Buileling Winelows U wich
Windows Preseritaifon Fourdation

Programming

O’REILLY”" Chris Seffs & lan Griffiths

SECOND EDITION

Programming WPF

Chris Sells and lan Griffiths

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Programming WPF, Second Edition
by Chris Sells and Ian Griffiths

Copyright © 2007, 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn Indexer: John Bickelhaupt
Production Editor: Rachel Monaghan Cover Designer: Karen Montgomery
Copyeditor: Audrey Doyle Interior Designer: David Futato
Proofreader: Rachel Monaghan lllustrators: Robert Romano and

Jessamyn Read

Printing History:
August 2007: Second Edition.
September 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming WPF, the image of a kudu, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN-10: 0-596-51037-3
ISBN-13: 978-0-596-51037-4
[C]

Abi:
Thank you for everything.
My parents:

Thank you for making it all possible.
—Ian Griffiths

My wife and my sons:
You define the heaven that exceeds my grasp.
Both my parents:

You made me love reading from the beginning. 1
was happy that you passed on the secret writer

gene (not to mention surprised).

—Chris Sells

Forewords
Preface

1.

Hello, WPF

WPF from Scratch
XAML Browser Applications (XBAPs)
Content Models

Layout

Controls

Data Binding
Dependency Properties
Resources

Styles

Animation

Control Templates
Graphics

3D

Documents and Printing

Applications and Settings

Application Lifetime
Application Deployment
Settings

Table of Contents

............................... 36

36
48
55

3. Layout ... 61

Layout Basics 61
StackPanel 62
WrapPanel 65
DockPanel 66
Grid 69
Canvas 84
Viewbox 86
Common Layout Properties 89
When Content Doesn’t Fit 99
ScrollViewer 101
Custom Layout 105
4, Input. 109
Routed Events 109
Mouse Input 117
Keyboard Input 120
Ink Input 122
Commands 124
Code-Based Input Handling Versus Triggers 137
5. Controls 139
What Are Controls? 139
Buttons 141
Slider and Scroll Controls 144
ProgressBar 145
Text Controls 146
ToolTip 149
GroupBox and Expander 150
List Controls 152
Menus 160
Toolbars 164
GridSplitter 166
6. SimpleDataBindingl 168
Without Data Binding 168
Data Binding 177
Debugging Data Binding 198

vi | Tableof Contents

BindingtoListData 200

Binding to List Data 200
Data Source Providers 228
Master-Detail Binding 245
Hierarchical Binding 252
Styles ... 257
Without Styles 257
Inline Styles 261
Named Styles 262
Element-Typed Styles 268
Data Templates and Styles 271
Triggers 275
Control Templates 284
Beyond Styles 284
Logical and Visual Trees 305
Data-Driven Ul 308
Windowsand Dialogs 314
Window 314
Dialogs 322
Navigation 341
NavigationWindow 341
Pages 342
Frames 359
XBAPs 361
Navigation to HTML 363
Resources 365
Creating and Using Resources 365
Resources and Styles 378
Binary Resources 383
Global Applications 389
Graphics 395
Graphics Fundamentals 395
Shapes 406
Bitmaps 429

Table of Contents | vii

14.

15.

16.

17.

Brushes and Pens
Transformations
Visual Layer Programming

Textand FlowDocuments

Fonts and Text Styles
Text and the User Interface
Text Object Model

Typography

PrintingandXPS

XPS

XPS Document Classes
Generating XPS Output

XPS File Generation Features
System.Printing

Displaying Fixed Documents

AnimationandMedia

Animation Fundamentals
Timelines

Keyframe Animations
Path Animations

Clocks and Control
Transition Animations
Audio and Video

3DGraphicsl

3D Content in a 2D World
Cameras

Models

Lights

Textures

Transforms

3D Data Visualization

Hit Testing

439
461
463

468
478
493
519

522
524
533
543
555
561

563
579
593
598
601
605
608

612
613
618
629
635
637
642
648

viii

Table of Contents

18. CustomControls
Custom Control Basics
Choosing a Base Class
Custom Functionality
Supporting Templates in Custom Controls
Default Styles
UserControl
Adorners

B. Interoperabilityl
C. Asynchronous and Multithreaded WPF Programming
D. WPFBaseTypes

E. Silverlight

651
652
655
668
674
676
678

Table of Contents

ix

Forewords

First Edition

Over the past two-plus years, my day job has involved XAML-izing various parts of
the Microsoft universe. My standard refrain when encountering XAML newbies has
been “read the XAML appendix from Chris and Ian’s book.” That appendix (origi-
nally printed in the beta edition of this book) was easily the most direct and to-the-
point treatment of the topic I've seen, and several dozen of my coworkers got their
first taste of XAML from Ian’s excellent writing. (lan wrote the XAML appendix.)
Over the past year, as I've started to make the transition from runtime plumber to
pixel pusher, the chapters on WPF proper were super-efficient in getting me off the
ground (things have changed a lot since I wrote my last WndProc).

At the time this edition hits the shelves, there are numerous books dedicated to
WPF, written by some pretty notable folks. This book is unique in that Ian has been
telling the story on the road for a couple of years getting the right balance of concep-
tual understanding and pragmatic “everyone screws this up” experience. I know
from personal experience that there’s nothing like teaching to hone a story to perfec-
tion—this book is evidence of that.

Ian’s co-author should thank his lucky stars that Ian was willing to travel the planet
trying out the material rather than taking a cushy job in Windows.

Now that they’ve gotten this book out, maybe Ian should take a cushy job, too.

He’s certainly earned it.

Second Edition

Wow, I can’t believe that after all that time in the chute, .NET 3.0 and Windows
Vista have finally shipped.

I vividly remember scrambling backstage at PDC 2003 with Chris trying to ready the
first live demonstration of .NET 3.0 (then called WinFX) for the keynote speaker,

Xi

Jim Allchin. It was an especially stressful keynote because Los Angeles was plagued
with brush fires at the time and Chris Anderson’s flight had been canceled; fortu-
nately Chris Sells had already arrived and was ready to pinch-hit both in preparation
and presentation if Chris, in fact, couldn’t make it to L.A. in time. At the time, Chris’
job at Microsoft was to make sure that Vista—including WPF—was a smashing suc-
cess. Little did he know it would take almost four years until the product actually
shipped (which of course is a prerequisite for success).

So, what’s the big deal with WPF?

Like its sister .NET 3.0 technology, Windows Workflow Foundation (WF), WPF
embraces the “it takes a village” approach to software development and uses XAML
to allow people with different skill sets to collaborate in the development process. In
the case of WF, XAML lets high-level process and rule descriptions integrate with
imperative code written in C# or Visual Basic. In the case of WPF, XAML is the
bridge between us code monkeys and the beret-wearing, black-turtleneck set who
design visuals that look like they weren’t designed by, well, us code monkeys.

WPF really is an impressive piece of technology: documents, forms, and multimedia
all wrapped up nicely in a markup- and code-friendly package.

What I find even more impressive is the fact that Chris found the time outside his
day job to pull together the book you’re holding in your hands right now, capturing
those four-plus years of experience with WPF (including screenshots!) into a digest-
ible and portable form.

I've had the good fortune of having many conversations with Chris over the years
about the nuances of WPF—sometimes on the phone, sometimes in his office (it’s
across the hall from mine), and sometimes at the poker table.

This book has taught me a whole lot more.
Now that it’s all shipped, let the light blinking begin!

—Don Box
Architect, Microsoft

When 1 joined Microsoft 11 years ago, I first worked in the IT group, building applica-
tions to help the Microsoft sales force analyze data. I developed using Visual Basic 4.0
on early versions of Windows 95 and Windows NT 3.51 before moving over to work on
the development team for Visual Basic 5.0, and later, 6.0. As time went on, [worked on
Visual J++, Windows Foundation Classes, .NET, Windows Forms, ASP.NET, and
eventually the Windows Presentation Foundation (WPF).

xi | Forewords

When T learned to program Windows, I read the book that was considered the
“bible” of Windows programming at the time, Programming Windows 3.1 by Charles
Petzold (Microsoft Press). After helping to build the next-generation programming
platform for Microsoft—the .NET Framework—I was first introduced to Chris Sells
because he’d written the “bible” of programming .NET client applications: Windows
Forms Programming (Addison-Wesley). Later, while I was building WPF, Chris and
Ian were already writing the first book for that technology, too. As part of his work,
Chris provided feedback on early versions of WPF, drawing on his extensive experi-
ence as a preeminent author and educator for programming client applications for
Windows. In fact, based on his sensibilities, we actually refer to a customer-focused
style of system design used in my group as the “Sellsian” approach.

Of course, Chris didn’t write this book all by himself. Ian Griffiths is a tremen-
dously gifted technologist with a pedigree that includes working with Develop-
Mentor and now Pluralsight as a consultant, developer, speaker, and author (his
works include .NET Windows Forms in a Nutshell [O’Reilly]), focusing on a wide
range of technologies including Windows Forms and WPF. I've had less opportunity
to spend time with Ian; however, in every interaction with him, I have been amazed!

Chris and Tan have both followed client technology since the early days of Windows.
While T have spent my career building platforms, Chris and Ian have spent their
careers making them accessible to a broad range of developers. As Chris puts it,
they’ve been “following along behind [me] with a broom and a dustpan, cleaning up
[my] messes for years.”

This book is a thorough and comprehensive dive into WPF. Chris and Ian’s unique
approach to explaining and building software illuminates the corners and open vis-
tas of the platform. When they bump into its limitations, they don’t just explain
them, but they show you how to work around them and solve real-world problems.

If you are looking for an exhaustive treatment of how to build applications using the
Windows Presentation Foundation, this book deserves a spot on your shelf.

—Chris Anderson
Former architect of Windows Presentation Foundation

Forewords | xiii

Preface

It’s been a long road to the Windows Presentation Foundation.

I learned to program Windows from Programming Windows 3.1, by Charles Petzold
(Microsoft Press). In those days, programming for Windows was about windows,
menus, dialogs, and child controls. To make it all work, we had WndProcs (window
procedure functions) and messages. We dealt with the keyboard and the mouse. If
we got fancy, we would do some nonclient work. Oh, and there was the stuff in the
big blank space in the middle that I could fill however I wanted with the graphics
device interface (GDI), but my 2D geometry had better be strong to get it to look
right, let alone perform adequately.

Later I moved to the Microsoft Foundation Classes (MFC), where we had this thing
called a “document,” which was separate from the “view.” The document could be
any old data I wanted it to be and the view, well, the view was the big blank space in
the middle that I could fill however I wanted with the MFC wrappers around GDI.

Later there was this thing called DirectX, which was finally about providing tools for
filling in the space with hardware-accelerated 3D polygons, but DirectX was built for
writing full-screen games, so using it to build content visualization and management
applications just made my head hurt.

Windows Forms, on the other hand, was such a huge productivity boost and I loved
it so much that I wrote a book about it (as did my coauthor). Windows Forms was
built on top of .NET, a managed environment that took a lot of programming minu-
tiae off my hands so that I could concentrate on the content. Plus, Windows Forms
itself gave me all kinds of great tools for laying out my windows, menus, dialogs, and
child controls. And the inside of the windows where I showed my content? Well, if
the controls weren’t already there to do what I wanted, I could draw the content
however I wanted using the GDI+ wrappers in System.Drawing, which was essen-
tially the same drawing model Windows programmers had been using for the past 20
years, before even hardware graphics acceleration in 2D, let alone 3D.

XV

In the meantime, a whole other way of interacting with content came along: HTML.
HTML was great at letting me arrange my content, both text and graphics, and it
would flow it and reflow it according to the preferences of the user. Further, with the
recent emergence of AJAX (Asynchronous JavaScript and XML), this environment
gets even more capable. Still, HTML isn’t so great if you want to control more of the
user experience than just the content, or if you want to do anything Windows-specific,
both things that even Windows 3.1 programmers took for granted.

More recently, the Windows Presentation Foundation (WPF) happened. Initially it
felt like another way to create my windows, menus, dialogs, and child controls.
However, WPF shares a much deeper love for content than has yet been provided by
any other Windows programming framework.

To support content at the lowest levels, WPF merges controls, text, and graphics
into one programming model; all three are placed into the same element tree in the
same way. And although these primitives are built on top of DirectX to leverage the
3D hardware acceleration that is dormant when you’re not running the latest twitch
game, they’re also built into .NET, providing the same productivity boost to WPF
programmers that Windows Forms programmers enjoy.

One level up, WPF provides its “content model,” which allows any control to host
any group of other controls. You don’t have to build special BitmapButton or
IconComboBox classes; you put as many images, shapes, videos, 3D models, or what-
ever into a Button (or a ComboBox, ListBox, etc.) as suit your fancy.

To help you arrange the content, whether in fixed or flow layout, WPF provides con-
tainer elements that implement various layout algorithms in a way that is completely
independent of the content they’re holding.

To help you visualize the content, WPF provides data binding, control templates,
and animation. Data binding produces and synchronizes visual elements on the fly
based on your content. Control templates allow you to replace the complete look of
a control while maintaining its behavior. Animation brings your user interface con-
trol to life, giving your users immediate feedback as they interact with it. These fea-
tures give you the power to produce data visualizations so far beyond the capabilities
of the data grid, the pinnacle most applications aspire to, that even Edward Tufte
would be proud.

Combine these features with ClickOnce for the deployment and update of your
WPF applications, both as standalone clients and as blended with your web site
inside the browser, and you’ve got the foundation of the next generation of Win-
dows applications.

xi | Preface

The next generation of applications is going to blaze a trail into the unknown. WPF
represents the best of the control-based Windows and content-based web worlds,
combined with the performance of DirectX and the deployment capabilities of Click-
Once, building for us a vehicle just itching to be taken for a spin. And like the intro-
duction of fonts to the PC, which produced “ransom note” office memos, and the
invention of HTML, which produced blinking online brochures, WPF is going to
produce its own accidents along the road. Before we learn just what we’ve got in
WPF, we’re going to see a lot of strange and wonderful sights. I can’t tell you where
we’re going to end up, but with this book, I hope to fill your luggage rack so that you
can make the journey.

The good news is that you will not be traveling alone. In the period between the first
and second editions of this book, a large user base has sprung up, providing all kinds
of information and real-world applications to inspire you. A tiny sampling of the best
of this information is listed here:

* Tim Sneath’s big list of great WPF applications: http://blogs.msdn.com/tims/
search.aspx?q=%22great+wpf+applications%22 (http://tinysells.com/114)

* Tim Sneath’s big list of WPF blogs: http://blogs.msdn.com/tims/articles/475132.aspx
(http:/ftinysells.com/115)

» Karsten Januszewski’s Five-Day Course for Hitting the WPF Curve/Cliff: http://
blogs.msdn.com/karstenj/archive/2006/06/15/632639.aspx (http://tinysells.com/116)

* Microsoft’s WPF community site: http://wpf.netfx3.com

* The MSDN WPF home page: http://msdn2.microsoft.com/en-us/netframework/
aa663326.aspx (http://tinysells.com/117)

* CodeProject’s WPF section: http://www.codeproject.com/WPF (http://tinysells.com/
118)

* thirteen23’s inspirational set of WPF lab experiments: http://www.thirteen23.com/
labs.html (http://tinysells.com/119)

* Lee Brimelow’s set of WPF designer tutorials: http://contentpresenter.com
—Chris Sells

Who This Book Is For

As much as I love the designers of the world, who are going to go gaga over WPF,
this book is aimed squarely at my people: developers. We’re not teaching program-
ming here, so having experience with some sort of programming environment is a
must before you read this book. Programming in .NET and C# is pretty much
required; Windows Forms, XML, and HTML are all recommended.

Preface | xvii

How This Book Is Organized

Here’s what each chapter of this book will cover:

Chapter 1, Hello, WPF
This chapter introduces the basics of WPF. It then provides a whirlwind tour of
the features that we will cover in the following chapters, so you can see how
everything fits together before we delve into the details.

Chapter 2, Applications and Settings
In this chapter, we show how WPF manages application-wide concerns, such as the
lifetime of your process, keeping track of open windows, and storing application-
wide states and settings. We also show your options for deploying applications to
end users’ machines using ClickOnce.

Chapter 3, Layout
WPF provides a powerful set of tools for managing the visual layout of your
applications. This chapter shows how to use this toolkit, and how to extend it.

Chapter 4, Input
This chapter shows how to make your WPF application respond to user input. We
illustrate low-level input event handling, and the higher-level command system.

Chapter 5, Controls
Controls are the building blocks of a user interface. This chapter describes the
controls built into the WPF framework.

Chapter 6, Simple Data Binding
All applications need to present information to the user. This chapter shows
how to use WPF’s data binding features to connect the user interface to your
underlying data.

Chapter 7, Binding to List Data
This chapter builds on the preceding one, showing how data binding works with
lists of items. It also shows how to bind to hierarchical data.

Chapter 8, Styles
WPF’s styling mechanism provides a powerful way to control your application’s
appearance while ensuring its consistency.

Chapter 9, Control Templates
WPF provides an astonishing level of flexibility in how you can customize the
appearance of your user interface and the controls it contains. This chapter
examines these facilities, showing how you can modify the appearance of built-
in controls.

Chapter 10, Windows and Dialogs
WPF’s Window class is the basis for your main application windows. It also pro-
vides the facilities necessary to build dialog windows.

xviii | Preface

Chapter 11, Navigation
As well as supporting traditional single window and cascading window applica-
tions, WPF offers support for a web-like navigation style of user interface. This
chapter shows how to use these services either for your whole application, or
within a nested frame as part of a window. It also shows the “XBAP” deploy-
ment model, which allows a WPF application to be hosted in a web browser.

Chapter 12, Resources
This chapter describes WPE’s resource handling mechanisms, which are used for
managing styles, themes, and binary resources such as graphics.

Chapter 13, Graphics
WPF offers a powerful set of drawing primitives. It also offers an object model
for manipulating drawings once you have created them.

Chapter 14, Text and Flow Documents
WPF offers support for high-quality rendering of formatted text throughout the
user interface. This chapter explains the text services available wherever text is
used, and the text object model that defines how text is formatted. It also
describes how to use FlowDocuments to present large volumes of mixed text and
graphics, in a way that is optimized for on-screen viewing.

Chapter 15, Printing and XPS
This chapter describes WPF’s printing services. Printing in WPF is very closely
tied to XPS—the XML Paper Specification. This fixed-format document format
allows printable output to be written into a file. The chapter explores both the
XPS file format, and the APIs for printing and generating XPS documents.

Chapter 16, Animation and Media
This chapter describes WPF’s animation facilities, which allow most visible
aspects of a user interface, such as size, shape, color, and position, to be ani-
mated. It also describes the media playback services, which allow video and
audio to be synchronized with animations.

Chapter 17, 3D Graphics
WPF applications can host 3D models in their user interface. Two-dimensional
graphics and user interfaces can also be projected onto 3D surfaces. This chap-
ter describes the 3D API, and shows how the worlds of 2D and 3D come
together in WPF.

Chapter 18, Custom Controls
This chapter shows how to write custom controls and other custom element
types. It shows how to take full advantage of the WPF framework to build con-
trols as powerful and flexible as those that are built-in.

Appendix A, XAML
The eXtensible Application Markup Language (XAML) is an XML-based lan-
guage that can be used to represent the structure of a WPF user interface. This
appendix describes how XAML is used to create graphs of objects.

Preface | xix

Appendix B, Interoperability
WPF is able to coexist with old user interface technologies, enabling developers
to take advantage of WPF without rewriting their existing applications. This
appendix describes the interoperability features that make this possible.

Appendix C, Asynchronous and Multithreaded WPF Programming
Multithreaded code and asynchronous programming are important techniques
for making sure your application remains responsive to user input at all times.
This appendix explains WPF’s threading model, and shows how to make sure
your threads coexist peacefully with a WPF UL

Appendix D, WPF Base Types
WPF has a large and complex class inheritance hierarchy. Understanding the
roles of all these types and the relationships between them can be very daunting
when you first approach WPF. This appendix singles out the most important
types, and explains how they fit into WPF.

Appendix E, Silverlight
Although WPF’s XBAP model allows WPF applications to run inside a web
browser, this requires that .NET 3.0 be installed on an end user’s machine. This
makes WPF unsuitable for applications that need to be accessible from platforms
other than Windows. However, WPF’s cousin, Silverlight, is a cross-platform solu-
tion, offering a subset of the services available in WPF. This appendix provides a
quick introduction to Silverlight from Shawn Wildermuth, Microsoft MVP.

What You Need to Use This Book

This book targets Visual Studio 2005 and the .NET Framework 3.0, which includes
WPF (among other things). You’ll also want the Visual Studio 2005 extensions that
provide WPF templates that are mentioned in this book. You can download all of

this for free” (even Visual Studio 2005, if you’re willing to limit yourself to Visual C#
2005 Express EditionT).

WPF itself is supported on Windows XP, Windows Server 2003, and Windows Vista
(and will be supported on future versions of Windows, of course).

* You can find the links to download the .NET Framework 3.0 and the WPF extensions to Visual Studio at
http://sellsbrothers.com/news/showTopic.aspx?ixTopic=2053 (http://tinysells.com/104).

T You can download Visual C# Express from http://msdn.microsoft.com/vstudio/express/downloads (http://
tinysells.com/105).

xx | Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms.

Constant width
Indicates code, commands, options, switches, variables, attributes, keys, func-
tions, types, classes, namespaces, methods, modules, properties, parameters, val-
ues, objects, events, event handlers, XML tags, HTML tags, macros, the contents
of files, or the output from commands.

Constant width bold

Shows code or other text that should be noted by the reader.
Constant width italic

Indicates code that should be replaced with user-supplied values.

Constant width ellipses (...)
Shows code or other text not relevant to the current discussion.

R
s

This icon signifies a tip, suggestion, or general note.

This icon signifies a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming WPF, Second Edition, by
Chris Sells and Tan Griffiths. Copyright 2007 O’Reilly Media Inc., 978-0-596-51037-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xxi

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

For the code samples associated with this book and for errata, visit the web site
maintained by the authors at:

http://sellsbrothers.com/writing/wpbook

To contact Ian Griffiths, visit:
http://www.interact-sw.co.uk/iangblog/

To contact Chris Sells, visit:
http://sellsbrothers.com

The publisher maintains a web page for this book at:
http://www.oreilly.com/catalog/9780596510374

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Books Online

..+ When you see a Safari® Books Online icon on the cover of your

Safa rl “ favorite technology book, that means the book is available online
Booksonline through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

xxii | Preface

lan’s Acknowledgments

Writing this book wouldn’t have been possible without the support and feedback
generously provided by a great many people. I would like to thank the following:

The readers, without whom this book would have a rather sad, lonely, and pointless
existence.

My coauthor, Chris Sells, both for getting me involved in writing about WPF in the
first place, and for his superb feedback and assistance.

Shawn Wildermuth, for contributing the Silverlight appendix, and enduring Chris’s
and my uncompromising approach to technical review.

Tim Sneath, both for his feedback and for providing me with the opportunity to
meet and work with many members of the WPF team.

Microsoft employees and contractors, for producing a technology I like so much that
I just had to write a book about it. And in particular, thank you to those people at
Microsoft who gave their time to answer my questions or review draft chapters,
including Chris Anderson, Marjan Badiei, Jeff Bogdan, Mark Boulter, Ben Carter,
Dennis Cheng, Karen Corby, Vivek Dalvi, Nathan Dunlap, Ifeanyi Echeruo, Pablo
Fernicola, Filipe Fortes, Kevin Gijerstad, Aaron Goldfeder, John Gossman, Mark
Grinols, Namita Gupta, Henry Hahn, Robert Ingebretson, Kurt Jacob, David Jenni,
Michael Kallay, Amir Khella, Adam Kinney, Nick Kramer, Lauren Lavoie, Daniel
Lehenbauer, Kevin Moore, Elizabeth Nelson, Seema Ramchandani, Rob Relyea,
Chris Sano, Greg Schechter, Eli Schleifer, Ashish Shetty, Adam Smith, Michael
Stokes, Zhanbo Sun, David Teitlebaum, Stephen Turner, and Dawn Wood.

The following non-Microsoft people for their direct or indirect contributions to the
quality of this book: Matthew Adams, Craig Andera, Richard Blewett, Keith Brown,
Ryan Dawson, Kirk Fertitta, Kenny Kerr, Drew Marsh, Dave Minter, Brian Noyes,
Fritz Onion, Aaron Skonnard, Dan Sullivan, Bill Williams, and Zhou Yong.

John Osborn and Caitrin McCullough at O’Reilly for their support throughout the
writing process.

The technical review team: Chris Anderson, Elsa Bartley, Patrick Cauldwell, Dennis
Cheng, Arik Cohen, Beatriz de Oliveira Costa, Glyn Griffiths, Scott Hanselman,
Karsten Januszewski, Nikola Mihaylov, Mark Miller, Eric Stollnitz, and Jeff
Tentschert. And particular thanks to Mike Weinhardt for his extensive and thought-
ful feedback.

Finally, T especially want to thank Abi Sawyer for all her support, and for putting up
with me while I wrote this book—thank you!

Preface | xxiii

Chris's Acknowledgments

I'd like to thank the following people, without whom I wouldn’t have been able to
write either the first or second edition of this book:

The readers. When you’ve got a story to tell, you’ve got to have someone to tell it to.
I’ve been writing about WPF in various forums for almost four years and the readers
have always pushed and encouraged me further.

My coauthor, Ian Griffiths. Ian has an extensive background in all things graphical
and video-related, including technologies so deep I can’t understand him half the
time. This, in addition to his vast experience teaching the WPF course and writing
real-world WPF applications, along with his wonderful writing style, made him the
perfect coauthor on this book. I couldn’t have asked for better.

Shawn Wildermuth, for the cutting-edge Silverlight appendix. Shawn’s been doing a
bunch of advanced Silverlight work, so when I asked him to add his knowledge to this
book, he graciously agreed, completely unaware of the buzz saw that is the Griffith/
Sells reviewing process. Sorry, Shawn, and thanks!

Kenny Kerr, for his most excellent Window Clippings tool. His tool, plus the fea-
tures he added at my request, saved me countless hours of work and produced much
higher-quality screenshots than I would’ve normally had the patience to capture.

Chango Valtchev and Michael Weinhardt, for their huge help on navigation and the
pitfalls thereof. The material in Chapter 11 was influenced very much by Chango
and Michael.

Microsoft employees and contractors (in the order in which I found them in my WPF
email folder): Mark Lawrence, Robert Wlodarczyk, Hua Wang, Worachai Chaowe-
eraprasit, Preeda Ola, Varsha Mahadevan, Larry Golding, Benjamin Westbrook, Ben
Constable, Brian Chapman, Niklas Borson, Ryan Molden, Hamid Mahmood, Lau-
ren Lavoie, Lars Bergstrom, Amir Khella, Kevin Kennedy, David Jenni, Elizabeth
Nelson, Beatriz de Oliveira Costa, Nick Kramer, Allen Wagner, Chris Sano, Tim
Sneath, Steve White, Matthew Adams, Eli Schleifer, Karsten Januszewski, Rob Rel-
yea, Mark Boulter, Namita Gupta, John Gossman, Kiran Kumar, Filipe Fortes, Guy
Smith, Zhanbo Sun, Ben Carter, Joe Marini, Dwayne Need, Brad Abrams, Feng
Yuan, Dawn Wood, Vivek Dalvi, Jeff Bogdan, Steve Makofsky, Kenny Lim, Dmitry
Titov, Joe Laughlin, Arik Cohen, Eric Stollnitz, Pablo Fernicola, Henry Hahn, Jamie
Cool, Sameer Bhangar, and Brent Rector. I regularly spammed a wide range of my
Microsoft brethren and instead of snubbing me, they answered my email questions,
helped me make things work, gave me feedback on the chapters, sent me additional
information without an explicit request, and in the case of John Gossman, for-
warded the chapters along to folks with special knowledge so that they could give me
feedback. This is the first book I've written “inside,” and with the wealth of informa-
tion and conscientious people available, it’d be very, very hard to go back to writing
“outside.”

xxiv | Preface

The external technical reviewers, who provide an extremely important mainstream
point of view that Microsoft insiders can’t: Craig Andera, Chris Anderson, Elsa Bart-
ley, Patrick Cauldwell, Dennis Cheng, Arik Cohen, Beatriz de Oliveira Costa, Ryan
Dawson, Glyn Griffiths, Scott Hanselman, Karsten Januszewski, Adam Kinney,
Drew Marsh, Nikola Mihaylov, Mark Miller, Dave Minter, Brian Noyes, Eric
Stollnitz, and Jeff Tentschert.

Glyn Griffiths, not just for raising Ian right, but also for his eagle eye as the last
reviewer of what we thought was the “final” manuscript. Not only did he catch a
frightening number of grammatical errors, but he also pointed out the copyedits
from the first edition of the book that we’d failed to reverse-integrate into our Word
documents for the second edition. He literally did a three-way diff for us, which was
impressive and spooky at the same time. ..

Caitrin McCullough and John Osborn from O’Reilly Media, for supporting me in
breaking a bunch of the normal ORA procedures and guidelines to publish the book
I wanted.

Shawn Morrissey, for letting me make writing a part of my first two years at
Microsoft, and even giving me permission to use some of that material to seed this
book. Shawn put up with me, trusting me to do my job remotely when very few
Microsoft managers would.

Don Box, for setting my initial writing quality bar and hitting me squarely between
the eyes until I could clear it. Of course, thank you for the foreword and for acting as
my soundboard on this preface. You’re an invaluable resource and a dear friend.

Barbara Box, for putting me up in the Chez Box clubhouse while I balance work and
family in a way that wouldn’t be possible without you.

Chris Anderson, architect on WPF, for his foreword and a ton of illuminating con-
versations even after he wrote a competing book. Chris is a very generous man. After
I'd reviewed the first chapter of his book and realized that reading it was giving me
insights that would affect my own writing, he wouldn’t let me stop. He cared most
about getting the right story out there, and not at all about into which book it went.

Michael Weinhardt, as the primary developmental editor on both editions of this
book. His feedback is probably the single biggest factor in whatever quality we’ve
been able to cram in. As if that wasn’t enough, he produced many of the figures in
my chapters. (Ian, as a rule, is far more industrious than I.)

Tim Ewald, for that critical eye at the most important spots in the first edition.

My wife and sons. The first edition was the first book I've ever written while holding
a full-time job and, worse than that, while T was learning a completely new job.
Frankly, I neglected my family pretty thoroughly for about three solid months on the
first edition and nearly six months on the second, but they understood and sup-
ported me, like they have all of my endeavors over the years. I am very much looking
forward to getting back to them (again).

Preface | xxv

CHAPTER 1
Hello, WPF

WPF is a completely new presentation framework, integrating the capabilities of
many frameworks that have come before it, including User, GDI, GDI+, and HTML,
as well as being heavily influenced by toolkits targeted at the Web, such as Adobe
Flash, and popular Windows applications like Microsoft Word. This chapter will
give you the basics of WPF from scratch, and then a whirlwind tour of the things
you’ll read about in detail in the chapters that follow.

WPF from Scratch

Example 1-1 is pretty much the smallest WPF “application” you can write in C#.

Example 1-1. Minimal C# WPF application

// MyApp.cs
using System;
using System.Windows; // the root WPF namespace

namespace MyFirstWpfApp {
class MyApp {
[STAThread]
static void Main() {
// the WPF message box
MessageBox.Show("Hello, WPF");

}
}
}
N
o The STAThread attribute signals .NET to make sure that when COM is
.'s\ initialized on the application’s main thread, it’s initialized to be com-
) {Q‘ patible with single-threaded UI work, as required by WPF applications.

In fact, this is such a lame WPF application that it doesn’t even use any of the ser-
vices of WPF; the call to MessageBox. Show is just an interop call to Win32. However,
it does require the same infrastructure required of other WPF applications, so it
serves as a useful starting point for our explorations.

Building Applications

Building this application (Example 1-2) is a matter of firing off the C# compiler from
a command shell with the appropriate environment variables.” (The command line
here has been spread across multiple lines for readability, but you need to put it all
on one line.)

Example 1-2. Building a WPF application manually

C:\1st> csc /target:winexe /out:.\1st.exe
/x:System.dll
/x:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\WindowsBase.d11l"
/x:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\PresentationCore.d11"
/x:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.o\
PresentationFramework.d11"
MyApp.cs

Microsoft (R) Visual C# 2005 Compiler version 8.00.50727.312
for Microsoft (R) Windows (R) 2005 Framework version 2.0.50727
Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.

Here, we're telling the C# compiler that we’d like to create a Windows application
(instead of a Console application, which we get by default), putting the result, Ist.exe,
into the current folder, referencing the three main WPF assemblies (WindowsBase,
PresentationCore, and PresentationFramework), along with the core .NET System
assembly, and compiling the MyApp.cs source file.

Running the resulting Ist.exe produces the world’s lamest WPF application, as
shown in Figure 1-1.

s

Hello, WPF

Figure 1-1. A lame WPF application

* Start — All Programs — Microsoft Windows SDK — CMD Shell.

2 | Chapter1: Hello, WPF

In anticipation of less lame WPF applications with more source files and more com-
pilation options, let’s refactor the compilation command line into an msbuild project
file (Example 1-3).

Example 1-3. A minimal msbuild project file

<!-- 1st.csproj -->
<Project
DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<OutputType>winexe</OutputType>
<OutputPath>.\</OutputPath>
<Assembly>1st.exe</Assembly>
</PropertyGroup>
<ItemGroup>
<Compile Include="MyApp.cs" />
<Reference Include="System" />
<Reference Include="WindowsBase" />
<Reference Include="PresentationCore" />
<Reference Include="PresentationFramework" />
</ItemGroup>
<Import Project="$(MsbuildBinPath)\Microsoft.CSharp.targets" />
</Project>

The msbuild tool is a .NET 2.0 command-line application that understands XML
files in the form shown in Example 1-3. The file format is shared between msbuild
and Visual Studio 2005 so that you can use the same project files for both command-
line and integrated development environment (IDE) builds. In this .csproj file (which
stands for “C# Project”), we’re saying the same things we said to the C# compiler—
in other words, we’d like a Windows application, we’d like the output to be Ist.exe
in the current folder, and we’d like to reference the System assembly and the main
WPF assemblies while compiling the MyApp.cs file. The actual smarts of how to turn
these minimal settings into a compiled .NET application are contained in the .NET
2.0 Microsoft.CSharp.targets file that’s imported at the bottom of the file.

Executing msbuild.exe on the 1st.csproj file looks like Example 1-4.

Example 1-4. Building using msbuild

C:\1st>msbuild 1st.csproj

Microsoft (R) Build Engine Version 2.0.50727.312

[Microsoft .NET Framework, Version 2.0.50727.312]

Copyright (C) Microsoft Corporation 2005. All rights reserved.

Build started 2/4/2007 2:24:46 PM.

Project "C:\1st\1st.csproj" (default targets):

Target PrepareForBuild:
Creating directory "obj\Debug\".

WPF from Scratch | 3

Example 1-4. Building using msbuild (continued)

Target CoreCompile:

C:\Windows\Microsoft.NET\Framework\v2.0.50727\Csc.exe /noconfig /nowarn:1701
,1702 /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.o
\PresentationCore.d1l" /reference:"C:\Program Files\Reference Assemblies\Microso
ft\Framework\v3.0\PresentationFramework.d11l" /reference:C:\Windows\Microsoft.NET
\Framework\v2.0.50727\System.d11l /reference:"C:\Program Files\Reference Assembli
es\Microsoft\Framework\v3.0\WindowsBase.d11" /debug+ /out:obj\Debug\ist.exe /tar
get:winexe MyApp.cs
Target CopyFilesMarkedCopylocal:

Copying file from "C:\Program Files\Reference Assemblies\Microsoft\Framework
\v3.0\PresentationCore.dll" to ".\PresentationCore.dll".

Copying file from "C:\Program Files\Reference Assemblies\Microsoft\Framework
\v3.0\System.Printing.d1l" to ".\System.Printing.dll".

Copying file from "C:\Program Files\Reference Assemblies\Microsoft\Framework
\v3.0\PresentationCore.xml" to ".\PresentationCore.xml".

Copying file from "C:\Program Files\Reference Assemblies\Microsoft\Framework
\v3.0\System.Printing.xml" to ".\System.Printing.xml".

Target CopyFilesToOutputDirectory:

Copying file from "obj\Debug\ist.exe" to

1st -> C:\1st\ist.exe

Copying file from "obj\Debug\ist.pdb" to ".\1st.pdb".

.\1st.exe".

Build succeeded.
0 Warning(s)
0 Error(s)

Time Elapsed 00:00:04.15

As T mentioned, msbuild and Visual Studio 2005 share a project file format, so load-
ing the project file into Visual Studio is as easy as double-clicking on 1st.csproj (as
shown in Figure 1-2).

Unfortunately, as nice as the project file makes building our WPF application, the
application itself is still lame.

WPF Applications

A real WPF application is going to need more than a message box. WPF applica-
tions have an instance of the Application class from the System.Windows namespace.
The Application class provides methods like Run for starting the application, events
like Startup and SessionEnding for tracking lifetime, and properties like Current,
ShutdownMode, and MainWindow for finding the global application object, choosing
when it shuts down, and getting the application’s main window. Typically, the
Application class serves as a base for custom application-wide data and behavior
(Example 1-5).

4 | Chapter1: Hello, WPF

=

& 1st - Microsoft Visual Studio
File Edit View Project Build Debug Data Tools Window Community Help
‘G-EA-SH @ % R[5 b Debug ~ AnyCPU 1 E
?‘ MyApp.cs| - x |IS (G |
L 3 | E
8 i‘ngyFsrsthprpMyADp b ’¢'°Ma:n(_) r @ - 53- el
g // MyRpp.cs [Solution '1st' (1 project) g
) .] @
Susing System; & @ BN
Lusing system.Windows; // the root WPF namespace & & References
+ 3 PresentationCore
[Flnamespace MyFirstWpfapp { E - «3 PresentationFramework
class MyREpp { i +3 System
[STAThread] i L. -3 WindowsBase
static void Main() { #] MyApp.cs
// the WPF message box
MessageBox.Show {"Hello, WPE");
H
}
} -
<] ALl ¢ HSolution Explorerl@(lass View
I[ﬂ Error ListlE Outputl% Find Results 1\.’{1 Find Symbol Results|
Ready

Figure 1-2. Loading the minimal msbuild project file into Visual Studio

Example 1-5. A less minimal WPF application

// MyApp.cs
using System;
using System.Windows;

namespace MyFirstWpfApp {
class MyApp : Application {
[STAThread]
static void Main() {
MyApp app = new MyApp();
app.Startup += app.AppStartup;
app.Run();

void AppStartup(object sender, StartupEventArgs e) {
// By default, when all top level windows

// are closed, the app shuts down
Window window = new Window();
window.Title = "Hello, WPF";
window.Show();

WPF from Scratch

5

Here, our MyApp class derives from the Application base class. In Main, we create an
instance of the MyApp class, add a handler to the Startup event, and kick things off
with a call to the Run method. Our Startup handler creates our sample’s top-level
window, which is an instance of the built-in WPF Window class, making our sample
WPF application more interesting from a developer point of view, although visually
less so, as shown in Figure 1-3.

W] Hello, wpF el 3. B

Figure 1-3. A less lame WPF application

Although we can create instances of the built-in classes of WPF, such as Window, pop-
ulating them and wiring them up from the application, it’s much more encapsulat-
ing (not to mention abstracting) to create custom classes for such things, like the
Window1 class (Example 1-6).

Example 1-6. Window class declaring its own controls

// Windowl.cs

using System;

using System.Windows;

using System.Windows.Controls; // Button et al

namespace MyFirstWpfApp {
class Windowl : Window {
public Window1() {
this.Title = "Hello, WPF";

// Do something interesting (sorta...)

Button button = new Button();

button.Content = "Click me, baby, one more time!";
button.Width = 200;

button.Height = 25;

button.Click += button Click;

this.Content = button;
}

void button Click(object sender, RoutedEventArgs e) {
MessageBox. Show(
"You've done that before, haven't you...",
"Nice!");

6 | Chapter1: Hello, WPF

In addition to setting its caption text, an instance of our Window1 class will include a
button with its Content, Width, and Height properties set, and its Click event han-
dled. With this initialization handled in the Windowl class itself, our app’s startup
code looks a bit simpler (even though the application behavior itself has gotten
“richer”; see Example 1-7).

Example 1-7. Simplified Application instance

// MyApp.cs
using System;
using System.Windows;

namespace MyFirstWpfApp {
class MyApp : Application {
[STAThread]
static void Main(string[] args) {
MyApp app = new MyApp();
app.Startup += app.AppStartup;
app-Run();

void AppStartup(object sender, StartupEventArgs e) {
// Let the Windowl initialize itself
Window window = new Windowi();
window. Show();
}
}
}

The results (after updating the .csproj file appropriately) are shown in Figure 1-4 and
are unlikely to surprise you much.

W] Hello, WPF l=l@] % |

[Click me, baby, one more time!]

[Nice! [

You've done that before, haven't you...

Figure 1-4. A slightly more interesting WPF application

WPFfromScratch | 7

As the Window1 class gets more interesting, we’re mixing two very separate kinds of
code: the “look,” represented by the initialization code that sets the window and
child window properties, and the “behavior,” represented by the event handling
code. As the look is something that you’re likely to want handled by someone with
artistic sensibilities (a.k.a. turtleneck-wearing designer types) whereas the behavior is
something you’ll want to leave to the coders (a.k.a. pocket-protector-wearing engi-
neer types), separating the former from the latter would be a good idea. Ideally, we’d
like to move the imperative “look” code into a declarative format suitable for tools to
create with some drag-and-drop magic. For WPF, that format is XAML.

XAML

XAML is an XML-based language for creating and initializing .NET objects. It’s used
in WPF as a human-authorable way of describing the UI, although you can use it for
a much larger range of CLR types than just those in WPF. Example 1-8 shows how
we declare the Ul of our Window-derived class using XAML.

Example 1-8. Declaring a Window in XAML

<!-- Windowl.xaml -->

<Window
x:Class="MyFirstWpfApp.Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Hello, WPF">

<Button
x:Name="button"
Width="200"
Height="25"
Click="button_Click">Click me, baby, one more time!</Button>

</Window>

The root element, Window, is used to declare a portion of a class, the name of which is
contained in the Class attribute from the XAML XML namespace (declared with a
prefix of “x” using the “xmlns” XML namespace syntax). The two XML namespace
declarations pull in two commonly used namespaces for XAML work, the one for
XAML itself (the one with the “x” prefix) and the one for WPF (which we’ve
declared as the default for this XML file). You can think of the XAML in

Example 1-8 as creating the partial class definition in Example 1-9.

Example 1-9. C# equivalent of XAML from Example 1-8

namespace MyFirstWpfApp {
partial class Window1l : Window {
Button button;

8 | Chapter1: Hello, WPF

Example 1-9. C# equivalent of XAML from Example 1-8 (continued)

void InitializeComponent() {
// Initialize Windowl
this.Title = "Hello, WPF";

// Initialize button

button = new Button();
button.Width = 200;
button.Height = 25;
button.Click += button_Click;

this.AddChild(button);

}
}
}

XAML was built to be as direct a mapping from XML to .NET as possible. Gener-
ally, a XAML element is a .NET class name and a XAML attribute is the name of a
property or an event on that class. This makes XAML useful for more than just WPF
classes; pretty much any old .NET class that exposes a default constructor can be ini-
tialized in a XAML file.

Notice that we don’t have the definition of the click event handler in this generated
class. For event handlers and other initializations and helpers, a XAML file is meant
to be matched with a corresponding code-behind file, which is a .NET language code
file that implements behavior in code “behind” the look defined in the XAML. Tradi-
tionally, this file is named with a .xaml.cs extension and contains only the things not
defined in the XAML. With the XAML from Example 1-8 in place, we can reduce
our single-buttoned main window code-behind file to the code in Example 1-10.

Example 1-10. C# code-behind file

// Windowl.xaml.cs

using System;

using System.Windows;

using System.Windows.Controls;

namespace MyFirstWpfApp {
public partial class Windowl : Window {
public Window1() {
InitializeComponent();

}

void button_Click(object sender, RoutedEventArgs e) {
MessageBox.Show(...);
}
}
}

WPF from Scratch | 9

Notice the partial keyword modifying the Window1 class, which signals to the compiler
that the XAML-generated class is to be paired with this human-generated class to form
one complete class, each depending on the other. The partial Window1 class defined in
XAML depends on the code-behind partial class to call the InitializeComponent
method and to handle the click event. The code-behind class depends on the partial
Window1 class defined in XAML to implement InitializeComponent, thereby providing
the look of the main window (and related child controls).

Further, as mentioned, XAML is not just for visuals. For example, nothing is stop-
ping us from moving most of the definition of our custom MyApp class into a XAML
file (Example 1-11).

Example 1-11. Declaring an application in XAML

<!-- MyApp.xaml -->

<Application
x:Class="MyFirstWpfApp.MyApp"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Startup="AppStartup">

</Application>

This reduces the MyApp code-behind file to the event handler in Example 1-12.

Example 1-12. Application code-behind file

// MyApp.xaml.cs
using System;
using System.Windows;

namespace MyFirstWpfApp {
public partial class MyApp : Application {
void AppStartup(object sender, StartupEventArgs e) {
Window window = new Windowi();
window.Show();
}
}
}

You may have noticed that we no longer have a Main entry point to create the
instance of the application-derived class and call its Run method. That’s because WPF
has a special project setting to specify the XAML file that defines the application
class, which appears in the msbuild project file (Example 1-13).

Example 1-13. Specifying the application’s XAML in the project file

<!-- MyFirstWpfApp.csproj -->
<Project ...>
<PropertyGroup>
<OutputType>winexe</OutputType>
<OutputPath>.\</OutputPath>
<Assembly>1st.exe</Assembly>
</PropertyGroup>

10 | Chapter1: Hello, WPF

Example 1-13. Specifying the application’s XAML in the project file (continued)

<ItemGroup>
<ApplicationDefinition Include="MyApp.xaml" />
<Page Include="Window1.xaml" />
<Compile Include="Windowl.xaml.cs">
<DependentUpon>Window1.xaml</DependentUpon>
</Compile>
<Compile Include="MyApp.xaml.cs" />
<DependentUpon>MyApp . xaml</DependentUpon>
</Compile>
<Reference Include="System" />
<Reference Include="WindowsBase" />
<Reference Include="PresentationCore" />
<Reference Include="PresentationFramework" />
</ItemGroup>
<Import Project="$(MsbuildBinPath)\Microsoft.CSharp.targets" />
<Import Project="$(MSBuildBinPath)\Microsoft.WinFX.targets" />
</Project>

The combination of the ApplicationDefinition element and the .NET 3.0-specific
Microsoft. WinFX.targets file produces an application entry point that will create our
application for us. Also notice in Example 1-13 that we’ve replaced the MyApp.cs file
with the MyApp.xaml.cs file, added the Window1.xaml.cs file, and included the win-
dow’s corresponding XAML file as a Page element (we don’t do the same thing for
the application’s XAML file, as it’s already referenced in the ApplicationDefinition
element). The XAML files will be compiled into partial class definitions using the
instructions in the Microsoft. WinFX.targets file. The DependentUpon element is there
to associate a code-behind file with its XAML file. This isn’t necessary for the build
process, but it’s useful for tools that want to show the association. For example,
Visual Studio uses DependentUpon to show the code-behind file nested under the
XAML file.

This basic arrangement of artifacts (i.e., application and main windows each split
into a XAML and a code-behind file) is such a desirable starting point for a WPF
application that creating a new project using the “Windows Application (WPF)”
project template from within Visual Studio 2005 gives you the same initial configura-
tion, as shown in Figure 1-5.

Editing XAML

Now that we’ve seen the wonder that is declarative Ul description in XAML, you
may wonder, “Do I get all the fun of editing the raw XML, or are there some tools
that can join in the fun, too?” The answer is “sort of.” For example, if you’ve got the
NET Framework 3.0 extensions for Visual Studio 2005 (the same extensions that give
you the WPF project templates in VS05), you will have a visual editor for XAML files
that works very similarly to the built-in Windows Forms Designer. It will trigger by
default when you double-click a file in the Solution Explorer, or you can right-click on

WPF fromScratch | 11

o8 2nd - Microsoft Visual Studio ==

File Edit View Project Build Debug Data Tocls Window Community Help

F-EH-Tdd 4 ~ 0~ S0 b Detug v AnyCRU - | B Myseconawrrapp - | RS @R
p L - B 2@ 1 & B 4
» Windowl.xaml * X m‘m_ =%
a <Window o _— T[b | 3 'P-l ;
& s="MySecondWpFApD. Windowl® 5
3 T ARCUD AL - 2) " Solution ‘Ind’ (1 project)]
* "hLtp: microsoft.com/winfx/ 2006/ xaml/presentacion” R 20c] -
*hutps//schemas.microsefs. com/winfx/2006/ xaml "
W S Properties

i References
-3 PresentationCore

-2 PresentationFramework
- System
& Systern.Data
-3 System Runtime Serializatios
-3 System. ServiceModel
-3 System.Xml
3 WindowsBase
= Appxaml
= Windowl.xaml
l] b
i m » FAsolution Explarer PR Class View
23 Ervor List| 3] Output (B Find Results 142 Find Syn
Ready

Figure 1-5. The result of running the WPF Application project template

a XAML file in the Solution Expression and choose Open With. One of the options
offered will be “WPF Designer (Cider)” (where “Cider” is the codename for the WPF
Designer still under development). The WPF Designer allows for drag-and-drop-style
construction of XAML files with elements from the Toolbox and setting properties in
the property browser. In addition, you can see the XAML as the designer makes
changes, and in fact, you can make changes in the XAML view itself and see those
reflected in the designer. Figure 1-6 shows the WPF Designer in action.

Unfortunately, as of the writing of this book, the WPF Designer is still
very much under development and such basic features as visually add-
ing event handlers, let alone more advanced features like data bind-
ing, styles, control templates, and animation, are not supported,
which is why you’re unlikely to do much with it. If you’re following
along with the Visual Studio “Orcas” beta, you’ll get more current
(and more full-featured) versions of the WPF Designer, but if you can’t
wait, you have other choices, including two XAML designer tools
(Microsoft Expression Blend and Microsoft Expression Design), a third-
party XAML 3D editor (ZAM 3D), and several conversion tools from
other popular vector drawing formats (e.g., Adobe Illustrator and Flash),
all of which are currently downloadable at the time of this writing,.”

* Michael Swanson, the general manager of the Microsoft Platform Evangelist team, maintains a wonderful list of
WPF-related first- and third-party tools and controls for your development enjoyment at http://blogs.msdn.com/
mswanson/articlessfWPFToolsAndControls.aspx (http://tinysells.com/88).

12 | Chapter1: Hello, WPF

& 2nd - Microsoft Visual Studio Py =)

File Edit View Project Build Debug Data Tools Window Community Help

[5 Title="MySecondWpfApp®™ Height="136" v | Content
B cqrids
=[= fm | '

d luu! I.l:!'zl |3 Output) Find Results 1|52 Find Symbol hrsull}

Item(s) Saved

l

G-E-GH@ B9 -F -5 P Dtng v Ay - |B Myseconawprapp - | F E R o
Toolbox ~Tx| xam | - 3 | [Pioperties I g
E Common Controls Y | button] System Windows. Controls Button - ST
| & Pointer | len Tl g

= ! MySecond WpiA) I {2

@sm" = PR Myctcond VoAl ClickMode Retease iy
_L_J CheckBox aip |5
=% CombaBox - o i . ClipToBounds False I |E
d Image - Lclitkmlblhr.mmnirrulj - Command P ;‘?
[InkCanvas o . - CommandBindings (Collection) Il
[InkPresenter CommandParameter | <=
A Label . CommandTarget 12
=3 ListBox [T ciick me baby, one m
=i PasswordBox C lemplate
& RadioButton ntTemplateSele

L) I c 1 False
| |5 Design @xaml DR contevtMenuService] True
<Window —‘ Cursar
s5="MySecondWpiApp . Windowl™ _] DataContext
http://schemas.microsoft,com/y R -
Slia et e Ak microsoft.cop |rontirecticn LeftToRight HE

Figure 1-6. The WPF Designer in action

Another very useful tool for playing with XAML is the XamlPad tool that comes with
the Windows SDK. It actually shows the visual representation of your XAML as you

type it, as shown in Figure 1-7.

‘*) XamlPad

— TR
e e =

[Click me, baby, one more timel]

<Button -
x#xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microscft.com/winfx/2006/xaml"
Width="200"
Height="25">Click me, baby, one more time!</Button> =

Done. Markup saved to "C:\Program Files\Microsoft SDKs\Windows'\v6.0\bin
\XamlPad_Saved.xaml".

Figure 1-7. XamlPad in action

XamlPad has some limitations; the most important is that it doesn’t allow code (e.g.,

x:Class or event handler declarations), but as instant gratification, it can’t be beat.

WPF from Scratch

13

WPF provides a number of services for applications that we haven’t covered, includ-
ing lifetime management and ClickOnce-based deployment. In addition, although
WPF doesn’t provide any direct support for application instance management or set-
tings, the .NET 2.0 support for both of these features integrates with WPF.
Chapter 2 covers all of these topics.

XAML Browser Applications (XBAPs)

While we’re talking about Visual Studio tools for WPF, you may notice that a few
icons away from the “Windows Application (WPF)” project template is another one
called “XAML Browser Application (WPF),” as shown in Figure 1-8.

New Project
Project types: Templates:
E-Visual C# Visual Studio installed templates

5] Windows Application (WPF) =1 XAML Browser Application (WPF)

NET Framework 3.0] WCF Service Library & Custom Control Library (WPF)

Smart Device

Database o
i L. Starter Kits i Search Online Templates...

My Templates

Figure 1-8. The WPF XAML Browser Application project template in VSO5

WPF itself was created as a unified presentation framework, meant to enable build-
ing Windows applications with the best features from existing Windows application
practice and existing web application practice. One of the nice things that web appli-
cations provide is a single window showing the user one page of content/functionality
at a time, allowing for navigation among the pages. For some applications, including
Internet Explorer, the shell Explorer, Microsoft Money, and a bunch of Control Panel
applets, this is thought to be preferable to the more common Windows application
practice of showing more than one window at a time.

To enable more of these kinds of applications, WPF provides the page, which is the
unit of navigation in an XML Browser Application (XBAP). Instead of setting an
application’s StartupUri to a XAML file that defines a window, we point an XBAP’s
StartupUri at a XAML file that defines a page (Example 1-14).

Example 1-14. Starting with a Page instead of a Window

<!-- App.xaml -->

<Application
x:Class="MyFirstXbapApp.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Page1.xaml" />

A WPF page is a class that derives from the Page class, as shown in Example 1-15.

14 | Chapter1: Hello, WPF

xample 1-15. A sample page
P ple pag

<!-- Pagel.xaml -->

<Page
x:Class="MyFirstXbapApp.Page1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
WindowTitle="Page1">
<TextBlock FontSize="36">

Check out <Hyperlink NavigateUri="page2.xaml">page 2</Hyperlinks, too.

</TextBlock>

</Page>

// Pagel.xaml.cs

namespace MyFirstXbapApp {
public partial class Pagel : System.Windows.Controls.Page {
public Page1() {
InitializeComponent();
}
}
}

The primary way to allow the user to navigate in an XBAP is via the Hyperlink ele-
ment, setting the NavigateUri to a relative URL of another XAML page in the project.
The first page of our sample XBAP looks like Figure 1-9.

fg Pagel - Windows Internet Explorer E@g

OO |:-.oﬂ D:\data\AvalonBook\RtmSr ~ |‘¢| x | | Google o - |

52? .:',ﬁf gﬁ * - @ VQQPage'@Toolsvgv f}“@eﬂ ﬁ

Check out page 2, too.

& Computer | Protected Mode: Off

Figure 1-9. A simple XBAP hosted in Internet Explorer 7

In Figure 1-9, the hyperlinked text is underlined in blue, and if you were to move
your mouse cursor over the hyperlink, it would show up as red. Further, the page’s
WindowTitle property is set as the window caption. Of course, the most obvious
thing to notice is that the XBAP is hosted inside the browser—Internet Explorer 7 to
be exact. The reason for this is simple: XBAPs are meant to be deployed via the Web
(which we’ll talk about later in this chapter) and to blend seamlessly with web pages.
As you navigate among the pages in an XBAP, those pages are added to the naviga-
tion history just as web pages would be, and you’re allowed to use the Internet
Explorer toolbar to go backward and forward, as you’re used to doing.

XAML Browser Applications (XBAPs) | 15

For example, let’s define page2.xaml as shown in Example 1-16.

Example 1-16. Another simple page

<!-- Page2.xaml -->
<Page ... WindowTitle="Page2">
<TextBlock FontSize="36">
Hello and welcome to page 2.
</TextBlock>
</Page>

Clicking on the hyperlink on page 1 navigates to page 2, as shown in Figure 1-10.

,_ré Page? - Windows Internet Explorer E@g

@@Lﬂ DM\data\AvalonBook\RtmSr -~ |*'f| X | | Google R - |

v Current Page @ - 3 Page v {0} Tools ¥ ®v Xy fn) ":ﬂ i
€ Pagel (Pagelxaml) Ik

© History Ctrl+Shift+H Welcome to page 2-

& Computer | Protected Mode: Off

Figure 1-10. XBAP and navigation history

Notice in Figure 1-10 that the history for the back button is showing page 1, which is
where we were just before getting to page 2.

As you might imagine, there are many more topics to discuss to make your XBAPs
integrate with the browser and still provide the rich functionality we expect from
WPF applications. In addition, you can have any number of navigation windows in
your standalone WPF applications. We cover these topics and more in Chapter 11.

Content Models

Although the different kinds of WPF application types are useful, the core of any pre-
sentation framework is in the presentation elements themselves. In presentation sys-
tems of old, fundamentally we had “chunks of look and behavior” (often called
controls) and “containers of chunks of look and behavior.” In WPF, this character-
ization doesn’t really hold up very well. Many elements that provide their own con-
tent and behavior can also be containers of elements (and so on). As an example,
let’s take a look at a Button.

16 | Chapter1: Hello, WPF

The first thing that may surprise you about a WPF Button object is that you don’t
need to use a string as the content; it will take any .NET object. You’ve already seen
a string as a button’s content (see Example 1-17).

Example 1-17. A button with string content

<Window ...>
<Button Width="100" Height="100">Hi</Button>
</Window>

However, as Example 1-18 shows, you can also use an image (see Figure 1-11).

Example 1-18. A button with image content

<Window ...>
<Button Width="100" Height="100">
<Image Source="tom.png" />
</Button>
</Window>

[Containment EIEM

Figure 1-11. A button with image content

You can even use an arbitrary control, like a TextBox, as shown in Example 1-19 and
Figure 1-12.

Example 1-19. A button with control content

<Window ...>
<Button Width="100" Height="100">
<TextBox Width="75">edit me</TextBox>
</Button>
</Window>

Further, as you’ll see in Chapters 3 and 6, you can get fancy and show a collection of
nested elements in a Button or even nonvisual objects as the content of a Button. The
Button can take any object as content because it’s derived ultimately from a class
called ContentControl, as are many other WPF classes (e.g., Label, ListBoxItem,
ToolTip, CheckBox, RadioButton, and, in fact, Window itself).

ContentModels | 17

[®7 Containment &@g

edit md

Figure 1-12. A button with control content

A ContentControl knows how to hold anything that’s able to be rendered, not just a
string. A ContentControl gets its content from the Content property, so you could
specify a Button’s content like so (this is the longhand version of Example 1-17):

<Button Width="100" Height="100" Content="Hi" />

ContentControls are especially useful because you get all the behavior of the “thing”
(e.g., Button, Window, ListBoxItem), but you can display whatever you like in it with-
out having to build yourself a special class (e.g., ImageButton, TextBoxListBoxItem, etc.).

The content model is not relegated to just the ContentControl. For example, the
HeaderedContentControl is like a ContentControl, except it has two spots for content,
the header and the content. The GroupBox and TabItem controls both derive from the
HeaderedContentControl and both provide a header (i.e., the group title and the tab),
as well as content (i.e., the group contents and the tab contents). By using the con-
tent model, HeaderedContentControls allow any kind of content in either content
spot, allowing for much greater flexibility still within a simple model.

XAML Property Element Syntax

Although setting the Content property as an XML attribute works just fine for speci-
fying a string as a property, it doesn’t work at all well for specifying a subelement,
like the image example. For this reason, XAML defines the property element syntax,
which uses nested Element.Property elements for specifying objects as property val-
ues. For instance, Example 1-20 shows the property element syntax for the string set-
ting of a button’s content.

Example 1-20. Property element syntax with a string

<Button Width="100" Height="100">
<Button.Content>Hi</Button.Content>
</Button>

Example 1-21 shows the property element syntax using an image.

18 | Chapter1: Hello, WPF

Example 1-21. Property element syntax with an image

<Button Width="100" Height="100">
<Button.Content>
<Image Source="tom.png" />
</Button.Content>
</Button>

Because XML attributes can contain only one thing, property element syntax is espe-
cially useful when you’ve got more than one thing to specify. For example, you might
imagine a button with a string and an image defined, as in Example 1-22.

Example 1-22. You can’t have multiple things in a ContentControl

<Button Width="100" Height="100">
<!-- WARNING: doesn't work! -->
<Button.Content>
<TextBlock>Tom: </TextBlock>
<Image Source="tom.png" />
</Button.Content>
</Button>

Although the property element syntax can be useful for this kind of thing, in this par-
ticular case it doesn’t work at all. This brings us to the second thing that may sur-
prise you about content containment in WPF: many content containers can take only
a single piece of content. For example, whereas a Button can take any old thing as
content, it can take only a single thing which, without additional instructions, it will
center and cause to fill up its entire client area. For more than one content element or
a richer layout policy, you’ll need a panel.

Layout

Taking another look at Example 1-22 with the TextBlock and the Image as content for
the Button, we don’t really have enough information to place them inside the area of
the button. Should they be stacked left to right or top to bottom? Should one be
docked on one edge and one docked to the other? How will things be stretched or
arranged if the button resizes? These are questions best answered with a panel.

A panel is a control that knows how to arrange its content. WPF comes with the fol-
lowing general-purpose panel controls:

Canvas
Arranges content by position and size with no automatic rearrangement when
the Canvas is resized

DockPanel
Arranges content according to the edge that each piece of content “docks” to,
except for the last, which fills the remaining area

Grid
Arranges content in rows and columns as specified by the developer

layout | 19

StackPanel
Arranges content top to bottom or left to right according to the orientation of
the panel

UniformGrid
Arranges content in a grid with the same number of rows and columns gener-
ated as needed to display the content

WrapPanel
Arranges things in a horizontal row until the next item won’t fit, in which case it
wraps to the next row

Grid Layout

The most flexible panel by far is the grid, which arranges content elements in rows
and columns, including the ability to span multiple rows and/or multiple columns,
as shown in Example 1-23.

Example 1-23. A sample usage of the Grid panel

<Window ...>
<Grid>

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition />

<ColumnDefinition /»

<ColumnDefinition />
</Grid.ColumnDefinitions>
<Button Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2">A</Button>
<Button Grid.Row="0" Grid.Column="2">C</Button>
<Button Grid.Row="1" Grid.Column="0" Grid.RowSpan="2">D</Button>
<Button Grid.Row="1" Grid.Column="1">E</Button>
<Button Grid.Row="1" Grid.Column="2">F</Button>
<Button Grid.Row="2" Grid.Column="1">H</Button>
<Button Grid.Row="2" Grid.Column="2">I</Button>

</Grid>
</Window>

Example 1-23 used the XAML property element syntax to define a grid with three
rows and three columns inside the RowDefinition and ColumnDefinition elements.
On each element, we’ve specified the Grid.Row and Grid.Column properties so that the
grid knows which elements go where (the grid can have multiple elements in the same
cell). One of the elements spans two rows and one spans two columns, as shown in
Figure 1-13.

20 | Chapter1: Hello, WPF

[®7 Grid Demo EM
A €
E: F
D
H]

Figure 1-13. An example Grid panel in action

Using the grid, we can be explicit about how we want to arrange an image with a text
caption (Example 1-24).

Example 1-24. Arranging an image and text in a grid

<Button Width="100" Height="100">
<Button.Content>
<Grid>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<Image Grid.Row="0" Source="tom.png" />
<TextBlock
Grid.Row="1"
HorizontalAlignment="Center">Tom</TextBlock>
</Grid>
</Button.Content>
</Button>

Figure 1-14 shows how the grid arranges the image and text for us.

Because we’re just stacking one element on top of another, we could’ve used the
stack panel, but the grid is so general-purpose that many WPF programmers find
themselves using it for most layout configurations.

XAML Attached Property Syntax

You may have noticed that in setting up the Grid.Row and Grid.Panel attributes of
the Button elements, we used another dotted syntax, similar to the property element
syntax, but this time on the attribute instead of on the element. This is the attached
property syntax, and it is used to set a property as associated with the particular ele-
ment (e.g., a Button), but as defined by another element (e.g., a Grid).

layout | 21

[®7 containment EM

Figure 1-14. A grid arranging an image and a text block

The attached property syntax is used in WPF as an extensibility mechanism. We don’t
want the Button class to have to know that it’s being arranged in a Grid, but we do want
to specify Grid-specific attributes on it. If the Button was being hosted in a Canvas, the
Grid properties wouldn’t make any sense, so building Row and Column properties into the
Button class isn’t such a great idea. Further, when we define our own custom panel that
the WPF team never considered (e.g., Hand0fCards), we want to be able to apply the
HandOfCards-related attached properties to arbitrary elements it contains.

This kind of extensibility is what the attached property syntax was designed for and
it is common when arranging content on a panel.

For the nitty-gritty of layout, including the other panels that I didn’t show, you’ll
want to read Chapter 3.

Controls

Although the layout panels provide the container, the controls are the important
things you’ll be arranging. So far, you’ve seen how to create instances of controls, set
properties, and handle events. You’ve also seen the basics of the content models that
make controls in WPF special. However, for the details of event routing, command
handling, mouse/keyboard input, and an enumeration of the controls in WPF, you’ll
want to check out Chapters 4 and 5. Further, for information about packaging up
custom Ul and behavior, you’ll want to read Chapter 18.

Data Binding

Once we’ve got a set of controls and a way to lay them out, we still need to fill them
with data and keep that data in sync with wherever the data actually lives. (Controls
are a great way to show data but a poor place to keep it.) For example, imagine that
we’d like to build a WPF application for keeping track of people’s nicknames. Some-
thing like Figure 1-15 would do the trick.

22 | Chapter1: Hello, WPF

[E7 Nick Names E@ﬂ

Name: Don Nick: Naked
Don: Naked

Martin: Gudge

Tim: Stinky

Add

Figure 1-15. Data binding to a collection of custom types

In Figure 1-15, we've got two TextBox controls, one for the name and one for the
nickname. We’ve also got the actual nickname entries in a ListBox in the middle and
a Button to add new entries. We could easily build the core data of such an applica-
tion with a class, as shown in Example 1-25.

Example 1-25. A custom type with data binding support

public class Nickname : INotifyPropertyChanged {
// INotifyPropertyChanged Member
public event PropertyChangedEventHandler PropertyChanged;
void Notify(string propName) {
if(PropertyChanged != null) {
PropertyChanged(this, new PropertyChangedEventArgs(propName));

}

string name;
public string Name {
get { return name; }
set {
name = value;
Notify("Name"); // notify consumers

}

string nick;
public string Nick {
get { return nick; }
set {
nick = value;
Notify("Nick"); // notify consumers

}

public Nickname() : this("name", "nick") { }
public Nickname(string name, string nick) {
this.name = name;
this.nick = nick;
}
}

DataBinding | 23

This class knows nothing about data binding, but it does have two public properties
that expose the data, and it implements the standard INotifyPropertyChanged inter-
face to let consumers of this data know when it has changed.

In the same way that we have a standard interface for notifying consumers of objects
when they change, we also have a standard way to notify consumers of collections of
changes, called INotifyCollectionChanged. WPF provides an implementation of this
interface, called ObservableCollection, which we’ll use so that appropriate events are
fired when Nickname objects are added or removed (Example 1-26).

Example 1-26. A custom collection type with data binding support

// Notify consumers
public class Nicknames : ObservableCollection<Nickname> { }

Around these classes, we could build nickname management logic that looks like
Example 1-27.

Example 1-27. Making ready for data binding

// Windowl.xaml.cs

namespace DataBindingDemo {
public class Nickname : INotifyPropertyChanged {...}
public class Nicknames : ObservableCollection<Nickname> { }

public partial class Windowl : Window {
Nicknames names;

public Window1() {
InitializeComponent();
this.addButton.Click += addButton Click;

// create a nickname collection
this.names = new Nicknames();

// make data available for binding
dockPanel.DataContext = this.names;

}

void addButton Click(object sender, RoutedEventArgs e) {
this.names.Add(new Nickname());

}
}
}

Notice that the window’s class constructor adds a click event handler to add a new
nickname and creates the initial collection of nicknames. However, the most useful
thing that the Windowl constructor does is set its DataContext property so as to make
the nickname data available for data binding.

24 | Chapter1: Hello, WPF

In WPF, data binding is about keeping object properties and collections of objects
synchronized with one or more controls’ views of the data. The goal of data binding
is to save you the time required to write the code to update the controls when the
data in the objects changes, and to update the data when the user edits the data in
the controls. The synchronization of the data to the controls depends on the
INotifyPropertyChanged and INotifyCollectionChanged interfaces that we’ve been
careful to use in our data and data collection implementations.

For example, because the collection of our example nickname data and the nickname
data itself both notify consumers when there are changes, we can hook up controls
using WPF data binding, as shown in Example 1-28.

Example 1-28. An example data binding usage

<!-- Windowl.xaml -->
<Window ...>
<DockPanel x:Name="dockPanel">
<TextBlock DockPanel.Dock="Top">
<TextBlock VerticalAlignment="Center">Name: </TextBlock>
<TextBox Text="{Binding Path=Name}" />
<TextBlock VerticalAlignment="Center">Nick: </TextBlock>
<TextBox Text="{Binding Path=Nick}" />
</TextBlock>
<Button DockPanel.Dock="Bottom" x:Name="addButton">Add</Button>
<ListBox
ItemsSource="{Binding}"
IsSynchronizedWithCurrentItem="True" />
</DockPanel>
</Window>

This XAML lays out the controls as shown in Figure 1-15 using a dock panel to
arrange things top to bottom and a text block to contain the editing controls. The
secret sauce that takes advantage of data binding is the {Binding} values in the con-
trol attributes instead of hardcoded values. By setting the Text property of the
TextBox to {Binding Path=Name}, we’re telling the TextBox to use data binding to peek
at the Name property out of the current Nickname object. Further, if the data changes in
the Name TextBox, the Path is used to poke the new value back in.

The current Nickname object is determined by the ListBox because of the
IsSynchronizedWithCurrentItem property, which keeps the TextBox controls show-
ing the same Nickname object as the one that’s currently selected in the ListBox.
The ListBox is bound to its data by setting the ItemsSource attribute to {Binding}
without a Path statement. In the ListBox, we’re not interested in showing a single
property on a single object, but rather all of the objects at once.

But how do we know that both the ListBox and the TextBox controls are sharing the
same data? That’s where setting the dock panel’s DataContext comes in (back in
Example 1-27). In the absence of other instructions, when a control’s property is set
using data binding, it looks at its own DataContext property for data. If it doesn’t find

DataBinding | 25

any, it looks at its parent and then its parent, and so on, all the way up the tree. Because
the ListBox and the TextBox controls have a common parent that has a DataContext
property set (the DockPanel), all of the data bound controls will share the same data.

XAML Markup Extensions

Before we take a look at the results of our data binding, let’s take a moment to dis-
cuss XAML markup extensions, which is what you’re using when you set an attribute
to something inside of curly braces (e.g., Text="{Binding Path=Name}"). Markup
extensions add special processing to XAML attribute values. For example, this:

<TextBox Text="{Binding Path=Name}" />
is just a shortcut for this (which you’ll recognize as the property element syntax):

<TextBox.Text>
<Binding Path="Name" />
</TextBox.Text>
For a complete discussion of markup extensions, as well as the rest of the XAML
syntax, read Appendix A.

Data Templates

With the data binding markup syntax explained, let’s turn back to our example data
binding application, which so far doesn’t look quite like what we had in mind, as
seen in Figure 1-16.

[B7 Nick Names @Eﬁ

Name: Don Nick: Naked

DataBindingDemo.Nickname
DataBindingDemo.Nickname
DataBindingDemo.Nickname

Add

Figure 1-16. ListBox showing objects of a custom type without special instructions

It’s clear that the data is making its way into the application, because the currently
selected name and nickname are shown for editing. The problem is that, unlike the
TextBox controls, which were each given a specific field of the Nickname object to show,
the ListBox is expected to show the whole thing. Lacking special instructions, it’s call-
ing the ToString method of each object, which results in only the name of the type. To
show the data, we need to compose a data template, like the one in Example 1-29.

26 | Chapter1: Hello, WPF

Example 1-29. Using a data template

<ListBox
ItemsSource="{Binding}"
IsSynchronizedWithCurrentItem="True">

<ListBox.ItemTemplate>
<DataTemplate>
<TextBlock>
<TextBlock Text="{Binding Path=Name}" />:
<TextBlock Text="{Binding Path=Nick}" />
</TextBlock>
</DataTemplate>
</ListBox.ItemTemplate>

</ListBox>

A data template is a set of elements that should be inserted somewhere. In our case,
we are specifying a data template to be inserted for each listbox item by setting the
ItemTemplate property. In Example 1-29, we’ve composed a data template from a
text block that flows together two other text blocks, each bound to a property on a
Nickname object separated by a colon, as shown back in Figure 1-15.

At this point, we’ve got a completely data-bound application. As data in the collec-
tion or the individual objects changes, the UI will be updated, and vice versa. How-
ever, there is a great deal more to say on this topic, including binding to XML and
relational data, master-detail binding, and hierarchical binding, which you’ll see in
Chapters 6 and 7.

Dependency Properties

Although our data source Nickname object made its data available via standard .NET
properties, we need something special to support data binding on the target ele-
ment. Even though the TextContent property of the TextBlock element is exposed
with a standard property wrapper, in order for it to integrate with WPF services like
data binding, styling, and animation, it also needs to be a dependency property. A
dependency property provides several features not present in .NET properties,
including the ability to inherit its value from a container element, provide for object-
independent storage (providing a potentially huge memory savings), and change
tracking.

Most of the time, you won’t have to worry about dependency properties versus .NET
properties, but when you need the details, you can read about them in Chapter 18.

Dependency Properties | 27

Resources

Resources are named chunks of data defined separately from code and bundled with
your application or component. .NET provides a great deal of support for resources,
a bit of which we already used when we referenced tom.png from our XAML button
earlier in this chapter. WPF also provides special support for resources scoped to ele-
ments defined in the tree.

As an example, let’s declare some default instances of our custom Nickname objects in
XAML (see Example 1-30).

Example 1-30. Declaring objects in XAML

<!-- Windowl.xaml -->
<Window ... xmlns:local="clr-namespace:DataBindingDemo" />

<Window.Resources>
<local:Nicknames x:Key="names">
<local:Nickname Name="Don" Nick="Naked" />
<local:Nickname Name="Martin" Nick="Gudge" />
<local:Nickname Name="Tim" Nick="Stinky" />
</local:Nicknames>
</Window.Resources>

<DockPanel DataContext="{StaticResource names}">
<TextBlock DockPanel.Dock="Top" Orientation="Horizontal">
<TextBlock VerticalAlignment="Center">Name: </TextBlock>
<TextBox Text="{Binding Path=Name}" />
<TextBlock VerticalAlignment="Center">Nick: </TextBlock>
<TextBox Text="{Binding Path=Nick}" />
</TextBlock>

</DockPanel>
</Window>

Notice the Window.Resources, which is property element syntax to set the Resources
property of the Windowl class. Here we can add as many named objects as we like,
with the name coming from the Key attribute and the object coming from the XAML
elements (remember that a XAML element is just a mapping to .NET class names).
In this example, we’re creating a Nicknames collection named names to hold three
Nickname objects, each constructed with the default constructor, and then setting
each of the Name and Nick properties.

Also notice the use of the StaticResource markup extension to reference the names
resource as the collection to use for data binding. With this XAML in place, our win-
dow construction reduces to the code shown in Example 1-31.

28 | Chapter1: Hello, WPF

Example 1-31. Finding a resource in code

public partial class Windowl : Window {
Nicknames names;

public Window1() {
InitializeComponent();
this.addButton.Click += addButton Click;

// get names collection from resources
this.names = (Nicknames)this.FindResource("names");

// no need to make data available for binding here
//dockPanel.DataContext = this.names;

}

void addButton Click(object sender, RoutedEventArgs e) {
this.names.Add(new Nickname());

}
}

Now instead of creating the collection of names, we can pull it from the resources
with the FindResource method. Just because this collection was created in XAML
doesn’t mean that we need to treat it any differently than we treated it before, which
is why the Add button event handler is the exact same code. Also, there’s no need to
set the data context on the dock panel because that property was set in the XAML.

For the full scoop on resources, including resource scoping and lookup, static and
dynamic binding to resources, and using resources for theming and skinning, read
Chapter 12.

XAML Namespace Mapping Syntax

Before we go on with resource applications, we need to discuss a new XAML syntax
that’s come up: the mapping syntax. This provides the ability to bring in types not
already known by the XAML compiler (in fact, the XAML compiler knows about
only a couple of types). Our use of the mapping syntax looks like Example 1-32.

Example 1-32. XAML mapping syntax

<Window ... xmlns:local="clr-namespace:DataBindingDemo" />
<Window.Resources>
<local:Nicknames x:Key="names">

<local:Nickname Name="Don" Nick="Naked" />

</local:Nicknames>
</Window.Resources>

</Window>

Resources | 29

When bringing a new CLR namespace into XAML, we use the XML namespace prefix
mapping syntax. If we’ve got control of the CLR assembly in question, we can add an
attribute to tag it with any URI we like. Otherwise, we have to use a specific format:

xmlns:myPrefix="clr-namespace:MyNamespace[;assembly=MyAssembly]"

The XML prefix is how we access the CLR namespace when referring to a CLR type
in a XAML document (e.g., local:Nickname). I've chosen the XML namespace local
in this case because the CLR namespace to which I'm referring must be part of the
assembly being compiled along with the XAML in question. You can import CLR
namespaces for another assembly by specifying the optional assembly attribute as
part of the mapping. For a more thorough discussion of the namespace mapping syn-
tax, including the attribute you can use to tag your CLR assemblies with URIs for
more seamless mapping into XAML, read Appendix A.

Styles

One of the major uses for resources is to specify styles. A style is a set of property/
value pairs to be applied to one or more elements. For example, recall the two
TextBlock controls from our Nickname sample, each of which was set to the same
VerticalAlignment (Example 1-33).

Example 1-33. Multiple TextBlock controls with the same settings

<!-- Window1.xaml -->
<Window ...>
<DockPanel ...>
<TextBlock ...»>
<TextBlock VerticalAlignment="Center">Name: </TextBlock>
<TextBox Text="{Binding Path=Name}" />
<TextBlock VerticalAlignment="Center">Nick: </TextBlock>
<TextBox Text="{Binding Path=Nick}" />
</TextBlock>

</DockPanel>
</Window>

If we wanted to bundle the VerticalAlignment setting into a style, we could do this
with a Style element in a Resources block (Example 1-34).

Example 1-34. An example TextBlock style

<Window ...>
<Window.Resources>

<Style x:Key="myStyle" TargetType="{x:Type TextBlock}">
<Setter Property="VerticalAlignment" Value="Center" />
<Setter Property="Margin" Value="2" />

30 | Chapter1: Hello, WPF

Example 1-34. An example TextBlock style (continued)

<Setter Property="FontWeight" Value="Bold" />
<Setter Property="FontStyle" Value="Italic" />
</Style>
</Window.Resources>
<DockPanel ...»>
<TextBlock ...»>
<TextBlock Style="{StaticResource myStyle}">Name: </TextBlock>
<TextBox Text="{Binding Path=Name}" />
<TextBlock Style="{StaticResource myStyle}">Nick: </TextBlock>
<TextBox Text="{Binding Path=Nick}" />
</TextBlock>

</DockPanel>
</Window>

The Style element is really just a named collection of Setter elements for a specific
target type (and specified with the Type markup extension). The new TextBlock style
centers the vertical alignment property and, just for fun, sets the margin, font width,
and font style. With the style in place, you can use it to set the Style property of any
TextBlock that references the style resource. Figure 1-17 illustrates the use to which
we’ve put this style.

[E7] Nick Names E@Iﬂ

Name: Don Nick: MNaked
Don: Naked

Martin: Gudge

Tim: Stinky

Add

Figure 1-17. Named style in action on two TextBlock controls

Styles provide one great way to set the look of a control without building a custom
control, by merely setting properties. There’s much more on this topic in Chapter 8.

Animation

If you’d like to apply property changes to a control (or other visual element) over
time, you can do so with styles that include animation information, which is dis-

cussed in Chapter 16 (although Figure 1-18 is a small taste of what WPF animations
can produce).

Animation | 31

[aickmer) (s
 cickmer) @EEEED)

Figure 1-18. Buttons with animated glow (Color Plate 1)

Control Templates

In addition to changing a control’s look by manipulating properties, you can replace
it with something completely different by setting a control’s Template property.

In Example 1-35, we’ve decided that our Add button is a yellow ellipse, as shown in
Figure 1-19.

Example 1-35. Replacing a control’s look completely with a control template

<Button DockPanel.Dock="Bottom" x:Name="addButton" Content="Add">
<Button.Template>
<ControlTemplate TargetType="{x:Type Button}">
<Grid>
<Ellipse Width="128" Height="32" Fill="Yellow" Stroke="Black" />
<ContentPresenter
VerticalAlignment="Center" HorizontalAlignment="Center" />
</Grid>
</ControlTemplate>
</Button.Template>
</Button>

B 7| Nick Names @m

Name: Don Nick: Maked

Don: Naked
Martin: Gudge
Tim: Stinky

Figure 1-19. A yellow ellipse button

The template of a control in WPF is what defines the look, whereas the code defines
the behavior. The default template comes from the system-scope resources (as
described in Chapter 12), but if you don’t like that one, you can replace it with what-
ever you like, using a content presenter to drop in the content provided by the devel-
oper using your control. However, the behavior remains the same (e.g., if you click
on the ellipse-shaped button in Figure 1-19, a Click event is still fired). We explore in
detail the power of replacing the look of a control in Chapter 9.

32 | Chapter1: Hello, WPF

Graphics

When building up a control’s template, you’ll likely build it with a set of graphics
primitives that WPF provides, including rectangles, polygons, lines, ellipses, and so
on. WPF also lets you affect the way it renders graphics in any element, offering facil-
ities that include bordering, rotating, or scaling another shape or control. WPF’s sup-
port for graphics is engineered to fit right into the content model we’re already
familiar with, as shown in Example 1-36, from Chapter 13.

Example 1-36. Adding graphics to a Button

<Button>
<Button.LayoutTransform>
<ScaleTransform ScaleX="3" ScaleY="3" />
</Button.LayoutTransform>
<StackPanel Orientation="Horizontal">
<Canvas Width="20" Height="18" VerticalAlignment="Center">
<Ellipse Canvas.Left="1" Canvas.Top="1" Width="16" Height="16"
Fill="Yellow" Stroke="Black" />
<Ellipse Canvas.Left="4.5" Canvas.Top="5" Width="2.5" Height="3"
Fill="Black" />
<Ellipse Canvas.Left="11" Canvas.Top="5" Width="2.5" Height="3"
Fill="Black" />
<Path Data="M 5,10 A 3,3 0 0 0 13,10" Stroke="Black" />
</Canvas>
<TextBlock VerticalAlignment="Center">Click!</TextBlock>
</StackPanel>
</Button>

Here we’ve got three ellipses and a path composed inside a canvas that is hosted
inside a stack panel with a text block that, when scaled via the LayoutTransform prop-
erty on the button, produces Figure 1-20.

©) Click!

Figure 1-20. A scaled button with a collection of graphics primitives

Notice that there’s nothing special about the graphics primitives in XAML; they’re
declared and integrated as content just like any of the other WPF elements we’ve
discussed. The graphics and the transformation are integrated into the same presenta-
tion stack as the rest of WPF, which is a bit of a difference for experienced User/GDI
programmers.

For a complete discussion of how graphics primitives, retained drawings, color, lines,
brushes, and transformations happen in WPF, both declaratively and in code, and
for an introduction to 3D and video, read Chapter 13.

Graphics | 33

3D

Graphics in WPF are not limited to 2D; Figure 1-21 shows an example of a figure

that was defined using WPF’s 3D capabilities.

Figure 1-21. 3D plot of data (Color Plate 2)

For an introduction to 3D and how it integrates with your WPF applications, you’ll

want to read Chapter 17.

Documents and Printing

The document support in WPF is about flowing all the different content types you’ve
seen in the rest of this chapter, along with special text-specific content types, into a

seamless whole, a small sample of which is shown in Figure 1-22.

7
7 FlowDocExample

(=] E e

)

Go With The Flow

A FlowDocument is a text document that can be
formatted to adjust the available space. This enables
an application to adapt to a wide variety of form
factors. For example, if the user has a tablet PC, they
may be able to choose between portrait and landscape
orientations. Applications that are able to adapt to
either layout will be of more use on such devices than
those with an inflexible approach to layout.

411afap

Another benefit of flow documents it that they can be
displaved either in the classic HTML-style scrolling
view, or in a paginated multi-column view. This might
not sound like a good thing: if vou are used to reading
columnar text on the internet. you may not have
enjoyed the experience. Most multi-column layouts
are designed for print, and the column heights have
been tailored for the target paper size. This will usually
be taller than a computer screen. Reading such text on
screen is a horrible experience because you have to
scroll down through one column, and then scroll back
up to the start of the next one, severely disrupting the

EEE =S ——+

Figure 1-22. A flowing document

34

Chapter 1: Hello, WPF

The text-specific content support is provided with the flow document and related ele-
ments that provide advanced typography; adaptive, flow-based layout; spellchecking;
hyphenation; and more, as described in Chapter 14.

In addition, the base of the flow document supports printing, as do the rest of the
WPF visual elements, via the XML Paper Specification (XPS), as covered in
Chapter 15.

Where Are We?

WPF applications have a great deal of power, at which this chapter can only hint.
The base services of the application aren’t too surprising, but the support for page-
based navigation and browser hosting certainly adds a new capability for Windows
applications, further enhanced with .NET 2.0 ClickOnce support.

Building your application is a matter of grouping controls in containers—either sin-
gle content containers, like windows or buttons, or multiple content containers that
provide layout capabilities, like the canvas and the grid.

When bringing your controls together, you’ll want to populate them with data that’s
synchronized with the in-memory home of the data, which is what data binding is
for, and keep them pretty, which is what styles are for. If you want to declare data or
styles in your XAML, you can do so using resources, which are just arbitrarily named
objects that aren’t used to render the WPF UI directly.

If no amount of data or style property settings makes you satisfied with the look of
your control, you can replace it completely with control templates, which can com-
prise other controls or graphics primitives. In addition, you can apply graphics
operations, like rotating, scaling, or animation, to 2D or 3D graphics primitives or
controls in WPF’s integrated way. These elements can further be gathered into doc-
uments for viewing or printing.

Where AreWe? | 35

CHAPTER 2
Applications and Settings

A WPF application is a Windows process in which you have an instance of the WPF
Application object. The Application object provides lifetime services and integration
with ClickOnce deployment. Between application sessions, you’ll want to be able to
keep application and user settings in a way that integrates well with WPF applica-
tions. All of these topics are the focus of this chapter.

On the other hand, if you’re interested in XML Browser Applications (XBAPs)—
applications hosted in the browser and deployed over the Web—read Chapter 11.

Application Lifetime

In the Windows sense, an “application” is an address space and at least one thread of
execution (a.k.a. a “process”). In the WPF sense, an application is a singleton object
that provides services for Ul components and Ul programmers in the creation and
execution of a WPF program. More specifically, in WPF, an application is an
instance of the Application class from the System.Windows namespace.

Explicit Application Creation

Example 2-1 shows code for creating an instance of the Application class.

Example 2-1. Creating an application explicitly

using System;
using System.Windows; // the home of the Application class

class Program {
[STAThread]
static void Main() {
Application app = new System.Windows.Application();
Windowl window = new Windowi();
window.Show();

app.Run();

36

Here, we're creating an application inside an STA thread,” creating a window and
showing it, and then running the application. While the application is running, WPF
processes Windows messages and routes events to WPF UI objects as necessary.
When the Run method returns, messages have stopped being routed and generally
don’t start again (unless you show a modal window after the Run method returns, but
that’s not something you’ll usually do). During its lifetime, the application provides
various services.

Application Access

One of the services the Application class provides is access to the current instance.
Once an instance of the Application class is created,t it’s available via the Current
static property of the Application class. For example, the code in Example 2-1 is
equivalent to the code in Example 2-2.

Example 2-2. Implicitly filling in the Application.Current property

using System;
using System.Windows;

class Program {
[STAThread]
static void Main() {
// Fills in Application.Current
Application app = new System.Windows.Application();

Windowl window = new Windowi();
window.Show();

Application.Current.Run(); // same as app.Run()

}

Here, in the process’s entry point, we’re creating an application, creating and show-
ing the main window, and then running the application. Creation of the Application
object fills the static Application.Current property. Access to the current application
is very handy in other parts of your program where you don’t create the application
or when you let WPF create the application for you itself.

* The “Single Threaded Apartment” (STA) was invented as part of the native Component Object Model
(COM) to govern the serialization of incoming COM calls. All Microsoft presentation frameworks, native or
managed, require that they be run on a thread initialized as an STA thread so that they can integrate with
one another and with COM services (e.g., drag-and-drop).

T WPF makes sure that, at most, one Application object is created per application domain. For a discussion
of .NET application domains, I reccommend Essential .NET, by Don Box with Chris Sells (Addison-Wesley
Professional).

Application Lifetime | 37

Implicit Application Creation

Because a Main method that creates and runs an application is pretty darn common,
WPF can provide the process’s entry point for you. WPF projects generally desig-
nate one XAML file that defines the application. For example, if we had defined our
application in a XAML file with code behind, it would look like Example 2-3.

Example 2-3. Declaring an application in XAML

<!-- App.xaml -->

<Application
x:Class="ImplicitAppSample.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" />

// App.xaml.cs
using System;
using System.Windows;

namespace ImplicitAppSample {
public partial class App : System.Windows.Application {
protected override void OnStartup(StartupEventArgs e) {
// let the base class have a crack
base.OnStartup(e);

// WPF itself is providing the Main that creates an
// Application and calls the Run method; all we have
// to do is create a window and show it

Windowl window = new Windowi();

window. Show();

}
}
}

Notice that Example 2-3 is defining a custom application class in this code
(ImplicitAppSample.App) that derives from the Application class. In the OnStartup
override, we’re only creating a window and showing it, assuming WPF is going to
create the Main for us that creates the instance of the App class and calls the Run
method (which calls the OnStartup method). The way that WPF knows which XAML
file contains the definition of the Application class is that the Build Action is set to
ApplicationDefinition, as shown in Figure 2-1.

The ApplicationDefinition Build Action letss WPF know which class is our applica-
tion and hooks it up appropriately in a Main method it generates for us, which saves
us from writing several lines of boilerplate code.

38 | Chapter2: Applicationsand Settings

Solution Explorer - Solution 'TmplicitAppSample... = 1 X
FRRE
[d Solution 'ImplicitAppSample' (1 project)
=- [ImplicitAppSample
7 [Properties
- & References
- |« App.xaml
. 9] App.xaml.cs
B [« Windowl.xaml

S e

App.xaml File Properties -
TR ~opicationDefinttion v
Copy to Output Director Do not copy
Custom Tool
Custom Tool Namespac
File Name App.xaml
Ful Path D:\data\Ava NSt

Figure 2-1. Setting the Build Action for the application definition XAML file

W
s For msbuild aficionados, the standard XAML Build Action setting of
f‘i . Page looks like this in the .csproj file:
<Project ...>

<ItemGroup>
<Page Include="App.xaml" />
<Compile Include="App.xaml.cs">
<DependentUpon>App.xaml</DependentUpon>
<SubType>Code</SubType>
</Compile>

</ItemGroup>
</Project>
When we switch the Build Action to ApplicationDefinition, it looks

like this:

<Project ...>

<ItemGroup>
<ApplicationDefinition Include="App.xaml" />
<Compile Include="App.xaml.cs">
<DependentUpon>App.xaml</DependentUpon>
<SubType>Code</SubType>
</Compile>

Application Lifetime

39

</ItemGroup>
</Project>
This setting causes the WPF build tasks to generate the following

code:

namespace ImplicitAppSample {
public partial class App : Application {
[System.STAThreadAttribute()]
[DebuggerNonUserCodeAttribute()]
public static void Main() {
ImplicitAppSample.App app =
new ImplicitAppSample.App();

app-Run();
}
}
}

Except for the debugger attribute (which stops Visual Studio from
stepping into this method when debugging), this is equivalent to what
we were writing by hand a few code samples ago.

If our window class is defined in a XAML file itself (as most likely it will be), we can
save ourselves from overriding the OnStartup method by setting the StartupUri prop-
erty in the application’s XAML file (see Example 2-4).

Example 2-4. Setting the StartupUri on the application

<!-- App.xaml -->

<Application
x:Class="ImplicitAppSample.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Window1.xaml" />

The combination of setting the Build Action of the application’s XAML file to
ApplicationDefinition and the StartupUri property provides the following features:

* Creating an instance of the Application object and setting it as the value of the
Application.Current property

* Creating and showing an instance of the Ul defined in the XAML designated in
the StartupUri property

* Setting the Application object’s MainWindow property

* Calling the Application object’s Run method, keeping the application running
until the main window is closed

This set of features makes more sense when we get a handle on what the “main win-
dow” is.

40 | Chapter2: Applicationsand Settings

Top-Level Windows

A top-level window is a window that is not contained within or owned by another
window (window ownership is discussed in more detail later). A WPF application’s
main window is the top-level window that is set in the MainWindow property of the
Application object. This property is set by default when the first instance of the
Window class is created and the Application.Current property is set. In other words,
by default, the main window is the top-level window that’s created first after the
application itself has been created. If you like, you can override this default by set-
ting the MainWindow property manually.

In addition to the main window, the Application class provides a list of top-level
windows from the Windows property. This is useful if you’d like to implement a Win-
dow menu, like the one in Figure 2-2.

[E | AppWindowsSample [EIM
v AppWindowsSample

Window 2

Window 3

Window 4 T Window2 =8| 8]

— |
: l=l2] =]

OnMainWindowClose il i

T
] Windows 2|8 R |

<

Figure 2-2. Managing the top-level windows exposed by Application

To implement the Window menu, we first start with a MenuItem element:

<!-- Windowl.xaml -->
<Window ...>
<Gridy
<Grid.RowDefinitions>
<RowDefinition Height="auto" />
<RowDefinition />
<RowDefinition Height="auto" />
</Grid.RowDefinitions>

Application Lifetime | 41

<Menu>
<MenuItem Header="Window" x:Name="windowMenu">
<MenuItem Header="dummy item" />
</MenuItem>
</Menu>
</Grid>
</Window>

MenuItem is a HeaderedItemControl (as described in Chapter 5), which means that it
has header content that we’ll use to hold the name of the menu item (“Window”),
and subcontent that we’ll use to hold the menu items for each top-level window.
Notice the use of a dummy subitem to start with. Without this dummy item, you
won’t be able to get notification that the user has asked to show the menu items
(whether via mouse or via keyboard).

To populate the Window menu, we’ll handle the menu item’s SubmenuOpened event:

public partial class Windowl : Window {

public Window1() {
InitializeComponent();

windowMenu.SubmenuOpened += windowMenu_SubmenuOpened;

}

void windowMenu_SubmenuOpened(object sender, RoutedEventArgs e) {
windowMenu.Items.Clear();
foreach (Window window in Application.Current.Windows) {
MenuItem item = new MenuItem();
item.Header = window.Title;
item.Click += windowMenuItem Click;
item.Tag = window;
item.IsChecked = window.IsActive;
windowMenu.Items.Add(item);
}
}

void windowMenuItem Click(object sender, RoutedEventArgs e) {
Window window = (Window)((MenuItem)sender).Tag;
window.Activate();
}
}

When the SubmenuOpened event is triggered, we use the Application object’s Windows
property to get a list of each top-level Window, creating a corresponding MenuItem for
each Window.

A
5 For those of you already steeped in data binding and data templates
.‘s‘ who are wondering why we’re populating the Window menu manu-
T Gk ally, it’s because the WindowCollection class that the Windows property

returns doesn’t provide notifications when it changes, so once the
Window menu is populated initially, there’s no way to keep it up-to-
date. Maybe next version...

42 | Chapter2: Applicationsand Settings

Application Shutdown Modes

Some applications work naturally with the idea of a single main window. For example,
many applications (drawing programs, IDEs, Notepad, etc.) have a single top-level win-
dow that controls the lifetime of the application itself (i.e., when the main window goes
away, the application shuts down). On the other hand, some applications have multiple
top-level windows or some other kind of lifetime control that’s independent of a single
main window.” You can specify when your application shuts down by setting the appli-
cation’s ShutdownMode property to one of the values of the ShutdownMode enumeration:
namespace System.Windows {
public enum ShutdownMode {

OnlLastWindowClose = 0, // default

OnMainWindowClose = 1,

OnExplicitShutdown = 2,

}
}

The OnMainWindowClose value is useful when you’ve got a single top-level window,
and the OnLastWindowClose value is useful for multiple top-level windows (and is the
default). In either of these cases, in addition to the automatic application shutdown
the ShutdownMode policy describes, an application can also be shut down manually by
calling the Application object’s Shutdown method. However, in the case of
OnExplicitShutdown, the only way to stop a WPF application is by calling Shutdown:

public partial class Windowl : System.Windows.Window {

void shutdownButton Click(object sender, RoutedEventArgs e) {
Application.Current.Shutdown();

}

You can change the shutdown mode in code whenever you like, or you can set it in
the application definition XAML:

<Application
x:Class="AppWindowsSample.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Window1.xaml"
ShutdownMode="0nExplicitShutdown" />

R

i

Of course, there are a number of ways to shut down a Windows pro-
cess. The Application.Shutdown method is a nice way of doing it by
& . . .
2 closing the top-level windows and returning from the Run method.
" This lets the windows involved get their Closing and Closed notifica-
tions, although canceling the shutdown in the Closing event doesn’t
actually stop the application shutdown process.

* For example, if an Office application is serving OLE objects, closing the windows will not cause the process
to stop until those OLE objects are no longer needed.

Application Lifetime | 43

Application Events

You can best see the life cycle of a standard application in the set of events that it
exposes:

* Startup

* Activated

* Deactivated

* DispatcherUnhandledException

* SessionEnding

* Exit

Startup event

The Application object’s Startup event is fired when the application’s Run method is

called, and it is a useful place to do application-wide initialization, including the

handling of command-line arguments, which are passed in the StartupEventArgs:
void App_Startup(object sender, StartupEventArgs e) {

for (int i = 0; i != e.Args.Length; ++i) {
// do something useful with each e.Args[i]

Activated and Deactivated events

The Activated event is called when one of the application’s top-level windows is acti-
vated (e.g., via a mouse click or Alt-Tab). Deactivated is called when your application is
active and another application’s top-level window is activated. These events are handy
when you want to stop or start some interactive part of your application:

void App_Activated(object sender, EventArgs e) {
ResumeGame();

void App_Deactivated(object sender, EventArgs e) {
PauseGame();

}

DispatcherUnhandledException event

The application’s dispatcher is an object that routes events to the correct place, includ-
ing unhandled exceptions. In the event that you’d like to handle an exception otherwise
unhandled in your application—maybe to give the user a chance to save his current
document and exit—you can handle the DispatcherUnhandledException event:

* Navigation events aren’t listed here, but are discussed in Chapter 11.

44 | Chapter2: Applicationsand Settings

void App_DispatcherUnhandledException(
object sender, DispatcherUnhandledExceptionEventArgs e) {

string err = "Oops: " + e.Exception.Message);

MessageBox. Show(err, "Exception", MessageBoxButton.OK);

// Only useful if you've got some way of guaranteeing that

// your app can continue reliably in the face of an exception

// without leaving this AppDomain in an unreliable state...

//e.Handled = true; // stop exception from bringing down the app
}

The Exception property of the DispatcherUnhandledExceptionEventArgs event argu-
ment is useful to communicate to your users what happened, whereas the Handled
property is useful to stop the exception from actually bringing down the application
(although this is a dangerous thing to do and can easily result in data loss).

SessionEnding event

The SessionEnding event is called when the Windows session itself is ending (e.g., in
the event of a shutdown, logoff, or restart):

void App_SessionEnding(object sender, SessionEndingCancelEventArgs e) {
if (MessageBox.Show(
e.ReasonSessionEnding.ToString(),
"Session Ending",
MessageBoxButton.OKCancel) == MessageBoxResult.Cancel) {
e.Cancel = true; // stop the session from ending
}
}

The ReasonSessionEnding property of the SessionEndingCancelEventArgs event argu-
ment is one value in the ReasonSessionEnding enumeration:
namespace System.Windows {
public enum ReasonSessionEnding {
Logoff = 0,
Shutdown =
}

}
The Cancel property is useful if you’d like to stop the session from ending, although
this is considered rude, and more progressive versions of Windows (like Vista) may
not let you change its decision to end a session at all.

1,

Exit event

The Exit event is called when the application is actually exiting, whether the last
window has gone away, the Application.Shutdown method is called, or the session is
ending. One of the overloads of the Shutdown method allows the programmer to pass
an integer exit code, which is ultimately exposed by the process for use by your

Application Lifetime | 45

favorite Win32 process examination APIs. By default, this value is zero, but you can
observe or override it in the handlers for this event:

void App_Exit(object sender, ExitEventArgs e) {
e.ApplicationExitCode = 452; // keep 'em guessing...

Application Instancing

While we’ve just been talking about the lifetime of an application, things get a bit
more interesting when you take into account that multiple instances of a single appli-
cation can be running at any one time simply because the user can double-click on
the same EXE multiple times. In fact, the default behavior in Windows and WPF
does nothing to hamper or support multiple instances of the same application. For
example, if we double-click on the AppWindowsSample.exe from Figure 2-2 more
than once, we get more than one instance, as Figure 2-3 shows.

[E7] Window 3 |.‘:'|E|| & |

) Windowa | = |8] 8 |

|
[Window 2 M]l

B Window?2 =& | 230]

[E] AppwindowsSample 1 [M'
Window
[E] AppWindowsSample |M|
Window
[E7 AppWindowsSample @Eu
Window
v AppWindowsSample
Oonl
—
k|

OnMainWindowClaose

Figure 2-3. Multiple instance applications

46 | Chapter2: Applicationsand Settings

In Figure 2-3, we've got several top-level windows, some associated with each of
three instances of the application. Sometimes more than one instance of a single
application is a good thing. However, sometimes it just confuses users. For example,
in Figure 2-3, even though we’ve got a Window menu, only the windows associated
with each instance of the application are shown, which can be confusing as heck to
the poor user faced with such an application.

Single instance applications

If you’d like your application to be single instance, it’s easy to detect an existing
instance and shut down any subsequent instances (see Example 2-5).

Example 2-5. Very simple existing instance detection

public partial class App : System.Windows.Application {
Mutex mutex;
protected override void OnStartup(StartupEventArgs e) {
base.OnStartup(e);

// Check for existing instance

string mutexName = "MyCompanyName.MyAppName" ;

bool createdNew;

mutex = new Mutex(true, mutexName, out createdNew);

// If there is an existing instance, shut down this one
if(!createdNew) { Shutdown(); }

}
}

In Example 2-5, the key is to access a Windows mutex with a session-wide unique
name so that we can tell whether it was already created by an initial instance or
whether we’re the initial instance. The mutex name we’re using is one we pick to be
sufficiently unique for our needs. Once the mutex has been created, it’ll live for the
life of the WPF Application object itself, which will live for the life of the process, so
if we’re not the first one to create the mutex, we shut down our application, causing
our process to exit.

However, it’s at this point that we realize that single instance detection isn’t the only
feature we want; we also want the following:

* Passing command-line arguments to the initial instance (e.g., in case a subse-
quent instance was passed a filename that the user would like opened)

* Activating the main window of the initial instance

* Dealing properly with multiple users logging into a single computer (even the same
user logged in multiple times), giving each login an instance of the application

These are services that are not trivial to implement and we’d really love it if .NET
provided this functionality for us. The good news is that it does. The bad news is that
it’s provided only as part of the .NET 2.0 Visual Basic support for Windows Forms.

Application Lifetime | 47

If you’d like to take advantage of robust single instance management, you have to
load the Microsoft.VisualBasic assembly, and you have an interesting integration
challenge ahead of you, as both Visual Basic’s support for single instance manage-
ment and WPF want to be “the” application. However, it is possible and you get to
leverage Other People’s Code (OPC), of which I'm a big fan, especially when the
“other people” are a multibillion-dollar corporation with a record of framework
maintenance and upgrades.” For an example of how to integrate single instance
detection from Visual Basic into WPF, check out the “Single Instance Detection”
sample in the Windows Platform SDK.T

Other Application Services

In addition to what we’ve already discussed, the Application class provides access to
app-level resources and navigation services. Chapter 12 discusses resources and
Chapter 11 discusses navigation. The other major service that WPF applications sup-
port is ClickOnce deployment, which we’ll discuss right now.

Application Deployment

For the purposes of demonstration, let’s build something vital for procrastinators the
world over: an application to generate excuses. The application was started with the
“Windows Application (WPF)” project template in Visual Studio 2005 and was
implemented with some very simple code. When you run it, it gives you an excuse
from its vast database, as shown in Figure 2-4.

[W] Excuse Generator l=la] R J]
The Voices Told Me To
‘New Excuse‘

Figure 2-4. A WPF excuse-generation application

* Whether Microsoft has a “good” record of framework maintenance and updates, I'll leave to you to decide....
T Available online at http://msdn2.microsoft.com/en-us/library/ms771662.aspx (http://tinysells.com/85).

48 | Chapter2: Applicationsand Settings

Simple Publishing

For anyone to use this wonderful application, it must be published. The simplest
way to publish your WPF application is by right-clicking on the project in the Solu-
tion Explorer and choosing the Publish option, which will bring up the first page of
the Publish Wizard (shown in Figure 2-5).

Publish Wizard 2| = |

Where do you want to publish the application? @

Specify the location to publish this application:

You may publish the application to a web site, FTP server, or file path.
Examples:

Disk path: c\deploy\myapplication

File share: \\server\myapplication

FTP server. ftp://ftp.microsoft.com/myapplication

Web site: http://www.microsoft.com/myapplication

Next = H Einish H Cancel

Figure 2-5. Publish Wizard publish location

Figure 2-5 asks you to choose where you’d like to deploy your application, including
to the disk, to a network share, to an FTP server, or to a web site. By default, the
Publish Wizard will assume you want to publish to the Publish subdirectory of your
project directory. Clicking the Next button yields Figure 2-6.

Because we've chosen to publish to something besides a web site, the Publish Wiz-
ard wants to know how users will access your published application—in other
words, from a URL, from a UNC path, or from some optical media. (If you choose to
publish to a web site, the only way to access the application is from a URL, so it
won’t bother to ask.) We’d like to test web deployment, so we pick that option and
leave the default URL alone. Clicking Next yields Figure 2-7.

For WPF applications, Figure 2-7 lets us choose whether we’d like this application to
be made available online (when the computer is able to connect to the application’s
URL) as well as offline (when the computer can’t connect to the URL), or whether
you’d like the application to be only available online. These two options corre-
spond to the ClickOnce terms locally installed and online only, respectively.

Application Deployment | 49

.

Publish Wizard (2] &

How will users install the application? \@

@ From a Web site
Specify the URL:

http://localhost/excusegen/

©) From a UNC path or file share

Specify the UNC path:

©) From a CD-ROM or DVD-ROM
< Previous l [Next >] l Finish l l Cancel
Figure 2-6. Publish Wizard installation options
Publish Wizard (2] ®
Will the application be available offline? @

1 @ Yes, this application is available online or offline
A shortcut will be added to the Start Menu, and the application can be
uninstalled via Add/Remove Programs.
Q (©) No, this application is only available online

No shortcut will be added to the Start Menu. The application will be run
directly from the publish location.

< Previous H Next >] l FEinish l l Cancel

Figure 2-7. Install mode in the Publish Wizard

50 | Chapter2: Applicationsand Settings

The job of the Publish Wizard is to bundle up the files needed to deploy an appli-
cation using ClickOnce, including the manifest files that ClickOnce needs to
deploy the application to a client machine after it’s been published.

A
S This example assumes a standalone application, which provides its
.".‘\ own host window. WPF also supports the XBAP application type,
' =
13, which is an application composed of one or more pages and hosted in

Internet Explorer 6+. You can also publish an XBAP via ClickOnce
from within Visual Studio, but the options are different. Chapter 11
discusses XBAP creation, publication, and deployment details.

Leaving the default “online or offline” option and clicking the Finish button yields
Figure 2-8.

~

Publish Wizard (2] &

Ready to Publish! \@
The wizard will now publish the application based on your choices.

.

The application will be published to:
file:///D:/data/avalonbook/rtmsrc/ch02/AppDeployment/excusegen/Publish/ T

Users will launch this application from:
http://fungo/excusegen/

m

When this application is installed on the client machine, a shortcut will be added to the Sta
the application can be uninstalled via Add/Remove Programs.

Next > [FEinish J l Cancel

Figure 2-8. A summary of the chosen Publish options

Figure 2-8 reminds us what we get with a locally installed ClickOnce application (i.e.,
the application will appear in the Start menu and in the Add or Remove Programs
Control Panel). Clicking Finish causes Visual Studio to publish the application to the
filesystem, including a publish.htm file that you can use to test deployment. If you
happen to have an IIS application set up in the same folder to which Visual Studio
publishes, it will launch the publish.htm file for you, as shown in Figure 2-9.

For simple needs, this is the complete experience for publishing a WPF ClickOnce
locally installed application.

Application Deployment | 51

@ excusegen - Windows Internet Explorer l = | = | 23 J

OO = ‘Ql http://fungo/excusegen/publish.ntm ~ |‘r| X | | Google pel -|

W - B - 5 Page~ QrToos~ @ ¥ &1 J) D

excusegen

Name: excusegen

Version: 1.0.0.0

Publisher:
ClickOnce and .NET Framework Resources
=
Daone Q Local intranet | Protected Mode: On #100% ~

Figure 2-9. The Visual Studio-generated HTML file for testing ClickOnce applications

The User Experience

The user experience for running a ClickOnce locally installed application begins with
a web page, such as the one shown in Figure 2-9, that includes a link to install the
ClickOnce application. Clicking the link for the first time shows a download
progress dialog similar to Figure 2-10.

-

Launching Application M

¥ L

Verifying application requirements. This may take a
few moments.

Figure 2-10. Progress dialog for checking the application manifest

Once the metadata file describing the application deployment settings has been
downloaded (this file is called the application manifest), it will be checked for a

52 | Chapter2: Applications and Settings

certificate, which is extra information attached to the application that identifies a val-
idated publisher name. ClickOnce requires all published applications to be signed,
so Visual Studio will generate a certificate file for you as part of the initial publica-
tion process if you haven’t already provided one.

If the certificate used to sign the application manifest identifies a publisher that is
already approved to install the application on the user’s machine (such as from a pre-
vious version or a IT-administered group policy), the application will be run without
further ado, as shown at the beginning of this chapter in Figure 2-4.

If, on the other hand, the publisher’s certificate cannot be verified or is not yet trusted
to run the application in question, a dialog similar to Figure 2-11 will be presented.

Application Install - Security Warning | K|
Publisher cannot be verified. ﬁ‘f’
Are you sure you want to install this application? ““ 4

Name: excusegen

From: fungo

Publisher: Unknown Publisher

Install ‘ [Dan't Install

While applications from the Internet can be useful, they can potentially harm your
computer. If you do not trust the source, do not install this software. More Information...

Figure 2-11. The Application Install dialog with an unknown publisher

Figure 2-11 displays the name of the application, the source of the application, and
the publisher of the application according to the certificate (or “Unknown Pub-
lisher” if the certificate could not be verified). It also lists a summary of the reasons
this dialog is being shown, along with a link to more detailed warning information.
However, such information will likely be ignored by the user choosing between the
Install and Don’t Install buttons, from which the user will choose depending on the
level of trust she has for the publisher she sees in the Security Warning dialog.

If the user chooses Don’t Install, no application code will be downloaded or exe-
cuted. If she chooses Install, the application is downloaded, added to the Start menu,
and added to the Add or Remove Programs Control Panel, all under the umbrella of
the progress dialog shown in Figure 2-12, after which the application is executed.

Application Deployment | 53

(100%) Installing excusegen Elﬂlg

Installing excusegen Ty
Thi U Can use your computer ““"

[Wame: excusegen

fungo

Figure 2-12. Progress dialog for installing a locally installed ClickOnce application

Subsequent runs of the same version of the application, as launched from either a
web site or the Start menu, will not ask for any additional user input (although
they may show a dialog if checking for updates), but will launch the installed appli-
cation directly.

WPF ClickOnce Specifics

There are a great number of additional details to ClickOnce application deployment,
including security considerations, command-line handling, updating and rollback,
prerequisite installation, access to external information sources, and certificate man-
agement, just to name a few. All of these details are beyond the scope of this book
and are covered in great detail by other sources.” However, following are some specif-
ics to standalone and XBAP ClickOnce deployment you might like to see all in one
place.

Standalone WPF applications deployed using ClickOnce:

* Can implement the main window with Window or NavigationWindow (although
only the former has a project template in Visual Studio—the “Windows Applica-
tion [WPF]” template)

* Can be online-only or online/offline

* If installed online/offline, can integrate with the Start menu, and can be rolled
back and uninstalled

* Must set “full trust” in the project’s Security settings (the Window class demands
this)

* The SDK does a pretty good job, as does Smart Client Deployment with ClickOnce: Deploying Windows
Forms Applications with ClickOnce, by Brian Noyes (Addison-Wesley Professional).

54 | Chapter2: Applicationsand Settings

XBAP applications deployed using ClickOnce:

* Provide their content with one or more Page objects to be hosted in the browser
* Must be online-only to deploy with ClickOnce

* There can be no “Security Warning” dialog, so must not attempt to elevate per-
missions beyond what is provided already on the client’s machine

* No custom pop-up windows are allowed (e.g., no dialogs); can use standard
page navigation, page functions, and message boxes instead

* Designated as XBAP by setting the HostInBrowser property to True in the project
file (will be set by the “XAML Browser Application (WPF)” project template in
Visual Studio)

For the details of navigation-based applications and XBAP browser hosting and
deployment, read Chapter 11.

Settings

WPF applications gain access to all the same application and user setting options
that any other .NET application can use (e.g., the Registry, .config files, special fold-
ers, isolated storage, etc.).

Designing Settings

The preferred settings mechanism for WPF applications is the one provided by
.NET 2.0 and Visual Studio 2005: the ApplicationSettingsBase class from the
System.Configuration namespace with the built-in designer. To access the set-
tings for your application, click on the Settings tab in your project settings. This
will bring up the Settings Designer shown in Figure 2-13.

Here we've defined two settings: a user setting of type System.String, called LastExcuse;
and an application setting of type System.Boolean, called ExcludeAnimalExcuses with a
default value of True. These two settings will be loaded automatically when I run my
application, pulled from the application’s configuration file (named MyApplication.exe.
config) and the user settings file saved from the application’s last session.

The Settings Designer manages a settings file and generates a class that allows you to
program against the settings. For instance, our settings example will result in the
class in Example 2-6 being generated (roughly).

Settings | 55

|sag1Jad0Jd§| |Ma!,\ssp|3ElJaJ0|dx3 uop,n|05®|§I .

@ excusegen - Microsoft Visual Studio
File Edit View Project Build Debug Data Tools Window Community Help
AR atrRar=-2" N- I ML R AR = R b Debug -
ES . excusegen*| Wir amlcs | Sy .Canfigurati v
=
o
o |
gr Application Synchronize View Code
=
o Build
Build Events Application settings allow you to store and retrieve property
settings and other information for your application dynamically. For
Debug example, the application can save a user’s color preferences, then
Resorces retrieve them the next time it runs. Learn more about application
settings...
Settings*
Reference Paths
Name Type Scope Value
Sighing LastExcuse string ¥ | User =
Security ExcludeAnimalExcuses | bool - | Application |~ |True
Publish Vi - -
-
|-_'E Errar ListlEl Output]ﬁ Find Results 1]&‘,’.‘» Find Symbol Results
Ready

Figure 2-13. The Settings Designer

Example 2-6. The Settings Designer-generated class

using namespace System.Configuration;

namespace excusegen.Properties {

sealed partial class Settings : ApplicationSettingsBase {

static Settings defaultInstance =

((Settings) (ApplicationSettingsBase.Synchronized(new Settings())));

public static Settings Default {
get { return defaultlInstance; }

}

[UserScopedSettingAttribute()]
[DefaultSettingValueAttribute("")]
public string LastExcuse {
get { return ((string)(this["LastExcuse"]))
set { this["LastExcuse"] = value; }

}

[ApplicationScopedSettingAttribute()]
[DefaultSettingValueAttribute("True")]
public bool ExcludeAnimalExcuses {

i

56 | Chapter2: Applicationsand Settings

Example 2-6. The Settings Designer-generated class (continued)
get { return ((bool)(this["ExcludeAnimalExcuses"])); }

}
}

There are several interesting things to notice about Example 2-6. The first is the
defaultInstance member, which is initialized with an instance of the generated
Settings class that’s been synchronized to allow for safe multithreaded access. Sec-
ond, notice that this defaultInstance member is static and exposed from the Default
static property, which makes it very easy to get to our settings, as we’ll soon see.
Finally, notice the two properties exposed from the Settings class, one property for
each of our settings in the Settings Designer. You can see that the mode of each prop-
erty, user versus application, the default value, and the type all match. Further,
although a user setting is read-write (it has a getter and a setter), because it can
change during an application session, the application setting is read-only (it has only
a getter). The implementations of the properties are just type-safe wrappers around
calls to the ApplicationSettingsBase base class, which does the work of reading and
writing your settings to the associated settings storage.

Using Settings

With these typed properties in place and the Default static property to expose an
instance of our generated Settings class, usage is no different from any other CLR
object, as you can see in Example 2-7.

Example 2-7. Using the Settings Designer-generated class

public partial class Windowl : Window {
string[] excuses = {...};

public Window1() {
InitializeComponent();
this.newExcuseButton.Click += newExcuseButton Click;

// If there is no "last excuse," show a random excuse
if(string.IsNullOrEmpty(Properties.Settings.Default.LastExcuse)) {
ShowNextExcuse();

}
// Show the excuse from the last session
else {
excuseTextBlock.Text = Properties.Settings.Default.LastExcuse;
}

}

void newExcuseButton Click(object sender, RoutedEventArgs e) {
ShowNextExcuse();

}

Settings | 57

Example 2-7. Using the Settings Designer-generated class (continued)

Random rnd = new Random();
void ShowNextExcuse() {
// Pick a random excuse, saving it for the next session
// and checking for animals
do {
Properties.Settings.Default.LastExcuse =
excuses[rnd.Next(excuses.Length - 1)];

}

while(Properties.Settings.Default.ExcludeAnimalExcuses 88
HasAnimal(Properties.Settings.Default.LastExcuse));

// Show the current excuse
excuseTextBlock.Text = Properties.Settings.Default.LastExcuse;

}

bool HasAnimal(string excuse) {...}

protected override void OnClosed(EventArgs e) {
base.OnClosed(e);

// Save user settings between sessions
Properties.Settings.Default.Save();

}
}

In Example 2-7, we’re using the LastExcuse user setting to restore the last excuse the
user saw when running the application previously, changing it each time a new
excuse is generated. The ExcludeAnimalExcuses application setting is checked to
exclude animal-based excuses, but it is never set.” To store user settings that change
during an application’s session, we’re calling the Save method on the Settings object
from the ApplicationSettingsBase base class. This class does the magic of not only
keeping the settings in memory and notifying you when a setting changes (if you
choose to care), but also automatically loading the settings when the application is
loaded, saving on demand.

To help with the loading and saving, the ApplicationSettingsBase uses a settings
provider, which is a pluggable class that knows how to read/write application settings
(e.g., from the local filesystem, from the Registry, from a network server, etc.). The
only settings provider that comes out of the box in .NET 2.0 is the one that writes to
disk in a way that’s safe to use from even partial trust applications (like an XBAP), but
it’s not hard to plug in your own settings provider if you need other behavior.t

* There is no configuration API to set an application setting.

1 The SDK comes with custom settings provider samples that use a web service and the Registry. I didn’t
like the one based on the Registry, so [updated it and wrote a little article about the experience of writing
and using a custom settings provider. It’s available at hitp://www.sellsbrothers.com/writing/default.
aspx?content=dotnet2customsettingsprovider.htm (http://tinysells.com/86).

58 | Chapter2: Applications and Settings

Integrating Settings with WPF

None of the basics of the ApplicationSettingsBase-inspired support for settings, or any
of the other mechanisms for doing settings in .NET, is specific to WPF. However,
because the ApplicationSettingsBase class supports data change notifications (specifi-
cally, it implements INotifyPropertyChanged), we can bind to settings data just like any
other data (for the details of data binding, see Chapters 6 and 7). For example, instead
of manually keeping the TextBlock that shows the excuse up-to-date, we can just bind
the Text property to the LastExcuse property, as shown in Example 2-8.

Example 2-8. Data binding to a settings class

<Window ... xmlns:local="clr-namespace:excusegen">

<TextBlock ...
Text="{Binding
Path=LastExcuse,
Source={x:Static local:Properties.Settings.Default}}" />

</Window>

Example 2-8 shows a bit of an advanced use of the binding syntax, but basically it says
that we’re binding the Text property of the TextBlock to the LastExcuse property of the
excusegen.Properties.Settings.Default object. As the LastExcuse property changes,
so does the Text property, so we no longer need to keep the Text property manually
up-to-date; all we need to do is manage the LastExcuse property and the Text property
will follow. For example:

Random rnd = new Random();

void ShowNextExcuse() {

// Pick a random excuse, saving it for the next session

// and checking for animals

do {
// This updates the Text property on the TextBlock, too
Properties.Settings.Default.LastExcuse =

excuses[rnd.Next(excuses.Length - 1)];
}

while(Properties.Settings.Default.ExcludeAnimalExcuses &&
HasAnimal(Properties.Settings.Default.LastExcuse));

// No longer any need to manually update the TextBlock
//excuseTextBlock.Text = Properties.Settings.Default.LastExcuse;

}

The ability to use settings to drive a WPF Ul makes the new .NET 2.0
ApplicationSettingsBase and Settings Designer the preferred means for managing
settings in a WPF application.

Settings | 59

Where Are We?

In WPF, the application contains an instance of the Application object. This object
provides management services that let you control the lifetime of your application, as
well as resource management and navigation, covered in Chapter 12, Appendix C,
and Chapter 11, respectively. In this chapter, we also discussed deploying standalone
applications using ClickOnce. (XBAP deployment can be found in Chapter 11.) Finally,
to manage user and application settings between application sessions, we briefly dis-
cussed the ApplicationSettingsBase-related settings services provided by .NET 2.0 and
Visual Studio 2005.

60 | Chapter2: Applicationsand Settings

CHAPTER 3
Layout

WPF provides a powerful and flexible array of tools for controlling the layout of the
user interface. These tools enable applications to present information to users in a
clear and logical way.

There is a fine line between giving developers or designers enough control over the
user interface’s layout, and leaving them to do all the work. A good layout system
should be able to automate common scenarios such as resizing, scaling, and adapta-
tion to localization, but should allow manual intervention where necessary. In this
chapter, we will look at how WPF’s layout system helps fulfill these goals.

Layout Basics

WPF provides a set of panels—special-purpose user interface elements whose job is to
arrange the elements they contain. Each individual panel type offers a straightforward
and easily understood layout mechanism. As with all WPF elements, layout objects
can be composed in any number of different ways, so although each individual panel
type is fairly simple, the flexible way in which they can be combined makes for a very
powerful layout system. And you can even create your own layout element types
should the built-in ones not meet your needs.

Table 3-1 describes the main panel types built into WPE.” Whichever panel you use,
the same basic rule always applies: an element’s position is always determined by the
containing panel. Most panels also manage the size of their children.

* A frequently asked question is “why do some of these type names end in ‘Panel’ when some do not? The
naming seems to be inconsistent.” The pattern appears to be that the names should be, unambiguously,
nouns. Stack, Wrap, and Dock can all be used as verbs, which is why “Panel” is appended. Grid and Canvas
are both nouns, so they don’t get “Panel” tacked on the end.

61

Table 3-1. Main panel types

Panel type Usage

StackPanel Lays children out in a vertical or horizontal stack; extremely simple, useful for managing small-scale
aspects of layout.

WrapPanel Lays children out from left to right, moving onto a new line each time it fills the available width.

DockPanel Allocates an entire edge of the panel area to each child; useful for defining the rough layout of simple
applications at a coarse scale.

Grid Arranges children within a grid; useful for aligning items without resorting to fixed sizes and posi-
tions. The most powerful of the built-in panels.

Canvas Performs no layout logic—puts children where you tell it to; allows you to take complete control of
the layout process.

UniformGrid Arranges children in a grid where every cell is the same size.

A w

By default, panels have no appearance of their own, the only visible
effect of their presence being how they size and position their chil-
tke: dren. However, they can be made visible by setting their Background

property.

We'll start with one of the most basic panels, StackPanel.

StackPanel

StackPanel is a very simple panel that arranges its children in a row or a column. You
will not normally use StackPanel to lay out your whole user interface. It is most use-
ful for arranging small subsections. Example 3-1 shows how to build a simple search
user interface.

Example 3-1. StackPanel search layout

<StackPanel Background="#ECE9D8">
<TextBlock Margin="3">Look for:</TextBlock>
<ComboBox Margin="3"/>
<TextBlock Margin="3">Filtered by:</TextBlock>
<ComboBox Margin="3"/>
<Button Margin="3,5">Search</Button>
<CheckBox Margin="3">Search in titles only</CheckBox>
<CheckBox Margin="3">Match related words</CheckBox>
<CheckBox Margin="3">Search in previous results</CheckBox>
<CheckBox Margin="3">Highlight search hits (in topics)</CheckBox>
</StackPanel>

Figure 3-1 shows the results. As you can see, the Ul elements have simply been
stacked vertically one after another. This example used the Margin property to space
the elements out a little. Most elements use a single number, indicating a uniform
margin all around. The Button uses a pair of numbers to specify different vertical and

62 | Chapter3: Layout

horizontal margins. This is one of several standard layout properties available on all
WPF elements, which are all described in the “Common Layout Properties” section,
later in this chapter.

A
S Many of the examples in this book represent typical snippets of
.“.‘\ XAML, rather than complete self-contained programs. You can down-
AN Y . > :
112 load runnable versions of the examples from the book’s web site at

http://sellsbrothers.com/writing/wpfbook. 1f you would prefer to type in
the examples, you can do that using the XamlPad tool that ships with
the Windows SDK, but because the examples are only snippets, you
will need to host them in a suitable root element such as a Page.

Look for:

l)
Filtered by:

[5

[Search }

[T] search in titles only

["] Match related words

D Search in previous results

| Highlight search hits (in topics)

Figure 3-1. Search StackPanel with Margin

There is one problem with this layout: the Search button is much wider than you
would normally expect a button to look. The default behavior of a vertical
StackPanel is to make all of the controls the same width as the panel. Likewise, a
horizontal StackPanel will make all of the controls the same height. For the ComboBox
controls, this is exactly what we want. For the TextBlock and CheckBox controls, it
doesn’t show that the controls have been stretched to be as wide as the panel,
because they look only as wide as their text makes them look. However, a Button’s
visuals always fill its entire logical width, which is why the button in Figure 3-1 is
unusually wide. (See the upcoming “Fixed Size Versus Size to Content” sidebar for
more details on how this process works.)

When an element has been given a fixed amount of space that is greater than
required by its content, the way in which the extra space gets used is determined by
the HorizontalAlignment and VerticalAlignment properties.

We can prevent the button from being stretched across the panel’s whole width by
setting its HorizontalAlignment property to Left:

<Button Margin="3,5" HorizontalAlignment="Left">Search</Button>

StackPanel | 63

Fixed Size Versus Size to Content

WPF can tackle the layout of an element in one of two ways. The strategy is determined
by whether or not the amount of space available is fixed. For example, if the user
resizes a window, the size of the window’s content is whatever the user wants it to be.
From the point of view of the layout system, the size is fixed—it is imposed on the lay-
out system by the user. In such a case, the job of the layout system is to arrange the
contents as best it can in the space available.

On the other hand, if the available space is not predetermined, WPF uses a “size to con-
tent” approach, where the size is not dictated upfront, but is instead calculated based
on the content to be displayed. The most straightforward example of this is when a
Window whose SizeToContent property is set to WidthAndHeight is first displayed—
although the user may resize the window after it opens, its initial size is determined by
measuring the content.

A mixture of these two styles may be used—one in each direction. For example, if a
window’s SizeToContent is set to Height, the window height will be determined by
measuring the content, but the width will be fixed, as specified by the Width property.

A panel subject to fixed layout does not necessarily pass this layout style on to its chil-
dren. For example, suppose the user resizes a window that contains a vertical
StackPanel. The window will impose a fixed size on the StackPanel, but although the
StackPanel will pass the fixed width on to its children, it will use the size to content
approach to determine each element’s height.

The converse can also apply—unconstrained elements may constrain their children.
For example, if a vertical StackPanel is unconstrained (i.e., its parent asks it to size to
content), it must choose a width for itself. It does this by measuring each child’s pre-
ferred width, but it then picks the width of the widest child. This is then passed on as
a fixed width to every child in the panel. (This is exactly what’s happening in
Figure 3-1—the panel has made itself wide enough for the widest child, and has fixed
every child to that width. It might not look that way with the checkboxes, as they look
only as wide as their text. However, if they acquired the focus, the focus rectangle
would illustrate their full width.)

HorizontalAlignment determines an element’s horizontal position and width in situa-
tions where the containing panel gives it more space than it needs. The default is
Stretch, meaning that if more space is available than the child requires, it will be
stretched to fill that space. The alternatives—Left, Right, and Center—do not
attempt to stretch the element; these determine where the element will be placed
within the excess space, allowing the element to use its natural width. Here we are
using Left, meaning that the control will have its preferred width, and will be aligned
to the left of the available space (see Figure 3-2).

64 | Chapter3: Layout

1 HATITU L7y,
[-

Search

[T] Search in titles only

e S e

Figure 3-2. Search panel with unstretched Button

The preceding example used the default vertical orientation. StackPanel also supports
horizontal layout. Example 3-2 shows a StackPanel with its Orientation property set
to Horizontal.

Example 3-2. Horizontal StackPanel layout

<StackPanel Orientation="Horizontal">
<TextBlock>This is some text</TextBlock>
<Button>Button</Button>
<Button>Button (different one)</Button>
<CheckBox>Check it out</CheckBox>
<TextBlock>More text</TextBlock>
</StackPanel>

These elements will be arranged in a horizontal line, as shown in Figure 3-3.

This is some te)ﬂ:[Button[Button (different one)D Check it outMore text

Figure 3-3. Horizontal StackPanel layout

StackPanel is not very smart when it runs out of space. If you give it more elements
than will fit, it will just truncate the content. However, its close relative, the
WrapPanel, copes rather better.

WrapPanel

WrapPanel works just like a StackPanel until it runs out of space. If you provide a hor-
izontal WrapPanel with more children than will fit in the available width, it will
arrange its content in a way similar to how a word processor lays out words on a
line. It puts the children in a row from left to right until it runs out of space, at which
point it starts on the next line.

WrapPanel is very simple to use. Just as with a StackPanel, you add a sequence of chil-
dren, as Example 3-3 shows.

WrapPanel | 65

Example 3-3. WrapPanel

<WrapPanel Background="Beige">
<Button>One</Button>
<Button>Two</Button>
<Button>Three</Button>
<Button>Four</Button>
<Button>Five</Button>
<Button>Six</Button>
<Button>Seven</Button>
<Button>Eight</Button>

</WrapPanel>

As Figure 3-4 shows, the items are arranged from left to right. As you can see from
the panel’s filled-in background, it is not wide enough to accommodate all the items,
so the last three have been wrapped onto the next line.

One|Two| Three FourIIFi\.re.

Six | Seven | Eight

Figure 3-4. WrapPanel

WrapPanel also offers an Orientation property. Setting this to Vertical will arrange
the children in a sequence of vertical stacks, a layout style very similar to Windows
Explorer’s “List” view.

WrapPanel and StackPanel really are useful only for small-scale layout. You will need
to use a more powerful panel to define the overall layout of your application, such as
DockPanel.

DockPanel

DockPanel is useful for describing the overall layout of a simple user interface. You
can carve up the basic structure of your window using a DockPanel, and then use the
other panels to manage the details.

A DockPanel arranges each child element so that it fills a particular edge of the panel.
If multiple children are docked to the same edge, they simply stack up against that
edge in order. By default, the final child fills any remaining space not occupied by
controls docked to the panel’s edges.

Example 3-4 shows a simple DockPanel-based layout. Five buttons have been added
to illustrate each option. Notice that four of them have a DockPanel.Dock attribute
applied. This property is defined by DockPanel to allow elements inside a DockPanel
to specify their position. DockPanel.Dock is an attached property (as described in the
upcoming sidebar, “Attached Properties and Layout”).

66 | Chapter3: Layout

Example 3-4. Simple DockPanel layout

<DockPanel>
<Button DockPanel.Dock="Top">Top</Button>
<Button DockPanel.Dock="Bottom">Bottom</Button>
<Button DockPanel.Dock="Left">Left</Button>
<Button DockPanel.Dock="Right">Right</Button>
<Button>Fill</Button>

</DockPanel>

Attached Properties and Layout

Most WPF panels allow child elements to specify their layout requirements. For example,
a child of a DockPanel needs to be able to specify to which edge it would like to dock.

The obvious solution would be for a base class such as FrameworkElement to define a
Dock property—all WPF user interface elements derive from FrameworkElement, so this
would enable anything to specify its dock position. However, DockPanel is not the only
panel type, so we would need to add properties for the benefit of other panels, too.
This would add a lot of clutter. Worse, it would also be inflexible—what if you want
to design a custom panel that implements some new layout mechanism? It might need
to define new attributes for its children to use.

Attached properties solve this problem. They allow one element to define properties
that can be “attached” to some other element. DockPanel defines a Dock property that
can be attached to any child. In XAML, the dotted attribute syntax (DockPanel.Dock)
signifies that an attached property is being used. Example 3-4 uses this technique. See
Appendix A for more detailed information about XAML and attached properties.

Figure 3-5 shows how the UI built in Example 3-4 looks on-screen. Notice how the
Top and Bottom buttons have filled the entire top and bottom edges of the window,
and yet the Left and Right buttons do not fill their edges—the Top and Bottom but-
tons have taken control of the corners. This is because Top and Bottom were added
to the panel first.

[E°7 Simple DockPanel EM
Top
Left Fill Right
Bottom

Figure 3-5. Simple DockPanel layout

DockPanel | 67

If you swapped these over so that the Left and Right buttons came first in the
markup, as shown in Example 3-5, they would fill their whole edges, including the
corners, leaving the Top and Bottom buttons with just the remaining space.
Figure 3-6 shows the results.

Example 3-5. Docking Left and Right before Top and Bottom

<DockPanel>
<Button DockPanel.Dock="Left">Left</Button>
<Button DockPanel.Dock="Right">Right</Button>
<Button DockPanel.Dock="Top">Top</Button>
<Button DockPanel.Dock="Bottom">Bottom</Button>
<Button>Fill</Button>

</DockPanel>

[®°7 simple DockPanel EM
Top
Left Fill Right
Bottom

Figure 3-6. DockPanel layout, with Left and Right docked first

Elements never overlap in a DockPanel, so each successive child only gets to use space
not already used by the previous children. By default, the final child takes all of the
remaining space, but if you would prefer to leave a blank space in the middle, you
can set the LastChildFill attribute of the DockPanel to False. (It defaults to True.)
The final child will dock to the left by default, leaving the center empty.

For items docked to the top or bottom, DockPanel sets the width to fill the space
available, but for the height, it sizes to content—as described in the earlier sidebar.
Likewise, items docked to the left or right have their heights fixed to fill the available
space, but size to content horizontally. In Figures 3-5 and 3-6, the buttons at the top
and bottom are just tall enough to contain their text. Likewise, the buttons docked to
the left and right are just wide enough to hold their text. If we put a lot more text into
one of the buttons, it will try to expand in order to make the text fit. We can see in
Figure 3-7 that the DockPanel is letting the button be exactly as wide as it wants to be.

The DockPanel is good for creating the top-level structure of a basic user interface.
For example, you could use it to position a menu and a toolbar at the top of the win-
dow, with other content filling the remaining space. However, if you have lots of
controls to arrange, it can be helpful to have table-like layout functionality. For this,
we turn to the powerful Grid panel.

68 | Chapter3: Layout

CE| Simple DockPanel E@u
Top
Left with lots and lots of text Fill Right
Bottom

Figure 3-7. DockPanel layout, with an unusually wide button

Grid

Consider the document Properties dialog from Internet Explorer shown in Figure 3-8.
Notice how the main area of the form is arranged as two columns. The column on the
left contains labels, and the column in the middle contains information.

Properties M

General
oreilly.com — Welcome to O'Reilly Media, Inc.

Protocol: HyperText Transfer Protocol

Type: HTML Document
Connection: NotEncrypted
Address: hitp:/fwww.oreilly. com/
(URL)

Size: 96902 bytes

Created: 23/04/2007
Modified: 23/04/2007

[QK] ’ Cancel l i Apply i

Figure 3-8. Document Properties dialog

Grid | 69

Achieving this kind of layout with any of the panels we’ve looked at so far is diffi-
cult, because they are not designed with two-dimensional alignment in mind. We
could try to use nesting—Example 3-6 shows a vertical StackPanel with three rows,
each with a horizontal StackPanel.

Example 3-6. Ineffective use of StackPanel

<StackPanel Orientation="Vertical" Background="Beige">
<StackPanel Orientation="Horizontal">
<TextBlock>Protocol:</TextBlock>
<TextBlock>HyperText Transfer Protocol</TextBlock>
</StackPanel>
<StackPanel Orientation="Horizontal">
<TextBlock>Type:</TextBlock>
<TextBlock>HTML Document</TextBlock>
</StackPanel>
<StackPanel Orientation="Horizontal">
<TextBlock>Connection:</TextBlock>
<TextBlock>Not Encrypted</TextBlock>
</StackPanel>
</StackPanel>

The result, shown in Figure 3-9, is not what we want at all. Each row has been
arranged independently, so we don’t get the two columns we were hoping for.

Protocol:HyperText Transfer Protocol
Type:HTML Document
Connection:Not Encrypted

Figure 3-9. Inappropriate use of StackPanel

The Grid panel solves this problem. Rather than working a single row or a single col-
umn at a time, it aligns all elements into a grid that covers the whole area of the
panel. This allows consistent positioning from one row to the next. Example 3-7
shows the same elements as Example 3-6, but arranged with a Grid rather than
nested StackPanel elements.

Example 3-7. Grid layout

<Grid Background="Beige"
ShowGridLines="True"> <!-- ShowGridlLines for testing only -->
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

70 | Chapter3: Layout

Example 3-7. Grid layout (continued)

<TextBlock Grid.Column="0" Grid.Row="0">Protocol:</TextBlock>

<TextBlock Grid.Column="1" Grid.Row="0">HyperText Transfer Protocol</TextBlock>
<TextBlock Grid.Column="0" Grid.Row="1">Type:</TextBlock>

<TextBlock Grid.Column="1" Grid.Row="1">HTML Document</TextBlock>

<TextBlock Grid.Column="0" Grid.Row="2">Connection:</TextBlock>

<TextBlock Grid.Column="1" Grid.Row="2">Not encrypted</TextBlock>

</Grid>

The Grid needs to know how many columns and rows we require, and we indicate
this by specifying a series of ColumnDefinition and RowDefinition elements at the
start. This may seem rather verbose—a simple pair of properties on the Grid itself
might seem like a simpler solution. However, you will often need to control the char-
acteristics of each column and row independently, so in practice, it makes sense to
have elements representing them.

Notice that each element in the grid has its column and row specified explicitly using
attached properties. This is mandatory—without these, everything ends up in col-
umn 0, row 0. (Grid uses a zero-based numbering scheme, so 0,0 corresponds to the
top-left corner.)

Grid, Element Order, and Z Order

You might be wondering why the Grid doesn’t simply put items into the grid in the order
in which they appear; this would remove the need for the Grid.Row and Grid.Column
attached properties. However, grids do not necessarily have exactly one element per cell.

Grid cells can be empty. If the grid’s children simply filled the cells in order, you would
need to provide placeholders of some kind to indicate blank cells. But because ele-
ments indicate their grid position, you can leave cells empty simply by providing no
content for those cells.

Elements may span multiple cells, by using the Grid.RowSpan and Grid.ColumnSpan
attached properties.

Cells can also contain multiple elements. In this case, the order in which the relevant
elements are listed in the markup determines which appears “on top.” Elements that
appear later in the document are drawn over those that appear earlier. The order in
which overlapping elements are drawn is usually referred to as the Z order. This is
because the x- and y-axes are traditionally the ones used for drawing on-screen, so the
z-axis, representing the third dimension, “sticks out” of the screen. This makes it the
logical axis to represent how overlapping elements stack up on top of one another.

In general, panels that allow their children to overlap (e.g., Grid and Canvas) rely on the
order in which elements appear in the XAML to determine the Z order. However, you
can override this: the attached Panel.ZIndex property allows the Z order to be specified
explicitly.

Gid | 7

Figure 3-10 shows the result of Example 3-7. This figure has lines showing the grid
outline, because we enabled the ShowGridLines property. You would not normally do
this on a finalized design—this feature is intended to make it easy to see how the
Grid has divided up the available space. With grid lines displayed, it is clear that the
Grid has made all the columns the same width, and all the rows the same height.

Protocol: :HyperTex‘t Transfer Protocol
1

Connectionp.lot encrypted

Figure 3-10. Grid layout

A s
S What may not be obvious from Figure 3-10 is that each element has
.‘s‘ been given the full available cell space. It doesn’t show here because a
T 9kee TextBlock looks only as large as the text it shows. But the behavior is

somewhat similar to a StackPanel—each element’s width is as wide as
its containing column, and its height is that of its containing row. As
always, you can use HorizontalAlignment and VerticalAlignment to
determine what elements do with excess space.

This default “one size fits all” behavior is useful when you want all the items in the
grid to be the same size, but it’s not what we want here. It would make more sense
for the column on the left to be wide enough to contain the labels, and for the col-
umn on the right to be allocated the remaining space. Fortunately, the Grid provides
a variety of options for managing column width and row height.

Column Widths and Row Heights

You configure the column widths and row heights in a Grid using the
ColumnDefinition and RowDefinition elements. There are three sizing options: fixed,
automatic, and proportional.

Fixed sizing is the simplest to understand, but often requires the most effort to use,
as you end up having to do all of the work yourself. You can specify the Width of a
column or the Height of a row in device-independent pixels. (These are 1/96th of an
inch. WPF’s coordinate system is described in Chapter 13.) Example 3-8 shows a
modified version of the column definitions in Example 3-7, specifying a fixed width
for the first column.

Example 3-8. Fixed column width

<Grid.ColumnDefinitions>
<ColumnDefinition Width="50" />

72 | Chapter3: Layout

Example 3-8. Fixed column width (continued)

<ColumnDefinition />
</Grid.ColumnDefinitions>

Figure 3-11 illustrates the main problem with using fixed column widths. If you
make the column too narrow, the contents will simply be cropped. Fixed widths and
heights may seem to be an attractive idea because they give you complete control, but
in practice they tend to be inconvenient. If you change the text or the font, you will
need to modify the sizes to match. You will need to be flexible on layout if you want
your application to fit in with the system look and feel, because the default font is not
the same on all versions of Windows. Localization of strings will also require the sizes
to be changed. (See Chapter 12 for more information about localization.) So in prac-
tice, fixed widths and heights are not what you will normally want to use. This is true
not only with grids and text blocks. In general, you should try to avoid fixed sizes in
WPF—the more you let the layout system do for you, the easier it is to adapt to local-
ization, different screen sizes, and display orientations.

Protocol: IH}’pEI’TE)(T Transfer Protocol

'
...... g

Type: IHTML Document

Conner:tit:Not encrypted

Figure 3-11. Fixed-width column truncation

The most appropriate sizing strategy for our label column will be automatic sizing.
This tells the Grid to make the column wide enough to contain the widest element (i.e.,
to size to content). Example 3-9 shows a modified version of the column and row defini-
tions from Example 3-7, specifying automatic width for the first column, and automatic
heights for all of the rows.

Example 3-9. Automatic width and height

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

Grid | 73

This is not quite right yet—as you can see from Figure 3-12, the Grid has not left any
space around the text, so the results seem rather cramped. The solution is exactly
the same as it was for the StackPanel—we simply use the Margin property on the
TextBlock elements in the Grid to indicate that we want some breathing room
around the text. The Grid will honor this, giving us the layout we require.

Figure 3-12. Automatic width and height

If the idea of adding a Margin attribute to every single element sounds tedious, don’t
worry. We can give all of the TextBlock elements the same margin by defining a style.
Styles are discussed in Chapter 8. Example 3-10 does this to set a horizontal margin
of five device-independent pixels, and a vertical margin of three.

Example 3-10. Applying a consistent margin with a style

<Grid Background="Beige"
ShowGridLines="True">
<Grid.Resources>
<Style TargetType="TextBlock">
<Setter Property="Margin" Value="5,3" />
</Style>
</Grid.Resources>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
. as before

As Figure 3-13 shows, this provides the better-spaced layout we require.

1
Protocol: | HyperText Transfer Protocol

HTML Document

. 1
......... Lhncccccccccccccccaas
Connection: : Not encrypted

Figure 3-13. Using margins

The final mechanism for specifying width and height in a Grid is the proportional
method. This is sometimes called “star” sizing because of the corresponding XAML
syntax. If you set the width or height of a column or row to be *, this tells the Grid
that it should fill all the space left over after any fixed and automatic items have
taken their share. If you have multiple items set to *, the space is shared evenly
among them.

74 | Chapter3: Layout

The default value for column width and row height is *, so you have already seen the
effect of this. As Figure 3-10 shows, when we don’t specify column widths or row
heights, each cell ends up with exactly the same amount of space.

The star syntax is a little more flexible than this. Rather than dividing up space
evenly among all the rows or columns marked with a star, we can choose a propor-
tional distribution. Consider the set of row definitions in Example 3-11.

Example 3-11. Mixing row height styles

<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="2*" />
<RowDefinition Height="1*" />

</Grid.RowDefinitions>

Here, the first row has been set to size automatically, and the other two rows both
use proportional sizing. However, the middle row has been marked as 2*. This indi-
cates that it wants to be given twice as much of the available space as the row
marked with 1*. For example, if the grid’s total height was 350, and the first row’s
automatic height came out as 50, this would leave 300 for the other rows. The sec-
ond row’s height would be 200, and the third row’s height would be 100.
Figure 3-14 shows how this grid looks for a couple of different heights; the filled-in
background shows the size of the grid in each case. As you can see, the row with Auto
height is the same in both cases. The two star-sized rows share out the remaining
space, with the 2* row getting twice the height of the 1* row.

1 1
Protocol: | HyperText Transfer Protocol Protocol: ! HyperText Transfer Protocol

Type: i HTML Document Type: ' HTML Document

Connection: ! Not encrypted

e

Connection:

Not encrypted

ot e

Figure 3-14. Proportional Grid sizing

The numbers before the * specify relative sizes, not absolute sizes. If you modified
the preceding example to use 6* and 3* instead of 2* and 1*, the result would be
exactly the same. It’s equivalent to saying that you want the rows to use six-ninths
and three-ninths of the available space, instead of saying that you want them to use
two-thirds and one-third—it’s just two ways of expressing the same ratio.

Grid | 75

These numbers are floating point, so you can specify noninteger sizes such as 2.5%.
And if you specify just * without a number, this is equivalent to 1*.

& w
If you are familiar with HTML, you may have been wondering

.‘s‘ whether you can use percentage sizes. You can’t, but the star mecha-
A &
o3 nism lets you achieve similar effects.

.

You may have noticed that for all three grid-sizing strategies, we used the Width and
Height properties each time, although the property values looked quite different in
each case. Width and Height are both of type GridLength. The GridLength type holds a
number and a unit type. The number is stored as a Double and the unit type is repre-
sented by the GridUnitType enumeration.

For a fixed size, the unit type is Pixel. (As mentioned previously, in WPF pixel is
really a device-independent unit, meaning 1/96th of an inch.) In XAML, this is indi-
cated by providing just a number.” For automatic sizing, the unit type is Auto and no
number is required. In XAML, this is indicated by the string "Auto". For propor-
tional sizing, the unit type is Star. In XAML, this is indicated either by just * or a
number and a star (e.g., 3.5%). Example 3-12 shows the C# equivalent of the row set-
tings shown in XAML in Example 3-11.

Example 3-12. Setting row heights in code

Grid g = new Grid();

RowDefinition r = new RowDefinition();

r.Height = new GridLength(0, GridUnitType.Auto);
g.RowDefinitions.Add(r);

T = new RowDefinition();

r.Height = new GridLength(2, GridUnitType.Star);
g.RowDefinitions.Add(r);

T = new RowDefinition();

r.Height = new GridLength(1, GridUnitType.Star);
g.RowDefinitions.Add(r);

Spanning Multiple Rows and Columns

Looking at the Properties dialog shown earlier in Figure 3-8, there is a feature we have
left out. The dialog has two horizontal lines dividing the Ul into three sections. How-
ever, the aligned columns span the whole window, straddling these dividing lines.

It would be inconvenient to try to achieve a layout like this with multiple grids. If
you used one for each section of the window, you could keep the columns aligned in
all the grids by using fixed column widths. As discussed earlier, use of fixed widths is
inconvenient because it tends to require manual adjustment of the widths whenever

* In XAML, you can also use the suffix in, cm, or pt to specify inches, centimeters, or points. These will all be
converted to device-independent pixels, and the unit type will be Pixel. Sometimes these units don’t map
neatly into pixels (e.g., a value of 1pt will be converted into 1.3333 pixels).

76 | Chapter3: Layout

anything changes. With this layout, it becomes triply inconvenient—you would have
to change all three grids every time anything changed.

Fortunately, it is possible to add these dividing lines without splitting the UI into
separate grids. The way to do this is to put the dividing lines into cells that span
across all of the columns in the grid. An element indicates to its parent Grid that it
would like to span multiple columns by using the attached Grid.ColumnSpan property.

Example 3-13 uses a single Grid to show three sets of properties. These sets are sepa-
rated by thin Rectangle elements, using Grid.ColumnSpan to fill the whole width of
the Grid. Because a single Grid is used for all three sections, the columns remain
aligned across all three sections, as you can see in Figure 3-15. If we had used three
separate grids with the leftmost column set to use automatic width, each would have
chosen its own width, causing the righthand columns to be misaligned.

Example 3-13. Using Grid.ColumnSpan

<Grid Background="Beige">
<Grid.Resources>
<Style TargetType="TextBlock">
<Setter Property="Margin" Value="5,3" />
</Style>
</Grid.Resources>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />

<RowDefinition
<RowDefinition
<RowDefinition
<RowDefinition

Height="Auto"
Height="Auto"
Height="Auto"
Height="Auto"

/>
/>
/>
/>

<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

<TextBlock Grid.Column="0" Grid.Row="0">Title:</TextBlock>
<TextBlock Grid.Column="1" Grid.Row="0">Information Overload</TextBlock>

<Rectangle Grid.Row="1" Grid.ColumnSpan="2" Margin="5"
Height="1" Fill="Black" />

<TextBlock Grid.Column="0" Grid.Row="2">Protocol:</TextBlock>
<TextBlock Grid.Column="1" Grid.Row="2">Unknown Protocol</TextBlock>
<TextBlock Grid.Column="0" Grid.Row="3">Type:</TextBlock>

<TextBlock Grid.Column="1" Grid.Row="3">Not available</TextBlock>
<TextBlock Grid.Column="0" Grid.Row="4">Connection:</TextBlock>
<TextBlock Grid.Column="1" Grid.Row="4">Not encrypted</TextBlock>

Grid | 77

Example 3-13. Using Grid.ColumnSpan (continued)

<Rectangle Grid.Row="5" Grid.ColumnSpan="2" Margin="5"
Height="1" Fill="Black" />

<TextBlock Grid.Column="0" Grid.Row="6">Created:</TextBlock>
<TextBlock Grid.Column="1" Grid.Row="6">Not available</TextBlock>
<TextBlock Grid.Column="0" Grid.Row="7">Modified:</TextBlock>
<TextBlock Grid.Column="1" Grid.Row="7">Not available</TextBlock>

</Grid>

Title: Information Overload
Protocol: Unknown Pratocol
Type: Not available

Connection: Not encrypted

Created: Mot available

Modified: Not available

Figure 3-15. Dividing lines spanning multiple columns

The Grid class also defines a Grid.RowSpan attached property. This works in exactly
the same way as Grid.ColumnSpan, but vertically.

You are free to use both Grid.RowSpan and Grid.ColumnSpan on the same element—
any element may occupy as many grid cells as it likes. Also, note that you are free to
put multiple overlapping items into each cell.

Example 3-14 illustrates both of these techniques. It adds two Rectangle elements to
color in areas of the grid. The first spans multiple rows, and the second spans both
multiple rows and columns. Both Rectangle elements occupy cells in the Grid that
are also occupied by text.

Example 3-14. Multiple items in a Grid cell

<Rectangle Grid.Column="1" Grid.Row="2" Grid.RowSpan="3"
Margin="5,3" Fill="White" />

<Rectangle Grid.Column="0" Grid.Row="6" Grid.ColumnSpan="2" Grid.RowSpan="2"
Margin="5,3" Fill="White" />

<TextBlock Grid.Column="0" Grid.Row="0">Title:</TextBlock>
...as before

Figure 3-16 shows the results. Note that, in the absence of a Panel.ZIndex property, the
order in which the elements appear in the markup is crucial, as it determines the Z order
for overlapping elements. In Example 3-14 the Rectangle elements were added before
the TextBlock items whose cells they share. This means that the colored rectangles
appear behind the text, rather than obscuring them. If the rectangles had been added at
the end of the Grid, after the text, they would have been drawn over the text.

78 | Chapter3: Layout

Title: Information Overload

Protocol: Unknown Protocol
Type: Not available

Connection: Not encrypted

Created: Mot available
Madified: Mot available

Figure 3-16. Overlapping Grid items

This example illustrates why the Grid requires the row and column of each item to be
specified explicitly, rather than being implied by the order of the elements. Cells can
be shared by multiple elements. Elements can span multiple cells. This makes it
impossible for the Grid to guess which element goes in which cell.

Consistency Across Multiple Grids

Although the row and column spanning features described in the preceding section
often make it possible to arrange your Ul as you need, it will not always be possible
to put all of the information you wish to present into a single Grid element. For
example, consider a scrollable Grid with headings.” You could just put headings and
contents into a single Grid and then place that Grid in a ScrollViewer to make it
scrollable, but this suffers from a problem, which Example 3-15 illustrates.

Example 3-15. Grid in ScrollViewer

<ScrollViewer>
<Grid>
<Grid.Resources>
<Style TargetType="TextBlock">
<Setter Property="Margin" Value="5,3" />
</Style>
</Grid.Resources>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

* The ListView control provides just such a thing, so you don’t necessarily have to build your own. However,
it also entails certain interactive behaviors that you may not want in your application. For example, ListView
requires you to use data binding, whereas the alternative presented here does not.

Grid | 79

Example 3-15. Grid in ScrollViewer (continued)

<Border Grid.Column="0" Grid.Row="0"
Background="LightGray" BorderBrush="Gray"
BorderThickness="1">
<TextBlock>Title</TextBlock>
</Border>
<Border Grid.Column="1" Grid.Row="0"
Background="LightGray" BorderBrush="Gray"
BorderThickness="1">
<TextBlock>Location</TextBlock>
</Border>
<Border Grid.Column="2" Grid.Row="0" Background="LightGray"
BorderBrush="Gray" BorderThickness="1">
<TextBlock>Rank</TextBlock>
</Border>

<TextBlock Grid.Column="0" Grid.Row="1" Text="Programming WPF" />
<TextBlock Grid.Column="1" Grid.Row="1" Text="0'Reilly Media, Inc." />
<TextBlock Grid.Column="2" Grid.Row="1" Text="1" />

<TextBlock Grid.Column="0" Grid.Row="2" Text="IanG on Tap" />
<TextBlock Grid.Column="1" Grid.Row="2" Text="The Internet" />
<TextBlock Grid.Column="2" Grid.Row="2" Text="2" />
</Grid>
</ScrollViewer>

Figure 3-17 shows the results. If you look at the righthand side, you can see that the
scroll bar runs the entire height of the Grid, including the header line with the titles.
This means that as soon as you scroll down, the headings will disappear. This is not
particularly helpful.

|Title | Location | Rank “
Programming WPF O'Reilly Media, Inc. 1
IanG on Tap The Internet 2 v

Figure 3-17. Grid in ScrollViewer

We could solve this by using two grids, one for the header and one for the main
results area. Only the second grid would be placed inside a ScrollViewer. Figure 3-18
shows the results.

| Title | Location | Rank |
Programming WPF O'Reilly Media,Inc. 1 *
IanG on Tap The Internet 2 |

Figure 3-18. Separate Grid for headers

80 | Chapter3: Layout

The scroll bar is now applied just to the part that needs to be scrollable, but the
alignment is all wrong. Each Grid has arranged its columns independently, so the
headings no longer line up with the main contents.

The Grid supports shared size groups to solve this problem. A shared size group is
simply a named group of columns, all of which will have the same width, even if they
are in different grids.

You can use shared size groups either across multiple grids or within a
single grid.
&

We can use a shared size group to keep the headings Grid consistent with the scrollable
contents Grid. Example 3-16 illustrates the use of shared size groups.

Example 3-16. Shared size groups

<DockPanel Grid.IsSharedSizeScope="True">
<DockPanel.Resources>
<Style TargetType="TextBlock">
<Setter Property="Margin" Value="5,3" />
</Style>
</DockPanel.Resources>
<Grid DockPanel.Dock="Top">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="Auto" SharedSizeGroup="Location" />
<ColumnDefinition Width="Auto" SharedSizeGroup="Rank" />
<ColumnDefinition Width="Auto" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

<Border Grid.Column="0" Grid.Row="0" BorderThickness="1"
Background="LightGray" BorderBrush="Gray">
<TextBlock>Title</TextBlock>
</Border>
<Border Grid.Column="1" Grid.Row="0" BorderThickness="1"
Background="LightGray" BorderBrush="Gray">
<TextBlock>Location</TextBlock>
</Border>
<Border Grid.Column="2" Grid.Row="0" BorderThickness="1"
Grid.ColumnSpan="2"
Background="LightGray" BorderBrush="Gray">
</Border>
<TextBlock Grid.Column="2" Grid.Row="0">Rank</TextBlock>

Grid | 81

Example 3-16. Shared size groups (continued)

<FrameworkElement Grid.Column="3"
Width="{DynamicResource
{x:Static SystemParameters.VerticalScrollBarWidthKey}}" />

</Grid>
<ScrollViewer>
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="Auto" SharedSizeGroup="Location" />
<ColumnDefinition Width="Auto" SharedSizeGroup="Rank" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

<TextBlock Grid.Column="0" Grid.Row="0" Text="Programming WPF" />
<TextBlock Grid.Column="1" Grid.Row="0" Text="0'Reilly Media, Inc." />
<TextBlock Grid.Column="2" Grid.Row="0">1</TextBlock>

<TextBlock Grid.Column="0" Grid.Row="1">IanG on Tap</TextBlock>
<TextBlock Grid.Column="1" Grid.Row="1">The Internet</TextBlock>
<TextBlock Grid.Column="2" Grid.Row="1">2</TextBlock>
</Grid>
</ScrollViewer>
</DockPanel>

In this example, the overall layout is defined by a DockPanel, using the attached Dock. Top
property to position the header Grid at the top, and allowing the ScrollViewer to fill the
remaining space.

Shared size groups are identified by strings. Strings are prone to name collisions—it’s
quite possible that two developers independently working on different parts of the
user interface might end up choosing the same name for their shared size groups,
inadvertently causing unrelated columns to have the same size. To avoid this prob-
lem, Example 3-16 sets the Grid.IsSharedSizeScope attached property on the
DockPanel. This indicates that the DockPanel is the common ancestor, and prevents
the groups defined inside the DockPanel from being associated with any groups of the
same name defined elsewhere in the UL

R
s

Grid.IsSharedSizeScope is not optional. If you do not specify a shared
size scope, WPF will ignore your shared size groups.

“
[153

Having defined the scope of the names, using shared size groups is very straight-
forward. We just apply the SharedSizeGroup attribute to the “Location” and
“Rank” ColumnDefinition, and this ensures that the columns are sized consistently
across the two grids. Figure 3-19 shows the results.

82 | Chapter3: Layout

Title Location | Rank |

-

Programming WPF O'Reilly Media, Inc. 1
IanG on Tap The Internet 2 v

Figure 3-19. Shared size groups

The Scrollviewer adds a scroll bar to the display, and this means that a small hack is
required to get this layout to work correctly. This scroll bar takes away some space
from the main Grid, making it slightly narrower than the header Grid. Remember
that the “Title” column’s size is set to *, meaning that it should fill all available
space. The ScrollViewer’s scroll bar eats into this space, making the “Title” column
in the main Grid slightly narrower than the one in the header Grid, destroying the
alignment.

You might think that we could fix this by adding a shared size group for the “Title”
column. Unfortunately, specifying a shared size group disables the * behavior—the
column reverts to automatic sizing.

The fix for this is to add an extra column to the header row. This row needs to be
exactly the same width as the scroll bar added by the Scrollviewer. So we have
added a fourth column, containing a FrameworkElement, with its Width set to the sys-
tem scroll width metric in order to make sure that it is exactly the same width as a
scroll bar. (We are using a DynamicResource reference to retrieve this system parameter.
This technique is described in Chapter 12.) It’s unusual to use a FrameworkElement
directly, but because we just need something that takes up space but has no appear-
ance, it makes a good lightweight filler object. Its presence keeps all of the columns
perfectly aligned across the two grids.

A s
S The Grid is the most powerful of the built-in panels. You can get the Grid
.‘s‘ to do anything that DockPanel and StackPanel can do—those simpler ele-
T S ments are provided for convenience. For nontrivial user interfaces, the
" Grid is likely to be the best choice for your top-level GUI layout, as well
as being useful for detailed internal layout.
UniformGrid

Powerful though the Grid is, it’s occasionally a little cumbersome to use. There’s a
simplified version worth knowing about, called UniformGrid. All its cells are the same
size, so you don’t need to provide collections of row and column descriptions—just
set the Rows and Columns properties to indicate the size. In fact, you don’t even need
to set these—by default, it creates rows and columns automatically. It always keeps
the number of rows and columns equal to each other, adding as many as are required
to make space for the children. Each cell contains just one child, so you do not need
to add attached properties indicating which child belongs in which cell—you just
add children. This means you can use something as simple as Example 3-17.

Grid | 83

Example 3-17. UniformGrid

<UniformGrid TextBlock.TextAlignment="Center">
<TextBlock Text="X" />
<TextBlock Text="0"/>
<TextBlock Text="X"/>
<TextBlock Text="X"/>
<TextBlock Text="X"/>
<TextBlock Text="0"/>
<TextBlock Text="0"/>
<TextBlock Text="0"/>
<TextBlock Text="X"/>

</UniformGrid>

This contains nine elements, so the UniformGrid will create three rows and three col-
umns. Figure 3-20 shows the result.

XOX
XXO
00X

Figure 3-20. UniformGrid

Canvas

Occasionally, it can be necessary to take complete control of the precise positioning
of every element. For example, when you want to build an image out of graphical
elements, the positioning of the elements is dictated by the picture you are creating,
not by any set of automated layout rules. For these scenarios, you can use a Canvas.

Canvas is the simplest of the panels. It allows the location of child elements to be
specified precisely relative to the edges of the canvas. The Canvas doesn’t really do
any layout at all; it simply puts things where you tell it to. Also, Canvas will not size
elements to fill the available space—all its children are sized to content.

If you are accustomed to working with fixed layout systems such as
those offered by Visual Basic 6, MFC, and the most basic way of using
Windows Forms, the Canvas will seem familiar and natural. However,
it is strongly recommended that you avoid it unless you really need
this absolute control. The automatic layout provided by the other pan-
els will make your life much easier because they can adapt to changes
in text and font. They also make it far simpler to produce resizable
user interfaces. Moreover, localization tends to be much easier with
resizable user interfaces, because different languages tend to produce
strings with substantially different lengths. Don’t opt for the Canvas
simply because it seems familiar.

84 | Chapter3: Layout

When using a Canvas, you must specify the location of each child element. If you
don’t, all of your elements will end up at the top-left corner. Canvas defines four
attached properties for setting the position of child elements. Vertical position is set
with either the Top or Bottom property, and horizontal position is determined by
either the Left or Right property.

Example 3-18 shows a Canvas containing two TextBlock elements. The first has been
positioned relative to the top-left corner of the Canvas: the text will always appear 10
pixels in from the left and 20 pixels down from the top. (As always, these are device-
independent pixels.) Figure 3-21 shows the result.

Example 3-18. Positioning on a Canvas

<Canvas Background="Yellow" Width="150" Height="100">
<TextBlock Canvas.left="10" Canvas.Top="20">Hello</TextBlock>
<TextBlock Canvas.Right="10" Canvas.Bottom="20">world!</TextBlock>
</Canvas>

Hello

world!

Figure 3-21. Simple Canvas layout

The second text element is more interesting. It has been positioned relative to the
bottom right of the form, which means that if the canvas gets resized, the element
will move with that corner of the canvas. For example, if the Canvas were the main
element of a window, the second TextBlock element would move with the bottom-
right corner of the window if the user resized it.

A s

If you have used Windows Forms, you may be wondering whether set-
ting both the Top and Bottom properties (or both Left and Right prop-
erties) will cause the element to resize automatically when the
containing canvas is resized. But unlike with anchoring in Windows
Forms, this technique does not work. If you specify both Left and
Right, or both Top and Bottom, one of the properties will simply be
ignored. (Top takes precedence over Bottom, and Left takes precedence
over Right.)

Fortunately, it is easy to get this kind of behavior with a single-cell
Grid and the Margin property. If you put an element into a grid with a
margin of, say, “10,10,30,40”, its top-left corner will be at (10,10) rela-
tive to the top left of the grid, its righthand side will always be 30 pixels
from the right edge of the grid, and its bottom edge will always be 40
pixels from the bottom of the grid. This is another reason to prefer Grid
over Canvas.

Canvas | 85

The main use for Canvas is to arrange drawings. If you employ graphical elements
such as Ellipse and Path, which are discussed in Chapter 13, you will typically need
precise control over their location, in which case the Canvas is ideal.

When child elements are larger than their parent panel, most panels crop them, but
the Canvas does not by default, allowing elements to be partially or entirely outside of
its bounds. You can even use negative coordinates. The noncropping behavior is
sometimes useful because it means you do not need to specify the size of the canvas—
a zero-size canvas works perfectly well. However, if you want to clip the content, set
ClipToBounds to True.

The price you pay for the precise control offered by the Canvas is that it is inflexible.
However, there is one common scenario in which you can mitigate this rigidity. If
you’ve used a Canvas to arrange a drawing and you would like that drawing to be
automatically resizable, you can use a Viewbox in conjunction with the Canvas.

Viewbox

The Viewbox element automatically scales its content to fill the space available.
Strictly speaking, Viewbox is not a panel—it derives from Decorator. This means that
unlike most panels, it can have only one child. However, its capability to adjust the
size of its content in order to adapt to its surroundings makes it a useful layout tool.

Figure 3-22 shows a window that doesn’t use a Viewbox but probably should. The
window’s content is a Canvas containing a rather small drawing. Example 3-19 shows
the markup.

= —re

Figure 3-22. Canvas without Viewbox

Example 3-19. Canvas without Viewbox

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Canvas Width="18" Height="18" VerticalAlignment="Center">

86 | Chapter3: Layout

Example 3-19. Canvas without Viewbox (continued)

<Ellipse Canvas.Left="1" Canvas.Top="1" Width="16" Height="16"
Fill="Yellow" Stroke="Black" />

<Ellipse Canvas.Left="4.5" Canvas.Top="5" Width="2.5" Height="3"
Fill="Black" />

<Ellipse Canvas.lLeft="11" Canvas.Top="5" Width="2.5" Height="3"
Fill="Black" />

<Path Data="M 5,10 A 3,3 90 0 0 13,10" Stroke="Black" />

</Canvas>

</Window>

We can use a Viewbox to resize the content automatically. It will expand it to be large
enough to fill the space, as shown in Figure 3-23. (If you’re wondering why the draw-
ing doesn’t touch the edges of the window, it’s because the Canvas is slightly larger
than the drawing it contains.)

= —re

Figure 3-23. Canvas with Viewbox

All we had to do to get this automatic resizing was wrap the Canvas element in a
Viewbox element, as shown in Example 3-20.

Example 3-20. Using Viewbox

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">

<Viewbox>
<Canvas Width="18" Height="18" VerticalAlignment="Center">

...as before...

</Canvas>
</Viewbox>

</Window>

Viewbox | 87

Notice how in Figure 3-23 the Canvas has been made tall enough to fill the window,
but not wide enough. This is because by default, the Viewbox preserves the aspect
ratio of its child. If you want, you can disable this so that it fills all the space, as
Figure 3-24 shows.

q I:Eg

Figure 3-24. Viewbox with Stretch

To enable this behavior we set the Stretch property. Its default value is Uniform. We
can make the Viewbox stretch the Canvas to fill the whole space by setting the prop-
erty to Fill, as Example 3-21 shows.

Example 3-21. Specifying a Stretch

<Viewbox Stretch="Fill">

You can also set the Stretch property to None to disable stretching. That might seem
pointless, because the effect is exactly the same as not using a Viewbox at all. How-
ever, you might do this from code to flip between scaled and normal-size views of a
drawing. There is also a UniformToFill setting, which preserves the aspect ratio but
fills the space, clipping the source in one dimension, if necessary (see Figure 3-25).

v
NN

The Viewbox can scale any child element—it’s not just for Canvas.
However, you would rarely use it to size anything other than a draw-
Wt ing. If you were to use a Viewbox to resize some nongraphical part of
* your Ul, it would resize any text in there as well, making it look incon-
sistent with the rest of your UL For a resizable user interface, you are
best off relying on the resizable panels shown in this chapter.

88 | Chapter3: Layout

o O
\ J

Figure 3-25. UniformToFill

Common Layout Properties

All user interface elements have a standard set of layout properties, mostly inherited
from the FrameworkElement base class. These properties are shown in Table 3-2. We
saw a few of these in passing in the preceding section, but we will now look at them
all in a little more detail.

Table 3-2. Common layout properties

Property Usage

Width Specifies a fixed width

Height Specifies a fixed height

MinWidth The minimum permissible width

MaxWidth The maximum permissible width

MinHeight The minimum permissible height

MaxHeight The maximum permissible height
HorizontalAlignment Horizontal position if element is smaller than available space
VerticalAlignment Vertical position if element is smaller than available space
Margin Space around outside of element

Padding Space between element border and content

Visibility Allows the element to be made invisible to the layout system where necessary
FlowDirection Text direction

Panel.ZIndex
RenderTransform

LayoutTransform

Controls which elements are on top or underneath
Applies a transform without modifying the layout

Applies a transform that affects layout

Common Layout Properties

89

A couple of these properties are not from FrameworkElement. Padding is defined in sev-
eral places: Control, Border, and TextBlock each define this property. It has the same
meaning in all cases. It is not quite ubiquitous because padding is meaningful only
on elements that have content. Panel.ZIndex may be applied to any element, but it’s
not strictly inherited from FrameworkElement—it is an attached property.

Width and Height

You can set these properties to specify an exact width and height for your element.
You should try to avoid using these—in general it is preferable to let elements deter-
mine their own size where possible. It will take less effort to change your user interface
if you allow elements to “size to content.” It can also simplify localization. However,
you will occasionally need to provide a specific size.

If you specify a Width or Height, the layout system will always attempt to honor your
choices. Of course, if you make an element wider than the screen, WPF can’t make
the screen any wider, but as long as what you request is possible, it will be done.

MinWidth, MaxWidth, MinHeight, and MaxHeight

These properties allow you to specify upper and lower limits on the size of an ele-
ment. If you need to constrain your user interface’s layout, it is usually better to use
these than Width and Height where possible. By specifying upper and lower limits,
you can still allow WPF some latitude to automate the layout.

It is possible to mandate limits that simply cannot be fulfilled. For example, if you
request a MinWidth of "10000", WPF won’t be able to honor that request unless you
have some very exotic display hardware. In these cases, your element will be trun-
cated to fit the space available.

HorizontalAlignment and VerticalAlignment

These properties control how an element is placed inside a parent when more room
is available than is necessary. For example, a vertical StackPanel will normally be as
wide as the widest element, meaning that any narrower elements are given excess
space. Alignment is for these sorts of scenarios, enabling you to determine what the
child element does with the extra space.

The default setting for both of these properties is Stretch—when excess space is
available, the element will be enlarged to fill that space. The alternatives are Left,
Center, and Right for HorizontalAlignment, and Top, Center, and Bottom for
VerticalAlignment. If you choose any of these, the element will not be stretched—it
will use its natural height or width, and will then be positioned to one side or in the
center.

90 | Chapter3: Layout

Margin

This property determines the amount of space that should be left around the ele-
ment during layout.

You can specify Margin as a single number, a pair of numbers, or a list of four num-
bers. When one number is used, this indicates that the same amount of space should
be left on all sides. With two numbers, the first indicates the space to the left and
right and the second indicates the space above and below. When four numbers are
specified, they indicate the amount of space on the left, top, right, and bottom sides,
respectively.

You can use the Margin property to control an element’s position. For example,
although Grid does not define attached properties to control the exact positioning of
an element, it will honor the Margin property relative to the element’s cell.
Example 3-22 shows a simple single-cell grid that uses this technique.

Example 3-22. Controlling an element’s position with Margin

<Border BorderBrush="Black" BorderThickness="1">
<Grid>
<Rectangle Margin="20, 10, 0, 0" Fill="Green"
Width="80" Height="30"
HorizontalAlignment="Left" VerticalAlignment="Top" />
</Grid>
</Border>

The rectangle it contains will be 20 device-independent pixels in from the left and 10
down from the top, as Figure 3-26 shows. Note that we’ve left the last two values of
the Margin property—the right and bottom margins—at zero. That’s because we only
want to use the margin to specify the position of the top left of the rectangle. The
position of the bottom right is determined by the rectangle’s size in this case.

Figure 3-26. Margin

Padding

Whereas Margin indicates how much space should be left around the outside of an ele-
ment, Padding specifies how much should be left between a control’s outside and its
internal content.

Common Layout Properties | 91

Padding is not present on all WPF elements, because not all elements have internal
content. It is defined by the Control base class, and the Border and TextBlock classes,
as well as some of the text elements described in Chapter 14.

Example 3-23 shows three buttons, one with just a margin, one with both a margin
and padding, and one with just padding. It also fills the area behind the buttons with
color so that the effects of the margin can be seen.

Example 3-23. Margin versus Padding

<Grid ShowGridLines="True" Background="Cyan">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

<Button Grid.Column="0" Margin="20"
<Button Grid.Column="1" Margin="10"
<Button Grid.Column="2" Margin="o0"

Padding="0">Click me!</Button>
Padding="10">Click me!</Button>
Padding="20">Click me!</Button>

</Grid>

Figure 3-27 shows the results. The button with a margin but no padding has
appeared at its normal size, but has space around it. The middle button is larger,
because the padding causes space to be added around its content. The third button is
larger still because it has more padding, but it has no space around it because it has

no margin.

Figure 3-27. Buttons with a margin and padding

Click me!

1
1
i
1
1

Visibility

The Visibility property determines whether an element is visible. It has an impact
on layout, because if you set it to Collapsed, the preferred size of the element will
become zero. This is different from Hidden—this indicates that although the element
is not visible, the layout system should treat it in the same way as it would if it were
Visible.

92 | Chapter3: Layout

FlowDirection

The FlowDirection property controls how text flows; the default is based on the sys-
tem locale. For example, in English-speaking locales, it will be left to right, but many
cultures use the alternative right-to-left style. Setting the FlowDirection property to
RightTolLeft affects the flow direction of all text, and of any WrapPanel elements con-
tained within that element. This is an inherited property, meaning that it applies to all
its descendants—setting this on a window implicitly sets it for all elements in the
window. Example 3-24 shows this property applied to a WrapPanel.

Example 3-24. FlowDirection

<StackPanel>
<WrapPanel Orientation="Horizontal">
<Button>0One</Button>
<Button>Two</Button>
<Button>Three</Button>
</WrapPanel>
<WrapPanel Orientation="Horizontal" FlowDirection="RightToLeft">
<Button>0One</Button>
<Button>Two</Button>
<Button>Three</Button>
</WrapPanel>
</StackPanel>

Figure 3-28 shows the results.

One|Two Three.
Three TwolOne

Although the WrapPanel offers the most straightforward way of illustrating
FlowDirection, the property’s main purpose is to control how text is arranged—its
impact on WrapPanel is of secondary importance. On the face of it, a property for
controlling text flow direction may seem to be unnecessary, because Unicode defines
the directionality of each codepoint. If a string contains, say, Hebrew letters, these
have an intrinsic right-to-left direction, and will be rendered in that direction regard-
less of the FlowDirection setting. Example 3-25 shows three Hebrew letters: Alef (),
Bet (2), and Gimel (3).

Figure 3-28. FlowDirection

Example 3-25. Intrinsic character direction

<TextBlock>
א ב ג
</TextBlock>

Common Layout Properties | 93

This will appear as shown in Figure 3-29. Notice that the first character has appeared
on the right, with the second and third appearing to the left. This illustrates that
WPF doesn’t need to be told the flow direction for text with intrinsic directionality.
And even if we explicitly set the text block’s flow direction to LeftToRight, the direc-
tionality of these characters would override this setting.

AN

Figure 3-29. Right-to-left characters

However, problems emerge when using characters that do not have a strong direc-
tionality. Example 3-26 makes a subtle change.

Example 3-26. Mixed character directions

<TextBlock>
&#tx05d0; &#tx05d1 ; ג :
</TextBlock>

This adds a colon to the end of the second line, after the Hebrew characters, and the
results will appear as shown in Figure 3-30. Although the three Hebrew characters
have been displayed from right to left as before, the colon has been shown to the
right. This is because the colon is not a right-to-left character. (Strictly speaking, Uni-
code considers its directionality to be “weak.”) But because the TextBlock doesn’t
have an explicit FlowDirection, the default flow direction applies—Ileft to right, on
the authors’ machines. So the colon has appeared where it normally would with left-
to-right text, which is inconsistent with the right-to-left text it appears next to here.

AANX:

Figure 3-30. Mixed directions

To make the colon appear in a location consistent with the directionality of the
remaining text, we need to tell WPF that we would like right-to-left text flow here.
This won'’t affect any text with an intrinsic directionality, but it will determine where
the colon appears. Example 3-27 contains a mixture of Hebrew and Latin characters
to illustrate this.

Example 3-27. FlowDirection

<TextBlock FlowDirection="RightTolLeft">
א בג : Foo
</TextBlock>

94 | Chapter3: Layout

The sequence of characters here is three Hebrew letters, a colon, a space, and then
three Latin letters. As Figure 3-31 illustrates, the Hebrew letters have been shown
from right to left as they were before. But this time, the colon has been shown to the
left of these letters rather than to the right, because of the FlowDirection setting.
The three Latin letters appear to the left of the other letters in accordance with the
RightToLeft flow direction, but because these letters all have an intrinsic left-to-right
directionality, this block of Latin letters has been displayed from left to right.

Foo :AQNX

Figure 3-31. Mixed directions with RightToLeft FlowDirection

The full details of the algorithm used for bidirectional layout of Unicode text is given
in Annex 9 of the Unicode specification. It is too complex to describe in full detail
here, but you can find it at http://www.unicode.org/reports/tr9 (http://tinysells.com/99).

Panel.ZIndex

Panel defines an attached property, ZIndex, that determines which element appears
on top when two of them overlap. By default, the Z order of elements is determined
by the order in which they are defined. Of the elements inside a particular panel,
they will typically be rendered in the order in which they appear, causing the last one
to appear to be “on top.” Panel.ZIndex lets you control the rendering order indepen-
dently of the document order.

Elements with a higher Panel.ZIndex appear on top of those with a lower Panel.ZIndex.
The default value is 0, so elements with a positive Panel.ZIndex will appear on top of
those that do not specify one. Example 3-28 does not use Panel.ZIndex, so the element
overlapping order is determined by the order in which the elements appear.

Example 3-28. Without Panel.ZIndex

<Grid>
<Button Width="75" Height="23" Margin="0,0"
HorizontalAlignment="Left" VerticalAlignment="Top">
One
</Button>
<Button Width="75" Height="23" Margin="15,15"
HorizontalAlignment="Left" VerticalAlignment="Top">
Two
</Button>
<Button Width="75" Height="23" Margin="30,30"
HorizontalAlignment="Left" VerticalAlignment="Top">
Three
</Button>
</Grid>

Common Layout Properties | 95

This is shown on the left of Figure 3-32. The version on the right comes from

Example 3-29.
[| : One .
wo
Three J Tee

Example 3-29 uses Panel.ZIndex to reverse the overlap.

Figure 3-32. Panel.ZIndex

Example 3-29. With Panel.ZIndex

<Grid>
<Button Width="75" Height="23" Margin="0,0" Panel.ZIndex="3"
HorizontalAlignment="Left" VerticalAlignment="Top">
One
</Button>
<Button Width="75" Height="23" Margin="15,15" Panel.ZIndex="2"
HorizontalAlignment="Left" VerticalAlignment="Top">
Two
</Button>
<Button Width="75" Height="23" Margin="30,30" Panel.ZIndex="1"
HorizontalAlignment="Left" VerticalAlignment="Top">
Three
</Button>
</Grid>

RenderTransform and LayoutTransform

You can use both the RenderTransform and LayoutTransform properties to apply a trans-
form, such as scaling or rotation, to an element and all of its children. Transforms are
described in Chapter 13, but it is useful to understand their impact on layout.

If you apply a transform that doubles the size of an element, the element will appear
to be twice as large on-screen. You would normally want the layout system to take
this into account—if a Rectangle with a Width of 100 is scaled up to twice its size, it
will normally make sense for the layout system to treat it as having an effective width
of 200. However, you might sometimes want the transformation to be ignored for
layout purposes. For example, if you are using a transform in a short animation
designed to draw attention to a particular part of the Ul, you probably don’t want
the entire UT’s layout to be changed as a result of that animation.

You can apply a transform to an object using either LayoutTransform or
RenderTransform. The former causes the transform to be taken into account by the
layout system, and the latter causes it to be ignored. Example 3-30 shows three but-
tons, one containing untransformed content, and the other two containing content
transformed with these two properties.

96 | Chapter3: Layout

Example 3-30. RenderTransform and LayoutTransform

<StackPanel>
<Button>
<TextBlock>
Foo bar
</TextBlock>
</Button>
<Button>
<TextBlock>
<TextBlock.RenderTransform»
<ScaleTransform ScaleX="3" ScaleY="3" />
</TextBlock.RenderTransformy
Foo bar
</TextBlock>
</Button>
<Button>
<TextBlock>
<TextBlock.LayoutTransform»
<ScaleTransform ScaleX="3" ScaleY="3" />
</TextBlock.LayoutTransform>
Foo bar
</TextBlock>
</Button>
</StackPanel>

Figure 3-33 shows the results. As you can see, the button with content scaled by
RenderTransform has the same size border as the unscaled one. The presence of the
transform has had no effect on layout, and the content no longer fits inside the space
allocated for it. However, the LayoutTransform has been taken into account by the lay-
out system—the third button has been enlarged in order for the scaled content to fit.

Foo bar J

[| el 1

ar
Foo bar

Figure 3-33. RenderTransform and LayoutTransform

The layout system deals with LayoutTransform in a straightforward manner for simple
scaling transforms. The size allocated for the content is scaled up accordingly. But what
about rotations? Figure 3-34 shows a button whose content has a LayoutTransform that
rotates the content by 30 degrees. This is not a scaling transform, but notice that the
button has grown to accommodate the content—it is taller than a normal button.

£
E/

Figure 3-34. LayoutTransform and rotation

Common Layout Properties | 97

When it encounters a LayoutTransform, the layout system simply applies that trans-
form to the bounding box, and makes sure that it provides enough space to hold the
transformed bounding box. This can occasionally lead to surprising results. Con-
sider the two buttons in Example 3-31.

Example 3-31. Rotation of content

<StackPanel>
<Button HorizontalAlignment="Left">
<Line Stroke="Blue" Y1="30" X2="100" />
</Button>
<Button HorizontalAlignment="Left">
<Line Stroke="Blue" Y1="30" X2="100">
<Line.LayoutTransform>
<RotateTransform Angle="50" />
</Line.LayoutTransform»
</Line>
</Button>
</StackPanel>

These are shown in Figure 3-35. The top button looks as you would expect—the
button is large enough to contain the graphical content. But the bottom one is rather
surprising—the button appears to be taller than necessary.

/

Figure 3-35. Rotated content

This result makes sense only when you consider the bounding box—remember that
the layout system decides how much space to allocate by applying the
LayoutTransform to the bounding box. So let’s look at it again, this time with the
bounding boxes shown. Example 3-32 is a modified version of Example 3-31, with
Border elements added to show the bounding box of the lines.

Example 3-32. Rotation showing bounding box

<StackPanel>
<Button HorizontalAlignment="Left">
<Border BorderBrush="Black" BorderThickness="1">
<Line Stroke="Blue" Y1="30" X2="100" />
</Border>
</Button>
<Button HorizontalAlignment="Left">

98 | Chapter3: Layout

Example 3-32. Rotation showing bounding box (continued)

<Border BorderBrush="Black" BorderThickness="1">

<Border.LayoutTransform>
<RotateTransform Angle="50" />

</Border.LayoutTransforms>
<Line Stroke="Blue" Y1="30" X2="100" />

</Border>

</Button>
</StackPanel>

In Figure 3-36, we can now see the bounding box of the content. The button on the
bottom shows this bounding box with the same 50 degree rotation as has been
applied to the line. This makes it clear that the button is exactly large enough to hold

this rotated bounding box.

Figure 3-36. Rotated content with bounding boxes

You might be wondering why WPF doesn’t simply calculate a new bounding box for
the transformed content instead of transforming the existing one. The reason is that
calculating a new bounding box may not be possible. Some elements, such as Canvas,
can declare a width and height that do not directly reflect their apparent size. The
only sensible way in which the layout system can deal with such elements is to treat
their logical shape as being rectangular. Using this approach of transforming the
bounding box everywhere ensures consistent behavior.

When Content Doesn’t Fit

Sometimes WPF will not be able to honor your requests because you have asked the
impossible. Example 3-33 creates a StackPanel with a Height of 100, which contains
a Button with a Height of 195.

Example 3-33. Asking the impossible

<StackPanel Height="100" Background="Yellow" Orientation="Horizontal">
<Button>Foo</Button>
<Button Height="30">Bar</Button>
<Button Height="195">Quux</Button>

</StackPanel>

When Content Doesn'tFit | 99

Clearly that last button is too big to fit—it is taller than its containing panel.
Figure 3-37 shows how WPF deals with this.

Foo |Bar

Chnaw

Figure 3-37. Truncation when content is too large

The StackPanel has dealt with the anomaly by truncating the element that was too
large. When confronted with contradictory hardcoded sizes like these, most panels
take a similar approach, and will crop content where it simply cannot fit.

There is some variation in the way that panels handle overflow in situations where
sizes are not hardcoded, but there is still too much content to fit. Example 3-34 puts
two copies of a TextBlock and its content into a StackPanel and a Grid cell.

Example 3-34. Handling overflow

<Grid Background="Yellow" ShowGridLines="True">
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

<StackPanel Height="100" Orientation="Horizontal">
<TextBlock TextWrapping="Wrap" FontSize="20">
This is some text that is too long to fit.
</TextBlock>
</StackPanel>

<TextBlock Grid.Row="1" TextWrapping="Wrap" FontSize="20">
This is some text that is too long to fit.
</TextBlock>
</Grid>

Figure 3-38 shows what happens when the available space is too narrow to hold the
TextBlock at its natural length.

The StackPanel has simply truncated the TextBlock. The Grid has been slightly more
intelligent. It has exploited the fact that the TextBlock had wrapping enabled, and
was able to flow the text into the narrow space available.” WrapPanel and DockPanel
both show the same behavior. Even this technique has its limits, of course—some-
times you really will have more content than fits in the space available. In that case, it
may be appropriate to use a ScrollvViewer, discussed presently.

* The reason for the difference in behavior is that StackPanel uses a very simple layout mechanism. A horizon-
tal StackPanel always sizes its children to content horizontally, regardless of whether there is sufficient space.

100 | Chapter3: Layout

This is some text th

This is some text
that is too long to
fit.

Figure 3-38. Overflow handling

The reason StackPanel doesn’t result in wrapped text is that it does not attempt to
constrain its children in the stacking direction: a horizontal StackPanel lets each
child choose its preferred width, whether or not it fits. In effect, it pretends there is
an infinite amount of space, which is why the child TextBlock didn’t attempt to
wrap. StackPanel will constrain children in the other direction, though, so a vertical
StackPanel would pass on the horizontal constraint, causing the TextBlock in this
example to wrap. Canvas allows its children to determine both their width and their
height regardless of available space, so a Canvas would fail to wrap, just like the
StackPanel in this example.

ScrollViewer

The ScrollViewer control allows oversized content to be displayed by putting it into
a scrollable area. A ScrollViewer element has a single child. Example 3-35 uses an
Ellipse element, but it could be anything. If you want to put multiple elements into
a scrollable view, you would nest them inside a panel.

Example 3-35. ScrollViewer

<ScrollViewer HorizontalScrollBarVisibility="Auto">
<Ellipse Fill="Green" Height="1000" Width="2000" />
</ScrollViewer>

If the content of a ScrollViewer is larger than the space available, the ScrollViewer
can provide scroll bars to allow the user to scroll around the content, as Figure 3-39
shows. By default, a ScrollViewer provides a vertical scroll bar, but not a horizontal
one. In Example 3-35, the HorizontalScrollBarVisibility property has been set to
Auto, indicating that a horizontal scroll bar should be added if required.

This Auto visibility we’ve chosen for the horizontal scroll bar is different from the
default vertical behavior. The VerticalScrollBarVisibility defaults to Visible,
meaning that the scroll bar is present whether it is required or not.

ScrollViewer | 101

Figure 3-39. ScrollViewer

There are two ways to make sure a scroll bar does not appear. You can set its visibil-
ity either to Disabled (the default for horizontal scroll bars) or to Hidden. The distinc-
tion is that Disabled constrains the logical size of the ScrollViewer’s contents to be
the same as the available space. Hidden allows the logical size to be unconstrained,
even though the user has no way of scrolling into the excess space. This can change
the behavior of certain layout styles.

To examine how these settings affect the behavior of a Scrollviewer, we’ll start with
the code shown in Example 3-36, and then show what happens as we change the
ScrollViewer properties.

Example 3-36. A resizable layout

<ScrollViewer ...>
<Grid»>

<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
<ColumnDefinition />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<Button Grid.Column="0">Stretched</Button>
<Button Grid.Column="1">Stretched</Button>
<Button Grid.Column="2">Stretched</Button>
</Grid>
</ScrollViewer>

This example shows a Grid containing three Button elements in a row. If the Grid is
given more space than it requires, it will stretch the buttons to be wider than neces-
sary. If it is given insufficient space, it will crop the buttons. If it is placed inside a
ScrollViewer, it will be possible for the ScrollViewer to provide enough virtual,
scrollable space for it, even if the space on-screen is insufficient.

102 | Chapter3: Layout

Figure 3-40 shows how the Grid in Example 3-36 appears in a ScrollViewer when
there is more than enough space. All four options for HorizontalScrollBarVisibility
are shown, and in all four cases, the buttons have been stretched to fill the space.

Stretched | Stretched | Stretched A Stretched | Stretched | Stretched
Horizonta1ScrollbarVisibility.Visible. HorizontalScrollbarVisibility.Auto
[Stretched | Stretehed | Stretched & | Stretched | Stretehed | Stretched
HorizontalScrollbarVisibility.Hidden ' HorizontalScrollbarVisibility.Disabled

Figure 3-40. HorizontalScrollBarVisibility settings with enough space

Figure 3-41 shows the same four arrangements, but with insufficient horizontal
space. The top two ScrollViewer elements have horizontal scrolling enabled, with
Visible and Auto, respectively. As you would expect, the ScrollViewer has provided
enough space to hold all of the content, and allows the user to scroll the hidden part
into view. At the bottom left, where the horizontal scroll bar is set to Hidden, the lay-
out behavior is the same—it has arranged the elements as though there were enough
space to hold all of them. The only difference is that it has not shown a scroll bar.
(Scrolling will still occur if the user uses keyboard navigation to move the focus into
the hidden area.) At the bottom right, we can see that the behavior resulting from
Disabled is different. Here, not only is a scroll bar not shown, but also horizontal
scrolling is disabled completely. The Grid has therefore been forced to crop the but-
tons to fit into the available space.

StretchedlStretchedlStret 5 Stretched | Stretched | Stret *

- -

o [0 " « | n] »

HorizontalScrollbarVisibility.Visible HorizontalScrollbarVisibility.Auto

.Stretched |Stretched-|- Stret * [Stretc heIStretcheIStretché s

- -

HorizontalScrollbarVisibility.Hidden HorizontalScrollbarVisibility.Disabled

Figure 3-41. HorizontalScrollBarVisibility settings with insufficient space

ScrollViewer | 103

Scrollable Region and IScrollinfo

If you place a panel or any other ordinary element inside a ScrollViewer, the
Scrollviewer will measure its size in the normal way: the scrollable area essentially
sizes to content (unless the available area is surplus to requirements, in which case
the ScrollViewer gives the child all of the available space). It keeps track of the cur-
rently visible region, and moves the child content around as required. Most of the
time, this is exactly the behavior you require. However, occasionally you might need
to take a bit more control.

For example, if you have a large scrollable area containing lots of items, it might not
be very efficient to create all of the items upfront. You might be able to improve per-
formance significantly by creating items on demand only as they scroll into view.
Such tricks require you to get more deeply involved in the scrolling process.

If you want to take control of how scrolling functions, you must write a user inter-
face element that implements IScrollInfo. ScrollViewer looks for this interface on
its child element. If the child implements the interface, the Scrollviewer will no
longer pretend that the child has all the space it requires—instead, it will tell the
child exactly how much space is available on-screen for the viewport, and will defer
to the child for all scrolling operations. In this case, the ScrollViewer’s role is
reduced to showing scroll bars and notifying the child when the user attempts to
scroll.

This is not a step to be taken lightly. IScrollInfo has 24 members, and requires
you to do most of the work that ScrollViewer would otherwise have done for you.”
Fortunately, for the very common scenario of scrolling through a list, we can use
the built-in IScrollInfo implementation provided by VirtualizingStackPanel.
The VirtualizingStackPanel implements IScrollInfo so that it can show scroll
feedback for all of the data, even though it only generates Ul elements to repre-
sent those items currently visible, “virtualizing” the view of the data. You don’t
need to take any special steps to enable virtualization—a data-bound ListBox
automatically displays its items using a VirtualizingStackPanel. You would need
to implement IScrollInfo only if you are not using data binding, or if you need
something other than a simple linear stack of items.

If you customize the appearance of an ItemsControl using the template
techniques described in Chapters 8 and 9, you might end up disabling
virtualization. To avoid this, you should ensure that if you change the
Template or ItemsPanelTemplate property of an ItemsControl, your
replacement template contains a VirtualizingStackPanel.

* For a full example of how to implement IScrollInfo, see a series of three articles on this subject, written by
a Microsoft developer, at http://blogs.msdn.com/bencon/archive/2006/01.aspx (http://tinysells.com/64).

104 | Chapter3: Layout

We have now looked at all of the built-in mechanisms for helping you manage your
application’s layout. But what if you have unusual requirements that are not met by
the built-in panels? Sometimes it is necessary to customize the layout process by writ-
ing your own panel.

Custom Layout

Although WPF supplies a flexible set of layout elements, you might decide that none
of them suits your requirements. Fortunately, the layout system is extensible, and it
is fairly straightforward to implement your own custom panel. To write a panel, you
need to understand how the layout system works.

Layout occurs in two phases: measure and arrange. Your custom panel will first be
asked how much space it would like to have—that’s the measure phase. The panel
should measure each of its children to find out how much space they require, and
use this information to calculate how much space the panel needs in total.

Of course, you can’t always get what you want. If your panel’s measure phase decides
it needs an area twice the size of the screen, it won’t get that unless its parent happens
to be a Scrollviewer. Moreover, even when there is enough space on-screen, your
panel’s parent could still choose not to give it to you. For example, if your custom
panel is nested inside a Grid, the Grid may have been set up with a hardcoded width
for the column your panel occupies, in which case that’s the width you’ll get regard-
less of what you asked for during the measure phase.

It is only in the “arrange” phase that we find out how much space we have. During
this phase, we must decide where to put all of our children as best we can in the
space available.

You might be wondering why the layout system bothers with the mea-
sure phase when the amount of space we get during the arrange phase
may be different. The reason for having both is that most panels try to
take the measured size of their children into account during the
arrange phase. You can think of the measure phase as asking every ele-
ment in the tree what it would like, and the arrange phase as honoring
those measurements where possible, compromising only where physi-
cal or configured constraints come into play.

Let’s create a new panel type to see how the measure and arrange phases work in
practice. We’ll call this new panel DiagonalPanel, and it will arrange elements diago-
nally from the top left of the panel down to the bottom right, as Figure 3-42 shows.
Each element’s top-left corner will be placed where the preceding element’s bottom-
right corner went.

Custom Layout | 105

You don’t really need to write a new panel type to achieve this lay-
\ out—you could get the same effect with a Grid, setting every row and

Wkt column’s size to Auto. However, you could make the same argument
for StackPanel and DockPanel—neither of those does anything that you
couldn’t do with the Grid. It’s just convenient to have a simple single-
purpose panel, as the Grid equivalent is a little more verbose.

(cick mel

Hello, world!
Click me too please!

Figure 3-42. Custom DiagonalPanel in action

To implement this custom layout, we must write a class that derives from Panel, and
that implements the measure and arrange phases. As Example 3-37 shows, we do
this by overriding the MeasureOverride and ArrangeOverride methods.

Example 3-37. Custom DiagonalPanel

using System;
using System.Windows.Controls;
using System.Windows;

namespace CustomPanel {
public class DiagonalPanel : Panel {

protected override Size MeasureOverride(Size availableSize) {
double totalWidth = 0;
double totalHeight = 0;

foreach(UIElement child in Children) {
child.Measure(new Size(double.PositiveInfinity,
double.PositiveInfinity));
Size childSize = child.DesiredSize;
totalWidth += childSize.Width;
totalHeight += childSize.Height;
}

return new Size(totalWidth, totalHeight);
}

protected override Size ArrangeOverride(Size finalSize) {
Point currentPosition = new Point();

foreach(UIElement child in Children) {
Rect childRect = new Rect(currentPosition, child.DesiredSize);
child.Arrange(childRect);
currentPosition.Offset(childRect.Width, childRect.Height);

106 | Chapter3: Layout

Example 3-37. Custom DiagonalPanel (continued)
}

return new Size(currentPosition.X, currentPosition.Y);

}

Notice that the MeasureOverride method is passed a Size parameter. If the parent is
aware of size constraints that will need to be applied during the arrange phase, it
passes them here during the measure phase. For example, if this panel’s parent was a
Window with a specified size, the Window would pass in the size of its client area during
the measure phase. However, not all panels will do this. You may find the available
size is specified as being Double.PositiveInfinity in both dimensions, indicating that
the parent is not informing us of any fixed constraints at this stage. An infinite avail-
able size indicates that we should simply pick whatever size is appropriate for our
content. You must pick a finite size—returning an infinite size from your
MeasureOverride will cause an exception to be thrown.

Some elements ignore the available size, because their size is always determined by
their contents. For example, our panel’s simple layout is driven entirely by the natu-
ral size of its children, so it ignores the available size. Our MeasureOverride simply
loops through all of the children, adding their widths and heights. We pass in an infi-
nite size when calling Measure on each child in order to use its preferred size.

You must call Measure on all of your panel’s children. If your
MeasureOverride fails to measure all of its children, the layout process
may not function correctly. All elements expect to be measured before
they are arranged. Their arrange logic might rely on the results of calcu-
lations performed during the measure phase. When you write a custom
panel, it is your responsibility to ensure that child elements are mea-
sured and arranged at the appropriate times.

In our ArrangeOverride, we loop through all of the child elements, setting them to
their preferred size, basing the position on the bottom-righthand corner of the pre-
ceding element. Because this very simple layout scheme cannot adapt, it ignores the
amount of space it has been given. Any child elements that do not fit will be
cropped, as happens with StackPanel.

This measure and arrange sequence traverses the entire user interface tree—all ele-
ments use this mechanism, not just panels. A custom panel is the most appropriate
place to write custom layout logic for managing the arrangement of controls. How-
ever, there is one other situation in which you might want to override the
MeasureOverride and ArrangeOverride methods. If you are writing a graphical ele-
ment that uses the low-level visual APIs described in Chapter 13, you may want to
override these methods in order for the layout system to work with your element.

Custom Layout | 107

The code will typically be simpler than for a panel, because you will not have child
elements to arrange. Your MeasureOverride will simply need to report how much
space it needs, and ArrangeOverride tells you how much space you have been given.

Where Are We?

WPF provides a wide range of options for layout. Many panel types are available, each
offering its own layout style. You can then compose these into a single application in
any number of ways, supporting many different user interface styles. The top-level
layout will usually be set with either a Grid or a DockPanel. The other panels are typi-
cally used to manage the details. You can use the common layout properties on child
elements to control how they are arranged—these properties work consistently
across all panel types. And if none of the built-in layout mechanisms meets your
requirements, you can write your own custom panel.

108 | Chapter3: Layout

CHAPTER 4
Input

A user interface wouldn’t be much use if it couldn’t respond to user input. In this chap-
ter, we will examine the input handling mechanisms available in WPF. There are three
main kinds of user input for a Windows application: mouse, keyboard, and ink.” Any
user interface element can receive input—not just controls. This is not surprising,
because controls rely entirely on the services of lower-level elements like Rectangle and
TextBlock in order to provide visuals. All of the input mechanisms described in the fol-
lowing sections are, therefore, available on all user interface element types.

Raw user input is delivered to your code through WPF’s routed event mechanism.
There is also a higher-level concept of a command—a particular action that might be
accessible through several different inputs such as keyboard shortcuts, toolbar but-
tons, and menu items.

Routed Events

The .NET Framework defines a standard mechanism for managing events. A class
may expose several events, and each event may have any number of subscribers.
WPF augments this standard mechanism to overcome a limitation: if a normal .NET
event has no registered handlers, it is effectively ignored.

Consider what this would mean for a typical WPF control. Most controls are made
up of multiple visual components. For example, suppose you give a button a very
plain appearance consisting of a single Rectangle, and provide a simple piece of text
as the content. (Chapter 9 describes how to customize a control’s appearance.) Even
with such basic visuals, there are still two elements present: the text and the rectan-
gle. The button should respond to a mouse click whether the mouse is over the text
or the rectangle. In the standard .NET event handling model, this would mean regis-
tering a MouseLeftButtonUp event handler for both elements.

* Ink is input written with a stylus, whether on a Tablet PC or a hand-held device, although the mouse can be
used in a pinch.

109

This problem would get much worse when taking advantage of WPF’s content
model. A Button is not restricted to having plain text as a caption—it can contain any
object as content. The example in Figure 4-1 is not especially ambitious, but even
this has six visible elements: the yellow outlined circle, the two dots for the eyes, the
curve for the mouth, the text, and the button background itself. Attaching event
handlers for every single element would be tedious and inefficient. Fortunately, it’s
not necessary.

©) Click|

Figure 4-1. A button with nested content

WPF uses routed events, which are rather more thorough than normal events. Instead
of just calling handlers attached to the element that raised the event, WPF walks the
tree of user interface elements, calling all handlers for the routed event attached to
any node from the originating element right up to the root of the user interface tree.
This behavior is the defining feature of routed events, and is at the heart of event
handling in WPF.

Example 4-1 shows markup for the button in Figure 4-1. If one of the Ellipse ele-
ments inside the Canvas were to receive input, event routing would enable the Button,
Grid, Canvas, and E1lipse to receive the event, as Figure 4-2 shows.

Example 4-1. Handling events in a user interface tree

<Button PreviewMouseDown="PreviewMouseDownButton"
MouseDown="MouseDownButton">

<Grid PreviewMouseDown="PreviewMouseDownGrid"
MouseDown="MouseDownGrid" >
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

<Canvas PreviewMouseDown="PreviewMouseDownCanvas"
MouseDown="MouseDownCanvas"
Width="20" Height="18" VerticalAlignment="Center">

<Ellipse PreviewMouseDown="PreviewMouseDownEllipse"
MouseDown="MouseDownE1llipse"
x:Name="myEllipse"
Canvas.Left="1" Canvas.Top="1" Width="16" Height="16"
Fill="Yellow" Stroke="Black" />

110 | Chapter4: Input

Example 4-1. Handling events in a user interface tree (continued)

<Ellipse Canvas.left="4.5" Canvas.Top="5" Width="2.5" Height="3"
Fill="Black" />
<Ellipse Canvas.Left="11" Canvas.Top="5" Width="2.5" Height="3"
Fill="Black" />
<Path Data="M 5,10 A 3,3 0 0 0 13,10" Stroke="Black" />
</Canvas>

<TextBlock Grid.Column="1">Click!</TextBlock>
</Grid>
</Button>

Figure 4-2. Routed events

A routed event can either be bubbling, tunneling, or direct. A bubbling event starts by
looking for event handlers attached to the target element that raised the event, and
then looks at its parent and then its parent’s parent, and so on until it reaches the
root of the tree; this order is indicated by the numbers in Figure 4-2. A tunneling
event works in reverse—it looks for handlers at the root of the tree first and works its
way down, finishing with the originating element.

Direct events work like normal .NET events: only handlers attached directly to the
originating element are notified—no real routing occurs. This is typically used for
events that make sense only in the context of their target element. For example, it
would be unhelpful if mouse enter and leave events were bubbled or tunneled—the
parent element is unlikely to care about when the mouse moves from one child ele-
ment to another. At the parent element, you would expect “mouse leave” to mean “the
mouse has left the parent element,” and because direct event routing is used, that’s
exactly what it does mean. If bubbling were used, the event would effectively mean
“the mouse has left an element that is inside the parent, and is now inside another ele-
ment that may or may not be inside the parent,” which would be less useful.

Routed Events | 111

You may be wondering whether there is a meaningful difference
as between a direct routed event and an ordinary CLR event—after all, a
tite direct event isn’t really routed anywhere. The main difference is that
" with a direct routed event, WPF provides the underlying implementa-
tion, whereas if you were to use the normal C# event syntax to declare
an event, the C# compiler would provide the implementation. The
C# compiler would generate a hidden private field to hold the event
handler, meaning that you pay a per-object overhead for each event
whether or not any handlers are attached. With WPF’s event imple-
mentation, event handlers are managed in such a way that you pay an
overhead only for events to which handlers are attached. In a Ul with
thousands of elements each offering tens of events, most of which
don’t have handlers attached, this starts to add up. Also, WPF’s event
implementation offers something not available with ordinary C#
events: attached events, which are described later.

With the exception of direct events, WPF defines most routed events in pairs—one
bubbling and one tunneling. The tunneling event name always begins with Preview
and is raised first. This gives parents of the target element the chance to see the event
before it reaches the child (hence the Preview prefix). The tunneling preview event is
followed directly by a bubbling event. In most cases, you will handle only the bub-
bling event—the preview would usually be used only if you wanted to be able to
block the event, or if you needed a parent to do something in advance of normal
handling of the event.

In Example 4-1, most of the elements have event handlers specified for the
PreviewMouseDown and MouseDown events—the bubbling and tunneling events, respec-
tively. Example 4-2 shows the corresponding code-behind file.

Example 4-2. Handling events

using System;
using System.Windows;
using System.Diagnostics;

namespace EventRouting {
public partial class Windowl : Window {
public Window1() {
InitializeComponent();

}

void PreviewMouseDownButton(object sender, RoutedEventArgs e)
{ Debug.WriteLine("PreviewMouseDownButton"); }

void MouseDownButton(object sender, RoutedEventArgs e)
{ Debug.WriteLine("MouseDownButton"); }

112 | Chapter4: Input

Example 4-2. Handling events (continued)

void PreviewMouseDownGrid(
object sender, RoutedEventArgs e)
{ Debug.WriteLine("PreviewMouseDownGrid"); }

void MouseDownGrid(object sender, RoutedEventArgs e)
{ Debug.WriteLine("MouseDownGrid"); }

void PreviewMouseDownCanvas(object sender, RoutedEventArgs e)
{ Debug.WriteLine("PreviewMouseDownCanvas"); }

void MouseDownCanvas(object sender, RoutedEventArgs e)
{ Debug.WriteLine("MouseDownCanvas"); }

void PreviewMouseDownEllipse(object sender, RoutedEventArgs e)
{ Debug.WritelLine("PreviewMouseDownEllipse"); }

void MouseDownEllipse(object sender, RoutedEventArgs e)
{ Debug.WriteLine("MouseDownEllipse"); }

}

Each handler prints out a debug message. Here is the debug output we get when
clicking on the E1llipse inside the Canvas:

PreviewMouseDownButton

PreviewMouseDownGrid

PreviewMouseDownCanvas

PreviewMouseDownEllipse

MouseDownEllipse

MouseDownCanvas

MouseDownGrid
This confirms that the preview event is raised first. It also shows that it starts from
the Button element and works down, as we would expect with a tunneling event. The
bubbling event that follows starts from the Ellipse element and works up. (Interest-
ingly, it doesn’t appear to get as far as the Button. We’ll look at why this is shortly.)

This bubbling routing offered for most events means that you can register a single
event handler on a control, and it will receive events for any of the elements nested
inside the control. You do not need any special handling to deal with nested con-
tent, or controls whose appearance has been customized with templates—events
simply bubble up to the control and can all be handled there.

Routed Events | 113

Halting Event Routing

There are some situations in which you might not want events to bubble up. For
example, you may wish to convert the event into something else—the Button ele-
ment effectively converts a MouseDown event followed by a MouseUp event into a single
Click event. It suppresses the more primitive mouse button events so that only the Click
event bubbles up out of the control. (This is why the event bubbling stopped at the but-
ton in the previous example.)

Any handler can prevent further processing of a routed event by setting the Handled
property of the RoutedEventArgs, as shown in Example 4-3.

Example 4-3. Halting event routing with Handled

void ButtonDownCanvas(object sender, RoutedEventArgs e) {
Debug.WriteLine("ButtonDownCanvas");
e.Handled = true;

}

If you set the Handled flag in a Preview handler, not only will the tunneling of the
Preview event stop, but also the corresponding bubbling event that would normally
follow will not be raised at all. This provides a way of stopping the normal handling
of an event.

Determining the Target

Although it is convenient to be able to handle events from a group of elements in a
single place, your handler might need to know which element caused the event to be
raised. You might think that this is the purpose of the sender parameter of your
handler. In fact, the sender always refers to the object to which you attached the
event handler. In the case of bubbled and tunneled events, this often isn’t the ele-
ment that caused the event to be raised. In Example 4-1, the MouseDownGrid handler’s
sender will always be the Grid itself, regardless of which element in the grid was
clicked.

Fortunately, it’s easy to find out which element was the underlying cause of the
event. The handler has a RoutedEventArgs parameter, which offers a Source property
for this purpose. This is particularly useful if you need to handle events from several
different sources in the same way. For example, suppose you create a window that
contains a number of graphical elements, and you’d like each to change shape when
clicked. Instead of attaching a MouseDown event handler to each individual shape, you
could attach a single handler to the window. All the events would bubble up from
any shape to this single handler, and you could use the Source property to work out
which shape you need to change. (Shapes are discussed in Chapter 13. Example 13-5
uses exactly this trick.)

114 | Chapter4: Input

Routed Events and Normal Events

Normal .NET events (or, as they are often called, CLR events) offer one advantage over
routed events: many .NET languages have built-in support for handling CLR events.
Because of this, WPF provides wrappers for routed events, making them look just like
normal CLR events.” This provides the best of both worlds: you can use your favorite
language’s event handling syntax while taking advantage of the extra functionality
offered by routed events.

v
NN

This is possible thanks to the flexible design of the CLR event mecha-
nism. Though a standard simple behavior is associated with CLR events,
* % CLR designers had the foresight to realize that some applications would
" require more sophisticated behavior. Classes are therefore free to imple-
ment events however they like. WPF reaps the benefits of this design by
defining CLR events that are implemented internally as routed events.

Examples 4-1 and 4-2 arranged for the event handlers to be connected by using
attributes in the markup. But we could have used the normal C# event handling syn-
tax to attach handlers in the constructor instead. For example, you could remove the
MouseDown and PreviewMouseDown attributes from the Ellipse in Example 4-1, and
then modify the constructor from Example 4-2, as shown here in Example 4-4.

Example 4-4. Attaching event handlers in code

public Window1() {
InitializeComponent();

myEllipse.MouseDown += MouseDownEllipse;
myEllipse.PreviewMouseDown += PreviewMouseDownEllipse;

When you use these CLR event wrappers, WPF uses the routed event system on your
behalf. The code in Example 4-5 is equivalent to that in Example 4-4.

Example 4-5. Attaching event handlers the long-winded way

public Window1() {
InitializeComponent();

myEllipse.AddHandler (E1lipse.MouseDownEvent,

new MouseButtonEventHandler(MouseDownEllipse));
myEllipse.AddHandler(Ellipse.PreviewMouseDownEvent,

new MouseButtonEventHandler(PreviewMouseDownEllipse));

* If you write custom elements, you should do the same. Chapter 18 describes how to do this.

Routed Events | 115

Example 4-5 is more verbose and offers no benefit—we show it here only so that you
can see what’s going on under the covers. The style shown in Example 4-4 is preferred.

The code behind is usually the best place to attach event handlers. If your user inter-
face has unusual and creative visuals, there’s a good chance that the XAML file will
effectively be owned by a graphic designer. A designer shouldn’t have to know what
events a developer needs to handle, or what the handler functions are called. Ideally,
the designer will give elements names in the XAML and the developer will attach

handlers in the code behind.

Attached Events

It is possible to define an attached event. This is the routed-event equivalent of an
attached property: an event defined by a different class than the one from which the
event will be raised. This keeps the input system open to extension. If a new kind of
input device is invented, it could define new events as attached events, enabling them
to be raised from any Ul element.

In fact, the WPF input system already works this way. The mouse, stylus, and key-
board events examined in this chapter are just wrappers for underlying attached
events defined by the Mouse, Keyboard, and Stylus classes in the System.Windows. Input
namespace. This means we could change the Crid element in Example 4-1 to use the
attached events defined by the Mouse class, as shown in Example 4-6.

Example 4-6. Attached event handling

<Grid Mouse.PreviewMouseDown="PreviewMouseDownGrid"
Mouse.MouseDown="MouseDownGrid">

This would have no effect on the behavior, because the names Example 4-1 used for
these events are aliases for the attached events used in this example.

Handling attached events from code looks a little different. Normal CLR events
don’t support this notion of attached events, so we can’t use the ordinary C# event
syntax like we did in Example 4-4. Instead, we have to call the AddHandler method,
passing in the RoutedEvent object representing the attached event (see Example 4-7).

Example 4-7. Explicit attached event handling

myE1llipse.AddHandler (Mouse.PreviewMouseDownEvent,

new MouseButtonEventHandler (PreviewMouseDownEllipse));
myEllipse.AddHandler (Mouse.MouseDownEvent,

new MouseButtonEventHandler(MouseDownEllipse));

Alternatively, we can use the helper functions provided by the Mouse class.
Example 4-8 uses this to perform exactly the same job as the preceding two examples.

116 | Chapter4: Input

Example 4-8. Attached event handling with helper function

Mouse.AddPreviewMouseDownHandler (myEllipse, PreviewMouseDownEllipse);
Mouse.AddMouseDownHandler (myEllipse, MouseDownEllipse);

Example 4-8 is more compact than Example 4-7 because we were able to omit the
explicit construction of the delegate, relying instead on C# delegate type inference.
Example 4-7 cannot do this because AddHandler can attach a handler for any kind of
event, so in its function signature the second parameter is of the base Delegate type.
By convention, classes that define attached events usually provide corresponding
helper methods like these to let you use this slightly neater style of code.

Mouse Input

Mouse input is directed to whichever element is directly under the mouse cursor. All
user interface elements derive from the UIElement base class, which defines a number
of mouse input events. These are listed in Table 4-1.

Table 4-1. Mouse input events

Event Routing Meaning

GotMouseCapture Bubble Element captured the mouse.

LostMouseCapture Bubble Element lost mouse capture.

MouseEnter Direct Mouse pointer moved into element.

Mouseleave Direct Mouse pointer moved out of element.

PreviewMouseleftButtonDown, Tunnel, Bubble Left mouse button pressed while pointer inside element.

MouselLeftButtonDown

PreviewMouseleftButtonUp, Tunnel, Bubble Left mouse button released while pointer inside element.

MouseLeftButtonUp

PreviewMouseRightButtonDown, Tunnel, Bubble Right mouse button pressed while pointer inside element.

MouseRightButtonDown

PreviewMouseRightButtonUp, Tunnel, Bubble Right mouse button released while pointer inside element.

MouseRightButtonUp

PreviewMouseDown, Tunnel, Bubble Mouse button pressed while pointer inside element

MouseDown (raised for any mouse button).

PreviewMouseUp, Tunnel, Bubble Mouse button released while pointer inside element

MouseUp (raised for any mouse button).

PreviewMouseMove, Tunnel, Bubble Mouse pointer moved while pointer inside element.

MouseMove

PreviewMouseWheel, Tunnel, Bubble Mouse wheel moved while pointer inside element.

Mouselheel

QueryCursor Bubble Mouse cursor shape to be determined while pointer
inside element.

Mouse Input | 117

In addition to the mouse-related events, UIElement also defines a pair of properties
that indicate whether the mouse pointer is currently over the element: IsMouseOver
and IsMouseDirectlyOver. The distinction between these two properties is that the
former will be true if the cursor is over the element in question or over any of its
child elements, but the latter will be true only if the cursor is over the element in
question but not one of its children.

Note that the basic set of mouse events shown in Table 4-1 does not include a Click
event. This is because clicks are a higher-level concept than basic mouse input—a
button can be “clicked” with the mouse, the stylus, the keyboard, or through the
Windows accessibility API. Moreover, clicking doesn’t necessarily correspond directly
to a single mouse event—usually, the user has to press and release the mouse button
while the mouse is over the control to register as a click. Accordingly, these higher-
level events are provided by more specialized element types. The Control class adds a
PreviewMouseDoubleClick and MouseDoubleClick event pair. Likewise, ButtonBase—the
base class of Button, CheckBox, and RadioButton—goes on to add a Click event.

Mouse Input and Hit Testing

WPF always takes the shapes of your elements into account when handling mouse
input. Many graphical systems just use the rectangular bounding box of elements to
perform hit testing (i.e., testing to see which element the mouse input “hit”). WPF does
not employ this shortcut, no matter what shapes your elements may be. For example, if
you create a donut-shaped control and click on the hole in the middle, the click will be
delivered to whatever was visible behind your control through the hole.

Occasionally it is useful to subvert the standard hit testing behavior. You might wish
to create a donut-shaped control with a visible hole, but which doesn’t let clicks pass
through it. Alternatively, you might want to create an element that is visible to the
user, but transparent to the mouse. WPF lets you do both of these things.

To achieve the first trick—transparent to the eye but opaque to the mouse—you can
paint an object with a transparent brush. For example, an E1lipse with its Fill set to
Transparent will be invisible to the eye, but not to the mouse. Alternatively, you can
use a nontransparent brush, but make the whole element transparent by setting its
Opacity property to 0. If a donut-shaped control paints such an ellipse over the hole,
this enables it to receive any clicks on the hole. As far as the mouse is concerned, an
element is a valid mouse target as long as it is painted with some kind of brush. The
mouse doesn’t even look at the level of transparency on the brush, so it treats a com-
pletely transparent brush in exactly the same way as a completely opaque brush.

N
< If you want a shape with a transparent fill that does not receive mouse
!.s’.\ input, simply supply no Fill at all. For example, you might want the
T %k shape to have an outline but no fill. If the Fill is null, as opposed to

being a completely transparent brush, the shape will not act as an
input target.

118 | Chapter4: Input

WPF supports the second trick—creating a visible object that is transparent to the
mouse—with the IsHitTestVisible property, which can be applied to any element.
Setting this to false ensures that the element will not receive mouse input; instead,
input will be delivered to whatever is under the element. For example, suppose you
had written code to make some sort of graphical embellishment follow the mouse
around, such as a semi-transparent ellipse to act as a halo for the pointer. Setting
IsHitTestVisible to false would ensure that this visual effect had no impact on the
interactive behavior.
A w
If you are using 3D (as described in Chapter 17), hit testing can be an

.‘s expensive process. If you don’t require hit testing for your 3D content,
.0 @ e . .
1}3; making it invisible to hit testing can offer a useful performance boost.

Mouse State

As well as defining events, the Mouse class defines some static properties and meth-
ods that you can use to discover information about the mouse or modify its state.

The GetPosition method lets you discover the position of the mouse. As Example 4-9
shows, you must pass in a user interface element. It will return the mouse position
relative to the specified element, taking into account any transformations that may
be in effect.

Example 4-9. Retrieving the mouse position

Point positionRelativeToEllipse = Mouse.GetPosition(myEllipse);

The Capture method allows an element to capture the mouse. Mouse capture means
that all mouse input events are sent to the capturing element, even if the mouse is cur-
rently outside of that element.” Example 4-10 captures the mouse to an ellipse when a
mouse button is pressed, enabling it to track the movement of the mouse even if it
moves outside of the ellipse. In fact, it will continue to receive MouseMove events even if
the mouse moves outside of the window. This is useful for drag operations, as the
user will expect an item being dragged to follow the mouse for as long as the mouse
button is pressed. The capture is released by passing null to the Capture method.

Example 4-10. Mouse capture
public Window1() {
InitializeComponent();

myEllipse.MouseDown += myEllipse_MouseDown;
myEllipse.MouseMove += myEllipse MouseMove;
myEllipse.MouseUp += myEllipse MouseUp;

* Capturing the mouse does not constrain its movement. It merely controls where mouse events are delivered.

Mouse Input | 119

Example 4-10. Mouse capture (continued)

void myEllipse MouseDown(object sender, MouseButtonEventArgs e) {
Mouse.Capture(myEllipse);
}

void myEllipse MouseUp(object sender, MouseButtonEventArgs e) {
Mouse.Capture(null);
}

void myEllipse MouseMove(object sender, MouseEventArgs e) {
Debug.WriteLine(Mouse.GetPosition(myEllipse));
}

The Mouse class provides a Captured property that returns the element that has cur-
rently captured the mouse; it returns null if the mouse is not captured. You can also
discover which element in your application, if any, the mouse is currently over, by
using the static Mouse.DirectlyOver property.

Mouse provides five properties that reflect the current button state. Each returns a
MouseButtonState enumeration value, which can be either Pressed or Released. Three of
these properties—LeftButton, MiddleButton, and RightButton—are self-explanatory.
The other two—XButton1 and XButton2—are perhaps less obvious. These are for the
extra buttons provided on some mice, typically found on the side. The locations of
these so-called extended buttons are not wholly consistent—one of the authors’ mice
has these two buttons on the lefthand side, and another has one on each side. This
explains the somewhat abstract property names.

Mouse also provides an OverrideCursor property that lets you set a mouse cursor to be
shown throughout your whole application, as shown in Example 4-11. This over-
rides any element-specific mouse cursor settings. You could use this to temporarily
show an hourglass cursor when performing some slow work.

Example 4-11. Temporary mouse cursor override

private void StartSlowWork() {
Mouse.OverrideCursor = Cursors.AppStarting;

}

private void SlowWorkCompleted() {
Mouse.OverrideCursor = null;

}

Keyboard Input

The target for mouse input is always the element currently under the mouse, or the
element that has currently captured the mouse. This doesn’t work so well for key-
board input—the user cannot move the keyboard, and it would be inconvenient to
need to keep the mouse directly over a text field while typing. Windows therefore

120 | Chapter4: Input

uses a different mechanism for directing keyboard input. At any given moment, a
particular element is designated as having the focus, meaning that it acts as the target
for keyboard input. The user sets the focus by clicking the control in question with
the mouse or stylus, or by using navigation keys such as the Tab and arrow keys.
N

The UIElement base class defines an IsFocused property, so in princi-
.'s\ . ple, any user interface element can receive the focus. However, the

*_ajs; Focusable property determines whether this feature is enabled on any

particular element. By default, this is true for controls, and false for
other elements.

Table 4-2 shows the keyboard input events offered by user interface elements. Most
of these items use tunnel and bubble routing for the preview and main events,
respectively.

Table 4-2. Keyboard input events

Event Routing Meaning
PreviewGotKeyboardFocus, Tunnel, Bubble Element received the keyboard focus.
GotKeyboardFocus

PreviewlLostKeyboardFocus, Tunnel, Bubble Element lost the keyboard focus.
LostKeyboardFocus

GotFocus Bubble Element received the logical focus.
LostFocus Bubble Element lost the logical focus.
PreviewKeyDown, Tunnel, Bubble Key pressed.

KeyDown

PreviewKeyUp, Tunnel, Bubble Key released.

KeyUp

PreviewTextInput, Tunnel, Bubble Element received text input.
TextInput

Strictly speaking, the TextInput event is not caused exclusively by keyboard input. It
represents textual input in a device-independent way, so this event can also be raised
as a result of ink input from a stylus.

As Table 4-2 shows, WPF makes a distinction between logical focus and keyboard
focus. Only one element can have the keyboard focus at any given instant. Often, the
focus will not even be in your application—the user may switch to another applica-
tion. However, applications typically remember where the focus was so that if the
user switches back, the focus returns to the same place as before. WPF defines the
logical focus concept to keep track of this: when an application loses the keyboard
focus, the last element that had the keyboard focus retains the logical focus. When
the application regains the keyboard focus, WPF ensures that the focus is put back
into the element with the logical focus.

Keyboard Input | 121

Keyboard State

The Keyboard class provides a static property called Modifiers. You can read this at
any time to find out which modifier keys, such as the Alt, Shift, and Ctrl keys, are
pressed. Example 4-12 shows how you might use this in code that needs to decide
whether to copy or move an item according to whether the Ctrl key is pressed.

Example 4-12. Reading keyboard modifiers

if (Keyboard.Modifiers & ModifierKeys.Control) != 0) {
isCopy = true;
}

Keyboard also provides the IsKeyDown and IskeyUp methods, which let you query the
state of any individual key, as shown in Example 4-13.

Example 4-13. Reading individual key state
bool homeKeyPressed = Keyboard.IsKeyDown(Key.Home);

You can also discover which element has the keyboard focus, using the static
FocusedElement property, or set the focus into a particular element by calling the
Focus method.

R
s

The state information returned by Keyboard does not represent the cur-
rent state. It represents a snapshot of the state for the event currently
being processed. This means that if for some reason, your application
gets bogged down and gets slightly behind in processing messages, the
keyboard state will remain consistent.

As an example of why this is important, consider a drag operation
where the Ctrl key determines whether the operation is a move or a
copy. To behave correctly, your mouse up handler needs to know the
state the Ctrl key had when the mouse button was released, rather than
the state that it’s in now. If the user releases the Ctrl key after letting go
of the mouse button, but before your application has processed the
mouse up event, the user will expect a copy operation to be per-
formed, and he will be unhappy if the application performs a move
simply because your code couldn’t keep up. By returning a snapshot of
the keyboard state rather than its immediate state, the Keyboard class
saves you from this problem.

Ink Input

The stylus used on Tablet PCs and other ink-enabled systems has its own set of
events. Table 4-3 shows the ink input events offered by user interface elements.

122 | Chapter4: Input

Table 4-3. Stylus and ink events

Event

GotStylusCapture
LostStylusCapture
PreviewStylusButtonDown,
StylusButtonDown
PreviewStylusButtonUp,
StylusButtonUp
PreviewStylusDown,
StylusDown
PreviewStylusUp,
StylusUp

StylusEnter

StyluslLeave
PreviewStylusInRange,
StylusInRange
PreviewStylusOutOfRange
StylusOutOfRange
PreviewStylusMove
StylusMove
PreviewStylusInAirMove
StylusInAirMove
PreviewStylusSystemGesture
StylusSystemGesture
PreviewTextInput
TextInput

Routing
Bubble

Bubble
Tunnel, Bubble
Tunnel, Bubble
Tunnel, Bubble
Tunnel, Bubble
Direct

Direct

Tunnel, Bubble
Tunnel, Bubble
Tunnel, Bubble
Tunnel, Bubble

Tunnel, Bubble

Tunnel, Bubble

Meaning
Element captured stylus.

Element lost stylus capture.

Stylus button pressed while over element.

Stylus button released while over element.

Stylus touched screen while over element.

Stylus left screen while over element.

Stylus moved into element.

Stylus left element.

Stylus moved close enough to screen to be detected.

Stylus moved out of detection range.

Stylus moved while over element.

Stylus moved while over element but not in contact with

screen.

Stylus performed a gesture.

Element received text input.

The Stylus class provides a static Capture method that works exactly the same as the
Mouse.Capture method described earlier. It also offers Captured and DirectlyOver
properties that do the same for the stylus as the matching properties of the Mouse

class do for the mouse.

There is an alternative way of dealing with stylus input. Instead of handling all of
these low-level events yourself, you can use WPF’s high-level ink handling element,
InkCanvas. Example 4-14 shows how little is required to add an ink input area to a

WPF application.

Example 4-14. InkCanvas

<InkCanvas />

Ink Input

123

The InkCanvas accepts free-form ink input. Figure 4-3 shows the InkCanvas in action.
(It also demonstrates that I should probably stick to using the keyboard.) InkCanvas
makes all of the ink input available to your program through its Strokes property. It
is possible to connect this data to the handwriting recognition APIs in Windows, but
that is beyond the scope of this book.

Figure 4-3. InkCanvas

Commands

The input events we’ve examined give us a detailed view of user input directed at
individual elements. However, it is often helpful to focus on what the user wants our
application to do, rather than how she asked us to do it. WPF supports this through
the command abstraction—a command is an action the application performs at the
user’s request.

The way in which a command is invoked isn’t usually important. Whether the user
presses Ctrl-C, selects the Edit -+ Copy menu item, or clicks the Copy button on the
toolbar, the application’s response should be the same in each case: it should copy
the current selection to the clipboard. The event system we examined earlier in this
chapter regards these three types of input as being unrelated, but WPF’s command
system lets you treat them as different expressions of the same command.

The command system lets a Ul element provide a single handler for a command,
reducing clutter and improving the clarity of your code. It enables a more declarative
style for Ul elements; by associating a MenuItem or Button with a particular com-
mand, you are making a clearer statement of the intended behavior than you would
by wiring up Click event handlers. Example 4-15 illustrates how commands can sim-
plify things.

Example 4-15. Commands with a menu and text box

<DockPanel>
<Menu DockPanel.Dock="Top">
<MenuItem Header=" Edit">

124 | Chapter4: Input

Example 4-15. Commands with a menu and text box (continued)

<MenuItem Header="Cu_t" Command="ApplicationCommands.Cut" />
<MenuItem Header=" Copy" Command="ApplicationCommands.Copy" />
<MenuItem Header="_Paste" Command="ApplicationCommands.Paste" />
</MenuItem>
</Menu>
<ToolBarTray DockPanel.Dock="Top">
<ToolBar>
<Button Command="Cut" Content="Cut" />
<Button Command="Copy" Content="Copy" />
<Button Command="Paste" Content="Paste" />
</ToolBar>
</ToolBarTray>

<TextBox />
</DockPanel>

Each menu item is associated with a command. This is all that’s required to invoke
these clipboard operations on the text box; we don’t need any code or event handlers
because the TextBox class has built-in handling for these commands. More subtly, key-
board shortcuts also work in this example: the built-in cut, copy, and paste commands
are automatically associated with their standard keyboard shortcuts, so these work
wherever you use a text box. WPF’s command system ensures that when commands are
invoked, they are delivered to the appropriate target, which in this case is the text box.

You are not obliged to use commands. You may already have classes
to represent this idea in your own frameworks, and if WPF’s com-
4* mand abstraction does not suit your needs, you can just handle the
" routed events offered by menu items, buttons, and toolbars instead.
But for most applications, commands simplify the way your applica-
tion deals with user input.

There are five concepts at the heart of the command system:

Command object
An object identifying a particular command, such as copy or paste
Input binding
An association between a particular input (e.g., Ctrl-C) and a command (e.g.,
Copy)
Command source
The object that invoked the command, such as a Button, or an input binding

Command target
The UI element that will be asked to execute the command—typically the con-
trol that had the keyboard focus when the command was invoked

Command binding
A declaration that a particular Ul element knows how to handle a particular
command

Commands | 125

Not all of these features are explicitly visible in Example 4-15—the command bind-
ings are buried inside the text box’s implementation, and although input bindings
are in use (Ctrl-C will work just fine, for example), they’ve been set up implicitly by
WPF. To make it a bit easier to see all of the pieces, let’s look at a slightly more com-
plex example that uses all five concepts explicitly (see Example 4-16).

Example 4-16. Basic command handling

<l-- XAML -->
<Window ...>
<Grid»>
<Button Command="ApplicationCommands.Properties"
Content="_Properties"/>
</Grid>
</Window>

// Codebehind
public partial class Windowl : Window {

public Window1() {
InitializeComponent();

InputBinding ib = new InputBinding(
ApplicationCommands.Properties,
new KeyGesture(Key.Enter, ModifierKeys.Alt));
this.InputBindings.Add(ib);

CommandBinding cb = new CommandBinding(ApplicationCommands.Properties);
cb.Executed += new ExecutedRoutedEventHandler(cb_Executed);
this.CommandBindings.Add(cb);

}

void cb_Executed(object sender, ExecutedRoutedEventArgs e) {
MessageBox. Show("Properties");

}
}

This example uses the standard ApplicationCommands.Properties command object.
Applications that support this command would typically open a property panel or
window for the selected item. The XAML in this example associates a button with
this command object; clicking the button will invoke the command. The code
behind establishes an input binding so that the Alt-Enter shortcut may also be used to
invoke the command. Our example, therefore, has two potential command sources:
the button and the input binding. The command target in this particular example will
be the button; this is true even if the command is invoked with a keyboard shortcut,
because the button is the only element in the window capable of having the key-
board focus. However, the button doesn’t know how to handle this command, so it

126 | Chapter4: Input

will bubble up to the window, much like an input event. The window does know
how to handle the command; it has declared this by creating a command binding
with a handler attached to the binding’s Executed event. This handler will be called
when the user invokes the command.

Now that we’ve seen all five features in use, we’ll examine each one in more detail.

Command Objects

A command object identifies a particular command. It does not know how to
handle a command—as we’ve seen, that’s the job of a command binding. Com-
mand objects are typically made available through static properties, such as
ApplicationCommands.Properties.

There are several places from which you can get hold of a command object. Some
controls define commands. For example, the ScrollBar control defines one for each
of its actions, and makes these available in static fields, such as LineUpCommand and
PageDownCommand. However, most commands are not unique to a particular control.
Some correspond to application-level actions such as “new file” or “open.” Others
represent actions that could be implemented by several different controls. For exam-
ple, TextBox and RichTextBox can both handle clipboard operations.

WPF provides a set of classes that define standard commands. These classes are
shown in Table 4-4. This means you don’t need to create your own command
objects to represent the most common operations. Moreover, built-in controls
understand many of these commands.

Table 4-4. Standard command classes

Class Command types

ApplicationCommands Commands common to almost all applications. Includes clipboard commands, undo and
redo, and document-level operations (open, close, print, etc.).

ComponentCommands Operations for moving through information, such as scroll up and down, move to end, and
text selection.

EditingCommands Text editing commands such as bold, italic, center, and justify.

MediaCommands Media-playing operations such as transport (play, pause, etc.), volume control, and track
selection.

NavigationCommands Browser-like navigation commands such as Back, Forward, and Refresh.

Although the standard commands cover a lot of the common features found in many
applications, applications usually have functionality of their own not addressed by
the standard commands. You can use the command system for application-specific
actions by defining custom commands.

Commands | 127

Defining commands

Example 4-17 shows how to define a custom command. WPF uses object instances
to establish the identity of commands—if you were to create a second command of
the same name, it would not be treated as the same command. Because commands
are identified by their command objects rather than their names, commands are usu-
ally put in public static fields or properties.

Example 4-17. Creating a custom command

using System.Windows.Input;
namespace MyNamespace {

public class MyAppCommands {
public static RoutedUICommand AddToBasketCommand;

static MyAppCommands() {
InputGestureCollection addToBasketInputs =
new InputGestureCollection();

addToBasketInputs.Add(new KeyGesture(

Key.B, ModifierKeys.Control|ModifierKeys.Shift));
AddToBasketCommand = new RoutedUICommand(

"Add to Basket", "AddToBasket",

typeof(MyAppCommands), addToBasketInputs);

}

The first RoutedUICommand constructor parameter is the name as it should appear in
the user interface. In a localizable application, you would use a mechanism such as
the .NET class library’s ResourceManager to retrieve a localized string rather than
hardcoding it. The second constructor parameter is the internal name of the com-
mand as used from code—this should match the name of the field in which the
command is stored, with the command suffix removed.

As with the built-in commands, your application command doesn’t do anything on
its own. It’s just an identifier. You will need to supply command bindings to imple-
ment the functionality. You will also typically want to associate the command with
menu items or buttons.

Using commands in XAML
Example 4-18 shows a Button associated with the standard Copy command.

Example 4-18. Invoking a command with a Button

<Button Command="Copy">Copy</Button>

Because this example uses a standard command from the ApplicationCommands class,
we can use this short form syntax, specifying nothing but the command name.

128 | Chapter4: Input

However, for commands not defined by the classes in Table 4-4, a little more infor-
mation is required. The full syntax for a command attribute in XAML is:

[[xmINamespacePrefix:]ClassName.]EventName

If only the event name is present, the event is presumed to be one of the standard
ones. For example, Undo is shorthand for ApplicationCommands.Undo. Otherwise, you
must also supply a class name and possibly a namespace prefix. The namespace pre-
fix is required if you are using either custom commands, or commands defined by
some third-party component. This is used in conjunction with a suitable XML
namespace declaration to make external types available in a XAML file. (See
Appendix A for more information on clr-namespace XML namespaces.)

Example 4-19 shows the use of the command-name syntax with all the parts present.
The value of m:MyAppCommands . AddToBasketCommand means that the command in ques-
tion is defined in the MyNamespace.MyAppCommands class in the MyLib component, and is
stored in a field called AddToBasketCommand.

Example 4-19. Using a custom command in XAML

<Window xmlns:m="clr-namespace:MyNamespace;assembly=MyLib" ...>

<Button Command="m:MyAppCommands.AddToBasketCommand">Add to Basket</Button>

Because commands represent the actions performed at the user’s request, it’s likely
that some commands will be invoked very frequently. It is helpful to provide key-
board shortcuts for these commands in order to streamline your application for
expert users. For this, we turn to input bindings.

Input Bindings

An input binding associates a particular form of input gesture, such as a keyboard
shortcut, with a command. Two input gesture types are currently supported: a
MouseGesture is a particular mouse input such as a Shift-left-click, or a right-double-
click; a KeyGesture, as used in Example 4-16, is a particular keyboard shortcut. Many
of the built-in commands are associated with standard gestures. For example,
ApplicationCommands.Copy is associated with the standard keyboard shortcut for
copying (Ctrl-C in most locales).

Although a command can be associated with a set of gestures when it is created, as
Example 4-17 showed, you may wish to assign additional shortcuts for the com-
mand in the context of a particular window or element. To allow this, user interface
elements have an InputBindings property. This collection contains InputBinding
objects that associate input gestures with commands. These augment the default ges-
tures associated with the command. Example 4-16 illustrated this technique—it
bound the Alt-Enter shortcut to the built-in Properties command.

Commands | 129

Occasionally, it can be useful to disable the default input bindings. A
common reason for doing this is that a particular application may have
a history of using certain nonstandard keyboard shortcuts, and you
wish to continue this to avoid disorienting users. For example, email
software has traditionally used Ctrl-F to mean “Forward,” even though
this is more commonly associated with “Find” in other applications.

In most cases, you can just add a new input binding to your window, and
that will override the existing binding. But what if you simply want to
disassociate a particular shortcut from any command? You can do this by
binding it to the special ApplicationCommands.NotACommand object. Estab-
lishing an input binding to this pseudocommand effectively disables the
binding.

Command Source

The command source is the object that was used to invoke the command. It might be
a user interface element, such as a button, hyperlink, or menu item. But it can also be
an input gesture. Command sources all implement the ICommandSource interface, as
shown in Example 4-20.

Example 4-20. ICommandSource

public interface ICommandSource {
ICommand Command { get; }
object CommandParameter { get; }
IInputElement CommandTarget { get; }

}

If you set the Command property to a command object, the source will invoke this com-
mand when clicked, or in the case of an input gesture, when the user performs the
relevant gesture.

The CommandParameter property allows us to pass information to a command when it
is invoked. For example, we could tell our hypothetical AddToBasket command what
we would like to add to the basket, as shown in Example 4-21.

Example 4-21. Passing a command parameter

<MenuItem Command="m:MyAppCommands.AddToBasketCommand"
CommandParameter="productId4823"
Header="Add to basket" />

The command handler can retrieve the parameter from the Parameter property of the
ExecutedRoutedEventArgs, as Example 4-22 shows. (This example is a command
handler for our hypothetical AddToBasketCommand. The handler would be attached
with a command binding as was shown in Example 4-16.)

130 | Chapter4: Input

Example 4-22. Retrieving a command parameter

void AddToBasketHandler(object sender, ExecutedRoutedEventArgs e) {
string productId = (string) e.Parameter;

}

Command parameters are slightly less useful if you plan to associate commands with
keyboard shortcuts. Input bindings are command sources, so they also offer a
CommandParameter property, but Example 4-23 shows the problem with this.

Example 4-23. Associating a command parameter with a shortcut

public Window1() {
InitializeComponent();

KeyBinding kb = new KeyBinding(MyAppCommands.AddToBasketCommand, Key.B,
ModifierKeys.Shift|ModifierKeys.Control);

kb.CommandParameter = "productId4299";

this.InputBindings.Add(kb);

}

This adds an input binding, associating the Ctrl-Shift-B shortcut with our
AddToBasketCommand. The CommandParameter property of the binding will be passed to the
command handler just as it is when the input source is a button or menu item. But of
course, it will pass the same parameter every time, which limits the utility—you might
just as well hardcode the value into the command handler. So in practice, you would
normally use command parameters only for commands without a keyboard shortcut.

If you were building a real application with shopping-basket functionality, it would
probably make more sense to use data binding rather than command parameters. If
you arrange for the control that invokes the command to have its data context set to
the data you require, the command handler can retrieve the DataContext of the com-
mand target, as Example 4-24 shows.

Example 4-24. Commands and data

void AddToBasketHandler(object sender, ExecutedRoutedEventArgs e) {
FrameworkElement source = (FrameworkElement) e.Source;
ProductInfo product = (ProductInfo) source.DataContext;

}

This technique has the benefit of working even when a keyboard shortcut is used.
Chapter 6 explains data contexts.

The ICommandSource interface also offers a CommandTarget property. Although the inter-
face defines this as a read-only property, all of the classes that implement this interface
in WPF add a setter, enabling you to set the target explicitly. If you don’t set this,

Commands | 131

the command target will typically be the element with the input focus (although, as
we’ll see later, there are some subtle exceptions). CommandTarget lets you ensure that
a particular command source directs the command to a specific target, regardless of
where the input focus may be. As an example of where you might use this, consider
an application that uses a RichTextBox as part of a data template (introduced in
Chapter 1)—you might use this to allow the user to add annotations to data items in
a list. If you provided a set of buttons right next to the RichTextBox to invoke com-
mands such as ToggleBold or ToggleItalic, you would want these to be applicable
only to the RichTextBox they are next to. It would be confusing to the user if she
clicked on one of these while the focus happened to be elsewhere in her application.
By specifying a command target, you ensure that the command only ever goes where
it is meant to go.

Command Bindings

For a command to be of any use, something must respond when it is invoked. Some
controls automatically handle certain commands—the TextBox and RichTextBox han-
dle the copy and paste commands for us, for example. But what if we want to pro-
vide our own logic to handle a particular command?

Command handling is slightly more involved than simply attaching a CLR event
handler to a Ul element. The classes in Table 4-4 define 144 commands, so if
FrameworkElement defined CLR events for each distinct command, that would require
288 events once you include previews. Besides being unwieldy, this wouldn’t even be
a complete solution—many applications define their own custom commands as well
as using standard ones.

The obvious alternative would be for the command object itself to raise events. How-
ever, each command is a singleton—there is only one ApplicationCommands.Copy
object, for example. If you were able to add a handler to a command object directly,
that handler would run anytime the command was invoked anywhere in your appli-
cation. What if you want to handle the command only if it is executed in a particular
window or within a particular element?

The CommandBinding class solves these problems. A CommandBinding object associates a
specific command object with a handler function in the scope of a particular user
interface element. This CommandBinding class offers PreviewExecuted and Executed
events, which are raised as the command tunnels and bubbles through the UL

Command bindings are held in the CommandBindings collection property defined by
UIElement. Example 4-25 shows how to handle the ApplicationCommands.New com-
mand in the code behind for a window.

132 | Chapter4: Input

Example 4-25. Handling a command

public partial class Windowl : Window {
public Window1() {
InitializeComponent();

CommandBinding cmdBindingNew = new CommandBinding(ApplicationCommands.New);
cmdBindingNew.Executed += NewCommandHandler;
CommandBindings .Add(cmdBindingNew);

}

void NewCommandHandler(object sender, ExecutedRoutedEventArgs e) {
if (unsavedChanges) {
MessageBoxResult result = MessageBox.Show(this,
"Save changes to existing document?", "New",
MessageBoxButton.YesNoCancel);

if (result == MessageBoxResult.Cancel) {
return;
}
if (result == MessageBoxResult.Yes) {
SaveChanges();
}
}

// Reset text box contents
inputBox.Clear();

Enabling and disabling commands

As well as supporting execution of commands, CommandBinding objects can be used to
determine whether a particular command is currently enabled. The binding raises a
PreviewCanExecute and CanExecute pair of events, which tunnel and bubble in the
same way as the PreviewExecuted and Executed events. Example 4-26 shows how to
handle this event for the system-defined Redo command.

Example 4-26. Handling QueryEnabled

public Window1() {
InitializeComponent();

CommandBinding redoCommandBinding =

new CommandBinding(ApplicationCommands.Redo);
redoCommandBinding.CanExecute += RedoCommandCanExecute;
CommandBindings.Add(redoCommandBinding);

}

void RedoCommandCanExecute(object sender, CanExecuteRoutedEventArgs e) {
e.CanExecute = myCustomUndoManager.CanRedo;

}

Commands | 133

Command bindings rely on the bubbling nature of command routing—the top-level
Window element is unlikely to be the target of the command, as the focus will usually
belong to some child element inside the window. However, the command will bub-
ble up to the top. This routing makes it easy to put the handling for commands in
just one place. For the most part, command routing is pretty straightforward—it
usually targets the element with the keyboard focus, and uses tunneling and bub-
bling much like normal events. However, there are certain scenarios where the
behavior is a little more complex, so we will finish off with a more detailed look at
how command routing works under the covers.

Command routing

All of the built-in command objects use a class called RoutedUICommand, and you will
normally use this if you define application-specific commands.” RoutedUICommand pro-
vides the mechanism for finding the right command binding when the command is
invoked. This often needs to be determined by context. Consider Example 4-27.

Example 4-27. Multiple command targets

<Grid»>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

<Menu Grid.Row="0">
<MenuItem Header="_Edit">
<MenuItem Header="Cu t" Command="ApplicationCommands.Cut" />
<MenuItem Header="_Copy" Command="ApplicationCommands.Copy" />
<MenuItem Header="_Paste" Command="ApplicationCommands.Paste" />
</Menultem>
</Menu>

<TextBox Grid.Row="1" AcceptsReturn="True" />
<ListBox Grid.Row="2">
<TextBlock Text="One" />
<TextBlock Text="Two" />
</ListBox>
</Grid>

If the focus is in the text box when the Copy command is invoked, the text box han-
dles the command itself as you would expect, copying the currently selected text to
the clipboard. But not all controls have an obvious default Copy behavior. If the com-
mand were invoked while the focus was in the listbox, you would need to supply

* It is technically possible to provide a different class if you have special requirements. Command sources are
happy to use any implementation of the ICommand interface, so you are not obliged to use the normal com-
mand routing mechanism. But most applications will use RoutedUICommand.

134 | Chapter4: Input

application-specific code in order for the command to do anything. RoutedUICommand
supports this by providing a mechanism for identifying the command’s target and
locating the correct handler.

The target of the RoutedUICommand is determined by the way in which the command
was invoked. Typically, the target will be whichever element currently has the focus,
unless the command source’s CommandTarget has been set. Figure 4-4 shows the con-
trols and menu from Example 4-27. As you can see from the selection highlight, the
TextBox at the top had the focus when the menu was opened, so you would expect it
to be the target of the commands. This is indeed what happens, but it’s not quite as
straightforward as you might expect.

Edit

Cut Ctrl+X board operations.
Copy Ctrl+C

Paste Ctri+V

e

Two

Figure 4-4. Command targets and focus

RoutedUICommand tries to locate a handler using a tunneling and bubbling system simi-
lar to the one used by the event system. However, command routing has an addi-
tional feature not present in normal event routing: if bubbling fails to find a handler,
RoutedUICommand may try to retarget the command. This is designed for the scenario
where commands are invoked by user interface elements such as menu or toolbar
items because these present an interesting challenge.

Example 4-27 is an example of this very scenario. It has a subtle potential problem.
While the menu is open, it steals the input focus away from the TextBox. It’s unlikely
that the menu item itself is the intended target for a command—it’s merely the
means of invoking the command. Users will expect the Copy menu item to copy
whatever was selected in the TextBox, rather than copying the contents of the menu
item. The menu deals with this by relinquishing the focus when the command is exe-
cuted. This causes the focus to return to the TextBox, and so the command target is
the one we expect. However, there’s a problem regarding disabled commands.

A command target can choose whether the commands it supports are enabled. A
TextBox enables copying only if there is some selected text. It enables pasting only if
the item on the clipboard is text, or can be converted to text. Menus gray out dis-
abled commands, as Figure 4-4 shows. To do this, a menu item must locate the com-
mand target. The problem is that the menu is in possession of the keyboard focus at
the point at which it needs to discover whether the command is enabled; the appro-
priate command target is therefore not the focused item in this case.

Commands | 135

The RoutedUICommand class relies on focus scopes to handle this situation. If a
RoutedUICommand fails to find a command binding, it checks to see whether the initial
target was in a nested focus scope. If it was, WPF finds the parent focus scope, which
will typically be the window. It then retargets the command, choosing the element in
the parent scope that has the logical focus (i.e., the last element to have the focus
before the menu grabbed it). This causes a second tunneling and bubbling phase to
occur. The upshot is that the command’s target is whichever element had the focus
before the menu was opened, or the toolbar button clicked.

If you are using menus or toolbars, you don’t need to do anything to make this work,
because Menu and ToolBar elements both introduce nested focus scopes automati-
cally. However, if you want to invoke commands from other elements, such as but-
tons, you’ll need to define the focus scope explicitly. Consider Example 4-28.

Example 4-28. Without focus scope

<StackpPanel>
<Button Command="ApplicationCommands.Copy" Content="_Copy" />
<Button Command="ApplicationCommands.Paste" Content="_Paste" />
<TextBox />

</StackPanel>

This associates two buttons with commands supported by a TextBox. And yet, as
Figure 4-5 shows, the buttons remain disabled even when the TextBox should be able
to process at least one of the commands.

This is a TextBox. It supports Copy and Paste

Figure 4-5. Commands disabled due to missing focus scope

We can fix this by introducing a focus scope around the buttons, as Example 4-29
shows.

Example 4-29. Focus scope

<StackPanel>
<StackPanel FocusManager.IsFocusScope="True">
<Button Command="ApplicationCommands.Copy" Content="Copy" />
<Button Command="ApplicationCommands.Paste" Content="Paste" />
</StackPanel>
<TextBox />
</StackPanel>

136 | Chapter4: Input

Now when the buttons attempt to locate a handler in order to choose whether they
are enabled, the presence of the focus scope will cause the command routing to look
for the element with the focus. If the TextBox has the logical focus, it will become the
command target. As Figure 4-6 shows, this causes the buttons to reflect the availabil-
ity of the commands correctly, and it means they invoke the command on the cor-
rect target when clicked.

[|
[Paste }
This 1s a TextBox. It supports Copy and Paste.

Figure 4-6. Command enabled thanks to focus scope

We don’t have to use focus scopes to solve the problem in this particular example.
You can use the more explicit, though slightly cumbersome, approach shown in
Example 4-30.

Example 4-30. Explicit command targets

<StackPanel>
<Button Command="Copy" Content="Copy"
CommandTarget="{Binding ElementName=targetControl}" />
<Button Command="Paste" Content="Paste"
CommandTarget="{Binding ElementName=targetControl}" />
<TextBox x:Name="targetControl" />
</StackPanel>

Here, each button specifies its command target explicitly. This makes it absolutely
clear what the target will be. However, it is more verbose, so the automatic com-
mand routing is often more convenient. And even if the thought of manually specify-
ing the command target for every item in a menu doesn’t strike you as unbearable,
command routing has the added benefit of working well when there are multiple
potential command targets (e.g., multiple text boxes on a form) and you want the
command to go to whichever one last had the focus.

Code-Based Input Handling Versus Triggers

The input handling techniques shown in this chapter all involve writing code that
runs in response to some user input. If your reason for handling input is simply to
provide some visible feedback to the user, be aware that writing an event handler or
a custom command is likely to be overkill. It is often possible to create the visual
feedback you require entirely within the user interface markup by using triggers.
Triggers offer a declarative approach, where WPF does more of the work for you.

Code-Based Input Handling Versus Triggers | 137

Any discussion of input handling in WPF would be incomplete without some men-
tion of triggers. However, trigger-based input handling is radically different from the
more traditional approach shown in this chapter, and it depends on aspects of WPF
not yet described. Accordingly, it is dealt with later, in Chapters 8 and 9. So, for now
just be aware of the two techniques and their intended usage: triggers are best suited
for superficial responses, such as making a button change color when the mouse
moves over it; event handling is appropriate for more substantive behavior, such as
performing an action when the user clicks a button.

Where Are We?

Input is handled through events and commands, which use a routing system to allow
simple uniform event handling regardless of how complex the structure of the user
interface visuals might be. Input events are the lower level of these two mechanisms,
reporting the exact nature of the user’s input in detail. Commands allow us to work
at a higher level, focusing on the actions the user would like our applications to per-
form, rather than the specific input mechanism used to invoke the action.

138 | Chapter4: Input

CHAPTER 5
Controls

A control is a user interface component that provides a particular interactive behav-
ior. There are many familiar examples in Windows, such as text boxes, which offer
text editing, and radio buttons, which let the user choose from a set of options. Con-
trols are the building blocks of any WPF user interface.

Although controls are typically associated with a default appearance, WPF offers
many ways to alter or replace a control’s look. We can adjust properties to make
simple alterations such as setting foreground and background colors. With controls
that support the content model, we can put any mixture of graphics and text inside
the control. We can even use templates to replace the whole look of the control.
However, even if we replace the visuals of, say, a scroll bar, we have not changed its
fundamental role as an element for performing scrolling. In WPF, it is this behavior
that forms the essence of a control.

In this chapter, we will examine how to use controls to handle input, and we will
explore the set of behaviors offered by the built-in controls. We will cover creation of
custom controls in Chapter 18.

What Are Controls?

Whereas most popular Ul frameworks offer an abstraction similar to a control, WPF
takes a slightly unusual approach, in that controls are typically not directly responsi-
ble for their own appearance. Controls in WPF are all about behavior, and they defer
to templates to provide their visuals. Many GUI frameworks require you to write a
custom control when customizing a control’s appearance, but in WPF, this is not
necessary—nested content and templates offer simpler yet powerful solutions. You
do not need to write a custom control unless you need interactive behavior that is
different from any of the built-in controls.

139

Many WPF user interface elements are not controls. For example,
\ shapes like Rectangle and E1lipse have no intrinsic behavior—they are

% just about appearance. Lower-level elements do not derive directly
" from Control. Usually they derive from FrameworkElement. See
Appendix D for a detailed description of these and other important
base types in WPF’s class hierarchy.

Figure 5-1 shows how a control fits into a program. As you can see, the visible parts
of the control are provided by its template, rather than the control itself. The control
is not completely disconnected from these visuals, of course. It uses them to present
information to the user. Moreover, because the visuals are all that the user can see,
they will be the immediate target of any user input. This means that although visuals
can be replaced, the replacement has certain responsibilities—there is a form of con-
tract between the control and its visuals. We discuss the use of templates to replace
visuals in Chapter 9.

User

Commands —l
/ TPresentarion

User input

Outout Control visuals
UIpUEP - fom template

!

1
Data binding

vy

Properties <«—» | logic

Events

Data

Figure 5-1. A control’s relationship with its visuals and data

A w
y

You may be familiar with the Model View Controller (MVC) concept.
This is a way of structuring the design of interactive systems. MVC has
N . . .

3* been interpreted in many different ways over the years, but broadly
speaking, it always breaks down the design into objects representing
the underlying data (the Model), objects that display that data (the
View), and objects that manage input from the user and interactions
between the model and the view (the Controller).

MVC is a concept that you can use at many different scales, and it is
somewhat unusual to apply it at the level of an individual control.
However, if you are accustomed to the MVC way of looking at things,
you may find it helpful to think of data binding as a way of attaching a
Model, the template as the View, and the control as the Controller.

140 | Chapter5: Controls

Although the control makes itself visible to the user through its template, it makes its
services available to developers mainly through an API, shown on the left side of
Figure 5-1. Controls may use commands to represent supported operations. For
example, text boxes support the cut, copy, and paste commands, among others.
Controls offer properties to provide a means of modifying either behavior or appear-
ance, or to manage information associated with the control, such as the text being
edited in a text box. Controls raise events when something important happens such
as receiving some form of input. Commands, properties, and events are the pre-
ferred mechanisms for exposing functionality because they can be used from
markup, and they are supported by design tools. However, for features that would
only ever be used from code, methods may be a more appropriate form of APL

WPF provides a range of built-in controls. Most of these correspond to standard
Windows control types that you will already be familiar with. Note that these con-
trols are not wrappers around old Win32 controls. Although they look like their
Win32 counterparts, they are all native WPF controls.” This means that they offer all
of the WPF functionality described in this book, including styling, resolution inde-
pendence, data binding, composition, and fully integrated support for WPF’s graphi-
cal capabilities.

Buttons

Buttons are controls that a user can click. The result of the click is up to the applica-
tion developer, but there are common expectations depending on the type of but-
ton. For example, clicking on a CheckBox or RadioButton expresses a choice, and does
not normally have any immediate effect beyond visually reflecting that choice. By
contrast, clicking on a normal Button usually has some immediate effect.

Using buttons is straightforward. Example 5-1 shows markup for a Button element.

Example 5-1. Markup for a Button
<Button Click="ButtonClicked">Button</Button>

The contents of the element (the text “Button” in this case) are used as the button
caption. An XML attribute specifies the handler for the Click event. This indicates
that the code behind for the XAML must contain a method with the name specified
in the markup, such as that shown in Example 5-2 (we could also attach the event
handler by giving the button an x:Name and using normal C# event handling syntax).

* An upshot of this is that tools that know how to deal with Win32 controls will often not understand WPF
controls. For example, the SDK Spy++ utility that lets you delve into the structure of a Win32 Ul sees WPF
applications as just one big HWND filling the entire window. (Fortunately, the UISpy SDK tool and the
excellent WPF Snoop utility at http://www.blois.us/Snoop fills the gap left by Spy++.) However, WPF con-
trols integrate with the accessibility features in Windows, so screen reader and automated test tools that use
the automation APIs will typically continue to work.

Buttons | 141

Example 5-2. Handling a Click event

void ButtonClicked(object sender, RoutedEventArgs e) {
MessageBox. Show("Button was clicked");
}

Alternatively, a button’s Command property may be set, in which case the specified
command will be invoked when the button is clicked. Example 5-3 shows a button
that invokes the standard ApplicationCommands.Copy command.

Example 5-3. Invoking a command with a Button

<Button Command="Copy">Copy</Button>

Figure 5-2 shows the three button types provided by WPF, which offer the same
behavior as the standard push-button, radio button, and checkbox controls with
which any Windows user will be familiar. These all derive from a common base
class, ButtonBase. This in turn derives from ContentControl, meaning that they all
support its content model—you are not restricted to using simple text as the label for
a button.

Button| @ RadioButton CheckBox

Figure 5-2. Button types

As Figure 5-3 shows, you can use whatever content you like, although you will still get
the default look for the button around or alongside your chosen content. (If you wish
to replace the whole appearance of the button rather than just customize its caption,
you can use a control template; see Chapter 9 for more information on templates.)

» Button € [GJRadioButton M

Figure 5-3. Buttons with nested content

It’s common practice in Windows to enable applications to be used easily from the
keyboard alone. One common way of doing this is to allow buttons to be invoked by
pressing the Alt key and an access key (also known as a mnemonic). The control typi-
cally provides a visual hint that you can do this by underlining the relevant key when
Alt is pressed. Figure 5-4 shows an example: this button can be “clicked” by press-
ing Alt-B.

Figure 5-4. Button with access key

142 | Chapter5: Controls

WPF supports this style of keyboard access with the AccessText element. You can
wrap this around some text, putting an underscore in front of the letter that will act
as the access key, as shown in Example 5-4. If you really want an underscore, rather
than an underlined letter, just put two underscores in a row.

N
5 Earlier Windows UI frameworks used a leading ampersand to desig-
.‘s nate an access key character. However, ampersands are awkward to
' = . . .
112 use in XML because they have a special meaning. You need to use the

character entity reference & to add an ampersand to XML. Because
this is rather unwieldy, WPF uses a leading underscore instead.

Example 5-4. AccessText

<Button Width="75">
<AccessText>_Button</AccessText>
</Button>

The AccessText element raises the AccessKeyPressedEvent attached event defined by
the AccessKeyManager class. This in turn is handled by the Button, which then raises a
Click event.

In fact, you often don’t need to add an AccessText element explicitly. If the button’s
content is purely text, you can put an underscore in it and WPF will automatically
wrap it in an AccessText element for you. So in fact, Example 5-5 is all that you need.
An explicit AccessText element is necessary only if you are exploiting the content
model in order to put more than just text in a button.

Example 5-5. Access key without AccessText
<Button Width="75">_Button</Button>

N
X This automatic generation of an AccessText wrapper is available on
.‘s controls for which access keys are likely to be useful.
' s
15N

Although the buttons derive from the common ButtonBase base class, RadioButton
and CheckBox derive from it indirectly via the ToggleButton class. This defines an
IsChecked property, indicating whether the user has checked the button. This is of
type bool? and returns null if the button is in an indeterminate state. Figure 5-5
shows how CheckBox appears for each IsChecked value.

True [] False Null

Figure 5-5. Checkbox IsChecked values

Buttons | 143

Radio buttons are normally used in groups in which only one button may be selected
at a time. The simplest way to group radio buttons is to give them a common parent.
In Example 5-6, the two radio buttons will form a group simply because they share
the same parent.

Example 5-6. Grouping radio buttons by parent

<StackPanel>
<RadioButton>To be</RadioButton>
<RadioButton>Not to be</RadioButton>
</StackPanel>

Sometimes you may want to create multiple distinct groups with a common parent.
You can do this by setting the GroupName property, as Example 5-7 shows.

Example 5-7. Grouping radio buttons by name

<StackPanel>
<RadioButton GroupName="Fuel">Petrol</RadioButton>
<RadioButton GroupName="Fuel">Diesel</RadioButton>

<RadioButton GroupName="Induction">Unforced</RadioButton>

<RadioButton GroupName="Induction">Mechanical supercharger</RadioButton>

<RadioButton GroupName="Induction">Turbocharger</RadioButton>
</StackPanel>

This technique also works if you want to create a single group of buttons that do not
share a single parent.

Slider and Scroll Controls

WPF provides controls that allow a value to be selected from a range. They all offer a
similar appearance and usage: they show a track, indicating the range, and a dragga-
ble “thumb” with which the value can be adjusted. There is the Slider control,
shown in Figure 5-6, and the ScrollBar control, shown in Figure 5-7. The main dif-
ference is one of convention rather than functionality—the ScrollBar control is com-
monly used in conjunction with some scrolling viewable area, and the Slider control
is used to adjust values.

Figure 5-6. Horizontal and vertical sliders

144 | Chapter5: Controls

[

Figure 5-7. Horizontal and vertical scroll bars

Slider and ScrollBar are very similar in use. Both controls have an Orientation
property to select between vertical and horizontal modes. They both derive from a
common base class, RangeBase. This provides Minimum and Maximum properties, which
define the range of values the control represents, and a Value property holding the
currently selected value. It also defines SmallChange and LargeChange properties,
which determine by how much the Value changes when adjusted with the arrow
keys, or the Page Up and Page Down keys, respectively. The LargeChange value is also
used when the part of the slider track on either side of the thumb is clicked.

Whereas slider controls have a fixed-size thumb, the thumb on a scroll bar can change
in size. If the scroll bar is used in conjunction with a scrollable view, the relative size of
the thumb and the track is proportional to the relative size of the visible area and the
total scrollable area. For example, if the thumb is about one-third the length or height of
the scroll bar, this indicates that one-third of the scrollable area is currently in view.

You can control the size of a scroll bar’s thumb with the ViewportSize property. The
larger ViewportSize is, the larger the thumb will be. (WPF sets the ratio of the thumb
and track sizes to be ViewportSize/(ViewportSize + Maximum - Minimum).)

If you want to provide a scrollable view of a larger user interface area, you would not
normally use the scroll bar controls directly. It is usually easier to use the
ScrollViewer control, as described in Chapter 3.

ProgressBar

The ProgressBar control indicates how much of a long-running process the applica-
tion has completed. It provides the user with an indication that work is progressing,
and a rough idea of how long the user will need to wait for work to complete. As
Figure 5-8 shows, it is approximately rectangular, and the nearer to completion the
task is, the more of the rectangle is filled in by a color bar. If an operation is likely to
take much more than a second, you should consider showing a ProgressBar to let
users know how long they are likely to wait.

Figure 5-8. ProgressBar control

ProgressBar | 145

ProgressBar derives from RangeBase, the same base class as the scroll bar and slider
controls discussed in the preceding section. From a developer perspective, it is very
similar to these other range controls, the main difference being that it does not
respond to user input—sadly, users cannot drag the progress bar indicator to the
right in order to make things run faster. The progress indicator’s size is based on
the Value property, so it is your application’s responsibility to update this as work
progresses.

Text Controls

WPF provides controls for editing and displaying text. The simplest text editing con-
trol is TextBox. By default, it allows a single line of text to be edited, but by setting
AcceptsReturn to true, it can edit multiple lines. It provides basic text editing facili-
ties: selection support, system clipboard integration (cut, paste, etc.), and multilevel
undo support.

Example 5-8 shows two TextBox elements, one with default settings and one in multi-
line mode. Figure 5-9 shows the results. (To illustrate the multiline text box, I typed
“Enter” in the middle of the text before taking the screenshot.) Example 5-8 and
Figure 5-9 also show PasswordBox, which is similar to TextBox, but is designed for
entering passwords. As you can see, the text in the PasswordBox has been displayed as
a line of identical symbols. This is common practice to prevent passwords from being
visible to anyone who can see the screen. You can set the symbol with the
PasswordChar property. The PasswordBox also opts out of the ability to copy its con-
tents to the clipboard.

Example 5-8. TextBox and PasswordBox
<StackPanel Orientation="Horizontal">
<TextBox Margin="5" VerticalAlignment="Center" Text="Single line textbox" />
<TextBox AcceptsReturn="True" Margin="5" Height="50"
VerticalScrollBarVisibility="Visible"
VerticalAlignment="Center" Text="Multiline textbox" />

<PasswordBox Margin="5" VerticalAlignment="Center" Password="Un5ecure" />

</StackPanel>

- Multiline #
Single line textbox te)rtbc»‘ ssvscone

Figure 5-9. TextBox and PasswordBox

146 | Chapter5: Controls

TextBox and PasswordBox support only plain text. This makes them easy to use for enter-
ing and editing simple data. TextBox provides a Text property that represents the con-
trol’s contents as a String. PasswordBox has a Password property, also of type String.

The simplicity of plain text is good if you require nothing more than plain text as
input. However, it is sometimes useful to allow more varied input. WPF therefore
offers the RichTextBox. This edits a FlowDocument, which can contain a wide variety of
content. If you want full control over the content inside a RichTextBox, you will need
to work with the FlowDocument class and corresponding text object model types,
which are described in Chapter 14. However, for simple formatted text support, the
RichTextBox has some useful built-in behavior that does not require you to delve into
the text object model.

RichTextBox supports all of the commands defined by the EditingCommands class. This
includes support for common formatting operations such as bold, italic, and under-
line. These are bound to the Ctrl-B, Ctrl-1, and Ctrl-U keyboard shortcuts. Most of
the editing commands have default keyboard input gestures, so you don’t need to do
anything special to enable keyboard access to formatting operations. You could enter
the example shown in Figure 5-10 entirely with the keyboard. The control also rec-
ognizes the RTF format for data pasted from the clipboard, meaning that you can
paste formatted text from Internet Explorer and Word, or syntax-colored code from
Visual Studio.

Thisis a RfchTextml

Figure 5-10. RichTextBox

Both TextBox and RichTextBox offer built-in spellchecking. All you need to do is set
the SpellCheck.IsEnabled attached property to True. As Figure 5-11 shows, this
causes “red squiggly” underlines, similar to those in Microsoft Word, to appear
under misspelled words.

Check my spellign

Figure 5-11. TextBox with SpellCheck.IsEnabled="“True”

The dictionary used for spellchecking honors the standard xml:lang attribute.
Example 5-9 illustrates the use of this attribute to select French. From code, setting
the element’s Language property has the same effect.

Example 5-9. Selecting a language for spellchecking

<TextBox xml:lang="fr-FR" SpellCheck.IsEnabled="True"
AcceptsReturn="True" />

Text Controls | 147

As Figure 5-12 shows, this causes correctly spelled French to be accepted. But incor-
rect French and correct English will be underlined.

Ceci n'est pas un pa

Mind your language.

Figure 5-12. French spellchecking

Label

Some controls do not have their own built-in caption; the most widely used example
is the TextBox control. Label is used to provide a caption for such controls. This
might appear to be redundant, because you can achieve the same visual effect with-
out a full control—you could just use the low-level TextBlock element. However,
Label has an important focus handling responsibility.

Well-designed user interfaces should be easy to use from the keyboard. A common
way of achieving this is to provide access keys. You’ve already seen how to add an
access key to a button, using either an underscore in the text, or an explicit
AccessText element. This is straightforward for controls with an integral caption,
such as a button. The TextBox poses slightly more of a challenge than a Button when
it comes to access keys. A TextBox does not have an intrinsic caption—the only text it
displays is the text being edited. The caption is supplied by a separate element to the
left of the TextBox, as shown in Figure 5-13.

Name: Quest:

Figure 5-13. Access key underlines

This is where the Label control comes in. The purpose of the Label control is to pro-
vide a place to put a caption with an access key. When the access key is pressed, the
Label will redirect the focus to the relevant control, which in this case is a TextBox.

A w
y

Just as with a Button, you can denote a Label control’s access key by
preceding the letter with an underscore.

15

How does the Label know to which control it should redirect its access key? Label
has a Target property, indicating the intended target of the access key. We use a
binding expression to connect the label to its target. (We discuss binding expres-
sions in detail in Chapter 6.) The expressions in Example 5-10 simply set the Target
properties to refer to the named elements.

148 | Chapter5: Controls

Example 5-10. Label controls

<Label Target="{Binding ElementName=nameText}"> Name:</Label>
<TextBox x:Name="nameText" Width="70" />

<Label Target="{Binding ElementName=questText}"> Quest:</Label>
<TextBox x:Name="questText" Width="70" />

You must supply a Target. In the absence of this property, the Label control does
nothing useful. In particular, it does not choose the next element in the UI tree or the
Z order. Pressing the access key for a label without a target will just cause Windows
to play the alert sound, indicating that it was unable to process the input.

ToolTip

The ToolTip control allows a floating label to be displayed above some part of the
user interface. It is an unusual control in that it cannot be part of the normal user
interface tree—you can use it only in conjunction with another element. It becomes
visible only when the mouse pointer hovers over the target element, as Figure 5-14
shows.

I

Type something here

Figure 5-14. TextBox with ToolTip

To associate a ToolTip with its target element, you set it as the ToolTip property of its
target, as shown in Example 5-11.

Example 5-11. Using ToolTip the long way

<TextBox Width="100">
<TextBox.ToolTip>
<ToolTip Content="Type something here" />
</TextBox.ToolTip>
</TextBox>

In fact, you don’t need to specify the ToolTip object explicitly. You can just set the
ToolTip property to a string, as shown in Example 5-12.

Example 5-12. Using ToolTip the short way
<TextBox Width="100" ToolTip="Type something here" />

If you set the property to anything other than a ToolTip, WPF creates the ToolTip
control for you, and sets its Content property to the value of the target element’s
ToolTip property. Examples 5-11 and 5-12 are therefore equivalent.

ToolTip derives from ContentControl, so its content is not restricted to simple
strings—we can put anything we like in there, as shown in Example 5-13.

ToolTip | 149

Example 5-13. Exploiting the content model in a tool tip

<TextBox Width="100">
<TextBox.ToolTip>
<TextBlock FontSize="25">
<Ellipse Fill="Orange" Width="20" Height="20" />
Plain text is <Italic>so</Italic>
last century
<Ellipse Fill="Orange" Width="20" Height="20" />
</TextBlock>
</TextBox.ToolTip>
</TextBox>

Figure 5-15 shows the results. Note that the tool tip will normally close as soon as
the mouse pointer moves over it. This means that although it is possible to put inter-
active elements such as buttons inside a tool tip, it’s not typically a useful thing to
do, because it’s not possible to click on them. However, it is possible to subvert the
auto-close behavior: you can force the tool tip to open before the user hovers over
the target by setting its IsOpen property to True. This causes the tool tip to open
immediately, and to remain open for as long as the target element’s window has the
focus. Or if you set IsOpen to True and also set StaysOpen to False, it will open imme-
diately, and remain open until you click somewhere outside of the tool tip. In these
cases, you could host interactive content inside a tool tip.

Plain text is so last century

Figure 5-15. ToolTip with mixed content

A
5 The ToolTip is shown in its own top-level window. This is useful for
.‘s‘ tool tips on elements near the edge of your window—if the tool tip is
TGk large enough that it flows outside of the main window, it won’t be
" cropped.

GroupBox and Expander

GroupBox and Expander are very similar controls: both provide a container for arbi-
trary content and a place for a header on top. Figure 5-16 shows both controls. Aside
from their different appearances, the main difference between these controls is that
the Expander can be expanded and collapsed; the user can click on the arrow at the
top left to hide and show the content. A GroupBox always shows its content.

Both controls derive from HeaderedContentControl, which in turn derives from
ContentControl. So, we can place whatever content we like directly inside the con-
trol, as shown in Example 5-14.

150 | Chapter5: Controls

Glass #) Glass
©) Half-full @ Half-full
©) Half-empty @ Half-empty

Figure 5-16. Header and Expander controls

Example 5-14. Using Header and Expander

<StackPanel Orientation="Horizontal">

<GroupBox Header="Glass">
<Border Margin="2" Background="White" Padding="3">
<StackPanel>
<RadioButton Content="Half-full" IsChecked="True" />
<RadioButton Content="Half-empty" />
</StackPanel>
</Border>
</GroupBox>

<Expander Header="Glass" IsExpanded="True"
Background="#def" VerticalAlignment="Center" MinWidth="90"
Margin="10,0">
<Border Margin="2" Background="White" Padding="3">
<StackPanel>
<RadioButton Content="Half-full" IsChecked="True" />
<RadioButton Content="Half-empty" />
</StackPanel>
</Border>
</Expander>

</StackPanel>

The HeaderedContentControl supports a dual form of content model: not only can the
body of an Expander or GroupBox be anything you like, so can the header.
Example 5-15 uses a mixture of text, video, graphics, and a control.

Example 5-15. Header with mixed content

<GroupBox>
<GroupBox.Header>
<StackPanel Orientation="Horizontal">
<TextBlock Text="Slightly " FontStyle="Italic" VerticalAlignment="Center" />
<MediaElement Source="C:\Users\Public\Videos\Sample Videos\Butterfly.wmv"
Width="80" />
<TextBlock Text=" more " VerticalAlignment="Center" />
<Ellipse Fill="Red" Width="20" Height="60" />
<TextBlock Text=" interesting " VerticalAlignment="Center"
FontWeight="Bold" />
<Button Content="_header" VerticalAlignment="Center" />
</StackPanel>
</GroupBox.Header>
<TextBlock Text="Boring content" />
</GroupBox>

GroupBox and Expander | 151

Figure 5-17 shows the results.

Slightly © more interesting |header

Boring content

Figure 5-17. Header with mixed content

List Controls

WPF offers several controls that can present multiple items. ListBox, ComboBox, and
ListView can all present a linear sequence of items. TreeView presents a hierarchy of
items. The TabControl may not seem like an obvious relative of the ListBox, but it
shares the basic features: it presents a sequence of items (tab pages) and lets the user
choose which is the current item. All of these controls share a common base class,
ItemsControl.

The simplest way to use any of these controls is to add content to their Items prop-
erty. Example 5-16 shows the markup for a ComboBox with various elements added to
its Ttems.” This example illustrates that all list controls allow any content to be used
as a list item—we’re not restricted to plain text. This content model makes these list
controls much more powerful than their Win32 equivalents.

Example 5-16. Content in Items

<ComboBox>
<Button>Click!</Button>
<TextBlock>Hello, world</TextBlock>
<StackPanel Orientation="Horizontal">
<TextBlock>Ellipse:</TextBlock>
<Ellipse Fill="Blue" Width="100" />
</StackPanel>
</ComboBox>

You also can use this technique with ListBox, TabControl, and ListView. (TreeView is
a little more involved, as the whole point of that control is to show a tree of items,
rather than a simple list. We'll see how to do that later.) As you can see in
Figure 5-18, each control presents our items in its own way. The ListBox and
ComboBox generate a line in the list for each item. The ListView does something simi-
lar, although the lines it generates can display one item for each column if necessary.
The TabControl puts each element in its own TabItem, in order to present it in its own
tab page. (Figure 5-18 shows just the third item, but the other three are accessible
through the three tab headers.)

* This example does not mention the Items property explicitly because children of a ComboBox element in XAML
get added to its Items property automatically. Appendix A details how XAML content is assigned to properties.

152 | Chapter5: Controls

[v] [
Click! Hello, world
Hello, world Eliipse: <SG

Item Tags

|_r| | Click!
‘Ellipse:- ‘ Hello, world
Ellipse <G

Figure 5-18. Content in list controls (left to right, top to bottom: ComboBox, ListBox, TabControl,
and ListView)

All controls derived from ItemsControl wrap items in order to present them in a suit-
able way. This process is referred to as item container generation. Each control has a
corresponding container type, such as ComboBoxItem, ListBoxItem, TabItem,
ListViewItem, and TreeViewItem. Although the automatic container generation can be
convenient, in some cases you will want a little more control. For example, the
TabControl shown in Figure 5-18 isn’t particularly useful—it has wrapped our items
with tabs that have no title. To fix this, we simply provide our own TabItem elements
instead of letting the TabControl generate them for us. We can then set the Header
property in order to control the tab page caption, as Example 5-17 shows.

Example 5-17. Setting tab page headers
<TabControl>

<TabItem Header="_Button">
<Button>Click!</Button>
</TabItem>

<TabItem>
<TabItem.Header>
<TextBlock FontSize="18" FontFamily="Palatino Linotype">
<AccessText>_Text</AccessText>
</TextBlock>
</TabItem.Header>

<TextBlock>Hello, world</TextBlock>
</TabItem>

<TabItem>
<TabItem.Header>
<Ellipse Fill="Blue" Width="30" Height="20" />
</TabItem.Header>

<StackPanel Orientation="Horizontal">
<TextBlock>Ellipse:</TextBlock>

List Controls | 153

Example 5-17. Setting tab page headers (continued)

<Ellipse Fill="Blue" Width="100" />
</StackPanel>
</TabItem>

</TabControl>

This TabControl contains the same three items as before, but this time with the
TabItem elements specified explicitly. In the first of these, the Header property has
been set to the text “_Button”. This uses the header’s support of the content model:
this is why we can use underscores to denote accelerators. (TabItem derives from
HeaderedContentControl—the same base class as GroupBox and Expander.) The other
two items exploit the content model’s support for nested content—the first uses a
TextBlock to control the text appearance, and the second puts an Ellipse into the
header instead of text. Figure 5-19 shows the results.

Ellipse:

Figure 5-19. TabItem headers

Providing a fixed set of elements through the Items property makes sense for tab
pages and radio buttons, where you are likely to know what elements are required
when you design the user interface. But this may not be the case for combo boxes
and lists. To enable you to decide what items will appear at runtime, all list controls
offer an alternative means of populating the list: data binding. Instead of using Items,
you can provide a data source object through the ItemsSource property, and use data

templates to determine how the elements appear. These techniques are described in
Chapters 6 and 8.

Regardless of whether you use a fixed set of items or a bound data source, you can
always find out when the selected item changes by handling the relevant event:
SelectedItemChanged for the TreeView and SelectionChanged for the other controls.
You can then use either the SelectedItem property (supported by all controls), or
SelectedIndex (supported by everything except TreeView) to find out which item is
currently selected.

The ListView and TreeView controls have a few extra features that make them slightly
different to use than the other controls in this section. So, we will now look at the
differences.

154 | Chapter5: Controls

List View

ListView derives from ListBox, adding support for a grid-like view. To use this, you
must give the View property a Gridview™ object describing the columns in the list.
Example 5-18 shows a simple example.

Example 5-18. Defining ListView columns

<ListView»
<ListView.View>
<GridView AllowsColumnReorder="true">
<GridViewColumn Header="Name" />
<GridViewColumn Header="Line Spacing" />
<GridViewColumn Header="Sample" />
</GridView»
</ListView.View>
</ListView>

Figure 5-20 shows the result. By default, the ListView sets the column sizes to be as
large as necessary—either as wide as the header or as wide as required by the col-
umn content. You can also specify a Width property if you prefer. The Header prop-
erty supports the content model, so you are not limited to text for column headers.

A s

iy If you are using data binding, you will probably want to set the col-
.‘s‘ umn widths manually, because virtualization makes the auto-sizing
- behavior slightly unpredictable. By default, a data-bound ListView will

virtualize items (i.e., it only creates the Ul elements for list rows when
they become visible). This significantly improves performance for lists
with large numbers of items, but it means the control cannot measure
every single list item upfront—it can measure only the rows it has cre-
ated. So if you use automatic sizing, the columns will be made large
enough to hold the rows that are initially visible. If there are larger
items further down the list and not yet in view, the columns will not
be large enough to accommodate these.

Mame Line Spacing Sample

Figure 5-20. A ListView with column headers

Our ListView isn’t very interesting yet, as it doesn’t contain any items. You can add
user interface elements as children, and they will be added to the Items property as
before. However, this isn’t terribly useful, because this doesn’t provide a way of filling

* GridView is the only view type defined in the current version of WPF. The other view types traditionally sup-
ported by the Windows list view control can all be achieved with ListBox, data binding, and the ItemsPanel
property, which is described in Chapter 9.

List Controls | 155

in each column in the list. Providing explicit ListViewItem containers doesn’t help
either—these don’t do anything more than the basic ListBoxItem. ListView isn’t
designed to be used with user interface elements in its Items property: it is really
intended for data binding scenarios. We will cover data binding in detail in the next
two chapters, but in order to show the ListView in action, we must see a sneak pre-
view. Example 5-19 creates a populated ListView with three columns.

Example 5-19. Populating ListView rows

<ListView ItemsSource="{x:Static Fonts.SystemFontFamilies}">
<ListView.View>
<Gridview>
<GridViewColumn Header="Name"
DisplayMemberBinding="{Binding Source}" />

<GridviewColumn Header="Line Spacing"
DisplayMemberBinding="{Binding LineSpacing}" />

<GridviewColumn Header="Sample">
<GridViewColumn.CellTemplate>
<DataTemplate>
<TextBlock FontFamily="{Binding}" FontSize="20"
Text="ABCDEFGabcdefg" />
</DataTemplate>
</GridViewColumn.CellTemplate>
</GridViewColumn>
</GridView>
</ListView.View>
</ListView>

The control has been data-bound to the collection of FontFamily objects returned by
the static Fonts.SystemFontFamilies property. This effectively fills the control’s Items
collection with those FontFamily objects. The GridView then specifies three columns.
The first two use the DisplayMemberBinding property to indicate what should be dis-
played. The binding expressions here simply extract the Source and LineSpacing prop-
erties from the FontFamily object for each row. The third column uses the alternative
mechanism: the CellTemplate property. This allows you to define a DataTemplate spec-
ifying arbitrary markup to be instantiated for each row—in this case a TextBlock is
used, with its FontFamily property bound to the FontFamily object for the row. This
allows a preview sample of the font to be generated. Figure 5-21 shows the results.

R

3y

Setting the DisplayMemberBinding property on a particular column
causes the CellTemplate property to be ignored on that column, because
* '3:‘ the two are different mechanisms for controlling the same thing.
DisplayMemberBinding is provided for convenience—it offers an easy way
to display just a single piece of information from the source in a
TextBlock without having to provide a complete template.

156 | Chapter5: Controls

Name Line Spacing Sample -

Brush Script h 1.2265625 ATODEF Gabledely =
Calibri 1220703125 ~ ABCDEFGabcdefg

Californian Fe 11357421875~ ABCDEFGabcdefg

calsoMT 1154206875 ~ ABCDEFGabcdefg

Cambhria 117726270175 ARDMAMEENAhedaf~ ¥

Figure 5-21. Populated ListView

Because the CellTemplate property lets us put arbitrary content into a column, we are
not limited to displaying fixed content. As Figure 5-22 shows, we are free to create
columns that contain controls such as checkboxes and text boxes.

ID Enabled Value
One A
Two B
Three [] C
Four D

Figure 5-22. ListView with CheckBox and TextBox columns

Again, this requires the ListView to be bound to a data source, a technique that will

be explained in the next chapter. But as a preview, the markup for Figure 5-22 is
shown in Example 5-20.

Example 5-20. ListView control with controls for columns

<Grid HorizontalAlignment="Center" VerticalAlignment="Center">
<Grid.Resources>
<XmlDataProvider x:Key="src" XPath="/Root">
<x:XData>
<Root xmlns="">
<Item id="One" flag="True" value="A" />
<Item id="Two" flag="True" value="B" />
<Item id="Three" flag="False" value="C" />
<Item id="Four" flag="True" value="D" />
</Root>
</x:XData>
</XmlDataProvider>
</Grid.Resources>

<ListView DataContext="{StaticResource src}"
ItemsSource="{Binding XPath=Item}">
<ListView.View>

List Controls | 157

Example 5-20. ListView control with controls for columns (continued)

<GridView>
<GridViewColumn Header="ID"
DisplayMemberBinding="{Binding XPath=@id}" />

<GridViewColumn Header="Enabled">
<GridViewColumn.CellTemplate>
<DataTemplate>
<CheckBox IsChecked="{Binding XPath=@flag}" />
</DataTemplate>
</GridViewColumn.CellTemplate>
</GridviewColumn>

<GridViewColumn Header="Value">
<GridViewColumn.CellTemplate>
<DataTemplate>
<TextBox Text="{Binding XPath=@value}" Width="70" />
</DataTemplate>
</GridViewColumn.CellTemplate>
</GridViewColumn>
</GridvView>
</ListView.View>
</ListView>
</Grid>

The data source in this case is an embedded XML data island, but any data source
would work. The interesting feature of this example is the use of the CellTemplate in
the GridviewColumn definitions. By providing templates with controls, we have made the
ListView editable. And by the wonder of data binding, when the user makes changes
with these controls, those changes will be written back into the data source. Binding
expressions and data templates will be explained in detail in the next two chapters.

Tree View

The Treeview control presents a hierarchical view, instead of the simple linear
sequence of items the other list controls present. This means the TreeViewItem con-
tainer needs to be able to contain nested TreeViewItem elements. Example 5-21
shows how this is done.

Example 5-21. TreeView control

<TreeView>
<TreeViewItem Header="First top-level item" IsExpanded="True">
<TreeViewItem Header="Child" />
<TreeViewItem Header="Another child" IsExpanded="True">
<TreeViewItem Header="Grandchild" />
<TreeViewItem Header="Grandchild 2" />
</TreeViewItem>
<TreeViewItem Header="A third child" />
</TreeViewItem>

158 | Chapter5: Controls

Example 5-21. TreeView control (continued)

<TreeViewItem Header="Second top-level item">
<TreeViewItem Header="Child a" />
<TreeViewItem Header="Child b" />
<TreeViewItem Header="Child c" />
</TreeViewItem>

<TreeViewItem IsExpanded="True">
<TreeViewItem.Header>
<StackPanel Orientation="Horizontal"»
<Ellipse Fill="Blue" Width="15" Height="15" />
<TextBlock Text="Third top-level item" />
<Ellipse Fill="Blue" Width="15" Height="15" />
</StackPanel>
</TreeViewItem.Header>

<TreeViewItem Header="Child a" />
<TreeViewItem Header="Child b" />
<TreeViewItem Header="Child c" />
</TreeViewItem>
</TreeView>

As Figure 5-23 shows, this defines a TreeView with nested items. Each TreeViewItem
corresponds to a node in the tree, with the Header property supplying the caption for
each node. This is another form of content model, allowing us to use either plain
text, or, as the third of the top-level items illustrates, nested content.

4 First top-level item
Child
4 Another child
Grandchild
Grandchild 2
A third child
I Second top-level item
4 @Third top-level item@
Child a
Child b
Child ¢

Figure 5-23. TreeView

As with the other list controls, you can discover which item is selected with the
SelectedItem property and the SelectedItemChanged event. But unlike the other con-
trols, there is no SelectedIndex. Such a property makes sense for controls that
present a linear list of items, but it would not work so well for a tree.

Because TreeView derives from ItemsControl, it supports data binding—you can point
its TtemsSource at a list of objects and it will generate a TreeViewItem for each item. Of
course, the point of a tree view is to display a hierarchy of items. TreeView therefore
supports hierarchical data binding, an extension of basic list binding that determines
how child items are discovered. Hierarchical binding is described in Chapter 7.

List Controls | 159

Menus

Many windows applications provide access to their functionality through a hierar-
chy of menus. These are typically presented either as a main menu at the top of the
window, or as a pop-up “context” menu. WPF provides two menu controls. Menu is
for permanently visible menus (such as a main menu), and ContextMenu is for con-
text menus.

Menus in pre-WPF Windows applications are typically treated differ-
ently from other user interface elements. In Win32, menus get a dis-

4» tinct handle type and special event handling provisions. In Windows
Forms, most visible elements derive from a Control base class, but
menus do not. This means that menus tend to be somewhat inflexi-
ble—some user interface toolkits choose not to use the built-in menu
handling in Windows simply to avoid the shortcomings. In WPF,
menus are just normal controls, so they do not have any special fea-
tures or restrictions.

Both kinds of menus are built in the same way—their contents consist of a hierarchy
of MenuItem elements. Example 5-22 shows a typical example.

Example 5-22. A main menu

<Menu>
<MenuItem Header="_File">
<MenuItem Header="_New" />

<MenuItem Header=" Open..." />
<MenuItem Header="_Save" />
<MenuItem Header="Sa ve As..." />

<Separator />
<MenuItem Header="Page Se tup..." />
<MenuItem Header="_Print..." />
<Separator />
<MenuItem Header="E xit" />
</MenuItem>
<MenuItem Header="_ Edit">
<MenuItem Header="_Undo" />
<MenuItem Header="_Redo" />
<Separator />
<MenuItem Header="Cu_t" />
<MenuItem Header="_Copy" />
<MenuItem Header="_ Paste" />
<MenuItem Header=" Delete" />
<Separator />
<MenuItem Header="Select All" />
</Menultem>
<MenuItem Header="_Help">
<MenuItem Header="Help Topics" />
<MenuItem Header="_About..." />
</MenuItem>
</Menu>

160 | Chapter5: Controls

Figure 5-24 shows the results.

File | Edit Help

New
Open...
Save

Save As...

Page Setup...

Print...

Exit

Figure 5-24. Menu

ContextMenu is used in a very similar way, although the appearance is different. The
top level of a Menu appears as a horizontal bar, which you would typically put at the
top of a window, but context menus do not have this bar, their top level consisting of
a pop up. This means that a context menu needs a Ul element from which to launch
this pop up. You attach a context menu to an element by setting that element’s
ContextMenu property. Example 5-23 shows a Grid element with a ContextMenu.

Example 5-23. Grid with ContextMenu

<Grid Background="Transparent">
<Grid.ContextMenu>
<ContextMenu>
<Menultem Header="Foo" />
<MenuItem Header="Bar" />
</ContextMenu>»
</Grid.ContextMenu>

</Grid>

With this context menu in place, a right-click anywhere on the grid will bring up the
context menu. (The grid’s Background property has been set to ensure that this will
work—if the Background has its default null value, the grid will effectively be invisi-
ble to the mouse unless the mouse is over one of the grid’s children. Using a

Transparent brush makes the grid visible to the mouse, without making it visually
opaque.) Figure 5-25 shows the context menu in action.

Foo

Bar

Figure 5-25. Context menu

Menus | 161

Each MenuItem has a Header property. For children of a Menu, the header determines
the label shown on the menu bar. For a MenuItem nested either in a ContextMenu or
inside another MenuItem, the Header contains the content for that menu line. The
Header property supports the content model, so it allows either plain text with
optional underscores to denote access keys, as shown in Example 5-22, or nested
content. Example 5-24 shows a modified version of one of the menu items, exploit-
ing the ability to add structure in order to add some graphics into the menu.

Example 5-24. Nesting content inside Menultem.Header

<Menultem>
<MenuItem.Header>
<StackPanel Orientation="Horizontal">
<AccessText>_New...</AccessText>
<Ellipse Fill="Blue" Width="40" Height="15" Margin="10,0" />
</StackPanel>
</Menultem.Header>
</Menultem>

Note that it’s now necessary to supply an AccessText element if we want an access key.
With plain-text headers, this element was generated for us automatically, but once
nested content is in use, we need to define it explicitly. Figure 5-26 shows the results.

[Eile | Edit Help
| Nev. @

Figure 5-26. Menu with nested content

The menu in Example 5-22 doesn’t do anything useful, because there are no event
handlers or commands specified. There are two ways in which you can hook a
MenuItem up to some code. You can handle its Click event in much the same way that
you would handle a button click. Alternatively, you can set the Command property on
the MenuItem, as was described in Chapter 4.

Example 5-25 shows a modified version of the Edit submenu with menu items asso-
ciated with the relevant standard commands. As long as the focus is in a control such
as TextBox or RichTextBox that understands these standard commands, the com-
mands will be handled without needing any explicit coding. If the focus is not in
such a control, the commands will simply bubble up. For example, the command
can be handled by a command binding registered for the window. If nothing handles
the command, it will be ignored.

Example 5-25. Menultems with commands

<MenuItem Header="_Edit">
<MenuItem Header="_Undo" Command="Undo" />
<MenuItem Header="_Redo" Command="Redo"/>

162 | Chapter5: Controls

Example 5-25. Menultems with commands (continued)

<Separator />

<MenuItem Header="Cu_t" Command="Cut" />

<MenuItem Header="_Copy" Command="Copy" />

<MenuItem Header="_Paste" Command="Paste" />

<MenuItem Header=" Delete" Command="Delete" />

<Separator />

<MenuItem Header="Select _AIl" Command="SelectAll" />
</Menultem>

If you were to remove the Header properties from Example 5-25, you would find that
the menu items all still appear with the correct header text for the commands. This is
because RoutedUICommand knows the display name for the command it represents, and
MenuItem is able to extract the name. However, there is one problem with taking advan-
tage of this: you will lose the accelerators. RoutedUICommand cannot prescribe a particular
access key, because access keys should be unique within the scope of a particular menu.
If a menu assigns the same access key to more than one item in a menu, ambiguity
ensues, and pressing the access key will simply highlight the menu item rather than
selecting it, with further key presses alternating between the choices. This significantly
reduces how effectively access keys streamline user input.

To guarantee a unique key for each menu item, a developer must coordinate access
keys with knowledge of which commands are used in which menus. So, the appro-
priate place to assign access keys is the menu, not the command. Imagine you’re
writing a custom command of your own—how would you choose which access key
to use? You would be able to choose only if you knew what other commands will be
sharing a menu with your command. Now consider WPF’s built-in commands—
these will be used in all sorts of contexts in any number of applications, and because
there are considerably more built-in commands than there are keys on the keyboard,
Microsoft cannot possibly assign access keys in a way guaranteed to prevent ambigu-
ity. Commands therefore don’t get to specify the access key. So, in practice, you will
normally want to define the Header property for menu items associated with com-
mands, even though it may appear to be optional.

Menu items often have a shortcut key as well as an access key. The access key works
only when the menu is open. A shortcut such as Ctrl-S (for save) works whether the
menu is open or not. Of course, the menu isn’t responsible for binding the control
shortcut to the key gesture—as we saw in Chapter 4, we associate inputs with com-
mands using input bindings. However, menus conventionally display shortcuts in
order to help users discover them.

If a menu item’s Command has an associated shortcut key, WPF will automatically dis-
play this in the menu. Example 5-25 uses standard clipboard and undo/redo com-
mands, and these all have default shortcuts, so the menu reflects this, as you can see
in Figure 5-27.

Menus | 163

Undo Ctrl+Z
Redo Ctrl+Y
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Delete Del

Select All Ctrl+A

Figure 5-27. Automatic shortcut display

If, for some reason, you choose not to use WPF’s command system—maybe you
have an existing application framework that provides its own command abstrac-
tion—you can still display a shortcut. MenuItem provides an InputCestureText prop-
erty that lets you choose the text that appears in the normal place for such shortcuts.
Example 5-26 shows a menu item with both a shortcut and an access key.

Example 5-26. Menu item with shortcut and access key

<MenuItem Header=" New" InputGestureText="Ctrl+N" />

Menu and ContextMenu both derive indirectly from ItemsControl, the same base class
as all of the list controls. This means that you can use the ItemsSource property to
populate a menu using hierarchical data binding rather than fixed content. This
could be useful if you want to make your menu structure reconfigurable. See
Chapter 6 for more details on how to use data binding.

Toolbars

Most Windows applications offer toolbars as well as menus. Toolbars provide faster
access for frequently used operations, because the user does not need to navigate
through the menu system—the toolbar is always visible on-screen. Figure 5-28
shows a pair of typical toolbars.

ﬂ ToolBar E@g
D B Second toolbar

Figure 5-28. Application with toolbars

164 | Chapter5: Controls

WPF supports toolbars through the ToolBarTray and ToolBar controls. ToolBarTray
provides a container into which you can add multiple ToolBar elements.
Example 5-27 shows a simple example with two toolbars; this is the markup for the
toolbars in Figure 5-28.

Example 5-27. ToolBarTray and ToolBar

<ToolBarTray>
<ToolBar>
<Button>
<Canvas Width="16" Height="16" SnapsToDevicePixels="True">
<Polygon Stroke="Black" StrokeThickness="0.5"
Points="2.5,1.5 9.5,1.5 12.5,4.5 12.5,15 2.5,15">
<Polygon.Fill>
<LinearGradientBrush StartPoint="1,1" EndPoint="0.2,0.7">
<GradientStop Offset="0" Color="#AAA" />
<GradientStop Offset="1" Color="White" />
</LinearGradientBrush>
</Polygon.Fill>
</Polygon>
<Polygon Stroke="Black" Fill="DarkGray" StrokeThickness="0.5"
StrokelLineJoin="Bevel"
Points="9.5,1.5 9.5,4.5 12.5,4.5" />
</Canvas>
</Button>

<Button>
<Canvas Width="16" Height="16" >
<Polygon Stroke="Black" StrokeThickness="0.5" Fill="Khaki"
SnapsToDevicePixels="True"
Points="0.5,14.5 0.5,4.5 1.5,3.5 6.5,3.5 8.5,5.5
12.5,5.5 12.5,14.5" />
<Polygon Stroke="Black" SnapsToDevicePixels="True"
StrokeThickness="0.5"
Points="1.5,14.5 4.5,7.5 15.5,7.5 12.5,14.5" >
<Polygon.Fill>
<LinearGradientBrush StartPoint="0.25,0" EndPoint="0.5,1">
<GradientStop Offset="0" Color="#FF4" />
<GradientStop Offset="1" Color="#CA7" />
</LinearGradientBrush>
</Polygon.Fill>
</Polygon>
<Path Stroke="Blue" StrokeThickness="1"
Data="M 8,2 C 9,1 12,1 14,3" />
<Polygon Fill="Blue" Points="15,1 15.5,4.5 12,4" />
</Canvas>
</Button>
</ToolBar>
<ToolBar>
<Button>Second toolbar</Button>
<CheckBox IsChecked="True">Choice</CheckBox>
</ToolBar>
</ToolBarTray>

Toolbars | 165

This contains just two toolbars, with a couple of buttons each. In this example, we
have used some simple vector graphics to draw the usual New and Open icons. The
graphical elements used are explained in more detail in Chapter 13. In practice, you
would rarely put graphics inline like this—you would usually expect drawings to be
resources that are simply referred to by the buttons in the toolbar. See Chapter 12 for
more details. The second toolbar just uses the default visuals for a Button and a
CheckBox. As you can see, these take on a flat, plain appearance when they appear in
a toolbar.

Because toolbar buttons are just normal Button or CheckBox elements with special-
ized visuals, there is nothing particularly special about their behavior. Toolbars just
provide a particular way of arranging and presenting controls. You can also add
other elements such as a TextBox or ComboBox. These will just be arranged on the tool-
bar along with the buttons.

GridSplitter

GridSplitter lets you offer the user a way to adjust the layout of your application, by
changing the size of a column or row in a grid. This lets you provide a similar feature
to Windows Explorer, where if you turn on the folder view, or one of the other pan-
els that can appear on the lefthand side of a window, you can change the amount of
space available to the panel by dragging on the vertical bar between the panel and
the main area. You can use GridSplitter only to rearrange a Grid panel (see
Example 5-28).

Example 5-28. GridSplitter

<Grid Height="100" Width="400">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="1*" />
<ColumnDefinition Width="6" />
<ColumnDefinition Width="2*" />
</Grid.ColumnDefinitions>

<Ellipse Grid.Column="0" Fill="Red" />
<GridSplitter Grid.Column="1" HorizontalAlignment="Stretch" />
<Ellipse Grid.Column="2" Fill="Blue" />

</Grid>

This puts a GridSplitter into the middle of the three columns. As Figure 5-29 shows,
if the user moves the mouse over the GridSplitter, the mouse pointer changes to the
horizontal resize arrow. Dragging the slider resizes the columns on either side.

166 | Chapter5: Controls

.=D.
.>.

Figure 5-29. GridSplitter

Where Are We?

Controls are the building blocks of applications. They represent the features of the
interface with which the user interacts. Controls provide behavior, and they rely on
styling and templates to present an appearance. WPF provides a set of built-in controls
based on the controls commonly used in Windows applications. WPF significantly
reduces the need for custom controls. In part, this is enabled by content models, but
as we will see in Chapters 8 and 9, the extent to which built-in controls can be cus-
tomized means that custom controls are necessary only in the most specialized of
circumstances.

Where AreWe? | 167

CHAPTER 6
Simple Data Binding

The purpose of most applications is to display data to users and, often, to let them
edit that data. Your job as the application developer is to bring the data in from a
variety of sources that expose their data in object, hierarchical, or relational format.
Regardless of where the data comes from or the format it’s in, there are several things
that you’ll most likely need to do with the data, including showing it, converting it,
sorting it, filtering it, grouping it, relating one part of it to another part, and, more
often than not, editing it. Without some kind of engine for shuttling data back and
forth between data sources and controls, you’re going to be writing a great deal of
code. With WPF’s data binding engine, you get more features with less code, which
is always a nice place to be.

Without Data Binding

Consider a very simple application for editing a single person’s name and age, as
shown in Figure 6-1.

) WithoutBinding | = |2 | 8 |

Name: Tom

Age: T

| Birthday

Figure 6-1. An exceedingly simple application

Figure 6-1 can be implemented with some simple XAML, as shown in Example 6-1.

168

Example 6-1. A simple Person editor layout

<!-- Windowl.xaml -->
<Window ...>
<Gridy

<TextBlock ...>Name:</TextBlock>

<TextBox Name="nameTextBox" ... />
<TextBlock ...>Age:</TextBlock>
<TextBox Name="ageTextBox" ... />
<Button Name="birthdayButton" ...>Birthday</Button>
</Grid>
</Window>

We can represent the data to be shown in our simple application in a simple class
(see Example 6-2).

Example 6-2. A simple Person class

public class Person {
string name;
public string Name {
get { return this.name; }
set { this.name = value; }

}

int age;

public int Age {
get { return this.age; }
set { this.age = value; }

}

public Person() {}
public Person(string name, int age) {
this.name = name;
this.age = age;
}
}

With the Person class, Example 6-3 shows a naive implementation of the UI of our
application.

Example 6-3. Naive Person editor code

// Window1l.xaml.cs
public class Person {...}

public partial class Windowl : Window {
Person person = new Person("Tom", 11);

Without Data Binding | 169

Example 6-3. Naive Person editor code (continued)

public Window1() {
InitializeComponent();

// Fill initial person fields
this.nameTextBox.Text = person.Name;
this.ageTextBox.Text = person.Age.ToString();

// Handle the birthday button click event
this.birthdayButton.Click += birthdayButton_ Click;

}

void birthdayButton Click(object sender, RoutedEventArgs e) {
++person.Age;
MessageBox. Show(
string.Format(
"Happy Birthday, {0}, age {1}!",
person.Name,
person.Age),
"Birthday");
}
}

The code in Example 6-3 creates a Person object and initializes the text boxes with
the Person object properties. When the Birthday button is pressed, the Person
object’s Age property is incremented and the updated Person data is shown in a mes-
sage box, as shown in Figure 6-2.

[WithoutBinding =88] % |
2l
Name: Tom i
Birthday L =]

Age: 11

Birthday Happy Birthday, Tom, age 12!
OK |

Figure 6-2. Our simple application is too simple

Our simple application implementation is, in fact, too simple. The change in the
Person Age property does show up in the message box, but it does not show up in the
main window. One way to keep the application’s UI up-to-date is to write code that,
whenever a Person object is updated, manually updates the U at the same time:

void birthdayButton_Click(object sender, RoutedEventArgs e) {
++person.Age;

170 | Chapteré6: Simple Data Binding

// Manually update the UI
this.ageTextBox.Text = person.Age.ToString();

MessageBox. Show(
string.Format(
"Happy Birthday, {0}, age {1}!",
person.Name,
person.Age),
"Birthday");
}

With a single line of code, we’ve “fixed” our application. This is a seductive and pop-
ular road, but it does not scale as the application gets more complicated and requires
more of these “single” lines of code. To get beyond the simplest of applications, we’ll
need something better.

Object Changes

A more robust way for the Ul to track object changes is for the object to raise an
event when a property changes. The right way for an object to do this is with an
implementation of the INotifyPropertyChanged interface, as shown in Example 6-4.

Example 6-4. A class that supports property change notification
using System.ComponentModel; // INotifyPropertyChanged

public class Person : INotifyPropertyChanged {
// INotifyPropertyChanged Members
public event PropertyChangedEventHandler PropertyChanged;

protected void Notify(string propName) {
if(this.PropertyChanged != null) {
PropertyChanged(this, new PropertyChangedEventArgs(propName));
}
}

string name;
public string Name {
get { return this.name; }
set {
if(this.name == value) { return; }
this.name = value;
Notify("Name");
}
}

int age;
public int Age {
get { return this.age; }
set {
if(this.age == value) { return; }
this.age = value;

Without Data Binding | 171

Example 6-4. A class that supports property change notification (continued)
Notify("Age");

}

public Person() {}
public Person(string name, int age) {
this.name = name;
this.age = age;
}
}

In Example 6-4, when either of the Person properties changes (due to the implementa-
tion of the Birthday button Click handler), a Person object raises the PropertyChanged
event. We could use this event to keep the UI synchronized with the Person properties,
as shown in Example 6-5.

Example 6-5. Simple Person editor code

// Window1.xaml.cs
public class Person : INotifyPropertyChanged {...}

public partial class Windowl : Window {
Person person = new Person("Tom", 11);

public Window1() {
InitializeComponent();

// Fill initial person fields
this.nameTextBox.Text = person.Name;
this.ageTextBox.Text = person.Age.ToString();

// Watch for changes in Tom's properties
person.PropertyChanged += person_PropertyChanged;

// Handle the birthday button click event
this.birthdayButton.Click += birthdayButton_ Click;
}

void person_PropertyChanged(
object sender,
PropertyChangedEventArgs e) {

switch(e.PropertyName) {
case "Name":
this.nameTextBox.Text = person.Name;
break;

case "Age":
this.ageTextBox.Text = person.Age.ToString();
break;

172 | Chapter6: Simple Data Binding

Example 6-5. Simple Person editor code (continued)

}

void birthdayButton Click(object sender, RoutedEventArgs e) {
++person.Age; // person_PropertyChanged will update ageTextBox
MessageBox. Show(
string.Format(
"Happy Birthday, {0}, age {1}!",
person.Name,
person.Age),
"Birthday");
}
}

Example 6-5 shows an example of a single instance of the Person class that’s created
when the main window first comes into existence, initializing the name and age text
boxes with the initial person values and then subscribing to the property change
event to keep the text boxes up-to-date as the Person object changes. With this code
in place, the Birthday button Click event handler doesn’t have to manually update
the text boxes when it updates Tom’s age; instead, updating the Age property causes
a cascade of events that keeps the age text box up-to-date with the Person object’s
changes, as shown in Figure 6-3.

Window1 Person
birthdayButton_Click :

Age

@ .getAge

setAge -
20)

PropertyChanged I
| person_PropertyChanged
Age TextBox I

| MessageBox.Show

\ 4

Figure 6-3. Keeping the UI up-to-date with changes in the object

Without Data Binding | 173

The steps are as follows:

1. User clicks on button, which causes Click event to be raised.

2. Click handler gets the age (11) from the Person object.

3. Click handler sets the age (12) on the Person object.

4. Person Age property setter raises the PropertyChanged event.

5. PropertyChanged event is routed to event handler in the UI code.
6. Ul code updates the age TextBox from “11” to “12.”

7. Button click event handler displays a message box showing the new age (“12”).

By the time the message box is shown with Tom’s new age, the age text box in the
window has already been updated, as shown in Figure 6-4.

[WithoutBinding L= | & | R]
|

| Birthday = |

Name: Tom

Age: 12

m Happy Birthday, Tom, age 12!
oK |

Figure 6-4. Manually populating two WPF controls with two object properties

By handling the PropertyChanged event, we ensure that when the data changes, the
Ul is updated to reflect that change. However, that solves only half the problem; we
still need to handle changes in the UI and reflect them back to the object.

Ul Changes

Without some way to track changes from the UI back into the object, we could eas-
ily end up with a case where the user has made some change (like changing the per-
son’s name), shows the object’s data (as happens when clicking the Birthday button),
and expects the change to have been made, only to be disappointed with Figure 6-5.

Notice in Figure 6-5 that the Name is “Thomsen Frederick” in the window, but “Tom”
in the message box, which shows that although the UI has been updated, the under-
lying object has not. To fix this problem, we need only watch for the Text property in
our TextBox object to change, updating the Person object as appropriate (see
Example 6-6).

174 | Chapter6: Simple Data Binding

) WithoutBinding L= | B | 2]

Mame: Thomsen Frederick

Age: |12 1 Birthday |

Birthday

Happy Birthday, Tom, age 12!

OK |

Figure 6-5. The need to keep Ul and data in sync

Example 6-6. Tracking changes in the UI

public partial class Windowl : Window {
Person person = new Person("Tom", 11);

public Window1() {
InitializeComponent();

// Fill initial person fields
this.nameTextBox.Text = person.Name;
this.ageTextBox.Text = person.Age.ToString();

// Watch for changes in Tom's properties
person.PropertyChanged += person PropertyChanged;

// Watch for changes in the controls
this.nameTextBox.TextChanged += nameTextBox_TextChanged;
this.ageTextBox.TextChanged += ageTextBox_TextChanged;

// Handle the birthday button click event
this.birthdayButton.Click += birthdayButton_Click;

void nameTextBox_TextChanged(object sender, TextChangedEventArgs e) {
person.Name = nameTextBox.Text;

}

void ageTextBox_TextChanged(object sender, TextChangedEventArgs e) {
int age = 0;
if(int.TryParse(ageTextBox.Text, out age)) {
person.Age = age;
}
}

Without Data Binding | 175

Example 6-6. Tracking changes in the Ul (continued)

void birthdayButton_Click(object sender, RoutedEventArgs e) {
++person.Age;

// nameTextBox_TextChanged and ageTextBox_TextChanged
// will make sure the Person object is up-to-date
// when it's displayed in the message box
MessageBox. Show(
string.Format(
"Happy Birthday, {0}, age {1}!",
person.Name,
person.Age),
"Birthday");
}
}

Figure 6-6 shows the name changes in the Ul correctly propagating to the Person
object.

[WithoutBinding ‘.ﬂq

MName: Thomsen Frederick Birthday | &3 |

Age: 12

i i 1
[Birthday Happy Birthday, Thomsen Frederick, age 12!
OK |

Figure 6-6. Manually keeping properties and controls in sync

Now, regardless of where the data changes, both the Person object and the UI show-
ing the Person object are kept synchronized. And although we’ve gotten the function-
ality we wanted, we had to write quite a bit of code to make it happen:

* Windowl constructor code to set controls to initial values, converting data to
strings as appropriate

* Windowl constructor code to hook up the PropertyChanged event to track the
Person object’s property changes

* PropertyChanged event handler to grab the updated data from the Person object,
converting data to strings as appropriate

* Windowl constructor code to hook up the TextBox object’s TextChanged event to
track the UI changes

* TextChanged event handlers to push the updated TextBox data into the Person
object, converting the data as appropriate

176 | Chapteré6: Simple Data Binding

This code allows us to write our Birthday button Event handler safe in the knowl-
edge that all changes are synchronized when we display the message box. However,
it’s easy to imagine how this code could quickly get out of hand as the number of
object properties or the number of objects we’re managing grows. Plus, this seems
like such a common thing to want to do that someone must have already provided a
simpler way to do this. And in fact, someone has; it’s called data binding.

Data Binding

Our manual code to keep the data and the UI synchronized has the effect of manu-
ally binding together two pairs of properties, each pair composed of one property on
the Person object and the Text property on a TextBox object. In WPF, data binding is
the act of registering two properties with the data binding engine and letting the
engine keep them synchronized, converting types as appropriate, as shown in
Figure 6-7.

Element , Object
Dependency : >
Property 1 = Property

Figure 6-7. The synchronization and conversion duties of data binding

Bindings

We can register two properties to be kept in sync by the data binding engine using an
instance of a Binding object, as shown in Example 6-7.

Example 6-7. Binding a Ul target property to a data source property

<TextBox ...»>
<TextBox.Text>
<Binding Path="Age" />
</TextBox.Text>
</TextBox>

In Example 6-7, we’ve used the property element syntax introduced in Chapter 1 to
create an instance of the Binding markup extension class and initialize its Path prop-
erty to Age. This establishes the synchronization relationship with the Text property
of the TextBox object. Using the binding markup extension syntax (also introduced in
Chapter 1), we can shorten Example 6-7 to the code snippet shown in Example 6-8.

Example 6-8. The shortcut binding syntax
<TextBox Text="{Binding Path=Age}" />

DataBinding | 177

As an even shorter cut, you can drop the Path designation altogether and the Binding
will still know what you mean (see Example 6-9).

Example 6-9. The shortest cut binding syntax
<TextBox Text="{Binding Age}" />

[prefer to be more explicit, so I won’t use the syntax in Example 6-9, but I won’t
judge if you like it. As an example of something more exotic, Example 6-10 sets more
than one attribute of a binding.

Example 6-10. A more full-featured binding example, longhand

<TextBox ...>
<TextBox.Foreground>
<Binding Path="Age" Mode="OneWay" Source="{StaticResource Tom}"
Converter="{StaticResource ageConverter}" />
</TextBox.Foreground>
</TextBox>

We'll see what all of these Binding properties mean directly. You might also be inter-
ested in how to pack multiple binding attribute settings using the shortcut syntax.
To accomplish this, simply comma-delimit the name-value pairs, using spaces and
newlines as convenient (see Example 6-11).

Example 6-11. A more full-featured binding example, shorthand

<TextBox ...
Foreground="{Binding Path=Age, Mode=OneWay, Source={StaticResource Tom},
Converter={StaticResource ageConverter}}" />

Table 6-1 shows the list of available properties on a Binding object, many of which
you’ll see described in more detail later in this chapter.

Table 6-1. The Binding class’s properties

Property Meaning

BindsDirectlyToSource Defaults to False. If set to True, indicates a binding to the parameters of a
DataSourceProvider (like the ObjectDataProvider discussed laterin
this chapter), instead of to the data returned from the provider. See the
BindingToMethod sample included with this book for an example.

Converter Animplementation of IValueConverter to use to convert values back and
forth from the data source. Discussed later in this chapter.

ConverterCulture Optional parameter passed to the IValueConverter methods indicating the
culture to use during conversion.

ConverterParameter Optional application-specific parameter passed to the IValueConverter meth-
ods during conversion.

ElementName Used when the source of the data is a Ul element as well as the target. Discussed

later in this chapter.

178 | Chapter6: Simple Data Binding

Table 6-1. The Binding class’s properties (continued)

Property
FallbackValue
IsAsync

Mode

NotifyOnSourceUpdated
NotifyOnTargetUpdated
NotifyOnValidationError

Path

RelativeSource

Source

UpdateSourceExceptionFilter

UpdateSourceTrigger

ValidationRules

XPath

Meaning

The value to use in case retrieving the value from the data source has failed, one of
the parts of a multipart path is null, or the binding is asynchronous and the value
hasn't yet been retrieved.

Defaults to False. When set to True, gets and sets the data on the source asyn-
chronously. Uses the FallbackValue while the data is being retrieved.

One of the BindingMode values: TwoWay, Onelay, OneTime,
OneWayToSource, orDefault.

Defaults to False. Whether to raise the SourceUpdated event or not.
Defaults to False. Whether to raise the TargetUpdated event or not.

Defaults to False. Whether to raise the Validation. Exrror attached event or
not. Discussed later in this chapter.

Path to the data of the data source object. Use the XPath property for XML data.

Used to navigate to the data source relative to the target. Discussed later in this
chapter.

A reference to the data source to be used instead of the default data context.

Optional delegate to handle errors raised while updating the data source. Valid
only if accompanied by an ErrorValidationRule (discussed later in this
chapter).

Determines when the data source is updated from the Ul target. Must be one of the
UpdateSourceTrigger values: PropertyChanged, LostFocus,
Explicit,orDefault. Discussed in Chapter7.

Zero or more derivations of the ValidationRule class. Discussed later in this
chapter.

XPath to the data on the XML data source object. Use the Path property for non-
XML data. Discussed in Chapter 7.

The Binding class has all kinds of interesting facilities for managing the binding
between two properties, but the one that you’ll most often set is the Path property.”
For most cases, you can think of the Path as the name of the property on the object
serving as the data source. So, the binding statement in Example 6-8 is creating a
binding between the Text property of the TextBox and the Name property of some
object to be named later, as shown in Figure 6-8.

Binding Target

TextBox.Text

Binding Source

——¢ <unknown>.Name

Figure 6-8. Binding targets and sources

* Or XPath property, if your data is XML, which is discussed in Chapter 7.

DataBinding | 179

In this binding, the TextBox control is the binding target, as it acts as a consumer of
changes to the binding source, which is the object that provides the data. The bind-
ing target can be any WPF element, but you’re only allowed to bind to the element’s
dependency properties (described in Chapter 1).

On the other hand, you can bind to any public CLR property or dependency prop-
erty on the binding source object.” The binding source is not named in this example
specifically so that we can have some freedom as to where it comes from at runtime
and so that it’s easier to bind multiple controls to the same object (like our name and
age text box controls bound to the same Person object).

Commonly, the binding source data comes from a data context.

Implicit Data Source

A data context is a place for bindings to look for the data source if they don’t have
any other special instructions (which we’ll discuss later). In WPF, every
FrameworkElement and every FrameworkContentElement has a DataContext property.
The DataContext property is of type Object, so you can plug anything you like into it
(e.g., string, Person, List<Person>, etc.). When looking for an object to use as the
binding source, the binding object logically traverses up the tree from where it’s
defined, looking for a DataContext property that has been set.t

This traversal is handy because it means that any two controls with a common logi-
cal parent can bind to the same data source. For example, both of our text box con-
trols are children of the grid, and they each search for a data context, as shown in
Figure 6-9.

<!--Window1.xaml-->
<Window...> +——
<Grid Name="grid"> <

<TextBlock...>Name:</TextBlock>
<TextBox Text="{Binding Path=Name}'.../>
<TextBlock...>Age:</TextBIlock> I—4_|@
<TextBox Text="{Binding Path=Age}".../>
<Button Name="birthdayButton"...>Birthday</Button>

</Grid>
</Window>

Figure 6-9. Searching the element tree for a non-null DataContext

* WPF data binding sources can also expose data via implementations of ICustomTypeDescriptor, which is how
ADO.NET’s data sources are supported.

t Actually, data binding doesn’t do any searching at runtime. Instead, it relies on the fact that the DataContext
property is inheritable, which means that the WPF property system itself implements the scoping/searching
behavior described here. (Inheritable dependency properties are described in Chapter 18.)

180 | Chapteré6: Simple Data Binding

The steps work like this:

1. The binding looks for a DataContext that has been set on the TextBox itself.
2. The binding looks for a DataContext that has been set on the Grid.
3. The binding looks for a DataContext that has been set on the Window.

Providing a DataContext value for both of the text box controls is a matter of setting
the shared Person object as a value of the grid’s DataContext property in the Windowl
constructor, as shown in Example 6-12.

Example 6-12. Editor code simplified with data binding

// Window1.xaml.cs

using System;

using System.Windows;

using System.Windows.Controls;

namespace WithBinding {
public partial class Windowl : Window {
Person person = new Person("Tom", 11);

public Window1() {
InitializeComponent();

// Let the grid know its data context
grid.DataContext = person;

this.birthdayButton.Click += birthdayButton Click;
}

void birthdayButton Click(object sender, RoutedEventArgs e) {
// Data binding keeps person and the text boxes synchronized
++person.Age;
MessageBox. Show(
string.Format(
"Happy Birthday, {0}, age {1}!",
person.Name,
person.Age),
"Birthday");
}
}
}

So, although the functionality of our app is the same as shown in Figure 6-6, the data
synchronization code has been reduced to a binding object for each property in the
XAML where data is to be shown and a data context for the bindings to find the
data. There is no need for the Ul initialization code or the event handlers that copy
and convert the data (notice that no code has been elided from Example 6-12).

To be clear, the use of the INotifyPropertyChanged implementation is a required part
of this example. This is the interface that WPF’s data binding engine uses to keep the

DataBinding | 181

UT synchronized when an object’s properties change. Without it, a UI change can
still propagate to the object, but the binding engine will have no way of knowing
when the object changes outside of the UL.

A

- It’s not quite true that the binding engine will have no way of knowing
.‘s\ when a change happens on an object that does not implement the
- INotifyPropertyChanged interface. Another way it can know is if the

object implements the PropertyNameChanged events as proscribed in .NET
1.x data binding (e.g., SizeChanged, TextChanged, etc.), with which WPF
maintains backward compatibility. Another way is a manual call to the
UpdateTarget method on the BindingExpression object associated with
the Binding in question. For example:

BindingOperations.GetBindingExpression(
ageTextBox, TextBox.TextProperty).UpdateTarget();

Without rebinding or setting the data again manually, the call to
UpdateTarget is your only option if the data source provides no notifi-
cations and you have no access to the source code. However, it’s safe
to say that an implementation of INotifyPropertyChanged is the recom-
mended way to enable property change notifications in WPF data
binding.

Data Islands

Although our application is attempting to simulate a more complicated application
that, perhaps, loads its “person data” from some serialized form and saves it between
application sessions, it’s not hard to imagine cases where some data is known at
compile time (e.g., sample data like our Tom).

As discussed in Chapter 1, XAML is a language for describing object graphs, so prac-
tically any type with a default constructor can be initialized in XAML (the default
constructor is needed because XAML has no syntax for calling a nondefault con-
structor).” Luckily, as you’ll recall from Example 6-4, our Person class has a default
constructor, so we can create an instance of it in our application’s XAML, as shown
in Example 6-13.

Example 6-13. Creating an instance of a custom type in XAML

<Window ... xmlns:local="clr-namespace:WithBinding">
<Window.Resources>
<local:Person x:Key="Tom" Name="Tom" Age="11" />

</Window.Resources>
<Grid>...</Grid>
</Window

* If you want to get fancy, you can create a TypeConverter that can accept a string as input or a markup exten-
sion as well, but generally the default constructor route is the easiest way to provide XAML support for your
custom types.

182 | Chapter6: Simple Data Binding

Here we’ve created an “island” of data (sometimes called a data island) inside the
window’s Resources element, bringing the Person type in using the clr-namespace
syntax described in Chapter 1.

With a named Person in our XAML code, we can declaratively set the grid’s
DataContext instead of setting it in the code behind programmatically, as shown in
Example 6-14.

Example 6-14. Binding to an object declared in XAML

<!-- Window1.xaml -->
<Window ... xmlns:local="clr-namespace:WithBinding">
<Window.Resources>
<local:Person x:Key="Tom" Name="Tom" Age="11" />
</Window.Resources>
<Crid DataContext="{StaticResource Tom}">

<TextBlock ...>Name:</TextBlock>
<TextBox ... Text="{Binding Path=Name}" />
<TextBlock ...>Age:</TextBlock>
<TextBox ... Text="{Binding Path=Age}" />
<Button ... Name="birthdayButton">Birthday</Button>
</Grid>
</Window>

Now that we’ve moved the creation of the Person object to the XAML, we have to
update our Birthday button Click handler from using a member variable to using the
data defined in the resource (see Example 6-15).

Example 6-15. Using an object bound in XAML

public partial class Windowl : Window {

void birthdayButton Click(object sender, RoutedEventArgs e) {
// Get the Person from the Window's resources
Person person = (Person)this.FindResource("Tom");

++person.Age;
MessageBox.Show(...);
}
}

In Example 6-15, we’re using the FindResource method (introduced in Chapter 1 and
detailed in Chapter 12) to pull the Person object from the main window’s resources.
With this minor change, the result is brought again into parity with Figure 6-6.

v
NN

In practice, I haven’t found data islands as described here to be useful
for much beyond sample data. However, the facilities of XAML that
ti+ allow it to produce graphs of arbitrary objects have a great number of
* uses beyond WPF.

DataBinding | 183

Explicit Data Source

Once you’ve got yourself a named source of data, you can be explicit in the XAML
about the source in the binding instead of relying on implicitly binding to a
DataContext property set somewhere in the tree. Being explicit is useful if you’ve got
more than one source of data (e.g., two Person objects). Setting the source explicitly
is accomplished with the Source property in the binding, as shown in Example 6-16.

Example 6-16. Data binding using the Source property

<!-- Windowl.xaml -->
<Window ...>
<Window.Resources>
<local:Person x:Key="Tom" ... />
<local:Person x:Key="John" ... />
</Window.Resources>
<Grid>

<TextBox Name="tomTextBox"
Text="
{Binding
Path=Name,
Source={StaticResource Tom}}" />

<TextBox Name="johnTextBox"
Text="
{Binding
Path=Name,
Source={StaticResource John}}" />

</Grid>
</Window>

In Example 6-16, we’ve bound two text boxes to two different Person objects, set-
ting the Source property of the Binding object to each person explicitly.

Binding to Other Controls

As another example of using explicit data sources, WPF provides for binding one ele-
ment’s property to another element’s property. For instance, if we wanted to syn-
chronize the brush used to draw the Birthday button’s text with the foreground
brush of the age text box (this will be handy later when we change the age text box’s
color based on the person’s age), we can use the ElementName property of the Binding
object, as shown in Example 6-17.

Example 6-17. Binding to another Ul element

<TextBox Name="ageTextBox" Foreground="Red" ... />

<!-- keep button's foreground brush in sync w/ age text box's -->

184 | Chapter6: Simple Data Binding

Example 6-17. Binding to another Ul element (continued)

<Button ...
Foreground="{Binding Path=Foreground, ElementName=ageTextBox}"
>Birthday</Button>

Now, no matter what means we use to change the foreground brush’s color of the
age text box—via binding, code, or triggers (as we’ll see in Chapter 8)—the button’s
foreground brush will always follow.

Value Conversion

In Example 6-17, we’ve bound the foreground brush of the Birthday button to what-
ever the foreground brush is for the age text box, but our text box never changes
color, so neither will the Birthday button. However, we might decide that anyone
over age 25 is hot, so should be marked in the Ul as red." When someone ages at the
click of the Birthday button, we want to keep the UI up-to-date, which means we’ve
got ourselves a perfect candidate for data binding—something along the lines of
Example 6-18.

Example 6-18. Binding to a non-Text property

<!-- Windowl.xaml -->
<Window ...>
<Grid»>

<TextBox
Text="{Binding Path=Age}"
Foreground="{Binding Path=Age, ...}"

/>

</Grid>
</Window>
In Example 6-18, we’ve bound the age text box’s Text property to the Person object’s
Age property, as we’ve already seen, but we’re also binding the Foreground property
of the text box to the same property on the Person object. As Tom’s age changes, we
want to update the foreground color of the age text box. However, because the Age is
of type Int32 and Foreground is of type Brush, a mapping from Int32 to Brush needs
to be applied to the data binding from Age to Foreground. That’s the job of a value
converter.

A value converter (or just “converter” for short) is an implementation of the
IValueConverter interface, which contains two methods: Convert and ConvertBack.

* Or, anyone over 25 is in more danger of dying and red means “danger”—whichever makes you more likely
to recommend this book to your friends...

DataBinding | 185

The Convert method is called when converting from the source data to the target Ul
data (e.g., from Int32 to Brush). The ConvertBack method is called to convert back
from the UI data to the source data. In both cases, the current value and the type
wanted for the converted data are passed to the method.

To convert an Age Int32 into a Foreground Brush, we can implement whatever map-
ping in the Convert function we feel comfortable with (see Example 6-19).

Example 6-19. A simple value converter

[ValueConversion(/*sourceType*/ typeof(int), /*targetType*/ typeof(Brush))]
public class AgeToForegroundConverter : IValueConverter {

// Called when converting the Age to a Foreground brush
public object Convert(object value, Type targetType, ...) {
// Only convert to brushes...
if(targetType != typeof(Brush)) { return null; }

// DANGER! After 25, it's all downhill...
int age = int.Parse(value.ToString());
return (age > 25 ? Brushes.Red : Brushes.Black);

}

public object ConvertBack(object value, Type targetType, ...) {
// Should not be called in our example
throw new NotImplementedException();
}
}

In Example 6-19, in addition to deriving from IValueConverter, we've also applied
the optional ValueConversion attribute. The ValueConversion attribute is useful for
documenting the expected source and target types for developers and tools, but it is
not enforced by WPF, so don’t expect it to catch values that don’t match the source
or target types. The part that is required for our example is the implementation of
Convert, where we hand out the brush that’s appropriate for the age being displayed.
Because we haven’t provided any facility to change the Foreground brush being used
to display the age, there’s no reason to do anything useful in the ConvertBack
method—it won’t be called.

A s
S I chose the name AgeToForegroundConverter because I have specific
.‘s\ semantics I’'m building into my converter class that go above simply
ANE Y . .
o3 converting an Int32 to a Brush. Even though this converter could be

plugged in anywhere that converted an Int32 to a Brush, I might have
very different requirements for a HeightToBackgroundConverter, for
example.

Once you’ve got a converter class, it’s easy to create an instance of one in the XAML,
just like we’ve been doing with our Person object (see Example 6-20).

186 | Chapteré6: Simple Data Binding

Example 6-20. Binding with a value converter

<!-- Windowl.xaml -->
<Window ... xmlns:local="clr-namespace:WithBinding">
<Window.Resources>
<local:Person x:Key="Tom" ... />
<local:AgeToForegroundConverter x:Key="ageConverter" />
</Window.Resources>
<Grid DataContext="{StaticResource Tom}">
<TextBox
Text="{Binding Path=Age}"
Foreground="
{Binding
Path=Age,
Converter={StaticResource ageConverter}}"
e >

<Button ...
Foreground="{Binding Path=Foreground, ElementName=ageTextBox}"
>Birthday</Button>
</Grid>
</Window>

In Example 6-20, once we have a named converter object in our XAML, we estab-
lish it as the converter between the Age property and the Foreground brush by set-
ting the Converter property of the binding object. Figure 6-10 shows the result of
our conversion.

) withBinding L= | & | 8 |
Ll
{ @ withginding .= [@ | = |

Age: 24
Name: Tom

Bl | 5o X withBinding |.M.l

Name: Tom

Age:
— Name: Tom

-~

{ 57 withginding L= | B | 8 |

Name: Tom

Age: 27

(Birthday

Figure 6-10. A value converter in action (Color Plate 3)

In Figure 6-10, notice that as Tom’s age increases past the threshold, the converter
switches the foreground brush from black to red. This change happens when the Age
property changes. Because WPF detects the change, you do not need any explicit

DataBinding | 187

code to force the color change, just as with any other kind of data binding. Notice
also that the foreground color of the Birthday button matches the age text box’s
color, because we’re using element binding to keep them in sync.

Value Conversion Versus Type Conversion

You may have noticed that until we decided to bring brushes into the mix, we didn’t
need value converters at all. For example, with the Person class’s Age property in an
Int32, we didn’t have to use a value converter even though the TextBox class’s Text
property is of type String. This works because the Binding class uses the type converter
support that’s been built into .NET since Version 1.0. Type converters work on a type
basis (i.e., there’s a type converter that knows how to convert from integers to strings
and back [and there are many more type converters as well]). This works because there
is a reasonable general-purpose way to convert strings to integers (and vice versa).

On the other hand, a value converter works on an application-specific basis. Although
there is no built-in general-purpose conversion from integers to brushes, we can define
an application-specific conversion to handle a certain kind of integer (e.g., ages, in our
example) to brushes and apply that on a case-by-case basis.

Editable Value Conversion

In addition to value conversion from the underlying data type to some other type for
display, like our age-to-foreground-brush converter, you may also use value conver-
sion for editing convenience. For example, although the Age property is automati-
cally converted for us between an Int32 and a String in base 10, maybe your users
would prefer base 16 (who wouldn’t?!). Enabling editing in base 16 is a matter of
converting to and from a string in hexadecimal format, as shown in Example 6-21.

Example 6-21. A value converter for integers in base 16

public class Basel6Converter : IValueConverter {
public object Convert(
object value, Type targetType, ...) {
// Convert to base 16
return ((int)value).ToString("x");

}

public object ConvertBack(
object value, Type targetType, ...) {
// Convert from base 16
return int.Parse(
(string)value, System.Globalization.NumberStyles.HexNumber);

188 | Chapteré6: Simple Data Binding

Hooking up this value converter works just like before, but this time we’re convert-
ing the Text property of the TextBox instead of the Foreground property:

<TextBox ...
Text="
{Binding
Path=Age,
Converter={StaticResource basei6Converter}}" />

Figure 6-11 shows the base-16 converter in action.

[WithBinding L= | & | 8 |
|

Name: Tom r
| Birthday L=

Age: c

girtl | Happy Birthday, Tom, age 12!

OK |

Figure 6-11. The base-16 value converter in action

One thing you’ll notice in our Base16Converter implementation of IValueConverter is
that we haven’t guarded against a user entering something that can’t be interpreted
as a hexadecimal number. If he does, the resulting exception is not handled by WPF,
but is instead shown to the user as an unhandled exception. Although you can spend
your time writing code to catch conversion errors, what you’ll really like to do is
catch those errors before they ever get to the value converter, and instead communi-
cate them to your users. For that, you’ll be best served by validation rules.

Validation

A validation rule is some code for validating a piece of data in the target before it’s
used to update the source. The validation code is realized as an instance of a class
that derives from the base ValidationRule class (from the System.Windows.Controls
namespace) and overrides the Validate method. A built-in validation rule called
ExceptionValidationRule (see Example 6-22) provides some measure of protection
against a user intent on entering data outside the range supported by our age-to-
foreground value converter.

Example 6-22. Hooking up a validation rule

<Window ... xmlns:local="clr-namespace:WithBinding">
<Window.Resources>

DataBinding | 189

Example 6-22. Hooking up a validation rule (continued)

<local:AgeToForegroundConverter x:Key="ageConverter" />
</Window.Resources>

<TextBox ...
Foreground="
{Binding
Path=Age,
Converter={StaticResource ageConverter}}">

<TextBox.Text>
<Binding Path="Age">
<Binding.ValidationRules>
<ExceptionValidationRule />
</Binding.ValidationRules>
</Binding>
</TextBox.Text>

</TextBox>

In Example 6-22, we’re using the shortcut markup extension binding syntax to bind
the Foreground property to the Age (via the age-to-foreground value converter), but
using the longhand syntax to bind the Text property to the Age so that we can create
a list of validation rules. These validation rules will be executed in order when the
target property changes. If they all succeed, the object is updated and everyone’s
happy. If one of the rules fails, WPF highlights the offending data to make it easy to
see what to fix, as shown in Figure 6-12.

[WithBinding L= [B | R]

Name: Tom

Age: |hﬂmve l

(Birthday |

Figure 6-12. A TextBox control highlighted as invalid (Color Plate 4)

As nifty as the red outline around the offending text box is, it still doesn’t let the user
know what’s wrong (i.e., the error message associated with the exception isn’t
shown). To do that, we need to look under the hood a bit.

When a validation result indicates invalid data, a ValidationError object is created
that contains an object meant to describe the error, ideally for display by the UL In
the case of the ExceptionValidationRule, this “error content” object contains the

190 | Chapteré6: Simple Data Binding

Message property of the Exception the validation rule catches. To gain access to those
errors, you can listen to the ValidationError attached event, which you can set up as
shown in Example 6-23.

Example 6-23. Handling the ValidationError event with a message box

// Windowl.cs

public Window1() {
InitializeComponent();

this.birthdayButton.Click += birthdayButton Click;

// Listen for the validation error event on the age text box
// (you can do this in XAML by handling the Validation.Error
// attached event on the ageTextBox)
Validation.AddErrorHandler(this.ageTextBox,
ageTextBox_ValidationError);
}

void ageTextBox ValidationError(
object sender, ValidationErrorEventArgs e) {

// Show the string pulled out of the exception by the
// ExceptionValidationRule
MessageBox. Show(

(string)e.Error.ErrorContent, "Validation Error");

<!-- Windowi.xaml -->

<TextBox Name="ageTextBox" ...>
<TextBox.Text>
<Binding Path="Age" NotifyOnValidationError="True">
<Binding.ValidationRules>
<ExceptionValidationRule />
</Binding.ValidationRules>
</Binding>
</TextBox.Text>
</TextBox>

In Example 6-23, we’re calling the static AddErrorHandler method on the Validation
class so that when a validation event happens on the age text box, we’ll get a notifi-
cation. In that event handler, we can access the Error.ErrorContent property to get
to the string provided by the validation rule. This event fires, however, only if the
NotifyOnValidationError property is set to True on the Binding (the default is False).

DataBinding | 191

With this event handler in place, we get our message box when there’s a validation
error, as shown in Figure 6-13.

) WithBinding L= | B | R]

Name: Tom

Age: |twel\. Validation Error | 23

s

Input string was not in a correct format.

OK |

Figure 6-13. Handling the ValidationError event by showing a message box

And although “Input string was not in a correct format” is the message in the excep-
tion that the Parse method of the Int32 class throws when there’s a parse error, 1
think we can do better—especially if we’d also like to set a range on the numbers
that our users can enter for age.”

Custom validation rules

To make sure that our person’s age is within a certain range, we simply derive
from the ValidationRule class and override the Validate method, as shown in
Example 6-24.

Example 6-24. A custom validation rule

public class NumberRangeRule : ValidationRule {
int min;
public int Min {
get { return min; }
set { min = value; }

}

int max;

public int Max {
get { return max; }
set { max = value; }

}

* On August 4, 1997, the world’s oldest person so far, Jeanne Louise Calment, died at age 122, having taken
up fencing at age 85 and outlived the holder of her reverse-mortgage. Although I firmly believe that Ms. Cal-
ment is showing us the way to a richer, longer life, it’ll be a while yet before we need the full range supported
by the Int32 class (2,147,483,647 years young).

192 | Chapter6: Simple Data Binding

Example 6-24. A custom validation rule (continued)

public override ValidationResult Validate(
object value, System.Globalization.CultureInfo cultureInfo) {
int number;
if(!int.TryParse((string)value, out number)) {
return new ValidationResult(
false,
"Invalid number format");

}

if(number < min || number > max) {
return new ValidationResult(
false,
string.Format("Number out of range ({0}-{1})", min, max));

}

//return new ValidationResult(true, null); // valid result
return ValidationResult.ValidResult; // static valid result
// to save on garbage

}

}

In this case, we’re creating a custom class with two public properties that describe
the valid range of a number (specifically, an integer). The result of the validation is
always an instance of the ValidationResult class. The most important part of the
ValidationResult is the first argument to the constructor, which indicates whether
the data is valid (true) or invalid (false). After that, we’re free to pass whatever we
want as a CLR object. In our example, we check whether the string can be parsed
into an integer and is within our range, passing back False and an error string if it’s
not. Otherwise, we pass back True. (Because a valid result has little need for error
detail, the ValidationResult class provides the static ValidResult property—a
ValidationResult constructed by passing True and null—which you should use
instead of creating a new ValidationResult object for a valid result.)

To hook up our validation rule, we put it to the Binding object’s ValidationRules col-
lection instead of the ExceptionvalidationRule, as shown in Example 6-25.

Example 6-25. Hooking up a custom validation rule

<TextBox ...
Foreground="
{Binding
Path=Age,
Converter={StaticResource ageConverter}}">
<TextBox.Text>
<Binding Path="Age">
<Binding.ValidationRules>
<local:NumberRangeRule Min="0" Max="128" />
</Binding.ValidationRules>
</Binding>
</TextBox.Text>
</TextBox>

DataBinding | 193

Now, when there’s a problem with the data, we get a message such as those shown
in Figures 6-14 and 6-15.

[WithBinding L= | & [8 |

Name: Tom ‘

— 1 Validation Error |i
Age: twell

5

[: Invalid number format

N—
OK |

Figure 6-14. A validation error from a custom validation rule

[&7 withBinding L= | & | &]

Name: Tom

Age: 7147 Validation Error u

Number out of range (0-128)

o

Figure 6-15. Another validation ervor from a custom validation rule

And so, although we now have nicer, more meaningful messages for our user when
he enters invalid data, T am not a fan of the message box for validation error report-
ing (it stops the very activity you’re trying to enable). Instead, I prefer a tool tip, as in
Example 6-26.

Example 6-26. Handling the ValidationError event with a tool tip
void ageTextBox ValidationError(
object sender, ValidationErrorEventArgs e) {

// Show the string created in NumberRangeRule.Validate
ageTextBox.ToolTip = (string)e.Error.ErrorContent;

}

At first, this code works just peachy keen, as shown in Figure 6-16.

194 | Chapter6: Simple Data Binding

7 WithBinding (s IR

Name: Tom

|

Invalid number format

Figure 6-16. Handling the ValidationError event by setting a tool tip

Age:

When there’s a validation error, the message is shown in the tool tip on the control
that’s holding invalid data. The problem is, once the user has corrected the data, the
tool tip continues to hang around, as shown in Figure 6-17.

7] WithBinding L=l E I

Name: | Tom

Age: 12

Invalid number format }
Birthday] ‘

Figure 6-17. The tool tip hanging around after the validation error has been resolved

Unfortunately, there’s no ValidationSuccess event that lets us clear the error message
from the tool tip. What we really want is to update the tool tip based on the changing
validation error data, whether it’s in error or success, which sounds like a job for data
binding. However, before we can do that, we need to take a closer look at Path syntax.

Binding Path Syntax

When you use Path=Something in a Binding statement, the Something can be in a num-
ber of formats, including the following commonly used variants:”

Path=Property
Bind to the property of the current object, whether the property is a CLR prop-
erty, a dependency property, or an attached property (e.g., Path=Age).

Path=(OwnerType.AttachedProperty)
Bind to an attached dependency property (e.g., Path=(Validation.HasError)).

* The Windows Platform SDK has a more complete list of the WPF binding path syntax variants, including
escaping rules, on a page titled “Binding Declarations Overview,” available at http://msdn2.microsoft.com/
en-us/library/ms752300.aspx#Path_Syntax (http://tinysells.com/65).

DataBinding | 195

Path=Property.SubProperty
Bind to a subproperty (or a sub-subproperty, etc.) of the current object (e.g.,
Path=Name.Length).

Path=Property[n]
Bind to an indexer (e.g., Path=Names[0]).

Path=Property/Property
Master-detail binding, described later (e.g., Path=Customers/Orders).

Path=(OwnerType.AttachedProperty)[n].SubProperty
Bind to a mixture of properties, subproperties, and indexers (e.g.,
Path=(Validation.Errors)[0].ErrorContent).

So far, we’ve been using the Path=Property syntax, but if we want to get at an error
on the validation errors collection, we’ll need to use a mixed path that includes an
attached property, an indexer, and a subproperty, as shown in Example 6-27.

Example 6-27. Binding the ToolTip property to the validation error message

<TextBox
Name="ageTextBox" ...
ToolTip="{Binding
ElementName=ageTextBox,
Path=(Validation.Errors)[0].ErrorContent}">
<TextBox.Text>
<Binding Path="Age">
¢!-- No need for NotifyOnValidationError="true" -->
<Binding.ValidationRules>
<local:NumberRangeRule Min="0" Max="128" />
</Binding.ValidationRules>
</Binding>
</TextBox.Text>
</TextBox>

In Example 6-27, the tool tip has been bound to the first error from the attached
property Errors collection. When there are no errors, the tool tip is empty. When
there is an error, the ErrorContent property (which, you’ll recall, we pack with an
error string in NumberRangeRule.Validate) is used to populate the tool tip. We no
longer need to set the NotifyOnValidationError property or handle the
ValidationError event because as the Errors collection changes, the binding makes
sure that the tool tip is kept up-to-date. In other words, we use data binding to the
ToolTip property on the age text box to report a validation error on the Text prop-
erty. When the collection of errors is null, the binding engine will automatically null
out the tool tip, giving us the empty tool tip on success that we so deeply desire.

196 | Chapteré6: Simple Data Binding

Relative Sources

One thing you may find a bit onerous in Example 6-27 is the use of the explicit
ElementName to bind to another part of the target as the data source. Wouldn’t it be
nicer if you could just say, “Bind to myself, please?” And in some cases, you may not
have a name for the thing to which you’d like to bind (e.g., to fulfill queries like
“Bind to the Border that’s the parent or grandparent [or great-grandparent] of me” or
even “Bind to the previous bit of data in the list instead of the current bit of data”).
All of these are available with the use of the RelativeSource property of a binding,
shown in Example 6-28.

Example 6-28. Using a RelativeSource

<TextBox ...
ToolTip="{Binding RelativeSource={RelativeSource Self},
Path=(Validation.Errors)[0].ErrorContent}">

In Example 6-28, we’re using the Self designator to use the TextBox currently serving as
the data binding UT target as the data source, so that we can bind to the validation errors
collection associated with it to compose the tool tip. For more information about Self
and the other relative sources—FindAncestor, Previous, and TemplatedParent (which is
also discussed in Chapter 9)—I recommend the SDK documentation.”

Update Source Trigger

If you’ve been following along, you may have noticed that validation, and therefore the
pushing of the updated data into the underlying object, doesn’t happen until the age
text box loses focus. On the other hand, you may decide that you’d like validation et al.
to happen immediately when the control state changes, long before the focus is lost.
This behavior is governed by the UpdateSourceTrigger property on the Binding object:
namespace System.Windows.Data {
public enum UpdateSourceTrigger {
Default = 0, // updates "naturally" based on the target control
PropertyChanged = 1, // updates the source immediately

LostFocus = 2, // updates the source when focus changes
Explicit = 3, // must call BindingExpression.UpdateSource()

}
}
The default value of UpdateSourceTrigger is UpdateSourceTrigger.Default, which means
that the trigger for updating the data source is based on the target property (e.g., the
trigger for the Text property of the TextBox is LostFocus). If you'd like to force another
kind of behavior, you can set it on the Binding, as shown in Example 6-29.

* A good place to continue your exploration of relative sources is the “RelativeSourceMode Enumeration”
page in the Windows Platform SDK, which is available at http://msdn2.microsoft.com/en-us/library/
system.windows.data.relativesourcemode.aspx (http://tinysells.com/66).

DataBinding | 197

Example 6-29. Changing the update source trigger

<TextBox ...>
<TextBox.Text>
<Binding Path="Age" UpdateSourceTrigger="PropertyChanged">

</Binding>
</TextBox.Text>
</TextBox>

In this case, instead of waiting for the focus to be lost to do validation, it happens on
each character entered.

Debugging Data Binding

You may have noticed that our age text box’s binding options have gotten fairly
involved:

<TextBox ...
Foreground="{Binding Path=Age,
Source={StaticResource Tom},
Converter={StaticResource ageConverter}}"
ToolTip="{Binding RelativeSource={RelativeSource Self},
Path=(Validation.Errors)[0].ErrorContent}">
<TextBox.Text>
<Binding Path="Age" UpdateSourceTrigger="PropertyChanged">
<Binding.ValidationRules>
<local:NumberRangeRule Min="0" Max="128" />
</Binding.ValidationRules>
</Binding>
</TextBox.Text>
</TextBox>

There’s a lot going on here and it would be easy to get some of it wrong. For exam-
ple, if we had a background in journalism, we might have used one-based indexing
instead of zero-based indexing to access the first error in our list of validation errors
when setting up the binding for the tool tip:

<TextBox ...

ToolTip="{Binding RelativeSource={RelativeSource Self},
Path=(Validation.Errors)[1].ErrorContent}">

</TextBox>
In this case, as in most others, the WPF data binding engine will simply swallow the
error so as not to disturb our user friends.” So, how are we to find it? Well, you need

only check the debug output to see the error shown in Example 6-30, and all will be
revealed.

* The swallowing of errors like these lets us declare data bindings before the data is actually available, simpli-
fying our programming chores considerably in this area.

198 | Chapteré6: Simple Data Binding

Example 6-30. Watch debug output for help debugging data binding problems

System.Windows.Data Error: 12 : Cannot get value (type 'ValidationError') from
'(validation.Errors)' (type 'ReadOnlyObservableCollection™1').
BindingExpression:Path=(0).[1].ErrorContent; Dataltem='TextBox'

(Name="ageTextBox"'); target element is 'TextBox' (Name='ageTextBox');

target property is 'ToolTip' (type 'Object') TargetInvocationException:
'System.Reflection.TargetInvocationException: Exception has been thrown by the target of
an invocation. --->

System.ArgumentOutOfRangeException: Index was out of range. Must be non-negative and less
than the size of the collection.

Parameter name: index

In this case, we can see that the index is out of range, giving us a clue as to how to fix
it. The data binding debug output provides all kinds of helpful hints like this, and
you should check it if eyeballing your data binding expressions doesn’t yield the
source of the issue.”

Where Are We?

Data binding is about keeping two values synchronized. One value, the target, is a
dependency property, typically on a Ul element. The other, the source, is a CLR
property—the result of an XPath expression, a dependency property, or a dynamic
property used by objects like those provided by ADO.NET that don’t know what the
data is going to be until runtime. By default, as either the target or the source
changes, the other value is updated, but you can control that with the alternate bind-
ing modes (e.g., one-way, one-time, etc.). As data changes, type conversion happens
automatically if a converter is available, although you can take full control of the
conversion and validation process if you so choose, doing things like restricting data
ranges and converting data formats, or even automatically showing errors in tool tips.
You might think that WPF data binding is powerful with these features, and you’d be
right, but we’ve just touched on the bare essentials associated with bindings to prop-
erties on a single object. When you’ve got a list of objects as your data source, you've
got all kinds of other facilities, which is the subject of the next chapter.

* For more on the data binding debug output, see the SDK documentation for the PresentationTraceSources
class at http://msdn2.microsoft.com/en-us/library/system.diagnostics.presentationtracesources.aspx or http://
tinysells.com/79 and Mike Hillberg’s most excellent blog posting on this subject at http://blogs.msdn.com/
mikehillberg/archive/2006/09/14/WpfTraceSources.aspx or http://tinysells.com/78.

Where AreWe? | 199

CHAPTER 7
Binding to List Data

In Chapter 6, we looked at the basics of data binding with respect to single objects.
However, when you’ve got lists of objects, you’ve got still more flexibility and power,
including managing the “current” object in a list, sorting, filtering, and grouping. Also,
WPF gives you the ability to expand a single data source object into a set of target Ul
elements with data templates, bring in XML and relational data, and perform master-
detail binding and hierarchical binding. We discuss all of these topics in this chapter.

Binding to List Data

To kick things off, recall our Person class from Chapter 6; let’s add a new type for
keeping track of a list of Person objects (see Example 7-1).

Example 7-1. Declaring a custom list type

using System.Collections.Generic; // List<T>

namespace PersonBinding {
public class Person : INotifyPropertyChanged {
// INotifyPropertyChanged Members
public event PropertyChangedEventHandler PropertyChanged;

protected void Notify(string propName) {
if(this.PropertyChanged != null) {
PropertyChanged(this, new PropertyChangedEventArgs(propName));
}
}

string name;
public string Name {
get { return this.name; }
set {
if(this.name == value) { return; }
this.name = value;
Notify("Name");
}
}

200

Example 7-1. Declaring a custom list type (continued)

int age;
public int Age {
get { return this.age; }
set {
if(this.age == value) { return; }
this.age = value;
Notify("Age");

}

public Person() {}
public Person(string name, int age) {
this.name = name;
this.age = age;
}
}

// Create an alias for a generic type so that we can
// create a list of Person objects in XAML
class People : List<Person> {}

}...

We can bind this new list data source in exactly the same way as if we were binding

to a single object data source (see Example 7-2).

Example 7-2. Declaring a collection in XAML

<!-- Windowl.xaml -->
<Window ... xmlns:local="clr-namespace:ListBinding">
<Window.Resources>
<local:People x:Key="Family">
<local:Person Name="Tom" Age="11" />
<local:Person Name="John" Age="12" />
<local:Person Name="Melissa" Age="38" />
</local:People>
<local:AgeToForegroundConverter
x:Key="ageConverter" />
</Window.Resources>
<Grid DataContext="{StaticResource Family}">

<TextBlock ...>Name:</TextBlock>
<TextBox Text="{Binding Path=Name}" ... />
<TextBox
Text="{Binding Path=Age}"
Foreground="{Binding Path=Age, Converter=...}" ... />
<Button ...>Birthday</Button>
</Grid>
</Window>

Binding to List Data

201

In Example 7-2, we’ve created an instance of the People collection and populated it
with three Person objects. Running it will look just like running the Person object ver-
sion from Chapter 6 (Figure 7-1).

[WithoutBinding L= | & | & Jl

Birthday R

Name: Tom r

Age: 12

Birthday Happy Birthday, Tom, age 12!
oK |

Figure 7-1. Showing one person at a time from a list

Even though we’re binding to a list of Person objects, each TextBlock can be bound
to a property from only a single Person object.

Current Item

While the text box properties can be bound to only a single object at a time, the
binding engine is giving them the current item in the list of possible objects they
could bind against, as illustrated in Figure 7-2.

People
Name TextBox Person
Jext < Binding .Name ="Tom"
Age=11
Person
Age TextBox .Name ="John"
Jext Binding Age=12

Figure 7-2. Binding to a list data source

By default, the first item in the list is the initial current item. Because the first item in
our list example is the same as the only item to which we were binding before, things
look and act in exactly the same way as our single Person object example, except for
the Birthday button.

202 | Chapter7: Binding to List Data

Getting the current item

Recall the current Birthday button click event handler from Chapter 6 (see
Example 7-3).

Example 7-3. Finding a custom object declared in XAML

public partial class Windowl : Window {

void birthdayButton Click(object sender, RoutedEventArgs e) {
Person person = (Person)this.FindResource("Tom"));
++person.Age;
MessageBox.Show(...);

}
}

Our Birthday button has always been about celebrating the birthday of the current
person, but so far the current person has always been the same, so we could just
shortcut things and go directly to a single Person object. Now that we’ve got a list of
objects, this no longer behaves acceptably (unless you consider an unhandled excep-
tion message box acceptable behavior). Further, pulling the collection out of the
resources won'’t tell us which Person is currently being shown in the UI, because it
has no idea about such things (nor should it). For this information, we’re going to
have to go to the broker between the data bound control and the collection of items,
the collection view.

The job of the collection view (or just “view”) is to provide services on top of the data,
including sorting, filtering, grouping, and, most important for our purposes at the
moment, control of the current item. A view is an implementation of a data-specific
interface which, in our case, is going to be the ICollectionView interface. We can
access a view over our data with the static GetDefaultView method of the
CollectionViewSource class, as shown in Example 7-4.

Example 7-4. Getting a collection’s view

public partial class Windowl : Window {

void birthdayButton Click(object sender, RoutedEventArgs e) {
// Get the current person out of the collection view
People people = (People)this.FindResource("Family");
ICollectionView view =
CollectionViewSource.GetDefaultView(people);
Person person = (Person)view.CurrentItem;

++person.Age;
MessageBox.Show(...);
}
}

Binding to List Data | 203

To retrieve the view associated with the Family collection, Example 7-4 makes a call
to the GetDefaultView method of CollectionViewSource, which provides us with an
implementation of the ICollectionView interface associated with our bound data col-
lection. Our collection happens to have been created in a resource, but that doesn’t
matter to the GetDefaultView method; it only maps a bound collection to its associ-
ated view. With the collection view, we can grab the current item, cast it into an item
from our collection (the CurrentItem property returns an object), and use it for display.

Navigating between items

In addition to getting the current item, we can also change which item is current
using the MoveCurrentTo methods of the ICollectionView interface, as shown in
Example 7-5.

Example 7-5. Navigating between items via the view

public partial class Windowl : Window {

ICollectionView GetFamilyView() {
People people = (People)this.FindResource("Family");
return CollectionViewSource.GetDefaultView(people);

}

void birthdayButton_Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
Person person = (Person)view.CurrentItem;

++person.Age;
MessageBox.Show(...);

}

void backButton_Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
view.MoveCurrentToPrevious();
if(view.IsCurrentBeforeFirst) {
view.MoveCurrentToFirst();
}

}

void forwardButton_Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
view.MoveCurrentToNext();
if(view.IsCurrentAfterLast) {
view.MoveCurrentTolLast();
}

}
}

204 | Chapter7: Binding to List Data

The ICollectionView methods MoveCurrentToPrevious and MoveCurrentToNext change
which item is currently selected by going backward and forward through the collec-
tion. If we walk off the end of the list in one direction or the other, the
IsCurrentBeforeFirst or IsCurrentAfterlast property will tell us that. The
MoveCurrentToFirst and MoveCurrentTolast help us recover after walking off the end
of the list, and would be useful for implementing the Back and Forward buttons
shown in Figure 7-3 as well as the First and Last buttons (this is an opportunity for
you to apply what you’ve learned...).

®7) ListBinding l=l@] = .|l
Name: Tom | " "
| [®7 ListBinding l=@| %]
Age: T1 = |
Name: John [T 3
Bi [E7] ListBinding o | | &/
irtl . .
——— Age: L Name: Melissa
@ Age: a8
——————
(Bithday | [< [=

Figure 7-3. Navigating between items in a list data source (Color Plate 5)

Figure 7-3 shows the effect of moving forward from the first Person in the collection,
including the color changing based on the Person object’s Age property (which still
works in exactly the same way).

List Data Targets

Of course, we can push the user of list data only so far without providing him with a
control that can actually show more than one item at a time—like the ListBox con-
trol, shown in Example 7-6.

Example 7-6. Binding a list element to a list data source

<!-- Windowl.xaml -->
<Window ... xmlns:local="clr-namespace:ListBinding2">
<Window.Resources>
<local:People x:Key="Family"s...</local:People>

</Window.Resources>
<Grid DataContext="{StaticResource Family}">

Binding to List Data | 205

Example 7-6. Binding a list element to a list data source (continued)

<ListBox
ItemsSource="{Binding}"
IsSynchronizedWithCurrentItem="True" ... />
<TextBlock ...>Name:</TextBlock>
<TextBox Text="{Binding Path=Name}" ... />

</Window>

In Example 7-6, the ItemsSource property of the ListBox is a Binding with no path,
which is the same as saying “bind to the entire current object.” Notice that there’s no
source, either, so the binding works against the first data context it finds that is set.
In this case, the first set data context is the one from the Grid, the same one as shared
between both the name and the age text boxes. Also, we’re setting the ListBox class’s

IsSynchronizedWithCurrentItem property to True so that as the selected item of the
listbox changes, it updates the current item in the view (and vice versa).’

With our ItemsSource binding in place, we should expect to see all three Person
objects in the listbox, as shown in Figure 7-4.

-

[ListBinding lalE8] &

ListBinding2.Person
ListBinding2.Person
ListBinding2.Person

Name: John

Age: 12

(Bnday | [< J[>]

Figure 7-4. Person objects being displayed in a ListBox without help

As you might have noticed, everything is not quite perfect in Figure 7-4. When you
bind against an object, data binding does its best to display it. Without special
instructions, it’ll use a type converter to get a string representation (falling back on
the ToString method when all else fails). In the case of both the Name and Age proper-
ties, the built-in conversions give us a string representation that works well for our
purposes. However, the Person object provides no special instructions, so the fall-
back does nothing but show the name of the type.

* By default, listboxes do not synchronize with the current item for reasons I have yet to fathom...

206 | Chapter7: Binding to List Data

Because binding uses an object’s ToString method if it has nothing
else, you may feel tempted to add a ToString method as a way to
t+ decide how your data objects look in your WPF Uls. You should avoid
" this temptation, for at least the following reasons:

e Itis impossible to provide a string representation of a data object
that would be appropriate for every way that you might like to
display it.

* You lose all kinds of flexibility in how to display a data object if
all you have is the whole thing represented as a string (e.g.,
maybe you’d like some of it bold or some of it as the content of a
Button).

* There’s no way to fire a notification to WPF such that it will auto-
matically pull in the new data object’s data as it changes when
ToString is used, giving you a single, static view.

Display Members, Value Members, and Look-Up Bindings

If you want to show only one of the properties, the ListBox class (and the rest of the
ItemsControl-derived controls—e.g., Menu, ListBox, ListView, ComboBox, TreeView, etc.)
provides the DisplayMemberPath property:

<ListBox ... ItemsSource="{Binding}" DisplayMemberPath="Name" />

This at least gives us part of the data, as you can see in Figure 7-5.

[ListBinding =@ 8%

Tom
John
Melissa

Name: Tom

Age: i

(Bimhaay | [< J[>]

| Add | [sot || Fiter || Group

Figure 7-5. The DisplayMemberPath in action

In addition to the path describing the data to display, the ItemsControl class pro-
vides a path to describe the selected value of a piece of data:

<ListBox ... Name="1b" ItemsSource="{Binding}"
DisplayMemberPath="Name" SelectedValuePath="Age" />

Binding to List Data | 207

The Selectedvalue is exposed from the ItemsControl as an application-defined way
to separate the data from what’s displayed. By default, the Selectedvalue, the
SelectedItem, and the object used to construct the item at that spot in the list are all
the same (e.g., a Person if we hadn’t changed it by setting the SelectedvaluePath).
This data is often used when the selection changes or an item is double-clicked:

void 1b MouseDoubleClick(object sender, MouseButtonEventArgs e) {
int index = 1b.SelectedIndex;
if(index < 0) { return; }

Person item = (Person)lb.SelectedItem;
int value = (int)lb.SelectedValue; // Age

// Do something profitable with this data

}...

The difference between display value and selected value becomes especially interest-
ing when you want to do something like a combo box with friendly names (e.g., sales-
person name), but key off of opaque values in the real data (e.g., salesperson ID).

For example, if we wanted to provide a Ul that mapped ages represented in scary
numbers to soothing phrases, we could construct a NamedAge type for use in populat-
ing a look-up table, as shown in Example 7-7.

Example 7-7. A helper for populating a look-up table

public class NamedAge : INotifyPropertyChanged {
// INotifyPropertyChangeIdINotifyPropertyChanged Members
public event PropertyChangedEventHandler PropertyChanged;
protected void Notify(string propNameForAge) {
if(this.PropertyChanged != null) {
PropertyChanged(this, new PropertyChangedEventArgs(propNameForAge));

}

string nameForAge;
public string NameForAge {
get { return this.nameForAge; }
set {
if(this.nameForAge == value) { return; }
this.nameForAge = value;
Notify("NameForAge");
}
}

int ageld;
public int AgeId {
get { return this.ageld; }
set {
if(this.ageld == value) { return; }
this.ageld = value;
Notify("AgeId");

208 | Chapter7: Binding to List Data

Example 7-7. A helper for populating a look-up table (continued)

}
}
}

class NamedAges : ObservableCollection<NamedAge> { }

Now we can populate the table for looking up an age’s name from its number, as in
Example 7-8.

Example 7-8. A look-up table suitable for binding

<local:NamedAges x:Key="NamedAgeLookup">
<local:NamedAge NameForAge="zero" Ageld="0" />
<local:NamedAge NameForAge="one" Ageld="1" />

</local:NamedAges>

This handy table is all we need to replace the TextBox for entering hard-to-format-
correctly ages into an easy-to-use combo box with all of the values filled in for us, as
shown in Figure 7-6.

ll—’] DisplayAndValueMemberBinding &@u

Tom
John
Melissa

Name: Tom

Age: eleven >

twelve
thirteen
fourteen
fifteen
sixteen
seventeen
eighteen
nineteen

Figure 7-6. Data binding to a look-up table

OK, obviously this particular example isn’t useful, but mapping IDs to names is
something we want to do all the time in data binding applications. To get our combo
box to show the list of available options, we need to bind the set of options to our
look-up table, setting the display and value members appropriately, as in
Example 7-9.

Binding to List Data | 209

Example 7-9. Data binding to a look-up table

<ComboBox ...
ItemsSource="{Binding Source={StaticResource NamedAgeLookup}}"
DisplayMemberPath="NameForAge" SelectedValuePath="AgeId" />

Example 7-9 tells the combo box where the possible choices come from (the
NamedAgelLookup table), which property to show the user (the NameForAge property),
and which property is the real value (the AgeId property). The final step is the bit of
binding that tells the combo box where to get the currently selected value (in terms
that match our selected value path; in other words, Age), as in Example 7-10.

Example 7-10. Binding the look-up table to the selected value

<ComboBox ...
TtemsSource="{Binding Source={StaticResource NamedAgelLookup}}"
DisplayMemberPath="NameForAge" SelectedValuePath="AgeId"
SelectedValue="{Binding Path=Age}" />

Just as before, where the TextBox object’s Text property was set to bind to the Age prop-
erty of the currently selected Person, so is the ComboBox object’s SelectedValue property
set. As the display value changes (due to interaction with the user), the selected value
is updated, as is the underlying Age. Likewise, as the Age changes (like when the
Birthday button is clicked), the binding synchronizes the selected value, causing the
value displayed in the combo box to change.

All of this is very handy, but in our case, we don’t really want to have named ages, nor
do we want to display a single property in the ListBox for each Person object it displays.

Data Templates

If you want to show more than one property from a custom class or mix things up
with more than just a plain TextBlock object (which is all the DisplayMemberPath gives
you), you want a data template. A data template is a tree of elements to expand in a
particular context. For example, for each Person object, you might like to be able to
concatenate the name and age together in a string like the following:

John (age:12)
We can think of this as a logical template that looks like this:

Name (age:Age)

To define this template for items in the listbox, we create a DataTemplate element, as
shown in Example 7-11.

Example 7-11. Using a data template

<ListBox ... ItemsSource="{Binding}">
<ListBox.ItemTemplate>
<DataTemplate>

210 | Chapter7: Binding to List Data

Example 7-11. Using a data template (continued)

<TextBlock>
<TextBlock Text="{Binding Path=Name}" />
(age: <TextBlock
Text="{Binding Path=Age}"
Foreground="{Binding
Path=Age,
Converter={StaticResource ageConverter}}" /)
</TextBlock>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

In this case, the ListBox control has an ItemTemplate property, which accepts an
instance of the DataTemplate class. The DataTemplate allows us to specify a single
child element to repeat for every item that the ListBox control binds against
(although that child can have any number of children of its own, and so on). In our
case, we’re using a TextBlock to gather together some hardcoded text and two nested
TextBlock controls for text bound to properties on each Person object. Notice that
we’re also binding the Foreground to the Age property using the age-to-foreground
value converter so that Age properties show up black or red consistently between the
listbox and age text box.

With the use of the data template, our experience goes from Figure 7-4 to Figure 7-7.

[ListBinding lo @] & |

Tom (age: 11)
John (age: 12)
Melissa (age: 38)

Name: John

Age: 12

(Bithday | [< J[>]

Figure 7-7. Person objects being displayed in a ListBox with a data template (Color Plate 6)

Notice that the listbox shows all the items in the collection and keeps the view’s idea
of the current item synchronized with it as the selection moves or the back and for-
ward buttons are clicked (actually, you can’t really “notice” this based on the screen-
shot, but trust me, that’s what happens). In addition, as data changes on Person
objects, the listbox and the text boxes are all kept in sync, including the Age color.

Binding to ListData | 211

Typed data templates

In Example 7-11, we explicitly set the data template for items in our listbox by creat-
ing the DataTemplate inside the ListBox.ItemTemplate element. Using this technique,
if a Person object shows up in a button or in some other element, we’d have to spec-
ify the data template for those Person objects separately. On the other hand, if you’d
like a Person object to have a specific template no matter where it shows up, you can
do so with a typed data template, as shown in Example 7-12.

Example 7-12. A typed data template

<Window.Resources>
<local:People x:Key="Family">...</local:People>

<DataTemplate DataType="{x:Type local:Person}">
<TextBlock>
<TextBlock Text="{Binding Path=Name}" />
(age: <TextBlock Text="{Binding Path=Age}" ... />)
</TextBlock>
</DataTemplate>

</Window.Resources>

<!-- no need for an ItemTemplate setting -->
<ListBox ItemsSource="{Binding}" ... />

In Example 7-12, we’ve hoisted the data template definition into a resources block
and tagged it with a type using the DataType property.” Now, unless told otherwise,
whenever an element using the WPF content modelt sees an instance of the Person
object within the scope of the data template, it will apply the appropriate data tem-
plate. This is a handy way to make sure that data shows in a consistent way through-
out your application without worrying about just where it shows.

DataTemplates and the DataContext

You’ll notice in Example 7-12 that we’re not setting the Source property. As you saw
in the preceding chapter, this means that the Binding object will use the DataContext
as its source.

You should also recall (from the preceding chapter) that the DataContext uses the
dependency property inheritance mechanism to travel the element tree to find its
value if it’s not set explicitly (i.e., if the element we’re binding has no explicit
DataContext set, we’ll use the one from the parent or the grandparent, etc.).

* If you've skipped ahead to Chapter 12, you know that all resources, without exception, must have a Key. Cer-
tain resource types have a property that, when set, also sets the Key implicitly. In the case of the DataTemplate,
setting the DataType property also sets the Key property.

T As you’ll recall from Chapter 1, the content model of WPF allows you to put arbitrary content into most ele-
ments (e.g., Button supports the content model whereas the TextBox doesn’t).

212 | Chapter7: Binding to List Data

However, if you’ll look at the where the binding takes place on the text blocks inside
the data template in Example 7-12, you’ll notice that we don’t actually want the data
context to be on the parent of the DataTemplate, but rather to be on the individual
elements of the items source on the listbox where our Person data template is being
expanded. To enable the bindings in our data template to work as we expect the
template expansion engine in WPF will set the DataContext property of the root of
each element tree that it expands. For instance, in our example, we've got three
Person objects, so you can think of the logical expansion of the data template inside
the listbox as shown in Example 7-13.

Example 7-13. Logical expansion of the Person data template

<ListBox ...>
<TextBlock DataContext="Family[0]">
<TextBlock Text="{Binding Path=Name}" />
(age: <TextBlock Text="{Binding Path=Age}" Foreground="..." />)
</TextBlock>

<TextBlock DataContext="Family[1]">

<TextBlock Text="{Binding Path=Name}" />

(age: <TextBlock Text="{Binding Path=Age}" Foreground="..." />)
</TextBlock>

<TextBlock DataContext="Family[2]">
<TextBlock Text="{Binding Path=Name}" />
(age: <TextBlock Text="{Binding Path=Age}" Foreground="..." />)
</TextBlock>
</ListBox>

As the data template is expanded for each item in the list referenced by the
ItemsSource property, the data context is set to the individual item so that when the
Binding objects are looking for their data sources, they find the data context of the
element at the root of the expanded data template, like the top-level TextBlock in our
example. Not only does this explain how data bindings work inside data templates,
but also this is something we can use. For example, we need to use the DataContext
property if we want to handle events on objects inside the data template and figure
out which data object was used to expand the template, as shown in Example 7-14.

Example 7-14. DataTemplates and the DataContext

<!-- Windowl.xaml.cs -->

<Window.Resources>
<local:People x:Key="Family">...</local:People>

<DataTemplate DataType="{x:Type local:Person}">
<TextBlock>
<TextBlock Text="{Binding Path=Name}" />
(age: <TextBlock Text="{Binding Path=Age}" ... />)
<Button Click="showButton_Click">Show</Button>

Binding to List Data | 213

Example 7-14. DataTemplates and the DataContext (continued)

</TextBlock>
</DataTemplate>

</Window.Resources>

// Windowl.xaml.cs

void showButton_Click(object sender, RoutedEventArgs e) {
// Get the button generated by the data template expansion
Button showButton = (Button)sender;

// Get the person associated with the generated button via the data context
Person person = (Person)showButton.DataContext;

// Do something with that person...
MessageBox. Show(string.Format("{0} is {1} years old", person.Name, person.Age));

In this example, we added a Button to the data template with a Click event handler.
When the button is clicked, the event handler’s sender argument is the Button that
was generated when the template was expanded. Because of dependency property
inheritance, the DataContext property on the Button gets the same value of the
DataContext property on the root TextBlock in the DataTemplate for the item in the list
of Person objects that was used to populate the ListBox. Figure 7-8 shows the results of
clicking one of the Show buttons.

87 ListBinding =@ R]

Tom (age: 11) Show ‘

4

John (age: 12) Show
Shoi

HE3

Melissa (age: 38)

Name: John John is 12 years old

Age: 12

= |

. — =

Figure 7-8. Using the DataContext associated with an expanded DataTemplate

In Figure 7-8, the Show button in the second row was clicked, which means that
the same Person object in the second row of the listbox is the one that is available in
the DataContext on the Show button in that row.

214 | Chapter7: Binding to List Data

List Changes

Thus far, we’ve got a list of objects that we can edit in place and navigate among,
even highlighting certain data values with ease and providing an automatic look for
data that wasn’t shipped with a rendering from the manufacturer. In the spirit of
how far we’ve come, you might suspect that implementing an Add button, as in
Example 7-15, would be a breeze.

Example 7-15. Adding an item to a data bound collection

public partial class Windowl : Window {

void addButton_Click(object sender, RoutedEventArgs e) {
People people = (People)this.FindResource("Family");
people.Add(new Person("Chris", 37));
}
}

The problem with this code is that although the collection view associated with our list
data source can figure out the existence of a new item as you move to it, the listbox itself
has no idea that something new has been added, as shown in Figure 7-9.

-~

[ListBinding l=]@2] = |

Tom (age: 11)
John (age: 12)
Melissa (age: 38)

Name: Chris

Age: 37

(Bithday | [<][»

Add

Figure 7-9. The ListBox doesn’t know the collection has gotten bigger

In interacting with the state of the application shown in Figure 7-9, I ran the applica-
tion, clicked the Add button, and used the Forward button to navigate to it. How-
ever, just as data bound objects need to implement the INotifyPropertyChanged
interface, data bound lists need to implement the INotifyCollectionChanged inter-
face” (see Example 7-16).

* Again, this is not really a requirement; WPF data works even if the collection doesn’t implement
INotifyCollectionChanged, although it won’t know about changes to the collection. If you have to integrate
with collections that don’t implement this interface, or the .NET 1.x version of this interface—IBindinglList
(which WPF still supports)—you’ll need to fall back on the manual updating technique mentioned in Chap-
ter 6 (i.e., BindingExpression.UpdateTarget).

Binding to List Data | 215

Example 7-16. The INotifyCollectionChanged interface

namespace System.Collections.Specialized {
public interface INotifyCollectionChanged {
event NotifyCollectionChangedEventHandler CollectionChanged;

}
}

The INotifyCollectionChanged interface is used to notify the data bound control that
items have been added or removed from the bound list. Although it’s common to imple-
ment INotifyPropertyChanged in your custom types to enable two-way data binding on
your type’s properties, it’s less common to implement your own collection classes,
which leaves you less opportunity to implement the INotifyCollectionChanged inter-
face. Instead, you’ll most likely be relying on one of the collection classes in the .NET
Framework Class Library to implement INotifyCollectionChanged for you. The num-
ber of such classes is small and unfortunately, List<T>, the collection class we’re
using to hold Person objects, is not among them. Although you’re more than wel-
come to spend your evenings and weekends implementing the
INotifyCollectionChanged interface, including hooking all of the methods that
change whatever base collection you use as a helper, WPF provides the
ObservableCollection<T> class, shown in Example 7-17, for those of us with more
pressing duties.

Example 7-17. WPF’s implementation of INotifyCollectionChanged

namespace System.Collections.ObjectModel {
public class ObservableCollection<T> :
Collection<T>, INotifyCollectionChanged, INotifyPropertyChanged {

L
}

Because ObservableCollection<T> derives from Collection<T> and implements the
INotifyCollectionChanged interface, we can use it instead of List<T> for our Person
collection (see Example 7-18).

Example 7-18. ObservableCollection<T> in action
using System.ComponentModel; // INotifyPropertyChanged
using System.Collections.ObjectModel; // ObservableCollection<T>

class Person : INotifyPropertyChanged {...}
class People : ObservableCollection<Person> {}

Now, when an item is added to or removed from the Person collection, those
changes will be reflected in the list data bound controls, as shown in Figure 7-10.

216 | Chapter7: Binding to List Data

[ListBinding =88] R |

Tom (age: 11)
John (age: 12)
Melissa (age: 38)
Chris (age: 37)

Name: Chris

Age: 37

(Bimnday | [< [>

Add

Figure 7-10. Keeping the ListBox in sync with INotifyCollectionChanged

Here, we've clicked the Add button and clicked on the new Person object that the
listbox displayed for us (a newly added item in a collection does not become the
selected item automatically).

Sorting

Once we have data targets showing more than one thing at a time properly, a per-
son’s fancy turns to, well, fancier things, like sorting the view of the data, filtering the
data out of the view, or grouping related data. Recall that the view always sits
between the data bound target and the data source. The view allows us to do a num-
ber of things to the data before it’s displayed, including changing the order in which
the data is shown (a.k.a. sorting). The simplest way to sort is by manipulating the
SortDescriptions property of the view, as shown in Example 7-19.

Example 7-19. Sorting

public partial class Windowl : Window {

ICollectionView GetFamilyView() {
People people = (People)this.FindResource("Family");
return CollectionViewSource.GetDefaultView(people);

}

void sortButton_Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
if(view.SortDescriptions.Count == 0) {
view.SortDescriptions.Add(
new SortDescription(“Name", ListSortDirection.Ascending));
view.SortDescriptions.Add(
new SortDescription("Age", ListSortDirection.Descending));

Binding to ListData | 217

Example 7-19. Sorting (continued)

else {

}
}
}

view.SortDescriptions.Clear();

Here we’re toggling between sorted and unsorted views by checking the
SortDescriptionCollection exposed by the ICollectionView SortDescription prop-
erty. If there are no sort descriptions, we sort first by the Name property in ascending
order, then by the Age property in Descending order. If there are sort descriptions, we
clear them, restoring the order to whatever it was before we applied our sort. While
the sort descriptions are in place, any new objects added to the collection will be dis-

played in their proper sort position by the view, as Figure 7-11 shows.

[E7] ListBinding

x|

o @ |

Tom (age: 11)
John (age: 12)
Melissa (age: 38)

Name: Tom

Age: 11

[E7 ListBinding

=[@] =]

(Birthday | [

] Name:

(et |

] Age:

John (age: 12)
Melissa (age: 38)
Tom (age: 11)

Tom

11

| Birthday | [

(e |

Figure 7-11. Unsorted on the left and sorted on the right

A collection of SortDescription objects should cover most cases, but if you’d like a
bit more control, you can provide the view with a custom sorting object by imple-
menting the IComparer interface from the System.Collections namespace,” as shown

in Example 7-20.

Example 7-20. Custom sorting

class PersonSorter :

IComparer {

public int Compare(object x, object y) {

Person lhs = (Person)x;
Person rhs = (Person)y;

* Unfortunately, WPF doesn’t use the generic IComparer<T> interface from the System.Collections.Generic

namespace.

218 |

Chapter 7: Binding to List Data

Example 7-20. Custom sorting (continued)

// Sort Name ascending and Age descending

int nameCompare = lhs.Name.CompareTo(rhs.Name);
if(nameCompare != 0) return nameCompare;
return rhs.Age - lhs.Age;

}
}

public partial class Windowl : Window {

ICollectionView GetFamilyView() {
People people = (People)this.FindResource("Family");
return CollectionViewSource.GetDefaultView(people);

}

void sortButton Click(object sender, RoutedEventArgs e) {
ListCollectionView view = (ListCollectionView)GetFamilyView();
if(view.CustomSort == null) {
view.CustomSort = new PersonSorter();

}
else {
view.CustomSort = null;

}
}
}

In the case of setting a custom sorter, we cast the result of GetDefaultView to a
ListCollectionView, which is what WPF wraps around an implementation of IList
(which our ObserverableCollection provides) to provide view functionality. There
are other implementations of ICollectionView that don’t provide custom sorting, so
you’ll want to test this code before shipping it.”

Default Collection Views

The SDK documentation for the individual views will tell you how each different
kind of collection data is mapped to a default view, but Table 7-1 is a handy guide to
help you along.

Table 7-1. The default views for each collection data type

Collection data Default view

IEnumerable CollectionView

Ilist ListCollectionView
IBindinglist BindinglistCollectionView

* Hopefully, you’ll test the rest of your code before shipping it, too, but it never hurts to point these things out...

Binding to ListData | 219

If you don’t like the view that WPF provides, you can create your own implementa-
tion of ICollectionView and bind to that, too. In fact, this is handy for “stacking”
views, that is, using one view as the input to another—when you need to implement
custom views for features that WPF doesn’t support out of the box (like “top N”
functionality).

Filtering

Just because all of the objects are shown in an order that makes you happy doesn’t
mean that you want all of the objects to be shown. For those rogue objects that hap-
pen to be in the data but that shouldn’t be displayed, we need to feed the view an
implementation of the Predicate<object> delegate” that takes a single object parame-
ter and returns a Boolean indicating whether the object should be shown (see
Example 7-21).

Example 7-21. Filtering

public partial class Windowl : Window {

ICollectionView GetFamilyView() {
People people = (People)this.FindResource("Family");
return CollectionViewSource.GetDefaultView(people);

}

void filterButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
if(view.Filter == null) {
view.Filter = delegate(object item) {
// Just show the over 25-year-olds
return ((Person)item).Age >= 25;
b
}
else {
view.Filter = null;
}
}
}

Like sorting, with a filter in place, new things are filtered appropriately, as
Figure 7-12 shows.

The top window in Figure 7-12 shows no filtering, the middle window shows filter-
ing of the initial list, and the bottom window shows adding a new adult with filtering
still in place.

* Unlike sorting, which uses a single method interface implementation because of history, filtering uses a
generic delegate because the addition of anonymous delegates and generics to C# 2.0 has made them all the
rage.

220 | Chapter7: Binding to List Data

~

[7 ListBinding l=o|@] R |

Tom (age: 11)
John (age: 12)
Melissa (age: 38)

Mame: Tom

Age: 11

(Bithday | [< J[> |

_ Add [sot [Fiter |
1 [ListBinding EIEIR

| Melissa (age: 38) |

Name: Melissa

Age: 38

(Bithday | [< J[> |

([Add | [sot [Fiter |

[E 1 ListBinding F=er

Melissa (age: 38)
Chris (age: 37)

Name: Melissa

Age: 38

A

(Birthday | |

——

sort | [Fiter |

(Add |

Figure 7-12. Unfiltered, filtered for adults, and adding to a filtered view

Grouping

Grouping is just what it sounds like—displaying data based on some criteria in a
named group. The grouping criteria can be anything you like, but the only criterion
that comes with WPF out of the box is grouping by property values. As we’ll see, this
one is pretty darn flexible, so you’ll rarely need anything else.

You have to do two things to set up grouping. The first is to establish the groups you’d
like to use, which you do by manipulating the GroupDescriptions collection on your
view (see Example 7-22).

Binding to List Data | 221

Example 7-22. Establishing data groups

public partial class Windowl : Window {

ICollectionView GetFamilyView() {
People people = (People)this.FindResource("Family");
return CollectionViewSource.GetDefaultView(people);

}

void groupButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
if(view.GroupDescriptions.Count == 0) {
// Group by age
view.GroupDescriptions.Add(new PropertyGroupDescription(“Age"));
}
else {
view.GroupDescriptions.Clear();
}
}
}

The PropertyGroupDescription object takes the name of the property you’d like to use
for grouping. The groups themselves will be composed of all of the unique values pulled
from the designated property on the items in the collection (e.g., Tom: 11, John: 12,
Melissa: 38, and Penny: 38 will yield three named groups based on age: 11, 12, and 38).

All classes that derive from ItemsControl can display items in groups. To exploit this,
we need to provide the control with a group style. A group style is not related to a
normal style (as introduced in Chapter 1 and explored in depth in Chapter 8), but is
rather a collection of group visualization-related information, like the real style for
the container,” the data template for the header, and whether to hide empty groups.
A group style is an instance of the GroupStyle class, and ItemsControl objects won’t
group data visually without one. Luckily, the GroupStyle class itself provides a static
Default property that exposes a group style that works nicely to get us started, which
we can use as shown in Example 7-23.1

Example 7-23. Using the default group style

<ListBox ... ItemsSource="{Binding}" >
<ListBox.GroupStyle>
<x:Static Member="GroupStyle.Default" />
</ListBox.GroupStyle>
</ListBox>

* The ItemsControl generates containers for group items in the same way as the “item container generation”
mechanism described in Chapter 5.

T Unfortunately, the XAML compiler won’t accept the standard <ListBox ... GroupStyle="{x:Static
GroupStyle.Default}"/> shortcut syntax, but the long syntax works just fine. For the curious, the XAML
compiler is having trouble because the CLR GroupStyle property, defined on the ItemsControl base class, is
defined as a read-only collection, even though the underlying dependency property is read-write.

222 | Chapter7: Binding to List Data

This group style shows the name of the group above each indented group, as shown
in Figure 7-13.

[ListBinding ENEIES

11

Tom (age: 11)
12

John (age: 12)
38

Melissa (age: 38)

Penny (age: 38)

Name: Penny

Age: 38

(Bithday J [< J[>]

[Add || sot || Fiter || Group

Figure 7-13. Grouping with the default group style

The data template used in the default group style shows the Name of the
CollectionViewGroup constructed to reference the items in each group. If you’d like
to replace that data template with one that includes custom formatting of group
name data or other information from the CollectionViewGroup object (like the num-

ber of items in the group), you can do so with a custom data template, as shown in
Example 7-24.

Example 7-24. A custom group style

<ListBox ... ItemsSource="{Binding}">
<ListBox.GroupStyle>
<GroupStyle>
<GroupStyle.HeaderTemplate>
<DataTemplate>
<TextBlock
Background="Black" Foreground="White" FontWeight="Bold">

<TextBlock Text="{Binding Name}" />
(<TextBlock Text="{Binding ItemCount}" />)

</TextBlock>
</DataTemplate>
</GroupStyle.HeaderTemplate>
</GroupStyle>
</ListBox.GroupStyle>
</ListBox>

Binding to List Data | 223

Here we’ve set the header template of the group style to a data template containing a
TextBlock with a black background, a white foreground, and two nested TextBlock
objects, one to display the name of the group and another to display the number of
items, as Figure 7-14 shows.

[ListBinding [o|@] =

11 (1)
Tom (age: 11)

John (age: 12)

Melissa (age: 38)
Penny (age: 38)

Name: Penny

Age: 38

[Bihday | [< [> |

Add | [son || Fiter || Group

Figure 7-14. A custom group style in action

Figure 7-14 shows grouping by each possible value of the Age property in all of the
data, automatically indenting the data in each group. Taking it one step further,
what if we’d like to group by ranges—say, over and under 25. If we wanted, we
could derive from the GroupDescription, overriding the GroupNamesFromItem method to
classify items as belonging to one or more groups. (The PropertyGroupDescription
class derives from GroupDescription, as do all data grouping policy implementations.)
However, the PropertyGroupDescription class itself provides this flexibility by allow-
ing for a custom IValueConverter implementation that groups items without the need
for a custom GroupDescription class. Example 7-25 shows a value converter that con-
verts values from the Age property into groups.

Example 7-25. A custom value converter for grouping

public class AgeToRangeConverter : IValueConverter {
public object Convert(object value, Type targetType, ...) {
return (int)value < 25 ? "Under the Hill" : "Over the Hill";

public object ConvertBack(object value, Type targetType, ...) {
// should not be called in our example
throw new NotImplementedException();
}
}

224 | Chapter7: Binding to List Data

This code assumes that the PropertyGroupDescription class will take each Person
object and pass in the Age property, giving us the opportunity to group the data into
our two buckets. We can configure the PropertyGroupDescription object to do this
by passing the value converter to the constructor, as in Example 7-26.

Example 7-26. Using a custom value converter for grouping

void groupButton Click(object sender, RoutedEventArgs e) {
ICollectionview view = GetFamilyView();
if(view.GroupDescriptions.Count == 0) {
// Group by range
view.GroupDescriptions.Add(
new PropertyGroupDescription(“Age", new AgeToRangeConverter()));
}
else {
view.GroupDescriptions.Clear();
}
}

Figure 7-15 shows the results.

[E7 ListBinding =

Under the Hill (2)
Tom (age: 11)

John (age: 12)

Melissa (age: 38)
Penny (age: 38)

Name: Penny

Age: 38

(Bithday | (< J[>]

[Add | sot |[Fiter || Group

Figure 7-15. A custom value converter used for grouping

In fact, the use of the converter is so flexible that it’s hard to imagine needing to
implement a custom group description at all. If you want an object to belong to more
than one group, you can return a collection of group names from the Convert method
instead of a single name. If you want to get at all of the object’s data instead of just a
single property, you can construct a PropertyGroupDescriptor with null as the prop-
erty name, which will pass in the entire object as the value parameter to Convert
instead of just a single property’s data. Finally, if you want to have control over the

Binding to List Data | 225

way string comparison is done, you can pass in a member of the StringComparison
enumeration. The PropertyGroupDescriptor can almost do it all.

One thing it can’t do, at least by itself, is group at multiple levels. However, if you’d
like to, you can add multiple group descriptors to the view’s GroupDescriptions list,
as shown in Example 7-27.

Example 7-27. Multiple groups

void groupButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
if(view.GroupDescriptions.Count == 0) {
// Group by range, then age
view.GroupDescriptions.Add(
new PropertyGroupDescription("Age", new AgeToRangeConverter()));
view.GroupDescriptions.Add(
new PropertyGroupDescription("Age"));
}

else {
view.GroupDescriptions.Clear();

}
}

Grouping will be done in the order that the groups are described, indenting as appro-
priate, as shown in Figure 7-16.

[ListBinding =B8] =
Under the Hill (2)

11 (1)

Tom (ai)e: 11)

John 2)
Over the Hill (2)
38 (2)

Melissa (age: 38)
Penny (age: 38)

Name: Penny

Age: 38

((Bithday J [< J[>]

[Add | [som || Fiter || Group

Figure 7-16. Grouping by more than one criterion

Groups are pretty darn handy. They’re even handier if you’d like to combine them
with sorting in your XAML.

226 | Chapter7: Binding to List Data

Declarative Sorting and Grouping

Setting up sorting and grouping characteristics in code is handy if you want to flip
the characteristics programmatically, as we’ve been doing. However, if you’ve got a
predetermined set of data massaging you’d like to do, a CollectionViewSource is a

handy place to keep those settings (see Example 7-28).

Example 7-28. Declarative sorting and grouping

<Window ...
xmlns:local="clr-namespace:CollectionViewSourceBinding"
xmlns : compModel="clr-namespace:System.ComponentModel; assembly=WindowsBase"
xmlns:data="clr-namespace:System.Windows .Data;assembly=PresentationFramework">
<Window.Resources>
<local:People x:Key="Family">
<local:Person Name="Tom" Age="11" />
<local:Person Name="John" Age="12" />
<local:Person Name="Melissa" Age="38" />
<local:Person Name="Penny" Age="38" />
</local:People>

<local:AgeToRangeConverter x:Key="ageConverter" />

<CollectionViewSource x:Key="SortedGroupedFamily"
Source="{StaticResource Family}">

<CollectionViewSource.SortDescriptions>
<compModel:SortDescription PropertyName="Name" Direction="Ascending" />
<compModel :SortDescription PropertyName="Age" Direction="Descending" />
</CollectionViewSource.SortDescriptions>

<CollectionViewSource.GroupDescriptions>
<data:PropertyGroupDescription PropertyName="Age"
Converter="{StaticResource ageConverter}" />
<data:PropertyGroupDescription PropertyName="Age" />
</CollectionViewSource.GroupDescriptions>
</CollectionViewSource>

</Window.Resources>
<Grid>
<ListBox
ItemsSource="{Binding Source={StaticResource SortedGroupedFamily}}"
DisplayMemberPath="Name">

<ListBox.GroupStyle>
<x:Static Member="CGroupStyle.Default" />
</ListBox.GroupStyle>

</ListBox>
</Grid>
</Window>

Binding to List Data

227

In Example 7-28, we bring in the System.ComponentModel and System.Windows.Data
namespaces first so that we can create SortDescription and PropertyGroupDescription
objects. Then we create a CollectionViewSource object, which sorts and groups our data
(provided via the Source property) and exposes an ICollectionView implementation.

Inside the CollectionViewSource, we set up the sorting and grouping policies we’ve
been setting up programmatically. Notice the use of multiple group descriptors,
including one that brings in a custom value converter, just like our most advanced
grouping code sample.

Finally, we bind the listbox to the CollectionViewSource, so it can get the sorted and
grouped data, as shown in Figure 7-17.

-

[E7 CollectionViewSourceBinding ‘ = |E]

Under the Hill
12
John
11
Tom
Over the Hill
38
Melissa
Penny

Figure 7-17. Declarative sorting and grouping in action

Unfortunately, this technique isn’t quite as robust as the code-based technique; it
doesn’t allow custom sorting code, nor does it allow filtering of any kind. However,
it lets us go quite a way without imperative code (excluding the custom value con-
verter, of course).

Data Source Providers

So far, we've been dealing with simple, hardcoded objects. However, objects can
come from long operations for which we’d prefer not to wait, like over a network
connection or as translated from XML or relational data. For these cases, we’d really
like a layer of indirection for pulling objects from other sources and even pushing
that work off to a worker thread if said retrieval is a ponderous operation. For this
indirection, we turn to data source providers, whose job is (as the name suggests) to
provide data sources for use in binding scenarios.

228 | Chapter7: Binding to List Data

Object Data Provider

WPF ships with two data source providers, both derived from the DataSourceProvider
base class: ObjectDataProvider and XmlDataProvider. Data source providers create a
layer of indirection for any kind of operation that produces objects against which to
data-bind. For example, if we wanted to load a set of Person objects over the Web, we
could encapsulate that logic into a bit of code, as shown in Example 7-29.

Example 7-29. A type to be used by ObjectDataProvider

public class Person : INotifyPropertyChanged {...}
public class People : ObservableCollection<Person> {}

public class RemotePeopleloader {
// ObjectDataProvider will expose results for binding
public People LoadPeople() {
// Load people from afar
People people = new People();

return people;
}
}

In Example 7-29, the RemotePeopleLoader class exposes a method (LoadPeople) that
will load people however it feels and return that data for binding. To configure the
object data provider to create the RemotePeopleLoader and call the LoadPeople method
is a matter of a little XAML (see Example 7-30).

Example 7-30. Using the ObjectDataProvider

<Window.Resources>

<ObjectDataProvider
x:Key="Family"
ObjectType="{x:Type local:RemotePeopleLoader}"
MethodName="LoadPeople" />
</Window.Resources>
<Crid DataContext="{StaticResource Family}">

<ListBox ItemsSource="{Binding}" .../>
</Grid>

Here we’re creating an ObjectDataProvider as a named resource so that we can use it
as the data context for the grid, enabling binding at the listbox, text boxes, and so
on. The ObjectType property is the type of the class to create, but you can use a pre-
created object via the ObjectInstance property as well (e.g., if another resource was
an object that could load data for you). The MethodName property is the name of the
method to call to retrieve the data.

Data Source Providers | 229

With an object data provider acting as an intermediary between the data and the
bindings, we need to update our code to retrieve the People collection from the
ObjectDataProvider resource, as shown in Example 7-31.

Example 7-31. Accessing the data held by an object data provider

public partial class Windowl : Window {

ICollectionView GetFamilyView() {
DataSourceProvider provider =
(DataSourceProvider)this.FindResource("Family");
People people = (People)provider.Data;
return CollectionViewSource.GetDefaultView(people);

}

void birthdayButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
Person person = (Person)view.CurrentItem;

++person.Age;
MessageBox.Show(...);
}

void addButton Click(object sender, RoutedEventArgs e) {
DataSourceProvider provider =
(DataSourceProvider)this.FindResource("Family");
People people = (People)provider.Data;
people.Add(new Person("Chris", 37));

}

}...

Because the Family resource is now an ObjectDataProvider, itself derived from
DataSourceProvider, in Example 7-31 when we need the People collection, we're
casting to DataSourceProvider on the Family resource and pulling the collection out
of the Data property.

N
o Even though the object data provider exposes its data from the Data
fs‘ property, this does not mean you should bind to the Data property. If
9 you notice from Example 7-30, we’re still binding the listbox as
* before:
<!-- Do not bind to Path=Data -->
<ListBox ItemsSource="{Binding}" ... />

This works because WPF has built-in knowledge of DataSourceProvider,
so there’s no need for you to do the indirection yourself.

230 | Chapter7: Binding to List Data

Asynchronous data retrieval

In Example 7-30, the object data provider was retrieving the data from the remote
people loader synchronously, which means that if it took a long time, the UT thread
would block. Instead, we can use the IsAsynchronous property to get the most inter-
esting piece of functionality that the object data provider gives us and that we lack
when we declare objects directly in XAML:
<ObjectDataProvider
x:Key="Family"
ObjectType="{x:Type local:RemotePeopleLoader}"

IsAsynchronous="True"
MethodName="LoadPeople" />

When the IsAsynchronous property is set to True (the default is False), the task of
retrieving the data is handled on a worker thread, letting the user continue to inter-
act with the Ul in the meantime and performing the binding on the UI thread only
when the data has been retrieved. This is not the same as binding to the data as it’s
retrieved (e.g., from a stream over the network), but it’s better than blocking the Ul
thread while a long retrieval happens.

Passing parameters

The object data provider also provides the MethodParameters property, which is a col-
lection of objects to be passed to the method that retrieves the data. For example, if
we wanted to pass in a set of URLs from which to try to retrieve the data, we could
use the MethodParameters property as we do in Example 7-32.

Example 7-32. Passing method parameters via ObjectDataProvider

<Window ...
xmlns:sys="clr-namespace:System"
xmlns:local="clr-namespace:0ObjectBinding">
<Window.Resources>
<ObjectDataProvider
x:Key="Family"
ObjectType="{x:Type local:RemotePeoplelLoader}"
IsAsynchronous="True"
MethodName="LoadPeople">
<ObjectDataProvider.MethodParameters>
<sys:String>http://sellsbrothers.com/boys.dat</sys:String>
<sys:String>http://sellssisters.com/girls.dat</sys:String>
</ObjectDataProvider.MethodParameters>
</ObjectDataProvider>

</Window.Resources>

</Window>

Data Source Providers | 231

In Example 7-32, we’ve added a list of two URLs, which will be translated into a call
to the LoadPeople method that takes two strings (see Example 7-33).

Example 7-33. Accepting arguments passed by ObjectDataProvider

namespace PersonBinding {
public class RemotePeopleloader : People {
public People LoadPeople(string urli, string url2) {
// Load People from afar using two URLs

Using the object data provider and any method on any object that returns data, you
can retrieve data asynchronously and bind to it when it’s available. Although it’s pos-
sible to create your own custom data source provider (just derive from
DataSourceProvider and have a party), the flexibility of the object data provider
means that you almost certainly won’t need to.

N

The object data provider allows for another way to get the data as well

.'s\ L s from a named method. If you don’t provide a MethodName, the object

~* ‘ak+ data provider will assume that the data is retrieved in the constructor
(either the default or as described by the ConstructorParameters list,
structured just like the MethodParameters list) and that the object itself
is the data. The use of the constructor and optional constructor
parameters is handy if you’re binding to one or more collections
exposed from properties on the constructed object. For example:

<Window ...
<Window.Resources>
<ObjectDataProvider
x:Key="topLevel"
ObjectType="{x:Type local:FinanceData}"/>
</Window.Resources>

<Crid DataContext="{StaticResource toplLevel}">

<ListBox ItemsSource="{Binding Path=Customers,

IsAsync=True}" ... />
<ListBox ItemsSource="{Binding Path=Partners,
IsAsync=True}" ... />
</Grid>
</Window>

In this case, you might want to use the IsAsync property on binding to
the lower-level data instead of the IsAsynchronous property on the top-
level data provider, as now the former is likely to take longer.

232 | Chapter7: Binding to List Data

Binding to Relational Data

Although UI designer support is still being developed to help bring relational data
into your WPF pages specifically, the tools we’ve already got can be pressed into ser-
vice for WPF work without issue. For example, assume a table like the one in
Figure 7-18 defined in an Access database (family.mdb).

= People = = X
ID Name Age |Add New Field
1 Tom 11
2 John 12
- 3 Melissa 38
#* (New) 0
|Record: H 10of3 bk | & No Filter Search

Figure 7-18. A Person table in Access (family.mdb)

Although we could write the ADO.NET code to bring this table into our project, we
don’t have to. Instead, we can bring in the data using the typed dataset designer,
which has been in Visual Studio since .NET 1.0. Bringing a new typed data set into
your project is as simple as right-clicking on your project, choosing Add - New Item
— Dataset, choosing a name, and clicking Add. This brings up the typed dataset
designer, onto which you can drag any number of tables, setting up relationships and
specifying the way you’d like the data to be projected into your project. A ready source
of data for the data set design is the Server Explorer, which you can use to connect to
various databases. To connect to the Access database, family.mdb, 1 right-clicked on
Data Connections and chose Add Connection, configuring things properly for Access.
I then drilled in to the People table and dragged it onto the designer surface, as
shown in Figure 7-19.

Server Explorer > & X || Family.xsd|
X %e

= [Data Connections

& [, ACCESS.DA\data\AvalonBoo
- E3 Tables

G- B People

EID

Name

| Age _
& £ Views ‘@ PeopleTableAdapter [A]
- [Stored Procedures "%y Fill GetData ()

- [Functions =
- 8 Servers

Figure 7-19. Creating a typed data set in a WPF project works just fine

Data Source Providers | 233

All of these dragging and dropping shenanigans produced for me three interesting
classes: PeopleRow, PeopleDataTable, and PeopleTableAdapter, summarized in
Example 7-34 from the generated Family.Designer.cs file.

Example 7-34. The interesting class the typed dataset designer generates

namespace AdoBinding {
public partial class Family : System.Data.DataSet {
public partial class PeopleRow : System.Data.DataRow {

;;élic int ID { get {...} set {...} } }
public string Name { get {...} set {...} } }
public int Age { get {...} set {...} } }

}

public partial class PeopleDataTable :
System.Data.DataTable, System.Collections.IEnumerable {

public PeopleRow AddPeopleRow(string Name, int Age) {...}
public PeopleRow FindByID(int ID) {...}
public void RemovePeopleRow(PeopleRow row) {...}

o
}

namespace FamilyTableAdapters {

public partial class PeopleTableAdapter :
System.ComponentModel.Component {

public virtual Family.PeopleDataTable GetData() {...}

.
}
}

The PeopleRow class is a typed wrapper around the DataRow class built into ADO.NET.
It’s the thing that maps between the underlying database types and the CLR types.
When you bind to relational data in WPF, you’ll be binding to a DataTable full of these
DataRow-derived objects. Actually, just plain DataRow objects work, too—you don’t
have to use the typed dataset designer to make this work. However, if you do, you
also get the benefit of the generated table adapters, like our PeopleDataTable, which
knows the shortest way to create and find PeopleRow objects, and the
PeopleTableAdapter, which knows how to read and write data to and from Access (in
our case), to get the data and track updates for pushing back to the database.

The one other thing we get is the connection string plopped into the app.config so
that it can be maintained separately from the code, as you can see in Example 7-35.

234 | Chapter7: Binding to List Data

Example 7-35. The connection string we get when we add a new data connection

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<connectionStrings>
<add name="AdoBinding.Properties.Settings.familyConnectionString"
connectionString="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=family.mdb"
providerName="System.Data.0leDb" />
</connectionStrings>
</configuration>

With these two wrappers in place, and the connection string all set up for us in the
app’s .config file, all we really have to do is create an instance of the PeopleTableAdapter
and call GetData, binding to the results. We could do this in the main window’s con-
structor if we wanted to, as shown in Example 7-36.

Example 7-36. Using the classes generated by the dataset designer

public Window1() {
InitializeComponent();

// Get the data for binding synchronously
DataContext = (new FamilyTableAdapters.PeopleTableAdapter()).GetData();

}...

In Example 7-36, the GetData call is synchronous, which is fine for our simple sam-
ple. However, because in a real app we’re often accessing data that is located over a
network connection, synchronously retrieving the data and blocking the UI thread
while we wait isn’t such a good idea. This is an excellent use of the asynchronous
support we’ve got in the object data provider (see Example 7-37).

Example 7-37. Binding to relational data declaratively

<!-- Windowl.xaml -->
<Window ...
xmlns:local="clr-namespace:AdoBinding"
xmlns:tableAdapters="clr-namespace:AdoBinding.FamilyTableAdapters">
<Window.Resources>
<ObjectDataProvider
x:Key="Family"
ObjectType="{x:Type tableAdapters:PeopleTableAdapter}"
IsAsynchronous="True"
MethodName="GetData" />

<local:AgeToForegroundConverter x:Key="ageConverter" />
</Window.Resources>
<CGrid DataContext="{StaticResource Family}">

<ListBox ... ItemsSource="{Binding}">
<ListBox.ItemTemplate>
<DataTemplate>

Data Source Providers | 235

Example 7-37. Binding to relational data declaratively (continued)

<TextBlock>
<TextBlock Text="{Binding Path=Name}" />
(age: <TextBlock Text="{Binding Path=Age}"
Foreground="
{Binding
Path=Age,
Converter=
{StaticResource ageConverter}}" /»)
</TextBlock>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
</Grid>
</Window>
At the top of Example 7-37, we’re doing just what we did in code—that is, creating
an instance of the PeopleTableAdapter type, calling GetData, and binding to the
results. The difference is that we’re doing it declaratively, which makes it very easy to

bind asynchronously—all we have to do is set the IsAsynchronous property to True
and the data retrieval happens on a worker thread, keeping the Ul from freezing.

Another thing to notice is that the bindings are all the same as before, although in this
case, we're using the names of the columns as properties and trusting ADO.NET and
WPF to negotiate properties dynamically at runtime via the ICustomTypeDescriptor
interface.” Finally, notice that our use of the age to foreground brush value converter
remains the same.
A w

Example 7-37 uses a template created specifically for use by the
.‘s‘ . ListBox object’s ItemTemplate property instead of a typgd .data tem-

o) plate to automatically share across content controls. This is because

we’re no longer dealing with objects of the custom Person class at the
top level of a namespace, but objects of type DataRowView.

Because we've got the ADO.NET DataRowView type and the typed dataset designer-
generated PeopleDataTable and PeopleDataRow types instead of our custom Person
and People types, implementing our data management code is a little different, as
you can see in Example 7-38.

* The ICustomTypeDescriptor interface has been with us since .NET 1.0 for data bound objects to expose prop-
erties not known until runtime (e.g., the dynamic results of an SQL query). In the case of ADO.NET, even
though we used the typed dataset designer to get typed properties, WPF will still use the DataRowView class’s
implementation of ICustomTypeDescriptor, which is why typed and untyped data sets work equally well.

236 | Chapter7: Binding to List Data

Example 7-38. Accessing the data held by ADO.NET

// Window1.xaml.cs

using System.Data;
using System.Data.0leDb;

public partial class Windowl : Window {

public Window1() {
InitializeComponent();

this.birthdayButton.Click += birthdayButton Click;
this.backButton.Click += backButton Click;
this.forwardButton.Click += forwardButton_Click;
this.addButton.Click += addButton Click;
this.sortButton.Click += sortButton Click;
this.filterButton.Click += filterButton Click;
this.groupButton.Click += groupButton_Click;

}

ICollectionview GetFamilyView() {
DataSourceProvider provider =
(DataSourceProvider)this.FindResource("Family");
return CollectionViewSource.GetDefaultView(provider.Data);

}

void birthdayButton_Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();

// Each item is a DataRowView, which we can use to access
// the typed PersonRow
AdoBinding.Family.PeopleRow person =
(AdoBinding.Family.PeopleRow) ((DataRowView)view.CurrentItem).Row;

++person.Age;
MessageBox. Show(
string.Format(
"Happy Birthday, {0}, age {1}!",
person.Name,
person.Age),
"Birthday");
}

void backButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
view.MoveCurrentToPrevious();
if(view.IsCurrentBeforeFirst) {
view.MoveCurrentToFirst();
}
}

void forwardButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();

Data Source Providers

237

Example 7-38. Accessing the data held by ADO.NET (continued)

view.MoveCurrentToNext();

if(view.IsCurrentAfterlLast) {
view.MoveCurrentTolast();

}

}

void addButton_Click(object sender, RoutedEventArgs e) {
// Creating a new PeopleRow
DataSourceProvider provider =
(DataSourceProvider)this.FindResource("Family");
AdoBinding.Family.PeopleDataTable table =
(AdoBinding.Family.PeopleDataTable)provider.Data;
table.AddPeopleRow("Chris", 37);
}

void sortButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
if(view.SortDescriptions.Count == 0) {
view.SortDescriptions.Add(
new SortDescription("Name", ListSortDirection.Ascending));
view.SortDescriptions.Add(
new SortDescription("Age", ListSortDirection.Descending));
}
else {
view.SortDescriptions.Clear();
}
}

void filterButton Click(object sender, RoutedEventArgs e) {
// Can't set the Filter property, but can set the
// CustomFilter on a BindinglistCollectionView
BindinglListCollectionView view =
(BindinglListCollectionView)GetFamilyView();
if(string.IsNullOrEmpty(view.CustomFilter)) {
view.CustomFilter = "Age > 25";
}
else {
view.CustomFilter = null;
}
}

void groupButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
if(view.GroupDescriptions.Count == 0) {
// Group by age
view.GroupDescriptions.Add(new PropertyGroupDescription("Age"));
}
else {
view.GroupDescriptions.Clear();
}
}
}

238 | Chapter7: Binding to List Data

In Example 7-38, you’ll notice that manipulating and displaying a person is different
because we’re dealing with a DataRowView object’s Row property to get the typed
PeopleRow we want. Also, adding a new person is different because we’re dealing with a
PeopleDataTable. Finally, filtering is different because the BindinglistCollectionView
doesn’t support the Filter property (setting it causes an exception at runtime). How-
ever, we set the CustomFilter string on the BindinglistCollectionView using the ADO.
NET filter syntax. Everything else, though—including accessing the collection view,
navigating the rows, and even sorting and grouping—is the same, as shown in
Figure 7-20.

~

[AdoBinding =& 8

11

Tom (age: 11)
12

John (age: 12)
38

Melissa (age: 38)

Penny (age: 38)

Name: Tom

Age: 13

(Bithday J [< J[>]

[Add || sot || Fiter || Group

Figure 7-20. ADO.NET data binding in action

So, although there was no relational data-specific data provider, none is needed—the
object data provider works just fine for data binding to relational data in WPF.

XML Data Source Provider

In addition to object and relational data, WPF also supports binding to XML data.
For instance, Example 7-39 shows some family data represented in XML.

Example 7-39. A random family rendered in XML

<Family xmlns="http://sellsbrothers.com">
<Person Name="Tom" Age="11" />
<Person Name="John" Age="12" />
<Person Name="Melissa" Age="38" />
</Family>

With this file available in the same folder as the executing application, we can bind
to it using the XmlDataProvider, as shown in Example 7-40.

Data Source Providers | 239

Example 7-40. An XmlDataProvider in action

<!-- Windowl.xaml -->
<Window ...>
<Window.Resources>
<XmlDataProvider
x:Key="Family"
Source="family.xml"
XPath="/sb:Family/sb:Person">
<XmlDataProvider.XmlNamespaceManager>
<XmlNamespaceMappingCollection>
<XmlNamespaceMapping Uri="http://sellsbrothers.com" Prefix="sb" />
</Xm1lNamespaceMappingCollection>
</XmlDataProvider.XmlNamespaceManager>
</XmlDataProvider>

<local:AgeToForegroundConverter
x:Key="ageConverter" />
</Window.Resources>
<CGrid DataContext="{StaticResource Family}">

<ListBox ... ItemsSource="{Binding}">
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding XPath=@Name}" />
<TextBlock Text=" (age: " />
<TextBlock Text="{Binding XPath=@Age}"
Foreground="{Binding
XPath=@Age,
Converter=
{StaticResource ageConverter}}" />
<TextBlock Text=")" />
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

</Grid>
</Window>
The first thing I want to point out in Example 7-40 is the use of the XmlDataProvider
with a relative URL that points to the family.xml file. The first thing you’ll probably
notice, though, is the large amount of XAML to deal with namespaces. Looking back at
the XML file (Example 7-39), you’ll notice that no prefix was used, only a default
namespace of http://sellsbrothers.com. Using namespace prefixes in the XAML makes
it possible to construct the XPath statement to find the set of Person elements in our sam-
ple XML. Finally, notice the use of the XPath property in the Binding objects instead of
the Path property, and the @ symbol to designate binding to an XML attribute.’

* An explanation of the XPath syntax is beyond the scope of this book, but for a good reference, I'd start with
Essential XML Quick Reference, by Aaron Skonnard and Martin Gudgin (Addison-Wesley Professional).

240 | Chapter7: Binding to List Data

XML data islands

If you happen to know your data at compile time, the XML data provider also sup-
ports XML data islands, as shown in Example 7-41.

Example 7-41. An XML data island in XAML

<XmlDataProvider x:Key="Family" XPath="/sb:Family/sb:Person">
<XmlDataProvider.XmlNamespaceManager>
<XmlNamespaceMappingCollection>
<XmlNamespaceMapping Uri="http://sellsbrothers.com" Prefix="sb" />
</XmlNamespaceMappingCollection>
</XmlDataProvider.XmlNamespaceManager>

<x:XData>
<Family xmlns="http://sellsbrothers.com">
<Person Name="Tom" Age="11" />
<Person Name="John" Age="12" />
<Person Name="Melissa" Age="38" />
</Family>
</x:XData>
</XmlDataProvider>

In Example 7-41, we’ve copied the contents of family.xml under the XmlDataProvider
element and wrapped it in an XData element to designate it as separate from the rest
of how XAML is parsed (Appendix A is a good place to read up on that topic). We've
also dropped the Source attribute (because the data is embedded), but left the XPath
statement as it was.

And as you might expect, now that we’re using XML instead of object data, some of
the operations in our sample application need to be changed (see Example 7-42).

Example 7-42. Managing XML bound data

// Windowl.xaml.cs
using System.Xml;
public partial class Windowl : Window {

public Window1() {
InitializeComponent();

this.birthdayButton.Click += birthdayButton Click;
this.backButton.Click += backButton Click;
this.forwardButton.Click += forwardButton_Click;
this.addButton.Click += addButton Click;
this.sortButton.Click += sortButton Click;
this.filterButton.Click += filterButton_Click;
this.groupButton.Click += groupButton_Click;

Data Source Providers | 241

Example 7-42. Managing XML bound data (continued)

ICollectionView GetFamilyView() {
DataSourceProvider provider =
(DataSourceProvider)this.FindResource("Family");
return CollectionViewSource.GetDefaultView(provider.Data);

}

void birthdayButton_Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();

// Each "person" is an XmlElement and attribute
// values come from a string-based indexer
XmlElement person = (XmlElement)view.CurrentItem;
person.SetAttribute("Age",
(int.Parse(person.Attributes["Age"].Value) + 1).ToString());
MessageBox. Show(
string.Format(
"Happy Birthday, {0}, age {1}!",
person.Attributes["Name"].Value,
person.Attributes["Age"].Value),
"Birthday");
}

void backButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
view.MoveCurrentToPrevious();
if(view.IsCurrentBeforeFirst) {
view.MoveCurrentToFirst();
}
}

void forwardButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
view.MoveCurrentToNext();
if(view.IsCurrentAfterlast) {
view.MoveCurrentTolast();
}
}

void addButton Click(object sender, RoutedEventArgs e) {
// Creating a new XmlElement
XmlDataProvider provider =
(XmlDataProvider)this.FindResource("Family");
XmlElement person =
provider.Document.CreateElement("Person", "http://sellsbrothers.com");
person.SetAttribute("Name", "Chris");
person.SetAttribute("Age", "37");
provider.Document.ChildNodes[0].AppendChild(person);

242 | Chapter7: Binding to List Data

Example 7-42. Managing XML bound data (continued)

void sortButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
if(view.SortDescriptions.Count == 0) {
view.SortDescriptions.Add(
new SortDescription("@Name", ListSortDirection.Ascending));
view.SortDescriptions.Add(
new SortDescription("@Age", ListSortDirection.Descending));
}

else {
view.SortDescriptions.Clear();
}
}

void filterButton Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();

if(view.Filter == null) {
view.Filter = delegate(object item) {
return
int.Parse(((XmlElement)item).Attributes["Age"].Value) > 25;
b
}
else {
view.Filter = null;
}
}

void groupButton_Click(object sender, RoutedEventArgs e) {
ICollectionView view = GetFamilyView();
if(view.GroupDescriptions.Count == 0) {
// Group by age
view.GroupDescriptions.Add(new PropertyGroupDescription("@Age"));

}

else {
view.GroupDescriptions.Clear();
}
}
}

Whereas in the ADO.NET example we used PeopleDataTable, PeopleDataRow, and
DataRowView, in the XML example we use XmlDocument and XmlElement. For updating
and accessing values, Example 7-42 uses the XmlElement SetAttribute method to
change a value and the Attributes collection to get one. When adding a new person,
we get the XmlDocument from the XmlDataProvider, ask it to create a new XmlElement,
set the attributes, and add it to the child node collection of the document. When
filtering, we simply cast to an XmlElement to access the attributes we need to make filter-
ing decisions. Finally, when sorting or grouping, the descriptions include paths as XPath
expressions (e.g., @ge). The results look just like Figure 7-20.

Data Source Providers | 243

XML binding without the data source provider

If you’ve already got a source of XML data that isn’t readily available for use by the
XML data source provider,” you can programmatically bind to it instead, as shown in
Example 7-43.

Example 7-43. XML binding without the data source provider

<!-- Windowl.xaml -->
<Window ...>
<Window.Resources>
<!-- no XmlDataProvider -->
<local:AgeToForegroundConverter x:Key="ageConverter" />
</Window.Resources>

<!-- DataContext set in code-behind -->
<Grid Name="grid">...</Grid>
</Window>

// Windowl.xaml.cs

public partial class Windowl : Window {
// the family XML document
XmlDocument doc;

public Window1() {

LoadFamilyXml();
}

void LoadFamilyXml() {
// Load the XML using an XmlDocument
doc = new XmlDocument();
doc.Load("family.xml");

// Make the namespace prefix mappings available for use in binding
XmlNamespaceManager manager = new XmlNamespaceManager(doc.NameTable);
manager .AddNamespace("sb", "http://sellsbrothers.com");
Binding.SetXmlNamespaceManager(grid, manager);

// Make the XML available for data binding. We use a binding here

// because it will detect when the source document changes so it can
// refresh the set of nodes returned by the XPath query

Binding b = new Binding();

b.XPath = "/sb:Family/sb:Person";

b.Source = doc;

grid.SetBinding(Grid.DataContextProperty, b);

* For example, if you need to retrieve XML data via an HTTP POST, you can’t use the XML data source pro-
vider, as it can only use HTTP GET.

244 | Chapter7: Binding to List Data

Example 7-43. XML binding without the data source provider (continued)

ICollectionView GetFamilyView() {
// The default view comes directly from the data
return CollectionViewSource.GetDefaultView(grid.DataContext);

}

void addButton Click(object sender, RoutedEventArgs e) {
// Creating a new XmlElement
XmlElement person =
doc.CreateElement("Person”, "http://sellsbrothers.com");

person.SetAttribute("Name", "Chris");
person.SetAttribute("Age", "37");

doc.DocumentElement.AppendChild(person);
}

}...

In Example 7-43, we’re loading the XML manually from a file, but you can get access
to the XML in whatever way is convenient, as long as you have an XmlNode or
XmlNodeList to which to bind. Here we’re creating the XmlDocument as a member
variable so that we can use it again to create and add a new XmlElement in the
addButton_Click event handler. Notice also that we’re populating an
XmlNamespaceManager and binding it to the grid so that binding knows how to trans-
late XPath strings that use namespace prefixes. And finally, instead of setting the
XML data directly as the grid’s DataContext, we’re actually binding it, along with
the XPath to filter the set of nodes available in the XML data. The binding is there
so that when the underlying XML data changes, resulting in a new set of nodes
returned from the XPath expression, the grid’s data context is updated appropriately.
Also, as this data context changes, the view may change, so we’re using the
DataContext property of the grid to get the view in GetFamilyView each time we need it.

The rest of the XML-related code in this sample does not have to change, as we've
just done manually what the XML data source provider was doing for us (although
we did leave out support for asynchronous access to the data, if it happens to be far
away).

Master-Detail Binding

We've seen binding to a single object. We've seen binding to a single list of objects.
Another very popular thing to do is to bind to more than one list, especially related
lists. For example, if you’re showing your users a list of customers and then, when they
select one, you’d like to show that customer’s related orders, you’ll want master-detail
binding.

Master-Detail Binding | 245

Master-detail binding is a form of filtering, where the selection in the master list (e.g.,
customer 452) sets the filtering parameters for the associated detail data (e.g., orders
for customer 452).

In our discussion thus far, we don’t have customers and orders, but we do have fami-
lies and people, which we could further formalize as shown in Example 7-44.

Example 7-44. Master-detail data for binding

public class Person {
string name;
public string Name {
get { return name; }
set { name = value; }

}

int age;
public int Age {
get { return age; }
set { age = value; }
}
}

public class People : ObservableCollection<Person> {}

public class Family {
string familyName;
public string FamilyName {
get { return familyName; }
set { familyName = value; }

}

People members;

public People Members {
get { return members; }
set { members = value; }

}
}

public class Families : ObservableCollection<Family> {}

In Example 7-44, we’ve got our familiar Person class with Name and Age properties,
collected into a familiar People collection. Further, we have a Family class with a
FamilyName property and a Members property of type People. Finally, we have a Families
collection, which collects Family objects. In other words, families have members, which
consist of people with names and ages.

You could imagine instances of Families, Family, People, and Person that looked like
Figure 7-21.

246 | Chapter7: Binding to List Data

Families (Master) People (Details)
Family Person
.Name = "Stooges" .Name = "Larry"
.Members » | Age=21
Family Person
.Name = "Addams" Name ="Curly"
.Members Age=22
Person
.Name ="Moe"
Age=23

People (Details)

Person

Name ="Gomez"
» | Age =135

Person

.Name = "Morticia"

Age=121

Person

.Name = "Fester"

Age=137

Figure 7-21. Example master-detail data

In Figure 7-21, the Families collection forms the master data, holding instances of
the Family class, each of which holds a Members property of type People, which holds

the detail Person data. You could populate instances of these data structures as
shown in Example 7-45.

Example 7-45. Declaring example master-detail data

<!-- Windowl.xaml -->
<Window ... xmlns:local="clr-namespace:MasterDetailBinding">
<Window.Resources>
<local:Families x:Key="Families">
<local:Family FamilyName="Stooge">
<local:Family.Members>
<local:People>
<local:Person Name="Larry" Age="21" />
<local:Person Name="Curly" Age="22" />
<local:Person Name="Moe" Age="23" />
</local:People>
</local:Family.Members>
</local:Family>

Master-Detail Binding | 247

Example 7-45. Declaring example master-detail data (continued)

<local:Family FamilyName="Addams">
<local:Family.Members>
<local:People>
<local:Person Name="Gomez" Age="135" />
<local:Person Name="Morticia" Age="121" />
<local:Person Name="Fester" Age="137" />
</local:People>
</local:Family.Members>
</local:Family>
</local:Families>
</Window.Resources>

</Window>

Binding to this data at the top level (i.e., to show the family names) could look like
Example 7-46.

Example 7-46. Binding to master Family data

<!l-- Windowl.xaml -->
<Window ...>
<Window.Resources>
<local:Families x:Key="Families">...</local:Families>
</Window.Resources>
<Grid DataContext="{StaticResource Families}">

<!-- Families Column -->
<TextBlock Grid.Row="0" Grid.Column="0">Families:</TextBlock>
<ListBox Grid.Row="1" Grid.Column="0"
IsSynchronizedWithCurrentItem="True"
ItemsSource="{Binding}">
<ListBox.ItemTemplate>
<DataTemplate>
<TextBlock Text="{Binding Path=FamilyName}" />
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
</Window>

In Example 7-46, we’re setting two things in the Families column (column 0). The
first is the header, which is set to the constant string Families. The second forms
the body, which is a list of Family objects in the Families collection, showing each
family’s FamilyName property, as shown in Figure 7-22.

Figure 7-22 isn’t master-detail yet, because selecting a master family doesn’t show its
associated details. To do that, we need to bind to the next level, as shown in
Example 7-47.

248 | Chapter7: Binding to List Data

[E°] MasterDetailBinding |ﬂ|

Families:
Stooge
Addams

Figure 7-22. Showing family data

Example 7-47. Binding to detail Person data

<Grid DataContext="{StaticResource Families}">
<!-- Families Column -->

<!-- Members Column -->
<StackPanel Grid.Row="0" Grid.Column="1" Orientation="Horizontal">
<TextBlock Text="{Binding Path=FamilyName}" />
<TextBlock Text=" Family Members:" />
</StackPanel>
<ListBox Grid.Row="1" Grid.Column="1"
IsSynchronizedWithCurrentItem="True"
ItemsSource="{Binding Path=Members}" >
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding Path=Name}" />
<TextBlock Text=" (age: " />
<TextBlock Text="{Binding Path=Age}" />
<TextBlock Text=")" />
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

In the Members column (column 1), we’re also setting a header and body, but this
time the header is bound to the FamilyName of the currently selected Family object.

Also, recall that in the Families column, our listbox’s items source was bound to the
entire collection via a Binding statement without a Path. In the details case, however,
we want to tell the data binding engine that we’d like to bind to the Members prop-
erty of the currently selected Family object, which is itself a collection of Person
objects. Figure 7-23 shows master-detail binding in action.

But wait; there’s more! Master-detail binding doesn’t stop at just two levels, oh no.
You can go as deep as you like, with each detail binding becoming the master bind-
ing for the next level. To see this in action, let’s add one more level of detail to our
data classes (see Example 7-48).

Master-Detail Binding | 249

[87] MasterDetailBinding = @] & |

Families: Addams Family Members:
Stooge Gomez (age: 135)
Addams Morticia (age: 121)

Fester (age: 137)

Figure 7-23. Showing master Family and detail Person data

Example 7-48. Adding a third level of detail

public class Person {
string name;
public string Name {
get { return name; }
set { name = value; }

}

int age;

public int Age {
get { return age; }
set { age = value; }

}

Traits traits;
public Traits Traits {
get { return traits; }
set { traits = value; }
}
}

public class Traits : ObservableCollection<Trait> {}

public class Trait {
string description;
public string Description {
get { return description; }
set { description = value; }
}
}

Now, not only do families have family names and members that consist of people
with names and ages, but each person also has a set of traits, each with its own
description. Expanding our XAML a bit to include traits would look like
Example 7-49.

Example 7-49. Declaring a third level of detail

<local:Families x:Key="Families">
<local:Family FamilyName="Stooge">
<local:Family.Members>

250 | Chapter7: Binding to List Data

Example 7-49. Declaring a third level of detail (continued)

<local:People>
<local:Person Name="Larry" Age="21">
<local:Person.Traits>
<local:Traits>
<local:Trait Description="In Charge" />
<local:Trait Description="Mean" />
<local:Trait Description="Ugly" />
</local:Traits>
</local:Person.Traits>
</local:Person>
<local:Person Name="Curly" Age="22" >...</local:Person>

</local:People>
</local:Family.Members>

</local:Family>
</local:Families>
With a third level of detail, we bind as shown in Example 7-50.

Example 7-50. Binding to a third level of detail data

<Grid DataContext="{StaticResource Families}">
<!-- Families Column -->
<!-- Members Column -->

<!-- Traits Column -->
<StackPanel Grid.Row="0" Grid.Column="2" Orientation="Horizontal">
<TextBlock Text="{Binding Path=Members/Name}" />
<TextBlock Text=" Traits:" />
</StackPanel>
<ListBox Grid.Row="1" Grid.Column="2"
IsSynchronizedWithCurrentItem="True"
ItemsSource="{Binding Path=Members/Traits}" >
<ListBox.ItemTemplate>
<DataTemplate>
<TextBlock Text="{Binding Path=Description}" />
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
</Grid>

In the case of the Families column header, recall that we had no binding at all; the
text was hardcoded:

<TextBlock ...>Families:</TextBlock>

Master-Detail Binding | 251

In the case of the Members column header, we bound to the FamilyName of the cur-
rently selected Family object like so:

<TextBlock ... Text="{Binding Path=FamilyName}" />
Logically, you could think of that as expanding to the following:
<TextBlock ... Text="{Binding Path=family.FamilyName}" />
where family is the currently selected Family object.

Taking this one level deeper, in the case of the traits column header, we’re binding to
the Name property of the currently selected Person from the Members property of the
currently selected Family, which binds like this:

<TextBlock ... Text="{Binding Path=Members/Name}" />
Again, logically you could think of it expanding like this:
<TextBlock ... Text="{Binding Path=family.Members.person.Name}" />

where family is the currently selected Family object and person is the currently
selected Person object. The / in the binding statement acts as the separator between
objects, with the object at each level assumed to be “currently selected.”

The binding for the listbox’s items source works the same way, except we want the
Traits collection from the currently selected Person, not the Name. Our trilevel master-
detail example looks like Figure 7-24.

CH| MasterDetailBinding |ﬂ|
Families: Stooge Family Members: Larry Traits:
Stooge Larry (age: 21) In Charge
Addams Moe (age: 22) Mean
Curly (age: 23) Ugly

Figure 7-24. Showing master-detail-more detail data

Hierarchical Binding

Master-detail binding is one step away from true hierarchical binding in that it generally
involves a known set of levels. For example, when we wanted to go from two levels to
three levels, we added another column to the table and manually set up the relationship
at the new level. On the other hand, hierarchical binding (sometimes called tree binding)
generally involves some number of levels that aren’t known until runtime and a control
that can expand itself as appropriate, like a menu or a tree. WPF has built-in support for
hierarchical binding using a special kind of data template that knows both how to dis-
play the current level of data and where to go for the next level. It’s a bit involved,
though, so let’s go back to first principles with our family data (see Example 7-51).

252 | Chapter7: Binding to List Data

Example 7-51. The beginnings of hierarchical data binding

<Window ...>
<Window.Resources>
<local:Families x:Key="Families">
</local:Families>
</Window.Resources>

<TreeView DataContext="{StaticResource Families}">
<TreeViewItem ItemsSource="{Binding}" Header="Families" />
</TreeView>
</Window>

In Example 7-51, we’re binding a TreeView control’s root item to the top level of the
families data, labeling the root “Families,” as shown in Figure 7-25.

ll—'lHierarchicaIBEnding |ﬂ|

4 Families
HierarchicalBinding.Family
HierarchicalBinding.Family

Figure 7-25. The beginnings of hierarchical data binding

Because the Families collection contains two Family objects, but we haven’t pro-
vided a template, WPF shows them as their type. If we want to show something
more meaningful, we already know to provide a data template (see Example 7-52).

Example 7-52. Slightly better hierarchical data binding

<MWindow ...>
<Window.Resources>
<local:Families x:Key="Families">

</local:Families>
<DataTemplate DataType="{x:Type local:Family}">
<TextBlock Text="{Binding Path=FamilyName}" />
</DataTemplate>
</Window.Resources>

<TreeView DataContext="{StaticResource Families}">
<TreeViewItem ItemsSource="{Binding}" Header="Families" />
</TreeView>
</Window>

The result is that we see the family name for each family in the collection, as shown
in Figure 7-26.

Hierarchical Binding | 253

[E7 HierarchicalBinding l=@] ®]

4 Families
Stooge
Addams

Figure 7-26. Slightly better hierarchical data binding

Figure 7-26 looks better, but now we’ve dead-ended our tree because the TreeViewItem
element doesn’t know where to get the next level of data. To provide this data, we have
the hierarchical data template, shown in Example 7-53.

Example 7-53. The next level of hierarchical data binding

<Window ...>
<Window.Resources>
<local:Families x:Key="Families">

</local:Families>

<HierarchicalDataTemplate DataType="{x:Type local:Family}"
ItemsSource="{Binding Path=Members}">
<TextBlock Text="{Binding Path=FamilyName}" />
</HierarchicalDataTemplate>

</Window.Resources>

<TreeView DataContext="{StaticResource Families}">
<TreeViewItem ItemsSource="{Binding}" Header="Families" />
</TreeView>
</Window>

In Example 7-53, the HierarchicalDataTemplate element is exactly the same as the
normal DataTemplate element, except that it provides the ItemsSource property so
that the tree can keep digging into the data, as shown in Figure 7-27.

~

[87] HierarchicalBinding l=|@] % |

4 Families
4 Stooge
HierarchicalBinding.Person
HierarchicalBinding.Person
HierarchicalBinding.Person
I Addams

Figure 7-27. The next level of hierarchical data binding

254 | Chapter7: Binding to List Data

Once again, the default behavior is to show the type name. We need to provide one last
template to show something more useful for the Person objects. Because these are the
leaves on our tree, we can use an ordinary data template, as shown in Example 7-54.

Example 7-54. Plumbing all of the hierarchical nodes

<Window ...>
<Window.Resources>
<local:Families x:Key="Families">

</local:Families>

<HierarchicalDataTemplate DataType="{x:Type local:Family}"
ItemsSource="{Binding Path=Members}">
<TextBlock Text="{Binding Path=FamilyName}" />
</HierarchicalDataTemplate>

<HierarchicalDataTemplate DataType="{x:Type local:Person}"
ItemsSource="{Binding Path=Traits}">
<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding Path=Name}" />
<TextBlock Text=" (age: " />
<TextBlock Text="{Binding Path=Age}" />
<TextBlock Text=")" />
</StackPanel>
</HierarchicalDataTemplate>

<DataTemplate DataType="{x:Type local:Trait}">
<TextBlock Text="{Binding Path=Description}" />
</DataTemplate>

</Window.Resources>

<TreeView DataContext="{StaticResource Families}">
<TreeViewItem ItemsSource="{Binding}" Header="Families" />
</TreeView>
</Window>

Notice in Example 7-54 that we have two hierarchical data templates (one for Family,
which contain Person objects, and one for Person, which contains Trait objects) and
one normal data template (for the Trait object, which doesn’t contain anything else).
With these templates in place, we get a tree that looks like Figure 7-28.

In you take another look at Example 7-54, you’ll notice that we’re not describing the
overall structure of the tree, but only how to get from any one object to its children.
This means that wherever an object of a type that has a hierarchical data template
appears in the tree, we can get to its children. For example, if you had Folder and
File, where Folder had a collection that contained both Files and Folders, Folders
would open to arbitrary levels in the tree given a single hierarchical data template
that told WPF how to get to those children. This makes hierarchical data binding
much more flexible than master-detail binding.

Hierarchical Binding | 255

,

ll—'lHierarchicalBincIing |ﬂ

4 Families
4 Stooge
4 Larry (age: 21)
In Charge
Mean
Ugly
Moe (age: 22)
I Curly (age: 23)
I Addams

Figure 7-28. Hierarchical data binding in action

Where Are We?

Whereas the preceding chapter dealt with the fundamentals of data binding, in this
chapter we discussed those topics necessary to make the most of binding to lists of
data, including list data sources in object, relational, and XML data formats; manag-
ing the current item; value conversion; sorting; filtering; grouping; data templates;
and even master-detail and hierarchical relationships. It may seem hard to believe,
but there are things that WPF’s data binding engine supports that we haven’t dis-
cussed (some of which we’ll get to in the next chapter, but some of which are beyond
the scope of this book”).

The thorough support for data binding at every level of WPF makes it a first-class
feature in a way that data binding has never been before. You’ll find that it perme-
ates pretty much every aspect of your WPF programming, including styles and con-
trol templates, which are the topics of the next two chapters.

* PriorityBinding and MultiBinding are the two topics that leap to mind as being uncovered in this book; for
details, refer to the Windows Platform SDK documentation at http://msdn2.microsoft.com/en-us/library/
default.aspx (http://tinysells.com/68).

256 | Chapter7: Binding to List Data

CHAPTER 8
Styles

In a word-processing document, a style is a set of properties to be applied to ranges
of content (e.g., text, images, etc.). For example, the name of the style 'm using now
is called Normal,Body,b and for this document in prepublication, that means a font
family of Times, a size of 10, and full justification. Later in the document, I'll be
using a style called Code,x,s, which will use a font family of Courier New, a size of 9,
and left justification. Styles are applied to content to produce a certain look when the
content is rendered.

In WPF, a style is also a set of properties applied to content used for visual render-
ing, like setting the font weight of a Button control. In addition to the features in
word-processing styles, WPF styles have specific features for building applications,
including the ability to apply different visual effects based on user events. All of these
features come without the need to build a custom control (although that’s still a use-
ful thing to be able to do, as discussed in Chapter 18).

Without Styles

As an example of how styles can make themselves useful in WPF, let’s look at a sim-
ple implementation of tic-tac-toe (see Example 8-1).

Example 8-1. A simple tic-tac-toe layout

<!-- Windowl.xaml -->

<Window
x:Class="TicTacToe.Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="TicTacToe"
Height="300"
Width="300">
<!-- the black background lets the tic-tac-toe -->
<!-- crosshatch come through on the margins -->
<Grid Background="Black">

257

Example 8-1. A simple tic-tac-toe layout (continued)

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition />

<ColumnDefinition />

<ColumnDefinition />
</Grid.ColumnDefinitions>
<Button Margin="0,0,2,2" Grid.Row="0" Grid.Column="0" Name="cello0" />
<Button Margin="2,0,2,2" Grid.Row="0" Grid.Column="1" Name="cello1" />
<Button Margin="2,0,0,2" Grid.Row="0" Grid.Column="2" Name="cello2" />
<Button Margin="0,2,2,2" Grid.Row="1" Grid.Column="0" Name="cell10" />
<Button Margin="2,2,2,2" Grid.Row="1" Grid.Column="1" Name="cell11" />
<Button Margin="2,2,0,2" Grid.Row="1" Grid.Column="2" Name="cell12" />
<Button Margin="0,2,2,0" Grid.Row="2" Grid.Column="0" Name="cell20" />
<Button Margin="2,2,2,0" Grid.Row="2" Grid.Column="1" Name="cell21" />
<Button Margin="2,2,0,0" Grid.Row="2" Grid.Column="2" Name="cell22" />

</Grid>
</Window>

This grid layout arranges a set of nine buttons in a 3x 3 grid of tic-tac-toe cells, using
the margins on the button for the tic-tac-toe crosshatch. A simple implementation of
the game logic in the XAML code-behind file looks like Example 8-2.

Example 8-2. A simple tic-tac-toe implementation

// Windowl.xaml.cs

namespace TicTacToe {
public partial class Windowl : Window {
// Track the current player (X or 0)
string currentPlayer;

// Track the list of cells for finding a winner, etc.
Button[] cells;

public Window1() {
InitializeComponent();

// Cache the list of buttons and handle their clicks
this.cells = new Button[] { this.celloo, this.cello1, ... };
foreach(Button cell in this.cells) {

cell.Click += cell_Click;
}

// Initialize a new game
NewGame() ;

258 | Chapter8: Styles

Example 8-2. A simple tic-tac-toe implementation (continued)

// Wrapper around the current player for future expansion,
// e.g., updating status text with the current player
string CurrentPlayer {

get { return this.currentPlayer; }

set { this.currentPlayer = value; }

}

// Use the buttons to track game state
void NewGame() {
foreach(Button cell in this.cells) {
cell.ClearValue(Button.ContentProperty);
}

CurrentPlayer = "X";

}

void cell Click(object sender, RoutedEventArgs e) {
Button button = (Button)sender;

// Don't let multiple clicks change the player for a cell
if(button.Content != null) { return; }

// Set button content
button.Content = CurrentPlayer;

// Check for winner or a tie

if(HasWon(this.currentPlayer)) {
MessageBox. Show("Winner!", "Game Over");
NewGame() ;
return;

}

else if(TieGame()) {
MessageBox.Show("No Winner!", "Game Over");
NewGame();
return;

}

// Switch player

if(CurrentPlayer == "X") {
CurrentPlayer = "0";

}

else {
CurrentPlayer = "X";

}

}

// Use this.cells to find a winner or a tie
bool HasWon(string player) {...}
bool TieGame() {...}

Without Styles | 259

Our simple tic-tac-toe logic uses strings to represent the players and uses the buttons
themselves to keep track of the game state. As each button is clicked, we set its content
to the string indicating the current player and switch players. When the game is over,
the content for each button is cleared.” The middle of a game looks like Figure 8-1.

B TicTacToe o|@] 2
(o} %
X (s} X
Q X

Figure 8-1. A simple tic-tac-toe game

Notice in Figure 8-1 how the grid background comes through from the margin.
These spacers almost make the grid look like a drawn tic-tac-toe board (although
we’ll do better later). However, if we're really looking to simulate a hand-drawn
game, we have to do something about the size of the font used on the buttons; it
doesn’t match the thickness of the lines.

One way to fix this problem is by setting the font size and weight for each Button
object, as shown in Example 8-3.

Example 8-3. Setting control properties individually

<Button FontSize="32pt" FontWeight="Bold" ... Name="celloo" />
<Button FontSize="32pt" FontWeight="Bold" ... Name="cello1" />
<Button FontSize="32pt" FontWeight="Bold" ... Name="cell22" />

The results, shown in Figure 8-2, look nicer.

Setting the font size and weight properties makes the Xs and Os look better accord-
ing to my visual sensibilities today. However, if I want to change it later, I've now
committed myself to changing both properties in nine separate places, which is a
duplication of effort that offends my coding sensibilities. I'd much prefer to refactor
my decisions about the look of my tic-tac-toe cells into a common place for future
maintenance. That’s where styles come in handy.

* We clear the content of each button by using the ClearValue method instead of setting the CLR property to
null so that setting the Content property in the triggers works later on.

260 | Chapter8: Styles

B TicTacToe

X

X (0] X

Figure 8-2. A nicer-looking tic-tac-toe board

Inline Styles

A style in WPF is expressed as zero or more Setter objects inside a Style object. Every
element in WPF that derives from either FrameworkElement or FrameworkContentElement
has a Style property, which you can set inline using standard XAML property element
syntax, as shown in Example 8-4.

Example 8-4. Setting an inline style

<Button ... Name="cello0">
<Button.Style>
<Style>
<Setter Property="Button.FontSize" Value="32pt" />
<Setter Property="Button.FontWeight" Value="Bold" />
</Style>
</Button.Style>
</Button>

Because we want to bundle two property values into our style, we have a Style ele-
ment with two Setter subelements, one for each property we want to set (i.e.,
FontSize and FontWeight), both with the Button prefix to indicate the class that con-
tains the property. Properties suitable for styling must be dependency properties.

Due to the extra style syntax and because inline styles can’t be shared across ele-
ments, inline styles actually involve more typing than just setting the properties. For
this reason, inline styles aren’t used nearly as often as named styles.”

* However, an inline style is useful if you want to add property and data triggers to an individual element. We
discuss triggers later in this chapter.

Inline Styles | 261

Named Styles

By hoisting the same inline style into a resource (as introduced in Chapter 1), we can
award it a name and use it by name in our button instances, as shown in
Example 8-5.

Example 8-5. Setting a named style

<!-- Window1.xaml -->
<Window ...>
<Window.Resources>
<Style x:Key="CellTextStyle">
<Setter Property="Control.FontSize" Value="32pt" />
<Setter Property="Control.FontWeight" Value="Bold" />
</Style>
</Window.Resources>

<Button Style="{StaticResource CellTextStyle}" ... Name="celloo" />
</Window>

In Example 8-5, we’ve used the class name as a prefix on our properties so that the style
knows what dependency property we’re talking about. We used Control as the prefix
instead of Button to allow the style to be used more broadly, as we’ll soon see.

The Target Type Attribute

As a convenience, if all of the properties can be set on a shared base class, like
Control in our example, we can promote the class prefix into the TargetType attribute
and remove it from the name of the property (see Example 8-6).

Example 8-6. A target-typed style

<Style x:Key="CellTextStyle" TargetType="{x:Type Control}">
<Setter Property="FontSize" Value="32pt" />
<Setter Property="FontWeight" Value="Bold" />

</Style>

When providing a TargetType attribute, you can only set properties available on that
type. If you’d like to expand to a greater set of properties down the inheritance tree,
you can do so by using a more derived type (see Example 8-7).

Example 8-7. A more derived target-typed style

<Style x:Key="CellTextStyle" TargetType="{x:Type Button}">
<!-- IsCancel is a Button-specific property -->
<Setter Property="IsCancel" Value="False" />
<Setter Property="FontSize" Value="32pt" />
<Setter Property="FontWeight" Value="Bold" />
</Style>

262 | Chapter8: Styles

In this case, the IsCancel property is available only on Button, so to set it, we need to
switch the target type attribute for the style.

Reusing Styles

In addition to saving you from typing out the name of the class prefix for every prop-
erty name, the TargetType attribute will also confirm that all classes that have the style
applied are an instance of that type (or derived type). That means that if we leave
TargetType set to Control, we can apply it to a Button element, but not to a TextBlock
element, as the former derives ultimately from Control but the latter does not.

However, if we’d like to define a style that contains properties not shared by every
element to which we’d like to apply them, we can do that by dropping the
TargetType and putting back the property prefix, as shown in Example 8-8.

Example 8-8. Styles can have properties that targets don’t have

<Style x:Key="CellTextStyle">
<Setter Property="TextElement.FontSize" Value="32pt" />
<Setter Property="Button.IsCancel" Value="False" />
</Style>

<!-- has an IsCancel property -->
<Button Style="{StaticResource CellTextStyle}" ... />

<!-- does *not* have an IsCancel property --»
<TextBlock Style="{StaticResource CellTextStyle}" ... />

In Example 8-8, we’ve added the Button.IsCancel property to the CellTextStyle and
applied it to the Button element, which has this property, and the TextBlock element,
which doesn’t. This is OK. At runtime, WPF will apply the dependency properties
and the elements themselves will ignore those values that don’t apply to them.”

R
s

WPF’s ability to apply styles to objects that don’t have all of the prop-
erties defined in the style is analogous to applying the Word Normal
thee style, which includes a font size property of its own, to both a range of
" text and an image. Even though Word knows that images don’t have a
font size, it applies the portions of the Normal style that do make
sense (like the justification property), ignoring the rest.

Getting back to our sample, we can use the CellTextStyle on the Buttons to show nice
Xs and Os, and on a TextBlock in a new row to show whose turn it is (see Example 8-9).

* The ability to set a value for a property that an element doesn’t have is useful for inheritable properties,
because those values will flow on through to child elements. See Chapter 18 for a description of dependency
property inheritance.

Named Styles | 263

Example 8-9. Applying a style to Button and TextBlock elements

<Window.Resources>
<Style x:Key="CellTextStyle">
<Setter Property="Control.FontSize" Value="32pt" />
<Setter Property="Control.FontWeight" Value="Bold" />
</Style>
</Window.Resources>
<Grid Background="Black">
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Button Style="{StaticResource CellTextStyle}" ... />

<TextBlock
Style="{StaticResource CellTextStyle}"
Foreground="White"
Grid.Row="3"
Grid.ColumnSpan="3"
Name="statusTextBlock" />
</Grid>
</Window>

With our new text block in place, we can inform the next player of her turn by
updating the CurrentPlayer property setter:
string CurrentPlayer {
get { return this.currentPlayer; }
set {
this.currentPlayer = value;

this.statusTextBlock.Text =
"It's your turn, " + this.currentPlayer;
}

}

This reuse of the style across controls of different types gives us a consistent look in
the application, as shown in Figure 8-3.

One thing you’ll notice is that the status text in Figure 8-3 is white, whereas the text
in the buttons is black. Because black is the default text color, if we want the status
text to show up against a black background, we have to change the color to some-
thing else, hence the need to set the Foreground property to white on the TextBlock.
Setting per-instance properties works just fine in combination with a style, and you
can combine the two techniques of setting property values as you see fit.

264 | Chapter8: Styles

B TicTacToe

X o (0

X

[t's your turn, O

Figure 8-3. A tic-tac-toe game with style

Overriding Style Properties

Further, if we wanted to override a style property on a specific instance, we can do so
by setting the property on the instance (see Example 8-10).

Example 8-10. Overriding the FontWeight property from the style

<Style x:Key="CellTextStyle">
<Setter Property="TextElement.FontSize" Value="32pt" />
<Setter Property="TextElement.FontWeight" Value="Bold" />

</Style>

<TextBlock
Style="{StaticResource CellTextStyle}"
FontWeight="Normal" ... />

In Example 8-10, the TextBlock instance property setting of FontWeight takes prece-
dence over the style property setting of FontWeight.

Extending Styles

In addition to the abilities to reuse and override existing styles, you can also extend a
style, adding new properties or overriding existing ones (see Example 8-11).

Example 8-11. Extending a style

<Style x:Key="CellTextStyle">
<Setter Property="Control.FontSize" Value="32pt" />
<Setter Property="Control.FontWeight" Value="Bold" />
</Style>
<Style x:Key="StatusTextStyle" BasedOn="{StaticResource CellTextStyle}">
<Setter Property="TextBlock.FontWeight" Value="Normal" />
<Setter Property="TextBlock.Foreground" Value="White" />
<Setter Property="TextBlock.HorizontalAlignment" Value="Center" />
</Style>

Named Styles | 265

The BasedOn style attribute is used to designate the style being extended. In
Example 8-11, the StatusTextStyle style gets all of the CellTextStyle property setters,
overrides the FontWeight, and adds setters for Foreground and HorizontalAlignment. Our
current use of styles causes our tic-tac-toe game to look like Figure 8-4.

B TicTacToe

(0

X o X

(0 X

It's your turn, X

Figure 8-4. A tic-tac-toe game with more style

Our application so far is looking pretty good, but we can do better.

Setting Styles Programmatically

Once a style has a name, it’s easily available from our code. For example, we might
decide that we’d like each player to have his own style:
<Style x:Key="XStyle" BasedOn="{StaticResource CellTextStyle}">
<Setter Property="Control.Foreground" Value="Red" />
</Style>
<Style x:Key="0Style" BasedOn="{StaticResource CellTextStyle}">
<Setter Property="Control.Foreground" Value="Green" />
</Style>
In this case, applying named styles to each button in XAML at compile time won’t
do the trick, because we want to set the style based on the content, and in this appli-
cation, the content changes when a button is clicked at runtime. However, nothing
requires us to set the Style property of a control statically; we can set it programmat-
ically as well, as we do in Example 8-12.

Example 8-12. Setting styles programmatically

public partial class Windowl : Window {

void cell Click(object sender, RoutedEventArgs e) {
Button button = (Button)sender;

266 | Chapter8: Styles

Example 8-12. Setting styles programmatically (continued)

// Set button content
button.Content = this.CurrentPlayer;

if(this.CurrentPlayer == "X") {
button.Style = (Style)FindResource("XStyle");
this.CurrentPlayer == "0";

}

else {
button.Style = (Style)FindResource("0Style");
this.CurrentPlayer == "X";

}

}

In Example 8-12, whenever the player clicks, in addition to setting the button’s con-
tent, we pull a named style out of the window’s resources with the FindResource
method and use that to set the button’s style, as shown in Figure 8-5.

B | TicTacToe

X (0

(0 (0 X

X

It's your turn, X

Figure 8-5. Setting styles programmatically based on an object’s content (Color Plate 7)

Notice that the Xs and Os are colored according to the named player styles. In this
particular case (and in many other cases, too), data triggers should be preferred to
setting styles programmatically, but we’ll get to that later.

R

i

As with all XAML constructs, you are free to create styles themselves
programmatically. Appendix A is a good introduction on how to think
4* about going back and forth between XAML and code.

Named Styles | 267

Element-Typed Styles

Named styles are useful when you have a set of properties to be applied to a specific
element instance. However, if you’d like to apply a style uniformly to all instances of
a certain type of element, set the TargetType without a Key (see Example 8-13).

Example 8-13. Element-typed styles

¢!-- without a Key -->
<Style TargetType="{x:Type Button}">
<Setter Property="FontSize" Value="32pt" />
<Setter Property="FontWeight" Value="Bold" />
</Style>
<!-- with a Key --»>
<Style x:Key="StatusTextStyle" TargetType="{x:Type TextBlock}">
<Setter Property="FontSize" Value="32pt" />
<Setter Property="FontWeight" Value="Normal" />
<Setter Property="Foreground" Value="White" />
<Setter Property="HorizontalAlignment" Value="Center" />
</Style>

<!-- no need to set the Style -->
<Button Grid.Row="0" Grid.Column="0" x:ID="cello0" />

<!-- need to set the Style -->
<TextBlock Style="{StaticResource StatusTextStyle}" ... />

In Example 8-13, we have two styles, one with a TargetType of Button and no Key,
and another with a TargetType of TextBlock and a Key. The TextBlock style works just
as we’ve seen (i.e., you have to assign a TextBlock Style property explicitly to the
style using the key for it to take effect). On the other hand, when an instance of
Button is created without an explicit Style attribute setting, it uses the style that
matches the target type of the style to the type of the control. Our element-typed
styles return our game to looking again like Figure 8-4.

Element-typed styles are handy whenever you’d like all instances of a certain ele-
ment to share a look, depending on the scope. For example, we’ve scoped the but-
ton style in our sample thus far at the top-level Window (see Example 8-14).

Example 8-14. Style scoped to the Window

<!-- Windowl.xaml -->
<Window ...>
<!-- every Button in the Window is affected -->
<Window.Resources>
<Style TargetType="{x:Type Button}">...</Style>
</Window.Resources>

</Window>

268 | Chapter8: Styles

However, you may want to reduce the scope of an element-typed style. In our sam-
ple, it would work just as well to scope the button style inside the grid so that only
buttons in the grid are affected (see Example 8-15).

Example 8-15. Style scoped below the Window

<!-- Windowl.xaml -->
<Window ...>

<Grid ...»
<!-- only Buttons in the Grid are affected -->
<Grid.Resources>
<Style TargetType="{x:Type Button}">...</Style>
</Grid.Resources>
</Grid>

<!-- Buttons outside the Grid are unaffected -->
</Window>

Alternatively, if you want to make your style have greater reach in your project, you
can put it into the application scope (see Example 8-16).

Example 8-16. Style scoped to the application

<!-- MyApp.xaml -->
<Application ...>
<!-- every Button in the Application is affected -->
<Application.Resources>
<Style TargetType="{x:Type Button}">...</Style>
</Application.Resources>
</Application>

In general, it’s useful to understand the scoping rules of element-typed styles so that
you can judge their effect on the various pieces of your WPF object model.
Chapter 12 discusses resource scoping of all kinds, including styles, in more detail.

Element-Typed Styles and Derived Types

When you define a style with only a TargetType, that style will be applied only to ele-
ments of that exact type and not to derived types. For example, if you've got a single
style that you’d like to apply to both the CheckBox and the RadioButton types, you might
think to create a style for their common base type (ToggleButton), as in Example 8-17.

Example 8-17. Element-typed styles aren’t applied to derived types

<Window ...>
<Window.Resources>
¢!-- this isn't going to be applied to RadioButton or CheckBox -->
<Style TargetType="ToggleButton">
<Setter Property="FontSize" Value="32" />
</Style>

Element-Typed Styles | 269

Example 8-17. Element-typed styles aren’t applied to derived types (continued)

</Window.Resources>

<StackPanel Margin="5">
<TextBlock FontSize="32">two toggle buttons:</TextBlock>
<CheckBox>my checkbox</CheckBox>
<RadioButton>my radio button</RadioButton>

</StackPanel>

</Window>

As Figure 8-6 shows, the style associated with the ToggleButton type will not be
applied to either the radio button or the checkbox.

E| Element-Typed Styles and Derived Types E@g

two toggle buttons:

|:| my checkbox
© my radio button

Figure 8-6. Element-typed styles aren’t applied to derived types

This limitation keeps styles from leaking to unknown derived types. However, if
you’d like to centralize the settings for a style on a base type and apply it to known
derived types, you can do so with a little extra work (see Example 8-18).

Example 8-18. Manually applying element-typed styles to derived types

<Window ...>
<Window.Resources>
<Style x:Key="toggleButtonStyle" TargetType="ToggleButton">
<Setter Property="FontSize" Value="32" />
</Style>
<Style TargetType="RadioButton"
BasedOn="{StaticResource toggleButtonStyle}" />
<Style TargetType="CheckBox"
BasedOn="{StaticResource toggleButtonStyle}" />
</Window.Resources>

</Window>

In Example 8-18, we gave our toggle button style a key and then used it with the
BasedOn property of our element-typed styles for RadioButton and CheckBox, as shown
in Figure 8-7.

Using this technique, we’re able to define element-typed styles and reuse settings
across known derived types.

270 | Chapter8: Styles

E| Element-Typed Styles and Derived Types E@Ig

two toggle buttons:
“my checkbox
°my radio button

Figure 8-7. You can mix TargetType and BasedOn for good effect

Data Templates and Styles

Let’s imagine that we want to implement a variant of tic-tac-toe that’s more fun to
play (an important feature in most games). For example, one variant of tic-tac-toe
only allows players to have three of their pieces on at any one time, dropping the first
move off when the fourth move is played, dropping the second move when the fifth is
played, and so on. To implement this variant, we need to keep track of the sequence
of moves, with each move represented by a PlayerMove object, as shown in
Example 8-19.

Example 8-19. A custom type suitable for tracking tic-tac-toe moves

public class PlayerMove : INotifyPropertyChanged {
string playerName;
public string PlayerName {
get { return playerName; }
set {
if(string.Compare(playerName, value) == 0) { return; }
playerName = value;
Notify("PlayerName");
}
}

int moveNumber;
public int MoveNumber {
get { return moveNumber; }
set {
if(moveNumber == value) { return; }
moveNumber = value;
Notify("MoveNumber");
}
}

Data Templates and Styles | 271

Example 8-19. A custom type suitable for tracking tic-tac-toe moves (continued)

bool isPartOfWin = false;
public bool IsPartOfWin {
get { return isPartOfWin; }
set {
if(isPartOfWin == value) { return; }
isPartOfWin = value;
Notify("IsPartOfWin");
}
}

public PlayerMove(string playerName, int moveNumber) {
this.playerName = playerName;
this.moveNumber = moveNumber;

}

// INotifyPropertyChanged Members
public event PropertyChangedEventHandler PropertyChanged;
void Notify(string propName) {
if(PropertyChanged != null) {
PropertyChanged(this, new PropertyChangedEventArgs(propName));
}
}
}

Now, instead of using a simple string for each button object’s content, we’ll use an

instance of PlayerMove, as shown in Example 8-20.

Example 8-20. Adding the PlayerMove as Button content

namespace TicTacToe {
public partial class Windowl : Window {

int moveNumber;
void NewGame() {

this.moveNumber = 0;

}

void cell Click(object sender, RoutedEventArgs e) {

// Set button content
//button.Content = this.CurrentPlayer;
button.Content =
new PlayerMove(this.CurrentPlayer, ++this.moveNumber);

272 | Chapter8: Styles

Figure 8-8 shows the brilliance of such a change (after turning off the button style so
that the text isn’t too large to read).

w7 Tic = =8| 8

TicTacToe PlayerMove

TicTacToe PlayerMove TicTacToe. PlayerMove TicTacToe PlayerMove

TicTacToePlayerMove

It's your turn, O

Figure 8-8. PlayerMove objects displayed without any special instructions

As you’ll recall from Chapter 6, in Figure 8-8 the button doesn’t have enough infor-
mation to render a PlayerMove object, but we can fix that with a data template.

Data Templates Redux

As you already know from Chapter 7, WPF allows you to define a data template, which
is a tree of elements to expand in a particular context. We use data templates to provide
an application with the capability to render nonvisual objects (see Example 8-21).

Example 8-21. Setting a PlayerMove data template without styles

<Window ... xmlns:local="clr-namespace:TicTacToe">
<Window.Resources>

<Style TargetType="{x:Type Button}">
<Setter Property="HorizontalContentAlignment" Value="Stretch" />
<Setter Property="VerticalContentAlignment" Value="Stretch" />
<Setter Property="Padding" Value="8" />
</Style>
<DataTemplate DataType="{x:Type local:PlayerMove}">
<Grid>
<TextBlock
Text="{Binding Path=PlayerName}"
FontSize ="32pt"
FontWeight="Bold"
VerticalAlignment="Center"
HorizontalAlignment="Center" />

Data Templatesand Styles | 273

Example 8-21. Setting a PlayerMove data template without styles (continued)

<TextBlock
Text="{Binding Path=MoveNumber}"
FontSize="16pt"
FontStyle="Italic"
VerticalAlignment="Bottom"
HorizontalAlignment="Right" />
</Grid>
</DataTemplate>
</Window.Resources>

</Window>

Using the XAML mapping syntax described in Chapter 1, we’ve mapped the
PlayerMove type into the XAML with the xmlns attribute, which we’ve used as the data
type of the data template. Now, when a WPF element that uses the content model sees
a PlayerMove object, like the content of all of our buttons, the data template will be
expanded.” In our case, the template consists of a grid to arrange two text blocks, one
showing the player name in the middle of the button and one showing the move
number in the bottom right, along with some other settings to make things pretty. In
addition, we’ve changed our button style to give the grid the entire space of the con-
tent area, less some padding around the edge (otherwise, things get a little cramped).
Figure 8-9 shows the result.

B TicTacToe = |@] 2

x7 xl

O, O, X,

X, o,

It's your turn, O

Figure 8-9. Showing objects of a custom type using data templates and styles

* Controls that use the content model in WPF are those with control templates that use a ContentPresenter,
as discussed in Chapter 9.

274 | Chapter8: Styles

Data Templates with Style

Just as it’s a good idea to take “magic numbers” out of your code, pulling them out
and giving them names for easy maintenance, it’s a good idea to move groups of set-
tings into styles,” as shown in Example 8-22.

Example 8-22. Setting a PlayerMove data template with styles

<Window.Resources>

<Style x:Key="CellTextStyle" TargetType="{x:Type TextBlock}">
<Setter Property="FontSize" Value="32pt" />
<Setter Property="FontWeight" Value="Bold" />
<Setter Property="VerticalAlignment" Value="Center" />
<Setter Property="HorizontalAlignment" Value="Center" />
</Style>
<Style x:Key="MoveNumberStyle" TargetType="{x:Type TextBlock}">
<Setter Property="FontSize" Value="16pt" />
<Setter Property="FontStyle" Value="Italic" />
<Setter Property="VerticalAlignment" Value="Bottom" />
<Setter Property="HorizontalAlignment" Value="Right" />
</Style>
<DataTemplate DataType="{x:Type local:PlayerMove}">
<Grid>
<TextBlock
Text="{Binding Path=PlayerName}"
Style="{StaticResource CellTextStyle}" />
<TextBlock
Text="{Binding Path=MoveNumber}"
Style="{StaticResource MoveNumberStyle}" />
</Grid>
</DataTemplate>
</Window.Resources>

As nice as Figure 8-9 is, the interaction is kind of boring given the capabilities of
WPF. Let’s see what we can do with style properties as the application is used.

Triggers

So far, we’ve seen styles as a collection of Setter elements. When a style is applied,
the settings described in the Setter elements are applied unconditionally (unless
overridden by per-instance settings). On the other hand, property triggers are a way
to wrap one or more Setter elements in a condition. With a property trigger, if the
condition is true, the corresponding Setter elements are executed to set one or more
element properties. When the condition becomes false, the property values revert to
their pre-trigger values.

* Moving groups of settings into styles also allows for easier skinning and theming, as described in Chapter 12.

Triggers | 275

Property triggers are not the only kinds of triggers that WPF supports, however.
With an event trigger, the trigger is activated when an event is fired, which fires off
another event to start or stop an animation.

Property Triggers

The simplest form of a trigger is a property trigger, which watches for a dependency
property on the element to have a certain value. For example, we might want to set
the tool tip over a button if neither player has yet chosen it for a move. We can do so
by watching for the Content property to have a value of null,” as shown in
Example 8-23.

Example 8-23. A simple property trigger
<Style TargetType="{x:Type Button}">

<Style.Triggers>
<Trigger Property="Content" Value="{x:Null}" >
<Setter Property="ToolTip" Value="click to move here" />
</Trigger>
</Style.Triggers>
</Style>

Triggers are grouped together under the Style.Triggers element. In this case, we've
added a Trigger element to the button style. When the Content property of our but-
ton is null, the ToolTip property of the button will be set to “click to move here,” as
shown in Figure 8-10.

B TicTacToe =l B S
2
It's your turn, O |

Figure 8-10. A property trigger in action (Color Plate 8)

* The null value is set via a XAML markup extension, which you can read more about in Appendix A.

276 | Chapter8: Styles

There’s no need to worry about setting a property back when the trigger is no longer
true (e.g., watching for Content to be non-null). The WPF dependency property sys-
tem watches for the property trigger to become inactive and reverts the property to
the previous value.

You can set property triggers to watch any of the dependency properties on the con-
trol to which your style is targeted and to set any of the dependency properties on
the control while the condition is true. In fact, you can use a single trigger to set mul-
tiple properties if you like.

Multiple Triggers

Although you can set as many properties as you like in a property trigger, there can be
more than one trigger in a style. When grouped together under the Style.Triggers ele-
ment, multiple triggers act independently of one another.

For example, we can update our example so that if the content is null on one of our
buttons, it’ll have one tool tip, but if the button has focus (the Tab and arrow keys
move focus around), it’ll have another tool tip, as shown in Example 8-24.

Example 8-24. Multiple property triggers
<Style TargetType="{x:Type Button}">

<Style.Triggers>
<Trigger Property="Content" Value="{x:Null}" >
<Setter Property="ToolTip" Value="click to move here" />
</Trigger>
<Trigger Property="IsFocused" Value="True" >
<Setter Property="ToolTip" Value="click or spacebar to move here" />
</Trigger>
</Style>

Figure 8-11 shows the result of one cell having both focus and the mouse hovering.

If multiple triggers set the same property, the last one wins. For example, in
Figure 8-11, because the button has no content and focus, the tool tip will be the one
associated with the keyboard focus because the trigger for the IsFocused trigger is last
in the list.

Multicondition Property Triggers

One thing you may have noticed about Example 8-24 is that it checks only for key-
board focus. However, just checking for the focus isn’t enough; we also need to
check whether the button already has content. If you’d like to check more than one
property before a trigger condition is activated, you can combine multiple condi-
tions with a multiple condition property trigger, as shown in Example 8-25.

Triggers | 277

1 TicTacToe el e

X, X;

T
| eheck of spacebar to mave here | 4

Figure 8-11. Multiple property triggers in action (Color Plate 9)

Example 8-25. A multiproperty trigger
<Style TargetType="{x:Type Button}">

<Style.Triggers>
<Trigger Property="Content" Value="{x:Null}" >
<Setter Property="ToolTip" Value="click to move here" />
</Trigger>
<MultiTrigger>
<MultiTrigger.Conditions>
<Condition Property="IsFocused" Value="True" />
<Condition Property="Content" Value="{x:Null}" />
</MultiTrigger.Conditions>
<Setter Property="ToolTip" Value="click or spacebar to move here" />
</MultiTrigger>
</Style.Triggers>
</Style>

Multicondition property triggers check all of the properties’ values to be set as speci-
fied, not just one of them. Here, we’re watching for both keyboard focus and the con-
tent to be null, reflecting the game logic that new moves can happen only in empty cells.

Property triggers are great for noticing when the user is interacting with an element
displaying your program’s state. However, we’d also like to be able to notice when
the program’s state itself changes—such as when a particular player makes a move—
and update our style settings accordingly. For that, we have data triggers.

Data Triggers

Unlike property triggers, which check only WPF dependency properties, data trig-
gers can check any old thing to which you can bind (e.g., a CLR object property, an
XPath statement, etc.). Whereas property triggers are generally used to check WPF
visual element properties, data triggers are normally used to check the properties of
nonvisual objects used as content, like our PlayerMove objects (see Example 8-26).

278 | Chapter8: Styles

Example 8-26. Two data triggers

<Window.Resources>
<Style TargetType="{x:Type Button}">

</Style>
<Style x:Key="CellTextStyle" TargetType="{x:Type TextBlock}">
<Style.Triggers>
<DataTrigger Binding="{Binding Path=PlayerName}" Value="X"»>
<Setter Property="Foreground" Value="Red" />
</DataTrigger>
<DataTrigger Binding="{Binding Path=PlayerName}" Value="0">
<Setter Property="Foreground" Value="Green" />
</DataTrigger>
</Style.Triggers>

</Style>
<Style x:Key="MoveNumberStyle" TargetType="{x:Type TextBlock}">

</Style>
<DataTemplate DataType="{x:Type 1:PlayerMove}">
<Grid>
<TextBlock
TextContent="{Binding Path=PlayerName}"
Style="{StaticResource CellTextStyle}" />
<TextBlock
TextContent="{Binding Path=MoveNumber}"
Style="{StaticResource MoveNumberStyle}" />
</Grid>

</DataTemplate>
</Window.Resources>

DataTrigger elements go under the Style.Triggers element just like property trig-
gers, and also just like property triggers, more than one of them can be active at any
one time. Whereas a property trigger operates on the properties of the visual ele-
ments displaying the content, a data trigger operates on the content itself. In our
case, the content of each cell is a PlayerMove object. In both of the data triggers, we’re
binding to the PlayerName property. If the value is “X,” we’re setting the foreground
to red, and if it’s “O,” we’re setting it to green.

We haven’t had per-player colors since moving to data templates after setting styles
programmatically in Figure 8-5, but data triggers bring that feature right back, along
with all of the other features we’ve been building up, as shown in Figure 8-12.

Unlike property triggers, which rely on the change notification of dependency prop-
erties, data triggers can also use an implementation of the standard property change
notification patterns built into .NET and discussed in Chapter6 (e.g.,
INotifyPropertyChanged). Even our simple class needs to raise such notifications as
the IsPartOflin property changes (it’s set when a win is detected). If you’re using data
triggers, chances are that you’ll need to expose notifications from your data classes.

Triggers | 279

B TicTacToe

O, O,

)(1 ‘:, 2)(5

It's your turn, X

Figure 8-12. Data triggers in action (Color Plate 10)

One other especially handy feature of data triggers is that there’s no need for an
explicit check for null content. If the content is null, the trigger condition is automat-
ically false, which is why the application isn’t crashing trying to dereference a null

PlayerMove to get to the PlayerName property.

Multicondition Data Triggers

Just as we can combine property triggers into “and” conditions using the
MultiTrigger element, we can combine data triggers using the MultiDataTrigger ele-
ment. For example, if we wanted to watch for winning moves and match the move
number to the color of the player that won, we’d need two multicondition data trig-

gers, one for each player, as shown in Example 8-27.

Example 8-27. A multidata trigger

<Style x:Key="MoveNumberStyle" TargetType="{x:Type TextBlock}">

<Style.Triggers>

<MultiDataTrigger>
<MultiDataTrigger.Conditions>
<Condition Binding="{Binding Path=PlayerName}" Value="X" />

<Condition Binding="{Binding Path=IsPartOfWin}" Value="True" />

</MultiDataTrigger.Conditions>
<Setter Property="BitmapEffect">
<Setter.Value>
<OuterGlowBitmapEffect GlowColor="Red" GlowSize="10" />
</Setter.Value>
</Setter>
</MultiDataTrigger>

<MultiDataTrigger>
<MultiDataTrigger.Conditions>
<Condition Binding="{Binding Path=PlayerName}" Value="0" />

<Condition Binding="{Binding Path=IsPartOfWin}" Value="True" />

280

| Chapter8: Styles

Example 8-27. A multidata trigger (continued)

</MultiDataTrigger.Conditions>

<Setter Property="BitmapEffect">
<Setter.Value>

<OuterGlowBitmapEffect GlowColor="Green" GlowSize="10" />

</Setter.Value>

</Setter>

</MultiDataTrigger>
</Style.Triggers>
</Style>

Here we’re setting a glow around the winning move numbers to make the crucial
moves clear.” Figure 8-13 shows the results after a win.

[E7] TicTacToe ‘ﬂl

X25

Ox| On| On

Game Over M

Winner!

Figure 8-13. The winner aglow with pride (Color Plate 11)

The multicondition data trigger in Example 8-27 sets the move number to match the
color of the winner to connote a cause for celebration, but you can use multicondition
data triggers for celebrations of your own kinds. Also, I didn’t show it in this example,
but because data triggers support CLR property change notifications as well as depen-
dency property change notifications, they are very handy inside the Triggers element
of a data template.

Event Triggers

Whereas property triggers check for values on dependency properties and data triggers
check for values on CLR properties, event triggers watch for events. When an event (like
a Click event) happens, an event trigger responds by raising an animation-related event.

* For more information about bitmap effects, read Chapter 13.

Triggers | 281

Although animation is interesting enough to deserve its own chapter (Chapter 16),
Example 8-28 shows a simple animation that will transition a button from transparent
to opaque over two seconds when it’s clicked.

Example 8-28. An event trigger
<Style TargetType="{x:Type Button}">

<Style.Triggers>

<EventTrigger RoutedEvent="Click">
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetProperty="0Opacity"
From="0" To="1" Duration="0:0:2" />
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Style.Triggers>
</Style>

To add an animation to a style requires two things. The first is an event trigger with
the name of the event that caused the trigger to fire (the Click event, in our case).
The second is a storyboard, which is a grouping for animations. When the Click
event happens, we begin the storyboard. Our storyboard happens to contain one ani-
mation, which animates the Opacity property on the button from fully transparent to
fully opaque. Figure 8-14 shows the results of clicking the button in the upper left
about halfway through the fade-in animation.

7 TicTacToe [F=EER 5

X, O,] O,

Figure 8-14. The event trigger and our fade-in animation (Color Plate 12)

Event triggers let you trigger animations when events happen. Property and data trig-
gers let you set properties when properties change, but they also let you start or stop
animations (discussed in Chapter 16). Both types of triggers let you add a degree of
interactivity to your applications in a wonderfully declarative way with little or no code.

282 | (Chapter8: Styles

Where Are We?

Styles enable you to define a policy for setting the dependency properties of visual
elements. You can apply sets of properties manually by name, programmatically by
name, or automatically using element-typed styles. In addition to providing constant
dependency property values, styles can contain condition-based property values
based on other dependency properties, data properties, or events.

But that’s not all there is to styles. For information about how animations work,
you'll want to read Chapter 16, and for information about styles as related to
resources, themes, and skins, you’ll want to read Chapter 12. Finally, if setting style
properties isn’t enough to give your control the look you want, the very next chapter
shows you how to replace the look of a control completely.

Where Are We? | 283

CHAPTER 9
Control Templates

Styles, as described in Chapter 8, are great if the changes you’d like to make to a con-
trol’s look can be adjusted by the control’s properties (according to your keen aes-
thetic sense), but what if the control author didn’t leave you enough knobs to get the
job done? Rather than diving in to build a custom control, as other presentation
libraries would have you do, WPF provides the ability to replace the complete look
of the built-in controls while maintaining the existing behavior.

Beyond Styles

Recall from Chapter 8 that we built a nice little tic-tac-toe game. However, if we take
a closer look at it, we’ll see that the Button isn’t quite doing the job for us. What
tic-tac-toe board has rounded inset corners (Figure 9-1)?

-

[® 7 TicTacToe

),

Q))

Figure 9-1. Tic-tac-toe boards don’t have rounded insets!

What we really want here is to be able to keep the behavior (i.e., holding content and
firing click events), but to take over the look of it. WPF allows this kind of thing

284

because the intrinsic controls are built to be lookless (i.e., they provide behavior, but
the control’s user can swap out the look completely). The default look comes from
the system-provided template, as described in Chapter 12.

Remember from Chapters 6 and 8 how we used data templates to provide the look of a
nonvisual object? We can do the same to a control using a control template—a set of
triggers, resources, and most important, elements that provide the look of a control.

To fix our buttons’ looks, we’ll build ourselves a control template resource. Let’s
start things off with a simple rectangle (see Example 9-1).

Example 9-1. A minimal control template

<!-- let's just try one button for now... -->
<Button Margin="0,0,2,2" Grid.Row="0" Grid.Column="0" Name="cello0">
<Button.Template>
<ControlTemplate>
<Grid>
<Rectangle />
</Grid>
</ControlTemplate>
</Button.Template>
</Button>

Figure 9-2 shows the results of setting a single button’s Template property.

7 TicTacToe

Figure 9-2. Replacing the control template with something less visual than we’d like. ..

Notice that no vestiges of how the button used to look remain in Figure 9-2. Unfor-
tunately, we can see no vestige of our rectangle, either. The problem is that without a
fill explicitly set, the rectangle defaults to no fill, showing the grid’s black back-
ground. Let’s set it to our other favorite Halloween color instead:

<ControlTemplate>

<Rectangle Fill="Orange" />
</ControlTemplate>

Beyond Styles | 285

Now we’re getting somewhere, as Figure 9-3 shows.

W7 TicTacToe =

X, O,

x| x,l o

+

O,

Figure 9-3. Replacing the button’s control template with an orange rectangle (Color Plate 13)

Notice how square the corners are now? Also, if you click, you won’t get the depres-
sion that normally happens with a button (and I don’t mean “a sad feeling”). We
have taken complete control over the look of the button or, to paraphrase some
ancient pop culture, “all your button are belong to us...”

Control Templates and Styles

Now that we’re making some progress on the control template, let’s replicate it to
the other buttons. We could do that by setting each button’s Template property by
hand, either to a copy of the control template or with a reference to a
ControlTemplate element that’s been created in a Resource element. However, it’s
often most convenient to bundle the control template with the button’s style, as
Example 9-2 illustrates.

Example 9-2. Putting a control template into a style

<Window.Resources>
<Style TargetType="{x:Type Button}">

<Setter Property="Template"s
<Setter.Value>
<ControlTemplate>
<Rectangle Fill="Orange" />
</ControlTemplate>
</Setter.Value>
</Setter>
</Style>

</Window.Resources>

286 | Chapter9: Control Templates

Example 9-2. Putting a control template into a style (continued)

<!-- No need to set the Template property for each button -->
<Button ... Name="celloo" />

As Example 9-2 shows, the Template property is the same as any other and can be set
with a style. Figure 9-4 shows the results.

B TicTacToe [0 s

It's your turn, X

Figure 9-4. Spreading the orange (Color Plate 14)

Here we have the classic crosshatch we’ve been aiming for, but the orange is kind of
jarring. What if the Button object’s Background property was set to something more
reasonable (maybe white?) and we’re ignoring it, favoring colors from scary holidays
not known for their design sense? We can solve this problem with template bindings.

Template Binding

If we wanted white buttons, we could hardcode the rectangle’s fill to be white, but
what happens when a style wants to change it (maybe somebody really wants an
orange tic-tac-toe board)? Instead of hardcoding the fill of the rectangle, we can
reach out of the template into the properties of the control by using template bind-
ing, as shown in Example 9-3.

Example 9-3. Template binding to the Background property

<Style TargetType="{x:Type Button}">
<Setter Property="Background" Value="White" />

<Setter Property="Template">
<Setter.Value>
<ControlTemplate>
<Rectangle Fill="{TemplateBinding Property=Background}" />
</ControlTemplate>
</Setter.Value>
</Style>

Beyond Styles | 287

Template binding is like data binding, except that the properties to bind come from
the control whose template you’re replacing (called the templated parent). In our
case, any dependency property on the Button class is fair game as a template binding
source. And like data binding, template binds are smart enough to keep the proper-
ties of the items inside the template up-to-date with changing properties on the out-
side as set by styles, animations, and so on.

If you need the expanded options provided by a full binding, you use a Binding
object inside a template with a RelativeSource of TemplatedParent to indicate how to
resolve the Path (see Example 9-4).

Example 9-4. Binding inside a template using a RelativeSource of TemplatedParent

<Style TargetType="{x:Type Button}">
<Setter Property="Background" Value="White" />

<Setter Property="Template">
<Setter.Value>
<ControlTemplate>
<Rectangle
Fill="{Binding Path=Background,
RelativeSource={RelativeSource TemplatedParent}}" />
</ControlTemplate>
</Setter.Value>
</Style>

You should choose template binding over standard binding inside a template if it
meets your needs, as template binding is optimized for just that use.

If you like, you can separate the control template from the style into a separate
resource altogether:

<ControlTemplate x:Key="ButtonTemplate">
<Grid»
<Rectangle Fill="{TemplateBinding Property=Button.Background}" />
</Grid>
</ControlTemplate>
<Style TargetType="{x:Type Button}">
<Setter
Property="Template"
Value="{StaticResource ButtonTemplate}" />
</Style>

288 | Chapter9: Control Templates

As with styles, we can avoid prefixing template binding property names with classes
by setting the TargetType attribute on the ControlTemplate element:
<ControlTemplate x:Key="ButtonTemplate" TargetType="{x:Type Button}">
<Grid>
<Rectangle Fill="{TemplateBinding Property=Background}" />

</Grid>
</ControlTemplate>

We’re not quite through with our tic-tac-toe board yet, of course. If we’re going to
change the study in pumpkin that Figure 9-4 has become into a playable game, we
have to show the moves. To do that, we’ll need a content presenter.

Content Presenters

If you’ve ever driven by a billboard or a bus-stop bench that says “Your advertise-
ment here!” that’s all you need to know to understand content presenters. A content
presenter is the WPF equivalent of “your content here” that allows content held by a
ContentControl to be plugged in at runtime.

In our case, the content is the visualization of our PlayerMove object. Instead of repro-
ducing all of that work inside the button’s new control template, we’d just like to plug it
in at the right spot. The job of the content presenter is to take the content provided by
the templated parent and do all of the things necessary to get it to show up properly,
including styles, triggers, and so on. You can drop the content presenter itself into your
template wherever you’d like to see it. For this application, we’ll compose a content pre-
senter with the rectangle inside a grid, using techniques from Chapter 3:

<ControlTemplate TargetType="{x:Type Button}">
<Grid>
<Rectangle Fill="{TemplateBinding Property=Background}" />
<ContentPresenter
Content="{TemplateBinding Property=Content}" />
</Grid>
</ControlTemplate>

Further, with the TargetType property in place, we can drop the explicit template
binding on the Content property altogether, as it can be set automatically:

<ControlTemplate TargetType="{x:Type Button}">
<Grid>
<Rectangle Fill="{TemplateBinding Property=Background}" />
<!-- with TargetType set, the template binding for the --»
<!-- Content property is no longer required -->
<ContentPresenter />
</Grid>
</ControlTemplate>

Beyond Styles | 289

I used the Grid here because it’s an obvious way to compose the
Rectangle and the ContentPresenter together into one cell that takes
up the entire available space. However, I also used it to illustrate a
possible performance issue.

When you’re building control templates, you’ve got to keep in mind
that they’re likely to be used in multiple places—sometimes hundreds
of places. Every element you include will be used each time your con-
trol template is expanded, so you want to make sure to use the mini-
mum number of elements.

For example, in our simple control template, there’s no reason to have
a Rectangle to share the same cell in the Grid just to give the
ContentPresenter a background color—instead, we can just use a
Border, which has a background color and can contain our
ContentPresenter. And because the Border is only one element, we
don’t need to use the Grid to arrange it. An optimized version of this
template looks like this:
<ControlTemplate TargetType="{x:Type Button}">
<Border Background="{TemplateBinding Property=Background}">
<ContentPresenter />
</Border>
</ControlTemplate>

For the purposes of our example, the control template is expanded
only nine times, so there’s no problem, but you should keep element
count in mind when you’re composing your content templates.

The content presenter is all we need to get our game back to being functional, as
shown in Figure 9-5.

W0 TicTacToe =
(0 X
2 1
(o) (o)
3 4 6
X
5

It's your turn, X

Figure 9-5. Adding a content presenter to our control template (Color Plate 15)

The last little bit of work in our sample is to get the padding to work. Because the
content presenter doesn’t have its own Padding property, we can’t bind the Padding

290 | Chapter9: Control Templates

property directly (it doesn’t have a Background property, either, which is why we used
the Rectangle and its Fill property). For properties that don’t have a match on the
content presenter, you have to find mappings or compose the elements that provide
the functionality you’re looking for. For example, Padding is an amount of space
inside a control. Margin, on the other hand, is the amount of space around the out-
side of a control. Because they’re both of the same type, System.Windows.Thickness, if
we could map the Padding from the inside of our button to the outside of the con-
tent presenter,” our game would look very nice:
<ControlTemplate TargetType="{x:Type Button}">
<Grid>
<Rectangle Fill="{TemplateBinding Property=Background}" />
<ContentPresenter Margin="{TemplateBinding Property=Padding}" />
</Crid>
</ControlTemplate>
<Style TargetType="{x:Type Button}">
<Setter Property="Background" Value="White" />
<Setter Property="Padding" Value="8" />
<Setter Property="Template" Value="{StaticResource ButtonTemplate}" />

</Style>

Figure 9-6 shows our completed tic-tac-toe variation.

o Terroe B

O 4 o 6

O 2 X 1 5
X 3

It's your turn, X

Figure 9-6. Binding the Padding property to the Margin property

Like the mapping between Padding and Margin, building up the elements that give
you the look you want and binding the appropriate properties from the templated
parent is going to be a lot of the work of creating your own control templates.

* You might be wondering whether we also need to bind our Margin property into the control template. It’s a
special case: WPF implements Margin for all elements as part of the layout process, so it’s not something our
template needs to worry about.

Beyond Styles | 291

Template Triggers

Just like styles, control templates support triggers. These let us set up actions in the
template itself, regardless of what other triggers the content of the control may or
may not also have. For example, if we wanted to add a glow to our buttons as the
user hovers, we can do so with a template trigger, as Example 9-5 illustrates.

Example 9-5. Control template triggers
<Style TargetType="{x:Type Button}">

<Setter Property="Template">
<Setter.vValue>
<ControlTemplate TargetType="{x:Type Button}">

<Grid»

<Rectangle Fill="{TemplateBinding Property=Background}"
Name="rect" />

<ContentPresenter Margin="{TemplateBinding Property=Padding}" />

</Grid>

<ControlTemplate.Triggers>
<Trigger Property="IsMouseOver" Value="True">

<Setter TargetName="rect" Property="BitmapEffect">
<Setter.Value>
<OuterGlowBitmapEffect GlowColor="Yellow" GlowSize="10" />
</Setter.Value>
</Setter>

</Trigger>

</ControlTemplate.Triggers>

</ControlTemplate>
</Setter.Value>
</Setter>

</Style>

In Example 9-5, we’re setting a yellow glow whenever the mouse is hovered over the
rectangle that fills the button. We’re using a property trigger, so the value we’re
watching for is a property on the control itself (the IsMouseOver property, to be pre-
cise). However, we don’t want to set a property on the button; instead, we want to
set the BitmapEffect property on some inner part of the template (the rectangle, in
our case). This is a very common thing to want to do, and because of that, a Setter
object inside a control template allows an extra property to be set that can’t be set in
a style’s Setter: the TargetName property. The TargetName is the name of some ele-

ment in the template on which we’d like to set a property (e.g., the element named
rect in our example).

Figure 9-7 shows the effect in all its glory.

292 | Chapter9: Control Templates

B | TicTacToe el el

| ciick to move here i

It's your turn, X

Figure 9-7. A control template trigger in action (Color Plate 16)

Extending Templates

Take another look at the glow effect in which we swaddled our buttons:
<OuterGlowBitmapEffect GlowColor="Yellow" GlowSize="10" />

Do you notice a problem we’ve run into before? That’s right—in the same way we
were hardcoding the orange fill color a few pages ago, now we’re hardcoding the
glow color and size. “Oh,” you think. “That’s no problem. I'll just do what I did
before and map the appropriate properties of the Button class to the GlowColor and
GlowSize properties in the template.” And I applaud you in the application of your
recent learnin’, but there ain’t no properties on the Button that map to “glow.” In
fact, it is often the case in building control templates that there are more variables
you’d like to expose than there are properties on the control being “templated.”

Repurposing an existing property

One popular technique to let us default a custom property for use by the control
template is to hijack an existing property for our purposes, as shown in Example 9-6.

Example 9-6. Extending a template by repurposing an existing property

<Style TargetType="{x:Type Button}">

<Setter Property="Tag">
<Setter.Value>
<OuterGlowBitmapEffect GlowColor="Yellow" GlowSize="10" />
</Setter.Value>
</Setter>
<Setter Property="Template">
<Setter.Value>

Beyond Styles | 293

Example 9-6. Extending a template by repurposing an existing property (continued)

<ControlTemplate TargetType="{x:Type Button}">
<Grid>

</Grid>

<ControlTemplate.Triggers>
<Trigger Property="IsMouseOver" Value="True">

<Setter TargetName="rect" Property="BitmapEffect"
Value="{Binding Path=Tag,
RelativeSource={RelativeSource TemplatedParent}}" />

</Trigger>

</ControlTemplate.Triggers>

</ControlTemplate>
</Setter.Value>
</Setter>

<l-- use default bitmap effect set in the style -->
<Button Margin="2,0,2,2" Grid.Row="0" Grid.Column="1" Name="cello1" />

<!-- use custom bitmap effect, overriding the style's default -->
<Button Margin="2,2,2,2" Grid.Row="1" Grid.Column="1" Name="cell11">
<Button.Tag>
<BevelBitmapEffect BevelWidth="10" />
</Button.Tag>
</Button>

In Example 9-6, our Button style uses the Tag property to pass in a bitmap effect
object to use when the mouse is overhead. The control template’s trigger uses the
value of the Tag property when the IsMouseOver property is True. Notice that we're
using normal binding (with the TemplatedParent RelativeSource) instead of template
binding because the normal binding object has casting support at runtime, whereas
template binding checks the types statically at compile time. The use of a normal bind-
ing enables us to pull a BitmapEffect out of the Tag property, which is of type Object.

When we create a button using this style, the Tag value acts as a default value, which
we can override with any bitmap effect that tickles our fancy (as shown on the mid-
dle button in Example 9-6).

Defining a custom dependency property

The problem with repurposing any of the Button’s properties is that somebody might
actually use the one you pick for something (e.g., the Tag property is generally a place
to store app-specific data). If this is a worry, the safest thing to do (short of defining
your own custom control type) is to take a page from Chapter 18 and define your
own custom dependency property:
namespace TicTacToe {
public class MouseOverEffectProperties {

public static DependencyProperty MouseOverEffectProperty;
static MouseOverEffectProperties() {

294 | Chapter9: Control Templates

OuterGlowBitmapEffect defaultEffect = new OuterGlowBitmapEffect();
defaultEffect.GlowColor = Colors.Yellow;
defaultEffect.GlowSize = 10;

MouseOverEffectProperty =
DependencyProperty.RegisterAttached(
"MouseOverEffect",
typeof (BitmapEffect),
typeof(MouseOverEffectProperties),
new PropertyMetadata(defaultEffect));
}

}
public static BitmapEffect
GetMouseOverEffect (DependencyObject target) {

return (BitmapEffect)target.GetValue(MouseOverEffectProperty);
}

public static void
SetMouseOverEffect(DependencyObject target, BitmapEffect value) {

target.SetValue(MouseOverEffectProperty, value);
}
}

Notice that this dependency property is registered as an attached property that can
be attached to any DependencyObject. Also notice that it has a built-in default, which
simplifies our style, as it needs to list a value for our new property only if it wants to
override the default. The static GetMouseOverEffect and SetMouseOverEffect methods
allow us to set the property value on any dependency object, including our buttons.
With this dependency property in place, we can write our control template trigger as
shown in Example 9-7.

Example 9-7. Using the custom attached dependency property to pass extra info

<Window ... xmlns:local="clr-namespace:TicTacToe">

<ControlTemplate.Triggers>
<Trigger Property="IsMouseOver" Value="True">
<Setter ...

Property="BitmapEffect"

Value="{Binding
Path=(local:MouseOverEffectProperties.MouseOverEffect),
RelativeSource={RelativeSource TemplatedParent}}" />

</Trigger>
</ControlTemplate.Triggers>

<Button ...
Tag="howdy"
local:MouseOverEffectProperties.MouseOverEffect="{x:Null}">

</window>

Beyond Styles | 295

Notice that the Path expression in the Binding is surrounded by parentheses, which,
as you’ll recall from Chapter 6, means an explicit dependency property reference.
Notice also that we’ve defined an XML namespace pointing to the CLR namespace
where the class lives and that we use this to specify the path to the dependency prop-
erty. However, instead of using the name of the dependency property field (which
has a “Property” suffix), we use the name we registered with the RegisterAttached
method (which doesn’t have the “Property” suffix).

Also notice how Example 9-7 overrides the default value for the property by setting the
attached property on an individual button (to null, in this example), while taking
advantage of the newly available Tag property for a friendly Western U.S. greeting.

A w
Instead of creating a new attached dependency property, you can use
.‘s‘ one of the existing ones, even if it has nothing to do with your con-
T Gkt trol. However, it can be difficult to find an attached property that a)
" will never be used for anything else on your control; b) is of the cor-
rect type; and ¢) has a name that suggests some kind of semantic rela-
tionship with the use of that property in your control template. It does
save code, though, if you can use an existing property.

The simple usage of your custom template properties will always be a custom con-
trol that has those properties built in, of course. I recommend checking out
Chapter 18 for more information about that.

The Control Template Contract

We haven’t been explicit about this yet, but controls expect their templates to pro-
vide certain features. The exact set of features varies from one control to the next,
but a contract is always in effect between the control and the template. The control’s
side of the contract is essentially the set of properties and commands it offers. The
template’s side of the contract is less obvious, and is sometimes implicit.

Remember that a control’s job is to provide behavior. The control template provides
the visuals. A control may provide a default set of visuals, but it should allow these
to be replaced in order to offer the same flexibility as the built-in controls. If you
need to provide both custom behavior and custom visuals, build two components: a
control, and an element designed to be incorporated into the control’s template. A
control that conforms to this approach—where the visuals are separated from the
control—is often described as lookless, because the control has no intrinsic appear-
ance or “look.” All of the controls built into WPF are lookless.

Of course, it is not possible for the control to be entirely independent of its visuals.
Any control will impose some requirements that the template must satisfy if the con-
trol is to operate correctly. The extent of these requirements varies from one control
to another. Button has fairly simple requirements: it needs nothing more than a

296 | Chapter9: Control Templates

placeholder in which to inject the content. The slider controls have much more
extensive requirements: the visuals must supply two buttons (increase and decrease),
the “thumb,” and a track for the thumb to run in. Moreover, they need to be able to
respond to clicks or drags on any of these elements, and to be able to position the

thumb.

There is an implied contract between any control type and the style or template.
The control allows its appearance to be customized by replacing the visual tree, but
the tree must in turn provide certain features on behalf of the control. The nature of
the contract will depend on the control—the built-in controls use several different
techniques depending on how tightly they depend on the structure of their visuals.
The following sections describe the various ways in which a control and its tem-
plate can be related.

Property binding

The loosest form of contract between control and template is where the control sim-
ply defines public properties, and allows the template to decide which of these prop-
erties to make visible using the TemplateBinding markup extension. The control does
not care what is in the template.

This is effectively a one-way contract: the control provides properties and demands
nothing in return. Despite this, such a control can still respond to user input if neces-
sary—event routing allows events to bubble up from the visuals to the control. The
control can handle these events without needing to know anything about the nature
of the visuals from which they originated.

Named parts

Sometimes it is necessary for a control to locate specific elements in the template. For
example, if you write a template for a ProgressBar, the control will look for two
parts: the element that it should resize to indicate progress, and a second so-called
“track” element that represents the full extent of the control. The control modifies
the progress indicator part to be a proportion of the size of the track, according to
the current progress. When the bar’s Value property is equal to the Maximum property,
the indicator will be the same size as the track; when the Value is at Minimum, the indica-
tor’s size will be zero; and for values in between, the size is interpolated appropriately.

The ProgressBar locates these two template parts by name. It will expect the tem-
plate to contain an element named PART Indicator, and another element named
PART Track. Example 9-8 shows a very simple control template with these parts.

Example 9-8. Control template with named parts

<ProgressBar Width="100" Height="25" Value="4" Maximum="10">
<ProgressBar.Template>
<ControlTemplate TargetType="{x:Type ProgressBar}">

Beyond Styles | 297

Example 9-8. Control template with named parts (continued)

<Grid>
<Rectangle Name="PART_Track" Fill="LightGray" Stroke="Black" />
<Rectangle Name="PART_Indicator" HorizontalAlignment="Left"
Margin="2" RadiusX="5" RadiusY="5"
Fill="White" Stroke="Blue" />
</Grid>
</ControlTemplate>
</ProgressBar.Template>
</ProgressBar>

Figure 9-8 shows the results. As you can see, the rectangle with the rounded corners
and the white fill has been sized in proportion to the control’s Value—it’s filling
about 40 percent of the space provided by the track.

Figure 9-8. ProgressBar with template

The intrinsic WPF controls mark their part usage with the TemplatePartAttribute,
which makes it handy to figure out which controls have which parts (assuming
you’re handy with the metadata API in .NET). Table 9-1 shows the current set of

template parts and their expected type for each WPF control.

Table 9-1. Controls with template parts

Control Template part name Expected type
ComboBox PART_Popup Popup
PART EditableTextBox TextBox
DocumentViewer PART_ContentHost ScrollViewer
PART_FindToolBarHost ContentControl
FlowDocumentPageViewer PART FindToolBarHost Decorator
FlowDocumentReader PART ContentHost Decorator
PART_FindToolBarHost Decorator
FlowDocumentScrollViewer PART_FindToolBarHost Decorator
PART_ToolBarHost Decorator
PART_ContentHost ScrollViewer
Frame PART_FrameCP ContentPresenter
GridViewColumnHeader PART HeaderGripper Thumb
PART_FloatingHeaderCanvas Canvas
MenuItem PART_Popup Popup
NavigationWindow PART_NavWinCP ContentPresenter
PasswordBox PART ContentHost FrameworkElement

298 | Chapter9: Control Templates

Table 9-1. Controls with template parts (continued)

Control

ProgressBar

ScrollBar

ScrollViewer

Slider

StickyNoteControl

TabControl
TextBoxBase
ToolBar

TreeViewItem

Template part name

PART Track

PART Indicator

PART Track
PART_HorizontalScrollBar
PART VerticalScrollBar
PART ScrollContentPresenter
PART Track
PART_SelectionRange
PART_CopyMenuItem
PART_CloseButton
PART_ResizeBottomRightThumb
PART_IconButton

PART ContentControl

PART TitleThumb
PART_PasteMenuItem
PART_InkMenuItem
PART_SelectMenuItem
PART_EraseMenuItem

PART SelectedContentHost
PART_ContentHost

PART ToolBarPanel
PART_ToolBarOverflowPanel
PART_Header

Expected type
FrameworkElement
FrameworkElement
Track

ScrollBar
ScrollBar
ScrollContentPresenter
Track
FrameworkElement
MenuItem

Button

Thumb

Button
ContentControl
Thumb

MenuItem
MenuItem
MenuItem
MenuItem
ContentPresenter
FrameworkElement
ToolBarPanel
ToolBarOverflowPanel

FrameworkElement

Content placeholders

Some controls expect to find a placeholder element of a certain type in the template.
Controls that support the content model by deriving from ContentControl use the
element type approach. They expect to find a ContentPresenter element in the tem-

plate, as you’ve already seen.

in order to function.

In practice, this is a loosely enforced contract. A ContentControl will
not usually complain if there is no ContentPresenter in the template.
1+ The control doesn’t absolutely depend on the content being presented

In fact, some controls may require more than one placeholder. For example, con-
trols derived from HeaderedContentControl require two—one for the body and one
for the header. In this case, we can simply be explicit about which property the
ContentPresenter presents, as Example 9-9 shows.

Beyond Styles | 299

Example 9-9. ContentPresenter and HeaderedContentControl

<ControlTemplate TargetType="{x:Type local:MyContentControl}">
<Grid»>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

<ContentPresenter Grid.Row="0" Content="{TemplateBinding Content}" />
<ContentPresenter Grid.Row="1" Content="{TemplateBinding Header}" />
</Grid>
</ControlTemplate>

WPF defines two more placeholder types:

* ScrollContentPresenter indicates where the content hosted by a scroll viewer
will go.
* You can use ItemsPresenter in an ItemsControl to indicate where generated

items should be added.

In addition, if you don’t want to replace the entire control template, ItemsControl
lets you replace bits and pieces of itself, which it references in its default templates
(and which you can reference in your own custom ItemsControl templates). In fact,
there are two other options for templates on an ItemsControl. The first we’ve already
seen in Chapter 7: you can supply a DataTemplate as the ItemTemplate property and
this will customize the appearance of each individual item. The second alternative is
that you can set the ItemsPanel property. This allows you to customize just the panel
used to lay out the list contents. This uses another template class:
ItemsPanelTemplate. Notice that neither the ItemTemplate property nor the ItemsPanel
property is of the ControlTemplate type, but anyone customizing an ItemsControl will
want to be familiar with all of the template types that WPF provides.

At this point, we’ve rounded out the different kinds of templates avail-
able in WPF: data templates, hierarchical data templates, control tem-
tit: plates, and items panel templates. Fundamentally, they’re all about
" expanding a template as required (and they all derive from the
FrameworkTemplate base class), but the specifics are different and you
can’t mix and match them.

The ItemsPanelTemplate lets you change the default panel that lays out items in the
list:

<ListBox ItemsSource="{Binding}">
<ListBox.ItemsPanel>
<ItemsPanelTemplate>
<StackPanel Orientation="Horizontal" />
</ItemsPanelTemplate>
</ListBox.ItemsPanel>
</ListBox>

300 | Chapter9: Control Templates

<ComboBox ItemsSource="{Binding}">
<ComboBox.ItemsPanel>
<ItemsPanelTemplate>
<UniformGrid />
</ItemsPanelTemplate>
</ComboBox.ItemsPanel>
</ComboBox>

In this code, we’ve replaced the vertical StackPanel provided by default in a ListBox
with a horizontal one. This code also uses a UniformGrid to perform a grid layout of

the list items in a combo box. These two changes produce the results you see in
Figure 9-9.

[E | ItemsPanelSample E@g

one for the money, two for show, three to get ready, f
« | 1 | »

-

one for the money, two for show,
three to get ready,

Figure 9-9. The items panel template in action

You can use any type derived from the Panel class as the panel template, including a
custom panel if you’ve written such a thing to perform custom layout. The interest-
ing thing about using a panel in this way is that although none of the panels sup-
ports data binding directly (e.g., none of them has an ItemsSource property like an
ItemsControl), the ItemsControl knows how to manage items in a panel, so it effec-
tively gives you data binding over the panel of your choice.

Placeholders indicated by properties

Some controls look for elements marked with a particular property. For example,
controls derived from ItemsControl, such as ListBox and Menultem, support tem-
plates containing an element with the Panel.IsItemsHost property set to true. This
identifies the panel that will act as the host for the items in the control. ItemsControl
uses an attached property instead of a placeholder to allow you to decide what type
of panel to use to host the items. (ItemsControl also supports the use of the
ItemsPresenter typed placeholder element. This is used when the template does not
wish to impose a particular panel type, and wants to use whatever panel the
ItemsPanelTemplate has specified in the ItemsPanel property.) Example 9-10 is a sample.

Example 9-10. Using IsItemsHost to indicate the items host

<ListBox ItemsSource="{StaticResource items}" Width="120" Height="67">
<ListBox.Template>
<ControlTemplate TargetType="{x:Type ListBox}">

<Border BorderThickness="1" BorderBrush="Black" CornerRadius="10">

Beyond Styles | 301

Example 9-10. Using IsltemsHost to indicate the items host (continued)

<ScrollViewer>
<Scrollviewer.Clip>
<RectangleCeometry Rect="0, 0, 118, 65" />
</ScrollViewer.Clip>
<VirtualizingStackPanel IsItemsHost="True" />
</ScrollViewer>
</Border>
</ControlTemplate>
</ListBox.Template>
</ListBox>

Example 9-10 shows the use of a full control template replacing the entire set of visuals
for a ListBox. Notice that we have provided a ScrollViewer; the default ListBox tem-
plate supplies one of these, so we need to provide our own if we want scrolling to work.
Notice also that we’ve provided a panel with the IsItemsHost property set to True.
We could have used the ItemsPresenter instead, as we mentioned earlier, if we
wanted the ItemsPanel property to work. Instead, this sample ignores the ItemsPanel
and uses the IsItemsHost property, indicating to the ItemsControl to which panel it
should add the list items. In this case, we’ve used a VirtualizingStackPanel, a spe-
cial form of StackPanel optimized for a large number of items in the data source.”
This is the same panel type that the default template for a ListBox uses. Figure 9-10
shows the results.

one for the money,
two for show,

'three to get ready,
four to go!

Figure 9-10. Setting the IsItemsHost property

If your goal is to re-create the default look and tweak it, you will want to use some-
thing like the template in Example 9-10. (Here we’re just tweaking the template by
supplying a Clip geometry in order to make the control an unusual shape.) How-
ever, if you want to radically change the appearance, the ScrollViewer is optional.
The only hard requirement is that you supply a panel with the IsItemsHost property
set to True or that you provide an ItemsPresenter.

The use of properties to indicate a content placeholder is effectively equivalent to the
named parts approach described earlier. However, the named parts approach is far
more common—few of the built-in controls use this property-based approach. We
describe it here mainly for completeness.

* The VirtualizingStackPanel supports item virtualization, which is the ability to contain a large number of
logical children, but instantiating Ul elements only for the ones currently visible.

302 | Chapter9: Control Templates

Special-Purpose Elements

Some controls define custom element types designed for use as a part of their tem-
plate, which does more than merely marking the place where content is to be
injected. For example, the Slider control requires the template to contain elements
to represent the draggable thumb, and the clickable track in which the thumb runs.
The control cannot function unless the template conforms to the required structure.
To enforce this, Slider requires that the template contain elements of the special-
purpose Thumb and Track types.

Neither of these control types is designed for use in isolation. To emphasize this,
both Thumb and Track are defined in the System.Windows.Controls.Primitives
namespace. The only places you would normally use Track are in the templates for a
Slider or a ScrollBar. Thumb is slightly more general-purpose—you can use it any-
where you require something draggable. But it’s still designed to be used as part of
something else, and is not a control in its own right.

The Track control defines a fixed structure for part of a control template. It has
three properties that contain nested controls. DecreaseRepeatButton and
IncreaseRepeatButton must contain RepeatButton controls—these represent the
clickable areas to either side of the thumb. The Thumb property contains the Thumb
control itself. The Track manages the sizes and positions of all three controls, ensur-
ing that they reflect the current properties of the control at all times.

Example 9-11 shows this technique in action. Notice that the slider uses the named
part idiom as well as special-purpose element types.

Example 9-11. Slider template using special-purpose elements

<Slider Width="100" Height="20" Value="20" Maximum="100">
<Slider.Template>
<ControlTemplate TargetType="{x:Type Slider}">
<Track x:Name="PART_Track">
<Track.DecreaseRepeatButton>
<RepeatButton Content="&1t;" />
</Track.DecreaseRepeatButton>
<Track.Thumb>
<Thumb Width="10" />
</Track.Thumb>
<Track.IncreaseRepeatButton>
<RepeatButton Content=">" />
</Track.IncreaseRepeatButton>
</Track>
</ControlTemplate>
</Slider.Template>
</Slider>

Figure 9-11 shows the rather unadventurous results. In a real application, you would
also provide templates for the two repeat buttons and the thumb.

Beyond Styles | 303

Figure 9-11. Customized slider

The benefit of this approach is that it allows you to enforce relationships between
different parts of the control template. Sliders and scroll bars use the Track element
to keep the Thumb correctly positioned and sized in relation to the two clickable
regions that form the track. In addition, this approach enforces the fact that the
clickable regions are, in turn, represented by RepeatButtons. The downside is that it
is more complex for the developers using the control because anyone wishing to
define a template for the control must discover and understand the multiple element
types involved.

Examining the Built-in Templates

A lot of the examples in this section talked about how one WPF template does one
thing, while another WPF template does something else. If you’re curious what the
intrinsic WPF templates do, you can check out the ShowMeTheTemplate sample pro-
vided with this book, as seen in Figure 9-12.

Elﬂg

[E] Show Me The Template!

FlowDocumentReader (base ~
FlowDocumentScrollViewer
Frame (base: ContentControl
GridSplitter (base: Thumb)
GridView (base: ViewBase) —
GridViewColumn (base: Dep:
GridViewColumnHeader (ba - X
GridViewHeaderRowPresen|

Theme: |Aera =

Elemen Aem ndows.Controls.GridSplitter (if it can be shown as a child) *

al
= TargetType="GridSplitter" ol
schemas.microsoft.com/winfx/2006/
Brush="{TemplateBinding

Classic
Royale

GroupBox (base: HeaderedCt
Groupltem (base: ContentCo
GroupStyle (base: Object)
HeaderedContentControl (b
HeaderedItemsControl (bas:
HierarchicalDataTemplate (|
ItemsControl (base: Control)
Label (base: ContentControl)
ListBox (base: Selectar)
ListBoxItem (base: ContentC
ListView (base: ListBox) v
T ’

1

Border.BorderBrush}"

BorderThickness="{TemplateBinding

Border.BorderThickness}"

Background="{TemplateBinding

Panel.Background}" />
</ControlTemplate>

This tool brought to you by Chris Sells & lan Griffiths as part of their book, Programming WPF.

Figure 9-12. The ShowMeTheTemplate tool

On the lefthand side of the template tool are all of the framework elements that have
template properties of any type. When one of them is selected, the template proper-
ties are shown on the right. For example, in Figure 9-12, we can see the Template

304 | Chapter9: Control Templates

property (of type ControlTemplate) of the GridSplitter. The templates shown on the
right are produced by the XAML serializer, so you should be able to copy and paste
them into your own code as a starting place if you’d prefer to tweak an existing tem-
plate instead of starting over from scratch.

Logical and Visual Trees

The existence of templates leads to an API design dilemma that the WPF architects
had to resolve. If a developer wishes to access the elements in the Ul, should she see
the fully expanded tree, containing all the instantiated templates? Although this
would put the developer in full control, it might be rather cumbersome; often a
developer only really cares that there is a Button present, not about the structure of
its appearance. On the other hand, to present the simple pre-expansion view would
be unnecessarily limiting.

To solve this problem, WPF lets you work with either the logical tree or the visual
tree. The visual tree contains most” of the elements originally specified (either in
markup or in code) plus all the extra elements added as a result of template instantia-
tion. The logical tree is a subset of the visual tree that omits the elements added as a
result of control template instantiation. WPF provides two helper classes for work-
ing with these two trees: VisualTreeHelper and LogicalTreeHelper.

For example, consider the following snippet of XAML:

<WrapPanel Name="rootPanel">
<Button>_Click me</Button>
</WrapPanel>

Walking this logical tree at runtime using the LogicalTreeHelper looks like
Example 9-12.

Example 9-12. Dumping the logical tree

public Window1() {
InitializeComponent();

// Can dump the logical tree anytime after InitComp
DumpLogicalTree(rootPanel, 0);

void DumplLogicalTree(object parent, int level) {
string typeName = parent.GetType().Name;
string name = null;
DependencyObject doParent = parent as DependencyObject;

* As one example, no FrameworkContentElement objects, as described in Chapter 14, will show up in the visual
tree even though they’re in the