Total Functional Programming

D.A.Turner
(Middlesex University, UK)
d.a.turner@mdx.ac.uk

Abstract: The driving idea of functional programming is to make programming more
closely related to mathematics. A program in a functional language such as Haskell or
Miranda consists of equations which are both computation rules and a basis for simple
algebraic reasoning about the functions and data structures they define. The existing
model of functional programming, although elegant and powerful, is compromised to
a greater extent than is commonly recognised by the presence of partial functions.
We consider a simple discipline of total functional programming designed to exclude
the possibility of non-termination. Among other things this requires a type distinction
between data, which is finite, and codata, which is potentially infinite.

Key Words: functional programming
Category: D.1.1

1 Introduction

In a typical modern algebra text the concept of function is defined as follows:
a function f with domain A and codomain B assigns to each element of x of A
a unique element f x of B. Note that the function isn’t given unless we are told
its domain and codomain.

This is reflected very directly in modern strongly typed functional program-
ming languages, such as Miranda® [Turner 1986, Haskell [Hudak et al. 1992],
or the functional subset of Standard ML [Harper et el. 1986]. The domain and
codomain of each function is either stated in or inferable from the program text
and the functions are defined by equations, typically involving case analysis by
pattern-matching. Thus we might define fib a function to compute the n’th
member of the fibonacci series as follows!

> fib :: Nat->Nat
> fib 0 = 0

> fib1 =1

>

fib (n+2) = fib (n+1) + fib (n+2)

The three equations uniquely define the assignment of values, £ib x for each
x. From these equations we can prove various theorems about fibonacci numbers,
by using algebraic reasoning and induction. Among the theorems we can deduce
! The notation used for examples in this paper is an eclectic mixture of Miranda and

Haskell. I have also taken the liberty of assuming a built-in type Nat of non-negative
integers. Program fragments are indicated throughout by a leading >

are the values of fib x for specific x. For example
fib 20 = 6765

by using the equations from left to right, as reduction rules. The above func-
tional program is thus both a mathematical definition of fib and at the same
time an algorithm for computing it. One of the enduring myths about functional
programming languages is that they are somehow non-algorithmic. On the con-
trary, the idea of functional programming is to present algorithms in a more
transparent form, uncluttered by housekeeping details.

Unless we do something clever, like memoizing the function, the above is
not an efficient algorithm for £ib as it takes time exponential® in n to compute
fib n. A more efficient program for fib is the tail-recursive one:

> fib’ n=fn 01
> fO0ab-=a
> f (n+t1) a b =Ff nb (ath)

We would like to confirm that
VneNat.fib’ n = fib n
The key to this is to prove for arbitrary p

Theorem VneNat.f n (fib p) (fib (p+1)) = fib (p+n)

Proof by induction on n

Straightforward using the program equations for £ and fib and an induction
step.

The seemingly close fit between program text and mathematical reasoning
accounts for a large part of the appeal of functional languages (together with
their conciseness and expressive power) especially in a pedagogical context. But
there is a serpent lurking in the garden (in fact a whole nest of them). Consider
the following, perfectly legal, well-typed, program.

> loop :: Int->Int
> loopn =1+ loopn

From this we have
loop 0 =1+ loop 0
subtracting loop 0 from both sides and using x — z = 0 and associativity we get
0=1
From which we can infer anything. What went wrong?
Despite being of type Int the value of loop 0 is not an integer of the familiar
kind. It is L j,; the undefined integer. Because we allow unrestricted recursion

2 Actually to compute fib n takes time proportional to fib n but this tends asymp-
totically to an exponential in n.

we are programming with partial functions not functions in the standard math-
ematical sense.

The thesis of this paper is that functional programming is a good idea, but
we haven’t got it quite right yet. What we have been doing is partial functional
programming. What we should be doing is total functional programming.

The remaining sections of the paper are organised as follows. Section 2 in-
troduces the idea of total functional programming. In section 3 we outline an
elementary language for total functional programming over finite data. In section
4 we show how the concept of codata can be added, to bring back the possibility
of programming with infinite streams etc. In section 5 we discuss some extensions
and in section 6 make some closing remarks.

2 Total Functional Programming

In conventional functional programming if we have an expression e of type Int
say, we know that if evaluation of e terminates successfully the result will be an
integer — but the evaluation might fail to terminate, or might result in an error
condition.

In total functional programming if we have a well-typed expression e of type
Int we know that evaluation of e will terminate with an integer result. There
are no run-time errors and everything terminates.

In the semantics of partial functional programming each type T contains an
extra element L7 to denote errors and non-terminations.

In total functional programming | does not exist. The data types are those
of ordinary discrete mathematics. This has three main advantages, which we
now briefly consider in turn.

(A note on correct usage: the term function already implies totality so the
term ”total function” should not be used. In partial fp we program with (per-
haps) partial functions, in total fp we program only with functions.)

2.1 Simpler Proof Theory

One of the things we say about functional programming is that it’s easy to prove
things, because there are no side effects. But in Miranda or Haskell - or indeed
SML - the rules are not those of standard mathematics. For example if e is of
type Nat, we cannot assume e - e = 0 because e might have for its value

J—Nat~
Similarly we cannot rely on usual principle of induction for Nats
P(0)
VYn.P(n) = P(n+1)
Vn.P(n)

without taking precautions to deal with the case n = 1.

These problems arise, in different ways, in both strict and lazy languages. In
total functional programming these problems go away because there is no | to
worry about. We are back in the familiar world of sets.

2.2 Simpler Language Design

In partial functional programming we have a fundamental language design choice
forced on us at an early stage — whether to make functional application strict
in the argument. That is, is it a rule of the language that for any function f

f l=1
SML says yes to this, as does Scheme, while Miranda and Haskell embrace non-
strictness and thus lazy evaluation as the norm, leading to a far-reaching differ-
ences in programming style.

There are many other decisions to make because of the presence of L. For
example should the product space A x B be lifted or non-lifted? Haskell has the
first, Miranda the second — this affects the behaviour of pattern-matching. In
Miranda
> f(x, y) = ...
is irrefutable, that is the match cannot fail, because at type A x B we have

(La,LB)=Llaxn
whereas Haskell’s product type has an extra L below (L, 1) and therefore for it
the pattern (z,y) doesn’t match L.

These seemingly trivial decisions can interact in unexpected ways and cause
innocent looking programs which work in one system to fail in another (even
moving between two languages which are both lazy).

For another example take the & operation on Bool, defined by

True & True = True

True & False = False
False & True = False
False & False = False

but there are more cases to be defined:

1Ll &y=7

x& 1L =7
Considering the possible values for these (which are constrained by monotonicity)
gives us a total of four different possible versions of & namely

(i) doubly strict &
(ii) left-strict &

(iii) right-strict &

(iv) doubly non-strict (parallel) &

Most current programming languages opt for (ii), the left to right version but
this is somewhat arbitrary and breaks the symmetry which & has in logic.

In total functional programming these semantic choices go away. There is
only one possible definition of the product type A x B; only one & operation
exists, defined by its actions on True, False alone, and so on. We no longer have
a split between strict and non-strict languages — in a well-typed program every
subexpression must have a proper value and the choice between normal order
and applicative order evaluation won’t affect the outcome.

2.3 Flexibility of Implementation

In total functional programming reduction is strongly Church-Rosser. Note the
distinction between

(A) Church-Rosser Property®: If E can be reduced in two different ways and
they both produce normal forms, these will be the same

(B) Strong Church-Rosser Property: Every reduction sequence leads to a normal
form and normal forms are unique.

The ordinary Church-Rosser property says normal forms are unique - but
the normal form need not exist and where it does, not every reduction sequence
will find it; with strong Church-Rosser we have uniqueness of normal form plus
strong normalisability - normal forms always exist and we can evaluate in any
order. This gives much greater freedom for implementor to choose an efficient
strategy, perhaps to improve space behaviour, or to get more parallelism. The
choice of evaluation order becomes a matter for the implementor, and cannot
affect the semantics.

An alternative name for total functional programming, used in [Turner 1995],
and inspired by the strong Church-Rosser property, is strong functional program-
ming by contrast with which conventional fp may be called weak.

2.4 Disadvantages
There are two obvious disadvantages of total functional programming
1. Our programming language is no longer Turing complete!

2. If all programs terminate, how do we write an operating system?

3 More exactly the Church Rosser property of a relation = is that if 1 = Fo A Eq =
Es there exists E4 such that Fo = FE4 A E3 = E4. Property A is a consequence of
this.

Can we live with 17 We will return to this in the closing section, so let us
postpone discussion for now.

The answer to 2 is that we need codata as well as data. (But unlike in weak
functional programming, the two will be kept separate. We will have finite data
and infinite codata, but no partial data.)

There already exists a powerful theory of total functional programming which
has been extensively studied. This is the constructive type theory of Per Martin-
Lof (of which there are several different versions). This includes:

— Dependent types (types indexed over values)
— Second order types

— An isomorphism between types and propositions, that enables programs to
express proof information.

The theory was developed as a foundational language for constructive
mathematics. It is certainly possible to program in it, see for example
[Nordstrom et al. 1990], but it would hardly be suitable as an introductory lan-
guage to teach programming.

I am interested in finding something simpler.

3 Elementary total functional programming

What I propose is something much more modest than constructive type theory,
namely an elementary discipline of total functional programming.

Elementary here means

1) Type structure no more complicated than Hindley/Milner, or one of its
simple variants. So we will have types like Nat — Nat, and polymorphic types
like @ — «, but nothing worse.

2) Programs and proofs will be kept separate, as in conventional program-
ming. What we are looking for is essentially a strongly terminating subset of
Miranda or Haskell (or for that matter SML, since the difference between strict
and lazy goes away in a strong functional language)

3.1 Rules for elementary total fp

First, we must be able to define data types.

data Bool = False | True

data Nat = Zero | Suc Nat

data List a = Nil | Cons a (List a)
data Tree = Nilt | Node Nat Tree Tree
data Array a = Bounds Nat Nat (Nat->a)

vV V V VvV V

and so on.

As is usual some types - Nat and List for example - will be built
in, with special syntax, for convenience. So we can write e.g. 3 instead of
Suc(Suc(Suc Zero)) and correspondingly, some primitive operations such as
+, — and > on Nat will be built in for efficiency, although they could easily be
defined.

We define functions by the usual style of equational definition using pattern
matching over data types. Eg

> size :: Tree -> Nat

> size Nilt = 0

> size (Node n x y) = 1 + size x + size y

>

> filter :: (a->Bool) -> List a -> List a

> filter £ Nil = Nil

> filter f (Cons a x) = Cons a (filter f x), if f a

> = filter f x, otherwise

In using guard syntax: if and otherwise, we assume the presence of type Bool.

There are three essential restrictions to maintain totality.

RULE 1) All case analysis must be complete. So where a function is
defined by pattern matching, every constructor of the argument type must be
covered and in a set of guarded alternatives, the terminating ‘otherwise’ case
must be present.

In the same spirit any built in operations must be total. This will involve a
some non-standard decisions - for example we will have

0/0=0
Runciman [Runciman 1989] gives a useful and interesting discussion of how to
make natural arithmetic closed. He argues rather presuasively that the basic
arithmetic type in a functional language should be Nat rather than Int. In a
total language it is certainly desirable to have Nat as a staticly recognised type,
even if Int is also provided, since there are functions that have no sensible value
on negative integers — factorial for example.

Making all operations total of course requires some attention at types other
than Nat - for example we have to decide what to do about hd. This is more
troublesome.

hd :: List a -> a
> hd (Cons a x) = a
> hd Nil = ...?77...

Because hd is polymorphic we cannot simply assign a conventional value to
hd Nil, for with the abolition of 1 we no longer have any values of type «. The

same problem will arise with any selector function on a sum type. Two simple
solutions are

— Supply an extra argument to hd, which is the value to be returned if the list
is empty.

— Don’t use hd. Instead always do a case analysis, using pattern matching and
including a case for the empty list.

Both of these are workable and force you to pay attention to exactly those
boundary cases which are likely to cause trouble. The first incurs a modest
overhead in passing extra arguments to various functions. The second avoids this
but at the cost of a more substantial rewrite of the program. A more elegant
solution would be to somehow modify the type system to admit subtypes — such
as non-empty-List, on which hd is well-defined.

RULE 2) Type recursion must be covariant. That is type recursion
through the left hand side of — is not permitted. For example

> data Silly = Very (Silly->X) ||not allowed!

Here X is an arbitrary type. Contravariant types like Silly allow L to sneak
back in, and are therefore banned. We show how the damage arises:

bad :: Silly -> X

bad (Very f) = £ (Very £f)
foo :: X

foo = bad (Very bad)

vV V V V

We have obtained a value, foo, of type X, with no normal form — using the
equation for bad to rewrite foo gets back the same term. The construction will
work for any X, for example Nat. So we have an expression of type Nat which
does not reduce to a numeral, like loop 0 of our Introduction. The restrictions on
recursion which we introduce next (RULE 3 below) will not prevent this, since
the definitions of bad and foo above are not recursive. A modification of the
above scheme gives a fixpoint operator, equivalent to having general recursion.

Finally, it should be clear that we also need some restriction on recursive
function definitions. Allowing unrestricted general recursion would bring back L.
To avoid non-termination, we must restrict ourselves to well-founded recursion.
How should we do this? If we were to allow arbitrary well-founded recursion, we
would have to submit a proof that each recursive call descends on some well-
founded ordering, which the compiler would have to check. We might also have
to supply a proof that the ordering in question really is well-founded, if it is not
a standard one.

This contradicts our requirement for an elementary language, in which pro-
grams and proofs can be kept separate. We need a purely syntactic criterion, by
which the compiler can enforce well-foundedness.

RULE 3) Each recursive function call must be on a syntactic sub-
component of its formal parameter. This form of recursion, often called
structural recursion, sits naturally with function definition by pattern matching.
A typical example of what this allows is recursion of the form

> f :: Nat->Thing
> f 0 = something
> f (n+t1) = ...f n...

which is primitive recursion, but we may recurse via pattern matching on the
subcomponents of any data type, including lists and arbitrary trees, not just on
Nat. In the case of a function of multiple arguments we also permit “nested”
structural recursion as in Ackermann’s function

ack :: Nat->Nat->Nat

ack O n = n+1

ack (m+1) 0 = ack m 1

ack (m+1) (n+1) = ack m (ack (m+1) n)

vV V V V

the extension to multiple arguments adds no power, because what it does can
be desugared using higher order functions, but is syntactically convenient.

The rule to allow recursion only by syntactic descent on data constructors
effectively restricts us to primitive recursion, which is guaranteed to terminate.
But isn’t primitive recursion quite weak? For example is it not the case that
Ackermann’s function fails to be primitive recursive? No, that’s a first order
result - it does not apply to a language with higher order functions.

IMPORTANT FACT: we are here working in a higher order language, so
what we actually have are the primitive recursive functionals of finite type, as
studied by [Godel 1958] in his System T.

These are known to include every recursive function whose totality can be
proved in first order logic (starting from the usual axioms for the elementary data
types, eg the Peano axioms for Nat). So Ackermann is there, and much, much
else. Indeed, we have more than system T, because we can define data structures
with functional components, giving us infinitarily branching trees. Depending on
the exact rules for typechecking polymorphic functions, it is possible to enlarge
the set of definable functions to all those which can be proved total in second
order arithmetic.

So it seems the restriction to primitive recursion does not deprive us of any
functions that we need, BUT we may have to code things in an unfamiliar way -
and it is an open question whether it gives us all the algorithms we need (this is
a different issue, as it relates to complexity and not just computability). T have
been studying various examples, and find the discipline surprisingly convenient.

An example - Quicksort.

Quicksort is not primitive recursive. However Treesort is primitive recursive (we
descend on the subtrees) and for each version of Quicksort there is a Treesort
which performs exactly the same comparisons and has the same complexity, so
we haven’t lost anything.

Another example - fast exponentiation.

> pow :: Nat->Nat->Nat

> pow xn = 1, if n ==
> = x * pow (x * x) (n/2), if odd n
> = pow (x * x) (n/2), otherwise

This definition is not primitive recursive - it descends from n to n/2. Primitive
recursion on nats descends from (n+1) to n.

However, we can recode by introducing an intermediate data type List Bit,
and assuming a built in function that gives us access to the binary representation
of a number.

> data bit = On | Off

> bits :: Nat->List Bit |[|built in

> pow x n = powl x (bits n)

> powl x Nil =1

> powl x (Cons On y) = x * powl (x * x) y
> powl x (Cons Off y) = powl (x * x) y

Summary of programming situation:

Expressive power - we can write any function which can be proved total in the
first order theory of the (relevant) data types. (FACT, DUE TO GODEL)

Efficiency - it is a readily observed that three quarters or more of the algo-
rithms we ordinarily write are already primitive recursive. Many of the others
can be reexpressed as primitive recursive, with same computational complexity,
by introducing an intermediate data structure. (MY CONJECTURE: with more
practice we will find this is always true.)

I believe it would not be at all difficult to learn to program in this discipline,
but you do have to make some changes to your programming style. And it is
sometimes quite inconvenient — for example Euclid’s algorithm for ged is difficult
to express in a natural way). We return to this in section 5 below.

There is a sledge-hammer approach that can be used to rewrite as primitive
recursive any algorithm for which we can compute a prinitive recursive upper
bound on its complexity. We add an additional parameter, which is a natural
number initialised to the complexity bound, and count down on that argument
while recursing. This wins no prizes for elegance, but it is an existence proof
that makes more plausible my conjecture above.

The problem of writing a decision procedure to recognise structural recursion
in a typed lambda calculus with case-expressions and recursive, sum and product
types is solved in the thesis of Andreas Abel [Abel 1999]. Adapting it cope
with a richer type system and a more equational style of function definition
would be non-trivial but probably no harder than things that functional language
compilers already do.

3.2 PROOFS

Proving things about programs written in this discipline is very straightforward.
Equational reasoning, starting from the program equations as axioms about the
functions they define.

For each data type we have a principle of structural induction, which can
be read off from the type definition, eg

> data Nat = Zero | Suc Nat

this gives us, for any property P over Nat
P(Zero)

Vn.P(n) = P(Suc n)
Yn.P(n)

We have no L and no domain theory to worry about. We are in standard (set
theoretic) mathematics.

4 CODATA

What we have sketched so far would make a nice teaching language but is not
enough for production programming. Let us return to the issue of writing an
operating system.

An operating system can be considered as a function from a stream of re-
quests to a stream of responses. To program things like this functionally we need
infinite lists - or something equivalent to infinite lists.

In making everything well-founded and terminating we have seemingly re-
moved the possibility of defining infinite data structures. To get them back we
introduce codata type definitions:

> codata Colist a = Conil | a <> Colist a

Codata definitions are equations over types that produce final algebras, in-
stead of the initial algebras we get for data definitions. So the type Colist
contains all the infinite lists as well as finite ones - to get the infinite ones alone
we would omit the Conil alternative. Note that infix <> is the coconstructor for
colists.

4.1 Programming with Codata

The rule for primitive corecursion on codata is the dual to that for primitive
recursion on data. Instead of descending on the argument, we ascend on the
result. Like this

> f :: something->Colist Nat | lexample
> f args = RHS(f args’)

where the leading operator of the context RHS (=) must be a coconstructor, with
the corecursive call to f as one of its arguments. There is no constraint on the
form of args”’.

Notice that corecursion creates (potentially infinite) codata, whereas ordi-
nary recursion analyses (necessarily finite) data. Ordinary recursion is not legal
over codata, because it might not terminate. Conversely corecursion is not legal
if the result type is data, because data must be finite.

Now we can define infinite structures, such as

ones :: Colist Nat
> ones = 1 <> ones
> fibs :: Colist Nat
> fibs = f 0 1
> where
> fab=a<>fb (ath)

and many other examples which every Miranda or Haskell programmer knows
and loves.

Note that all our infinite structures are total.

As in the case of primitive recursion over data, the rule for coprimitive core-
cursion over codata requires us to rewrite some of our algorithms, to adhere
to the discipline of total functional programming. This is sometimes quite hard
- for example rewriting the well known sieve of Eratosthenes program in this
discipline involves coding in some bound on the distance from one prime to the
next.

There is a (very nice) principle of coinduction, which we use to prove infinite
structures equal. It can be read off from the definition of the codata type. We
discuss this in the next subsection.

A question. Does the introduction of codata destroy strong normalisability?
No! But you have to have the right definition of normal form. Every expres-
sion whose principle operator is a coconstructor is in normal form. (To get
confluence as well as strong normalisability requires a little more care. Each
corecursive definition is translated into a closed term and an explicit unwind
operation introduced — see [Telford and Turner 1997] for details. The scheme
in [Wadler et al. 1998] for translating lazy definitions into a strict language is
related.)

4.2 Coinduction

First we give the definition of bisimilarity (on colists). We can characterise ~
the bisimilarity relation as follows
rry=>hdez=hdyAtlx=tly

Actually this is itself a corecursive definition! To avoid a meaningless regress
what one actually says is that anything obeying the above is a bisimulation
and by bisimilarity we mean the largest such relation. For a fuller discussion
see [Pitts 1994]. Taking as read this background understanding of how to avoid
logical regress, we say that in general two pieces of codata are bisimilar if:

— their finite parts are equal, and
— their infinite parts are bisimilar.

The principle of coinduction may now be stated as follows: Bisimilar objects
are equal. One way to understand this principle is to take it as the definition of
equality on infinite objects. We can package the definition of bisimilarity and
the principle that bisimilar objects are equal in the following method of proof:
When proving the equality of two infinite structures we may assume the equality
of recursive substructures of the same form.

For colists we get — to prove
gxl ... xn = hxl ... xn

It is sufficient to show

gxl ... xn e<>gal ... an

e <>hal ... an

hxl ... xn

There is a similar rule for each codata type. We give one example of a proof by
coinduction.

The following theorem about the standard functions map, iterate, is from
[Bird and Wadler 1988]. We have changed the name of map to comap because for
us it is a different function when it acts on colists.

iterate f x = x <> iterate f (f x)
comap £ (a <> x) = f a <> comap f x

Theorem iterate £ (f x) = comap f (iterate f x)
Proof by coinduction

iterate f (f x)

= f x <> iterate £ (f (f x)) {iterate}

= f x <> comap f (iterate f (f x)) {ex hypothesi}
= comap f (x <> iterate f (f x)) {comap}

= comap f (iterate f x) {iterate}

QED

The proof given in Bird and Wadler uses the take-lemma - it is longer
than that given above and requires an auxiliary construction, involving the
application of a take function to both sides of the equation, and an induction
on the length of the take.

The absence of a base case in this form of induction is at first sight puzzling.
It is important to note that coinduction is valid only for the proof of equations
over infinite structures, not of arbitrary properties of the data structure as with
ordinary induction.

The “strong coinduction” principle illustrated here seems to give shorter
proofs of equations over infinite lists than either of the proof methods for
this which have been developed in the theory of weak functional program-
ming - namely partial object induction [Turner 1982] and the take-lemma
[Bird and Wadler 1988].

The framework seems simpler than previous accounts of coinduction - see
for example [Pitts 1994], because we are not working with domain theory and
partial objects, but with the simpler world of total objects.

Moral: Getting rid of partial objects seems an unmitigated blessing - not
only when reasoning about finite data, but perhaps even more so in the case of
infinite data.

5 Beyond structural recursion?

The restriction to structural recursion is sometimes frustrating. If the compiler
can understand that (n — 1) is smaller than n (for positive integer n) why can it
not see that n/2 also descends from n (again for positive n)? This would enable

the straightforward definition of fast exponentiation to be accepted, without our
having to introduce the intermediate data type List Bit. A similar considera-
tion applies to partitioning a list into two non-empty parts as in Quicksort.

A significant result in this area is the paper [Arkoudas and McAllester 1996]
defining a decision procedure for Walther recursion, a generalisation of prim-
itive recursion. By a “reducer-conserver” analysis of the program the properties
of descending in size from its argument and conserving the size of its argument
(in a sense of “size” appropriate to the data type) is transmitted from one func-
tion to another. For example from knowing that (a — b) descends from a (for a,
b positive integers and ‘—’ natural subtraction) and examining the definition of
integer division as repeated subtraction it is inferred that n/2 descends.

Arkoudos & McAllester argue that Walther recursion adds no power because
the recursions it accepts can be translated into primitive recursion but it adds
convenience. Their system will recognise as well-founded Quicksort, ged by Eu-
clid’s algorithm and many similar examples. The programs are expressed in a
first order, monomorphic, functional language (essentially a simple subset of
LISP).

Their system permits (and requires) the identification of simple subtypes,
such as non-empty list or non-zero natural number, that are relevant to the
analysis. For example natural subtraction is a conserver over natural numbers
but a reducer over positive numbers and (perhaps rather inconveniently) has to
be defined separately for these two types.

Generalising the definition and decision procedure for Walther recursion to
a higher order polymorphic language is an important and (as far as I know)
unsolved challenge. This would certainly make elementary total fp a more at-
tractive proposition by admitting a wider and more natural class of recursive
definitions.

A method of abstract interpretation due to Alastair Telford captures much
of the same ground as Walther recursion for a simple higher order (but still
monomorphic) programming language, see [Telford and Turner 2000].

There is a version of Telford’s abstract interpretation scheme for codata.
Interestingly, this recognises a class of valid corecursive definitions which includes
primitive corecursion but also allows other examples such as

> evens = 2 <> comap (add 2) evens

which fails to be primitive corecursion because of the intervening call to comap.
The definition is neverthless productive* (the dual concept to well-founded) be-
cause of a conservative property of comap. See [Telford and Turner 1997].

This is suggests there is a notion of Walther corecursion which works anal-
ogously to the way in which Walther recursion extends the scope of primitive

4 productivity is of course, like well-foundation, undecidable in general

recursion. The whole area merits further investigation.

6 Observations and Concluding Remarks

I have outlined an elementary discipline of total functional programming, in
which we have finite data and possibly-infinite codata, which we keep separate
from each other by a minor variant of the Hindley-Milner type discipline. There
are syntactic restrictions on recursion and corecursion to ensure well-foundation
for the former and productivity for the latter and simple proof rules for both
data and codata.

Although the syntactic discipline proposed may be found too restrictive in
the forms of recursion and corecursion it allows, I would argue that the distinc-
tion between data and codata is very helpful to a clean system for functional
programming and is in fact necessary within a framework ensuring totality.

The attraction of an elementary total language in the sense defined at section
3 is primarily pedagogical. In the presence of dependent types the expressive
power of structural recursion is greatly enhanced, see for example [McBride 2003]
for a nice illustration of this.

A question we postponed from section 2 is whether we ought to be willing
to give up Turing completeness. Anyone who has taken a course in theory of
computation will be familiar with the following result, which is a corollary of
the Halting Theorem.

Theorem: For any language in which all programs terminate, there are
always-terminating programs which cannot be written in it - among these are
the interpreter for the language itself.

So if we call our proposed language for total functional programming, L, an
interpreter for L in L cannot be written. Does this really matter? I have two
observations which suggest this might in fact be something to which we could
accommodate ourselves quite easily.

1) We can have a hierarchy of languages, of ascending power, each of which
can express the interpreters of those below it. For example if our language L has a
first order type system, we can add some second order features to get a language
Lo, in which we can write the interpreter for L, and so on up. Constructive type
theory, with its hierarchy of universes, is like this, for example.

2) We can draw an analogy with the (closely related) issue of compile-time
type systems. If we consider a complete computing system written in a typed
high level language, including operating system, compilers, editors, loaders and
so on, it seems that there will always be at least one place — in the loader for
example — where we are obliged to escape from the type discipline. Nevertheless
many of us are happy to do almost all of our programming in languages with

compile time type systems. One the rare occasions when we need to we can open
an escape hatch, such as Haskell’s UnsafePerformlO.

There is a dichotomy in language design, because of the halting problem. For
our programming discipline we are forced to choose between

A) Security - a language in which all programs are known to terminate.

B) Universality - a language in which we can write

(i) all terminating programs

(ii) silly programs which fail to terminate

and, given an arbitrary program we cannot in general say if it is (i) or (ii).

Five decades ago, at the beginning of electronic computing, we chose (B).
If it is the case, as seems likely, that we can have languages of type (A) which
accomodate all the programs we need to write, bar a few special situations, it
may be time to reconsider this decision.

Acknowledgements

This work was supported in part by EPSRC grant GR/L03279. An earlier version
of this paper, including the coinduction method, was presented in [Turner 1995].

References

[Abel 1999] Andreas Abel “A Semantic Analysis of Structural Recursion”, Diploma
Dissertation, 50 pages, Ludwigs-Maximillians-University, Munich, February 1999.
[Arkoudas and McAllester 1996] Kostas Arkoudas, David McAllester “Walther Recur-
sion” ;| Proceedings CADE 13, Springer LNCS 1104:643-657, 1996.

[Bird and Wadler 1988] R. S. Bird, P. Wadler “Introduction to Functional Program-
ming”, Prentice Hall, 1988.

[Godel 1958] K. Godel “On a hitherto unutilized extension of the finitary standpoint”,
Dialectica 12, 280-287 (1958).

[Harper et el. 1986] R. Harper, D. MacQueen, R. Milner “Standard ML”, University
of Edinburgh LFCS Report 86-2, 1986.

[Hudak et al. 1992] Paul Hudak et al. “Report on the Programming Language
Haskell”, SIGPLAN Notices, 27(5), May 1992.

[McBride 2003] Conor McBride “First Order Unification by Structural Recursion”,
Journal of Functional Programming 13(6):1061-1075 , November 2003.
[Nordstrom et al. 1990] B. Nordstrom, K. Petersson, J. M. Smith “Programming in
Martin-Lof’s Type Theory: An Introduction”, Oxford Science Publications, 1990.
[Pitts 1994] A. M. Pitts “A Co-induction Principle for Recursively Defined Domains”,
Theoretical Computer Science, 124(2):195-219, 1994.

[Runciman 1989] Colin Runciman “What about the Natural Numbers”, Computer
Languages, 14(3):181-191, 1989.

[Telford and Turner 1997] A.J.Telford, D.A.Turner “Ensuring Streams Flow”, John-
son, ed, Algebraic Methodology and Software Technology - AMAST ’97, Sydney,
Australia, December 1997 (Springer LNCS vol 1349:509-523).

[Telford and Turner 2000] A.J.Telford, D.A.Turner “Ensuring Termination in ESFP”,
Journal of Universal Computer Science, 6(4):474-488, April 2000.

[Turner 1982] D. A. Turner “Functional Programming and Proofs of Program Cor-
rectness” in Tools and Notions for Program Construction, pp 187-209, Cambridge
University Press, 1982 (ed. Néel).

[Turner 1986] D. A. Turner “An Overview of Miranda”’, SIGPLAN Notices,
21(12):158-166, December 1986. This can also be found at http://miranda.org.uk.
[Turner 1995] D.A.Turner “Elementary Strong Functional Programming”. In
R.Plasmeijer, P.Hartel, eds, First International Symposium on Functional Pro-
gramming Languages in Education, Nijmegen, NL, Dec 1995 (Springer LNCS, vol

1022:1-13).

[Wadler et al. 1998] Philip Wadler, Walid Taha, David McQueen “How to add laziness
to a strict language without even being odd”, 7 pages, Workshop on Standard ML,
Baltimore, September 1998.

TNote ‘Miranda’ is a trademark of Research Software Ltd.

