

Nginx HTTP Server

Adopt Nginx for your web applications to make the most
of your infrastructure and serve pages faster than ever

Clément Nedelcu

 BIRMINGHAM - MUMBAI

Nginx HTTP Server

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2010

Production Reference: 1140710

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-86-8

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author

Clément Nedelcu

Reviewers

Pascal Charest

Manlio Perillo

Acquisition Editor

Usha Iyer

Development Editor

Wilson D'souza

Technical Editor

Kartikey Pandey

Copy Editor

Leonard D'Silva

Indexers

Hemangini Bari

Tejal Daruwale

Editorial Team Leader

Aanchal Kumar

Project Team Leader

Lata Basantani

Project Coordinator

Jovita Pinto

Proofreader

Lynda Sliwoski

Graphics

Geetanjali Sawant

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Clément Nedelcu was born and raised in France, and studied in U.K., French,
and Chinese universities. He is now a computer science teacher at Jiangsu University
of Science and Technology in Zhenjiang, a southwestern city of China. He also
works as technology consultant in France, specialized in web and Microsoft .NET
development as well as Linux server administration. Since 2005, he has been
administering a major network of websites in his spare time. This eventually led him
to discover Nginx: it made such a difference that he started his own blog about it.
One thing leading to another…

The author's blog can be visited at http://cnedelcu.net and contains articles about
Nginx and other web development topics.

I would like to express my gratitude to my girlfriend, my family
and my friends who have been very supportive all along the writing
stage. This book is dedicated to Martin Fjordvald for originally
directing me to Nginx when my servers were about to kick the
bucket. Special thanks to Maxim Dounin, Jérémie Bertrand, Shaun
James, Zhang Yichun, Brendan, and all the folks on the #Nginx IRC
channel on Freenode.

About the Reviewers

Pascal Charest works as senior principal consultant for Les Laboratoires
Phoenix—an information system performance consulting firm based in Canada.
Working with leading-edge algorithms and free software, he is called as subject
matter expert to manage infrastructure projects, lead operations, and execute
process validation.

Over the last year, sample mandates includes redesigning storage system (glusterfs)
for a large North American investment group and managing the carrier-grade,
international network of a prominent member of the telecommunication industry. He
is also leading operations for quite a few local startups and answers their scalability
needs through custom cloud computing solution / network infrastructure.

He is also a free software/society advocate and often speaks in conference about
scalability issues in information systems.

He can be reached at pascal.charest@labsphoenix.com.

Thanks to Catherine, my love, for everything you've done so I did
not have to do it.

Manlio Perillo lives in Italy, in the Irpinia region, near Naples.

He currently works as a freelance programmer, mainly developing web applications
using Python and Nginx.

In 2008, he began working on a WSGI (Python Web Server Gateway Interface)
implementation for Nginx. It is available on http://bitbucket.org/mperillo/,
along with some other open source projects.

Table of Contents
Preface 1
Chapter 1: Preparing your Work Environment 7

Setting up a terminal emulator 7
Finding and downloading PuTTY 8
Creating a session 8
Working with PuTTY and the shell 10

Basic shell commands 11
File and directory management 11
User and group management 15

Superuser account 15
User accounts 15
Group management 17

Programs and processes 18
Starting an application 18
System services 19
Process management 20

Discovering the Linux filesystem 22
Directory structure 22
Special files and devices 25

Device types 25
Pseudo devices 26
Mounting a storage device 27

Files and inodes 28
EXT3 filesystem specifications 29
Filenames 29
Inodes 29
Atime, ctime, and mtime 30
Symbolic and hard links 31

File manipulation 32
Reading a file 33

Table of Contents

[ii]

Editing a file 34
Compression and archiving 35

System administration tools 37
Running a command as Superuser 37

Su command 37
Sudo command 38

System verification and maintenance 39
Disk Free 39
Disk Usage 39
Free memory 40

Software packages 40
Package managers 40
Downloading and installing packages manually 41
Building from source 42

Files and permissions 43
Understanding file permissions 43
Directory permissions 43
Octal representation 44
Changing permissions 44
Changing ownership and group 45

Summary 46
Chapter 2: Downloading and Installing Nginx 47

Setting up the prerequisites 47
GCC — GNU Compiler Collection 48
PCRE library 49
zlib library 50
OpenSSL 50

Downloading Nginx 51
Websites and resources 51
Version branches 52
Features 53
Downloading and extracting 54

Configure options 55
The easy way 55
Path options 56
Prerequisites options 58
Module options 59

Modules enabled by default 59
Modules disabled by default 60

Miscellaneous options 61
Configuration examples 62

About the prefix switch 63
Regular HTTP and HTTPS servers 63
All modules enabled 64

Table of Contents

[iii]

Mail server proxy 64
Build configuration issues 65

Make sure you installed the prerequisites 65
Directories exist and are writable 65

Compiling and installing 66
Controlling the Nginx service 67

Daemons and services 67
User and group 68
Nginx command-line switches 68
Starting and stopping the daemon 69
Testing the configuration 69
Other switches 70

Adding Nginx as a system service 71
System V scripts 71
What is an init script? 73
Creating an init script for Nginx 73
Installing the script 75

Debian-based distributions 76
Red Hat-based distributions 76

Summary 77
Chapter 3: Basic Nginx Configuration 79

Configuration file syntax 79
Configuration Directives 80
Organization and inclusions 81
Directive blocks 83
Advanced language rules 84

Directives accept specific syntaxes 84
Diminutives in directive values 85
Variables 86
String values 86

Base module directives 86
What are base modules? 87
Nginx process architecture 87
Core module directives 88
Events module 93
Configuration module 95

A configuration for your profile 95
Understanding the default configuration 95
Necessary adjustments 96
Adapting to your hardware 97

Testing your server 99
Creating a test server 99

Table of Contents

[iv]

Performance tests 100
Httperf 101
Autobench 102
OpenWebLoad 103

Upgrading Nginx gracefully 105
Summary 106

Chapter 4: HTTP Configuration 107
HTTP Core module 107

Structure blocks 108
Module directives 109

Socket and host configuration 110
Paths and documents 114
Client requests 117
MIME Types 121
Limits and restrictions 123
File processing and caching 125
Other directives 127

Module variables 130
Request headers 130
Response headers 131
Nginx generated 132

The Location block 133
Location modifier 133
Search order and priority 136

Case 1: 137
Case 2: 138
Case 3: 138

Summary 139
Chapter 5: Module Configuration 141

Rewrite module 141
Reminder on regular expressions 142

Purpose 142
PCRE syntax 142
Quantifiers 144
Captures 145

Internal requests 146
error_page 147
Rewrite 148
Infinite loops 149
Server Side Includes (SSI) 150

Conditional structure 151
Directives 153
Common rewrite rules 156

Table of Contents

[v]

Performing a search 156
User profile page 156
Multiple parameters 156
Wikipedia-like 157
News website article 157
Discussion board 157

SSI module 157
Module directives and variables 158
SSI Commands 160

File includes 160
Working with variables 162
Conditional structure 163
Configuration 163

Additional modules 164
Website access and logging 164

Index 164
Autoindex 165
Random index 166
Log 166

Limits and restrictions 168
Auth_basic module 168
Access 168
Limit zone 169
Limit request 169

Content and encoding 170
Empty GIF 170
FLV 171
HTTP headers 171
Addition 172
Substitution 172
Gzip filter 173
Gzip static 175
Charset filter 175
Memcached 176
Image filter 178
XSLT 179

About your visitors 179
Browser 179
Map 180
Geo 180
GeoIP 181
UserID filter 181
Referer 182
Real IP 183

SSL and security 183
SSL 183
Setting up an SSL certificate 185
Secure link 186

Table of Contents

[vi]

Other miscellaneous modules 187
Stub status 187
Google-perftools 187
WebDAV 188

Third-party modules 189
Summary 190

Chapter 6: PHP and Python with Nginx 191
Introduction to FastCGI 192

Understanding the mechanism 192
Common Gateway Interface (CGI) 193
Fast Common Gateway Interface (FastCGI) 194
Main directives 195
FastCGI caching 201
Upstream blocks 204

Module syntax 205
Server directive 206

PHP with Nginx 207
Architecture 207
PHP-FPM 208
Setting up PHP and PHP-FPM 208

Downloading and extracting 208
Patching 209
Requirements 209
Building PHP 209
Post-install configuration 210
Running and controlling 210

Nginx configuration 211
Python and Nginx 212

Django 212
Setting up Python and Django 213

Python 213
Django 213
Starting the FastCGI process manager 214

Nginx configuration 215
Summary 215

Chapter 7: Apache and Nginx Together 217
Nginx as reverse proxy 217

Understanding the issue 218
The reverse proxy mechanism 219
Advantages and disadvantages 220

Nginx Proxy module 221
Main directives 222

Table of Contents

[vii]

Caching, buffering, and temporary files 225
Limits, timeouts, and errors 228
Other directives 229
Variables 230

Configuring Apache and Nginx 230
Reconfiguring Apache 231

Configuration overview 231
Resetting the port number 231
Accepting local requests only 232

Configuring Nginx 233
Enabling proxy options 233
Separating content 235

Advanced configuration 237
Additional steps 238

Forwarding the correct IP address 238
SSL issues and solutions 239
Server control panel issues 239

Summary 240
Chapter 8: From Apache to Nginx 241

Nginx versus Apache 241
Features 242

Core and functioning 242
General functionality 243

Flexibility and community 244
Performance 244
Usage 245
Conclusion 246

Porting your Apache configuration 246
Directives 246
Modules 249
Virtual hosts and configuration sections 250

Configuration sections 250
Creating a virtual host 251

htaccess files 254
Reminder on Apache .htaccess files 254
Nginx equivalence 255

Rewrite rules 257
General remarks 257

On the location 257
On the syntax 258
RewriteRule 259

Table of Contents

[viii]

WordPress 259
MediaWiki 261
vBulletin 262

Summary 263
Appendix A: Directive Index 265
Appendix B: Module Reference 287

Access 287
Addition* 287
Auth_basic module 288
Autoindex 288
Browser 288
Charset 288
Core 289
DAV* 289
Empty GIF 289
Events 289
FastCGI 290
FLV* 290
Geo 290
Geo IP* 290
Google-perftools* 291
Gzip 291
Gzip Static* 291
Headers 291
HTTP Core 292
Image Filter* 292
Index 292
Limit Requests 292
Limit Zone 293
Log 293
Map 293
Memcached 293
Proxy 294
Random index* 294
Real IP* 294
Referer 294
Rewrite 295
Secure Link* 295
SSI 295
SSL* 295

Table of Contents

[ix]

Stub status* 296
Substitution* 296
Upstream 296
User ID 296
XSLT* 297

Appendix C: Troubleshooting 299
General tips on troubleshooting 299

Checking access permissions 299
Testing your configuration 300
Have you reloaded the service? 300
Checking logs 300
Install issues 301
403 Forbidden custom error page 301
Location block priorities 302
If block issues 303

Inefficient statements 303
Unexpected behavior 304

Index 305

Preface
It is a well-known fact that the market of web servers has a long-established leader:
Apache. According to recent surveys, as of October 2009 over 45 percent of the World
Wide Web is served by this fifteen years old open source application. However, for
the past few months the same reports reveal the rise of a new competitor: Nginx, a
lightweight HTTP server originating from Russia— pronounced "engine X". There
have been many interrogations surrounding the pronounced newborn. Why has the
blogosphere become so effervescent about it? What is the reason causing so many
server administrators to switch to Nginx since the beginning of year 2009? Is this
apparently tiny piece of software mature enough to run my high-traffic website?

To begin with, Nginx is not as young as one might think. Originally started in 2002,
the project was first carried out by a standalone developer, Igor Sysoev, for the needs
of an extremely high-traffic Russian website, namely Rambler, which received as of
September 2008 over 500 million HTTP requests per day. The application is now used
to serve some of the most popular websites on the Web such as WordPress, Hulu,
SourceForge, and many more. Nginx has proven to be a very efficient, lightweight
yet powerful web server. Along the chapters of this book, you will discover the many
features of Nginx and progressively understand why so many administrators have
decided to place their trust in this new HTTP server, often at the expense of Apache.

There are many aspects in which Nginx is more efficient than its competitors. First
and foremost, speed. Making use of asynchronous sockets, Nginx does not spawn as
many times as it receives requests. One process per core suffices to handle thousands
of connections, allowing for a much lighter CPU load and memory consumption.
Secondly, ease of use—configuration files are much simpler to read and tweak than
with other web server solutions such as Apache. A couple of lines are enough to set
up a complete virtual host configuration. Last but not least, modularity. Not only is
Nginx a completely open source project released under a BSD-like license, but it also
comes with a powerful plug-in system—referred to as "modules". A large variety of
modules are included with the original distribution archive, and many third-party
ones can be downloaded online. All in all, Nginx combines speed, efficiency, and
power, providing you the perfect ingredients for a successful web server; it appears
to be the best Apache alternative as of today.

Preface

[2]

Although Nginx is available for Windows since version 0.7.52, it is common
knowledge that Linux distributions are preferred for hosting production sites.
During the various processes described in this book, we will thus assume that you
are hosting your website on a Linux operating system such as Debian, Fedora,
CentOS, Mandriva, or other well-known distributions.

What this book covers
Chapter 1, Preparing your Work Environment provides a basic approach of the Linux
command-line environment that we will be using throughout this book.

Chapter 2, Downloading and Installing Nginx guides you through the setup process, by
downloading and installing Nginx as well as its prerequisites.

Chapter 3, Basic Nginx Configuration helps you discover the fundamentals of Nginx
configuration and set up the Core module.

Chapter 4, HTTP Configuration details the HTTP Core module which contains most of
the major configuration sections and directives.

Chapter 5, Module Configuration helps you discover the many first-party modules of
Nginx among which are the Rewrite and the SSI modules.

Chapter 6, PHP and Python with Nginx explains how to set up PHP and other third-
party applications (if you are interested in serving dynamic websites) to work
together with Nginx via FastCGI.

Chapter 7, Apache and Nginx Together teaches you to set up Nginx as reverse proxy
server working together with Apache.

Chapter 8, From Apache to Nginx provides a detailed guide to switching from Apache
to Nginx.

Appendix A, Directive Index lists and describes all configuration directives, sorted
alphabetically. Module directives are also described in their respective chapters too.

Appendix B, Module reference lists available modules.

Appendix C, Troubleshooting discusses the most common issues that administrators
face when they configure Nginx.

Preface

[3]

What you need for this book
Nginx is free and open source software running under various operating systems—
Linux-based, Mac OS, Windows operating systems, and many more. As such,
there is no real requirement in terms of software. Nevertheless in this book and
particularly in the first two chapters we will be working in a Linux environment,
so running a Linux-based operating system would be a plus. Prerequisites for
compiling the application are further detailed in Chapter 2.

Who this book is for
This book is a perfect companion for both Nginx beginners and experienced
administrators. For the former, it will take you through the complete process of
setting up this lightweight HTTP server on your system and configuring its various
modules to get it to do exactly what you need, in a fast and secure way. For the latter,
it provides different angles of approach that can help you make the most of your
current infrastructure. As the book progresses, it provides a complete reference to
all the modules and directives of Nginx. It will explain how to replace your existing
server with Nginx or configure Nginx to work as a frontend for your existing server.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Preparing your Work
Environment

In this first chapter, we will guide you through the steps to preparing your work
environment on both your work computer and the server that you will use to host
the websites. There are a number of things that you will have to understand in order
to establish a fully functional Nginx set up, particularly if you are working with
a computer running a Microsoft Windows operating system.

This chapter covers:

Setting up a terminal emulator for using the command-line interface of your
remote server
Basic Linux command-line tools that you will be using at different stages
Introduction to the Linux filesystem structure
System administration tools
Managing files and permissions

Setting up a terminal emulator
For all of us working under a Microsoft Windows operating system on a daily basis
for the past fifteen years, the idea of going back to a good old command-line interface
may seem somewhat primitive, but it is nevertheless a reality—even a necessity for
most server administrators. The first step of your preparatory work will consist of
downloading and installing an SSH client. Secure SHell (SSH) is a network protocol
that allows two devices to communicate securely by encrypting exchanged data. It is
notably used for connecting to a system shell remotely. In other words, you will be
able to take control of your server without compromising its security.

•

•

•

•

•

Preparing your Work Environment

[8]

Finding and downloading PuTTY
PuTTY is by far the most widely used terminal emulator for SSH access under
Windows. As such, you may find a large amount of articles and other documents
on the web explaining the various features offered by this program. We will only
be covering the aspects that directly concern our subject—configuring PuTTY to
connect to your server, entering text, and using the copy and paste commands. But
you should know that there is much more that this free and open source tool can
do—creating SSH tunnels, connecting to a Telnet, rlogin, even raw TCP
communication, and so on.

PuTTY can be downloaded directly from its author's website:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

It comes as a standalone .EXE program and does not require any external files. All its
data is saved in the Windows registry, so it will not be filling up your system with
configuration files.

Creating a session
Before reading on, make sure you are in possession of the following elements:

The host name or the IP address of the server you will connect to.
The port on which the SSH daemon is running. Unless you were told
otherwise, the service should be running on port 22.
A user account on the system.
A password for your account.

•

•

•

•

Chapter 1

[9]

Let us take a quick peek at the main PuTTY window.

PuTTY saves your settings in sessions. So when you finish configuring the assortment
of parameters, make sure to give a name to your session and click on the Save
button, as highlighted in the preceding screenshot.

On the default PuTTY screen, you will need to enter a Host Name (or IP address) for
the server you want to connect to. Then configure the port on which the SSH service
is running on the remote server, 22 being the default port for SSHD. Here are a
couple of additional settings that are optional but may be useful to you:

In the Window setting group, you may adjust a few parameters such as the
size of the terminal window and scroll back behavior.
In the Window | Appearance setting group, you can change the font size in
the terminal window as well as cursor options.
In the Window | Translation setting group, you are given the possibility to
enable a different character set. This is particularly useful if you work with
servers that make use of the UTF-8 character set.

•

•

•

Preparing your Work Environment

[10]

In the Connection setting group, you may want to enable the TCP
keepalives feature, which allows you to prevent disconnections due
to TCP timeouts.
In the Connection | Data setting group, you can enter your system account
username. However, PuTTY will not allow you to store passwords for
obvious security reasons.

Once you have finished configuring your session, remember to save it, and then
initiate the connection by clicking on the Open button on the main window. When
you connect to a server for the first time, you are required to validate its authenticity
by accepting the server fingerprint. If you connect to the same server in the future,
you shouldn't be seeing the confirmation again, unless the server settings such as
hostname or port have been changed or security has been compromised and you
are connecting to an intermediate server (man-in-the-middle attack). Eventually,
you should be prompted for a login (unless you enabled the auto-login option)
and a password. Please note that when typing the password, it will not appear on
the screen at all—not even as asterisks, so make sure to enter it carefully, then press
the Return key.

Working with PuTTY and the shell
If you have never worked with PuTTY or with a system shell before, there are
a couple of details you may want to know regarding the behavior of the main
terminal emulator window.

Text that you select with the mouse cursor in the terminal window will
automatically be copied to the clipboard when you release the left button.
Pasting text to the terminal is done by a simple right-click anywhere on the
window area.

•

•

•

•

Chapter 1

[11]

Pressing Ctrl+C does not copy text to clipboard. It is instead a shortcut
used for interrupting the execution of a program. If you accidentally run a
command that takes longer to execute than you imagined, then this shortcut
will allow you to take control of the shell again.
In case of a disconnection from the server, a right-click on the title bar of the
terminal window will open a menu and allow you to restart the session.
When typing a filename in the command line, pressing the Tab key will
attempt to auto-complete the filename. If you hear a beep noise when doing
so, it may be due to two reasons—either the segment you entered does not
correspond to any file on the system, or there are multiple files found. In the
last case, quickly press Tab twice to see the list of files matching your input.
Note that this feature may be unavailable on your shell, depending on the
operating system that your server is running.

Basic shell commands
Connecting to your server and opening up a terminal window is one thing, being
able to actually make use of it is another. If you have never worked with Linux
before, you may find this section particularly helpful as it will help you get started
by describing some of the most basic and useful commands. All the commands that
we will be using in later sections are covered here, but you will soon realize that
there is a lot more that you can do with the shell in general.

File and directory management
There are a lot of similarities between common shells such as BASH (Bourne-Again
SHell, default shell for GNU/Linux distributions) and the Microsoft Windows
command-line interface. The main resemblance is that we use the notion of working
directory. The shell prompts you for a textual command; the said command will be
executed in the current working directory.

When you first log in to your shell account, you should land in your home directory.
This folder is generally used to contain your personal files; it is a private space
that no other users on the system should be able to see (unless specific access
rights are granted).

•

•

•

Preparing your Work Environment

[12]

Here is a list of the most useful basic commands for file and directory management:

Command
Name

Description

pwd Print working directory
[alex@example.com ~]$ pwd

/home/alex

cd Change directory
[alex@example.com ~]$ cd images

[alex@example.com images]$ pwd

/home/alex/images

[alex@example.com images]$ cd /tmp

[alex@example.com tmp]$ pwd

/tmp

Here are some useful shortcuts that can be used with cd as well as any
other shell command:

Typing cd or cd ~ always takes you to your home directory.
More generally, ~ (tilde character) is a reference to your
home directory, which allows you to use commands such
as cd ~/images.
Typing cd .. takes you to the upper level in the directory tree.
Note the space between cd and ..
cd . has no effect; however, note that the dot refers to the
current working directory. For example, cd ./images.

•
•

•

•

ls List all files in the current working directory (or a specified directory)
[alex@example.com ~]$ ls

images photo2.jpg photo.jpg shopping.txt

Try ls –l for a more detailed view. The –a switch reveals hidden and
system files.

Chapter 1

[13]

Command
Name

Description

mkdir Create a new directory
[alex@example.com ~]$ mkdir documents

[alex@example.com ~]$ cd documents

[alex@example.com documents]$ mkdir /tmp/alex

[alex@example.com documents]$ cd /tmp/alex

[alex@example.com alex]$ pwd

/tmp/alex

Command-line applications in general do not output any text in the case
of a successful operation. They will only display a message if an error
occurred.

cp Copy files.
Command syntax: cp [options] source destination
[alex@example.com ~]$ cp photo2.jpg photo3.jpg

mv Move or rename files.
Command syntax: mv [options] source destination
Renaming a file:
[alex@example.com ~]$ mv photo3.jpg photo4.jpg

Moving a file to another folder:
[alex@example.com ~]$ mv photo4.jpg images/

rm Delete a file or a directory. The –r switch enables recursion.
[alex@example.com ~]$ rm photo.jpg

[alex@example.com ~]$ ls

images photo2.jpg shopping.txt

[alex@example.com ~]$ rm –r images/

[alex@example.com ~]$ ls

photo2.jpg shopping.txt

Proceed with extreme caution with this command, especially if you
are logged in as the Superuser (system administrator). Files cannot be
recovered and a simple call to rm –rf / suffices to initiate a complete
wipe of your filesystem.

Preparing your Work Environment

[14]

Command
Name

Description

locate Locate the specified file on the entire filesystem. This command is
directly related to the updatedb command below:
[alex@example.com ~]$ locate photo2.jpg

/home/alex/photo2.jpg

/home/jesse/holiday_photo2.jpg

Note: The locate command completely relies on indexes. If you create
a new file, you will not be able to find it until you perform a database
update with the command below.

updatedb Updates the file database. Note that this command requires
administrative permissions. For that reason, it is generally set to be
executed on a daily basis via a "cron job" (the equivalent of tasks in
Microsoft Windows operating systems) with administrative-level rights.
[alex@example.com ~]$ mkdir "Holidays in France"

[alex@example.com ~]$ locate France

No file found: a database update is required.

Once logged in with an administrator account:
[root@example.com ~]# updatedb

[root@example.com ~]# locate France

/home/alex/Holidays in France

man Displays documentation on a specified command
[alex@example.com ~]$ man ls

See the screenshot below.
[alex@example.com ~]$ man ls

Chapter 1

[15]

Eventually, you can use the clear command to erase all text on your screen and
start afresh.

User and group management
The first obsession an administrator should have is who has access to which
resources on their system. In that extent, Unix-based operating systems provide
an elaborate user and group management mechanism.

Superuser account
Each and every operating system comes with a Superuser account, often required for
performing administrative-level tasks. This account is usually called root, although
on some systems it can be named otherwise ('admin' or even 'toor'). The Superuser
has access to all files and directories of the system and has the right to read, edit,
and execute all files as well as change file attributes and permissions.

Although an administrator should always have the possibility to access the root
account, it is not recommended to constantly connect as the machine Superuser. In
fact, some operating systems such as Ubuntu do not even allow you to do so. One
of the great principles of computer security is least privilege—you should never be
allowed to do more than what you need to do. In other words, why give a user
the possibility to access your system configuration folder if they are only going to
use your computer for surfing the web and writing documents with Open Office?
Granting more privileges than one requires can only lead to situations where
the system security and integrity get compromised. For that reason, it is highly
recommended that you create user accounts, not only for physical users of your
machine but also for applications to run in a secure environment with clearly
defined boundaries.

User accounts
One particular file in the system configuration directory holds the list of system
users: /etc/passwd. Contrary to what the name suggests, it does not usually contain
user passwords; they are, in most cases, stored using the shadow format in a separate
file /etc/shadow for security reasons. It, however, does come with certain bits of
information for each user. One line of the passwd file representing one user, the
following syntax should be respected:

Name:password:ID:group ID:comment:home directory:login shell

Preparing your Work Environment

[16]

In practice, the password bit is replaced by 'x' indicating that the actual password is
stored in the /etc/shadow file.

Adding a new user account can be as simple as adding a line to the /etc/passwd
file. However, you might find the manual process somewhat bothersome, and
rest assured—you are not alone. In that extent, you will be pleased to learn that a
program automating the operation is available on most distributions—useradd.

The most basic syntax for this command is useradd username. This creates a new
user account with the default settings (which can be customized)—a home directory
for the user located in /home, no expiration date, the default group for users, and
Bash as a login shell. If you add an account destined to be running a service such
as Nginx, it is recommended that you do not grant the user account shell access;
consequently, you should make sure that the login shell is set to nologin (usually
found in /sbin/nologin). The command would then be:

useradd --shell /sbin/nologin nginx

You can also define the location of the home directory to the folder where you have
installed Nginx:

useradd --shell /sbin/nologin --home-dir /usr/local/nginx nginx

The trailing nginx indicates the name of the user account to be created.

If you wish to edit some of these parameters after the account creation process is
complete, you may use the usermod command. It allows you to rename the account
name, change the account password, move the home directory along with its
contents to another location, and much more. Eventually, you might want to delete a
user account. This is done via the simple userdel command as in userdel username.
The –r switch allows you to delete the home directory along with the user account.

Chapter 1

[17]

Remember that for each of these commands, you have the
possibility to consult more detailed information using man,
for example, man useradd.

Group management
In addition to user accounts, Unix-based systems provide an even more advanced
resource management mechanism—user groups. The purpose of a group is to have
its own access permissions on files and directories; all users belonging to the group
will then inherit the group permissions. A user account has to belong to at least one
group—the user's primary group—although it may also belong to secondary groups.

In practice, the list of groups on the system is stored in the /etc/group file. Each line
of the file represents one group, respecting the following syntax:

Group name:password:group ID:user list

The group password is rarely used; instead it is replaced by 'x' to indicate that
the group has no password. At the end of each line, you will find the list of users
belonging to the group. Here is an example of a group file on a production server:

Again, if you wish to create a new group on your system, you have two options:
either add a new line to the /etc/group file, or use the dedicated groupadd
command. Its syntax is simple—groupadd groupname. There are some optional
parameters to the command, which you can discover by running man groupadd.

Similar to the user management system, you will also find groupmod and
groupdel commands for respectively editing group settings and deleting a group.
More importantly, how to add a user to a group? It is done by either editing the
/etc/group file to append the username at the end of the line corresponding to
the group you wish to add the user to, or by using the following command:

 usermod --append --groups groupname username

Preparing your Work Environment

[18]

You may specify one or more groups. Skipping the --append option would have the
effect to replace the user's group list by the specified groups. Eventually, the groups
command shows the list of groups the current user belongs to.

Programs and processes
Running a program in the shell is not as simple as entering its filename. There are a
couple of subtle details that you should understand about the way Bash handles the
execution of binaries and scripts.

Starting an application
There are three different situations that you may face when you want to execute a
program or a script from the shell:

The program you want to execute is located in the current working directory.
Solution: Prefix the filename with ./ (dot slash), which forces the shell to
look for files in the current working directory only.
For example:
[alex@example.com ~]$ cd programs

[alex@example.com programs]$./my-app

The program you want to execute is not located in the current working
directory, but you already know the file path.
Solution: Enter the complete file path.
For example:
[alex@example.com ~]$ /home/alex/programs/my-app

The program you want to execute is located in one of the folders of the PATH
environment variable.

Solution: Enter the filename without its path.
For example: Starting a text editor called nano, which is usually found in the
/usr/bin system directory (/usr/bin being in the PATH).
[alex@example.com ~]$ nano

Note that when running a shell command, the prompt will be unavailable until the
execution is complete. This can be problematic in the case of a lengthy operation,
so you may want to start a program and have it running in the background instead
of blocking the shell completely. This is done by appending a simple & at the end of
the line.

•

•

•

Chapter 1

[19]

[alex@example.com tmp]$ cp home.avi ~/movies/ &

[6] 2629

[alex@example.com tmp]$ [6] Done cp home.avi ~/movies/ &

As soon as you send the command, the pid (Process Identifier—a number identifying a
running process on your system) will show up and the prompt will return. Once the
execution terminates, a message appears to indicate its completion, along with the
original command used to start the process.

System services
Most of the applications running in the background (often referred to as services),
are not started via a simple command followed by the & character. There are actually
complex scripts that manage their startup and shutdown. Those scripts can be placed
in several directories, the most common one being /etc/init.d.

Some Linux distributions such as Red Hat, Fedora, CentOS, or Mandriva come
with a script called service that (among other things) allows you to control a service
by using the service name command syntax, where script is the name of the
service you want to start and command is one of the options from the table below.
Distributions that do not have the service script installed may also control services
using a similar syntax: /etc/init.d/name command. Note that init.d scripts do
not always provide implementations for all of these common commands.

Command Description
start Starts the specified service
stop Stops the specified service in a clean way
restart Stops the specified service and starts it again
reload Reloads the configuration of the specified service
status Displays the status of the specified service

Try service --status-all for listing all system
services along with their current status.

Preparing your Work Environment

[20]

Process management
As mentioned before, the system allocates a number to each and every process
running on the computer. This number is called the Process Identifier (pid).
Knowing the pid is important in various situations, some of which you are
about to discover.

Finding the pid
Firstly, how does one find the pid of a process? Although there are a number of
ways you could do that, most of them rely on a single tool—ps. Its many options
(combined with the piping mechanism) will allow you to retrieve various details
about a process.

The ps aux | grep sshd command can be dissected into three components:

1. ps aux is a command that lists all processes currently running on the system.
2. | (pipe) redirects the output of the command placed before the pipe to the

command placed after it. Running ps aux generally returns a long list of
processes, so you will only want to display the one process you are looking for.

3. grep sshd receives data from the ps aux command and only outputs
lines containing the specified words. In other words, grep acts as the
filter, retaining lines containing sshd.

Chapter 1

[21]

An administrator's best friend—top
Another tool that you will find particularly useful if you run a high traffic website
is top. This program lists all the processes currently running on the system with
their pid, which is sorted by their CPU usage. On top of that, the list refreshes every
second until you interrupt the execution flow (with Ctrl+C, for example) or stop
the application by pressing the Q key. This allows you to keep track of the most
resource-hungry processes.

The upper part also provides loads of useful statistics on the current resource usage
such as system uptime, active users, load average, memory and processor load,
and more.

Killing processes
If a command ever turns out wrong and the prompt does not return, one of your
possible solutions is to press Ctrl+C to interrupt the execution flow of the application.
The equivalent operation can be applied to background processes by using the kill
command. There is a subtle detail here—you cannot kill a process by specifying
its name; you need to provide its pid. The reason, obviously, is that one program
may be executed more than once; consequently, a program name does not always
correspond to a unique process.

[alex@example.com ~]$ kill 12075

Preparing your Work Environment

[22]

Again, if the command does not output any result, there is nothing to worry about.
Actually, if there is one thing that kill may tell you, it would be something along
the lines of no such process in case you entered an invalid pid. The kill command
simply sends a signal to the specified process, which does not necessarily mean
that the said process will have successfully stopped. If the program is locked, for
example, it will not respond to the signal and thus will still be running. You will be
reassured to know that there is a simple way to force a process to terminate—the -9
option specifies that the system should immediately stop the execution.

[alex@example.com ~]$ kill -9 12075

Finally, as you can imagine, you may, at some point, need to terminate multiple
processes at a time. For instance, you could kill all the processes that Apache
spawned. In that case, we would use a slightly different command—killall. It differs
from kill in the extent that it accepts a process name as argument instead of a pid.

[alex@example.com ~]$ killall httpd

Discovering the Linux filesystem
Linux-based operating systems have their files organized in a very specific way that
follows more or less closely the long-established Filesystem Hierarchy Standard
(FHS). According to the official FHS documentation, this standard enables:

Software to predict the location of installed files and directories
Users to predict the location of installed files and directories

Although the original standard specification was published in 1993, it is still used
by modern distributions, but in a slightly revised version.

Directory structure
Unlike Microsoft Windows operating systems where all file paths begin with a drive
letter (what happens if you have over twenty-six drives on your system?), FHS-
based filesystems have a common parent. This parent is called the root directory,
also known as / (the slash character). All files and directories (regardless of the
device, drive, or partition, they are located on) are children of the root directory.
Consequently, all absolute paths that you will find in this book start with a slash.

Let us now run cd /, followed by ls in order to discover the many subdirectories
defined by the FHS. Please note that this directory structure is purely conventional;
nothing actually prevents you from placing your own files in any of these folders or
creating more directories at the root.

•

•

Chapter 1

[23]

Path Description
/ The root directory: Not to be confused with /root. No files are usually

placed at the root, although nothing really prevents you from doing so.
/bin Binaries: Common executable binaries and scripts available for all users of the

system. This is where essential programs such as ls, cp, or mv are found.
/boot Boot: Critical files used at system boot time.
/dev Devices: Device and special files, more information in the next section.
/etc Et cetera: System-wide configuration files for services and applications. You

will often need to browse this directory, for example, when you will need to
edit the Nginx server settings and virtual hosts.

/home Home directories: This directory contains home directories for all users on
the system except the root user. In the examples we studied before we used
/home/alex, the home directory for the alex user.

/lib Libraries: System-wide shared libraries and kernel modules, required by
binaries found in the /bin and /sbin folders.

/media Removable media: A directory that allows you to easily access removable
media using mount points for devices such as CD-ROMs, USB devices,
and so on.

/mnt Temporarily mounted filesystems: This directory is a suitable placeholder in
case the administrator wishes to mount a filesystem on a temporary basis.

/opt Optional software packages: In theory, this directory should host application
files and add-on packages that do not come with the default operating system
installation. In practice, it is hardly ever used.

/proc Kernel and process information virtual filesystem: This directory provides
access to a virtual filesystem containing a variety of statistics and details about
all running processes.

/root Root user home directory: The root user, also known as Superuser, does not
have its home directory stored in the same folder as regular users (/home).
Instead, its personal files are stored in the /root. directory. The slash-root
(/root) directory is not to be confused with the root directory (/).

/sbin System binaries: Utilities dedicated to system administration, thus generally
accessed by the root user only. Programs such as ifconfig, halt, service, and
many others can be found here.

/srv Service data: A placeholder for data coming from services hosted on the
system. Like many others, this directory is rarely used.

/tmp Temporary files: Files that do not need to be conserved beyond program
execution should be stored here. Many operating systems actually clear the
contents of this directory on reboot.

Preparing your Work Environment

[24]

Path Description
/usr Read-only user data: This directory provides a secondary hierarchy

for shareable read-only user data. The /usr directory should contain
the following:

/usr/bin: Non-essential command binaries and scripts for all users
(such as wget, gzip, firefox, and many more)
/usr/include: Header files from C libraries for inclusion at
compile time
/usr/lib: Libraries used by program binaries found in /usr/bin
and /usr/sbin
/usr/sbin: Non-essential system command binaries and scripts for
all users (such as useradd, ntpdate, and so on)
/usr/share: Architecture-independent data files
/usr/src: Source code for kernel and installed applications
/usr/X11R6: X Window System (v11 release 6)-related files
/usr/local: A third hierarchy level for local data only

•

•

•

•

•

•

•

•

/var Variable files: Files that are expected to be modified by running applications
or services, for example, logfiles, cache, spool, and more. It comes with a
hierarchy of its own:

/var/lib: Variable state information related to an application or
more generally the operating system. Note that MySQL database files
are usually stored in /var/lib/mysql.
/var/lock: Lock files used for synchronized resource access
between applications.
/var/log: Logfiles generated by programs, services, or the
system kernel.
/var/mail: User e-mail-related files. On most systems, /var/mail
is now a simple shortcut to the actual location of the files in /var/
spool/mail.
/var/run: Runtime variable data. Cleared when the system reboots,
this directory provides information about the state of the system since
it was started.
/var/spool: A directory in which files that are expected to be
processed are placed such as e-mails and print jobs.
/var/tmp: A placeholder for temporary files that should not be
deleted when the system reboots.

•

•

•

•

•

•

•

Chapter 1

[25]

Special files and devices
As you may have noticed in the directory structure, Linux operating systems have
a reserved directory for "device files" (/dev). As a matter of fact, this folder contains
elements referred to as nodes, each node representing a different device on the
system. They can be actual hardware devices or pseudo devices; either way, the
purpose of having them listed as part of the filesystem is to facilitate input and output
interactions with programs and services—software developers can access devices as
simply as they would read or write to a file. You will learn that device files are used
in a number of situations and you should sooner or later have a use for them.

Device types
There may be a large variety of devices available in the /dev directory, unfortunately
all of them usually bear an obscure name making it nearly impossible for you to
understand their purpose. Device files are named according to conventions in use in
Linux operating systems. Since there is a potentially infinite amount of devices, we
will only identify the most common ones. A device filename is composed of a prefix,
conventionally defined according to the driver type, and optionally a number
(or letter) if there is more than one device of that type present on the system.

Device file conventional prefixes for the most common types:

cdrom: CD and DVD-ROM drives
fd: Floppy disk drives
hd: IDE-connected devices such as hard drives and CD-ROMs
md: Metadisks and RAID devices such as hard drives
ram: RAM disks
sd: SCSI-connected mass-storage device
usb: USB-connected devices

•
•
•
•
•
•
•

Preparing your Work Environment

[26]

Pseudo devices
Some of the devices listed in the /dev directory do not correspond to actual
hardware devices. Instead, they are here for the sake of providing administrators and
developers with simple input and output access to specific resources. For that reason,
we call them "pseudo devices". Here is a brief description of the most commonly-
used pseudo devices:

Pseudo Device Description
/dev/null Null device

This pseudo device is often nicknamed black hole as its purpose is to
disregard all data that is being sent to it. When written to, it always
reports the write operation as successful. When read from, the device
returns no data.
This is particularly useful if you want to redirect the output of a
program to nowhere; in other words, if you want to make sure a
command executes but outputs no text on the screen.
[alex@example.com ~]$ cat shopping.txt > /dev/null

/dev/random

/dev/urandom

Random number generators
Streams that generate flows of random numbers. /dev/random
generates true random numbers, whereas /dev/urandom provides
pseudorandom numbers. These streams can be written to in order to
feed the pool.
Since they generate binary data, numbers coming from /dev/random
and /dev/urandom cannot be displayed to the console terminal (they
would look like a flow of garbage data). These devices are mostly used
by developers wishing to collect reliable random numbers.

/dev/full Full device
This pseudo device is a stream that returns an error when written to
as it is always considered full. When read from, it returns an infinite
stream of null characters.
The purpose of /dev/full is to provide programmers and
administrators with an operation that will always trigger an error:
[alex@example.com ~]$ echo Hello! > /dev/full

~bash: echo: write error: No space left on device

Chapter 1

[27]

Pseudo Device Description
/dev/zero Zero data

Much like /dev/null, the zero pseudo device always provides
successful return codes when written to. However, when read from,
it outputs an infinite stream of null characters.
There is a variety of cases where reading from /dev/null can prove
useful, such as providing data as input to a program that will generate
a file of a given size or writing to a storage device in order to format it.

Mounting a storage device
As you may have noticed in the previous sections, some of the devices available in
the /dev directory are storage devices, such as hard disk drives, solid-state drives
(SSD), floppies, or CD-ROMs. However, accessing the content that they serve is
not as simple as browsing them with the cd command. Storage devices need to
be mounted to the filesystem. In other words, devices need to be attached to a
fixed directory.

[alex@example.com ~]$ cd /dev/md1

~bash: cd: /dev/md1: is not a directory.

[alex@example.com ~]$ mount /dev/md1 /mnt/alexdrive

[alex@example.com ~]$ cd /mnt/alexdrive

[alex@example.com alexdrive]$ ls

Documents Music Photos Videos boot.ini

The mount command allows you to attach a device (first argument, /dev/md1 in the
previous example) to an existing directory on your system (second argument). Once
the drive is mounted, you are able to access the drive like you would access any
other directory of the filesystem.

In modern Linux distributions, CD-ROMs and other common
devices are automatically mounted by the system.

Preparing your Work Environment

[28]

If you want to obtain information about currently mounted devices, a simple call
to mount does the job—it tells you where each device is mounted, as well as the
filesystem in use:

If you wish to have a drive automatically mounted on system startup, or to simply
set a directory to be used as the default mount point for a device, you will need to
edit the /etc/fstab file logged with administrator privileges. It is a simple text file
and thus can be opened with a text editor such as nano. The file, however, respects a
specific syntax, and making some changes unknowingly could cause a lot of damage
to your system. More details on the fstab syntax can be found online on websites
such as tuxfiles.org.

Eventually, if you need to remove a device while the computer is in use (for instance,
remove a USB storage drive) you should always unmount it first. Unmounting
a device is done using the umount command:
[alex@example.com ~]$ umount /dev/usb1

Note that the first argument of the command may either be the device filename or
the mount point, producing the same result.

Files and inodes
There is a common misconception of the notion of "filesystem" when it comes to
Unix-based operating systems in general. Since those systems respect the FHS, they
use a common directory hierarchy regrouping all files and devices. However, storage
devices may have their independent disk filesystem. A disk filesystem is designed
for the organization of files on a mass storage device (hard disk drives, CD-ROMs,
and so on). Microsoft Windows operating systems favor the FAT, FAT32, and NTFS
specifications; whereas the default and most recommended one for working under
Linux is the EXT3 filesystem. EXT3 comes with a number of characteristics, and it is
essential for administrators to master them in order to fully understand the operating
system they work with.

Chapter 1

[29]

EXT3 filesystem specifications
Unlike Microsoft's antique FAT32 file system that only allows files up to 4 gigabytes,
the size restriction with EXT32 is 16 terabytes (depending on the block size).
Moreover, the maximum storage space that can be used by EXT3 on a device is
32 terabytes, so you should have no trouble using it for a number of years, unless
storage drive capacities suddenly skyrocket. One of the interesting features of EXT3
is that it lays out the data on the storage device in a way that file fragmentation is
kept to a minimum and does not affect system performance. As a result there is no
need to defragment your drives.

Filenames
The EXT3 filesystem accepts filenames up to 256 characters. Filename extensions
are not required, although they are usually present and correspond to the content
offered by the file—a .txt file should contain text, a .mp3 file for music, and so on.
An important fact, however, is that filenames are case-sensitive—you may find, in
the same directory, files named "SHOPPPING.TXT", "Shopping.txt", or "shopping.
txt"; all three are different files.

Inodes
With Linux disk filesystems such as EXT3, a large variety of information is stored
for each and every file. This information is separated both logically and physically
from the actual file data and is stored in a specific structure called inode (index
node). Some of the data contained in the inode indicates to the OS how to retrieve
the contents of the file on the device. But that is not all—to the inode includes file
permissions, user and group ownership, file size, access and modification times,
and much more. Note that it does not contain the actual filename.

Inodes each have an identifier that is unique to the device. This identifier is called
inode number or i-number and can be used in various situations. It can be retrieved
by using the ls -i command:

Preparing your Work Environment

[30]

Atime, ctime, and mtime
Among the metadata contained in an inode, you will find three different timestamps
concerning the file. They are referred to as atime, ctime, and mtime.

Timestamp Description
atime Access time

The date and time the file was last accessed. Every time an application
or service reads from the file using a system call, the file access time is
updated.

mtime Modification time
The date and time the file was last modified. When a change in the file
content occurs, the file modification time is updated.

ctime Change time
The date and time the file was last changed. This timestamp concerns
changes on both the file attributes (in other words, alteration of the file's
inode) and the file data.

Make sure to understand the difference between modification time and change time.
The first one concerns the file data only, whereas the latter tracks modifications
of both file attributes and data. Here are some common examples illustrating all
three mechanisms:

File access time (atime):

 [alex@example.com ~]$ nano shopping.txt

The file is opened in a text editor; its content is accessed. The file access time
is updated.

File change time (ctime):

[alex@example.com ~]$ chmod 0755 script.sh

The file permissions are updated (chmod command detailed in a later section);
consequently, the inode is altered and the file change time updated.

File modification time (mtime):

[alex@example.com ~]$ echo "- a pair of socks" >> shopping.txt

The file data is modified; as a result, both file modification time and file change time
are updated.

Chapter 1

[31]

As you may have noticed, there is no creation time recorded in the inode, so it is
impossible to find out when a file was first created. It remains unclear as to why
such an important element was left out. Either way if you want to know all the
timestamps associated with a file, you may use the stat command:

[alex@example.com ~]$ stat shopping.txt

Important information for SSD (Solid-State Drive) users
It is proven that enabling the access time feature of the filesystem can
cause dramatic performance drops on your drive. Every time a file is
read, its inode needs to be updated. As a result, frequent write operations
are performed and that is obviously a major problem when using this
kind of storage device. Be reassured that a simple solution exists for this
problem as you have the possibility to completely disable file access time
updates. This can be done via one of the options of the mount command,
noatime. The option can be specified in the /etc/fstab file if you
want to enable it permanently. More documentation can be found online
with a simple noatime ssd search. Credit goes to Kevin Burton for this
important finding.

Symbolic and hard links
Symbolic links in Linux are the equivalent of shortcuts in Microsoft Windows
operating systems. There are a number of differences that need to be explained
though, the most important one being that read or write accesses to the file
performed by applications actually affect the target of the link and not the link
itself. However, commands such as cp or rm affect the link, not its target.

Creating a link is done via the ln -s command. Here is an example that will help
you understand the particularities of symbolic links:

[alex@example.com ~]$ ln –s shoppinglist.txt link_to_list

[alex@example.com ~]$ ls

link_to_list photo.jpg photo2.jpg shoppinglist.txt

[alex@example.com ~]$ cat link_to_list

- toothpaste
- a pair of socks

[alex@example.com ~]$ rm link_to_list

[alex@example.com ~]$ ls

photo.jpg photo2.jpg shoppinglist.txt

Preparing your Work Environment

[32]

As you can see, reading the file content can be done via the symbolic link. If
you delete the link, the target file is not affected; the same can be said for a
copy operation (the link itself would be copied, but not the target file).

Another difference that makes symbolic links stand apart from Microsoft Windows
shortcuts is that they can be connected to files using relative paths. This becomes
particularly useful for embedding links within archives—deploying a shortcut using
an absolute path would make no sense, as users may extract files to any location on
the system.

Finally, Microsoft Windows shortcuts have the ability to include additional
metadata. This allows the user to select an icon, assign a keyboard shortcut, and
more. However, symbolic links are simple connections to the target file path, and
as such, they do not offer the same possibilities.

Another type of link that is not available under Windows is hard links. They function
a little differently, in the extent that they represent actual connections to file data.
Two or more links may connect to the same data on the storage device; when one
of those links is deleted, the data itself is unaffected and the other links still point
to the data. Only when the last link gets deleted will the data be removed from the
storage device.

To illustrate this example, let's create a hard link to that shopping list of ours—same
command, but without the -s switch.

[alex@example.com ~]$ ln shoppinglist.txt hard_link_to_list

If you decide to delete shoppinglist.txt, hard_link_to_list will remain here
and the data it points to is still available. Additionally, the newly created link is
considered as an actual file by some commands such as ls. If you run ls to calculate
the total size occupied by files in this directory, you will notice that link file sizes add
up. If the shopping list file itself takes up 5 kilobytes of storage space, the total size
reported by ls for the directory will be 10 kilobytes—five for the shopping list file
itself, and five for its link. However, some tools such as du (for Disk Usage, evoked
further below) are able to dig deeper and report the actual occupied storage.

File manipulation
The next step towards your discovery of the Linux shell is to learn how to
manipulate files with a command-line interface. There are many operations that
you can perform with simple tools—editing text, compressing files and folders,
modifying file attributes, and so on, but let's begin with a more elementary
topic—displaying a file.

Chapter 1

[33]

Reading a file
Before all, you should understand that we are working with a terminal here, in other
words, there is no possibility to work with graphical data; only text can be displayed
on the screen. In that extent, this section deals with text files only; no binary files
such as graphics, videos, or any other form of binary data may be displayed on
the screen.

The most used and simplest way to display a text file on the terminal is to use the
cat command, as you may have noticed in examples from previous sections.

Although the cat command can be used to perform more complex operations
(such as concatenation from multiple input sources), its simplest form consists of
using the syntax—cat filename. The content of filename will be displayed to
the standard output—in other words, the terminal screen.

If you reuse the grep mechanism that we approached in the process management
section, you can achieve interesting results for filtering the output:

[alex@example.com ~]$ cat /etc/fstab | grep sys

/dev/sys /sys /sysfs defaults 0 0

As you can see, piping the output to grep allows you to specify a text string; all lines
that do not contain the specified string will not be displayed.

Preparing your Work Environment

[34]

You can pipe the output to other programs as well, in order to have your text
displayed in a different manner. For example, if your file happens to be a large
text document, it will probably not fit in the terminal window. The solution to
this problem is to pipe the output to more:

More allows you to control the document flow—it displays as many lines of text as
your terminal can contain and waits until you push the Return key to display more.
Pressing Q or Ctrl+C will let you return to the prompt.

Even better—the less command allows you to scroll up and down in the document
flow. It is used as a standalone program, no need to pipe its output from cat:
[alex@example.com ~]$ less /etc/php.ini

Editing a file
If you are a long time Microsoft Windows or Mac OS user, you might be surprised
to learn that there are actually advanced command-line text editors. Several of them
come with most Linux distributions—vim, emacs, nano, and so on. The question here
is—which one should you use? Since you are reading this, the best choice for you
should be nano, which has already been mentioned in previous sections.

Nano is a user-friendly text editor that comes with a lot of interesting features such
as syntax highlighting, text search and replace, and keyboard shortcuts. Unlike its
competitors that usually require a lengthy learning process, nano's interface is intuitive.

Chapter 1

[35]

Since there is no mouse cursor, the interface is controlled via keyboard shortcuts;
available operations are displayed at the bottom in the command bar. Once you
finished editing your document, save (Ctrl+O) and exit (Ctrl+X). Note that the list of
available shortcuts is displayed in the bottom bar, the ^ character indicating a Control
key combination (^G stands for Ctrl+G, ^O stands for Ctrl+O, and so on).

There are other ways to write in a file though, using commands that do not require
any form of interface at all. One of the possible ways is to use the mechanism of
redirection. This allows you to specify a location for the input and output streams
interacting with a shell command. In other words, by default, the text shows up on
the screen; but you do have the option to specify other locations. The most common
usage for redirections is writing the output of a command to a file. Here is an
example demonstrating the syntax:

[alex@example.com ~]$ ls /etc > files_in_etc.txt

The command executes normally but does not output any text to the screen; instead,
the text is saved to the file you specified. The > character allows you to write the text
to the file, and if the specified file already exists on the system, the original is deleted
and replaced. In this example, we list the files located in the /etc directory and
save the results in a text file. Using >>, you have the possibility to append the output
to an eventual existing file (if the file does not exist, it is created):

[alex@example.com ~]$ ls /etc/init.d >> files_in_etc.txt

The list of files found in /etc/init.d is appended to the text file. There is much
more you can do with redirections including replacing standard input, but covering
it all would be unnecessary to your understanding of Nginx.

Finally, the touch command allows you to update the access and modification date
of a file without having to actually edit its content.

[alex@example.com ~]$ touch shopping.txt

Compression and archiving
Although the ZIP and RAR formats are popular and wide-spread across the Internet,
they are both proprietary software technologies. As a result, they are not mainstream
choices in the Linux world; other formats such as Gzip and bzip2 are favored. Of
course, solutions exist for both ZIP and RAR under Linux; the point being that most
projects and downloadable archives that you will find will come as .tar.gz or
.tar.bz2 files.

Preparing your Work Environment

[36]

You read correctly, there are two extensions—tar, and gz or bz2. The first part
indicates the method with which files have been gathered together and the second
part shows the algorithm used to compress the result. Tar (for Tape archive) is a
tool that concatenates multiple files into a single one called tarball. It also gives you
the option to compress the tarball once it is created, offering various compression
alternatives. The tool is available under most distributions, though in some of the
most minimal ones, you may have to install it manually with your system package
manager (read the section further below).

The syntax for creating a tarball using Gzip and bz2 compressions respectively is
as follows:

tar czvf archive.tar.gz [file1 file2…]

tar cjvf archive.tar.bz2 [file1 file2…]

Conventionally, Linux users do not archive multiple files together; instead they first
gather files into a unique folder and then archive the folder. As a result, when users
extract the archive, only a single item is appended to their directory listing. Imagine
extracting a ZIP file onto your Windows desktop. Would you rather have all files
appearing individually on your desktop, or collected neatly in a single directory?
Either way, the syntax remains the same whether you want to archive files
or directories.

Tar can, of course, perform the opposite operation—extracting files. However, you
need to enter a slightly different command depending on the compression algorithm
at use:

tar xzvf archive.tar.gz

tar xjvf archive.tar.bz2

Note that tar.gz files are also found as .tgz, and tar.bz2 files as .tbz. Other
compression formats handled by tar are: LZMA (.tar.lzma) and compress (.tar.z), but
they are now obsolete and there is a good chance you will never have to use them.

If you stumble upon RAR or ZIP files, you may still extract the files they contain by
downloading and installing the unrar or unzip tools for Linux. The syntax that they
offer is rather simple:

unrar x file.rar

unzip file.zip

Chapter 1

[37]

System administration tools
Since you are going to be installing and configuring Nginx, we assume that you
are the administrator of your server. Setting up such an important component on
your system requires good understanding of the administration concepts and tools
available with your Linux operating system.

Running a command as Superuser
As we discussed in the Superuser Account section, it is important to respect the
principle of least privilege. In that extent, you should log in to your system with the
root account as rarely as possible. When you do so, you put your system at risk in
many ways. Firstly, if your network communications were to be intercepted, the
potential damage caused by a computer hacker would be greatly reduced if they
intercepted a simple user account. Secondly, everyone makes typos. What if you
accidentally type rm –rf / root/file.x, thus erasing your entire / directory,
instead of rm –rf /root/file.x? What if you run an application that could cause
damage to your filesystem? Being logged in as a regular user minimizes the risks
in all situations.

This raises an obvious question—if you are always logged in as a simple user, how
do you perform administrative level tasks or tasks that specifically require root
privileges? There are two possible answers to this issue—su and sudo.

Su command
Su, short for substitute user, is a command that allows you to start a session with the
specified user account. If no user account is specified, the root account is used. You
need to specify the password of the account you want to use (unless you are already
logged in as root and want to take over a user account).

[alex@example.com ~]$ su - root

Password :

[root@example.com ~]# nano /etc/fstab

From that point on, you are logged in as root. You can run commands and
administrative tasks. When you are finished, type exit to return to your
previous session.

[root@example.com ~]# exit

exit

[alex@example.com ~]$

Preparing your Work Environment

[38]

You may have noticed the use of a hyphen between su and the username—it
indicates that you are actually creating a shell session for the user, inheriting all of
its personal settings and environment variables. If you omit the hyphen, you will
remain in the current directory and will conserve all settings of the user account
you were originally logged in with.

Sudo command
Although its name is closely similar to su, sudo works in a totally different manner.
Instead of creating a complete session, it's only used to execute a command with the
specified account, by default, the Superuser account. Example syntax:

sudo nano /etc/fstab

There is a major difference in the way su and sudo function; when executing a
command with sudo, you are prompted for your own account password. I can
already hear you scream—how come I can gain root privileges without the root
password? The answer lies within the /etc/sudoers configuration file. This file
specifies the list of users that are allowed to use sudo, and more importantly, the
commands that are allowed to be executed. Moreover, all actions are recorded
into a log including failed sudo login attempts.

By default, a user does not belong to the sudoers. Consequently, you first have to log
in as root (or use sudo) and add the specified user to the /etc/sudoers file. Since
this configuration file respects a strict syntax, a tool was specifically designed for
it—visudo. Deriving from the well-known vi text editor, visudo checks the syntax
of the file upon saving it, and makes sure that there are no simultaneous edits.

Visudo - and by extension, vi - works in two modes—command mode and insert
mode. The insert mode lets you to edit the document directly. Press the Esc key to
switch to command mode, which allows you to enter a command to control the
program itself. When you first start visudo, press I to switch to insert mode and
then make the necessary changes, for instance, adding a new sudo user at the end
of the file:

alex ALL=(ALL) ALL

This grants the alex user all permissions on the commands defined in the sudoers
file. Once you finished editing, press Esc to enter command mode. Enter the
following commands: :w to save your changes and :q to exit. If you wish to exit
without saving, type the :q! command. For more information about vi or visudo,
use the man command (or if you are familiar with the jargon RTFM!).

Chapter 1

[39]

System verification and maintenance
Now that you have all the pre-requisites for administering your server, it's time
for you to perform actual administrative tasks. The first set of tasks that we will
approach is related to system resources. Before proceeding to system changes such
as software package installs (covered in the next section), you should always check
that your system is in a coherent state and that you have enough disk and memory
space available.

Disk Free
The df utility allows you to check the available storage space on your mounted devices.

The –h option allows you to display sizes in a human-readable format. You should often
check your available storage space: when you happen to run out of space, random
behavior may occur in your applications (that is, unintelligible error messages).

Disk Usage
If you notice that your disk is full and do not understand why, you might find du
to be particularly useful. It allows you to display the space occupied by each folder
in a given directory.

Preparing your Work Environment

[40]

Again here, the –h switch specifies that the tool should display human-readable
size statistics. If the --max-depth option is not used, du will browse your filesystem
recursively from the current folder. You can now easily track the folders that take
up too much storage space on your system.

Free memory
The free utility displays the current system memory usage. It displays both physical
and swap memory statistics as well as buffers used by the system. Use the –m switch
for displaying numbers in megabytes or -k in kilobytes.

Software packages
Basic command-line usage? Check. Users and groups management? Check. Enough
memory left on your system and space on your storage device? Check! It looks
like you are ready to install new software packages and components. There are
basically three ways to proceed, and we will study them from the easiest to the
most complex one.

Package managers
A package manager is a tool that facilitates the management of software packages
on your system by letting you download and install them, update them, uninstall
them, and more. There are many different packaging systems in the Linux world,
which are often associated with particular distributions—RPM for Red Hat-based
distributions, APT for Debian-like distributions, simple TGZ packages for
Slackware, and so on. We will only be covering the first two as they are the
most commonly-used ones.

For systems using RPM, yum is by far the most popular package manager. As for
APT, the apt-get tool comes with most distributions. Although their syntax differs
slightly, both programs basically have the same features—given a package name,
they will download software online and install it automatically.

The following example shows you how to install PHP on your computer using yum:

[root@example.com ~]# yum install php

Using apt-get:

[root@example.com ~]# apt-get install php

Chapter 1

[41]

All required components such as libraries or other software are downloaded and
installed first and then the requested software package is processed. There is nothing
else that you have to do except to confirm the operation. You may also use the
update or remove operations with either tool.

Downloading and installing packages manually
Be aware that there are only a limited number of software packages that you will
find with these manager tools, as they are based on lists called repositories. The
repositories that come with Linux distributions are often strictly regulated, and
software developers cannot always use them to distribute their work. As a result,
there are many applications that you will not find on the default repositories (you
can use custom repositories though), which implies that you cannot use package
managers to install them for you.

When you face such a situation, there are two options remaining—finding a package
online or building from source, as covered next. This first solution generally
consists of visiting the official website of the software you want to install, then
finding the RPM release offered in the download section (or the DEB package for
Debian systems).

Once you finished downloading the RPM file, for example, using the wget download
manager, use the rpm –ivh command to install the package:

[alex@example.com ~]$ wget ftp://example2.com/mysqlclient.rpm

(Download successful)

[alex@example.com ~]$ sudo rpm –ivh mysqlclient.rpm

Use the dpkg –i command for DEB packages:

[alex@example.com ~]$ wget ftp://example2.com/mysqlclient.deb

(Download successful)

[alex@example.com ~]$ sudo dpkg –i mysqlclient.deb

Note that this method does not process dependencies. The application might not
install correctly because a required library was not found on the system, in which
case, you would have to install it yourself.

Preparing your Work Environment

[42]

Building from source
The last method, which is valid regardless of the distribution you are using, is to
download the application source code and compile it yourself. This method has
its own advantages—you usually have the possibility to configure a great variety
of options, and you may even make some edits to the code if you are a developer
yourself. On the other hand, it requires many development packages to be installed
(compilers, libraries, and so on) and compiling might fail for obscure reasons—missing
components, invalid version for one of the required libraries, and so on.

The general process is to download a .tar.gz archive containing the source code,
extract the files, enter the directory, and run three commands—configure, make,
and make install. In the following example, we download the latest version of
nano and install it:

[alex@example.com ~]$ wget http://www.nano-editor.org/dist/v2.0/nano-
2.0.9.tar.gz

(Download successful)

[alex@example.com ~]$ tar zxvf nano-2.0.9.tar.gz

(Extraction successful)

[alex@example.com ~]$ cd nano-2.0.9

[alex@example.com nano-2.0.9]$./configure

(Configuration complete)

[alex@example.com nano-2.0.9]$ make

(Build successful)

[alex@example.com nano-2.0.9]$ sudo make install

(Install successful)

Depending on the software install process, the output binaries may be copied to the
/usr/bin folder (or another folder found in the PATH environment variable), but
you will sometimes have to do that by yourself.

Some applications require more specific compilation commands and procedures,
which are described in the usually included readme file. Under no circumstance
should you omit to consult the readme file before building an application.

Chapter 1

[43]

Files and permissions
Unix-based operating systems use a complex permission mechanism to regulate
access to files and directories. You should also know that directories are actually
regarded as special files; they work in the same way when it comes to permissions.

Understanding file permissions
There are three types of access—reading from a file, writing to a file, and executing
a file. Each of these accesses can be defined for the original file owner, the file group,
and all other users. Permissions on files can be consulted with the ls –l command:

[alex@example.com photos]$ ls –l

total 2

drwxrwxrwx 2 alex alex 4096 oct 31 11:35 Holidays in France

-rw-rw-r-- 1 alex alex 8 oct 31 09:21 photo2.jpg

The first column provides a character representation of the file permissions. It is
composed of ten characters:

First character: File type (-: file, d: directory, l: link; other types exist)
Second to fourth characters: Read, write, and execute permissions for
the owner
Fifth to seventh characters: Read, write, and execute permissions for
the group
Eighth to tenth characters: Read, write, and execute permissions for
other users

Directory permissions
On top of that, directories have specific attributes—sticky bit and set group ID. The
first one ensures that files placed in that directory can only be deleted by their owner
(and the root user, naturally). The second one makes it so that new files created in
that directory conserve the group ID of the directory.

Permissions on a directory differ from regular file permissions:

The x bit specifies whether or not the folder can be entered (such as using cd)
The r bit allows the directory content to be listed (such as using ls)
The w bit specifies whether or not new files can be written in the folder
(and existing files moved to the folder)

•

•

•

•

•

•

•

Preparing your Work Environment

[44]

Octal representation
Surely you have already read it somewhere: instructions telling you to change
a folder's permission to 0755 or even 777. The given number is actually an octal
representation of the file or directory permissions. This format is composed of three
or four digits from 0 to 7, where 0 means no permissions and 7 all permissions.

The first digit is optional and indicates special attributes (such as sticky bit); often
unspecified or set to 0

The second digit indicates permissions for the file owner

The third digit indicates permissions for the file group

The fourth digit indicates permissions for other users

Digit values from 0 to 7 are calculated using the following method: each attribute has
a weight; all attribute weights added up together forming the total value. The weights
are: 0 for no attribute, 1 for "r", 2 for "w", and 4 for "x". Consequently, each attribute
variation has its own octal representation:

Permissions (r, x, w) Weight Octal representation
- - - 0 + 0 + 0 0
r - - 1 + 0 + 0 1
- w - 0 + 2 + 0 2
r w - 1 + 2 + 0 3
- - x 0 + 0 + 4 4
r - x 1 + 0 + 4 5
- w x 0 + 2 + 4 6
r w x 1 + 2 + 4 7

Full permissions for everyone (file owner, file group, and other users) thus translate
to rwxrwxrwx, 777 with the octal representation.

Changing permissions
Users may change permissions on their own files only, except for the almighty
Superuser. The process is done using a well-known tool—chmod. There are two
main syntax variations—you may either specify an octal value for a complete reset
of the permissions or request a change on a specific attribute.

Using an octal value:

[alex@example.com ~]$ chmod 777 photo2.jpg

Chapter 1

[45]

The first argument is the octal value, followed by the file or directory name.

The second syntax is more complex:

chmod who+/-what filename

The first argument (who, + / -, or what) is composed of three elements:

Who: A combination of "u" (user/owner), "g" (group), "o" (others), and "a"
(all). If this part is omitted, the new attributes will be applied to all.
+ / -: Use "+" if you want to grant those permissions or "– " to take
them away.
What: A combination of "r" (read), "w" (write), and "x" (execute).

Here are a couple of possible examples for this syntax:

chmod +x script.sh: Renders a script executable.

chmod go-rwx photo.jpg: Nobody is allowed to access the photo other than
the owner.

chmod a-w shopping.txt: Nobody can edit the text file, not even the owner.

Note that the –R switch applies permission changes recursively on a folder:

chmod –R g+rx photos: The "photos" folder can be accessed by all users in the
group; all its photos can be viewed.

Changing ownership and group
The chown and chgrp commands allow you to respectively change a file's owner and
group. While the first one can only be executed by the Superuser for obvious security
reasons, any user may change a file's group, provided they are the owner.

The chown tool can be used with the following syntax:

chown user filename

In this case, user is the new owner of the specified file. As for chgrp:

chgrp group filename

Again here, group is the name of the new group for the specified file. Alternatively,
chown supports the following syntax:

chown user:group filename

•

•

•

Preparing your Work Environment

[46]

Similar to chmod, these commands accept the –R switch allowing you to apply
changes recursively. Here are some possible uses for either tool:

chown alex photo.jpg: Executed as root; the new owner of "photo.jpg" is the
user "alex".

chown –R root photos: Executed as root; the "photos" directory and all the files
it contains now belong to the root user.

chown alex: Students shopping.txt: changes both the file user and group.

chgrp guests shopping.txt: The group for the "shopping.txt" file is changed
to "guests".

chgrp –R applications /etc/apps: The "applications" group now owns the
/etc/apps folder.

Summary
This last section on file permissions marks the end of this introductory chapter,
summarizing commands and tasks that a web server administrator executes on a
regular basis. Using the shell is mostly about remembering command names and
arguments. It becomes a lot more efficient as you get used to it. After a while, as
you get back to Windows, you will even sometimes find yourself opening up a
command-line terminal to perform simple tasks!

Anyway, you have all the ingredients you need to start with the next
step—downloading and installing the Nginx web server application. By the end of
next chapter, you will have a working setup and should be able to load the default
page of your server.

Downloading and Installing
Nginx

In this chapter, we will proceed with the necessary steps towards establishing a
functional setup of Nginx. This moment is crucial for the smooth functioning of your
web server—there are some required libraries and tools for installing the web server,
some parameters that you will have to decide upon when compiling the binaries,
and some extra configuration to do on your system.

This chapter covers:

Downloading and installing the prerequisites for compiling the
Nginx binaries
Downloading a suitable version of the Nginx source code
Configuring Nginx compile time options
Controlling the application with an init script
Configuring the system to launch Nginx automatically on startup

Setting up the prerequisites
As you can see, we have chosen to download the source code of the application and
compile it manually, as opposed to installing it using a package manager such as
Yum, Aptitude, or Yast. There are two reasons behind this choice—first, the package
may not be available in the enabled repositories of your Linux distribution. On top
of that, the rare repositories that offer to download and install Nginx automatically
mostly contain outdated versions. More importantly, there is the fact that we need
to configure a variety of significant compile time options. As a result of this choice,
your system will require some tools and libraries for the compilation process.

•

•

•

•

•

Downloading and Installing Nginx

[48]

Depending on the optional modules that you select at compile time, you will perhaps
need different prerequisites. We will guide you through the process of installing the
most common one such as GCC, PCRE, zlib, and OpenSSL.

GCC — GNU Compiler Collection
Nginx is a program written in C, so you will first need to install a compiler tool such
as the GNU Compiler Collection (GCC) on your system. GCC usually comes with
most distributions, but if, for some reason, you do not already have it, this step will
be required.

GCC is a collection of free open source compilers for various
languages—C, C++, Java, Ada, FORTRAN, and so on. It is the most
commonly-used compiler suite in Linux world, and Windows
versions are also available. A vast amount of processors are supported
such as x86, AMD64, PowerPC, ARM, MIPS, and more.

First, make sure it isn't already installed on your system:

[alex@example.com ~]$ gcc

If you get the following output, GCC is correctly installed on your system and you
can skip to the next section:

gcc: no input files

If you receive the following message, you will have to proceed with the installation
of the compiler:
~bash: gcc: command not found

GCC can be installed using the default repositories of your package manager.
Depending on your distribution, the package manager will vary—yum for Red
Hat-based distribution, apt for Debian and Ubuntu, yast for SuSE Linux, and
so on. Here is the typical way to proceed with the download and installation of
the GCC package:

[root@example.com ~]# yum install gcc

If you use apt-get:

[root@example.com ~]# apt-get install gcc

If you use another package manager with a different syntax, you will probably
find the documentation with the man utility. Either way, your package manager
should be able to download and install GCC correctly, after having solved the
dependencies automatically.

Chapter 2

[49]

PCRE library
The Perl Compatible Regular Expression (PCRE) library is required for compiling
Nginx. The Rewrite and HTTP Core modules of Nginx use PCRE for the syntax of
their regular expressions, as we will discover in later chapters. You will need to
install two packages—pcre and pcre-devel. The first one provides the compiled
version of the library, whereas the second one provides development headers and
source for compiling projects, which are required in our case.

Here are example commands that you can run in order to install both the packages.

Using yum:

[root@example.com ~]# yum install pcre pcre-devel

Or install all PCRE-related packages:

[root@example.com ~]# yum install pcre*

If you use apt-get:

[root@example.com ~]# apt-get install libpcre3 libpcre3-dev

If these packages are already installed on your system, you will receive a message
saying something like Nothing to do, in other words, the package manager did not
install or update any component.

Downloading and Installing Nginx

[50]

zlib library
The zlib library provides developers with compression algorithms. It is required
for the use of gzip compression in various modules of Nginx. Again, you can
use your package manager to install this component as it is part of the default
repositories. Similar to PCRE, you will need both the library and its source—zlib
and zlib-devel.

Using yum:

[root@example.com ~]# yum install zlib zlib-devel

Using apt-get:

[root@example.com ~]# apt-get install zlib1g zlib1g-dev

These packages install quickly and have no known dependency issues.

OpenSSL
The OpenSSL project is a collaborative effort to develop a robust, commercial-grade,
full-featured, and open source toolkit implementing the Secure Sockets Layer (SSL
v2/v3) and Transport Layer Security (TLS v1) protocols as well as a full-strength
general purpose cryptography library. The project is managed by a worldwide
community of volunteers that use the Internet to communicate, plan, and develop
the OpenSSL toolkit and its related documentation—http://www.openssl.org

The OpenSSL library will be used by Nginx to serve secure web pages. We thus
need to install the library and its development package. The process remains the
same here—you install openssl and openssl-devel:

 [root@example.com ~]# yum install openssl openssl-devel

Using apt-get:

[root@example.com ~]# apt-get install openssl openssl-dev

Please be aware of the laws and regulations in your own country.
Some countries do not allow usage of strong cryptography. The author,
publisher, and developers of the OpenSSL and Nginx projects will not
be held liable for any violations or law infringements on your part.

Now that you have installed all the prerequisites, you are ready to download and
compile the Nginx source code.

Chapter 2

[51]

Downloading Nginx
This approach of the download process will lead us to discover the various resources
at the disposal of server administrators—websites, communities, and wikis all
relating to Nginx. We will also quickly discuss the different version branches
available to you, and eventually select the most appropriate one for your setup.

Websites and resources
Although Nginx is a relatively new and growing project, there are already a good
number of resources available on the World Wide Web (WWW) and an active
community of administrators and developers.

The official website, which is at www.nginx.net, is rather simple and does not
provide much information or documentation, other than links for downloading
the latest versions. On the contrary, you will find a lot of interesting documentation
and examples on the official wiki—wiki.nginx.org.

Downloading and Installing Nginx

[52]

The wiki provides a large variety of documentation and configuration examples—it
may prove very useful to you in many situations. If you have specific questions
though, you might as well use the forums—forum.nginx.org. An active community
of users will answer your questions in no time. Additionally, the Nginx mailing list,
which is relayed on the Nginx forum, will also prove to be an excellent resource
for any question you may have. And if you need direct assistance, there is always a
bunch of regulars helping each other out on the IRC channel #Nginx on Freenode.

Another interesting source of information—the blogosphere. A simple query on your
favorite search engine should return a good amount of blog articles documenting
Nginx, its configuration, and modules.

It's now time to head over to the official website and get started with downloading
the source code for compiling and installing Nginx. Before you do so, let us have a
quick summary of the available versions and the features that come with them.

Version branches
Igor Sysoev, a talented Russian developer and server administrator, initiated
this open source project early in 2002. Between the first release in 2004 and the
current version, which now serves over 6.55 percent of websites on the Internet,
steady progress was made. The features are plenty and render the application
both powerful and flexible at the same time.

Chapter 2

[53]

There are currently three version branches on the project:

Stable version: This version is usually recommended, as it is approved
by both developers and users, but is usually a little behind the development
version above. The current latest stable version is 0.7.66, released on
June 07, 2010.
Development version: This is the the latest version available for download.
Although it is generally solid enough to be installed on production
servers, you may run into the occasional bug. As such, the stable version is
recommended, even though you do not get to use the latest features. The
current latest development version is 0.8.40, released on June 07, 2010.
Legacy version: If for some reason you are interested in looking at the older
versions, you will find two of them. There's a legacy version and a legacy
stable version, respectively coming as 0.5.38 and 0.6.39 releases.

A recurrent question regarding development versions is "are they stable enough
to be used on production servers?" Cliff Wells, founder and maintainer of the
nginx.org wiki website and community, believes so—"I generally use and
recommend the latest development version. It's only bit me once!". Early adopters
rarely report critical problems. It is up to you to select the version you will be
using on your server, knowing that the instructions given in this book should be
valid regardless of the release as the Nginx developers have decided to maintain
backwards compatibility in new versions. You can find more information on version
changes, new additions, and bug fixes in the dedicated change log page on the
official website.

Features
As of the stable version 0.7.66, Nginx offers an impressive variety of features,
which, contrary to what you may think, are not all related to serving HTTP content.
Here is a list of the main features of the web branch, quoted from the official
website nginx.net:

Handling of static files, index files, and autoindexing; open file
descriptor cache.
Accelerated reverse proxying with caching; simple load balancing and
fault tolerance.
Accelerated support with caching of remote FastCGI servers; simple load
balancing and fault tolerance.

•

•

•

•

•

•

Downloading and Installing Nginx

[54]

Modular architecture. Filters include Gzipping, byte ranges, chunked
responses, XSLT, SSI, and image resizing filter. Multiple SSI inclusions within
a single page can be processed in parallel if they are handled by FastCGI or
proxied servers.
SSL and TLS SNI support (TLS with Server Name Indication (SNI), required
for using TLS on a server doing virtual hosting).

Nginx can also be used as a mail proxy server, although this aspect is not closely
documented in the book:

User redirection to IMAP/POP3 backend using an external HTTP
authentication server
User authentication using an external HTTP authentication server and
connection redirection to an internal SMTP backend
Authentication methods:

POP3: USER/PASS, APOP, AUTH LOGIN/PLAIN/
CRAM-MD5
IMAP: LOGIN, AUTH LOGIN/PLAIN/CRAM-MD5
SMTP: AUTH LOGIN/PLAIN/CRAM-MD5

SSL support
STARTTLS and STLS support

Nginx is compatible with many computer architectures and operating systems like
Windows, Linux, Mac OS, FreeBSD, and Solaris. The application runs fine on 32 and
64 bit architectures.

Downloading and extracting
Once you have made your choice as to which version you will be using, head over
to nginx.net and find the URL of the file you wish to download. Position yourself
in your home directory, which will contain the source code to be compiled, and
download the file using wget.

[alex@example.com ~]$ mkdir src && cd src

[alex@example.com src]$ wget
http://nginx.org/download/nginx-0.7.66.tar.gz

We will be using version 0.7.66, the latest stable version as of June 07, 2010. Once
downloaded, extract the archive contents in the current folder:

[alex@example.com src]$ tar zxf nginx-0.7.66.tar.gz

•

•

•

•

•

°

°

°

•

•

Chapter 2

[55]

You have successfully downloaded and extracted Nginx. Now, the next step will
be to configure the compilation process in order to obtain a binary that perfectly
fits your operating system.

Configure options
There are usually three steps when building an application from source—the
configuration, the compilation, and the installation. The configuration step allows
you to select a number of options that will not be editable after the program is built,
as it has a direct impact on the project binaries. Consequently, it is a very important
stage that you need to follow carefully if you want to avoid surprises later, such as
the lack of a specific module or files being located in a random folder.

The process consists of appending certain switches to the configure script that
come with the source code. We will discover the three types of switches that you
can activate; but let us first study the easiest way to proceed.

The easy way
If, for some reason, you do not want to bother with the configuration step, such as,
for testing purposes or simply because you will be recompiling the application in the
future, you may simply use the configure command with no switches. Execute the
following three commands to build and install a working version of Nginx:

[alex@example.com nginx-0.7.66]# ./configure

Running this command should initiate a long procedure of verifications to ensure
that your system contains all the necessary components. If the configuration process
fails, please make sure to check the prerequisites section again, as it is the most
common cause of errors. For information about why the command failed, you may
also refer to the objs/autoconf.err file, which provides a more detailed report.

[alex@example.com nginx-0.7.66]# make

The make command will compile the application; this step should not cause any
errors as long as the configuration went fine.

[root@example.com nginx-0.7.66]# make install

This last step will copy the compiled files as well as other resources to the
installation directory, by default, /usr/local/nginx. You may need to be
logged in as root to perform this operation depending on permissions granted
to the /usr/local directory.

Downloading and Installing Nginx

[56]

Again, if you build the application without configuring it, you take the risk to miss
out on a lot of features, such as the optional modules and others that we are about
to discover.

Path options
When running the configure command, you have the possibility to enable some
switches that let you specify directory or file paths for a variety of elements. Please
note that the options offered by the configuration switches may change according
to the version you downloaded. The options listed below are valid with the stable
version, release 0.7.66. If you use another version, run the configure --help
command to list the available switches for your setup.

Using a switch typically consists of appending some text to the command line. For
instance, using the --conf-path switch:

[alex@example.com nginx-0.7.66]# ./configure --conf-path=/etc/nginx/
nginx.conf

Here is an exhaustive list of the configuration switches for configuring paths:

Switch Usage Default Value
--prefix=… The base folder in which

Nginx will be installed.
/usr/local/nginx.
Note: If you configure other
switches using relative paths, they
will connect to the base folder.
For example: Specifying --conf-
path=conf/nginx.conf will
result in your configuration file
being found at /usr/local/
nginx/conf/nginx.conf.

--sbin-path=… The path where the nginx
binary file should be installed.

<prefix>/sbin/nginx.

--conf-path=… The path of the main
configuration file.

<prefix>/conf/nginx.conf.

--error-log-
path=…

The location of your error
log. Error logs can be
configured very accurately
in the configuration files.
This path only applies in case
you do not specify any error
logging directive in your
configuration.

<prefix>/logs/error.log.

Chapter 2

[57]

Switch Usage Default Value
--pid-path=… The path of the Nginx pid

file. You can specify the pid
file path in the configuration
file; if it's not the case, the
value you specify for this
switch will be used.

<prefix>/logs/nginx.pid.

Note: The pid file is a simple
text file containing the process
identifier. It is placed in a well-
defined location so that other
applications can easily find the pid
of a running program.

--lock-path=… The location of the lock file.
Again, it can be specified in
the configuration file, but if it
isn't, this value will be used.

<prefix>/logs/nginx.lock.

Note: The lock file allows other
applications to determine whether
or not the program is running.
In the case of Nginx, it is used to
make sure that the process is not
started twice.

--with-perl_
modules_path=…

Defines the path to the Perl
modules. This switch must
be defined if you want to
include additional Perl
modules.

--with-perl=… Path to the Perl binary file;
used for executing Perl
scripts. This path must be
set if you want to allow
execution of Perl scripts.

--http-log-
path=…

Defines the location of the
access logs. This path is
used only if the access log
directive is unspecified in the
configuration files.

<prefix>/logs/access.log.

--http-client-
body-temp-
path=…

Directory used for storing
temporary files generated by
client requests.

<prefix>/client_body_temp.

--http-proxy-
temp-path=…

Location of the temporary
files used by the proxy.

<prefix>/proxy_temp.

--http-fastcgi-
temp-path=…

Location of the temporary
files used by the HTTP
FastCGI module.

<prefix>/fastcgi_temp.

--builddir=… Location of the application
build.

Downloading and Installing Nginx

[58]

Prerequisites options
Prerequisites come in the form of libraries and binaries. You should by now have
them all installed on your system. Yet, even though they are present on your
system, there may be occasions where the configuration script cannot locate them.
The reasons might be diverse, for example, if they were installed in nonstandard
directories. In order to fix this problem, you are given the option to specify the path
of prerequisites using the following switches. Miscellaneous prerequisite-related
options are grouped together.

Compiler options
--with-cc=… Specifies an alternate location for the C compiler.
--with-cpp=… Specifies an alternate location for the C preprocessor.
--with-cc-opt=… Defines additional options to be passed to the C compiler

command line.
--with-ld-opt=… Defines additional options to be passed to the C linker

command line.
--with-cpu-opt=… Specifies a different target processor architecture, among

the following values: pentium, pentiumpro, pentium3,
pentium4, athlon, opteron, sparc32, sparc64,
and ppc64.

PCRE options
--without-pcre Disables usage of the PCRE library. This setting is not

recommended, as it will remove support for regular
expressions, consequently disabling the Rewrite module.

--with-pcre Forces usage of the PCRE library.
--with-pcre=… Allows you to specify the path of the PCRE library

source code.
--with-pcre-opt=… Additional options for building the PCRE library.

MD5 options
--with-md5=… Specifies the path to the MD5 library sources.
--with-md5-opt=… Additional options for building the MD5 library.
--with-md5-asm Uses assembler sources for the MD5 library.

SHA1 options
--with-sha1=… Specifies the path to the SHA1 library sources.
--with-sha1-opt=… Additional options for building the SHA1 library.
--with-sha1-asm Uses assembler sources for the SHA1 library.

Chapter 2

[59]

zlib options
--with-zlib=… Specifies the path to the zlib library sources.
--with-zlib-opt=… Additional options for building the zlib library.
--with-zlib-asm=… Uses assembler optimizations for the following target

architectures: pentium, pentiumpro.
OpenSSL options
--with-openssl=… Specifies the path of the OpenSSL library sources.
--with-openssl-opt=… Additional options for building the OpenSSL library.

Module options
Modules, which will be discussed in Chapter 4 and further, need to be selected
before compiling the application. Some are enabled by default and some need
to be enabled manually, as you will see in the table below.

Modules enabled by default
The following switches allow you to disable modules that are enabled by default.

Modules enabled by default Description
--without-http_charset_module Disables the Charset module for

re-encoding web pages.
--without-http_gzip_module Disables the Gzip compression module.
--without-http_ssi_module Disables the Server Side Include module.
--without-http_userid_module Disables the User ID module providing

user identification via cookies.
--without-http_access_module Disables the Access module allowing

access configuration for IP address ranges.
--without-http_auth_basic_module Disables the Basic Authentication module.
--without-http_autoindex_module Disables the Automatic Index module.
--without-http_geo_module Disables the Geo module allowing you to

define variables depending on IP address
ranges.

--without-http_map_module Disables the Map module that allows you
to declare map blocks.

--without-http_referer_module Disables the Referer control module.

--without-http_rewrite_module Disables the Rewrite module.
--without-http_proxy_module Disables the Proxy module for

transferring requests to other servers.

Downloading and Installing Nginx

[60]

Modules enabled by default Description
--without-http_fastcgi_module Disables the FastCGI module for

interacting with a FastCGI process.
--without-http_memcached_module Disables the Memcached module for

interacting with the memcache daemon.
--without-http_limit_zone_module Disables the Limit Zone module for

restricting resource usage according
to defined zones.

--without-http_limit_req_module Disables the Limit Requests module
allowing you to limit the amount of
requests per user.

--without-http_empty_gif_module Disables the Empty Gif module for
serving a blank GIF image from memory.

--without-http_browser_module Disables the Browser module for
interpreting the User Agent string.

--without-http_upstream_ip_hash_
module

Disables the Upstream module for
configuring load-balanced architectures.

Modules disabled by default
The following switches allow you to enable modules that are disabled by default.

Modules disabled by default Description
--with-http_ssl_module Enables the SSL module for serving pages

using HTTPS.
--with-http_realip_module Enables the Real IP module for reading the real

IP address from the request header data.
--with-http_addition_module Enables the Addition module which lets you

append or prepend data to the response body.
--with-http_xslt_module Enables the XSLT module for applying XSL

transformations to XML documents.

Note: You will need to install the libxml2 and
libxslt libraries on your system if you wish to
compile these modules.

--with-http_image_filter_
module

Enables the Image Filter module that lets you apply
modification to images.

Note: You will need to install the libgd library on
your system if you wish to compile this module.

Chapter 2

[61]

Modules disabled by default Description
--with-http_geoip_module Enables the GeoIP module for achieving

geographic localization using MaxMind's GeoIP
binary database.
Note: You will need to install the libgeoip library
on your system if you wish to compile this module.

--with-http_sub_module Enables the Substitution module for replacing text
in web pages.

--with-http_dav_module Enables the WebDAV module (Distributed
Authoring and Versioning via Web).

--with-http_flv_module Enables the FLV module for special handling of .flv
(flash video) files.

--with-http_gzip_static_
module

Enables the Gzip Static module for sending
pre-compressed files.

--with-http_random_index_
module

Enables the Random Index module for picking a
random file as the directory index.

--with-http_secure_link_
module

Enables the Secure Link module to check the
presence of a keyword in the URL.

--with-http_stub_status_
module

Enables the Stub Status module, which generates a
server statistics and information page.

--with-google_perftools_
module

Enables the Google Performance Tools module.

Miscellaneous options
Other options are available in the configuration script, for example, regarding the
mail server proxy feature or event management.

Mail server proxy options
--with-mail Enables mail server proxy module. Supports POP3,

IMAP4, SMTP. It is disabled by default.
--with-mail_ssl_module Enables SSL support for the mail server proxy. It is

disabled by default.
--without-mail_pop3_module Disables the POP3 module for the mail server

proxy. It is enabled by default when the mail
server proxy module is enabled.

--without-mail_imap_module Disables the IMAP4 module for the mail server
proxy. It is enabled by default when the mail
server proxy module is enabled.

--without-mail_smtp_module Disables the SMTP module for the mail server
proxy. It is enabled by default when the mail
server proxy module is enabled.

Downloading and Installing Nginx

[62]

Event management:

Allows you to select the event notification system for the Nginx sequencer. For advanced
users only.
--with-rtsig_module Enables the rtsig module to use rtsig as event

notification mechanism.
--with-select_module Enables the select module to use select as event

notification mechanism. By default, this module
is enabled unless a better method is found on the
system—kqueue, epoll, rtsig, or poll.

--without-select_module Disables the select module.
--with-poll_module Enables the poll module to use poll as event

notification mechanism. By default, this module is
enabled if available, unless a better method is found
on the system—kqueue, epoll, or rtsig.

--without-poll_module Disables the poll module.
User and group options
--user=… Default user account for starting the Nginx worker

processes. This setting is used only if you omit to
specify the user directive in the configuration file.

--group=… Default user group for starting the Nginx worker
processes. This setting is used only if you omit to
specify the group directive in the configuration file.

Other options
--with-ipv6 Enables IPv6 support.
--without-http Disables the HTTP server.
--without-http-cache Disables HTTP caching features.
--add-module=PATH Adds a third-party module to the compile process

by specifying its path. This switch can be repeated
indefinitely if you wish to compile multiple modules.

--with-debug Enables additional debugging information to be logged.

Configuration examples
Here are a few examples of configuration commands that may be used for various
cases. In these examples, the path switches were omitted as they are specific to each
system and leaving the default values may simply function correctly.

Chapter 2

[63]

Be aware that these configurations do not include additional
third-party modules. Please refer to Chapter 5 for more
information about installing add-ons.

About the prefix switch
During the configuration, you should take particular care over the --prefix switch.
Many of the future configuration directives (we will approach in further chapters)
will be based on the path you selected at this point. While it is not a definitive
problem since absolute paths can still be employed, you should know that the
prefix cannot be changed once the binaries have been compiled.

There is also another issue that you may run into if you plan to keep up with the
times and update Nginx as new versions are released. The default prefix (if you do
not override the setting by using the --prefix switch) is /usr/local/nginx—a
path that does not include the version number. Consequently, when you upgrade
Nginx, if you do not specify a different prefix, the new install files will override
the previous ones, which among other problems, could potentially erase your
configuration files and running binaries.

It is thus recommended to use a different prefix for each version you will be using:

./configure --prefix=/usr/local/nginx-0.7.66

Additionally, to make future changes simpler, you may create a symbolic link
/usr/local/nginx pointing to /usr/local/nginx-0.7.66. Once you upgrade,
you can update the link to make it point to /usr/local/nginx-newer.version.
This will (for example) allow the init script to always make use of the latest
installed version of Nginx.

Regular HTTP and HTTPS servers
The first example describes a situation where the most important features and
modules for serving HTTP and HTTPS content are enabled, and the mail-related
options are disabled.

./configure --user=www-data --group=www-data --with-http_ssl_module --
with-http_realip_module

As you can see, the command is rather simple and most switches were left out.
The reason being: the default configuration is rather efficient and most of the
important modules are enabled. You will only need to include the http_ssl module
for serving HTTPS content, and optionally, the "real IP" module for retrieving your
visitors' IP addresses in case you are running Nginx as backend server.

Downloading and Installing Nginx

[64]

All modules enabled
The next situation: the whole package. All modules are enabled and it is up to you
whether you want to use them or not at runtime.

./configure --user=www-data --group=www-data --with-http_ssl_module --
with-http_realip_module --with-http_addition_module --with-http_xslt_
module --with-http_image_filter_module --with-http_geoip_module --with-
http_sub_module --with-http_dav_module --with-http_flv_module --with-
http_gzip_static_module --with-http_random_index_module --with-http_
secure_link_module --with-http_stub_status_module

This configuration opens up a wide range of possible configuration options.
Chapters 4 to 7 provide more detailed information on module configuration.

With this setup, all optional modules are enabled, thus requiring additional libraries
to be installed—libgeoip for the Geo IP module, libgd for the Image Filter module,
libxml2, and libxslt for the XSLT module. You may install those prerequisites
using your system package manager such as running yum install libxml2 or
apt-get install libxml2.

Mail server proxy
This last build configuration is somewhat special as it is dedicated to enabling mail
server proxy features—a darker side of Nginx. The related features and modules are
all enabled.

./configure --user=www-data --group=www-data --with-mail --with-mail_ssl_
module

If you wish to completely disable the HTTP serving features and only dedicate Nginx
to mail proxying, you can add the --without-http switch.

Note that in the commands listed above, the user and group used
for running the Nginx worker processes will be www-data which
implies that this user and group must exist on your system. Please
refer to Chapter 1 for more information on adding users and groups
to your system.

Chapter 2

[65]

Build configuration issues
In some cases, the configure command may fail—after a long list of checks, you
may receive a few error messages on your terminal. In most (if not all) cases, these
errors are related to missing prerequisites or unspecified paths.

In such cases, proceed with the following verifications carefully to make sure
you have all it takes to compile the application, and optionally consult the
objs/autoconf.err file for more details about the compilation problem. This
file is generated during the configure process and will tell you exactly where
the process failed.

Make sure you installed the prerequisites
There are basically four main prerequisites: GCC, PCRE, zlib, and OpenSSL. The
last three are libraries that must be installed in two packages: the library itself and
its development sources. Make sure you have installed both for each of them. Please
refer to the prerequisites section at the beginning of this chapter. Note that other
prerequisites such as LibXML2 or LibXSLT might be required for enabling extra
modules, for example, in the case of the HTTP XSLT module.

If you are positive that all prerequisites were installed correctly, perhaps the issue
comes from the fact that the configure script is unable to locate the prerequisite
files. In that case, make sure that you include the switches related to file paths,
as described earlier.

For example, the following switch allows you to specify the location of the OpenSSL
library files:

./configure [...] --with-openssl=/usr/lib64

The OpenSSL library file will be looked for in the specified folder.

Directories exist and are writable
Always remember to check the obvious; everyone makes even the simplest of
mistakes sooner or later. Make sure the directory you placed the Nginx files in has
read and write permissions for the user running the configuration and compilation
scripts. Also ensure that all paths specified in the configure script switches are
existing, valid paths.

Downloading and Installing Nginx

[66]

Eventually, when all your issues are solved, you should be seeing a configuration
summary more or less similar to the image below:

Compiling and installing
The configuration process is of utmost importance—it generates a makefile for
the application depending on the selected switches and performs a long list of
requirement checks on your system. Once the configure script is successfully
executed, you can proceed with compiling Nginx.

Compiling the project equates to executing the make command in the project
source directory:

[alex@example.com nginx-0.7.66]$ make

A successful build should result in a final message appearing: make[1]: leaving
directory followed by the project source path.

Again, problems might occur at compile time. Most of these problems can originate
in missing prerequisites or invalid paths specified. If this occurs, run the configure
script again and triple-check the switches and all the prerequisite options. It may also
occur that you downloaded a too recent version of the prerequisites that might not
be backwards compatible. In such cases, the best option is to visit the official website
of the missing component and download an older version.

Chapter 2

[67]

If the compilation process was successful, you are ready for the next step: installing
the application.

[alex@example.com nginx-0.7.66]$ make install

The make install command executes the install section of the makefile. In
other words, it performs a few simple operations such as copying binaries and
configuration files to the specified install folder. It also creates directories for storing
log and HTML files if these do not already exist. The make install step is not
generally a source of problems, unless your system encounters some exceptional
error such as a lack of storage space or memory.

You might require root privileges for installing the application in the
/usr/local/ folder, depending on the folder permissions.

Controlling the Nginx service
At this stage, you should have successfully built and installed Nginx. The default
location for the output files is /usr/local/nginx, so we will be basing future
examples on this.

Daemons and services
The next step is obviously to execute Nginx. However, before doing so, it's important
to understand the nature of this application. There are two types of computer
applications—those that require immediate user input thus running on the foreground
and those that do not, thus running in the background. Nginx is of the latter type,
often referred to as daemon. Daemon names usually come with a trailing 'd' and
a couple of examples can be mentioned here—httpd the HTTP server daemon,
named the name server daemon, or crond the task scheduler—although, as you will
notice, it is not the case for Nginx. When started from the command line, a daemon
immediately returns the prompt, and in most cases, does not even bother outputting
data to the terminal.

Consequently, when starting Nginx you will not see any text appear on the screen
and the prompt will return immediately. While this might seem startling, it is
on the contrary a good sign; it means the daemon was started correctly and the
configuration did not contain any errors.

Downloading and Installing Nginx

[68]

User and group
It is of utmost importance to understand the process architecture of Nginx and
particularly the user and groups its various processes run under. A very common
source of troubles when setting up Nginx is invalid file access permissions—due to
a user or group misconfiguration, you often end up getting 403 Forbidden HTTP
errors because Nginx cannot access the requested files.

There are two levels of processes with possibly different permission sets:
1. The Nginx master process, which should be started as root. In most Unix-like

systems, processes started with the root account are allowed to open TCP
sockets on any port, whereas other users can only open listening sockets on
a port above 1024. If you do not start Nginx as root, standard ports such as
80 or 443 will not be accessible. Additionally, the user directive that allows
you to specify a different user and group for the worker processes will not
be taken into consideration.

2. The Nginx worker processes, which are started under the account you
specified in the configuration file with the user directive (detailed in
Chapter 3). The configuration setting takes precedence over the configure
switch you may have entered at compile time. If you did not specify any of
those, the worker processes will be started as user nobody, and group nobody
(or nogroup depending on your OS).

Nginx command-line switches
The Nginx binary accepts command-line arguments for performing various
operations, among which is controlling the background processes. To get the full
list of commands, you may invoke the help screen using the following commands:
[alex@example.com ~]$ cd /usr/local/nginx/sbin

[alex@example.com sbin]$./nginx -h

Chapter 2

[69]

The next few sections will describe the purpose of these switches. Some allow
you to control the daemon, some let you perform various operations on the
application configuration.

Starting and stopping the daemon
You can start Nginx by running the Nginx binary without any switches. If the
daemon is already running, a message will show up indicating that a socket is
already listening on the specified port:
[emerg]: bind() to 0.0.0.0:80 failed (98: Address already in use) […]
[emerg]: still could not bind().

Beyond this point, you may control the daemon by stopping it, restarting it, or
simply reloading its configuration. Controlling is done by sending signals to the
process using the nginx –s command.

Command Description
nginx –s stop Stops the daemon immediately (using the TERM signal)
nginx –s quit Stops the daemon gracefully (using the QUIT signal)
nginx –s reopen Reopens the log files
nginx –s reload Reloads the configuration

Note that when starting the daemon, stopping it, or performing any of the above
operations, the configuration file is first parsed and verified. If the configuration is
invalid, whatever command you have submitted will fail, even when trying to stop
the daemon. In other words, you cannot even stop Nginx if the configuration file
is invalid.

An alternate way to terminate the process, in desperate cases only, is to use the kill
or killall commands:

[alex@example.com ~]$ killall nginx

Testing the configuration
As you can imagine, this tiny bit of detail might become an important issue if
you constantly tweak your configuration. The slightest mistake in any of the
configuration files can result in a loss of control over the service—you are then
unable to stop it using a regular method, and obviously, it will refuse to start again.

In consequence, the following command will be useful to you in many occasions. It
allows you to check the syntax, validity, and integrity of your configuration.

[alex@example.com ~]$ /usr/local/nginx/sbin/nginx –t

Downloading and Installing Nginx

[70]

The –t switch stands for test configuration. Nginx will parse the configuration anew
and let you know whether or not it is valid. The screenshot below shows an invalid
configuration, and as a result, a failed test.

A valid configuration file does not necessarily mean Nginx will start though as there
might be additional problems such as socket issues, invalid paths, or incorrect
access permissions.

Obviously, manipulating your configuration files while your server is in production
is a dangerous thing to do and should be avoided at all costs. The best practice, in
this case, is to place your new configuration into a separate temporary file and run
the test on that file. Nginx makes it possible by offering the –c switch:

[alex@example.com sbin]$./nginx –t –c /home/alex/test.conf

This command will parse /home/alex/test.conf and make sure it is a valid
Nginx configuration file. When you are done, after making sure that your new
file is valid, proceed to replacing your current configuration file and reload the
server configuration.

[alex@example.com sbin]$ cp /home/alex/test.conf /usr/local/nginx/conf/
nginx.conf

cp: erase 'nginx.conf' ? yes

[alex@example.com sbin]$./nginx –s reload

Other switches
Another switch that might come in handy in many situations is –V. Not only does it
tell you the current Nginx build version, but more importantly it also reminds you
about the arguments that you used during the configuration step—in other words,
the command switches that you passed to the configure script before compilation.

Chapter 2

[71]

In this case, Nginx was configured with the --with-http_ssl_module switch only.

Why is this so important? Well if you ever try to use a module that was not included
with the configure script during the pre-compilation process, the directive enabling
the module will result in a configuration error. Your first reaction will be to wonder
where the syntax error comes from. Your second reaction will be to wonder if you
even built the module in the first place! Running nginx –V will answer this question.

Additionally, the –g option lets you specify additional configuration directives in
case they were not included in the configuration file:

[alex@example.com sbin]$./nginx –g "timer_resolution 200ms";

Adding Nginx as a system service
In this section, we will create a script that will transform the Nginx daemon into an
actual system service. This will result in mainly two outcomes—the daemon will be
controllable using standard commands, and more importantly, it will automatically
be launched on system startup.

System V scripts
Most Linux-based operating systems to date use a System-V style init daemon. In other
words, their startup process is managed by a daemon called init, which functions in
a way that is inherited from the old System V Unix-based operating system.

This daemon functions on the principle of runlevels, which represent the state of the
computer. Here is a table representing the various runlevels and their signification:

Runlevel State
0 System is halted
1 Single-user mode (rescue mode)
2 Multiuser mode, without NFS support
3 Full multiuser mode

Downloading and Installing Nginx

[72]

Runlevel State
4 Not used
5 Graphical interface mode
6 System reboot

You can manually initiate a runlevel transition: use the telinit 0 command to shut
down your computer or telinit 6 to reboot it.

For each runlevel transition, a set of services are executed. This is the key concept to
understand here: when your computer is stopped, its runlevel is 0; when you turn
it on, there will be a transition from runlevel 0 to the default computer startup
runlevel. The default startup runlevel is defined by your own system configuration
(in the /etc/inittab file) and the default value depends on the distribution you are
using: Debian and Ubuntu use runlevel 2, Red Hat and Fedora use runlevel 3 or 5,
CentOS and Gentoo use runlevel 3, and so on, as the list is long.

So let us summarize. When you start your computer running CentOS, it operates
a transition from runlevel 0 to runlevel 3. That transition consists of starting all
services that are scheduled for runlevel 3. The question is—how to schedule a service
to be started at a specific runlevel? For each runlevel, there is a directory containing
scripts to be executed.

If you enter these directories (rc0.d, rc1.d, to rc6.d) you will not find actual files,
but rather symbolic links referring to scripts located in the init.d directory. Service
startup scripts will indeed be placed in init.d, and links will be created by tools
placing them in the proper directories.

Chapter 2

[73]

What is an init script?
An init script, also known as service startup script or even sysv script is a shell
script respecting a certain standard. The script will control a daemon application by
responding to some commands such as start, stop, and others, which are triggered at
two levels. Firstly, when the computer starts, if the service is scheduled to be started
for the system runlevel, the init daemon will run the script with the start argument.
The other possibility for you is to manually execute the script by calling it from
the shell. That possibility has already been covered in Chapter 1, Preparing your
Work Environment, the Programs and processes section:

[root@example.com ~]# service httpd start

Or if your system does not come with the service command:

[root@example.com ~]# /etc/init.d/httpd start

The script must accept at least the start and stop commands as they will be used
by the system to respectively start up and shut down the service. However, for
enlarging your field of action as a system administrator, it is often interesting
to provide further options such as a reload argument to reload the service
configuration or a restart argument to stop and start the service again.

Note that since service httpd start and /etc/init.d/httpd start essentially
do the same thing, with the exception that the second command will work on all
operating systems, we will make no further mention of the service command and
will exclusively use the /etc/init.d/ method.

Creating an init script for Nginx
We will thus create a shell script for starting and stopping our Nginx daemon and
also restarting and reloading it. The purpose here is not to discuss Linux shell script
programming, so we will merely provide the source code of an existing init script,
along with some comments to help you understand it.

First, create a file called nginx with the text editor of your choice, and save it in the
/etc/init.d/ directory (on some systems, /etc/init.d/ is actually a symbolic
link to /etc/rc.d/init.d/). In the file you just created, copy the following script
carefully. Make sure that you change the paths to make them correspond to your
actual setup.

Downloading and Installing Nginx

[74]

You will need root permissions to save the script into the init.d directory.

#! /bin/sh

Author: Ryan Norbauer http://norbauerinc.com
Modified: Geoffrey Grosenbach http://topfunky.com
Modified: Clement NEDELCU
Reproduced with express authorization from its contributors
set –e
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
DESC="nginx daemon"
NAME=nginx
DAEMON=/usr/local/nginx/sbin/$NAME
SCRIPTNAME=/etc/init.d/$NAME

If the daemon file is not found, terminate the script.
test -x $DAEMON || exit 0

d_start() {
 $DAEMON || echo -n " already running"
}

d_stop() {
 $DAEMON –s quit || echo -n " not running"
}

d_reload() {
 $DAEMON –s reload || echo -n " could not reload"
}

case "$1" in
 start)
 echo -n "Starting $DESC: $NAME"
 d_start
 echo "."
 ;;
 stop)
 echo -n "Stopping $DESC: $NAME"
 d_stop
 echo "."
 ;;
 reload)
 echo -n "Reloading $DESC configuration..."
 d_reload
 echo "reloaded."

Chapter 2

[75]

 ;;
 restart)
 echo -n "Restarting $DESC: $NAME"
 d_stop
 # Sleep for two seconds before starting again, this should give the
 # Nginx daemon some time to perform a graceful stop.
 sleep 2
 d_start
 echo "."
 ;;
 *)
 echo "Usage: $SCRIPTNAME {start|stop|restart|reload}" >&2
 exit 3
 ;;
esac

exit 0

Installing the script
Placing the file in the init.d directory does not complete our work. There are
additional steps that will be required for enabling the service. First of all, you need to
make the script executable. So far, it is only a piece of text that the system refuses to
run. Granting executable permissions on the script is done with the chmod command:

[root@example.com ~]# chmod +x /etc/init.d/nginx

Note that if you created the file as the root user, you will need to be logged in as root
to change the file permissions.

At this point, you should already be able to start the service using service nginx
start or /etc/init.d/nginx start, as well as stopping, restarting, or reloading
the service.

The last step here will be to make it so the script is automatically started at the
proper runlevels. Unfortunately, doing this entirely depends on what operating
system you are using. We will cover the two most popular families—Debian/
Ubuntu/other Debian-based distributions and Red Hat/Fedora/CentOS/other
Red Hat-derived systems.

Downloading and Installing Nginx

[76]

Debian-based distributions
For the first one, a simple command will enable the init script for the system runlevel:

[root@example.com ~]# update-rc.d –f nginx defaults

This command will create links in the default system runlevel folders: for the
reboot and shutdown runlevels, the script will be executed with the stop argument;
for all other runlevels, the script will be executed with start. You can now restart
your system and see your Nginx service being launched during the boot sequence.

Red Hat-based distributions
For the Red Hat-based systems family, the command differs, but you get an
additional tool for managing system startup. Adding the service can be done
via the following command:

[root@example.com ~]# chkconfig --add nginx

Once that is done, you can then verify the runlevels for the service:

[root@example.com ~]# chkconfig --list nginx

Nginx 0:off 1:off 2:on 3:off 4:on 5:on 6:off

Another tool will be useful to you for managing system services, namely, ntsysv. It
lists all services scheduled to be executed on system startup and allows you to enable
or disable them at will.

Note that you must first run the chkconfig --add nginx command, otherwise
nginx will not appear in the list of services.

Chapter 2

[77]

Summary
This chapter covered a number of important points. It first made sure that you
have everything Nginx requires for compiling. Then this chapter helped us select
the proper version branch for our usage—will you be using the stable version or a
more advanced yet potentially unstable one? We then downloaded the source and
configured the compilation process by enabling or disabling features and modules
such as SSL, GeoIP, and more. Following this step, the source was compiled and the
application installed on the system in the directory of your choice. We created an init
script and modified the system boot sequence to schedule for the service to be started.

From this point on, Nginx is installed on your server and automatically started with
the system. Your web server is functional, though it does not yet answer the most
basic functionality—serving a website. The first step towards hosting a website will
be to establish a configuration file. The next chapter will cover the basic configuration
of Nginx and will teach you how to optimize performance based on expected
audience and system resources.

Basic Nginx Configuration
In this chapter, we will begin to establish an appropriate configuration for the web
server. For this purpose, we first need to approach the topic of syntax in use in the
configuration files. Then we need to understand the various directives that will let
you optimize your server for different traffic patterns and hardware setups. Finally,
create some test pages to make sure that everything has been done correctly and that
the configuration is valid. We will only approach the basic configuration directives
here; the next chapters will detail more advanced topics such as HTTP module
configuration and usage, creating virtual hosts, and more.

This chapter covers:

Presentation of the configuration syntax
Basic configuration directives
Establishing an appropriate configuration for your profile
Serving a test website
Testing and maintaining your server

Configuration file syntax
A configuration file is generally a text file that is edited by the administrator and
parsed by a program. By specifying a set of values, you define the behavior of the
program. In Linux-based operating systems, a large share of applications rely on
vast, complex configuration files, which often turn out to be a nightmare to manage.
Apache, PHP, MySQL, Qmail, and Bind—all these names bring up bad memories.
The fact is that all these applications use their own configuration file with different
syntaxes and styles. PHP works with a Windows-style .ini file, sendmail uses the
M4 macro-processor to compile configuration files, Zabbix pulls its configuration from
a MySQL database, and so on. There is, unfortunately, no well-established standard.
The same applies to Nginx—you will be required to study a new syntax with its own
particularities, its own vocabulary.

•

•

•

•

•

Basic Nginx Configuration

[80]

On the other hand (and this is one of its advantages), configuring Nginx turns out to
be rather simple—at least in comparison to Apache or other mainstream web servers.
There are only a few mechanisms that need to be mastered—directives, blocks, and
the overall logical structure. Most of the actual configuration process will consist of
writing values for directives.

Configuration Directives
The Nginx configuration file can be described as a list of directives organized in a
logical structure. The entire behavior of the application is defined by the values that
you give to those directives.

By default, Nginx makes use of one main configuration file. The path of this file was
defined in the steps described in Chapter 2, Downloading and Installing Nginx under
the Build configuration section. If you did not edit the configuration file path and
prefix options, it should be located at /usr/local/nginx/conf/nginx.conf.
Now let's take a quick peek at the first few lines of this initial setup.

A closer look at the first two lines:

#user nobody;
worker_processes 1;

As you can probably make out from the # character, the first line is a comment. In
other words, a piece of text that is not interpreted and has no value whatsoever; its
sole purpose is to be read by whoever opens the file. You may use the # character at
the beginning of a line or following a directive.

Chapter 3

[81]

The second line is an actual statement—a directive. The first bit (worker_processes)
represents a setting key to which you append one or more values. In this case, the
value is 1, indicating that Nginx should function with a single worker process
(more information about this particular directive is given in further sections).

Directives always end with a semicolon (';').

Each directive has a special meaning and defines a particular feature of the
application. It may also have a particular syntax. For example, the worker_process
directive only accepts one numeric value, whereas the user directive lets you specify
up to two character strings—one for the user account (the Nginx worker processes
should run as) and a second one for the user group.

Nginx works in a modular way, and as such, each module comes with a specific set
of directives. The most fundamental directives are part of the Nginx Core module and
will be detailed in this chapter. As for other directives brought in by other modules,
they will be explored in later chapters.

Organization and inclusions
In the preceding screenshot, you may have noticed a particular directive—include.

include mime.types;

As the name suggests, this directive will perform an inclusion of the specified file. In
other words, the contents of the file will be inserted at this exact location. Here is a
practical example that will help you understand.

nginx.conf:

user nginx nginx;
worker_processes 4;
include other_settings.conf;

other_settings.conf:

error_log logs/error.log;
pid logs/nginx.pid;

Final result, as interpreted by Nginx, is as follows:

user nginx nginx;
worker_processes 4;
error_log logs/error.log;
pid logs/nginx.pid;

Basic Nginx Configuration

[82]

Inclusions are processed recursively. In this case, you have the possibility to use the
include directive again in the other_settings.conf file in order to include yet
another file.

In the initial configuration setup, there are two files at use—nginx.conf and
mime.types. However, in the case of a more advanced configuration, there
may be five or more files, as described in the table below.

Standard name Description
nginx.conf Base configuration of the application
mime.types A list of file extensions and their associated MIME types
fastcgi.conf FastCGI-related configuration
proxy.conf Proxy-related configuration

sites.conf Configuration of the websites served by Nginx, also
known as virtual hosts. It's recommended to create
separate files for each domain.

These filenames were defined conventionally; nothing actually prevents you
from regrouping your FastCGI and proxy settings into a common file named
proxy_and_fastcgi_config.conf.

Note that the include directive supports filename globbing, in other words, filenames
with the * wildcard, where * may match zero, one, or more consecutive characters:

include sites/*.conf;

This will include all files with a name that ends with .conf in the sites folder. This
mechanism allows you to create a separate file for each of your websites and include
them all at once.

Be careful when including a file—if the specified file does not exist, the configuration
checks will fail and Nginx will not start:

[alex@example sbin]# ./nginx -t

[emerg]: open() "/usr/local/nginx/conf/dummyfile.conf" failed (2: No
such file or directory) in /usr/local/nginx/conf/nginx.conf:48

The previous statement is not true for inclusions with wildcards. Moreover, if you
insert include dummy*.conf in your configuration and test it (whether there is any
file matching this pattern on your system or not), here is what should happen:

[alex@example sbin]# ./nginx –t

the configuration file /usr/local/nginx/conf/nginx.conf syntax is ok
configuration file /usr/local/nginx/conf/nginx.conf test is successful

Chapter 3

[83]

Directive blocks
Directives are brought in by modules—if you activate a new module, a specific set
of directives becomes available. Modules may also enable directive blocks, which
allow for a logical construction of the configuration.

events {
 worker_connections 1024;
}

The events block that you can find in the default configuration file is brought in by
the Events module. The directives that the module enables can only be used within
that block—in the preceding example, worker_connections will only make sense
in the context of the events block. There is one important exception though—some
directives may be placed at the root of the configuration file because they have a
global effect on the server. The root of the configuration file is also known as the
main block.

This chapter will detail blocks and directives available in the Core
modules—modules that are necessary for the smooth functioning of
the server. Optional modules (whether they are enabled by default
or not) are discussed in later chapters.

Note that in some cases, blocks can be nested into each other, following a
specific logic:

http {
 server {
 listen 80;
 server_name example.com;
 access_log /var/log/nginx/example.com.log;
 location ^~ /admin/ {
 index index.php;
 }
 }
}

This example shows how to configure Nginx to serve a website, as you can tell from
the http block (as opposed to, say, imap, if you want to make use of the mail server
proxy features).

Within the http block, you may declare one or more server blocks. A server block
allows you to configure a virtual host. The server block, in this example, contains
some configuration that applies to all requests with a Host HTTP header exactly
matching example.com.

Basic Nginx Configuration

[84]

Within this server block, you may insert one or more location blocks. These allow
you to enable settings only when the requested URI matches the specified path. More
information is provided in Chapter 4, HTTP Configuration the Location Block section.

Last but not least, configuration is inherited within children blocks. The access_log
directive (defined at the server block level in this example) specifies that all HTTP
requests for this server should be logged into a text file. This is still true within the
location child block, although you have the possibility to disable it by reusing the
access_log directive:

[…]
 location ^~ /admin/ {
 index index.php;
 access_log off;
 }
[…]

In this case, logging will be enabled everywhere on the website, except for the
/admin/ location path. The value set for the access_log directive at the server
block level is overridden by the one at the location block level.

Advanced language rules
There are a number of important observations regarding the Nginx configuration file
syntax. These will help you understand certain syntax rules that may seem confusing
if you have never worked with Nginx before.

Directives accept specific syntaxes
You may indeed stumble upon complex syntaxes that can be confusing at first sight.

rewrite ^/(.*)\.(png|jpg|gif)$ /image.php? file=$1&format=$2 last;

Syntaxes are directive-specific. While the listen directive may only accept a port
number to open a listening socket, the location block or the rewrite directive
support complex expressions in order to match particular patterns. Syntaxes
will be explained along with directives in their respective chapters.

Chapter 3

[85]

Later on, we will approach a module (the Rewrite module) that allows for a much
more advanced logical structure through the if, set, break, and return directives
and the use of variables. With all these new elements, configuration files will begin
to look like programming scripts. Anyhow, the more modules we discover, the richer
the syntax becomes.

Diminutives in directive values
Finally, you may use the following diminutives for specifying a file size in the
context of a directive value:

k or K: Kilobytes
m or M: Megabytes

As a result, the following two syntaxes are correct and equal:

client_max_body_size 2M;
client_max_body_size 2048k;

Additionally, when specifying a time value, you may use the following shortcuts:

ms: Milliseconds
s: Seconds
m: Minutes
h: Hours
d: Days
w: Weeks
M: Months (30 days)
y: Years (365 days)

This becomes especially useful in the case of directives accepting a period of time as
a value:

client_body_timeout 3m;
client_body_timeout 180s;
client_body_timeout 180;

Note that the default time unit is seconds; the last two lines above thus result in an
identical behavior.

•

•

•

•

•

•

•

•

•

•

Basic Nginx Configuration

[86]

Variables
Modules also provide variables that can be used in the definition of directive values.
For example, the Nginx HTTP Core module defines the $nginx_version variable.
When setting the log_format directive, you may include all kinds of variables in
the format string:

[…]
location ^~ /admin/ {
 access_log logs/main.log;
 log_format main '$pid - $nginx_version - $remote_addr';
}
[…]

Note that some directives do not allow you to use variables:

error_log logs/error-$nginx_version.log;

This is a valid configuration directive. However, it simply generates a file named
error-$nginx_version.log, without parsing the variable.

String values
Character strings that you use as directive values can be written in three forms. First,
you may enter the value without quotes:

root /home/example.com/www;

However, if you want to use a particular character, such as a blank space (" "), a
semicolon (;), or curly brace ({ and }), you will need to enclose the value in single
or double quotes:

root '/home/example.com/my web pages';

Nginx makes no difference whether you use single or double quotes.

Base module directives
In this section, we will take a closer look at the base modules. We are particularly
interested in answering two questions—what are base modules and what directives
are made available.

Chapter 3

[87]

What are base modules?
The base modules offer directives that allow you to define parameters of the
basic functionality of Nginx. They cannot be disabled at compile time; as a result,
the directives and blocks they offer are always available. Three base modules
are distinguished:

Core module: Essential features and directives such as process management
and security
Events module: It lets you configure the inner mechanisms of the
networking capabilities
Configuration module: Enables the inclusion mechanism

These modules offer a large range of directives; we will be detailing them
individually with their syntaxes and default values.

Nginx process architecture
Before we start detailing the basic configuration directives, it's necessary to
understand the process architecture, that is, how Nginx works behind the scenes.
Although the application comes as a simple binary file, (apparently lightweight
background process) the way it functions at runtime is rather intricate.

•

•

•

Basic Nginx Configuration

[88]

At the very moment of starting Nginx, one unique process exists in memory—the
Master Process. It is launched with the current user and group permissions—usually
root/root if the service is launched at boot time by an init script. The master
process itself does not process any client request; instead, it spawns processes that
do—the Worker Processes, which are affected to a customizable user and group.
From the configuration file, you are able to define the amount of worker processes,
the maximum connections per worker process, and more.

Core module directives
Below is the list of directives made available by the Core module. Most of these
directives must be placed at the root of the configuration file and can only be used
once. However, some of them are valid in multiple contexts. If that is the case, the list
of valid contexts is mentioned below the directive name.root of the configuration
file and can only be used once.

Name and context Syntax and description
daemon Accepted values: on or off

Syntax:
daemon on;

Default value: on
Enables or disables daemon mode. If you disable it, the program
will not be started in the background; it will stay in the foreground
when launched from the shell.

Chapter 3

[89]

Name and context Syntax and description
debug_points Accepted values: stop or abort

Syntax:
debug_points stop;

Default value: None.
Activates debug points in Nginx. Use stop to interrupt the
application when a debug point comes about in order to attach a
debugger. Use abort to abort the debug point and create a core
dump file.
To disable this option, simply do not use the directive.

env Syntax:
env MY_VARIABLE;

env MY_VARIABLE=my_value;

Lets you (re)define environment variables.
error_log

Context: main,
http, server,
and location

Syntax:
error_log /file/path level;

Default value: logs/error.log error.
Where level is one of the following values: debug, info, notice,
warn, error, and crit (from most to least detailed: debug
provides frequent log entries, crit only reports critical errors).
Enables error logging at different levels: Application, HTTP server,
virtual host, and virtual host directory.
By redirecting the log output to /dev/null, you can disable
error logging. Use the following directive at the root of the
configuration file:

error_log /dev/null crit;

lock_file Syntax: File path
lock_file logs/nginx.lock;

Default value: Defined at compile time
Use a lock file for mutual exclusion. Disabled by default, unless
you enabled it at compile time.

log_not_found

Context: main,
http, server, and
location

Accepted values: on or off
log_not_found on;

Default value: on
Enables or disables logging of 404 not found HTTP errors. If your
logs get filled with 404 errors due to missing favicon.ico or
robots.txt files, you might want to turn this off.

Basic Nginx Configuration

[90]

Name and context Syntax and description
master_process Accepted values: on or off

master_process on;

Default value: on
If enabled, Nginx will start multiple processes: A main process
(the master process) and worker processes. If disabled, Nginx
works with a unique process. This directive should be used for
testing purposes only as it disables the master process—clients
thus cannot connect to your server.

pid Syntax: File path
pid logs/nginx.pid;

Default value: Defined at compile time.
Path of the pid file for the Nginx daemon. The default value can be
configured at compile time.

ssl_engine Syntax: Character string
ssl_engine enginename;

Default value: None
Where enginename is the name of an available hardware SSL
accelerator on your system. To check for available hardware SSL
accelerators, run this command from the shell:
openssl engine –t

thread_stack_
size

Syntax: Numeric (size)
thread_stack_size 1m;

Default value: None
Defines the size of thread stack; please refer to the
worker_threads directive below

timer_
resolution

Syntax: Numeric (time)
timer_resolution 100ms;

Default value: None
Controls the interval between system calls to gettimeofday()
to synchronize the internal clock. If this value is not specified, the
clock is refreshed after each kernel event notification.

Chapter 3

[91]

Name and context Syntax and description
user Syntax:

user username groupname;

user username;

Default value: Defined at compile time. If still undefined, the user
and group of the Nginx master process are used.
Lets you define the user account and optionally the user group
used for starting the Nginx worker processes.

worker_threads Syntax: Numeric
worker_threads 8;

Default value: None
Defines the amount of threads per worker process.
Warning! Threads are disabled by default. The author stated that
"the code is currently broken".

worker_cpu_
affinity

Syntax:
worker_cpu_affinity 1000 0100 0010 0001;

worker_cpu_affinity 10 10 01 01;

worker_cpu_affinity;

Default value: None
This directive works in conjunction with worker_processes. It
lets you affect worker processes to CPU cores.
There are as many series of digit blocks as worker processes; there
are as many digits in a block as your CPU has cores.
If you configure Nginx to use three worker processes, there
are three blocks of digits. For a dual-core CPU, each block has
two digits.

worker_cpu_affinity 01 01 10;

The first block (01) indicates that the first worker process should be
affected to the second core.
The second block (01) indicates that the second worker process
should be affected to the second core.
The third block (10) indicates that the third worker process should
be affected to the first core.
Note that affinity is only recommended for multi-core CPUs, not
for processors with hyper-treading or similar technologies.

Basic Nginx Configuration

[92]

Name and context Syntax and description
worker_priority Syntax: Numeric

worker_priority 0;

Default value: 0
Defines the priority of the worker processes, from -20 (highest)
to 19 (lowest). The default value is 0. Note that kernel processes
run at priority level -5, so it's not recommended that you set the
priority to -5 or less.

worker_
processes

Syntax: Numeric
worker_processes 4;

Default value: 1
Defines the amount of worker processes. Nginx offers to separate
the treatment of requests into multiple processes. The default value
is 1, but it's recommended to increase this value if your CPU has
more than one core.
Besides, if a process gets blocked due to slow I/O operations,
incoming requests can be delegated to the other worker processes.

worker_rlimit_
core

Syntax: Numeric (size)
worker_rlimit_core 100m;

Default value: None
Defines the size of core files per worker process.

worker_rlimit_
nofile

Syntax: Numeric
worker_rlimit_nofile 10000;

Default value: None
Defines the amount of files a worker process may use
simultaneously.

worker_rlimit_
sigpending

Syntax: Numeric
worker_rlimit_sigpending 10000;

Default value: None
Defines the amount of signals that can be queued per user (user ID
of the calling process). If the queue is full, signals are ignored past
this limit.

working_
directory

Syntax: Directory path
working_directory /usr/local/nginx/;

Default value: The prefix switch defined at compile time.
Working directory used for worker processes; only used to define
the location of core files. The worker process user account (user
directive) must have write permissions on this folder in order to be
able to write core files.

Chapter 3

[93]

Events module
The Events module comes with directives that allow you to configure network
mechanisms. Some of the parameters have an important impact on the
application's performance.

All of the directives listed below must be placed in the events block, which is
located at the root of the configuration file:

user nginx nginx;
master_process on;
worker_processes 4;
events {
 worker_connections 1024;
 use epoll;
}
[...]

These directives cannot be placed elsewhere (if you do so, the configuration test
will fail).

Directive name Syntax and description
accept_mutex Accepted values: on or off

accept_mutex on;

Default value: on
Enables or disables the use of an accept mutex (mutual exclusion)
to open listening sockets.

accept_mutex_
delay

Syntax: Numeric (time)
accept_mutex_delay 500ms;

Default value: 500 milliseconds
Defines the amount of time a worker process should wait before
trying to acquire the resource again. This value is not used if the
accept_mutex directive is set to off.

connections Replaced by worker_connections. This directive is now
deprecated.

Basic Nginx Configuration

[94]

Directive name Syntax and description
debug_connection Syntax: IP address or CIDR block.

debug_connection 172.63.155.21;

debug_connection 172.63.155.0/24;

Default value: None.
Writes detailed logs for clients matching this IP address or address
block. The debug information is stored in the file specified with the
error_log directive, enabled with the debug level.
Note: Nginx must be compiled with the --debug switch in order
to enable this feature.

multi_accept Syntax: on or off
multi_accept off;

Default value: off
Defines whether or not Nginx should accept all incoming
connections from the listening queue at once.

use Accepted values: /dev/poll, epoll, eventport,
kqueue, rtsig, or select

use kqueue;

Default value: Defined at compile time
Selects the event model among the available ones (the ones that
you enabled at compile time), though Nginx automatically selects
the most appropriate one.
The supported models are:

select: The default and standard module, it is used if
the OS does not support a more efficient one (it's the only
available method under Windows)
poll: It is automatically preferred over select, but not
available on all systems
kqueue: An efficient method for FreeBSD 4.1+, OpenBSD
2.9+, NetBSD 2.0, and MacOS X operating systems
epoll: An efficient method for Linux 2.6+ based
operating systems
rtsig: Real time signals, available as of Linux 2.2.19,
but unsuited for high-traffic profiles as default system
settings only allow 1,024 queued signals
/dev/poll: An efficient method for Solaris 7 11/99+,
HP/UX 11.22+, IRIX 6.5.15+, and Tru64 UNIX 5.1A+
operating systems
eventport: An efficient method for Solaris 10, though a
security patch is required

•

•

•

•

•

•

•

Chapter 3

[95]

Directive name Syntax and description
worker_
connections

Syntax: Numeric
worker_connections 1024;

Default value: None
Defines the amount of connections that a worker process may
treat simultaneously.

Configuration module
The Nginx Configuration module is a simple module enabling file inclusions with
the include directive, as previously described in the Organization and inclusions
section. The directive can be inserted anywhere in the configuration file and
accepts a single parameter—the file's path.

include /file/path.conf;
include sites/*.conf;

Note that if you do not specify an absolute path, the file path is relative to the
configuration directory. By default, include sites/example.conf will include
the following file:

/usr/local/nginx/conf/sites/example.conf.

A configuration for your profile
Following this long list of directives from the base modules, we can begin to envision
a first configuration adapted to your profile in terms of targeted traffic and, more
importantly, to your hardware. In this section, we will first take a closer look at the
default configuration file to understand the implications of each setting.

Understanding the default configuration
There is a reason why Nginx stands apart from other web servers—it's extremely
lightweight, optimized, and to put it simply, fast. As such, the default configuration
is efficient, and in many cases, you will not need to apply radical changes to the
initial setup.

Basic Nginx Configuration

[96]

We will study the default configuration by opening up the main configuration file
nginx.conf, although you will find this file to be almost empty. The reason lies in
the fact that when a directive does not appear in the configuration file, the default
value is employed. We will thus consider the default values here as well as the
directives found in the original setup.

user root root;
worker_processes 1;
worker_priority 0;
error_log logs/error.log error;
log_not_found on;
events {
 accept_mutex on;
 accept_mutex_delay 500ms;
 multi_accept off;
 worker_connections 1024;
}

While this configuration may work out of the box, there are some issues you need
to address right away.

Necessary adjustments
We will review some of the configuration directives that need immediate changing
and the possible values you may set:

user root root;

This directive specifies that the worker processes will be started as root.
It is dangerous for security as it grants full permissions over the filesystem.
You need to create a new user account on your system and make use of
it here. Refer to Chapter 1, Preparing your Work Environment, the User and group
management section for more information on creating users and groups.
Recommended value (granted that you created an nginx user account
and group on the system beforehand): user nginx nginx;
worker_processes 1;

With this setting, only one worker process will be started, which implies
that all requests will be processed by a unique execution flow (the current
version of Nginx is not multi-threaded, by choice). This also implies that
the execution is delegated to only one core of your CPU. It is highly
recommended to increase this value; you should have at least one process
per CPU core. Recommended value (granted your server is powered by a
quad-core CPU): worker_processes 4;

•

•

Chapter 3

[97]

worker_priority 0;

By default, the worker processes are started with a regular priority. If your
system performs other tasks simultaneously, you might want to grant a
higher priority to the Nginx worker processes. In this case, you should
decrease the value—the smaller the value, the higher the priority. Values
range from -20 (highest priority) to 19 (lowest priority). There is no
recommended value here as it totally depends on your situation. However,
you should not set it under -5 as it is the default priority for kernel processes.
log_not_found on;

This directive specifies whether Nginx should log 404 errors or not.
While these errors may, of course, provide useful information about missing
resources, most of them are generated by web browsers trying to reach the
favicon (the conventional /favicon.ico of a website) or robots trying to
access the indexing instructions (robots.txt). It is recommended that you
disable log_not_found in the case of conventional files that may clutter
your log files. However, do not disable this at the server level. Note that
this directive is part of the HTTP Core module. Refer to the next chapter
for more information.
worker_connections 1024;

This setting, combined with the amount of worker processes, allows
you to define the total quantity of connections accepted by the server
simultaneously. If you enable four worker processes, each accepting 1,024
connections, your server will treat a total of 4,096 simultaneous connections.
You need to adjust this setting to match your hardware: the more RAM
and CPU power your server relies on, the more connections you can
accept concurrently.

Adapting to your hardware
We will now establish three different setups—a standard one to be used by a regular
website with decent hardware, a low-traffic setup intended to optimize performance
on modest hardware, and finally an adequate setup for production servers in
high-traffic situations.

•

•

•

Basic Nginx Configuration

[98]

It's always difficult to classify computer power. Firstly, because each situation has
its own resources. If you work in a large company, talking about a powerful computer
will not have the same meaning as in the case of standalone website administrators
who need to resort to third-party web hosting providers. Secondly, because
computers get more powerful every year: faster CPUs, cheaper RAM, and the rise
of new technologies (SSDs). Consequently, the specifications given below are here
for reference and need to be adjusted to your own situation and to your era. The
recommended values for the directives are directly based on the specifications—one
worker process per CPU core, maximum connections depending on the RAM,
and so on.

Low-traffic setup Standard setup High-traffic setup
CPU: Dual-core
RAM: 2 GB
Requests: ~ 1/s

CPU: Quad-core
RAM: 4 GB
Requests: ~ 50/s

CPU: 8-core
RAM: 12 GB
Requests: ~1000/s

Recommended values
worker_processes 2;
worker_rlimit_
nofile 1024;
worker_priority -5;
worker_cpu_affinity
01 10;
events {
 multi_accept on;
 work
er_connections 128;
}

worker_processes 4;
worker_rlimit_
nofile 8192;
worker_priority 0;
worker_cpu_affinity

0001 0010 0100
1000;
events {
 multi_accept off;
 work
er_connections
1024;
}

worker_
processes 8;
worker_
priority
0;events {
 multi_accept
off;
 work
er_connections
8192;
}

There are two adjustments that have a critical effect on the performance, namely, the
amount of worker processes and the connection limit. The first one, if set improperly,
may clutter particular cores of your CPU and leave other ones unused or underused.
Make sure the worker_processes match the quantity of cores in your CPU.

The second one, if set too low, could result in connections being refused; if set too
high, could overflow the RAM and cause a system-wide crash. Unfortunately, there
is no simple equation to calculate the value of the worker_connections directive;
you will need to base it on expected traffic estimations.

Chapter 3

[99]

Testing your server
The base configuration of your server is now established. In the following chapters,
we will advance to the http modules and how to create virtual hosts. But for now,
let's make sure that our setup is correct and suitable for production.

Creating a test server
In order to perform simple tests, such as connecting to the server with a web
browser, we need to set up a website for Nginx to serve. A test page comes with the
default package in the html folder (/usr/local/nginx/html/index.html) and the
original nginx.conf is configured to serve this page. Here is the section that we are
interested in for now:

http {
 include mime.types;
 default_type application/octet-stream;
 sendfile on;
 keepalive_timeout 65;
 server {
 listen 80;
 server_name localhost;
 location / {
 root html;
 index index.html index.htm;
 }
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root html;
 }
}

As you can already tell, this segment configures Nginx to serve a website:

By opening a listening socket on port 80
Accessible at the address: http://localhost/
The index page is index.html

•

•

•

Basic Nginx Configuration

[100]

For more details about these directives, please refer to Chapter 4, HTTP Configuration
and go to the HTTP module configuration section. Anyhow, fire up your favorite web
browser and visit http://localhost/:

You should be greeted with a welcome message; if you aren't, then check the
configuration again and make sure you reloaded Nginx in order to apply the changes.

Performance tests
Having configured the basic functioning and the architecture of your Nginx setup,
you may already want to proceed with running some tests. The methodology here
is experimental—run the tests, edit the configuration, reload the server, run the tests
again, edit the configuration again, and so on. Ideally, you should avoid running
the testing tool on the same computer that is used to run Nginx as it may cause the
results to be biased.

One could question the pertinence of running performance tests at this
stage. On one hand, virtual hosts and modules are not fully configured
yet and your website might use FastCGI applications (PHP, Python, and
so on). On the other hand, we are testing the raw performance of the
server without additional components, for example, to make sure that it
fully makes use of all CPU cores. Besides, it's always better to come up
with a polished configuration before the server is put into production.

We have retained three tools to evaluate the server performance here. All three
applications were specifically designed for load tests on web servers and have
different approaches due to their origin:

httperf: A relatively well-known open source utility developed by HP, for
Linux operating systems only
Autobench: Perl wrapper for httperf improving the testing mechanisms and
generating detailed reports
OpenWebLoad: Smaller scale open source load testing application; supports
both Windows and Linux platforms

The principle behind each of these tools is to generate a massive amount of HTTP
requests in order to clutter the server and study the results.

•

•

•

This material is copyright and is licensed for the sole use by Leif Steinbaugh on 26th August 2010

3717 Cedar Glen Way, Anacortes, 98221

Chapter 3

[101]

Httperf
Httperf is a simple command-line tool that can be downloaded from its official
website: http://www.hpl.hp.com/research/linux/httperf/. The source
comes as a tar.gz archive and needs to be compiled using the standard method:
./configure, make and make install. Once installed, you may execute the
following command:

[alex@example ~]$ httperf --server 192.168.1.10 --port 80 --uri /
index.html --rate 300 --num-conn 30000 --num-call 1 --timeout 5

Replace the values in the command above with your own:

--server: The website hostname you wish to test
--uri: The path of the file that will be downloaded
--rate: How many requests should be sent every second
--num-conn: The total amount of connections
--num-call: How many requests should be sent per connection
--timeout: Quantity of seconds elapsed before a request is considered lost

In this example, httperf will download http://192.168.1.10/index.html
repeatedly, 300 times per second, resulting in a total of 30,000 requests.

•

•

•

•

•

•

Basic Nginx Configuration

[102]

The results indicate the response times and the amount of successful requests. If the
success ratio is 100 percent or the response time near 0 ms, increase the request rate
and run the test again until the server shows signs of weakness. Once the results
begin to look a little less perfect, tweak the appropriate configuration directives and
run the test again.

Autobench
Autobench is a Perl script that makes use of httperf more efficiently—it runs
continuous tests and automatically increases request rates until your server gets
saturated. One of the interesting features of Autobench is that it generates a .tsv
report that you can open with various applications to generate graphs. You may
download the source code from the author's personal website: http://www.
xenoclast.org/autobench/. Once again, extract the files from the archive, run
make then make install.

Although it supports testing of multiple hosts at once, we will only be using the
single host test for more simplicity. The command we will execute resembles the
httperf one:

[alex@example ~]$ autobench --single_host --host1 192.168.1.10 --uri1 /
index.html --quiet --low_rate 20 --high_rate 200 --rate_step 20 --num_
call 10 --num_conn 5000 --timeout 5 --file results.tsv

The switches can be configured as follows:

--host1: The website host name you wish to test.
--uri1: The path of the file that will be downloaded.
--quiet: Does not display httperf information on the screen.
--low_rate: Connections per second at the beginning of the test.
--high_rate: Connections per second at the end of the test.
--rate_step: The number of connections to increase the rate by after
each test.
--num_call: How many requests should be sent per connection.
--num_conn: Total amount of connections.
--timeout: The number of seconds elapsed before a request is
considered lost.
--file: Export results as specified (.tsv file).

Once the test terminates, you end up with a .tsv file that you can import in
applications such as Microsoft Excel. Here is a graph generated from results
on a test server (note that the report file contains up to 10 series of statistics):

•

•

•

•

•

•

•

•

•

•

Chapter 3

[103]

As you can tell from the graph, this test server supports up to 600 requests per
second without a loss. Past this limit, some connections get dropped as Nginx cannot
handle the load. It stills gets up to over 1,500 successful requests per second at step 9.

Warning: These tests were carried out on a virtual machine and do not
reflect the actual capabilities of Nginx running on a production server.

OpenWebLoad
OpenWebLoad is a free open source application. It is available for both Linux and
Windows platforms and was developed in the early 2000s, back in the days of Web
1.0. A different approach is offered here—instead of throwing loads of requests
at the server and seeing how many are handled correctly, it will simply send as
many requests as possible using a variable amount of connections and report to
you every second.

You may download it from its official website: http://openwebload.
sourceforge.net. Extract the source from the .tar.gz archive, run
./configure, make and make install.

Basic Nginx Configuration

[104]

Its usage is simpler than the previous two utilities:

[alex@example ~]$ openload example.com/index.html 10

The first argument is the URL of the website you want to test. The second one is the
amount of connections that should be opened.

A new result line is produced every second. Requests are sent continuously until you
press the Enter key, following which, a result summary is displayed. Here is how to
decipher the output:

Tps (transactions per second): A transaction corresponds to a completed
request (back and forth)
MaTps: Average Tps over the last 20 seconds
Resp Time: Average response time for the elapsed second
Err (error rate): Errors occur when the server returns a response that is not
the expected HTTP 200 OK
Count: Total transaction count

You can fiddle with the amount of simultaneous connections and see how your
server performs in order to establish a balanced configuration for your setup.
Three tests were run here with a different amount of connections. The results
speak for themselves:

Test 1 Test 2 Test 3
Simultaneous connections 1 20 1000
Transactions per second (Tps) 67.54 205.87 185.07
Average response time 14 ms 91 ms 596 ms

•

•

•

•

•

Chapter 3

[105]

Too few connections result in a low Tps rate; however, the response times are
optimal. Too many connections produce a relatively high Tps, but the response
times are critically high. You thus need to find a happy medium.

Upgrading Nginx gracefully
There are many situations where you need to replace the Nginx binary, for example,
when you compile a new version and wish to put it in production or simply after
having enabled new modules and rebuilt the application. What most administrators
would do in this situation is stop the server, copy the new binary over the old
one, and start Nginx again. While this is not considered to be a problem for most
websites, there may be some cases where uptime is critical and connection losses
should be avoided at all costs. Fortunately, Nginx embeds a mechanism allowing
you to switch binaries with uninterrupted uptime—zero percent request loss is
guaranteed if you follow these steps carefully:

1. Replace the old Nginx binary (by default, /usr/local/nginx/sbin/nginx)
with the new one.

2. Find the pid of the Nginx master process, for example, with ps x | grep
nginx | grep master or by looking at the value found in the pid file.

3. Send a USR2 (12) signal to the master process—kill –USR2 ***, replacing
*** with the pid found in step 2. This will initiate the upgrade by renaming
the old .pid file and running the new binary.

4. Send a WINCH (28) signal to the old master process—kill –WINCH ***,
replacing *** with the pid found in step 2. This will engage a graceful
shutdown of the old worker processes.

5. Make sure that all the old worker processes are terminated, and then send a
QUIT signal to the old master process—kill –QUIT ***, replacing *** with
the pid found in step 2.

Congratulations! You have successfully upgraded Nginx and have not lost a
single connection.

Basic Nginx Configuration

[106]

Summary
This chapter provided a first approach of the configuration architecture by studying
the syntax and the core module directives that have an impact on the overall server
performance. We then went through a series of adjustments in order to fit your
own profile, followed by performance tests that have probably led you to fine-tune
some more.

This is just the beginning though—practically everything that we will be doing
from now on is to establish configuration sections. The next chapter will detail
more advanced directives by further exploring the module system and the exciting
possibilities that are offered to you.

HTTP Configuration
At this stage, we have a working Nginx setup—not only is it installed on the system
and launched automatically on startup, but it's also organized and optimized with
the help of basic directives. It's now time to go one step further into the configuration
by discovering the HTTP Core module. This module constitutes the essential
component of the HTTP configuration—it allows you to set up websites to be
served, also known as virtual hosts.

This chapter will cover:

An introduction to the HTTP Core module
The http / server / location structure
HTTP Core module directives, thematically
HTTP Core module variables
The in-depths of the location block

HTTP Core module
The HTTP Core module is the component that contains all the fundamental blocks,
directives, and variables of the HTTP server. It's enabled by default when you
configure the build (as described in Chapter 2); but as it turns out, it's actually
optional—you can decide not to include it in your custom build. Doing so will
completely disable all HTTP functionalities, and all the other HTTP modules will not
be compiled. Though obviously if you purchased this book, it's highly likely that you
are interested in the web serving capacities of Nginx, so you will have this enabled.

This module is the largest of all Nginx modules—it provides an impressive amount
of directives and variables. In order to understand all these new elements and how
they come into play, we first need to understand the logical organization introduced
by the three main blocks—http, server, and location.

•

•

•

•

•

HTTP Configuration

[108]

Structure blocks
In the previous chapter, we discovered the Core module by studying the default
Nginx configuration file—a sequence of directives and values, with no organization
whatsoever. Then came the Events module, which introduced the first block
(events). This block would be the only placeholder for all the directives brought
in by the Events module.

As it turns out, the HTTP module introduces three new logical blocks:

http: This block is inserted at the root of the configuration file. It allows you
to start defining directives and blocks from all modules related to the HTTP
facet of Nginx. Although there is no real purpose in doing so, the block can
be inserted multiple times—in which case the directive values inserted in the
last block will override the previous ones.
server: This block allows you to declare a website. In other words, make
it so that a specific website (identified by a hostname, for example,
www.mywebsite.com) becomes acknowledged by Nginx and let it have its
own configuration. This block can only be used within the http block.
location: Lets you define a group of settings to be applied to a particular
location on a website. The next part of this section provides more details
about the location block. This block can be used within a server block or
nested within another location block.

The following diagram summarizes the final structure by providing a couple of basic
examples corresponding to actual situations:

•

•

•

Chapter 4

[109]

The HTTP section, defined by the http block, encompasses the entire web-related
configuration. It may contain one or more server blocks, defining the domains
and sub-domains that you are hosting. For each of these websites, you have the
possibility to define location blocks that let you apply additional settings to a
particular request URI or request URIs matching a pattern.

Remember that the principle of setting inheritance applies here. If you define a
setting at the http block level (for example, gzip on to enable gzip compression),
the setting will preserve its value in the potentially incorporated server and
location blocks:

http {
 # Enable gzip compression at the http block level
 gzip on;

 server {
 server_name localhost;
 listen 80;

 # At this stage, gzip still set to on

 location /downloads/ {
 gzip off;
 # This directive only applies to documents found
 # in /downloads/
 }
 }
}

Module directives
At each of the three levels, directives can be inserted in order to affect the behavior
of the web server. The following is the list of all directives that are introduced by the
main HTTP module, grouped by thematic. For each directive, an indication regarding
the context is given—some cannot be used at certain levels, for instance, it would
make no sense to insert a server_name directive inside a location block. In that
extent, the table indicates the possible levels where each directive is allowed—the
http block, the server block, the location block, and additionally the if block,
later introduced by the Rewrite module.

Note that this documentation is valid as of stable version 0.7.66. Future
updates may alter the syntax of some directives or provide new features
that are not discussed here.

HTTP Configuration

[110]

Socket and host configuration
This set of directives will allow you to configure your virtual hosts. In practice,
this materializes by creating server blocks that you identify either by a host name
or by an IP address and port combination. In addition, some directives will let you
fine-tune your network settings by configuring TCP socket options.

Directive Description
listen

Context: server

Specifies the IP address and/or the port to be used by the
listening socket that will serve the website. Sites are generally
served on port 80 (the default value).
Syntax: listen [address][:port] [additional
options];

Additional options:
default: Specifies that this server block is to be
used as the default website for any request received
at the specified IP address and port
ssl: Specifies that the website should be served
using SSL
Other options are related to the bind and listen system
calls: backlog=num, rcvbuf=size, sndbuf=size,
accept_filter=filter, deferred, and bind

Examples:
listen 192.168.1.1:80;
listen 127.0.0.1;
listen 80 default;
listen [:::a8c9:1234]:80; # IPv6 ad
dresses can be put between square
brackets
listen 443 ssl;

•

•

•

Chapter 4

[111]

Directive Description
server_name

Context: server

Assigns one or more hostnames to the server block. When
Nginx receives an HTTP request, it matches the Host header
of the request against all the server blocks. The first server
block to match this hostname is selected.
Plan B: If no server block matches the desired host, Nginx
selects the first server block that matches the parameters
of the listen directive (such as listen *:80 would be a
catch-all for all requests received on port 80), giving priority
to the first block that has the default option enabled on the
listen directive.
Note that this directive accepts wildcards as well as regular
expressions (in which case, the hostname should start with
the ~ character).
Syntax: server_name hostname1 [hostname2…];
Examples:

server_name www.website.com;
server_name www.website.com web
site.com;
server_name *.website.com;
server_name .website.com; # combines
both *.website.com and website.com
server_name *.website.*;
server_name ~^\.example\.com$;

Note: You may use an empty string as the directive value
in order to catch all requests that do not come with a Host
header, but only after at least one regular name (or "_" for a
dummy host name):

server_name website.com "";
server_name _ "";

server_name_in_
redirect

Context: http,
server, location

This directive applies the case of internal redirects (for more
information about internal redirects, check the Rewrite Module
section below). If set to on, Nginx will use the first hostname
specified in the server_name directive. If set to off, Nginx
will use the value of the Host header from the HTTP request.
Syntax: on or off
Default value: on

server_name_in_redirect on;

HTTP Configuration

[112]

Directive Description
server_names_
hash_max_size

Context: http

Nginx uses hash tables for various data collections in order to
speed up the processing of requests. This directive defines the
maximum size of the server names hash table. If your server
uses a total of more than 512 hostnames, you will have to
increase this value.
Syntax: Numeric value
Default value: 512

server_names_hash_max_size 512;

server_names_
hash_bucket_size

Context: http

Defines the maximum length of an entry in the server
names hash table. If one of your hostnames is longer
than 32 characters, you will have to increase this value.
Syntax: Numeric value
Default value: 32 (or 64, or 128, depending on your processor
cache specifications).

server_names_hash_bucket_size 32;

port_in_redirect

Context: http,
server, location

In the case of a redirect, this directive defines whether
or not Nginx should append the port number to the
redirection URL.
Syntax: on or off
Default value: on

port_in_redirect on;

tcp_nodelay

Context: http,
server, location

Enables or disables the TCP_NODELAY socket option for
keep-alive connections only.
Quoting the Linux documentation on sockets programming:

TCP_NODELAY is for a specific purpose; to disable
the Nagle buffering algorithm. It should only be set
for applications that send frequent small bursts of
information without getting an immediate response,
where timely delivery of data is required (the canonical
example is mouse movements).

Syntax: on or off
Default value: on

tcp_nodelay on;

Chapter 4

[113]

Directive Description
tcp_nopush

Context: http,
server, location

Enables or disables the TCP_NOPUSH (FreeBSD) or
TCP_CORK (Linux) socket option. Note that this option only
applies if the sendfile directive is enabled. If tcp_nopush
is set to on, Nginx will attempt to transmit the entire HTTP
response headers in a single TCP packet.
Syntax: on or off
Default value: off

tcp_nopush off;

sendfile

Context: http,
server, location

If this directive is enabled, Nginx will use the sendfile
kernel call to handle file transmission. If disabled, Nginx will
handle the file transfer by itself. Depending on the physical
location of the file being transmitted (such as NFS) this option
may affect the server performance.
Syntax: on or off
Default value: off

sendfile off;

sendfile_max_
chunk

Context: http, server

This directive defines a maximum size of data to be used for
each call to sendfile (read above).
Syntax: Numeric value (size)

Default value: 0
send_lowat

Context: http,
server

An option allowing you to make use of the SO_SNDLOWAT
flag for TCP sockets under FreeBSD only. This value defines
the minimum number of bytes in the buffer for output
operations.
Syntax: Numeric value (size)
Default value: 0

reset_timedout_
connection

Context: http,
server, location

When a client connection times out, its associated information
may remain in memory depending on the state it was on.
Enabling this directive will erase all memory associated
to the connection after it times out.
Syntax: on or off
Default value: off

reset_timedout_connection off;

HTTP Configuration

[114]

Paths and documents
This section describes directives that configure the documents that should be served
for each website such as the document root, the site index, error pages, and so on.

Directive Description
root

Context: http,
server,
location, if

Variables
accepted

Defines the document root, containing the files you wish to serve to
your visitors.
Syntax: Directory path
Default value: html

root /home/website.com/public_html;

alias

Context:
location

Variables
accepted

alias is a directive that you place in a location block only. It
assigns a different path for Nginx to retrieve documents for a specific
request.
As an example, consider this configuration:

http {
 server {
 server_name localhost;
 root /var/www/website.com/html;
 location /admin/ {
 alias /var/www/locked/;
 }
 }
}

When a request for http://localhost/ is received, files are served
from the /var/www/website.com/html/ folder. However, if Nginx
receives a request for http://localhost/admin/, the path used
to retrieve the files is /home/website.com/locked/. Moreover,
the value of the document root directive (root) is not altered; this
procedure is invisible in the eyes of dynamic scripts.
Syntax: Directory (do not forget the trailing /) or file path

Chapter 4

[115]

Directive Description
error_page

Context: http,
server,
location, if

Variables
accepted

Allows you to affect URIs to HTTP response code and optionally to
substitute the code with another.

Syntax: error_page code1 [code2…] [=replacement code]
[=@block | URI]

Examples :
error_page 404 /not_found.html;
error_page 500 501 502 503 504 /server_error.html;
error_page 403 http://website.com/;
error_page 404 @notfound; # jump to a named
location block
error_page 404 =200 /index.html; # in case of
404 error, redirect to index.html with a 200
OK response code

if_modified_
since

Context: http,
server,
location

Defines how Nginx handles the If-Modified-Since HTTP header.
This header is mostly used by search engine spiders (such as Google
web crawling bots). The robot indicates the date and time of the last
pass; if the requested file was not modified since, the server simply
returns a 304 Not Modified response code with no body.
This directive accepts three values:

off: Ignores the If-Modified-Since header.
exact: Returns 304 Not Modified if the date and time
specified in the HTTP header are an exact match with the
actual requested file modification date. If the file modification
date is anterior or ulterior, the file is served normally (200 OK
response).
before: Returns 304 Not Modified if the date and time
specified in the HTTP header is anterior or equal to the
requested file modification date.

Syntax: if_modified_since off | exact | before
Default value: exact

if_modified_since exact;

•

•

•

HTTP Configuration

[116]

Directive Description
index

Context: http,
server,
location

Variables
accepted

Defines the default page that Nginx will serve if no filename is
specified in the request (in other words, the index page). You may
specify multiple filenames; the first file to be found will be served.
If none of the specified files are found, Nginx will either attempt to
generate an automatic index of the files, if the autoindex directive
is enabled (check the HTTP Autoindex module) or return a 403
Forbidden error page.
Optionally, you may insert an absolute filename (such as /page.html,
based from the document root directory) but only as the last argument
of the directive.
Syntax: index file1 [file2…] [absolute_file];
Default value: index.html

index index.php index.html index.htm;
index index.php index2.php /catchall.php;

recursive_
error_pages

Context: http,
server,
location

Sometimes an error page itself served by the error_page directive may
trigger an error, in which case, the error_page directive is used again
(recursively). This directive enables or disables recursive error pages.
Syntax: on or off
Default value: off

recursive_error_pages off;

try_files

Context:
location

Attempts to serve the specified files (arguments 1 to N-1), if none of
these files exist, jumps to the respective named location block (last
argument) or serves the specified URI.
Syntax: Multiple file paths, followed by a named location block
or a URI
Example:

location / {
 try_files $uri $uri.html $uri.php $uri.xml
@proxy;
}
the following is a "named location block"
location @proxy {
 proxy_pass 127.0.0.1:8080;

}

In this example, Nginx tries to serve files normally. If the request URI
does not correspond to any existing file, Nginx appends .html to the
URI and tries to serve the file again. If it still fails, it tries with .php,
then .xml. Eventually if all these possibilities fail, another location
block (@proxy) handles the request.

Chapter 4

[117]

Client requests
This section documents the way that Nginx will handle client requests. Among
other things, you are allowed to configure the keep-alive mechanism behavior
and possibly logging client requests into files.

Directive Description
keepalive_requests

Context: http, server,
location

Maximum amount of requests served over a single
keep-alive connection.
Syntax: Numeric value
Default value: 100

keepalive_requests 100;

keepalive_timeout

Context: http, server,
location

This directive defines the amount of seconds the server
will wait before closing a keep-alive connection.
The second (optional) parameter is transmitted as
the value of the Keep-Alive: timeout= HTTP
response header; the intended effect is to let the client
browser close the connection itself after this period has
elapsed. Note that some browsers ignore this setting;
Internet Explorer for instance automatically closes the
connection after 60-ish seconds.
Syntax: keepalive_timeout time1 [time2];
Default value: 75

keepalive_timeout 75;
keepalive_timeout 75 60;

send_timeout

Context: http, server,
location

The amount of time after which Nginx closes an
inactive connection. A connection becomes inactive
the moment a client stops transmitting data.
Syntax: Time value (seconds)
Default value: 60

send_timeout 60;

HTTP Configuration

[118]

Directive Description
client_body_in_file_
only

Context: http, server,
location

If this directive is enabled, the body of incoming HTTP
requests will be stored into actual files on the disk.
The client body corresponds to the client HTTP request
raw data, minus the headers (in other words, the
content transmitted in POST requests). Files are stored
as plain text documents.
This directive accepts three values:

off: Do not store the request body in a file
clean: Store the request body in a file and
remove the file after a request is processed
on: Store the request body in a file, but do not
remove the file after the request is processed
(not recommended unless for debugging
purposes)

Syntax: client_body_in_file_only on | clean
| off
Default value: off

client_body_file_only off;

•

•

•

client_body_in_single_
buffer

Context: http, server,
location

Defines whether or not Nginx should store the request
body in a single buffer in memory
Syntax: on or off
Default value: off

client_body_in_single_buffer off;

client_body_buffer_size

Context: http, server,
location

Specifies the size of the buffer holding the body of
client requests. If this size is exceeded, the body (or at
least part of it) will be written to the disk. Note that
if the client_body_in_file_only directive is
enabled, request bodies are always stored to a file on
the disk, regardless of their size (whether they fit in the
buffer or not).
Syntax: Size value
Default value: 8 k or 16 k (2 memory pages) depending
on your architecture

client_body_buffer_size 8k;

Chapter 4

[119]

Directive Description
client_body_temp_path

Context: http, server,
location

Allows you to define the path of the directory that will
store the client request body files.
An additional option lets you separate those files into a
folder hierarchy over up to three levels.
Syntax: client_body_temp_path path [level1]
[level2] [level3]

Default value: client_body_temp
client_body_temp_path /tmp/nginx_rbf;
client_body_temp_path temp 2; # Nginx
will create 2-digit folders to hold re
quest body files
client_body_temp_path temp 1 2 4; #
Nginx will create 3 levels of folders
(first level: 1 digit, second level: 2
digits, third level: 4 digits)

client_body_timeout

Context: http, server,
location

Defines the inactivity timeout while reading a client
request body. A connection becomes inactive the
moment the client stops transmitting data. If the delay
is reached, Nginx returns a 408 Request timeout
HTTP error.
Syntax: Time value (seconds)
Default value: 60

send_timeout 60;

client_header_buffer_
size

Context: http, server,
location

This directive allows you to define the size of the buffer
that Nginx allocates to request headers. Usually 1 k is
enough. However, in some cases, the headers contain
large chunks of cookie data or the request URI is
lengthy. If that is the case, then Nginx allocates one or
more larger buffers (the size of larger buffers is defined
by the large_client_header_buffers directive).
Syntax: Size value
Default value: 1 k

client_header_buffer_size 1k;

client_header_timeout

Context: http, server,
location

Defines the inactivity timeout while reading a client
request header. A connection becomes inactive the
moment the client stops transmitting data. If the delay
is reached, Nginx returns a 408 Request timeout
HTTP error.
Syntax: Time value (seconds)
Default value: 60

send_timeout 60;

HTTP Configuration

[120]

Directive Description
client_max_body_size

Context: http, server,
location

It is the maximum size of a client request body. If
this size is exceeded, Nginx returns a 413 Request
entity too large HTTP error. This setting is
particularly important if you are going to allow users
to upload files to your server over HTTP.
Syntax: Size value
Default value: 1 m;

client_max_body_size 1m;

large_client_header_
buffers

Context: http, server,
location

Defines the amount and size of larger buffers to be
used for storing client requests, in case the default
buffer (client_header_buffer_size) was
insufficient.
Each line of the header must fit in the size of a single
buffer. If the request URI line is greater than the size
of a single buffer, Nginx returns the 414 Request
URI too large error. If another header line exceeds
the size of a single buffer, Nginx returns a 400 Bad
request error.
Syntax: large_client_header_buffers amount
size

Default value: 4 buffers of 4 or 8 kilobytes (1 memory
page, the size of a page depends on your architecture)

large_client_header_buffers 4 4k;

lingering_time

Context: http, server,
location

This directive applies to client requests with a request
body. As soon as the amount of uploaded data exceeds
max_client_body_size, Nginx immediately
sends a 413 Request entity too large HTTP
error response. However, most browsers continue
uploading data regardless of that notification. This
directive defines the amount of time Nginx should
wait after sending this error response before closing
the connection.
Syntax: Numeric value (time)
Default value: 30 seconds

Chapter 4

[121]

Directive Description
lingering_timeout

Context: http, server,
location

This directive defines the amount of time that Nginx
should wait between two read operations before
closing the client connection.
Syntax: Numeric value (time)
Default value: 5 seconds

ignore_invalid_headers

Context: http, server

If this directive is disabled, Nginx returns a 400 Bad
Request HTTP error in case request headers are
misformed.
Syntax: on or off
Default value: on

MIME Types
Nginx offers two particular directives that will help you configure MIME types:
types and default_type, which defines the default MIME types for documents.
This will affect the Content-Type HTTP header sent within responses. Read on.

Directive Description
types

Context: http,
server, location

This directive allows you to establish correlations between
MIME types and file extensions. It’s actually a block accepting
a particular syntax:

types {
 mimetype1 extension1;
 mimetype2 extension2 [extension3…];
 […]
}

When Nginx serves a file, it checks the file extension in order
to determine the MIME type. The MIME type is then sent as
the value of the Content-Type HTTP header in the response.
This header usually affects the way browsers handle files. For
example, if the MIME type is application/octet-stream, the
browser downloads the file to the disk instead of displaying
it. If the MIME type is text/plain, the file will be displayed as
plain text in the browser without HTML rendering.

Nginx includes a basic set of MIME types as a standalone file
(mime.types) to be included with the include directive:

include mime.types;

HTTP Configuration

[122]

Directive Description
This file already covers the most important file extensions so
you will probably not need to edit it. If the extension of the
served file is not found within the listed types, the default type
is used, as defined by the default_type directive (read below).
Note that you may override the list of types by re-declaring the
types block. A useful example would be to force all files in a
folder to be downloaded instead of being displayed:

http {
 include mime.types;
 […]
 location /downloads/ {
 # removes all MIME types
 types { }
 default_type application/octet-stream;
 }
 […]
}

Note that some browsers ignore MIME types and may still
display files if their filename ends with a known extension
such as .html or .txt.

Default values, if the mime.types file is not included, are:
types {
 text/html html;
 image/gif gif;
 image/jpeg jpg;
}

default_type

Context: http,
server, location

Defines the default MIME type. When Nginx serves a file, the
file extension is matched against the known types declared
within the types block in order to return the proper MIME type
as value of the Content-Type HTTP response header. If the
extension doesn’t match any of the known MIME types, the
value of the default_type directive is used.

Syntax: MIME type.
Default value: text/plain.
default_type text/plain;

types_hash_max_
size

Context: http,
server, location

Defines the maximum size of an entry in the MIME types
hash table.
Syntax: Numeric value.

Default value: 4 k or 8 k (1 line of CPU cache)

Chapter 4

[123]

Limits and restrictions
This set of directives will allow you to add restrictions that apply when a client
attempts to access a particular location or document on your server. Note that
you will find additional directives for restricting access in the next chapter.

Directive Description
limit_except

Context:
location

This directive allows you to prevent the use of all HTTP methods,
except the ones that you explicitly allow.
Within a location block, you may want to restrict the use of some
HTTP methods, such as forbid clients from sending POST requests.
You need to define two elements—firstly, the methods that are
not forbidden (the allowed methods; all others will be forbidden).
Secondly, the audience that is affected by the restriction.

location /admin/ {
 limit_except GET {
 allow 192.168.1.0/24;
 deny all;
 }
}

This example applies a restriction to the /admin/ location—all
visitors are only allowed to use the GET method. Visitors that have a
local IP address, as specified with the allow directive (detailed in the
HTTP Access module), are not affected by this restriction. If a visitor
uses a forbidden method, Nginx will return in a 403 Forbidden
HTTP error. Note that the GET method implies the HEAD method
(if you allow GET, both GET and HEAD are allowed).
The syntax is particular:

limit_except METHOD1 [METHOD2…] {
 allow | deny | auth_basic | auth_basic_user_file
| proxy_pass | perl;
}

The directives that you are allowed to insert within the block are
documented in their respective module section.

limit_rate

Context: http,
server,
location, if

Allows you to limit the transfer rate of individual client connections.
The rate is expressed in bytes per second:

limit_rate 500k;

This will limit connection transfer rates to 500 kilobytes per
second. If a client opens two connections, the client will be
allowed 2 * 500 kilobytes.
Syntax: Size value

Default value: No limit

HTTP Configuration

[124]

Directive Description
limit_rate_
after

Context: http,
server,
location, if

Defines the amount of data transferred before the limit_rate
directive takes effect.

limit_rate 10m;

Nginx will send the first 10 megabytes at maximum speed. Past
this size, the transfer rate is limited by the value specified with the
limit_rate directive (see above). Similar to the limit_rate
directive, this setting only applies to a single connection.
Syntax: Size value
Default: None

satisfy

Context:
location

The satisfy directive defines whether clients require all
access conditions to be valid (satisfy all) or at least one
(satisfy any).

location /admin/ {
 allow 192.168.1.0/24;
 deny all;
 auth_basic "Authentication required";
 auth_basic_user_file conf/htpasswd;
}

In the previous example, there are two conditions for clients to be able
to access the resource:

Through the allow and deny directives (HTTP Access
module), we only allow clients that have a local IP address;
other clients are denied access
Through the auth_basic and auth_basic_user_file
directives (HTTP Auth_basic module), we only allow clients
that provide a valid username and password

With satisfy all, the client must satisfy both conditions in order
to gain access to the resource. With satisfy any, if the client
satisfies either condition, they are granted access.
Syntax: satisfy any | all
Default value: all

satisfy all;

•

•

Chapter 4

[125]

Directive Description
internal

Context:
location

This directive specifies that the location block is internal; in other
words, the specified resource cannot be accessed by external requests.

server {
 […]
 server_name .website.com;
 location /admin/ {
 internal;
 }
}

With the previous configuration, clients will not be able to browse
http://website.com/admin/. Such requests will be met with 404
Not found errors. The only way to access the resource is via internal
redirects (check the Rewrite module section for more information on
internal redirects).

File processing and caching
It's important for your website to be built upon solid foundations. File access
and caching is a critical aspect of web serving. In this perspective, Nginx lets
you perform precise tweaking with the use of the following directives:

Directive Description
direction

Context: http, server,
location

If this directive is enabled, files with a size greater than
the specified value will be read with the Direct I/O system
mechanism. This allows Nginx to read data from the storage
device and place it directly in memory with no intermediary
caching process involved. Enabling this directive will
automatically disable the sendfile directive as they cannot
be used together.

Syntax: Size value, or off

Default value: off
directio 5m;

HTTP Configuration

[126]

Directive Description
open_file_cache

Context: http, server,
location

This directive allows you to enable the cache which stores
information about open files. It does not actually store file
contents itself but only information such as:

File descriptors (file size, modification time, and
so on).
The existence of files and directories.
File errors, such as Permission denied, File not
found, and so on. Note that this can be disabled with
the open_file_cache_errors directive.

This directive accepts two arguments:
max=X, where X is the amount of entries that the cache
can store. If this amount is reached, older entries will
be deleted in order to leave room for newer entries.
Optionally inactive=Y, where Y is the amount
of seconds that a cache entry should be stored. By
default, Nginx will wait 60 seconds before clearing a
cache entry. If the cache entry is accessed, the timer
is reset. If the cache entry is accessed more than the
value defined by open_file_cache_min_uses, the
cache entry will not be cleared (until Nginx runs out of
space and decides to clear out older entries).

Syntax: open_file_cache max=X [inactive=Y] | off

Default value: off
open_file_cache max=5000 inactive=180;

•

•
•

•

•

open_file_cache_
errors

Context: http, server,
location

Enables or disables the caching of file errors with the
open_file_cache directive (read above).
Syntax: on or off
Default value: off

open_file_cache_errors on;

Chapter 4

[127]

Directive Description
open_file_cache_
min_uses

Context: http, server,
location

By default, entries in the open_file_cache are cleared
after a period of inactivity (60 seconds, by default). If there is
activity though, you can prevent Nginx from removing the
cache entry. This directive defines the amount of time an entry
must be accessed in order to be eligible for protection.

open_file_cache_min_uses 3;

If the cache entry is accessed more than three times, it becomes
permanently active and is not removed until Nginx decides
to clear out older entries to free up some space.
Syntax: Numeric value

Default value: 1
open_file_cache_
valid

Context: http, server,
location

The open file cache mechanism is important, but cached
information quickly becomes obsolete especially in the case
of a fast-moving filesystem. In that perspective, information
needs to be re-verified after a short period of time. This
directive specifies the amount of seconds that Nginx will
wait before revalidating a cache entry.
Syntax: Time value (in seconds)
Default value: 60

open_file_cache_valid 60;

Other directives
The following directives relate to various aspects of the web server—logging, URI
composition, DNS, and so on.

Directive Description
log_not_found

Context: http, server,
location

Enables or disables logging of 404 Not found HTTP errors.
If your logs get filled with 404 errors due to missing favicon.
ico or robots.txt files, you might want to turn this off.
Syntax: on or off
Default value: on

log_not_found on;

log_subrequest

Context: http, server,
location

Enables or disables logging of sub-requests triggered by
internal redirects (see the Rewrite module section) or SSI
requests (see the Server Side Includes module section).
Syntax: on or off
Default value: off

log_subrequest off;

HTTP Configuration

[128]

Directive Description
merge_slashes

Context: http, server,
location

Enabling this directive will have the effect to merge multiple
consecutive slashes in a URI. It turns out to be particularly
useful in situations resembling the following:

server {
 […]
 server_name website.com;
 location /documents/ {
 type { }
 default_type text/plain;
 }
}

By default, if the client attempts to access http://website.
com//documents/ (note the // in the middle of the URI),
Nginx will return a 404 Not found HTTP error. If you enable
this directive, the two slashes will be merged into one and the
location pattern will be matched.
Syntax: on or off
Default value: off

merge_slashes off;

msie_padding

Context: http, server,
location

This directive was specifically designed for the Microsoft
Internet Explorer browser family. In the case of error pages
(with error code 400 or higher), if the length of the response
body is less than 512 bytes, these browsers will display
their own error page, sometimes at the expense of a more
informative page provided by the server.
If you enable this option, the body of responses with a status
code of 400 or higher will be padded to 512 bytes.
Syntax: on or off
Default value: off

msie_padding off;

msie_refresh

Context: http, server,
location

It is another MSIE-specific directive that will take effect in the
case of HTTP response codes 301 Moved permanently
and 302 Moved temporarily. When enabled, Nginx sends
clients running an MSIE browser a response body containing a
refresh meta tag (<meta http-equiv="Refresh"…>) in order
to redirect the browser to the new location of the requested
resource.
Syntax: on or off
Default value: off

msie_refresh off;

Chapter 4

[129]

Directive Description
resolver

Context: http, server,
location

Specifies the name server that should be employed by Nginx to
resolve hostnames to IP addresses and vice-versa.
Syntax: IP address
Default value: None (system default)

resolver 127.0.0.1; # use local DNS

resolver_timeout

Context: http, server,
location

Timeout for a hostname resolution query.
Syntax: Time value (in seconds)
Default value: 30

resolver_timeout 30s;

server_tokens

Context: http, server,
location

This directive allows you to define whether or not Nginx
should inform the clients of the running version number.
There are two situations where Nginx indicates its
version number:

In the server header of HTTP responses (such as
nginx/0.7.66). If you set server_tokens to off,
the server header will only indicate Nginx.
On error pages, Nginx indicates the version number
in the footer. If you set server_tokens to off, the
footer of error pages will only indicate nginx.

If you are running an older version of Nginx and do not plan to
update it, it might be a good idea to hide your version number.
Syntax: on or off
Default value: on

server_tokens on;

•

•

underscores_in_
headers

Context: http, server

Allows or disallows underscores in custom HTTP header
names. If this directive is set to on, the following example
header is considered valid by Nginx: test_header: value.
Syntax: on or off
Default value: off

underscores_in_headers off;

variables_hash_
max_size

Context: http

This directive defines the maximum size of the variables' hash
table. If your server configuration uses a total of more than 512
variables, you will have to increase this value.
Syntax: Numeric value

Default value: 512

HTTP Configuration

[130]

Directive Description
variables_hash_
bucket_size

Context: http

Defines the maximum length of a variable in the variables hash
table. If one of your variables is longer than 64 characters, you
will have to increase this value.
Syntax: Numeric value

Default value: 64 (or 32, or 128, depending on your processor
cache specifications)

post_action

Context: http, server,
location, if

Defines a post-completion action, a URI that will be called by
Nginx after the request has been completed.
Syntax: URI or named location block.
Example:

location /payment/ {
 post_action /scripts/done.php;
}

Module variables
The HTTP Core module introduces a large set of variables that you can use within
the value of directives. Be careful though, as only a handful of directives accept
variables in the definition of their value. If you insert a variable in the value of a
directive that does not accept variables, no error is reported; instead the variable
name appears as raw text.

There are three different kinds of variables that you will come across. The first set
represents the values transmitted in the headers of the client request. The second set
corresponds to the headers of the response sent to the client, and finally, the third set
comprises variables that are completely generated by Nginx.

Request headers
Nginx lets you access the client request headers under the form of variables that you
will be able to employ later on in the configuration:

Variable Description
$http_host Value of the Host HTTP header, a string indicating the hostname

that the client is trying to reach.
$http_user_agent Value of the User-Agent HTTP header, a string indicating the

web browser of the client.
$http_referer Value of the Referer HTTP header, a string indicating the URL

of the previous page from which the client comes.

Chapter 4

[131]

Variable Description
$http_via Value of the Via HTTP header, which informs us about possible

proxies used by the client.
$http_x_forwarded_
for

Value of the X-Forwarded-For HTTP header, which shows the
actual IP address of the client if the client is behind a proxy.

$http_cookie Value of the Cookie HTTP header, which contains the cookie data
sent by the client.

$http_... Additional headers sent by the client can be retrieved using
$http_ followed by the header name in lowercase and with
dashes (-) replaced by underscores (_).

Response headers
In a similar fashion, you are allowed to access the HTTP headers of the response that
was sent to the client. These variables are not available at all times—they will only
carry a value after the response is sent, for instance, at the time of writing messages
in the logs.

Variable Description
$sent_http_content_
type

Value of the Content-Type HTTP header, indicating the
MIME type of the resource being transmitted.

$sent_http_content_
length

Value of the Content-Length HTTP header informing the
client of the response body length.

$sent_http_location Value of the Location HTTP header, which indicates that
the location of the desired resource is different than the one
specified in the original request.

$sent_http_last_
modified

Value of the Last-Modified HTTP header corresponding to
the modification date of the requested resource.

$sent_http_connection Value of the Connection HTTP header, defining whether the
connection will be kept alive or closed.

$sent_http_keep_alive Value of the Keep-Alive HTTP header that defines the
amount of time a connection will be kept alive.

$sent_http_transfer_
encoding

Value of the Transfer-Encoding HTTP header, giving
information about the response body encoding method
(such as compress, gzip).

$sent_http_cache_
control

Value of the Cache-Control HTTP header, telling us whether
the client browser should cache the resource or not.

$sent_http_... Additional headers sent to the client can be retrieved using
$sent_http_ followed by the header name, in lowercase
and with dashes (-) replaced by underscores (_).

HTTP Configuration

[132]

Nginx generated
Apart from the HTTP headers, Nginx provides a large amount of variables
concerning the request, the way it was and will be handled, as well as settings
in use with the current configuration.

Variable Description
$arg_XXX Allows you to access the query string (GET parameters), where

XXX is the name of the parameter you want to utilize.
$args All the arguments of the query string combined together.
$binary_remote_
addr

IP address of the client as binary data (4 bytes).

$body_bytes_sent Amount of bytes sent in the body of the response.
$content_length Equates to the Content-Length HTTP header.
$content_type Equates to the Content-Type HTTP header.
$cookie_XXX Allows you to access cookie data where XXX is the name of the

parameter you want to utilize.
$document_root Returns the value of the root directive for the current request.
$document_uri Returns the current URI of the request. It may differ from the

original request URI if internal redirects were performed. It is
identical to the $uri variable.

$host This variable equates to the Host HTTP header of the request.
Nginx itself gives this variable a value for cases where the Host
header is not provided in the original request.

$hostname Returns the system hostname of the server computer
$is_args If the $args variable is defined, $is_args equates to ?. If

$args is empty, $is_args is empty as well.
$limit_rate Returns the per-connection transfer rate limit, as defined by the

limit_rate directive. You are allowed to edit this variable by
using set (directive from the Rewrite module):

set $limit_rate 128k;

$nginx_version Returns the version of Nginx you are running.
$pid Returns the Nginx process identifier.
$query_string Identical to $args.
$remote_addr Returns the IP address of the client.
$remote_port Returns the port of the client socket.
$remote_user Returns the client username if they used authentication.
$realpath_root Returns the document root in the client request, with symbolic

links resolved into the actual path.
$request_body Returns the body of the client request, or - if the body is empty.

Chapter 4

[133]

Variable Description
$request_body_
file

If the request body was saved (see the client_body_in_
file_only directive) this variable indicates the path of the
temporary file

$request_
completion

Returns OK if the request is completed, an empty string otherwise

$request_filename Returns the full file name served in the current request.
$request_method Indicates the HTTP method used in the request, such as GET

or POST
$request_uri Corresponds to the original URI of the request, remains

unmodified all along the process (unlike $document_uri/$uri)
$scheme Returns either http or https, depending on the request
$server_addr Returns the IP address of the server. Be aware as each use of the

variable requires a system call, which could potentially affect
overall performance in the case of high-traffic setups.

$server_name Indicates the value of the server_name directive that was used
while processing the request

$server_port Indicates the port of the server socket that received the
request data

$server_protocol Returns the protocol and version, usually HTTP/1.0 or
HTTP/1.1

$uri Identical to $document_uri

The Location block
We have established that Nginx offers you the possibility to fine-tune your
configuration down to three levels—at the protocol level (http block), at the server
level (server block), and at the requested URI level (location block). Let us now
detail the latter.

Location modifier
Nginx allows you to define location blocks by specifying a pattern that will be
matched against the requested URI.

server {
 server_name website.com;
 location /admin/ {
 # The configuration you place here only applies to
 # http://website.com/admin/
 }
}

HTTP Configuration

[134]

Instead of a simple folder name, you can indeed insert complex patterns. The syntax
of the location block is:

location [=|~|~*|^~|@] pattern { ... }

The first optional argument is a symbol called location modifier that will
define the way Nginx matches the pattern and also defines the very nature of
the pattern (simple string or regular expression). The following table details the
different behaviors:

Modifier Description
= The location URI must match the specified pattern exactly. The pattern here

is limited to a simple literal string; you cannot use a regular expression.
server {
 server_name website.com;
 location = /abcd {
 […]
 }
}

The configuration in the location block:
Applies to http://website.com/abcd (exact match)
Applies to http://website.com/ABCD (case-sensitive if your
operating system uses case-sensitive filenames)
Applies to http://website.com/abcd?param1¶m2
(regardless of query string arguments)
Does not apply to http://website.com/abcd/ (trailing slash)
Does not apply to http://website.com/abcde (extra
characters after the specified pattern)

•

•

•

•
•

Chapter 4

[135]

Modifier Description
(None) The location URI must begin with the specified pattern. You may not use

regular expressions.
server {
 server_name website.com;
 location /abcd {
 […]
 }
}

The configuration in the location block:
Applies to http://website.com/abcd (exact match)
Applies to http://website.com/ABCD (case-sensitive if your
operating system uses case-sensitive filenames)
Applies to http://website.com/abcd?param1¶m2
(regardless of query string arguments)
Applies to http://website.com/abcd/ (trailing slash)
Applies to http://website.com/abcde (extra characters after
the specified pattern)

•

•

•

•
•

~ The requested URI must be a case-sensitive match to the specified
regular expression.

server {
 server_name website.com;
 location ~ ^/abcd$ {
 […]
 }
}

The ^/abcd$ regular expression used in this example specifies that the
pattern must begin (^) with /, be followed by abc, and finish ($) with d.
Consequently, the configuration in the location block:

Applies to http://website.com/abcd (exact match)
Does not apply to http://website.com/ABCD (case-sensitive)
Applies to http://website.com/abcd?param1¶m2
(regardless of query string arguments)
Does not apply to http://website.com/abcd/ (trailing slash)
due to the specified regular expression
Does not apply to http://website.com/abcde (extra
characters) due to the specified regular expression

Note: With operating systems such as Microsoft Windows, ~ and ~* are
both case-insensitive, as the OS is case-insensitive itself.

•

•

•

•

•

HTTP Configuration

[136]

Modifier Description
~* The requested URI must be a case-insensitive match to the specified

regular expression.
server {
 server_name website.com;
 location ~* ^/abcd$ {
 […]
 }
}

The regular expression used in the example is similar to the previous one.
Consequently, the configuration in the location block:

Applies to http://website.com/abcd (exact match)
Applies to http://website.com/ABCD (case-insensitive)
Applies to http://website.com/abcd?param1¶m2
(regardless of query string arguments)
Does not apply to http://website.com/abcd/ (trailing slash)
due to the specified regular expression
Does not apply to http://website.com/abcde (extra
characters) due to the specified regular expression

•

•

•

•

•

^~ Similar to the no symbol behavior, the location URI must begin with the
specified pattern. The difference is that if the pattern is matched, Nginx
stops searching for other patterns (read the section below).

@ Defines a named location block. These blocks cannot be accessed by the
client but only by internal requests generated by other directives such as
try_files or error_page.

Search order and priority
Since it's possible to define multiple location blocks with different patterns, you
need to understand that when Nginx receives a request, it searches for the location
block that best matches the requested URI:

server {
 server_name website.com;
 location /files/ {"
 # applies to any request starting with "/files/"
 # for example /files/doc.txt, /files/, /files/temp/
 }
 location = /files/ {
 # applies to the exact request to "/files/"

Chapter 4

[137]

 # and as such does not apply to /files/doc.txt
 # but only /files/
 }
}

When a client visits http://website.com/files/doc.txt, the first location block
applies. However, when they visit http://website.com/files/, the second block
applies (even though the first one matches) because it has priority over the first one
(it is an exact match).

The order you established in the configuration file (placing the /files/ block before
the = /files/ block) is irrelevant. Nginx will search for matching patterns in a
specific order:

1. location blocks with the = modifier: If the specified string exactly matches
the requested URI, Nginx retains the location block

2. location blocks with no modifier: If the specified string exactly matches the
requested URI, Nginx retains the location block

3. location blocks with the ^~ modifier: If the specified string matches the
beginning of the requested URI, Nginx retains the location block

4. location blocks with ~ or ~* modifier: If the regular expression matches the
requested URI, Nginx retains the location block

5. location blocks with no modifier: If the specified string matches the
beginning of the requested URI, Nginx retains the location block

In that extent, the ^~ modifier begins to make sense, and we can envision cases
where it becomes useful.

Case 1:
server {
 server_name website.com;
 location /doc {
 […] # requests beginning with "/doc"
 }
 location ~* ^/document$ {
 […] # requests exactly matching "/document"
 }
}

One might wonder when a client requests http://website.com/document, which
location block applies? Indeed, both blocks match this request. Again, the answer
does not lie in the order the blocks appear in the configuration files. In this case, the
second location block will apply as the ~* modifier has priority over the other.

HTTP Configuration

[138]

Case 2:
server {
 server_name website.com;
 location /document {
 […] # requests beginning with "/document"
 }
 location ~* ^/document$ {
 […] # requests exactly matching "/document"
 }
}

The question remains the same—what happens when a client sends a request
to download http://website.com/document? There is a trick here. The string
specified in the first block now exactly matches the requested URI. As a result,
Nginx prefers it over the regular expression.

Case 3:
server {
 server_name website.com;
 location ^~ /doc {
 […] # requests beginning with "/doc"
 }
 location ~* ^/document$ {
 […] # requests exactly matching "/document"
 }
}

This last case makes use of the ^~ modifier. Which block applies when a client visits
http://website.com/document? Answer: The first block. The reason being that ^~
has priority over ~*. As a result, any request with a URI beginning with /doc will
be affected to the first block, even if the request URI matches the regular expression
defined in the second block.

Chapter 4

[139]

Summary
All along this chapter, we studied key concepts of the Nginx HTTP configuration.
First, we learned about creating virtual hosts by declaring server blocks. Then
we discovered the directives and variables of the HTTP Core module that can be
inserted within those blocks and eventually understood the mechanisms governing
the location block.

The job is done—your server now actually serves websites. We are going to take it
one step further by discovering the modules that make up the power of Nginx. The
next chapter will deal with advanced topics such as the Rewrite and SSI modules, as
well as additional components of the HTTP server.

Module Configuration
The true richness of Nginx lies within its modules. The entire application is built
on a modular system, and each module can be enabled or disabled at compile time.
Some bring up simple functionality such as the Autoindex module that generates
a listing of the files in a directory. Some will transform your perception of a web
server (such as the Rewrite module). Developers are also invited to create their own
modules; a quick overview of the third-party module system can be found at the end
of the chapter.

This chapter covers:

The Rewrite module, which does more than just rewriting URIs
The SSI module, a server-side scripting language
Additional modules enabled in the default Nginx build
Optional modules that must be enabled at compile time
A quick note on third-party modules

Rewrite module
This module, in particular, brings much more functionality to Nginx than a simple
set of directives. It defines a whole new level of request processing that will be
explained all along this section.

Initially, the purpose of this module (as the name suggests) is to perform URL rewriting.
This mechanism allows you to get rid of ugly URLs containing multiple parameters,
for instance, http://example.com/article.php?id=1234&comment=32—such URLs
being particularly uninformative and meaningless for a regular visitor. Instead, links
to your website will contain useful information that indicate the nature of the page
you are about to visit. The URL given in the example becomes http://website.com/
article-1234-32-US-economy-strengthens.html. This solution is more interesting
for your visitors, but also for search engines—URL rewriting is a key element to Search
Engine Optimization (SEO).

•
•
•
•
•

Module Configuration

[142]

The principle behind this mechanism is simple—it consists of rewriting the URI of
the client request after it is received, before serving the file. Once rewritten, the URI
is matched against location blocks in order to find the configuration that should be
applied to the request. The technique is further detailed in the coming sections.

Reminder on regular expressions
First and foremost, this module requires a certain understanding of regular
expressions. Indeed, URL rewriting is performed by the rewrite directive,
which accepts a pattern followed by the replacement URI.

It's a vast topic—entire books are dedicated to explaining the ins and outs. However,
the simplified approach that we are about to examine should be more than sufficient
to make the most of the mechanism.

Purpose
The first question we must answer is: What's the purpose of regular expressions? To
put it simply—the main purpose is to verify that a string matches a pattern. The said
pattern is written in a particular language that allows defining extremely complex
and accurate rules.

String Pattern Matches? Explanation
hello ^hello$ Yes The string begins by character h (^h), followed by

e, l, l, and then finishes by o (o$).
hell ^hello$ No The string begins by character h (^h), followed by

e, l, l but does not finish by o.
Hello ^hello$ Depends If the engine performing the match is case-sensitive,

the string doesn't match the pattern.

This concept becomes a lot more interesting when complex patterns are employed,
such as one that validates an e-mail address: ^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-
Z]{2,4}$. Validating the well-forming of an e-mail address programmatically would
require a great deal of code, while all the work can be done with a single regular
expression pattern matching.

PCRE syntax
The syntax that Nginx employs originates from the Perl Compatible Regular
Expression (PCRE) library, which (if you remember Chapter 2) is a pre-requisite for
making your own build (unless you disable modules that make use of it). It's the
most commonly-used form of regular expression, and nearly everything you learn
here remains valid for other language variations.

Chapter 5

[143]

In its simplest form, a pattern is composed of one character, for example, x. We can
match strings against this pattern. Does example match the pattern x? Yes, example
contains the character x. It can be more than one specific character—the pattern
[a-z] matches any character between a and z, or even a combination of letters and
digits: [a-z0-9]. In consequence, the pattern hell[a-z0-9] validates the following
strings: hello and hell4, but not hell or hell!.

You probably noticed that we employed the characters [and]. These are called
metacharacters and have a special effect on the pattern. There are a total of 11
metacharacters, and all play a different role. If you want to actually create a pattern
containing one of these characters, you need to escape them with the \ character.

Metacharacter Description
^
Beginning

The entity after this character must be found at the beginning.
Example pattern: ^h
Matching strings: hello, h, hh
Non-matching strings: character, ssh

$
End

The entity before this character must be found at the end.
Example pattern: e$
Matching strings: sample, e, file
Non-matching strings: extra, shell

.
Any

Matches any character.
Example pattern: hell.
Matching strings: hello, hellx, hell5, hell!
Non-matching strings: hell, helo

[]
Set

Matches any character within the specified set.
Syntax: [a-z] for a range, [abcd] for a set, and [a-z0-9] for
two ranges
Example pattern: hell[a-y123]
Matching strings: hello, hell1, hell2, hell3
Non-matching strings: hellz, hell4, heloo

[^]
Negate set

Matches any character that is not within the specified set.
Example pattern: hell[^a-np-z0-9]
Matching strings: hello, hell;
Non-matching strings: hella, hell5

Module Configuration

[144]

Metacharacter Description
|

Alternation

Matches the entity placed either before or after the |.
Example pattern: hello|welcome
Matching strings: hello, welcome, helloes, awelcome
Non-matching strings: hell, ellow, owelcom

()

Grouping

Groups a set of entities, often to be used in conjunction with |.
Example pattern: ^(hello|hi) there$
Matching strings: hello there, hi there.
Non-matching strings: hey there, ahoy there

\

Escape

Allows you to escape special characters.
Example pattern: Hello\.
Matching strings: Hello., Hello. How are you?, Hi! Hello...
Non-matching strings: Hello, Hello, how are you?

Quantifiers
So far, you are able to express simple patterns with a limited number of characters.
Quantifiers allow you to extend the amount of accepted entities:

Quantifier Description
*

0 or more times

The entity preceding * must be found 0 or more times.
Example pattern: he*llo
Matching strings: hllo, hello, heeeello
Non-matching strings: hallo, ello

+

1 or more times

The entity preceding + must be found 1 or more times.
Example pattern: he+llo
Matching strings: hello, heeeello
Non-matching strings: hllo, helo

?

0 or 1 time

The entity preceding ? must be found 0 or 1 time.
Example pattern: he?llo
Matching strings: hello, hllo
Non-matching strings: heello, heeeello

{x}

x times

The entity preceding {x} must be found x times.
Example pattern: he{3}llo
Matching strings: heeello, oh heeello there!
Non-matching strings: hello, heello, heeeello

Chapter 5

[145]

Quantifier Description
{x,}

At least x times

The entity preceding {x,} must be found at least x times.
Example pattern: he{3}llo
Matching strings: heeello, heeeeeeello
Non-matching strings: hllo, hello, heello

{x,y}

x to y times

The entity preceding {x,y} must be found between x and y times.
Example pattern: he{2,4}llo
Matching strings: heello, heeello, heeeello
Non-matching strings: hello, heeeeello

As you probably noticed, the { and } characters in the regular expressions conflict
with the block delimiter of the Nginx configuration file syntax language. If you want
to write a regular expression pattern that includes curly brackets, you need to place
the pattern between quotes (single or double quotes):

rewrite hel{2,}o /hello.php; # invalid
rewrite "hel{2,}o" /hello.php; # valid
rewrite 'hel{2,}o' /hello.php; # valid

Captures
One last feature of the regular expression mechanism is the ability to capture
sub-expressions. Whatever text is placed between parentheses () is captured and
can be used after the matching process. Here are a couple of examples to illustrate
the principle:

Pattern String Captured
^(hello|hi) (sir|mister)$ hello sir $1 = hello

$2 = sir

^(.*)$ nginx rocks $1 = nginx rocks

^(.{1,3})([0-9]{1,4})([?!]{1,2})$ abc1234!? $1 = abc

$2 = 1234

$3 = !?

Module Configuration

[146]

When you use a regular expression in Nginx, for example, in the context of a
location block, the buffers that you capture can be employed in later directives:

server {
 server_name website.com;
 location ~* ^/(downloads|files)/(.*)$ {
 add_header Capture1 $1;
 add_header Capture2 $2;
 }
}

In the example above, the location block will match the request URI against a
regular expression. A couple of URIs that would apply here: /downloads/file.txt,
/files/archive.zip, or even /files/docs/report.doc. Two parts are captured:
$1 will contain either downloads or files and $2 will contain whatever comes after
/downloads/ or /files/. Note: The add_header directive (syntax: add_header
header_name header_value, see the HTTP headers module section) is employed here to
append arbitrary headers to the client response for the sole purpose of demonstration.

Internal requests
Nginx differentiates external and internal requests. External requests directly
originate from the client; the URI is then matched against possible location blocks:

server {
 server_name website.com;
 location = /document.html {
 deny all; # example directive
 }
}

A client request to http://website.com/document.html would directly fall into
the above location block.

Opposite to this, internal requests are triggered by Nginx via specific directives.
In default Nginx modules, there are several directives capable of producing
internal requests: error_page, index, rewrite, try_files, add_before_body,
add_after_body (from the Addition module), the include SSI command, and more.

Chapter 5

[147]

There are two different kinds of internal requests:

Internal redirects: Nginx redirects the client requests internally. The URI
is changed, and the request may thus match another location block and
become eligible for different settings. The most common case of internal
redirects is when using the Rewrite directive, which allows you to rewrite
the request URI.
Sub-requests: Additional requests that are triggered internally to generate
content that is complementary to the main request. A simple example would
be with the Addition module. The add_after_body directive allows you
to specify a URI that will be processed after the original one, the resulting
content being appended to the body of the original request. The SSI module
also makes use of sub-requests to insert content with the include command.

error_page
Detailed in the module directives of the Nginx HTTP Core module, error_page
allows you to define the server behavior when a specific error code occurs. The
simplest form is to affect a URI to an error code:

server {
 server_name website.com;
 error_page 403 /errors/forbidden.html;
 error_page 404 /errors/not_found.html;
}

When a client attempts to access a URI that triggers one of these errors, Nginx is
supposed to serve the page corresponding to the error code. In fact, it does not
just send the client the error page—it actually initiates a completely new request
based on the new URI. Consequently, you can end up falling back on a different
configuration, like in the example below:

server {
 server_name website.com;
 root /var/www/vhosts/website.com/httpdocs/;
 error_page 404 /errors/404.html;
 location /errors/ {
 alias /var/www/common/errors/;
 internal;
 }
}

•

•

Module Configuration

[148]

When a client attempts to load a document that does not exist, they will initially
receive a 404 error. We employed the error_page directive to specify that 404 errors
should create an internal redirect to /errors/404.html. As a result, a new request
is generated by Nginx with the URI /errors/404.html. This URI falls under the
location /errors/ block so the configuration applies.

A raw, but trimmed, excerpt from the debug log summarizes the mechanism
(note that the log level must be set to debug for you to be able to see such entries;
refer to the error_log directive for more information):

->http request line: "GET /page.html HTTP/1.1"
->http uri: "/page.html"
->test location: "/errors/"
->using configuration ""
->http filename: "/var/www/vhosts/website.com/httpdocs/page.html"
-> open() "/var/www/vhosts/website.com/httpdocs/page.html" failed (2:
No such file or directory), client: 127.0.0.1, server: website.com,
request: "GET /page.html HTTP/1.1", host: "website.com"
->http finalize request: 404, "/page.html?" 1
->http special response: 404, "/page.html?"
->internal redirect: "/errors/404.html?"
->test location: "/errors/"
->using configuration "/errors/"
->http filename: "/var/www/common/errors/404.html"
->http finalize request: 0, "/errors/404.html?" 1

Note that the use of the internal directive in the location block forbids clients
from accessing the /errors/ directory. This location can only be accessed from an
internal redirect.

The mechanism is the same for the index directive (detailed further on in the Index
module)—if no file path is provided in the client request, Nginx will attempt to serve
the specified index page by triggering an internal redirect.

Rewrite
While the previous directive error_page is not part of the Rewrite module, detailing
its functioning provides a solid introduction to the way Nginx handles requests.

Similar to how the error_page directive redirects to another location, rewriting the
URI with the rewrite directive generates an internal redirect.

server {
 server_name website.com;
 root /var/www/vhosts/website.com/httpdocs/;
 location /storage/ {

Chapter 5

[149]

 internal;
 alias /var/www/storage/;
 }
 location /documents/ {
 rewrite ^/documents/(.*)$ /storage/$1;
 }
}

A client query to http://website.com/documents/file.txt initially matches
the second location block (location /documents/). However, the block contains
a rewrite instruction that transforms the URI from /documents/file.txt to
/storage/file.txt. The URI transformation reinitializes the process—the new
URI is matched against the location blocks. This time, the first location block
(location /storage/) matches the URI (/storage/file.txt).

Again, a quick peek at the debug log confirms the mechanism:

->http request line: "GET /documents/file.txt HTTP/1.1"
->http uri: "/documents/file.txt"
->test location: "/storage/"
->test location: "/documents/"
->using configuration "/documents/"
->http script regex: "^/documents/(.*)$"
->"^/documents/(.*)$" matches "/documents/file.txt", client:
127.0.0.1, server: website.com, request: "GET /documents/file.txt
HTTP/1.1", host: "website.com"
->rewritten data: "/storage/file.txt", args: "", client: 127.0.0.1,
server: website.com, request: "GET /documents/file.txt HTTP/1.1",
host: "website.com"
->test location: "/storage/"
->using configuration "/storage/"
->http filename: "/var/www/storage/file.txt"
->HTTP/1.1 200 OK
->http output filter "/storage/test.txt?"

Infinite loops
With all the different syntaxes and directives, you may easily get confused.
Worse—you might get Nginx confused. This happens, for instance, when your
rewrite rules are redundant and cause internal redirects to loop infinitely.

server {
 server_name website.com;
 location /documents/ {
 rewrite ^(.*)$ /documents/$1;
 }
}

Module Configuration

[150]

You thought you were doing well, but this configuration actually triggers internal
redirects /documents/anything to /documents//documents/anything. Moreover,
since the location patterns are re-evaluated after an internal redirect, /documents//
documents/anything becomes /documents//documents//documents/anything.

Here is the corresponding excerpt from the debug log:

->test location: "/documents/"
->using configuration "/documents/"
->rewritten data: "/documents//documents/file.txt", [...]
->test location: "/documents/"
->using configuration "/documents/"
->rewritten data: "/documents//documents//documents/file.txt" [...]
->test location: "/documents/"
->using configuration "/documents/"
->rewritten data: -
>"/documents//documents//documents//documents/file.txt" [...]
->[...]

You probably wonder if this goes on indefinitely—the answer is no. The amount of
cycles is restricted to 10. You are only allowed 10 internal redirects; past this limit,
Nginx will produce a 500 Internal Server Error.

Server Side Includes (SSI)
A potential source of sub-requests is the Server Side Include (SSI) module. The
purpose of SSI is for the server to parse documents before sending the response
to the client in a somewhat similar fashion to PHP or other preprocessors.

Within a regular HTML file (for example), you have the possibility to insert tags
corresponding to commands interpreted by Nginx:

<html>
<head>
 <!--# include file="header.html" -->
</head>
<body>
 <!--# include file="body.html" -->
</body>
</html>

Nginx processes these two commands; in this case, it reads the contents of
head.html and body.html and inserts them into the document source, which
is then sent to the client.

Chapter 5

[151]

Several commands are at your disposal; they are detailed in the SSI module
section in this chapter. The one we are interested in for now is the include
command—including a file into another file-.

<!--# include virtual="/footer.php?id=123" -->

The specified file is not just opened and read from a static location. Instead, a whole
subrequest is processed by Nginx, and the body of the response is inserted instead
of the include tag.

Conditional structure
The Rewrite module introduces a new set of directives and blocks, among which is
the if conditional structure.

server {
 if ($request_method = POST) {
 […]
 }
}

This gives you the possibility to apply a configuration according to the specified
condition. If the condition is true, the configuration is applied; otherwise it isn't.

The table below describes the different syntaxes accepted when forming a condition:

Operator Description
None The condition is true if the specified variable or data is not equal to an

empty string or a string starting with character 0.
if ($string) {
 […]
}

=, != The condition is true if the argument preceding the = symbol is equal
to the argument following it. The example below can be read as "if the
request_method is equal to POST, then apply the configuration".

if ($request_method = POST) {
 […]

}

The != operator does the opposite: "if the request method is different
than GET, then apply the configuration".

if ($request_method != GET) {
 […]
}

Module Configuration

[152]

Operator Description
~, ~*, !~, !~* The condition is true if the argument preceding the ~ symbol matches

the pattern placed after it.
if ($request_filename ~ "\.txt$") {
 […]
}

~ is case-sensitive, ~* is case-insensitive. Use the ! symbol to negate
the matching:

if ($request_filename !~* "\.php$") {
 […]
}

Note that you can insert capture buffers in the regular expression:
if ($uri ~ "^/search/(.*)$") {
 set $query $1;
 rewrite ^ http://google.com/search?q=$query;
}

-f, !-f Tests the existence of the specified file:
if (-f $request_filename) {
 […] # if the file exists
}

Use !-f to test the non-existence of the file:
if (!-f $request_filename) {
 […] # if the file does not exist
}

-d, !-d Similar to the –f operator, for testing the existence of a directory.
-e, !-e Similar to the –f operator, for testing the existence of a file, directory,

or symbolic link.
-x, !-x Similar to the –f operator, for testing if a file exists and is executable.

As of version 0.7.66, there is no else- or else if-like instruction. However, other
directives allowing you to control the flow sequencing are available.

You might wonder: what are the advantages of using a location block over an if
block? Indeed, in the example below, both seem to have the same effect:

if ($uri ~ /search/) {
 […]
}
location ~ /search/ {
 […]
}

Chapter 5

[153]

As a matter of fact, the main difference lies within the directives that can be
employed within either block—some can be inserted in an if block and some can't;
on the contrary, almost all directives are authorized within a location block, as you
probably noticed in the directive listings. In general, it's best to only insert directives
from the Rewrite module within an if block, as other directives were not originally
intended for such usage.

Directives
The Rewrite module provides you with a set of directives that do more than just
rewriting a URI. The following table describes these directives along with the
context in which they can be employed:

Directive Description
rewrite

Context: server,
location, if

As discussed previously, the rewrite directive allows you to
rewrite the URI of the current request, thus resetting the treatment
of the said request.
Syntax: rewrite regexp replacement [flag];
Where regexp is the regular expression the URI should match in
order for the replacement to apply.

flag may take one of the following values:

last: The current rewrite rule should be the last to be
applied. After its application, the new URI is processed
by Nginx and a location block is searched for. However,
further rewrite instructions will be disregarded.

break: The current rewrite rule is applied, but Nginx does
not initiate a new request for the modified URI (does not
restart the search for matching location blocks). All further
rewrite directives are ignored.

redirect: Returns a 302 Moved temporarily HTTP
response, with the replacement URI set as value of the
location header.

permanent: Returns a 301 Moved permanently HTTP
response, with the replacement URI set as the value of the
location header.

If you specify a URI beginning with http:// as the
replacement URI, Nginx will automatically use the
redirect flag.

•

•

•

•

•

Module Configuration

[154]

Directive Description
Note that the request URI processed by the directive is
a relative URI: It does not contain the host name and
protocol. For a request such as http://website.com/
documents/page.html, the request URI is /documents/
page.html.
Is decoded: The URI corresponding to a request such as
http://website.com/my%20page.html would be
/my page.html.
Does not contain arguments: For a request such as
http://website.com/page.php?id=1&p=2, the
URI would be /page.php. When rewriting the URI, you
don't need to consider including the arguments in the
replacement URI—Nginx does it for you. If you wish for
Nginx to not include the arguments in the rewritten URI,
then insert a ? at the end of the replacement URI: rewrite
^/search/(.*)$ /search.php?q=$1?.

Examples:
rewrite ^/search/(.*)$ /search.php?q=$1;
rewrite ^/search/(.*)$ /search.php?q=$1?;
rewrite ^ http://website.com;
rewrite ^ http://website.com permanent;

•

•

•

•

break

Context: server,
location, if

The break directive is used to prevent further rewrite directives.
Past this point, the URI is fixed and cannot be altered.
Example:

if (-f $uri) {
 break; # break if the file exists
}
if ($uri ~ ^/search/(.*)$) {
 set $query $1;
 rewrite ^ /search.php?q=$query?;

}

This example rewrites /search/anything-like queries to
/search.php?q=anything. However, if the requested file exists
(such as /search/index.html), the break instruction prevents
Nginx from rewriting the URI.

Chapter 5

[155]

Directive Description
return

Context: server,
location, if

Interrupts the request treatment process and returns the specified
HTTP status code.
Syntax: return code;
Where code is picked among the following status codes: 204, 400,
402 to 406, 408, 410, 411, 413, 416, and 500 to 504. In addition,
you may use Nginx-specific code 444 in order to return a HTTP 200
OK status code with no further header or body data.
Example:

if ($uri ~ ^/admin/) {
 return 403;
 # the instruction below is NOT executed
 # as Nginx already completed the request
 rewrite ^ http://website.com;
}

set

Context: server,
location, if

Initializes or redefines a variable. Note that some variables cannot be
redefined, for example, you are not allowed to alter $uri.
Syntax: set $variable value;
Examples:

set $var1 "some text";
if ($var1 ~ ^(.*) (.*)$) {
 set $var2 $1$2; #concatenation
 rewrite ^ http://website.com/$var2;
}

uninitialized_
variable_warn

Context: http,
server,
location, if

If set to on, Nginx will issue log messages when the configuration
employs a variable that has not yet been initialized.
Syntax: on or off

uninitialized_variable_warn on;

rewrite_log

Context: http,
server,
location, if

If set to on, Nginx will issue log messages for every operation
performed by the rewrite engine at the notice error level
(see error_log directive).

Syntax: on or off

Default value: off
rewrite_log off;

Module Configuration

[156]

Common rewrite rules
Here is a set of rewrite rules that satisfy basic needs for dynamic websites that
wish to beautify their page links thanks to the URL rewriting mechanism. You will
obviously need to adjust these rules according to your particular situation as every
website is different.

Performing a search
This rewrite rule is intended for search queries. Search keywords are included in
the URL.

Input URI http://website.com/search/some-search-keywords

Rewritten URI http://website.com/search.php?q=some-search-keywords

Rewrite rule rewrite ^/search/(.*)$ /search.php?q=$1?;

User profile page
Most dynamic websites that allow visitors to register, offer a profile view page. URLs
of this form can be employed, containing both the user ID and the username.

Input URI http://website.com/user/31/James

Rewritten URI http://website.com/user.php?id=31&name=James

Rewrite rule rewrite ^/user/([0-9]+)/(.+)$ /user.
php?id=$1&name=$2?;

Multiple parameters
Some websites may use different syntaxes for the argument string, for example, by
separating non-named arguments with slashes.

Input URI http://website.com/index.php/param1/param2/param3

Rewritten URI http://website.com/index.php?p1=param1&p2=param2&p3=
param3

Rewrite rule rewrite ^/index.php/(.*)/(.*)/(.*)$ /index.
php?p1=$1&p2=$2&p3=$3?;

Chapter 5

[157]

Wikipedia-like
Many websites have now adopted the URL style introduced by Wikipedia: a prefix
folder, followed by an article name.

Input URI http:// website.com/wiki/Some_keyword

Rewritten URI http://website.com/wiki/index.php?title=Some_keyword

Rewrite rule rewrite ^/wiki/(.*)$ /wiki/index.php?title=$1?;

News website article
This URL structure is often employed by news websites as URLs contain indications
of the articles' contents. It is formed of an article identifier, followed by a slash, then
a list of keywords. The keywords can usually be ignored and not included in the
rewritten URI.

Input URI http://website.com/33526/us-economy-strengthens

Rewritten URI http://website.com/article.php?id=33526

Rewrite rule rewrite ^/([0-9]+)/.*$ /article.php?id=$1?;

Discussion board
Modern bulletin boards now use pretty URLs for the most part. This example shows
how to create a topic view URL with two parameters—the topic identifier and the
starting post. Once again, keywords are ignored.

Input URI http://website.com/topic-1234-50-some-keywords.html

Rewritten URI http://website.com/viewtopic.php?topic=1234&start=50

Rewrite rule rewrite ^/topic-([0-9]+)-([0-9]+)-(.*)\.html$
/viewtopic.php?topic=$1&start=$2?;

SSI module
SSI, for Server Side Includes, is actually a sort of server-side programming language
interpreted by Nginx. Its name is based on the fact that the most used functionality
of the language is the include command. Back in the 1990s, such languages were
employed in order to render web pages dynamic, from simple static .html files with
client-side scripts to complex pages with server-processed compositions. Within
the HTML source code, webmasters could now insert server-interpreted directives,
which would then lead the way to more advanced pre-processors such as PHP
or ASP.

Module Configuration

[158]

The most famous illustration of SSI is the quote of the day. In order to insert a new
quote every day at the top of each page of their website, webmasters would have to
edit out the HTML source of every page, replacing the former quote manually. With
Server Side Includes, a single command suffices to simplify the task:

<html>
<head><title>My web page</title></head>
<body>
 <h1>Quote of the day: <!--# include file="quote.txt" -->
 </h1>
</body>
</html>

All you would have to do to insert a new quote is to edit the contents of the quoted.
text file. Automatically, all pages would show the updated quote. As of today,
most of the major web servers (Apache, IIS, Lighttpd, and so on) support
Server Side Includes.

Module directives and variables
Having directives inserted within the actual content of files that Nginx serves
raises one major issue—what files should Nginx parse for SSI commands? It would
be a waste of resources to parse binary files such as images (.gif, .jpg, .png) or
other kinds of media. You need to make sure to configure Nginx correctly with the
directives introduced by this module:

Directive Description
ssi

Context: http, server,
location, if

Enables parsing files for SSI commands. Nginx only parses
files corresponding to MIME types selected with the
ssi_types directive.
Syntax: on or off
Default value: off

ssi on;

ssi_types

Context: http, server,
location

Defines the MIME file types that should be eligible for SSI
parsing. The text/html type is always included.
Syntax: ssi_types type1 [type2] [type3...];
Default value: text/html

ssi_types text/plain;

Chapter 5

[159]

Directive Description
ssi_silent_errors

Context: http, server,
location

Some SSI commands may generate errors; when that is
the case, Nginx outputs a message at the location of the
command—an error occurred while processing
the directive. Enabling this option silences Nginx and
the message does not appear.
Syntax: on or off
Default value: off

ssi_silent_errors off;

ssi_value_length

Context: http, server,
location

SSI commands have arguments that accept a value (for
example, <!--# include file="value" -->). This
parameter defines the maximum length accepted by Nginx.
Syntax: Numeric
Default: 256 (characters)

ssi_value_length 256;

ssi_ignore_
recycled_buffers

Context: http, server,
location

When set to on, this directive prevents Nginx from making
use of recycled buffers.
Syntax: on or off
Default: off

ssi_min_file_chunk

Context: http, server,
location

If the size of a buffer is greater than ssi_min_file_chunk,
data is stored in a file and then sent via sendfile. In other
cases, it is transmitted directly from the memory.
Syntax: Numeric value (size)
Default: 1,024

A quick note regarding possible concerns about the SSI engine resource usage—by
enabling the SSI module at the location or server block level, you enable parsing
of at least all text/html files (pretty much any page to be displayed by the client
browser). While the Nginx SSI module is efficiently optimized, you might want
to disable parsing for files that do not require it.

Firstly, all your pages containing SSI commands should have the .shtml (Server
HTML) extension. Then, in your configuration, at the location block level, enable
the SSI engine under a specific condition. The name of the served file must end
with .shtml:

server {
 server_name website.com;
 location ~* \.shtml$ {
 ssi on;
 }
}

Module Configuration

[160]

On one hand, all HTTP requests submitted to Nginx will go through an additional
regular expression pattern matching. On the other hand, static HTML files
or files to be processed by other interpreters (.php for instance) will not be
parsed unnecessarily.

Finally, the SSI module enables two variables:

$date_local: Returns the current time according to the current system
time zone.
$date_gmt: Returns the current GMT time, regardless of the server
time zone.

SSI Commands
Once you have got the SSI engine enabled for your web pages, you are ready to
start writing your first dynamic HTML page. Again, the principle is simple—design
the pages of your website using regular HTML code, inside which you will insert
SSI commands.

These commands respect a particular syntax—at first sight, they look like regular
HTML comments: <!-- A comment -->, and that is the good thing about it—if you
accidentally disable SSI parsing of your files, the SSI commands do not appear on the
client browser; they are only visible in the source code as actual HTML comments.
The full syntax is:

<!--# command param1="value1" param2="value2" … -->

File includes
The main command of the Server Side Include module is obviously the include
command. It comes in two different fashions.

First, you are allowed to make a simple file include:

<!--# include file="header.html" -->

This command generates an HTTP sub-request to be processed by Nginx. The body
of the response that was generated is inserted instead of the command itself.

The second possibility is to use the include virtual command:

<!--# include virtual="/sources/header.php?id=123" -->

•

•

Chapter 5

[161]

This also performs a sub-request to the server; the difference lies within the way that
Nginx fetches the specified file (when using include file, the wait parameter is
automatically enabled). Indeed, two parameters can be inserted within the include
command tag. By default, all SSI requests are issued simultaneously, in parallel. This
can cause slowdowns and timeouts in the case of heavy loads. Alternatively, you can
use the wait="yes" parameter to specify that Nginx should wait for the completion
of the request before moving on to other includes.

<!--# include virtual="header.php" wait="yes" -->

If the result of your include command is empty or triggered an error (404, 500, and
so on), Nginx inserts the corresponding error page with its HTML: <html>[…]404
Not Found</body></html>. The message is displayed at the exact same place where
you inserted the include command. If you wish to revise this behavior, you have the
possibility to create a named block. By linking the block to the include command,
the contents of the block will show at the location of the include command tag, in
case an error occurs:

<html>
<head><title>SSI Example</title></head>
<body>
<center>
 <!--# block name="error_footer" -->Sorry, the footer file was not
found.<!--# endblock -->
 <h1>Welcome to nginx</h1>
 <!--# include virtual="footer.html" stub="error_footer" -->
</center>
</body>
</html>

The result as output in the client browser is shown as follows:

As you can see, the contents of the error_footer block were inserted at the location
of include command, after the <h1> tag.

Module Configuration

[162]

Working with variables
The Nginx SSI module also offers the possibility to work with variables. Displaying
a variable (in other words, inserting the variable value into the final HTML source
code) can be done with the echo command:

<!--# echo var="variable_name" -->

The command accepts three parameters:

var: The name of the variable you want to display, for example,
REMOTE_ADDR to display the IP address of the client.
default: A string to be displayed in case the variable is empty. If you don't
specify this parameter, the output is (none).
encoding: Encoding method for the string. The accepted values are
none (no particular encoding), url (encode text like a URL—a blank
space becomes %20, and so on) and entity (uses HTML entities: &
becomes &).

You may also affect your own variables with the set command:

<!--# set var="my_variable" value="your value here" -->

The value parameter is itself parsed by the engine; as a result, you are allowed
to make use of existing variables:

<!--# echo var="MY_VARIABLE" -->
<!--# set var="MY_VARIABLE" value="hello" -->
<!--# echo var="MY_VARIABLE" -->
<!--# set var="MY_VARIABLE" value="$MY_VARIABLE there" -->
<!--# echo var="MY_VARIABLE" -->

Here is the code that Nginx outputs for each of the three echo commands from the
example above:

(none)
hello
hello there

•

•

•

Chapter 5

[163]

Conditional structure
The following set of commands will allow you to include text or other directives
depending on a condition. The conditional structure can be established with the
following syntax:

<!--# if expr="expression1" -->
[…]
<!--# elif expr="expression2" -->
[…]
<!--# else -->
[…]
<!--# endif -->

The expression can be formulated in three different ways:

Inspecting a variable: <!--# if expr="$variable" -->. Similar to the if
block in the Rewrite module, the condition is true if the variable is not empty.
Comparing two strings: <!--# if expr="$variable = hello" -->. The
condition is true if the first string is equal to the second string. Use != instead
of = to revert the condition (the condition is true if the first string is not equal
to the second string).
Matching a regular expression pattern: <!--# if expr="$variable = /
pattern/" -->. Note that the pattern must be enclosed with / characters,
otherwise it is considered to be a simple string. For example, <!--# if
expr="$MY_VARIABLE = /^/documents//" -->. Similar to the comparison,
use != to negate the condition.

The content that you insert within a condition block can contain regular HTML code
or additional SSI directives, with one exception—you cannot nest if blocks.

Configuration
Last and probably least (for once) of the SSI commands offered by Nginx is the
config command. It allows you to configure two simple parameters.

First, the message that appears when the SSI engine faces an error is malformed tags
or invalid expressions. By default, Nginx displays [an error occurred while
processing the directive]. If you want it to display something else, enter
the following:

<!--# config errmsg="Something terrible happened" -->

•

•

•

Module Configuration

[164]

Additionally, you can configure the format of the dates that are returned by the
$date_local and $date_gmt variables using the timefmt parameter:

<!--# config timefmt="%A, %d-%b-%Y %H:%M:%S %Z" -->

The string you specify here is passed as the format string of the strftime C function.
For more information about the arguments that can be used in the format string,
please refer to the documentation of the strftime C language function at
http://www.opengroup.org/onlinepubs/009695399/functions/strftime.
html.Additional.

Additional modules
The first half of this chapter covered two of the most important Nginx modules,
namely, the Rewrite module and the SSI module. There are a lot more modules
that will greatly enrich the functionality of the web server; they are regrouped here,
by thematic.

Among the modules described in this section, some are included in the default
Nginx build, but some are not. This implies that unless you specifically configured
your Nginx build to include these modules (as described in Chapter 2), they will not
be available to you.

Website access and logging
The following set of modules allows you to configure how visitors access your
website and the way your server logs requests.

Index
The Index module provides a simple directive index, which lets you define the
page that Nginx will serve by default if no filename is specified in the client
request (in other words, defines the website index page). You may specify multiple
filenames; the first file to be found will be served. If none of the specified files are
found, Nginx will either attempt to generate an automatic index of the files, if the
autoindex directive is enabled (check the HTTP Autoindex module), or return a
403 Forbidden error page.

Optionally, you may insert an absolute filename (such as /page.html) but only as
the last argument of the directive.

Syntax: index file1 [file2…] [absolute_file];

Chapter 5

[165]

Default value: index.html.

index index.php index.html index.htm;
index index.php index2.php /catchall.php;

This directive is valid in the following contexts: http, server, location.

Autoindex
If Nginx cannot provide an index page for the requested directory, the default
behavior is to return a 403 Forbidden HTTP error page. With the following set
of directives, you enable an automatic listing of the files that are present in the
requested directory.

Three columns of information appear for each file—the filename, the file date and
time, and the file size in bytes.

Directive Description
autoindex

Context: http, server,
location

Enables or disables automatic directory listing for directories
missing an index page.
Syntax: on or off

autoindex_exact_
size

Context: http, server,
location

If set to on, this directive ensures that the listing displays file
sizes in bytes. Otherwise another unit is employed, such as KB,
MB, or GB.
Syntax: on or off
Default value: on;

Module Configuration

[166]

Directive Description
autoindex_localtime

Context: http, server,
location

By default, this directive is set to off, so the date and time of
files in the listing appears as GMT time. Set it to on to make
use of the local server time.
Syntax: on or off
Default value: off

Random index
This module enables a simple directive, random_index, which can be used within a
location block in order for Nginx to return an index page selected randomly among
the files of the specified directory.

This module is not included in the default Nginx build.

Syntax: on or off

Log
This module controls the behavior of Nginx regarding access logs. It is a key module
for system administrators as it allows analyzing the runtime behavior of web
applications. It is composed of three essential directives:

Directive Description
access_log

Context: http, server,
location

This parameter defines the access log file path, the format
of entries in the access log by selecting a template name, or
disables access logging.

Syntax: access_log path [format [buffer=size]] |
off;

Some remarks concerning the directive syntax:
Use access_log off to disable access logging at the
current level
The format argument corresponds to a template
declared with the log_format directive, described
below
If the format argument is not specified, the default
format is employed (combined)
You may use variables in the file path

•

•

•

•

Chapter 5

[167]

Directive Description
log_format

Context: http, server,
location

Defines a template to be utilized by the access_log directive,
describing the contents that should be included in an entry of
the access log.

Syntax: log_format template_name format_string;

The default template is called combined and matches the
following example:

log_format combined '$remote_addr - $remote_
user [$time_local] '"$request" $status
$body_bytes_sent '"$http_referer"
"$http_user_agent"';
Other example
log_format simple '$remote_addr $request';

open_log_file_
cache

Context: http, server,
location

Configures the cache for log file descriptors. Please refer to the
open_file_cache directive of the HTTP Core module for
additional information.

Syntax: open_log_file_cache max=N [inactive=time]
[min_uses=N] [valid=time] | off;

The arguments are similar to the open_file_cache and other
related directives; the difference being that this applies to access
log files only.

The Log module also enables several new variables, though they are only accessible
when writing log entries:

$connection: The connection number
$pipe: The variable is set to 'p', if the request was pipelined
$time_local: Local time (at the time of writing the log entry)
$msec: Local time (at the time of writing the log entry) to the microsecond
$request_time: Total length of the request processing, in milliseconds
$status: Response status code
$bytes_sent: Total number of bytes sent to the client
$body_bytes_sent: Number of bytes sent to the client for the response body
$apache_bytes_sent: Similar to $body_bytes, which corresponds to the %B
parameter of Apache's mod_log_config
$request_length: Length of the request body

•

•

•

•

•

•

•

•

•

•

Module Configuration

[168]

Limits and restrictions
The following modules allow you to regulate access to the documents of your
websites—require users to authenticate, match a set of rules, or simply restrict
access to certain visitors.

Auth_basic module
The auth_basic module enables the basic authentication functionality. With the
two directives that it reveals, you can make it so that a specific location of your
website (or your server) is restricted to users that authenticate using a username
and password.

location /admin/ {
 auth_basic "Admin control panel";
 auth_basic_user_file access/password_file;
}

The first directive, auth_basic, can be set to either off or a text message usually
referred to as authentication challenge. This message is displayed by web browsers
in a username/password box when a client attempts to access the protected resource.

The second one, auth_basic_user_file, defines the path of the password file
relative to the directory of the configuration file. A password file is formed of lines
respecting the following syntax: username:password[:comment]. The password
must be encrypted with the crypt(3) function, for example, using the htpasswd
command-line utility from Apache.

Access
Two important directives are brought up by this module: allow and deny. They let
you allow or deny access to a resource for a specific IP address or IP address range.

Both directives have the same syntax: allow IP | CIDR | all, where IP is an
IP address, CIDR is an IP address range (CIDR syntax), and all specifies that
the directive applies to all clients.

location {
 allow 127.0.0.1; # allow local IP address
 deny all; # deny all other IP addresses
}

Note that rules are processed from top-down—if your first instruction is deny all,
all possible allow exceptions that you place afterwards will have no effect. The
opposite is also true—if you start with allow all, all possible deny directives that
you place afterwards will have no effect, as you already allowed all IP addresses.

Chapter 5

[169]

Limit zone
The mechanism induced by this module is a little more complex than regular ones. It
allows you to define the maximum amount of simultaneous connections to the server
for a specific zone.

The first step is to define the zone using the limit_zone directive:

Define as limit_zone zone_name $variable memory_max_size;
zone_name is an arbitrary name given to the zone
$variable is the variable that will be used to differentiate one client from
another, typically $binary_remote_addr—the IP address of the client in
binary format (more efficient than ASCII)
memory_max_size is the maximum size you allocate to the table storing
session states

The following example defines zones based on the client IP addresses:

limit_zone myzone $binary_remote_addr 10m;

Now that you have defined a zone, you can limit connections using limit_conn:

limit_conn zone_name connection_limit;

When applied to the previous example it becomes:

location /downloads/ {
 limit_conn myzone 1;
}

As a result, requests that share the same $binary_remote_addr are subject to the
connection limit (one simultaneous connection). If the limit is reached, all additional
concurrent requests will be answered with a 503 Service unavailable
HTTP response.

Limit request
In a similar fashion, the Limit request module allows you to limit the amount
of requests for a defined zone.

Defining the zone is done via the limit_req_zone directive; its syntax differs from
the Limit zone equivalent directive:

limit_req_zone $variable zone=name:max_memory_size rate=rate;

•

•

•

•

Module Configuration

[170]

The directive parameters are identical, except for the trailing rate: expressed in
requests per second (r/s) or requests per minute (r/m). It defines a request rate that
will be applied to clients where the zone is enabled. To apply a zone to a location,
use the limit_req directive:

limit_req zone=name burst=burst [nodelay];

The burst parameter defines the maximum possible bursts of requests—when the
amount of requests received from a client exceeds the limit defined in the zone,
the responses are delayed in a manner that respects the rate that you defined. To a
certain extent, only a maximum of burst requests will be accepted simultaneously.
Past this limit, Nginx returns a 503 Service Unavailable HTTP error response.

limit_req_zone $binary_remote_addr zone=myzone:10m rate=2r/s;
[…]
location /downloads/ {
 limit_req zone=myzone burst=10;
}

Content and encoding
The following set of modules provides functionalities having an effect on the
contents served to the client, either by modifying the way the response is encoded,
by affecting the headers, or by generating a response from scratch.

Empty GIF
The purpose of this module is to provide a directive that serves a 1 x 1 transparent
GIF image from the memory. Such files are sometimes used by web designers to
tweak the appearance of their website. With this directive, you get an empty GIF
straight from the memory instead of reading and processing an actual GIF file
from the storage space.

To utilize this feature, simply insert the empty_gif directive in the location of
your choice:

location = /empty.gif {
 empty_gif;
}

Chapter 5

[171]

FLV
This module enables a simple functionality that becomes useful when serving Flash
Video (FLV) files. It parses a special argument of the request start, which indicates
the offset of the section the client wishes to download. The FLV file must thus be
accessed with the following URI: video.flv?start=XXX.

This module is not included in the default Nginx build.

To utilize this feature, simply insert the FLV directive in the location of your choice:

location ~* \.flv {
 flv;
}

HTTP headers
Two directives are introduced by this module that will affect the header of the
response sent to the client.

First, add_header Name value lets you add a new line in the response headers,
respecting the following syntax: Name: value. The line is added only for responses
of the following code: 200, 204, 301, 302, and 304. You may insert variables in the
value argument.

Additionally, the expires directive allows you to control the value of the Expires and
Cache-Control HTTP header sent to the client, affecting requests of the same code, as
listed above. It accepts a single value among the following:

off: Does not modify either headers.
A time value: The expiration date of the file is set to the current time +, the time
you specify. For example, expires 24h will return an expiry date set to
24 hours from now.
epoch: The expiration date of the file is set to January 1, 1970. The
Cache-Control header is set to no-cache.
max: The expiration date of the file is set to December 31, 2037. The
Cache-Control header is set to 10 years.

•

•

•

•

Module Configuration

[172]

Addition
The Addition module allows you (through simple directives) to add content before
or after the body of the HTTP response.

This module is not included in the default Nginx build.

The two main directives are:

add_before_body file_uri;
add_after_body file_uri;

As stated previously, Nginx triggers a sub-request for fetching the specified URI.
Additionally, you can define the type of files to which the content is appended in
case your location block pattern is not specific enough (default: text/html):

addition_types mime_type1 [mime_type2…];

Note: As of version 0.7.64, the preceding directive is misspelled in the source
code—use addtion_types instead. It has been fixed in version 0.7.65.

Substitution
Along the lines of the previous module, the Substitution module allows you
to search and replace text directly from the response body:

sub_filter searched_text replacement_text;

This module is not included in the default Nginx build.

Two additional directives provide more flexibility:

sub_filter_once (on or off, default on): Only replaces the text once and
stops after the first occurrence.
sub_filter_types (default text/html): Affects additional MIME types that
will be eligible for the text replacement.

•

•

Chapter 5

[173]

Gzip filter
This module allows you to compress the response body with the Gzip algorithm
before sending it to the client. To enable Gzip compression, use the gzip directive
(on or off) at the http, server, location, and even the if level (though that is
not recommended). The following directives will help you further configure the
filter options:

Directive Description
gzip_buffers

Context: http,
server, location

Defines the amount and size of buffers to be used for storing the
compressed response.
Syntax: gzip_buffers amount size;
Default: gzip_buffers 4 4k (or 8 k depending on the OS).

gzip_comp_level

Context: http,
server, location

Defines the compression level of the algorithm. The specified
value ranges from 1 (low compression, faster for the CPU) to 9
(high compression, slower).
Syntax: Numeric value.
Default: 1

gzip_disable

Context: http,
server, location

Disables Gzip compression for requests where the User-Agent
HTTP header matches the specified regular expression.
Syntax: Regular expression
Default: None

gzip_http_
version

Context: http,
server, location

Enables Gzip compression for the specified protocol version.
Syntax: 1.0 or 1.1
Default: 1.1

gzip_min_length

Context: http,
server, location

If the response body length is inferior to the specified value, it is
not compressed.
Syntax: Numeric value (size)
Default: 0

Module Configuration

[174]

Directive Description
gzip_proxied

Context: http,
server, location

Enables or disables Gzip compression for the body of responses
received from a proxy (see reverse-proxying mechanisms in
later chapters).
The directive accepts the following parameters; some can
be combined:

off/any: Disables or enables compression for all requests
expired: Enables compression if the Expires header
prevents caching
no-cache/no-store/private: Enables compression
if the Cache-Control header is set to no-cache, no-store,
or private
no_last_modified: Enables compression in case the
Last-Modified header is not set
no_etag: Enables compression in case the ETag header is
not set
auth: Enables compression in case an Authorization
header is set

•

•

•

•

•

•

gzip_types

Context: http,
server, location

Enables compression for types other than the default text/
html MIME type.
Syntax: gzip_types mime_type1 [mime_type2…]
Default: text/html (cannot be disabled)

gzip_vary

Context: http,
server, location

Adds the Vary: Accept-Encoding HTTP header to the response.
Syntax: on or off
Default: off

gzip_window

Context: http,
server, location

Sets the size of the window buffer (windowBits argument)
for Gzipping operations. This directive value is used for calls
to functions from the Zlib library.
Syntax: Numeric value (size)
Default: MAX_WBITS constant from the Zlib library

gzip_hash

Context: http,
server, location

Sets the amount of memory that should be allocated for the
internal compression state (memLevel argument). This directive
value is used for calls to functions from the Zlib library.
Syntax: Numeric value (size)
Default: MAX_MEM_LEVEL constant from the Zlib
pre-requisite library

Chapter 5

[175]

Directive Description
postpone_
gzipping

Context: http,
server, location

Defines a minimum data threshold to be reached before starting
the Gzip compression.
Syntax: Size (numeric value)
Default: 0

gzip_no_buffer

Context: http,
server, location

By default, Nginx waits until at least one buffer (defined by
gzip_buffers) is filled with data before sending the response
to the client. Enabling this directive disables buffering.
Syntax: on or off
Default: off

Gzip static
This module adds a simple functionality to the Gzip filter mechanism—when its
gzip_static directive (on or off) is enabled, Nginx will automatically look for
a .gz file corresponding to the requested document before serving it. This allows
Nginx to send pre-compressed documents instead of compressing documents on-
the-fly at each request.

This module is not included in the default Nginx build.

If a client requests /documents/page.html, Nginx checks for the existence of a
/documents/page.html.gz file. If the .gz file is found, it is served to the client. Note
that Nginx does not generate .gz files itself, even after serving the requested files.

Charset filter
With the Charset filter module, you can control the character set of the response
body more accurately. Not only are you able to specify the value of the charset
argument of the Content-Type HTTP header (such as Content-Type: text/html;
charset=utf-8), but Nginx can also re-encode data to a specified encoding
method automatically.

Directive Description
charset

Context: http,
server, location,
if

This directive adds the specified encoding to the Content-Type
header of the response. If the specified encoding differs from the
source_charset one, Nginx re-encodes the document.
Syntax: charset encoding | off;
Default: off
Example: charset utf-8;

Module Configuration

[176]

Directive Description
source_charset

Context: http,
server, location,
if

Defines the initial encoding of the response; if the value specified in
the charset directive differs, Nginx re-encodes the document.
Syntax: source_charset encoding;

override_
charset

Context: http,
server, location,
if

When Nginx receives a response from the proxy or FastCGI
gateway, this directive defines whether or not the character
encoding should be checked and potentially overridden.
Syntax: on or off
Default: off

charset_types

Context: http,
server, location

Defines the MIME types that are eligible for re-encoding.
Syntax: charset_types mime_type1 [mime_type2…];
Default: text/html, text/xml, text/plain, text/vnd.wap.
wml, application/x-javascript, application/rss+xml

charset_map

Context: http

Lets you define character re-encoding tables. Each line of the table
contains two hexadecimal codes to be exchanged. You will find re-
encoding tables for the koi8-r character set in the default Nginx
configuration folder (koi-win and koi-utf).
Syntax: charset_map src_encoding dest_encoding { … }

Memcached
Memcached is a daemon application that can be connected to via sockets. Its main
purpose, as the name suggests, is to provide an efficient distributed key/value
memory caching system. The Nginx Memcached module provides directives allowing
you to configure access to the Memcached daemon.

Directive Description
memcached_pass

Context: location, if

Defines the hostname and port of the Memcached
daemon.
Syntax: memcached_pass hostname:port;
Example: memcached_pass localhost:11211;

memcached_connect_timeout

Context: http, server, location

Defines the connection timeout in milliseconds
(default: 60,000). Example: memcached_connect_
timeout 5000;

memcached_send_timeout

Context: http, server, location

Defines the data writing operations timeout
in milliseconds (default: 60,000). Example:
memcached_send_timeout 5,000;

Chapter 5

[177]

Directive Description
memcached_read_timeout

Context: http, server, location

Defines the data reading operations timeout
in milliseconds (default: 60,000). Example:
memcached_read_timeout 5,000;

memcached_buffer_size

Context: http, server, location

Defines the size of the read and write buffer,
in bytes (default: page size). Example:
memcached_buffer_size 8k;

memcached_next_upstream

Context: http, server, location

When the memcached_pass directive is connected
to an upstream block (see Upstream module),
this directive defines the conditions that should
be matched in order to skip to the next upstream
server.
Syntax: Values selected among error, timeout,
invalid_response, not_found, or off
Default: error timeout
Example: memcached_next_upstream off;

Additionally, you will need to define the $memcached_key variable that defines the
key of the element that you are placing or fetching from the cache. You may, for
instance, use set $memcached_key $uri or set $memcached_key $uri?$args.

Note that the Nginx Memcached module is only able to retrieve data from the cache;
it does not store the result of requests. Storing data in the cache should be done by
a server-side script. You just need to make sure to employ the same key naming
scheme in both your server-side scripts and the Nginx configuration. As an example,
we could decide to use memcached to retrieve data from the cache before passing the
request to a proxy, if the requested URI is not found (see Chapter 7 for more details
about the Proxy module):

server {
 server_name example.com;
 […]
 location / {
 set $memcached_key $uri;
 memcached_pass 127.0.0.1:11211;
 error_page 404 @notcached;
 }
 location @notcached {
 internal;
 # if the file is not found, forward request to proxy
 proxy_pass 127.0.0.1:8080;
 }
}

Module Configuration

[178]

Image filter
This module provides image processing functionalities through the GD Graphics
Library (also known as gdlib).

This module is not included in the default Nginx build.

Make sure to employ the following directives on a location block that filters image
files only, such as location ~* \.(png|jpg|gif)$ { … }.

Directive Description
image_filter

Context: location

Lets you apply a transformation on the image before sending
it to the client. There are four options available:

test: Makes sure that the requested document is
an image file, returns a 415 Unsupported media
type HTTP error if the test fails.
size: Composes a simple JSON response indicating
information about the image such as the size and
type (for example; { "img": { "width":50,
"height":50, "type":"png"}}). If the file is
invalid, a simple {} is returned.
resize width height: Resizes the image to the
specified dimensions.
crop width height: Selects a portion of the image
of the specified dimensions.

Example: image_filter resize 200 100;

•

•

•

•

image_filter_buffer

Context: http, server,
location

Defines the maximum file size for images to be processed.
Default: image_filter_buffer 1m;

image_filter_jpeg_
quality

Context: http, server,
location

Defines the quality of output JPEG images.
Default: image_filter_jpeg_quality 75;

Chapter 5

[179]

XSLT
The Nginx XSLT module allows you to apply an XSLT transform on an XML file or
response received from a backend server (proxy, FastCGI, and so on) before serving
the client.

This module is not included in the default Nginx build.

Directive Description
xml_entities

Context: http,
server, location

Specifies the DTD file containing symbolic element definitions.
Syntax: File path
Example: xml_entities xml/entities.dtd;

xslt_stylesheet

Context: location

Specifies the XSLT template file path with its parameters. Variables
may be inserted in the parameters.
Syntax: xslt_stylesheet template [param1] [param2…];
Example: xslt_stylesheet xml/sch.xslt param=value;

xslt_types

Context: http,
server, location

Defines additional MIME types to which the transforms may apply,
other than text/xml.
Syntax: MIME type
Example: xslt_types text/xml text/plain;

About your visitors
The following set of modules provides extra functionality that will help you find out
more information about the visitors, such as by parsing client request headers for
browser name and version, assigning an identifier to requests presenting similarities,
and so on.

Browser
The Browser module parses the User-Agent HTTP header of the client request in
order to establish values for variables that can be employed later in the configuration.
The three variables produced are:

$modern_browser: If the client browser is identified as being a modern web
browser, the variable takes the value defined by the modern_browser_value
directive.
$ancient_browser: If the client browser is identified as being an old web
browser, the variable takes the value defined by ancient_browser_value.
$msie: This variable is set to 1 if the client is using a Microsoft IE browser.

•

•

•

Module Configuration

[180]

To help Nginx recognize web browsers, telling the old from the modern, you need to
insert multiple occurrences of the ancient_browser and modern_browser directives.

modern_browser opera 10.0;

With this example, if the User-Agent HTTP header contains Opera 10.0, the client
browser is considered modern.

Map
Just like the Browser module, the Map module allows you to create maps of values
depending on a variable.

map $uri $variable {
 /page.html 0;
 /contact.html 1;
 /index.html 2;
 default 0;
}
rewrite ^ /index.php?page=$variable;

Note that the map directive can only be inserted within the http block. Following this
example, $variable may have three different values. If $uri was set to /page.html,
$variable is now defined to 0; if $uri was set to /contact.html, $variable is
now 1; if $uri was set to /index.html, $variable now equals 2. For all other cases
(default), $variable is set to 0. The last instruction rewrites the URL accordingly.
Apart from default, the map directive accepts another special keyword: hostnames.
It allows you to match hostnames using wildcards such as *.domain.com.

Two additional directives allow you to tweak the way Nginx manages the
mechanism in memory:

map_hash_max_size: Sets the maximum size of the hash table holding a map
map_hash_bucket_size: The maximum size of an entry in the map

Geo
The purpose of this module is to provide a functionality that is quite similar to the
map directive—affecting a variable based on client data (in this case, the IP address).
The syntax is slightly different in the extent that you are allowed to specify address
ranges (in CIDR format):

geo $variable {
 default unknown;
 127.0.0.1 local;
 123.12.3.0/24 uk;
 92.43.0.0/16 fr;
}

•

•

Chapter 5

[181]

GeoIP
Although the name suggests some similarities with the previous one, this optional
module provides accurate geographical information about your visitors by making
use of the MaxMind (www.maxmind.com) GeoIP binary databases. You need to
download the database files from the MaxMind website and place them in your
Nginx directory.

This module is not included in the default Nginx build.

All you have to do then is to specify the database path with either directive:

geoip_country country.dat; # country information db
geoip_city city.dat; # city information db

The first directive enables three variables: $geoip_country_code (two-letter country
code), $geoip_country_code3 (three-letter country code), and $geoip_country_
name (full country name). The second directive includes the same variables but
provides additional information: $geoip_region, $geoip_city, $geoip_postal_
code, $geoip_city_continent_code, $geoip_latitude, $geoip_longitude.

UserID filter
This module assigns an identifier to clients by issuing cookies. The identifier can be
accessed from variables $uid_got and $uid_set further in the configuration.

Directive Description
userid

Context: http, server,
location

Enables or disables issuing and logging of cookies.

The directive accepts four possible values:

on: Enables v2 cookies and logs them

v1: Enables v1 cookies and logs them

log: Does not send cookie data but logs
incoming cookies

off: Does not send cookie data
Default value: userid off;

•

•

•

•

userid_service

Context: http, server,
location

Defines the IP address of the server issuing the cookie.

Syntax: userid_service ip;

Default: IP address of the server

Module Configuration

[182]

Directive Description
userid_name

Context: http, server,
location

Defines the name assigned to the cookie.

Syntax: userid_name name;

Default value: The user identifier.
userid_domain

Context: http, server,
location

Defines the domain assigned to the cookie.

Syntax: userid_domain domain;

Default value: None (the domain part is not sent).
userid_path

Context: http, server,
location

Defines the path part of the cookie.

Syntax: userid_path path;

Default value: /
userid_expires

Context: http, server,
location

Defines the cookie expiration date.

Syntax: userid_expires date | max;

Default value: No expiration date.
userid_p3p

Context: http, server,
location

Assigns a value to the P3P header sent with the cookie.

Syntax: userid_p3p data;

Default value: None

Referer
A simple directive is introduced by this module: valid_referers. Its purpose is
to check the Referer HTTP header from the client request and possibly to deny access
based on the value. If the referrer is considered invalid, $invalid_referer is set
to 1. In the list of valid referrers, you may employ three kinds of values:

None: The absence of a referrer is considered to be a valid referrer
Blocked: A masked referrer (such as XXXXX) is also considered valid
A server name: The specified server name is considered to be a valid referrer

Following the definition of the $invalid_referer variable, you may, for example,
return an error code if the referrer was found invalid:

valid_referers none blocked *.website.com *.google.com;
 if ($invalid_referer) {
 return 403;
}

Be aware that spoofing the Referer HTTP header is a very simple process, so
checking the referrer of client requests shouldn't be used as a security measure.

•

•

•

Chapter 5

[183]

Real IP
This module provides one simple feature—it replaces the client IP address by the
one specified in the X-Real-IP HTTP header, for clients that visit your website behind
a proxy or for retrieving IP addresses from the proper header if Nginx is used as a
backend server (it essentially has the same effect as Apache's mod_rpaf, see Chapter 7
for more details). To enable this feature, you need to insert the real_ip_header
directive that defines the HTTP header to be exploited—either X-Real-IP or
X-Forwarded-For. The second step is to define trusted IP addresses, in other words,
the clients that are allowed to make use of those headers. This can be done thanks
to the set_real_ip_from directive, which accepts both IP addresses and CIDR
address ranges:

real_ip_header X-Forwarded-For;
set_real_ip_from 192.168.0.0/16;
set_real_ip_from 127.0.0.1;

This module is not included in the default Nginx build.

SSL and security
Nginx provides secure HTTP functionalities through the SSL module but also offers
an extra module called Secure Link that helps you protect your website and visitors
in a totally different way.

SSL
The SSL module enables HTTPS support, HTTP over SSL/TLS in particular. It gives
you the possibility to serve secure websites by providing a certificate, a certificate
key, and other parameters defined with the following directives:

This module is not included in the default Nginx build.

Module Configuration

[184]

Directive Description
ssl

Context: http, server

Enables HTTPS for the specified server. This directive is
the equivalent of listen 443 ssl or listen port
ssl more generally.

Syntax: on or off

Default: ssl off;
ssl_certificate

Context: http, server

Sets the path of the PEM certificate.

Syntax: File path

ssl_certificate_key

Context: http, server

Sets the path of the PEM secret key file.
Syntax: File path

ssl_client_certificate

Context: http, server

Sets the path of the client PEM certificate.
Syntax: File path

ssl_dhparam

Context: http, server

Sets the path of the Diffie-Hellman parameters file.
Syntax: File path.

ssl_protocols

Context: http, server

Specifies the protocol that should be employed.
Syntax: ssl_protocols [SSLv2] [SSLv3]
[TLSv1];

Default: ssl_protocols SSLv2 SSLv3 TLSv1;
ssl_ciphers

Context: http, server

Specifies the ciphers that should be employed. The
list of available ciphers can be obtained running the
following command from the shell: openssl ciphers.
Syntax: ssl_ciphers cipher1[:cipher2…];
Default: ssl_ciphers ALL:!ADH:RC4+RSA:+HIGH:
+MEDIUM:+LOW:+SSLv2:+EXP;

ssl_prefer_server_
ciphers

Context: http, server

Specifies whether server ciphers should be preferred
over client ciphers.
Syntax: on or off
Default: off

ssl_verify_client

Context: http, server

Enables verifying certificates transmitted by the client.
Syntax: on or off
Default: off

ssl_verify_depth

Context: http, server

Specifies the verification depth of the client
certificate chain.
Syntax: Numeric value
Default: 1

Chapter 5

[185]

Directive Description
ssl_session_cache

Context: http, server

Configures the cache for SSL sessions.
Syntax: off, none, builtin:size or shared:name:
size

Default: off (disables SSL sessions)
ssl_session_timeout

Context: http, server

When SSL sessions are enabled, this directive defines
the timeout for using session data.
Syntax: Time value
Default: 5 minutes

Additionally, the following variables are made available:

$ssl_cipher: Indicates the cipher used for the current request
$ssl_client_serial: Indicates the serial number of the client certificate
$ssl_client_s_dn and $ssl_client_i_dn: Indicate the value of the Subject
and Issuer DN of the client certificate
$ssl_protocol: Indicates the protocol at use for the current request
$ssl_client_cert and $ssl_client_raw_cert: Returns client certificate
data, which is raw data for the second variable
$ssl_verify: Set to SUCCESS if the client certificate was successfully verified

Setting up an SSL certificate
Although the SSL module offers a lot of possibilities, in most cases only a couple of
directives are actually useful for setting up a secure website. This guide will help
you configure Nginx to use an SSL certificate for your website (in the example, your
website is identified by secure.website.com). Before doing so, ensure that you
already have the following elements at your disposal:

A .key file generated with the following command: openssl genrsa -out
secure.website.com.key 1024 (other encryption levels work too)
A .csr file generated with the following command: openssl req -new -
key secure.website.com.key -out secure.website.com.csr

Your website certificate file, as issued by the Certificate Authority, for
example, secure.website.com.crt. (Note: In order to obtain a certificate
from the CA, you will need to provide your .csr file)
The CA certificate file as issued by the CA, for example, gd_bundle.crt if
you purchased your certificate from GoDaddy.com

•

•

•

•

•

•

•

•

•

•

Module Configuration

[186]

The first step is to merge your website certificate and the CA certificate together with
the following command:

cat secure.website.com.crt gd_bundle.crt > combined.crt

You are then ready to configure Nginx to serve secure content:

server {
 listen 443;
 server_name secure.website.com;
 ssl on;
 ssl_certificate /path/to/combined.crt;
 ssl_certificate_key /path/to/secure.website.com.key;
 […]
}

Secure link
Totally independent from the SSL module, Secure link provides a basic protection by
checking the presence of a specific hash in the URL before allowing the user to access
a resource:

location /downloads/ {
 secure_link_secret "secret";
 if ($secure_link = "") {
 return 403;
 }
 rewrite ^ /downloads/$secure_link break;
}

With this configuration, documents in the /downloads/ folder must be accessed
from a URL containing a hash of the combination of the requested filename and the
secret password. Regular accesses such as http://website.com/downloads/file.
zip will result in a 403 error.

This module is not included in the default Nginx build.

The correct hash that should be included in the URL is an MD5 hash calculated with
the following formula: MD5 (file name + secure_link_secret directive value). In the
previous example, if a client wishes to download /downloads/file.zip, they need
to provide a URI containing the MD5 of file.zipsecret. The final URL will be:

http://website.com/downloads/63666cbff4e08672ebbb0ed3e7c2f011/
file.zip

Chapter 5

[187]

The $secure_link variable is empty if the URI does not contain the proper hash;
otherwise it is set to the requested filename and can be employed in a rewrite rule.

Other miscellaneous modules
The remaining three modules are optional (all need to be enabled at compile time)
and provide additional advanced functionality.

Stub status
The stub status module was designed to provide information about the current state
of the server, such as the amount of active connections, the total handled requests,
and more. To activate it, place the stub_status directive in a location block. All
requests matching the location block will produce the status page:

location = /nginx_status {
 stub_status on;
 allow 127.0.0.1; # you may want to protect the information
 deny all;
}

This module is not included in the default Nginx build.

An example result produced by Nginx:

Active connections: 1
server accepts handled requests
 10 10 23
Reading: 0 Writing: 1 Waiting: 0

It's interesting to note that there are several server monitoring solutions such as
Monitorix that offer Nginx support through the stub status page by calling it at
regular intervals and parsing the statistics.

Google-perftools
This module interfaces the Google Performance Tools profiling mechanism for the
Nginx worker processes. The tool generates a report based on performance analysis
of the executable code. More information can be discovered from the official website
of the project: http://code.google.com/p/google-perftools/.

Module Configuration

[188]

This module is not included in the default Nginx build.

In order to enable this feature, you need to specify the path of the report file that will
be generated using the google_perftools_profiles directive:

google_perftools_profiles logs/profiles;

WebDAV
WebDAV is an extension of the well-known HTTP protocol. While HTTP was
designed for visitors to download resources from a website, in other words reading
data, WebDAV extends the functionality of web servers by adding write operations
such as creating files and folders, moving and copying files, and more. The Nginx
WebDAV module implements a small subset of the WebDAV protocol:

This module is not included in the default Nginx build.

Directive Description
dav_methods

Context: http, server,
location

Selects the DAV methods you want to enable.
Syntax: dav_methods [off | [PUT] [DELETE]
[MKCOL] [COPY] [MOVE]];

Default: off
dav_access

Context: http, server,
location

Defines access permissions at the current level.
Syntax: dav_access [user:r|w|rw] [group:r|w|rw]
[all:r|w|rw];
Default: dav_access user:rw;

create_full_put_
path

Context: http, server,
location

This directive defines the behavior when a client requests to
create a file in a directory that does not exist. If set to on, the
directory path is created. If set to off, the file creation fails.
Syntax: on or off
Default: off

min_delete_depth

Context: http, server,
location

This directive defines a minimum URI depth for deleting files
or directories when processing the DELETE command.
Syntax: Numeric value
Default: 0

Chapter 5

[189]

Third-party modules
The Nginx community has been growing larger over the past few years and
many additional modules were written by third-party developers. These can
be downloaded from the official wiki website: http://wiki.nginx.org/
nginx3rdPartyModules.

The currently available modules offer a wide range of new possibilities, among
which are:

An Access Key module to protect your documents in a similar fashion as
Secure link, by Mykola Grechukh
A Fancy Indexes module that improves the automatic directory listings
generated by Nginx, by Adrian Perez de Castro
The Headers More module that improves flexibility with HTTP headers, by
Yichun Zhang (agentzh)
Many more features for various parts of the web server

To integrate a third-party module into your Nginx build, you need to follow these
three simple steps:

1. Download the .tar.gz archive associated with the module you wish
to download

2. Extract the archive with the following command: tar xzf module.tar.gz
3. Configure your Nginx build with the following command:

./configure --add-module=/module/source/path […]

Once you finished building and installing the application, the module is available
just like a regular Nginx module with its directives and variables.

If you are interested in writing Nginx modules yourself, Evan Miller published an
excellent walkthrough: Emiller's Guide to Nginx Module Development. The complete
guide may be consulted from his personal website at http://www.evanmiller.org/.

•

•

•

•

Module Configuration

[190]

Summary
All throughout this chapter, we have been discovering modules that help you
improve or fine-tune the configuration of your web server. Nginx fiercely stands up
to other concurrent web servers in terms of functionality, and its approach of virtual
hosts and the way they are configured will probably convince many administrators
to make the switch.

Three additional modules were left out though. Firstly, the FastCGI module will
be approached in the next chapter, as it will allow us to configure a gateway to
applications such as PHP or Python. Secondly, the proxy module that lets us design
complex setups will be described in Chapter 7, Apache and Nginx Together. Finally, the
Upstream module is tied to both, so it will be detailed in parallel.

PHP and Python with Nginx
The 2000s is the decade of server-side technologies. Over the past ten years or so, an
overwhelming majority of websites have migrated from simple static HTML content
to highly and fully dynamic pages, taking the web to a whole new level in terms of
interaction with visitors. Software solutions emerged quickly, including open source
ones; some became mature enough to process high-traffic websites. In this chapter,
we will study the ability of Nginx to interact with these applications. We have
retained two for different reasons. The first one is obviously PHP—according to a
survey from Nexen Services, as of October 2008, nearly 33 percent of the World Wide
Web was powered by PHP. The second one is Python—the reason being the way it's
installed and configured to work with Nginx; the mechanism effortlessly applies
to other applications such as Perl or Ruby on Rails.

This chapter covers:

Discovering the CGI and FastCGI technologies
The Nginx FastCGI module
Load balancing via the Upstream module
Setting up PHP and PHP-FPM
Setting up Python and Django
Configuring Nginx to work with PHP and Python

•

•

•

•

•

•

PHP and Python with Nginx

[192]

Introduction to FastCGI
Before we begin, you should know that (as the name suggests) FastCGI is actually a
variation of CGI. Explaining CGI first is thus in order; the improvements introduced
by FastCGI are detailed next.

Understanding the mechanism
The initial purpose of a web server is to answer requests from clients by serving files
located on a storage device. The client sends a request to download a file; the server
processes the request and sends the appropriate response—200 OK if the file can be
served normally, 404 if the file was not found, and other variants.

This mechanism has been in use since the beginning of the World Wide Web and it
still is. However, as stated before, static websites are being progressively abandoned
at the expense of dynamic ones that contain scripts to be processed by applications
such as PHP and Python among others. The web serving mechanism thus evolved
into the following:

Chapter 6

[193]

When a client attempts to visit a dynamic page, the web server receives the request
and forwards it to a third-party application. The application processes the script
independently and returns the produced response to the web server, which then
forwards the response back to the client.

In order for the web server to communicate with that application, the CGI protocol
was invented early in the 1990s.

Common Gateway Interface (CGI)
As stated in RFC 3875 (CGI protocol v1.1), designed by the Internet Society (ISOC),

The Common Gateway Interface (CGI) allows an HTTP server and a CGI script to
share responsibility for responding to client requests. […] The server is responsible
for managing connection, data transfer, transport, and network issues related to the
client request, whereas the CGI script handles the application issues such as data
access and document processing.

PHP and Python with Nginx

[194]

CGI is the protocol that describes the way information is exchanged between the web
server (Nginx) and the gateway application (PHP, Python, and so on). In practice,
when the web server receives a request that should be forwarded to the gateway
application, it simply executes the command corresponding to the desired application,
for example, /usr/bin/php. Details about the client request (such as the User Agent
and other request information) are passed either as command-line arguments or in
environment variables, while actual data from POST or PUT requests is transmitted
via the standard input. The invoked application then writes the processed document
contents to the standard output, which is recaptured by the web server.

While this technology seems simple and efficient enough at first sight, it comes with
a few major drawbacks:

A unique process is spawned for each request. Memory and other context
information are lost from one request to another.
Starting up a process can be resource-consuming for the system. Massive
amount of simultaneous requests (each spawning a process) could quickly
clutter a server.
Designing an architecture where the web server and the gateway application
would be located on different computers seems difficult, if not impossible.

Fast Common Gateway Interface (FastCGI)
The issues mentioned above render the CGI protocol relatively inefficient for servers
that are subject to heavy load. The will to find solutions led Open Market to develop
in the mid-90s an evolution of CGI—FastCGI. It has become a major standard over
the past fifteen years and most web servers now offer the functionality—even
proprietary server software such as Microsoft IIS.

Although the purpose remains the same, FastCGI offers significant improvements
over CGI with the establishment of the following principles:

Instead of spawning a new process for each request, FastCGI employs
persistent processes that come with the ability to handle multiple requests.
The web server and the gateway application communicate with the use
of sockets such as TCP or POSIX Local IPC sockets. Consequently, both
processes may be on two different computers on a network.
The web server forwards the client request to the gateway and receives the
response within a single connection; additional requests may also follow
without having to create additional connections. Note that on most web
servers, including Nginx and Apache, the implementation of FastCGI does
not (or at least not fully) support multiplexing.
Since FastCGI is a socket-based protocol, it can be implemented on any
platform with any programming language.

•

•

•

•

•

•

•

Chapter 6

[195]

Throughout this chapter, we will be setting up PHP and Python via FastCGI; though
you will find the mechanism to be relatively similar in the case of other applications,
such as Perl or Ruby on Rails.

Designing a FastCGI powered architecture is actually not as complex as one might
imagine. As long as you have the web server and the processing application running,
the only difficulty that remains is to establish the connection between both parties.
The first step in that perspective is to configure the way Nginx will communicate
with the FastCGI application. FastCGI compatibility with Nginx is introduced by
the FastCGI module. This section details the directives that are made available by
the module.

Main directives
The FastCGI module is included in the default Nginx build; you do not need to
enable it manually at compile time. The following directives allow you to configure
the way Nginx passes requests to the FastCGI application. Note that you will find a
fastcgi_params file in the Nginx configuration folder that defines directive values
that are valid for most situations.

Directive Description
fastcgi_pass

Context: location, if

Specifies that the request should be passed to the
FastCGI server, by indicating its location:

For TCP sockets, the syntax is:
fastcgi_pass hostname:port;

For Unix Domain sockets, the syntax
is: fastcgi_pass unix:/path/to/
fastcgi.socket;

You may also refer to upstream blocks (read
the following sections for more information):
fastcgi_pass myblock;

Examples:
fastcgi_pass localhost:9000;
fastcgi_pass 127.0.0.1:9000;
fastcgi_pass unix:/tmp/fastcgi.socket;
Using an upstream block
upstream fastcgi {
 server 127.0.0.1:9000;
 server 127.0.0.1:9001;
}
location ~* \.php$ {
 fastcgi_pass fastcgi;
}

•

•

•

PHP and Python with Nginx

[196]

Directive Description
fastcgi_param

Context: http, server,
location

Allows you to configure the request passed to
FastCGI. Two parameters are strictly required
for all FastCGI requests: SCRIPT_FILENAME and
QUERY_STRING.
Example:

fastcgi_param SCRIPT_FILENAME
/home/website.com/www$fastcgi_script_
name;
fastcgi_param QUERY_STRING $query_
string;

As for POST requests, additional parameters are
required: REQUEST_METHOD, CONTENT_TYPE, and
CONTENT_LENGTH:

fastcgi_param REQUEST_METHOD $re
quest_method;
fastcgi_param CONTENT_TYPE $content_
type;
fastcgi_param CONTENT_LENGTH $con
tent_length;

The fastcgi_params file that you will find in
the Nginx configuration folder already includes all
the necessary parameter definitions, except for the
SCRIPT_FILENAME one that you have to specify for
each of your FastCGI configurations.

Syntax: fastcgi_param PARAM value;
fastcgi_pass_header

Context: http, server,
location

Specifies additional headers that should be passed
to the FastCGI server.

Syntax: fastcgi_pass_header headername;

Example:
fastcgi_pass_header Authorization;

fastcgi_hide_header

Context: http, server,
location

Specifies headers that should be hidden from the
FastCGI server (headers that Nginx does not forward).

Syntax: fastcgi_hide_header headername;

Example:
fastcgi_hide_header X-Forwarded-For;

Chapter 6

[197]

Directive Description
fastcgi_index

Context: http, server,
location

The FastCGI server does not support automatic
directory indexes—if the requested URI ends with a /,
Nginx appends the value of fastcgi_index.

Syntax: fastcgi_index filename;

Example:

fastcgi_index index.php;

fastcgi_ignore_client_
abort

Context: http, server,
location

This directive lets you define what happens if the
client aborts their request to the web server. If the
directive is turned on, Nginx ignores the abort
request and finishes processing the request. If it's
turned off, Nginx does not ignore the abort request.
It interrupts the request treatment and aborts related
communication with the FastCGI server.

Syntax: on or off

Default: off
fastcgi_intercept_errors

Context: http, server,
location

Defines whether or not Nginx should process the
errors returned by the gateway or directly return error
pages to the client. (Note: Error processing is done via
the error_page directive of Nginx).

Syntax: on or off

Default: off
fastcgi_read_timeout

Context: http, server,
location

Defines the timeout for the response from the FastCGI
application. If Nginx does not receive the response
after this period, the 504 Gateway Timeout HTTP
error is returned.

Syntax: Numeric value (in seconds)

Default: 60 seconds
fastcgi_connect_timeout

Context: http, server,
location

Defines the backend server connection timeout. This
is different than the read/send timeout—if Nginx
is already connected to the backend server, the
fastcgi_connect_timeout is not applicable.

Syntax: Time value (in seconds)

Default: 60 seconds

PHP and Python with Nginx

[198]

Directive Description
fastcgi_send_timeout

Context: http, server,
location

This is the the timeout for sending data to the backend
server. The timeout isn't applied to the entire response
delay but rather between two write operations.
Syntax: Time value (in seconds)
Default value: 60

fastcgi_split_path_info

Context: location

A directive particularly useful for URLs of the
following form: http://website.com/page.php/
param1/param2/.
The directive splits the path information according
to the specified regular expression:

fastcgi_split_path_info ^(.+\.
php)(.*)$;

This affects two variables:
$fastcgi_script_name: The filename
of the actual script to be executed (in the
example: page.php)
$fastcgi_path_info: The part of the URL
that is after the script name (in the example:
/param1/param2/)

These can be employed in further parameter
definitions:

fastcgi_param SCRIPT_FILENAME
/home/website.com/www$fastcgi_script_
name;
fastcgi_param PATH_INFO
$fastcgi_path_info;

Syntax: Regular expression

•

•

fastcgi_store

Context: http, server,
location

Enables a simple cache store where responses from
the FastCGI application are stored as files on the
storage device. When the same URI is requested
again, the document is directly served from the
cache store instead of forwarding the request to
the FastCGI application.
This directive enables or disables the cache store.
Syntax: on or off

Chapter 6

[199]

Directive Description
fastcgi_store_access

Context: http, server,
location

This directive defines the access permissions applied
to the files created in the context of the cache store.
Syntax: fastcgi_store_access [user:r|w|rw]
[group:r|w|rw] [all:r|w|rw];
Default: fastcgi_store_access user:rw;

fastcgi_temp_path

Context: http, server,
location

Sets the path of temporary and cache store files.
Syntax: File path
Example:

fastcgi_temp_path /tmp/nginx_fastcgi;

fastcgi_max_temp_file_
size

Context: http, server,
location

Set this directive to 0 to disable the use of temporary
files for FastCGI requests or to specify a maximum
file size.
Default value: 1 GB
Syntax: Size value
Example: fastcgi_max_temp_file_size 5m;

fastcgi_temp_file_write_
size

Context: http, server,
location

Sets the write buffer size when saving temporary files
to the storage device.
Syntax: Size value
Default value: 2 * proxy_buffer_size

fastcgi_buffers

Context: http, server,
location

Sets the amount and size of buffers that will be
used for reading the response data from the
FastCGI application.
Syntax: fastcgi_buffers amount size;
Default: 8 buffers, 4 k or 8 k each, depending
on platform
Example:

fastcgi_buffers 8 4k;

fastcgi_buffer_size

Context: http, server,
location

Sets the size of the buffer for reading the beginning
of the response from the FastCGI application, which
usually contains simple header data.
The default value corresponds to the size of
1 buffer, as defined by the previous directive
(fastcgi_buffers).
Syntax: Size value
Example:

fastcgi_buffer_size 4k;

PHP and Python with Nginx

[200]

Directive Description
fastcgi_send_lowat

Context: http, server,
location

An option allowing you to make use of the
SO_SNDLOWAT flag for TCP sockets under FreeBSD
only. This value defines the minimum number of bytes
in the buffer for output operations.
Syntax: Numeric value (size)
Default value: 0

fastcgi_pass_request_
body

fastcgi_pass_request_
headers

Context: http, server,
location

Defines whether or not, respectively, the request body
and extra request headers should be passed on to the
backend server.
Syntax: on or off;
Default: on

fastcgi_ignore_headers

Context: http, server,
location

Prevents Nginx from processing one of the following
four headers from the backend server response:
X-Accel-Redirect, X-Accel-Expires, Expires,
Cache-Control.
Syntax: fastcgi_ignore_headers header1
[header2…];

fastcgi_next_upstream

Context: http, server,
location

When fastcgi_pass is connected to an upstream
block, this directive defines the cases where requests
should be abandoned and re-sent to the next
upstream server of the block. The directive accepts a
combination of values among the following:

error: An error occurred while
communicating or attempting to
communicate with the server
timeout: A timeout occurs during transfers
or connection attempts
invalid_header: The backend server
returned an empty or invalid response
http_500, http_502, http_503, http_
504, http_404: In case such HTTP errors
occur, Nginx switches to the next upstream
off: Forbids from using the next
upstream server

Examples:
fastcgi_next_upstream error timeout
http_504;
fastcgi_next_upstream timeout invalid_
header;

•

•

•

•

•

Chapter 6

[201]

Directive Description
fastcgi_catch_stderr

Context: http, server,
location

Allows you to intercept some of the error messages
sent to stderr (Standard Error stream) and store
them in the Nginx error log.
Syntax: fastcgi_catch_stderr filter;
Example: fastcgi_catch_stderr "PHP Fatal
error:";

FastCGI caching
Once you have correctly configured Nginx to work with your FastCGI application,
you may optionally make use of the following directives that will help you improve
the overall server performance by setting up a cache system.

Directive Description
fastcgi_cache

Context: http, server,
location

Defines a cache zone. The identifier given to the zone is to
be reused in further directives
Syntax: fastcgi_cache zonename;
Example: fastcgi_cache cache1;

fastcgi_cache_key

Context: http, server,
location

This directive defines the cache key, in other words, what
differentiates a cache entry from another. If the cache key
is set to $uri, as a result, all requests with a similar $uri
will correspond to the same cache entry. It's not enough
for most dynamic websites; you also need to include the
query string arguments in the cache key so that /index.
php and /index.php?page=contact do not point to the
same cache entry.
Syntax: fastcgi_cache_key key;
Example: fastcgi_cache "$scheme$host$request_
uri $cookie_user";

fastcgi_cache_methods

Context: http, server,
location

Defines the HTTP methods eligible for caching. GET and
HEAD are included by default and cannot be disabled.
You may, for example, enable caching of POST requests.
Syntax: fastcgi_cache_methods METHOD;
Example: fastcgi_cache_methods POST;

PHP and Python with Nginx

[202]

Directive Description
fastcgi_cache_min_
uses

Context: http, server,
location

Defines the minimum amount of hits before a request is
eligible for caching. By default, the response of a request is
cached after one hit (next requests with the same cache key
will receive the cached response).
Syntax: Numeric value
Example: fastcgi_cache_min_uses 1;

fastcgi_cache_path

Context: http, server,
location

Indicates the directory for storing cached files, as well as
other parameters.

Syntax: fastcgi_cache_path path
[levels=numbers
keys_zone=name:size inactive=time
max_size=size];

The additional parameters are:
levels: Indicates the depth of subdirectories
(usually 1:2 is enough)
keys_zone: Lets you make use of the zone you
previously declared with the fastcgi_cache
directive, and indicate the size to occupy
in memory
inactive: If a cached response is not used
within the specified time frame, it's removed
from the cache
max_size: Defines the maximum size of the
entire cache

Example: fastcgi_cache_path /tmp/nginx_cache
levels=1:2 zone=zone1:10m inactive=10m
max_size=200M;

•

•

•

•

fastcgi_cache_use_
stale

Context: http, server,
location

Defines whether or not Nginx should serve stale cached
data in certain circumstances (in regards to the gateway). If
you use fastcgi_cache_use_stale timeout, and if
the gateway times out, then Nginx will serve cached data.
Syntax: fastcgi_cache_use_stale [updating]
[error] [timeout] [invalid_header] [http_
500];

Example: fastcgi_cache_use_stale error
timeout;

Chapter 6

[203]

Directive Description
fastcgi_cache_valid

Context: http, server,
location

This directive allows you to customize the caching time
for different kinds of response codes. You may cache
responses associated to 404 error codes for 1 minute, and
on the opposite cache, 200 OK responses for 10 minutes or
more. This directive can be inserted more than once:

fastcgi_cache_valid 404 1m;
fastcgi_cache_valid 500 502 504 5m;
fastcgi_cache_valid 200 10;

Syntax: fastcgi_cache_valid code1 [code2…]
time;

Here is a full Nginx FastCGI cache configuration example, making use of most of the
cache-related directives described above:

fastcgi_cache phpcache;
fastcgi_cache_key "$scheme$host$request_uri"; # $request_uri includes
the request arguments (such as /page.php?arg=value)
fastcgi_cache_min_uses 2; # after 2 hits, a request receives a cached
response
fastcgi_cache_path /tmp/cache levels=1:2 keys_zone=phpcache:10m inac
tive=30m max_size=500M;
fastcgi_cache_use_stale updating timeout;
fastcgi_cache_valid 404 1m;
fastcgi_cache_valid 500 502 504 5m;

Since these directives are valid for pretty much any virtual host configuration, you
may want to save these in a separate file (fastcgi_cache) that you include at the
appropriate place:

server {
 server_name website.com;
 location ~* \.php$ {
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_param SCRIPT_FILENAME
/home/website.com/www$fastcgi_script_name;
 fastcgi_param PATH_INFO $fastcgi_script_name;
 include fastcgi_params;
 include fastcgi_cache;
 }
}

PHP and Python with Nginx

[204]

Upstream blocks
With the FastCGI module, and as you will discover in the next chapter with the Proxy
module too, Nginx forwards requests to backend servers. It communicates with
processes using either FastCGI or simply by behaving like a regular HTTP client.
Either way, the backend server (a FastCGI application, another web server, and so on)
may be hosted on a different server in the case of load-balanced architectures.

Now, the general issue with applications (such as PHP) is that they are quite
resource-consuming, especially in terms of CPU. You may thus find yourself forced
to balance the load across multiple servers, resulting in the following architecture:

:

In this case, Nginx is connected to multiple backend servers. To establish such a
configuration, a new module comes into play—the Upstream module.

Chapter 6

[205]

Module syntax
This module allows you to declare named upstream blocks that define lists
of servers.

upstream phpfpm {
 server 192.168.0.50:9000;
 server 192.168.0.51:9000;
 server 192.168.0.52:9000;
}

When defining the FastCGI configuration, connect to the upstream block:

server {
 server_name website.com;
 location ~* \.php$ {
 fastcgi_pass phpfpm;
 […]
 }
}

In this case, requests eligible to FastCGI will be forwarded to one of the backend
servers defined in the upstream block.

A question you might ask is how does Nginx decide which backend server is to be
employed for each request? And the answer is simple—the default method of the
Upstream module is round robin. However, this method is not necessarily the best.
Two requests from the same visitor might be processed by two different servers,
and that could be a problem for many reasons, for example, when PHP sessions
are stored on the backend server and are not replicated across the other servers.

To ensure that requests from a same visitor always get processed by the
same backend server, you may enable the ip_hash option when declaring
the upstream block:

upstream phpfpm {
 ip_hash;
 server 192.168.0.50:9000;
 server 192.168.0.51:9000;
 server 192.168.0.52:9000;
}

PHP and Python with Nginx

[206]

This will distribute requests based on the visitors IP address employing a regular
round robin algorithm. However, be aware that client IP addresses are sometimes
subject to change for various reasons—dynamic IP refresh, proxy switching, Tor, and
so on. Consequently, the ip_hash mechanism cannot fully guarantee that clients will
always be involved to the same upstream server.

Server directive
The server directive that you place within upstream blocks accepts several
parameters that influence the backend selection by Nginx:

weight=n: Lets you indicate a numeric value that will affect the weight of the
backend server. If you create an upstream block with two backend servers
and set the weight of the first one to 2, it will be selected twice more often:
upstream php {

 server 192.168.0.1:9000 weight=2;

 server 192.168.0.2:9000;

}

This option is ignored if the upstream block is in the ip_hash mode.

max_fails=n: Defines the number of communication failures that should
occur (in the time frame specified with the fail_timeout parameter below)
before Nginx considers the server inoperative.
fail_timeout=n: Defines the time frame within which the maximum
failure count applies. If Nginx fails to communicate with the backend
server max_fails times over fail_timeout seconds, the server is
considered inoperative.
down: If you mark a backend server as down, the server is no longer used. This
only applies when the ip_hash directive is enabled.
backup: If you mark a backend server as backup, Nginx will not make use
of the server until all other servers (servers not marked as backup) are down
or inoperative.

These parameters are all optional and can be used altogether:

upstream phpbackend {
 server localhost:9000 weight=5;
 server 192.168.0.1 max_fails=5 fail_timeout=60s;
 server unix:/tmp/backend backup;
}

•

•

•

•

•

Chapter 6

[207]

PHP with Nginx
We are now going to configure PHP to work together with Nginx via FastCGI.
There are some very particular steps involved in the design of such a setup; the most
bothersome being that you, most likely, cannot utilize your current build of PHP.
This issue, among others, will be addressed throughout this section.

Architecture
Before starting the setup process, it's important to understand the way PHP will
interact with Nginx. We have established that FastCGI is a communication protocol
running through sockets, which implies that there is a client and a server. The client
is obviously Nginx; as for the server, well, the answer is actually more complicated
than just PHP.

By default, PHP supports the FastCGI protocol. The PHP binary processes scripts
and is able to interact with Nginx via sockets. However, we are going to use an
additional component to improve the overall process management.

There are several solutions available on the web, including actual PHP scripts
opening sockets and supporting the FastCGI protocol. The solution we have here is
PHP-FPM for PHP FastCGI Process Manager. It is currently acknowledged to be the
most efficient solution in terms of features and performance, even though it may
seem a little complex to set up.

PHP-FPM takes FastCGI support to a whole new level; its numerous features are
detailed in the next section.

PHP and Python with Nginx

[208]

PHP-FPM
As you can see in the previous figure, PHP-FPM is not actually a program per se.
In its current form, it comes as a patch that you need to apply to the original PHP
source code. The advantage of being completely integrated to PHP is that it reduces
the possible memory and CPU overhead that could be the result of making use of a
standalone application. The inconvenience is that you are going to have to build PHP
specifically for it; you will not be able to utilize your current PHP setup.

PHP-FPM introduces new elements to your PHP structure:

It automatically daemonizes PHP, turning it into a background process.
It provides a command-line script for managing PHP processes. You may
start/stop/restart/reload PHP-CGI processes that are listening to
connections. The script highly resembles the regular service script: php-fpm
start, php-fpm stop, php-fpm reload, and so on.
Many more advantages, such as improved logging, IP address restrictions,
and so on.

Setting up PHP and PHP-FPM
In this section, we will detail the process of downloading and compiling a fresh build
of PHP, and more importantly, applying the PHP-FPM patch.

Downloading and extracting
You will need a fresh build of PHP. Supported versions of PHP, at the time of writing,
range from 4.4.7 to 5.3.x. Visit the official website at www.php.net to download one of
these versions. Then you will need to download the PHP-FPM patch corresponding
to the exact version that you downloaded from www.php-fpm.org.

[root@website.com ~]# wget http://php.net/get/php-
5.3.0.tar.gz/from/www.php.net/mirror

[root@website.com ~]# wget http://php-fpm.org/downloads/php-5.3.0-
fpm-0.5.12.diff.gz

Once downloaded, extract the PHP archive with the tar command:

[root@website.com ~]# tar xzf php-5.3.0.tar.gz

•

•

•

Chapter 6

[209]

Patching
The second archive that you downloaded is the PHP-FPM patch. It needs to be
applied to the proper version of PHP. You downloaded PHP 5.3.0; you thus need
the PHP-FPM patch for PHP 5.3.0. The following command reads the content of
the patch and pipes it to the patch tool, which will apply the code changes on the
specified directory:

[root@website.com ~]# gzip -cd php-5.3.0-fpm-0.5.12.diff.gz | patch -d
php-5.3.0 -p1

Upon executing this command, you should see a long list of patched files:

patching file configure

patching file configure.in

patching file libevent/aclocal.m4

[…]

patching file sapi/cgi/Makefile.frag

[root@website.com ~]#

Requirements
There are two main requirements for building PHP with PHP-FPM—the libevent
and libxml development libraries. If these are not already installed on your system,
you will need to install them with your system's package manager.

For Red Hat-based systems and other systems using Yum as the package manager:

yum install libevent-devel libxml2-devel

For Ubuntu, Debian, and other systems that use Apt or Aptitude:

aptitude install libxml2-dev libevent-dev

Building PHP
Once you have installed all the dependencies, you may start building PHP. Similar
to other applications and libraries that were previously installed, you will basically
need three commands: configure, make, and make install. Be aware that this will
install a new instance of the application; if you already have PHP set up on your
system, it will not override it, but instead be installed in a different location that is
revealed to you during the make install command execution.

PHP and Python with Nginx

[210]

The first step (configure) is critical here as you will need to enable the PHP-FPM
options in order for PHP to include the required functionality. There is a great
variety of configure options that you can include in the configure command,
some are necessary to enable important features such as database interaction, regular
expressions, file compression support, web server integration, and so on. All the
possible configure options are listed when you run this command:

[root@website.com php-5.3.0]# ./configure --help

A minimal command may be used, but be aware that a great deal of features will
be missing. If you wish to include other components, additional dependencies may
be needed, which are not documented here. In all cases, the --enable-fpm switch
should be included:

[root@website.com php-5.3.0]# ./configure --enable-fpm

The next step is to build the application and install it at the same time:

[root@website.com php-5.3.0]# make all install

This process may take a while depending on your system specifications.

Post-install configuration
Begin by configuring your newly installed PHP, for example, copying the php.ini of
your previous setup over the new one. The next step is to configure PHP-FPM—open
up the php-fpm.conf file, by default, located in /usr/local/etc/.

The file contains some important configuration directives that we will reuse later:

Edit the users and groups for the Unix socket and the processes
Address and port on which PHP-FPM will be listening
Amount of simultaneous requests that will be served
IP address(es) allowed to connect to PHP-FPM

Running and controlling
Once you made the appropriate changes to the PHP-FPM configuration file, you may
start it with the following command:

[root@website.com ~]# /usr/sbin/php-fpm start

If all goes according to plan, you should be greeted with the following message:

Starting php_fpm done

•

•

•

•

Chapter 6

[211]

Additionally, you may control the process with the following commands:

php-fpm stop; # Stops PHP-FPM

php-fpm quit; # Gracefully shuts down PHP-FPM

php-fpm restart; # Stops and starts PHP-FPM again

php-fpm reload; # Reloads configuration

php-fpm logrotate; # Performs a rotation of log files

Nginx configuration
If you have managed to start PHP-FPM, you are ready to tweak your Nginx
configuration file to establish the connection between both parties. The following
server block is a simple valid template on which you can base your own
website configuration:

server {
 server_name .website.com; # server name, accepting www
 listen 80; # listen on port 80
 root /home/website/www; # our root document path
 index index.php; # default request filename: index.php

 location ~* \.php$ { # for requests ending with .php
 # specify the listening address and port that you configured
previously
 fastcgi_pass 127.0.0.1:9000;
 # the document path to be passed to PHP-FPM
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_
name;
 # the script filename to be passed to PHP-FPM
 fastcgi_param PATH_INFO $fastcgi_script_name;
 # include other FastCGI related configuration settings
 include fastcgi_params;
 }
}

After saving the configuration file, reload Nginx: /usr/local/nginx/sbin/nginx
-s reload or service nginx reload. Create a simple script at the root of your
website to make sure PHP is being correctly interpreted:

[root@website.com ~]# echo "<?php phpinfo(); ?>" >/home/website/www/
index.php

PHP and Python with Nginx

[212]

Fire up your favorite web browser and load http://localhost/ (or your website
URL). You should be seeing something similar to the next screenshot—the PHP
server information page.

Note that you may run into the occasional 403 Forbidden HTTP error if the file and
directory access permissions aren't properly configured. If that is the case, make sure
that you specified the correct user and group in the php-fpm.conf file and that the
directory and files are readable by PHP.

Python and Nginx
Python is a popular object-oriented programming language available on many
platforms, from Unix-based systems to Windows. It is also available for Java and the
Microsoft .NET platform. If you are interested in configuring Python to work with
Nginx, it's likely that you already have a clear idea of what Python does. We are
going to use Python as server-side web programming language, with the help of
the Django framework.

Django
Django is an open source web development framework for Python that aims
at making web development simple and easy, as its slogan states—"The Web
framework for perfectionists with deadlines". More information is available on
the project website: www.djangoproject.com.

Chapter 6

[213]

Among other interesting features such as a dynamic administrative interface, a
caching framework, and unit tests, Django comes with a FastCGI manager. It's going
to make things much simpler for us from the perspective of running Python scripts
through Nginx.

Setting up Python and Django
We are going to install Python and Django on your Linux operating system, along
with the prerequisites. The process is relatively smooth and mostly consists of
running a couple of commands that rarely cause trouble.

Python
Python should be available on your package manager repositories. To install it, run
the following commands. For Red Hat-based systems and other systems using Yum
as the package manager:

yum install python python-devel

For Ubuntu, Debian, and other systems that use Apt or Aptitude:

aptitude install python python-dev

The package manager will resolve dependencies by itself.

Django
In order to install Django, we will use a different approach. We will be downloading
the source directly from the Django SVN in order to make sure we get the
latest version.

SVN is an acronym for Subversion, a file management and revision
system. Its main purpose is to maintain a collaborative working
environment for development projects and to conserve historical versions
of source code and other files. By connecting to an SVN repository, you
are able to download specific versions of a project's source code.

The first step is thus to install Subversion, the tool that will allow us to synchronize
with the Django repository. For Red Hat-based systems and other systems using
Yum as the package manager, use:

yum install subversion

PHP and Python with Nginx

[214]

For Ubuntu, Debian, and other systems that use Apt or Aptitude:

aptitude install subversion

The package manager will resolve dependencies by itself.

Once Subversion is installed, we can download the source files into a dedicated
folder, and install Django:

[root@website.com ~]# mkdir django && cd django

[root@website.com django]# svn co http://code.djangoproject.com/svn/
django/trunk/

[…]

[root@website.com django]# cd trunk

[root@website.com trunk]# python setup.py install

Finally, there is one last component required for running the Python FastCGI
manager—the flup library, which provides the actual FastCGI protocol
implementation. For Red Hat-based systems and other systems using Yum as the
package manager (EPEL repositories must be enabled, otherwise you will need to
build from source):

yum install python-flup

For Ubuntu, Debian, and other systems that use Apt or Aptitude:

aptitude install python-flup

Starting the FastCGI process manager
We will not detail how to start building a website with the Django framework
here. Once that part is done, you will find a manage.py Python script that comes
with the default project template. Move to the directory of this file, and run the
following command:

[root@website.com www]# python manage.py runfcgi method=prefork
host=127.0.0.1 port=9000 pidfile=/var/run/ django.pid

If everything was correctly configured and the dependencies properly installed,
running this command should produce no output, which is often a good sign; the
FastCGI process manager is now running in the background waiting for connections.
You can verify that the application is running with the ps command, for example,
by executing ps aux | grep python. All we have to do now is to set up the virtual
host in the Nginx configuration file.

Chapter 6

[215]

Nginx configuration
The Nginx configuration is similar to the PHP one:

server {
 server_name .website.com;
 listen 80;
 root /home/website/www;
 index index.html;

 location / {
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_
name;
 fastcgi_param PATH_INFO $fastcgi_script_name;
 include fastcgi_params;
 }
}

Summary
Whether you use PHP, Python, or any other CGI application, you should now have
a clear idea of how to get your scripts processed behind Nginx. There are all sorts
of implementations on the web for mainstream programming languages and the
FastCGI protocol, due to its well-acknowledged efficiency, is starting to take over
server-integrated solutions such as Apache's mod_php, mod_wsgi and many others.

Though if you are unsure about connecting Nginx directly to those server
applications, because you already have a well-functioning system architecture in
place (for example, Apache with mod_php), you may want to consider the option
offered in the next chapter—Installing Nginx on top of your existing Apache setup.

Apache and Nginx Together
If you are reading this book, chances are you already have some good knowledge
of the Apache web server with its nearly 55 percent market share (as of early 2010
according to a Netcraft Survey). In fact, a lot of the administrators interested in
Nginx are people who have encountered issues with the former regarding slow
downs, it being complex to configure, unresponsive at times, security issues, and
so on. Consequently, the first idea that comes to mind is to replace Apache with an
alternative such as Nginx. However, there is a possibility that is not often considered,
as it sounds a little far-fetched at first, namely, running both Nginx and Apache
together. When you look into it, this solution offers a great deal of advantages,
especially for administrators looking for a quick and efficient solution.

This chapter covers:

An introduction to the reverse-proxy mechanism
The advantages and disadvantages of the architecture
Discovering the Proxy module of Nginx
Configuring Nginx to work with Apache
Reconfiguring Apache to work as a backend server
Additional tweaks and notes

Nginx as reverse proxy
First, let's make it clear—the reverse proxy mechanism that we are going to describe
in this chapter is not the optimal solution. It should be employed in problematic
cases such as the following:

When you already have Apache installed with complex configuration files
that can hardly be ported to Nginx or you do not have the time or the will
to completely switch to Nginx

•

•

•

•

•

•

•

Apache and Nginx Together

[218]

When your system operates a frontend system management panel such as
Parallels Plesk, cPanel, or other solutions that generate Apache configuration
files automatically
When a functionality that your project or architecture requires is available
with Apache but not with Nginx

In most other cases, a complete switch to Nginx is in order. Chapter 8 provides a
good description of the process.

Understanding the issue
The reverse proxy mechanism mainly addresses one issue—the overall serving
speed of Apache. Due to the massive amount of modules and other components that
Apache loads in memory (for each HTTP request that it receives) your server may
rapidly clutter when massive influxes of requests come in at the same time. One
could say that Apache focuses on functionality at the expense of optimization and
processing speeds. In practice, this results in excessive memory and CPU overhead.
Oppositely, Nginx has proven to be both lightweight and stable, serving a larger
amount of requests (using lesser RAM and CPU time in comparison to Apache).

What do we make of that? Before answering this question, it would be interesting
to analyze the type of content that will be delivered by your server. Let us visit a
regular web page that millions of people load every day: www.yahoo.com. While
it's not fully representative of the World Wide Web, our analysis will be valid for a
good number of websites and the Yahoo! homepage is the perfect illustration to the
problem that we face.

When a regular user visits yahoo.com, the web browser actually has to download
a great amount of data. Here are the different files that the browser downloads:

Media type File/Request
count

Total size Total Gzipped
Size

HTML source code 1 157.6 KB 52.5 KB
Javascript (.js) code files and libraries 6 382.1 KB 112.3 KB
Cascading Style Sheet (.css) files 3 256.8 KB 42.8 KB
Flash animations (.swf) 2 61.4 KB 61.4 KB
Images linked from CSS files (.png, .gif) 18 43.0 KB 43.0 KB
Regular images (.gif, .jpg) 11 73.3 KB 73.3 KB
TOTAL 41 974.2 KB 385.3 KB

•

•

Chapter 7

[219]

These figures reflect a snapshot taken on March 20, 2010. Results may
differ slightly according to your geographical location, date of visit,
and other criteria.

The amount of data to download may not be too surprising—after all the 385.3 KB
(make that 400~450 KB including cookie data and other overhead) can be transferred
in less than a second with the fast Internet connections that are now being offered in
many countries.

A much bigger problem, in our case, is the amount of requests that the server
will have to handle. For all the first-time visitors, and for any web browser that does
not use cached data to load this page, a minimum of 41 HTTP requests will be
processed by the web server. Thankfully, a great portion of people will have most
of the files cached, but that is never good if you have something to update. Besides,
cached data is bound to expire one day or another.

Can your web server process 41 HTTP requests in less than a second? Can it process
41,000 (1000 page views/second)? Can it process 410,000? If so, you probably
have the infrastructure to support such a load. Either way, you are better off with
Nginx—as you have noticed, 40 out of the 41 requests are for static content—image
files, CSS, JavaScript code files, and so on. Provided the speed at which Nginx serves
those files, we could design an architecture that lets Nginx serve static files and
Apache to handle dynamic content.

The reverse proxy mechanism
Somewhat like the FastCGI architecture described in the previous chapter, we
are going to be running Nginx as a frontend server, in other words, in direct
communication with the outside world; whereas Apache will be running as
a backend server and will only exchange data with Nginx.

Apache and Nginx Together

[220]

There are now two web servers running and processing requests:

Nginx positioned as a frontend server (in other words, as reverse proxy)
receives all the requests coming from the outside world. It filters them,
either serving static files directly to the client or forwarding dynamic
content requests to Apache.
Apache runs as a backend server; it only communicates with Nginx. It may
be hosted on the same computer as the frontend, in which case, the listening
port must be edited to leave port 80 available to Nginx. Alternatively, you
can employ multiple backend servers (using the upstream block, as seen
in Chapter 6) on different machines and share the load.

To communicate and interact with each other, both processes will not be using
FastCGI. Instead, as the name suggests, Nginx acts as a simple proxy server—it
receives HTTP requests from client (acting as HTTP server) and forwards them to the
backend server (acting as HTTP client). There is, thus, no new protocol or software
involved. The mechanism is handled by the Proxy module of Nginx, detailed later
in the chapter.

Advantages and disadvantages
The main purpose of setting up Nginx as frontend and giving Apache a simple
backend role is to improve the serving speed. As we established, a great amount of
requests coming from clients are for static files, and static files are served much faster
by Nginx. The overall performance sharply improves both on the client side and
server side.

On a lesser scale, Apache has experienced quite a number of security issues in the
past, pushing forward new releases. You are forced to keep your system up to date
in order to make sure you have a completely secure web server. But it would be
reasonable to say that the more popular a web server is, the more likely bugs and
security issues are to be discovered. Oppositely, the latest stable versions of Nginx
have, so far, been apparently secure and the author had no other choice than to focus
his rare updates on new functionality over security fixes.

Eventually, if you adopt this solution, you will find it particularly easy to set up as
you nearly have no modification to make when it comes to Apache configuration. All
it requires is a simple port change, but that isn't even necessary if you set up Nginx
and Apache on different servers. Your setup works as it is, which is particularly
useful if you already spent hours configuring Apache to work with server-side
preprocessors such as PHP, Python, or others.

•

•

Chapter 7

[221]

On the other hand, you are still deporting requests for dynamic content to Apache,
which is, most of the time, slower than a combination of Nginx and FastCGI. The
optimal solution would be to completely switch to Nginx and leave out Apache.

Besides, since Nginx is installed as the frontend, it implies that it receives raw
requests from users. This implies that the URI comes in its original form, which can
lead to confusion for Nginx; it will not be able to make the difference between static
and dynamic content. You have two choices to solve this issue—either port your
rewrite rules to Nginx or redirect any request that results in a 404 error to the Apache
backend. To explain the latter, a request such as /articles/43515-us-economy-
strengthens.html most likely does not correspond to any file on your system—it's
meant to be rewritten. You may then check for the existence of such a file from
within the Nginx configuration; if it doesn't exist, redirect the request to Apache.

Last but not the least, and this will be further discussed in the last section of this
chapter, there may be some issues with control panel software such as Parallels
Plesk, cPanel, and others. These panels are very useful for administrators, as they
automate some of the most bothersome tasks like adding virtual hosts to the Apache
configuration, creating e-mail accounts, configuring the DNS daemon, and many
more. The two main issues being:

These control panels allow you to apply changes on the web server
configuration and based on your changes, they automatically generate valid
configuration files for the server. Unfortunately, so far these control panels
only offer Apache compatibility; they do not generate Nginx configuration
files. So any change that you make will have no effect.
Whether you completely replace Apache by Nginx or go for the reverse-
proxy mechanism, Nginx usually ends up running on port 80. The control
panel software generating configuration files is unaware of this fact and
might be stubborn; when generating configuration files, it will systematically
reset the Apache port to 80, creating conflicts with Nginx.

Both issues will be discussed again later in the chapter.

Nginx Proxy module
Similar to the previous chapter, the first step towards establishing the new
architecture will be to discover the appropriate module. The default Nginx build
comes with the Proxy module, which allows forwarding of HTTP requests from the
client to a backend server. We will be configuring multiple aspects of the module:

Basic address and port information on the backend server
Caching, buffering, and temporary file options

•

•

•

•

Apache and Nginx Together

[222]

Limits, timeout, and error behavior
Other miscellaneous options

All these options are available via directives that we will learn to configure
throughout this section.

Main directives
This first set of directives will allow you to establish basic configuration such as
the location of the backend server, information to be passed, and how it should
be passed.

Directive Description
proxy_pass

Context: location, if

Specifies that the request should be forwarded to the backend
server by indicating its location:

For TCP sockets, the syntax is: proxy_pass http://
hostname:port;

For Unix domain sockets, the syntax is: proxy_pass
http://unix:/path/to/file.socket;

You may also refer to upstream blocks: proxy_pass
http://myblock;

Instead of http://, you can use https:// for secure
traffic. Additional URI parts as well as the use of
variables are allowed.

Examples:
proxy_pass http://localhost:8080;
proxy_pass http://127.0.0.1:8080;
proxy_pass http://unix:/tmp/nginx.sock;
proxy_pass https://192.168.0.1;
proxy_pass http://localhost:8080/uri/;
proxy_pass http://unix:/tmp/nginx.sock:/uri/;
proxy_pass http://$server_name:8080;
Using an upstream block
upstream backend {
 server 127.0.0.1:8080;
 server 127.0.0.1:8081;
}
location ~* \.php$ {
 proxy_pass http://backend;
}

•

•

•

•

•

•

Chapter 7

[223]

Directive Description
proxy_method

Context: http, server,
location

Allows overriding the HTTP method of the request to be
forwarded to the backend server. If you specify POST, for
example, all requests forwarded to the backend server will
be POST requests.
Syntax: proxy_method method;
Example: proxy_method POST;

proxy_hide_header

Context: http, server,
location

By default, as Nginx prepares the response received from the
backend server to be forwarded back to the client, it ignores
some of the headers: Date, Server, X-Pad, and X-Accel-*.
With this directive, you can specify an additional header line to
be hidden from the client. You may insert this directive multiple
times with one header name for each.
Syntax: proxy_hide_header header_name;
Example: proxy_hide_header Cache-Control;

proxy_pass_header

Context: http, server,
location

Related to the above directive, this directive forces some of the
ignored headers to be passed on to the client.
Syntax: proxy_pass_header headername;
Example: proxy_pass_header Date;

proxy_pass_
request_body

proxy_pass_
request_headers

Context: http, server,
location

Defines whether or not respectively the request body and extra
request headers should be passed on to the backend server.
Syntax: on or off;
Default: on

Apache and Nginx Together

[224]

Directive Description
proxy_redirect

Context: http, server,
location

Allows you to rewrite the URL appearing in the Location HTTP
header on redirections triggered by the backend server.

Syntax: off, default, or the URL of your choice
off: Redirections are forwarded as it is.
default: The value of the proxy_pass directive
is used as the hostname and the current path of the
document is appended. Note that the proxy_redirect
directive must be inserted after the proxy_pass
directive as the configuration is parsed sequentially.
URL: Replace a part of the URL by another.
Additionally, you may use variables in the rewritten
URL.

Examples:
proxy_redirect off;
proxy_redirect default;
proxy_redirect http://localhost:8080/
http://example.com/;
proxy_redirect http://localhost:8080/wiki/ /w/;
proxy_redirect http://localhost:8080/ http://
$host/;

•

•

•

•

proxy_next_
upstream

Context: http, server,
location

When proxy_pass is connected to an upstream block, this
directive defines the cases where requests should be abandoned
and re-sent to the next upstream server of the block. The
directive accepts a combination of values among the following:

error: An error occurred while communicating or
attempting to communicate with the server
timeout: A timeout occurs during transfers or
connection attempts
invalid_header: The backend server returned an
empty or invalid response
http_500, http_502, http_503, http_504, http_
404: In case such HTTP errors occur, Nginx switches to
the next upstream
off: Forbids from using the next upstream server

Examples:
proxy_next_upstream error timeout http_504;
proxy_next_upstream timeout invalid_header;

•

•

•

•

•

Chapter 7

[225]

Caching, buffering, and temporary files
Ideally, as much as possible, you should reduce the amount of requests being
forwarded to the backend server. The following directive will help you build a
caching system, as well as control buffering options and the way Nginx handles
temporary files.

Directive Description
proxy_buffer_size

Context: http, server,
location

Sets the size of the buffer for reading the beginning of the
response from the backend server, which usually contains
simple header data.
The default value corresponds to the size of 1 buffer, as
defined by the directive above (proxy_buffers).
Syntax: Numeric value (size)
Example:

proxy_buffer_size 4k;

proxy_buffering

Context: http, server,
location

Defines whether or not the response from the backend server
should be buffered. If set to on, Nginx will store the response
data in memory using the memory space offered by the
buffers. If the buffers are full, the response data will be stored
as a temporary file. If the directive is set to off, the response
is directly forwarded to the client.
Syntax: on or off
Default: on

proxy_buffers

Context: http, server,
location

Sets the amount and size of buffers that will be used for
reading the response data from the backend server.
Syntax: proxy_buffers amount size;
Default: 8 buffers, 4 k or 8 k each depending on platform
Example: fastcgi_buffers 8 4k;

proxy_busy_buffers_
size

Context: http, server,
location

When the backend-received data accumulated in buffers
exceeds the specified value, buffers are flushed and data is
sent to the client.
Syntax: Numeric value (size)
Default: 2 * proxy_buffer_size

proxy_cache

Context: http, server,
location

Defines a cache zone. The identifier given to the zone is to be
reused in further directives.
Syntax: proxy_cache zonename;
Example: proxy_cache cache1;

Apache and Nginx Together

[226]

Directive Description
proxy_cache_key

Context: http, server,
location

This directive defines the cache key, in other words, it
differentiates one cache entry from another. If the cache
key is set to $uri, as a result, all requests with this $uri
will work as a single cache entry. But that's not enough for
most dynamic websites—you also need to include the query
string arguments in the cache key, so that /index.php and
/index.php?page=contact do not point to the same
cache entry.
Syntax: proxy_cache_key key;
Example: proxy_cache_key
"$scheme$host$request_uri $cookie_user";

proxy_cache_path

Context: http

Indicates the directory for storing cached files, as well as
other parameters.
Syntax: proxy_cache_path path [levels=numbers
keys_zone=name:size inactive=time max_
size=size];

The additional parameters are:
levels: Indicates the depth level of subdirectories
(usually 1:2 is enough)
keys_zone: Lets you make use of the zone you
previously declared with the proxy_cache directive
and indicates the size to occupy in memory
inactive: If a cached response is not used within
the specified time frame, it is removed from the cache
max_size: Defines the maximum size of the
entire cache

Example: proxy_cache_path /tmp/nginx_cache le
vels=1:2 zone=zone1:10m inactive=10m
max_size=200M;

•

•

•

•

proxy_cache_methods

Context: http, server,
location

Defines the HTTP methods eligible for caching. GET and
HEAD are included by default and cannot be disabled. You
may (for example) enable caching of POST requests.
Syntax: proxy_cache_methods METHOD;
Example: proxy_cache_methods POST;

Chapter 7

[227]

Directive Description
proxy_cache_min_
uses

Context: http, server,
location

Defines the minimum amount of hits before a request is
eligible for caching. By default, the response of a request is
cached after one hit (next requests with the same cache key
will receive the cached response).
Syntax: Numeric value
Example: proxy_cache_min_uses 1;

proxy_cache_valid

Context: http, server,
location

This directive allows you to customize the caching time for
different kinds of response codes. You may cache responses
associated with 404 error codes for 1 minute, and on the
opposite cache, 200 OK responses for 10 minutes or more.
This directive can be inserted more than once:

proxy_cache_valid 404 1m;
proxy_cache_valid 500 502 504 5m;

proxy_cache_valid 200 10;

Syntax: proxy_cache_valid code1 [code2…] time;
proxy_cache_use_
stale

Context: http, server,
location

Defines whether or not Nginx should serve stale cached data
in certain circumstances (in regard to the gateway). If you use
proxy_cache_use_stale timeout, and if the gateway
times out, then Nginx will serve cached data.

Syntax: proxy_cache_use_stale [updating] [error]
[timeout] [invalid_header] [http_500];

Example: proxy_cache_use_stale error timeout;
proxy_max_temp_
file_size

Context: http, server,
location

Set this directive to 0 to disable the use of temporary files for
requests eligible to proxy forwarding or specify a maximum
file size.
Syntax: Size value
Default value: 1 GB

Example: proxy_max_temp_file_size 5m;
proxy_temp_file_
write_size

Context: http, server,
location

Sets the write buffer size when saving temporary files to the
storage device
Syntax: Size value

Default value: 2 * proxy_buffer_size
proxy_temp_path

Context: http, server,
location

Sets the path of temporary and cache store files.
Syntax: proxy_temp_path path [level1 [level2…]]
Examples:

proxy_temp_path /tmp/nginx_proxy;
proxy_temp_path /tmp/cache 1 2;

Apache and Nginx Together

[228]

Limits, timeouts, and errors
The following directives will help you define the timeout behavior as well as various
limitations regarding communications with the backend server.

Directive Description
proxy_connect_
timeout

Context: http, server,
location

Defines the backend server connection timeout. This is
different from the read/send timeout; if Nginx is already
connected to the backend server, the proxy_connect_
timeout is not applicable.
Syntax: Time value (in seconds)
Example: proxy_connect_timeout 15;

proxy_read_timeout

Context: http, server,
location

The timeout for reading data from the backend server. This
timeout isn't applied to the entire response delay but between
two read operations instead.
Syntax: Time value (in seconds)
Default value: 60
Example: proxy_read_timeout 60;

proxy_send_timeout

Context: http, server,
location

This timeout for sending data to the backend server. The
timeout isn't applied to the entire response delay but between
two write operations instead.
Syntax: Time value (in seconds)
Default value: 60
Example: proxy_send_timeout 60;

proxy_ignore_
client_abort

Context: http, server,
location

If set to on, Nginx will continue processing the proxy request,
even if the client aborts its request. In the other case (off),
when the client aborts its request, Nginx also aborts its
request to the backend server.
Default value: off

proxy_intercept_
errors

Context: http, server,
location

By default, Nginx returns all error pages (HTTP status code
400 and higher) sent by the backend server directly to the
client. If you set this directive to on, the error code is parsed
and can be matched against the values specified in the
error_page directive.
Default value: off

proxy_send_lowat

Context: http, server,
location

An option allowing you to make use of the SO_SNDLOWAT
flag for TCP sockets under FreeBSD only. This value
defines the minimum number of bytes in the buffer for
output operations.
Syntax: Numeric value (size)
Default value: 0

Chapter 7

[229]

Other directives
Finally, the last set of directives available in the Proxy module is uncategorized and
is as follows:

Directive Description
proxy_headers_hash_max_
size

Context: http, server,
location

Nginx uses hash tables for storing proxy headers in
order to speed up the processing of requests. This
directive defines the maximum size of the proxy headers
hash table. If communications with your backend server
use a total of more than 512 headers, you will have
to increase this value.

Syntax: Numeric value

Default value: 512
proxy_headers_hash_
bucket_size

Context: http, server,
location

Defines the maximum length of a header name in the
proxy headers hash table. If one of your header names
is longer than 64 characters, you will have to increase
this value.

Syntax: Numeric value

Default value: 64
proxy_ignore_headers

Context: http, server,
location

Prevents Nginx from processing one of the following
four headers from the backend server response:
X-Accel-Redirect, X-Accel-Expires, Expires,
and Cache-Control.

Syntax: proxy_ignore_headers header1
[header2…];

proxy_set_body

Context: http, server,
location

Allows you to set a static request body for debugging
purposes. Variables may be used in the directive value.

Syntax: String value (any value)

Example: proxy_set_body test;
proxy_set_header

Context: http, server,
location

This directive allows you to redefine header values to
be transferred to the backend server. It can be declared
multiple times.

Syntax: proxy_set_header Header Value;

Example: proxy_set_header Host $host;

Apache and Nginx Together

[230]

Directive Description
proxy_store

Context: http, server,
location

Specifies whether or not the backend server response
should be stored as a file. Stored response files can be
reused for serving other requests.
Possible values: on, off, or a path relative to the
document root (or alias). You may also set this to on
and define the proxy_temp_path directive.
Examples:

proxy_temp_path on;
proxy_temp_path /temp/store;

proxy_store_access

Context: http, server,
location

This directive defines file access permissions for the
stored response files.
Syntax: proxy_store_access [user:[r|w|rw]]
[group:[r|w|rw]] [all:[r|w|rw]];
Example: proxy_store_access user:rw group:
rw all:r;

Variables
The Proxy module offers several variables that can be inserted in various locations,
for example, in the proxy_set_header directive or in the logging-related directives
such as log_format. The available variables are:

$proxy_host: Contains the hostname of the backend server used for the
current request.
$proxy_port: Contains the port of the backend server used for the
current request.
$proxy_add_x_forwarded_for: This variable contains the value of the
X-Forwarded-For request header, followed by the remote address of the client.
Both values are separated by a comma. If the X-Forwarded-For request
header is unavailable, the variable only contains the client remote address.
$proxy_internal_body_length: Length of the request body (set with the
proxy_set_body directive) or 0.

Configuring Apache and Nginx
After having reviewed the Proxy module, which allows us to establish our
reverse-proxy configuration architecture, it's now time to put all these principles
into practice. There are basically two main parts involved in the configuration, one
relating to Apache and one relating to Nginx. The order in which you decide to
apply those modifications does not make any difference whatsoever.

•

•

•

•

Chapter 7

[231]

Note that while we have chosen to describe the process for Apache in particular,
this method can be applied to any other HTTP server. The only point that differs is
the exact configuration sections and directives that you will have to edit. Otherwise,
the principle of reverse-proxy can be applied, regardless of the server software you
are using.

Reconfiguring Apache
There are two main aspects of your Apache configuration that will need to be edited
in order to allow both Apache and Nginx to work together at the same time. But let
us first clarify where we are coming from, and what we are going towards.

Configuration overview
At this point, you probably have the following architecture set up on your server:

A web server application running on port 80, such as Apache
A dynamic server-side script processing application such as PHP,
communicating with your web server via CGI, FastCGI, or as a
server module

The new configuration that we are going towards will resemble the following:

Nginx running on port 80
Apache or another web server running on a different port, accepting requests
coming from local sockets only
The script processing application configuration will remain unchanged

As you can tell, only two main configuration changes will be applied to Apache as
well as the other web server that you are running. Firstly, change the port number
in order to avoid conflicts with Nginx, which will then be running as the frontend
server. Secondly, (although this is optional) you may want to disallow requests
coming from the outside and only allow requests forwarded by Nginx. Both
configuration steps are detailed in the next sections.

Resetting the port number
Depending on how your web server was set up (manual build, automatic
configuration from server panel managers such as cPanel, Plesk, and so on) you
may find yourself with a lot of configuration files to edit. The main configuration file
is often found in /etc/httpd/conf/ or /etc/apache2/, and there might be more
depending on how your configuration is structured. Some server panel managers
create extra configuration files for each virtual host.

•

•

•

•

•

Apache and Nginx Together

[232]

There are three main elements you need to replace in your Apache configuration:

The Listen directive is set to listen on port 80 by default. You will have to
replace that port by another such as 8080. This directive is usually found in
the main configuration file.
You must make sure that the following configuration directive is present
in the main configuration file: NameVirtualHost A.B.C.D:8080, where
A.B.C.D is the IP address of the main network interface on which server
communications go through.
The port you just selected needs to be reported in all your virtual host
configuration sections, as described below.

The virtual host sections must be transformed from the following template

<VirtualHost A.B.C.D:80>
 ServerName example.com
 ServerAlias www.example.com
 […]
</VirtualHost>

to the following:

<VirtualHost A.B.C.D:8080>
 ServerName example.com:8080
 ServerAlias www.example.com
[…]
</VirtualHost>

In this example, A.B.C.D is the IP address of the virtual host and example.com is the
virtual host's name. The port must be edited on the first two lines.

Accepting local requests only
There are many ways you can restrict Apache to accept only local requests, denying
access to the outside world. But first, why would you want to do that? As an extra
layer positioned between the client and Apache, Nginx provides a certain comfort in
terms of security. Visitors no longer have direct access to Apache, which decreases
the potential risk regarding all security issues the web server may have. Globally,
it's not necessarily a bad idea to only allow access to your frontend server.

•

•

•

Chapter 7

[233]

The first method consists of changing the listening network interface in the main
configuration file. The Listen directive of Apache lets you specify a port, but
also an IP address, although, by default, no IP address is selected resulting in
communications coming from all interfaces. All you have to do is replace the Listen
8080 directive by Listen 127.0.0.1:8080; Apache should then only listen on the
local IP address. If you do not host Apache on the same server, you will need to
specify the IP address of the network interface that can communicate with the server
hosting Nginx.

The second alternative is to establish per-virtual-host restrictions:

<VirtualHost A.B.C.D:8080>
 ServerName example.com:8080
 ServerAlias www.example.com
 […]
 Order deny,allow
 allow from 127.0.0.1
 allow from 192.168.0.1
 deny all
</VirtualHost>

Using the allow and deny Apache directives, you are able to restrict the allowed
IP addresses accessing your virtual hosts. This allows for a finer configuration, which
can be useful in case some of your websites cannot be fully served by Nginx.

Once all your changes are done, don't forget to reload the server to make sure the
new configuration is applied, such as service httpd reload or /etc/init.d/
httpd reload.

Configuring Nginx
There are only a couple of simple steps to establish a working configuration of
Nginx, although it can be tweaked more accurately as seen in the next section.

Enabling proxy options
The first step is to enable proxying of requests from your location blocks. Since
the proxy_pass directive cannot be placed at the http or server level, you need to
include it in every single place that you want to be forwarded. Usually, a location
/ { fallback block suffices since it encompasses all requests, except those that match
location blocks containing a break statement.

Apache and Nginx Together

[234]

Here is a simple example using a single static backend hosted on the same server:

server {
 server_name .example.com;
 root /home/example.com/www;
 […]
 location / {
 proxy_pass http://127.0.0.1:8080;
 }
}

In the following example, we make use of an Upstream block allowing us to specify
multiple servers, as described in Chapter 6:

upstream apache {
 server 192.168.0.1:80;
 server 192.168.0.2:80;
 server 192.168.0.3:80 weight=2;
 server 192.168.0.4:80 backup;
}
 server {
 server_name .example.com;
 root /home/example.com/www;
 […]
 location / {
 proxy_pass http://apache;
 }
}

So far, with such a configuration, all requests are proxied to the backend server; we
are now going to separate the content into two categories:

Dynamic files: Files that require processing before being sent to the client,
such as PHP, Perl, and Ruby scripts, will be served by Apache
Static files: All other content that does not require additional processing,
such as images, CSS files, static HTML files, and media, will be served
directly by Nginx

We thus have to separate the content somehow to be provided by either server.

•

•

Chapter 7

[235]

Separating content
In order to establish this separation, we can simply use two different location
blocks—one that will match the dynamic file extensions and another one
encompassing all the other files. This example passes requests for .php files
to the proxy:

server {
 server_name .example.com;
 root /home/example.com/www;
 […]
 location ~* \.php.$ {
 # Proxy all requests with an URI ending with .php*
 # (includes PHP, PHP3, PHP4, PHP5…)
 proxy_pass http://127.0.0.1:8080;
 }
 location / {
 # Your other options here for static content
 # for example cache control, alias…
 expires 30d;
 }
}

This method, although simple, will cause trouble with websites using URL
rewriting. Most Web 2.0 websites now use links that hide file extensions such as
http://example.com/articles/us-economy-strengthens/; some even replace
file extensions with links resembling the following: http://example.com/us-
economy-strengthens.html.

When building a reverse-proxy configuration, you have two options:

Port your Apache rewrite rules to Nginx (usually found in the .htaccess
file at the root of the website), in order for Nginx to know the actual file
extension of the request and proxy it to Apache correctly.
If you do not wish to port your Apache rewrite rules, the default behavior
shown by Nginx is to return 404 errors for such requests. However, you can
alter this behavior in multiple ways, for example, by handling 404 requests
with the error_page directive or by testing the existence of files before
serving them. Both solutions are detailed below.

Here is an implementation of this mechanism, using the error_page directive:

server {
 server_name .example.com;
 root /home/example.com/www;
 […]

•

•

Apache and Nginx Together

[236]

 location / {
 # Your static files are served here
 expires 30d;
 […]
 # For 404 errors, submit the query to the @proxy
 # named location block
 error_page 404 @proxy;
 }

 location @proxy {
 proxy_pass http://127.0.0.1:8080;
 }
}

Alternatively, making use of the if directive from the Rewrite module:

server {
 server_name .example.com;
 root /home/example.com/www;
 […]
 location / {
 # If the requested file extension ends with .php,
 # forward the query to Apache
 if ($request_filename ~* \.php.$) {
 break; # prevents further rewrites
 proxy_pass http://127.0.0.1:8080;
 }
 # If the requested file does not exist,
 # forward the query to Apache
 if (!-f $request_filename) {
 break; # prevents further rewrites
 proxy_pass http://127.0.0.1:8080;
 }
 # Your static files are served here
 expires 30d;
 }
}

There is no real performance difference between both solutions, as they will transfer
the same amount of requests to the backend server. You should work on porting
your Apache rewrite rules to Nginx if you are looking to get optimal performance.

Chapter 7

[237]

Advanced configuration
For now, we have only made use of one directive offered by the Proxy module.
There are many more features that we can employ to optimize our design. The
table below lists a handful of settings that are valid for most of your reverse-proxy
configurations, although they need to be verified individually. And since they can
be employed multiple times, you can place them in a separate configuration file that
you will include in your location blocks.

Start by creating a proxy.conf text file that you place in the Nginx configuration
directory. Insert the directives described below in that file. Then for each location of
your if blocks that forward requests to a backend server or upstream block, insert
the following line after the proxy_pass directive:

include proxy.conf;

Suggested values for some of the settings:

Setting Description
proxy_redirect off; It lets Nginx forward redirections to the client "as it is"

without processing the response itself.
proxy_set_header Host
$host;

The Host HTTP header in the request forwarded
to the backend server defaults to the proxy hostname,
as specified in the configuration file. This setting
lets Nginx use the original Host from the client
request instead.

proxy_set_header X-Real-
IP $remote_addr;

Since the backend server receives a request from Nginx,
the IP address it communicates with is not that of the
client. Use this setting to forward the actual client
IP address into a new header, X-Real-IP.

proxy_set_header X-
Forwarded-For $proxy_
add_x_forwarded_for;

Similar to the header above, except that if the client
already uses a proxy on his/her own end, the actual
IP address of the client should be contained in the
X-Forwarded-For request header. Using $proxy_
add_x_forwarded_for ensures that both the IP
address of the communicating socket and possibly the
original IP address of the client (behind a proxy) gets
forwarded to the backend server.

client_max_body_size
10m;

Limits the maximum size of the request body to 10
megabytes. Actually, this setting is referenced here to
make sure that you adjust the value to the same level
as your backend server. Otherwise a request that is
correctly received and processed by Nginx may not be
successfully forwarded to the backend.

Apache and Nginx Together

[238]

Setting Description
client_body_buffer_size
128k;

Defines the minimum size of the memory buffer that
will hold a request body. Past this size, the content is
saved in a temporary file. Adjust it according to the
expected size of requests your visitors will be sending,
similar to client_max_body_size.

proxy_connect_timeout
15;

If you are working with a backend server on a local
network, make sure to keep this value reasonably
low (15 seconds here, but it depends on the average
load). The maximum value for this directive is
75 seconds anyway.

proxy_send_timeout 15; Make sure you define a timeout for write operations
(timeout between two write operations during a
communication to the backend server).

proxy_read_timeout 15; Similar to the directive above, except for read
operations.

Many other directives may be configured here. However, default values are
appropriate for most setups.

Additional steps
There are a few more additional steps that you may be interested in if you want to
perfect your reverse-proxy architecture. Three main issues are discussed here—the
issue of IP addresses and how to ensure that the backend server retrieves the correct
one, how to handle HTTPS requests with such a setup, and finally a few words about
server control panels (cPanel, Plesk, and others).

Forwarding the correct IP address
Nowadays, a good portion of websites make use of the visitor's IP address for all
kinds of reasons:

Storing the IP address of a visitor posting a comment on a blog or a
discussion forum
Geotargeted advertising or other services
Limiting services to specific IP address ranges

It is thus important for those websites to ensure that the web server correctly receives
the IP address of the visitor.

•

•

•

Chapter 7

[239]

As explained before, since Apache, or more generally, the backend server uses
the IP address of the socket it communicates with, the IP that will appear in our
design will always be the IP of the server hosting Nginx. We discussed a solution
already—inserting the proxy_set_header X-Real-IP $remote_addr; directive in
the configuration in order to forward the client IP address in the X-Real-IP header.

Unfortunately, that is not enough as some web applications are not configured to
make use of the X-Real-IP header. The client remote address needs to be replaced
somehow by that value. When it comes to Apache, a module was written to do just
that: mod_rpaf. Details on how to install and configure it are not discussed here; you
may find more documentation over at the official website: http://stderr.net/
apache/rpaf/.

SSL issues and solutions
If your website is going to serve secure web pages, you have to somehow allow
visitors to connect to your infrastructure via SSL on port 443. Two solutions
are possible at this point—either you do not make use of Nginx at all and keep
your Apache SSL configuration unmodified or you configure Nginx to accept
communications on port 443.

The first solution is clearly the simplest—do not change the port of your virtual
hosts as configured in Apache. Your website should still be fully accessible from
the outside, unless your backend server is hosted on another computer on the
local network.

The alternative is to configure Nginx to accept secure connections via the SSL
module, as described in Chapter 5. Once your server block is correctly configured,
you can establish a proxied configuration to forward secure requests to your Apache
server. Note that if your backend server is hosted on the same machine, you will
have to edit the configuration in order to avoid port conflicts between the frontend
and backend.

Server control panel issues
A lot of server administrators rely on control panel software to simplify many
aspects of their work—managing hosted domains, e-mail accounts, network settings,
and much more. Advanced software solutions such as Parallels Plesk or cPanel
are able to generate configuration files for many server applications (web, e-mail,
database, and so on) on-the-fly. Unfortunately, they all only support Apache as a
unique web server application; Nginx is unsupported at the moment.

Apache and Nginx Together

[240]

If you followed the steps of the reverse-proxy configuration process, you noticed that
at some point, the Apache configuration files had to be manually edited. We replaced
the listening port and edited or inserted some configuration directives. Obviously,
when the control panel software generates configuration files, it is unaware of the
manual changes we made, therefore it erases our modifications. When you restart
Apache, you are greeted with error messages and conflicts.

At this point, there is no other solution than to apply the changes again after each
configuration rebuild. With the growing popularity of Nginx, developers will
hopefully implement full Nginx support in their software, or at least allow editing
those configuration settings required to use Nginx as a reverse proxy.

Summary
Configuring Nginx as reverse proxy for our architecture introduces a lot of
advantages and can be configured. However, a few obstacles might stand in your
way, especially if you are running control panel software solutions to manage your
services. Moreover, you do not get to make the most of Nginx as you are not using it
for all your requests.

If you are seeking to find an even more efficient solution, you may want to look into
completely replacing Apache by Nginx. The next chapter will detail this process,
step-by-step, from virtual hosts to rewrite rules to FastCGI.

From Apache to Nginx
Every experienced system administrator will tell you the same story—when your
web infrastructure works fine and client requests are served at a good speed, the last
thing you want to do is modify the architecture that you have spent days, weeks, or
even months putting together. The thing is, as your website grows more popular,
problems tend to occur inevitably (and said problems are not as documented
as mainstream ones), regardless of the effort you originally involved in server
configuration. Then eventually you have to start looking for solutions. In that extent,
there are multiple reasons why you would want to completely adopt Nginx at the
expense of your previous web server. Whether you decided that Nginx could be
more efficient as a unique server rather than working as a reverse-proxy or simply
because you want to get rid of Apache once and for all, this chapter will guide you
through the complete process of replacing the latter by the former.

This chapter covers:

An in-depth comparison between Apache and Nginx
A full guide to porting your Apache configuration
How to port your Apache rewrite rules to Nginx
Rewrite rule walkthroughs for a few popular web applications

Nginx versus Apache
This section will provide answers to the main questions that one would ask about
Nginx—how does it stand apart from the other servers? How does it compare to
Apache? Whether you were using Apache before or considered it as a replacement
for your current web server, why should you decide to adopt Nginx at the expense
of the web server that empowers nearly half of the Internet websites worldwide?

•

•

•

•

From Apache to Nginx

[242]

Features
With the reverse-proxy configuration that was elaborated in the previous chapter,
the presence or absence of specific features wasn't much of a problem, given the fact
that Nginx would simply have to differentiate between static and dynamic content,
and in consequence, serve static file requests and forward dynamic file requests
to a backend server.

However, when you start to consider Nginx as a possible full replacement for your
current web server, you better make sure of what's in the box. If your projected
architecture requires specific components, the first thing you would usually do is
check the application features. The table below lists a couple of major features and
describes how Nginx performs in comparison to Apache.

Core and functioning
Features Nginx Apache
Request
management

How does the web
server process
requests?

Event-driven architecture

Requests are accepted using
asynchronous sockets and aren't
processed in separate threads,
in order to reduce memory and
CPU overhead.

Synchronous sockets, threads,
and processes

Each request is in a separate
thread or process and uses
synchronous sockets.

Programming
language

Which language
was the web server
written in?

C

The C language is notably low-
level and offers more accurate
memory management.

C and C++

Although Apache was written in
C, many modules were designed
with C++.

Portability

Which operating
systems are
supported?

Multiplatform

Nginx runs under Windows,
GNU/Linux, Unix, BSD, Mac
OS X, and Solaris.

Multiplatform

Apache runs under Windows,
GNU/Linux, Unix, BSD, Mac
OS X, Solaris, Novell NetWare,
OS/2, TPF, OpenVMS, eCS, AIX,
z/OS, HP-UX, and so on.

Year of birth

How long ago did
the development
start?

2002

While Nginx is younger than
Apache, it was intended for a
more modern era.

1994

Apache is one of the numerous
open source projects initiated
in the 90s that contributed to
making the World Wide Web
what it is today.

Chapter 8

[243]

General functionality
This section mainly focuses on differences between Apache and Nginx rather than
listing all sorts of features that have already been covered in previous chapters.

Feature Nginx Apache
HTTPS support

Can the web server
deliver secure web
pages?

Supported as module

If you want HTTPS support, you
need to make sure to compile
Nginx with the proper module.

Supported as module

Apache comes with HTTPS
support via a module
included by default.

Virtual Hosting

Can the web server
host multiple
websites on the same
computer?

Supported natively

Nginx natively supports virtual
hosting, but is not configured by
default to accept per-virtual-host
configuration files (more details
further in this chapter).

Supported natively

Apache natively supports
virtual hosting and offers
the possibility to include one
configuration file per folder
(.htaccess).

CGI Support

Does the web browser
support CGI and
FastCGI?

FastCGI only

Nginx supports FastCGI via
a module that is included by
default at compile time.

CGI and FastCGI

Both protocols are exploitable
via modules that can be
loaded into Apache.

Module system

How does the
web server handle
modules?

Static module system

Modules must be included at
compile time.

Dynamic module system

Modules can be loaded and
unloaded dynamically from
configuration files.

Generally speaking, Apache has a lot more to offer notably with a much larger
number of modules available. Most of its functionality, even core for the application
core, is modularized. At this time, the official Apache module website references
over 500 modules for various version branches, versus a little more than 80 for
Nginx. This state of facts is mainly caused by the reasons described just below.

From Apache to Nginx

[244]

Flexibility and community
This is another criterion for establishing an honest comparison between two
applications of that family. In today's computer science industry, one cannot simply
regard the raw functionality of an application without considering questions such as:

Where am I going to get help if I get stuck?
Am I going to find documentation about the features offered?
Are more modules going to be implemented in the future?
Is the project still active and being updated by its developers?
Has the server security been tested by a large enough number
of administrators?

These questions generally answer themselves when the server gets popular
enough. In the case of Apache, saying that it is a mainstream application would
be an understatement. Documentation is easily found; developers have released
hundreds of modules over the years, and it has received regular updates for the
past fifteen years.

What about Nginx, how does it stand on those matters? That is definitely a sensitive
issue. To begin with, there are some solid websites centralizing information such as
the official wiki. If you have a problem with Apache, a simple search engine query
suffices to find multiple articles answering the exact question you have been asking
yourself. If you have a problem with Nginx though, you will likely have to resort
to newsgroups or mailing lists of web forums.

On the updates and security side though, Nginx is frequently updated by its author
Igor Sysoev. Those updates rarely include security fixes as the server has been built
on solid and reliable foundations from the start. Although it doesn't serve as many
websites as Apache does, Nginx still empowers some of the most popular online
platforms such as SourceForge, WordPress, ImageShack, and more. This contributes
to conferring it an undeniable legitimacy in the domain of high-performance
web servers.

Performance
While features and community-related matters are important in general, the aspect
that can make all the difference is performance. Administrators naturally tend to
favor the server that will provide optimal comfort for the end user, characterized
by minimal page load times and maximum RPS (Requests Per Second) rate.

•

•

•

•

•

Chapter 8

[245]

Chapter 3 provided a first approach of HTTP server performance testing. The same
tests can be applied to Apache in order to establish direct performance comparisons.
In fact, many admin bloggers and technicians have already done so, and the general
trend is unquestionably in favor of Nginx on all aspects:

The RPS rate is generally much higher with Nginx, sometimes twice higher
than Apache's. In other words, Nginx is able to serve twice as many pages as
Apache in the same lapse of time.
Response times are lower on Nginx—as the request count grows, Apache
becomes slower and slower to serve pages.
Apache tends to use slightly more bandwidth than Nginx for serving the
same requests. This can be interpreted in two ways—either Apache generates
more traffic overhead, or it is able to transfer data at a faster rate by better
occupying the available bandwidth (it's still unsure as to which of these
assumptions is the most valid).

In conclusion on the field of performance, Nginx wins hands down. It's clearly the
main reason why so many have switched to the lightweight Russian web server.

Usage
The reason why Nginx is so far ahead of Apache performance-wise is because it's
precisely the reason it was written for. Originally, Igor Sysoev created Nginx to
power an extremely high-traffic Russian website (www.rambler.ru), which received
hundreds of millions of requests every day. This was probably not part of the
original plans of the Apache designers when they initiated the project back in
the early 90s.

More generally, it is said that Nginx was designed to address the C10k problem.
This problem designates a common observation according to which the current state
of computer technology and network scalability only allows a computer (from the
mainstream industry) to maintain up to 10,000 simultaneous network connections, due
to operating system and software limitations. While that number isn't representative
anymore due to the progress of the technology, at the time, the issue was considered
very seriously and it triggered the development of major web servers such as Lighttpd,
Cherokee, and obviously Nginx.

•

•

•

From Apache to Nginx

[246]

Conclusion
There is one famous quote going around the Nginx community that summarizes the
situation pretty accurately:

"Apache is like Microsoft Word, it has a million options but you only need six.
Nginx does those six things, and it does five of them 50 times faster than Apache."
Chris Lea, ChrisLea.com

Other notable testimonies help build the reputation of Nginx:

"I currently have Nginx doing reverse proxy of over tens of millions of HTTP
requests per day (that's a few hundred per second) on a single server. At peak
load, it uses about 15 MB RAM and 10 percent of my CPU on my particular
configuration (FreeBSD 6). Under the same kind of load, Apache falls over (after
using 1000 or so processes and god knows how much RAM), Pound falls over
(too many threads, and using 400 MB+ of RAM for all the thread stacks), and
Lighty leaks more than 20 MB per hour (and uses more CPU, but not significantly
more)." Bob Ippolito, MochiMedia.com

If you are in the market for high scale projects with limited resources at your
disposal, Nginx comes in as a great solution. Apache is a good option to get your
projects started when your knowledge of web servers and hosting is limited, but as
soon as you meet success, you, your server, and your visitors may eventually find
it inconsistent.

Porting your Apache configuration
That's it. You've had enough of Apache. You finally decided to make a complete
switch to Nginx. There are quite a few steps ahead of you now, the first of which
being to adapt your previous configuration in a way to ensure that your existing
websites work 1:1 after the switch.

Directives
This first section will summarize some of the common Apache configuration
directives and attempt to provide equivalent or replacement solutions from Nginx.
The list follows the order of the default Apache configuration file.

Chapter 8

[247]

Apache directive Nginx equivalent
ServerTokens

Apache allows you to configure the
information transmitted in request
headers regarding the server OS and
software name and versions.

server_tokens

In Nginx, you may enable or disable transmission
of server information by using the server_
tokens directive from the main HTTP module.

ServerRoot

Lets you define the root directory
of the server, which will contain the
configuration and logs directory.

--prefix build-time option

With Nginx, this option is defined at compile time
with the --prefix switch of the configure script
or at execution time with the -p command line
option.

PidFile

Defines the path of the application
pid file.

pid

The exact equivalent directive is pid.

TimeOut

This directive defines three
elements—the maximum execution
time of a GET request, the maximum
allowed delay between two TCP
packets in POST and PUT requests,
and the maximum allowed delay
between two TCP 'ACK' packets.

Multiple directives

There are multiple directives allowing a similar
behavior:

send_timeout: Defines the maximum
allowed delay between two read
operations by the client

client_body_timeout: Defines the
timeout for reading client request

bodyclient_header_timeout: Defines
the timeout for reading client request
headers

•

•

•

KeepAlive, MaxKeepAliveRequests,
KeepAliveTimeout

These three directives control the
keep-alive behavior of Apache.

keepalive_timeout, keepalive_requests

These two directives are the direct equivalents
to the Apache ones, except that if you want to
completely disable keep-alives, set keepalive_
timeout or keepalive_requests to 0.

Listen

Defines the interface and port
on which Apache will listen for
connections.

listen

In Nginx, this directive is only defined at the
virtual host level (server block).

LoadModule

With this directive, Apache offers
the possibility to load modules
dynamically.

--with_****_module

Nginx cannot load modules dynamically; these
need to be included at compile time. Once
incorporated in Nginx, they cannot be disabled.

From Apache to Nginx

[248]

Apache directive Nginx equivalent
Include

File inclusion directive supports
wildcards.

include

The include directive of Nginx is identical.

User, Group

Allows you to define the user and
group under which the daemon will
be running.

user

The user directive of Nginx lets you specify both
the user and the group.

ServerAdmin, ServerSignature

Lets you specify the e-mail address
of the server administrator and a
signature message to be displayed on
error and diagnostic pages.

No equivalent

As of version 0.7.66, there is no equivalent for
Nginx. Error pages do not show the e-mail address
of the server administrator or other information.

UseCanonicalName

Defines how Apache constructs
self-referential URLs.

No direct equivalent

Although there is no direct equivalent for this
Apache directive, the construction of self-
referential URLs can be defined via module-
specific settings (proxy, FastCGI, and so on).

DocumentRoot

Defines the root directory from
which Apache will serve files. The
directive can be used at the server
and virtual host levels.

root

The root directive can be inserted to define the
document root at all levels: http, server,
location, and if blocks.

DirectoryIndex, IndexOptions,
IndexIgnore

Define directory index and file listing
options.

index, autoindex, random_index, fancyindex
(third party)

Nginx also offers a good variety of options for
managing indexes.

AccessFileName

Defines the filename of .htaccess
files that are included dynamically
on page execution.

No equivalent

Nginx, as of version 0.7.66, has no such feature as
.htaccess files. Read sections further below for
more information.

TypesConfig, DefaultType

Defines MIME type options.

types, default_type

Equivalent directives exist in Nginx, although with
a different syntax.

HostNameLookups

Allows looking up of hostnames for
client IP addresses for logging or
access control purposes.

No equivalent

As of Nginx 0.7.66, there is no equivalent
functionality.

Chapter 8

[249]

Apache directive Nginx equivalent
ErrorLog, LogLevel, LogFormat,
CustomLog

Logging activation and format
settings

access_log, log_format

Nginx also allows a large variety of options, but
they are combined in fewer directives.

Alias, AliasMatch, ScriptAlias

Directory aliasing options.

alias

The alias equivalent directive is offered by
Nginx, but nothing for the other two.

Modules
As we have discovered earlier in Chapter 2, modules in Nginx cannot be loaded
dynamically and must be included at compile time. Additionally, they cannot be
disabled at runtime since they are completely compiled and integrated in the main
binary. Consequently, you should carefully consider your choice of modules when
you build Nginx.

If you are worried about the impact on performance of the modules
you selected, you should be aware that the only noticeable differences
will come from "filter modules", the name given to modules that apply
a filter to the content of requests and/or responses and thus are always
activated. Examples of filter modules: Addition, Charset, Gzip, SSI, and
more. In the case of non-filter modules (such as Autoindex, FastCGI,
Stub Status, and others), if none of their directives are used, the module
handler is never executed.

The table below lists some module that Apache and Nginx have in common. Note
that there might be equivalent modules, but they do not necessarily provide the exact
same functionality and directives are likely to be different in all cases. You should
check the documentation of these modules in their respective chapter.

Apache Module Nginx Module Status Configure switch
mod_auth_basic auth_basic Included by default --without-

http_auth_basic_
module

mod_autoindex autoindex Included by default --without-
http_autoindex_module

mod_charset_
lite

charset Included by default --without-
http_charset_module

mod_dav dav Optional --with-http_dav_
module

From Apache to Nginx

[250]

Apache Module Nginx Module Status Configure switch
mod_deflate gzip Included by default --without-

http_gzip_module

mod_expires headers Included by default Cannot be disabled
mod_fcgid fastcgi Included by default --without-

http_fastcgi_module

mod_headers Headers Included by default Cannot be disabled
mod_include ssi Included by default --without-

http_ssi_module

mod_log_config log Included by default Cannot be disabled
mod_proxy proxy Included by default --without-

http_proxy_module

mod_rewrite rewrite Included by default --without-
http_rewrite_module

mod_ssl ssl Optional --with-http_ssl_
module

mod_status stub_status Optional --with-
http_stub_status_
module

mod_substitute sub Optional --with-http_sub_
module

mod_uid userid Included by default --without-
http_userid_module

Virtual hosts and configuration sections
Just like Nginx allows you to define configuration settings at various levels
(http, server, location, if), Apache also has its own sections. The section
list is described below along with a configuration example.

Configuration sections
The table below provides a translation of Apache sections into Nginx configuration
blocks. Some Apache sections have no direct Nginx equivalent, but for most cases,
identical behavior can be reproduced in a slightly different syntax.

Chapter 8

[251]

Apache section Nginx section Description
Default http The settings placed at the root of the Apache

configuration files correspond to the settings
placed at the root of the Nginx configuration
file and also those placed in the http block (as
opposed to other blocks such as mail or imap
used for mail server proxying functionality).

<VirtualHost> server Apache settings placed in the <VirtualHost>
sections should be placed in the server blocks
of the Nginx configuration file.

<Location>
<LocationMatch>

location The behavior of the <Location> and
<LocationMatch> (regular expression) can be
reproduced with the Nginx location block.

None if Nginx offers dynamic conditional structure
with the if block. There is no exact equivalent
in Apache. The closest equivalence is the
RewriteCond directive from the Rewrite
module.

<Directory>
<DirectoryMatch>
<Files>
<FilesMatch>

None Apache allows you to apply settings to specific
locations of the local file system while Nginx
only offers per-URI settings.

<IfDefine> None Applies a set of directives if the specified
condition is true on startup. This feature is not
available on Nginx.

<IfModule> None Applies a set of directives on startup if the
specified module is loaded. Since Nginx does
not support dynamic module loading, this
feature is not available.

<Proxy>
<ProxyMatch>

None Applies a set of directives to proxied resources
by specifying a wildcard URI or a regular
expression. This section has no equivalent
on Nginx.

Creating a virtual host
In Apache, virtual hosts are optional. You are allowed to define server settings at the
root of the configuration file:

Listen 80
ServerName example.com
ServerAlias www.example.com
DocumentRoot "/home/example.com/www"
[…]

From Apache to Nginx

[252]

However, this behavior is useful only if you are going to host one website on the
server, or if you want to define the default settings for incoming requests that
do not match other virtual host access rules.

In Nginx, however, all the websites you will be hosting must be placed in a server
block which allows the creation of a virtual host, equivalent of the <VirtualHost>
section in Apache. The table below describes the translation of an Apache
<VirtualHost> section to an Nginx server block:

Apache virtual host Nginx virtual host equivalent
<VirtualHost 12.34.56.78:80> server {

ServerName example.com:80

ServerAlias www.example.com

listen 12.34.56.78:80;

server_name example.com www.
example.com;

UseCanonicalName Off # No equivalent.
SuexecUserGroup user group # No equivalent.
ServerAdmin "admin@example.
com"

No equivalent.

DocumentRoot /home/example.
com/www

root /home/example.com/www;

CustomLog
/home/example.com/logs/access_
log cust

access_log
/home/example.com/logs/access_log
cust;

Note that the cust format must be declared
beforehand with log_format.

ErrorLog
/home/example.com/logs/error_
log

error_log
/home/example.com/logs/error_log;

<Location /documents/>

 Options +Indexes

</Location>

location /documents/ {

 autoindex on;

}

<IfModule mod_ssl.c>

SSLEngine off

</IfModule>

there is no equivalent for IfModule.
ssl off;

Chapter 8

[253]

Apache virtual host Nginx virtual host equivalent
<Directory /home/example.com/
www>

 <IfModule mod_fcgid.c>

 <Files ~ (\.php)>

 SetHandler fcgid-script

 FCGIWrapper /usr/bin/php-
cgi .php

 Options +ExecCGI

 allow from all

 </Files>

 </IfModule>

 Options -Includes -ExecCGI

</Directory>

There is no equivalent to the Directory
section. The location block only applies
per-URI settings. The location block applies
settings for all requests relative to the virtual
host root directory. We use it to apply settings
to the .php files.
location ~ \.php {

 # Insert your FCGI settings

 fastcgi_pass 127.0.0.1:9000;

 fastcgi_param SCRIPT_FILENAME
/home/example.com/
www$fastcgi_script_name;

 fastcgi_param PATH_INFO
$fastcgi_script_name;

 include fastcgi_params; # Your
additional FastCGI settings

}

Other directives have no direct equivalent or
are not necessary with Nginx.

</VirtualHost> }

This translation guide is valid for regular virtual hosts, serving non-secure web
pages. There are a few differences when creating a secure virtual host using SSL. The
table below focuses on the SSL-related directives, although directives from the table
above can still be used.

Apache virtual host Nginx virtual host
<VirtualHost 12.34.56.78:443> server {

ServerName example.com:443

ServerAlias www.example.com

listen 12.34.56.78:443;

server_name example.com www.
example.com;

SSLEngine on

SSLVerifyClient none

SSLCertificateFile /home/
example.com/cert/certchL9435

ssl on;

ssl_verify_client off;

ssl_certificate /home/example.
com/cert/cert.pem;

ssl_certificate_key /home/
example.com/cert/cert.key;

From Apache to Nginx

[254]

Apache virtual host Nginx virtual host
<Directory /home/example.com/
www>

 SSLRequireSSL

</Directory>

There is no equivalent required with
Nginx.

</VirtualHost> }

htaccess files
This section approaches the tricky problem of .htaccess files and the underlying
thematic of shared hosting. There is indeed no such mechanism in Nginx, which
among other reasons, renders shared hosting difficult to achieve.

Reminder on Apache .htaccess files
.htaccess files are small independent configuration files that webmasters are
allowed to place in every single directory of their website. Upon receiving a request
accessing a particular directory, Apache checks for the presence of such a file and
applies it to the request context. This allows webmasters to apply separate settings
at multiple levels:

Chapter 8

[255]

In the context of a client request for /downloads/protected/finances.xls, all
three .htaccess files would be applied in the following order:

1. /home/example.com/www/.htaccess

2. /home/example.com/www/downloads/.htaccess

3. /home/example.com/www/downloads/protected/.htaccess

The settings precedence is given to the last .htaccess file read—if the same setting
is defined in /www/.htaccess and /www/downloads/.htaccess, the latter file has
priority over the former.

Nginx equivalence
Unfortunately, there is no such mechanism in Nginx. We can, however, find
replacement solutions by making the most of directives that we have at our disposal.

There are three major uses for .htaccess files in Apache:

Creating access and authentication rules for specific directories
Defining rewrite rules at the top level (usually not directory-specific)
Setting flags for modules such as mod_php, mod_perl, or mod_python

When it comes to the latter, the use of flags is only achievable when the
preprocessors are set up as Apache modules. If your server runs PHP
through CGI or FastCGI, flags will not be recognized and generate a
500 Internal Server Error. In our case, connecting Nginx to such
applications can only be done via FastCGI or HTTP; consequently flags
are not allowed.

Depending on how you declare your virtual hosts, there are two solutions for
implementing an htaccess-like behavior or at least something remotely similar.

The first solution, if you are going to list all virtual hosts from a unique configuration
file, is to insert an include directive in the server block that refers to an extra
configuration file located in the /www/ directory. But let us not forget that this
configuration file should be hidden and not downloadable by clients:

server {
 listen 80;
 server_name .example.com;
 root /home/example.com/www;
 […]
 # Include extra configuration files
 location / {

•

•

•

From Apache to Nginx

[256]

 include /home/example.com/www/.ngconf*;
 }

 # Deny access if someone tries to download the file
 location ~ \.ngconf {
 return 404;
 }
}

This will include any file with a name starting with .ngconf from the /www/
directory of the virtual host. Note the * in the include directive: if you specify a
filename without a wildcard, Nginx will consider the configuration to be invalid
if the file is missing. If you use the wildcard, the absence of such a file does not
generate any error.

The .ngconf file would then include directives related to the virtual host itself:

autoindex off; # Disable directory listing
location /downloads/ {
 autoindex on; # Allow directory listing in /downloads/
 }
 […]

This solution seems relatively secure for web hosting providers, as this only allows
webmasters to define location-related settings (preventing important changes such
as using a different port, different host name, and more). However, be aware that if
a webmaster creates invalid .ngconf files, Nginx will refuse to reload until the issue
is fixed.

Alternatively, you could decide to place virtual host declarations within separate
files located in the root directory of each virtual host. In which case, you would
only need the following directive in the main Nginx configuration file:

include /home/*/www/.ngconf;

The .ngconf file then has to contain the complete virtual host declaration, including
the port and server name. This solution should only be considered for servers that
you entirely manage by yourself; you should never allow external webmasters
to have so much control over your server.

That being said, there is still one major difference between Apache and Nginx:

Apache applies settings from .htaccess files every time a client request
is processed
Nginx applies settings from .ngconf files only when you reload the
configuration (such as service nginx reload)

•

•

Chapter 8

[257]

At this moment, there is no work around for this last issue; Nginx does not allow
on-the-fly configuration changes.

Rewrite rules
The most common source of worries during an HTTP server switch is the rewrite
rules. Unfortunately, Nginx is not directly compatible with the Apache rewrite rules
in two regards:

Usually, rewrite rules are placed within .htaccess files, as discussed in the
previous section. Nginx offers no such mechanism, so rewrite rules will have
to be placed in a different location.
The syntax of the rewrite instructions and conditions is quite different and
will need to be adapted.

This section will approach some of the issues encountered when porting rules
to Nginx, and then will provide some prewritten rules for a couple of major
web applications.

General remarks
Before studying practical examples, let us begin with a couple of important remarks
regarding rewrite rules in Nginx.

On the location
With all that has been said and written about Nginx, we can safely say that it's not
the most appropriate web server for web hosting companies that do shared hosting.
The lack of .htaccess files renders it practically impossible to host websites that
have their own server settings, among which are rewrite rules. While a replacement
solution has been offered in the previous section, it's not optimal as it requires a
configuration reload after each change, and to crown it all, reloading is only possible
if the entire configuration contains no error.

The consequence of this first issue is that you will have to relocate the rewrite rules.
They will have to be placed directly in the server or location blocks of your
virtual host, regardless of which file contains the virtual host configuration. With
Apache, rewrite rules would be located somewhere such as /home/example.com/
www/.htaccess; while with Nginx, you need to incorporate them in the virtual host
configuration file, for example, /usr/local/nginx/conf/nginx.conf.

•

•

From Apache to Nginx

[258]

On the syntax
There are two major Apache directives that are important when it comes to
porting rewrite rules to Nginx; other directives either have no equivalent, are not
supported on purpose, or their behavior is already incorporated in the offered
Nginx equivalences:

RewriteCond allows you to define conditions that should be matched for the
URL to be rewritten
RewriteRule performs the actual URL rewrite by specifying a regular
expression pattern, the rewritten URL, and a set of flags

The first of those directives, RewriteCond, is equivalent to Nginx's if. It is used for
verifying conditions before applying a rewrite rule; the example below ensures that
the requested file does not exist (!-f flag) before rewriting the URL:

RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule . /index.php [L]

The Nginx equivalent, using if and rewrite, would be:

if (!-f $request_filename) {
 rewrite . /index.php last;
}

It gets a little more complicated when you want to rewrite under multiple conditions:
the Nginx if statement only supports one condition in the expression and does
not allow imbrications of if blocks. How does one reproduce a behavior like the
one below?

RewriteCond %{REQUEST_FILENAME} !-f # File must not exist
RewriteCond %{REQUEST_FILENAME} !-d # Directory must not exist
RewriteRule . /index.php [L] # Rewrites URL

There is a simple logical workaround for this particular issue—we will be using
multiple if blocks, in which we affect a variable. After the two initial if blocks,
a third comes in to check if the variable was affected by the first two:

set $check "";
If the specified file does not exist, set $check to "A"
if (!-f $request_filename) {
 set $check "A";
}
If the specified directory does not exist, set $check to $check + B
if (!-d $request_filename) {
 set $check "${check}B";

•

•

Chapter 8

[259]

}
If $check was affected in both if blocks, perform the rewrite
if ($check = "AB") {
 rewrite . /index.php last
}

Note that for those two particular rewrite conditions (-f to test file existence; -d
to test directory existence), Nginx already offers a solution that combines both
tests: -e. So a quicker solution would have been:

if (!-e $request_filename) {
 rewrite . /index.php last;
}

In addition to testing file and directory existence, -e also checks if the specified
filename corresponds to an existing symbolic link.

For more information on the Rewrite module in general, please refer to Chapter 5.

RewriteRule
The RewriteRule Apache directive is the direct equivalent to rewrite in Nginx.
However, there is a subtle difference—URIs in Nginx begin with the / character.
Nevertheless, the translation remains simple:

RewriteRule ^downloads/(.*)$ download.php?url=$1 [QSA]

The preceding Apache rule is transformed into the following:

rewrite ^/downloads/(.*)$ /download.php?url=$1;

Note that the [QSA] flag tells Apache to append the query arguments to the rewritten
URL. However, Nginx does that by default. To prevent Nginx from appending query
arguments, insert a trailing ? to the substitution URL:

rewrite ^/downloads/(.*)$ /download.php?url=$1?;

The RewriteRule Apache directive allows additional flags; these can be matched
against the ones offered by Nginx, described in Chapter 5.

WordPress
WordPress is probably a familiar name to you—as of September 2009, the immensely
popular open source blogging application was being used by over 200 million
websites worldwide. Powered by PHP and MySQL, it's compatible with Nginx out of
the box. Well, this statement would be entirely true if it weren't for rewrite rules.

From Apache to Nginx

[260]

The web application comes with a .htaccess file to be placed at the root of
the website:

BEGIN WordPress
<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule . /index.php [L]
</IfModule>
END WordPress

This first example is relatively easy to understand and to translate to Nginx. In fact,
most of the rewriting process consists of three steps:

1. Checking if the requested URI corresponds to an existing file, in which case,
it is served normally.

2. Checking if the requested URI corresponds to a directory, in which case,
it is served normally.

3. Rewrite to index.php; WordPress will then analyze the URI by itself from
within the PHP script (by checking the $_SERVER["REQUEST_URI"] variable).

Since there are not a lot of complex rules to take care of, the URLs being decomposed
by the PHP script itself, the translation to Nginx is rather easy. Here is a full example
of a Nginx virtual host, stripped out of all unrelated directives:

server {
 listen 80;
 server_name blog.example.com;
 root /home/example.com/blog/www;
 index index.php;
 location / {
 # If requested URI does not match any existing file, directory or
symbolic link, rewrite the URL to index.php
 if (!-e $request_filename) {
 rewrite ^ /index.php last;
 }
 }
 # For all PHP requests, pass them on to PHP-FPM via FastCGI
 # For more information, consult chapter 6
 location ~ \.php$ {
 fastcgi_pass 127.0.0.1:9000;

Chapter 8

[261]

 fastcgi_param SCRIPT_FILENAME
/home/example.com/blog/www$fastcgi_script_name;
 fastcgi_param PATH_INFO $fastcgi_script_name;
 include fastcgi_params; # include extra FCGI params
 }
}

MediaWiki
As its name suggests, MediaWiki is the web engine that empowers the famous
Wikipedia online open encyclopedia. It is currently an open source software and
anyone can download and install it on their local server. The application can also be
used as CMS (Content Management Software), and large companies such as Novell
have found it to be a reliable solution.

Contrary to WordPress, MediaWiki does not come with a prewritten .htaccess file
for prettying up URLs. Instead, the official MediaWiki website offers a wide variety
of methods; all documented in the form of wiki articles. Webmasters can implement
solutions that go as far as modifying the main Apache configuration file. However,
there are simpler solutions that require no such thing. No particular Apache solution
has been retained here, as three simple Nginx rewrite rules suffice to do the trick.

The first one redirects default requests (for example, / as request URI) to
/wiki/Main_Page.
The second one rewrites all the URIs of the /wiki/abcd form into the actual
URL /w/index.php?title=abcd, without forgetting to append the rest of
the parameters to the request URL.
The third one ensures that requests to /wiki get redirected to the home
page /w/index.php.

Here is a full virtual host configuration example, including the rewrite rules:

server {
 listen 80;
 server_name wiki.example.com;
 root /home/example.com/wiki/www;
 location / {
 index index.php;
 rewrite ^/$ /wiki/Main_Page permanent;
 }
 # 2 rewrite rules
 rewrite ^/wiki/([^?]*)(?:\?(.*))? /w/index.php?title=$1&$2;
 rewrite ^/wiki /w/index.php;

•

•

•

From Apache to Nginx

[262]

 # Your FCGI configuration here
 location ~ \.php$ {
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME
/home/example.com/wiki/www$fastcgi_script_name;
 include fastcgi_params;
 }
}

vBulletin
Discussion forums started blooming in the 2000s and a lot of popular web
applications have appeared such as vBulletin, phpBB, or Invision Board. Most of
these forum software platforms have jumped in the bandwagon and now boast full
SEO-friendly URL support. Unfortunately, rewrite rules often come in the form of
.htaccess files; indeed, the vBulletin developers have chosen to provide rewrite
rules for Apache 2 and IIS, unsurprisingly forgetting Nginx. Let's teach them a
lesson; the table below describes a solution for converting their Apache rewrite
rules to Nginx.

Apache rule Nginx rule
RewriteEngine on # Not necessary.
RewriteCond %{REQUEST_FILENAME}
-s [OR]
RewriteCond %{REQUEST_FILENAME}
-l [OR]
RewriteCond %{REQUEST_FILENAME}
-d
RewriteRule ^.*$ - [NC,L]

Do not rewrite if the requested URI
corresponds to an existing file, directory, or
link on the system.
if (-e $request_filename) {
 break;
 }

RewriteRule ^threads/.* showth
read.php [QSA]

rewrite ^/threads/.*$
/showthread.php last;

RewriteRule ^forums/.* forum
display.php [QSA]

rewrite ^/forums/.*$
/forumdisplay.php last;

RewriteRule ^members/.* mem
ber.php [QSA]

rewrite ^/members/.*$
/members.php last;

RewriteRule ^blogs/.* blog.php
[QSA]

rewrite ^/blogs/.*$ /blog.php
last;

ReWriteRule ^entries/.* en
try.php [QSA]

rewrite ^/entries/.*$
/entry.php last;

Chapter 8

[263]

Apache rule Nginx rule
RewriteCond %{REQUEST_FILENAME}
-s [OR]
RewriteCond %{REQUEST_FILENAME}
-l [OR]
RewriteCond %{REQUEST_FILENAME}
-d
RewriteRule ^.*$ - [NC,L]

For some reason, the same set of rules
appears twice in the .htaccess file
provided by vBulletin. You do not need to
insert the Nginx equivalent a second time.

RewriteRule
^(?:(.*?)(?:/|$))(.*|$)$
$1.php?r=$2 [QSA]

rewrite
^/(?:(.*?)(?:/|$))(.*|$)$
/$1.php?r=$2 last;

Summary
Switching from Apache to Nginx may seem complex at first. There are many steps
involved in the process, and you may face unsolvable problems if you are not
confident and well-prepared. You need to be aware of the current limitations of
Nginx: no on-the-fly configuration changes, and thus no .htaccess or a similar
feature. Nginx does not have nearly as many modules as Apache does, at least not
yet. Last but not least, you have to convert all your rewrite rules for your websites to
be functional under Nginx. So yes, it does take quite a bit of work. But this is a small
price to pay to get a server that will ensure long-term stability and scalability. You
and your visitors will not regret it, as it generally comes with improved loading and
response speeds.

Directive Index
The table below lists directives from all of the available first-party Nginx modules.
Each directive comes with a brief description, the module providing the directive
(marked with a "*" if the module is not included by default), and the chapter and
section where you will find more information. Directives are sorted alphabetically.

Directive Module
accept_mutex: Enables or disables the use of an accept mutex

Chapter 3, Events module section

Events

accept_mutex_delay: Sets the delay of the accept mutex

Chapter 3, Events module section

Events

access_log: Defines access log settings

Chapter 5, Website access and logging section

Log

add_after_body: Adds content after response body

Chapter 5, Content and encoding section

Addition*

add_before_body: Adds content before response body

Chapter 5, Content and encoding section

Addition*

add_header: Adds arbitrary headers to responses

Chapter 5, Content and encoding section

Headers

alias: Sets a directory alias

Chapter 4, Paths and documents section

HTTP Core

allow: Allows an IP address or address range to access a resource

Chapter 5, Limits and restrictions section

Access

Directive Index

[266]

Directive Module
ancient_browser: Affects $ancient_browser if the request user
agent matches a specified string

Chapter 5, About your visitors section

Browser

ancient_browser_value: Sets the value to be affected to
$ancient_browser

Chapter 5, About your visitors section

Browser

auth_basic: Sets a text message to be displayed in basic
authentication dialogs

Chapter 5, Limits and restrictions section

Auth Basic

auth_basic_user_file: Defines the file containing usernames and
passwords for basic authentication

Chapter 5, Limits and restrictions section

Auth Basic

autoindex: Enables automatic directory indexes

Chapter 5, Website access and logging section

Autoindex

autoindex_exact_size: Shows file sizes in bytes for automatic
directory indexes

Chapter 5, Website access and logging section

Autoindex

autoindex_localtime: Enables or disables adjusting file dates to
match server local time

Chapter 5, Website access and logging section

Autoindex

break: Prevents further URL rewrites

Chapter 5, Rewrite module directives section

Rewrite

charset: Sets charset value in Content-Type HTTP header

Chapter 5, Content and encoding section

Charset

charset_map: Defines character re-encoding tables

Chapter 5, Content and encoding section

Charset

charset_types: Defines MIME types eligible for charset re-encoding

Chapter 5, Content and encoding section

Charset

client_body_buffer_size: Specifies the buffer size for client
request body

Chapter 4, Client requests section

HTTP Core

Appendix A

[267]

Directive Module
client_body_in_file_only: Forces Nginx to store the client
request body as a file in all cases

Chapter 4, Client requests section

HTTP Core

client_body_in_single_buffer: Defines whether or not the body
of client requests should be stored in a single buffer

Chapter 4, Client requests section

HTTP Core

client_body_temp_path: Sets the path for storing temporary client
request body files

Chapter 4, Client requests section

HTTP Core

client_body_timeout: Sets inactivity timeout for reading client
request body

Chapter 4, Client requests section

HTTP Core

client_header_buffer_size: Sets the size of buffers allocated to
request headers

Chapter 4, Client requests section

HTTP Core

client_header_timeout: Sets inactivity timeout for reading client
request headers

Chapter 4, Client requests section

HTTP Core

client_max_body_size: Sets the maximum size for client
request body

Chapter 4, Client requests section

HTTP Core

connection_pool_size: Defines the size of the pool memory space
to be allocated to connections

Chapter 4, Socket and host configuration section

HTTP Core

connections: Deprecated (see worker_connections)

Chapter 3, Events module section

Events

create_full_put_path: Enables or disables recursive directory
creation (creates full path) for PUT requests

Chapter 5, Other miscellaneous modules section

DAV*

daemon: Enables or disables daemon mode

Chapter 3, Core module directives section

Core

dav_access: Defines access permissions at the current level

Chapter 5, Other miscellaneous modules section

DAV*

Directive Index

[268]

Directive Module
dav_methods: Selects DAV methods to be enabled

Chapter 5, Other miscellaneous modules section

DAV*

debug_connection: Enables detailed logs for the specified IP address
or address range

Chapter 3, Events module section

Events

debug_points: Enables or disables debug points

Chapter 3, Core module directives section

Core

default_type: Sets the default MIME type for served files

Chapter 4, MIME types section

HTTP Core

deny: Denies an IP address or address range access to a resource

Chapter 5, Limits and restrictions section

Access

directio: Enables or disables the use of direct I/O

Chapter 4, File processing and caching section

HTTP Core

empty_gif: Serves an empty gift from memory

Chapter 5, Content and encoding section

Empty GIF

env: Defines or redefines environment variables

Chapter 3, Core module directives section

Core

error_log: Specifies error logging settings

Chapter 3, Core module directives section

Core

error_page: Defines behavior for specific error codes

Chapter 4, Paths and documents section

HTTP Core

expires: Controls cache headers sent in responses

Chapter 5, Content and encoding section

Headers

fastcgi_buffer_size: Sets the size of the FastCGI response buffer

Chapter 6, Main directives section

FastCGI

fastcgi_buffers: Sets buffer amount and buffer size for
communications with the FastCGI backend

Chapter 6, Main directives section

FastCGI

fastcgi_cache: Defines a FastCGI cache zone

Chapter 6, FastCGI caching section

FastCGI

Appendix A

[269]

Directive Module
fastcgi_cache_key: Sets the key for caching FastCGI-processed
requests

Chapter 6, FastCGI caching section

FastCGI

fastcgi_cache_methods: Sets eligible HTTP methods for
FastCGI caching

Chapter 6, FastCGI caching section

FastCGI

fastcgi_cache_path: Configures FastCGI caching options for
a specified zone

Chapter 6, FastCGI caching section

FastCGI

fastcgi_cache_use_stale: Defines whether or not stale cache data
should be used in certain circumstances

Chapter 6, FastCGI caching section

FastCGI

fastcgi_cache_valid: Sets caching validity period for specific
response codes

Chapter 6, FastCGI caching section

FastCGI

fastcgi_catch_stderr: Allows you to intercept some of the error
messages sent to stderr and store them in the Nginx error log

Chapter 6, Main directives section

FastCGI

fastcgi_connect_timeout: Defines the backend server
connection timeout

Chapter 6, Main directives section

FastCGI

fastcgi_hide_header: Skips FastCGI headers

Chapter 6, Main directives section

FastCGI

fastcgi_ignore_client_abort: Sets FastCGI module behavior
when clients abort requests

Chapter 6, Main directives section

FastCGI

fastcgi_ignore_headers: Prevents Nginx from processing one
of the following four headers from the backend server response:
X-Accel-Redirect, X-Accel-Expires, Expires, Cache-Control

Chapter 6, Main directives section

FastCGI

fastcgi_index: Specifies directory index for FastCGI

Chapter 6, Main directives section

FastCGI

Directive Index

[270]

Directive Module
fastcgi_intercept_errors: Defines whether or not FastCGI
backend generated errors should be returned 'as is'

Chapter 6, Main directives section

FastCGI

fastcgi_max_temp_file_size: Sets maximum size for
temporary files

Chapter 6, Main directives section

FastCGI

fastcgi_next_upstream: Defines the cases where requests should
be abandoned and re-sent to the next upstream server of the block

Chapter 6, Main directives section

FastCGI

fastcgi_param: Configures a FastCGI header to be passed to
the backend

Chapter 6, Main directives section

FastCGI

fastcgi_pass: Enables FastCGI backend by specifying its location

Chapter 6, Main directives section

FastCGI

fastcgi_pass_header: Re-enables FastCGI omitted headers

Chapter 6, Main directives section

FastCGI

fastcgi_pass_request_body: Defines whether or not the request
body should be passed on to the backend server

Chapter 6, Main directives section

FastCGI

fastcgi_pass_request_headers: Defines whether or not extra
request headers should be passed on to the backend server

Chapter 6, Main directives section

FastCGI

fastcgi_read_timeout: Sets the timeout for reading response from
FastCGI backend

Chapter 6, Main directives section

FastCGI

fastcgi_send_lowat: Allows you to make use of the SO_SNDLOWAT
flag for TCP sockets for FastCGI communications, under FreeBSD only

Chapter 6, Main directives section

FastCGI

fastcgi_send_timeout: Timeout for sending data to the
backend server

Chapter 6, Main directives section

FastCGI

fastcgi_split_path_info: Splits a URI path according to a
regular expression

Chapter 6, Main directives section

FastCGI

Appendix A

[271]

Directive Module
fastcgi_store: Defines FastCGI cache store settings

Chapter 6, Main directives section

FastCGI

fastcgi_store_access: Sets FastCGI cache store access permissions

Chapter 6, Main directives section

FastCGI

fastcgi_temp_file_write_size: Sets the write buffer size when
saving temporary files to the storage device

Chapter 6, Main directives section

FastCGI

fastcgi_temp_path: Sets directory path for FastCGI temporary files

Chapter 6, Main directives section

FastCGI

flv: Enables seeking in FLV files

Chapter 5, Content and encoding section

FLV*

geo: Defines a map of values based on the client's IP address

Chapter 5, About your visitors section

Geo

geoip_city: Sets the path to your IP-to-city database

Chapter 5, About your visitors section

Geo IP*

geoip_country: Sets the path to your IP-to-country database

Chapter 5, About your visitors section

Geo IP*

google_perftools_profiles: Sets path of Google-perftools
profiles file

Chapter 5, Other miscellaneous modules section

Google
Perftools*

gzip_buffers: Defines the size of buffers for storing a
Gzipped response

Chapter 5, Content and encoding section

Gzip

gzip_comp_level: Defines the compression level for
Gzipped responses

Chapter 5, Content and encoding section

Gzip

gzip_disable: Disables Gzip compression for requests with a
user-agent matching the specified regular expression

Chapter 5, Content and encoding section

Gzip

gzip_hash: Sets the amount of memory that should be allocated for
the internal compression state (memLevel argument)

Chapter 5, Content and encoding section

Gzip

Directive Index

[272]

Directive Module
gzip_http_version: Enables Gzip compression for the specified
HTTP version

Chapter 5, Content and encoding section

Gzip

gzip_min_length: Sets a minimum length for responses to be eligible
to Gzip compression

Chapter 5, Content and encoding section

Gzip

gzip_no_buffer: Enabling this directive disables buffering for
Gzipped responses

Chapter 5, Content and encoding section

Gzip

gzip_proxied: Enables or disables Gzip compression for the body of
responses received from a proxy

Chapter 5, Content and encoding section

Gzip

gzip_static: Enables pre-compressed response module

Chapter 5, Content and encoding section

Gzip static*

gzip_types: Sets MIME types eligible for Gzip compression

Chapter 5, Content and encoding section

Gzip

gzip_vary: Enables or disables including the Vary HTTP header
in the response

Chapter 5, Content and encoding section

Gzip

gzip_window: Sets the size of the window buffer (windowBits
argument) for Gzipping operations

Chapter 5, Content and encoding section

Gzip

if_modified_since: Defines how Nginx handles the If-Modified-
Since HTTP header

Chapter 4, Paths and documents section

HTTP Core

ignore_invalid_headers: When disabled Nginx returns a 400
Bad Request HTTP error, in case request headers are misformed

Chapter 4, Client requests section

HTTP Core

image_filter: Applies transformations on images

Chapter 5, Content and encoding section

Image Filter*

image_filter_buffer: Sets the maximum file size for images

Chapter 5, Content and encoding section

Image Filter*

Appendix A

[273]

Directive Module
image_filter_jpeg_quality: Sets JPEG quality for image
filter output

Chapter 5, Content and encoding section

Image Filter*

include: Includes an external configuration file

Chapter 3, Core module directives section

Core

index: Sets the default filename(s) for directory indexes

Chapter 5, Website access and logging section

Index

internal: Restricts a location block to internal sub-requests
and redirects

Chapter 4, Limits and restrictions section

HTTP Core

keepalive_requests: Maximum amount of requests served over a
single keep-alive connection

Chapter 4, Client requests section

HTTP Core

keepalive_timeout: Amount of seconds Nginx waits before closing
a keep-alive connection

Chapter 4, Client requests section

HTTP Core

large_client_header_buffers: Sets size of buffers for client
request with larger headers

Chapter 4, Client requests section

HTTP Core

limit_conn: Limits the amount of connections per zone

Chapter 5, Limits and restrictions section

Limit Zone

limit_except: Sets the allowed HTTP methods

Chapter 4, Limits and restrictions section

HTTP Core

limit_rate: Limits transfer rate per connection

Chapter 4, Limits and restrictions section

HTTP Core

limit_rate_after: Limits transfer rate after a specified limit

Chapter 4, Limits and restrictions section

HTTP Core

limit_req: Limits the amount of requests per zone

Chapter 5, Limits and restrictions section

Limit Req

limit_req_zone: Defines a zone to be used with limit_req

Chapter 5, Limits and restrictions section

Limit Req

limit_zone: Defines a zone to be used with limit_conn

Chapter 5, Limits and restrictions section

Limit Zone

Directive Index

[274]

Directive Module
lingering_time: Defines behavior when a client submits a request
that exceeds the maximum allowed size

Chapter 4, Client requests section

HTTP Core

lingering_timeout: Amount of time that Nginx should wait
between two read operations before closing the client connection

Chapter 4, Client requests section

HTTP Core

listen: Specifies settings for listening sockets

Chapter 4, Socket and Host configuration section

HTTP Core

lock_file: Sets the path of the lock file

Chapter 3, Core module directives section

Core

log_format: Defines format of access log entries

Chapter 5, Website access and logging section

Log

log_not_found: Enables or disables logging of 404 errors

Chapter 4, Other directives section

HTTP Core

log_subrequest: Enables or disables including details about
sub-requests in the logfiles

Chapter 4, Other directives section

HTTP Core

map: Defines a map of values to be matched against a variable; the result
is stored in another variable

Chapter 5, About your visitors section

Map

map_hash_bucket_size: Sets the maximum size of a map entry

Chapter 5, About your visitors section

Map

map_hash_max_size: Sets the maximum amount of entries in a map

Chapter 5, About your visitors section

Map

master_process: Enables or disables master process

Chapter 3, Core module directives section

Core

memcached_buffer_size: Sets memcached data buffer size

Chapter 5, Content and encoding section

Memcached

memcached_connect_timeout: Sets memcached connect timeout
Chapter 5, Content and encoding section

Memcached

memcached_next_upstream: Sets conditions for switching to the next
upstream server for memcached configurations
Chapter 5, Content and encoding section

Memcached

Appendix A

[275]

Directive Module
memcached_pass: Configures memcached access

Chapter 5, Content and encoding section

Memcached

memcached_read_timeout: Sets memcached data read
operations timeout

Chapter 5, Content and encoding section

Memcached

memcached_send_timeout: Sets memcached data send
operations timeout

Chapter 5, Content and encoding section

Memcached

merge_slashes: Enables or disables merging of double slashes
in URLs

Chapter 4, Other directives section

HTTP Core

min_delete_depth: Defines a minimum URI depth for deleting files
or directories when processing the DELETE command

Chapter 5, Other miscellaneous modules section

DAV*

modern_browser: Affects the $modern_browser if the request user
agent matches specified string

Chapter 5, About your visitors section

Browser

modern_browser_value: Sets the value to be affected to
$modern_browser

Chapter 5, About your visitors section

Browser

msie_padding: Enables response padding for MSIE browsers

Chapter 4, Other directives section

HTTP Core

msie_refresh: Enables MSIE-specific redirects for the MSIE
browser family

Chapter 4, Other directives section

HTTP Core

multi_accept: Enables or disables accepting multiple connections
from the queue at once

Chapter 3, Events module section

Events

open_file_cache: Defines open file cache store settings

Chapter 4, File processing and caching section

HTTP Core

open_file_cache_errors: Defines whether or not file errors should
be cached in the open file cache store

Chapter 4, File processing and caching section

HTTP Core

Directive Index

[276]

Directive Module
open_file_cache_min_uses: Defines the minimum amount of uses
for a file to remain in the cache

Chapter 4, File processing and caching section

HTTP Core

open_file_cache_valid: Sets the cache verification interval

Chapter 4, File processing and caching section

HTTP Core

open_log_file_cache: Configures the cache of log file descriptors

Chapter 5, Website access and logging section

Log

override_charset: Overrides charset for documents received via
proxy or FastCGI

Chapter 5, Content and encoding section

Charset

pid: Sets the path of the pid file

Chapter 3, Core module directives section

Core

port_in_redirect: Enables or disables including port number for
internal redirects

Chapter 4, Socket and host configuration section

HTTP Core

post_action: Defines a post-completion action, a URI that will be called
by Nginx after the request has been completed

Chapter 4, Other directives section

HTTP Core

postpone_gzipping: Defines a minimum data threshold to be
reached before starting the Gzip compression

Chapter 5, Content and encoding section

HTTP Core

postpone_output: Postpones the sending of the response; this
directive defines the size of data to be sent in each packet

Chapter 4, Socket and host configuration section

HTTP Core

proxy_buffer_size: Sets the size of backend response buffer

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_buffering: Enables or disables backend response buffering

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_buffers: Sets amount and size of buffers for backend
communications

Chapter 7, Caching, buffering, and temporary files section

Proxy

Appendix A

[277]

Directive Module
proxy_busy_buffers_size: Sets size of buffers for busy
backend servers

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_cache: Defines a proxy cache zone

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_cache_key: Sets the key for caching proxied requests

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_cache_methods: Sets eligible HTTP methods for
proxy caching

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_cache_min_uses: Sets amount of times a cache entry should
be used before being protected from cache sweeping

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_cache_path: Configures proxy caching options for a
specified zone

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_cache_use_stale: Defines whether or not stale cache data
should be used in certain circumstances

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_cache_valid: Sets caching validity period for specific
response codes

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_connect_timeout: Sets timeout for connecting to the backend

Chapter 7, Limits, timeouts, and errors section

Proxy

proxy_headers_hash_bucket_size: Sets the maximum size of
entries in the headers hash table

Chapter 7, Other directives section

Proxy

proxy_headers_hash_max_size: Sets the maximum amount of
entries in the headers hash table

Chapter 7, Other directives section

Proxy

proxy_hide_header: Skips specified header for reverse proxying

Chapter 7, Main directives section

Proxy

Directive Index

[278]

Directive Module
proxy_ignore_client_abort: Sets proxy module behavior when
clients abort requests

Chapter 7, Limits, timeouts, and errors section

Proxy

proxy_ignore_headers: Prevents Nginx from processing
specified headers

Chapter 7, Other directives section

Proxy

proxy_intercept_errors: Defines whether or not backend
generated errors should be returned 'as is'

Chapter 7, Limits, timeouts, and errors section

Proxy

proxy_max_temp_file_size: Sets maximum size for temporary files

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_method: Allows additional HTTP methods for reverse proxying

Chapter 7, Main directives section

Proxy

proxy_next_upstream: Defines upstream server skipping conditions

Chapter 7, Main directives section

Proxy

proxy_pass: Enables reverse proxying to a backend server by
specifying its location

Chapter 7, Main directives section

Proxy

proxy_pass_header: Disables skipping of specified header for
reverse proxying

Chapter 7, Main directives section

Proxy

proxy_pass_request_body: Allows request body to be passed
to backend

Chapter 7, Main directives section

Proxy

proxy_pass_request_header: Allows extra request headers to be
passed to backend

Chapter 7, Main directives section

Proxy

proxy_read_timeout: Sets read timeout for backend
communications

Chapter 7, Limits, timeouts, and errors section

Proxy

proxy_redirect: Enables or disables handling of redirects generated
by backend

Chapter 7, Main directives section

Proxy

Appendix A

[279]

Directive Module
proxy_send_lowat: Allows you to make use of the SO_SNDLOWAT
flag for TCP sockets for communications with backends, under
FreeBSD only

Chapter 7, Limits, timeouts, and errors section

Proxy

proxy_send_timeout: Sets write timeout for backend
communications

Chapter 7, Limits, timeouts, and errors section

Proxy

proxy_set_body: Sets request body for debugging purposes

Chapter 7, Other directives section

Proxy

proxy_set_header: Sets extra header data for debugging purposes

Chapter 7, Other directives section

Proxy

proxy_store: Enables cache store for proxy communications

Chapter 7, Other directives section

Proxy

proxy_store_access: Sets cache store access permissions

Chapter 7, Other directives section

Proxy

proxy_temp_file_write_size: Sets write buffer size when writing
temporary files

Chapter 7, Caching, buffering, and temporary files section

Proxy

proxy_temp_path: Sets directory path for proxy temporary files

Chapter 7, Caching, buffering, and temporary files section

Proxy

random_index: Enables or disables selecting a random file to be served
as directory index

Chapter 5, Website access and logging section

Random Index*

real_ip_header: Sets the HTTP header to be used for the
replacement IP address

Chapter 5, About your visitors section

Real IP*

recursive_error_pages: Enables or disables the use of recursive
error pages with the error_page directive

Chapter 4, Paths and documents section

HTTP Core

request_pool_size: Defines the size of the pool memory space to be
allocated to requests

Chapter 4, Socket and host configuration section

HTTP Core

Directive Index

[280]

Directive Module
reset_timedout_connection: Enables or disables erasing
connection information after timeouts

Chapter 4, Socket and host configuration section

HTTP Core

resolver: Sets the IP address of the DNS server

Chapter 4, Other directives section

HTTP Core

resolver_timeout: Sets the timeout for resolving hostnames

Chapter 4, Other directives section

HTTP Core

return: Interrupts request and returns specified code

Chapter 5, Rewrite module directives section

Rewrite

rewrite: Rewrites a URL

Chapter 5, Rewrite module directives section

Rewrite

rewrite_log: Enables or disables issuing log messages from the
rewrite engine at the notice log level

Chapter 5, Rewrite module directives section

Rewrite

root: Sets the document root of a virtual host or virtual path

Chapter 4, Paths and documents section

HTTP Core

satisfy: Defines resource access conditions

Chapter 4, Limits and restrictions section

HTTP Core

secure_link_secret: Sets the secret word for the secure URL

Chapter 5, SSL and security section

Secure Link*

send_lowat: Enables or disables the use of the SO_SNDLOWAT TCP
socket flag under BSD systems for communications with the client

Chapter 4, Socket and host configuration section

HTTP Core

send_timeout: The number of seconds after last packet received
before Nginx closes a client connection

Chapter 4, Client requests section

HTTP Core

sendfile: Enables or disables the use of the sendfile kernel call to
handle file transmissions

Chapter 4, Socket and Host Configuration section

HTTP Core

sendfile_max_chunk: Maximum size of data to be used for each call
to sendfile

Chapter 4, Socket and Host Configuration section

HTTP Core

server: Declares a server entry in an upstream block

Chapter 6, Upstream blocks section

Upstream

Appendix A

[281]

Directive Module
server_name: Sets the virtual host server names

Chapter 4, Socket and Host Configuration section

HTTP Core

server_name_in_redirect: Enables or disables server name for
internal redirects

Chapter 4, Socket and Host Configuration section

HTTP Core

server_names_hash_bucket_size: Sets the maximum size of a
server name in the hash table

Chapter 4, Socket and Host Configuration section

HTTP Core

server_names_hash_max_size: Sets the maximum amount of
server names in the hash table

Chapter 4, Socket and Host Configuration section

HTTP Core

server_tokens: Enables or disable server information display

Chapter 4, Other directives section

HTTP Core

set: Sets the value of a variable

Chapter 5, Rewrite module directives section

Rewrite

set_real_ip_from: Defines a trusted server by declaring its
IP address

Chapter 5, About your visitors section

Real IP*

source_charset: Sets source charset for documents

Chapter 5, Content and encoding section

Charset

ssi: Activates server-side includes

Chapter 5, SSI module directives and variables section

SSI

ssi_ignore_recycled_buffers: Prevents Nginx from making use
of recycled buffers

Chapter 5, SSI module directives and variables section

SSI

ssi_min_file_chunk: Defines buffering and storage settings for
SSI requests

Chapter 5, SSI module directives and variables section

SSI

ssi_silent_errors: Defines whether or not SSI errors should
be silent

Chapter 5, SSI module directives and variables section

SSI

ssi_types: Defines MIME types eligible for SSI parsing

Chapter 5, SSI module directives and variables section

SSI

Directive Index

[282]

Directive Module
ssi_value_length: Defines the maximum size for SSI tag values

Chapter 5, SSI module directives and variables section

SSI

ssl: Enables HTTPS for a virtual host

Chapter 5, SSL and security section

SSL*

ssl_certificate: Sets the path of the PEM certificate file

Chapter 5, SSL and security section

SSL*

ssl_certificate_key: Sets the path of the PEM secret key file

Chapter 5, SSL and security section

SSL*

ssl_ciphers: Sets ciphers to be used by the SSL engine

Chapter 5, SSL and security section

SSL*

ssl_client_certificate: Sets the path of the client PEM
certificate file

Chapter 5, SSL and security section

SSL*

ssl_dhparam: Sets the path of the DH file

Chapter 5, SSL and security section

SSL*

ssl_engine: Specifies the name of the desired SSL engine

Chapter 3, Core module directives section

Core

ssl_prefer_server_ciphers: Defines whether or not the server
ciphers should be preferred over the client servers

Chapter 5, SSL and security section

SSL*

ssl_protocols: Sets protocols to be used by the SSL engine

Chapter 5, SSL and security section

SSL*

ssl_session_cache: Configures SSL session cache settings

Chapter 5, SSL and security section

SSL*

ssl_session_timeout: Sets the timeout for SSL sessions

Chapter 5, SSL and security section

SSL*

ssl_verify_client: Enables or disables verifying client certificates

Chapter 5, SSL and security section

SSL*

ssl_verify_depth: Sets certificate verification depth

Chapter 5, SSL and security section

SSL*

stub_status: Enables or disables stub status information

Chapter 5, Other miscellaneous modules section

Stub Status*

Appendix A

[283]

Directive Module
sub_filter: Searches and replaces text in the response

Chapter 5, Content and encoding section

Substitution*

sub_filter_once: Defines whether or not sub_filter should search
and replace only one occurrence

Chapter 5, Content and encoding section

Substitution*

sub_filter_types: Defines MIME types to be affected by the search
and replace filter

Chapter 5, Content and encoding section

Substitution*

tcp_nodelay: Enables or disables TCP_NODELAY socket option for
keep-alive connections

Chapter 4, Socket and Host configuration section

HTTP Core

tcp_nopush: Enables or disables TCP_NOPUSH (BSD) or TCP_CORK
(Linux) socket option for keep-alive connections

Chapter 4, Socket and Host configuration section

HTTP Core

thread_stack_size: Sets the size of the thread stack

Chapter 3, Core module directives section

Core

timer_resolution: Interval for synchronizing the internal clock

Chapter 3, Core module directives section

Core

try_files: Attempts to serve files; if none found, jump to a
named block

Chapter 4, Paths and documents section

HTTP Core

types: Matches MIME types with file extensions

Chapter 4, MIME types section

HTTP Core

types_hash_bucket_size: Defines the maximum size of an entry in
the MIME types hash table

Chapter 4, MIME types section

HTTP Core

types_hash_max_size: Defines the maximum amount of entries in
the MIME types hash table

Chapter 4, MIME types section

HTTP Core

underscores_in_headers: Allows or disallows underscores in
HTTP header names

Chapter 4, Other directives section

HTTP Core

Directive Index

[284]

Directive Module
uninitialized_variable_warn: Enables or disables logging of
directives that use variables which are not initialized

Chapter 5, Rewrite module directives section

Rewrite

upstream: Defines an upstream block for load-balanced architectures

Chapter 6, Upstream blocks section

Upstream

use: Sets the preferred event model

Chapter 3, Events module section

Events

user: Sets the user and group for running worker processes

Chapter 3, Core module directives section

Core

userid: Enables or disables the userid module

Chapter 5, About your visitors section

User ID

userid_domain: Sets the domain assigned to the cookie

Chapter 5, About your visitors section

User ID

userid_expires: Sets the cookie expiration date

Chapter 5, About your visitors section

User ID

userid_name: Sets the name assigned to the cookie

Chapter 5, About your visitors section

User ID

userid_p3p: Sets the value of the p3p header

Chapter 5, About your visitors section

User ID

userid_path: Sets the path part of the cookie

Chapter 5, About your visitors section

User ID

userid_service: Sets the IP address of the service issuing the cookie

Chapter 5, About your visitors section

User ID

valid_referers: Defines a list of accepted referrers for a location

Chapter 5, About your visitors section

Referrer

variables_hash_bucket_size: Defines the maximum length of a
variable in the variables hash table

Chapter 4, Other directives section

HTTP Core

variables_hash_max_size: Defines the maximum size of the
variables hash table

Chapter 4, Other directives section

HTTP Core

Appendix A

[285]

Directive Module
worker_connections: Defines the amount of simultaneous
connections per worker process

Chapter 3, Events Module section

Events

worker_cpu_affinity: Defines affinity of worker processes with
CPU cores

Chapter 3, Core module directives section

Core

worker_priority: Sets the priority of worker processes

Chapter 3, Core module directives section

Core

worker_processes: Sets the amount of worker processes

Chapter 3, Core module directives section

Core

worker_rlimit_core: Sets the size of core files for worker processes

Chapter 3, Core module directives section

Core

worker_rlimit_nofile: Sets the amount of file a worker process can
use simultaneously

Chapter 3, Core module directives section

Core

worker_rlimit_sigpending: Defines the amount of signals a
worker process can queue

Chapter 3, Core module directives section

Core

worker_threads: Enables threading (not recommended)

Chapter 3, Core module directives section

Core

working_directory: Sets the working directory for worker processes

Chapter 3, Core module directives section

Core

xml_entities: Specifies a DTD file containing symbolic
element definitions

Chapter 5, Content and encoding section

XSLT*

xslt_stylesheet: Specifies the XSLT template file path with
its parameters

Chapter 5, Content and encoding section

XSLT*

xslt_types: Sets MIME types, on which transformations should
be applied

Chapter 5, Content and encoding section

XSLT*

Module Reference
This appendix summarizes the available Nginx modules, as of stable version
0.7.66. For each module, a brief description is provided as well as some particular
characteristics and a reference to the chapter where you will be able to find more
information. The modules are listed in alphabetical order.

Modules marked with a * are optional modules, which are not included when you
build Nginx without extra configure switches. The appropriate configure switch
to enable or disable modules is detailed with each module.

Access
Allows you to grant or deny access to a resource, based on an IP address or
address range.

Key directives: allow, deny

Configure switch: --without-http_access_module disables the module.

Chapter 5, Limits and restrictions section

Addition*
Lets you specify content that should be added before or after the response body.

Key directives: add_before_body, add_after_body

Configure switch: --with-http_addition_module enables the module.

Chapter 5, Content and encoding section

Module Reference

[288]

Auth_basic module
Lets you set up basic authentication settings on a specified location.

Key directives: auth_basic, auth_basic_user_file

Configure switch: --without-http_auth_basic_module enables the module.

Chapter 5, Limits and restrictions section

Autoindex
Enables automatic file listing for directories without an index file.

Key directive: autoindex

Configure switch: --without-http_autoindex_module disables the module.

Chapter 5, Website access and logging section

Browser
Parses the User-Agent HTTP header and assigns variables in consequence.

Key directives: modern_browser, ancient_browser

Configure switch: --without-http_browser_module disables the module.

Chapter 5, About your visitors section

Charset
Provides page content recoding functionality.

Key directives: charset, override_charset

Configure switch: --without-http_charset_module disables the module.

Chapter 5, Content and encoding section

Appendix B

[289]

Core
Provides core functionality such as daemonization and socket processing.

Key directives: worker_processes, user

Configure switch: This module is enabled by default and cannot be disabled.

Chapter 3, Core module section

DAV*
Enables WebDAV (Web-based Distributed Authoring and Versioning) support.

Key directives: dav_methods, dav_access

Configure switch: --with-http_dav_module enables the module.

Chapter 5, Other miscellaneous modules section

Empty GIF
Allows serving an empty GIF file directly from memory.

Key directive: empty_gif

Configure switch: --without-http_empty_gif_module disables the module.

Chapter 5, Content and encoding section

Events
Allows you to select and configure the connection event model.

Key directive: worker_connections

Configure switch: This module is enabled by default and cannot be disabled.

Chapter 3, Events module section

Module Reference

[290]

FastCGI
Enables FastCGI support.

Key directives: fastcgi_pass, fastcgi_param

Configure switch: --without-http_fastcgi_module disables the module.

Chapter 6, FastCGI module section

FLV*
Enables seeking in FLV files.

Key directive: flv

Configure switch: --with-http_flv_module enables the module.

Chapter 5, Content and encoding section

Geo
Affects a variable based on a map of values affected to IP addresses or
address ranges.

Key directive: geo

Configure switch: --without-http_geo_module disables the module.

Chapter 5, About your visitors section

Geo IP*
Enables support for MaxMind's GeoIP databases.

Key directives: geoip_country, geoip_city

Configure switch: --with-http_geoip_module enables the module.

Chapter 5, About your visitors section

Appendix B

[291]

Google-perftools*
Enables Google Performance Tools profiling support.

Key directive: google_perftools_profiles

Configure switch: --with-google_perftools_module enables the module.

Chapter 5, Other miscellaneous modules section

Gzip
Allows compression of the response body with the Gzip compression algorithm.

Key directives: gzip, gzip_comp_level

Configure switch: --without-http_gzip_module disables the module.

Chapter 5, Content and encoding section

Gzip Static*
Enables serving of pre-compressed response files.

Key directive: gzip_static

Configure switch: --with-http_gzip_static_module enables the module.

Chapter 5, Content and encoding section

Headers
Allows defining arbitrary HTTP response headers.

Key directives: add_header, expires

Configure switch: This module is included by default and cannot be disabled.

Chapter 5, Content and encoding section

Module Reference

[292]

HTTP Core
Provides core HTTP functionality.

Key directives: listen, server_name, and so on

Configure switch: --without-http disables all HTTP-related functionality.

Chapter 4, HTTP Core module section

Image Filter*
Provides image transforming functionality via GDLib.

Key directive: image_filter

Configure switch: --with-http_image_filter_module enables the module.

Chapter 5, Content and encoding section

Index
Allows defining a file to be used as the directory index.

Key directive: index

Configure switch: This module is included by default and cannot be disabled.

Chapter 5, Website access and logging section

Limit Requests
Allows limiting of requests for a defined zone.

Key directives: limit_req, limit_req_zone

Configure switch: --without-http_limit_req_module disables the module.

Chapter 5, Limits and restrictions section

Appendix B

[293]

Limit Zone
Allows limiting of connections for a defined zone.

Key directives: limit_zone, limit_conn

Configure switch: --without-http_limit_zone_module disables the module.

Chapter 5, Limits and restrictions section

Log
Provides access log customization functionality.

Key directives: access_log, log_format

Configure switch: This module is included by default and cannot be disabled.

Chapter 5, Website access and logging section

Map
Affects a variable based on a defined map of keys and values.

Key directive: map

Configure switch: --without-http_map_module disables the module.

Chapter 5, About your visitors section

Memcached
Provides directives for interacting with memcached (memory cache daemon).

Key directive: memcached_pass

Configure switch: --without-http_memcached_module disables the module.

Chapter 5, Content and encoding section

Module Reference

[294]

Proxy
Provides reverse proxying functionality.

Key directives: proxy_pass, proxy_set_header, and so on

Configure switch: --without-http_proxy_module disables the module.

Chapter 7, Proxy module section

Random index*
Allows selecting a random file as the directory index.

Key directive: random_index

Configure switch: --with-http_random_index_module enables the module.

Chapter 5, Website access and logging section

Real IP*
Allows retrieving the real client IP from headers when using Nginx as the backend.

Key directives: set_real_ip_from, real_ip_header

Configure switch: --with-http_realip_module enables the module.

Chapter 5, About your visitors section

Referer
Allow establishing a whitelist of HTTP referrers.

Key directive: valid_referers

Configure switch: --without-http_referer_module disables the module.

Chapter 5, About your visitors section

Appendix B

[295]

Rewrite
Provides URL rewriting functionality.

Key directives: rewrite, if, return, break, and more

Configure switch: --without-http_rewrite_module disables the module.

Chapter 5, Rewrite module section

Secure Link*
Provides link validation based on a hash to be located in the URL.

Key directive: secure_link_secret

Configure switch: --with-http_secure_link_module enables the module.

Chapter 5, SSL and security section

SSI
Provides Server Side Includes functionality.

Key directives: ssi, ssi_types

Configure switch: --without-http_ssi_module disables the module.

Chapter 5, SSI module section

SSL*
Enables HTTP over SSL support.

Key directives: ssl, ssl_certificate, and more

Configure switch: --with-http_ssl_module enables the module.

Chapter 5, SSL and security section

Module Reference

[296]

Stub status*
Provide server status information functionality.

Key directive: stub_status

Configure switch: --with-http_stub_status_module enables the module.

Chapter 5, Other miscellaneous modules section

Substitution*
Allows replacing content in a web page.

Key directives: sub_filter, sub_filter_once

Configure switch: --with-http_sub_module enables the module.

Chapter 5, Content and encoding section

Upstream
Allows setting up of load-balanced architecture.

Key directives: upstream, server

Configure switch: --without-http_upstream_ip_hash_module disables the
ip_hash directive only. The upstream module itself is included by default and
cannot be disabled.

Chapter 6, Upstream module section

User ID
Allows setting up cookies identifying visitors.

Key directives: userid, userid_domain

Configure switch: --without-http_userid_module disables the module.

Chapter 5, About your visitors section

Appendix B

[297]

XSLT*
Allows applying XSLT templates on the response body.

Key directives: xslt_stylesheet, xml_entities

Configure switch: --with-http_xslt_module enables the module.

Chapter 5, Content and encoding section

Troubleshooting
Even if you read every single word of this book with utmost attention, you
are unfortunately not sheltered from all kinds of issues, ranging from simple
configuration errors to the occasional unexpected behavior of one module or another.
In this appendix, we attempt to provide solutions for some of the common problems
encountered by administrators who just got started with Nginx.

The appendix covers:

A basic guide containing general tips on Nginx troubleshooting
How to solve some of the most common install issues
Dealing with 403 Forbidden HTTP errors
Why your configuration does not apply correctly
A few words about the if block behavior

General tips on troubleshooting
Before we begin, whenever you run into some kind of problem with Nginx, you
should make sure to follow the recommendations given below, as they are generally
a good source of solutions.

Checking access permissions
A lot of errors that Nginx administrators are faced with are caused by invalid access
permissions. At two stages, you are offered to specify a user and group for the Nginx
worker processes to run:

When configuring the build with the configure command, you are allowed
to specify a user and group that will be used by default (refer to Chapter 2).
In the configuration file, the user directive allows you to specify a user and
group. This directive overrides the value that you may have defined during
the configure step.

•
•
•
•
•

•

•

Troubleshooting

[300]

If Nginx is supposed to access files that do not have the correct permissions, in other
words, which cannot be read (and by extension cannot be written, for directories that
hold temporary files for example) by the specified user and group, Nginx will not be
able to serve files correctly.

Testing your configuration
A common mistake is often made by administrators showing a little too much
self-confidence—after having modified the configuration file (often without a
backup), they reload Nginx to apply the new configuration. If the configuration file
contains syntax or semantic errors, the application will refuse to reload. Even worse,
if Nginx was stopped, such as after a complete server reboot, it will refuse to start at
all. In all those cases, remember to follow these recommendations:

Always keep a backup of your working configuration files
Before reloading or restarting Nginx, test your configuration with this
simple command: nginx -t to test your current configuration files or
nginx -t -c /path/to/config/file.conf

Reload your server instead of restarting it—preferring service nginx
reload over service nginx restart (nginx -s reload instead of
nginx -s stop && nginx)

Have you reloaded the service?
You would be surprised to learn how often this happens—the most complicated
situations have the simplest solutions. Before tearing your hair out, before rushing
to the forums or IRC asking for help, start with the most simple of verifications.

You just spent two hours creating your virtual host configuration; you saved the
files properly and fired up your web browser to check the results. But remember
that one additional step—Nginx, unlike Apache, does not support on-the-fly
configuration changes in .htaccess files or similar. So take a moment to make sure
you did reload Nginx with service nginx reload, /etc/init.d/nginx reload
or /usr/local/nginx/sbin/nginx -s reload without forgetting to test your
configuration beforehand!

Checking logs
There is usually no need to look for the answer to your problems on the
Internet—chances are that the answer is already given to you by Nginx in the
logfiles. There are two variations of log files you may want to check—first,

•

•

•

Appendix C

[301]

the access logs. These contain information about requests themselves: the request
method and URI, the HTTP response code issued by Nginx, and more, depending on
the log format you defined.

More importantly for troubleshooting, the error log is a goldmine of information.
Depending on the level you defined (see error_log directive for more details),
Nginx will provide details on its inner functioning. For example, you will be able
to see request URI translated to actual file system path; this can be a great help for
debugging rewrite rules. The error log should be located in the /logs/ directory
of your Nginx setup, by default /usr/local/nginx/logs.

Install issues
There are typically three sources of errors when attempting to install Nginx or to run
it for the first time:

Some of the prerequisites are missing or an invalid path to the source was
specified. More details about prerequisites can be found in Chapter 2.
After having installed Nginx correctly, you cannot use the SSL-related
directives to host a secure website. Have you made sure to include the SSL
module correctly during the configure step? More details in Chapter 2.
Nginx refuses to start and outputs a message similar to [emerg] 3629#0:
open() "/path/to/logs/access.log" failed (2: No such file or
directory). In this case, one of the files that Nginx tries to open, such
as logfiles, cannot be accessed. This could be caused by invalid access
permissions or by invalid directory path, for example, when specifying
log files to be stored in a directory that does not exist on the system.

403 Forbidden custom error page
If you decided to use allow and deny directives to respectively allow or deny access
to a resource on your server, clients who are being denied access will usually fall back
on a 403 Forbidden error page. You carefully set up a custom, user-friendly 403 error
page for your clients to understand why they are denied access. Unfortunately, you
cannot get that custom page to work; clients still get the default Nginx 403 error page.

server {
 […]
 allow 192.168.0.0/16;
 deny all;
 error_page 403 /error403.html;
}

•

•

•

Troubleshooting

[302]

The problem is simple—Nginx also denies access to your custom 403 error page!
In such a case, you need to override the access rules in a location block specifically
matching your page. You could use the following to allow access to your custom 403
error page only:

server {
 […]
 location / {
 error_page 403 /error403.html;
 allow 192.168.0.0/16;
 deny all;
 }
 location = /error403.html {
 allow all;
 }
}

If you are going to have more than just one error page, you could specify a location
block matching all error page filenames:

server {
 […]
 location / {
 error_page 403 /error403.html;
 error_page 404 /error404.html;
 allow 192.168.0.0/16;
 deny all;
 }
 location ~ “^/error[0-9]{3}\.html$” {
 allow all;
 }
}

All your visitors are now allowed to view your custom error pages.

Location block priorities
The problem frequently occurs when using multiple location blocks in the same
server block—configuration does not apply as you thought it would.

As an example, say you want to define a behavior to be applied to all image files that
are requested by clients:

location ~* \.(gif|jpg|jpeg|png)$ {
 # matches any request for GIF/JPG/JPEG/PNG files
 proxy_pass http://imageserver; # proxy pass to backend
}

Appendix C

[303]

Later on, you decide to enable automatic indexing of the /images/ directory.
You thus decide to create a new location block, matching all requests starting with
/images/:

location ^~ /images/ {
 # matches any request that starts with /images/
 autoindex on;
}

With this configuration, when a client requests to download /images/square.gif,
Nginx will apply the second location block only. Why not the first one? The reason
being that location blocks are processed in a specific order. For more information
about location block priorities, refer to the Chapter 4, HTTP configuration, under
Location block section.

If block issues
In some situations, if not most, you should avoid using if blocks. There are two
main issues occurring, regardless of the Nginx build you are using.

Inefficient statements
There are some cases where if is used inappropriately, in a way that risks saturating
your storage device with useless checks.

location / {
 # Redirect to index.php if the requested file is not found
 if (!-e $request_filename) {
 rewrite ^ index.php last;
 }
}

With such a configuration, every single request received by Nginx will trigger a
complete verification of the directory tree for the requested filename, thus requiring
multiple storage disk access system calls. If you test /usr/local/nginx/html/
hello.html, Nginx will check /, /usr, /usr/local, /usr/local/nginx, and so on.
In any case, you should avoid resorting to such a statement, for example, by filtering
the file type beforehand (for instance, by making such a check, only if the requested
file matches specific extensions):

location / {
 # Filter file extension first
 if ($request_filename !~ "\.(gif|jpg|jpeg|png)" {
 break;
 }

Troubleshooting

[304]

 if (!-f $request_filename) {
 rewrite ^ index.php last;
 }
}

Unexpected behavior
The if block should ideally be employed for simple situations, as its behavior
might be surprising in some cases. Apart from the fact that if statements cannot
be imbricated, the following situations may present issues:

Two consecutive statements with the same condition:
location / {
 if ($uri = "/test.html") {
 add_header X-Test-1 1;
 expires 7;
 }
 if ($uri = "/test.html") {
 add_header X-Test-1 1;
 }
}

In this case, the first if block is ignored and only the second one is processed.
However, if you insert a Rewrite module directive in the first block, such as rewrite,
break, or return, the block will be processed and the second one will be ignored.

There are many other cases where the use of if causes problems:

Having try_files and if statements in the same location block is not
recommended; the try_files directive will, in most cases, be ignored.
Some directives are theoretically allowed within the if block but can create
serious issues, for instance, proxy_pass and fastcgi_pass. You should
keep those within location blocks.
You should avoid using if blocks within a location block that captures
regular expression patterns from its modifier.

The origin of these problems comes from the fact that while the Nginx configuration
is established in a declarative language, directives from the Rewrite module such
as if, rewrite, return, or break make it look like actual scripting. In general,
you should try to avoid using directives from other modules within if blocks
as much as possible.

•

•

•

Index
Symbols
$ancient_browser variable 179, 266
$apache_bytes_sent variable 167
$arg_XXX variable 132
$args variable 132
$binary_remote_addr variable 132
$body_bytes_sent variable 132, 167
$bytes_sent variable 167
$connection variable 167
$content_length variable 132
$content_type variable 132
$cookie_XXX variable 132
$date_gmt variable 160
$date_local variable 160
$document_root variable 132
$document_uri variable 132
$hostname variable 132
$host variable 132
$http_... variable 131
$http_cookie variable 131
$http_host variable 130
$http_referer variable 130
$http_user_agent variable 130
$http_via variable 131
$http_x_forwarded_for variable 131
$is_args variable 132
$limit_rate variable 132
$memcached_key variable 177
$modern_browser variable 179
$msec variable 167
$msie variable 179
$nginx_version variable 132
$pid variable 132
$pipe variable 167
$proxy_add_x_forwarded_for variable 230

$proxy_host variable 230
$proxy_internal_body_length variable 230
$proxy_port variable 230
$query_string variable 132
$realpath_root variable 132
$remote_addr variable 132
$remote_port variable 132
$remote_user variable 132
$request_body_file variable 133
$request_body variable 132
$request_completion variable 133
$request_filename variable 133
$request_length variable 167
$request_method variable 133
$request_time variable 167
$request_uri variable 133
$scheme variable 133
$secure_link variable 187
$sent_http_... variable 131
$sent_http_cache_control variable 131
$sent_http_connection variable 131
$sent_http_content_length variable 131
$sent_http_content_type variable 131
$sent_http_keep_alive variable 131
$sent_http_last_modified variable 131
$sent_http_location variable 131
$sent_http_transfer_encoding variable 131
$server_addr variable 133
$server_name variable 133
$server_port variable 133
$server_protocol variable 133
$ssl_cipher variable 185
$ssl_client_cert variable 185
$ssl_client_i_dn variable 185
$ssl_client_raw_cert variable 185
$ssl_client_s_dn variable 185

[306]

$ssl_client_serial variable 185
$ssl_protocol variable 185
$ssl_verify variable 185
$status variable 167
$time_local variable 167
$uri variable 133
--add-module=PATH option 62
--append option 18
--builddir=… switch 57
--conf-path=… switch 56
--conf-path switch 56
--enable-fpm switch 210
--error-log-path=… switch 56
--group=…, group options 62
--http-client-body-temp-path=… switch 57
--http-fastcgi-temp-path=… switch 57
--http-log-path=… switch 57
--http-proxy-temp-path=… switch 57
--lock-path=… switch 57
--max-depth option 40
--pid-path=… switch 57
--prefix=… switch 56
--prefix build-time option 247
--prefix switch 63
--sbin-path=… switch 56
--user=…, user options 62
--with-cc-opt=…, compiler options 58
--with-cc=…, compiler options 58
--with-ccp=…, compiler options 58
--with-cpu-opt=…, compiler options 58
--with-debug option 62
--with-http_ssl_module switch 71
--with-ipv6 option 62
--with-ld-opt=…, compiler options 58
--with-mail 61
--with-mail_ssl_module 61
--with-md5-asm, MD5 options 58
--with-md5-opt, MD5 options 58
--with-md5=…, MD5 options 58
--with-openssl-opt=…, OpenSSL options 59
--with-openssl=…, OpenSSL options 59
--with-pcre, PCRE options 58
--with-pcre-opt=…, PCRE options 58
--with-pcre=…, PCRE options 58
--with-perl=… switch 57
--with-perl_modules_path=… switch 57
--with-poll_module 62

--with-rtsig_module 62
--with-select_module 62
--with-sha1-asm, SHA1 options 58
--with-sha1-opt=…, SHA1 options 58
--with-sha1=…, SHA1 options 58
--with-zlib-asm=…, Zlib options 59
--with-zlib-opt=…, Zlib options 59
--with-zlib=…, Zlib options 59
--with_****_module 247
--without-http-cache option 62
--without-http option 62
--without-mail_imap_module 61
--without-mail_pop3_module 61
--without-mail_smtp_module 61
--without-pcre, PCRE options 58
--without-poll_module 62
--without-select_module 62
-c switch 70
-g option 71
-h option 39
-k switch 40
-m switch 40
-r switch 16
-t switch 70
-V switch 70
.htaccess files 257

about 254
benefits 255
file order 255

.ngconf file 256
/bin path 23
/boot path 23
/dev/full pseudo devices 26
/dev/null pseudo devices 26
/dev/random pseudo devices 26
/dev/unrandom pseudo devices 26
/dev/zero pseudo devices 27
/dev path 23
/etc path 23
/home path 23
/media path 23
/mnt path 23
/opt path 23
/ path 23
/proc path 23
/root path 23
/sbin path 23

[307]

/srv path 23
/tmp path 23
/usr/bin 24
/usr/include 24
/usr/lib 24
/usr/local 24
/usr/sbin 24
/usr/share 24
/usr/src 24
/usr/X11R6 24
/usr path 24
/var/lib 24
/var/lock 24
/var/log 24
/var/mail 24
/var/run 24
/var/spool 24
/var/tmp 24
/var path 24
403 Forbidden error page 301, 302

A
accept_mutex, events module directive 93,

265
accept_mutex_delay, events module direc-

tive 93, 265
access_log directive 84, 166, 249, 265
access_module 59
AccessFileName, Apache directive 248
Access module 168, 287
access restrictions modules

Access module 168, 287
Auth_basic module 168, 288
Limit request module 169, 170, 292
Limit zone module 169, 293

access time stamp. See atime time stamp
account

superuser account 15
user accounts 15, 16

add_after_body directive 147, 265
add_before_body directive 265
add_header directive 171, 265
Addition module 172, 287
Alias, Apache directive 249

alias directive 114, 249, 265
AliasMatch, Apache directive 249
allow directive 168, 233, 265, 301
ancient_browser_value directive 266
ancient_browser directive 266
Apache

configuring 230
running, as backend server 220
versus Nginx 241, 256

Apache, features
CGI support 243
comparing, with Nginx features 242
dynamic module system 243
HTTPS support 243
portability 242
programming language 242
request management 242
virtual hosting 243
year of birth 242

Apache, versus Nginx
community 244
conclusion 246
features 242, 243
flexibility 244
performance 245
rewrite rules 262
usage 245

apt-get tool
about 40
GCC package, installing 48
openssl package, installing 50
pcre package, installing 49
PHP, installing 40
zlib package, installing 50

atime time stamp 30
Auth_basic_module 168, 288
auth_basic_module 59
auth_basic_user_file directive 168, 266
auth_basic directive 168, 266
Autobench 100-103
autoindex_exact_size directive 165, 266
autoindex_localtime directive 166, 266
autoindex directive 165, 248, 266
Autoindex module 165, 288

[308]

B
backup parameter 206
base modules, Nginx

about 87
configuration module 87, 95
core module 87, 88, 289
events module 87, 93, 289

BASH 11
blogosphere, Nginx 52
bodyclient_header_timeout directive 247
Bourne-Again SHell. See BASH
break directive 266
browser_module 60
Browser module 179, 288
Browser module, variables

$ancient_browser 179
$modern_browser 179
$msie 179

buffering directives, Proxy module
about 225
proxy_buffer_size 225, 276
proxy_buffering 225, 276
proxy_buffers 225, 276
proxy_busy_buffers_size 225, 277

burst parameter 170

C
C10k problem 245
caching directives, Proxy module

about 225
proxy_cache 225, 277
proxy_cache_key 226, 277
proxy_cache_methods 226, 277
proxy_cache_min_uses 227, 277
proxy_cache_path 226, 277
proxy_cache_use_stale 227, 277
proxy_cache_valid 227, 277

captures
about 145
examples 146

cat command 33
cd command 12
cdrom, device files 25
CGI

about 192-194

limitations 194
change time time stamp. See ctime time

stamp
charset_map directive 176, 266
charset_module 59
charset_types directive 176, 266
charset directive 175, 266
Charset filter module 175, 288
chgrp command 45
chkconfig --add Nginx command 76
chmod command 75
chmod tool 44
chown command 45
clear command 15
client_body_buffer_size directive 118, 266
client_body_in_file_only directive 118, 267
client_body_in_single_buffer directive 118,

267
client_body_temp_path directive 119, 267
client_body_timeout directive 119, 247, 267
client_header_buffer_size directive 119, 267
client_header_timeout directive 119, 267
client_max_body_size directive 120, 267
commands, daemon

Nginx -s quit 69
Nginx -s reload 69
Nginx -s reopen 69
Nginx -s stop 69

commands, directory management
cd command 12
cp command 13
locate command 14
ls command 12
man command 14
mkdir command 13
mv command 13
pwd command 12
rm command 13
updatedb command 14

Common Gateway Interface. See CGI
compiler options

--with-cc-opt=… 58
--with-cc=… 58
--with-cpp=… 58
--with-cpu-opt=… 58
--with-ld-opt=… 58

[309]

conditional structure, Rewrite module
about 151
if 151, 153

configuration, Apache
.htaccess files 254
directives 246, 247
local requests, accepting 232, 233
modules 249
overview 231
porting 246
port number, resetting 231
virtual hosts 250

configuration, Nginx
content, separating 234, 235
proxy options, enabling 233, 234

configuration, Nginx service
testing 69, 70

configuration directives 80
configuration directives, Proxy module

about 222
proxy_hide_header 223
proxy_method 223
proxy_next_upstream 224
proxy_pass 222
proxy_pass_header 223
proxy_pass_request_body 223
proxy_pass_request_headers 223
proxy_redirect 224

configuration examples, Nginx
HTTPS servers 63
mail server proxy 64
prefix switch 63
regular HTTP server 63

configuration file, Nginx
about 79
configuration directives 80, 81
directive blocks 83
fastcgi.conf 82
include directive 81, 82
mime.types 82
nginx.conf 82
proxy.conf 82
sites.conf 82
syntax rules 84

configuration file syntax rules, Nginx
about 79
diminutives, in directive values 85

directive specific 84
string values 86
variables 86

configuration issues, Nginx
about 65
compilation 66
directories 65
installation 67
prerequisites 65

configuration module 87, 95
configuration options, Nginx

about 55
configure command 55
examples 62
module options 59
path options 56, 57
prerequisites options 58

configuration sections, Apache
<Directory> 251
<DirectoryMatch> 251
<Files> 251
<FilesMatch> 251
<IfDefine> 251
<IfModule> 251
<Location> 251
<LocationMatch> 251
<Proxy> 251
<ProxyMatch> 251
<VirtualHost> 251
about 250
Default 251

configuration sections, Nginx
http 251
if 251
location 251
server 251

configurations switches, Nginx
--builddir=… 57
--conf-path=… 56
--error-log-path=… 56
--http-client-body-temp-path=… 57
--http-fastcgi-temp-path=… 57
--http-log-path=… 57
--http-proxy-temp-path=… 57
--lock-path=… 57
--pid-path=… 57
--prefix=… 56

[310]

--sbin-path=… 56
--with-perl=… 57
--with-perl_modules_path=… 57

configure --help command 56
configure command 55, 210, 299
configure script 55, 70
connection_pool_size directive 267
connections, events module directive 93,

267
content modules

Addition module 172, 287
Charset filter module 175, 176, 288
Empty GIF module 170, 289
FLV module 171, 290
Gzip filter module 173-175, 291
Gzip static module 175, 291
HTTP headers module 171, 291
Image filter module 178, 292
Memcached module 176, 293
Substitution module 172, 296
XSLT filter module 179, 297

Core module 87, 88, 289
Core module directives

daemon 88, 267
debug_points 89, 268
env 89, 268
error_log 89, 268
include 273
lock_file 89, 274
log_not_found 89
master_process 90, 274
pid 90
ssl_engine 90, 282
thread_stack_size 90, 283
timer_resolution 90, 283
user 91, 284
worker_cpu_affinity 91, 285
worker_priority 92, 285
worker_processes 92, 285
worker_rlimit_core 92, 285
worker_rlimit_nofile 92, 285
worker_rlimit_sigpending 92, 285
worker_threads 91, 285
working_directory 92, 285

cp command 13
create_full_put_path directive 188, 267

ctime time stamp 30
CustomLog, Apache directive 249

D
daemon

about 67
httpd 67
named 67
starting 69
stopping 69

daemon, core module directive 88, 267
dav_access directive 188, 267
dav_methods directive 188, 268
dav_module 61
Debian 213, 214
Debian-based distributions 76
debug_connection, events module directive

94, 268
debug_points, Core module directive 268
default_type directive 248, 268
default configuration, Nginx

about 95
configuration directives, changing 96, 97
hardware, adapting to 97, 98

DefaultType, Apache directive 248
deny directive 168, 233, 268, 301
development version 53
device files 25
device files, prefixes

cdrom 25
hd 25
md 25
ram 25
sd 25
usb 25

device types. See device files
df utility 39
diminutives

directive values 85
directio directive 125, 268
directive, access restrictions

internal 125, 273
limit_except 123, 273
limit_rate_after 124, 273
satisfy 124, 280

[311]

directive blocks
about 83
events block 83
http block 83
location block 84
server block 83

directives, Addition module
add_after_body 265
add_before_body 265

directives, Apache
AccessFileName 248
Alias 249
AliasMatch 249
CustomLog 249
DefaultType 248
DirectoryIndex 248
DocumentRoot 248
ErrorLog 249
Group 248
HostNameLookups 248
Include 248
IndexIgnore 248
IndexOptions 248
KeepAlive 247
KeepAliveTimeout 247
Listen 247
LoadModule 247
LogFormat 249
LogLevel 249
MaxKeepAliveRequests 247
PidFile 247
RewriteCond 258
RewriteRule 258, 259
ScriptAlias 249
ServerAdmin 248
ServerRoot 247
ServerSignature 248
ServerTokens 247
TimeOut 247
TypesConfig 248
UseCanonicalName 248
User 248

directives, Autoindex module
autoindex 165, 266
autoindex_exact_size 165, 266
autoindex_localtime 166, 266

directives, Charset filter module
charset 175, 266
charset_map 176, 266
charset_types 176, 266
override_charset 176, 276
source_charset 176

directives, client requests
client_body_buffer_size 118, 266
client_body_in_file_only 118, 267
client_body_in_single_buffer 118, 267
client_body_temp_path 119, 267
client_body_timeout 119, 267
client_header_buffer_size 119, 267
client_header_timeout 119, 267
client_max_body_size 120, 267
ignore_invalid_headers 121, 272
keepalive_requests 117, 273
keepalive_timeout 117, 273
large_client_header_buffers 120, 273
lingering_time 120, 274
lingering_timeout 121, 274
send_timeout 117, 280

directives, document configuration
alias 114, 265
error_page 115, 268
if_modified_since 115, 272
index 116, 273
recursive_error_pages 116, 279
root 114, 280
try_files 116, 283

directives, FastCGI
about 195
fastcgi_buffer_size 199, 268
fastcgi_buffers 199, 268, 269
fastcgi_catch_stderr 201
fastcgi_connect_timeout 197, 269
fastcgi_hide_header 196, 269
fastcgi_ignore_client_abort 197, 269
fastcgi_ignore_headers 200, 269
fastcgi_index 197, 269
fastcgi_intercept_errors 197, 270
fastcgi_max_temp_file_size 199, 270
fastcgi_next_upstream 200, 270
fastcgi_param 196, 270
fastcgi_pass 195, 270
fastcgi_pass_header 196, 270
fastcgi_pass_request_body 200, 270

[312]

fastcgi_pass_request_headers 200, 270
fastcgi_read_timeout 197, 270
fastcgi_send_lowat 200, 270
fastcgi_send_timeout 198, 270
fastcgi_split_path_info 198, 270
fastcgi_store 198, 271
fastcgi_store_access 199, 271
fastcgi_temp_file_write_size 199, 271
fastcgi_temp_path 199, 271

directives, FastCGI caching
about 201
fastcgi_cache 201, 268
fastcgi_cache_key 201, 269
fastcgi_cache_methods 201, 269
fastcgi_cache_min_uses 202
fastcgi_cache_path 202, 269
fastcgi_cache_use_stale 202, 269
fastcgi_cache_valid 203, 269

directives, file caching
directio 125, 268
open_file_cache 126, 275
open_file_cache_errors 126, 275
open_file_cache_min_uses 127, 276
open_file_cache_valid 127, 276

directives, Gzip filter module
gzip_buffers 173, 271
gzip_comp_level 173, 271
gzip_disable 173, 271
gzip_hash 174, 271
gzip_http_version 173, 272
gzip_min_length 173, 272
gzip_no_buffer 175, 272
gzip_proxied 174, 272
gzip_types 174, 272
gzip_vary 174, 272
gzip_window 174, 272
postpone_gzipping 175

directives, Headers module
add_header 265

directives, Image filter module
image_filter 178, 272
image_filter_buffer 178, 272
image_filter_jpeg_quality 178, 273

directives, Log module
access_log 166, 265
log_format 167, 274
open_log_file_cache 167, 276

directives, Memcached module
memcached_buffer_size 177, 274
memcached_connect_timeout 176, 274
memcached_next_upstream 177, 274
memcached_pass 176, 275
memcached_read_timeout 177, 275
memcached_send_timeout 176, 275

directives, MIME types
default_type 122, 268
types 121, 283
types_hash_bucket_size 283
types_hash_max_size 122, 283

directives, Nginx
access_log 249
alias 249
autoindex 248
bodyclient_header_timeout 247
client_body_timeout 247
default_type 248
fancyindex 248
include 248
index 248
keepalive_requests 247
keepalive_timeout 247
listen 247
log_format 249
pid 247
random_index 248
root 248
send_timeout 247
server_tokens 247
types 248
user 248

directives, Proxy module
proxy_headers_hash_bucket_size 229, 277
proxy_headers_hash_max_size 229, 277
proxy_ignore_headers 229, 278
proxy_method 278
proxy_next_upstream 278
proxy_pass 278
proxy_set_body 229
proxy_set_header 229, 279
proxy_store 230, 279
proxy_store_access 230, 279

directives, Rewrite module
about 153
break 154, 266

[313]

return 155, 280
rewrite 153, 280
rewrite_log 280
set 155, 281
uninitialized_variable_warn 155, 284

directives, socket and host configuration
connection_pool_size 267
listen 110, 274
port_in_redirect 112, 276
reset_timedout_connection 113, 280
send_lowat 113
sendfile 113, 280
sendfile_max_chunk 113, 280
server_name 111, 281
server_name_in_redirect 111, 281
server_names_hash_bucket_size 112, 281
server_names_hash_max_size 112, 281
tcp_nodelay 112, 283
tcp_nopush 113, 283

directives, SSI module
about 158
ssi 158, 281
ssi_ignore_recycled_buffers 159, 281
ssi_min_file_chunk 159, 281
ssi_silent_errors 159, 281
ssi_types 158, 281
ssi_value_length 159, 282

directives, SSL module
ssl 184, 282
ssl_certificate 184, 282
ssl_certificate_key 184, 282
ssl_ciphers 184, 282
ssl_client_certificate 184, 282
ssl_dhparam 184, 282
ssl_prefer_server_ciphers 184, 282
ssl_protocols 184, 282
ssl_session_cache 185, 282
ssl_session_timeout 185, 282
ssl_verify_client 184, 282
ssl_verify_depth 184, 282

directives, Substitution module
sub_filter_once 172, 283
sub_filter_types 172, 283

directives, UserID filter module
userid 181, 284
userid_domain 182, 284
userid_expires 182, 284

userid_name 182, 284
userid_p3p 182, 284
userid_path 182, 284
userid_service 181, 284

directives, WebDAV module
create_full_put_path 188
dav_access 188
dav_methods 188
min_delete_depth 188

directives, XSTL module
xml_entities 179, 285
xslt_stylesheet 179, 285
xslt_types 179, 285

DirectoryIndex, Apache directive 248
directory management 11
directory paths, FHS-based file systems

/ 23
/bin 23
/boot 23
/dev 23
/etc 23
/home 23
/lib 23
/media 23
/mnt 23
/opt 23
/proc 23
/root 23
/sbin 23
/srv 23
/tmp 23
/usr 24
/var 24
kernel and process information virtual

filesystem 23
directory permissions 43
directory structure, FHS-based file systems

about 22
binaries 23
boot 23
devices 23
et-cetera 23
home directories 23
libraries 23
optional software packages 23
read-only user data 24
removable media 23

[314]

root directory 23
root user home directory 23
service data 23
system binaries 23
temporarily mounted filesystems 23
temporary files 23
variables files 24

disk free utility. See df utility; See df utility
disk usage utility. See du utility
Django

about 212, 213
FastCGI process manager 214
installing 213, 214
URL 212

DocumentRoot, Apache directive 248
down parameter 206
dpkg -i command 41
du utility 39, 40

E
echo command 162
echo command, parameters

default 162
encoding 162
var 162

empty_gif_module 60
empty_gif directive 170, 268
Empty GIF module 170, 289
env, Core module directive 89, 268
error_log, Core module directive 89, 268
error_page directive 115, 147, 148, 235, 268
ErrorLog, Apache directive 249
errors directives, Proxy module

proxy_ignore_client_abort 228, 278
proxy_intercept_errors 228, 278

event management options
--with-poll_module 62
--with-rtsig_module 62
--with-select_module 62
--without-poll_module 62
--without-select_module 62

events block 83
Events module 87, 93, 289
events module directives

accept_mutex 93, 265
accept_mutex_delay 93, 265

connections 93, 267
debug_connection 94, 268
multi_accept 94, 275
use 94, 284
worker_connections 95, 285

expires directive 171, 268
EXT3 filesystem

filenames 29
specifications 29

F
fail_timeout=n parameter 206
fancyindex directive 248
FastCGI

about 192, 194, 290
cache system, setting up 201
directives 195
principles 194
upstream blocks 204

fastcgi.conf, configuration file 82
fastcgi_buffer_size directive 199, 268
fastcgi_buffers directive 199, 268
fastcgi_cache_key directive 201, 269
fastcgi_cache_methods directive 201, 269
fastcgi_cache_min_uses directive 202
fastcgi_cache_path directive 202, 269
fastcgi_cache_use_stale directive 202, 269
fastcgi_cache_valid directive 203, 269
fastcgi_cached directive 201
fastcgi_cache directive 268
fastcgi_catch_stderr directive 201, 269
fastcgi_connect_timeout directive 197, 269
fastcgi_hide_header directive 196, 269
fastcgi_ignore_client_abort directive 197,

269
fastcgi_ignore_headers directive 200, 269
fastcgi_index directive 197, 269
fastcgi_intercept_errors directive 197, 270
fastcgi_max_temp_file_size directive 199,

270
fastcgi_module 60
fastcgi_next_upstream directive 200, 270
fastcgi_param directive 196, 270
fastcgi_pass_header directive 196, 270
fastcgi_pass_request_body directive 200,

270

[315]

fastcgi_pass_request_headers directive 200,
270

fastcgi_pass directive 195, 270
fastcgi_read_timeout directive 197, 270
fastcgi_send_lowat directive 200, 270
fastcgi_send_timeout directive 198, 270
fastcgi_split_path_info directive 198, 270
fastcgi_store_access directive 199, 271
fastcgi_store directive 198, 271
fastcgi_temp_file_write_size directive 199,

271
fastcgi_temp_path directive 199, 271
FastCGI caching

directives 201
example 203

FastCGI process manager 214
Fast Common Gateway Interface. See

FastCGI
FHS 22
FHS-based file systems

directory structure 22
file management. See directory management
file manipulation 32
file permissions

about 43
and directory permissions, difference 43

files, Linux filesystem
about 28
archiving 35, 36
compressing 35, 36
editing 34, 35
EXT3 filesystem, filenames 29
EXT3 filesystem, specifications 29
hard links 31, 32
manipulation 32
reading 33, 34
symbolic links 31, 32

Filesystem Hierarchy Standard. See FHS
Flash Video module. See FLV module
flup library 214
flv_module 61
flv directive 271
FLV module 171 290
free utility 40
full device 26

G
GCC 48
GCC package

installing, apt-get tool used 48
installing, yum used 48

GCC package, installing
apt-get tool, used 48
yum, used 48

geo_module 59
geo directive 271
geoip_city directive 271
geoip_country directive 271
geoip_module 61
GeoIP module 181, 290
Geo module 180, 290
GNU Compiler Collection. See GCC
Google-perftools module

about 187, 291
URL 188

google_perftools_module 61
google_perftools_profiles directive 271
Google Performance Tools. See Google-

perftools
grep command 33
Group, Apache directive 248
groupadd command

about 17
syntax 17

groupdel command 17
group management

about 17
group settings, editing 17
new group, creating 17

groupmod command 17
group options

--group=… 62
groups command 18
gzip_buffers directive 173, 271
gzip_comp_level directive 173, 271
gzip_disable directive 173, 271
gzip_hash directive 174, 271
gzip_http_version directive 173, 272
gzip_min_length directive 173, 272
gzip_module 59

[316]

gzip_no_buffer directive 175, 272
gzip_proxied directive 174, 272
gzip_static_module 61
gzip_static directive 175, 272
gzip_types directive 174, 272
gzip_vary directive 174, 272
gzip_window directive 174, 272
gzip directive 173
Gzip filter module 173, 291
Gzip static module 175, 291

H
hard links 31, 32
hd, device files 25
HostNameLookups, Apache directive 248
http_ssl module 63
http block 83, 108, 109
HTTP Core module

about 107
directives 109
structure blocks 108
variables 130

httpd, daemon 67
Httperf 100, 101, 102
HTTP headers module 171, 291

I
if_modified_since directive 115, 272
if block, issues

inefficient statements 303
unexpected behavior 304

ignore_invalid_headers directive 121, 272
image_filter_buffer directive 178, 272
image_filter_jpeg_quality directive 178, 273
image_filter_module 60
image_filter directive 178, 272
Image filter module 178, 292
Include, Apache directive 248
include command 157, 160
include directive 81, 248, 273
include virtual command 160
index directive 116, 148, 164, 248, 273
IndexIgnore, Apache directive 248
Index module 164, 292
IndexOptions, Apache directive 248

init script
about 73
creating, for Nginx 73, 74

inodes, Linux filesystem 28, 29
installation, Django 213, 214
installation, GCC package

apt-get tool, used 48
yum, used 48

installation, openssl-devel package
yum, used 50

installation, openssl package
apt-get tool, used 50

installation, pcre package
apt-get tool, used 49
yum, used 49

installation, Python
yum, used 213

installation, zlib package
apt-get tool, used 50
yum, used 50

internal directive 125, 273
internal redirects 147
internal requests, Rewrite module

about 146
error_page directive 147, 148
infinite loops 149, 150
rewrite directive 148, 149
SSI module 150

Internet Society. See ISOC
ip_hash option 205
ISOC 193

K
KeepAlive, Apache directive 247
keepalive_requests directive 117, 247, 273
keepalive_timeout directive 117, 247, 273
KeepAliveTimeout, Apache directive 247
killall command 22, 69
kill command 21, 69

L
large_client_header_buffers directive 120,

273
legacy version 53
less command 34

[317]

libevent library 209
libgd 64
libgeoip 64
libxml2 64
libxml library 209
libxslt 64
limit_conn directive 273
limit_except directive 123, 273
limit_rate_after directive 124, 273
limit_rate directive 123, 273
limit_req_module 60
limit_req_zone directive 169, 273
limit_req directive 170, 273
limit_zone_module 60
limit_zone directive 169, 273
Limit request module 169, 292
limits directives, Proxy module

proxy_send_lowat 228, 279
Limit zone module 169, 293
lingering_time directive 120, 274
lingering_timeout directive 121, 274
Linux

Djnago, setting up 213
Python, setting up 213

Linux filesystem
FHS-based file systems 22
files 28
files, archiving 35, 36
files, compressing 35, 36
files, editing 34, 35
files, reading 33, 34
inodes 28, 29

Listen, Apache directive 247
listen directive 84, 110, 247, 274
LoadModule, Apache directive 247
locate command 14
location block 84, 108, 109

= modifier 134
@ modifier 136
^~ modifier 136
~* modifier 136
~ modifier 135
about 133
location modifier 133, 135, 136
none modifier 135
priorities 302, 303
priority 137, 138

search order 136
location directive 84, 128
location modifier 133
lock_file, core module directive 89, 274
log_format directive 86, 167, 230, 249, 274
log_not_found, core module directive 89
log_not_found directive 127, 274
log_subrequest directive 127, 274
LogFormat, Apache directive 249
LogLevel, Apache directive 249
Log module 166, 293
Log module, variables

$apache_bytes_sent 167
$body_bytes_sent 167
$bytes_sent 167
$connection 167
$msec 167
$pipe 167
$request_length 167
$request_time 167
$status 167
$time_local 167

ls command 12

M
mail server proxy 64
mail server proxy options

--with-mail 61
--with-mail_ssl_module 61
--without-mail_imap_module 61
--without-mail_pop3_module 61
--without-mail_smtp_module 61
about 61

make command 55, 209
make install command 67, 209
man command 14
man utility 48
map_hash_bucket_size directive 180, 274
map_hash_max_size directive 180, 274
map_module 59
map directive 274
Map module 180, 293
master_process, Core module directive 90,

274
max_fails=n parameter 206

[318]

MaxKeepAliveRequests, Apache directive
247

MD5 options
--with-md5-asm 58
--with-md5-opt=… 58
--with-md5=… 58

MediaWiki 261
memcached_buffer_size directive 177, 274
memcached_connect_timeout directive 176,

274
memcached_module 60
memcached_next_upstream directive 177,

274
memcached_pass directive 176, 275
memcached_read_timeout directive 177, 275
memcached_send_timeout directive 176,

275
Memcached module 176, 177, 293
merge_slashes directive 128, 275
metacharacters, PCRE syntax

alternation 144
any 143
beginning 143
end 143
escape 144
grouping 144
negate set 143
set 143

mime.types, configuration file 82
MIME types 121
min_delete_depth directive 188, 275
mkdir command 13
modern_browser_value directive 275
modern_browser directive 275
modification time stamp. See mtime time

stamp
module directives, HTTP Core module

access restrictions 123, 125
client requests 117, 118, 119, 120, 121
document configuration 114, 115, 116
file caching 125, 126, 127
MIME types 121
socket and host configuration 110, 111, 112,

113
module options

modules, disabled by default 60, 61
modules, enabled by default 59, 60

modules
disabled, by default 60
enabled, by default 59

modules, Apache
mod_auth_basic 249
mod_autoindex 249
mod_charset_lite 249
mod_dav 249
mod_deflate 250
mod_expires 250
mod_fcgid 250
mod_headers 250
mod_include 250
mod_log_config 250
mod_proxy 250
mod_rewrite 250
mod_ssl 250
mod_status 250
mod_substitute 250
mod_uid 250

modules, disabled by default
addition_module 60
dav_module 61
flv_module 61
geoip_module 61
google_perftools_module 61
gzip_static_module 61
image_filter_module 60
random_index_module 61
realip_module 60
secure_link_module 61
ssl_module 60
stub_status_module 61
sub_module 61
xslt_module 60

modules, enabled by default
access_module 59
auth_basic_module 59
autoindex_module 59
browser_module 60
charset_module 59
empty_gif_module 60
fastcgi_module 60
geo_module 59
gzip_module 59
limit_req_module 60
limit_zone_module 60

[319]

map_module 59
memcached_module 60
proxy_module 60
referer_module 59
rewrite_module 59
ssi_module 59
upstream_ip_hash_module 60
userid_module 59

modules, Nginx
Auth_basic module 249
AutoIndex module 249
Charset filter module 249
FastCGI module 250
Gzip filter module 250
Headers module 250
HTTP Core module 107, 292
Log module 250
Proxy module 221, 250, 294
Rewrite module 141, 142, 250, 295
SSI module 157, 158, 250, 295
SSL module 250
Stub_status module 250
Substitution module 250
UserID filter module 250
WebDAV module 249

module variables, HTTP Core module
Nginx generated 132
request headers 130
response headers 131

more command 34
mount command 27
msie_padding directive 128, 275
msie_refresh directive 128, 275
mtime time stamp 30
multi_accept, events module directive 94,

275
mv command 13

N
named, daemon 67
nano text editor 28, 34
Nginx

about 48
adding, as system service 71
and Python 212
base modules 87

blogosphere 52
command-line switches 68
configuration examples 62
configuration file 79, 80
configuration issues 65
configure options 55
configuring 230
default configuration 95
downloading 54
extracting 54
features 53, 54, 242, 243
init script 73
init script, creating for 73, 74
mail proxy server, using as 54
prerequisites 47
prerequisites, downloading 47
resources 51
reverse proxy mechanism 218, 219
running, as frontend server 219, 220
script, installing 75
System V script 71, 72
test server, creating 99
troubleshooting tips 299
upgrading 105
version branches 52
versus Apache 241, 256
websites 51

Nginx, features
CGI support 243
comparing, with Apache features 242
HTTPS support 243
portability 242
programming language 242
request management 242
static module system 243
virtual hosting 243
year of birth 242

Nginx, variables
$arg_XXX 132
$args 132
$binary_remote_addr 132
$body_bytes_sent 132
$content_length 132
$content_type 132
$cookie_XXX 132
$document_root 132
$document_uri 132

[320]

$host 132
$hostname 132
$is_args 132
$limit_rate 132
$nginx_version 132
$pid 132
$query_string 132
$realpath_root 132
$remote_addr 132
$remote_port 132
$remote_user 132
$request_body 132
$request_body_file 133
$request_completion 133
$request_filename 133
$request_method 133
$request_uri 133
$scheme 133
$server_addr 133
$server_name 133
$server_port 133
$server_protocol 133
$uri 133

Nginx, versus Apache. See Apache, versus
Nginx

Nginx -s quit command 69
Nginx -s reload command 69
Nginx -s reopen command 69
Nginx -s stop command 69
nginx.conf, configuration file 82
Nginx configuration, PHP-FPM 211, 212
Nginx configuration, Python 215
Nginx master process 68, 88
Nginx process architecture

about 87
master process 88
worker process 88

Nginx service
command-line switches 68
configuration, testing 69, 70
controlling 67
daemon 67
daemon, starting 69
daemon, stopping 69
switches 70, 71
test configuration 69, 70

Nginx worker process 68, 88

nodes 25
ntsysv tool 76
null device 26

O
octal representation 44
open_file_cache_errors directive 126, 275
open_file_cache_min_uses directive 127, 276
open_file_cache_valid directive 127, 276
open_file_cache directive 126, 275
open_log_file_cache directive 167, 276
OpenSSL

about 50
URL 50

openssl-devel package
about 50
installing, yum used 50

openssl-devel package, installing
yum, used 50

OpenSSL library 50
OpenSSL options

--with-openssl-opt=… 59
--with-openssl=… 59

openssl package
about 50
installing, apt-get tool used 50

openssl package, installing
apt-get tool, used 50

OpenWebLoad
about 100, 103, 104
URL 103

override_charset directive 176, 276

P
package manager

about 40
apt-get tool 40
yum 40

packages. See software packages, system
administration tools

patch tool 209
path options 56
pcre-devel package 49
PCRE library 49
PCRE options

--with-pcre 58

[321]

--with-pcre-opt=… 58
--with-pcre=… 58
--without-pcre 58

pcre package
about 49
installing, apt-get tool used 49
installing, yum used 49

pcre package, installing
apt-get tool, used 49
yum, used 49

PCRE syntax
about 142
metacharacters 143, 144

performance tests tools, Nginx
about 100
Autobench 100, 102, 103
Httperf 100, 101, 102
OpenWebLoad 100, 103, 104

Perl Compatible Regular Expression library.
See PCRE library

permissions, system administration tools
changing 44
directory permissions 43
file permissions 43
group, changing 45
octal representations 44
ownership, changing 45

PHP
building 209

PHP-FPM 208
PHP-FPM patch 209
PHP and PHP-FPM, setup

about 208
controlling 210
downloading 208
extracting 208
patching 209
post-install configuration 210
requisites 209
running 210

PHP FastCGI Process Manager. See PHP-
FPM

pid
finding 20

pid, Core module directive 90
pid directive 247, 276
PidFile, Apache directive 247

port_in_redirect directive 112, 276
post_action directive 130, 276
postpone_gzipping directive 175, 276
postpone_output directive 276
prefix switch 63
prerequisites, Nginx

about 47
GCC 48
OpenSSL library 50
PCRE library 49
zlib library 50

prerequisites options
about 58
compiler options 58
MD5 options 58
OpenSSL options 59
PCRE options 58
SHA1 options 58
Zlib options 59

priority, location block 137, 138
Process Identifier. See pid
process management

about 20
killall command 22
kill command 21
pid, finding 20
process, killing 21
top tool 21

program, shell
executing, ways 18

proxy.conf, configuration file 82
proxy_buffer_size directive 225, 276
proxy_buffering directive 225, 276
proxy_buffers directive 225, 276
proxy_busy_buffers_size directive 225, 277
proxy_cache_key directive 226, 277
proxy_cache_methods directive 226, 277
proxy_cache_min_uses directive 227, 277
proxy_cache_path directive 226, 277
proxy_cache_use_stale directive 227, 277
proxy_cache_valid directive 227, 277
proxy_cache directive 225, 277
proxy_connect_timeout directive 228, 277
proxy_headers_hash_bucket_size directive

229, 277
proxy_headers_hash_max_size directive

229, 277

[322]

proxy_hide_header directive 223, 277
proxy_ignore_client_abort directive 228, 278
proxy_ignore_headers directive 229, 278
proxy_intercept_errors directive 228, 278
proxy_max_temp_file_size directive 227,

278
proxy_method directive 223, 278
proxy_module 60
proxy_next_upstream directive 224, 278
proxy_pass_header directive 223, 278
proxy_pass_request_body directive 223, 278
proxy_pass_request_headers directive 223,

278
proxy_pass directive 222, 233, 278
proxy_read_timeout directive 228, 278
proxy_redirect directive 224, 278
proxy_send_lowat directive 228, 279
proxy_send_timeout directive 228, 279
proxy_set_body directive 229, 279
proxy_set_header directive 229, 230, 279
proxy_store_access directive 230, 279
proxy_store directive 230, 279
proxy_temp_file_write_size directive 227,

279
proxy_temp_path directive 227, 279
Proxy module

about 221, 294
buffering directives 225
caching directives 225, 226
configuration directives 222, 223, 224
errors directives 228
limits directives 228
temporary files directives 225, 227
timeout directives 228
variables 230

ps aux | grep sshd command 20
ps command 214
pseudo devices 26
pseudo devices, Linux operating system

full device 26
null device 26
random number generators 26
zero data 27

ps tool 20
Putty

about 8
downloading 8

finding 8
session, configuring 9

Putty window
Connection | Data setting group 10
Connection setting group 10
Window | Appearance setting group 9
Window | Translation setting group 9
Window setting group 9

pwd command 12
Python

about 212
and Nginx 212
installing, yum used 213
Nginx configuration 215

Q
quantifiers 144, 145

R
ram, device files 25
random_index_module 61
random_index directive 166, 248, 279
Random index module 166, 294
random number generators 26
real_ip_header directive 279
realip_module 60
Real IP module 183, 294
recursive_error_pages directive 116, 279
Red Hat-based distributions 76
referer_module 59
Referer module 182, 294
regular expressions, Rewrite module

about 142
captures 145
need for 142
PCRE syntax 142
quantifiers 144, 145

reload command 19
request_pool_size directive 279
request headers, variables

$http_... 131
$http_cookie 131
$http_host 130
$http_referer 130
$http_user_agent 130
$http_via 131

[323]

$http_x_forwarded_for 131
Requests Per Second rate. See RPS rate
reset_timedout_connection directive 113,

280
resolver_timeout directive 129, 280
resolver directive 129, 280
resources, Nginx 51
response headers, variables

$sent_http_... 131
$sent_http_cache_control 131
$sent_http_connection 131
$sent_http_content_length 131
$sent_http_content_type 131
$sent_http_keep_alive 131
$sent_http_last_modified 131
$sent_http_location 131
$sent_http_transfer_encoding 131

restart command 19
return directive 280
reverse proxy mechanism, Nginx

about 218
advantages 220
Apache issue 218
correct IP address, forwarding 238
disadvantages 221
server control panel issues 239
SSL issues 239
SSL solutions 239

rewrite_log directive 280
rewrite_module 59
RewriteCond directive 258
rewrite directive 84, 142, 148, 149, 280
Rewrite module

about 141, 295
directives 153
if conditional structure 151, 153
internal requests 146
regular expressions 142
URL rewriting 141

rewrite module
URL rewriting 141

RewriteRule directive 258, 259
rewrite rules, Apache

porting, to Nginx 257
rm command 13
root account. See superuser account
root directive 114, 248, 280

rpm -ivh command 41
RPS rate 245
ruleflow. See Drools Flow
rules, Rewrite module

about 156
discussion board 157
multiple parameters 156
news website article 157
search queries 156
user profile page 156
wikipedia, URL style 157

runlevel transition, System V script 72

S
satisfy directive 124, 280
script

Debian-based distributions 76
installing 75
Red Hat-based distributions 76

ScriptAlias, Apache directive 249
sd, device files 25
Search Engine Optimization. See SEO
search order, location block 136
secure_link_module 61
secure_link_secret directive 280
secure link module 295
Secure SHell. See SSH
send_lowat directive 113, 280
send_timeout directive 117, 247, 280
sendfile_max_chunk directive 113, 280
sendfile directive 113, 280
SEO 141
server_name_in_redirect directive 111, 281
server_name directive 111, 281
server_names_hash_bucket_size directive

112, 281
server_names_hash_max_size directive 112,

281
server_tokens directive 129, 247, 281
ServerAdmin, Apache directive 248
server block 83, 108, 109
server directive 206, 280
server directive, parameters

backup 206
down 206
fail_timeout=n 206

[324]

max_fails=n 206
weight=n 206

ServerRoot, Apache directive 247
Server Side Includes module. See SSI

module
ServerSignature, Apache directive 248
ServerTokens, Apache directive 247
service --status-all 19
service command 73
service start-up script. See init script
session, Putty

configuring 8
requisites 8

set_real_ip_from directive 281
set command 162
set directive 281
settings, Nginx configuration

client_body_buffer_size 128k; 238
client_max_body_size 10m; 237
proxy_connect_timeout 15; 238
proxy_read_timeout 15; 238
proxy_redirect off; 237
proxy_send_timeout 15; 238
proxy_set_header Host $host; 237
proxy_set_header X-Forwarded-For

$proxy_add_x_forwarded_for; 237
proxy_set_header X-Real-IP $remote_addr;

237
SHA1 options

--with-sha1-asm 58
--with-sha1-opt=… 58
--with-sha1=… 58

shell
process 18
programs 18
system services 19

shell commands
about 11
directory management 11, 12, 13, 14
file management 11, 12, 13, 14

sites.conf, configuration file 82
software packages 40
software packages, system administration

tools
building, from source 42
downloading 41

installing 41
package manager 40

Solid-State Drive users. See SSD users
source_charset directive 176, 281
SSD users 31
SSH 7
ssi_ignore_recycled_buffers directive 159,

281
ssi_min_file_chunk directive 159, 281
ssi_module 59
ssi_silent_errors directive 159, 281
ssi_types directive 158, 281
ssi_value_length directive 159, 282
SSI commands, SSI module

about 160
conditional structure 163
configuration 163
file includes 160, 161
variables 162

ssi directive 158, 281
SSI module

about 150, 151, 157, 295
commands 160
directives 158, 159

SSI module, variables
$date_gmt 160
$date_local 160

SSL
issues 239
solutions 239

ssl_certificate_key directive 184, 282
ssl_certificate directive 184, 282
ssl_ciphers directive 184, 282
ssl_client_certificate directive 184, 282
ssl_dhparam directive 184, 282
ssl_engine, core module directive 90, 282
ssl_module 60
ssl_prefer_server_ciphers directive 184, 282
ssl_protocols directive 184, 282
ssl_session_cache directive 185, 282
ssl_session_timeout directive 185, 282
ssl_verify_client directive 184, 282
ssl_verify_depth directive 184, 282
SSL certificate

setting up 185
ssl directive 184, 282

[325]

SSL module
about 183, 295
secure link 186
SSL certificate, setting up 185

SSL module, variables
$ssl_cipher 185
$ssl_client_cert 185
$ssl_client_i_dn 185
$ssl_client_raw_cert 185
$ssl_client_s_dn 185
$ssl_client_serial 185
$ssl_protocol 185
$ssl_verify 185

stable version 53
start command 19
stat command 31
status command 19
stop command 19
storage device

mounting 27, 28
structure blocks, HTTP Core module

http block 108, 109
location block 108, 109, 133
server block 108, 109

stub_status_module 61
stub_status directive 187, 282
Stub status module 187, 296
sub_filter_once directive 172, 283
sub_filter_types directive 172, 283
sub_filter directive 283
sub_module 61
subrequests 147
substitute user command. See su command
Substitution module 172, 296
Subversion. See SVN
su command

about 37
and sudo command, difference 38

sudo command
about 38
and su command, difference 38

superuser account 15
superuser account, system administration

tools
about 37
su command 37, 38
sudo command 38

SVN
about 213
installing 213

switches 70, 71
symbolic links 31, 32
system administration tools

about 37
software packages 40
superuser account 37
system maintenance 39
system verification 39

system maintenance, system administration
tools

about 39
du utility 39, 40
free utility 40

system service
Nginx, adding as 71

system verification, system administration
tools

about 39
df utility 39

System V script
about 71, 72
runlevel transition 72

sysv script. See init script

T
tape archive tool. See Tar tool
tar command 208
Tar tool 36
tcp_nodelay directive 112, 283
tcp_nopush directive 113, 283
temporary files directives, Proxy module

about 225
proxy_max_temp_file_size 227, 278
proxy_temp_file_write_size 227, 279
proxy_temp_path 227, 279

terminal emulator
characteristics 10
Putty 8
setting up 7

test configuration, Nginx service 69, 70
test server, Nginx

creating 99

[326]

thread_stack_size, core module directive 90,
283

TimeOut, Apache directive 247
timeout directives, Proxy module

proxy_connect_timeout 228, 277
proxy_read_timeout 228, 278
proxy_send_timeout 228, 279

timer_resolution, Core module directive 90,
283

top tool 21
touch command 35
troubleshooting tips, Nginx

403 Forbidden error page 301, 302
about 299
access permissions, checking 299, 300
configuration, testing 300
if block issues 303
installation, issues 301
location block priorities 302, 303
logs, checking 300, 301
service, reloading 300

try_files directive 116, 283
types_hash_bucket_size directive 283
types_hash_max_size directive 283
TypesConfig, Apache directive 248
types directive 248, 283

U
Ubuntu 213, 214
underscores_in_headers directive 129, 283
uninitialized_variable_warn directive 284
unmount command 28
updatedb command 14
upstream_ip_hash_module 60
upstream blocks, FastCGI

about 204
server directive 206
syntax 205

upstream directive 284
upstream module 296
URL rewriting 141
usb, device files 25
use, events module directive 94, 284
UseCanonicalName, Apache directive 248
User, Apache directive 248
user, Core module directive 91

user accounts
about 15
new user account, adding 16

useradd command
about 16
syntax 16

userdel command 16
user directive 248, 284, 299
userid_domain directive 182, 284
userid_expires directive 182, 284
userid_module 59
userid_name directive 182, 284
userid_p3p directive 182, 284
userid_path directive 182, 284
userid_service directive 181, 284
userid directive 181, 284
UserID filter module 181, 296
user management

about 15
superuser account 15
user accounts 15, 16

usermod command 16
user options

--user=… 62

V
valid_referers directive 182, 284
variables, Proxy module

$proxy_add_x_forwarded_for 230
$proxy_host 230
$proxy_internal_body_length 230
$proxy_port 230
about 230

variables_hash_bucket_size directive 130,
284

variables_hash_max_size directive 129, 284
vBulletin 262
version branches, Nginx

development version 53
legacy version 53
stable version 53

virtual hosts, Apache
about 250
configuration sections 250
creating 251, 253

[327]

visitors modules
Browser module 179, 288
GeoIP module 181, 290
Geo module 180, 290
Map module 180, 293
Real IP module 183, 294
Referer module 182, 294
UserID filter module 181, 182, 296

visudo tool 38
vi text editor 38

W
web applications, rewrite rules

MediaWiki 261
vBulletin 262
WordPress 259, 260

WebDAV module 188, 289
web server mechanism 192, 193
website access modules

AutoIndex module 165, 288
Index module 164, 292
Log module 166, 293
Random module 166, 294

websites, Nginx 51
weight=n parameter 206
WordPress 259, 260
worker_connections, events module direc-

tive 95
worker_connections directive 98, 285
worker_cpu_affinity, Core module directive

91
worker_cpu_affinity, Core modules direc-

tive 285
worker_priority, Core module directive 92
worker_priority, Core modules directive

285
worker_process directive 81
worker_processes, Core module directive 92
worker_processes, Core modules directive

285
worker_rlimit_core, Core module directive

92, 285
worker_rlimit_nofile, Core module directive

92, 285

worker_rlimit_sigpending, Core module
directive 92, 285

worker_threads, Core module directive 91
worker_threads, Core modules directive 285
working_directory, Core module directive

92, 285

X
xml_entities directive 179, 285
xslt_module 60
xslt_stylesheet directive 179, 285
xslt_types directive 179, 285
XSTL module 179, 297

Y
yast 48
yum

about 40
GCC package, installing 48
openssl package, installing 50
pcre package, downloading 49
PHP, installing 40
Python, installing 213
zlib package, installing 50

Z
zero data 27
zlib-devel package 50
zlib library 50
Zlib options

--with-zlib-asm=… 59
--with-zlib-opt=… 59
--with-zlib=… 59

zlib package
about 50
installing, apt-get tool used 50
installing, yum used 50

zlib package, installing
apt-get tool, used 50
yum, used 50

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Thank you for buying
Nginx HTTP Server

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Lighttpd
ISBN: 978-1-847192-10-3 Paperback: 236 pages

Installing, compiling, configuring, optimizing, and
securing this lightning-fast web server

1. Install, configure, and work with Lighttpd

2. Migrate from Apache to Lighttpd

3. Set up Ruby on Rails, WordPress, MediaWiki
etc.

4. Understand and harness Lua/FastCGI

5. Write custom modules/plugins for the
Lighttpd API

Cacti 0.8 Network Monitoring
ISBN: 978-1-847195-96-8 Paperback: 132 pages

Monitor your network with ease!

1. Install and setup Cacti to monitor your network
and assign permissions to this setup in no time
at all

2. Create, edit, test, and host a graph template to
customize your output graph

3. Create new data input methods, SNMP, and
Script XML data query

4. Full of screenshots and step-by-step
instructions to monitor your network with
Cacti

Please check www.PacktPub.com for information on our titles

Learning Nagios 3.0
ISBN: 978-1-847195-18-0 Paperback: 316 pages

A comprehensive configuration guide to monitor and
maintain your network and systems

1. Secure and monitor your network system with
open-source Nagios version 3

2. Set up, configure, and manage the latest version
of Nagios

3. In-depth coverage for both beginners and
advanced users

Hacking Vim 7.2
ISBN: 978-1-849510-50-9 Paperback: 244 pages

Ready-to-use hacks with solutions for common
situations encountered by users of the Vim editor

1. Create, install, and use Vim scripts to extend
Vim’s functionality

2. Personalize your work-area to fit your
workflow

3. Optimize your Vim editor to be faster and more
responsive

4. Packed with tips and tricks based on the
author’s practical experience

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Preparing your Work Environment
	Setting up a terminal emulator
	Finding and downloading PuTTY
	Creating a session
	Working with PuTTY and the shell

	Basic shell commands
	File and directory management
	User and group management
	Superuser account
	User accounts
	Group management

	Programs and processes
	Starting an application
	System services
	Process management

	Discovering the Linux filesystem
	Directory structure
	Special files and devices
	Device types
	Pseudo devices
	Mounting a storage device

	Files and inodes
	EXT3 filesystem specifications
	Filenames
	Inodes
	Atime, ctime, mtime
	Symbolic and hard links

	File manipulation
	Reading a file
	Editing a file
	Compression and archiving

	System administration tools
	Running a command as Superuser
	Su command
	Sudo command

	System verification and maintenance
	Disk Free
	Disk Usage
	Free memory

	Software packages
	Package managers
	Downloading and installing packages manually
	Building from source

	Files and permissions
	Understanding file permissions
	Directory permissions
	Octal representation
	Changing permissions
	Changing ownership and group

	Summary

	Chapter 2: Downloading and Installing Nginx
	Setting up the prerequisites
	GCC — GNU Compiler Collection
	PCRE library
	zlib library
	OpenSSL

	Downloading Nginx
	Websites and resources
	Version branches
	Features
	Downloading and extracting

	Configure options
	The easy way
	Path options
	Prerequisites options
	Module options
	Modules enabled by default
	Modules disabled by default

	Miscellaneous options
	Configuration examples
	About the prefix switch
	Regular HTTP and HTTPS servers
	All modules enabled
	Mail server proxy

	Build configuration issues
	Make sure you installed the prerequisites
	Directories exist and are writable

	Compiling and installing

	Controlling the Nginx service
	Daemons and services
	User and group
	Nginx command-line switches
	Starting and stopping the daemon
	Testing the configuration
	Other switches

	Adding Nginx as a system service
	System V scripts
	What is an init script?
	Creating an init script for Nginx
	Installing the script
	Debian-based distributions
	Red Hat-based distributions

	Summary

	Chapter 3: Basic Nginx Configuration
	Configuration file syntax
	Configuration Directives
	Organization and inclusions
	Directive blocks
	Advanced language rules
	Directives accept specific syntaxes
	Diminutives in directive values
	Variables
	String values

	Base module directives
	What are base modules?
	Nginx process architecture
	Core module directives
	Events module
	Configuration module

	A configuration for your profile
	Understanding the default configuration
	Necessary adjustments
	Adapting to your hardware

	Testing your server
	Creating a test server
	Performance tests
	Httperf
	Autobench
	OpenWebLoad

	Upgrading Nginx gracefully

	Summary

	Chapter 4: HTTP Configuration
	HTTP Core module
	Structure blocks

	Module directives
	Socket and host configuration
	Paths and documents
	Client requests
	MIME Types
	Limits and restrictions
	File processing and caching
	Other directives

	Module variables
	Request headers
	Response headers
	Nginx generated

	The Location block
	Location modifier
	Search order and priority
	Case 1:
	Case 2:
	Case 3:

	Summary

	Chapter 5: Module Configuration
	Rewrite module
	Reminder on regular expressions
	Purpose
	PCRE syntax
	Quantifiers
	Captures

	Internal requests
	error_page
	Rewrite
	Infinite loops
	Server Side Includes (SSI)

	Conditional structure
	Directives
	Common rewrite rules
	Performing a search
	User profile page
	Multiple parameters
	Wikipedia-like
	News website article
	Discussion board

	SSI module
	Module directives and variables
	SSI Commands
	File includes
	Working with variables
	Conditional structure
	Configuration

	Additional modules
	Website access and logging
	Index
	Autoindex
	Random index
	Log

	Limits and restrictions
	Auth_basic module
	Access
	Limit zone
	Limit request

	Content and encoding
	Empty GIF
	FLV
	HTTP headers
	Addition
	Substitution
	Gzip filter
	Gzip static
	Charset filter
	Memcached
	Image filter
	XSLT

	About your visitors
	Browser
	Map
	Geo
	GeoIP
	UserID filter
	Referer
	Real IP

	SSL and security
	SSL
	Setting up an SSL certificate
	Secure link

	Other miscellaneous modules
	Stub status
	Google-perftools
	WebDAV

	Third-party modules

	Summary

	Chapter 6: PHP and Python with Nginx
	Introduction to FastCGI
	Understanding the mechanism
	Common Gateway Interface (CGI)
	Fast Common Gateway Interface (FastCGI)
	Main directives
	FastCGI caching
	Upstream blocks
	Module syntax
	Server directive

	PHP with Nginx
	Architecture
	PHP-FPM
	Setting up PHP and PHP-FPM
	Downloading and extracting
	Patching
	Requirements
	Building PHP
	Post-install configuration
	Running and controlling

	Nginx configuration

	Python and Nginx
	Django
	Setting up Python and Django
	Python
	Django
	Starting the FastCGI process manager

	Nginx configuration

	Summary

	Chapter 7: Apache and Nginx together
	Nginx as reverse proxy
	Understanding the issue
	The reverse proxy mechanism
	Advantages and disadvantages

	Nginx Proxy module
	Main directives
	Caching, buffering, and temporary files
	Limits, timeouts, and errors
	Other directives
	Variables

	Configuring Apache and Nginx
	Reconfiguring Apache
	Configuration overview
	Resetting the port number
	Accepting local requests only

	Configuring Nginx
	Enabling proxy options
	Separating content

	Advanced configuration

	Additional steps
	Forwarding the correct IP address
	SSL issues and solutions
	Server control panel issues

	Summary

	Chapter 8: From Apache to Nginx
	Nginx versus Apache
	Features
	Core and functioning
	General functionality

	Flexibility and community
	Performance
	Usage
	Conclusion

	Porting your Apache configuration
	Directives
	Modules
	Virtual hosts and configuration sections
	Configuration sections
	Creating a virtual host

	htaccess files
	Reminder on Apache .htaccess files
	Nginx equivalence

	Rewrite rules
	General remarks
	On the location
	On the syntax
	RewriteRule

	WordPress
	MediaWiki
	vBulletin

	Summary

	Appendix A: Directive Index
	Appendix B: Module Reference
	Access
	Addition*
	Auth_basic module
	Autoindex
	Browser
	Charset
	Core
	DAV*
	Empty GIF
	Events
	FastCGI
	FLV*
	Geo
	Geo IP*
	Google-perftools*
	Gzip
	Gzip Static*
	Headers
	HTTP Core
	Image Filter*
	Index
	Limit Requests
	Limit Zone
	Log
	Map
	Memcached
	Proxy
	Random index*
	Real IP*
	Referer
	Rewrite
	Secure Link*
	SSI
	SSL*
	Stub status*
	Substitution*
	Upstream
	User ID
	XSLT*

	Appendix C:Troubleshooting
	General tips on troubleshooting
	Checking access permissions
	Testing your configuration
	Have you reloaded the service?
	Checking logs
	Install issues
	403 Forbidden custom error page
	Location block priorities
	If block issues
	Inefficient statements
	Unexpected behavior

	Index

