

Learning jQuery

Better Interaction Design and Web Development
with Simple JavaScript Techniques

Jonathan Chaffer
Karl Swedberg

 BIRMINGHAM - MUMBAI

Learning jQuery
Better Interaction Design and Web Development with Simple
JavaScript Techniques

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2007

Production Reference: 1220607

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-50-9

www.packtpub.com

Cover Image by Karl Swedberg (karl@learningjquery.com)

Credits

Authors

Jonathan Chaffer

Karl Swedberg

Reviewers

Jörn Zaefferer

Dave Methvin

Paul Bakaus

Dan Bravender

Mike Alsup

Senior Acquisition Editor

Douglas Paterson

Assistant Development Editor

Nikhil Bangera

Technical Editor

Bansari Barot

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Abhijeet Deobhakta

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Authors

Jonathan Chaffer is the Chief Technology Officer of Structure Interactive,
an interactive agency located in Grand Rapids, Michigan. There he oversees
web development projects using a wide range of technologies, and continues to
collaborate on day-to-day programming tasks as well.

In the open-source community, Jonathan has been very active in the Drupal CMS
project, which has adopted jQuery as its JavaScript framework of choice. He is the
creator of the Content Construction Kit, a popular module for managing structured
content on Drupal sites. He is responsible for major overhauls of Drupal’s menu
system and developer API reference.

Jonathan lives in Grand Rapids with his wife, Jennifer.

I would like to thank Jenny, who thinks this is wonderful even if it bores her to tears. I’d
also like to thank Karl for sharing my love for linguistics, producing a book that hopefully is
grammatically immaculate enough to cover up any technical sins.

Karl Swedberg is a web developer at Structure Interactive in Grand Rapids,
Michigan, where he spends much of his time implementing design with a focus on
web standards—semantic HTML, well-mannered CSS, and unobtrusive JavaScript.

Before his current love affair with web development, Karl worked as a copy editor,
a high-school English teacher, and a coffee house owner. His fascination with
technology began in the early 1990s when he worked at Microsoft in Redmond,
Washington, and it has continued unabated ever since.

Karl’s other obsessions include photography, karate, English grammar, and
fatherhood. He lives in Grand Rapids with his wife, Sara, and his two children,
Benjamin and Lucia.

I wish to thank my wife, Sara, for her steadfast love and support during my far-flung
adventures into esoteric nonsense. Thanks also to my two delightful children, Benjamin
and Lucia. Jonathan Chaffer has my deepest respect and gratitude for his willingness
to write this book with me and to explain the really difficult aspects of programming in a
gentle manner when I just don’t get it. Finally, I wish to thank John Resig for his brilliant
JavaScript library and his ongoing encouragement for the book, as well as Rey Bango,
Brandon Aaron, Klaus Hartl, Jörn Zaefferer, Dave Methvin, Mike Alsup, Yehuda Katz,
Stefan Petre, Paul Bakaus, Michael Geary, Glen Lipka and the many others who have
provided help and inspiration along the way.

About the Reviewers

Jörn Zaefferer is a software developer and a consultant from Köln, Germany. He is
currently working at Maxence Integration Technologies GmbH. His work is centered
on developing web-based applications as JSR-168 portlets in JEE environments,
mostly Websphere Portal 5.1 based. He is currently working on a project based on
JSF and Spring.

Dave Methvin has more than 25 years of software development experience in
both the Windows and UNIX environments. His early career focused on embedded
software in the fields of robotics, telecommunications, and medicine. Later, he
moved to PC-based software projects using C/C++ and web technologies.

Dave also has more than 20 years of experience in computer journalism. He was
Executive Editor at PC Tech Journal and Windows Magazine, covering PC and Internet
issues; his how-to columns on JavaScript offered some of the first cut-and-paste
solutions to common web page problems. He was also a co-author of the book
Networking Windows NT (John Wiley & Sons, 1997).

Currently, Dave is Chief Technology Officer at PC Pitstop, a website that helps
users fix and optimize the performance of their computers. He is also active in the
jQuery community.

Paul Bakaus is a programmer and core developer living in Germany. His work
with jQuery has been focused on transforming jQuery into a high-speed library
capable of handling difficult large-scale rich interface operations. He was largely
responsible for creating the jQuery Dimensions plug-in and he now works together
with Stefan Petre on the rich effects and components library Interface. Paul is
currently involved in creating a JavaScript multiplayer game featuring jQuery.

Dan Bravender has been working with open-source software for over 10 years. His
fondest memories are of staying up all night to install and compile Linux in college
with his roommate. He has collected a massive collection of German board games.
When not playing board games, he enjoys playing soccer and hockey and studying
Korean and Chinese etymology. He misses working with Karl and Jon and is very
proud of all the hard work that they put into this book.

Mike Alsup is a Senior Software Developer at ePlus where he works on J2EE and
web development projects. He is a graduate from Potsdam College and has been
serving the software industry since 1989. Mike lives in Palmyra, NY with his wife,
Diane, and their three sons.

His jQuery plug-ins can be found at http://malsup.com/jquery/.

Table of Contents
Preface	 1
Chapter 1: Getting Started	 5

What jQuery Does	 6
Why jQuery Works Well	 7
Our First jQuery Document	 8

Downloading jQuery	 8
Setting Up the HTML Document	 8
Writing the jQuery Code	 11

Finding the Poem Text	 12
Injecting the New Class	 12
Executing the Code	 12
The Finished Product	 14

Summary	 15
Chapter 2: Selectors—How to Get Anything You Want	 17

The Document Object Model	 17
The $() Factory Function	 18
CSS Selectors	 19

Styling List-Item Levels	 20
XPath Selectors	 22

Styling Links	 22
Custom Selectors	 24

Styling Alternate Rows	 24
DOM Traversal Methods	 27

Styling the Header Row	 28
Styling Category Cells	 28
Chaining	 30

Accessing DOM Elements	 31
Summary	 31

Table of Contents

[ii]

Chapter 3: Events—How to Pull the Trigger	 33
Performing Tasks on Page Load	 33

Timing of Code Execution	 33
Multiple Scripts on One Page	 34
Shortcuts for Code Brevity	 35

Simple Events	 36
A Simple Style Switcher	 36

Enabling the Other Buttons	 38
Event Handler Context	 40
Further Consolidation	 42

Shorthand Events	 44
Compound Events	 44

Showing and Hiding Advanced Features	 45
Highlighting Clickable Items	 46
The Journey of an Event	 48
Side Effects of Event Bubbling	 49

Limiting and Ending Events	 50
Preventing Event Bubbling	 50

Event Targets	 51
Stopping Event Propagation	 51
Default Actions	 52

Removing an Event Handler	 53
Simulating User Interaction	 55
Summary	 56

Chapter 4: Effects—How to Add Flair to Your Actions 	 57
Inline CSS Modification	 57
Basic Hide and Show	 61
Effects and Speed	 63

Speeding In	 63
Fading In and Fading Out	 64

Multiple Effects	 64
Building an Animated show()	 65
Creating a Custom Animation	 66

Positioning with CSS	 67
Making Sense of the Numbers	 68
Improving the Custom Animation	 69

Simultaneous versus Queued Effects	 70
Working with a Single Set of Elements	 70
Working with Multiple Sets of Elements	 72

Callbacks	 74
In a Nutshell	 76
Summary	 77

Table of Contents

[iii]

Chapter 5: DOM Manipulation—How to Change Your
Page on Command	 79

Manipulating Attributes	 79
Non-class Attributes	 80

The $() Factory Function Revisited	 82
Inserting New Elements	 83
Moving Elements	 85

Marking, Numbering, and Linking the Context	 89
Appending Footnotes 	 90

Wrapping Elements	 92
Copying Elements	 92

Clone Depth	 94
Cloning for Pull Quotes	 94

A CSS Diversion	 95
Back to the Code	 95
Prettifying the Pull Quotes	 98

DOM Manipulation Methods in a Nutshell	 100
Summary	 101

Chapter 6: AJAX—How to Make Your Site Buzzword-Compliant	 103
Loading Data on Demand	 104

Appending HTML	 105
Working with JavaScript Objects	 108

Retrieving a JavaScript Object	 108
Global jQuery Functions	 110
Executing a Script	 113

Loading an XML Document	 115
Choosing a Data Format	 118
Passing Data to the Server	 119

Performing a GET Request	 120
Performing a POST Request	 124
Serializing a Form	 125

Keeping an Eye on the Request	 128
AJAX and Events	 130

Scoping an Event-Binding Function	 132
Using Event Bubbling	 132

Security Limitations	 133
Summary	 134

Chapter 7: Table Manipulation	 135
Sorting	 136

Server-Side Sorting	 136
Preventing Page Refreshes	 136

JavaScript Sorting	 137

Table of Contents

[iv]

Row Grouping Tags	 138
Basic Alphabetical Sorting	 139
The Power of Plug-ins	 143
Performance Concerns	 143
Finessing the Sort Keys	 145
Sorting Other Types of Data	 146
Column Highlighting	 149
Alternating Sort Directions	 149

Pagination	 152
Server-Side Pagination	 152

Sorting and Paging Go Together	 153
JavaScript Pagination	 153

Displaying the Pager	 154
Enabling the Pager Buttons	 155
Marking the Current Page	 157
Paging with Sorting	 158

The Finished Code	 159
Advanced Row Striping	 162

Three-color Alternating Pattern	 165
Alternating Triplets	 168

Row Highlighting	 172
Tooltips	 174
Collapsing and Expanding	 180
Filtering	 182

Filter Options	 183
Collecting Filter Options from Content	 184
Reversing the Filters	 185

Interacting with Other Code	 185
Row Striping	 185
Expanding and Collapsing	 188

The Finished Code	 188
Summary	 192

Chapter 8: Forms with Function	 193
Progressively Enhanced Form Styling	 193

The Legend	 195
Required Field Messages	 197

A Regular Expression Digression	 199
Inserting the Field-Message Legend	 200

Conditionally Displayed Fields	 201
Form Validation	 203

Immediate Feedback	 203
Required Fields	 204
Required Formats	 207

A Final Check	 209

Table of Contents

[�]

Checkbox Manipulation	 211
The Finished Code	 213
Placeholder Text for Fields	 217
AJAX Auto-Completion	 219

On the Server	 219
In the Browser	 220
Populating the Search Field	 222
Keyboard Navigation	 222

Handling the Arrow Keys	 224
Inserting Suggestions in the Field	 225
Removing the Suggestion List	 226

Auto-Completion versus Live Search	 227
The Finished Code	 227
Input Masking	 230

Shopping Cart Table Structure	 230
Rejecting Non-numeric Input	 233

Numeric Calculations	 234
Parsing and Formatting Currency	 235
Dealing with Decimal Places	 236
Other Calculations	 238

Rounding Values	 239
Finishing Touches	 240

Deleting Items	 241
Editing Shipping Information	 246
The Finished Code	 249
Summary	 251

Chapter 9: Shufflers and Rotators	 253
Headline Rotator	 253

Setting Up the Page	 253
Retrieving the Feed	 255
Setting Up the Rotator	 258
The Headline Rotate Function	 259
Pause on Hover	 261
Retrieving a Feed from a Different Domain	 264
Gratuitous Inner-fade Effect	 265

An Image Carousel	 268
Setting Up the Page	 268
Revising the Styles with JavaScript	 271
Shuffling Images when Clicked	 272
Adding Sliding Animation	 274
Displaying Action Icons	 275

Image Enlargement	 278

Table of Contents

[vi]

Hiding the Enlarged Cover	 280
Displaying a Close Button	 281

More Fun with Badging	 283
Animating the Cover Enlargement	 285

Deferring Animations Until Image Load	 288
Adding a Loading Indicator	 290

The Finished Code	 292
Summary	 298

Chapter 10: Plug-ins	 299
How to Use a Plug-in	 299
Popular Plug-Ins	 300

Dimensions	 300
Height and Width	 300
ScrollTop and ScrollLeft	 302
Offset	 302

Form	 303
Tips & Tricks	 304

Interface	 305
Animate	 305
Sortables	 308

Finding Plug-in Documentation	 309
Developing a Plug-in	 311

Adding New Global Functions	 311
Adding Multiple Functions	 312
What's the Point?	 313

Adding jQuery Object Methods	 314
Object Method Context	 314
Method Chaining	 315

DOM Traversal Methods	 315
Method Parameters	 317

Adding New Shortcut Methods	 319
Maintaining Multiple Event Logs	 320
Adding a Selector Expression	 322
Creating an Easing Style	 324

Easing Function Parameters	 325
Multi-Part Easing Styles	 326

How to Be a Good Citizen	 327
Naming Conventions	 328
Use of the $ Alias	 328
Method Interfaces	 328
Documentation Style	 329

Summary	 329

Table of Contents

[vii]

Appendix A: Online Resources	 331
jQuery Documentation	 331
JavaScript Reference	 332
JavaScript Code Compressors	 333
(X)HTML Reference	 333
CSS Reference	 333
XPath Reference	 334
Useful Blogs	 334
Web Development Frameworks Using jQuery	 336

Appendix B: Development Tools	 337
Tools for Firefox	 337
Tools for Internet Explorer	 338
Tools for Safari	 339
Other Tools	 339

Appendix C: JavaScript Closures	 341
Inner Functions	 341
The Great Escape	 342
Variable Scoping	 343
Interactions between Closures	 345
Closures in jQuery	 346

Arguments to $(document).ready()	 346
Event Handlers	 347

Memory Leak Hazards	 349
Accidental Reference Loops	 350
The Internet Explorer Memory Leak Problem	 351
The Good News	 351

Conclusion	 352
Index	 353

Preface
jQuery is a powerful JavaScript library that can enhance your websites regardless of
your background.

Created by John Resig, jQuery is an open-source project with a dedicated core team
of top-notch JavaScript developers. It provides a wide range of features, an easy-to-
learn syntax, and robust cross-platform compatibility in a single compact file. What's
more, over a hundred plug-ins have been developed to extend jQuery's functionality,
making it an essential tool for nearly every client-side scripting occasion.

Learning jQuery provides a gentle introduction to jQuery concepts, allowing you to
add interactions and animations to your pages—even if previous attempts at writing
JavaScript have left you baffled. This book guides you past the pitfalls associated
with AJAX, events, effects, and advanced JavaScript language features.

A working demo of the examples in this book is available at:
http://book.learningjquery.com

What This Book Covers
The first part of the book introduces jQuery and helps you to understand what the
fuss is all about. Chapter 1 covers downloading and setting up the jQuery library, as
well as writing your first script.

The second part of the book steps you through each of the major aspects of the
jQuery library. In Chapter 2, you'll learn how to get anything you want. The selector
expressions in jQuery allow you to find elements on the page, wherever they may be.
You'll work with these selector expressions to apply styling to a diverse set of page
elements, sometimes in a way that pure CSS cannot.

Preface

[�]

In Chapter 3, you'll learn how to pull the trigger. You will use jQuery's
event-handling mechanism to fire off behaviors when browser events occur.
You'll also get the inside scoop on jQuery's secret sauce: attaching events
unobtrusively, even before the page finishes loading.

In Chapter 4, you'll learn how to add flair to your actions. You'll be introduced to
jQuery's animation techniques and see how to hide, show, and move page elements
with the greatest of ease.
In Chapter 5, you'll learn how to change your page on command. This chapter will
teach you how to alter the very structure an HTML document on the fly.
In Chapter 6, you'll learn how to make your site buzzword compliant. After reading
this chapter, you, too, will be able to access server-side functionality without
resorting to clunky page refreshes.
The third part of the book takes a different approach. Here you'll work through
several real-world examples, pulling together what you've learned in previous
chapters and creating robust jQuery solutions to common problems. In Chapter 7,
you'll sort, sift, and style information to create beautiful and functional data layouts.
In Chapter 8, you'll master the finer points of client-side validation, design an
adaptive form layout, and implement interactive client-server form features such as
auto-completion.
In Chapter 9, you'll enhance the beauty and utility of page elements by showing them
in bite-size morsels. You'll make information fly in and out of view both on its own
and under user control.
In Chapter 10 you'll learn about jQuery's impressive extension capabilities. You'll
examine three prominent jQuery plug-ins and how to use them, and proceed to
develop your own from the ground up.
Appendix A provides a handful of informative websites on a wide range of topics
related to jQuery, JavaScript, and web development in general.
Appendix B recommends a number of useful third-party programs and utilities for
editing and debugging jQuery code within your personal development environment.
Appendix C discusses one of the common stumbling blocks with the JavaScript
language. You'll come to rely on the power of closures, rather than fear their
side effects.

Who This Book Is for
This book is for web designers who want to create interactive elements for their
designs, and for developers who want to create the best user interface for their
web applications.

Preface

[�]

The reader will need the basics of HTML and CSS, and should be comfortable with
the syntax of JavaScript. No knowledge of jQuery is assumed, nor is experience with
any other JavaScript libraries required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "Taken
together, $() and .addClass() are enough for us to accomplish our goal of
changing the appearance of the poem text."

A block of code will be set as follows:

$(document).ready(function() {
 $('span:contains(language)').addClass('emphasized');
});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

$(document).ready(function() {
 $('a[@href$=".pdf"]').addClass('pdflink');
});

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"The next step is to run those tests by clicking the All button."

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

Preface

[�]

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Getting Started
Up on the buzzer
Quick on the start
Let's go! Let's go! Let's go!
 —Devo,
 "Let's Go"

Today's World Wide Web is a dynamic environment, and its users set a high bar for
both style and function of sites. To build interesting, interactive sites, developers
are turning to JavaScript libraries such as jQuery to automate common tasks and
simplify complicated ones. One reason the jQuery library is a popular choice is its
ability to assist in a wide range of tasks.

Because jQuery does perform so many different functions, it can seem challenging
to know where to begin. Yet, there is a coherence and symmetry to the design of
the library; most of its concepts are borrowed from the structure of HTML and
Cascading Style Sheets (CSS). Because many web developers have more experience
with these technologies than with JavaScript, the library's design lends itself to a
quick start for designers with little programming experience. In fact, in this opening
chapter we'll write a functioning jQuery program in just three lines of code. On
the other hand, experienced programmers will also be aided by this conceptual
consistency, as we'll see in the later, more advanced chapters.

But before we illustrate the operation of the library with an example, we should
discuss why we might need it in the first place.

Getting Started

[�]

What jQuery Does
The jQuery library provides a general-purpose abstraction layer for common web
scripting, and is therefore useful in almost every scripting situation. Its extensible
nature means that we could never cover all possible uses and functions in a single
book, as plug‑ins are constantly being developed to add new abilities. The core
features, though, address the following needs:

Access parts of a page. Without a JavaScript library, many lines of code
must be written to traverse the Document Object Model (DOM) tree, and
locate specific portions of an HTML document's structure. jQuery offers a
robust and efficient selector mechanism for retrieving exactly the piece of the
document that is to be inspected or manipulated.
Modify the appearance of a page. CSS offers a powerful method of
influencing the way a document is rendered; but it falls short when web
browsers do not all support the same standards. jQuery can bridge this
gap, providing the same standards support across all browsers. In addition,
jQuery can change the classes or individual style properties applied to a
portion of the document even after the page has been rendered.
Alter the content of a page. Not limited to mere cosmetic changes, jQuery
can modify the content of a document itself with a few keystrokes. Text can
be changed, images can be inserted or swapped, lists can be reordered, or
the entire structure of the HTML can be rewritten and extended—all with a
single easy-to-use API.
Respond to a user's interaction with a page. Even the most elaborate and
powerful behaviors are not useful if we can't control when they take place.
The jQuery library offers an elegant way to intercept a wide variety of events,
such as a user clicking on a link, without the need to clutter the HTML code
itself with event handlers. At the same time, its event‑handling API removes
browser inconsistencies that often plague web developers.
Add animation to a page. To effectively implement such interactive
behaviors, a designer must also provide visual feedback to the user. The
jQuery library facilitates this by providing an array of effects such as fades
and wipes, as well as a toolkit for crafting new ones.
Retrieve information from a server without refreshing a page. This code
pattern has become known as Asynchronous JavaScript and XML (AJAX),
and assists web developers in crafting a responsive, feature-rich site. The
jQuery library removes the browser-specific complexity from this process,
allowing developers to focus on the server-end functionality.
Simplify common JavaScript tasks. In addition to all of the
document‑specific features of jQuery, the library provides enhancements to
basic JavaScript constructs such as iteration and array manipulation.

•

•

•

•

•

•

•

Chapter 1

[�]

Why jQuery Works Well
With the recent resurgence of interest in dynamic HTML comes a proliferation of
JavaScript frameworks. Some are specialized, focusing on just one or two of the
above tasks. Others attempt to catalog every possible behavior and animation, and
serve these all up pre-packaged. To maintain the wide range of features outlined
above while remaining compact, jQuery employs several strategies:

Leverage knowledge of CSS. By basing the mechanism for locating
page elements on CSS selectors, jQuery inherits a terse yet legible way
of expressing a document's structure. Because a prerequisite for doing
professional web development is knowledge of CSS syntax, jQuery becomes
an entry point for designers who want to add behavior to their pages.
Support extensions. In order to avoid feature creep, jQuery relegates special-
case uses to plug-ins. The method for creating new plug-ins is simple and
well-documented, which has spurred the development of a wide variety of
inventive and useful modules. Even most of the features in the basic jQuery
download are internally realized through the plug-in architecture, and can be
removed if desired, yielding an even smaller library.
Abstract away browser quirks. An unfortunate reality of web development
is that each browser has its own set of deviations from published standards.
A significant portion of any web application can be relegated to handling
features differently on each platform. While the ever-evolving browser
landscape makes a perfectly browser-neutral code base impossible for some
advanced features, jQuery adds an abstraction layer that normalizes the
common tasks, reducing the size of code, and tremendously simplifying it.
Always work with sets. When we instruct jQuery, Find all elements with the
class 'collapsible' and hide them, there is no need to loop through each returned
element. Instead, methods such as .hide() are designed to automatically
work on sets of objects instead of individual ones. This technique, called
implicit iteration, means that many looping constructs become unnecessary,
shortening code considerably.
Allow multiple actions in one line. To avoid overuse of temporary variables
or wasteful repetition, jQuery employs a programming pattern called
chaining for the majority of its methods. This means that the result of most
operations on an object is the object itself, ready for the next action to be
applied to it.

These strategies have kept the jQuery package slim—roughly 20KB compressed—
while at the same time providing techniques for keeping our custom code that uses
the library compact, as well.

•

•

•

•

•

Getting Started

[�]

The elegance of the library comes about partly by design, and partly due to the
evolutionary process spurred by the vibrant community that has sprung up
around the project. Users of jQuery gather to discuss not only the development of
plug‑ins, but also enhancements to the core library. Appendix A details many of the
community resources available to jQuery developers.

Despite all of the efforts required to engineer such a flexible and robust system, the
end product is free for all to use. This open-source project is dually licensed under the
GNU Public License (appropriate for inclusion in many other open-source projects)
and the MIT License (to facilitate use of jQuery within proprietary software).

Our First jQuery Document
Now that we have covered the range of features available to us with jQuery, we can
examine how to put the library into action.

Downloading jQuery
The official jQuery website (http://jquery.com/) is always the most up-to-date
resource for code and news related to the library. To get started, we need a copy
of jQuery, which can be downloaded right from the home page of the site. Several
versions of jQuery may be available at any given moment; the most appropriate for
us will be the latest uncompressed version of the library.

No installation is required. To use jQuery, we just need to place it on our site in a
public location. Since JavaScript is an interpreted language, there is no compilation
or build phase to worry about. Whenever we need a page to have jQuery available,
we will simply refer to the file's location from the HTML document.

Setting Up the HTML Document
There are three pieces to most examples of jQuery usage: the HTML document itself,
CSS files to style it, and JavaScript files to act on it. For our first example, we'll use a
page with a book excerpt that has a number of classes applied to portions of it.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <title>Through the Looking-Glass</title>

Chapter 1

[�]

 <link rel="stylesheet" href="alice.css" type="text/css"
 media="screen" />
 <script src="jquery.js" type="text/javascript"></script>
 <script src="alice.js" type="text/javascript"></script>
 </head>
 <body>
 <div id="container">
 <h1>Through the Looking-Glass</h1>
 <div class="author">by Lewis Carroll</div>
 <div class="chapter" id="chapter-1">
 <h2 class="chapter-title">1. Looking-Glass House</h2>
 <p>There was a book lying near Alice on the table, and while
 she sat watching the White King (for she was still a
 little anxious about him, and had the ink all ready to
 throw over him, in case he fainted again), she turned over
 the leaves, to find some part that she could read, <span
 class="spoken">"—for it's all in some language I
 don't know," she said to herself.</p>
 <p>It was like this.</p>
 <div class="poem">
 <h3 class="poem-title">YKCOWREBBAJ</h3>
 <div class="poem-stanza">
 <div>sevot yhtils eht dna ,gillirb sawT'</div>
 <div>;ebaw eht ni elbmig dna eryg diD</div>
 <div>,sevogorob eht erew ysmim llA</div>
 <div>.ebargtuo shtar emom eht dnA</div>
 </div>
 </div>
 <p>She puzzled over this for some time, but at last a bright
 thought struck her. "Why, it's a
 Looking-glass book, of course! And if I hold it up to a
 glass, the words will all go the right way again."</p>
 <p>This was the poem that Alice read.</p>
 <div class="poem">
 <h3 class="poem-title">JABBERWOCKY</h3>
 <div class="poem-stanza">
 <div>'Twas brillig, and the slithy toves</div>
 <div>Did gyre and gimble in the wabe;</div>
 <div>All mimsy were the borogoves,</div>
 <div>And the mome raths outgrabe.</div>
 </div>
 </div>
 </div>
 </div>
 </body>
</html>

Getting Started

[10]

The actual layout of files on the server does not matter. References from
one file to another just need to be adjusted to match the organization we
choose. In most examples in this book, we will use relative paths
to reference files (../images/foo.png) rather than absolute paths
(/images/foo.png). This will allow the code to run locally without the
need for a web server.

Immediately following the normal HTML preamble, the stylesheet is loaded. For this
example, we'll use a spartan one.

body {
 font: 62.5% Arial, Verdana, sans-serif;
}
h1 {
 font-size: 2.5em;
 margin-bottom: 0;
}
h2 {
 font-size: 1.3em;
 margin-bottom: .5em;
}
h3 {
 font-size: 1.1em;
 margin-bottom: 0;
}
.poem {
 margin: 0 2em;
}
.emphasized {
 font-style: italic;
 border: 1px solid #888;
 padding: 0.5em;
}

After the stylesheet is referenced, the JavaScript files are included. It is important
that the script tag for the jQuery library be placed before the tag for our custom
scripts; otherwise, the jQuery framework will not be available when our code
attempts to reference it.

Throughout the rest of this book, only the relevant portions of HTML and
CSS files will be printed. The files in their entirety are available from the
book's companion website http://book.learningjquery.com or
from the publisher's website http://www.packtpub.com/support.

Chapter 1

[11]

Now we have a page that looks like this:

We will use jQuery to apply a new style to the poem text.

This example is contrived, just to show a simple use of jQuery. In
real-world situations, styling such as this could be performed purely
with CSS.

Writing the jQuery Code
Our custom code will go in the second, currently empty, JavaScript file, which
we included from the HTML using <script src="alice.js" type="text/
javascript"></script>. For this example, we only need three lines of code:

$(document).ready(function() {
 $('.poem-stanza').addClass('emphasized');
});

Getting Started

[12]

Finding the Poem Text
The fundamental operation in jQuery is selecting a part of the document. This is
done with the $() construct. Typically, it takes a string as a parameter, which can
contain any CSS selector expression. In this case, we wish to find all parts of the
document that have the poem-stanza class applied to them; so the selector is very
simple, but we will cover much more sophisticated options through the course of
the book. We will step through the different ways of locating parts of a document
in Chapter 2.

The $() function is actually a factory for the jQuery object, which is the basic
building block we will be working with from now on. The jQuery object encapsulates
zero or more DOM elements, and allows us to interact with them in many different
ways. In this case, we wish to modify the appearance of these parts of the page, and
we will accomplish this by changing the classes applied to the poem text.

Injecting the New Class
The .addClass() method is fairly self-explanatory; it applies a CSS class to the part
of the page that we have selected. Its only parameter is the name of the class to add.
This method, and its counterpart, .removeClass(), will allow us to easily observe
jQuery in action as we explore the different selector expressions available to us.
For now, our example simply adds the emphasized class, which our stylesheet has
defined as italicized text with a border.

Note that no iteration is necessary to add the class to all the poem stanzas. As we
discussed, jQuery uses implicit iteration within methods such as .addClass(), so a
single function call is all it takes to alter all of the selected parts of the document.

Executing the Code
Taken together, $() and .addClass() are enough for us to accomplish our goal of
changing the appearance of the poem text. However, if this line of code is inserted
alone in the document header, it will have no effect. JavaScript code is generally
run as soon as it is encountered in the browser, and at the time the header is being
processed, no HTML is yet present to style. We need to delay the execution of the
code until after the DOM is available for our use.

The traditional mechanism for controlling when JavaScript code is run is to call the
code from within event handlers. Many handlers are available for user-initiated
events, such as mouse clicks and key presses. If we did not have jQuery available
for our use, we would need to rely on the onload handler, which fires after the page
(along with all of its images) has been rendered. To trigger our code from the onload
event, we would place the code inside a function:

Chapter 1

[13]

function emphasizePoemStanzas() {
 $('.poem-stanza').addClass('emphasized');
}

Then we would attach the function to the event by modifying the HTML <body> tag
to reference it:

<body onload="emphasizePoemStanzas();">

This causes our code to run after the page is completely loaded.

There are drawbacks to this approach, though. We altered the HTML itself to effect
this behavior change. This tight coupling of structure and function clutters the code,
possibly requiring the same function calls to be repeated over many different pages,
or in the case of other events such as mouse clicks, over every instance of an element
on a page. Adding new behaviors would then require alterations in two different
places, increasing the opportunity for error and complicating parallel workflows for
designers and programmers.

To avoid this pitfall, jQuery allows us to schedule function calls for firing once the
DOM is loaded—without waiting for images—with the $(document).ready()
construct. With our function defined as above, we can write:

$(document).ready(emphasizePoemStanzas);

This technique does not require any HTML modifications. Instead, the behavior is
attached entirely from within the JavaScript file. We will learn how to respond to
other types of user actions, divorcing their effects from the HTML structure as well,
in Chapter 3.

This incarnation is still slightly wasteful, though, because the function
emphasizePoemStanzas() is defined only to be used immediately, and exactly once.
This means that we have used an identifier in the global namespace of functions
that we have to remember not to use again, and for little gain. JavaScript, like some
other programming languages, has a way around this inefficiency called anonymous
functions (sometimes also called lambda functions). We arrive back at the code as
originally presented:

$(document).ready(function() {
 $('.poem-stanza').addClass('emphasized');
});

By using the function keyword without a function name, we define a function
exactly where it is needed, and not before. This removes clutter and brings us back
down to three lines of JavaScript. This idiom is extremely convenient in jQuery
code, as many methods take a function as an argument and such functions are
rarely reusable.

Getting Started

[14]

When this syntax is used to define an anonymous function within the body of
another function, a closure can be created. This is an advanced and powerful
concept, but should be understood when making extensive use of nested function
definitions as it can have unintended consequences and ramifications on
memory use. This topic is discussed fully in Appendix C.

The Finished Product
Now that our JavaScript is in place, the page looks like this:

The poem stanzas are now italicized and enclosed in boxes, due to the insertion of
the emphasized class by the JavaScript code.

Chapter 1

[15]

Summary
We now have an idea of why a developer would choose to use a JavaScript
framework rather than writing all code from scratch, even for the most basic tasks.
We also have seen some of the ways in which jQuery excels as a framework, and
why we might choose it over other options. We also know in general which tasks
jQuery makes easier.

In this chapter, we have learned how to make jQuery available to JavaScript code
on our web page, use the $() factory function to locate a part of the page that has a
given class, call .addClass() to apply additional styling to this part of the page, and
invoke $(document).ready() to cause this code to execute upon the loading of
the page.

The simple example we have been using demonstrates how jQuery works, but is not
very useful in real-world situations. In the next chapter, we will expand on the code
hereby exploring jQuery's sophisticated selector language, finding practical uses for
this technique.

Selectors—How to Get
Anything You Want

She's just the girl
She's just the girl
The girl you want
 —Devo,
 "Girl U Want"

jQuery harnesses the power of Cascading Style Sheets (CSS) and XPath selectors
to let us quickly and easily access elements or groups of elements in the Document
Object Model (DOM). In this chapter, we will explore a few of these CSS and XPath
selectors, as well as jQuery's own custom selectors. We'll also look at jQuery's DOM
traversal methods that provide even greater flexibility for getting what we want.

The Document Object Model
One of the most powerful aspects of jQuery is its ability to make DOM traversal easy.
The Document Object Model is a family-tree structure of sorts. HTML, like other
markup languages, uses this model to describe the relationships of things on a page.
When we refer to these relationships, we use the same terminology that we use when
referring to family relationships—parents, children, and so on. A simple example can
help us understand how the family tree metaphor applies to a document:

<html>
 <head>
 <title>the title</title>
 </head>
 <body>
 <div>
 <p>This is a paragraph.</p>
 <p>This is another paragraph.</p>
 <p>This is yet another paragraph.</p>

Selectors—How to Get Anything You Want

[18]

 </div>
 </body>
</html>

Here, <html> is the ancestor of all the other elements; in other words, all the other
elements are descendants of <html>. The <head> and <body> elements are children
of <html>. Therefore, in addition to being the ancestor of <head> and <body>,
<html> is also their parent. The <p> elements are children (and descendants)
of <div>, descendants of <body> and <html>, and siblings of each other. For
information on how to visualize the family-tree structure of the DOM using
third-party software, see Appendix B.

An important point to note before we begin is that the resulting set of items from
our various selectors and methods is actually a jQuery object. jQuery objects are
very easy to work with when we want to actually do something with the things that
we find on a page. We can easily bind events to these objects and add slick effects
to them, as well as chain multiple modifications or effects together. Nevertheless,
jQuery objects are different from regular DOM elements, and as such do not
necessarily provide the same methods and properties as plain DOM elements for
some tasks. In the final part of this chapter, therefore, we will look at ways to access
the DOM elements that are wrapped in a jQuery object.

The $() Factory Function
No matter which type of selector we want to use in jQuery—be it CSS, XPath, or
custom—we always start with the dollar sign and parentheses: $()

As mentioned in Chapter 1, the $() function removes the need to do a for loop to
access a group of elements since whatever we put inside the parentheses will be
looped through automatically and stored as a jQuery object. We can put just about
anything inside the parentheses of the $() function. A few of the more common
examples include:

A tag name: $('p') gets all paragraphs in the document.
An ID: $('#some-id') gets the single element in the document that has the
corresponding some-id ID.
A class: $('.some-class') gets all elements in the document that have a
class of some-class.

Making jQuery Play Well with Other JavaScript Libraries
In jQuery, the dollar sign $ is simply shorthand for jQuery. Because a $()
function is very common in JavaScript libraries, conflicts could arise if more
than one of these libraries is being used in a given page. We can avoid such
conflicts by replacing every instance of $ with jQuery in our custom jQuery
code. Additional solutions to this problem are addressed in Chapter 10.

•
•

•

Administrator
Highlight

Chapter 2

[19]

Now that we have covered the basics, we're ready to start exploring some more
powerful uses of selectors.

CSS Selectors
jQuery supports most of the selectors included in CSS specifications 1 through 3,
as outlined on the World Wide Web Consortium's site: http://www.w3.org/Style/
CSS/#specs. This support allows developers to enhance their websites without
worrying about which browsers (particularly Internet Explorer 6 and below) might
not understand advanced selectors, as long as the browsers have JavaScript enabled.

Responsible jQuery developers should always apply the concepts of
progressive enhancement and graceful degradation to their code,
ensuring that a page will render as accurately, even if not as beautifully,
with JavaScript disabled as it does with JavaScript turned on. We will
continue to explore these concepts throughout the book.

To begin learning how jQuery works with CSS selectors, we'll use a structure that
appears on many websites, often for navigation—the nested, unordered list.

<ul id="selected-plays">
 Comedies

 As You Like It
 All's Well That Ends Well
 A Midsummer Night's Dream
 Twelfth Night

 Tragedies

 Hamlet
 Macbeth
 Romeo and Juliet

 Histories

 Henry IV (email)

 Part I
 Part II	

Selectors—How to Get Anything You Want

[20]

 Henry V
 Richard II

Notice that the first has an ID of selected-plays, but none of the tags
have a class associated with them. Without any styles applied, the list looks like this:

The nested list appears as we would expect it to—a set of bulleted items arranged
vertically and indented according to their level.

Styling List-Item Levels
Let's suppose that we want the top-level items, and only the top-level items, to be
arranged horizontally. We can start by defining a horizontal class in the stylesheet:

.horizontal {
 float: left;
 list-style: none;
 margin: 10px;
}

The horizontal class floats the element to the left of the one following it, removes
the bullet from it if it's a list item, and adds a 10 pixel margin on all sides of it.

Rather than attaching the horizontal class directly in our HTML, we'll add
it dynamically to the top-level list items only—Comedies, Tragedies, and
Histories—to demonstrate jQuery's use of selectors:

Chapter 2

[21]

$(document).ready(function() {

 $('#selected-plays > li').addClass('horizontal');

});

As discussed in Chapter 1, we begin the jQuery code with the $(document).ready()
wrapper, which makes everything inside of it available as soon as the DOM
has loaded.

The second line uses the child combinator (>) to add the horizontal class to
all top-level items only. In effect, the selector inside the $() function is
saying, find each list item (li) that is a child (>) of an element with an ID of
selected-plays (#selected-plays).

With the class now applied, our nested list looks like this:

Styling all of the other items—those that are not in the top level—can be done in a
number of ways. Since we have already applied the horizontal class to the top-level
items, one way to get all sub-level items is to use a negation pseudo-class to identify
all list items that do not have a class of horizontal. Note the addition of the third
line of code:

$(document).ready(function() {
 $('#selected-plays > li').addClass('horizontal');

 $('#selected-plays li:not(.horizontal)').addClass('sub-level');

});

This time we are getting every list item (li) that:

1.	 Is a descendant of an element with an ID of selected-plays
(#selected-plays), and

2.	 Does not have a class of horizontal (:not(.horizontal)).

Selectors—How to Get Anything You Want

[22]

When we add the sub-level class to these items, they receive the pale yellow
background color defined in the stylesheet: .sub-level {background-color:
#ffc;}. Now the nested list looks like this:

XPath Selectors
XML Path Language (XPath) is a type of language for identifying different elements
or their values within XML documents, similar to the way CSS identifies elements in
HTML documents. The jQuery library supports a basic set of XPath selectors that we
can use alongside CSS selectors, if we so desire. And with jQuery, both XPath and
CSS selectors can be used regardless of the document type.

When it comes to attribute selectors, jQuery uses the XPath convention of
identifying attributes by prefixing them with the @ symbol inside square brackets,
rather than the less-flexible CSS equivalent. For example, to select all links that have
a title attribute, we would write the following:

$('a[@title]')

This XPath syntax allows for another use of square brackets, without the @, to
designate an element that is contained within another element. We can, for example,
get all div elements that contain an ol element with the following selector expression:

$('div[ol]')

Styling Links
Attribute selectors accept regular-expression-like syntax for identifying the
beginning (^) or ending ($) of a string. They also take an asterisk (*) to indicate an
arbitrary position within a string.

Let's say we wanted to display different types of links with different text colors. We
would first define the styles in our stylesheet:

a {
 color: #00f; /* make plain links blue */
a.mailto {
 color: #f00; /* make email links red */

Chapter 2

[23]

}
a.pdflink {
 color: #090; /* make PDF links green */
}
a.mysite {
 text-decoration: none; /* remove internal link underline */
 border-bottom: 1px dotted #00f;
}

Then, we would add the three classes—mailto, pdflink, and mysite—to the
appropriate links using jQuery.

To get all email links, we would construct a selector that looks for all
anchor elements (a) with an href attribute ([@href]) that begins with
mailto (^="mailto:"); as follows:

$(document).ready(function() {
 $('a[@href^="mailto:"]').addClass('mailto');

});

To get all links to PDF files, we would use the dollar sign rather than the caret
symbol; to get all links with an href attribute that ends with .pdf, the code would
look as follows:

$(document).ready(function() {
 $('a[@href^="mailto:"]').addClass('mailto');
 $('a[@href$=".pdf"]').addClass('pdflink');

});

Finally, to get all internal links—i.e., links to other pages on mysite.com—we would
use the asterisk:

$(document).ready(function() {
 $('a[@href^="mailto:"]').addClass('mailto');
 $('a[@href$=".pdf"]').addClass('pdflink');
 $('a[@href*="mysite.com"]').addClass('mysite');

});

Here, mysite.com can appear anywhere within the href value. This is especially
important if we want to include links to any sub-domain within mysite.com as well.

With the three classes applied to the three types of links, we should see the following
styles applied:

Blue text with dotted underline:
 As You Like It

•

Selectors—How to Get Anything You Want

[24]

Green text: Hamlet
Red text: email

Following is a screenshot of the styled links:

Custom Selectors
To the wide variety of CSS and XPath selectors, jQuery adds its own custom selectors.
Most of the custom selectors allow us to pick certain elements out of a line-up, so to
speak. The syntax is the same as the CSS pseudo-class syntax, where the selector starts
with a colon (:). For example, if we wanted to select the second item from a matched
set of divs with a class of horizontal, we would write it like this:

$('div.horizontal:eq(1)')

Note that the eq(1) gets the second item from the set because JavaScript array
numbering is zero-based, meaning that it starts with 0. In contrast, CSS is one-based,
so a CSS selector such as $('div:nth-child(1)') gets any div that is the first child
of its parent.

Styling Alternate Rows
Two very useful custom selectors in the jQuery library are :odd and :even. Let's
take a look at how we can use these selectors for basic table striping, given the
following table:

<table>
<tr>
 <td>As You Like It</td>
 <td>Comedy</td>
</tr>
<tr>
 <td>All's Well that Ends Well</td>
 <td>Comedy</td>

•

•

Chapter 2

[25]

</tr>
<tr>
 <td>Hamlet</td>
 <td>Tragedy</td>
</tr>
<tr>
 <td>Macbeth</td>
 <td>Tragedy</td>
</tr>
<tr>
 <td>Romeo and Juliet</td>
 <td>Tragedy</td>
</tr>
<tr>
 <td>Henry IV, Part I</td>
 <td>History</td>
</tr>
<tr>
 <td>Henry V</td>
 <td>History</td>
</tr>
</table>

Now we can add two classes to the stylesheet—one for the odd rows and one for
the even:

.odd {
 background-color: #ffc; /* pale yellow for odd rows */
}
.even {
 background-color: #cef; /* pale blue for even rows */
}

Finally, we write our jQuery code, attaching the classes to the table rows (<tr> tags):

$(document).ready(function() {
 $('tr:odd').addClass('odd');
 $('tr:even').addClass('even');
});

Selectors—How to Get Anything You Want

[26]

That simple bit of code should produce a table that looks like this:

At first glance, the row coloring might appear the opposite of what it should be.
However, just as with the :eq() selector, the :odd() and :even() selectors use
JavaScript's native zero-based numbering. Therefore, the first row counts as 0 (even)
and the second row counts as 1 (odd), and so on.

Note that we may see unintended results if there is more than one table on a page.
For example, since the last row in this table has a pale-blue background, the first row
in the next table would have the pale-yellow background. We will examine ways to
avoid this type of problem in Chapter 7.

For one final custom-selector touch, let's suppose for some reason we wanted to
highlight any table cell that referred to one of the Henry plays. All we'd have to
do is add a class to the stylesheet to make the text bold and red (.highlight {font-
weight:bold; color: #f00;}) and add a line to our jQuery code, using the
:contains() selector.

$(document).ready(function() {
 $('tr:odd').addClass('odd');
 $('tr:even').addClass('even');
 $('td:contains("Henry")').addClass('highlight');
});

So, now we can see our lovely striped table with the Henry plays prominently featured:

Chapter 2

[27]

Admittedly, there are ways to achieve the highlighting without jQuery—or any
client‑side programming, for that matter. Nevertheless, jQuery, along with CSS, is
a great alternative for this type of styling, in cases when the content is generated
dynamically and we don't have access to either the HTML or server-side code.

DOM Traversal Methods
The jQuery selectors that we have explored so far allow us to get a set of elements
as we navigate across and down the DOM tree and filter the results. If this were the
only way to get elements, our options would be quite limited (although, frankly,
the selector expressions on their own are robust in their own right, especially when
compared to the regular DOM scripting). There are many occasions on which getting
a parent or ancestor element is essential. And that is where jQuery's DOM traversal
methods come to play. With these methods at our disposal, we can go up, down, and
all around the DOM tree with ease.

Some of the methods have a nearly identical counterpart among the selector
expressions. For example, the line we used to add the odd class, $('tr:odd').
addClass('odd');, could be rewritten with the .filter() method as follows:

$('tr').filter(':odd').addClass('odd');

For the most part, however, the two ways of getting elements complement each
other. Let's take a look at the striped table again, to see what is possible with
these methods.

First, the table could use a heading row, so we'll add another <tr> element with two
<th> elements inside it, rather than the <td> elements:

[…]
 <tr>
 <th>Title</th>
 <th>Category</th>
 </tr>
[…]

This could also be done more semantically by wrapping the heading
row in <thead></thead> and wrapping the rest of the rows in
<tbody></tbody>, but for the sake of this example we’ll just go
along without the extra explicit markup.

We'll style that heading row differently from the rest, giving it a bold yellow
background color instead of the pale blue that it would get with the code the
way we left it.

Selectors—How to Get Anything You Want

[28]

Second, our client has just looked at the site and loves the stripes, but wants the bold
red text to appear in the category cells of the Henry rows, and not in the title cells.

Styling the Header Row
The task of styling the header row differently can be achieved by hooking into the
<th> tags and getting their parent. The other rows can be selected for styling by
combining CSS, XPath, and custom selectors to filter the <tr> elements as follows:

$(document).ready(function() {
 $('th').parent().addClass('table-heading');

 $('tr:not([th]):even').addClass('even');
 $('tr:not([th]):odd').addClass('odd');
 $('td:contains("Henry")').addClass('highlight');
});

With the heading row, we get a generic parent without anything in the
parentheses—parent()—because we know that it is a <tr> and that there is only
one of them. Although we might expect this <tr> to have the table-heading class
added to it twice because there are two <th> elements within it, jQuery intelligently
avoids adding a class name to an element if the class is already there.

For the body rows, we begin by excluding any <tr> element that has a <th> as a
descendant, after which we apply the :odd or :even filter. Note that the order of
selectors is important. Our table would look quite different if we used, for example,
$('tr:odd:not([th])') rather than $('tr:not([th]):odd').

Styling Category Cells
To style the cell next to each cell containing Henry, we can start with the selector that
we have already written, and simply add the next() method to it:

$(document).ready(function() {
 $('the').parent().addClass('table-heading');
 $('tr:not([th]):even').addClass('even');
 $('tr:not([th]):odd').addClass('odd');
 $('td:contains("Henry")').next().addClass('highlight');

});

Chapter 2

[29]

With the added table-heading class and the highlight class now applied to cells
in the category column, the table should look like this:

The .next() method gets only the very next sibling element. What would we do
if there were more columns? If there were a Year Published column, for example,
we might want the text in that column to be highlighted too, when its row contains
Henry in the Title column. In other words, for each row in which a cell contains
Henry, we want to get all of the other cells in that row. We can do this in a number of
ways, using a combination of selector expressions and jQuery methods:

1.	 Get the cell containing Henry and then get its siblings (not just the next
sibling). Add the class:

 $('td:contains("Henry")').siblings().addClass('highlight');

2.	 Get the cell containing Henry, get its parent, and then find all cells inside it
that are greater than 0 (where 0 is the first cell). Add the class:

 $('td:contains("Henry")').parent().find('td:gt(0)')
 .addClass('highlight');

3.	 Get the cell containing Henry, get its parent, find all cells inside it, and then
filter those to exclude the one containing Henry. Add the class:

 $('td:contains("Henry")').parent().find('td').not(':
 contains("Henry")')).addClass('highlight');

4.	 Get the cell containing Henry, get its parent, find the second cell among the
children, add the class, cancel the last .find(), find the third cell among the
children, and add the class:

 $('td:contains("Henry")').parent().find('td:eq(1)').addClass(
 'highlight').end().find('td:eq(2)').addClass('highlight');

Selectors—How to Get Anything You Want

[30]

All of these options will produce the same result:

Just to be clear, not all of these ways of combining selector expressions and methods
are recommended. In fact, the fourth way is circuitous to the point of absurdity.
They should, however, illustrate the incredible flexibility of jQuery's DOM
traversal options.

Chaining
All four of those options also illustrate jQuery's chaining capability. It is possible
with jQuery to get multiple sets of elements and do multiple things with them, all
within a single line of code. And it is possible to break a single line of code into
multiple lines for greater readability. For example, option 4 in the preceeding section
can be rewritten in seven lines, with each line having its own comment, even though
they are acting as a single line:

$('td:contains("Henry")')	 //get every cell containing "Henry"
.parent()	 //get its parent
.find('td:eq(1)')	 //find inside the parent the 2nd cell
.addClass(highlight')	 //add the "highlight" class to that cell
.end()	 //revert back to the parent of the cell containing "Henry"
.find('td:eq(2)')	 //find inside the parent the 3rd cell
.addClass('highlight');	 //add the "highlight" class to that cell

Chaining can be like speaking a whole paragraph's worth of words in a single
breath—it gets the job done quickly, but it can be hard for someone else to
understand. Breaking it up into multiple lines and adding judicious comments can
save more time in the long run.

Chapter 2

[31]

Accessing DOM Elements
Every selector expression and most jQuery methods return a jQuery object, which
is almost always what we want, because of the implicit iteration and chaining
capabilities that it affords.

Still, there may be points in our code when we need to access a DOM element
directly. For example, we may need to make a resulting set of elements available to
another JavaScript library. Or we might need to access an element's tag name. For
these admittedly rare situations, jQuery provides the .get() method. To access
the first DOM element referred to by a jQuery object, we would use .get(0). If the
DOM element is needed within a loop, we would use .get(index). So, if we want to
know the tag name of an element with id="my-element", we would write:

var myTag = $('#my-element').get(0).tagName;

For even greater convenience, jQuery provides a shorthand for .get(). Instead
of writing $('#my-element').get(0), for example, we can use square brackets
immediately following the selector: $('#my-element')[0]. It's no accident that this
syntax looks like an array of DOM elements; using the square brackets is like peeling
away the jQuery wrapper to get at these elements.

Summary
With the techniques that we have covered in this chapter, we should now be able
to style top-level and sub-level items in a nested list by using CSS selectors, apply
different styles to different types of links by using XPath attribute selectors, add
rudimentary striping to a table by using the custom jQuery selectors :odd and :even,
and highlight text within certain table cells by chaining jQuery methods.

So far, we have been using the $(document).ready() event to add a class to a
matched set of elements. In the next chapter, we'll explore ways in which to add a
class in response to a variety of user-initiated events.

Events—How to Pull
the Trigger

Getting bigger, pull the trigger
 —Devo,
 "Puppet Boy"

JavaScript has several built-in ways of reacting to user interaction and other events.
To make a page dynamic and responsive, we need to harness this capability so that
we can, at the appropriate times, use the jQuery techniques we have learned so far.
While we could do this with vanilla JavaScript, jQuery enhances and extends the
basic event handling mechanisms to give them a more elegant syntax while at the
same time making them more powerful.

Performing Tasks on Page Load
We have already seen how to make jQuery react to the loading of a web page. The
$(document).ready() event handler can be used to fire off a function's worth of
code, but there's a bit more to be said about it.

Timing of Code Execution
In Chapter 1, we noted that $(document).ready() was jQuery's way to perform
tasks that were typically triggered by JavaScript's built-in onload event. While the
two have a similar effect, however, they trigger actions at subtly different times.

The window.onload event fires when a document is completely downloaded to the
browser. This means that every element on the page is accessible to JavaScript, which
is a boon for writing featureful code without worrying about load order.

Events—How to Pull the Trigger

[34]

On the other hand, a handler registered using $(document).ready() is invoked
when the DOM is completely ready for use. This also means that all elements are
accessible by our scripts, but does not mean that every associated file has been
downloaded. As soon as the HTML has been downloaded and parsed into a DOM
tree, the code can run.

Consider, for example, a page that presents an image gallery; such a page may have
many large images on it, which we can hide, show, move, and otherwise manipulate
with jQuery. If we set up our interface using the onload event, user will have to wait
until each and every image is completely downloaded before they can use the page.
Or worse, if behaviors are not yet attached to elements that have default behaviors
(such as links), user interactions could produce unintended outcomes. However,
when we use $(document).ready() for the setup, the interface gets ready to use
much earlier with the correct behavior.

Using $(document).ready() is almost always preferable to using an
onload handler, but we need to keep in mind that because supporting
files may not have loaded, attributes such as image height and width are
not necessarily available at this time. If these are needed, we may at times
also choose to implement an onload handler (or more likely, jQuery's
.load() equivalent); the two mechanisms can coexist peacefully.

Multiple Scripts on One Page
The traditional mechanism for registering event handlers through JavaScript (rather
than adding handler attributes right in the HTML) is to assign a function to the
DOM element's corresponding attribute. For example, suppose we had defined
the function:

function doStuff() {
 // Perform a task...
}

We could then either assign it within our HTML markup:
<body onload="doStuff();">

Or, we could assign it from within JavaScript code:
window.onload = doStuff;

Both of these approaches will cause the function to execute when the page is loaded.
The advantage of the second is that the behavior is more cleanly separated from the
markup. However, suppose we have a second function:

function doOtherStuff() {
 // Perform another task...
}

Chapter 3

[35]

We could then attempt to assign this function to run on page load:
window.onload = doOtherStuff;

However, this assignment trumps the first one. The .onload attribute can only store
one function reference at a time, so we can't add to the existing behavior.

The $(document).ready() mechanism handles this situation gracefully. Each call
to the method adds the new function to an internal queue of behaviors; when the
page is loaded all of the functions will execute. The functions will run in the order in
which they were registered.

To be fair, jQuery doesn't have a monopoly on workarounds to this issue.
We can write a JavaScript function that forms a new function that calls the
existing onload handler, then calls a passed-in handler. This approach,
used for example by Simon Willison's addLoadEvent(), avoids conflicts
between rival handlers like $(document).ready() does, but lacks
some of the other benefits we have discussed.

Shortcuts for Code Brevity
The $(document).ready() construct is actually calling the .ready() method on a
jQuery object we've constructed from the document DOM element. Because this is
a common task, the $() function provides a shortcut for us. When called with no
arguments, the function behaves as though document were passed in. This means
that instead of:

$(document).ready(function() {
 // Our code here...
});

we can write:

$().ready(function() {
 // Our code here...
});

In addition, the factory function can take another function as an argument. When
we do this, jQuery performs an implicit call to .ready(), so for the same result we
can write:

$(function() {
 // Our code here...
});

Events—How to Pull the Trigger

[36]

While these other syntaxes are shorter, the authors prefer the longer version to make
it clearer what the code is doing.

Simple Events
There are many other times apart from the loading of the page at which we might
want to perform a task. Just as JavaScript allows us to intercept the page load
event with <body onload=""> or window.onload, it provides similar hooks for
user-initiated events such as mouse clicks (onclick), form fields being modified
(onchange), and windows changing size (onresize). When assigned directly to
elements in the DOM, these hooks have similar drawbacks to the ones we outlined
for onload. Therefore, jQuery offers an improved way of handling these events
as well.

A Simple Style Switcher
To illustrate some event handling techniques, suppose we wish to have a single
page rendered in several different styles based on user input. We will allow the
user to click buttons to toggle between a normal view, a view in which the text is
constrained to a narrow column, and a view with large print for the content area.

In a real-world example, a good web citizen will employ the principle of progressive
enhancement here. The style switcher should either be hidden when JavaScript is
unavailable or, better yet, should still function through links to alternative versions
of the page. For the purposes of this tutorial, we'll assume that all users have
JavaScript turned on.

The HTML markup for the style switcher is as follows:

<div id="switcher">
 <h3>Style Switcher</h3>
 <div class="button selected" id="switcher-normal">Normal</div>
 <div class="button" id="switcher-narrow">Narrow Column</div>
 <div class="button" id="switcher-large">Large Print</div>
</div>

Combined with the rest of the page's HTML markup and some basic CSS, we get a
page that looks like the following figure:

Chapter 3

[37]

To begin, we'll make the Large Print button function. We need a bit of CSS to
implement our alternative view of the page:

body.large .chapter {
 font-size: 1.5em;
}

Our goal, then, is to apply the large class to the body tag. This will allow the
stylesheet to reformat the page appropriately. We already know the statement
needed to accomplish this:

$('body').addClass('large');

However, we want this to occur when the button is clicked. To do this, we'll
introduce the .bind() method. This method allows us to specify any JavaScript
event, and to attach a behavior to it. In this case, the event is called click, and the
behavior is a function consisting of our one-liner above:

$(document).ready(function() {
 $('#switcher-large').bind('click', function() {
 $('body').addClass('large');
 });
});

Events—How to Pull the Trigger

[38]

Now when the button gets clicked, our code runs and we see the resulting screen as
shown in the following figure:

That's all there is to binding an event. The advantages we discussed with the
.ready() method apply here, as well. Multiple calls to .bind() coexist nicely,
appending additional behaviors to the same event as necessary.

This is not necessarily the most elegant or efficient way to accomplish this task. As
we proceed through this chapter, we will extend and refine this code into something
we can be proud of.

Enabling the Other Buttons
We now have a Large Print button that works as advertised, but we need to apply
similar handling to the other two buttons to make them perform their tasks. This is
straightforward; we use .bind() to add a click handler to each of them, removing
and adding classes as necessary. The new code reads as follows:

$(document).ready(function() {
 $('#switcher-normal').bind('click', function() {
 $('body').removeClass('narrow');

Chapter 3

[39]

 $('body').removeClass('large');
 });
 $('#switcher-narrow').bind('click', function() {
 $('body').addClass('narrow');
 $('body').removeClass('large');
 });
 $('#switcher-large').bind('click', function() {
 $('body').removeClass('narrow');
 $('body').addClass('large');
 });
});

This is combined with a CSS rule for the narrow class:

body.narrow .chapter {
 width: 400px;
}

Now, after clicking the Narrow Column button, its corresponding CSS is applied
and the page looks like the following figure:

Events—How to Pull the Trigger

[40]

Event Handler Context
Our switcher is functioning correctly, but we are not giving the user any feedback
about which button is currently active. Our approach for handling this will be to
apply the selected class to the button when it is clicked, and remove this class from
the other buttons. The selected class simply makes the button's text bold:

.selected {
 font-weight: bold;
}

We could accomplish this class modification as we do above, by referring to each
button by ID and applying or removing classes as necessary; but instead we'll
explore a more elegant and scalable solution that exploits the context in which event
handlers run.

When any event handler is triggered, the keyword this refers to the DOM element
to which the behavior was attached. Earlier we noted that the $() function could
take a DOM element as its argument; this is one of the key reasons that facility is
available. By writing $(this) within the event handler, we create a jQuery object
corresponding to the element, and can act on it just as if we had located it with a
CSS selector.

With this in mind, we can write:

$(this).addClass('selected');

Placing this line in each of the three handlers will add the class when a button
is clicked. To remove the class from the other buttons, we can take advantage of
jQuery's implicit iteration feature, and write:

$('#switcher .button').removeClass('selected');

This line removes the class from every button inside the style switcher. So, placing
these in the correct order, we have the code as:

$(document).ready(function() {
 $('#switcher-normal').bind('click', function() {
 $('body').removeClass('narrow');
 $('body').removeClass('large');
 $('#switcher .button').removeClass('selected');

 $(this).addClass('selected');

 });
 $('#switcher-narrow').bind('click', function() {
 $('body').addClass('narrow');
 $('body').removeClass('large');
 $('#switcher .button').removeClass('selected');

Chapter 3

[41]

 $(this).addClass('selected');

 });
 $('#switcher-large').bind('click', function() {
 $('body').removeClass('narrow');
 $('body').addClass('large');
 $('#switcher .button').removeClass('selected');

 $(this).addClass('selected');

 });
});

Now the style switcher gives appropriate feedback as shown in the following figure:

Generalizing the statements by using the handler context allows us to be yet more
efficient. Because the button highlighting code is the same for all three buttons, we
can factor it out into a separate handler as the following code:

 $(document).ready(function() {
 $('#switcher-normal').bind('click', function() {
 $('body').removeClass('narrow').removeClass('large');

 });
 $('#switcher-narrow').bind('click', function() {

Events—How to Pull the Trigger

[42]

 $('body').addClass('narrow').removeClass('large');

 });
 $('#switcher-large').bind('click', function() {
 $('body').removeClass('narrow').addClass('large');

 });

 $('#switcher .button').bind('click', function() {

 $('#switcher .button').removeClass('selected');

 $(this).addClass('selected');

 });

});

This optimization takes advantage of the three jQuery features we have discussed.
First, implicit iteration is once again useful where we bind the same click handler
to each button with a single call to .bind(). Second, behavior queueing allows us
to bind two functions to the same click event, without the second overwriting the
first. Lastly, we're using jQuery's chaining capabilities to collapse the adding and
removing of classes into a single line of code each time.

Further Consolidation
Now let's look at the behaviors we have bound to each button once again. The
.removeClass() method's parameter is optional; when omitted, it removes all
classes from the element. We can streamline our code a bit by exploiting this
as follows:

$(document).ready(function() {
 $('#switcher-normal').bind('click', function() {
 $('body').removeClass();

 });
 $('#switcher-narrow').bind('click', function() {
 $('body').removeClass().addClass('narrow');

 });
 $('#switcher-large').bind('click', function() {
 $('body').removeClass().addClass('large');

 });

 $('#switcher .button').bind('click', function() {
 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Chapter 3

[43]

Now we are executing some of the same code in each of the button handlers. This
can be easily factored out into our general button click handler:

$(document).ready(function() {
 $('#switcher .button').bind('click', function() {
 $('body').removeClass();
 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 });

 $('#switcher-narrow').bind('click', function() {
 $('body').addClass('narrow');
 });
 $('#switcher-large').bind('click', function() {
 $('body').addClass('large');
 });
});

Note that we need to move the general handler above the specific ones now. The
.removeClass() needs to happen before the .addClass(), and we can count on
this because jQuery always triggers event handlers in the order in which they
were registered.

We can only safely remove all classes because we are in charge of the
HTML in this case. When we are writing code for reuse (such as for a
plug-in), we need to respect any classes that might be present and leave
them intact.

Finally, we can get rid of the specific handlers entirely by once again exploiting
event context. Since the context keyword this gives us a DOM element rather than a
jQuery object, we can use native DOM properties to determine the ID of the element
that was clicked. We can thus bind the same handler to all the buttons, and within
the handler perform different actions for each button:

$(document).ready(function() {
 $('#switcher .button').bind('click', function() {
 $('body').removeClass();
 if (this.id == 'switcher-narrow') {

 $('body').addClass('narrow');

 }

 else if (this.id == 'switcher-large') {

 $('body').addClass('large');

 }

Events—How to Pull the Trigger

[44]

 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Shorthand Events
Binding a handler for an event (like a simple click event) is such a common task that
jQuery provides an even terser way to accomplish it; shorthand event methods work
in the same way as their .bind() counterparts with a couple fewer keystrokes.

For example, our style switcher could be written using .click() instead of .bind()
as follows:

$(document).ready(function() {
 $('#switcher .button').click(function() {
 $('body').removeClass();
 if (this.id == 'switcher-narrow') {
 $('body').addClass('narrow');
 }
 else if (this.id == 'switcher-large') {
 $('body').addClass('large');
 }
 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Compound Events
Most of jQuery's event-handling methods directly respond to native JavaScript
events. A handful, however, are custom handlers added for convenience and
cross-browser optimization. One of these, the .ready() method, we have discussed
in detail already. The .toggle() and .hover() methods are two more custom
event handlers; they are both referred to as compound event handlers because
they intercept combinations of user actions, and respond to them using more than
one function.

Chapter 3

[45]

Showing and Hiding Advanced Features
Suppose that we wanted to be able to hide our style switcher when it is not needed.
One convenient way to hide advanced features is to make them collapsible. We will
allow one click on the label to hide the buttons, leaving the label alone. Another
click on the label will restore the buttons. We need another class to handle the
hidden buttons:

.hidden {
 display: none;
}

We could implement this feature by storing the current state of the buttons in a
variable, and checking its value each time the label is clicked to know whether to
add or remove the hidden class on the buttons. We could also directly check for
the presence of the class on a button, and use this information to decide what to
do. Instead, jQuery provides the .toggle() method, which performs this
housekeeping task for us. There are in fact two .toggle() methods defined
by jQuery. For information on the effect method of this name, see:
http://docs.jquery.com/Effects#toggle.28.29

The .toggle() method takes two arguments, both of which are functions. The first
click on the element causes the first function to execute; the second click triggers the
second function. The two functions continue to alternate every other click thereafter.
With .toggle(), we can implement our collapsible style switcher quite easily:

$(document).ready(function() {
 $('#switcher h3').toggle(function() {
 $('#switcher .button').addClass('hidden');
 }, function() {
 $('#switcher .button').removeClass('hidden');
 });
});

After the first click, the buttons are all hidden as shown in the following screenshot:

Events—How to Pull the Trigger

[46]

And a second click returns them to visibility as shown in the following screenshot:

Once again we rely on implicit iteration; this time to hide all the buttons in one fell
swoop without requiring an enclosing element.

For this specific case, jQuery provides another mechanism for the collapsing we are
performing. We can use the .toggleClass() method to automatically check for the
presence of the class before applying or removing it:

$(document).ready(function() {
 $('#switcher h3').click(function() {
 $('#switcher .button').toggleClass('hidden');
 });
});

In this case, .toggleClass() is probably the more elegant solution, but .toggle()
is a more versatile way to perform two different actions in alternation.

Highlighting Clickable Items
In illustrating the ability of the click event to operate on normally non-clickable
page elements, we have crafted an interface that gives few hints that the buttons are
actually live. To remedy this, we can give the buttons a rollover state, making it clear
that they interact in some way with the mouse:

#switcher .hover {
 cursor: pointer;
 background-color: #afa;
}

Chapter 3

[47]

The CSS specification incorporates a pseudo-class called :hover, which allows a
stylesheet to affect an element's appearance when the user's mouse cursor is inside
it. In Internet Explorer 6, this capability is restricted to link elements, so we can't
use it for other items in cross-browser code. Instead, jQuery allows us to perform
arbitrary actions both when the mouse cursor enters an element and when it leaves
the element.

The .hover() method takes two function arguments, just as .toggle() does. In this
case, the first function will be executed when the mouse cursor enters the selected
element, and the second is fired when the cursor leaves. We can modify the classes
applied to the buttons at these times to achieve a rollover effect:

$(document).ready(function() {
 $('#switcher .button').hover(function() {
 $(this).addClass('hover');

 }, function() {
 $(this).removeClass('hover');
 });
});

We once again use implicit iteration and event context for short, simple code.
Now when hovering over any button, we see our class applied as shown in the
following screenshot:

The use of .hover() also means we avoid headaches caused by event propagation
in JavaScript. To understand this, we need to take a look at how JavaScript decides
which element gets to handle a given event.

Events—How to Pull the Trigger

[48]

The Journey of an Event
When an event occurs on a page, an entire hierarchy of DOM elements gets a chance
to handle the event. Consider a page model like this:

<div class="foo">
 The quick brown
 fox jumps over the lazy dog.
 <p>How razorback-jumping frogs can level six piqued gymnasts!</p>
</div>

We then visualize the code as a set of nested elements as shown in the
following figure:

When the anchor on this page is clicked, for example, the <div>, , and <a> all
should get the opportunity to respond to the click. After all, the three are all under
the user's mouse cursor at the time.

One strategy for allowing multiple elements to respond to a click is called event
capturing. With event capturing, the event is first given to the most all-encompassing
element, and then to successively more specific ones. In our example, this means that
first the <div> gets passed the event, then the , and finally the <a>.

Chapter 3

[49]

Technically, in browser implementations of event capturing, specific
elements register to listen for events that occur among their descendants.
The approximation provided here is close enough for our needs.

The opposite strategy is called event bubbling. The event gets sent to the most
specific element, and after this element has an opportunity to react, the event bubbles
up to more general elements. In our example, the <a> would be handed the event
first, and then the and <div> in that order.

Unsurprisingly, different browser developers originally decided on different
models for event propagation. The DOM standard that eventually developed thus
specified that both strategies should be used; first the event is captured from general
to specific, and then the event bubbles back up to the top of the DOM tree. Event
handlers can be registered for either part of the process.

Not all browsers have been updated to match this new standard, and in those that
support capturing it typically must be specifically enabled. To provide cross-browser
consistency, therefore, jQuery always registers event handlers for the bubbling phase
of the model. We can always assume that the most specific element will get the first
opportunity to respond to any event.

Side Effects of Event Bubbling
Event bubbling can cause unexpected behavior, especially when the wrong element
responds to a mouseover or mouseout. Consider a mouseout event handler attached
to the <div> in our example. When the user's mouse cursor exits the <div>, the
mouseout handler is run as anticipated. Since this is at the top of the hierarchy,
no other elements get the event. On the other hand, when the cursor exits the <a>
element, a mouseout event is sent to that. This event will then bubble up to the

Events—How to Pull the Trigger

[50]

 and then to the <div>, firing the same event handler. This bubbling sequence
is likely not desired; for the buttons in our style switcher example, it could mean the
highlight was turned off prematurely.

The .hover() method is aware of these bubbling issues, and when we use that
method to attach events, we can ignore the problems caused by the wrong element
getting a mouseover or mouseout event. This makes .hover() a very attractive
alternative to binding the individual mouse events.

Limiting and Ending Events
The mouseout scenario just described illustrates the need to constrain the scope of an
event. While .hover() handles this specific case, we will encounter other situations
in which we need to limit an event spatially (preventing the event from being sent
to certain elements) or temporally (preventing the event from being sent at
certain times).

Preventing Event Bubbling
We have already seen one situation in which event bubbling can cause problems. To
show a case in which .hover() does not help our cause, we'll alter the collapsing
behavior we implemented earlier.

Suppose we wish to expand the clickable area that triggers the collapsing or
expanding of the style switcher. One way to do this is to move the event handler
from the label to the containing <div> element:

$(document).ready(function() {
 $('#switcher').click(function() {
 $('#switcher .button').toggleClass('hidden');
 });
});

This alteration makes the entire area of the style switcher clickable to toggle its
visibility. The downside is that clicking on the buttons collapses the style switcher
after the style on the content has been altered. This is due to event bubbling; the
event is first handled by the buttons, then passed up to the DOM tree until it reaches
the <div id="switcher">, which hides the buttons.

To solve this problem, we need access to the event object. This is a JavaScript
construct that is passed to each event handler as elements get an opportunity to
handle the event. It provides information about the event, such as where the mouse
cursor was at the time. It also provides some methods that can be used to affect the
progress of the event through the DOM.

Chapter 3

[51]

To use the event object in our handlers, we only need to add a parameter to
the function:

$(document).ready(function() {
 $('#switcher').click(function(event) {
 $('#switcher .button').toggleClass('hidden');
 });
});

Event Targets
Now we have the event object available in the variable event within our handler.
The property event.target can be helpful in controlling where an event takes
effect. This property is a part of the DOM API, but is not implemented in all
browsers; jQuery extends the event object as necessary to provide the property in
every browser. With .target, we can determine which element in the DOM was the
first to receive the event (the actual item clicked on). Remembering that this gives
us the DOM element handling the event, we can write the following code:

$(document).ready(function() {
 $('#switcher').click(function(event) {
 if (event.target == this) {

 $('#switcher .button').toggleClass('hidden');
 }

 });
});

This code ensures that the item clicked on was <div id="switcher">, not one
of its sub‑elements. Now clicking on buttons will not collapse the style switcher,
and clicking on the border will. However, clicking on the label now does nothing,
because it too is a sub‑element. Instead of placing this check here, then, we can
modify the behavior of the buttons to achieve our goals.

Stopping Event Propagation
The event object provides the .stopPropagation() method, which can eliminate
bubbling completely for the event. Like .target, this method is a plain JavaScript
feature, but cannot be safely used across all browsers. As long as we register all of
our event handlers using jQuery, though, we can use it with impunity.

We'll remove the e.target == this check we just added, and instead add some
code in our buttons' click handlers:

$(document).ready(function() {
 $('#switcher .button').click(function(event) {

Events—How to Pull the Trigger

[52]

 $('body').removeClass();
 if (this.id == 'switcher-narrow') {
 $('body').addClass('narrow');
 }
 else if (this.id == 'switcher-large') {
 $('body').addClass('large');
 }
 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 event.stopPropagation();

 });
});

As before, we need to add a parameter to the function we're using as the click handler,
so we have access to the event object. Then we simply call event.stopPropagation()
to prevent any other DOM element from responding to the event. Now our click
is handled by the buttons, and only the buttons; clicks anywhere else on the style
switcher will collapse or expand it.

Default Actions
Were our click event handler registered on an anchor element rather than a generic
<div>, we would face another problem. When a user clicks on a link, the browser
loads a new page. This behavior is not an event handler in the same sense as the ones
we have been discussing; instead, this is the default action for a click on an anchor
element. Similarly, when the Enter key is pressed while the user is editing a form, the
submit event is triggered on the form, but then the form submission actually occurs
after this.

If these default actions are undesired, calling .stopPropagation() on the event
will not help. These actions occur nowhere in the normal flow of event propagation.
Instead, the .preventDefault() method will serve to stop the event in its tracks
before the default action is triggered.

Calling .preventDefault() is often useful after we have done some
tests on the environment of the event. For example, during a form
submission we might wish to check that required fields are filled in, and
prevent the default action only if they are not. We'll see this in action
in Chapter 8.

Event propagation and default actions are independent mechanisms; either can be
stopped while the other still occurs. If we wish to halt both, we can return false
from our event handler, which is a shortcut for calling both .stopPropagation()
and .preventDefault() on the event.

Chapter 3

[53]

Removing an Event Handler
There are times when we will be done with an event handler we previously
registered. Perhaps the state of the page has changed such that the action no
longer makes sense. It is typically possible to handle this situation with conditional
statements inside our event handlers, but it may be more elegant to remove the
handler entirely.

Suppose that we want our collapsible style switcher to remain expanded whenever
the page is not using the normal style. We can accomplish this by calling the
.unbind() method to remove the handler when one of the style switcher buttons is
clicked. First, we should give our handler function a name so that we can use it more
than once without repeating ourselves:

$(document).ready(function() {
 var toggleStyleSwitcher = function() {

 $('#switcher .button').toggleClass('hidden');

 };

 $('#switcher').click(toggleStyleSwitcher);
});

Note that we are using yet another syntax for defining a function. Rather than
defining the function by leading with the function keyword, we assign an
anonymously-created function to a local variable. This is a stylistic choice to make
our event handlers and other function definitions resemble each other more closely;
the two syntaxes are functionally equivalent.

Now that the function has a name, we can remove it as a handler when necessary:

$(document).ready(function() {
 var toggleStyleSwitcher = function() {
 $('#switcher .button').toggleClass('hidden');
 };

 $('#switcher').click(toggleStyleSwitcher);

 $('#switcher-narrow, #switcher-large').click(function() {

 $('#switcher').unbind('click', toggleStyleSwitcher);

 });

});

Events—How to Pull the Trigger

[54]

The .unbind() method here takes an event type as its first argument, and the
function to remove as the second argument. We could have omitted the function
with the same result here, as the default behavior of .unbind() is to remove all
handlers that have been registered for the event. However, being more specific is
safer, because we need not fear interference with other code that may wish to bind
behaviors to the element.

The code now prevents the collapse functionality after either of the buttons is clicked.
However, we have no code in place to restore the behavior when the style is turned
back to normal. To do this we add another behavior to the Normal button:

$(document).ready(function() {
 var toggleStyleSwitcher = function() {
 $('#switcher .button').toggleClass('hidden');
 };

 $('#switcher').click(toggleStyleSwitcher);

 $('#switcher-normal').click(function() {

 $('#switcher').click(toggleStyleSwitcher);

 });

 $('#switcher-narrow, #switcher-large').click(function() {
 $('#switcher').unbind('click', toggleStyleSwitcher);
 });
});

Now the toggle behavior is bound when the document is loaded, unbound when
Narrow Column or Large Print is clicked, and rebound when Normal is clicked
after that.

We have sidestepped a potential pitfall here. Remember that when a handler is
bound to an event in jQuery, previous handlers remain in effect. This could mean
that if Normal was clicked twice in a row, the toggling behavior could be triggered
twice. Indeed, if we had used anonymous functions throughout our example,
this would be the case. But since we gave the function a name and used the same
function throughout the code, the behavior is only bound once. The .bind()
function will not attach an event handler to an element if it has already
been attached.

In jQuery 1.0, unbinding event handlers was possible by using shorthand event
methods, just like their binding counterparts. For example, .unclick() was a
synonym for .unbind('click'). This facility was rarely used, so to prevent
unnecessary library size and API complexity, the 1.1 release removed these
shorthand event methods.

Chapter 3

[55]

Reintroducing a removed shorthand event method is straightforward. We
will discuss how to achieve this in Chapter 10, as an example of how to
extend jQuery's functionality.

A shortcut is also available for the situation in which we want to unbind an event
handler immediately after the first time it is triggered. This shortcut, called .one(),
is used like this:

$(document).ready(function() {
 $('#switcher').one('click', toggleStyleSwitcher);
});

This would cause the toggle action to occur once, and not again.

Simulating User Interaction
At times it is convenient to execute code that we have bound to an event, even if
the normal circumstances of the event are not occurring. For example, suppose we
wanted our style switcher to begin in its collapsed state. We could accomplish this
by hiding buttons from within the stylesheet, or by calling the .hide() method from
a $(document).ready() handler. Another way, though, is to simulate a click on the
style switcher so that the toggling mechanism we've already established is triggered.

The .trigger() method allows us to do just this:

$(document).ready(function() {
 $('#switcher').trigger('click');

});

Now right when the page loads, the switcher is collapsed, just as if it had been
clicked as shown in the following screenshot:

Events—How to Pull the Trigger

[56]

Note that event propagation does not occur when an event is triggered by jQuery in
this way; only the handlers attached directly to the element are executed. We must
perform our trigger on $('#switcher'), not $('#switcher h3'), if we want it to
operate correctly, because that is where the behaviors have been attached.

The .trigger() method provides the same set of shortcuts that .bind() does.
When these shortcuts are used with no arguments, the behavior is to trigger the
action rather than bind it:

$(document).ready(function() {
 $('#switcher').click();
});

Summary
The abilities we've discussed in this chapter allow us to:

React to a user's click on a page element with .bind() or .click() and
change the styles used on the page
Use event context to perform different actions depending on the page
element clicked, even when the handler is bound to several elements
Alternately expand and collapse a page element by using .toggle()
Highlight page elements under the mouse cursor by using .hover()
Influence which elements get to respond to an event with
.stopPropagation() and .preventDefault()
Call .unbind() to remove an event handler we're done with
Cause bound event handlers to execute with .trigger().

Taken together, we can use these capabilities to build quite interactive pages. In
the next chapter, we'll learn how to provide visual feedback to the user during
these interactions.

•

•

•

•

•

•

•

Effects—How to Add Flair to
Your Actions

Move it up and down now
Move it all around now
 —Devo,
 "Gut Feeling"

If actions speak louder than words, then in the JavaScript world, effects make actions
speak louder still. With jQuery, we can easily add impact to our actions through a set
of simple visual effects, and even craft our own, more sophisticated animations.

jQuery effects certainly add flair, as is evident when we see an element gradually
slide into view instead of appearing all at once. However, they can also provide
important usability enhancements that help orient the user when there is some
change on a page (especially common in AJAX applications). In this chapter, we will
explore a number of these effects and combine them in interesting ways.

Inline CSS Modification
Before we jump into the nifty jQuery effects, a quick look at CSS is in order. In
previous chapters we have been modifying a document's appearance by defining
styles for classes in a separate stylesheet and then adding or removing those classes
with jQuery. Typically, this is the preferred process for injecting CSS into HTML
because it respects the stylesheet's role in dealing with the presentation of a page.
However, there may be times when we need to apply styles that haven't been, or
can't easily be, defined in a stylesheet. Fortunately, jQuery has a .css() method for
such occasions.

This method acts as both a getter and a setter. To get the value of a style property, we
simply pass the name of the property as a string, like .css('backgroundColor').

Effects—How to Add Flair to Your Actions

[58]

 Multi-word properties can be interpreted by jQuery when hyphenated, as they
are in CSS notation (background-color), or camel‑cased, as they are in DOM
notation (backgroundColor). For setting style properties, the .css() method comes
in two flavors—one that takes a single style property and its value and one that takes
a map of property‑value pairs:

.css('property','value')

.css({property1: 'value1', 'property-2': 'value2'})

Experienced JavaScript developers will recognize these jQuery maps as JavaScript
object literals.

Numeric values do not take quotation marks while string values do.
But, when using the map notation, quotation marks are not required for
property names if they are written in camel-cased DOM notation.

We use the .css() method the same way we've been using .addClass()—by
chaining it to a selector and binding it to an event. To demonstrate this, we'll return
to the style switcher example, using slightly different HTML this time:

<div id="switcher">
 <div class="label">Style Switcher</div>
 <div class="button" id="switcher-large">Increase Text Size</div>
 <div class="button" id="switcher-small">Decrease Text size</div>
</div>
<div class="speech">
 <p>Fourscore and seven years ago our fathers brought forth on
 this continent a new nation, conceived in liberty, and dedicated
 to the proposition that all men are created equal.</p>
</div>

By linking to a stylesheet with a few basic style rules, the page can initially look like
the following screenshot:

In this version of the style switcher, we have two buttons in div elements. Clicking
on the switcher-large div will increase the text size of the speech div, and clicking
on the switcher-small div will decrease it.

•

•

Chapter 4

[59]

If all we wanted were to increase and decrease the size a single time to a
predetermined value, we could still use the .addClass() method. But let's suppose
that now we want the text to continue increasing or decreasing incrementally
each time the respective button is clicked. Although it might be possible to define
a separate class for each click and iterate through them, a more straightforward
approach would be to compute the new text size each time by getting the current size
and multiplying it by a set number.

Our code will start with the $(document).ready() and $('#switcher-large').
click() event handlers:

$(document).ready(function() {
 $('#switcher-large').click(function() {
 });
});

Next, the font size can be easily discovered: $('div.speech').css('fontSize').
However, because the returned value will include both the number and the unit of
measurement, we'll need to store each part in its own variable, after which we can
multiply the number and reattach the unit. Also, when we plan to use a jQuery object
more than once, it's generally a good idea to store that in a variable as well.

$(document).ready(function() {
 $('#switcher-large').click(function() {
 var $speech = $('div.speech');

 var currentSize = $speech.css('fontSize');

 var num = parseFloat(currentSize, 10);

 var unit = currentSize.slice(-2);

 });
});

The first line inside .click() stores a variable for the speech div itself.

Notice the use of a $ in the variable name, $speech. Since $ is a legal character in
JavaScript variables, we can use it as a reminder that the variable is storing a jQuery
object. The next line stores the font size of the speech div—for example, 12px.

After that, we use parseFloat() and .slice(). The parseFloat() function looks
at a string from left to right until it encounters a non‑numeric character. The string
of digits is converted into a floating‑point (decimal) number. For example, it would
convert the string 12 to the number 12. In addition, it strips non‑numeric trailing
characters from the string, so 12px becomes 12 as well. If the string begins with a
non‑numeric character, parseFloat() returns NaN, which stands for Not a Number.
The second argument for parseFloat() allows us to ensure that the number is
interpreted as base-10 instead of octal or some other representation.

Effects—How to Add Flair to Your Actions

[60]

The .slice() method returns a substring beginning at the specified character in the
string. Because the unit of measurement that we are using (px) is two characters long,
we indicate that the substring should begin two characters before the end.

All that's left is to multiply num by 1.4 and then set the font size by concatenating the
two parsed variables, num and unit:

$(document).ready(function() {
 $('#switcher-large').click(function() {
 var $speech = $('div.speech');
 var currentSize = $speech.css('fontSize');
 var num = parseFloat(currentSize, 10);
 var unit = currentSize.slice(-2);
 num *= 1.4;

 $speech.css('fontSize', num + unit);

 });
});

The equation num *= 1.4 is shorthand for num = num * 1.4. We can use
the same type of shorthand for the other basic mathematical operations,
as well: addition, num += 1.4; subtraction, num -= 1.4; division, num
/= 1.4; and modulus (division remainder), num %= 1.4.

Now when a user clicks on the switcher-large div, the text becomes larger as
shown in the following screenshot:

Another click, and the text becomes larger still.

To get the switcher-small div to decrease the font size, we will divide rather than
multiply—num /= 1.4. Better still, we can combine the two into a single .click()
handler on the button class. Then, after setting the variables, we can either multiply
or divide depending on the ID of the div that was clicked. Here is what that code
would look like:

Chapter 4

[61]

$(document).ready(function() {
 $('div.button').click(function() {
 var $speech = $('div.speech');
 var currentSize = $speech.css('fontSize');
 var num = parseFloat(currentSize, 10);
 var unit = currentSize.slice(-2);
 if (this.id == 'switcher-large') {
 num *= 1.4;
 } else if (this.id == 'switcher-small') {
 num /= 1.4;
 }
 $speech.css('fontSize', num + unit);
 });
});

Recall from Chapter 3 that we can access the id property of the DOM element
referred to by this, which appears here inside the if and else if statements. Here,
it is more efficient to use this than to create a jQuery object just to test the value of
a property.

Basic Hide and Show
Basic .hide() and .show(), without any parameters, can be thought of as smart
shorthand methods for .css('display','string'), where string is the
appropriate display value. The effect, as might be expected, is that the matched set of
elements will be immediately hidden or shown, with no animation.

The .hide() method sets the inline style attribute of the matched set of elements to
display:none. The smart part here is that it remembers the value of the display
property—typically block or inline—before it was changed to none. Conversely,
the .show() method restores the matched set of elements to whatever visible display
property they had before display:none was applied.

This feature of .show() and .hide() is especially helpful when hiding elements
whose default display property is overridden in a stylesheet. For example, the
element has the property display:block by default, but we might want to change it
to display:inline for a horizontal menu. Fortunately, using the .show() method
on a hidden element such as one of these tags would not merely reset it to its
default display:block, because that would put the on its own line. Instead,
the element is restored to its previous display:inline state, thus preserving the
horizontal design.

Effects—How to Add Flair to Your Actions

[62]

A quick demonstration of these two methods can be set up by adding an ellipsis at
the end of the paragraph, followed by another paragraph, to our example HTML:

<div id="switcher">
 <div class="label">Style Switcher</div>
 <div class="button" id="switcher-large">
 Increase Text Size</div>
 <div class="button" id="switcher-small">
 Decrease Text size</div> </div>
<div class="speech">
 <p>Fourscore and seven years ago our fathers brought forth on
 this continent a new nation, conceived in liberty, and dedicated
 to the proposition that all men are created equal.
 . . .</p>
 <p>Now we are engaged in a great civil war, testing whether that
 nation, or any nation so conceived and so dedicated, can long
 endure. We are met on a great battlefield of that war. We have come
 to dedicate a portion of that field as a final resting-place for
 those who here gave their lives that the nation might live. It is
 altogether fitting and proper that we should do this. But, in a
 larger sense, we cannot dedicate, we cannot consecrate, we cannot
 hallow, this ground.</p>

</div>

When the DOM is ready, the second paragraph will be hidden:

$(document).ready(function() {
 $('p:eq(1)').hide();
});

And the speech will look like the following screenshot:

Then, when the user clicks on the ellipsis (. . .) at the end of the first paragraph, the
ellipsis will be hidden and the second paragraph will be shown:

$(document).ready(function() {
 $('p:eq(1)').hide();
 $('span.more').click(function() {

 $('p:eq(1)').show();

 $(this).hide();

 });

});

Chapter 4

[63]

Now the speech will look like this:

The .hide() and .show() methods are quick and useful, but they aren't very flashy.
To add some flair, we can give them a speed.

Effects and Speed
When we include a speed with .show() or .hide(), it becomes animated—occurring
over a specified period of time. The .hide('speed') method, for example, will
decrease an element's height, width, and opacity simultaneously until all three reach
zero, at which point the CSS rule display:none is applied. The .show('speed')
method will increase the element's height from top to bottom, width from left to right,
and opacity from 0 to 1 until its contents are completely visible.

Speeding In
With any jQuery effect, we can use one of three speeds: slow, normal, and fast.
Using .show('slow') would make the show effect complete in .6 seconds,
.show('normal') in .4 seconds, and .show('fast') in .2 seconds. For even greater
precision we can specify a number of milliseconds, for example .show(850). Unlike
the speed names, the numbers are not wrapped in quotation marks.

Let's include a speed in our example when showing the second paragraph of
Lincoln's Gettysburg Address:

$(document).ready(function() {
 $('p:eq(1)').hide();
 $('span.more').click(function() {
 $('p:eq(1)').show('slow');
 $(this).hide();
 });
});

Effects—How to Add Flair to Your Actions

[64]

If we were able to capture the paragraph's appearance at roughly halfway through
the effect, we would see something like the following:

Fading In and Fading Out
If we wanted the whole paragraph to appear just by gradually increasing the opacity,
we could use .fadeIn('slow') instead:

$(document).ready(function() {
 $('p:eq(1)').hide();
 $('span.more').click(function() {
 $('p:eq(1)').fadeIn('slow');
 $(this).hide();
 });
});

This time if we captured the paragraph's appearance halfway, it would now be
seen as:

The difference here is that the .fadeIn() effect starts by setting the dimensions of
the paragraph so that the contents can simply fade into it. Similarly, to gradually
decrease the opacity we could use .fadeOut().

Multiple Effects
Of the simple effects bundled in the jQuery core, only show() and hide() modify
more than one style property at a time—height, width, and opacity. The others
change a single property:

fadeIn() and fadeOut(): opacity
fadeTo(): opacity
slideDown() and slideUp(): height

•

•

•

Chapter 4

[65]

However, jQuery also provides a powerful animate() method that allows us to
create our own custom animations with multiple effects. The animate method takes
four arguments:

1.	 A map of style properties and values—similar to the .css() map discussed
earlier in this chapter

2.	 An optional speed—which can be one of the preset strings or a number
of milliseconds

3.	 An optional easing type—an advanced option discussed in Chapter 10
4.	 An optional callback function—which will be discussed later in this chapter

All together, the three arguments would look like this:

.animate({param1: 'value1', param2: 'value2'}, speed, function() {
 alert('The animation is finished.');
});

Building an Animated show()
Let's take another look at our code that makes the second Gettysburg Address
paragraph gradually appear:

$(document).ready(function() {
 $('p:eq(1)').hide();
 $('span.more').click(function() {
 $('p:eq(1)').show('slow');
 $(this).hide();
 });
});

Remember that .show('slow') simultaneously modifies the width, height, and
opacity. In fact, this method is really just a shortcut for the .animate() method, with
a specific set of built-in style properties. If we wanted to build it on our own with
.animate(), the code would look like this:

$(document).ready(function() {
 $('p:eq(1)').hide();
 $('span.more').click(function() {
 $('p:eq(1)'). animate({height: 'show', width: 'show',
 opacity: 'show'}, 'slow');
 $(this).hide();
 });
});

Effects—How to Add Flair to Your Actions

[66]

Apparently, .animate() has a few shortcuts of its own! We just used the show
shortcut to restore width and height to their values before they were hidden. We can
also use hide, toggle or any appropriate numeric value.

Creating a Custom Animation
With the .animate() method, we have at our disposal not only the style properties
used for the other effect methods, but also other properties such as left and top.
The extra properties allow us to create much more sophisticated effects. We could,
for example, move an item from the left side of the page to the right while increasing
its height to 50 pixels.

So, let's do that with our style switcher buttons. Here is how they look before we
animate them:

We'll make the buttons move to the right and increase their height. Let's trigger this
animation by clicking on the Style Switcher text just above the links. Here is what
the code should look like:

$(document).ready(function() {
 $('div.label').click(function() {
 $('div.button').animate({left: 650, height: 38}, 'slow');
 });
});

This code will increase the heights of the buttons, but at the moment their position
cannot be changed. We still need to enable changing their position in the CSS.

Chapter 4

[67]

Positioning with CSS
When working with .animate(), it's important to keep in mind the limitations that
CSS imposes on the elements that we wish to change. For example, adjusting the
left property will have no effect on the matching elements unless those elements
have their CSS position set to relative or absolute. The default CSS position for all
block‑level elements is static, which accurately describes how those elements will
remain if we try to move them without first changing their position value.

For more information on absolute and relative positioning, see Joe
Gillespie's article, Absolutely Relative at:
http://www.wpdfd.com/editorial/wpd0904news.htm#feature

A peek at our stylesheet shows that we have set both the <div id="switcher">
container and the individual buttons to be relatively positioned:

 #switcher {
 position: relative;

}
.button {
 position: relative;

 width: 140px;
 padding: 5px;
 border: 1px solid #e3e3e3;
 margin: .5em 0;
}

With the CSS taken into account, the result of clicking on the Style Switcher, when
the animation has completed, will look like this:

Effects—How to Add Flair to Your Actions

[68]

Making Sense of the Numbers
As we examine the code more closely, note the two values—650 for left and
38 for height:

$('div.button').animate({left: 650, height: 38}, 'slow');

Why these two numbers? Why not 750 or 800 for the left position? And more
important, why not 50 for the height?

As far as the left position is concerned, well, let's just admit it: We're cheating! We're
only guessing how wide the page is. For all we know, somebody could be looking at
our page with a super-widescreen, high-resolution monitor, which might leave our
buttons sitting somewhere near the middle of the page.

The 38-pixel height, on the other hand, is intentional. The buttons, in addition to
being set as position: relative, have padding: 5px and border: 1px solid
#e3e3e3 applied to them. The height property, however, does not take the padding
or the borders into account. So, in order to arrive at 50 pixels, we need to subtract
the height of the top padding and the bottom padding and the width of the top and
bottom border from it. We're using the shorthand padding and border properties;
but they amount to the same as if we set each side's padding to 5 pixels and each
side's border-width to 1 pixel, like:

.button {
 position: relative;
 width: 140px;
 /* each side's padding . . . */
 padding-top: 5px;
 padding-right: 5px;
 padding-bottom: 5px;
 padding-left: 5px;

 /* each side's border-width . . . */
 border-top-width: 1px;
 border-right-width: 1px;
 border-bottom-width: 1px;
 border-left-width: 1px;
 border-style: solid;
 border-color: #e3e3e3;
 margin: .5em 0;
}

So, we need to calculate the following:
height – (padding‑top + padding‑bottom) - (border‑top‑width
 + border‑bottom‑width)

Chapter 4

[69]

Substituting our values, we get this:
50 – (5 + 5) – (1 + 1)

And the result, of course, is 38!

These calculations are based on the W3C's box model for CSS. The full specification for
this model can be found at http://www.w3.org/TR/REC-CSS2/box.html.

Improving the Custom Animation
Now let's return to the problem we encountered with our custom animation's resulting
left position. It certainly would be nice to be able to move those buttons so that their
right sides line up with the right sides of the paragraphs below (approximately,
because the paragraphs aren't right-justified). Here's how we can do it:

1.	 Get the width of the paragraphs.
2.	 Get the width of the buttons, including their left and right padding

and borders.
3.	 Subtract the width of the buttons from the width of the paragraphs.
4.	 Use the result of our calculation, in the form of a variable, as our .animate

method's left value.

In order to calculate the buttons' total width and to keep our code somewhat
readable, we need to set a lot of variables. Here is what the new and improved code
looks like:

$(document).ready(function() {
 $('div.label').click(function() {
 //get all of the widths...
 var paraWidth = $('div.speech p').width();
 var $button = $('div.button');
 var buttonWidth = $button.width();
 var paddingRight = $button.css('paddingRight');
 var paddingLeft = $button.css('paddingLeft');
 var borderRightWidth = $button.css('borderRightWidth');
 var borderLeftWidth = $button.css('borderLeftWidth');

 // calculate the total width...
 var totalButtonWidth = parseInt(
 buttonWidth, 10) + parseInt(paddingRight, 10) + parseInt(
 paddingLeft, 10) + parseInt(borderRightWidth, 10) +
 parseInt(borderLeftWidth,10);
 var rightSide = paraWidth - totalButtonWidth;
 $button.animate({left: rightSide, height: 38}, 'slow');
 });
});

Effects—How to Add Flair to Your Actions

[70]

Now we can see the buttons lining up nicely with the right side of the paragraphs:

In addition to adding a number of variables, the preceding code makes heavy use of
the JavaScript parseInt() function, which is similar to parseFloat(), except that
it returns an integer rather than a floating-point number. Each value returned by
our instances of .css() has px appended to the number. For example, the value of
paddingRight is 5px. If we want to do any adding and subtracting (and we do), we
need to remove px from those variables, so we're left with actual numbers. Note that
only pixel values are safe to use in these calculations, because Internet Explorer may
misinterpret values expressed in other units.

jQuery does, however, give us the width() shorthand method, which returns the
same number as .css('width'), but without the unit of measurement.

Simultaneous versus Queued Effects
The .animate method, as we've just discovered, is very useful for creating
simultaneous effects in a particular set of elements. There may be times, however,
when we want to queue our effects, having them occur one after the other.

Working with a Single Set of Elements
When applying multiple effects to the same set of elements, queuing is easily
achieved by chaining those effects. To demonstrate this queuing, let's take another
look at our simpler example of moving the switcher buttons to the right and
enlarging them:

$(document).ready(function() {
 $('div.label').click(function() {
 $('div.button').animate({left: 650, height: 38}, 'slow');
 });
});

Chapter 4

[71]

As we've already noted, the two animations—left:650 and height:38—occur
virtually simultaneously. To queue these effects, we simply chain them instead:

$(document).ready(function() {
 $('div.label').click(function() {
 $('div.button')
 .animate({left: 650}, 'slow')
 .animate({height: 38}, 'slow');
 });
});

Now, our buttons first move 650 pixels to the right, and then they grow to a height
of 50 pixels (38 + top and bottom padding and borders). If we wanted to increase
the height first, all we'd need to do is reverse the order of the two animations in
our code.

Recall that chaining permits us to keep the two .animate() methods on the same line,
but here we have indented them and put each on its own line for greater readability.

We can queue any of the jQuery effects, not just .animate(), by chaining them. We
can, for example, queue effects on the buttons in the following order:

1.	 Fade their opacity to .5, making them semi-transparent.
2.	 Move them 650 pixels to the right.
3.	 Fade them back in to full opacity.
4.	 Hide them by sliding them up.

All we need to do is chain the effects in the same order in our code:

$(document).ready(function() {
 $('div.label').click(function() {
 $('div.button')
 .fadeTo('slow',0.5)
 .animate({left: 650}, 'slow')
 .fadeTo('slow',1.0)
 .slideUp('slow');
 });
});

One final observation about queuing effects on a single set of elements is that
queuing does not apply to other, non-effect methods such as .css(). So let's
suppose we wanted to change the buttons' background color to red at the end of our
animation instead of sliding them up and out of sight. We could try doing it like this:

Effects—How to Add Flair to Your Actions

[72]

$(document).ready(function() {
 $('div.label').click(function() {
 $('div.button')
 .fadeTo('slow',0.5)
 .animate({left: 650}, 'slow')
 .fadeTo('slow',1.0)
 .css('backgroundColor','#f00');
 });
});

However, even though the background-changing code is placed at the end of the
chain, it occurs immediately upon the click. What if we take .css() out of the chain
and repeat the selector expression instead?

$(document).ready(function() {
 $('div.label').click(function() {
 $('div.button')
 .fadeTo('slow',0.5)
 .animate({left: 650}, 'slow')
 .fadeTo('slow',1.0);
 $('div.button').css('backgroundColor','#f00');
 });
});

We get the same result—the buttons' background color changes immediately when
the switcher label is clicked.

So, how then can we queue these non-effect methods? We'll discover the answer as
we examine effects with multiple sets of elements.

Working with Multiple Sets of Elements
Unlike with a single set of elements, when we apply effects to different sets, they
occur at virtually the same time. To see these simultaneous effects in action, we'll
slide one paragraph down while sliding another paragraph up. First, we'll add the
remaining portion of the Gettysburg Address to the HTML, dividing it into two
separate paragraphs:

<div id="switcher">
 <div class="label">Style Switcher</div>
 <div class="button" id="switcher-large">Increase Text Size</div>
 <div class="button" id="switcher-small">Decrease Text size</div>
</div>
<div class="speech">

Chapter 4

[73]

 <p>Fourscore and seven years ago our fathers brought forth on this
 continent a new nation, conceived in liberty, and dedicated to the
 proposition that all men are created equal.. .
 .</p>
 <p>Now we are engaged in a great civil war, testing whether that
 nation, or any nation so conceived and so dedicated, can long
 endure. We are met on a great battlefield of that war. We have come
 to dedicate a portion of that field as a final resting-place for
 those who here gave their lives that the nation might live. It is
 altogether fitting and proper that we should do this. But, in a
 larger sense, we cannot dedicate, we cannot consecrate, we cannot
 hallow, this ground.</p>
 <p>The brave men, living and dead, who struggled here have
 consecrated it, far above our poor power to add or detract. The
 world will little note, nor long remember, what we say here, but it
 can never forget what they did here. It is for us the living,
 rather, to be dedicated here to the unfinished work which they who
 fought here have thus far so nobly advanced.</p>

 <p>It is rather for us to be here dedicated to the great task
 remaining before us—that from these honored dead we take
 increased devotion to that cause for which they gave the last full
 measure of devotion—that we here highly resolve that these
 dead shall not have died in vain—that this nation, under God,
 shall have a new birth of freedom and that government of the
 people, by the people, for the people, shall not perish from the
 earth.</p>

</div>

Next, to help us see what's happening during the effect, we'll give the third
paragraph a light-blue background and the fourth paragraph a lavender
background. We'll also hide the fourth paragraph when the DOM is ready:

$(document).ready(function() {
 $('p:eq(3)').css('backgroundColor', '#fcf').hide();
 $('p:eq(2)').css('backgroundColor', '#cff');
});

Finally, we'll add the .click() method to the third paragraph, so that when it
is clicked the third paragraph will slide up (and out of view) while the fourth
paragraph slides down (and into view):

$(document).ready(function() {
 $('p:eq(3)').css('backgroundColor', '#fcf').hide();
 $('p:eq(2)').css('backgroundColor', '#cff').click(function() {
 $(this).slideUp('slow').next().slideDown('slow');

 });
});

Effects—How to Add Flair to Your Actions

[74]

A screenshot of these two effects in mid-slide confirms that they do, indeed, occur
virtually simultaneously:

The light-blue paragraph, which started visible, is halfway through sliding up at
the same time as the lavender paragraph, which started hidden, is halfway through
sliding down.

Callbacks
In order to allow queuing effects on different elements, jQuery provides callback
functions. As we have seen with event handlers, callbacks are simply functions
passed as method arguments. In the case of effects, they appear as the last argument
of the method.

If we use a callback to queue the two slide effects, we can have the fourth paragraph
slide down before the third paragraph slides up. Let's first look at how to set up the
.slideDown() method with the callback:

$(document).ready(function() {
 $('p:eq(3)')
 .css('backgroundColor', '#fcf')
 .hide();
 $('p:eq(2)')
 .css('backgroundColor', '#cff')
 .click(function() {
 $(this).next().slideDown('slow',function() {

 // slideUp() here will start after the slideDown has ended

 });

 });
});

Chapter 4

[75]

We do need to be careful here, however, about what is actually going to slide up.
Because the callback is inside the .slideDown() method, the context has changed
for $(this). Now, $(this) is no longer the third paragraph, as it was at the point
of the .click() method; rather, since the .slideDown() method is attached to
$(this).next(), everything within that method now sees $(this) as the next
sibling, or the fourth paragraph. Therefore, if we put $(this).slideUp('slow')
inside the callback, we would end up hiding the same paragraph that we had just
made visible.

A simple way to keep the reference of $(this) stable is to store it in a variable right
away within the .click() method, like var $thisPara = $(this).

Now $thisPara will refer to the third paragraph, both outside and inside the
callback. Here is what the code looks like using our new variable:

$(document).ready(function() {
 $('p:eq(3)')
 .css('backgroundColor', '#fcf')
 .hide();
 $('p:eq(2)')
 .css('backgroundColor', '#cff')
 .click(function() {
 var $thisPara = $(this);
 $thisPara.next().slideDown('slow',function() {
 $thisPara.slideUp('slow');
 });
 });
});

Using $thisPara inside the .slideDown() callback creates a closure. We'll be
discussing this topic in Appendix C.

This time a snapshot halfway through the effects will reveal that both the third and
the fourth paragraphs are visible; the fourth has finished sliding down and the third
is about to begin sliding up:

Effects—How to Add Flair to Your Actions

[76]

Now that we've discussed callbacks, we can return to the code from earlier in
this chapter in which we wanted to queue a background-color change at the end
of a series of effects. Rather than chaining the .css() method, as we previously
attempted unsuccessfully, we can put it inside the last effect's callback:

$(document).ready(function() {
 $('div.label').click(function() {
 $('div.button')
 .fadeTo('slow',0.5)
 .animate({left: 650}, 'slow')
 .fadeTo('slow',1.0, function() {
 $(this).css('backgroundColor','#f00');

 });
 });
});

Now we've managed to get the buttons to turn red after they have faded out to
50 percent opacity, moved slowly to the right 650 pixels and faded back in to 100
percent opacity.

In a Nutshell
With all the variations to consider when applying effects, it can become difficult
to remember whether the effects will occur simultaneously or sequentially. A brief
outline might help:

1.	 Effects on a single set of elements are:
simultaneous when applied as multiple properties in a single
.animate() method
queued when applied in a chain of methods

2.	 Effects on multiple sets of elements are:
simultaneous by default
queued when applied within the callback of an event handler

°

°

°

°

Chapter 4

[77]

Summary
By using effect methods that we have explored in this chapter, we should now be
able to incrementally increase and decrease text size by using the .css() method.
We should also be able to apply various effects to gradually hide and show page
elements in different ways and also to animate elements, simultaneously or
sequentially, in a number of ways.

In the first four chapters of the book, all of our examples have involved manipulating
elements that have been hard-coded into the page's HTML. In Chapter 5 we will
explore ways in which we can use jQuery to create new elements and insert them
into the DOM wherever we choose.

DOM Manipulation—
How to Change Your Page

on Command
Something's changed
Everything's rearranged
 —Devo,
 "Let's Talk"

Like a magician who appears to produce a bouquet of flowers out of thin air,
jQuery can create elements, attributes, and text in a web page—as if by magic.
But wait, there's more! With jQuery, we can also make any of these things
vanish. And, we can take that bouquet of flowers and transform it into a
<div class="magic" id="flowers‑to‑dove">dove</div>.

Manipulating Attributes
Throughout the first four chapters of this book, we have been using the .addClass()
and .removeClass() methods to demonstrate how we can change the appearance of
elements on a page. Effectively, what these two methods are doing is manipulating
the class attribute (or, in DOM scripting parlance, the className property). The
.addClass() method creates or adds to the attribute, while .removeClass() deletes
or shortens it. Add to these the .toggleClass() method, which alternates
between adding and removing a class, and we have an efficient and robust way
of handling classes.

DOM Manipulation—How to Change Your Page on Command

[80]

Nevertheless, the class attribute is only one of several attributes that we may need
to access or change: for example, id and rel and href. For these attributes, jQuery
has the .attr() and .removeAttr() methods. We could even use .attr() and
.removeAttr() instead of their respective .class() methods, if we wanted to do it
the hard way (but we don't).

Non-class Attributes
Some attributes are not so easily manipulated without the help of jQuery; jQuery
lets us modify more than one attribute at a time, similar to the way we worked with
multiple CSS properties using the .css() method in Chapter 4.

For example, we can easily set the id, rel, and title attributes for links, all at once.
Let's start with some sample HTML:

<h1 id="f-title">Flatland: A Romance of Many Dimensions</h1>
<div id="f-author">by Edwin A. Abbott</div>
<h2>Part 1, Section 3</h2>
<h3 id="f-subtitle">Concerning the Inhabitants of Flatland</h3>
<div id="excerpt">an excerpt</div>

<div class="chapter">
 <p class="square">Our Professional Men and Gentlemen are Squares
 (to which class I myself belong) and Five-Sided Figures or Pentagons.
 </p>

 <p class="nobility hexagon">Next above these come the Nobility, of
 whom there are several degrees, beginning at Six-Sided Figures,
 or Hexagons,
 and from thence rising in the number of their sides till they
 receive the honourable title of <a href="http://en.wikipedia.org/
 wiki/Polygon">Polygonal, or many-Sided. Finally when the
 number of the sides becomes so numerous, and the sides themselves
 so small, that the figure cannot be distinguished from a circle, he is
 included in the Circular or Priestly order; and this is the
 highest class of all.
 </p>

 <p>It is a Law of
 Nature with us that a male child shall have one
 more side than his father, so that each
 generation shall rise (as a rule) one step in the scale of
 development and nobility. Thus the son of a Square is a Pentagon;
 the son of a Pentagon, a Hexagon; and so on.
 </p>
<!-- . . . code continues . . . -->

</div>

Chapter 5

[81]

Now we can iterate through each of the links inside <div class="chapter"> and
apply attributes to them one by one. If we only needed to set a common attribute
value for all of the links, we could do so with a single line of code within our
$(document).ready handler:

$(document).ready(function() {
 $('div.chapter a').attr({'rel': 'external'});
});

However, for any given document, each id must be unique if we want our JavaScript
code to behave predictably. To set a unique id for each link, we abandon the
single-line solution in favor of jQuery's .each() method.

$(document).ready(function() {
 $(' div.chapter a').each(function(index) {
 $(this).attr({
 'rel': 'external',
 'id': 'wikilink-' + index
 });
 });
});

The .each() method, which acts as an iterator, is actually a more convenient form
of the for loop. It can be employed when the code we want to use on each item in
the selector's set of matched elements is too complex for the implicit iteration syntax.
In our situation, the .each() method's anonymous function is passed an index that
we can append to each id. This index argument acts as a counter, starting at 0 for
the first link and incrementing by 1 with each successive link. Thus, setting the id to
'wikilink-' + index gives the first link an id of wikilink-0, the second an id of
wikilink-1, and so on.

We'll use the title attribute to invite people to learn more about the linked term
at Wikipedia. In our example HTML, all of the links point to Wikipedia, but it's
probably a good idea to make the selector expression a little more specific, selecting
only links that contain wikipedia in the href, just in case we decide to add a
non‑Wikipedia link to the HTML at a later time:

$(document).ready(function() {
 $('div.chapter a[@href*=wikipedia]').each(function(index) {
 var $thisLink = $(this);
 $thisLink.attr({
 'rel': 'external',
 'id': 'wikilink-' + index,
 'title': 'learn more about ' + $thisLink.text() + ' at Wikipedia'
 });
 });
});

DOM Manipulation—How to Change Your Page on Command

[82]

One thing worth noting here is that we're now storing $(this) in a variable called
$thisLink, simply because we end up using it more than once.

With all three attributes set, the first link, for example, now looks like this:

<a href="http://en.wikipedia.org/wiki/Pentagon" rel="external"
 id="wikilink-0" title="learn more about Pentagons at Wikipedia">
 Pentagons

The $() Factory Function Revisited
From the start of this book, we've been using the $() function to access elements in a
document. In a sense, this function lies at the very heart of the jQuery library, as it is
used every time we attach an effect, event, or property to a matched set of elements.

What's more, the $() function has yet another trick within its parentheses—a
feature so powerful that it can change not only the visual appearance but also the
actual contents of a page. Simply by inserting a set of HTML elements inside the
parentheses, we can change the whole structure of the DOM.

We should keep in mind, once again, the inherent danger in making certain
functionality, visual appeal, or textual information available only to those with
web browsers capable of (and enabled for) using JavaScript. Important information
should be accessible to all, not just people who happen to be using the right software.

A feature commonly seen on FAQ pages is the Back to top link that appears after
each question-and-answer pair. It could be argued that these links serve no semantic
purpose and therefore can be included via JavaScript legitimately as an enhancement
for a subset of the visitors to a page. For our example, we'll add a Back to top link
after each paragraph, as well as the anchor to which the Back to top links will take
us. To begin, we simply create the new elements:

$(document).ready(function() {
 $('back to top');
 $('');
});

Chapter 5

[83]

Here is what the page looks like at this point:

But where are the Back to top links and the anchor? Shouldn't they appear on the
page? In short, no. While the two lines do create the elements, they don't yet
add the elements to the page. To do that, we can use one of the many jQuery
insertion methods.

Inserting New Elements
jQuery has two methods for inserting elements before other elements:
.insertBefore() and .before(). These two methods have the same function; their
difference lies only in how they are chained to other methods. Another two methods,
.insertAfter() and .after(), bear the same relationship with each other, but as
their names suggest, they insert elements after other elements. For the Back to top
links we'll use the .insertAfter() method:

$(document).ready(function() {
 $('back to top').insertAfter('div.chapter p');
 $('');
});

The .after() method would accomplish the same thing as .insertAfter(), but
with the selector expression preceding the method rather than following it. Using
.after(), the first line inside $(document).ready() would look like this:

$('div.chapter p').after('back to top');

DOM Manipulation—How to Change Your Page on Command

[84]

With .insertAfter(), we can continue acting on the created <a> element by
chaining additional methods. With .after(), additional methods would act on the
elements matched by the $('div.chapter p') selector instead.

So, now that we've actually inserted the links into the page (and into the DOM) after
each paragraph that appears within <div class="chapter">, the Back to top links
will appear:

Unfortunately, the links won't work yet. We still need to insert the anchor with
id="top". For this, we can use one of the methods that insert elements inside of
other elements.

$(document).ready(function() {
 $('back to top').insertAfter('div.chapter p');
 $('').prependTo('body');
});

This additional code inserts the anchor right at the beginning of the <body>; in other
words, at the top of the page. Now, with the .insertAfter method for the links and
the .prependTo() method for the anchor, we have a fully functioning set of Back to
top links for the page.

Chapter 5

[85]

With Back to top links, it doesn't make much sense to have them appear when
the top of the page is still visible. A quick improvement to the script would start
the links only after, say, the fourth paragraph, which is easy to accomplish with a
little change to the selector expression: .insertAfter('div.chapter p:gt(2)').
Why the 2 here? Remember that JavaScript indexing starts at 0; therefore, the first
paragraph is indexed at 0, the second is 1, the third is 2, and the fourth paragraph is
3. Our selector expression begins inserting the links after each paragraph when the
index reaches 3, because that is the first one greater than 2.

The effect of this selector-expression change is evident with the addition of a few
more paragraphs to the HTML:

Moving Elements
With the Back to top links, we created new elements and inserted them on the
page. It's also possible to take elements from one place on the page and insert them
into another place. A practical application of this type of insertion is the dynamic
placement and formatting of footnotes. One footnote already appears in the original
Flatland text that we are using for this example, but we'll designate a couple of other
portions of the text as footnotes, too, for the purpose of this demonstration:

DOM Manipulation—How to Change Your Page on Command

[86]

<p>Rarely—in proportion to the vast numbers of Isosceles
 births—is a genuine and certifiable Equal-Sided Triangle
 produced from Isosceles parents. "What need
 of a certificate?" a Spaceland critic may ask: "Is not the
 procreation of a Square Son a certificate from Nature herself,
 proving the Equal‑sidedness of the Father?" I reply that no Lady
 of any position will marry an uncertified Triangle. Square
 offspring has sometimes resulted from a slightly Irregular
 Triangle; but in almost every such case the Irregularity of the
 first generation is visited on the third; which either fails to
 attain the Pentagonal rank, or relapses to the Triangular.
 Such a birth requires, as its antecedents, not only a series of
 carefully arranged intermarriages, but also a long-continued
 exercise of frugality and self-control on the part of the would-be
 ancestors of the coming Equilateral, and a patient, systematic,
 and continuous development of the Isosceles intellect through many
 generations.
</p>
<p>The birth of a True Equilateral Triangle from Isosceles parents
 is the subject of rejoicing in our country for many furlongs
 round. After a strict examination conducted by the Sanitary and
 Social Board, the infant, if certified as Regular, is with solemn
 ceremonial admitted into the class of Equilaterals. He is then
 immediately taken from his proud yet sorrowing parents and adopted
 by some childless Equilateral. The
 Equilateral is bound by oath never to permit the child henceforth
 to enter his former home or so much as to look upon his relations
 again, for fear lest the freshly developed organism may, by force
 of unconscious imitation, fall back again into his hereditary
 level.
</p>
<p>How admirable is the Law of Compensation!
 And how perfect a proof of the natural fitness and, I may almost
 say, the divine origin of the aristocratic constitution of the
 States of Flatland! By a judicious use of this Law of
 Nature, the Polygons and Circles are almost always able to stifle
 sedition in its very cradle, taking advantage of the irrepressible
 and boundless hopefulness of the human mind.…</p>

Each of these three paragraphs has a single footnote wrapped inside
. By marking up the HTML in this way, we can
preserve the context of the footnote. With a CSS rule applied in the stylesheet, the
three paragraphs look like this:

Chapter 5

[87]

Now we can grab the footnotes and insert them in between <div class="chapter">
and <div id="footer">. Here we need to keep in mind that even in cases of implicit
iteration the order of insertion is predefined, starting at the top of the DOM tree
and working its way down. Since it's important to maintain the correct order of the
footnotes in their new place on the page, we should use .insertBefore('#footer').
This will place each footnote directly before the <div id="footer">, so that
footnote 1 is placed between <div class="chapter"> and <div id="footer">,
footnote 2 is placed between footnote 1 and <div id="footer">, and so on. Using
.insertAfter('div.chapter'), on the other hand, would have the footnotes
appear in reverse order. So far, our code looks like this:

$(document).ready(function() {
 $('span.footnote').insertBefore('#footer');
});

DOM Manipulation—How to Change Your Page on Command

[88]

Unfortunately, though, we've run into a big problem. The footnotes are in
tags, which means they display inline by default, one right after the other with
no separation:

One solution to this problem is to modify the CSS, making the elements
display as blocks, but only if they are not inside <div class="chapter">:

span.footnote {
 font-style: italic;
 font-family: "Times New Roman", Times, serif;
 display: block;
}
.chapter span.footnote {
 display: inline;
}

The footnotes are now beginning to take shape:

At least they are distinct footnotes now; yet there is still a lot of work that can be
done to them. A more robust footnote solution should:

1.	 Mark the location in the text from which each footnote is pulled.
2.	 Number each location, and provide a matching number for the

footnote itself.
3.	 Create a link from the text location to its matching footnote, and from the

footnote back to the text location.

Chapter 5

[89]

These steps can be accomplished from within an .each() method; but first we'll set
up a container element for the notes at the bottom of the page:

$(document).ready(function() {
 $('<ol id="notes">').insertAfter('div.chapter');
});

It seems reasonable enough to use an ordered list <ol id="notes"> for the
footnotes; after all, we want them to be numbered. Why not use an element that
numbers them for us automatically? We've given the list an ID of notes and have
inserted it after <div class="chapter">.

Marking, Numbering, and Linking the Context
Now we're ready to mark and number the place from which we're pulling
the footnote:

$(document).ready(function() {
 $('<ol id="notes">').insertAfter('div.chapter');
 $('span.footnote').each(function(index) {

 $(this)

 .before('<a href="#foot-note-' + (index+1) +
 '"id="context-' + (index+1) + '" class="context"><sup>'
 + (index+1) + '</sup>');

 });

});

Here we start with the same selector as we used with the simpler footnote example,
but we chain the .each() method to it.

Inside the .each() we begin with $(this), which represents each footnote in
succession, and we chain the .before() method to it.

Everything that appears inside the .before() method's parentheses will be inserted
before the footnote . It's a pretty long concatenated string, but all it really does
is build a superscripted link. Perhaps a closer look is in order.

The first two parts form the beginning of the opening a tag, along with an href
attribute. The href is particularly important because it must exactly match the
footnote's id attribute (not including the # of course):

.before('<a href="#foot-note-' + (index+1) + '" id="context-' +
 (index+1) + '" class="context">^{' + (index+1) + '}');

DOM Manipulation—How to Change Your Page on Command

[90]

Because counting begins at 0, we need to add 1 to index to start the hrefs at
#foot‑note‑1. Next come the id and class attributes:

.before('<a href="#foot-note-' + (index+1) + '" id="context-' +
 (index+1) + '" class="context"><sup>'
 + (index+1) + '</sup>');

This part starts by closing the href with a quotation mark. The id comes next, with
index + 1 added to context- so that the numbering matches that of the href. We
give it a class of context in case we'd like to style it later.

Finally, we insert the link text—which, again, is a number starting at 1—inside a
<sup> element and close the link:

.before('<a href="#foot-note-' + (index+1) + '" id="context-' +
 (index+1) + '" class="context"><sup>'
 + (index+1) + '</sup>');

Our three linked footnote markers now look like this:

Appending Footnotes
The next step is to move the elements, as we did with
the simpler example. This time, however, we drop them into the newly created
<ol id="notes">. We'll use .appendTo() here, again to maintain proper ordering,
as each successive footnote will be inserted at the end of the element:

Chapter 5

[91]

$(document).ready(function() {
 $('<ol id="notes">').insertAfter('div.chapter');
 $('span.footnote').each(function(index) {
 $(this)
 .before('<a href="#foot-note-' + (index+1) +
 '" id="context-' + (index+1) + '" class="context"><sup>'
 + (index+1) + '</sup>')
 .appendTo('#notes')
 });
});

It's important to remember that .appendTo() is still being chained to $(this), so
that jQuery is saying, Append the footnote span to the element with an ID of notes.

To each of the footnotes we just moved, we'll append another link—this one back to
the number in the text:

$(document).ready(function() {
 $('<ol id="notes">').insertAfter('div.chapter');
 $('span.footnote').each(function(index) {
 $(this)
 .before('<a href="#foot-note-' + (index+1) + '"
 id="context-' + (index+1) + '" class="context"><sup>' +
 (index+1) + '</sup>')
 .appendTo('#notes')
 .append(' (<a href="#context-' + (index+1) +
 '">context)')

 });
});

Notice that the href points back to the id of the corresponding marker. Here you can
see the footnotes again with a link appended to each:

The footnotes still lack their numbers, however. Even though they have been placed
within an , each one must also be individually wrapped in an .

DOM Manipulation—How to Change Your Page on Command

[92]

Wrapping Elements
jQuery's method for wrapping elements around other elements is the appropriately
named .wrap(). Because we want each $(this) to be wrapped in , we
can complete our footnote code like so:

$(document).ready(function() {
 $('<ol id="notes">').insertAfter('div.chapter');
 $('span.footnote').each(function(index) {
 $(this)
 .before('<a href="#foot-note-' + (index+1) +
 '"id="context-' + (index+1) + '" class="context"><sup>' +
 (index+1) + '</sup>')
 .appendTo('#notes')
 .append(' (
 context)')
 .wrap('<li id="foot-note-' + (index+1) + '">');
 });
});

Now each of the elements comes complete with an id that matches the marker's
href. At last, we have a set of numbered, linked footnotes:

Of course, the numbers could have been inserted before each footnote the same way
they were in the paragraphs, but there is something deeply satisfying about having
semantic markup dynamically generated by JavaScript.

Copying Elements
So far in this chapter we have inserted newly created elements, moved elements from
one location in the document to another, and wrapped new elements around existing
ones. Sometimes, though, we may want to copy elements. For example, a navigation
menu that appears in the page's header could be copied and placed in the footer as
well. In fact, whenever elements can be copied to enhance a page visually, it's a good
opportunity to do it with code. After all, why write something twice and double our
chance of error when we can write it once and let jQuery do the heavy lifting?

Chapter 5

[93]

For copying elements, jQuery's .clone() method is just what we need; it takes
any set of matched elements and creates a copy of them for later use. As with the
element‑creation process we explored earlier in this chapter, the copied elements
will not appear in the document until we apply one of the insertion methods.
For example, the following line creates a copy of the first paragraph inside
<div class="chapter">:

$('div.chapter p:eq(0)').clone();

So far, the content on the page hasn't changed:

To continue the example, we can make the cloned paragraph appear before <div
class="chapter">:

$('div.chapter p:eq(0)').clone().insertBefore('div.chapter');

Now the first paragraph appears twice, and because the first instance of it is no
longer inside <div class="chapter">, it does not retain the styles associated with
the div (most noticeably, the width):

DOM Manipulation—How to Change Your Page on Command

[94]

So, using an analogy that most people should be familiar with, .clone() is to the
insertion methods as copy is to paste.

Clone Depth
The .clone method by default copies not only the matched element, but also
all of its descendant elements. However, it has a parameter that, when set to
false, clones only the matched element itself. As we have already seen,
$('div.chapter p:eq(0)').clone() copies the following HTML:

<p class="square">Our Professional Men and Gentlemen are Squares (to
 which class I myself belong) and Five-Sided Figures or Pentagons.
</p>

Let's place false inside the parentheses, like so:

$('div.chapter p:eq(0)').clone(false);

This time we've copied only the paragraph element:

<p class="square"></p>

The text inside is not copied along with the element because text is itself a
DOM node.

The .clone() method does not clone events along with the elements.
We should remember to reapply the handlers by calling the function that
attached them in the first place. An alternative is to clone events directly
using Brandon Aaron's plug-in method, .cloneWithEvents(). More
information on plug-ins can be found in Chapter 10.

Cloning for Pull Quotes
Many websites, like their print counterparts, use pull quotes to emphasize
small portions of text and attract the reader's eye. We can easily accomplish this
embellishment with the .clone() method. First, let's take another look at the third
paragraph of our example text:

<p>
 It is a Law of Nature
 with us that a male child shall have one more side
 than his father, so that each generation shall
 rise (as a rule) one step in the scale of development and nobility.
 Thus the son of a Square is a Pentagon; the son of a Pentagon, a
 Hexagon; and so on.
</p>

Chapter 5

[95]

Notice that the paragraph begins with . This is the class
we will be targeting for cloning. Once the copied text inside that is pasted
into another place, we need to modify its style properties to set it apart from the rest
of the text.

A CSS Diversion
To accomplish this styling, we'll add a pulled class to the copied and give
the class the following style rule in the stylesheet:

.pulled {
 background: #e5e5e5;
 position: absolute;
 width: 145px;
 top: -20px;
 right: -180px;
 padding: 12px 5px 12px 10px;
 font: italic 1.4em "Times New Roman", Times, serif;
}

The pull-quote now gets a light-gray background, some padding, and a different
font. Most important, it's absolutely positioned, 20 pixels above and 20 pixels to
the right of the nearest (absolute or relative) positioned ancestor in the DOM. If
no ancestor has positioning applied (other than static), the pull quote will be
positioned relative to the document <body>. Because of this, we'll need to make
sure in the jQuery code that the cloned pull-quote's parent element has
position:relative.

While the top positioning is fairly intuitive, it may not be clear at first how the
pull‑quote box will be located 20 pixels to the left of its positioned parent. We
derive the number first from the total width of the pull-quote box, which is the
value of the width property plus the left and right padding, or 145px + 5px + 10px,
or 160px. We then set the right property of the pull-quote. A value of 0 would
align the pull-quote's right side with that of its parent. Therefore, to make its left
side 20px to the right of the parent, we need to move it in a negative direction 20
pixels more than its total width, or -180px.

Back to the Code
Now we can get into the jQuery. Let's start with a selector expression for all of the
 elements, and attach an .each() method so that we
can perform multiple actions as we iterate through them:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {

DOM Manipulation—How to Change Your Page on Command

[96]

 ...
 });
});

Next, we find the parent paragraph of each pull‑quote and apply the CSS
position property:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');

 $parentParagraph.css('position', 'relative');

 });
});

Notice here that we stored the parent paragraph in a variable. That's because we'll be
using it a little later as well. It's always a good idea to use variables for jQuery objects
when we need to refer to them more than once. This improves performance by
traversing the DOM with jQuery's $() factory function only once, rather than each
time the object is needed.

We can be sure now that the CSS is all set and ready for the pull-quote. At this
point we can clone each , add the pulled class to the copy, and insert it into
the beginning of the paragraph:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');
 $parentParagraph.css('position', 'relative');
 $(this).clone()
 .addClass('pulled')

 .prependTo($parentParagraph);

 });
});

Because we're using absolute positioning for the pull-quote, the placement of
it within the paragraph is irrelevant. As long as it remains inside the paragraph, it
will be positioned in relation to the top and right of the paragraph, based on our
CSS rules. If, however, we wanted to apply a float to the pull quote instead, its
placement within the paragraph would affect its vertical position.

Chapter 5

[97]

The paragraph, together with its pull-quote, now looks like this:

This is a good start, but pull quotes typically do not retain font formatting
as this one does with bold one more side. What we want is the text of
, stripped of any , , <a href> or
other inline tags. Additionally it would be nice to be able to modify the pull-quote
a bit, dropping some words and replacing them with ellipses. For this, we have
wrapped around some text in our example:

<p>
 It is a Law of Nature
 with us that a male child shall have one more side
 than his father, so that each generation shall
 rise (as a rule) one step in the scale of development and nobility.
 Thus the son of a Square is a Pentagon; the son of a Pentagon, a
 Hexagon; and so on.
</p>

We'll apply the ellipsis first, and then replace all of the pull-quote HTML with a
stripped, text-only version:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');
 $parentParagraph.css('position', 'relative');
 var $clonedCopy = $(this).clone();

 $clonedCopy

 .addClass('pulled')
 .find('span.drop')

 .html('…')

 .end()

 .prependTo($parentParagraph);
 var clonedText = $clonedCopy.text();

 $clonedCopy.html(clonedText);

 });
});

DOM Manipulation—How to Change Your Page on Command

[98]

So, we start the cloning process this time by storing the clone in a variable. The
variable is necessary this time because we can't work on it completely within the
same chain. Notice, too, that after we find and replace its
HTML with an ellipsis (…), we use .end() to back out of the last query,
.find('span.drop'). This way, we're inserting the whole copy, not just the ellipsis,
at the beginning of the paragraph.

At the end, we set one more variable, clonedText, to the text-only contents of the
copy; then we use these text-only contents as a replacement for the HTML of the
copy. Now, the pull-quote looks like this:

Evidently, another has been added to a later
paragraph to ensure that the code works for multiple elements.

Prettifying the Pull Quotes
The pull-quotes are now working as expected, with child elements stripped and
ellipses added where text should be dropped.

Since one of the goals is to add visual appeal, though, we would do well to give the
pull‑quotes rounded corners with drop shadows. However, variable height of
the pull‑quote boxes is problematic because we'll need to apply two background
images to a single element, an impossibility for every browser at the moment except
the most recent builds of Safari.

Chapter 5

[99]

To overcome this limitation, we can wrap another wrapper <div> around the
pull‑quotes:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');
 $parentParagraph.css('position', 'relative');
 var $clonedCopy = $(this).clone();
 $clonedCopy
 .addClass('pulled')
 .find('span.drop')
 .html('…')
 .end()
 .prependTo($parentParagraph)
 .wrap('<div class="pulled-wrapper"></div>');

 var clonedText = $clonedCopy.text();
 $clonedCopy.html(clonedText);
 });
});

We also need to modify the CSS, of course, to account for the new <div> and the two
background images:

.pulled-wrapper {
 background: url(pq-top.jpg) no-repeat left top;

 position: absolute;
 width: 160px;
 right: -180px;
 padding-top: 18px;
}
.pulled {
 background: url(pq-bottom.jpg) no-repeat left bottom;

 position: relative;
 display: block;

 width: 140px;
 padding: 0 10px 24px 10px;
 font: italic 1.4em "Times New Roman", Times, serif;
}

Here, some of the rules formerly applied to .pulled are applied to .pulled-wrapper
instead. A couple of width and padding adjustments take into account the design
of the background images' borders, and .pulled has its position and display
properties modified in order to appear correctly for all browsers.

DOM Manipulation—How to Change Your Page on Command

[100]

Here is one final look at the newly primped pull‑quotes in their native habitat:

DOM Manipulation Methods in a Nutshell
The extensive DOM manipulation methods that jQuery provides vary according to
their task and their location. The following outline can serve as a reminder of which
methods we can use to accomplish any of these tasks, just about anywhere.

1.	 To insert new element(s) inside every matched element, use:
.append()
.appendTo()
.prepend()

.prependTo()

2.	 To insert new element(s) adjacent to every matched element, use:
.after()

.insertAfter()

.before()

.insertBefore()

°
°
°

°

°

°

°
°

Chapter 5

[101]

3.	 To insert new element(s) around every matched element, use:
.wrap()

4.	 To replace every matched element with new element(s) or text, use:
.html()

.text()

5.	 To remove element(s) inside every matched element, use:
.empty()

6.	 To remove every matched element and descendants from the document
without actually deleting them, use:

.remove()

Summary
In this chapter we have created, copied, reassembled, and embellished content using
jQuery's DOM modification methods. We've applied these methods to a single web
page, transforming a handful of generic paragraphs to a footnoted, pull-quoted,
linked, and stylized literary excerpt.

The tutorial section of the book is nearly over, but before we move on to examine
more complex, expanded examples, let's take a round-trip journey to the server via
jQuery's AJAX methods.

°

°

°

°

°

AJAX—How to Make Your
Site Buzzword-Compliant

Life's a bee without a buzz
It's going great till you get stung
 —Devo,
 "That's Good"

AJAX was the name of a great Greek warrior (actually, two Greek warriors) whose
adventures were chronicled in Homer's epic, The Iliad. The term was later re-coined
as the name of a household cleanser. It was then re-re-coined as a label for a group of
web technologies.

In this last, most modern sense, AJAX is an acronym standing for Asynchronous
JavaScript and XML. The technologies involved in an AJAX solution include:

JavaScript, to capture interactions with the user or other browser-related
events
The XMLHttpRequest object, which allows requests to be made to the server
without interrupting other browser tasks
XML files on the server, or possibly other similar data formats
More JavaScript, to interpret the data from the server and present it on
the page

AJAX technology has been hailed as the savior of the web landscape, transforming
static web pages into interactive web applications. Because of the inconsistencies in
the browsers' implementations of the XMLHttpRequest object, many frameworks
have sprung up to assist developers in taming it, and jQuery is no exception.

Can AJAX truly help us perform miracles?

•

•

•

•

AJAX—How to Make Your Site Buzzword-Compliant

[104]

Loading Data on Demand
Underneath all the hype and trappings, AJAX is just a means of loading data from
the server to the web browser without a visible page refresh. This data can take
many forms, and we have many options for what to do with it when it arrives. We'll
see this by performing the same basic task in many ways.

Suppose we have a page that displays entries from a dictionary. The HTML inside
the body of the page looks like this:

<div id="dictionary">
</div>

Yes, really! Our page will have no content to begin with. We are going to use
jQuery's various AJAX methods to populate this <div> with dictionary entries.

We're going to need a way to trigger the loading process, so we'll add some buttons
for our event handlers to latch onto:

<div class="letters">
 <div class="letter" id="letter-a">
 <h3>A</h3>
 <div class="button">Load</div>
 </div>
 <div class="letter" id="letter-b">
 <h3>B</h3>
 <div class="button">Load</div>
 </div>
 <div class="letter" id="letter-c">
 <h3>C</h3>
 <div class="button">Load</div>
 </div>
 <div class="letter" id="letter-d">
 <h3>D</h3>
 <div class="button">Load</div>
 </div>
</div>

Chapter 6

[105]

Adding a few CSS rules, we get a page that looks like this:

Now we can focus on getting content onto the page.

Appending HTML
AJAX applications are often no more than a request for a chunk of HTML. This
technique, sometimes referred to as AHAH (Asynchronous HTTP and HTML), is
almost trivial to implement with jQuery. First we need some HTML to insert, which
we'll place in a file called a.html alongside our main document. This secondary
HTML file begins:

<div class="entry">
 <h3 class="term">ABDICATION</h3>
 <div class="part">n.</div>
 <div class="definition">
 An act whereby a sovereign attests his sense of the high
 temperature of the throne.
 <div class="quote">
 <div class="quote-line">Poor Isabella's Dead, whose
 abdication</div>
 <div class="quote-line">Set all tongues wagging in the Spanish
 nation.</div>
 <div class="quote-line">For that performance 'twere unfair to
 scold her:</div>
 <div class="quote-line">She wisely left a throne too hot to
 hold her.</div>

AJAX—How to Make Your Site Buzzword-Compliant

[106]

 <div class="quote-line">To History she'll be no royal riddle
 —</div>
 <div class="quote-line">Merely a plain parched pea that jumped
 the griddle.</div>
 <div class="quote-author">G.J.</div>
 </div>
 </div>
</div>

<div class="entry">
 <h3 class="term">ABSOLUTE</h3>
 <div class="part">adj.</div>
 <div class="definition">
 Independent, irresponsible. An absolute monarchy is one in which
 the sovereign does as he pleases so long as he pleases the
 assassins. Not many absolute monarchies are left, most of them
 having been replaced by limited monarchies, where the sovereign's
 power for evil (and for good) is greatly curtailed, and by
 republics, which are governed by chance.
 </div>
</div>

Rendered on its own, this file is quite plain:

Chapter 6

[107]

Note that a.html is not a true HTML document; it contains no <html>, <head>, or
<body>, all of which are normally required. The file's only purpose is to be inserted
into another HTML document, which we'll accomplish now:

$(document).ready(function() {
 $('#letter-a .button').click(function() {
 $('#dictionary').load('a.html');
 });
});

The .load() method does all our heavy lifting for us! We specify the target location
for the HTML snippet by using a normal jQuery selector, and then pass the URL
of the file to be loaded as a parameter to the method. Now, when the first button is
clicked, the file is loaded and placed inside <div id="dictionary">. The browser
will render the new HTML as soon as it is inserted:

Note that the HTML is now styled, whereas before it was plain. This is due to the
CSS rules in the main document; as soon as the new HTML snippet is inserted, the
rules apply to its tags as well.

AJAX—How to Make Your Site Buzzword-Compliant

[108]

In this example, the dictionary definitions will probably appear instantaneously
when the button is clicked. This is a hazard of working on our applications locally; it
is hard to account for delays in transferring documents across the network. Suppose
we added an alert box to display after the definitions are loaded:

$(document).ready(function() {
 $('#letter-a .button').click(function() {
 $('#dictionary').load('a.html');
 alert('Loaded!');
 });
});

We might assume from the structure of this code that the alert can only be displayed
after the load has been performed. However, the alert will quite possibly have come
and gone before the load has completed, due to network lag. All AJAX calls are by
default asynchronous. Otherwise, we'd have to call it SJAX, which hardly has the
same ring to it! Asynchronous loading means that the HTTP request to retrieve the
HTML snippet is issued, and script execution immediately resumes without waiting.
At some later time, the browser receives the response from the server and handles it.
This is generally desired behavior; it is unfriendly to lock up the whole web browser
while waiting for data to be retrieved.

If actions must be delayed until the load has been completed, jQuery provides a
callback for this. An example will be provided below.

Working with JavaScript Objects
Pulling in fully-formed HTML on demand is very convenient, but there are times
when we want our script to be able to do some processing of the data before it
is displayed. In this case, we need to retrieve the data in a structure that we can
traverse with JavaScript.

Retrieving a JavaScript Object
With jQuery's selectors, we could traverse the HTML we get back and manipulate it,
but it must first be inserted into the document. A more native JavaScript data format
can mean even less code.

As we have often seen, JavaScript objects are just sets of key-value pairs, and can be
defined succinctly using curly braces ({}). JavaScript arrays, on the other hand, are
defined on the fly with square brackets ([]). Combining these two syntaxes, we can
easily express some very complex and rich data structures.

Chapter 6

[109]

The term JavaScript Object Notation (JSON) was coined by Douglas Crockford to
capitalize on this simple syntax. This notation can offer a concise alternative to the
sometimes-bulky XML format:

{
 "key": "value",
 "key 2": [
 "array",
 "of",
 "items"
]
}

For information on some of the potential advantages of JSON, as well as
implementations in many programming languages, visit http://json.org/.

We can encode our definitions in this format in many ways. We'll place some
dictionary entries in a JSON file we'll call b.json:

[
 {
 "term": "BACCHUS",
 "part": "n.",
 "definition": "A convenient deity invented by the ancients as an
 excuse for getting drunk.",
 "quote": [
 "Is public worship, then, a sin,",
 "That for devotions paid to Bacchus",
 "The lictors dare to run us in,",
 "And resolutely thump and whack us?"
],
 "author": "Jorace"
 },
 {
 "term": "BACKBITE",
 "part": "v.t.",
 "definition": "To speak of a man as you find him when he can't
 find you."
 },
 {
 "term": "BEARD",
 "part": "n.",
 "definition": "The hair that is commonly cut off by those who
 justly execrate the absurd Chinese custom of shaving the head."
 },

AJAX—How to Make Your Site Buzzword-Compliant

[110]

To retrieve this data, we'll use the $.getJSON() method, which fetches the file and
processes it, providing the code with the resulting JavaScript object.

Global jQuery Functions
To this point, all jQuery methods that we've used have been attached to a jQuery
object that we've built with the $() factory function. The selectors have allowed us to
specify a set of DOM nodes to work with, and the methods have operated on them
in some way. This $.getJSON() function, however, is different. There is no logical
DOM element to which it could apply; the resulting object has to be provided to the
script, not injected into the page. For this reason, getJSON() is defined as a method
of the global jQuery object, rather than of an individual jQuery object instance.

If JavaScript had classes like other object-oriented languages, we'd call $.getJSON()
a class method. For our purposes, we'll refer to this type of method as a global
function; in effect, they are functions that use the jQuery namespace so as not to
conflict with other function names.

To use this function, we pass it the file name as before:

$(document).ready(function() {
 $('#letter-b .button').click(function() {
 $.getJSON('b.json');

 });
});

This code has no apparent effect when we click the button. The function call loads
the file, but we have not told JavaScript what to do with the resulting data. For this,
we need to use a callback.

The $.getJSON() function takes a second argument, which is a function to be called
when the load is complete. As mentioned before, AJAX calls are asynchronous,
and the callback provides a way to wait for the data to be transmitted rather than
executing code right away. The callback function also takes an argument, which is
filled with the resulting data. So, we write:

$(document).ready(function() {
 $('#letter-b .button').click(function() {
 $.getJSON('b.json', function(data) {

 });

 });
});

Chapter 6

[111]

Inside this function, we can use the data variable to traverse the data structure as
necessary. We'll need to iterate over the top-level array, building the HTML for each
item. We could do this with a standard for loop, but instead we'll introduce another
of jQuery's useful global functions, $.each(). We saw its counterpart, the .each()
method, in Chapter 5. Instead of operating on a jQuery object, this function takes an
array or map as its first parameter and a callback function as its second. The current
iteration index and the current item in the array or map each time through the loop
are passed as two parameters to the callback function:

$(document).ready(function() {
 $('#letter-b .button').click(function() {
 $.getJSON('b.json', function(data) {
 $('#dictionary').empty();
 $.each(data, function(entryIndex, entry) {

 var html = '<div class="entry">';
 html += '<h3 class="term">' + entry['term'] + '</h3>';

 html += '<div class="part">' + entry['part'] + '</div>';

 html += '<div class="definition">';
 html += entry['definition'];

 html += '</div>';
 html += '</div>';
 $('#dictionary').append(html);
 });

 });
 });
});

Before the loop, we empty out <div id="dictionary"> so that we can fill it with
our newly-constructed HTML. Then we use $.each() to examine each item in turn,
building an HTML structure using the contents of the entry map. Finally, we turn
this HTML into a DOM tree by append it to the <div>.

This approach presumes that the data is safe for HTML consumption; it
should not contain any stray < characters, for example.

All that's left is to handle the entries with quotations, which takes another
$.each() loop:

$(document).ready(function() {
 $('#letter-b .button').click(function() {
 $.getJSON('b.json', function(data) {
 $('#dictionary').empty();
 $.each(data, function(entryIndex, entry) {

AJAX—How to Make Your Site Buzzword-Compliant

[112]

 var html = '<div class="entry">';
 html += '<h3 class="term">' + entry['term'] + '</h3>';
 html += '<div class="part">' + entry['part'] + '</div>';
 html += '<div class="definition">';
 html += entry['definition'];
 if (entry['quote']) {
 html += '<div class="quote">';
 $.each(entry['quote'], function(lineIndex, line) {
 html += '<div class="quote-line">' + line + '</div>';
 });
 if (entry['author']) {
 html += '<div class="quote-author">' + entry['author'] +
 '</div>';
 }
 html += '</div>';
 }
 html += '</div>';
 html += '</div>';
 $('#dictionary').append($(html));
 });
 });
 });
});

With this code in place, we can click the next button and confirm our results:

Chapter 6

[113]

The JSON format is concise, but not forgiving. Every bracket, brace, quote
and comma must be present and accounted for, or the file will not load.
In most browsers, we won't even get an error message; the script will just
silently fail.

Executing a Script
Occasionally we don't want to retrieve all the JavaScript we will need when the
page is first loaded. We might not know what scripts will be necessary until some
user interaction occurs. We could introduce <script> tags on the fly when they are
needed, but a more elegant way to inject additional code is to have jQuery load the
.js file directly.

Pulling in a script is about as simple as loading an HTML fragment. In this case,
we use the global function $.getScript(), which, like its siblings, accepts a URL
locating the script file:

$(document).ready(function() {
 $('#letter-c .button').click(function() {
 $.getScript('c.js');
 });
});

In our last example, we then needed to process the result data so that we could do
something useful with the loaded file. With a script file, though, the processing is
automatic; the script is simply run.

Scripts fetched in this way are run in the global context of the current page. This
means they have access to all globally-defined functions and variables, notably
including jQuery itself. We can therefore mimic the JSON example to prepare and
insert HTML on the page when the script is executed, and place this code in c.js:

var entries = [
 {
 "term": "CALAMITY",
 "part": "n.",
 "definition": "A more than commonly plain and unmistakable
 reminder that the affairs of this life are not of
 our own ordering. Calamities are of two kinds:
 misfortune to ourselves, and good fortune to
 others."
 },
 {
 "term": "CANNIBAL",
 "part": "n.",

AJAX—How to Make Your Site Buzzword-Compliant

[114]

 "definition": "A gastronome of the old school who preserves the
 simple tastes and adheres to the natural diet of
 the pre-pork period."
 },
 {
 "term": "CHILDHOOD",
 "part": "n.",
 "definition": "The period of human life intermediate between the
 idiocy of infancy and the folly of youth —
 two removes from the sin of manhood and three from
 the remorse of age."
 }
];

var html = '';

$.each(entries, function() {
 html += '<div class="entry">';
 html += '<h3 class="term">' + this['term'] + '</h3>';
 html += '<div class="part">' + this['part'] + '</div>';
 html += '<div class="definition">' + this['definition'] + '</div>';
 html += '</div>';
});

$('#dictionary').html(html);

Now clicking on the third button has the expected result:

Chapter 6

[115]

Loading an XML Document
XML is part of the acronym AJAX, but we haven't actually loaded any XML yet.
Doing so is straightforward, and mirrors the JSON technique fairly closely. First we'll
need an XML file d.xml containing some data we wish to display:

<?xml version="1.0" encoding="UTF-8"?>
<entries>
 <entry term="DANCE" part="v.i.">
 <definition>
 To leap about to the sound of tittering music, preferably with
 arms about your neighbor's wife or daughter. There are many
 kinds of dances, but all those requiring the participation of
 the two sexes have two characteristics in common: they are
 conspicuously innocent, and warmly loved by the vicious.
 </definition>
 </entry>
 <entry term="DAY" part="n.">
 <definition>
 A period of twenty-four hours, mostly misspent. This period is
 divided into two parts, the day proper and the night, or day
 improper <![CDATA[—]]> the former devoted to sins of
 business, the latter consecrated to the other sort. These two
 kinds of social activity overlap.
 </definition>
 </entry>
 <entry term="DEBT" part="n.">
 <definition>
 An ingenious substitute for the chain and whip of the
 slave-driver.
 </definition>
 <quote author="Barlow S. Vode">
 <line>As, pent in an aquarium, the troutlet</line>
 <line>Swims round and round his tank to find an outlet,</line>
 <line>Pressing his nose against the glass that holds him,</line>
 <line>Nor ever sees the prison that enfolds him;</line>
 <line>So the poor debtor, seeing naught around him,</line>
 <line>Yet feels the narrow limits that impound him,</line>
 <line>Grieves at his debt and studies to evade it,</line>
 <line>And finds at last he might as well have paid it.</line>
 </quote>
 </entry>
 <entry term="DEFAME" part="v.t.">
 <definition>
 To lie about another. To tell the truth about another.
 </definition>
 </entry>
</entries>

AJAX—How to Make Your Site Buzzword-Compliant

[116]

This data could be expressed in many ways, of course, and some would more
closely mimic the structure we established for the HTML or JSON used earlier. Here,
though, we're illustrating some of the features of XML designed to make it more
readable to humans, such as the use of attributes for term and part rather than tags.

We'll start off our function in a familiar manner:

$(document).ready(function() {
 $('#letter-d .button').click(function() {
 $.get('d.xml', function(data) {
 });
 });
});

This time it's the $.get() function that does our work. In general, this function
simply fetches the file at the supplied URL and provides the plain text to the
callback. However, if the response is known to be XML because of its server-supplied
MIME type, the callback will be handed the XML DOM tree.

Fortunately, we have already seen jQuery's substantial DOM‑traversing capabilities.
We can use the normal .find(), .filter() and other traversal methods on the
XML document just as we would on HTML:

$(document).ready(function() {
 $('#letter-d .button').click(function() {
 $.get('d.xml', function(data) {
 $('#dictionary').empty();
 $(data).find('entry').each(function() {
 var $entry = $(this);
 var html = '<div class="entry">';
 html += '<h3 class="term">' + $entry.attr('term') + '</h3>';
 html += '<div class="part">' + $entry.attr('part') + '</div>';
 html += '<div class="definition">'
 html += $entry.find('definition').text();
 var $quote = $entry.find('quote');
 if ($quote.length) {
 html += '<div class="quote">';
 $quote.find('line').each(function() {
 html += '<div class="quote-line">' + $(this).text() +
 '</ div>';
 });
 if ($quote.attr('author')) {
 html += '<div class="quote-author">' +
 $quote.attr('author') + '</div>';
 }
 html += '</div>';

Chapter 6

[117]

 }
 html += '</div>';
 html += '</div>';
 $('#dictionary').append($(html));
 });
 });
 });
});

This has the expected effect when the fourth button is pressed:

This is a new use for the DOM traversal methods we already know, shedding some
light on the utility of jQuery's XPath support. While the CSS syntax of selectors is
typically the natural one for dealing with HTML pages, XPath was built for XML.
This means that while there are ways to locate desired DOM elements using either
syntax, we can sometimes reuse existing XPath expressions from other systems that
use the same XML files.

XML's usage of arbitrary tags and attributes, rather than relying on classes for
identification, makes XPath especially convenient for traversing it. For example,
suppose we wanted to limit the displayed entries to those that have quotes that in
turn have attributed authors. We can limit the entries to those with nested quote
elements by changing entry to entry[quote]. Then we can further

AJAX—How to Make Your Site Buzzword-Compliant

[118]

restrict the entries to those with author attributes on the quote elements by writing
entry[quote[@author]]. The line with the initial selector now reads:

$(data).find('entry[quote[@author]]').each(function() {

This new selector expression restricts the returned entries correspondingly:

Choosing a Data Format
We have looked at four formats for our external data, each of which is handled
natively by jQuery's AJAX functions. We have also verified that all four can handle
the task at hand, loading information onto an existing page when the user requests it
and not before. How, then, do we decide which one to use in our applications?

HTML snippets require very little work to implement. The external data can
be loaded and inserted into the page with one simple method, which does not
even require a callback function. No traversal of the data is necessary for the
straightforward task of adding the new HTML into the existing page. On the other
hand, the data is not necessarily structured in a way that makes it reusable for other
applications. The external file is tightly coupled with its intended container.

Chapter 6

[119]

JSON files are structured for simple reuse. They are compact, and easy to read. The
data structure must be traversed to pull out the information and present it on the
page, but this can be done with standard JavaScript techniques. Since the files can be
parsed with a single call to JavaScript's eval(), reading in a JSON file is extremely
fast. Any use of eval() does carry inherent risks, however. Errors in the JSON file
can cause silent failure or even side effects on the page, so the data must be crafted
carefully by a trusted party.

JavaScript files offer the ultimate in flexibility, but are not really a data storage
mechanism. Because the files are language-specific, they cannot be used to provide
the same information to disparate systems. Instead, the ability to load a JavaScript
file means that behaviors that are rarely needed can be factored out into external
files, reducing code size unless and until it is needed.

XML documents are the kings of portability. Because XML has become the lingua
franca of the web service world, providing data in this format makes it very likely the
data can be reused elsewhere. For example, Flickr (http://flickr.com/), del.icio.us
(http://del.icio.us/) and Upcoming (http://upcoming.org/) all export XML
representations of their data, which has allowed many interesting mashups of their
data to arise. The XML format is somewhat bulky, though, and can be a bit slower to
parse and manipulate than other options.

With these characteristics in mind, it is typically easiest to provide external data as
HTML snippets, as long as the data is not needed in other applications as well. In
cases where the data will be reused but the other applications can also be influenced,
JSON is often a good choice due to its performance and size. When the remote
application is not known, XML provides the greatest assurance that interoperability
will be possible.

More than any other consideration, we should determine if the data is already
available. If it is, chances are it’s in one of these formats to begin with, so our decision
may be made for us.

Passing Data to the Server
Our examples to this point have focused on the task of retrieving static data files
from the web server. However, the AJAX technique really comes into its own only
when the server can dynamically shape the data based on input from the browser.
We're helped along by jQuery in this task as well; all of the methods we've covered
so far can be modified so that data transfer becomes a two-way street.

AJAX—How to Make Your Site Buzzword-Compliant

[120]

Since demonstrating these techniques requires interaction with the
web server, we'll need to use server-side code for the first time here.
The examples given will use the PHP scripting language, which is very
widely used as well as freely available. We will not cover how to set up
a web server with PHP here; help on this can be found on the websites of
Apache (http://apache.org/) or PHP (http://php.net/), or from
your site's hosting company.

Performing a GET Request
To illustrate this communication between client and server, we'll write a script that
only sends one dictionary entry to the browser on each request. The entry chosen
will depend on a parameter sent from the browser. Our script will pull its data from
an internal data structure like this:

<?php
$entries = array(
 'EAVESDROP' => array(
 'part' => 'v.i.',
 'definition' => 'Secretly to overhear a catalogue of the crimes
 and vices of another or yourself.',
 'quote' => array(
 'A lady with one of her ears applied',
 'To an open keyhole heard, inside,',
 'Two female gossips in converse free —',
 'The subject engaging them was she.',
 '"I think," said one, "and my husband thinks',
 'That she\'s a prying, inquisitive minx!"',
 'As soon as no more of it she could hear',
 'The lady, indignant, removed her ear.',
 '"I will not stay," she said, with a pout,',
 '"To hear my character lied about!"',
),
 'author' => 'Gopete Sherany',
),
 'EDIBLE' => array(
 'part' => 'adj.',
 'definition' => 'Good to eat, and wholesome to digest, as a worm
 to a toad, a toad to a snake, a snake to a pig,
 a pig to a man, and a man to a worm.',
),
 'EDUCATION' => array(
 'part' => 'n.',

Chapter 6

[121]

 'definition' => 'That which discloses to the wise and disguises
 from the foolish their lack of understanding.',
),
);
?>

In a production version of this example, the data would probably be stored in a
database and loaded on demand. Since the data is a part of the script here, the code
to retrieve it is quite straightforward. We examine the data that has been posted and
craft the HTML snippet to display:

<?php
if (isset($entries[strtoupper($_REQUEST['term'])])) {
 $entry = $entries[strtoupper($_REQUEST['term'])];

 $html = '<div class="entry">';
 $html .= '<h3 class="term">';
 $html .= strtoupper($_REQUEST['term']);
 $html .= '</h3>';
 $html .= '<div class="part">';
 $html .= $entry['part'];
 $html .= '</div>';
 $html .= '<div class="definition">';
 $html .= $entry['definition'];
 if (isset($entry['quote'])) {
 $html .= '<div class="quote">';
 foreach ($entry['quote'] as $line) {
 $html .= '<div class="quote-line">'. $line .'</div>';
 }
 if (isset($entry['author'])) {
 $html .= '<div class="quote-author">'. $entry['author'] .
 '</div>';
 }
 $html .= '</div>';
 }
 $html .= '</div>';

 $html .= '</div>';

 print($html);
}
?>

AJAX—How to Make Your Site Buzzword-Compliant

[122]

Now requests to this script, which we'll call e.php, will return the HTML snippet
corresponding to the term that was sent in the GET parameters. For example, when
accessing the script with e.php?term=eavesdrop, we get back:

Once again we note the lack of formatting we saw with earlier HTML snippets,
because CSS rules have not been applied.

Since we're showing how data is passed to the server, we will use a different method
to request entries than the solitary buttons we've been relying on so far. Instead,
we'll present a list of links for each term, and cause a click on any of them to load the
corresponding definition. The HTML we'll add for this looks like:

<div class="letter" id="letter-e">
 <h3>E</h3>

 Eavesdrop
 Edible
 Education
 Eloquence
 Elysium
 Emancipation
 Emotion
 Envelope
 Envy
 Epitaph
 Evangelist

</div>

Now we need to get our JavaScript code to call the PHP script with the right
parameters. We could do this with the normal .load() mechanism,
appending the query string right to the URL and fetching data with addresses like

Chapter 6

[123]

e.php?term=eavesdrop directly. Instead, though, we can have jQuery construct the
query string based on a map we provide to the $.get() function:

$(document).ready(function() {
 $('#letter-e a').click(function() {
 $.get('e.php', {'term': $(this).text()}, function(data) {
 $('#dictionary').html(data);
 });
 return false;
 });
});

Now that we have seen other AJAX interfaces that jQuery provides, the operation
of this function seems familiar. The only difference is the second parameter, which
allows us to supply a map of keys and values that become part of the query string.
In this case, the key is always term but the value is taken from the text of each link.
Now, clicking on the first link in the list causes its definition to appear:

All the links here have addresses given, even though we are not using them in the
code. This provides an alternative method of navigating the information for users
who have JavaScript turned off or unavailable. To prevent the links from being
followed normally when clicked, the event handler has to return false.

AJAX—How to Make Your Site Buzzword-Compliant

[124]

Performing a POST Request
HTTP requests using the POST method are almost identical to those using GET. One
of the most visible differences is that GET places its arguments in the query string
portion of the URL, whereas POST requests do not. However, in AJAX calls, even
this distinction is invisible to the average user. Generally, the only reason to choose
one method over the other is to conform to the norms of the server-side code, or to
provide for large amounts of transmitted data; GET has a more stringent limit. We
have coded our PHP example to cope equally well with either method, so we can
change from GET to POST simply by changing the jQuery function we call:

$(document).ready(function() {
 $('#letter-e a').click(function() {
 $.post('e.php', {'term': $(this).text()}, function(data) {

 $('#dictionary').html(data);
 });
 return false;
 });
});

The arguments are the same, and the request will now be made via POST. We can
further simplify the code by using the .load() method, which uses POST by default
when it is supplied with a map of arguments:

$(document).ready(function() {
 $('#letter-e a').click(function() {
 $('#dictionary').load('e.php', {'term': $(this).text()});

 return false;
 });
});

Chapter 6

[125]

This cut-down version functions the same way when a link is clicked:

Serializing a Form
Sending data to the server often involves the user filling out forms. Rather than
relying on the normal form submission mechanism, which will load the response
in the entire browser window, we can use jQuery's AJAX toolkit to submit the form
asynchronously and place the response inside the current page.

To try this out, we'll need to construct a simple form:

<div class="letter" id="letter-f">F
 <form>
 <input type="text" name="term" value="" id="term">
 <input type="submit" name="search" value="search" id="search">
 </form>
</div>

AJAX—How to Make Your Site Buzzword-Compliant

[126]

This time we'll return a set of entries from the PHP script by searching for the
supplied search term as a substring of a dictionary term. The data structure will be of
the same format as before, but the logic will be a bit different:

foreach ($entries as $term => $entry) {
 if (strpos($term, strtoupper($_REQUEST['term'])) !== FALSE) {

 $html = '<div class="entry">';
 $html .= '<h3 class="term">';
 $html .= $term;
 $html .= '</h3>';
 $html .= '<div class="part">';
 $html .= $entry['part'];
 $html .= '</div>';
 $html .= '<div class="definition">';
 $html .= $entry['definition'];
 if (isset($entry['quote'])) {
 foreach ($entry['quote'] as $line) {
 $html .= '<div class="quote-line">'. $line .'</div>';
 }
 if (isset($entry['author'])) {
 $html .= '<div class="quote-author">'. $entry['author']
 .'</div>';
 }
 }
 $html .= '</div>';
 $html .= '</div>';
 print($html);
 }
}

The call to strpos() scans the word for the supplied search string. Now we can
react to a form submission and craft the proper query parameters by traversing the
DOM tree:

$(document).ready(function() {
 $('#letter-f form').submit(function() {
 $('#dictionary').load('f.php', {'term': $('input[@name="term"]').
val()});
 return false;
 });
});

This code has the intended effect, but searching for input fields by name and
appending them to a map one by one is cumbersome. The approach particularly
does not scale well as the form becomes more complex. Fortunately, jQuery offers a

Chapter 6

[127]

shortcut for this often‑used idiom. The .serialize() method acts on a jQuery object
and translates the matched DOM elements into a query string that can be passed
along with an AJAX request. We can generalize our submission handler as follows:

$(document).ready(function() {
 $('#letter-f form').submit(function() {
 $.get('f.php', $(this).find('input').serialize(), function(data)
 {
 $('#dictionary').html(data);
 });
 return false;
 });
});

Now the same script will work to submit the form, even as the number of fields
increases. When we perform a search, the matched entries are displayed:

AJAX—How to Make Your Site Buzzword-Compliant

[128]

While the .serialize() method is convenient, it does not perfectly mimic the
submit action of a browser. In particular, multiple-select fields will be reduced to a
single selection when serialized. Use this method with caution. For an exact imitation
of a browser's normal form submission behavior, we can instead turn to the form.js
jQuery plug-in. More information on this tool can be found in Chapter 10.

Keeping an Eye on the Request
So far, it has been sufficient for us to make a call to an AJAX method and patiently
await the response. At times, though, it is handy to know a bit more about the HTTP
request as it progresses. If such a need arises, jQuery offers a suite of functions that
can be used to register callbacks when various AJAX-related events occur.

The .ajaxStart() and .ajaxStop() methods are two examples of these observer
functions, and are attached to any jQuery object. When an AJAX call begins with
no other transfer in progress, the .ajaxStart() callback is fired. Conversely,
when the last active request ends, the callback attached with .ajaxStop() will be
executed. All of the observers are global, in that they are called when any AJAX
communication occurs, regardless of what code initiates it.

We can use these methods to provide some feedback to the user in case of a slow
network connection. The HTML for the page can have a suitable loading
message appended:

<div id="loading">
 Loading...
</div>

Chapter 6

[129]

This could also include an animated GIF image to provide a throbber. We add styles
to the CSS file, so that on initial load the page looks like:

Now we add a display: none; style rule so that the message is initially hidden. To
display it at the right time, we just register it as an observer with .ajaxStart():

$(document).ready(function() {
 $('#loading').ajaxStart(function() {
 $(this).show();
 });
});

We can chain the hiding behavior right onto this:

$(document).ready(function() {
 $('#loading').ajaxStart(function() {
 $(this).show();
 }).ajaxStop(function() {

 $(this).hide();

 });

});

Voilà! We have our loading feedback.

AJAX—How to Make Your Site Buzzword-Compliant

[130]

Once again, note that these methods have no association with the particular ways
in which the AJAX communications begin. The .load() on the first button and the
.getJSON() on the second both cause these actions to occur. In this case, the global
behavior is desirable. If we need to get more specific, we have a few options at our
disposal. Some of the observer methods, like .ajaxError(), send their callback a
reference to the XMLHttpRequest object. This can be used to differentiate one request
from another and provide different behaviors. Other more specific handling can be
achieved by using the low-level $.ajax() function. All of the AJAX functions we've
discussed call $.ajax() internally. This function provides a wide array of options,
several of which are handlers for specific events relating to the AJAX request.

The most common way of interacting with the request, though, which we have
already covered, is the success callback. We have used this in several of our examples
to interpret the data coming back from the server and to populate the page with the
results. It can be used for other feedback too, of course. Consider once again our
.load() example:

$(document).ready(function() {
 $('#letter-a .button').click(function() {
 $('#dictionary').load('a.html');
 });
});

We can create a small enhancement here by making the loaded content fade into
view rather than appearing suddenly. The .load() can take a callback to be fired
on completion:

$(document).ready(function() {
 $('#letter-a .button').click(function() {
 $('#dictionary').hide().load('a.html', function() {

 $(this).fadeIn();

 });

 });
});

First we hide the target element, and then initiate the load. When the load is
complete, we use the callback to show the newly-populated element by fading it in.

AJAX and Events
Suppose we wanted to highlight all the <h3> elements on the page when they are
clicked. By now the code to perform such a task is almost second-nature:

$(document).ready(function() {
 $('h3').click(function() {

Chapter 6

[131]

 $(this).toggleClass('highlighted');
 });
});

All is well, in that clicking on the letters on the left side of the page highlights
them. But the dictionary terms are also <h3> elements, and they do not get the
highlight. Why?

The dictionary terms are not yet part of the DOM when the page is loaded, so the
event handlers are never bound. This is an example of a general issue with event
handlers and AJAX calls: loaded elements must have their event handlers bound at
the appropriate time.

A first pass at solving this problem is to factor the binding out into a function,
and call that function both at the time when the document is ready and after the
AJAX call:

$(document).ready(function() {
 var bindBehaviors = function() {
 $('h3').click(function() {
 $(this).toggleClass('highlighted');
 });
 };

 bindBehaviors();

 $('#letter-a .button').click(function() {
 $('#dictionary').hide().load('a.html', function() {
 bindBehaviors();
 $(this).fadeIn();
 });
 });
});

Now we can put all our event handlers in the bindBehaviors()function, and call
that whenever the DOM changes. Clicking on a dictionary term now highlights
it, as we intended. Unfortunately, we've also managed to cause very strange
behavior when the letters are clicked. At first they highlight correctly, but after
the button is clicked (loading the dictionary entries), they no longer highlight on
subsequent clicks.

Closer inspection reveals that, after the AJAX call, the highlighting breaks because
the click handler is fired twice. A doubled .toggleClass() is the same as none at
all, so the click seems not to work. The culprit here is bindBehaviors(), which binds
the click event to all <h3> elements each time. After a button click, there are actually
two event handlers for clicks on an <h3>, which happen to do the exact same thing.

AJAX—How to Make Your Site Buzzword-Compliant

[132]

Scoping an Event-Binding Function
A nice way around this double-firing is to pass some context into bindBehaviors()
each time we call it. The $() function can take a second argument, a DOM node to
which the search is restricted. By using this feature in bindBehaviors(), we can
avoid multiple event bindings:

$(document).ready(function() {
 var bindBehaviors = function(scope) {

 $('h3', scope).click(function() {

 $(this).toggleClass('highlighted');
 });
 };

 bindBehaviors(this);

 $('#letter-a .button').click(function() {
 $('#dictionary').hide().load('a.html', function() {
 bindBehaviors(this);

 $(this).fadeIn();
 });
 });
});

The first time bindBehaviors() is called, the scope is document, so all <h3> elements
in the document are matched and have the click event bound. After an AJAX load,
the scope is instead the <div id="dictionary"> element, so the letters are not
matched and are left alone.

Using Event Bubbling
Adding scope to a behavior-binding function is often a very elegant solution to the
problem of binding event handlers after an AJAX load. We can often avoid the issue
entirely, however, by exploiting event bubbling. We can bind the handler not to the
elements that are loaded, but to a common ancestor element:

$(document).ready(function() {
 $('body').click(function(event) {
 if ($(event.target).is('h3')) {
 $(event.target).toggleClass('highlighted');
 }
 });
});

Chapter 6

[133]

Here we bind the click event handler to the <body> element. Because this is not in
the portion of the document that is changed when the AJAX call is made, the event
handler never has to be re-bound. However, the event context is now wrong, so we
compensate for this by checking what the event's target attribute is. If the target is
of the right type, we perform our normal action; otherwise, we do nothing.

Security Limitations
For all its utility in crafting dynamic web applications, XMLHttpRequest (the
underlying browser technology behind jQuery's AJAX implementation) is subject to
strict boundaries. To prevent various cross-site scripting attacks, it is not generally
possible to request a document from a server other than the one that hosts the
original page.

This is generally a positive situation. For example, some cite the implementation of
JSON parsing by using eval() as insecure. If malicious code is present in the data
file, it could be run by the eval() call. However, since the data file must reside on
the same server as the web page itself, the ability to inject code in the data file is
largely equivalent to the ability to inject code in the page directly. This means that,
for the case of loading trusted JSON files, eval() is not a significant security concern.

There are many cases, though, in which it would be beneficial to load data from a
third‑party source. There are several ways to work around the security limitations
and allow this to happen.

One method is to rely on the server to load the remote data, and then provide it
when requested by the client. This is a very powerful approach, as the server can
perform pre‑processing on the data as needed. For example, we could load XML files
containing RSS news feeds from several sources, aggregate them into a single feed on
the server, and publish this new file for the client when it is requested.

To load data from a remote location without server involvement, we have to get
sneakier. A popular approach for the case of loading foreign JavaScript files is
injecting <script> tags on demand. Since jQuery can help us insert new DOM
elements, it is simple to do this:

$(document.createElement('script'))
 .attr('src', 'http://example.com/example.js').appendTo('head');

The browser will execute the loaded script, but there is no mechanism to retrieve
results from the script. For this reason, the technique requires cooperation from
the remote host. The loaded script must take some action, such as setting a global
variable that has an effect on the local environment. Services that publish scripts that
are executable in this way will also provide an API with which to interact with the
remote script.

AJAX—How to Make Your Site Buzzword-Compliant

[134]

Another option is to use the <iframe> HTML tag to load remote data. This element
allows any URL to be used as the source for its data fetching, even if it does not
match the host page's server. The data can be loaded and easily displayed on
the current page. Manipulating the data, however, typically requires the same
cooperation needed for the <script> tag approach; scripts inside the <iframe> need
to explicitly provide the data to objects in the parent document.

Summary
We have learned that AJAX methods provided by jQuery can help us to load data
in several different formats from the server without a page refresh. We can execute
scripts from the server on demand, and send data back to the server.

We've also learned how to deal with common challenges of asynchronous loading
techniques, such as keeping handlers bound after a load has occurred and loading
data from a third-party server.

This concludes the tutorial portion of the book. We are armed with the main tools
offered by jQuery: selectors, events, effects, DOM manipulation, and asynchronous
server requests. The reference section will step through each method available to us
in these categories. But first, we'll examine a few combinations of these techniques
that enhance our web pages in new and interesting ways.

Table Manipulation
Let 'em wear gaudy colors
Or avoid display
 —Devo,
 "Wiggly World"

In the first six chapters, we explored the jQuery library in a series of tutorials
that focused on each jQuery component and used examples as a way to see those
components in action. In Chapters 7 through 9 we invert the process; we'll begin
with the examples and see how we can use jQuery methods to achieve them.

Here we will use an online bookstore as our model website, but the techniques we
cook up can be applied to a wide variety of other sites as well, from weblogs to
portfolios, from market-facing business sites to corporate intranets. Chapters 7 and
8 focus on two common elements of most sites—tables and forms—while Chapter 9
examines a couple of ways to visually enhance sets of information using animated
shufflers and rotators.

In this chapter, we will use jQuery to apply techniques for increasing the readability,
usability, and visual appeal of tables, though we are not dealing with tables used
for layout and design. In fact, as the web standards movement has become more
pervasive in the last few years, table-based layout has increasingly been abandoned
in favor of CSS‑based designs. Although tables were often employed as a somewhat
necessary stopgap measure in the 1990s to create multi-column and other complex
layouts, they were never intended to be used in that way, whereas CSS is a
technology expressly created for presentation.

But this is not the place for an extended discussion on the proper role of tables.
Suffice it to say that in this chapter we will explore ways to display and interact
with tables used as semantically marked up containers of tabular data. For a closer
look at applying semantic, accessible HTML to tables, a good place to start is Roger
Johansson's blog entry, Bring on the Tables at http://www.456bereastreet.com/
archive/200410/bring_on_the_tables/.

Table Manipulation

[136]

Some of the techniques we apply to tables in this chapter can be found in plug‑ins
such as Christian Bach's Table Sorter. For more information, visit the jQuery Plug‑in
Repository at http://jquery.com/Plugins.

Sorting
One of the most common tasks performed with tabular data is sorting. In a large
table, being able to rearrange the information that we're looking for is invaluable.
Unfortunately, this helpful operation is one of the trickiest to put into action. We
can achieve the goal of sorting in two ways, namely Server-Side Sorting and
JavaScript Sorting.

Server-Side Sorting
A common solution for data sorting is to perform it on the server side. Data in tables
often comes from a database, which means that the code that pulls it out of the
database can request it in a given sort order (using, for example, the SQL language's
ORDER BY clause). If we have server-side code at our disposal, it is straightforward to
begin with a reasonable default sort order.

Sorting is most useful when the user can determine the sort order. A common idiom
is to make the headers of sortable columns into links. These links can go to the
current page, but with a query string appended indicating the column to sort by:

<table id="my-data">
 <tr>
 <th class="name">Name</th>
 <th class="date">Date</th>
 </tr>
 ...
</table>

The server can react to the query string parameter by returning the database contents
in a different order.

Preventing Page Refreshes
This setup is simple, but requires a page refresh for each sort operation. As we have
seen, jQuery allows us to eliminate such page refreshes by using AJAX methods. If
we have the column headers set up as links as before, we can add jQuery code to
change those links into AJAX requests:

$(document).ready(function() {
 $('#my-data .name a').click(function() {

Chapter 7

[137]

 $('#my-data').load('index.php?sort=name&type=ajax');
 return false;
 });
 $('#my-data .date a').click(function() {
 $('#my-data').load('index.php?sort=date&type=ajax');
 return false;
 });
});

Now when the anchors are clicked, jQuery sends an AJAX request to the server for
the same page. We add an additional parameter to the query string so that the server
can determine that an AJAX request is being made. The server code can be written to
send back only the table itself, and not the surrounding page, when this parameter is
present. This way we can take the response and insert it in place of the table.

This is an example of progressive enhancement. The page works perfectly well
without any JavaScript at all, as the links for server-side sorting are still present.
When JavaScript is present, however, the AJAX hijacks the page request and allows
the sort to occur without a full page load.

JavaScript Sorting
There are times, though, when we either don't want to wait for server responses
when sorting, or don't have a server-side scripting language available to us. A
viable alternative in this case is to perform the sorting entirely on the browser using
JavaScript client-side scripting.

For example, suppose we have a table listing books, along with their authors, release
dates, and prices:

<table class="sortable">
 <thead>
 <tr>
 <th></th>
 <th>Title</th>
 <th>Author(s)</th>
 <th>Publish Date</th>
 <th>Price</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>
 <img src="../covers/small/1847192386.png" width="49"
 height="61" alt="Building Websites with

Table Manipulation

[138]

 Joomla! 1.5 Beta 1" />
 </td>
 <td>Building Websites with Joomla! 1.5 Beta 1</td>
 <td>Hagen Graf</td>
 <td>Feb 2007</td>
 <td>$40.49</td>
 </tr>
 <tr>
 <td><img src="../covers/small/1904811620.png" width="49"
 height="61" alt="Learning Mambo: A Step-by-Step
 Tutorial to Building Your Website" /></td>
 <td>Learning Mambo: A Step-by-Step Tutorial to Building Your
 Website</td>
 <td>Douglas Paterson</td>
 <td>Dec 2006</td>
 <td>$40.49</td>
 </tr>
 ...
 </tbody>
</table>

We'd like to turn the table headers into buttons that sort by their respective columns.
Let us look into ways of doing this.

Row Grouping Tags
Note our use of the <thead> and <tbody> tags to segment the data into row
groupings. Many HTML authors omit these implied tags, but they can prove useful
in supplying us with more convenient CSS selectors to use. For example, suppose
we wish to apply typical even/odd row striping to this table, but only to the body
of the table:

$(document).ready(function() {
 $('table.sortable tbody tr:odd').addClass('odd');
 $('table.sortable tbody tr:even').addClass('even');
});

Chapter 7

[139]

This will add alternating colors to the table, but leave the header untouched:

Basic Alphabetical Sorting
Now let's perform a sort on the Title column of the table. We'll need a class on the
table header cell so that we can select it properly:

<thead>
 <tr>
 <th></th>
 <th class="sort-alpha">Title</th>

 <th>Author(s)</th>
 <th>Publish Date</th>
 <th>Price</th>
 </tr>
</thead>

To perform the actual sort, we can use JavaScript's built in .sort() method. It does
an in‑place sort on an array, and can take a function as an argument. This function
compares two items in the array and should return a positive or negative number
depending on the result. Our initial sort routine looks like this:

$(document).ready(function() {
 $('table.sortable').each(function() {
 var $table = $(this);
 $('th', $table).each(function(column) {
 if ($(this).is('.sort-alpha')) {

Table Manipulation

[140]

 $(this).addClass('clickable').hover(function() {
 $(this).addClass('hover');
 }, function() {
 $(this).removeClass('hover');
 }).click(function() {
 var rows = $table.find('tbody > tr').get();
 rows.sort(function(a, b) {
 var keyA = $(a).children('td').eq(column).text()
 .toUpperCase();
 var keyB = $(b).children('td').eq(column).text()
 .toUpperCase();
 if (keyA < keyB) return -1;
 if (keyA > keyB) return 1;
 return 0;
 });
 $.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 });
 });
 }
 });
 });
});

The first thing to note is our use of the .each() method to make iteration explicit.
Even though we could bind a click handler to all headers with the sort-alpha class
just by calling $('table.sortable th.sort-alpha').click(), this wouldn't allow
us to easily capture a crucial bit of information—the column index of the clicked
header. Because .each() passes the iteration index into its callback function, we can
use it to find the relevant cell in each row of the data later.

Once we have found the header cell, we retrieve an array of all of the data rows. This
is a great example of how .get() is useful in transforming a jQuery object into an
array of DOM nodes; even though jQuery objects act like arrays in many respects,
they don't have any of the native array methods available, such as .sort().

With .sort() at our disposal, the rest is fairly straightforward. The rows are sorted
by comparing the textual contexts of the relevant table cell. We know which cell to
look at because we captured the column index in the enclosing .each() call. We
convert the text to uppercase because string comparisons in JavaScript are case-
sensitive and we wish our sort to be case-insensitive. Finally, with the array sorted,
we loop through the rows and reinsert them into the table. Since .append() does not
clone nodes, this moves them rather than copying them. Our table is now sorted.

Chapter 7

[141]

This is an example of progressive enhancement's counterpart, graceful degradation.
Unlike with the AJAX solution discussed earlier, we cannot make the sort work
without JavaScript, as we are assuming the server has no scripting language
available to it in this case. The JavaScript is required for the sort to work, so by
adding the "clickable" class only through code, we make sure not to indicate with the
interface that sorting is even possible unless the script can run. The page degrades into
one that is still functional, albeit without sorting available.

We have moved the actual rows around, hence our alternating row colors are now
out of whack:

We need to reapply the row colors after the sort is performed. We can do this by
pulling the coloring code out into a function that we call when needed:

$(document).ready(function() {
 var alternateRowColors = function($table) {

 $('tbody tr:odd', $table).removeClass('even').addClass('odd');

 $('tbody tr:even', $table).removeClass('odd').addClass('even');

 };

 $('table.sortable').each(function() {
 var $table = $(this);
 alternateRowColors($table);

 $('th', $table).each(function(column) {
 if ($(this).is('.sort-alpha')) {
 $(this).addClass('clickable').hover(function() {
 $(this).addClass('hover');
 }, function() {

Table Manipulation

[142]

 $(this).removeClass('hover');
 }).click(function() {
 var rows = $table.find('tbody > tr').get();
 rows.sort(function(a, b) {
 var keyA = $(a).children('td').eq(column).text()
 .toUpperCase();
 var keyB = $(b).children('td').eq(column).text()
 .toUpperCase();
 if (keyA < keyB) return -1;
 if (keyA > keyB) return 1;
 return 0;
 });
 $.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 });
 alternateRowColors($table);

 });
 }
 });
 });
});

This corrects the row coloring after the fact, fixing our issue:

Chapter 7

[143]

The Power of Plug-ins
The alternateRowColors() function that we wrote is a perfect candidate to become
a jQuery plug-in. In fact, any operation that we wish to apply to a set of DOM
elements can easily be expressed as a plug-in. In this case, we only need to modify
our existing function a little bit:

jQuery.fn.alternateRowColors = function() {

 $('tbody tr:odd', this).removeClass('even').addClass('odd');

 $('tbody tr:even', this).removeClass('odd').addClass('even');

 return this;

};

We have made three important changes to the function.

It is defined as a new property of jQuery.fn rather than as a standalone
function. This registers the function as a plug-in method.
We use the keyword this as a replacement for our $table parameter.
Within a plug-in method, this refers to the jQuery object that is being
acted upon.

Finally, we return this at the end of the function. The return value makes
our new method chainable.

More information on writing jQuery plug-ins can be found in Chapter 10. There we
will discuss making a plug-in ready for public consumption, as opposed to the small
example here that is only to be used by our own code.

With our new plug-in defined, we can call $table.alternateRowColors(), which
is a more natural jQuery syntax, intead of alternateRowColors($table).

Performance Concerns
Our code works, but is quite slow. The culprit is the comparator function, which is
performing a fair amount of work. This comparator will be called many times during
the course of a sort, which means that every extra moment it spends on processing
will be magnified.

The actual sort algorithm used by JavaScript is not defined by the standard. It may
be a simple sort like a bubble sort (worst case of Θ(n2) in computational complexity
terms) or a more sophisticated approach like quick sort (which is Θ(n log n) on
average). In either case doubling the number of items increases the number of times
the comparator function is called by more than double.

•

•

•

Table Manipulation

[144]

The remedy for our slow comparator is to pre-compute the keys for the comparison.
We begin with the slow sort function:

rows.sort(function(a, b) {
 keyA = $(a).children('td').eq(column).text().toUpperCase();
 keyB = $(b).children('td').eq(column).text().toUpperCase();
 if (keyA < keyB) return -1;
 if (keyA > keyB) return 1;
 return 0;
});
$.each(rows, function(index, row) {
 $table.children('tbody').append(row);
});

We can pull out the key computation and do that in a separate loop:

$.each(rows, function(index, row) {
 row.sortKey = $(row).children('td').eq(column).text().toUpperCase();
});
rows.sort(function(a, b) {
 if (a.sortKey < b.sortKey) return -1;
 if (a.sortKey > b.sortKey) return 1;
 return 0;
});
$.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 row.sortKey = null;
});

In the new loop, we are doing all of the expensive work and storing the result in a
new property. This kind of property, attached to a DOM element but not a normal
DOM attribute, is called an expando. This is a convenient place to store the key since
we need one per table row element. Now we can examine this attribute within the
comparator function, and our sort is markedly faster.

We set the expando property to null after we're done with it to clean up
after ourselves. This is not necessary in this case, but is a good habit to
establish because expando properties left lying around can be the cause of
memory leaks. For more information, see Appendix C.

Chapter 7

[145]

Finessing the Sort Keys
Now we want to apply the same kind of sorting behavior to the Author(s) column
of our table. By adding the sort-alpha class to its table header cell, the Author(s)
column can be sorted with our existing code. But ideally authors should be sorted by
last name, not first. Since some books have multiple authors, and some authors have
middle names or initials listed, we need outside guidance to determine what part of
the text to use as our sort key. We can supply this guidance by wrapping the relevant
part of the cell in a tag:

<tr>
 <td>
 <img src="../covers/small/1847192386.png" width="49" height="61"
 alt="Building Websites with Joomla! 1.5 Beta 1" /></td>
 <td>Building Websites with Joomla! 1.5 Beta 1</td>
 <td>Hagen Graf</td>
 <td>Feb 2007</td>
 <td>$40.49</td>
</tr>
<tr>
 <td>
 <img src="../covers/small/1904811620.png" width="49" height="61"
 alt="Learning Mambo: A Step-by-Step Tutorial to Building
 Your Website" /></td>
 <td>
 Learning Mambo: A Step-by-Step Tutorial to Building Your Website
 </td>
 <td>Douglas Paterson</td>
 <td>Dec 2006</td>
 <td>$40.49</td>
</tr>
<tr>
 <td>
 <img src="../covers/small/1904811299.png" width="49" height="61"
 alt="Moodle E-Learning Course Development" /></td>
 <td>Moodle E-Learning Course Development</td>
 <td>William Rice</td>
 <td>May 2006</td>
 <td>$35.99</td>
</tr>

Now we have to modify our sorting code to take this tag into account, without
disturbing the existing behavior for the Title column, which is working well. By
prepending the marked sort key to the key we have previously calculated, we can
sort first on the last name if it is called out, but on the whole string as a fallback:

Table Manipulation

[146]

$.each(rows, function(index, row) {
 var $cell = $(row).children('td').eq(column);
 row.sortKey = $cell.find('.sort-key').text().toUpperCase()
 + ' ' + $cell.text().toUpperCase();
});

Sorting by the Author(s) column now uses the last name:

If two last names are identical, the sort uses the entire string as a tiebreaker
for positioning.

Sorting Other Types of Data
Our sort routine should be able to handle not just the Title and Author columns, but
the Publish Dates and Price as well. Since we streamlined our comparator function,
it can handle all kinds of data, but the computed keys will need to be adjusted for
other data types. For example, in the case of prices we need to strip off the leading $
character and parse the rest, then compare them:

var key = parseFloat($cell.text().replace(/^[^\d.]*/, ''));
row.sortKey = isNaN(key) ? 0 : key;

The result of parseFloat() needs to be checked, because if no number can be
extracted from the text, NaN is returned, which can wreak havoc on .sort(). For the
date cells, we can use the JavaScript Date object:

row.sortKey = Date.parse('1 ' + $cell.text());

Chapter 7

[147]

The dates in this table contain a month and year only; Date.parse() requires
a fully‑specified date, so we prepend the string with 1. This provides a day to
complement the month and year, and the combination is then converted into a
timestamp, which can be sorted using our normal comparator.

We can apportion these expressions across separate functions, and call the
appropriate one based on the class applied to the table header:

$.fn.alternateRowColors = function() {
 $('tbody tr:odd', this).removeClass('even').addClass('odd');
 $('tbody tr:even', this).removeClass('odd').addClass('even');
 return this;
};

$(document).ready(function() {
 var alternateRowColors = function($table) {
 $('tbody tr:odd', $table).removeClass('even').addClass('odd');
 $('tbody tr:even', $table).removeClass('odd').addClass('even');
 };

 $('table.sortable').each(function() {
 var $table = $(this);
 $table.alternateRowColors($table);
 $('th', $table).each(function(column) {
 var findSortKey;
 if ($(this).is('.sort-alpha')) {
 findSortKey = function($cell) {
 return $cell.find('.sort-key').text().toUpperCase()
 + ' ' + $cell.text().toUpperCase();
 };
 }
 else if ($(this).is('.sort-numeric')) {
 findSortKey = function($cell) {
 var key = parseFloat($cell.text().replace(/^[^\d.]*/, ''));
 return isNaN(key) ? 0 : key;
 };
 }
 else if ($(this).is('.sort-date')) {
 findSortKey = function($cell) {
 return Date.parse('1 ' + $cell.text());
 };
 }
 if (findSortKey) {
 $(this).addClass('clickable').hover(function() {
 $(this).addClass('hover');
 }, function() {
 $(this).removeClass('hover');

Table Manipulation

[148]

 }).click(function() {
 var rows = $table.find('tbody > tr').get();
 $.each(rows, function(index, row) {
 row.sortKey =
 findSortKey($(row).children('td').eq(column));

 });
 rows.sort(function(a, b) {
 if (a.sortKey < b.sortKey) return -1;
 if (a.sortKey > b.sortKey) return 1;
 return 0;
 });
 $.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 row.sortKey = null;
 });
 $table.alternateRowColors($table);
 });
 }

 });
 });
});

The findSortKey variable doubles as the function to calculate the key and a flag to
indicate whether the column header is marked with a class making it sortable. We
can now sort on date or price:

Chapter 7

[149]

Column Highlighting
It can be a nice user interface enhancement to visually remind the user of what has
been done in the past. By highlighting the column that was most recently used for
sorting, we can focus the user's attention on the part of the table that is most likely to
be relevant. Fortunately, since we've already determined how to select the table cells
in the column, applying a class to those cells is simple:

$table.find('td').removeClass('sorted')
 .filter(':nth-child(' + (column + 1) + ')').addClass('sorted');

Note that we have to add one to the column index we found earlier, since the
:nth-child() selector is one-based rather than zero-based. With this code in place, we
get a highlighted column after any sort operation:

Alternating Sort Directions
Our final sorting enhancement is to allow for both ascending and descending sort
orders. When the user clicks on a column that is already sorted, we want to reverse
the current sort order.

To reverse a sort, all we have to do is to invert the values returned by our
comparator. We can do this with a simple variable:

if (a.sortKey < b.sortKey) return -newDirection;
if (a.sortKey > b.sortKey) return newDirection;

Table Manipulation

[150]

If newDirection equals 1, then the sort will be the same as before. If it equals -1, the
sort will be reversed. We can use classes to keep track of the current sort order
of a column:

$.fn.alternateRowColors = function() {
 $('tbody tr:odd', this).removeClass('even').addClass('odd');
 $('tbody tr:even', this).removeClass('odd').addClass('even');
 return this;
};

$(document).ready(function() {
 var alternateRowColors = function($table) {
 $('tbody tr:odd', $table).removeClass('even').addClass('odd');
 $('tbody tr:even', $table).removeClass('odd').addClass('even');
 };
 $('table.sortable').each(function() {
 var $table = $(this);
 $table.alternateRowColors($table);
 $('th', $table).each(function(column) {
 var findSortKey;
 if ($(this).is('.sort-alpha')) {
 findSortKey = function($cell) {
 return $cell.find('.sort-key').text().toUpperCase() + ' ' +
 $cell.text().toUpperCase();
 };
 }
 else if ($(this).is('.sort-numeric')) {
 findSortKey = function($cell) {
 var key = parseFloat($cell.text().replace(/^[^\d.]*/, ''));
 return isNaN(key) ? 0 : key;
 };
 }
 else if ($(this).is('.sort-date')) {
 findSortKey = function($cell) {
 return Date.parse('1 ' + $cell.text());
 };
 }
 if (findSortKey) {
 $(this).addClass('clickable').hover(function() {
 $(this).addClass('hover');
 }, function() {
 $(this).removeClass('hover');
 }).click(function() {
 var newDirection = 1;

Chapter 7

[151]

 if ($(this).is('.sorted-asc')) {

 newDirection = -1;

 }

 var rows = $table.find('tbody > tr').get();

 $.each(rows, function(index, row) {
 row.sortKey =
 findSortKey($(row).children('td').eq(column));
 });
 rows.sort(function(a, b) {

 if (a.sortKey < b.sortKey) return -newDirection;

 if (a.sortKey > b.sortKey) return newDirection;

 return 0;

 });

 $.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 row.sortKey = null;
 });
 $table.find('th').removeClass('sorted-asc')
 .removeClass('sorted-desc');
 var $sortHead = $table.find('th').filter('

 :nth-child(' + (column + 1) + ')');

 if (newDirection == 1) {

 $sortHead.addClass('sorted-asc');

 } else {

 $sortHead.addClass('sorted-desc');

 }

 $table.find('td').removeClass('sorted')
 .filter(':nth-child(' + (column + 1) + ')')
 .addClass('sorted');
 $table.alternateRowColors($table);
 });
 }
 });
 });
});

Table Manipulation

[152]

As a side benefit, since we use classes to store the sort direction we can style the
columns headers to indicate the current order as well:

Pagination
Sorting is a great way to wade through a large amount of data to find information.
We can also help the user focus on a portion of a large data set by paginating
the data. Pagination can be done in two ways—Server-Side Pagination and
JavaScript Pagination.

Server-Side Pagination
Much like sorting, pagination is often performed on the server. If the data to be
displayed is stored in a database, it is easy to pull out one chunk of information at a
time using MySQL's LIMIT clause, ROWNUM in Oracle, or equivalent methods in other
database engines.

As with our initial sorting example, pagination can be triggered by sending
information to the server in a query string, such as index.php?page=52. And again
as before, we can perform this task either with a full page load or by using AJAX to
pull in just one chunk of the table. This strategy is browser-independent, and can
handle large data sets very well.

Chapter 7

[153]

Sorting and Paging Go Together
Data that is long enough to benefit from sorting is likely long enough to be a
candidate for paging. It is not unusual to wish to combine these two techniques for
data presentation. Since they both affect the set of data that is present on a page,
though, it is important to consider their interactions while implementing them.

Both sorting and pagination can be accomplished either on the server or in the web
browser. However, we must keep the strategies for the two tasks in sync; otherwise,
we can end up with confusing behavior. Suppose, for example, that both sorting and
paging is done on the server:

When the table is re-sorted by number, a different set of rows is present on Page 1 of
the table. If paging is done by the server and sorting by the browser, the entire data
set is not available for the sorting routine, making the results incorrect:

Only the data already present on the page can be displayed. To prevent this from
being a problem, we must either perform both tasks on the server, or both in
the browser.

JavaScript Pagination
So, let's examine how we would add JavaScript pagination to the table we have
already made sortable in the browser. First, we'll focus on displaying a particular
page of data, disregarding user interaction for now:

Table Manipulation

[154]

$(document).ready(function() {
 $('table.paginated').each(function() {
 var currentPage = 0;
 var numPerPage = 10;
 var $table = $(this);
 $table.find('tbody tr').show()
 .lt(currentPage * numPerPage)
 .hide()
 .end()
 .gt((currentPage + 1) * numPerPage - 1)
 .hide()
 .end();
 });
});

This code displays the first page—ten rows of data.

Once again we rely on the presence of a <tbody> element to separate data from
headers; we don't want to have the headers or footers disappear when moving on to
the second page. For selecting the rows containing data, we show all the rows first,
then select the rows before and after the current page, hiding them. The method
chaining supported by jQuery makes another appearance here when we filter the set
of matched rows twice, using .end() in between to pop the current filter off the stack
and start afresh with a new filter.

The most error-prone task in writing this code is formulating the expressions to
use in the filters. To use the .lt() and .gt() methods, we need to find the indices
of the rows at the beginning and end of the current page. For the beginning row,
we just multiply the current page number by the number of rows on each page.
Multiplying the number of rows by one more than the current page number gives us
the beginning row of the next page; to find the last row of the current page, we must
subtract one from this.

Displaying the Pager
To add user interaction to the mix, we need to place the pager itself next to the table.
We could do this by simply inserting links for the pages in the HTML markup, but
this would violate the progressive enhancement principle we've been espousing.
Instead, we should add the links using JavaScript, so that users without scripting
available are not misled by links that cannot work.

To display the links, we need to calculate the number of pages and create a
corresponding number of DOM elements:

Chapter 7

[155]

var numRows = $table.find('tbody tr').length;
var numPages = Math.ceil(numRows / numPerPage);

var $pager = $('<div class="pager"></div>');
for (var page = 0; page < numPages; page++) {
 $('' + (page + 1) + '')
 .appendTo($pager).addClass('clickable');
}
$pager.insertBefore($table);

The number of pages can be found by dividing the number of data rows by the
number of items we wish to display on each page. If the division does not yield an
integer, we must round the result up using Math.ceil() to ensure that the final
partial page will be accessible. Then, with this number in hand, we create buttons for
each page and position the new pager before the table:

Enabling the Pager Buttons
To make these new buttons actually work, we need to update the currentPage
variable and then run our pagination routine. At first blush, it seems we should be
able to do this by setting currentPage to page, which is the current value of the
iterator that creates the buttons:

$(document).ready(function() {
 $('table.paginated').each(function() {
 var currentPage = 0;
 var numPerPage = 10;
 var $table = $(this);

Table Manipulation

[156]

 var repaginate = function() {
 $table.find('tbody tr').show()
 .lt(currentPage * numPerPage)
 .hide()
 .end()
 .gt((currentPage + 1) * numPerPage - 1)
 .hide()
 .end();
 };
 var numRows = $table.find('tbody tr').length;
 var numPages = Math.ceil(numRows / numPerPage);
 var $pager = $('<div class="pager"></div>');
 for (var page = 0; page < numPages; page++) {
 $('' + (page + 1) + '')
 .click(function() {
 currentPage = page;
 repaginate();
 })
 .appendTo($pager).addClass('clickable');
 }
 $pager.insertBefore($table);
 repaginate();
 });
});

This mostly works. The new repaginate() function is called when the page loads
and when any button is clicked. All of the buttons take us to a page with no rows on
it, though:

The problem is that in defining our click handler, we have created a closure. The
click handler refers to the page variable, which is defined outside the function.
When the variable changes the next time through the loop, this affects the click
handlers that we have already set up for the earlier buttons. The net effect is that, for
a pager with 7 pages, each button directs us to page 8 (the final value of page). More
information on how closures work can be found in Appendix C, JavaScript Closures.

To correct this problem, we'll take advantage of one of the more advanced features
of jQuery's event binding methods. We can add a set of data to the handler when
we bind it that will still be available when the handler is eventually called. With this
capability in our bag of tricks, we can write:

Chapter 7

[157]

$('' + (page + 1) + '')
 .bind('click', {'newPage': page}, function(event) {
 currentPage = event.data['newPage'];
 repaginate();
 })
 .appendTo($pager).addClass('clickable');

The new page number is passed into the handler by way of the event's data
property. In this way the page number escapes the closure, and is frozen in time at
the value it contained when the handler was bound. Now our pager buttons can
correctly take us to different pages:

Marking the Current Page
Our pager can be made more user-friendly by highlighting the current page number.
We just need to update the classes on the buttons every time one is clicked:

var $pager = $('<div class="pager"></div>');
for (var page = 0; page < numPages; page++) {
 $('' + (page + 1) + '')
 .bind('click', {'newPage': page}, function(event) {
 currentPage = event.data['newPage'];
 repaginate();
 $(this).addClass('active').siblings().removeClass('active');
 })
 .appendTo($pager).addClass('clickable');
}
$pager.find('span.page-number:first').addClass('active');
$pager.insertBefore($table);

Table Manipulation

[158]

Now we have an indicator of the current status of the pager:

Paging with Sorting
We began this discussion by noting that sorting and paging controls needed to be
aware of one another to avoid confusing results. Now that we have a working pager,
we need to make sort operations respect the current page selection.

Doing this is as simple as calling our repaginate() function whenever a sort is
performed. The scope of the function, though, makes this problematic. We can't
reach repaginate() from our sorting routine because it is contained inside a
different $(document).ready() handler. We could just consolidate the two pieces of
code, but instead let's be a bit sneakier. We can decouple the behaviors, so that a sort
calls the repaginate behavior if it exists, but ignores it otherwise. To accomplish this,
we'll use a handler for a custom event.

In our earlier event handling discussion, we limited ourselves to event names that
were triggered by the web browser, such as click and mouseup. The .bind() and
.trigger() methods are not limited to these events, though; we can use any string
as an event name. In this case, we can define a new event called repaginate as a
stand-in for the function we've been calling:

$table.bind('repaginate', function() {
 $table.find('tbody tr').show()
 .lt(currentPage * numPerPage)
 .hide()
 .end()

Chapter 7

[159]

 .gt((currentPage + 1) * numPerPage - 1)
 .hide()
 .end();
});

Now in places where we were calling repaginate(), we can call:

$table.trigger('repaginate');

We can issue this call in our sort code as well. It will do nothing if the table does not
have a pager, so we can mix and match the two capabilities as desired.

The Finished Code
The completed sorting and paging code in its entirety follows:

$.fn.alternateRowColors = function() {
 $('tbody tr:odd', this).removeClass('even').addClass('odd');
 $('tbody tr:even', this).removeClass('odd').addClass('even');
 return this;
};

$(document).ready(function() {
 var alternateRowColors = function($table) {
 $('tbody tr:odd', $table).removeClass('even').addClass('odd');
 $('tbody tr:even', $table).removeClass('odd').addClass('even');
 };

 $('table.sortable').each(function() {
 var $table = $(this);
 $table.alternateRowColors($table);
 $table.find('th').each(function(column) {
 var findSortKey;

 if ($(this).is('.sort-alpha')) {
 findSortKey = function($cell) {
 return $cell.find('.sort-key').text().toUpperCase() +
 ' ' + $cell.text().toUpperCase();
 };
 }
 else if ($(this).is('.sort-numeric')) {
 findSortKey = function($cell) {
 var key = parseFloat($cell.text().replace(/^[^\d.]*/, ''));
 return isNaN(key) ? 0 : key;
 };

Table Manipulation

[160]

 }
 else if ($(this).is('.sort-date')) {
 findSortKey = function($cell) {
 return Date.parse('1 ' + $cell.text());
 };
 }

 if (findSortKey) {
 $(this).addClass('clickable').hover(function() {
 $(this).addClass('hover');
 }, function() {
 $(this).removeClass('hover');
 }).click(function() {
 var newDirection = 1;
 if ($(this).is('.sorted-asc')) {
 newDirection = -1;
 }

 rows = $table.find('tbody > tr').get();

 $.each(rows, function(index, row) {
 row.sortKey =
 findSortKey($(row).children('td').eq(column));
 });
 rows.sort(function(a, b) {
 if (a.sortKey < b.sortKey) return -newDirection;
 if (a.sortKey > b.sortKey) return newDirection;
 return 0;
 });
 $.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 row.sortKey = null;
 });

 $table.find('th').removeClass('sorted‑asc')
 .removeClass('sorted-desc');
 var $sortHead = $table.find('th').filter(':nth-child('
 + (column + 1) + ')');
 if (newDirection == 1) {
 $sortHead.addClass('sorted-asc');
 } else {
 $sortHead.addClass('sorted-desc');
 }
 $table.find('td').removeClass('sorted')
 .filter(':nth-child(' + (column + 1) + ')')
 .addClass('sorted');

Chapter 7

[161]

 $table.alternateRowColors($table);
 $table.trigger('repaginate');
 });
 }
 });
 });
});
$(document).ready(function() {
 $('table.paginated').each(function() {
 var currentPage = 0;
 var numPerPage = 10;

 var $table = $(this);

 $table.bind('repaginate', function() {
 $table.find('tbody tr').show()
 .lt(currentPage * numPerPage)
 .hide()
 .end()
 .gt((currentPage + 1) * numPerPage - 1)
 .hide()
 .end();
 });

 var numRows = $table.find('tbody tr').length;
 var numPages = Math.ceil(numRows / numPerPage);

 var $pager = $('<div class="pager"></div>');
 for (var page = 0; page < numPages; page++) {
 $('' + (page + 1) + '')
 .bind('click', {'newPage': page}, function(event) {
 currentPage = event.data['newPage'];
 $table.trigger('repaginate');
 $(this).addClass('active').siblings().removeClass('active');
 })
 .appendTo($pager).addClass('clickable');
 }
 $pager.find('span.page-number:first').addClass('active');
 $pager.insertBefore($table);

 $table.trigger('repaginate');
 });
});

Table Manipulation

[162]

Advanced Row Striping
As we saw earlier in the chapter, row striping can be as simple as two lines of code to
alternate the background color:

$(document).ready(function() {
 $('table.sortable tbody tr:odd').addClass('odd');

 $('table.sortable tbody tr:even').addClass('even');

});

If we declare background colors for the odd and even classes as follows, we can see
the rows in alternating shades of gray:

tr.even {
 background-color: #eee;
}
tr.odd {
 background-color: #ddd;
}

While this code works fine for simple table structures, if we introduce non‑standard
rows into the table, such as sub-headings, the basic odd-even pattern no longer
suffices. For example, suppose we have a table of news items grouped by year, with
columns for date, headline, author, and topic. One way to express this information is
to wrap each year's news items in a <tbody> element and use <th colspan="4"> for
the subheading. Such a table's HTML (in abridged form) would look like this:

<table class="striped">
 <thead>
 <tr>
 <th>Date</th>
 <th>Headline</th>
 <th>Author</th>
 <th class="filter-column">Topic</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th colspan="4">2007</th>
 </tr>
 <tr>
 <td>Mar 11</td>
 <td>SXSWi jQuery Meetup</td>
 <td>John Resig</td>

Chapter 7

[163]

 <td>conference</td>
 </tr>
 <tr>
 <td>Feb 28</td>
 <td>jQuery 1.1.2</td>
 <td>John Resig</td>
 <td>release</td>
 </tr>
 <tr>
 <td>Feb 21</td>
 <td>jQuery is OpenAjax Compliant</td>
 <td>John Resig</td>
 <td>standards</td>
 </tr>
 <tr>
 <td>Feb 20</td>
 <td>jQuery and Jack Slocum's Ext</td>
 <td>John Resig</td>
 <td>third-party</td>
 </tr>
 </tbody>
 <tbody>
 <tr>
 <th colspan="4">2006</th>
 </tr>
 <tr>
 <td>Dec 27</td>
 <td>The Path to 1.1</td>
 <td>John Resig</td>
 <td>source</td>
 </tr>
 <tr>
 <td>Dec 18</td>
 <td>Meet The People Behind jQuery</td>
 <td>John Resig</td>
 <td>announcement</td>
 </tr>
 <tr>
 <td>Dec 13</td>
 <td>Helping you understand jQuery</td>
 <td>John Resig</td>
 <td>tutorial</td>
 </tr>

Table Manipulation

[164]

 </tbody>
 <tbody>
 <tr>
 <th colspan="4">2005</th>
 </tr>
 <tr>
 <td>Dec 17</td>
 <td>JSON and RSS</td>
 <td>John Resig</td>
 <td>miscellaneous</td>
 </tr>
 </tbody>
</table>

With separate CSS styles applied to <th> elements within <thead> and <tbody>, a
snippet of the table might look like this:

Chapter 7

[165]

To ensure that the alternating gray rows do not override the color of the subheading
rows, we need to adjust the selector expression:

$(document).ready(function() {
 $('table.striped tbody tr:not([th]):odd').addClass('odd');
 $('table.striped tbody tr:not([th]):even').addClass('even');
});

The added selector, :not([th]), removes any table row that contains a <th> from
the matched set of elements. Now the table will look like this:

Three-color Alternating Pattern
There may be times when we want to apply more complex striping. For example, we
can apply a pattern of three alternating row colors rather than just two. To do so, we
first need to define another CSS rule for the third row. We'll also reuse the odd and
even styles for the other two, but add more appropriate class names for them:

tr.even,
tr.first {
 background-color: #eee;

Table Manipulation

[166]

}
tr.odd,
tr.second {
 background-color: #ddd;
}
tr.third {
 background-color: #ccc;
}

To apply this pattern, we start the same way as the previous example—by selecting
all rows that are descendants of a <tbody>, but filtering out the rows that contain a
<th>. This time, however, we attach the .each() method so that we can use its
built-in index:

$(document).ready(function() {
 $('table.striped tbody tr').not('[th]').each(function(index) {
 //Code to be applied to each element in the matched set.
 });
});

To make use of the index, we can assign our three classes to a numeric key: 0, 1, or 2.
We'll do this by creating an object, or map:

$(document).ready(function() {
 var classNames = {
 0: 'first',
 1: 'second',
 2: 'third'
 };
 $('table.striped tbody tr').not('[th]').each(function(index) {
 // Code to be applied to each element in the matched set.
 });
});

Finally, we need to add the class that corresponds to those three numbers,
sequentially, and then repeat the sequence. The modulus operator, designated by a
%, is especially convenient for such calculations. A modulus returns the remainder
of one number divided by another. This modulus, or remainder value, will always
range between 0 and one less than the dividend. Using 3 as an example, we can see
this pattern:

3/3 = 1, remainder 0.

4/3 = 1, remainder 1.

5/3 = 1, remainder 2.

Chapter 7

[167]

6/3 = 2, remainder 0.

7/3 = 2, remainder 1.

8/3 = 3, remainder 2.

And so on. Since we want the remainder range to be 0 – 2, we can use 3 as the
divisor (second number) and the value of index as the dividend (first number). Now
we simply put that calculation in square brackets after classNames to retrieve the
corresponding class from the object variable as the .each() method steps through
the matched set of rows:

$(document).ready(function() {
 var classNames = {
 0: 'first',
 1: 'second',
 2: 'third'
 };
 $('table.striped tbody tr').not('[th]').each(function(index) {
 $(this).addClass(classNames[index % 3]);
 });
});

With this code in place, we now have the table striped with three alternating
background colors:

Table Manipulation

[168]

We could of course extend this pattern to four, five, six, or more background colors
by adding key-value pairs to the object variable and increasing the value of the
divisor in classNames[index % n].

Alternating Triplets
Suppose we want to use two colors, but have each one display three rows at a time.
For this, we can employ the odd and even classes again, as well as the modulus
operator. But we'll also reset the class each time we're presented with a row
containing <th> elements.

If we don't reset the alternating row class, we may be faced with unexpected colors
after the first group of rows is striped. So far, our example table has avoided such
problems because the first group consists of 12 rows, which, conveniently, is divisible
by both 2 and 3. For the triplet striping scenario, we'll remove two rows, leaving us
with 10 in the first group, to emphasize the class resetting.

We begin this striping technique by setting two variables, rowClass and rowIndex.
We'll use the .each() method this time as well, but rather than relying on the
built-in index, we'll use a custom rowIndex variable so that we can reset it on the
rows with <th>:

$(document).ready(function() {
 var rowClass = 'even';
 var rowIndex = 0;
 $('table.striped tbody tr').each(function(index) {
 $(this).addClass(rowClass);
 });
});

Notice that since we have removed the :not([th]) selector, we'll have to account
for those subheading rows within the .each(). But first, let's get the triplet
alternation working properly. So far, every <tr> will become <tr class="even">.
For each row, we can check to see if the rowIndex % 3 equals 0. If it does, we toggle
the value of rowClass. Then we increment the value of rowIndex:

$(document).ready(function() {
 var rowClass = 'even';
 var rowIndex = 0;
 $('table.striped tbody tr').each(function(index) {
 if (rowIndex % 3 == 0) {
 rowClass = (rowClass == 'even' ? 'odd' : 'even');
 };
 $(this).addClass(rowClass);
 rowIndex++;
 });
});

Chapter 7

[169]

A ternary, or conditional, operator is used to set the changed value of rowClass
because of its succinctness. That single line could be rewritten as:

 if (rowClass == 'even') {
 rowClass = 'odd';
 } else {
 rowClass = 'even';
 }

In either case, the code now produces table striping that looks like this:

Perhaps surprisingly, the subheading rows have retained their proper formatting.
But let's not be fooled by appearances. The 2007 subheading row is now set in the
HTML as <tr class="odd"> and the 2006 row has <tr class="even">. In the
stylesheet, however, the greater specificity of the element's rule outweighs that of the
two classes:

#content tbody th {
 background-color: #6f93ce;
 padding-left: 6px;
}
tr.even {
 background-color: #eee;

Table Manipulation

[170]

}
tr.odd {
 background-color: #ddd;
}

Nevertheless, because the rowIndex numbering does not account for these
subheading rows, we have mis-classed rows from the start; this is evident because
the first striping color change occurs after two rows rather than three.

We need to include another condition, checking if the current row contains a <th>. If
it does, we'll set the value of rowClass to subhead and set rowIndex to -1:

$(document).ready(function() {
 var rowClass = 'even';
 var rowIndex = 0;
 $('table.striped tbody tr').each(function(index) {
 if ($('th', this).length) {
 rowClass = 'subhead';
 rowIndex = -1;
 } else if (rowIndex % 3 == 0) {
 rowClass = (rowClass == 'even' ? 'odd' : 'even');
 };
 $(this).addClass(rowClass);
 rowIndex++;
 });
});

With rowIndex at -1 for the subheading rows, the variable will be incremented to 0
for the next row—precisely where we want it to start for each group of striped rows.
Now we can see the striping with each year's articles beginning with three light
colored rows and alternating three at a time between lighter and darker:

Chapter 7

[171]

A final note about this striping code—while the ternary operator is indeed concise, it
can get confusing when the conditions get more complex. The sophisticated striping
variations can be more easily managed by using basic if-else conditions instead:

$(document).ready(function() {
 var rowIndex = 0;
 $('tbody tr').each(function(index) {
 if ($('th',this).length) {
 $(this).addClass('subhead');
 rowIndex = -1;
 } else {
 if (rowIndex % 6 < 3) {
 $(this).addClass('even');
 }
 else {
 $(this).addClass('odd');
 }
 };
 rowIndex++;
 });
});

Table Manipulation

[172]

Now we've achieved the same effect as before, but also made it easier to include
additional else if conditions.

Row Highlighting
Another visual enhancement that we can apply to our news article table is row
highlighting based on user interaction. Here we'll respond to clicking on an author's
name by highlighting all rows that have the same name in their author cell. Just as
we did with the row striping, we can modify the appearance of these highlighted
rows by adding a class:

#content tr.highlight {
 background: #ff6;
}

It's important that we give this new highlight class adequate specificity for the
background color to override that of the even and odd classes.

Now we need to select the appropriate cell and attach the .click() method to it:

$(document).ready(function() {
 var column = 3;
 $('table.striped td:nth-child(' + column + ')')
 .click(function() {
 // Do something on click.
 });
});

Notice that we use the :nth-child(n) pseudo-class as part of the selector
expression, but rather than simply including the number of the child element,
we pass in the column variable. We'll need to refer to the same nth-child again,
so using a variable allows us to change it in only one place if we later decide to
highlight based on a different column.

Unlike JavaScript indices, the CSS-based :nth-child(n) pseudo-class
begins numbering at 1, not 0.

When the user clicks a cell in the third column, we want the cell's text to be compared
to that of the same column's cell in every other row. If it matches, the highlight
class will be toggled. In other words, the class will be added if it isn't already there
and removed if it is. This way, we can click on an author cell to remove the row
highlighting if that cell or one with the same author has already been clicked:

Chapter 7

[173]

$(document).ready(function() {
 $('table.striped td:nth-child(' + column + ')')
 .click(function() {
 var thisClicked = $(this).text();
 $('table.striped td:nth-child(' + column + ')')
 .each(function(index) {
 if (thisClicked == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 };
 });
 });
})

The code is working well at this point, except when a user clicks on two authors'
names in succession. Rather than switching the highlighted rows from one author
to the next as we might expect, it adds the second clicked author's rows to the group
that has class="highlight". To avoid this behavior, we can add an else statement
to the code, removing the highlight class for any row that does not have the same
author name as the one clicked:

$(document).ready(function() {
 $('table.striped td:nth-child(' + column + ')')
 .click(function() {
 var thisClicked = $(this).text();
 $('table.striped td:nth-child(' + column + ')')
 .each(function(index) {
 if (thisClicked == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 } else {
 $(this).parent().removeClass('highlight');
 };
 });
 });
})

Table Manipulation

[174]

Now when we click on Rey Bango, for example, we can see all of his articles much
more easily:

If we then click on John Resig's name in any one of the cells, the highlighting will be
removed from Rey Bango's rows and added to John's.

Tooltips
Although the row highlighting might be a useful feature, so far it's not apparent to
the user that the feature even exists. We can begin to remedy this situation by giving
all author cells a clickable class, which will change the cursor to a pointer when a
user hovers the mouse cursor over them:

$(document).ready(function() {
 $('table.striped td:nth-child(' + column + ')')
 .addClass('clickable')
 .click(function() {
 var thisClicked = $(this).text();
 $('table.striped td:nth-child(' + column + ')')

Chapter 7

[175]

 .each(function(index) {
 if (thisClicked == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 } else {
 $(this).parent().removeClass('highlight');
 };
 });
 })
})

The clickable class is a step in the right direction, for sure, but it still doesn't tell
the user what will happen when the cell is clicked. As far as anyone knows (without
looking at the code, of course) that clicking could send the user to another page.
Some further indication of what will happen upon clicking is in order.

Tooltips are a familiar feature of many software applications, including web
browsers. We can simulate a tooltip with custom text, such as Click to highlight all
rows authored by Rey Bango, when the mouse hovers over one of the author cells.
This way, we can alert users to the effect their action will have.

We're going to create three functions—showTooltip, hideTooltip, and
positionTooltip—outside any event handlers and then call or reference them as
we need them. Let's start with positionTooltip, which we'll reference when the
mouse moves over any of the author cells:

 var positionTooltip = function(event) {
 var tPosX = event.pageX - 5;
 var tPosY = event.pageY + 20;
 $('div.tooltip').css({top: tPosY, left: tPosX});
 };

Here we use the pageX and pageY properties of event to set the top and left positions
of the tooltip. When we reference the function in the .mousemove() method, tPosX
will refer to 5 pixels to the left of the mouse cursor while tPosY will refer to 20 pixels
below the cursor. We can attach this method to the same chain as the one being used
already for .click():

$(document).ready(function() {
 var positionTooltip = function(event) {
 var tPosX = event.pageX - 5;
 var tPosY = event.pageY + 20;
 $('div.tooltip').css({top: tPosY, left: tPosX});
 };

 $('table.striped td:nth-child(' + column + ')')
 .addClass('clickable')

Table Manipulation

[176]

 .click(function() {
// ...Code continues...
 })
 .mousemove(positionTooltip);
});

So, we've positioned the tooltip already, but we still haven't created it. That will be
done in the showTooltip function.

The first thing that we do in the showTooltip function is remove all tooltips. This
may seem counterintuitive, but if we are going to show the tooltip each time the
mouse cursor hovers over an author cell; we don't want a proliferation of these
tooltips appearing with each new cell hovered over:

 var showTooltip = function(event) {
 $('div.tooltip').remove();
 };

Now we're ready to create the tooltip. We can wrap the entire <div> and its contents
in a $() function and then append it to the document's body:

 var showTooltip = function(event) {
 $('div.tooltip').remove();
 var $thisAuthor = $(this).text();
 $('<div class="tooltip">Click to highlight all articles
 written by ' + $thisAuthor + '</div>')
 .appendTo('body');
 };

When the mouse cursor hovers over an author cell with Rey Bango in it, the tooltip
will read, Click to highlight all articles written by Rey Bango. Unfortunately, the
tooltip will appear at the bottom of the page. That's where the positionTooltip
function comes in. We simply place that at the end of the showTooltip function:

 var showTooltip = function(event) {
 $('div.tooltip').remove();
 var $thisAuthor = $(this).text();
 $('<div class="tooltip">Click to highlight all articles
 written by ' + $thisAuthor + '</div>')
 .appendTo('body');
 positionTooltip(event);
 };

Chapter 7

[177]

The tooltip still won't be positioned correctly, though, unless we free it from its
default postion:static property. We can do that in the stylesheet:

.tooltip {
 position: absolute;
 z-index: 2;
 background: #efd;
 border: 1px solid #ccc;
 padding: 3px;
}

The style rule also gives the tooltip a z-index higher than that of the surrounding
elements to ensure that it is layered on top of them, as well as sprucing it up with a
background color, a border, and some padding.

Finally, we write a simple hideTooltip function:

var hideTooltip = function() {
 $('div.tooltip').remove();
};

And now that we have functions for showing, hiding, and positioning the tooltip, we
can reference them at the appropriate places in our code:

$(document).ready(function() {
 var column = 3;
 // Position the tooltip.
 var positionTooltip = function(event) {
 var tPosX = event.pageX - 5;
 var tPosY = event.pageY + 20;
 $('div.tooltip').css({top: tPosY, left: tPosX});
 };
 // Show (create) the tooltip.
 var showTooltip = function(event) {
 $('div.tooltip').remove();
 var $thisAuthor = $(this).text();
 $('<div class="tooltip">Click to highlight all articles written
 by ' + $thisAuthor + '</div>').appendTo('body');
 positionTooltip(event);
 };
 // Hide (remove) the tooltip.
 var hideTooltip = function() {
 $('div.tooltip').remove();
 };
 $('table.striped td:nth-child(' + column + ')')
 .addClass('clickable')
 .click(function(event) {

Table Manipulation

[178]

 var thisClicked = $(this).text();
 $('table.striped td:nth-child(' + column + ')'
).each(function(index) {
 if (thisClicked == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 } else {
 $(this).parent().removeClass('highlight');
 };
 });
 })
 .hover(showTooltip, hideTooltip)
 .mousemove(positionTooltip);
})

Note that the .hover() and .mousemove() methods are referencing functions that
are defined elsewhere. As such, the functions take no parentheses. Also, because
positionTooltip(event) is called inside showTooltip, the tooltip is immediately
positioned on hover; it then continues to be referenced as the mouse cursor is moved
over the cell due to the function's placement inside the .mousemove() method. The
tooltip now looks like this:

Everything works fine now, with a tooltip that appears when we hover over an
author cell, moves with the mouse movement, and disappears when we move
the mouse cursor out of the cell. The only problem is that the tooltip continues to
suggest clicking on a cell to highlight the articles even after those articles have
been highlighted:

Chapter 7

[179]

What we need is a way to change the tooltip if the row has the highlight class.
Fortunately, we have the showTooltip function, in which we can place a conditional
test to check for the class. If the current cell's parent <tr> has the highlight class,
we add un- in front of the word highlight when we create the tooltip:

$(document).ready(function() {
 var highlighted = "";
 // Code continues...
 var showTooltip = function(event) {
 $('div.tooltip').remove();
 var $thisAuthor = $(this).text();
 if ($(this).parent().is('.highlight')) {
 highlighted = 'un-';
 } else {
 highlighted = '';
 };
 $('<div class="tooltip"> Click to '
 + highlighted + 'highlight all articles written by '
 + $thisAuthor + '</div>').appendTo('body');
 positionTooltip(event);
 };
};

Our tooltip task would now be finished were it not for the need to trigger the
tooltip‑changing behavior when a cell is clicked as well. For that, we need to call the
showTooltip function inside the .click() event handler:

$(document).ready(function() {
 // Code continues...
 .click(function(event) {

Table Manipulation

[180]

 var thisClicked = $(this).text();
 $('table.striped td:nth-child(' + column + ')'
).each(function(index) {
 if (thisClicked == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 } else {
 $(this).parent().removeClass('highlight')
 };
 });
 showTooltip.call(this, event);
 })
 // Code continues...
});

By using the JavaScript call() function, we can invoke showTooltip as if it
were defined within the .click() handler. Therefore, this inherits the scope of
.click(). Additionally, we pass in event so that we can use its pageX and pageY
information for the positioning.

Now the tooltip offers a more intelligent suggestion when the hovered row is
already highlighted.

Collapsing and Expanding
When large sets of data are grouped in tables, as each year's set of articles are in our
News page, collapsing, or hiding, a section's contents can be a convenient way to get
a broad view of all of the table's data without having to scroll so much.

Chapter 7

[181]

To make the sections of the news article table collapsible, we first prepend a
minus‑symbol image to each subheading row's first cell. The image is inserted with
JavaScript, because if JavaScript is not available for the row collapsing, the image
might confuse those who expect clicking on it to actually trigger some kind of event:

$(document).ready(function() {
 var toggleMinus = '../icons/bullet_toggle_minus.png';
 var togglePlus = '../icons/bullet_toggle_plus.png';
 var $subHead = $('tbody th:first-child');
 $subHead.prepend('<img src="' + toggleMinus + '"
 alt="collapse this section" />');
});

Note that we set variables for the location of both a minus‑symbol and a plus‑symbol
image. This way we can change the image's src attribute when the image is clicked
and the rows are collapsed or expanded.

Next we use the .addClass() method to make the newly created images
appear clickable:

$(document).ready(function() {
 var toggleMinus = '../icons/bullet_toggle_minus.png';
 var togglePlus = '../icons/bullet_toggle_plus.png';
 var $subHead = $('tbody th:first-child');
 $subHead.prepend('<img src="' + toggleMinus + '"
 alt="collapse this section" />');
 $('img', $subHead).addClass('clickable');

});

Finally, we can add code inside a .click() method to do the collapsing and
expanding. A condition will check the current value of the clicked image's src
attribute. If it equals the file path represented by the toggleMinus variable, then
all of the other <tr> elements within the same <tbody> will be hidden, and the src
attribute will be set to the value of the togglePlus variable. Otherwise, these <tr>
elements will be shown and the src will change back to the value of toggleMinus:

$(document).ready(function() {
 var toggleMinus = '../icons/bullet_toggle_minus.png';
 var togglePlus = '../icons/bullet_toggle_plus.png';
 var $subHead = $('tbody th:first-child');
 $subHead.prepend('<img src="' + toggleMinus + '"
 alt="collapse this section" />');
 $('img', $subHead).addClass('clickable')
 .click(function() {
 var toggleSrc = $(this).attr('src');
 if (toggleSrc == toggleMinus) {

Table Manipulation

[182]

 $(this).attr('src', togglePlus)
 .parents('tr').siblings().fadeOut('fast');
 } else{
 $(this).attr('src', toggleMinus)
 .parents('tr').siblings().fadeIn('fast');
 };
 });
})

With this code in place, clicking on the minus-symbol image next to 2007 makes the
table look like this:

The 2007 news articles aren't removed; they are just hidden until we click the
plus‑symbol image that now appears in that row.

Table rows present particular obstacles to animation, since browsers use different
values (table-row and block) for their visible display property. The .hide() and
.show() methods, without animation, are always safe to use with table rows. As of
jQuery version 1.1.3, .fadeIn() and .fadeOut() can be used as well.

Filtering
Earlier we examined sorting and paging as techniques for helping users focus on
relevant portions of a table's data. We saw that both could be implemented either
with server‑side technology or with JavaScript. Filtering completes this arsenal of
data arrangement strategies. By displaying to the user only the table rows that match
a given criterion, we can strip away needless distractions.

We have already seen how to perform a type of filter, highlighting a set of rows.
Now we will extend this idea to actually hiding rows that don't match the filter.

Chapter 7

[183]

We can begin by creating a place to put our filter buttons. In typical fashion, we
insert these controls using JavaScript so that people without scripting available do
not see the options:

$(document).ready(function() {
 $('table.filterable').each(function() {
 var $table = $(this);
 $table.find('th').each(function (column) {
 if ($(this).is('.filter-column')) {
 var $filters = $('<div class="filters"><h3>Filter by '
 + $(this).text() + ':</h3></div>');
 $filters.insertBefore($table);
 }
 });
 });
});

We get the label for the filter box from the column headers, so that this code can be
reused for other tables quite easily. Now we have a heading awaiting some buttons:

Filter Options
Now we can move on to actually implementing a filter. To start with, we will add
filters for a couple of known topics. The code for this is quite similar to the author
highlighting example from before:

var keywords = ['conference', 'release'];
$.each(keywords, function (index, keyword) {
 $('<div class="filter"></div>').text(keyword).bind('click',
 {'keyword': keyword}, function(event) {

Table Manipulation

[184]

 $table.find('tbody tr').each(function() {
 if ($('td', this).filter(':nth-child(' + (column + 1) +
 ')').text() == event.data['keyword']) {
 $(this).show();
 }
 else if ($('th',this).length == 0){
 $(this).hide();
 }
 });

 $(this).addClass('active').siblings().removeClass('active');
 }).addClass('clickable').appendTo($filters);
});

Starting with a static array of keywords to filter by, we loop through and create a
button for each. Just as in the paging example, we need to use the data parameter
of .bind() to avoid accidental closure problems. Then, in the click handler, we
compare each cell against the keyword and hide the row if there is no match. We
must check whether the row is a subheader, to avoid hiding those in the process.

Both of the buttons now work as advertised:

Collecting Filter Options from Content
Now we need to expand the filter options to cover the range of available topics in the
table. Rather than hard-coding all of the topics, we can gather them from the text that
has been entered in the table. We can change the definition of keywords to read:

var keywords = {};
$table.find('tbody tr td').filter(':nth-child(' + (column + 1) +
 ')').each(function() {
 keywords[$(this).text()] = $(this).text();
});

Chapter 7

[185]

This code relies on two tricks:

By using a map rather than an array to hold the keywords as they are found,
we eliminate duplicates automatically.
jQuery's $.each() function lets us operate on arrays and maps identically, so
no later code has to change. Now we have a full complement of filter options:

Reversing the Filters
For completeness, we need a way to get back to the full list after we have filtered it.
Adding an option for all topics is pretty straightforward:

$('<div class="filter">all</div>').click(function() {
 $table.find('tbody tr').show();
 $(this).addClass('active').siblings().removeClass('active');
}).addClass('clickable active').appendTo($filters);

This gives us an all button that simply shows all rows of the table again. For good
measure we mark it as active to begin with.

Interacting with Other Code
We learned with our sorting and paging code that we can't treat the various features
we write as islands. The behaviors we build can interact in sometimes surprising
ways; for this reason, it is worth revisiting our earlier efforts to examine how they
coexist with the new filtering capabilities we have added.

Row Striping
The advanced row striping we put in place earlier is confused by our new filters.
Since the tables are not re-striped after a filter is performed, rows retain their
coloring as if the filtered rows were still present.

•

•

Table Manipulation

[186]

To account for the filtered rows, the striping code needs to be able to find them. We
can add a class on the rows when they are filtered:

$(document).ready(function() {
 $('table.filterable').each(function() {
 var $table = $(this);

 $table.find('th').each(function (column) {
 if ($(this).is('.filter-column')) {
 var $filters = $('<div class="filters"><h3>Filter by ' +
 $(this).text() + ':</h3></div>');
 var keywords = {};

 $table.find('tbody tr td').filter(':nth-child(' + (column +
 1) + ')').each(function() {
 keywords[$(this).text()] = $(this).text();
 });

 $('<div class="filter">all</div>').click(function() {
 $table.find('tbody tr').show().removeClass('filtered');

 $(this).addClass('active').siblings().removeClass('active');
 $table.trigger('stripe');

 }).addClass('clickable active').appendTo($filters);

 $.each(keywords, function (index, keyword) {
 $('<div class="filter"></div>').text(keyword).bind('click',
 {'keyword': keyword}, function(event) {
 $table.find('tbody tr').each(function() {
 if ($('td', this).filter(':nth-child(' + (column + 1) +
 ')').text() == event.data['keyword']) {
 $(this).show().removeClass('filtered');

 }
 else if ($('th',this).length == 0) {
 $(this).hide().addClass('filtered');

 }
 });

 $(this).addClass('active').siblings().removeClass('active');
 $table.trigger('stripe');

 }).addClass('clickable').appendTo($filters);

 });
 $filters.insertBefore($table);
 }
 });
 });
});

Chapter 7

[187]

Whenever the current filter changes, we trigger the stripe event. This uses the same
trick we implemented when making our pager aware of sorting—adding a new
custom event. We have to rewrite the striping code to define this event:

$(document).ready(function() {
 $('table.striped').each(function() {

 $(this).bind('stripe', function() {

 var rowIndex = 0;
 $('tbody tr:not(.filtered)', this).each(function(index) {

 if ($('th',this).length) {
 $(this).addClass('subhead');
 rowIndex = -1;
 } else {
 if (rowIndex % 6 < 3) {
 $(this).removeClass('odd').addClass('even');

 }
 else {
 $(this).removeClass('even').addClass('odd');

 }
 };
 rowIndex++;
 });
 });

 $(this).trigger('stripe');

 });

});

The selector to find table rows now skips filtered rows. We also must remove
obsolete classes from rows, as this code may now be executed multiple times. With
both the new event handler and its triggers in place, the filtering operation respects
row striping:

Table Manipulation

[188]

Expanding and Collapsing
The expanding and collapsing behavior added earlier also conflicts with our filters.
If a section is collapsed and a new filter is chosen, then the matching items are
displayed, even if in the collapsed section. Conversely, if the table is filtered and a
section is expanded, then all items in the expanded section are displayed regardless
of whether they match the filter.

Since we have added the filtered class to all rows when they are removed by a
filter button, we can check for this class inside our collapser's click handler:

var toggleSrc = $(this).attr('src');
if (toggleSrc == toggleMinus) {
 $(this).attr('src', togglePlus)
 .parents('tr').siblings().addClass('collapsed').fadeOut('fast');

} else{
 $(this).attr('src', toggleMinus)
 .parents('tr').siblings().removeClass('collapsed')
 .not('.filtered').fadeIn('fast');

};

While we are collapsing or expanding rows, we add or remove another new class on
the rows. We need this class to solve the other half of the problem. The filtering code
can use the class to ensure that a row should be shown when the filter changes:

$table.find('tbody tr').each(function() {
 if ($('td', this).filter(':nth-child(' + (column + 1) + ')').text()
 == e.data['keyword']) {
 $(this).removeClass('filtered').not('.collapsed').show();

 }
 else if ($('th',this).length == 0) {
 $(this).addClass('filtered').hide();

 }
});

Now our features play nicely, each able to hide and show the rows independently.

The Finished Code
Our second example page has demonstrated table row striping, highlighting,
tooltips, collapsing/expanding, and filtering. Taken together, the JavaScript code for
this page is:

$(document).ready(function() {
 var highlighted = "";

Chapter 7

[189]

 var column = 3;

 var positionTooltip = function(event) {
 var tPosX = event.pageX;
 var tPosY = event.pageY + 20;
 $('div.tooltip').css({top: tPosY, left: tPosX});
 };
 var showTooltip = function(event) {
 $('div.tooltip').remove();
 var $thisAuthor = $(this).text();
 if ($(this).parent().is('.highlight')) {
 highlighted = 'un-';
 } else {
 highlighted = '';
 };
 $('<div class="tooltip">Click to ' + highlighted +
 'highlight all articles written by ' +
 $thisAuthor + '</div>').appendTo('body');
 positionTooltip(event);
 };
 var hideTooltip = function() {
 $('div.tooltip').remove();
 };

 $('table.striped td:nth-child(' + column + ')')
 .addClass('clickable')
 .click(function(event) {
 var thisClicked = $(this).text();
 $('table.striped td:nth-child(' + column + ')')
 .each(function(index) {
 if (thisClicked == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 } else {
 $(this).parent().removeClass('highlight');
 };
 })
 showTooltip.call(this, event);
 })
 .hover(showTooltip, hideTooltip)
 .mousemove(positionTooltip);
});

$(document).ready(function() {
 $('table.striped').each(function() {

Table Manipulation

[190]

 $(this).bind('stripe', function() {
 var rowIndex = 0;
 $('tbody tr:not(.filtered)', this).each(function(index) {
 if ($('th',this).length) {
 $(this).addClass('subhead');
 rowIndex = -1;
 } else {
 if (rowIndex % 6 < 3) {
 $(this).removeClass('odd').addClass('even');
 }
 else {
 $(this).removeClass('even').addClass('odd');
 }
 }
 rowIndex++;
 });
 });
 $(this).trigger('stripe');
 });
})

$(document).ready(function() {
 $('table.filterable').each(function() {
 var $table = $(this);

 $table.find('th').each(function (column) {
 if ($(this).is('.filter-column')) {
 var $filters = $('<div class="filters"><h3>Filter by ' +
 $(this).text() + ':</h3></div>');
 var keywords = {};

 $table.find('tbody tr td').filter(':nth-child(' + (column +
 1) + ')').each(function() {
 keywords[$(this).text()] = $(this).text();
 })

 $('<div class="filter">all</div>').click(function() {
 $table.find('tbody tr').removeClass('filtered')
 .not('.collapsed').show();
 $(this).addClass('active').siblings().removeClass('active');
 $table.trigger('stripe');
 }).addClass('clickable active').appendTo($filters);

 $.each(keywords, function (index, keyword) {

Chapter 7

[191]

 $('<div class="filter"></div>').text(keyword).bind('click',
 {'keyword': keyword}, function(event) {
 $table.find('tbody tr').each(function() {
 if ($('td', this).filter(':nth-child(' + (column + 1)
 + ')').text() == event.data['keyword']) {
 $(this).removeClass('filtered').not('.collapsed')
 .show();
 }
 else if ($('th',this).length == 0) {
 $(this).addClass('filtered').hide();
 }
 });

 $(this).addClass('active').siblings().removeClass(
 'active');
 $table.trigger('stripe');
 }).addClass('clickable').appendTo($filters);

 });
 $filters.insertBefore($table);
 }
 });
 });
});

$(document).ready(function() {
 var toggleMinus = '../icons/bullet_toggle_minus.png';
 var togglePlus = '../icons/bullet_toggle_plus.png';
 var $subHead = $('tbody th:first-child');
 $subHead.prepend('<img src="' + toggleMinus + '" alt="collapse
 this section" />');

 $('img', $subHead).addClass('clickable')
 .click(function() {
 var toggleSrc = $(this).attr('src');
 if (toggleSrc == toggleMinus) {
 $(this).attr('src', togglePlus)
 .parents('tr').siblings().addClass('collapsed').fadeOut('fast');
 } else {
 $(this).attr('src', toggleMinus)
 .parents('tr').siblings().removeClass('collapsed')
 .not('.filtered').show().fadeIn('fast');
 };
 });
})

Table Manipulation

[192]

Summary
In this chapter, we have explored some of the ways to slice and dice the tables on our
sites, reconfiguring them into beautiful and functional containers for our data. We
have covered sorting data in tables, using different kinds of data (words, numbers,
dates) as sort keys along with paginating tables into easily-viewed chunks. We have
learned sophisticated row striping techniques and JavaScript-powered tooltips.
We have also walked through expanding and collapsing as well as filtering and
highlighting of rows that match the given criteria.

We've even touched briefly on some quite advanced topics, such as sorting and
paging with server-side code and AJAX techniques, dynamically calculating page
coordinates for elements, and writing a jQuery plug-in.

As we have seen, properly semantic HTML tables wrap a great deal of subtlety and
complexity in a small package. Fortunately, jQuery can help us easily tame these
creatures, allowing the full power of tabular data to come to the surface.

Forms with Function
I'm shoutin'
We're waiting for a reply
 —Devo,
 "Shout"

Nearly every website that requires feedback from the user will employ a form in
one capacity or another. Throughout the life of the Internet, forms have played the
role of pack mule, carrying information from the end user back to the website's
publisher—dependably, reliably, but with very little grace or style. Perhaps this lack
of flair was caused by the repetitious, arduous journey to the server and back; or
perhaps it had something to do with the intransigent elements the form had to work
with and their unwillingness to follow the latest fashion. Whatever the reason, it
wasn't until recently, with the resurgence of client-side scripting, that forms found
new vigor, purpose, and style. In this chapter, we will look at ways in which we can
breathe new life into forms. We'll enhance their style, create validation routines for
them, use them for calculations, and send their results to the server while nobody
is watching.

Progressively Enhanced Form Styling
As we apply jQuery to websites, we must always ask ourselves how pages will look
and function when visitors have JavaScript disabled (unless, of course, we know
exactly who every visitor will be and how their browsers will be configured). This
is not to say, though, that we can't create a more beautiful or feature-full site for
visitors with JavaScript turned on. The principle of progressive enhancement is
popular among JavaScript developers because it respects the needs of all users while
providing something extra to most of them.

Forms with Function

[194]

Let us create a form, a contact form, that demonstrates progressive enhancement in
both its appearance and its behavior. Without JavaScript enabled, the form's first
fieldset looks like this:

While it certainly appears functional, with plenty of information to guide the user
through each field, it could definitely stand some improvement. Let's progressively
enhance this group in three ways:

1.	 Modify the DOM to allow for flexible styling of the <legend>.
2.	 Change the required field messages to an asterisk (*) and the special field

(required only when the corresponding checkbox is checked) message to a
double asterisk (**). Bold the label for each required field and place a key at
the top of the form explaining what the asterisk and double asterisk mean.

3.	 Hide each checkbox's corresponding text input on page load, and then toggle
them, visible and hidden, when the user checks and unchecks the boxes.

We start with the <fieldset>'s HTML:

<fieldset>
 <legend>Personal Info</legend>

 <label for="first-name">First Name</label><input
 class="required" type="text" name="first-name"
 id="first-name" /> (required)
 <label for="last-name">Last Name</label><input
 class="required" type="text" name="last-name"
 id="last-name" /> (required)
 How would you like to be contacted? (choose at least one
method)

 <label for="by-email"><input type="checkbox"
 name="by-contact-type" value="E-mail" id="by-email" />
 by E-Mail</label>

Chapter 8

[195]

 <input class="conditional" type="text" name="email"
 id="email" /> (required when corresponding
 checkbox checked)
 <label for="by-phone"><input type="checkbox" name="by-
 contact-type" value="Phone" id="by-phone" />
 by Phone</label>
 <input class="conditional" type="text" name="phone"
 id="phone" /> (required when corresponding
 checkbox checked)
 <label for="by-fax"><input type="checkbox" name="by-
 contact-type" value="Fax" id="by-fax" /> by Fax</label>
 <input class="conditional" type="text" name="fax" id="fax"
 /> (required when corresponding checkbox
 checked)

</fieldset>

One thing to note here is that each element or pair of elements is considered a
list item (). All elements are placed within an ordered list (), and the
checkboxes (along with their text fields) are placed within a nested unordered list
(). Furthermore, we use the <label> element to indicate the name of each field.
For text fields, the <label> precedes the <input>; for checkboxes, it encloses
the <input>.

With our HTML in place, we're now ready to use jQuery for the
progressive enhancement.

The Legend
The form's legend is a notoriously difficult element to style with CSS. Browser
inconsistencies and positioning limitations make working with it an exercise in
frustration. Yet, if we're concerned about using meaningful, well‑structured page
elements, the legend is an attractive, if not visually appealing, choice for displaying
a title in our form's <fieldset>.

Left with only HTML and CSS, we're forced to compromise either semantic markup
or flexible design choices. However, we can change the HTML as the page loads,
turning each <legend> into an <h3> for people viewing the page, while machines
reading the page—and those with JavaScript disabled—will still see the <legend>.

Forms with Function

[196]

For each <fieldset>, we want to get the text inside the <legend> element, store it in
a variable, and then remove the <legend>:

$(document).ready(function() {
 $('fieldset').each(function() {
 var heading = $('legend', this).remove().text();
 });
});

We use the .each() method here because the contact form has three <fieldset>
elements. If we were working with a single-fieldset form, we could simply rely
on jQuery's implicit iteration. Also, notice the selector expression we use for the
heading variable: $('legend', this). Since heading is being set each time we
iterate over a <fieldset>, we need to use this as a contextual selector for <legend>
to ensure that the text is being taken from only one <legend> at a time. Otherwise,
the first iteration would get the text from all three <legend>s, leaving the second and
third with nothing.

Next, we create the <h3> element, insert it at the beginning of each <fieldset>, and
fill it with the text stored in the heading variable:

$(document).ready(function() {
 $('fieldset').each(function() {
 var heading = $('legend', this).remove().text();
 $('<h3></h3>')

 .text(heading)

 .prependTo(this);
 });
});

Note here that we've created and inserted a new element the long way—first creating
the element, then inserting the text, and finally prepending it—on three separate
lines. We could have accomplished the same task in one line, like so:

$(this).prepend('<h3>' + heading + '</h3>');

However, the three-line version is less error-prone: the use of the .text method
ensures that any special HTML characters are properly escaped.

Chapter 8

[197]

Now, when we apply a blue background and white text color to the <h3> in the
stylesheet, the form's first fieldset looks like this:

The form's legend elements are now sufficiently styled for our purposes; it's time to
clean up the required field messages.

Required Field Messages
In our contact form, required fields have class="required" to allow for styling
as well as response to user input; the input fields for each type of contact have
class="conditional" applied to them. We're going to use these classes to change
the instructions printed within parentheses to the right of each input.

We start by setting variables for requiredFlag and conditionalFlag, and then
we fill the element next to each required and conditional field with the text
stored in those variables:

$(document).ready(function() {
 var requiredFlag = ' * ';
 var conditionalFlag = ' ** ';

 $('form :input').filter('.required')
 .next('span').text(requiredFlag);

 $('form :input').filter('.conditional')
 .next('span').text(conditionalFlag);
});

Since a single asterisk (*) may not immediately capture the user's attention, we'll
also add class="req-label" to the <label> for each required field and apply
font-weight:bold to that class:

$(document).ready(function() {
 var requiredFlag = ' * ';

Forms with Function

[198]

 var conditionalFlag = ' ** ';

 $('form :input').filter('.required')
 .next('span').text(requiredFlag).end()
 .prev('label').addClass('req-label');

 $('form :input').filter('.conditional')
 .next('span').text(conditionalFlag);
});

In order to select the label properly, we had to add .end() to the previous line. The
chain had already selected all form inputs, filtered those to include only fields with
class="required", and then selected the elements immediately following
those filtered inputs. Adding .end() to the chain takes the selector expression back
one step; in this case, to all form inputs with class="required". So, following that
with .prev('label') will work as expected. The fieldset with the modified text and
the added class now looks like this:

Not bad. Still, the required and conditional field messages really weren't so bad
after all; they were just too repetitive. Lets take the first instance of each message and
display it above the form next to the flag we're using to symbolize it.

Before we populate the elements holding the messages with their respective
flags, we need to store the initial messages in a couple of variables. Then we can strip
out the parentheses by using a regular expression:

$(document).ready(function() {
 var requiredFlag = ' * ';
 var requiredKey = $('input.required:first').next('span').text();

 requiredKey = requiredFlag + requiredKey
 .replace(/^\((.+)\)$/,"$1");

 var conditionalFlag = ' ** ';
 var conditionalKey = $('input.conditional:first').next(
 'span').text();

Chapter 8

[199]

 conditionalKey = conditionalFlag + conditionalKey
 .replace(/^\((.+)\)$/,"$1");

 $('form :input').filter('.required')
 .next('span').text(requiredFlag).end()
 .prev('label').addClass('req-label');

 $('form :input').filter('.conditional')
 .next('span').text(conditionalFlag);
});

The first line of each addition to the code simply sets the variable as the text of the
message. The second line then concatenates each flag and its respective message,
minus the parentheses. Perhaps the regular expression, along with its .replace
method, warrants further explanation.

A Regular Expression Digression
The regular expression is contained within the two forward slashes, and looks
like this: /^\((.+)\)$/. The first character, ^, indicates that what follows needs
to appear at the beginning of the string. It's followed by two characters, \(, which
look for an opening parenthesis. The back-slash is used as an escape that tells the
regular-expression parser to treat the following character literally. This is necessary
because parentheses are among the characters that have special meaning in regular
expressions, as we'll see next. The next four characters, (.+) look for one or more (+)
characters of any kind within the same line (.) and put them in a group by use of
the parentheses. The final three characters, \)$, look for a closing parenthesis
at the end of the string. So, all together the regular expression is selecting an
opening parenthesis, followed by a group of characters, and ending with a
closing parenthesis.

The .replace() method looks within a particular context for a string represented by
a regular expression and replaces it with another string. The syntax looks like this:

context-string.replace(/regular-expression/,"replacement-string")

The context strings of our two .replace() methods are the variables requiredKey
and conditionalKey. We've already looked at the regular expression part of this,
contained within the two slashes. A comma separates the regular expression and the
replacement string, which in our two cases is "$1". The $1 placeholder represents
the first group in the regular expression. Since, again, our regular expression has one
group of one or more characters, with a parenthesis on either side, the replacement
string will be everything inside, and not including, the parentheses.

Forms with Function

[200]

Inserting the Field-Message Legend
Now that we've retrieved the field messages without the parentheses, we can insert
them, along with their corresponding flags, above the form:

$(document).ready(function() {
 var requiredFlag = ' * ';
 var requiredKey = $('input.required:first').next('span').text();
 requiredKey = requiredFlag + requiredKey.replace(/^\((.+)\)$/,"$1");

 var conditionalFlag = ' ** ';
 var conditionalKey =
 $('input.conditional:first').next('span').text();
 conditionalKey = conditionalFlag +
 conditionalKey.replace(/\((.+)\)/,"$1");

 $('form :input').filter('.required')
 .next('span').text(requiredFlag).end()
 .prev('label').addClass('req-label');

 $('form :input').filter('.conditional')
 .next('span').text(conditionalFlag);

 $('<p></p>')

 .addClass('field-keys')

 .append(requiredKey + '
')

 .append(conditionalKey)

 .insertBefore('#contact');

});

The five new lines should look relatively familiar now. Here is what they do:

1.	 Create a new paragraph element
2.	 Give the paragraph a class of field-keys
3.	 Append requiredKey and a line break to the paragraph
4.	 Append conditionalKey to the paragraph
5.	 Insert the paragraph and everything we've appended inside it before the

contact form

When using .append() with an HTML string, as we do here, we need to be careful
that any special HTML characters are properly escaped. In this case, the .text
method has done this for us.

Chapter 8

[201]

When we define some styles for .field-keys in the stylesheet, the result looks
like this:

Our jQuery work for the first fieldset is almost complete.

Conditionally Displayed Fields
Let's further improve the group of fields that ask visitors how they would like to
be contacted. Since the text inputs need to be entered only if their corresponding
checkboxes are checked, we can hide them when the document is initially loaded:

$(document).ready(function() {
 $('input.conditional').hide().next('span').hide();
});

The fieldset now has its streamlined interface:

Forms with Function

[202]

To make the text inputs and flags appear, we can attach the .click method to each
checkbox. We'll do so within the context of each conditional text input so that we can
set a couple of variables for reuse:

$(document).ready(function() {
 $('input.conditional').hide().next('span').hide();
 $('input.conditional').each(function() {

 var $thisInput = $(this);

 var $thisFlag = $thisInput.next('span').hide();

 $thisInput.prev('label').find(':checkbox').click(function() {

 // code continues . . .

 });

 });

});

Now we have a variable for the current text input and the current flag. When the
user clicks the checkbox, we see if it is checked; if it is, we show the text input, show
the flag, and add the req-label class to the parent <label> element:

$(document).ready(function() {
 $('input.conditional').hide().next('span').hide();
 $('input.conditional').each(function() {
 var $thisInput = $(this);
 var $thisFlag = $thisInput.next('span').hide();
 $thisInput.prev('label').find(':checkbox').click(function() {
 if (this.checked) {

 $thisInput.show();

 $thisFlag.show();

 $(this).parent('label').addClass('req-label');

 };

 });
 });
});

For testing whether a box is checked here, this.checked is preferred because we
have direct access to the DOM node via the this keyword. When the DOM node is
not so accessible, we can use $('selector').is(':checked') instead, since .is()
returns a Boolean (true or false).

All we need now is to add an else condition that hides the conditional elements and
removes the req-label class when the checkbox is not checked:

$(document).ready(function() {
 $('input.conditional').hide().next('span').hide();
 $('input.conditional').each(function() {

Chapter 8

[203]

 var $thisInput = $(this);
 var $thisFlag = $thisInput.next('span').hide();
 $thisInput.prev('label').find(':checkbox').click(function() {
 if (this.checked) {
 $thisInput.show();
 $thisFlag.show();
 $(this).parent('label').addClass('req-label');
 } else {

 $thisInput.hide();

 $thisFlag.hide();

 $(this).parent('label').removeClass('req-label');

 };

 });
 });
});

And that concludes the styling portion of this form makeover. Next, we'll add some
client‑side validation.

Form Validation
Before we add validation to any form with jQuery, we need to remember one
important rule: client-side validation is not a substitute for server-side validation. Again,
we cannot rely on users to have JavaScript enabled. If we truly require certain fields
to be entered, or to be entered in a particular format, JavaScript alone can't guarantee
the result we demand. Some users prefer not to enable JavaScript, some devices
simply don't support it, and a few users could intentionally submit malicious data by
circumventing JavaScript restrictions.

Immediate Feedback
Why then should we bother implementing validation with jQuery? Client‑side
form validation using jQuery can offer one advantage over server-side validation:
immediate feedback. Server-side code, whether it's ASP, PHP, or any other
fancy acronym, needs the page to be reloaded to take effect (unless it is accessed
asynchronously, of course, which in any case requires JavaScript). With jQuery, we
can capitalize on the peppy response of client-side code by applying validation
to each required field when it loses focus (on blur) or when a key is pressed
(on keyup).

Forms with Function

[204]

Required Fields
For our contact form, we'll check for the required class on each input when the user
tabs or clicks out of it. Before we begin with this code, however, we should make a
quick trip back to our conditional text fields. To simplify our validation routine, we'll
add the required class to the <input> when it is shown, and remove the class when
the <input> is subsequently hidden. This portion of the code now looks like this:

$thisInput.prev('label').find(':checkbox').click(function() {
 if (this.checked) {
 $thisInput.show().addClass('required');
 $thisFlag.show();
 $(this).parent('label').addClass('req-label');
 } else {
 $thisInput.hide().removeClass('required');
 $thisFlag.hide();
 $(this).parent('label').removeClass('req-label');
 };
});

With all of the required classes in place, we're ready to respond when the user
leaves one of these fields empty. A message will be placed after the required
flag, and the field's element will receive styles to alert the user through
class="warning":

$(document).ready(function() {
 $('form :input').blur(function() {
 if ($(this).is('.required')) {
 var $listItem = $(this).parents('li:first');
 if (this.value == '') {
 var errorMessage = 'This is a required field';
 $('')
 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 };
 };
 });
});

The code has two if statements for each form input on blur: the first checks for the
required class, and the second checks for an empty string. If both conditions are
met, we construct an error message, put it in , and
append it all to the parent .

Chapter 8

[205]

We want to give a slightly different message if the field is one of the conditional
text fields—only required when its corresponding checkbox is checked. We'll
concatenate a qualifier message to the standard error message. To do so, we can nest
one more if statement that checks for the conditional class only after the first two
if conditions have been met:

$(document).ready(function() {
 $('form :input').blur(function() {
 if ($(this).is('.required')) {
 var $listItem = $(this).parents('li:first');
 if (this.value == '') {
 var errorMessage = 'This is a required field';
 if ($(this).is('.conditional')) {

 errorMessage += ', when its related checkbox is checked';

 };

 $('')
 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 };
 };
 });
});

Our code works great the first time the user leaves a field blank; however, two
problems with the code are evident when the user subsequently enters and leaves
the field:

Forms with Function

[206]

If the field remains blank, the error message is repeated as many times as the user
leaves the field. If the field has text entered, the class="warning" is not removed.
Obviously, we want only one message per field, and we want the message to be
removed if the user fixes the error. We can fix both problems by removing class=
"warning" from the current field's parent and any <span class="error-
message> within the same every time the field is blurred, before running
through the validation checks:

$(document).ready(function() {
 $('form :input').blur(function() {
 $(this).parents('li:first').removeClass('warning')

 .find('span.error-message').remove();

 if ($(this).is('.required')) {
 var $listItem = $(this).parents('li:first');
 if (this.value == '') {
 var errorMessage = 'This is a required field';
 if ($(this).is('.conditional')) {
 errorMessage += ', when its related checkbox is checked';
 };
 $('')
 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 };
 };
 });
});

Finally, we have a functioning validation script for required and conditionally
required fields. Even after repeatedly entering and leaving required fields, our error
messages now display correctly:

Chapter 8

[207]

But wait! We want to remove the 's warning class and its <span class="error-
message"> elements when the user unchecks a checkbox too! We can do that by
visiting our previous checkbox code once more and getting it to trigger blur on the
corresponding text field when its checkbox is unchecked:

if (this.checked) {
 $thisInput.show().addClass('required');
 $thisFlag.show();
 $(this).parent('label').addClass('req-label');
} else {
 $thisInput.hide().removeClass('required').blur();
 $thisFlag.hide();
 $(this).parent('label').removeClass('req-label');
};

Now when a checkbox is unchecked, the related warning styles and error messages
will be out of sight and out of mind.

Required Formats
There is one further type of validation to implement in our contact form—correct
input formats. Sometimes it can be helpful to provide a warning if text is entered
into a field incorrectly (rather than simply having it blank). Prime candidates for this
type of warning are email, phone, and credit-card fields. For our demonstration, we
will put in place a relatively simple regular-expression test for the email field. Let's
take a look at the full code for the email validation before we dig into the regular
expression in particular:

$(document).ready(function() {
// . . . code continues . . .

 if ($(this).is('#email')) {
 var $listItem = $(this).parents('li:first');
 if (this.value != '' && !/.+@.+\.[a-zA-Z]{2,4}$/
 .test(this.value)) {
 var errorMessage = 'Please use proper e-mail format'
 + (e.g.joe@example.com)';
 $('')
 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 };
 };
// . . . code continues . . .
});

Forms with Function

[208]

The code performs the following tasks:

Tests for the id of the email field; if the test is successful:
Sets a variable for the parent list item
Tests for two more conditions in the email field—value is not
an empty string and does not match the regular expression; if
the two tests are successful:

Creates an error message
Inserts the message in

Appends the
element and its contents to the parent list item
Adds the warning class to the parent list item

Now let's take a look at the regular expression in isolation:

!/.+@.+\.[a-zA-Z]{2,4}$/.test(this.value)

Although this regular expression is similar to the one we created earlier in the
chapter, it uses the .test method rather than the .replace method, since we only
need it to return true or false. As before, the regular expression goes inside the two
forward slashes. It is then tested against a string that is placed inside the parentheses
of .test(), in this case the value of the email field.

In this regular expression we look for a group of one or more non-linefeed characters
(.+), followed by an @ symbol, and then followed by another group of one or more
non‑linefeed characters. So far, a string such as lucia@example would pass the test,
as would millions of other permutations. Notice, though, that this is not a valid
email address.

We can make the test more precise by looking for a . character, followed by two
through four letters between a and z at the end of the string. And that is exactly what
the remaining portion of the regular expression does. It first looks for a character
between a and z or A and Z—[a-zA-Z]. It then says that a letter in that range can
appear two through four times only—{2,4}. Finally, it insists that those two through
four letters appear at the end of the string: $. Now a string such as lucia@example.
com would return true, whereas lucia@example.2fn or lucia@example.example
or lucia-example.com would not.

But we want true returned (and the error message, etc., created) only if the proper
email address format is not entered. That's why we precede the regular expression
with the exclamation mark (not operator):

!/.+@.+\.[a-zA-Z]{2,4}$/.test(this.value)

•
°
°

°
°

°

°

Chapter 8

[209]

A Final Check
The validation code is now almost complete for the contact form. We can validate the
form's fields one more time when the user attempts to submit it, this time all at once.
Using the .submit() event handler on the form, not the Send button, we trigger
blur on all of the required fields:

$(document).ready(function() {
 $('form').submit(function() {
 $('#submit-message').remove();
 $(':input.required').trigger('blur');
 });
});

Note here that we've sneaked in a line to remove an element that does not yet
exist. We'll add this element in the next step. We're just preemptively removing it
here because we already know that we'll need to do it based on the problems we
encountered with creating multiple error messages earlier in the chapter.

After triggering blur, we get the total number of warning classes in the current
form. If there are any at all, we create a new submit-message <div> and insert it
before the Send button where the user is most likely to see it. We also stop the form
from actually being submitted:

$(document).ready(function() {
 $('form').submit(function() {
 $('#submit-message').remove();
 $(':input.required').trigger('blur');
 var numWarnings = $('.warning', this).length;
 if (numWarnings) {
 $('<div></div>').attr({'id': 'submit-message',
 'class': 'warning'})
 .append('Please correct errors with ' + numWarnings
 + ' fields')
 .insertBefore('#send');
 return false;
 };
 });
});

In addition to providing a generic request to fix errors, the message indicates the
number of fields that need to be fixed:

Forms with Function

[210]

We can do better than that, though; rather than just showing the number of errors,
we can list the names of the fields that contain errors:

$(document).ready(function() {
 $('form').submit(function() {
 $('#submit-message').remove();
 $(':input.required').trigger('blur');
 var numWarnings = $('.warning', this).length;
 if (numWarnings) {
 var fieldList = [];
 $('.warning label').each(function() {
 fieldList.push($(this).text());
 });
 $('<div></div>')
 .attr({'id': 'submit-message','class': 'warning'})
 .append('Please correct errors with the following ' +
 numWarnings + ' fields:
')
 .append('• ' + fieldList.join('
• '))
 .insertBefore('#send');
 return false;
 };
 });
});

The first change to the code is the fieldList variable set to an empty array. Then
we get each label that is a descendant of an element with the warning class and push
its text into the fieldList array (with the native JavaScript push function). Now the
text of each of these labels constitutes a separate element in the fieldList array.

We modify our first version of the submit-message a bit and append our fieldList
array to it. We use the native JavaScript join function to convert the array into a
string, joining each of the array's elements with a line break and a bullet:

Admittedly, the HTML for the field list is presentational rather than semantic.
However, for an ephemeral list—one that is generated by JavaScript as a last step
and meant to be discarded as soon as possible—we'll forgive this quick and dirty
code for the sake of ease and brevity.

Chapter 8

[211]

Checkbox Manipulation
To round out our enhancements to the contact form, we'll help the user manage the
list of checkboxes in the Miscellaneous section. A group of 10 checkboxes can be
daunting, especially if the user wishes to click most or all of them, as seen with the
following group of ways the user may have discovered us:

An option to check or uncheck all of the checkboxes would certainly come in handy
in this type of situation. So, let's create one.

To begin, we create a new element, fill it with a <label>, inside which we place
<input type="checkbox" id="discover-all"> and some text, and prepend it all to
the element inside <li class="discover">:

$(document).ready(function() {
 $('')
 .html('<label><input type="checkbox" id="discover-all" />'
 + 'check all</label>')
 .prependTo('li.discover > ul');
});

Now we have a new checkbox with a label that reads check all. But it doesn't do
anything yet. We need to attach the .click() method to it:

$(document).ready(function() {
 $('')
 .html('<label><input type="checkbox" id="discover-all" />
 check all</label>')
 .prependTo('li.discover > ul');

Forms with Function

[212]

 $('#discover-all').click(function() {

 var $checkboxes = $(this).parents('ul:first').find(':checkbox');

 if (this.checked) {

 $checkboxes.attr('checked', 'true');

 } else {

 $checkboxes.attr('checked', '');

 };

 });

});

Inside this event handler, we first set the $checkboxes variable, which consists of
a jQuery object containing every checkbox within the current list. With the variable
set, manipulating the checkboxes becomes a matter of checking them if the check all
checkbox is checked and unchecking them if the check all one is unchecked.

These finishing touches can be applied to this checkbox feature by adding a few CSS
properties to the check all checkbox's label and changing its text to un-check all after
it has been checked by the user:

$(document).ready(function() {
 $('')
 .html('<label><input type="checkbox" id="discover-all" /> check
all</label>')
 .prependTo('li.discover > ul');
 $('#discover-all').click(function() {
 var $checkboxes = $(this).parents('ul:first').find(':checkbox');
 if (this.checked) {
 $(this).next().text(' un-check all');

 $checkboxes.attr('checked', 'true');
 } else {
 $(this).next().text(' check all');

 $checkboxes.attr('checked', '');
 };
 })
 .parent('label')

 .css({

 borderBottom: '1px solid #ccc',

 color: '#777',

 lineHeight: 2

 });

});

Chapter 8

[213]

The group of checkboxes, along with the check all box, now looks like this:

And with the check all box checked, looks like this:

The Finished Code
Here it is, the finished code for the contact form:

$(document).ready(function() {

 // enhance style of form elements

 $('fieldset').each(function(index) {
 var heading = $('legend', this).remove().text();
 $('<h3></h3>')
 .text(heading)
 .prependTo(this);
 });

Forms with Function

[214]

 var requiredFlag = ' * ';
 var requiredKey = $('input.required:first').next('span').text();
 requiredKey = requiredFlag + requiredKey.replace(/^\((.+)\)$/,"$1");
 var conditionalFlag = ' ** ';
 var conditionalKey =
 $('input.conditional:first').next('span').text();
 conditionalKey = conditionalFlag +
 conditionalKey.replace(/\((.+)\)/,"$1");

 $('form :input').filter('.required')
 .next('span').text(requiredFlag).end()
 .prev('label').addClass('req-label');

 $('form :input').filter('.conditional')
 .next('span').text(conditionalFlag);

 $('<p></p>')
 .addClass('field-keys')
 .append(requiredKey + '
')
 .append(conditionalKey)
 .insertBefore('#contact');

 // conditional text inputs, checkbox toggle

 $('input.conditional').hide().each(function() {
 var $thisInput = $(this);
 var $thisFlag = $thisInput.next('span').hide();
 $thisInput.prev('label').find(':checkbox').click(function() {
 if (this.checked) {
 $thisInput.show().addClass('required');
 $thisFlag.show();
 $(this).parent('label').addClass('req-label');
 } else {
 $thisInput.hide().removeClass('required').blur();
 $thisFlag.hide();
 $(this).parent('label').removeClass('req-label');
 };
 });
 });

 //validate fields on blur

 $('form :input').blur(function() {
 $(this).parents('li:first').removeClass('warning')

Chapter 8

[215]

 .find('span.error-message').remove();

 if ($(this).is('.required')) {
 var $listItem = $(this).parents('li:first');
 if (this.value == '') {
 var errorMessage = 'This is a required field';
 if ($(this).is('.conditional')) {
 errorMessage += ', when its related checkbox is checked';
 };
 $('')
 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 };
 };

 if ($(this).is('#email')) {
 var $listItem = $(this).parents('li:first');
 if (this.value != '' && !/.+@.+\.[a-zA-Z]{2,4}$/
 .test(this.value)) {
 var errorMessage = 'Please use proper e-mail format'
 + '(e.g. joe@example.com)';
 $('')
 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 };
 };
 });

//validate form on submit

 $('form').submit(function() {
 $('#submit-message').remove();
 $(':input.required').trigger('blur');
 var numWarnings = $('.warning', this).length;
 if (numWarnings) {
 var fieldList = [];
 $('.warning label').each(function() {
 fieldList.push($(this).text());
 });
 $('<div></div>')
 .attr({

Forms with Function

[216]

 'id': 'submit-message',
 'class': 'warning'
 })
 .append('Please correct errors with the following ' +
 numWarnings + ' fields:
')
 .append('• ' + fieldList.join('
• '))
 .insertBefore('#send');
 return false;
 };
 });

 //checkboxes

 $('form :checkbox').removeAttr('checked');

 //checkboxes with (un)check all
 $('').html('<label><input type="checkbox" '
 + ' id="discover-all" /> check all
 + '</label>').prependTo('li.discover > ul');
 $('#discover-all')
 .click(function() {
 var $checkboxes = $(this).parents('ul:first').find(':checkbox');
 if (this.checked) {
 $(this).next().text(' un-check all');
 $checkboxes.attr('checked', 'true');
 } else {
 $(this).next().text(' check all');
 $checkboxes.attr('checked', '');
 };
 })
 .parent('label')
 .css({
 borderBottom: '1px solid #ccc',
 color: '#777',
 lineHeight: 2
 });
});

Although we've made significant improvements to the contact form, there is
still much that could be done. Validation, for example, comes in a number of
varieties. For a flexible validation plug-in, visit the jQuery Plugin Repository at
http://jquery.com/Plugins/.

Chapter 8

[217]

Placeholder Text for Fields
Some forms are much simpler than contact forms. In fact, many sites incorporate
a single‑field form on every single page—a search function for the site. The usual
trappings of a form—field labels, submit buttons, and the text—are cumbersome
for such a small, single-purpose part of the page. We can use jQuery to help us slim
down the form while retaining its functionalities.

The label element for a form field is an essential component of accessible websites.
Every field should be labeled, so that screen readers and other assistive devices can
identify which field is used for which purpose. Even in the HTML source, the label
helps describe the field:

<form id="search" action="search/index.php" method="get">
 <label for="search-text">search the site</label>
 <input type="text" name="search-text" id="search-text" />
</form>

Without styling, we see the label right before the field:

While this doesn't take up much room, in some site layouts even this single line of
text might be too much. We could hide the text with CSS, but this then provides
the user with no way to know what the field is for. Instead, we can use jQuery to
transform this label into placeholder text within the field itself.

To achieve this, when the DOM has loaded, we'll remove the label and use its text to
populate the field:

$(document).ready(function() {
 var searchLabel = $('#search label').remove().text();
 $('#search-text').addClass('placeholder').val(searchLabel);
});

We can remove the label before we retrieve its text, because .remove() yanks an
element from the DOM tree without deleting it. This text is then set as the value of
the field. The class grays out the text to distinguish it as a placeholder:

Forms with Function

[218]

This is a nice effect, but it has an adverse interaction with the search field itself.
Since the value of the field has changed, clicking in the field allows the user to
append to this value rather than replace it. This could make the search do something
unexpected:

To avoid this problem, we need to remove the text when the field gets focus, and
replace it when the focus is lost. This is simple enough:

$(document).ready(function() {
 var searchLabel = $('#search label').remove().text();
 $('#search-text').addClass('placeholder').val(searchLabel)
 .focus(function() {

 if (this.value == searchLabel) {

 $(this).removeClass('placeholder').val('');

 };

 }).blur(function() {

 if (this.value == '') {

 $(this).addClass('placeholder').val(searchLabel);

 };

 });

});

When the field gets focus, we test whether the value of the field is still equal to
the placeholder text we inserted earlier. If so, we remove the text. This check is
important because we don't want to lose any text the user has typed earlier.

When the field loses focus, we perform the opposite procedure. If the user hasn't
typed anything, the value of the field will be empty. In this case, we restore the
placeholder text that had been present before.

We also remove and add the placeholder CSS class, so the text in the field is styled
appropriately when the user is typing:

Chapter 8

[219]

One glitch caused by our enhancement remains; if the form is submitted without
user input, the field could still contain the placeholder text. To avoid this, we can
remove it when the form is submitted:

$('#search').submit(function() {
 if ($('#search-text').val() == searchLabel) {
 $('#search-text').val('');
 }
});

Unknown to the server that has provided the initial search interface, we have
provided a visual enhancement for users with JavaScript enabled.

AJAX Auto-Completion
We can further spruce up our search field by offering auto-completion of its contents.
This feature will allow users to type the beginning of a search term and see all of the
possible terms that begin with the typed string. Since the list of terms can be drawn
from a database that is driving the site, the user can know that search results are
forthcoming if the typed term is used. Also, if the database provides the terms
in order of popularity or number of results, the user can be guided to more
appropriate searches.

Auto-completion is a very complicated subject, with subtleties introduced by
different kinds of user interaction. We will craft a working example here, but cannot
in this space explore all of the advanced concepts such as limiting the rate of requests
or multi-term completion. The auto-complete plug-in for jQuery is recommended for
simple, real-world implementations, and as a starting point for more complex ones.
More information on plug-ins can be found in Chapter 10.

The basic idea behind an auto-completion routine is to react to a keystroke, and to
send an AJAX request to the server containing the contents of the field in the request.
The results will contain a list of possible completions for the field. The script then
presents this list as a dropdown below the field.

On the Server
We need some server-side code to handle requests. While a real-world implementation
will usually rely on a database to produce a list of possible completions, for this
example we can use a simple PHP script with the results built in:

<?php
 if (strlen($_REQUEST['search-text']) < 1) {
 print '[]';

Forms with Function

[220]

 exit;
 }
 $terms = array(
 'access',
 'action',
 // List continues...
 'xaml',
 'xoops',
);
 $possibilities = array();
 foreach ($terms as $term) {
 if (strpos($term, strtolower($_REQUEST['search-text'])) === 0) {
 $possibilities[] = "'". str_replace("'", "\\'", $term) ."'";
 }
 }
 print ('['. implode(', ', $possibilities) .']');

The page compares the provided string against the beginning of each term, and
composes a JSON array of matches.

In the Browser
Now we can make a request to this PHP script from our JavaScript code:

$(document).ready(function() {
 var $autocomplete = $('<ul class="autocomplete">').hide().
insertAfter('#search-text');

 $('#search-text').keyup(function() {
 $.ajax({
 'url': '/bookstore/search/autocomplete.php',
 'data': {'search-text': $('#search-text').val()},
 'dataType': 'json',
 'type': 'POST',
 'success': function(data) {
 if (data.length) {
 $autocomplete.empty();
 $.each(data, function(index, term) {
 $('').text(term).appendTo($autocomplete);
 });
 $autocomplete.show();
 }
 }
 });
 });
});

Chapter 8

[221]

We need to use keyup, not keydown or keypress, as the event that triggers the AJAX
request. The latter two events occur during the process of the key press, before the
character has actually been entered in the field. If we attempt to act on these events
and issue the request, the suggestion list will lag behind the search text. When the
third character is entered, for example, the AJAX request will be made using just the
first two characters. By acting on keyup, we avoid this problem.

In our stylesheet, we position this list of suggestions absolutely, so that it overlaps
the text underneath. Now when we type in the search field, we see our possible
terms presented to us:

To properly display our list of suggestions, we have to take into account the built‑in
auto‑completion mechanism of some web browsers. Browsers will often remember
what users have typed in a form field, and suggest these entries the next time the
form is used. This can look confusing when in conjunction with our custom auto-
complete suggestions:

Fortunately, this can be disabled in the browsers that perform auto‑completion by
setting the autocomplete attribute of the form field to off. We could do this right
in the HTML, but this would not be in keeping with the principle of progressive
enhancement. Instead, we can add this attribute from our script:

$('#search-text').attr('autocomplete', 'off')

Forms with Function

[222]

Populating the Search Field
Our list of suggestions doesn't do us much good if we can't place them in the search
box. To begin with, we'll allow a mouse click to confirm a suggestion:

'success': function(data) {
 if (data.length) {
 $autocomplete.empty();
 $.each(data, function(index, term) {
 $('').text(term)
 .appendTo($autocomplete).click(function() {
 $('#search-text').val(term);
 $autocomplete.hide();
 });
 });
 $autocomplete.show();
 }
}

This modification sets the text of the search box to whatever list item was clicked. We
also hide the suggestions after this, since we are done with them.

Keyboard Navigation
Since the user is already at the keyboard typing in the search term, it is very
convenient to allow the keyboard to control selection from the suggestion list as well.
We'll need to keep track of the currently selected item to enable this. First we can
add a helper function that will store the index of the item, and perform the necessary
visual effects to reveal which item is currently selected:

var selectedItem = null;
var setSelectedItem = function(item) {
 selectedItem = item;
 if (selectedItem === null) {
 $autocomplete.hide();
 return;
 }
 if (selectedItem < 0) {
 selectedItem = 0;
 }
 if (selectedItem >= $autocomplete.find('li').length) {
 selectedItem = $autocomplete.find('li').length - 1;
 }
 $autocomplete.find('li').removeClass('selected')
 .eq(selectedItem).addClass('selected');
 $autocomplete.show();
};

Chapter 8

[223]

The selectedItem variable will be set to null whenever no item is selected. By
always calling setSelectedItem() to change the value of the variable, we can be
sure that the suggestion list is only visible when there is a selected item.

The two tests for the numeric value of selectedItem are present to clamp the
results to the appropriate range. Without these tests, selectedItem could end up
with any value, even negative ones. This function ensures that the current value of
selectedItem is always a valid index in the list of suggestions.

We can now revise our existing code to use the new function:

$('#search-text').attr('autocomplete', 'off').keyup(function() {
 $.ajax({
 'url': '/bookstore/search/autocomplete.php',
 'data': {'search-text': $('#search-text').val()},
 'dataType': 'json',
 'type': 'POST',
 'success': function(data) {
 if (data.length) {
 $autocomplete.empty();
 $.each(data, function(index, term) {
 $('').text(term)
 .appendTo($autocomplete).mouseover(function() {

 setSelectedItem(index);

 }).click(function() {

 $('#search-text').val(term);
 $autocomplete.hide();
 });
 });

 setSelectedItem(0);

 }
 else {
 setSelectedItem(null);

 }
 }
 });
});

Forms with Function

[224]

This revision has several immediate benefits. First, the suggestion list is hidden
when there are no results for a given search. Second, we are able to add a mouseover
handler that highlights the item under the mouse cursor. Third, the first item is
highlighted immediately when the suggestion list is shown:

Now we need to allow the keyboard keys to change which item is currently active
in the list.

Handling the Arrow Keys
We can use the keyCode attribute of the event object to determine which key was
pressed. This will allow us to watch for codes 38 and 40, corresponding to the up and
down arrow keys, and react accordingly:

$('#search-text').attr('autocomplete', 'off').keyup(function(event) {
 if (event.keyCode > 40 || event.keyCode == 8) {

 // Keys with codes 40 and below are special

 // (enter, arrow keys, escape, etc.).

 // Key code 8 is backspace.

 $.ajax({
 'url': '/bookstore/search/autocomplete.php',
 'data': {'search-text': $('#search-text').val()},
 'dataType': 'json',
 'type': 'POST',
 'success': function(data) {
 if (data.length) {
 $autocomplete.empty();
 $.each(data, function(index, term) {
 $('').text(term)
 .appendTo($autocomplete).mouseover(function() {
 setSelectedItem(index);
 }).click(function() {
 $('#search-text').val(term);
 $autocomplete.hide();
 });

Chapter 8

[225]

 });

 setSelectedItem(0);
 }
 else {
 setSelectedItem(null);
 }
 }
 });
 }
 else if (event.keyCode == 38 && selectedItem !== null) {
 // User pressed up arrow.
 setSelectedItem(selectedItem - 1);
 event.preventDefault();
 }
 else if (event.keyCode == 40 && selectedItem !== null) {
 // User pressed down arrow.
 setSelectedItem(selectedItem + 1);
 event.preventDefault();
 }
});

Our keyup handler now checks the keyCode that was sent, and performs the
corresponding action. The AJAX requests are now skipped if the pressed key was
special, such as an arrow key or escape key. If an arrow key is detected and the
suggestion list is currently displayed, the handler changes the selected item by 1 in
the appropriate direction. Since we wrote setSelectedItem() to clamp the values
to the range of indices possible for the list, we don't have to worry about the user
stepping off of either end of the list.

Inserting Suggestions in the Field
Next we need to handle the Enter key. When the suggestion list is displayed, a press
of the Enter key should populate the field with the currently selected item. Since
we are now going to be doing this in two places, we should factor-out the field
population we coded earlier for the mouse button into a separate function:

var populateSearchField = function() {
 $('#search-text').val($autocomplete
 .find('li').eq(selectedItem).text());
 setSelectedItem(null);
};

Forms with Function

[226]

Now our click handler can be a simple call to this function. We can call this
function when handling the Enter key as well:

$('#search-text').keypress(function(event) {
 if (event.keyCode == 13 && selectedItem !== null) {
 // User pressed enter key.
 populateSearchField();
 event.preventDefault();
 }
});

This handler is attached to the keypress event, rather than keyup as before. We have
to make this alteration so that we can prevent the keystroke from submitting the
form. If we wait until the keyup event is triggered, the submission will already
be underway.

Removing the Suggestion List
There's one final tweak we will make to our auto-complete behavior. We should hide
the suggestion list when the user decides to do something else on the page. First of
all, we can react to the escape key in our keyup handler, and let the user dismiss the
list that way:

else if (event.keyCode == 27 && selectedItem !== null) {
 // User pressed escape key.
 setSelectedItem(null);
}

More importantly, we should hide the list when the search field loses focus. A first
attempt at this is quite simple:

$('#search-text').blur(function(event) {
 setSelectedItem(null);
});

However, this causes an unintended side effect. Since a mouse click on the list
removes focus from the field, this handler is called and the list is hidden. That means
that our click handler defined earlier never gets called, and it becomes impossible
to interact with the list using the mouse.

There is no easy solution to this problem. The blur handler will always be called
before the click handler. A workaround is to hide the list when the focus is lost, but
to wait a fraction of a second first:

$('#search-text').blur(function(event) {
 setTimeout(function() {

Chapter 8

[227]

 setSelectedItem(null);
 }, 250);
});

This gives a chance for the click event to get triggered on the list item before the list
item is hidden.

Auto-Completion versus Live Search
The earlier example focused on auto-completion of the text field, as it is a technique
that applies to many forms. However, for searches in particular an alternative called
live search is preferred. This feature actually performs the content searches as the
user types.

Functionally, auto-completion and live search are very similar. In both cases, key
presses initiate an AJAX submission to the server, passing the current field contents
along with the request. The results are then placed in a drop-down box below the
field. In the case of auto-completion, as we have seen, the results are possible search
terms to use. With live search, the results are the actual pages that contain the search
terms that have been typed.

On the JavaScript end, the code to build these two features is nearly identical, so
we won't go into detail here. Deciding which to use is a matter of tradeoffs; live
search provides more information to the user with less effort, but is typically more
resource intensive.

The Finished Code
Our completed code for the search field's presentation and auto-complete behaviors
is as follows:

$(document).ready(function() {
 var searchLabel = $('#search label').remove().text();
 $('#search-text').addClass('placeholder').val(searchLabel)
 .focus(function() {
 if (this.value == searchLabel) {
 $(this).removeClass('placeholder').val('');
 };
 }).blur(function() {
 if (this.value == '') {
 $(this).addClass('placeholder').val(searchLabel);
 };
 });
 $('#search').submit(function() {

Forms with Function

[228]

 if ($('#search-text').val() == searchLabel) {
 $('#search-text').val('');
 }
 });

 var $autocomplete = $('<ul class="autocomplete">').hide().
insertAfter('#search-text');
 var selectedItem = null;

 var setSelectedItem = function(item) {
 selectedItem = item;
 if (selectedItem === null) {
 $autocomplete.hide();
 return;
 }
 if (selectedItem < 0) {
 selectedItem = 0;
 }
 if (selectedItem >= $autocomplete.find('li').length) {
 selectedItem = $autocomplete.find('li').length - 1;
 }
 $autocomplete.find('li').removeClass('selected').eq(selectedItem)
 .addClass('selected');
 $autocomplete.show();
 };
 var populateSearchField = function() {
 $('#search-text').val($autocomplete.find('li').eq(selectedItem)
 .text());
 setSelectedItem(null);
 };
 $('#search-text').attr('autocomplete', 'off').keyup(function(event)
{
 if (event.keyCode > 40 || event.keyCode == 8) {
 // Keys with codes 40 and below are special
 // (enter, arrow keys, escape, etc.).
 // Key code 8 is backspace.

 $.ajax({
 'url': '/bookstore/search/autocomplete.php',
 'data': {'search-text': $('#search-text').val()},
 'dataType': 'json',
 'type': 'POST',

Chapter 8

[229]

 'success': function(data) {
 if (data.length) {
 $autocomplete.empty();
 $.each(data, function(index, term) {
 $('').text(term).appendTo($autocomplete)
 .mouseover(function() {
 setSelectedItem(index);
 }).click(populateSearchField);
 });

 setSelectedItem(0);
 }
 else {
 setSelectedItem(null);
 }
 }
 });
 }
 else if (event.keyCode == 38 && selectedItem !== null) {
 // User pressed up arrow.
 setSelectedItem(selectedItem - 1);
 event.preventDefault();
 }
 else if (event.keyCode == 40 && selectedItem !== null) {
 // User pressed down arrow.
 setSelectedItem(selectedItem + 1);
 event.preventDefault();
 }
 else if (event.keyCode == 27 && selectedItem !== null) {
 // User pressed escape key.
 setSelectedItem(null);
 }
 }).keypress(function(event) {
 if (event.keyCode == 13 && selectedItem !== null) {
 // User pressed enter key.
 populateSearchField();
 event.preventDefault();
 }
 }).blur(function(event) {
 setTimeout(function() {
 setSelectedItem(null);
 }, 250);
 });
});

Forms with Function

[230]

Input Masking
We've now looked at several form features that apply to textual inputs from the user.
Often, though, our forms are primarily numeric in content. There are several more
form enhancements we can make when we are dealing with numbers as
form values.

In our bookstore site, a prime candidate for a numeric form is the shopping cart. We
need to allow the user to update quantities of items being purchased, and we also
need to present numeric data back to the user for prices and totals.

Shopping Cart Table Structure
The HTML for the shopping cart will describe one of the more involved table
structures we have seen so far:

<form action="checkout.php" method="post">
 <table id="cart">
 <thead>
 <tr>
 <th class="item">Item</th>
 <th class="quantity">Quantity</th>
 <th class="price">Price</th>
 <th class="cost">Total</th>
 </tr>
 </thead>
 <tfoot>
 <tr class="subtotal">
 <td class="item">Subtotal</td>
 <td class="quantity"></td>
 <td class="price"></td>
 <td class="cost">$152.95</td>
 </tr>
 <tr class="tax">
 <td class="item">Tax</td>
 <td class="quantity"></td>
 <td class="price">6%</td>
 <td class="cost">$9.18</td>
 </tr>
 <tr class="shipping">
 <td class="item">Shipping</td>
 <td class="quantity">5</td>
 <td class="price">$2 per item</td>
 <td class="cost">$10.00</td>
 </tr>
 <tr class="total">

Chapter 8

[231]

 <td class="item">Total</td>
 <td class="quantity"></td>
 <td class="price"></td>
 <td class="cost">$172.13</td>
 </tr>
 <tr class="actions">
 <td></td>
 <td><input type="button" name="recalculate"
 value="Recalculate" id="recalculate" /></td>
 <td></td>
 <td><input type="submit" name="submit"
 value="Place Order" id="submit" /></td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td class="item">Building Telephony Systems With Asterisk</td>
 <td class="quantity"><input type="text" name="quantity-2"
 value="1" id="quantity-2" maxlength="3" /></td>
 <td class="price">$26.99</td>
 <td class="cost">$26.99</td>
 </tr>
 <tr>
 <td class="item">Smarty PHP Template Programming and
 Applications</td>
 <td class="quantity"><input type="text" name="quantity-1"
 value="2" id="quantity-1" maxlength="3" /></td>
 <td class="price">$35.99</td>
 <td class="cost">$71.98</td>
 </tr>
 <tr>
 <td class="item">Creating your MySQL Database: Practical
 Design Tips and Techniques</td>
 <td class="quantity"><input type="text" name="quantity-3"
 value="1" id="quantity-3" maxlength="3" /></td>
 <td class="price">$17.99</td>
 <td class="cost">$17.99</td>
 </tr>
 <tr>
 <td class="item">Drupal: Creating Blogs, Forums, Portals, and
 Community Websites</td>
 <td class="quantity"><input type="text" name="quantity-4"
 value="1" id="quantity-4" maxlength="3" /></td>
 <td class="price">$35.99</td>
 <td class="cost">$35.99</td>
 </tr>
 </tbody>
 </table>
</form>

Forms with Function

[232]

This table introduces another element rarely seen in the world, <tfoot>. Like
<thead>, this element groups a set of table rows. Note that though the element
comes before the table body, it is presented after the body when the page is rendered:

This source code ordering, while non-intuitive to designers thinking visually about
the table rendering, is useful to those with visual impairments. When the table is
read aloud by assistive devices, the footer is read before the potentially long content,
allowing the user to get a summary of what is to come.

We've also placed a class on each cell of the table, identifying which column of the
table contains that cell. In the previous chapter, we demonstrated some ways to find
cells in a column by looking at the index of the cell within its row. Here, we'll make
a tradeoff and allow the JavaScript code to be simpler by making the HTML source a
bit more complex. With a class identifying the column of each cell, our selectors can
become a bit more straightforward.

Before we proceed with manipulating the form fields, we will apply our standard
row striping code to spruce up the table's appearance:

$(document).ready(function() {
 $('#cart tbody tr:even').addClass('even');
 $('#cart tbody tr:odd').addClass('odd');
});

Chapter 8

[233]

Once again, we make sure to only select rows to color if they are in the body of
the table:

Rejecting Non-numeric Input
When improving the contact form, we discussed some input validation techniques.
With JavaScript, we verified that what the user typed matched what we were
expecting, so that we could provide feedback before the form was even sent to the
server. Now we'll examine the counterpart to input validation, called input masking.

Input validation checks what the user has typed against some criteria for valid
inputs. Input masking applies criteria to the entries while they are being typed in
the first place, and simply disallows invalid keystrokes. In the example of our
shopping-cart form, for example, the input fields must contain only numbers. Input
masking code can cause any key that is not a number to do nothing when one of
these fields is in focus:

$('.quantity input').keypress(function(event) {
 if (event.charCode && (event.charCode < 48 || event.charCode > 57))
 {
 event.preventDefault();
 }
});

When catching keystrokes for our search field's auto-completion function, we
watched the keyup event. This allowed us to examine the .keyCode property of the
event, which told us which key on the keyboard was pressed. Here, we observe the
keypress event instead. This event does not have a .keyCode property, but instead
offers the .charCode property. This property reports the actual ASCII character that
is represented by the keystroke that just occurred.

Forms with Function

[234]

If the keystroke results in a character (that is, it is not an arrow key, delete, or some
other editing function) and that character is not in the range of ASCII codes that
represent numerals, then we call .preventDefault() on the event. As we have seen
before, this stops the browser from acting on the event; in this case, that means that
the character is never inserted into the field. Now every one of the quantity fields
can accept only numbers.

Numeric Calculations
Now we'll move on to some manipulation of the actual numbers the user will enter
in the shopping cart form. We have a Recalculate button on the form, which would
cause the form to be submitted to the server, where new totals can be calculated and
the form can be presented again to the user. This requires a round trip that is not
necessary, though; all of this work can be done on the browser side using jQuery.

The simplest calculation on this form is for the cell in the Shipping row that displays
the total quantity of items ordered. When the user modifies a quantity in one of the
rows, we want to add up all of the entered values to produce a new total and display
this total in the cell:

$('.quantity input').change(function() {
 var totalQuantity = 0;
 $('.quantity input').each(function() {
 var quantity = parseInt(this.value);
 totalQuantity += quantity;
 });
 $('.shipping .quantity').text(String(totalQuantity));
});

We have several choices for which event to watch for this recalculation operation.
We could observe the keyup event, and fire the recalculation with each keystroke.
We could also observe the blur event, which is triggered each time the user leaves
the field. Here we can be a little more conservative with CPU usage, though, and
only perform our calculations when the change event is triggered. This way we
recalculate the totals only if the user leaves the field with a different value than it
had before.

The total quantity is calculated using a simple .each loop. The .value property of
a field will report the string representation of the field's value, so we use the built‑in
parseInt function to convert this into an integer for our calculation. This practice
can avoid strange situations in which addition is interpreted as string concatenation,
since the two operations use the same symbol. Conversely, we need a string to pass
to jQuery's .text method when displaying the calculation's result, so we use the
String function to build a new one using our calculated total quantity.

Chapter 8

[235]

Changing a quantity now updates the total automatically:

Parsing and Formatting Currency
Now we can move on to the totals in the right-hand column. Each row's total cost
should be calculated by multiplying the quantity entered by the price of that item.
Since we're now performing multiple tasks for each row, we can begin by refactoring
the quantity calculations a bit to be row‑based rather than field‑based:

$('#cart tbody tr').each(function() {
 var quantity = parseInt($('.quantity input', this).val());
 totalQuantity += quantity;
});

This produces the same result as before, but we now have a convenient place to
insert our total cost calculation for each row:

$('.quantity input').change(function() {
 var totalQuantity = 0;
 $('#cart tbody tr').each(function() {
 var price = parseFloat($('.price', this).text()
 .replace(/^[^\d.]*/, ''));

 price = isNaN(price) ? 0 : price;

 var quantity = parseInt($('.quantity input', this).val());
 var cost = quantity * price;

 $('.cost', this).text('$' + cost);

 totalQuantity += quantity;
 });
 $('.shipping .quantity').text(String(totalQuantity));
});

Forms with Function

[236]

We fetch the price of each item out of the table using the same technique we needed
when sorting tables by price earlier. The regular expression first strips the currency
symbols off from the front of the value, and the resulting string is then sent to
parseFloat(), which interprets the value as a floating‑point number. Since we will
be doing calculations with the result, we need to check that a number was found, and
set the price to 0 if not. Finally, we multiply the cost by the quantity, and place the
result in the total column with a $ preceding it. We can now see our total calculations
in action:

Dealing with Decimal Places
Though we have placed dollar signs in front of our totals, JavaScript is not aware
that we are dealing with monetary values. As far as the computer is concerned, these
are just numbers, and should be displayed as such. This means that if the total ends
in a zero after the decimal point, this will be chopped off:

Chapter 8

[237]

Even worse, the precision limitations of JavaScript can sometimes lead to rounding
errors. These can make the calculations appear to be completely broken:

Fortunately, the fix for both problems is simple. JavaScript's Number class has
several methods to deal with this sort of issue, and .toFixed() fits the bill here.
This method takes a number of decimal places as a parameter, and returns a string
representing the floating-point number rounded to that many decimal places:

$('#cart tbody tr').each(function() {
 var price = parseFloat($('.price', this).text()
 .replace(/^[^\d.]*/, ''));
 price = isNaN(price) ? 0 : price;
 var quantity = parseInt($('.quantity input', this).val());
 var cost = quantity * price;
 $('.cost', this).text('$' + cost.toFixed(2));

 totalQuantity += quantity;
});

Forms with Function

[238]

Now our totals all look like normal monetary values:

Other Calculations
The rest of the calculations on the page follow a similar pattern. For the subtotal,
we can add up our totals for each row as they are calculated, and display the result
using the same currency formatting as before:

$('.quantity input').change(function() {
 var totalQuantity = 0;
 var totalCost = 0;
 $('#cart tbody tr').each(function() {
 var price = parseFloat($('.price', this).text()
 .replace(/^[^\d.*/, ''));
 price = isNaN(price) ? 0 : price;
 var quantity = parseInt($('.quantity input', this).val());
 var cost = quantity * price;
 $('.cost', this).text('$' + cost.toFixed(2));
 totalQuantity += quantity;
 totalCost += cost;
 });
 $('.shipping .quantity').text(String(totalQuantity));
 $('.subtotal .cost').text('$' + totalCost.toFixed(2));
});

Chapter 8

[239]

Rounding Values
To calculate tax, we need to divide the figure given by 100 and then multiply the
taxRate by the subtotal. Tax is always rounded up, however, so we must ensure
that the correct value is used both for display and for later calculations. JavaScript's
Math.ceil function can round a number up to the nearest integer, but since we are
dealing with dollars and cents we need to be a bit trickier:

var taxRate = parseFloat($('.tax .price').text()) / 100;
var tax = Math.ceil(totalCost * taxRate * 100) / 100;
$('.tax .cost').text('$' + tax.toFixed(2));
totalCost += tax;

The tax is multiplied by 100 first so that it becomes a value in cents, not dollars. This
can then be rounded safely by Math.ceil() and then divided by 100 to convert it
back into dollars. Finally .toFixed() is called as before to produce the correct result:

Forms with Function

[240]

Finishing Touches
The shipping calculation is simpler than tax, since no rounding is involved. The
shipping rate is just multiplied by the number of items to determine the total:

$('.shipping .quantity').text(String(totalQuantity));
var shippingRate = parseFloat($('.shipping .price')
 .text().replace(/^[^\d.]*/, ''));
var shipping = totalQuantity * shippingRate;
$('.shipping .cost').text('$' + shipping.toFixed(2));
totalCost += shipping;

We have been keeping track of the grand total as we have gone along, so all we need
to do for this last cell is to format totalCost appropriately:

$('.total .cost').text('$' + totalCost.toFixed(2));

Chapter 8

[241]

Now we have completely replicated any server-side calculations that would occur,
so we can safely hide the Recalculate button:

$('#recalculate').hide();

This change once again echoes our progressive enhancement principle: Ensure that
the page works properly without JavaScript first, then use jQuery to perform the
same task more elegantly when possible.

Deleting Items
If shoppers on our site change their minds about items they have added to their
carts, they can change the Quantity field for those items to 0. We can provide a more
reassuring behavior, though, by adding explicit Delete buttons for each item. The
actual effect of the button can be the same as changing the Quantity field, but the
visual feedback can reinforce the fact that the item will not be purchased.

First, we need to add the new buttons. Since they won't function without JavaScript,
we won't put them in the HTML. Instead, we'll let jQuery add them to each row:

$('<th> </th>').insertAfter('#cart thead th:nth-child(2)');
$('#cart tbody tr').each(function() {
 $deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../icons/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
 });

Forms with Function

[242]

 $('<td></td>').insertAfter($('td:nth-child(2)', this))
 .append($deleteButton);
});
$('<td> </td>').insertAfter('#cart tfoot td:nth-child(2)');

We need to create empty cells in the header and footer rows as placeholders so that
the columns of the table still line up correctly. The buttons are created and added on
the body rows only:

Now we need to make the buttons do something. We can change the button
definition to add a click handler:

$deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../icons/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
}).click(function() {

 $(this).parents('tr').find('.quantity input').val(0);

});

Chapter 8

[243]

The handler finds the quantity field in the same row as the button, and sets the value
to 0. Now the field is updated, but the calculations are out of sync:

We need to trigger the calculation as if the user had manually changed the
field value:

$deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../icons/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
}).click(function() {
 $(this).parents('tr').find('.quantity input')
 .val(0).trigger('change');

});

Forms with Function

[244]

Now the totals update when the button is clicked:

Now for the visual feedback. We'll hide the row that was just clicked, so that the item
is clearly removed from the cart:

$deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../icons/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
}).click(function() {
 $(this).parents('tr').find('.quantity input')
 .val(0).trigger('change')
 .end().hide();

});

Chapter 8

[245]

While the row is hidden, the field is still present on the form. This means it will be
submitted with the rest of the form, and the item will be removed on the server side
at that time.

Our row striping has been disturbed by the removal of this row. To correct this, we
can first move our existing striping code into a function so that we can call it
again later:

var stripe = function() {
 $('#cart tbody tr:visible:even').removeClass('odd')
 .addClass('even');
 $('#cart tbody tr:visible:odd').removeClass('even')
 .addClass('odd');
};
stripe();

At the same time, we have modified the code to exclude invisible rows from the
calculation of odd and even row numbers, and have made sure to remove the odd
class when applying even and vice versa. Now we can call this function again after
removing a row:

$deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../icons/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
}).click(function() {
 $(this).parents('tr').find('.quantity input')
 .val(0).trigger('change')
 .end().hide();
 stripe();

});

Forms with Function

[246]

The deleted row has now seamlessly disappeared:

This completes yet another enhancement using jQuery that is completely transparent
to the code on the server. As far as the server is concerned, the user just typed a 0 in
the input field, but to the user this is a distinct remove operation that is different than
changing a quantity.

Editing Shipping Information
The shopping cart page also has a form for shipping information. Actually, it isn't a
form at all when the page loads, and without JavaScript enabled, it remains a little
box tucked away on the right side of the content area, containing a link to a page
where the user can edit the shipping information:

But with JavaScript turned on, and with the power of jQuery at our disposal, we can
turn this little link into a full‑fledged form. We'll do this by requesting the form from
a PHP page. Typically the data populating the form would be stored in a database of
some sort, but for the purpose of this demonstration, we'll just keep some static data
in a PHP array.

To retrieve the form and make it appear inside the Shipping to box, we use the
$.get method inside the .click event handler:

$(document).ready(function() {
 $('#shipping-name').click(function() {

Chapter 8

[247]

 $.get('shipping.php', function(data) {
 $('#shipping-name').remove();
 $(data).hide().appendTo('#shipping').slideDown();
 });
 return false;
 });
});

In the callback of the $.get method we remove the name that was just clicked and
in its place append the form and its data from shipping.php. We then add return
false so that the default event for the clicked link (loading the page indicated in the
href attribute) does not occur. Now the Shipping to box is an editable form:

The user can now edit the shipping information without leaving the page.

The next step is to hijack the form submission and post the edited data back to the
server with jQuery. We start by serializing the data in the form and storing it in a
postData variable. Then we post the data back to the server using shipping.php
once again:

$(document).ready(function() {
 $('shipping form').submit(function() {
 var postData = $('#shipping :input').serialize();
 $.post('shipping.php', postData);
 return false;
 };
});

Forms with Function

[248]

It makes sense for the form to be removed at this point and for the Shipping to
box to return to its original state. We can achieve this in the callback of the $.post
method that we just used:

$(document).ready(function() {
 $('#shipping form').submit(function() {
 var postData = $('#shipping :input').serialize();
 $.post('shipping.php', postData, function(data) {
 $('#shipping form').remove();
 $(data).appendTo('#shipping');
 });
 return false;
 };
});

The only problem is that this is not going to work. The way we have it set up now,
the .submit event handler is being bound to the Shipping to form as soon as the
DOM is loaded, but the form is not in the DOM until the user clicks on the Shipping
to name. The event can't be bound to something that doesn't exist.

To overcome this problem, we can put the form-creation code into a function called
editShipping and the form‑submission or form‑removal code into a function called
saveShipping. Then we can bind the saveShipping function in the callback of
$.get(), after the form has been created. Likewise, we can bind the editShipping
function both when the DOM is ready and when the Edit shipping link is re-created
in the callback of $.post():

$(document).ready(function() {
 var editShipping = function() {
 $.get('shipping.php', function(data) {
 $('#shipping-name').remove();
 $(data).hide().appendTo('#shipping').slideDown();
 $('#shipping form').submit(saveShipping);
 });
 return false;
 };
 var saveShipping = function() {
 var postData = $('#shipping :input').serialize();
 $.post('shipping.php', postData, function(data) {
 $('#shipping form').remove();
 $(data).appendTo('#shipping');
 $('#shipping-name').click(editShipping);
 });
 return false;
 };
 $('#shipping-name').click(editShipping);
});

Chapter 8

[249]

The code has formed a circular pattern of sorts, in which one function allows for the
other by rebinding their respective event handlers.

The Finished Code
Taken together, the code for the shopping cart page is a mere 79 lines—quite small
considering the functionality it accomplishes, but especially so when we take
into account the breezy style that the code has acquired for optimum readability.
Because of jQuery's chainability, many of the lines could have been merged were we
particularly concerned with number of lines. At any rate, here is the finished code for
the shopping cart page, which concludes this chapter on forms:

$(document).ready(function() {
 // shopping cart
 var stripe = function() {
 $('#cart tbody tr:visible:even').removeClass('odd')
 .addClass('even');
 $('#cart tbody tr:visible:odd').removeClass('even')
 .addClass('odd');
 };
 stripe();
 $('#recalculate').hide();
 $('.quantity input').keypress(function(event) {
 if (event.charCode && (event.charCode < 48 ||
 event.charCode > 57)) {
 event.preventDefault();
 }
 }).change(function() {
 var totalQuantity = 0;
 var totalCost = 0;
 $('#cart tbody tr').each(function() {
 var price = parseFloat($('.price', this).text()
 .replace(/^[^\d.]*/, ''));
 price = isNaN(price) ? 0 : price;
 var quantity = parseInt($('.quantity input', this).val());
 var cost = quantity * price;
 $('.cost', this).text('$' + cost.toFixed(2));
 totalQuantity += quantity;
 totalCost += cost;
 });
 $('.subtotal .cost').text('$' + totalCost.toFixed(2));
 var taxRate = parseFloat($('.tax .price').text()) / 100;
 var tax = Math.ceil(totalCost * taxRate * 100) / 100;
 $('.tax .cost').text('$' + tax.toFixed(2));

Forms with Function

[250]

 totalCost += tax;
 $('.shipping .quantity').text(String(totalQuantity));
 var shippingRate = parseFloat($('.shipping .price').text()
 .replace(/^[^\d.]*/, ''));
 var shipping = totalQuantity * shippingRate;
 $('.shipping .cost').text('$' + shipping.toFixed(2));
 totalCost += shipping;
 $('.total .cost').text('$' + totalCost.toFixed(2));
 });

 $('<th> </th>').insertAfter('#cart thead th:nth-child(2)');
 $('#cart tbody tr').each(function() {
 $deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../icons/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
 }).click(function() {
 $(this).parents('tr').find('.quantity input')
 .val(0).trigger('change')
 .end().hide();
 stripe();
 });
 $('<td></td>').insertAfter($('td:nth-child(2)', this))
 .append($deleteButton);
 });
 $('<td> </td>').insertAfter('#cart tfoot td:nth-child(2)');
});

//edit shipping information

$(document).ready(function() {
 var editShipping = function() {
 $.get('shipping.php', function(data) {
 $('#shipping-name').remove();
 $(data).hide().appendTo('#shipping').slideDown();
 $('#shipping form').submit(saveShipping);
 });
 return false;
 };
 var saveShipping = function() {
 var postData = $('#shipping :input').serialize();

Chapter 8

[251]

 $.post('shipping.php', postData, function(data) {
 $('#shipping form').remove();
 $(data).appendTo('#shipping');
 $('#shipping-name').click(editShipping);
 });
 return false;
 };
 $('#shipping-name').click(editShipping);
});

Summary
In this chapter we have investigated ways to improve the appearance and behavior
of common HTML form elements. We have learned about enhancing the styling
of forms while leaving the original markup semantic, conditionally hiding and
showing fields based on other field values, and validating field contents both before
submission and during data entry. We have covered features like AJAX auto-
completion for text fields, allowing only specific characters to be entered in a field,
and performing calculations on numeric values in fields. We have also learned to
submit forms using AJAX rather than a page refresh.

The form element is often the glue that holds an interactive site together. With
jQuery, we can easily improve the user's experience in filling out forms while still
preserving their utility and flexibility.

Shufflers and Rotators
Spin that wheel
Go along for the ride
 —Devo,
 "Spin the Wheel"

It's not enough anymore to craft literary masterpieces on the web. People clamor
for more. They want the words to move. They want pretty pictures on demand.
They want Shufflers and Rotators! In this third and final how-to chapter, we'll use
advanced animations, ultra-hip AJAX, and superfluous eye candy in an attempt to
give the people what they want and really shuffle things around.

Headline Rotator
For our first rotator example, we'll take a news feed and scroll the headlines, along
with an excerpt of the article, one at a time into view. Unlike with the typical news
ticker, however, each news item will scroll up, not across. Then it will pause for a
few seconds before it continues up and out of sight while the next one scrolls
into view.

Setting Up the Page
At its most basic level, this feature is not very difficult to implement. But as we will
soon see, making it production-ready requires a bit of finesse.

We begin, as usual, with a chunk of HTML. We'll place the news feed in the sidebar
of the page:

<div id="sidebar">

 <!-- Code continues... -->

Shufflers and Rotators

[254]

 <h3>Recent News</h3>
 <div id="news-feed">
 News Releases
 </div>

 </div>

So far, the news-feed <div> contains only a single link to the main news page. This is
our fall back position, in case the user does not have JavaScript enabled. The content
we'll be working with will come from an actual RSS feed instead.

The CSS for this <div> is important, as it will determine not only how much of each
news item will be shown at a time, but also where on the page the news items will
appear. Together with the style rule for the individual news items, the CSS looks
like this:

#news-feed {
 position: relative;
 height: 200px;
 width: 17em;
 overflow: hidden;
}

.headline {
 position: absolute;
 height: 200px;
 top: 210px;
 overflow: hidden;
}

Notice here that the height of both the individual news items (represented by the
headline class) and their container is 200px. Also, since .headline is absolutely
positioned relative to #news-feed, we're able to set the top of the news items just
below the bottom edge of their container. That way, when we set #news-feed to
overflow:hidden, we effectively hide the news items in their initial position.

Setting the news items to position:absolute is necessary for another reason as
well; for any element to have its position animated on the page, it must have either
absolute or relative positioning, rather than the default static positioning.

Now that we have the HTML and CSS in place, we can inject the news items from an
RSS feed. To start, we'll wrap the code in a .each() method, which will act as an if
statement of sorts and contain the code inside a private namespace:

$(document).ready(function() {
 $('#news-feed').each(function() {
 $(this).empty();
 });
});

Chapter 9

[255]

There are two possible results when we use the selector #news-feed to create a
jQuery object. The factory function could make a jQuery object matching one unique
element with the news-feed ID, or it could find no elements on the page with that
ID and produce an empty jQuery object. The .each() call takes care of executing the
contained code only if the jQuery object is non-empty.

Immediately following the .each(), the news feed <div> is emptied to make it
ready for its new content.

Retrieving the Feed
To retrieve the feed, we'll use the $.get() method, one of jQuery's many utility
functions for communicating with the server. For more information on $.get() and
other AJAX methods, see Chapter 6.

The content of the feed is passed in the first argument (data) as an XML structure,
which, in turn, is used as the context for a selector:

$(document).ready(function() {
 $('#news-feed').each(function() {
 $(this).empty();

 $.get('news/feed.xml', function(data) {
 $('/rss//item', data).each(function() {

 // Code continues...

 });
 });
 });
});

We can use another .each() method for the items in the feed to combine the parts of
each item into a usable block of HTML markup. To start, we build the links:

$(document).ready(function() {
 $('#news-feed').each(function() {
 $(this).empty();

 $.get('news/feed.xml', function(data) {
 $('/rss//item', data).each(function() {
 var title = $('title', this).text();
 var linkText = $('link', this).text();
 var $link = $('<a>')
 .attr('href', linkText)

Shufflers and Rotators

[256]

 .text(title);
 $link = $('<h3></h3>').html($link);
 });
 });
 });
});

We get the text of the each item's <title> and <link> elements, and then construct
the <a> element, setting our linkText variable as the href attribute and the title
variable as the text to appear between the <a> and tags. We finish by wrapping
an <h3> element around each <a>.

In addition to the links, we reformat and insert each item's publication date and
append the HTML of each summary, wrapping everything in its own <div>:

$(document).ready(function() {
 $('#news-feed').each(function() {
 $(this).empty();

 $.get('news/feed.xml', function(data) {
 $('/rss//item', data).each(function() {
 var title = $('title', this).text();
 var linkText = $('link', this).text();
 var $link = $('<a>')
 .attr('href', linkText)
 .text(title);
 $link = $('<h3></h3>').html($link);

 var pubDate = new Date($('pubDate', this).text());
 var pubMonth = pubDate.getMonth() + 1;
 var pubDay = pubDate.getDate();
 var pubYear = pubDate.getFullYear();
 var $pubDiv = $('<div></div>')
 .addClass('publication-date')
 .text(pubMonth + '/' + pubDay + '/' + pubYear;);

 var summaryText = $('description', this).text();
 var $summary = $('<div></div>')
 .addClass('summary')
 .html(summaryText);
 });
 });
 });
});

Chapter 9

[257]

The last step for getting the feed items onto the page involves creating one more
<div>, adding a class of headline to it, appending $link, $pubDiv, and $summary
to it, and then appending all of that together to <div id="news-feed">, which is
already part of the HTML:

$(document).ready(function() {
 $('#news-feed').each(function() {
 $(this).empty();

 $.get('news/feed.xml', function(data) {
 $('/rss//item', data).each(function() {
 var title = $('title', this).text();
 var linkText = $('link', this).text();
 var $link = $('<a>')
 .attr('href', linkText)
 .text(title);
 $link = $('<h3></h3>').html($link);

 var pubDate = new Date($('pubDate', this).text());
 var pubMonth = pubDate.getMonth() + 1;
 var pubDay = pubDate.getDate();
 var pubYear = pubDate.getFullYear();
 var $pubDiv = $('<div></div>')
 .addClass('publication-date')
 .text(pubMonth + '/' + pubDay + '/' + pubYear);
 var summaryText = $('description', this).text();
 var $summary = $('<div></div>')
 .addClass('summary')
 .html(summaryText);

 $('<div></div>')
 .addClass('headline')
 .append($link)
 .append($pubDiv)
 .append($summary)
 .appendTo('#news-feed');
 });
 });
 });
});

So, now we have multiple <div class="headline"> elements—each with a title,
date, link, and summary—ready to be shown.

Shufflers and Rotators

[258]

Setting Up the Rotator
Before we dive into the heart of the headline rotator code, we have a few more things
to set up. First, we'll set two variables, one for the currently visible headline and one
for the headline that has just scrolled out of view. Initially, both values will be 0:

var currentHeadline = 0, oldHeadline = 0;

Next, we'll take care of some initial positioning of the headlines. Recall that in the
stylesheet we have already set the top property of the headlines to be 10 pixels
greater than their container's height so that they can be hidden. It'll be helpful later
on if we store that property in a variable so that we can reset a headline's hidden
position after it is scrolled out of the visible area. We also want the first headline to
be visible immediately upon page load, so we can set its top property to 0:

var hiddenPosition = $('#news-feed').height() + 10;
$('div.headline:eq(' + currentHeadline + ')').css('top','0');

The rotator area of the page is beginning to shape up:

Finally, we'll store the total number of headlines and define a time out variable to be
used for the pause mechanism between each rotation.

var headlineCount = $('div.headline').length;
var headlineTimeout;

There is no need yet to give headlineTimeout a value; it will be set each time the
rotation occurs. Nevertheless, we must always declare variables using var to avoid
the risk of collisions with global variables of the same name.

Chapter 9

[259]

The Headline Rotate Function
Now we're ready to rotate the headlines, their corresponding dates, and summaries.
We'll define a function for this task so that we can reuse the code. The first line inside
this function changes the value of currentHeadline by adding 1 to it and then
using the modulus operator with headlineCount. This way, currentHeadline will
equal oldHeadline + 1 until the latter value matches the value of headlineCount,
at which point it will be reset to 0. For a more detailed discussion of the modulus
operator, see the Three-color Alternating Pattern section of Chapter 7.

The last line inside the function, after the rotation has occurred, sets the oldHeadline
value to the currentHeadline value. Now, with these two lines book-ending our
function, we can use the two variables as indexes of the currently and previously
visible headlines:

var headlineRotate = function() {
 currentHeadline = (oldHeadline + 1) % headlineCount;

 // Headline rotation will occur here...

 oldHeadline = currentHeadline;
};

In between these two lines we have the code that actually moves the headlines.
It starts by animating the top property of the <div class="headline"> element
with an index of oldHeadline, moving it up until it's no longer visible, and then,
as soon as the animation is complete, setting the top property back to its original
hiddenPosition:

var headlineRotate = function() {
 currentHeadline = (oldHeadline + 1) % headlineCount;
 $('div.headline:eq(' + oldHeadline + ')')
 .animate({top: -hiddenPosition}, 'slow', function() {
 $(this).css('top',hiddenPosition);
 });
 oldHeadline = currentHeadline;
};

Notice here that since hiddenPosition is greater than the height of <div
id="news‑feed">, animating the top of the headline to –headlinePosition moves
it up until it is entirely hidden above its containing element. Using the .animate
method's callback then ensures that headline is not repositioned in its original
location until after the animation occurs.

Shufflers and Rotators

[260]

The current headline slides up into view simultaneously. Then, when its animation
is complete, we use the setTimeout function to call headlineRotate again after a
pause of 5 seconds (5000 milliseconds):

var headlineRotate = function() {
 currentHeadline = (oldHeadline + 1) % headlineCount;
 $('div.headline:eq(' + oldHeadline + ')')
 .animate({top: -hiddenPosition}, 'slow', function() {
 $(this).css('top',hiddenPosition);
 });

 $('div.headline:eq(' + currentHeadline + ')')
 .animate({top: 0},'slow', function() {
 headlineTimeout = setTimeout(headlineRotate, 5000);
 });

 oldHeadline = currentHeadline;
};

Now that we have the headlineRotate function completed, we still have to call it.
Although it is called inside of itself, after the animations run, it still needs to be called
initially so that it will start when the document is ready. All we need to do for that
is to repeat the headlineTimeout line after the function. With the repeated line, our
full code so far looks like this:

$(document).ready(function() {
 $('#news-feed').each(function() {
 $(this).empty();

 // Retrieve the news feed.
 $.get('news/feed.xml', function(data) {
 $('/rss//item', data).each(function() {
 var title = $('title', this).text();
 var linkText = $('link', this).text();
 var $link = $('<a>')
 .attr('href', linkText)
 .text(title);
 $link = $('<h3></h3>').html($link);

 var pubDate = new Date($('pubDate', this).text());
 var pubMonth = pubDate.getMonth() + 1;
 var pubDay = pubDate.getDate();
 var pubYear = pubDate.getFullYear();
 var $pubDiv = $('<div></div>')
 .addClass('publication-date')
 .text(pubMonth + '/' + pubDay + '/' + pubYear);
 var summaryText = $('description', this).text();
 var $summary = $('<div></div>')

Chapter 9

[261]

 .addClass('summary')
 .html(summaryText);
 $('<div></div>')
 .append($link)
 .append($pubDiv)
 .append($summary)
 .appendTo('#news-feed');
 });

 // Set up the rotator.
 var currentHeadline = 0, oldHeadline = 0;
 var hiddenPosition = ($('#news-feed').height() + 10);
 $('div.headline:eq(' + currentHeadline + ')').css('top','0');

 var headlineCount = $('div.headline').length;
 var headlineTimeout;

 // Perform the rotation.
 var headlineRotate = function() {
 currentHeadline = (oldHeadline + 1) % headlineCount;
 $('div.headline:eq(' + oldHeadline + ')')
 .animate({top: -hiddenPosition}, 'slow', function() {
 $(this).css('top',hiddenPosition);
 });
 $('div.headline:eq(' + currentHeadline + ')')
 .animate({top: 0},'slow', function() {
 headlineTimeout = setTimeout(headlineRotate, 5000);
 });
 oldHeadline = currentHeadline;
 };

 headlineTimeout = setTimeout(headlineRotate,5000);
 }); // End $.get()
 }); // End .each() for #news-feed
});

Pause on Hover
Even though the headline rotator is now fully functioning, there is one usability issue
that we should address—a headline might scroll out of the viewable area before a
user is able to click on one of its links, forcing the user to wait until the scroller has
cycled through the full set of headlines again. We can reduce the likelihood of this
problem by having the scroller pause when the user's mouse cursor hovers anywhere
within the headline.

$('#news-feed').hover(function() {
 clearTimeout(headlineTimeout);

Shufflers and Rotators

[262]

}, function() {
 headlineTimeout = setTimeout(headlineRotate, 250);
});

The code within the .hover method calls JavaScript's clearTimeout function on
mouseover of <div id="news-feed">, effectively preventing our headlineRotate
function from being called again. On mouseout, headlineRotate() is called once
more, set to begin after a short 250-millisecond delay.

This simple code works fine most of the time. However, if the user mouses over and
back out of the <div> quickly and repeatedly, a very undesirable effect can occur:
Multiple headlines layering on top of each other in the visible area:

Unfortunately, we need to perform some serious surgery to remove this cancer.

Before the headlineRotate function, we'll introduce one more variable:

var rotateInProgress = false;

Now, on the very first line of our function, we can check if a rotation is currently in
progress. Only if the value of rotateInProgress is false do we want the code to
run again. Therefore, we wrap everything within the function in an if statement.
Immediately after this statement, we set the variable to true, and then in the callback
of the second .animate method, we set it back to false:

var headlineRotate = function() {

 if (!rotateInProgress) {
 rotateInProgress = true;

 currentHeadline = (oldHeadline + 1) % headlineCount;
 $('div.headline:eq(' + oldHeadline + ')')
 .animate({top: -hiddenPosition}, 'slow', function() {
 $(this).css('top',hiddenPosition);
 });

Chapter 9

[263]

 $('div.headline:eq(' + currentHeadline + ')')
 .animate({top: 0},'slow', function() {

 rotateInProgress = false;
 headlineTimeout = setTimeout(headlineRotate, 5000);
 });
 oldHeadline = currentHeadline;

 }
};

These few additional lines improve our headline rotator substantially. The
repeated mouseover-mouseout behavior no longer causes the headlines to pile up
on top of each other. Yet this repeated behavior still leaves us with one nagging
problem: Subsequent headlines appear to come on a different timetable, two or
three immediately following each other rather than all evenly spaced out at
five-second intervals.

The problem is that more than one timer can become active concurrently if a user
mouses out of the <div> before the existing timer completes. We therefore need
to put one more safeguard into place, setting our headlineTimeout variable to
false at the top of the function and immediately after the clearTimeout() within
the .hover(). Then, in the two places where we use headlineTimeout to call the
headlineRotate function, we check first to make sure that the value is false. This
way we ensure that a new timer is not set until all existing timers have ended:

var headlineRotate = function() {
 if (!rotateInProgress) {
 rotateInProgress = true;

 headlineTimeout = false;

 currentHeadline = (oldHeadline + 1) % headlineCount;
 $('div.headline:eq(' + oldHeadline + ')')
 .animate({top: -hiddenPosition}, 'slow', function() {
 $(this).css('top',hiddenPosition);
 });
 $('div.headline:eq(' + currentHeadline + ')')
 .animate({top: 0},'slow', function() {
 rotateInProgress = false;

 if (!headlineTimeout) {
 headlineTimeout = setTimeout(headlineRotate, 5000);

 }
 });
 oldHeadline = currentHeadline;
 }
};

headlineTimeout = setTimeout(headlineRotate,5000);

Shufflers and Rotators

[264]

$('#news-feed').hover(function() {
 clearTimeout(headlineTimeout);

 headlineTimeout = false;
}, function() {

 if (!headlineTimeout) {
 headlineTimeout = setTimeout(headlineRotate, 250);

 }
});

At last, our headline rotator can withstand all manner of mousing escapades.

Retrieving a Feed from a Different Domain
The news feed that we've been using for our example is a local file, but we might
want to retrieve a feed from another site altogether. Although there are a number of
solutions for cross-site data retrieval, we'll just look at one using PHP. We create a
new file called feed.php (rather than feed.xml) and refer to it in our $.get method:

$.get('news/feed.php', function(data) {
 // Code continues...
}

Inside the feed.php file, we pull in the content of the cross-site news feed, like so:

<?php
 header('Content-Type: text/xml');
 print file_get_contents('http://jquery.com/blog/feed');
?>

Note here that we need to explicitly set the Content-Type of the page to text/xml
so that jQuery can fetch it and parse it. Some web-hosting providers may not allow
the use of the PHP file_get_contents function because of security concerns.

Pulling in a remote file like this might take some time, depending on a number
of factors, so we can indicate to the user that the headlines are being loaded by
appending an image when the $.get() request starts and removing it when the
request stops:

$(document).ready(function() {
 $('#news-feed').each(function() {
 $(this).empty();

 var $newsLoading = $('')
 .attr({
 'src': '/cookbook/images/loading.gif',
 'alt': 'loading. please wait'
 })

Chapter 9

[265]

 .addClass('news-wait');
 $(this).ajaxStart(function() {
 $(this).append($newsLoading);
 }).ajaxStop(function() {
 $newsLoading.remove();
 });

 // Code continues...

 });
});

Now, when the page first loads, if there is a delay in retrieving the headline content,
we'll see a loading image rather than an empty area:

This image is an animated GIF, so it will obviously look a little more interesting on
the web page than it does in print.

Gratuitous Inner-fade Effect
Before we finish the headline rotator, let's give it a finishing touch, making the
headline text appear as if it is fading in from the background. To accomplish this bit
of visual flair, we can create a series of <div> elements, each given an incrementally
greater opacity and top value than the one before it. All of the div slices have a few
style properties in common, which we can declare in our stylesheet:

.fade-slice {
 position: absolute;
 width: 20em;
 height: 2px;
 background: #efd;
 z-index: 3;
}

Shufflers and Rotators

[266]

They all have the same width and background-color property as their containing
element <div id="news-feed">. Now we can determine the number of <div
class="fade-slice"> elements to be created by first setting a height for all of the
<div>s together, in this case, 25 percent of the <div id="news-feed"> height, and
then running a for loop, incrementing from 0 to the combined fade height by twos:

$(document).ready(function() {
 $('#news-feed').each(function() {
 var $this = $(this);
 $this.empty();

 var totalheight = $this.height();
 var fadeHeight = $('#news-feed').height() / 4;
 for (var i = 0; i < fadeHeight; i+=2) {
 $('<div></div>')
 .addClass('fade-slice')
 .appendTo(this);
 }

 // Code continues...
 });
});

Since we're beginning to make fairly heavy use of the $(this) jQuery object, we've
declared a variable $this for it so that we can reuse it with impunity.

Rather than using the standard i++ incrementing in the for loop, we've used i+=2
to increment by 2 because of the slices' 2-pixel height. Given that the height of <div
id="news‑feed"> is set at 200 pixels, we arrive at a fadeHeight value of 50, which
in turn produces 25 <div class="fade-slice"> elements, each one 2 pixels tall as
indicated in the stylesheet.

Now we just have to mathematically determine each element's opacity and
top properties:

$(document).ready(function() {
 $('#news-feed').each(function() {
 var $this = $(this);
 $this.empty();

 var totalheight = $this.height();
 var fadeHeight = $totalheight() / 4;
 for (var i = 0; i < fadeHeight; i+=2) {
 $('<div></div>')

 .css({
 opacity: i / fadeHeight,
 top: $totalHeight - fadeHeight + i
 })

Chapter 9

[267]

 .addClass('fade-slice')
 .appendTo(this);
 }

 // Code continues...

 });
});

As we can see in the table below, the opacity values start at 0, step up to .04, and
continue incrementally until they reach .96, nearly full opacity. Meanwhile, the top
values begin at 150 and increase by 2 until they reach 198:

Keep in mind that since the top position of the final <div class="fade-slice"> is
198, its 2-pixel height will neatly overlay the bottom two pixels of the 200-pixel-tall
containing <div>.

Shufflers and Rotators

[268]

With our code in place, the text in the headline area of the page now blends
beautifully from transparent to opaque as it scrolls up from the bottom of the <div>:

An Image Carousel
As another example of shuffling around page content, we'll implement an image
gallery for the front page of the bookstore site. The gallery will present a few
featured books for sale, with links to larger cover art for each. Unlike the previous
example, where the headlines in our news ticker moved on a set schedule, here we'll
use jQuery to slide the images across the screen when the user clicks on a cover.

An alternative mechanism for scrolling through a set of images is implemented by
the jCarousel plug-in for jQuery. While not identical to the result we'll achieve here,
this plug-in can produce high-quality shuffling effects with very little code. More
information on using plug-ins can be found in Chapter 10.

Setting Up the Page
As always, we begin by crafting the HTML and CSS so that users without JavaScript
available receive an appealing and functional representation of the information:

<div id="featured-books">
 <div class="covers">
 <a href="covers/large/1847190871.jpg"
 title="Community Server Quickly">
 <img src="covers/medium/1847190871.jpg" width="120" height="148"
 alt="Community Server Quickly" />
 $35.99

 <a href="covers/large/1847190901.jpg"
 title="Deep Inside osCommerce: The Cookbook">

Chapter 9

[269]

 <img src="covers/medium/1847190901.jpg" width="120" height="148"
 alt="Deep Inside osCommerce: The Cookbook" />
 $44.99

 <a href="covers/large/1847190979.jpg" title="Learn OpenOffice.org
 Spreadsheet Macro Programming: OOoBasic and Calc automation">
 <img src="covers/medium/1847190979.jpg" width="120" height="148"
 alt="Learn OpenOffice.org Spreadsheet Macro Programming:
 OOoBasic and Calc automation" />
 $35.99

 <a href="covers/large/1847190987.jpg" title="Microsoft AJAX C#
 Essentials: Building Responsive ASP.NET 2.0 Applications">
 <img src="covers/medium/1847190987.jpg" width="120" height="148"
 alt="Microsoft AJAX C# Essentials: Building Responsive
 ASP.NET 2.0 Applications" />
 $31.99

 <a href="covers/large/1847191002.jpg"
 title="Google Web Toolkit GWT Java AJAX Programming">
 <img src="covers/medium/1847191002.jpg" width="120" height="148"
 alt="Google Web Toolkit GWT Java AJAX Programming" />
 $40.49

 <a href="covers/large/1847192386.jpg"
 title="Building Websites with Joomla! 1.5 Beta 1">
 <img src="covers/medium/1847192386.jpg" width="120" height="148"
 alt="Building Websites with Joomla! 1.5 Beta 1" />
 $40.49

 </div>
</div>

Each image is contained within an anchor tag, pointing to the larger version of the
cover. We also have prices given for each cover; these will be hidden for now, and
we'll use JavaScript to display them later at an appropriate time.

To save space on the front page, we want to show only three covers at a time.
Without JavaScript, we can accomplish this by setting the overflow property of the
container to scroll, and adjusting the width appropriately:

#featured-books {
 position: relative;
 background: #ddd;
 width: 440px;
 height: 186px;

Shufflers and Rotators

[270]

 overflow: scroll;
 margin: 1em auto;
 padding: 0;
 text-align: center;
 z-index: 2;
}
#featured-books .covers {
 position: relative;
 width: 840px;
 z-index: 1;
}
#featured-books a {
 float: left;
 margin: 10px;
 height: 146px;
}
#featured-books .price {
 display: none;
}

These styles bear a bit of discussion. The outermost element needs to have a larger
z‑index property than the one inside it; this allows Internet Explorer to hide the part
of the inner element that stretches beyond its container. We set the width of the outer
element to 440px, which accommodates three images, the 10px margin around each,
and an extra 20px for the scroll bar.

With these styles in place, the images can be browsed using a standard system
scroll bar:

Chapter 9

[271]

Revising the Styles with JavaScript
Now that we have gone to the work of making the image gallery usable without
JavaScript, we need to undo some of the niceties. The scroll bar will be redundant
when we implement our own scrolling mechanism, and the automatic layout of the
covers using the float property will get in the way of the positioning we need to do
to animate the covers. So our first order of business will be overriding some styles:

$(document).ready(function() {
 var spacing = 140;

 $('#featured-books').css({
 'width': spacing * 3,
 'height': '166px',
 'overflow': 'hidden'
 }).find('.covers a').css({
 'float': 'none',
 'position': 'absolute',
 'left': 1000
 });

 var $covers = $('#featured-books .covers a');

 $covers.eq(0).css('left', 0);
 $covers.eq(1).css('left', spacing);
 $covers.eq(2).css('left', spacing * 2);
});

The spacing variable is going to come in handy throughout many of our calculations.
It represents the width of one of the cover images, plus the padding on either side of
it. The width of the containing element can now be set to exactly what is necessary
to contain three of the cover images since we don't need space for the scroll bar
anymore. Indeed, we change the overflow property to hidden, and bye-bye
scroll bar.

The cover images all get positioned absolutely, and start with a left coordinate of
1000. This places them out of the visible area. Then we move the first three covers
into position, one at a time. The $covers variable holding all of the anchor elements
will also come in handy later.

Shufflers and Rotators

[272]

Now the first three covers are visible, with no scrolling mechanism available:

Shuffling Images when Clicked
Now we need to add code to respond to a click on either of the end images, and
reorder the covers as necessary. When the left cover is clicked, this means the user
wants to see more images to the left, which in turn means we need to shift the covers
to the right. Similarly, when the right cover is clicked we will have to shift the covers
to the left. We want the carousel to wrap around, so when images fall off the left side
they get appended to the right. To begin, we will just change the image positions
without animation:

$(document).ready(function() {
 var spacing = 140;

 $('#featured-books').css({
 'width': spacing * 3,
 'height': '166px',
 'overflow': 'hidden'
 }).find('.covers a').css({
 'float': 'none',
 'position': 'absolute',
 'left': 1000
 });

 var setUpCovers = function() {
 var $covers = $('#featured-books .covers a');

 $covers.unbind('click');

 // Left image; scroll right (to view images on left) when clicked.
 $covers.eq(0).css('left', 0).click(function(event) {
 $covers.eq(2).css('left', 1000);
 $covers.eq($covers.length - 1).prependTo(
 '#featured-books .covers');

Chapter 9

[273]

 setUpCovers();

 event.preventDefault();
 });

 // Right image; scroll left (to view images on right) when clicked.
 $covers.eq(2).css('left', spacing * 2).click(function(event) {
 $covers.eq(0).css('left', 1000);
 $covers.eq(0).appendTo('#featured-books .covers');
 setUpCovers();

 event.preventDefault();
 });

 // Center image.
 $covers.eq(1).css('left', spacing);
 };

 setUpCovers();
});

The new setUpCovers function incorporates the image positioning code that
we wrote earlier. By encapsulating this in a function, we can repeat the image
positioning after the elements have been reordered.

In our example, there are six images in total (which JavaScript will reference with
the numbers 0 through 5), and numbers 0, 1, and 2 are visible. When image #0 is
clicked, we want to shift all the images to the right by one position. We first move
image #2 out of the viewable area, since it will not be visible after the shift. Then we
move the image at the end of the line (#5) to the front of the queue. This reorders
all of the images, so when setUpCovers() is called again the former #5 is now #0,
#0 has become #1, and #1 has become #2. The existing positioning code is therefore
sufficient to move the covers to their new locations:

Shufflers and Rotators

[274]

Clicking on image #2 performs the process in reverse. This time it is #0 that gets
hidden from view, and then moved to the end of the queue. This shifts #1 to the #0
spot, #2 to #1, and #3 to #2.

There are a couple of details that we have to take care of to avoid user interaction
anomalies:

1.	 We need to call .preventDefault() within our click handler, since we have
made the covers into links to the large version. Without this call, the link will
be followed and we would never see our shuffle effect.

2.	 We need to unbind all of the click handlers at the beginning of the
setUpCovers() function, or we could end up with multiple handlers bound
to the same image as the carousel rotates.

Adding Sliding Animation
It can be difficult to understand what just happened when an image is clicked; since
the covers move instantaneously, they can appear to have just changed rather than
moved. To mitigate this issue, we can add an animation that causes the covers to
slide into place rather than just appearing in their new positions. This requires a
revision of the setUpCovers function:

var setUpCovers = function() {
 var $covers = $('#featured-books .covers a');

 $covers.unbind('click');

 // Left image; scroll right (to view images on left) when clicked.
 $covers.eq(0).css('left', 0).click(function(event) {

 $covers.eq(0).animate({'left': spacing}, 'fast');
 $covers.eq(1).animate({'left': spacing * 2}, 'fast');
 $covers.eq(2).animate({'left': spacing * 3}, 'fast');
 $covers.eq($covers.length - 1).css('left', -spacing).animate({
 'left': 0}, 'fast', function() {

 $(this).prependTo('#featured-books .covers');
 setUpCovers();

 });

 event.preventDefault();
 });

 // Right image; scroll left (to view images on right) when clicked.
 $covers.eq(2).css('left', spacing * 2).click(function(event) {

Chapter 9

[275]

 $covers.eq(0).animate({'left': -spacing}, 'fast', function() {
 $(this).appendTo('#featured-books .covers');
 setUpCovers();

 });
 $covers.eq(1).animate({'left': 0}, 'fast');
 $covers.eq(2).animate({'left': spacing}, 'fast');
 $covers.eq(3).css('left', spacing * 3).animate({
 'left': spacing * 2}, 'fast');

 event.preventDefault();
 });

 // Center image.
 $covers.eq(1).css('left', spacing);
};

When the left image is clicked, we can move all three visible images to the right
by one image width (reusing the spacing variable we defined earlier). This part is
straightforward, but we also have to make the new image slide into view. To do this,
we grab the image from the end of the queue, and first set its screen position to be
just offscreen on the left side. Then we slide it into view along with the other items:

Even though the animation takes care of the initial move, we still need to change the
cover order by calling setUpCovers() again. If we don't, the next click won't work
correctly. Since setUpCovers() changes the cover positions, we must defer the call
until after the animation completes, so we place the call in the animation's callback.

Displaying Action Icons
Our image carousel now rotates smoothly, but we haven't provided any hint to the
user that clicking on the covers will cause them to scroll. We can assist the user by
displaying appropriate icons when the mouse hovers over the images.

Shufflers and Rotators

[276]

In this case, we'll place the icons on top of the existing images. By using the opacity
property, we can continue to see the cover underneath when the icon is displayed.
We'll use simple monochrome icons so that the cover is not too obscured:

We'll need three icons, one each for scrolling left and right and one for the middle
cover, which the user can click for an enlarged version. We can create the icons and
store them in variables for later use:

var $leftRollover = $('')
 .attr('src', 'images/left.gif')
 .addClass('control')
 .css('opacity', 0.6)
 .hide();
var $rightRollover = $('')
 .attr('src', 'images/right.gif')
 .addClass('control')
 .css('opacity', 0.6)
 .hide();
var $enlargeRollover = $('')
 .attr('src', 'images/enlarge.gif')
 .addClass('control')
 .css('opacity', 0.6)
 .hide();

But we've got a fair amount of repetition here. Instead, we can pull this work out into
a function that we call for each icon that needs to be created:

function createControl(src) {
 return $('')
 .attr('src', src)
 .addClass('control')
 .css('opacity', 0.6)
 .hide();
}

var $leftRollover = createControl('images/left.gif');
var $rightRollover = createControl('images/right.gif');
var $enlargeRollover = createControl('images/enlarge.gif');

Chapter 9

[277]

In the CSS for the page, we set the z-index of these controls to be higher than the
images', and then position them absolutely so that they can overlap the covers:

#featured-books .control {
 position: absolute;
 z-index: 3;
 left: 0;
 top: 0;
}

The rollover icons all share the same control class so one might be tempted to place
the opacity style in the CSS stylesheet. However, element opacity is not handled
consistently between browsers; in Internet Explorer, the syntax for 60% opacity is
filter: alpha(opacity=60). Rather than wrestle with these distinctions, we
set the opacity style using jQuery's .css method, which abstracts away these
browser inconsistencies.

Now all we have to do in our hover handlers is to place the images in the right
DOM location:

var setUpCovers = function() {
 var $covers = $('#featured-books .covers a');

 $covers.unbind('click').unbind('mouseover').unbind('mouseout');

 // Left image; scroll right (to view images on left) when clicked.
 $covers.eq(0).css('left', 0).click(function(event) {
 $covers.eq(0).animate({'left': spacing}, 'fast');
 $covers.eq(1).animate({'left': spacing * 2}, 'fast');
 $covers.eq(2).animate({'left': spacing * 3}, 'fast');
 $covers.eq($covers.length - 1).css('left', -spacing).
animate({'left': 0}, 'fast', function() {
 $(this).prependTo('#featured-books .covers');
 setUpCovers();
 });

 event.preventDefault();
 }).hover(function() {

 $leftRollover.appendTo(this).show();
 }, function() {
 $leftRollover.hide();
 });

 // Right image; scroll left (to view images on right) when clicked.
 $covers.eq(2).css('left', spacing * 2).click(function(event) {
 $covers.eq(0).animate({'left': -spacing}, 'fast', function() {
 $(this).appendTo('#featured-books .covers');
 setUpCovers();

Shufflers and Rotators

[278]

 });
 $covers.eq(1).animate({'left': 0}, 'fast');
 $covers.eq(2).animate({'left': spacing}, 'fast');
 $covers.eq(3).css('left', spacing * 3).animate(
 {'left': spacing * 2}, 'fast');

 event.preventDefault();
 }).hover(function() {

 $rightRollover.appendTo(this).show();
 }, function() {
 $rightRollover.hide();
 });

 // Center image; enlarge cover when clicked.
 $covers.eq(1).css('left', spacing).hover(function() {

 $enlargeRollover.appendTo(this).show();
 }, function() {
 $enlargeRollover.hide();
 });

};

Just as we did with click earlier, we unbind mouseover and mouseout handlers at
the beginning of setUpCovers() so that the hover behaviors do not accumulate.

Now when the mouse cursor is over a cover, the appropriate rollover image is
overlaid on top of the cover:

Image Enlargement
Our image gallery is fully functional, with a carousel that allows the user to navigate
to a desired image. A click on the center image leads to an enlarged view of the cover
in question. But there is more we can do with this image enlargement functionality.

Chapter 9

[279]

Rather than lead the user to a separate URL when the center image is clicked, we
can overlay the enlarged book cover on the page itself. The Thickbox plug-in for
jQuery provides a different way to display information overlaid on the page. We will
develop the feature without plug-ins here. More information on using plug-ins can
be found in Chapter 10.

This larger cover image will require a new image element, which we can create at the
same time that the hover images are instantiated:

var $enlargedCover = $('')
 .addClass('enlarged')
 .hide()
 .appendTo('body');

We will apply a set of style rules to this new class that are similar to the ones we
have seen before:

img.enlarged {
 position: absolute;
 z-index: 5;
 cursor: pointer;
}

This absolute positioning will allow the cover to float above the other images we
have positioned, because the z-index is higher than the ones we have already used.
Now we need to actually position the enlarged image when the center image in the
carousel is clicked:

// Center image; enlarge cover when clicked.
$covers.eq(1).css('left', spacing).click(function(event) {
 $enlargedCover.attr('src', $(this).attr('href')).css({
 'left': ($('body').width() - 360) / 2,
 'top' : 100,
 'width': 360,
 'height': 444
 }).show();

 event.preventDefault();
}).hover(function() {
 $enlargeRollover.appendTo(this).show();
}, function() {
 $enlargeRollover.hide();
});

We can take advantage of the links already present in the HTML source to know
where the larger cover's image file resides on the server. We pluck this from the href
attribute of the link, and set it as the src attribute of the enlarged cover image.

Shufflers and Rotators

[280]

Now we must position the image. The top, width, and height are hard-coded for
now, but the left requires a little calculation. We want the enlarged image to be
centered on the page, but we can't know in advance what the appropriate coordinate
is to achieve this positioning. We can find the halfway mark across the page by
measuring the width of the body element and dividing this by two. Half of our
enlarged image will be on either side of this point, so the left coordinate of the image
will be ($('body').width() - 360) / 2, where 360 is the width of the enlarged
cover. The cover is now positioned appropriately, centered horizontally across
the page:

Hiding the Enlarged Cover
We need a mechanism for dismissing the cover once it has been enlarged. The
simplest way to do this is by making a click event on the cover fade it out:

// Center image; enlarge cover when clicked.
$covers.eq(1).css('left', spacing).click(function(event) {
 $enlargedCover.attr('src', $(this).attr('href')).css({
 'left': ($('body').width() - 360) / 2,
 'top' : 100,

Chapter 9

[281]

 'width': 360,
 'height': 444
 }).show()

 .one('click', function() {
 $enlargedCover.fadeOut();
 });

 event.preventDefault();
}).hover(function() {
 $enlargeRollover.appendTo(this).show();
}, function() {
 $enlargeRollover.hide();
});

We use the .one method to bind this click handler, which sidesteps a couple of
potential problems. With a regular .bind() of the handler, the user could click on
the image again as it was fading out. This would cause the handler to fire again.
Also, since we are reusing the same image element every time the cover is enlarged,
the bind will happen again for each enlargement. If we do nothing to unbind the
handler, they will stack up over time. Using .one() ensures that the handlers are
removed once used.

Displaying a Close Button
This behavior is sufficient for removing the large cover, but we've given no
indication to the user that clicking the cover will make it go away. We can provide
this assistance by badging the enlarged image with a close button. Creating the button
is similar to defining the other singleton elements we've used, and we can call the
utility function that we created earlier:

var $closeButton = createControl('images/close.gif')
 .addClass('enlarged-control')
 .appendTo('body');

When the center cover is clicked and the enlarged cover is displayed, we need to
position and show the button:

$closeButton.css({
 'left': ($('body').width() - 360) / 2,
 'top' : 100
}).show();

Shufflers and Rotators

[282]

The coordinates of the close button are identical to the enlarged cover, so their
top-left corners are aligned:

We already have a behavior bound to the image that hides it when the image is
clicked, so typically in this situation we could rely on event bubbling to cause a click
on the close button to have the same behavior. In this case, however, the close button
is not a descendant element of the cover, despite appearances. We've absolutely
positioned the close button on top of the cover, which means that clicks on the button
do not get passed to the enlarged image. Instead, we must handle clicks on the close
button ourselves:

// Center image; enlarge cover when clicked.
$covers.eq(1).css('left', spacing).click(function(event) {
 $enlargedCover.attr('src', $(this).attr('href')).css({
 'left': ($('body').width() - 360) / 2,
 'top' : 100,
 'width': 360,
 'height': 444
 }).show()
 .one('click', function() {

Chapter 9

[283]

 $closeButton.unbind('click').hide();
 $enlargedCover.fadeOut();
 });

 $closeButton.css({
 'left': ($('body').width() - 360) / 2,
 'top' : 100
 }).click(function() {

 $enlargedCover.click();
 }).show();

 event.preventDefault();
}).hover(function() {
 $enlargeRollover.appendTo(this).show();
}, function() {
 $enlargeRollover.hide();
});

When we show the close button, we bind a click event handler for it. All this
handler needs to do, though, is to trigger the click handler we've already bound to
the enlarged cover. We do need to modify that handler, though, and hide the close
button there. While we're at it, we unbind the click handler to prevent handlers from
accumulating over time.

More Fun with Badging
Since we have the prices for the books available to us in the HTML source, we can
display this as additional information when the book cover is enlarged. This time
we'll apply the technique we just developed for the close button to textual content
rather than an image.

Once again, we create a singleton element at the beginning of our JavaScript code:

var $priceBadge = $('<div/>')
 .addClass('enlarged-price')
 .css('opacity', 0.6)
 .css('display', 'none')
 .appendTo('body');

Since the price will be partially transparent, a high contrast between font color and
background will work best:

.enlarged-price {
 background-color: #373c40;
 color: #fff;
 width: 80px;
 padding: 5px;

Shufflers and Rotators

[284]

 font-size: 18px;
 font-weight: bold;
 text-align: right;
 position: absolute;
 z-index: 6;
}

Before we can display the price badge, we need to populate it with the actual price
information from the HTML. Inside the center cover's click handler this refers to the
link element. Since the price is in a element within the link, obtaining the text
is straightforward:

var price = $(this).find('.price').text();

Now we can display the badge when the cover is enlarged:

$priceBadge.css({
 'right': ($('body').width() - 360) / 2,
 'top' : 100
}).text(price).show();

This will fix the price at the top-right corner of the enlarged image:

Chapter 9

[285]

Once we place a $priceBadge.hide(); within the cover's click handler to clean up
after ourselves, we're done.

Animating the Cover Enlargement
When the user clicks on the center cover, the enlarged version appears in the center
of the page with no flourish. Instead, we can use the built-in animation capabilities
of jQuery to smoothly transition between the thumbnail view of the cover and the
full-size version.

To do this, we need to know the starting coordinates of the animation; i.e. the
position of the center cover on the page. We can calculate the position of the image
by adding up the offsetTop and offsetLeft properties of the image and its
ancestors in the DOM tree:

var element = $(this).find('img').get(0);
var coverLeft = 0;
var coverTop = 0;
var coverWidth = element.width;
var coverHeight = element.height;
while (element.offsetParent) {
 coverLeft += element.offsetLeft;
 coverTop += element.offsetTop;
 element = element.offsetParent;
}

The Dimensions plug-in for jQuery provides readily accessible values for
calculations such as this. For more information on plug-ins please refer to
Chapter 10.

The actual animation is performed by setting the enlarged image to the center cover's
dimensions and position, then calling .animate() with the full-size dimensions as
a destination:

$enlargedCover.attr('src', $(this).attr('href')).css({
 'left': coverLeft,
 'top' : coverTop,
 'width': coverWidth,
 'height': coverHeight
}).animate({
 'left': ($('body').width() - coverWidth * 3) / 2,
 'top' : 100,
 'width': coverWidth * 3,
 'height': coverHeight * 3
}, 'normal', function() {
 $enlargedCover.one('click', function() {

Shufflers and Rotators

[286]

 $closeButton.unbind('click').hide();
 $priceBadge.hide();
 $enlargedCover.fadeOut();
 });

 $closeButton.css({
 'left': ($('body').width() - coverWidth * 3) / 2,
 'top' : 100
 }).click(function() {
 $enlargedCover.click();
 }).show();

 $priceBadge.css({
 'right': ($('body').width() - coverWidth * 3) / 2,
 'top' : 100
 }).text(price).show();
});

Now that we have the width and height of the thumbnail captured, we can use
these values to calculate the enlarged version rather than hard-coding this number.
Here we assume that the full-size version will always be three times the size of
the thumbnail. The positioning of the close button and the price badge need to be
deferred until the animation is complete, so we place them in the callback. Now we
have a smooth transition from small to large cover:

Chapter 9

[287]

Shufflers and Rotators

[288]

Deferring Animations Until Image Load
Our animation is smooth, but depends on a fast connection to the site. If the enlarged
cover takes some time to download, then the first moments of the animation might
display the red X indicating a broken image. We can make the transition a bit more
elegant by waiting until the image has fully loaded before starting the animation:

$enlargedCover.attr('src', $(this).attr('href')).css({
 'left': coverLeft,
 'top' : coverTop,
 'width': coverWidth,
 'height': coverHeight
});

 var animateEnlarge = function() {
 $enlargedCover.animate({
 'left': ($('body').width() - coverWidth * 3) / 2,
 'top' : 100,
 'width': coverWidth * 3,
 'height': coverHeight * 3
 }, 'normal', function() {
 $enlargedCover.one('click', function() {

Chapter 9

[289]

 $closeButton.unbind('click').hide();
 $priceBadge.hide();
 $enlargedCover.fadeOut();
 });

 $closeButton.css({
 'left': ($('body').width() - coverWidth * 3) / 2,
 'top' : 100
 }).click(function() {
 $enlargedCover.click();
 }).show();

 $priceBadge.css({
 'right': ($('body').width() - coverWidth * 3) / 2,
 'top' : 100
 }).text(price).show();
 });

 };

 if ($enlargedCover[0].complete) {
 animateEnlarge();
 }
 else {
 $enlargedCover.bind('load', animateEnlarge);
 }

This is a rare instance in which the load event is more useful to us than jQuery's
custom ready event. Since load is triggered on a document, image, or frame when
all of its contents have fully loaded, we can observe the event to make sure that all of
the image has been loaded into memory. Only then is the handler executed, and the
animation is performed.

We're using the .bind('load') syntax rather than the shorthand
.load() method here for clarity since .load() is also an AJAX method;
the two syntaxes are interchangeable.

Internet Explorer and Firefox have different interpretations of what to do if the
image is already in the browser cache. In this case, Firefox will immediately send the
load event to JavaScript, but Internet Explorer will never send the event because no
load actually occurred. To compensate for this, we use the complete property of the
image element. This property is set to true only if the image is fully loaded, so we
test this value first and start the animation if the image is ready. If the image is not
yet complete, then we wait for a load event to be triggered.

Shufflers and Rotators

[290]

Adding a Loading Indicator
But now we can have an awkward situation on slow network connections when
an image takes a few moments to load. Our page appears to do nothing while this
download is in progress. As we did when loading the news headlines, we should
provide an indication to the user that some activity is occurring by displaying a
loading indicator in the meantime.

The indicator will be another singleton image that will be displayed when
appropriate:

var $waitThrobber = $('')
 .attr('src', 'images/wait.gif')
 .addClass('control')
 .css('z-index', 4)
 .hide();

For this image, we're actually using an animated GIF, because the motion will
reinforce to the user that the activity is taking place:

It will just take two lines to put our wait throbber in place, now that we have the
element defined. At the very beginning of our click handler for the center image,
before we start doing any work, we need to display the indicator:

$waitThrobber.appendTo(this).show();

And at the beginning of the animateEnlarge function, when we know the image has
been loaded, we remove it from view:

$waitThrobber.hide();

Chapter 9

[291]

This is all it takes to badge the cover being enlarged with the wait throbber. The
animation appears overlaying the top left corner of the cover:

Shufflers and Rotators

[292]

The Finished Code
This chapter represents just a small fraction of what can be done on the Web with
animated image and text rotators. Taken all together, the code for the headline
rotator and image carousel looks like this:

$(document).ready(function() {
 //using each as an 'if' and containing stuff inside a private
 //namespace
 $('#news-feed').each(function() {
 var $this = $(this);
 $this.empty();

 var totalHeight = $this.height();
 var fadeHeight = totalHeight / 4;

 for (var i = 0; i < fadeHeight; i+=2) {
 $('<div></div>').css({
 opacity: i / fadeHeight,
 top: totalHeight - fadeHeight + i
 }).addClass('fade-slice').appendTo(this);
 }
 var $newsLoading = $('')
 .attr({
 'src': '/cookbook/images/loading.gif',
 'alt': 'loading. please wait'}
)
 .addClass('news-wait');
 $this.ajaxStart(function() {
 $this.append($newsLoading);
 }).ajaxStop(function() {
 $newsLoading.remove();

Chapter 9

[293]

 });

 //retrieve the news feed
 $.get('news/feed.php', function(data) {
 $('/rss//item', data).each(function() {
 var title = $('title', this).text();
 var linkText = $('link', this).text();
 var $link = $('<a>')
 .attr('href', linkText)
 .text(title);
 $link = $('<h3></h3>').html($link);

 var pubDate = new Date($('pubDate', this).text());
 var pubMonth = pubDate.getMonth() + 1;
 var pubDay = pubDate.getDate();
 var pubYear = pubDate.getFullYear();
 var $pubDiv = $('<div></div>')
 .addClass('publication-date')
 .text(pubMonth + '/' + pubDay + '/' + pubYear);

 var summaryText = $('description', this).text();
 var $summary = $('<div></div>')
 .addClass('summary')
 .html(summaryText);

 $('<div></div>')
 .addClass('headline')
 .append($link)
 .append($pubDiv)
 .append($summary)
 .appendTo('#news-feed');
 });

 //set up the rotator
 var currentHeadline = 0, oldHeadline = 0;
 var hiddenPosition = totalHeight + 10;
 $('div.headline:eq(' + currentHeadline + ')').css('top','0');
 var headlineCount = $('div.headline').length;
 var headlineTimeout;
 var rotateInProgress = false;

 //rotator function
 var headlineRotate = function() {
 if (!rotateInProgress) {
 rotateInProgress = true;
 headlineTimeout = false;

Shufflers and Rotators

[294]

 currentHeadline = (oldHeadline + 1) % headlineCount;
 $('div.headline:eq(' + oldHeadline + ')')
 .animate({top: -hiddenPosition}, 'slow', function() {
 $(this).css('top',hiddenPosition);
 });
 $('div.headline:eq(' + currentHeadline + ')')
 .animate({top: 0},'slow', function() {
 rotateInProgress = false;
 if (!headlineTimeout) {
 headlineTimeout = setTimeout(headlineRotate, 5000);
 }
 });
 oldHeadline = currentHeadline;
 }
 };
 headlineTimeout = setTimeout(headlineRotate,5000);

 // on hover clear the timeout and reset headlineTimeout to 0
 $('#news-feed').hover(function() {
 clearTimeout(headlineTimeout);
 headlineTimeout = false;
 }, function() {
 // Start the rotation soon when the mouse leaves
 if (!headlineTimeout) {
 headlineTimeout = setTimeout(headlineRotate, 250);
 }
 }); //end .hover()
 }); // end $.get()
 }); //end .each() for #news-feed
});

/***************************************
 =IMAGE CAROUSEL
-------------------------------------- */
$(document).ready(function() {
 var spacing = 140;

 function createControl(src) {
 return $('')
 .attr('src', src)
 .addClass('control')
 .css('opacity', 0.6)
 .css('display', 'none');
 }

Chapter 9

[295]

 var $leftRollover = createControl('images/left.gif');
 var $rightRollover = createControl('images/right.gif');
 var $enlargeRollover = createControl('images/enlarge.gif');
 var $enlargedCover = $('')
 .addClass('enlarged')
 .hide()
 .appendTo('body');
 var $closeButton = createControl('images/close.gif')
 .addClass('enlarged-control')
 .appendTo('body');
 var $priceBadge = $('<div/>')
 .addClass('enlarged-price')
 .css('opacity', 0.6)
 .css('display', 'none')
 .appendTo('body');
 var $waitThrobber = $('')
 .attr('src', 'images/wait.gif')
 .addClass('control')
 .css('z-index', 4)
 .hide();

 $('#featured-books').css({
 'width': spacing * 3,
 'height': '166px',
 'overflow': 'hidden'
 }).find('.covers a').css({
 'float': 'none',
 'position': 'absolute',
 'left': 1000
 });

 var setUpCovers = function() {
 var $covers = $('#featured-books .covers a');

 $covers.unbind('click').unbind('mouseover').unbind('mouseout');

 // Left image; scroll right (to view images on left) when clicked.
 $covers.eq(0).css('left', 0).click(function(event) {
 $covers.eq(0).animate({'left': spacing}, 'fast');
 $covers.eq(1).animate({'left': spacing * 2}, 'fast');
 $covers.eq(2).animate({'left': spacing * 3}, 'fast');
 $covers.eq($covers.length - 1).css('left', -spacing)
 .animate({'left': 0}, 'fast', function() {
 $(this).prependTo('#featured-books .covers');
 setUpCovers();
 });

Shufflers and Rotators

[296]

 event.preventDefault();
 }).hover(function() {
 $leftRollover.appendTo(this).show();
 }, function() {
 $leftRollover.hide();
 });

 // Right image; scroll left (
 to view images on right) when clicked.
 $covers.eq(2).css('left', spacing * 2).click(function(event) {
 $covers.eq(0).animate({'left': -spacing}, 'fast', function() {
 $(this).appendTo('#featured-books .covers');
 setUpCovers();
 });
 $covers.eq(1).animate({'left': 0}, 'fast');
 $covers.eq(2).animate({'left': spacing}, 'fast');
 $covers.eq(3).css('left', spacing * 3).animate({
 'left': spacing * 2}, 'fast');

 event.preventDefault();
 }).hover(function() {
 $rightRollover.appendTo(this).show();
 }, function() {
 $rightRollover.hide();
 });

 // Center image; enlarge cover when clicked.
 $covers.eq(1).css('left', spacing).click(function(event) {
 $waitThrobber.appendTo(this).show();

 var price = $(this).find('.price').text();

 var element = $(this).find('img').get(0);
 var coverLeft = 0;
 var coverTop = 0;
 var coverWidth = element.width;
 var coverHeight = element.height;
 while (element.offsetParent) {
 coverLeft += element.offsetLeft;
 coverTop += element.offsetTop;
 element = element.offsetParent;
 }

 $enlargedCover.attr('src', $(this).attr('href')).css({
 'left': coverLeft,
 'top' : coverTop,
 'width': coverWidth,
 'height': coverHeight

Chapter 9

[297]

 });
 var animateEnlarge = function() {
 $waitThrobber.hide();
 $enlargedCover.animate({
 'left': ($('body').width() - coverWidth * 3) / 2,
 'top' : 100,
 'width': coverWidth * 3,
 'height': coverHeight * 3
 }, 'normal', function() {
 $enlargedCover.one('click', function() {
 $closeButton.unbind('click').hide();
 $priceBadge.hide();
 $enlargedCover.fadeOut();
 });

 $closeButton.css({
 'left': ($('body').width() - coverWidth * 3) / 2,
 'top' : 100
 }).click(function() {
 $enlargedCover.click();
 }).show();

 $priceBadge.css({
 'right': ($('body').width() - coverWidth * 3) / 2,
 'top' : 100
 }).text(price).show();
 });
 };

 if ($enlargedCover[0].complete) {
 animateEnlarge();
 }
 else {
 $enlargedCover.bind('load', animateEnlarge);
 }

 event.preventDefault();
 }).hover(function() {
 $enlargeRollover.appendTo(this).show();
 }, function() {
 $enlargeRollover.hide();
 });
 };

 setUpCovers();
});

Shufflers and Rotators

[298]

Summary
In this chapter, we have looked into page elements that change over time, either on
their own or in response to user intervention. These shufflers and rotators can really
set a modern web presence apart from traditionally designed sites. We have covered
presenting an XML feed of information on a page as well as rotating items in and
out of view on a time delay. Along with displaying a set of images in a navigable
carousel-style gallery, we have also discussed enlarging an image for a closer
view with a smooth animation and presenting user-interface controls in an
unobtrusive way.

These techniques can be combined in many ways to breathe life into otherwise
stodgy pages. Animations and effects that would be otherwise tedious to achieve can
be effortlessly realized thanks to the power of jQuery.

Plug-ins
Like a plug without a socket
I'm just waitin' 'round for you
 —Devo,
 "Don't You Know"

Throughout this book we have examined many of the ways in which the jQuery
library can be used to accomplish a wide variety of tasks. Yet one aspect that has
remained relatively unexplored is jQuery's extensibility. As powerful as the library is
at its core, its elegant plug-in architecture has allowed developers to extend jQuery,
making it an even more feature-rich library.

Although jQuery has been available for less than two years, it already supports over
a hundred plug-ins—from small selector helpers to full-scale, user-interface widgets.
In this chapter we'll take a brief look at three popular jQuery plug-ins and then create
a few of our own.

We've already discussed the power of plug-ins and created a simple one in Chapter
7. Here, we'll look at the way for incorporating pre-existing plug-ins into our web
pages and examine how to build our own plug-in in more detail.

How to Use a Plug-in
Using a jQuery plug-in is very straightforward. The first step is to include it in
the <head> of the document, making sure that it appears after the main jQuery
source file:

<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <script src="jquery.js" type="text/javascript"></script>

Plug-ins

[300]

 <script src="jquery.plug-in.js" type="text/javascript"></script>
 <script src="custom.js" type="text/javascript"></script>
 <title>Example</title>
</head>

After that, it's just a matter of including a custom JavaScript file in which we use
the methods that the plug-in either creates or extends. For example, using the Form
plug-in, we can add a single line inside our custom file's $(document).ready()
method to make a form submit via AJAX:

$(document).ready(function() {
 $('#myForm').ajaxForm();
});

Many plug-ins have a bit of built-in flexibility as well, providing a number of
optional parameters that we can set to modify their behavior. We can customize their
operation as much as needed, or simply stick with the defaults.

Popular Plug-Ins
The jQuery website currently provides a long list of available plug-ins at
http://jquery.com/Plugins, and plans are in the works to add features
such as user ratings and comments to help visitors determine which are the most
popular ones.

In this chapter we will explore three official plug-ins—so designated because of their
mature code-base, usefulness, and adherence to a set of coding and documentation
standards set by the jQuery project.

Dimensions
The Dimensions plug-in, co-authored by Paul Bakaus and Brandon Aaron, helps
to bridge the gap between the CSS box model and developers' need to accurately
measure the height and width of elements in a document. It also measures with pixel
accuracy the top and left offsets of elements, no matter where they are found on
the page.

Height and Width
For measuring height and width, Dimensions provides three sets of methods:

1.	 .height() and .width()
2.	 .innerHeight() and .innerWidth()
3.	 .outerHeight() and .outerWidth()

Chapter 10

[301]

The .height and .width methods simply use the jQuery core methods of the same
names when they are applied to elements. However, Dimensions extends these two
methods so that we can apply them to the browser window and the document. Using
$(window).width(), for example, will return the number of pixels for the width of
the browser, while $(document).width() will return the same for the width of the
document alone. If there is a vertical scrollbar, $(window).width() will include it
while $(document).width() won't.

The inner and outer methods are very useful for measuring the width and height of
elements including padding (inner and outer) and borders (outer). Let's look at an
example element called <div class="dim-outer"> with the following CSS rule:

.dim-outer {
 height: 200px;
 width: 200px;
 margin: 10px;
 padding: 1em;
 border: 5px solid #e3e3e3;
 overflow: auto;
 font-size: 12px;
}

The plain $('div.dim-outer').width() method returns 200, because that is,
indeed, the width defined in the CSS. However, it's not a very accurate measurement
if we want the width from the inside of the left border to the inside of the right. For
that, we can use $('div.dim-outer').innerWidth(), which returns 224. The extra
24 pixels come from the sum of the left and right sides' padding. Since the padding
is 1em, and each em is equal to the font-size, which we set at 12px, we get a total of
24 extra pixels. For $('div.dim-outer').outerWidth(), we add the right and left
borders (5 + 5) to the element width (+ 200) and the padding (+ 24) to arrive at a total
width from outside edge to outside edge of 234.

Plug-ins

[302]

ScrollTop and ScrollLeft
The .scrollTop and .scrollLeft methods return the number of pixels that the
user has scrolled the browser or a scrollable element within a document down and to
the right, respectively. When used with a numeric argument, they can also move the
page to the given scroll position.

Offset
Perhaps the most powerful feature of the Dimensions plug-in is its .offset()
method, which allows us to locate the top and left positions of any element
anywhere on the page, whether its position is static, relative, or absolute
and regardless of window scrollbars or even element scrollbars when overflow is
set to auto. With options for factoring margin, border, padding, and scroll into the
calculation, .offset() provides great flexibility as well as accuracy. The Dimensions
test page can give a sense of how versatile it is:

Chapter 10

[303]

Here, clicking on the Move to inline 1 link has moved the gray box to exactly the
same location as the inline 1 element, with its top and left borders overlapping
because the border option has been set to false. To see more offset permutations,
visit the test page at http://brandon.jquery.com/plugins/dimensions/test/
offset.html.

Form
The Form plug-in is a terrific example of a script that makes a difficult, complex task
dead simple.

At the heart of the plug-in is the .ajaxForm method. As we saw in the How to Use
a Plug-in section, converting a conventional form into an AJAX form requires one
simple line of code:

$(document).ready(function() {
 $('#myForm').ajaxForm();

});

This example will prepare the form with id="myForm" to be submitted without
having to refresh the current page. This feature in itself is quite nice, but the real
power comes with the map of options that we can pass into the method. For
example, the following code calls .ajaxForm() with the target, beforeSubmit, and
success options:

$(document).ready(function() {
 function validateForm() {
 // the form validation code would go here
 // we can return false to abort the submit
 };

 $('#test-form').ajaxForm({
 target: '.log',
 beforeSubmit: validateForm,
 success: function() {
 alert('Thanks for your comment!');
 }
 });
});

The target option indicates the element(s)—in this case, any element with
class="log"—that will be updated by the server response.

The beforeSubmit option performs tasks before the form is submitted. Here it calls
the validateForm function. If it returns false, the form will not be submitted.

Plug-ins

[304]

The success option performs tasks after the form is successfully submitted. In this
example it simply provides an alert message to let the user know that the form has
been submitted.

Other options available with .ajaxForm() and the similar .ajaxSubmit() include:

url: The URL to which the form data will be submitted, if different from the
form's action attribute.
type: The method used to submit the form—either GET or POST. The default
is the form's method attribute, or if none is provided, GET.
dataType: The expected data-type of the server response. Possible values are
null, xml, script, or json. The default value is null.
resetForm: Boolean; default is false. If set to true, all of the form's field
values will be reset to their defaults when the submit is successful.
clearForm: Boolean; default is false. If set to true, all of the form's field
values will be cleared when the submit is successful.

The Form plug-in provides a number of other methods to assist in handling forms
and their data. For a closer look at these methods, as well as more demos and
examples, visit http://www.malsup.com/jquery/form/.

Tips & Tricks
Both .ajaxForm() and .ajaxSubmit() default to using the action and method
values in the form's markup. As long as we use proper markup for the form, the
plug-in will work exactly as we expect without any need for tweaking.

Normally when a form is submitted, if the element used to submit the form has
a name, its name/value is submitted along with the rest of the form data. The
.ajaxForm() method is proactive in this regard, adding click handlers to all of the
submit elements so it knows which one submitted the form. The .ajaxSubmit()
method, on the other hand, is reactive and has no way of determining this
information. It does not capture the submitting element. The same distinction applies
to image input elements as well: .ajaxForm() handles them, while .ajaxSubmit()
ignores them.

The .ajaxForm() and .ajaxSubmit() methods pass their options argument to the
$.ajax() method that is part of the jQuery core. Therefore, any valid options for
$.ajax() can be passed in through the form plugin. With this feature in mind, we
can make our AJAX form responses even more robust, like so:

$(#myForm).ajaxForm({
 timeout: 2000,
 error: function (xml, status, e) {

•

•

•

•

•

Chapter 10

[305]

 alert(e.message);
 }
});

The .ajaxForm and .ajaxSubmit methods can be passed a function instead of an
options argument. Because the function is treated as the success handler, we can get
the response text back from the server, like so:

$(#myForm).ajaxForm(function(responseText) {
 alert(responseText);
});

Interface
While the Dimensions and Form Plug-ins do one thing, and do it very well, Interface
does a wide variety of things (and does them well). In fact, Interface is not so much a
plug-in, but rather a whole suite of plug-ins.

Originally created by Stefan Petre, with major contributions by Paul Bakaus, Interface
helps make the web experience more like that of a desktop application, featuring
widgets for dragging, dropping, and sorting items as well as advanced animation
effects and rich visual feedback.

Let us briefly examine the Animate and Sortables plug-ins here.

Animate
Like the Dimension plug-in's .height and .width methods, the .animate method
in Interface extends the jQuery core method. While the core .animate() has a
relatively limited set of options for its parameter, the Interface version opens those
options to encompass just about any CSS property and even a class name. Interface's
.animate() can, for example, animate the change from one class's set of properties
to another class's set. Suppose we have the element <div class="boxbefore"> with
the following CSS rule:

.boxbefore {
 width: 300px;
 margin: 1em 0;
 padding: 5px;
 overflow: auto;
 background-color: #fff;
 color: #000;
 border: 10px solid #333;
}

Plug-ins

[306]

The style properties give us a 300-pixel-wide box with 5 pixels of padding on each
side, a 10-pixel, dark-gray border, and the generic black text on a white background.
The overflow property is set to auto so that scrollbars will appear if the box is not
large enough to display all of the content. However, since no height is prescribed, the
box will grow as large as it needs to in order to accomodate the content. With these
properties set, our box should look like this:

Now let's animate a change from the boxbefore class to a new boxafter class with
the following properties:

.boxafter {
 height: 180px;
 width: 500px;
 padding: 15px;
 background-color: #000;
 color: #fff;
 border: 5px solid #ccc;
}

With this CSS rule, we are setting the box's height to 180 pixels, increasing its width
to 500 pixels, decreasing the border's width while lightening its color, increasing the
padding, and inverting the text and background colors. Since we are not defining
new overflow and margin properties, they remain the same.

Chapter 10

[307]

To animate this dramatic change, we simply write the following line:

$(document).ready(function() {
 $('div.boxbefore').animate({className:'boxafter'}, 1000);

});

A little more than halfway through the animation, our box will look like this:

And by the time the animation stops, the box will have all of the boxafter class
styles applied to it, along with a vertical scrollbar because the overflow:auto; kicks
in with the decreased height:

Plug-ins

[308]

Sortables
The Sortables plug-in module for Interface can transform just about any group of
elements into a drag-and-drop style list. Here, we have an unordered list with some
CSS styles applied to each item:

The HTML is pretty straightforward:

<ul id="sort-container" class="content">
 <li id="item1" class="sort-item">John
 <li id="item2" class="sort-item">Paul
 <li id="item3" class="sort-item">George
 <li id="item4" class="sort-item">Pete
 <li id="item5" class="sort-item">Stu
 <li id="item6" class="sort-item">Ringo

Each list item has a unique id and a common class. Now, to make the list sortable,
we simply write the following code:

$(document).ready(function() {
 $('#sort-container').Sortable({
 accept : 'sort-item',
 hoverclass : 'hover',
 helperclass : 'helper',
 opacity: 	 0.5
 });
});

Chapter 10

[309]

This code consists of a single .Sortable method with a map of arguments. The first,
accept, is a mandatory argument while the others are optional. In fact, we have left
quite a few options out of the script.

As we can see the method makes any item sortable that has class="sort-item".
It also applies a class to each item when the mouse cursor hovers over it (hoverclass
: 'hover') and identifies the class to use for the helper item (helperclass :
'helper'). In this example, the helper class is nothing more than a dotted
red border:

Interface plug-ins such as Sortables help to provide desktop-like functionality to
our web applications. For more information about all of the Interface plug-ins, visit
http://interface.eyecon.ro/.

Finding Plug-in Documentation
The jquery.com Plugin Repository at http://jquery.com/Plugins/ is a great place
to start when looking for documentation. Each plug-in listed in the repository has a
link to a page from which the plug-in can be downloaded. Additionally, many of the
linked pages contain demos, example code, and tutorials to help us get started.

Official jQuery plug-ins also provide ample comments in the source code itself. For
many plug-ins, the comment syntax matches the comments of the jquery.js file,
providing a description and at least one example of each method. This means
that the tools available for viewing jQuery documentation also work with
compliant plug-ins.

Plug-ins

[310]

For example, the .offset method of the Dimensions plug-in has these comments:

/**
 * Returns the location of the element in pixels from the top left
 * corner of the viewport.
 *
 * For accurate readings make sure to use pixel values for margins,
 * borders and padding.
 *
 * @example $("#testdiv").offset()
 * @result { top: 100, left: 100, scrollTop: 10, scrollLeft: 10 }
 *
 * @example $("#testdiv").offset({ scroll: false })
 * @result { top: 90, left: 90 }
 *
 * @example var offset = {}
 * $("#testdiv").offset({ scroll: false }, offset)
 * @result offset = { top: 90, left: 90 }
 *
 * @name offset	
 * @param Object options A hash [map] of options describing what
 * should be included in the final calculations of the offset.
 * The options include:
 * margin: Should the margin of the element be included in the
 * calculations? True by default.
 * If set to false the margin of the element is subtracted
 * from the total offset.
 * border: Should the border of the element be included in the
 * calculations? True by default.
 * If set to false the border of the element is subtracted
 * from the total offset.
 * padding: Should the padding of the element be included in the
 * calculations? False by default.
 * If set to true the padding of the element is added to the
 * total offset.
 * scroll: Should the scroll offsets of the parent elements be
 * included in the calculations? True by default. When true,
 * it adds the total scroll offsets of all parents to the
 * total offset and also adds two properties to the returned
 * object, scrollTop and scrollLeft. If set to false the
 * scroll offsets of parent elements are ignored.
 * If scroll offsets are not needed, set to false to get a
 * performance boost.
 * @param Object returnObject An object to store the return value in,

Chapter 10

[311]

 * so as not to break the chain. If passed in, the chain will not be
 * broken and the result will be assigned to this object.
 *
 * @type Object
 * @cat Plugins/Dimensions
 * @author Brandon Aaron (brandon.aaron@gmail.com ||
 * http://brandonaaron.net)
 */

Here, we can see that the comments begin with a general description of the method
and some brief advice about using pixel values. Following this introductory text is
a list of more detailed information, with each list item beginning with an @ symbol.
Notice that the name of the method (@name offset) doesn't come until after the
examples. There are three examples, arranged in order of increasing complexity.

The method name is followed by parameters that the method can take. These
parameters, especially the object options, are described in great detail, noting default
values and what we can expect if we apply them.

The last three items provide more information about the method, including the type
of data returned, its category, and its author.

If we can't find the answers to all of our questions in the Plugin Repository,
the author's website, and the plug-in's comments, we can always turn to the
jQuery discussion list. Many of the plug-in authors are frequent contributors to
the list and are always willing to help with any problems that new users might
face. Instructions for subscribing to the discussion list can be found at
http://docs.jquery.com/Discussion.

Developing a Plug-in
The third-party plug-ins available provide a bevy of options for enhancing our
coding experience, but sometimes we need to reach a bit farther. When we write
code that could be reused by others, or even ourselves, we may want to package
it up as a new plug-in. Fortunately, this process is not much more involved than
writing the code itself.

Adding New Global Functions
Some of the built-in capabilities of jQuery are provided via what we have been
calling global functions. As we've seen, these are actually methods of the jQuery
object, but practically speaking, they are functions within a jQuery namespace.

Plug-ins

[312]

A prime example of this technique is the $.ajax function. Everything that $.ajax()
does could be accomplished with a regular global function called simply ajax(),
but this approach would leave us open for function name conflicts. By placing the
function within the jQuery namespace, we only have to worry about conflicts with
other jQuery methods.

To add a function to the jQuery namespace, we can just assign the new function as a
property of the jQuery object:

jQuery.foo = function() {
 alert('This is a test. This is only a test.');
};

Now in any code which uses this plug-in, we can write:

jQuery.foo();

We can also use the $ alias and write:

$.foo();

This will work just like any other function call, and the alert will be displayed.

Adding Multiple Functions
If our plug-in needs to provide more than one global function, we could declare
them independently:

jQuery.foo = function() {
 alert('This is a test. This is only a test.');
};
jQuery.bar = function(param) {
 alert('This function takes a parameter, which is "' + param + '".');
};

Now both methods are defined; so we can call them in the normal fashion:

$.foo();
$.bar('baz');

We can clean up the function definitions a bit by using the $.extend() function:

jQuery.extend({
 foo: function() {
 alert('This is a test. This is only a test.');
 },
 bar: function(param) {
 alert('This function takes a parameter, which is "' + param +

Chapter 10

[313]

'".');
 }
});

This produces the same results. We risk a different kind of namespace pollution here,
though. Even though we are shielded from most JavaScript function and variable
names by using the jQuery namespace, we could still have a conflict with function
names defined in other jQuery plug-ins. To avoid this, it is best to encapsulate all of
the global functions for a plug-in into an object:

jQuery.myPlugin = {
 foo: function() {
 alert('This is a test. This is only a test.');
 },
 bar: function(param) {
 alert('This function takes a parameter, which is "' + param +
'".');
 }
};

Though we can still treat these functions as if they were global, they are now
technically methods of the global jQuery function, so the way we invoke the
functions has to change slightly:

$.myPlugin.foo();
$.myPlugin.bar('baz');

With this technique (and a sufficiently unique plug-in name), we are fully protected
from namespace collisions in our global functions.

What's the Point?
We now have the basics of plug-in development in our bag of tricks. After saving our
functions in a file called jquery.mypluginname.js, we can include this script and
use the functions from other scripts on the page. But how is this different from any
other JavaScript file we could create and include?

We already discussed the namespace benefits of gathering our code inside the jQuery
object. There is another key advantage of writing our function library as a jQuery
extension, however: the functions can use jQuery itself. By labeling the code as a
plug-in, we explicitly require that jQuery is always included on the page.

Plug-ins

[314]

Even though jQuery will be included, we shouldn't assume that the $
shortcut is available. Our plug-ins should always call jQuery methods
using jQuery or internally define $ themselves, as described later.

These are just organizational benefits, though. To really tap into the power of jQuery
plug-ins, we need to learn how to create new methods on individual jQuery
object instances.

Adding jQuery Object Methods
Most of jQuery's built-in functionality is provided through its methods, and this is
where plug-ins shine as well. It is appropriate to create new methods whenever a
function needs to act on part of the DOM.

We have seen that adding global functions requires extending the jQuery object
with new methods. Adding instance methods is similar, but we instead extend the
jQuery.fn object:

jQuery.fn.xyzzy = function() {
 alert('Nothing happens.');
}

The jQuery.fn object is an alias to jQuery.prototype, provided
for conciseness.

We can then call this new method from our code after using any selector expression:

$('div').xyzzy();

Our alert is displayed when we invoke the method. We might as well have written a
global function, though, as we haven't used the matched DOM nodes in any way. A
reasonable method implementation acts on its context.

Object Method Context
Within any plug-in method, the keyword this is set to the current jQuery object.
Therefore we can call any built-in jQuery method on this, or extract its DOM nodes
and work on them:

jQuery.fn.showAlert = function() {
 alert('You called this method on "' + this[0] + '".');
}

Chapter 10

[315]

But we need to remember that a jQuery selector expression can always match zero,
one, or multiple elements. We must allow for any of these scenarios when designing
a plug-in method. The easiest way to accomplish this is to always call .each() on the
method context; this enforces implicit iteration, which is important for maintaining
consistency between plug-in and built-in methods. Within the .each() call, this
refers to each DOM element in turn:

jQuery.fn.showAlert = function() {
 this.each(function() {
 alert('You called this method on "' + this + '".');
 });
}

Now our method produces a separate alert for each element that was matched by the
preceding selector expression.

Method Chaining
In addition to implicit iteration, jQuery users should be able to rely on chaining
behavior. This means that we need to return a jQuery object from all plug-in
methods, unless the method is clearly intended to retrieve a different piece of
information. The returned jQuery object is usually just the one provided as this. If
we use .each() to iterate over this, we can just return its result:

jQuery.fn.showAlert = function() {
 return this.each(function() {
 alert('You called this method on "' + this + '".');
 });
}

With the return statement in place, we can chain our plug-in method with built-in
methods:

$('div').showAlert().hide('slow');

DOM Traversal Methods
In some cases, our method may change which DOM elements are referenced by the
jQuery object. For example, suppose we wanted to add a DOM traversal method that
found the grandparents of the matched elements:

jQuery.fn.grandparent = function() {
 var grandparents = [];
 jQuery.each(this, function(index, value) {
 grandparents.push(value.parentNode.parentNode);

Plug-ins

[316]

 });
 grandparents = $.unique(grandparents);
 return this.setArray(grandparents);
};

This method creates a new grandparents array, populating it by iterating over all
of the elements currently referenced by the jQuery object. The built-in .parentNode
property is used to find the grandparent elements, which are pushed onto the array.
This array is stripped of its duplicates with a call to $.unique(). Then the jQuery
.setArray method changes the set of matched elements to the new array. Now we
can find and operate on the grandparent of an element:

$('.foo').grandparent().addClass('bar');

However, this method is destructive. The actual jQuery object is modified as a side
effect—one that becomes evident if we store the jQuery object in a variable:

var $frood = $('.hoopy');
$frood.grandparent().hide();
$frood.show();

This code hides the grandparent element, then shows it again. The jQuery object
stored in $frood has changed to refer to the grandparent. If instead we had
non‑destructively coded the method, this confusing case would not have occured:

jQuery.fn.grandparent = function() {
 var grandparents = [];
 jQuery.each(this, function(index, value) {
 grandparents.push(value.parentNode.parentNode);
 });
 grandparents = $.unique(grandparents);
 return this.pushStack(grandparents);
};

The .pushStack method creates a new jQuery object, rather than modifying the
old one. This fixes the problem we just encountered. Now, the $frood.show() line
still refers to the original $('.hoopy'). As a side benefit, .pushStack() also allows
the .end method to work with our new method, so we can chain methods together
properly:

$('.fred').grandparent().addClass('grandma').end()
 .addClass('grandson');

Chapter 10

[317]

DOM traversal methods such as .children() were destructive
operations in jQuery 1.0, but became non-destructive in 1.1.

Method Parameters
The most important parameter passed to any method is the keyword this, but of
course we are free to define additional parameters. To make our plug-in's API as
friendly as possible, we place required parameters at the start of the argument list.
While optional parameters can be provided in the argument list as well, it is often
simpler and more convenient to use a map for optional parameters.

For example, suppose our method can accept a string and a number. We could define
the method to accept two arguments:

jQuery.fn.myMethod = function(aString, aNumber) {
 alert('The string is "' + aString + '".');
 alert('The number is ' + aNumber + '.');
}

If these arguments are optional, though, we have to account for four possibilities:

$('div').myMethod('hello', 52);
$('div').myMethod('hello');
$('div').myMethod(52);
$('div').myMethod();

We can check to see if the parameters are defined and if they are not defined then
provide default values:

jQuery.fn.myMethod= function(aString, aNumber) {
 if (aString == undefined) {
 aString = 'goodbye';
 }
 if (aNumber == undefined) {
 aNumber = 97;
 }
 alert('The string is "' + aString + '".');
 alert('The number is ' + aNumber + '.');
}

This works in the cases where both parameters are present, just the string is given,
or neither is provided. But when the number is supplied but the string is not, the
number gets passed in as aString. We thus need to detect the data type of
the parameter:

Plug-ins

[318]

jQuery.fn.myMethod= function(aString, aNumber) {
 if (aString == undefined) {
 aString = 'goodbye';
 }
 if (aNumber == undefined) {
 if (aString.constructor == Number) {
 aNumber = aString;
 aString = 'goodbye';
 }
 else {
 aNumber = 97;
 }
 }
 alert('The string is "' + aString + '".');
 alert('The number is ' + aNumber + '.');
}

This is manageable with two parameters, but quickly becomes a headache with
more. To avoid all this hassle, we can use a map instead:

jQuery.fn.myMethod= function(parameters) {
 defaults = {
 aString: 'goodbye',
 aNumber: 97
 };
 jQuery.extend(defaults, parameters);
 alert('The string is "' + defaults.aString + '".');
 alert('The number is ' + defaults.aNumber + '.');
}

By using jQuery.extend(), we can easily provide default values that are
overwritten by whatever parameters are supplied. Our method invocation remains
roughly the same, except using a map rather than a plain parameter list:

$('div').myMethod({aString: 'hello', aNumber: 52});
$('div').myMethod({aString: 'hello'});
$('div').myMethod({aNumber: 52});
$('div').myMethod();

This strategy scales much more nicely than data type detection. As a side benefit,
named parameters mean that adding new options is unlikely to break existing code,
and scripts that use the plug-in are more self-documenting.

Chapter 10

[319]

Adding New Shortcut Methods
The jQuery library must maintain a delicate balance between convenience and
complexity. Each method that is added to the library can help developers to write
certain pieces of code more quickly, but adds to the overall size of the code base and
can reduce performance. For this reason, many shortcuts for built-in functionality are
relegated to plug-ins, so that we can pick and choose the ones that are useful for each
project and omit the irrelevant ones.

When we find ourselves repeating an idiom in our code many times, it may call for
the creation of a shortcut method. The core jQuery library contains some of these
shortcuts, such as .click() as a shortcut for .bind('click'). These plug-ins are
simple to create, as they just require passing arguments along to a core function and
supplying some of our own.

For example, suppose we frequently animate items using a combination of the built-
in "slide" and "fade" techniques. Putting these effects together means animating the
height and opacity of an element simultaneously. The .animate() method makes
this easy:

.animate({height: 'hide', opacity: 'hide'});

We can create a pair of shortcut methods to perform this animation when showing
and hiding elements:

jQuery.fn.slideFadeOut = function() {
 return this.animate({height: 'hide', opacity: 'hide'});
}

jQuery.fn.slideFadeIn = function() {
 return this.animate({height: 'show', opacity: 'show'});
}

Now we can call $('.myClass').slideFadeOut() and trigger the animation
whenever it is needed. Because, within a plug-in method definition, this refers to
the current jQuery object, the animation will be performed on all matched elements
at once.

For completeness, our new methods should support the same parameters that the
built-in shortcuts do. In particular, methods such as .fadeIn() can be customized
with speeds and callback functions. Since .animate() also takes these parameters,
allowing this is straightforward. We just accept the parameters and forward them on
to .animate():

jQuery.fn.slideFadeOut = function(speed, callback) {
 return this.animate({height: 'hide', opacity: 'hide'},
 speed, callback);

Plug-ins

[320]

}

jQuery.fn.slideFadeIn = function(speed, callback) {
 return this.animate({height: 'show', opacity: 'show'},
 speed, callback);
}

Now we have custom shortcut methods that function just like their
built-in counterparts.

Maintaining Multiple Event Logs
As a JavaScript developer we'll find the need to display log events when various
events occur. JavaScript's alert() function is often used for demonstration but does
not allow the frequent, timely messages we need on occasions. A better alternative
is the console.log() function available to Firefox and Safari, which allows printing
messages to a separate log that does not interrupt the flow of interaction on the page.
As this function is not available to Internet Explorer, however, we'll use a custom
function to achieve this style of message logging.

The Firebug Lite script (described in Appendix B) provides a very robust
cross‑platform logging facility. The method we develop here is tailored
for general utility, though, Firebug Lite is typically preferable.

A simple way to log messages would be creating a global function that appends
messages to a specific element on the page:

jQuery.log = function(message) {
 $('<div class="log-message" />').text(message).appendTo('.log');
};

We can even get a bit fancier, and have the new message appear with an animation:

jQuery.log = function(message) {
 $('<div class="log-message" />')
 .text(message)
 .hide()
 .appendTo('.log')
 .fadeIn();
};

Now, we can call $.log('foo') to display foo in the log box on the page.

Chapter 10

[321]

We sometimes have multiple examples on a single page, however, it is convenient
to be able to keep separate logs for each example. We can accomplish this by using a
method rather than a global function:

jQuery.fn.log = function(message) {
 return this.each(function() {
 $('<div class="log-message" />')
 .text(message)
 .hide()
 .appendTo(this)
 .fadeIn();
 });
};

Now calling $('.log').log('foo') has the effect our global function call did
previously, but we can change the selector expression to target different log boxes.

Ideally, though, the .log method would be intelligent enough to locate the most
relevant box to use for the log message without an explicit selector. By exploiting the
context passed to the method, we can traverse the DOM to find the log box nearest
the selected element:

jQuery.fn.log = function(message) {
 return this.each(function() {
 $context = $(this);
 while ($context.length) {
 $log = $context.find('.log');
 if ($log.length) {
 $('<div class="log-message" />').text(message).hide()
 .appendTo($log).fadeIn();
 break;
 }
 $context = $context.parent();
 }
 });
};

This code looks for a log message box within the matched elements, and if one is not
found, walks up the DOM in search of one.

Finally, at times we require the ability to display the contents of an object. Printing
out the object itself yields something barely informative like [object Object], so we
can detect the argument type and do some of our own pretty-printing in the case that
an object is passed in:

Plug-ins

[322]

jQuery.fn.log = function(message) {
 if (typeof(message) == 'object') {
 string = '{';
 $.each(message, function(key, value) {
 string += key + ': ' + value + ', ';
 });
 string += '}';
 message = string;
 }
 return this.each(function() {
 $context = $(this);
 while ($context.length) {
 $log = $context.find('.log');
 if ($log.length) {
 $('<div class="log-message" />').text(message).hide()
 .appendTo($log).fadeIn();
 break;
 }
 $context = $context.parent();
 }
 });
};

Now we have a method that can be used to write out both objects and strings in a
place that is relevant to the work being done on the page.

Adding a Selector Expression
Built-in parts of jQuery can be extended, as well. Rather than adding new methods,
we can customize existing ones. A common desire, for example, is to expand on the
selector expressions provided by jQuery to provide more esoteric options.

The :nth-child() pseudo-class as implemented by jQuery allows us to find items
that are at a given position within their parent element. Suppose we construct an
ordered list of ten items:

<ol class="nthchild">
 Item
 Item
 Item
 Item
 Item
 Item
 Item
 Item

Chapter 10

[323]

 Item
 Item

The expression $('li:nth-child(4)') will locate the fourth item in the list. We
have seen this ability before. However, the CSS specification this selector is based on
is a bit more powerful. In CSS 3, the :nth-child() pseudo-class is capable of taking
not just integers as arguments, but any expression of the form an+b. If the position
of an item is equal to this expression or any integral value of n, the item will be
matched. For example, :nth-child(4n+1) will match item 1, 5, 9, and so on. We can
add this capability to jQuery's selector engine using a plug-in.

The jQuery selector parser first breaks down the selector expression using a set of
regular expressions. For each piece of the selector, a function is executed to winnow
the possibly matched nodes. This function is found in the jQuery.expr map. We
can override the built-in behavior of the :nth-child() pseudo-class by using
$.extend():

jQuery.extend(jQuery.expr[':'], {
 'nth-child': 'jQuery.nthchild(a, m)',
});

The values of this map are strings containing JavaScript expressions used to filter the
elements. In these expressions, a refers to the DOM element being tested, and m is an
array holding the components of the selector.

The exact contents of m vary depending on the format of the selector we're
implementing, so our first step is to examine the regular expressions in jQuery.
parse inside jquery.js. Looking at the matches done there, we can see that for
pseudo-classes of the form :x(y(z)), the components in m will be:

m[0] == ':x(y(z))'
m[1] == ':'
m[2] == 'x'
m[3] == 'y(z)'
m[4] == '(z)'

Our code for the :nth-child() pseudo-class calls a function called nthchild()
within the jQuery namespace, which is where we'll do the heavy lifting (using
this opportunity to rename a and m to the more understandable element and
components respectively):

jQuery.nthchild = function(element, components) {
 var index = $(element).parent().children().index(element) + 1;

 var numbers = components[3].match(/((\d+)n)?\+?(\d+)?/);

Plug-ins

[324]

 if (numbers[2] == undefined) {
 return index == numbers[3];
 }
 if (numbers[3] == undefined) {
 numbers[3] = 0;
 }

 return (index - numbers[3]) % numbers[2] == 0;
}

First this function finds the index of the current node from among its siblings. This
operation could be made faster by using pure DOM traversal functions, but by using
jQuery methods here we can make the code more readable. We add 1 to the result
since CSS specifies the :nth-child() pseudo-class as one-based rather than
zero-based.

Once we have found the index, we break the mathematical expression down into
its parts. An expression such as 4n+1 will be split apart so that numbers[2] is 4 and
numbers[3] is 1. We add some special cases to deal with expressions like 4n and 1.

Finally, we do a little algebraic manipulation to find that if an + b = i, then (i – b) / a =
n. This reveals a calculation we can perform to determine if a given index passes the
test. If the element should be a part of the result set, we return true; otherwise, we
return false.

With our new plug-in installed, we can now use jQuery selectors such as
$('li:nth-child(3n+2)') and easily find every third item in the list, starting
with item #2.

Creating an Easing Style
When we call an animation method, we are specifying a start and end point for
each attribute we are animating. We also can tell the method how quickly to travel
from point A to point B. We have not, however, been providing any indication of
the manner in which we travel from A to B. The animation is not necessarily at a
constant rate, and in fact by default is not.

Consider an animation of an element from left to right, fading its opacity on the way:

$('.sprite').animate({'left': 791, 'opacity': 0.1}, 5000);

If we watch the animation progress and capture the element's position at even time
intervals, we get an idea of its speed during the journey:

Chapter 10

[325]

We can see from this demonstration that the animation starts off slowly, speeds
up for the bulk of the animation duration, and slows down again at the end. The
practice of performing an animation at a non-constant rate is called easing. This
default easing style, called swing, feels more natural and less abrupt than a purely
constant rate of motion would.

We can change the easing style used by a jQuery animation by providing an extra
parameter to the .animate() method. This parameter identifies which easing
function should be used. The only function built into jQuery is the default one we
just saw; to use others, we have to get them from a plug-in or write our own.

Adding new easing functions is similar to adding new selector expressions. We
extend the global jQuery object to add properties to its easing attribute. Each
property corresponds to a single easing function.

For example, suppose we wanted to implement a truly linear easing style, causing
animations to progress at a constant rate from start to finish. We can accomplish this
with a single-line easing function:

jQuery.extend({
 'easing': {
 'linear': function(fraction, elapsed, attrStart, attrDelta,
 duration) {
 return fraction * attrDelta + attrStart;
 }
 }
});

Easing Function Parameters
All easing functions take five parameters:

fraction: The current position of the animation, as measured in time
between 0 (the beginning of the animation) and 1 (the end of the animation)
elapsed: The number of milliseconds that have passed since the beginning of
the animation (seldom used)
attrStart: The beginning value of the CSS attribute that is being animated
attrDelta: The difference between the start and end values of the CSS
attribute that is being animated

•

•

•

•

Plug-ins

[326]

duration: The total number of milliseconds that will pass during the
animation (seldom used)

Easing functions are expected to use these five parameters to produce a number
indicating what the value of the parameter being animated should be at any given
time. For example, suppose we are using our linear easing function to animate the
height of an element from 20 pixels to 30 pixels:

In this simple case, we can just multiply the attrDelta value by fraction to come
up with the incremental distance the parameter has traveled so far. Note that the
value of elapsed goes from 0 to duration, fraction is always equal to elapsed
/ duration, and the function value travels from attrStart to attrStart +
attrDelta.

We can now repeat our animation using the new easing style:

$('.sprite').animate({'left': 791, 'opacity': 0.1}, 5000, 'linear');

With this easing function, our time-lapse capture of the animation reveals a
different picture:

The animation is now progressing at a constant rate.

Multi-Part Easing Styles
For a somewhat more interesting animation, we can craft an easing function that
follows different curves through separate parts of the journey:

•

Chapter 10

[327]

jQuery.extend({
 'easing': {
 'back-n-forth': function(fraction, elapsed, attrStart, attrDelta,
 duration) {
 if (fraction < 0.33)
 return fraction * (1.0 / 0.33) * attrDelta + attrStart;
 if (fraction < 0.66)
 return (-fraction + 0.66) * (1.0 / 0.33) * attrDelta +
 attrStart;
 return (fraction - 0.66) * (1.0 / 0.34) * attrDelta + attrStart;
 }
 }
});

This function breaks the animation down into three equal chunks, each of which
follows a linear motion. We can test the easing style in the same manner as before:

$('.sprite').animate({'left': 791, 'opacity': 0.1}, 5000,
 'back-n-forth');

The effect of this is that the animation will appear to proceed forward, backward,
and forward once again:

Building more complex easing styles is now primarily a matter of finding the
mathematical expression (or expressions) to generate the curve we want to follow,
and then codifying this expression in JavaScript.

Many easing functions are already available through existing plug-ins, such
as Interface.

How to Be a Good Citizen
There are a few rules to follow in writing plug-ins in order to play well with other
code. We have covered some of these in passing already, but they are collected again
here for convenience.

Plug-ins

[328]

Naming Conventions
All plug-in files must be named jQuery.myPlugin.js where myPlugin is the name
of the plug-in. Within the file, all global functions should be grouped into an object
called jQuery.myPlugin, unless there is only one, in which case it may be a function
just called jQuery.myPlugin().

Method names are more flexible, but should be kept as unique as possible. If only
one method is defined, it should be called jQuery.fn.myPlugin(). If more than one
is defined, attempt to prefix each method name with the plug-in name to prevent
confusion. Avoid short, ambiguous method names such as .load() or .get() that
may be confused with methods defined in other plug-ins.

Use of the $ Alias
jQuery plug-ins may not assume that the $ alias is available. Instead, the full jQuery
name must be written out each time.

In longer plug-ins, many developers find that the lack of the $ shortcut makes code
more difficult to read. To combat this, the shortcut can be locally defined for the
scope of the plug-in by defining and executing a function. The syntax for defining
and executing a function at once looks like this:

(function($) {
 // Code goes here
})(jQuery);

The wrapping function takes a single parameter, to which we pass the global jQuery
object. The parameter is named $, so within the function we can use the $ alias with
no conflicts.

Method Interfaces
All jQuery methods get called within the context of a jQuery object, so this refers
to an object that may wrap one or more DOM elements. All methods must behave
correctly regardless of the number of elements actually matched. In general, methods
should call this.each() to iterate over the matched elements, operating on each one
in turn.

Methods should return the jQuery object to preserve chaining. If the set of matched
objects is modified, a new object should be created by calling .pushStack() and
this object should be returned instead. If something other than a jQuery object is
returned, this must be prominently documented.

Chapter 10

[329]

Method definitions must end in a semicolon character so that code compressors can
properly parse the files.

Documentation Style
In-f﻿ile documentation should be prepended to each function or method definition in
ScriptDoc format. This format is documented at http://www.scriptdoc.org/.

Summary
In this final chapter, we have seen how the functionality that is provided by the
jQuery core need not limit the library's capabilities. Plug-ins that are readily available
extend the menu of features substantially, and we can easily create our own that
push the boundaries further.

We have examined the Dimensions plug-in, for measuring and manipulating sizes of
elements. The Form plug-in is useful for interacting with HTML forms. We have also
studied the Interface plug-in, for enabling a variety of user-interface widgets.

We have also learned how to create plug-ins with various features, including global
functions that use the jQuery library, new methods of the jQuery object for acting
on DOM elements, enhanced selector expressions for finding DOM elements in new
ways, and easing functions that alter the rates of animations.

With these tools at our disposal, we can shape jQuery—and our own JavaScript
code—into whatever form we desire.

Online Resources
I can't remember what I used to know
Somebody help me now and let me go
 —Devo,
 "Deep Sleep"

The following online resources represent a starting point for learning more about
jQuery, JavaScript, and web development in general, beyond what is covered in
this book. There are far too many sources of quality information on the web for this
appendix to approach anything resembling an exhaustive list. Furthermore, while
other print publications can also provide valuable information, they are not noted here.

jQuery Documentation
jQuery Wiki
The documentation on jquery.com is in the form of a wiki, which means that the
content is editable by the public. The site includes the full jQuery API, tutorials,
getting started guides, a plug-in repository, and more:

http://docs.jquery.com/

jQuery API
On jQuery.com, the API is available in two locations—the documentation section
and the paginated API browser.

The documentation section of jQuery.com includes not only jQuery methods, but
also all of the jQuery selector expressions:

http://docs.jquery.com/Selectors

http://docs.jquery.com/
http://jquery.com/api

Online Resources

[332]

jQuery API Browser
Jörn Zaeferrer has put together a convenient tree-view browser of the jQuery API with
a search feature and alphabetical or categorical sorting:

http://jquery.bassistance.de/api-browser/

Visual jQuery
This API browser designed by Yehuda Katz is both beautiful and convenient. It also
provides quick viewing of methods for a number of jQuery plug-ins:

http://www.visualjquery.com/

Web Developer Blog
Sam Collet keeps a master list of jQuery documentation, including downloadable
versions and cheat sheets, on his blog:

http://webdevel.blogspot.com/2007/01/jquery-documentation.html

JavaScript Reference
Mozilla Developer Center
This site has a comprehensive JavaScript reference, a guide to programming with
JavaScript, links to helpful tools, and more:

http://developer.mozilla.org/en/docs/JavaScript/

Dev.Opera
While focused primarily on its own browser platform, Opera's site for web
developers includes a number of useful articles on JavaScript:

http://dev.opera.com/articles/

Quirksmode
Peter-Paul Koch's Quirksmode site is a terrific resource for understanding differences
in the way browsers implement various JavaScript functions, as well as many
CSS properties:

http://www.quirksmode.org/

JavaScript Toolbox
Matt Kruse's JavaScript Toolbox offers a large assortment of homespun JavaScript
libraries, as well as sound advice on JavaScript best practices and a collection of
vetted JavaScript resources elsewhere on the Web:

http://www.javascripttoolbox.com/

Appendix A

[333]

JavaScript Code Compressors
Packer
This JavaScript compressor/obfuscator by Dean Edwards is used to compress the
jQuery source code. It's available as a web-based tool or as a free download. The
resulting code is very efficient in file size, at a cost of a small increase in execution time:

http://dean.edwards.name/packer/

http://dean.edwards.name/download/#packer

JSMin
Created by Douglas Crockford, JSMin is a filter that removes comments and
unnecessary white space from JavaScript files. It typically reduces file size by half,
resulting in faster downloads:

http://www.crockford.com/javascript/jsmin.html

Pretty Printer
This tool prettifies JavaScript that has been compressed, restoring line breaks and
indentation where possible. It provides a number of options for tailoring the results:

http://www.prettyprinter.de/

(X)HTML Reference
W3C Hypertext Markup Language Home Page
The World Wide Web Consortium (W3C) sets the standard for (X)HTML, and the
HTML home page is a great launching point for its specifications and guidelines:

http://www.w3.org/MarkUp/

CSS Reference
W3C Cascading Style Sheets Home Page
The W3C's CSS home page provides links to tutorials, specifications, test suites, and
other resources:

http://www.w3.org/Style/CSS/

Online Resources

[334]

Mezzoblue CSS Cribsheet
Dave Shea provides this helpful CSS cribsheet in an attempt to make the design
process easier, and provides a quick reference to check when you run into trouble:

http://mezzoblue.com/css/cribsheet/

Position Is Everything
This site includes a catalog of CSS browser bugs along with explanations of how to
overcome them:

http://www.positioniseverything.net/

XPath Reference
W3C XML Path Language Version 1.0 Specification
Although jQuery's XPath support is limited, the W3C's XPath Specification may
still be useful for those wanting to learn more about the variety of possible
XPath selectors:

http://www.w3.org/TR/xpath

TopXML XPath Reference
The TopXML site provides helpful charts of axes, node tests, and functions for those
wanting to learn more about XPath:

http://www.topxml.com/xsl/XPathRef.asp

MSDN XPath Reference
The Microsoft Developer Network website has information on XPath syntax
and functions:

http://msdn2.microsoft.com/en-us/library/ms256115.aspx

Useful Blogs
The jQuery Blog
John Resig and other contributors to the official jQuery blog posts announcements
about new versions and other initiatives among the project team, as well as
occasional tutorials and editorial pieces.

http://jquery.com/blog/

Appendix A

[335]

Learning jQuery
Karl Swedberg, Jonathan Chaffer, Brandon Aaron, et al. are running a blog for jQuery
tutorials, examples, and announcements:

http://www.learningjquery.com/

Jack Slocum's Blog
Jack Slocum, the author of the popular EXT suite of JavaScript components, writes
about his work and JavaScript programming in general:

http://www.jackslocum.com/blog/

Web Standards with Imagination
Dustin Diaz's blog features articles on web design and development, with an
emphasis on JavaScript:

http://www.dustindiaz.com/

Snook
Jonathan Snook's general programming/web-development blog:

http://snook.ca/

I Can't
Three sites by Christian Heilmann provide blog entries, sample code, and lengthy
articles related to JavaScript and web development:

http://icant.co.uk/

http://www.wait-till-i.com/
http://www.onlinetools.org/

DOM Scripting
Jeremy Keith's blog picks up where the popular DOM scripting book leaves off—a
fantastic resource for unobtrusive JavaScript:

http://domscripting.com/blog/

As Days Pass By
Stuart Langridge experiments with advanced use of the browser DOM:

http://www.kryogenix.org/code/browser/

Online Resources

[336]

A List Apart
A List Apart explores the design, development, and meaning of web content, with a
special focus on web standards and best practices:

http://www.alistapart.com/

Particletree
Chris Campbell, Kevin Hale, and Ryan Campbell started a blog that provides valuable
information on many aspects of web development:

http://particletree.com/

The Strange Zen of JavaScript
Scott Andrew LePera's weblog about JavaScript quirks, caveats, odd hacks, curiosities
and collected wisdom. Focused on practical uses for web application development:

http://jszen.blogspot.com/

Web Development Frameworks Using
jQuery
As developers of open-source projects become aware of jQuery, many are
incorporating the JavaScript library into their own systems. The following is a brief
list of some of the early adopters:

Drupal: http://drupal.org/
Joomla Extensions: http://extensions.joomla.org/
Pommo: http://pommo.org/
SPIP: http://www.spip.net/
Textpattern: http://textpattern./
Trac: http://trac.edgewall.org/

WordPress: http://wordpress.org/

For a more complete list, visit the Sites Using jQuery page at:
http://docs.jquery.com/Sites_Using_jQuery

•

•

•

•

•

•

•

Development Tools
When a problem comes along
You must whip it
 —Devo,
 "Whip It"

Documentation can help in troubleshooting issues with our JavaScript applications,
but there is no replacement for a good set of software development tools.
Fortunately, there are many software packages available for inspecting and
debugging JavaScript code, and most of them are available for free.

Tools for Firefox
Mozilla Firefox is the browser of choice for the lion’s share of web developers, and
therefore has some of the most extensive and well-respected development tools.

Firebug
The Firebug extension for Firefox is indispensable for jQuery development:

http://www.getfirebug.com/

Some of the features of Firebug are :

An excellent DOM inspector for finding names and selectors for pieces of
the document
CSS manipulation tools for finding out why a page looks a certain way and
changing it
An interactive JavaScript console
A JavaScript debugger that can watch variables and trace code execution

•

•

•

•

Development Tools

[338]

Web Developer Toolbar
This not only overlaps Firebug in the area of DOM inspection, but also contains tools
for common tasks like cookie manipulation, form inspection, and page resizing. You
can also use this toolbar to quickly and easily disable JavaScript for a site to ensure
that functionality degrades gracefully when the user’s browser is less capable:

http://chrispederick.com/work/web-developer/

Venkman
Venkman is the official JavaScript debugger for the Mozilla project. It provides a
troubleshooting environment that is reminiscent of the GDB system for debugging
programs that are written in other languages.

http://www.mozilla.org/projects/venkman/

Regular Expressions Tester
Regular expressions for matching strings in JavaScript can be tricky to craft. This
extension for Firefox allows easy experimentation with regular expressions using an
interface for entering search text:

http://sebastianzartner.ath.cx/new/downloads/RExT/

Tools for Internet Explorer
Sites often behave differently in IE than in other web browsers, so having debugging
tools for this platform is important.

Microsoft Internet Explorer Developer Toolbar
The Developer Toolbar primarily provides a view of the DOM tree for a web page.
Elements can be located visually, and modified on the fly with new CSS rules. It also
provides other miscellaneous development aids, such as a ruler for measuring
page elements:

http://www.microsoft.com/downloads/details.
aspx?FamilyID=e59c3964-672d-4511-bb3e-2d5e1db91038

Microsoft Visual Web Developer
Microsoft’s Visual Studio package can be used to inspect and debug JavaScript code:

http://msdn.microsoft.com/vstudio/express/vwd/

To run the debugger interactively in the free version (Visual Web Developer
Express), follow the process outlined here:

http://www.berniecode.com/blog/2007/03/08/
how-to-debug-javascript-with-visual-web-developer-express/

Appendix B

[339]

DebugBar
The DebugBar provides a DOM inspector as well as a JavaScript console
for debugging:

http://www.debugbar.com/

Drip
Memory leaks in JavaScript code can cause performance and stability issues for
Internet Explorer. Drip helps to detect and isolate these memory issues:

http://Sourceforge.net/projects/ieleak/

To learn more about a common cause of Internet Explorer memory leaks, see
Appendix C, JavaScript Closures.

Tools for Safari
Safari remains the new kid on the block as a development platform, but there are still
tools available for situations in which code behaves differently in this browser
than elsewhere.

Web Inspector
Nightly builds of Safari include the ability to inspect individual page elements and
collect information especially about the CSS rules that apply to each one.

http://trac.webkit.org/projects/webkit/wiki/Web%20Inspector

Drosera
Drosera is the JavaScript debugger for Safari and other WebKit-driven applications. It
enables breakpoints, variable watching, and an interactive console.

http://trac.webkit.org/projects/webkit/wiki/Drosera

Other Tools
Firebug Lite
Though the Firebug extension itself is limited to the Firefox web browser, some
of the features can be replicated by including the Firebug Lite script on the web
page. This package simulates the Firebug console, including allowing calls to
console.log() to work in all browsers and not raise JavaScript errors:

http://www.getfirebug.com/lite.html

Development Tools

[340]

TextMate jQuery Bundle

This extension for the popular Mac OS X text editor TextMate provides syntax
highlighting for jQuery methods and selectors, code completion for methods, and a
quick API reference from within your code. The bundle is also compatible with the E
text editor for Windows:

http://www.learningjquery.com/2006/09/textmate-bundle-for-jquery

Charles
When developing AJAX-intensive applications, it can be useful to see exactly what
data is being sent between the browser and the server. The Charles web debugging
proxy displays all HTTP traffic between two points, including normal web requests,
HTTPS traffic, Flash remoting, and AJAX responses:

http://www.xk72.com/charles/

Aptana
This Java-based web development IDE is free and cross-platform. Along with both
standard and advanced code editing features, it incorporates a full copy of the
jQuery API documentation.

http://www.aptana.com/

JavaScript Closures
Let's close our eyes together
Now can you see how good it's going to be?
 —Devo,
 "Pink Jazz Trancers"

Throughout this book, we have seen many jQuery methods that take functions as
parameters. Our examples have thus created, called, and passed around functions
time and again. While usually we can do this with only a cursory understanding of
the inner JavaScript mechanics at work, at times side effects of our actions can seem
strange if we do not have knowledge of the language features. In this appendix, we
will study one of the more esoteric (yet prevalent) types of functions, called closures.

Inner Functions
JavaScript is fortunate to number itself among the programming languages that
support inner function declarations. Many traditional programming languages,
such as C, collect all functions in a single top-level scope. Languages with inner
functions, on the other hand, allow us to gather small utility functions where they
are needed, avoiding namespace pollution.

An inner function is simply a function that is defined inside of another function.
For example:

function outerFun() {
 function innerFun() {
 alert('hello');
 }
}

JavaScript Closures

[342]

The innerFun() is an inner function, contained within the scope of outerFun().
This means that a call to innerFun() is valid within outerFun(), but not outside of
it. The following code results in a JavaScript error:

function outerFun() {
 function innerFun() {
 alert('hello');
 }
}
innerFun();

We can trigger the alert, though, by calling innerFun() from within outerFun():

function outerFun() {
 function innerFun() {
 alert('hello');
 }
 innerFun();
}
outerFun();

This technique is especially handy for small, single-purpose functions. For example,
algorithms that are recursive but have a non-recursive API wrapper are often best
expressed with an inner function as a helper.

The Great Escape
The plot thickens when function references come into play. Some languages, such as
Pascal, do allow the use of inner functions for the purpose of code hiding, and those
functions are forever entombed within their parent functions. JavaScript, on the other
hand, allows us to pass functions around just as if they were any other kind of data.
This means inner functions can escape their captors.

The escape route can wind in many different directions. For example, suppose the
function is assigned to a global variable:

var globVar;

function outerFun() {
 function innerFun() {
 alert('hello');
 }
 globVar = innerFun;
}
outerFun();
globVar();

Appendix C

[343]

The call to outerFun() after the function definition modifies the global variable
globVar. It is now a reference to innerFun(). This means that the later call to
globVar() operates just as an inner call to innerFun() would, and the alert is
displayed. Note that a call to innerFun() from outside of outerFun() still results
in an error! Though the function has escaped by way of the reference stored in the
global variable, the function name is still trapped inside the scope of outerFun().

A function reference can also find its way out of a parent function through a
return value:

function outerFun() {
 function innerFun() {
 alert('hello');
 }
 return innerFun ;
}

var globVar = outerFun();
globVar();

Here, there is no global variable modified inside outerFun(). Instead, outerFun()
returns a reference to innerFun(). The call to outerFun() results in this reference,
which can be stored and called itself in turn, triggering the alert again.

The fact that inner functions can be invoked through a reference even after the
function has gone out of scope means that JavaScript needs to keep referenced
functions available as long as they could possibly be called. Each variable that refers
to the function is tracked by the JavaScript runtime, and once the last has gone away
the JavaScript garbage collector comes along and frees up that bit of memory.

Variable Scoping
Inner functions can of course have their own variables, which are restricted in scope
to the function itself:

function outerFun() {
 function innerFun() {
 var innerVar = 0;
 innerVar++;
 alert(innerVar);
 }
 return innerFun;
}

JavaScript Closures

[344]

Each time the function is called, through a reference or otherwise, a new variable
innerVar is created, incremented, and displayed:

var globVar = outerFun();
globVar(); // Alerts "1"
globVar(); // Alerts "1"
var innerVar2 = outerFun();
innerVar2(); // Alerts "1"
innerVar2(); // Alerts "1"

Inner functions can reference global variables, in the same way as any other
function can:

var globVar = 0;
function outerFun() {
 function innerFun() {
 globVar++;
 alert(globVar);
 }
 return innerFun;
}

Now our function will consistently increment the variable with each call:

var globVar = outerFun();
globVar(); // Alerts "1"
globVar(); // Alerts "2"
var globVar2 = outerFun();
globVar2(); // Alerts "3"
globVar2(); // Alerts "4"

But what if the variable is local to the parent function? Since the inner function
inherits its parent's scope, this variable can be referenced too:

function outerFun() {
 var outerVar = 0;
 function innerFun() {
 outerVar++;
 alert(outerVar);
 }
 return innerFun;
}

Now our function calls have more interesting behavior:

var globVar = outerFun();
globVar(); // Alerts "1"
globVar(); // Alerts "2"

Appendix C

[345]

var globVar2 = outerFun();
globVar2(); // Alerts "1"
globVar2(); // Alerts "2"

We get a mix of the two earlier effects. The calls to innerFun() through each
reference increment innerVar independently. Note that the second call to
outerFun() is not resetting the value of innerVar, but rather creating a new instance
of innerVar, bound to the scope of the second function call. The upshot of this is that
after the above calls, another call to globVar() will alert 3, and a subsequent call to
globVar2() will also alert 3. The two counters are completely separate.

When a reference to an inner function finds its way outside of the scope in which
the function was defined, this creates a closure on that function. We call variables
that are not local to the inner function free variables, and the environment of the
outer function call closes them. Essentially, the fact that the function refers to a local
variable in the outer function grants the variable a stay of execution. The memory is
not released when the function completes, as it is still needed by the closure.

Interactions between Closures
When more than one inner function exists, closures can have effects that are not as
easy to anticipate. Suppose we pair our incrementing function with another function,
this time incrementing by two:

function outerFun() {
 var outerVar = 0;
 function innerFun() {
 outerVar++;
 alert(outerVar);
 }
 function innerFun2() {
 outerVar = outerVar + 2;
 alert(globVar);
 }
 return {'innerFun': innerFun, 'outerFun2': outerFun2};
}

We return references to both functions, using a map to do so (this illustrates another
way in which reference to an inner function can escape its parent). Both functions
can be called through the references:

var globVar = outerFun();
globVar.innerFun(); // Alerts "1"
globVar.innerFun2(); // Alerts "3"
globVar.innerFun(); // Alerts "4"

JavaScript Closures

[346]

var globVar2 = outerFun();
globVar2.innerFun(); // Alerts "1"
globVar2.innerFun2(); // Alerts "3"
globVar2.innerFun(); // Alerts "4"

The two inner functions refer to the same local variable, so they share the same
closing environment. When innerFun() increments outerVar by 1, this sets the
new starting value of outerVar when innerFun2() is called. Once again, though,
we see that a subsequent call to outerFun() creates new instances of these closures
with a new closing environment to match. Fans of object-oriented programming
will note that we have in essence created a new object, with the free variables acting
as instance variables and the closures acting as instance methods. The variables are
also private, as they cannot be directly referenced outside of their enclosing scope,
enabling true object-oriented data privacy.

Closures in jQuery
The methods we have seen throughout the jQuery library often take at least one
function as a parameter. For convenience, we often use anonymous functions so
that we can define the function behavior right when it is needed. This means that
functions are rarely in the top-level namespace; they are usually inner functions,
which means they can quite easily become closures.

Arguments to $(document).ready()
Nearly all of the code we write using jQuery ends up getting placed inside a function
as an argument to $(document).ready(). We do this to guarantee that the DOM has
loaded before the code is run, which is usually a requirement for interesting jQuery
code. When a function is created and passed to .ready(), a reference to the function
is stored as part of the global jQuery object. This reference is then called at a later
time, when the DOM is ready.

We usually place the $(document).ready() construct at the top level of the code
structure, so this function is not really a closure. However, since our code is usually
written inside this function, everything else is an inner function:

$(document).ready(function() {
 var readyVar = 0;
 function outerFun() {
 function innerFun() {
 readyVar++;
 alert(readyVar);
 }

Appendix C

[347]

 return innerFun;
 }
 var readyVar2 = outerFun();
 readyVar2();
});

This looks like our global variable example from before, except now it is wrapped
in a $(document).ready() call as so much of our code always is. This means that
readyVar is not a global variable, but a local variable to the anonymous function. The
variable readyVar2 gets a reference to a closure with readyVar in its environment.

The fact that most jQuery code is inside a function body is useful, because this can
protect against some namespace collisions. For example, it is this feature that allows
us to use jQuery.noConflict() to free up the $ shortcut for other libraries, while
still being able to define the shortcut locally for use within $(document).ready().

Event Handlers
The $(document).ready() construct usually wraps the rest of our code, including
the assignment of event handlers. Since handlers are functions, they become inner
functions and since those inner functions are stored and called later, they become
closures. A simple click handler can illustrate this:

$(document).ready(function() {
 var readyVar = 0;
 $('.trigger').click(function() {
 readyVar++;
 alert(readyVar);
 });
});

Because the variable readyVar is declared inside of the .ready() handler, it is
only available to the jQuery code inside this block and not to outside code. It can be
referenced by the code in the .click() handler, however, which increments and
displays the variable. Because a closure is created, the same instance of readyVar
is referenced each time the button is clicked. This means that the alerts display a
continuously incrementing set of values, not just 1 each time.

Event handlers can share their closing environments, just like other functions can:

$(document).ready(function() {
 var readyVar = 0;
 $('.add').click(function() {
 readyVar++;
 alert(readyVar);

JavaScript Closures

[348]

 });
 $('.subtract').click(function() {
 readyVar--;
 alert(readyVar);
 });
});

Since both of the functions reference the same variable, the incrementing and
decrementing operations of the two buttons affect the same value rather than
being independent.

These examples have used anonymous functions, as has been our custom in jQuery
code. This makes no difference in the construction of closures. For example, we can
write an anonymous function to report the index of an item within a jQuery object:

$(document).ready(function() {
 $('li').each(function(index) {
 $(this).click(function() {
 alert(index);
 });
 });
});

Because the innermost function is defined within the .each() callback, this code
actually creates as many functions as there are list items. Each of these functions is
attached as a click handler to one of the items. The functions have index in their
closing environment, since it is a parameter to the .each() callback. This behaves the
same way as the same code with the click handler written as a named function:

$(document).ready(function() {
 $('li').each(function(index) {
 function clickHandler() {
 alert(index);
 }

 $(this).click(clickHandler);
 });
});

The version with the anonymous function is just a bit shorter. The position of this
named function is still relevant, however:

$(document).ready(function() {
 function clickHandler() {
 alert(index);
 }

Appendix C

[349]

 $('li').each(function(index) {
 $(this).click(clickHandler);
 });
});

This version will trigger a JavaScript error whenever a list item is clicked, because
index is not found in the closing environment of clickHandler(). It remains a free
variable, and so is undefined in this context.

Memory Leak Hazards
JavaScript manages its memory using a technique known as garbage collection. This
is in contrast to low-level languages like C, which require programmers to explicitly
reserve blocks of memory and free them when they are no longer being used. Other
languages such as Objective-C assist the programmer by implementing a reference
counting system, which allows the user to note how many pieces of the program
are using a particular piece of memory so it can be cleaned up when no longer used.
JavaScript is a high-level language, on the other hand, and generally takes care of
this bookkeeping behind the scenes.

Whenever a new memory-resident item such as an object or function comes into
being in JavaScript code, a chunk of memory is set aside for this item. As the object
gets passed around to functions and assigned to variables, more pieces of code begin
to point to the object. JavaScript keeps track of these pointers, and when the last one
is gone, the memory taken by the object is released. Consider a chain of pointers:

A B C

Here object A has a property that points to B, and B has a property that points to C.
Even if object A here is the only one that is a variable in the current scope, all three
objects must remain in memory because of the pointers to them. When A goes out
of scope, however (such as at the end of the function it was declared in), then it can
be released by the garbage collector. Now B has nothing pointing to it, so can be
released, and finally C can be released as well.

More complicated arrangements of references can be harder to deal with:

A B C

JavaScript Closures

[350]

Now we've added a property to object C that refers back to B. In this case, when A
is released, B still has a pointer to it from C. This reference loop needs to be handled
specially by JavaScript, which must notice that the entire loop is isolated from the
variables that are in scope.

Accidental Reference Loops
Closures can cause reference loops to be inadvertently created. Since functions
are objects that must be kept in memory, any variables they have in their closing
environment are also kept in memory:

function outerFun() {
 var outerVar = {};
 function innerFun() {
 alert(outerVar);
 };
 outerVar.innerFun = innerFun;
 return innerFun;
};

Here an object called innerFun is created, and referenced from within the inner
function innerFun(). Then a property of outerVar that points to innerFun() is
created, and innerFun() is returned. This creates a closure on innerFun() that
refers to innerFun, which in turn refers back to innerFun(). But the loop can be
more insidious than this:

function outerFun() {
 var outerVar = {};
 function innerFun() {
 alert('hello');
 };
 outerVar.innerFun = innerFun;
 return innerFun;
};

Here we've changed innerFun() so that it no longer refers to outerVar. However,
this does not break the loop. Even though outerVar is never referred to from
innerFun(), it is still in innerFun()'s closing environment. All variables in the
scope of outerFun() are implicitly referred to by innerFun() due to the closure. So,
closures make it easy to accidentally create these loops.

Appendix C

[351]

The Internet Explorer Memory Leak Problem
All of this is generally not an issue because JavaScript is able to detect these loops
and clean them up when they become orphaned. Internet Explorer, however, has
difficulty handling one particular class of reference loops. When a loop contains both
DOM elements and regular JavaScript objects, IE cannot release either one because
they are handled by different memory managers. These loops are never freed until
the browser is closed, which can eat up a great deal of memory over time. A common
cause of such a loop is a simple event handler:

$(document).ready(function() {
 var div = document.getElementById('foo');
 div.onclick = function() {
 alert('hello');
 }
});

When the click handler is assigned, this creates a closure with div in the closing
environment. But div now contains a reference back to the closure, and the resulting
loop can't be released by Internet Explorer even when we navigate away from
the page.

The Good News
Now let's write the same code, but using normal jQuery constructs:

$(document).ready(function() {
 var $div = $('#foo');
 $div.click(function() {
 alert('hello');
 });
});

Even though a closure is still created causing the same kind of loop as before, we
do not get an IE memory leak from this code. Fortunately, jQuery is aware of the
potential for leaks, and manually releases all of the event handlers that it assigns. As
long as we faithfully adhere to using jQuery event binding methods for our handlers,
we need not fear leaks caused by this particular common idiom.

This doesn't mean we're completely out of the woods; we must continue to take care
when we're performing other tasks with DOM elements. Attaching JavaScript objects
to DOM elements can still cause memory leaks in Internet Explorer; jQuery just helps
make this situation far less prevalent.

JavaScript Closures

[352]

Conclusion
JavaScript closures are a powerful language feature. They are often quite useful
in hiding variables from other code, so that we don't tread on variable names
being used elsewhere. Due to jQuery's frequent reliance on functions as method
arguments, they can also be inadvertently created quite often. Understanding them
allows us to write more efficient and concise code, and with a bit of care and the use
of jQuery's built-in safeguards we can avoid the memory-related pitfalls they
can introduce.

Index
Symbols
$() function 18, 82

A
accidental reference loop 350
advanced features

hiding 45, 46
showing 45, 46

AJAX
about 103
data, loading on demand 104
data, passing to server 119
data format, choosing 118, 119
event building function 132
events 130
HTML, appending 105-108
JavaScript object, working with 108
JSON 109
requests, handling 128-130
security limitations 133
technologies involved 103

AJAX auto-completion
about 219
arrow keys, handling 224, 225
final code 227-229
in the browser 220, 221
keyboard, navigating 222-224
on the server 219
search field, populating 222
suggestion list, removing 226
suggestions, inserting 225

alphabetical sorting 139
Asynchronous JavaScript and XML. See

AJAX

attributes
$() factory function 82
manipulating 79
non-class attributes 80

attribute selectors 22

B
blogs

A List Apart 336
As Days Pass By 335
DOM Scripting 335
Jack Slocum’s Blog 335
jQuery Blog 334
Learning jQuery 335
Particletree 336
Snook 335
The Strange Zen of JavaScript 336
Web Standards with Imagination 335

C
callbacks 74
chaining 30
checkbox, forms

manipulating 211, 212
closures

$(document).ready, jQuery 346, 347
about 341
event handlers, jQuery 347, 348
function references 342
garbage collection 349
inner functions 341
interacting 345, 346
jQuery 346
variable scoping 343

[354]

collapsing
about 180
for filtering 188

compound events
about 44
advanced features, hiding 45, 46
advanced features, showing 45, 46
clickable items, highlighting 46-48
compound event handlers 44
DOM elements hierarchy 48
event bubbling 49
event capturing 48
event propagation 48

context
linking 89
marking 89
numbering 89

CSS
modifying 57-61
positioning with 67

CSS reference
Mezzoblue CSS cribsheet 334
position is everything 334
W3C CSS home page 333

CSS selectors
about 19
graceful degradation 19
list-item levels, styling 20-22
progressive enhancement 19

currency
formatting 235-237
parsing 235, 236

custom selectors
about 24
alternate rows, styling 24-26

D
data, passing to server

form, serializing 125-127
GET request, performing 120-124
POST request, performing 124, 125

data format
choosing 118, 119

development tools
about 337
Charles 340

Firebug Lite 339
Firefox tools 337
Internet Explorer tools 338
Safari tools 339
TextMate jQuery bundle 340

Dimentions, plug-ins
.scrollLeft method 302
.scrollTop method 302
about 300
height, measuring 300, 301
offset 302, 303
width, measuring 300, 301

document object model. See also DOM
elements

about 17, 18
manipulating 79

DOM elements
accessing 31
attributes, manipulating 79
context, linking 89
context, marking 89
context, numbering 89
copying 92
event bubbling 49
event capturing 48
footnotes, appending 90
hierarchy 48
manipulating 79
moving 85-89
new elements, inserting 83-85
wrapping 92

DOM elements, copying
about 92
pull quotes 94

DOM traversal methods
about 27
category cell, styling 28-30
chaining 30
DOM elements, accessing 31
header row, styling 28

E
effects

callbacks 74
fading in 64
multiple effects 64

[355]

multiple sets of elements 72
outline 76
queued effects 70
simultaneous effects 70
single set of elements 70
speed effect 63

event bubbling
about 49
preventing 50
side effects 49
using 132

event bubbling, preventing
about 50
default actions 52
event propagation, stopping 51, 52
event targets 51

event building function 132
event capturing 48
events

AJAX 130
compound events 44
DOM, manipulating 79
ending 50
event handler, removing 53, 54
event object 50
event propagation 48
limiting 50
shorthand events 44
simple events 36
style switcher 36-38
user interaction, stimulating 55

expanding
about 180
for filtering 188

F
filtering

about 182
code, interacting with 185
collapsing 188
expanding 188
filter options 183
filter options, from contents 184
filters, undoing 185
row striping 185-187

Firefox tools
features, Firebug 337
Firebug 337
regular expressions test 338
Venkman 338
web developer toolbar 338

Form, plug-ins
about 303, 304
tweaking 304

forms
about 193
AJAX auto-completion 219
checkbox, manipulating 211, 212
contact form 213-217
input masking 230
items, deleting 241-246
labels 217
numeric calculations 234
progressive enhancement 193
shipping information, editing 246-249
shopping cart final code 249-251
text placeholders 217, 218
validating 203

function references 342

G
garbage collection 349
GET request

performing 120-124
global jQuery functions

about 110
class method 110

H
(X)HTML reference

W3C HTML home page 333
headline rotator

fading effect 265-268
feed, retrieving 255-257
feed, retrieving from different domain 264,

265
page, setting up 253-255
pausing 261-263
setting up 258
working 259-261

[356]

HTML
appending 105-108
callback 108

I
images, enlarging

animating 285
animations, deferring 288, 289
badging 283, 284
close button, displaying 281-283
enlarged cover, hiding 280-283
loading indicator, adding 290
Thickbox, using 279

images, shuffling
action icons, displaying 275-278
jCarousel 268
on click 272
page, setting up 268-270
sliding animation, adding 274, 275
styling, JavaScript used 271

inner functions
about 341
variable scoping 343

input masking
non-numeric input 233, 234
shopping cart table structure 230-232

Interface, plug-ins
.animate method 305-307
about 305
Sortables 308, 309

Internet Explorer tools
DebugBar 339
Drip 339
MS IE developer toolbar 338
MS Visual web developer 338

items, forms
deleting 242-246

J
JavaScript closures. See closures
JavaScript compressors

JSMin 333
packer 333
pretty printer 333

JavaScript object
global jQuery functions 110-113

JSON 109
retrieving 108, 109
script, executing 113, 114
working with 108
XML document, loading 115-117

JavaScript Object Notation. See JSON
JavaScript pagination

about 153
current page, marking 157
pager, displaying 154
pager buttons, displaying 155, 156
paging with sorting 158

JavaScript reference
dev.Opera 332
JavaScript toolbox 332
Mozilla developer center 332
Quirksmode 332

JavaScript sorting
about 137
alphabetical sorting 139-142
column, highlighting 149
data 146-148
online resources 331
performance concerns 143, 144
plug-ins 143
row grouping tags 138
sort directions, alternating 149-151
sort key, finessing 145, 146

jCarousel 268
jQuery

$() funtion 18, 82
about 5
advanced features, hiding 45, 46
advanced features, showing 45, 46
advanced row striping 162
AJAX 103
anonymous functions 13
blog 334
closures 346
code, writing 11
core features 6
CSS 17
CSS selectors 19
custom selectors 24
development tools 337
document object model 17
DOM traversal methods 17, 27

[357]

downloading 8
effects 57
events 33
features 6
first document, creating 8
forms 193
hide() function 61
HTML document, setting up 8-10
inline CSS modification 57
lambda functions 13
licence 8
page load tasks 33
pagination 152
plug-ins 299
row striping 162
selectors 17
show() function 61
strategies 7, 8
tables, manipulating 135
uses 6
XPath selectors 22

jQuery code
anonymous functions 13
executing 12, 13
lambda functions 13
new class, injecting 12
text, finding 12
writing 11

jQuery documentation
jQuery API 331
jQuery API browser 332
jQuery wiki 331
visual jQuery 332
web developer blog 332

JSON 109

K
keyboard, navigating

about 222-224
arrow keys, handling 224, 225
suggestion list, removing 226
suggestions, inserting in the field 225

L
live search

versus auto-completion 227

M
memory leak hazards

about 349
accidental reference loop 350
garbage collection 349
Internet Explorer memory leak problem

351
reference loop 350

multiple effects
animated show(), building 65
CSS, positioning with 67
custom animation, creating 66
custom animation, improving 69, 70

N
numeric calculations

about 234
curreny, formatting 235, 236
curreny, parsing 235-238
decimal places 236, 237
other calculations 238
values, rounding 239

O
online resources

(X)HTML reference 333
blogs 334
CSS reference 333
JavaScript compressors 333
JavaScript reference 332
jQuery documentation 331
web development frameworks, jQuery used

336
XPath reference 334

P
page load tasks

code execution timing 33, 34
multiple scripts on one page 34, 35
performing 33
shortcuts 35

pager
buttons, enabling 155-157
displaying 154

[358]

pagination
about 152
final code 159
JavaScript pagination 153
paging with sorting 158
server-side pagination 152

plug-ins
developing 311
Dimentions 300
documentation, finding 309-311
Form 303
Interface 305
using 299, 300

plug-ins, developing
$ alias, using 328
about 311
documentation style 329
DOM traversal method parameters 317, 318
DOM traversal methods 315, 316
easing functions parameters 326
easing style, creating 324-326
global functions, adding 311-313
method chaining 315
method interfaces 328
multi-part easing styles 326
multiple event logs, maintaining 320-322
multiple global functions, adding 312, 313
naming conventions 328
object method context 314, 315
object methods, adding 314, 315
selector expression, adding 322-324
shortcut methods, adding 319, 320
swing 325

POST request
performing 124

progressive enhancement
about 137
form styling 193

progressively enhanced form styling
about 193
conditionally displayed fields 201-203
legend 195, 196
required field messages 197-200

pull quotes
about 94
cloning for 94
CSS diversion 95

prettifying 98, 99

Q
queued effects 70

R
resources. See online resources
rotators

about 253
final code 292-297
headline rotator 253

row highlighting
about 172

row striping
about 162-165
alternating triplets 168-172
for filtering 185
three color alternating pattern 165-167

S
Safari tools

Drosera 339
web inspector 339

script
executing 113

search field
populating 222

selectors
CSS selectors 19
custom selectors 24
XPath selectors 22

server-side pagination 152
server-side sorting

about 136
page refreshes, preventing 136, 137

shorthand events
about 44
shorthand event methods 44

shufflers
about 253
images 268
jCarousel 268

simultaneous effects 70
sorting

alphabetical sorting 139

[359]

final code 159
JavaScript sorting 137
paging with sorting 158
server-side sorting 136
table data 136

style switcher
about 36
buttons, enabling 38
consolidating 42, 43
event handler context 40-42

styling
alternate rows 24
category cell 28
header row 28
links 22
list-item levels 20

swing, easing style 325

T
table

advanced row striping 162
collapsing 180
data, sorting 136
expanding 180
filtering 182
highlighting 172
JavaScript sorting 137
pagination 152
row highlighting 172
row striping 162
server-side sorting 136
sorting 136
tooltips 174

Thickbox 279
tools. See development tools
tooltips 174

V
validation, forms

about 203
immediate feedback 203
required fields, immediate feedback

204-207
required formats, immediate feedback 207,

208
testing 209-211

variable scoping
about 343
free variables 345

W
web development frameworks 336

X
(X)HTML reference

W3C HTML home page 333
XML document

loading 115-117
XPath reference

MSDN XPath reference 334
TopXML XPath reference 334
W3C XPath specification 334

XPath selectors
about 22
attribute selectors 22
links, styling 22

XPath support 117

	Learning jQuery
	Table of Contents
	Preface
	Chapter 1: Getting Started
	What jQuery Does
	Why jQuery Works Well
	Our First jQuery Document
	Downloading jQuery
	Setting Up the HTML Document
	Writing the jQuery Code
	Finding the Poem Text
	Injecting the New Class
	Executing the Code
	The Finished Product

	Summary

	Chapter 2: Selectors—How to Get Anything You Want
	The Document Object Model
	The $() Factory Function
	CSS Selectors
	Styling List-Item Levels

	XPath Selectors
	Styling Links

	Custom Selectors
	Styling Alternate Rows

	DOM Traversal Methods
	Styling the Header Row
	Styling Category Cells
	Chaining

	Accessing DOM Elements
	Summary

	Chapter 3: Events—How to Pull the Trigger
	Performing Tasks on Page Load
	Timing of Code Execution
	Multiple Scripts on One Page
	Shortcuts for Code Brevity

	Simple Events
	A Simple Style Switcher
	Enabling the Other Buttons
	Event Handler Context
	Further Consolidation

	Shorthand Events

	Compound Events
	Showing and Hiding Advanced Features
	Highlighting Clickable Items
	The Journey of an Event
	Side Effects of Event Bubbling

	Limiting and Ending Events
	Preventing Event Bubbling
	Event Targets
	Stopping Event Propagation
	Default Actions

	Removing an Event Handler

	Simulating User Interaction
	Summary

	Chapter 4: Effects—How to Add Flair to Your Actions
	Inline CSS Modification
	Basic Hide and Show
	Effects and Speed
	Speeding In
	Fading In and Fading Out

	Multiple Effects
	Building an Animated show()
	Creating a Custom Animation
	Positioning with CSS

	Making Sense of the Numbers
	Improving the Custom Animation

	Simultaneous versus Queued Effects
	Working with a Single Set of Elements
	Working with Multiple Sets of Elements
	Callbacks

	In a Nutshell
	Summary

	Chapter 5: DOM Manipulation—How to Change Your Page on Command
	Manipulating Attributes
	Non-class Attributes
	The $() Factory Function Revisited

	Inserting New Elements
	Moving Elements
	Marking, Numbering, and Linking the Context
	Appending Footnotes

	Wrapping Elements
	Copying Elements
	Clone Depth
	Cloning for Pull Quotes
	A CSS Diversion
	Back to the Code
	Prettifying the Pull Quotes

	DOM Manipulation Methods in a Nutshell
	Summary

	Chapter 6: AJAX—How to Make Your Site Buzzword-Compliant
	Loading Data on Demand
	Appending HTML
	Working with JavaScript Objects
	Retrieving a JavaScript Object
	Executing a Script

	Loading an XML Document

	Choosing a Data Format
	Passing Data to the Server
	Performing a GET Request
	Performing a POST Request
	Serializing a Form

	Keeping an Eye on the Request
	AJAX and Events
	Scoping an Event-Binding Function
	Using Event Bubbling

	Security Limitations
	Summary

	Chapter 7: Table Manipulation
	Sorting
	Server-Side Sorting
	Preventing Page Refreshes

	JavaScript Sorting
	Row Grouping Tags
	Basic Alphabetical Sorting
	The Power of Plug-ins
	Performance Concerns
	Finessing the Sort Keys
	Sorting Other Types of Data
	Column Highlighting
	Alternating Sort Directions

	Pagination
	Server-Side Pagination
	Sorting and Paging Go Together

	JavaScript Pagination
	Displaying the Pager
	Enabling the Pager Buttons
	Marking the Current Page
	Paging with Sorting

	The Finished Code
	Advanced Row Striping
	Three-color Alternating Pattern
	Alternating Triplets

	Row Highlighting
	Tooltips
	Collapsing and Expanding
	Filtering
	Filter Options
	Collecting Filter Options from Content
	Reversing the Filters

	Interacting with Other Code
	Row Striping
	Expanding and Collapsing

	The Finished Code
	Summary

	Chapter 8: Forms with Function
	Progressively Enhanced Form Styling
	The Legend
	Required Field Messages
	A Regular Expression Digression
	Inserting the Field-Message Legend

	Conditionally Displayed Fields

	Form Validation
	Immediate Feedback
	Required Fields
	Required Formats

	A Final Check

	Checkbox Manipulation
	The Finished Code
	Placeholder Text for Fields
	AJAX Auto-Completion
	On the Server
	In the Browser
	Populating the Search Field
	Keyboard Navigation
	Handling the Arrow Keys
	Inserting Suggestions in the Field
	Removing the Suggestion List

	Auto-Completion versus Live Search

	The Finished Code
	Input Masking
	Shopping Cart Table Structure
	Rejecting Non-numeric Input

	Numeric Calculations
	Parsing and Formatting Currency
	Other Calculations
	Rounding Values
	Finishing Touches

	Deleting Items
	Editing Shipping Information
	The Finished Code
	Summary

	Chapter 9: Shufflers and Rotators
	Headline Rotator
	Setting up the Page
	Retrieving the Feed
	Setting Up the Rotator
	The Headline Rotate Function
	Pause on Hover
	Retrieving a Feed from a Different Domain
	Gratuitous Inner-fade Effect

	An Image Carousel
	Setting Up the Page
	Revising the Styles with JavaScript
	Shuffling Images when Clicked
	Adding Sliding Animation
	Displaying Action Icons

	Image Enlargement
	Hiding the Enlarged Cover
	Displaying a Close Button

	More Fun with Badging
	Animating the Cover Enlargement
	Deferring Animations Until Image Load
	Adding a Loading Indicator

	The Finished Code
	Summary

	Chapter 10: Plug-ins
	How to Use a Plug-in
	Popular Plug-Ins
	Dimensions
	Height and Width
	ScrollTop and ScrollLeft
	Offset

	Form
	Tips & Tricks

	Interface
	Animate
	Sortables

	Finding Plug-in Documentation
	Developing a Plug-in
	Adding New Global Functions
	Adding Multiple Functions
	What's the Point?

	Adding jQuery Object Methods
	Object Method Context
	Method Chaining

	DOM Traversal Methods
	Method Parameters

	Adding New Shortcut Methods
	Maintaining Multiple Event Logs
	Adding a Selector Expression
	Creating an Easing Style
	Easing Function Parameters
	Multi-Part Easing Styles

	How to Be a Good Citizen
	Naming Conventions
	Use of the $ Alias
	Method Interfaces
	Documentation Style

	Summary

	Appendix A: Online Resources
	jQuery Documentation
	JavaScript Reference
	JavaScript Code Compressors
	(X)HTML Reference
	CSS Reference
	XPath Reference
	Useful Blogs
	Web Development Frameworks Using jQuery

	Appendix B: Development Tools
	Tools for Firefox
	Tools for Internet Explorer
	Tools for Safari
	Other Tools

	Appendix C: JavaScript Closures
	Inner Functions
	The Great Escape
	Variable Scoping
	Interactions between Closures
	Closures in jQuery
	Arguments to $(document).ready()
	Event Handlers

	Memory Leak Hazards
	Accidental Reference Loops
	The Internet Explorer Memory Leak Problem
	The Good News

	Conclusion

	Index

