsight, and a widely
recognized expert on the subject. He also works as an independent consultant and is
coauthor of .NET Windows Forms in a Nutshell and of Mastering Visual Studio .NET
(both O’Reilly). He maintains a popular blog at http://www.interact-sw.co.uk/iangblog/.

Colophon
The animal on the cover of Programming WPF, Second Edition, is a kudu. Not to be
confused with kudzu (a purple-flowered vine indigenous to East Asia), the kudu,
native to East Africa, comprises 2 of the 90 species of antelope: lesser kudu (Tragela-
phus imberbis) and greater kudu (Tragelaphus strepsiceros). Both species have coats
of a brownish hue, adorned with white stripes and spots, and a crest of long hair
along the spine. Their coloring and markings help camouflage them from predators
including big cats, wild dogs, eagles, hyenas, and pythons. If alarmed, kudus will
stand very still, making them virtually impossible to spot.

Kudu males are easily distinguished from their distaff counterparts by their twisted
horns, whose myriad traditional applications among African cultures include serving
as musical instruments, honey receptacles, and ritual symbols of male potency.
Males sometimes form small bachelor groups but more often remain solitary and
widely dispersed. Dominance is usually established quickly and peacefully by means
of a lateral display, in which one male kudu stands sideways in front of another,
making himself look as large as possible. Males only join females during mating
season. Female kudus leave their newborns for four or five weeks after birth, but the
calves eventually accompany their mothers, forming small groups of 6–10 females
and offspring. Calves grow rapidly and are fairly independent by six months of age.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Programming WPF 2nd

	Table of Contents
	Forewords
	First Edition
	Second Edition

	Preface
	Who This Book Is For
	How This Book Is Organized
	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Ian’s Acknowledgments
	Chris’s Acknowledgments

	Hello, WPF
	WPF from Scratch
	Building Applications
	WPF Applications
	XAML
	Editing XAML

	XAML Browser Applications (XBAPs)
	Content Models
	XAML Property Element Syntax

	Layout
	Grid Layout
	XAML Attached Property Syntax

	Controls
	Data Binding
	XAML Markup Extensions
	Data Templates

	Dependency Properties
	Resources
	XAML Namespace Mapping Syntax

	Styles
	Animation
	Control Templates
	Graphics
	3D
	Documents and Printing
	Where Are We?

	Applications and Settings
	Application Lifetime
	Explicit Application Creation
	Application Access
	Implicit Application Creation
	Top-Level Windows
	Application Shutdown Modes
	Application Events
	Startup event
	Activated and Deactivated events
	DispatcherUnhandledException event
	SessionEnding event
	Exit event

	Application Instancing
	Single instance applications

	Other Application Services

	Application Deployment
	Simple Publishing
	The User Experience
	WPF ClickOnce Specifics

	Settings
	Designing Settings
	Using Settings
	Integrating Settings with WPF

	Where Are We?

	Layout
	Layout Basics
	StackPanel
	WrapPanel
	DockPanel
	Grid
	Column Widths and Row Heights
	Spanning Multiple Rows and Columns
	Consistency Across Multiple Grids
	UniformGrid

	Canvas
	Viewbox
	Common Layout Properties
	Width and Height
	MinWidth, MaxWidth, MinHeight, and MaxHeight
	HorizontalAlignment and VerticalAlignment
	Margin
	Padding
	Visibility
	FlowDirection
	Panel.ZIndex
	RenderTransform and LayoutTransform

	When Content Doesn’t Fit
	ScrollViewer
	Scrollable Region and IScrollInfo

	Custom Layout
	Where Are We?

	Input
	Routed Events
	Halting Event Routing
	Determining the Target
	Routed Events and Normal Events
	Attached Events

	Mouse Input
	Mouse Input and Hit Testing
	Mouse State

	Keyboard Input
	Keyboard State

	Ink Input
	Commands
	Command Objects
	Defining commands
	Using commands in XAML

	Input Bindings
	Command Source
	Command Bindings
	Enabling and disabling commands
	Command routing

	Code-Based Input Handling Versus Triggers
	Where Are We?

	Controls
	What Are Controls?
	Buttons
	Slider and Scroll Controls
	ProgressBar
	Text Controls
	Label

	ToolTip
	GroupBox and Expander
	List Controls
	List View
	Tree View

	Menus
	Toolbars
	GridSplitter
	Where Are We?

	Simple Data Binding
	Without Data Binding
	Object Changes
	UI Changes

	Data Binding
	Bindings
	Implicit Data Source
	Data Islands
	Explicit Data Source
	Binding to Other Controls
	Value Conversion
	Editable Value Conversion
	Validation
	Custom validation rules

	Binding Path Syntax
	Relative Sources
	Update Source Trigger

	Debugging Data Binding
	Where Are We?

	Binding to List Data
	Binding to List Data
	Current Item
	Getting the current item
	Navigating between items

	List Data Targets
	Display Members, Value Members, and Look-Up Bindings
	Data Templates
	Typed data templates
	DataTemplates and the DataContext

	List Changes
	Sorting
	Default Collection Views
	Filtering
	Grouping
	Declarative Sorting and Grouping

	Data Source Providers
	Object Data Provider
	Asynchronous data retrieval
	Passing parameters

	Binding to Relational Data
	XML Data Source Provider
	XML data islands
	XML binding without the data source provider

	Master-Detail Binding
	Hierarchical Binding
	Where Are We?

	Styles
	Without Styles
	Inline Styles
	Named Styles
	The Target Type Attribute
	Reusing Styles
	Overriding Style Properties
	Extending Styles
	Setting Styles Programmatically

	Element-Typed Styles
	Element-Typed Styles and Derived Types

	Data Templates and Styles
	Data Templates Redux
	Data Templates with Style

	Triggers
	Property Triggers
	Multiple Triggers
	Multicondition Property Triggers
	Data Triggers
	Multicondition Data Triggers
	Event Triggers

	Where Are We?

	Control Templates
	Beyond Styles
	Control Templates and Styles
	Template Binding
	Content Presenters
	Template Triggers
	Extending Templates
	Repurposing an existing property
	Defining a custom dependency property

	The Control Template Contract
	Property binding
	Named parts
	Content placeholders
	Placeholders indicated by properties

	Special-Purpose Elements
	Examining the Built-in Templates

	Logical and Visual Trees
	Data-Driven UI
	Where Are We?

	Windows and Dialogs
	Window
	Window Look and Feel
	Window Lifetime
	Window Location and Size
	Window Owners
	Window Visibility and State

	Dialogs
	Common Dialogs
	Available common dialogs

	Custom Dialogs
	Dialog look and feel
	Dialog data exchange
	Handling OK and Cancel
	Data validation
	Modeless dialogs

	Where Are We?

	Navigation
	NavigationWindow
	Pages
	Loose XAML
	Fragment Navigation
	Page Lifetime
	Passing Data Between Pages
	Page Functions

	Frames
	XBAPs
	XBAP Publication and Deployment

	Navigation to HTML
	Where Are We?

	Resources
	Creating and Using Resources
	Resource Scope
	Defining custom system-scope resources
	Using system-scope resources

	Resource References
	Reusing Drawings

	Resources and Styles
	Skins and Themes

	Binary Resources
	Binary Resources and the Application Class
	Pack URIs

	Global Applications
	Building Localizable Applications with XAML

	Where Are We?

	Graphics
	Graphics Fundamentals
	Integration
	Drawing Object Model
	Resolution Independence
	Scaling and rotation
	Resolution, coordinates, and “pixels”

	Shapes, Brushes, and Pens
	Composition

	Shapes
	Base Shape Class
	Rectangle
	Ellipse
	Line
	Polyline
	Polygon
	Path
	Bézier curves
	Combining shapes
	Path geometry text format

	Bitmaps
	Image
	ImageSource
	Creating Bitmaps
	Bitmap Encoders and Decoders
	Bitmap Effects

	Brushes and Pens
	Color
	SolidColorBrush
	LinearGradientBrush
	RadialGradientBrush
	ImageBrush, DrawingBrush, and VisualBrush
	TileBrush
	ImageBrush
	DrawingBrush
	VisualBrush

	Pen

	Transformations
	Visual Layer Programming
	Rendering On Demand

	Where Are We?

	Text and Flow Documents
	Fonts and Text Styles
	Common Text Properties
	Fonts and Font Families
	FontSize
	Stretch
	Style
	Weight
	Decorations
	Text Trimming
	Text Wrapping and Hyphenation
	Text Alignment

	Text and the User Interface
	TextBlock
	Label and AccessText

	Flow Documents and Viewer Controls
	Visual Layer Text
	Glyph runs
	FormattedText

	Glyphs

	Text Object Model
	Inline
	Run
	Span
	LineBreak
	InlineUIContainer

	Block
	Paragraph
	List
	Table
	Section
	BlockUIContainer

	Figures and Floaters
	Images
	Text and Data Binding
	Coding with the Text Object Model
	TextPointer

	Typography
	Where Are We?

	Printing and XPS
	XPS
	Open Packaging Conventions

	XPS Document Classes
	FixedDocumentSequence
	FixedDocument
	FixedPage
	Page sizing
	Page content limitations
	Fonts, bitmaps, and other resources

	Generating XPS Output
	Printing Fixed Documents
	Printing Visuals
	Printing with Document Paginators
	Asynchronous Printing

	XPS File Generation Features
	Package-Level XPS API
	Core Document Properties
	Thumbnails
	Hyperlinks
	Compression

	System.Printing
	PrintQueue
	PrintServer
	PrintSystemJobInfo
	PrintTicket and PrintCapabilities
	PrintDialog
	Media Description

	Displaying Fixed Documents
	Where Are We?

	Animation and Media
	Animation Fundamentals
	Animation Types
	IAnimatable
	Triggers

	Timelines
	Hierarchy
	Duration
	Repetition
	Filling
	Speed

	Keyframe Animations
	Path Animations
	Clocks and Control
	Controlling Animations with Storyboards
	Controlling Animations with Clocks

	Transition Animations
	Audio and Video
	Simple Media Playback
	Using MediaElement in Clock Mode
	Slipping

	Where Are We?

	3D Graphics
	3D Content in a 2D World
	Cameras
	Models
	Geometry3D
	Materials
	DiffuseMaterial
	SpecularMaterial
	EmissiveMaterial
	MaterialGroup

	ModelVisual3D

	Lights
	AmbientLight
	DirectionalLight
	PointLight
	SpotLight

	Textures
	Transforms
	TranslateTransform3D
	ScaleTransform3D
	RotateTransform3D
	Transform3DGroup
	MatrixTransform3D

	3D Data Visualization
	Hit Testing
	Where Are We?

	Custom Controls
	Custom Control Basics
	Choosing a Base Class
	Custom Functionality
	Properties
	Attached properties
	Value change notification
	Change notifications for property consumers
	Property metadata options

	Events
	Attached events

	Commands

	Supporting Templates in Custom Controls
	Property Binding
	Named Parts
	Content Placeholders
	Placeholders Indicated by Properties

	Default Styles
	UserControl
	Adorners
	AdornerDecorator

	Where Are We?

	XAML
	XAML Essentials
	Namespaces
	Generating Classes
	Properties
	Children

	Properties
	Property Element Syntax
	Attached Properties
	Attached properties and the property element syntax

	Markup Extensions
	Built-in Markup Extensions
	NullExtension
	TypeExtension
	ArrayExtension
	StaticExtension
	StaticResourceExtension
	DynamicResourceExtension
	ComponentResourceKey
	Binding
	RelativeSource
	TemplateBindingExtension

	Code Behind
	Code in XAML

	Loading XAML
	Parsing XAML at Runtime
	Loading Compiled XAML (BAML)

	Interoperability
	WPF and HWNDs
	Hosting a Windows Form Control in WPF
	Hosting a WPF Control in Windows Forms
	Hosting WPF in Native HWND Apps
	WPF and ActiveX Controls
	WPF and HTML
	Limitations of WPF/HWND Interop
	Airspace
	Transforms, Events, and Nested Interop

	Asynchronous and Multithreaded WPF Programming
	The WPF Threading Model
	DispatcherObject

	The Dispatcher
	Obtaining a Dispatcher
	Getting Onto the Right Thread with a Dispatcher
	DispatcherOperation
	DispatcherTimer
	Multiple UI Threads and Dispatchers

	The Event-Based Asynchronous Pattern
	BackgroundWorker

	WPF Base Types
	DispatcherObject
	DependencyObject
	Visual
	Visual3D
	UIElement
	FrameworkElement
	Decorator
	Panel
	Shape
	Control
	ContentControl
	HeaderedContentControl
	UserControl
	ItemsControl
	HeaderedItemsControl
	Selector
	ContentElement
	FrameworkContentElement
	Freezable
	Animatable

	Silverlight
	Why Silverlight?
	What Is Silverlight?
	Hello, Silverlight

	Silverlight XAML
	Layout Model
	Namespaces
	Graphics
	Mouse Cursors
	Measuring Text
	Transformations
	Animations

	Silverlight and WPF
	Development Model
	Hosting in HTML
	End-User Installation
	Handling XAML Errors
	Event Model
	Working with XAML Properties
	The Plug-in
	Working with the XAML Object Model
	An Example: Creating a Button
	Creating Dynamic XAML
	Controlling Media
	Controlling Animations
	Controlling animation execution
	Delaying storyboards

	Mixing Silverlight and HTML
	The Silverlight Downloader

	ASP.NET and Silverlight
	Commingling with ASP.NET
	Dynamic XAML
	XAML and User Controls

	A Taste of Silverlight 1.1
	Tool Support
	Expression Toolset
	Expression Design
	Expression Blend
	Expression Media

	Visual Studio
	Other Tools

	Examples in the World
	Where Are We?

	Index
	Color Plates

