

Hello World!
Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Hello World!
Computer Programming for Kids

 and Other Beginners

WARREN SANDE
CARTER SANDE

M A N N I N G

Greenwich
(74° w. long.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
Sound View Court 3B Copyeditors: Andy Carroll, Anna Welles
Greenwich, CT 06830 Technical proofreader: Ignacio Beltran-Torres

Typesetter: Marija Tudor
Illustrator: Martin Murtonen

Cover designer: Leslie Haimes

Fourth, corrected printing August 2009
ISBN 978-1-933988-49-8
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10 09
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.manning.com

 To our family,
who inspire, encourage, and support us

in school, work, and life
Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Contents
Preface xiii
Acknowledgments xix
About this book xxi

1 Getting Started 1
Installing Python 1 ■ Starting Python with IDLE 2 ■ Instructions,
please 3 ■ Interacting with Python 5 ■ Time to program 7
Running your first program 8 ■ If something goes wrong 9
Your second program 11

2 Remember This—Memory and Variables 14
Input, processing, output 14 ■ Names 16 ■ What’s in a name? 20
Numbers and strings 21 ■ How “variable” are they? 22 ■ The new
me 23

3 Basic Math 26
The four basic operations 27 ■ Operators 28 ■ Order of
operations 29 ■ Two more operators 30 ■ Really big and really
small 33
vii

Licensed to Deborah Christiansen <pedbro@gmail.com>

viii CONTENTS
4 Types of Data 38
Changing types 38 ■ Getting more information: type() 41
Type-conversion errors 42 ■ Using type conversions 42

5 Input 44
raw_input() 45 ■ The print command and the comma 45
Inputting numbers 47 ■ Input from the Web 49

6 GUIs—Graphical User Interfaces 52
What’s a GUI? 52 ■ Our first GUI 53 ■ GUI input 54
Pick your flavor 55 ■ The number-guessing game . . . again 59
Other GUI pieces 60

7 Decisions, Decisions 62
Testing, testing 62 ■ Indenting 65 ■ Am I seeing double? 65
Other kinds of tests 66 ■ What happens if the test is false? 67
Testing for more than one condition 69 ■ Using “and” 69
Using “or” 70 ■ Using “not” 70

8 Loop the Loop 74
Counting loops 75 ■ Using a counting loop 77 ■ A shortcut—
range() 78 ■ A matter of style—loop variable names 80
Counting by steps 82 ■ Counting without numbers 84
While we’re on the subject . . . 84 ■ Bailing out of a loop—break and
continue 85

9 Just for You—Comments 89
Adding comments 89 ■ Single-line comments 90 ■ End-of-line
comments 90 ■ Multiline comments 90 ■ Commenting style 91
Commenting out 92

10 Game Time 94
Skier 94

11 Nested and Variable Loops 99
Nested loops 99 ■ Variable loops 101 ■ Variable nested loops 102
Even more variable nested loops 103 ■ Using nested loops 105
Licensed to Deborah Christiansen <pedbro@gmail.com>

ixCONTENTS
12 Collecting Things Together—Lists 112
What’s a list? 112 ■ Creating a list 113 ■ Adding things to a
list 113 ■ What’s the dot? 114 ■ Lists can hold anything 114
Getting items from a list 115 ■ “Slicing” a list 116 ■ Modifying
items 118 ■ Other ways of adding to a list 118 ■ Deleting from a
list 120 ■ Searching a list 121 ■ Looping through a list 122
Sorting lists 123 ■ Mutable and immutable 126 ■ Lists of lists: tables
of data 126

13 Functions 131
Functions—the building blocks 131 ■ Calling a function 133
Passing arguments to a function 134 ■ Functions with more than
one argument 137 ■ Functions that return a value 139 ■ Variable
scope 140 ■ Forcing a global 143 ■ A bit of advice on naming
variables 144

14 Objects 146
Objects in the real world 147 ■ Objects in Python 147
Object = attributes + methods 148 ■ What’s the dot? 149
Creating objects 149 ■ An example class—HotDog 154
Hiding the data 159 ■ Polymorphism and inheritance 159
Thinking ahead 162

15 Modules 164
What’s a module? 164 ■ Why use modules? 164 ■ Buckets of
blocks 165 ■ How do we create modules? 165 ■ How do we use
modules? 166 ■ Namespaces 167 ■ Standard modules 170

16 Graphics 174
Getting some help—Pygame 174 ■ A Pygame window 175
Drawing in the window 178 ■ Individual pixels 186
Images 190 ■ Let’s get moving! 192 ■ Animation 193
Smoother animation 194 ■ Bouncing the ball 196
Wrapping the ball 198

17 Sprites and Collision Detection 202
Sprites 202 ■ Bump! Collision detection 208
Counting time 212
Licensed to Deborah Christiansen <pedbro@gmail.com>

x CONTENTS
18 A New Kind of Input—Events 217
Events 217 ■ Keyboard events 219 ■ Mouse events 223
Timer events 225 ■ Time for another game—PyPong 227

19 Sound 239
More help from Pygame—mixer 239 ■ Making sounds versus playing
sounds 240 ■ Playing sounds 240 ■ Controlling volume 243
Repeating music 245 ■ Adding sounds to PyPong 245 ■ More wacky
sounds 246 ■ Adding music to PyPong 250

20 More GUIs 254
Working with PythonCard 254 ■ Components 255 ■ Making our GUI
do something 258 ■ The return of event handlers 259 ■ Moving the
button 260 ■ More useful GUIs 260 ■ TempGUI 261 ■ What’s on the
menu? 266

21 Print Formatting and Strings 273
New lines 274 ■ Horizontal spacing—tabs 275 ■ Inserting variables in
strings 277 ■ Number formatting 278 ■ Strings ’n’ things 282

22 File Input and Output 290
What’s a file? 291 ■ Filenames 291 ■ File locations 292
Opening a file 296 ■ Reading a file 297 ■ Text files and binary
files 299 ■ Writing to a file 300 ■ Saving your stuff in files:
pickle 303 ■ Game time again—Hangman 305

23 Take a Chance—Randomness 313
What’s randomness? 313 ■ Rolling the dice 314 ■ Creating a deck of
cards 319 ■ Crazy Eights 323

24 Computer Simulations 336
Modeling the real world 336 ■ Lunar Lander 337 ■ Keeping
time 342 ■ Time objects 343 ■ Saving time to a file 347
Virtual Pet 349
Licensed to Deborah Christiansen <pedbro@gmail.com>

xiCONTENTS
25 What’s Next? 358
General programming 358 ■ Python 359 ■ Game programming
and Pygame 359 ■ Other Python stuff 360 ■ Look around 362

Appendix A Variable Naming Rules 363

Answers to Self-Test Questions 365
Chapter 1: Getting Started 365 ■ Chapter 2: Remember This—
Memory and Variables 366 ■ Chapter 3: Basic Math 367
Chapter 4: Types of Data 368 ■ Chapter 5: Input 369
Chapter 6: GUIs—Graphical User Interfaces 371 ■ Chapter 7:
Decisions, Decisions 372 ■ Chapter 8: Loop the Loop 374
Chapter 9: Just for You—Comments 375 ■ Chapter 10: Game
Time 376 ■ Chapter 11: Nested and Variable Loops 376
Chapter 12: Collecting Things Together—Lists 377 ■ Chapter 13:
Functions 379 ■ Chapter 14: Objects 380 ■ Chapter 15:
Modules 382 ■ Chapter 16: Graphics 383 ■ Chapter 17: Sprites
and Collision Detection 385 ■ Chapter 18: A New Kind of Input—
Events 385 ■ Chapter 19: Sound 386 ■ Chapter 20: More
GUIs 386 ■ Chapter 21: Print Formatting and Strings 387
Chapter 22: File Input and Output 388 ■ Chapter 23: Take a
Chance—Randomness 390 ■ Chapter 24: Computer Simulations 391

Index 393
Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Preface
The preface is that part at the beginning of a book that you skip over to get to the good
stuff, right? Sure, you can skip over it if you want (hey, you’re the one turning the pages),
but who knows what you might miss. . . . It’s not very long, so maybe you should give it a
look, just in case.

What is programming?
Very simply, programming means telling a computer to do something. Computers are dumb
machines. They don’t know how to do anything. You have to tell them everything, and you
have to get all the details right.

Duhhhhhhhhh…
xiii

Licensed to Deborah Christiansen <pedbro@gmail.com>

xiv PREFACE
But if you give them the right instructions, they can do many wonderful and amazing things.

A computer program is made up of a number of instructions. Computers do all the great
things they do today because a lot of smart programmers wrote programs or software to tell
them how. Software just means a program or collection of programs that run on your com-
puter, or sometimes on another computer yours is connected to, like a web server.

Python—a language for us and the computer
All computers use binary inside. But most people don’t speak binary very well. We need an
easier way to tell the computer what we want it to do. So people invented programming
languages. A computer programming language lets us write things in a way we can under-
stand, and then translates that into binary for the computer to use.

An instruction is a basic command you give to a
computer, usually to do a single, very specific thing.

Computers “think” using lots and lots
and LOTS of electrical circuits. At
the most basic level, these circuits
are switches that are either ON or
OFF.

Engineers and computer scientists use
1 and 0 to stand for ON and OFF. All
these 1s and 0s are a kind of code
called binary. Binary really just
means “two states.” The two states
are ON and OFF, or 1 and 0.

Did you know: binary digit = bit.
Licensed to Deborah Christiansen <pedbro@gmail.com>

xvPREFACE
There are many different programming languages. This book will teach you how to use one
of those languages—one called Python—to tell the computer what to do.

Why learn programming?
Even if you don’t become a professional programmer (most people don’t), there are lots of
reasons to learn programming:

■ The most important is because you want to! Programming can be very interesting and
rewarding, as a hobby or a profession.

■ If you’re interested in computers and want to know more about how they work and
how you can make them do what you want, that’s a good reason to learn about
programming.

■ Maybe you want to make your own games, or maybe you can’t find a program that
does exactly what you want or need it to do, so you want to write your own.

No, no, no!
I only speak
human-ese!

1110001101
0001110011
0100101000

>>> print “Hello” Ah! Now I
get it! Hello!

Hello About
time!
Licensed to Deborah Christiansen <pedbro@gmail.com>

xvi PREFACE
■ Computers are everywhere these days, so there’s a good chance you’ll use computers
at work, at school, or at home—probably all three. Learning about programming will
help you understand computers better in general.

Why Python?
With all the programming languages to choose from (and there are a lot!), why did I pick
Python for a programming book for kids? Here are a few reasons:

■ Python was created from the start to be easy to learn. Python programs are about the
easiest to read, write, and understand of any computer language I have seen.

■ Python is free. You can download Python—and many, many fun and useful programs
written in Python—for free. I’ll tell you where in chapter 1.

■ Python is open source software. Part of what open source means is that any user can
extend Python (create things that let you do more with Python, or do the same things
more easily). Many people have done this, and there is a large collection of free
Python stuff that you can download.

■ Python isn’t a toy. Although it’s very good for learning programming, it’s also used by
thousands of professionals around the world every day, including programmers at
institutions like NASA and Google. So once you learn Python, you don’t have to switch
to a “real” language to make “real” programs. You can do a lot with Python.

■ Python runs on different kinds of computers. Python is available for Windows PCs,
Macs, and computers running Linux. Most of the time, the same Python program that
works on your Windows PC at home will work on the Mac at your school. You can use
this book with virtually any computer that has Python. (And remember, if the com-
puter you want to use doesn’t have Python, you can get it for free.)

■ I like Python. I enjoy learning it and using it, and I think you will, too.

#!/bin/env

 py
thon # Paginate a text file, add

ing

a h
ea

der and foot
er

im
po

rt
 sy

s,
tim

e, string # If
 n

o a
rgum

en
ts

 w
er

e
giv

en
, p

rin
t a

 hel
pful m

essage if len(sys.argv)!=
2:

prin
t 'Us

age: pyprint filenam

e's
ys.

exit(0)class # Increment the page count, and reset the line count self.header_
written=If no If no arguments arguments 1 ; self.count=1 ; #!/bin/

env
 py

tho
n

#
 Paginate a

Thinking like a programmer
We’re using Python in this book, but
most of what you’ll learn about pro-
gramming here can be used with any
computer language. Learning to program
with Python will give you a great start
on almost any other language you want
to use in the future.

print >>>Hello i
f

#

print >>>Hello if
 #

print >>>Hello i
f

#

Licensed to Deborah Christiansen <pedbro@gmail.com>

xviiPREFACE
The fun stuff
There’s just one other thing I need to mention now. . . .

For kids especially, one of the most fun parts of using a computer is playing games, with
graphics and sound. We’re going to learn how to make our own games and do lots of things
with graphics and sound as we go along. Here are pictures of some of the programs we’ll
be making:
Licensed to Deborah Christiansen <pedbro@gmail.com>

xviii PREFACE
But I think (as least I hope) you'll find learning the basics and writing your first programs as
enjoyable and rewarding as making those spaceships or skiers zoom around the screen.

Have fun!
Licensed to Deborah Christiansen <pedbro@gmail.com>

Acknowledgments
This book would never have been started, much less finished, without the inspiration, initia-
tive, and support of my wonderful wife, Patricia. When we couldn’t find a suitable book to
feed Carter’s keen interest in learning about programming, she said, “You should write one.
It would be a great project for you two to work on together.” As is often the case, she was
right. Patricia has a way of bringing out the best in people. So Carter and I started thinking
about what would be in such a book, writing chapter outlines and sample programs, and
finding ways to make it fun and interesting. Once we got started, Carter and Patricia made
sure we finished. Carter would give up bedtime stories to work on the book. And if we
didn’t work on it for a while, I would be reminded, “Daddy, we haven’t worked on the book
for days!” Carter and Patricia reminded me that, if you put your mind to it, you can do any-
thing. And all members of the family, including our daughter Kyra, gave up many hours of
family time while the book was in progress. I thank all of them for their patience and loving
support, which made this book possible.

Writing a manuscript is one thing, getting a book into people’s hands is another. This book
would never have been published without the enthusiastic and persistent support of
Michael Stephens at Manning Publications. Right from the start, he “got it” and agreed that
there was a need for this kind of book. Michael’s steadfast belief in the project and his con-
tinued patience in guiding a rookie author through the process were immensely valuable
and appreciated. I would also like to say a sincere thank you to all the other folks at Man-
ning who helped make this book happen, in particular Mary Piergies for patiently coordi-
nating all aspects of the production process.
xix

Licensed to Deborah Christiansen <pedbro@gmail.com>

xx ACKNOWLEDGMENTS
This book would not be the same without Martin Murtonen’s lively and fun illustrations. His
work speaks for itself about Martin’s creativity and talent. But what doesn’t show is how
great he is to work with. It was a pleasure.

One day, I asked my friend and colleague Sean Cavanagh, “How would you do this in Perl?”
Sean said, “I wouldn’t. I would use Python.” So I took the plunge to learn a new program-
ming language. Sean answered many questions when I was learning Python and reviewed
early drafts. He also created and maintains the installer. His help is much appreciated.

I would also like to thank the many people who reviewed the book during its development
and helped prepare the manuscript: Vibhu Chandreshekar, Pam Colquhoun, Gordon
Colquhoun, Dr. Tim Couper, Josh Cronemeyer, Simon Cronemeyer, Kevin Driscoll, Jeffrey
Elkner, Ted Felix, David Goodger, Lisa L. Goodyear, Dr. John Grayson, Michelle Hutton, Horst
Jens, Andy Judkis, Caiden Kumar, Anthony Linfante, Shannon Madison, Kenneth McDonald,
Evan Morris, Prof. Alexander Repenning, André Roberge, Kari J. Stellpflug, Kirby Urner, and
Bryan Weingarten

The final result is much better for their efforts.

WARREN SANDE

I would like to thank Martin Murtonen for his exceptional caricature of me, my mom for let-
ting me go on the computer when I was two years old and for coming up with the idea of
writing a book, and, most importantly, my dad for all of the effort he put into this book with
me and showing me how to program.

CARTER SANDE
Licensed to Deborah Christiansen <pedbro@gmail.com>

About this book
This book teaches the basics of computer programming. It’s meant for kids, but anyone who
wants to learn how to program a computer can use it.

You don’t need to know anything about programming to use this book, but you should
know the basics of using your computer. Maybe you use it for email, surfing the Web, listen-
ing to music, playing games, or writing reports for school. If you can do the basic things on
your computer, like starting a program and opening and saving files, you should have no
trouble using this book.

What you need
This book teaches programming using a computer language called Python. Python is free,
and you can download it from several places, including this book’s web site. To learn pro-
gramming using this book, all you need are

■ this book (of course!).
■ a computer, with Windows, Mac OS X, or Linux on it. The examples in this book are

done in Windows. (There is some help for Mac and Linux users on the book’s web site:
www.helloworldbook.com.)

■ basic knowledge of how to use your computer (starting programs, saving files, and so
on). If you have trouble with this, maybe you can get someone to help you.

■ permission to install Python on your computer (from your parent, teacher, or whoever
is responsible for your computer).

■ the desire to learn and try things, even if they don’t always work the first time.
xxi

Licensed to Deborah Christiansen <pedbro@gmail.com>

www.helloworldbook.com

xxii ABOUT THIS BOOK
What you don’t need
To learn programming with this book, you don’t need

■ to buy any software. Everything you need is free, and a copy is available on the book’s
web site, www.helloworldbook.com.

■ any knowledge of computer programming. This book is for beginners.

Using this book

If you’re going to use this book to help you learn programming, here are a few pointers that
will help you get more out of it:

■ follow along with the examples
■ type in the programs
■ do the quiz questions
■ don’t worry, be happy!

Follow along with the examples

When you see examples in the book, they’ll look like this:

Always try to follow along and type the programs in yourself. (I’ll tell you exactly how to do
it.) You could just sit in a big, comfy chair and read through this whole book, and you’d
probably learn something about programming. But you’ll learn a whole lot more by doing
some programming.

Type in the programs

The installer program that goes with this book will copy all the example programs to your
hard drive (if you want). The installer is on the book’s web site: www.helloworldbook.com.
You can also view and download individual examples from the web site, but I encourage you
to type as many of them yourself as possible. Just by typing the programs, you’ll get a “feel”
for programming and for Python in particular. (And we can all use more typing practice!)

if timsAnswer == correctAnswer:
 print "You got it right!"
 score = score + 10
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.helloworldbook.com
www.helloworldbook.com

xxiiiABOUT THIS BOOK
I’m Carter.
I haven't noticed

anything unusual... yet!
Just wanted to

say hi!

Do the quiz questions

At the end of every chapter, there are some questions to practice what you’ve learned. Do
as many as you can. If you’re stuck, try to find someone who knows about programming to
help you. Work through them together—you’ll learn a lot by doing that. Don’t peek at the
answers until you’re done, unless you’re really, really stuck. (Yes, some of the answers are in
the back of the book and on the web site, but like I said, don’t peek.)

Carter says
I wanted to make sure this book was good for
kids—fun and easy to understand.
Luckily, I had some help. Carter is a kid who
loves computers and wants to learn
more about them. So he helped me
to make sure I got this book right. When
Carter noticed something funny or unusual,
or something that didn’t make sense, we show
it like this:

Don't worry about making mistakes.
In fact, make lots of them! I
think making mistakes and figuring
out how to find them and fix them is
one of the best ways to learn.

In programming, your mistakes don't usually
cost you anything except a bit of time. So
make lots of them, learn lots from them, and
have fun.

Hey, mon! Chill.
You can’t break the
computah’, so just

give it a try.
Licensed to Deborah Christiansen <pedbro@gmail.com>

xxiv ABOUT THIS BOOK
Note to parents and teachers
Python is a free, open source software, and there is no danger installing and using it on
your computers. You can get the Python software—and everything else you need to use
this book—for free at www.manning.com/helloworld.

The download files are simple to install and use and are free of viruses and spyware.

Books like this used to come with CDs with all the software on them, but now most readers
(and publishers) prefer to use the Internet. If you can’t download the software from the
book’s web site, Manning can send you a CD containing the same files available on the web
site. There’s no cost for the CD, but you’ll have to pay the shipping and handling fee based
on your address.

To get the CD, send an email to support@manning.com with subject line “Hello World! CD.”
If you don’t have email, you can send a fax (609-877-8256), or a good, old-fashioned
letter to:

Hello World CD Request
Manning Publications Co.
Planetarium Station
PO Box 347
New York NY 10024
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/helloworld
http://www.manning.com/helloworld
mailto:support@manning.com

C H A P T E R 1

Getting Started
We will be using the Python computer language to learn programming. To get started, you
first need to have Python installed on your computer. After that, you can start learning how
to use it. We will begin by giving Python some instructions, and then we will put a few
instructions together to make a program.

Installing Python
The first thing you need to do is install Python on the computer you are going to use. It’s
possible that Python is already installed on your computer, but for most people, that’s not
the case. So let’s look at how to install it.

In the early days of personal computers (PCs), people had it easy. With
 a lot of the first PCs, a programming language called BASIC was built
 in to the computer. They didn’t have to install anything. All they did
 was turn on the computer, and the screen would say “READY”, and
 they could start typing BASIC programs. Sounds great, huh?

 Of course, that “READY” was all you got. No programs, no
 windows, no menus. If you wanted the computer to do
 anything, you had to write a program! There were no word
 processors, media players, web browsers, or any of the
 things we are used to now. There wasn’t even a Web to
 browse. There were no fancy graphics and no sound,
 except the occasional “beep” if you made a mistake!

1

Licensed to Deborah Christiansen <pedbro@gmail.com>

2 Hello World!
Installing Python is pretty easy. In the
Resources section of this book’s web site
(www.helloworldbook.com), find the version
of the installer that matches your computer’s
operating system. There are versions for Win-
dows, Mac OS X, and Linux. All the examples
in this book use Windows, but using Python
in Mac OS X or Linux is very similar. Just
follow the instructions on the web site to run
the right installer for your system.

The version of Python that we use in this
book is version 2.5. If you use the installer on
the book’s web site, that’s the version you
will get. By the time you read this, there might be newer versions of Python out there. All
the examples in this book have been tested using Python 2.5. They are likely to work with
later versions as well, but I can’t see into the future, so there are no guarantees.

Starting Python with IDLE
There are a couple of ways to start using Python. One is called IDLE, and that’s the one we
will use for now.

In the Start menu, under Python 2.5, you will see IDLE (Python GUI). Click this option, and you
will see the IDLE window open up. It should look something like the window below.

If Python is already installed on yourcomputer, and you are not going to use the installer, you will need to make sure that some “extras” that you’ll need for this book are also installed. Have a look at the Installation section of the web site (www.helloworldbook.com) to find out how to do this.
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.helloworldbook.com

3 CHAPTER 1 Getting Started
IDLE is a Python shell. A shell is basically a way
of interacting with a program by typing text,
and this shell lets you interact with Python.
(That’s why you see “Python Shell” in
the title bar of the window.) IDLE also
happens to be a GUI, which is why it says
Python GUI in the Start menu. IDLE has
some other things besides the shell, but we’ll
get to all that in a minute.

The “>>>” in the previous figure is the Python prompt. A prompt is what a program displays
when it is waiting for you to type something. The “>>>” prompt tells you that Python is
ready for you to start typing Python instructions.

Instructions, please
Let’s give Python our first instruction.
With the cursor at the end of the “>>>” prompt, type

and press the Enter key. (On some keyboards this is called the Return key.) You need to
press the Enter key after every line you type.

After you press the Enter key, you should get this response:

The figure below shows how that looks in the IDLE window.

GUI stands for graphical user
interface. This means something
with windows, menus, buttons,
scrollbars, etc. Programs
that don’t have a GUI are
called text-mode programs,
console programs, or
command-line programs.

print "Hello World!"

Hello World!
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

4 Hello World!
Why are there
all those fancy colors

in IDLE?

You are

now under my

command! >>> YES MASTERRRRR...

Python did what you told
it: it printed your mes-
sage. (In programming,
print often means to dis-
play text on the screen,

instead of printing it on a
piece of paper using your printer.)

That one line is a Python instruction. You’re
on your way to programming! The com-
puter is under your command!

By the way, in learning to program, there is
a tradition that the first thing you make the

computer do is display “Hello World!” That’s
where the title of this book comes from. You are following that tradition. Welcome to the
world of programming!

 Good question! IDLE is trying to help us
 understand things a bit better. It’s showing things in

 different colors to help us tell different parts of the code apart.
(Code is just another term for the instructions you give to the com-
puter in a language like Python.) I will explain what the different
parts are as we go through the rest of this book.

If it doesn’t work

If you made a mistake, you
might see something like this:

That error message means you typed something that Python didn’t
understand. In the example above, print is misspelled pront, and
Python doesn’t know what to do with that. If that happens to you,
try it again and make sure you type it exactly like in the example.

>>> pront "Hello World!"
SyntaxError: invalid syntax
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

5 CHAPTER 1 Getting Started
Hey, I didn't see
the orange color on
pront like I did

on print.
Тhat’s right. That’s because
print is a Python keyword,
and pront is not.

Interacting with Python
What you just did was use Python in interactive mode. You typed a command (an
instruction) and Python executed it immediately.

Let’s try something else in
interactive mode. Type this at the prompt:

You should get this:

So Python can do addition! That shouldn’t be surprising, because computers are good at
arithmetic.

Let’s try one more:

In pretty much all computer programs and languages, the * symbol is used for multiplica-
tion. That character is called an asterisk or star.

A keyword is a special word that
is part of the Python language
(also known as a reserved word).

Executing a command, instruction, or program is just a
fancy way of saying “running” it, or “making it happen.”

>>> print 5 + 3

8
>>>

>>> print 5 * 3
15
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

6 Hello World!
Well, I can
do that with my

calculator...

I can do 5 * 3
in my head. I don't need
Python or a computer

for that!

Hey, those
numbers don't fit
on my calculator!

If you are used to writing “5 times 3” as “5 x 3” in math class, you’ll have to get used to using
* for multiplication in Python instead. (It’s the symbol above the number 8 on most key-
boards.)

Okay, how about this one:

Okay, how about this one:

That’s right. With the computer, you can do
math on really, really big numbers.

 Here’s something else you can do:

Or try this:

>>> print 2345 * 6789
15920205
>>>

>>> print 1234567898765432123456789 * 9876543212345678987654321
12193263200731596000609652202408166072245112635269
>>>

>>> print "cat" + "dog"
catdog

>>>

>>> print "Hello " * 20
Hello Hello Hello Hello Hello Hello Hello Hello Hello Hello
Hello Hello Hello Hello Hello Hello Hello Hello Hello Hello
Licensed to Deborah Christiansen <pedbro@gmail.com>

7 CHAPTER 1 Getting Started
Besides math, another thing computers are good at is doing things over and over again.
Here we told Python to print “Hello” twenty times.

We’ll do more in interactive mode later, but right now it’s ...

Time to program
The examples we’ve looked at so far are single Python instructions (in interactive mode).
While that’s great for checking out some of the things Python can do, those examples are
not really programs. As I mentioned before, a
program is a number of instructions collected
together. So let’s make our first Python program.

First, you need a way to type in our program. If
you just type it in the interactive window, Python
won’t “remember” it. You need to use a text edi-
tor (like Notepad for Windows or TextEdit for Mac
OS X) that can save the program to the hard
drive. IDLE comes with a text editor that is much
better for what you need than Notepad. To find
it, select File > New Window from IDLE’s menus.

You will see a window like in the
figure below. The title bar says
“Untitled” because you haven’t
given it a name yet.

Now, type the program in listing 1.1 below into the editor.

print "I love pizza!"
print "pizza " * 20
print "yum " * 40
print "I'm full."

Listing 1.1 Our first real program

When I am talking about menu selections, like File > New, the first part (File in this case) is the main menu. The > tells you that the next thing (New in this case) is an item in the File menu.I will use that notation throughout the book.
Licensed to Deborah Christiansen <pedbro@gmail.com>

8 Hello World!
When you are done, save the program using the
File > Save or File > Save As menu option. Call the
file pizza.py. You can save it wherever you like (as
long as you remember where it is, so you can find
it later). You might want to create a new folder for
saving your Python programs. The “.py” part at the
end is important, because it tells your computer
that this is a Python program, and not just any old
text file.

You might have noticed that the editor used some differ-
ent colors in the program. Some words are in orange and
others are in green. This is because the IDLE editor
assumed that you would be typing in a Python program.
For Python programs, the IDLE editor shows Python key-
words in orange and anything in quotation marks in
green. This is meant to help you read your Python code
more easily.

Running your first program
Once you have saved your program, go to the Run menu (still in the IDLE editor), and pick
Run Module (as shown in the next figure). This will run your program.

Some versions of IDLE might not show the colors until you save the program as a .py file, like pizza.py.

Notice the title that says “Listing 1.1”? When the example code makes a complete Python program, I will number it like this, so you can easily find it in the \examples folder or on the web site.
Licensed to Deborah Christiansen <pedbro@gmail.com>

9 CHAPTER 1 Getting Started
You will see that the Python shell window (the one that first came up when you started
IDLE) becomes active again, and you will see something like the following:

The RESTART part tells you that you started running a program. (This will be helpful when
you are running your programs over and over again to test them.)

Then the program runs. Okay, so it doesn’t do very much. But you got the computer to do
what you told it to do. Our programs will get more interesting as we go along.

If something goes wrong
What happens if you have an error in your program, and it doesn’t run? There are two
different kinds of errors that can happen. Let’s look at both kinds, so you will know what to
do if either one happens to you.

Syntax errors

IDLE does some checking of your program before it even tries to run it. If IDLE finds an error,
it is usually a syntax error. Syntax is the spelling and grammar rules for a programming lan-
guage, so a syntax error means that you have typed something that is not proper Python code.

Here is an example:

We missed a quote mark between print and Bye for now!"

If you tried to run this program, IDLE would pop up a message saying “There’s an error in
your program: invalid syntax.” Then you would have to look at your code to see what’s
wrong. IDLE will highlight (in red) the place where it found the error. It might not be exactly
where the problem is, but it should be close.

print "Hello, and welcome to Python!"
print "I hope you will enjoy learning to program."
print Bye for now!"

Missing quote mark
Licensed to Deborah Christiansen <pedbro@gmail.com>

10 Hello World!

S

How come this works:
print "Bye for now!" * 5

But this doesn’t:
print "Bye for now!" + 5

S

Runtime errors

The second kind of error that can happen is one that Python (or IDLE) can’t detect before it
runs the program. This kind of error only happens when the program runs, so it is called a
runtime error. Here’s an example of a runtime error in a program:

If we save this and try to run it, the program actually starts to run. The first two lines are
printed, but then we get an error message:

The line starting with Traceback is the start of the error message. The next line tells you
where the error happened—the filename and line number. Then it displays the bad line of
code. This helps you find where the problem is in your code. The last part of the error
message tells you what Python thinks is wrong. Once you know more about programming
and Python, it will be easier to understand what the message means.

Well, Carter, it’s kind of like
that old saying about com-
paring apples to alligators.

In Python, you can’t
add different kinds of
things together, like a

number and some text.
That’s why print "Bye for now!" + 5

gave us an error. It’s like saying, “If I take 5 apples and add 3
alligators, how many do I have?” You have 8, but 8 of what?

Adding these together doesn’t really make sense. But you
can multiply almost anything by a number to get more of that kind

of thing. (If you have 2 alligators and you multiply by 5, you have 10
alligators!) That’s why print "Bye for now!" * 5 works.

print "Hello, and welcome to Python!"
print "I hope you will enjoy learning to program."
print "Bye for now!" + 5

>>> ============================ RESTART ============================
>>>
Hello, and welcome to Python!
I hope you will enjoy learning to program.

Traceback (most recent call last):
 File "C:/HelloWorld/examples/error1.py", line 3, in <module>
 print "Bye for now!" + 5
TypeError: cannot concatenate 'str' and 'int' objects

>>>

Start of the
error message

Where the
error was

The "bad"
line of code

What Python
thinks is wrong
Licensed to Deborah Christiansen <pedbro@gmail.com>

11 CHAPTER 1 Getting Started
Your second program
The first program didn’t do much. It just printed some stuff on the screen. Let’s try some-
thing a bit more interesting.

The next code in listing1.2 is for a simple number-guessing game. Start a new file in the
IDLE editor using File > New Window, just like you did the first time. Type in the code from
listing 1.2 and then save it. You can call it whatever you want, as long as it ends with “.py”.
NumGuess.py might be a good name.

It’s only 18 lines of Python instructions, plus a few blank lines to make it easier to read. It
shouldn’t take too long to type in. Don’t worry that we haven’t talked about what this code
all means yet. We’ll get to that very soon.

import random

secret = random.randint(1, 99)
guess = 0
tries = 0

print "AHOY! I'm the Dread Pirate Roberts, and I have a secret!"
print "It is a number from 1 to 99. I'll give you 6 tries. "

while guess != secret and tries < 6:
 guess = input("What's yer guess? ")
 if guess < secret:
 print "Too low, ye scurvy dog!"
 elif guess > secret:
 print "Too high, landlubber!"
 tries = tries + 1

Listing 1.2 Number-guessing game

#!/bin/env pytho

n

Pag
inat

e a text file, adding a header and footer import sys, time, string # If no arguments were given, print a helpf
ul

me
ssage if len(sys.argv)!=2: print 'Usage: p

ypr
int

 fi
lename'sys.exit(0)class # Increm

ent
 th

e
page count, and re

set
 th

e l
in

e
co

un
t s

elf
. he

ad
er

_w
rit

te
n=

1 ;
 s

el
f.c

ou
nt=

1 ;#
!/bin/env python # Paginate a text file, a

ddi
ng a

 header

Thinking like a programmer
Don’t worry if you get error messages.
They are meant to help you figure out
what went wrong so you can fix it. If
there is something wrong with your pro-
gram, you want to see an error message.
The kinds of bugs that don’t give you an
error message are much harder to find!

print >>>Hello if #

print >>>Hell
o

if

print >>>Hello if #print

 >>
>H

el
lo

Picks a secret
number

Allows up to 6
guesses

Gets the
player's
guess

Uses up one try
Licensed to Deborah Christiansen <pedbro@gmail.com>

12 Hello World!
if guess == secret:
 print "Avast! Ye got it! Found my secret, ye did!"
else:
 print "No more guesses! Better luck next time, matey!"
 print "The secret number was", secret

When you are typing it in, notice the indenting of the lines after the while instruction, and
the extra indenting of the lines after if and elif. Also notice the colons at the ends of some
of the lines. If you type the colon in the correct place, the editor will help you by indenting
the next line for you.

Once you’ve saved it, run it using Run > Run Module, just like you did for the first program.
Try playing it and see what happens. Here is a sample of when I ran it:

It took me five guesses to get the secret number, which turned out to be 12.

We will be learning all about the while, if, else, elif, and
input instructions in the next few chapters. But you can
probably already get the basic idea of how this program
works:

■ The secret number is randomly picked by the program.
■ The user inputs his guesses.
■ The program keeps checking the guess against the

secret number: is it higher or lower?
■ The user keeps trying until he guesses the number or

runs out of turns.
■ When the guess matches the secret number, the player

wins.

>>> ======================= RESTART =======================
>>>
AHOY! I'm the Dread Pirate Roberts, and I have a secret!
It is a number from 1 to 99. I'll give you 6 tries.
What's yer guess? 40
Too high, landlubber!
What's yer guess? 20
Too high, landlubber!
What's yer guess? 10
Too low, ye scurvy dog!
What's yer guess? 11
Too low, ye scurvy dog!
What's yer guess? 12
Avast! Ye got it! Found my secret, ye did!
>>>

Prints
message at
end of game
Licensed to Deborah Christiansen <pedbro@gmail.com>

13 CHAPTER 1 Getting Started
What did you learn?

Whew! We covered quite a lot. In this chapter, you

■ installed Python.
■ learned how to start IDLE.
■ learned about interactive mode.
■ gave Python some instructions, and it executed them.
■ saw that Python knows how to do arithmetic (including really big numbers!)
■ started the IDLE text editor to type in your first program.
■ ran your first Python program!
■ learned about error messages.
■ ran your second Python program: the number-guessing game.

Test your knowledge
1 How do you start IDLE?

2 What does print do?

3 What is the symbol for multiplication in Python?

4 What does IDLE display when you start to run a program?

5 What is another word for running a program?

Try it out
1 In interactive mode, use Python to calculate the number of minutes in a week.

2 Write a short program to print three lines: your name, your birth date, and your
favorite color. The output should look something like this:

Save the program and run it. If the program doesn’t do what you expect, or you get
any error messages, try to fix it and make it work.

My name is Warren Sande.
I was born January 1, 1970.
My favorite color is blue.
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 2

Remember This—
Memory and Variables
What is a program? Hey, wait a minute, I thought we answered that in chapter 1! We said a
program was a series of instructions to the computer.

Well, that’s true. But almost all programs that do anything useful or fun have some other
qualities:

■ They get input.
■ They process the input.
■ They produce output.

Input, processing, output
Your first program (listing 1.1) didn’t have any input or processing. That’s one reason why it
wasn’t very interesting. The output was the messages the program printed on the screen.

Your second program, the number-guessing game (listing 1.2), had all three of the basic
elements:

■ The input was the guesses the player typed in.
■ The processing was the program checking the guesses and counting the turns.
■ The output was the messages the program printed.

Here’s another example of a program that has all three elements: in a video game, the input
is the signals from the joystick or game controller; the processing is the program figuring out
whether you have shot the alien, dodged the ball of fire, completed the level, or whatever;
the output is the graphics on the screen and the sound from the speakers or headphones.
14

Licensed to Deborah Christiansen <pedbro@gmail.com>

15 CHAPTER 2 Remember This— Memory and Variables
Input, processing, output. Remember that.

Okay, so the computer needs input. But what does it do with it? In order to do something
with the input, the computer has to remember it or keep it somewhere. The computer
keeps things, including input (and the program itself), in its memory.

But how do we tell Python where in the memory to put something? And once it’s there,
how do we find it again?

In Python, if you want your program to remember something so you can use it later, all you
have to do is give that “thing” a name. Python will make a place for the “thing” in the com-
puter’s memory, whether the thing is a number, some text, a picture, or a piece of music.
When you want to refer to that thing again, you just use the same name.

Let’s use Python in interactive mode again and find out more about names.

Input

Output

Processing

You can write to the memory (set the switches), or read from the
memory (look at how the switches are set, without changing them).

You’ve probably heard of computer memory, but
 what does it really mean?

We said that computers were just a bunch of
 switches turning on and off. Well, memory is
 like a group of switches that stay in the
 same position for a while. Once you set the
 switches a certain way, they stay that way
 until you change them. They remember where
 you set them…
 Voila: memory!
Licensed to Deborah Christiansen <pedbro@gmail.com>

16 Hello World!

S

I typed
>>> print Teacher
So, why didn't it print

"Teacher"?

It printed
"Mr. Morton"

instead.

Names
Go back to the Python Shell window. (If you closed IDLE since doing the example in
chapter 1, open it again.)

At the prompt, type:

(Remember, the >>> is the prompt that Python displays. You just type what is after it, and
press Enter.) You should see this:

You just created a thing that is made up of the letters
“Mr. Morton”, and you gave it the name Teacher.

The equal sign (=) tells Python to assign or “make equal
to.” You assigned the name Teacher to the series of let-
ters “Mr. Morton”.

Somewhere in a chunk of your computer’s memory, the letters “Mr. Morton” exist. You don’t
need to know exactly where. You told Python that the name for that series of letters is
Teacher, and that’s how you will refer to it from now on. A name is like a label or tag or
sticky note that you attach to something to identify what it is.

When you put quotes around something,
Python takes it literally. It prints exactly
what is in the quotes. When you don’t
put quotes around the thing, Python has

to figure out what the thing is. It could
be a number (like 5), an expression (like
5 + 3), or a name (like Teacher).

Because we made a name, Teacher, Python
prints the thing that belongs to

that name, which happens to be
the series of letters “Mr. Morton”.

It’s just like if someone said, “Write down your address.” You
wouldn’t write this:

>>> Teacher = "Mr. Morton"
>>> print Teacher

Mr. Morton
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

17 CHAPTER 2 Remember This— Memory and Variables
(Well, maybe Carter would, because he likes to kid around. . . .)

You would write
something like this:

If you wrote “Your Address”, you would be taking the statement literally. Python doesn’t
take things literally unless you use
quote marks. Here’s another example:

With quote marks, Python printed exactly what you told it: 53 + 28.

Without quote marks, Python treated the 53 + 28 as an arithmetic expression, and it evaluated
that expression. In this case, it was an expression for adding two numbers together, so
Python gave us the sum.

Python takes care of figuring out how much memory it needs to store the letters, and what
part of the memory it will use. To retrieve your information (get it back), you just need to
use the same name again. We used the name along with the print keyword, which displays
things (like numbers or text) on the screen.

>>> print "53 + 28"
53 + 28
>>> print 53 + 28
81

An arithmetic expression is a combination of numbers

and symbols that Python can figure out the value of.

Evaluate just means “figure out the value of.”

Your Address
Licensed to Deborah Christiansen <pedbro@gmail.com>

18 Hello World!
#
!/bin/env python # Paginate a text file, adding a header and footer import sys, time, str

ing
 # If no arguments were given, print a helpful message if len(sys.argv)!=2:

 prin
t 'U

sag
e:

py
pr

int
 f

ile
na

me
'sy

s.e
xit

(0
)cl

ass

 #
 In

cr
em

en
t t

he
 p

ag
e

co
un

t,
an

d
re

se
t

th
e

lin
e

co
un

t s
el

f.h
ead

er_w
rit

ten
=1

; s
el

f.c
ou

nt
=1

 ;#
!/b

in/
env pyth

on
Pa

gin
at

e a
 te

xt
 f

ile
, a

dd
ing

 a h ea
de

r
an

d f
oote

r import sys, time, string # If no arguments

were
given, print a helpful message if len(sys.argv)!=2: print 'Usage: pyprint f self.page=self.page+1PrinterFormatter:self.header_written=0def # Increment the page count, and reset the line count

Thinking like a programmer
When you assign a value to a name (like

assigning the value “Mr. Morton” to Teacher),
it is stored in memory and is called a variable.
In most programming languages, we say you

store a value in a variable.

But Python does things a little
 differently from most other computer
 languages. Instead of storing values in
variables, it’s more like putting names on
values.

 Some Python programmers say
that Python doesn’t have “variables”—

it has “names” instead. But they behave
pretty much the same way. This is
a book about programming (that just happens
to use Python), not a book only about Python.
So we will use the terms variable, name, or
variable name when talking about a Python
name. It really doesn’t matter what you
call them, as long as you understand how
variables behave and how to use them
in your programs.

By the way, Guido van Rossum, the
person who created Python, says in his
Python tutorial: “The ‘=’ sign is used to
assign a value to a variable.” So I guess
he thinks Python has variables!

print >>>Hello if
#

prin
t >>>Hello if #

print >>>Hello if
#

TOM

W
a
r
r
en

CARTER

Martin

ANDY

Using names in Python is like going to a

dry cleaner… Your clothes are placed on a

hanger, your name is attached, and they are

put on a big revolving hanger-trolley. When

you go back to pick up your clothes, you

don’t need to know exactly where they are

stored on the big hanger-trolley. You just

give the person your name, and they return

your clothes. In fact, your clothes might be

in a different spot than when you brought

them in. But the dry cleaner keeps track of

that for you. All you need is your name to

retrieve your clothes.

Variables are the same. You don’t need to

know exactly where in memory the information

is stored. You just need to use the same name

as when you stored it.

A clean way to store things
Licensed to Deborah Christiansen <pedbro@gmail.com>

19 CHAPTER 2 Remember This— Memory and Variables
You can create variables for other things besides letters. You can name numeric values.
Remember our example from before:

Let’s try that one with variables:

Here, we created two names, First and Second. The number 5 was assigned to First, and
the number 3 was assigned to Second. Then we printed the sum of the two.
There’s another way to do this. Try this:

Notice what we did here. In interactive mode, we can display the value of a
variable just by typing its name, without using print. (This doesn’t work
in a program.)

In this example, instead of doing the sum in the print instruction, we took the thing named
First and the thing named Second and added them together, creating a new thing, called
Third. Third is the sum of First and Second.

5 + 3 = 8

You can have more than one name
for the same thing. Try this in interactive mode:

This is like sticking two tags on the same thing.
One tag says YourTeacher and one tag says MyTeacher, but they are

 both stuck on “Mrs. Goodyear”.

>>> 5 + 3
8

>>> First = 5
>>> Second = 3
>>> print First + Second
8

>>> Third = First + Second
>>> Third
8

>>> MyTeacher = "Mrs. Goodyear"
>>> YourTeacher = MyTeacher
>>> MyTeacher
"Mrs. Goodyear"
>>> YourTeacher
"Mrs. Goodyear"
Licensed to Deborah Christiansen <pedbro@gmail.com>

20 Hello World!

S

If we changed
MyTeacher

to “Mrs. Tysick”,
would YourTeacher also

be changed to
“Mrs. Tysick”?

That’s a very good question, Carter. The answer is,
no. What would happen is that a new thing,
“Mrs. Tysick”, would be created. The tag
MyTeacher would get pulled off “Mrs. Good-

year” and stuck on “Mrs. Tysick”. You still have
two different names (two tags), but now they are

stuck on two different things instead of being stuck on
the same thing.

What’s in a name?
You can call a variable anything you want (well, almost). The name can be as long as you
want, and it can have letters and numbers in it, as well as the underscore character (_).

But there are a few rules about variable names. The most important one is that they are
case-sensitive, which means that uppercase and lowercase matter. So, teacher and TEACHER
are two different names. So are first and First.

Another rule is that a variable name has to start with a letter or the underscore character. It
can’t start with a number. So 4fun is not allowed.

One more rule is that a variable name can’t have any spaces in it.

If you want to know all the rules for variable names in Python, you can look in the appendix,
at the back of the book.

In some of the early programming languages,
variable names could only be one letter

long. And some of the computers only
had uppercase letters, which meant
that you only had 26 choices for your
variable names: A–Z! If you needed
more than 26 variables in a program,

you were out of luck!
Licensed to Deborah Christiansen <pedbro@gmail.com>

21 CHAPTER 2 Remember This— Memory and Variables
Numbers and strings
So far, we have made variables for both letters (text) and numbers. But in our addition
example, how did Python know that we meant the numbers 5 and 3, and not the characters
“5” and “3”? Well, just like in the last sentence, the quote marks make all the difference.

A character, or series of characters (letters, numbers, or punctuation), is called a string. The
way you tell Python that you are making a string is to put quotes around the characters.
Python is not too fussy about whether you use single or double quotes.
Either of these will work:

But you do have to use the same kind of quotes at the start and the end of the string.

If we type in a number without quotes, Python knows we mean the numerical value, not the
character. Try this to see the difference:

Without the quotes, the 5 and 3 were treated as numbers, so we got the sum. With quotes,
the ‘5’ and ‘3’ were treated as strings, so we got the two characters “added” together, or ‘53’.
You can also add strings of letters
together, like we saw in chapter 1:

Notice that, when you add two strings together like this, there is no space between them.
They get jammed right together.

>>> teacher = "Mr. Morton"

>>> teacher = 'Mr. Morton'

Double quotes

Single quotes

>>> first = 5
>>> second = 3
>>> first + second
8
>>> first = '5'
>>> second = '3'
>>> first + second
'53'

>>> print "cat" + "dog"
catdog

Concatenate
It’s not really correct to say “added” when talking about
strings (like we just did). When you put characters or
strings together to make a longer string, there is a
special name for it. Instead of “adding” (which is only
for numbers), it is called concatenation. This sounds
like kon-kat-en-ay-shun.

We say that you concatenate two strings.
Licensed to Deborah Christiansen <pedbro@gmail.com>

22 Hello World!
Long strings

If you want to have a string that spans more than one line, you have to use a special kind of
string called a triple-quoted string. Here is what it looks like:

This kind of string starts and ends with three quote marks. The quote marks can be double
or single quotes, so you could also do it this way:

Triple-quoted strings can be very useful when you have several lines of text that you want
to display together, and you don’t want to use a separate string for each line.

How “variable” are they?
Variables are called “variables” for a reason. It’s because they are . . . well . . . variable! That
means you can vary, or change, the value that is assigned to them. In Python, you do this by
creating a new thing that is different from the old thing, and sticking the old label (the
name) on the new thing. We did that with MyTeacher in the last section. We took the tag
MyTeacher off “Mrs. Goodyear” and attached it to a new thing, “Mrs. Tysick”. We assigned a
new value to MyTeacher.

Let’s try another one. Remember the variable
Teacher that you created before? Well, if you
haven’t closed IDLE, it’s still there.
Check and see:

Yup, still there. But you can
change it to something else instead:

We created a new thing, “Mr. Smith,” and named it Teacher. Our tag got moved from the old
thing to the new thing. But what happened to the old thing, “Mr. Morton”?

long_string = """Sing a song of sixpence, a pocket full of rye,
Four and twenty black birds baked in a pie.
When the pie was opened the birds began to sing.
Wasn't that a dainty dish to set before the king?"""

long_string = '''Sing a song of sixpence, a pocket full of rye,
Four and twenty black birds baked in a pie.
When the pie was opened the birds began to sing.
Wasn't that a dainty dish to set before the king?'''

>>> Teacher
'Mr. Morton'

>>> Teacher = 'Mr. Smith'
>>> Teacher
'Mr. Smith'
Licensed to Deborah Christiansen <pedbro@gmail.com>

23 CHAPTER 2 Remember This— Memory and Variables
Remember that things can have more than one name
(more than one tag stuck on them). If “Mr. Morton”
still has another tag on it, then it stays in the
computer’s memory. But if it no longer has any tags,
Python figures that no one needs it anymore, so it
gets deleted from memory.

That way, the memory doesn’t fill up with things that
nobody is using. Python does all this cleanup auto-
matically, and you don’t have to worry about it.

An important thing to know is that we didn’t actually change “Mr. Morton” into “Mr. Smith”.
We just moved the tag (reassigned the name) from one thing to the other. Some kinds of
things in Python (like numbers and strings) cannot be changed. You can reassign their
names to something else (like we just did), but you can’t change the original thing.

There are other kinds of things in Python that can be changed. We will learn more about
this in chapter 12, when we talk about lists.

The new me
You can also make a variable equal to itself:

I bet you’re thinking, “Well, that’s pretty useless!” And you’d be right. It’s kind of like saying
“I am me.” But with a small change, you can
become a whole new you! Try this:

What happened here? In the first line, the Score tag was stuck on the value 7. We made a
new thing, which was Score + 1, or 7 + 1. That new thing is 8. Then we took the Score tag
off the old thing (7) and stuck it on the new thing (8). So Score has been reassigned from 7
to 8.

Whenever we make a variable equal something, the variable always appears on the left side
of the equal sign (=). The trick is that the variable can also appear on the right. This turns
out to be quite useful, and you’ll see it in a lot of programs. The most common use is to
increment a variable (increase it by a certain amount), like we just did, or the opposite, to
decrement a variable (decrease it by a certain amount).

Tag Moved

>>> Score = 7
>>> Score = Score

>>> Score = Score + 1
>>> print Score
8

Changes Score
from 7 to 8
Licensed to Deborah Christiansen <pedbro@gmail.com>

24 Hello World!
■ Start with Score = 7.

■ Make a new thing by
adding 1 to it (which makes 8).

■ Give the name Score to the new thing.

So, Score changed from 7 to 8

Here are a couple of important things to remember about variables:

■ A variable can be reassigned (the tag can be stuck on a new thing) at any time by a
program. This is very important to remember, because one of the most common
“bugs” in programming is changing the wrong variable, or changing the right variable
at the wrong time.

One way to help prevent this is to use variable names that are easy to remember. We
could have used either of these:

 or

but that would make them harder to remember in a program. We would be more likely
to make a mistake if we used those names. Try to use names that tell you what the
variable is for.

■ Variable names are case-sensitive. That means that uppercase and lowercase matter.
So, teacher and Teacher are two different names.

Remember, if you want to know all the variable naming rules for Python, you can look in the
appendix.

t = 'Mr. Morton'

x1796vc47blahblah = 'Mr. Morton'

#!/bin/env python # Paginate a text file, adding a header and footer import sys, time, string # If no arguments w

ere given, print
 a h

elp
fu

l
me

ss
ag

e
if

 l
en

(s
ys

.a
rg

v)
!=2

: p
rin

t '

Usage:
py

pr
in

t
fil

ena
me

's
ys

.e
xit

(0)
cla

ss #
 Increment the page count, and reset the line count self.header_written=1 ; self.count=1 ; self.page=self.page+1PrinterFormatter:self.header_written=0def # Increment

Thinking like a programmer
We said you can call a variable anything

you want (within the naming rules), and that
is true. You can call a variable teacher
or Teacher.

Professional Python programmers almost
always start their variable names with a
lowercase letter, and other computer
languages have other styles. It is up to
you if you want to follow the Python style or
not. For the rest of this book, because we are
using Python, we will follow that style.

print >>>Hello
 if

 #

print >>>Hello i
f

#

print >>>Hello
 if

 #

Score

Score

Score
Licensed to Deborah Christiansen <pedbro@gmail.com>

25 CHAPTER 2 Remember This— Memory and Variables
What did you learn?

In this chapter, you learned
■ how to “remember” or keep things in the computer’s memory using variables.
■ that variables are also called “names” or “variable names.”
■ that variables can be different kinds of things, such as numbers and strings.

Test your knowledge
1 How do you tell Python that a variable is a string (characters) instead of a number?

2 Once you have created a variable, can you change the value that is assigned to it?

3 With variable names, is TEACHER the same as TEACHEr?

4 Is 'Blah' the same as "Blah" to Python?

5 Is '4' the same as 4 to Python?

6 Which of the following is not a correct variable name? Why?

a) Teacher2

b) 2Teacher

c) teacher_25

d) TeaCher

7 Is "10" a number or a string?

Try it out
1 Make a variable and assign a number to it (any number you like). Then display your

variable using print.

2 Modify your variable, either by replacing the old value with a new value, or by adding
something to the old value. Display the new value using print.

3 Make another variable and assign a string (some text) to it. Then display it using
print.

4 Just like in the last chapter, in interactive mode, get Python to calculate the number of
minutes in a week. But this time, use variables. Make a variable for DaysPerWeek,
HoursPerDay, and MinutesPerHour (or make up your own names), and then multiply
them together.

5 People are always saying there’s not enough time to get everything done. How many
minutes would there be in a week if there were 26 hours in a day? (Hint: Change the
HoursPerDay variable.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

z
=
(a
 +
3)
 *
*
2
+
30

sp
ee
d
=
2.
85
31
97
e-
15

(2
+5
)*
37

C H A P T E R 3

Basic Math
When we first tried using Python in interactive mode, we saw that it can do simple arithme-
tic. Now we’re going to see what else Python can do with numbers and math. You might not
realize it, but math is everywhere! Especially in programming, math is used all the time.
That doesn’t mean you have to be a math whiz to learn program-
ming, but think about it. . . . Every game has a score of some
kind that has to be added up. Graphics are drawn on the
screen using numbers to figure out the positions and
colors. Moving objects have a direction and
speed, which are described with numbers.
Almost any interesting program is
going to use numbers and math in
some way. So let’s
learn some
basics about
math and
numbers in
Python.

By the way, a lot of what we will learn here applies to other programming lan-
guages, and to other programs like spreadsheets. It’s not only Python that does
math this way.
26

Licensed to Deborah Christiansen <pedbro@gmail.com>

27 CHAPTER 3 Basic Math
The four basic operations
We already saw Python do a little math in chapter 1: addition, using the plus (+) sign, and
multiplication, using the asterisk (*) sign.

Python uses the hyphen (-) (which is also called the minus sign) for subtraction, as you
would expect:

Because computer keyboards don’t have a division (_..) symbol, all programs use the for-
ward slash (/) for division.

That worked. But sometimes Python does
something you might not expect with division:

Huh? I thought computers were good at math! Everyone knows that

 3 / 2 = 1.5

What happened?

Well, although it seems to be acting dopey, Python is really trying to be smart. To explain
this one, you need to know about integers and decimal numbers. If you don’t know the dif-
ference, check out the word box for a quick explanation.

Because you entered both the 3 and the 2 as integers, Python thinks you want an integer
for the answer, too. So it rounded the answer 1.5 down to the nearest integer, which is 1. To
put it another way, Python is doing division without the remainder.

>>> print 8 – 5
3

>>> print 6/2
3

>>> print 3/2
1

Integers are the numbers you can easily count, like 1, 2, 3, as
well as 0 and the negative numbers, like –1, –2, –3.

Decimal numbers (also called real numbers) are the numbers with
a decimal point and some digits after it, like 1.25, 0.3752, and
–101.2.

In computer programming, decimal numbers are also called
floating-point numbers, or sometimes floats for short (or float
for just one of them). This is because the decimal point
“floats” around. You can have the number 0.00123456 or 12345.6
in a float.
Licensed to Deborah Christiansen <pedbro@gmail.com>

28 Hello World!
To fix it, try this:

That’s better! If you enter either of the two numbers as a decimal number, Python knows
you want the answer as a decimal number.

Operators
The +, -, *, and / symbols are called operators. That’s because they “operate on,” or work
with, the numbers we put around them. The = sign is also an operator, and it is called the
assignment operator, because we use it to assign a value to a variable.

>>> print 3.0 / 2
1.5

THE GOTCHAS WILL GETCHA!
You’ll want to remember Python’s
integer-division behavior. It’s impor-
tant, and lots of Python programmers
(including me!) have been tripped up by
forgetting it at one time or another.

That’s just one of many ways bugs or
errors can creep into your code.

An operator is something that has an effect on, or
“operates on,” the things around it. The effect can be
to assign a value to, test, or change one or more of
those things.

myNumber + yourNumber

operand operandOperator

The +, -, *, and / symbols we use for doing
arithmetic are operators.

The things being operated on are called operands.
Licensed to Deborah Christiansen <pedbro@gmail.com>

29 CHAPTER 3 Basic Math
Order of operations
Which one of these is correct?

 2 + 3 * 4 = 20

or

 2 + 3 * 4 = 14

That depends what order you do things in. If you do the addition first, you get

2 + 3 = 5, so then 5 * 4 = 20

If you do the multiplication first, you get

3 * 4 = 12, so then 2 + 12 = 14

The correct order is the second one, so the correct answer is 14. In math, there is something
called the order of operations that tells you which operators should be done before others,
even if they are written down after them.

In our example, even though the + sign comes before the * sign, the multiplication is done
first. Python follows proper math rules, so it does multiplication before addition. You can try
this in interactive mode to make sure:

The order that Python uses is the same one you learned (or will learn) in math class. Expo-
nents come first, then multiplication and division, and then addition and subtraction.

I learned in school
that the so-called operands
in addition are also called

addends.

>>> print 2 + 3 * 4
14
Licensed to Deborah Christiansen <pedbro@gmail.com>

30 Hello World!

S

But what if
I want the 2 + 3

to go first?

If you want to change the order of operations and make
something go first, you just put parentheses (round brackets)
around it, like this:

This time, Python did the 2 + 3 first (because of the parenthe-
ses) to get 5, and then multiplied 5 * 4 to get 20.

Again, this is exactly the same as in math class. Python (and all other programming lan-
guages) follow proper math rules and the order of operations.

Two more operators
There are two more math operators I want to show you. These two plus the four basic ones
we just saw are all you will need for 99 percent of your programs.

Exponentiation—raising to a power

If you wanted to multiply
3 by itself 5 times, you could write

>>> print (2 + 3) * 4
20

You with the brackets! Come to

the front. I’ll take you first. Me Next!

Me Next!

>>> print 3 * 3 * 3 * 3 * 3
243
Licensed to Deborah Christiansen <pedbro@gmail.com>

31 CHAPTER 3 Basic Math
But this is the same as 35, or “three exponent five,” or “three to the power of five.” Python
uses a double star (asterisk) for
exponents or raising a number to a power.

One reason for using an exponent instead of just multiplying several times is that it is easier
to type. But a more important reason is that with ** you can have exponents that are not
integers, like this:

There is no easy way to do that using just multiplication.

Modulus—getting the remainder

When we first tried division in Python, we saw that, if you divide two integers, Python gives
you the answer as an integer. It is doing integer division. But in integer division, the answer
really has two parts.

Do you remember when you first learned about division? If the numbers didn’t divide
evenly, you ended up with a remainder:

7 / 2 = 3, with a remainder of 1

The answer for 7 / 2 has a quotient (3, in this case) and a remainder (1, in this case). If you
divide two integers in Python, it gives you the quotient. But what about the remainder?

>>> print 3 ** 5
243

Many languages and programs use other symbols
for raising to a power. A common one is ^ (for
example 3^5). If you use this with Python, you
won’t get an error message; you’ll just get the
wrong answer. (That’s because ^ does mean some-
thing in Python—it’s just not what we want!)
This can be very hard to debug. Make sure you
use the ** operator for raising to a power (also
called exponentiation).

THE GOTCHAS WILL GETCHA!

>>> print 3 ** 5.5
420.888346239
Licensed to Deborah Christiansen <pedbro@gmail.com>

32 Hello World!
I know of
one more operator -
a telephone operator!

S

S

Python has a special operator for calculating the remainder for integer division. It is called
the modulus operator, and the symbol is the percent symbol (%).
You use it like this:

So if you use / and % together, you can get
the full answer for integer division problems:

So the answer to 7 divided by 2 is 3, remainder 1. If you do floating-point division, you will
get the decimal answer:

Actually, now that you mention it, they
are similar. . . . An arithmetic operator
connects numbers together the way an
old-fashioned telephone operator used
to connect phones together.

There are another two operators I’d like to tell you
about. I know, I said just two more, but these
are really easy!

>>> print 7 % 2
1

>>> print 7 / 2
3
>>> print 7 % 2
1

>>> print 7.0 / 2
3.5
Licensed to Deborah Christiansen <pedbro@gmail.com>

33 CHAPTER 3 Basic Math

S

What's that letter ‘e’
doing in the middle of

the number?

Increment and decrement

Remember the example from the last chapter: score = score + 1? We said that was called
incrementing. A similar thing is score = score - 1, which is called decrementing. These are
done so often in programming that they have their own operators: += (increment) and -=
(decrement).

You use them like this:

 or

The first one adds one to the number. (It changes from 7 to 8.) The second one subtracts
one from the number. (It changes from 7 to 6.)

Really big and really small

Remember, in chapter 1, when we multiplied those two really big numbers together? We
got a very big number for the answer. Sometimes, Python shows you big numbers a bit
differently. Try this
in interactive mode:

(It doesn’t matter exactly what numbers you type in—any big numbers with decimals
will do.)

The e is one way of displaying really big or really small
numbers on a computer. It’s called E-notation. When we’re
working with really big (or really small) numbers, showing
all the digits and decimal places can be kind of a pain.
These kinds of numbers show up a lot in math and science.

>>> number = 7
>>> number += 1
>>> print number
8

number increased by 1

>>> number = 7
>>> number -= 1
>>> print number
6

number decreased by 1

>>> print 9938712345656.34 * 4823459023067.456
4.79389717413e+025
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

34 Hello World!
For example, if an astronomy program was displaying the number of kilometers from Earth
to the star Alpha Centauri, it could show 38000000000000000 or 38,000,000,000,000,000 or
38 000 000 000 000 000. (That’s 38 quintillion kilometers!) But either way, you would get
tired of counting all those zeros.

Another way to display this number is to use scientific notation, which uses powers of 10
along with decimal numbers. In scientific notation, the distance to Alpha Centauri would be
written like this: 3.8 x 1016. (See how the 16 is raised above the line, and is smaller?) This
reads as “three point eight times ten to the power of sixteen” or “three point eight times ten
to the sixteenth.” What it means is you take 3.8 and move the decimal point sixteen places
to the right, adding zeros as needed.

Scientific notation is great if you can write the 16 as an exponent, raised above the line and
smaller, like we did here. If you are working with pencil and paper, or a program that sup-
ports superscripts, then you can use scientific notation.

But you can’t always use superscripts, so another way to show the same thing is E-notation.
E-notation is just another way of writing scientific notation.

E-notation

In E-notation, our number would be 3.8E16 or 3.8e16. This reads as “three point eight expo-
nent sixteen” or “three point eight e sixteen” for short. It is assumed that the exponent is a
power of 10. That’s the same as writing 3.8x1016.

3.800000000000000000000

380000000000000000.0 = 3.8 x 1016

Move the decimal right 16 places.

Superscript means a character or characters that are raised
above the rest of the text, like this: 1013. The 13 here is the
superscript. Usually, superscripts are also smaller than the
main text.

Subscripts are similar, but they’re characters that are below
the rest of the text and smaller, like this: log2. The 2 here
is a subscript.
Licensed to Deborah Christiansen <pedbro@gmail.com>

35 CHAPTER 3 Basic Math
Most programs and computer languages, including Python, let you use either
an uppercase or lowercase E.

For very small numbers, like 0.0000000000001752, a negative exponent is used. The scien-
tific notation would be 1.752x10-13, and the E-notation would be 1.752e-13. A negative
exponent means to move the decimal place to the left instead of the right.

You can use E-notation to enter very big and very small numbers (or any number, for that
matter) into Python. Later we will see how to make Python print numbers using E-notation.

Try entering some numbers in E-notation:

Although we entered the numbers in E-notation, the answer came out as a regular decimal
number. That’s because Python won’t display numbers in E-notation unless you specifically
tell it to, or the numbers are really big or really small (lots of zeros).

Try this:

This time, Python displayed the answer in E-notation automatically, because it wouldn’t
make sense to display a number with 73 zeros!

If you want numbers like 14,500,000 to display in E-notation, you need to give Python spe-
cial instructions. We’ll learn more about that later in the book (in chapter 21).

00000000000000001.752

0.0000000000001752 = 1.752e-13

Move the decimal left 13 places.

>>> a = 2.5e6
>>> b = 1.2e7
>>> print a + b
14500000.0
>>>

>>> c = 2.6e75
>>> d = 1.2e74
>>> print c + d
2.72e+075
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

36 Hello World!

Exponents vs. E-notation

Don’t get confused between raising a number to a power (also called exponentiation) and E-
notation.

■ 3**5 means 35, or “three to the fifth power” or 3 * 3 * 3 * 3 * 3, which is equal to 243.
■ 3e5 means 3 * 105 or “three times ten to the fifth power,” or 3 * 10 * 10 * 10 * 10 *10,

which is equal to 300,000.

Raising to a power means you are raising the number itself to that power. E-notation means
you are multiplying by a power of 10.

Some people would read both 3e5 and 3**5 as “three exponent five,” but they are two dif-
ferent things. It doesn’t matter so much how you say it, as long as you understand what
each one means.

What did you learn?

In this chapter, you learned

■ how to do basic math operations in Python.
■ about integers and floats.
■ about exponentiation (raising numbers to a power).

If you don’t quite understand how
E-notation works, don’t worry. It’s not used
for the programs in the rest of this book. I
just wanted to show you how it works in
case you ever need it.

At least now, if you use Python to do
some math and you get a number like
5.673745e16 for an answer, you will know that
it is a really big number, and not some kind
of error.

Yeah, Mon!

No worries, eh? This

programming thing is

a breeze!
Licensed to Deborah Christiansen <pedbro@gmail.com>

37 CHAPTER 3 Basic Math
■ how to calculate the modulus (the remainder).
■ all about E-notation.

Test your knowledge
1 What symbol does Python use for multiplication?

2 What answer would Python give for 8 / 3?

3 How would you get the remainder for 8 / 3?

4 How would you get the decimal answer for 8 / 3?

5 What’s another way of calculating 6 * 6 * 6 * 6 in Python?

6 How would you write 17,000,000 in E-notation?

7 What would 4.56e-5 look like in regular notation (not E-notation)?

Try it out
1 Solve the following problems either using interactive mode or by writing a small

 program:
a) Three people ate dinner at a restaurant and want to split the bill. The total is $35.27,

and they want to leave a 15 percent tip. How much should each person pay?
b) Calculate the area and perimeter of a rectangular room, 12.5 meters by 16.7 meters.

2 Write a program to convert temperatures from Fahrenheit to Celsius. The formula for
that is: C = 5 / 9 * (F - 32). (Hint: Watch out for the integer-division gotcha!)

3 Do you know how to figure out how long it will take to get somewhere in a car? The for-
mula (in words) is “travel time equals distance divided by speed.” Make a program to cal-
culate the time it will take to drive 200 km at 80 km per hour and display the answer.
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 4

Types of Data
We have seen that there are at least three different types of things we can assign to a vari-
able (to keep in the computer’s memory): integers, floating-point numbers, and strings.
There are other types of data in Python, which we will learn about later, but for now these
three will do. In this chapter, we’re going to learn how you can tell what type something is.
We will also see how to make one type from another.

Changing types
Quite often we need to convert data from one type to another. For instance, when we want
to print a number, it needs to be converted to text in order for the text to appear on the
screen. Python’s print command can do that for us, but sometimes we need to convert
without printing, or to convert from strings to numbers (which print can’t do). This is called
type conversion. So how does it work?

Python doesn’t actually “convert” things from one type to another. It creates a new thing, of
the type you want, from the original thing. Here are some functions that convert data from
one type to another:

■ float() will create a new float (decimal number) from a string or integer.
■ int() will create a new integer from a string or float.
■ str() will create a new string from a number (or any other type).

The parentheses at the end of float(), int(), and str() are there because they are not
Python keywords (like print)—they are some of Python’s built-in functions.
38

Licensed to Deborah Christiansen <pedbro@gmail.com>

39 CHAPTER 4 Types of Data
I tried this with the
number 38.8, and the decimal came

out as 38.799999999999997!
And then I used print and it

looked fine!

What’s up with that?

We’ll learn a lot more about functions later in the book. For now, you just need to know that
you put the value you want to convert inside the parentheses. The best way to show this is
with some examples. Follow along in interactive mode in the IDLE shell.

Changing an int to a float
Let’s start with an integer and create a new
floating-point number (decimal number) from it, using float():

Notice that b got a decimal point and a 0 at the end. That tells us it is a float and not an inte-
ger. The variable a stayed the same, because float() doesn’t change the original value—it
creates a new one.

Remember that, in interactive mode, you can just type a variable name (without using
print) and Python will display the value of the variable. (We saw that in chapter 2.) That
only works in interactive mode, not in a program.

Changing a float to an int
Now let’s try the reverse—start with a
decimal number and create an integer, using int():

We created a new integer, d, which is the whole number part of c.

Yikes! How did that happen? Carter, I think your computer is going crazy!

>>> a = 24
>>> b = float(a)
>>> a
24
>>> b
24.0

>>> c = 38.0
>>> d = int(c)
>>> c
38.0
>>> d
38
Licensed to Deborah Christiansen <pedbro@gmail.com>

40 Hello World!
Just kidding. Actually, there is an explanation for that, which you can see in the “WHAT’S
GOING ON IN THERE?” box.

Let’s try another one:

Even though 54.99 is very close to 55, you still get 54 for the integer. The int() function
always rounds down. It doesn’t give you the nearest integer, it gives you the next lowest inte-
ger. The int() function basically chops off the decimal part.

Remember how we said that computers
use binary inside? Well, all the num-
bers that Python stores are stored as
binary. For 38.8, Python creates a
float (decimal number) with enough
binary digits (bits) to give you 15
decimal places. But that binary
number isn’t exactly equal to 38.8,
it’s just very, very close. (In
this case, it is wrong by
0.000000000000003.) The differ-
ence is called roundoff error.

When you typed the variable name c in interactive
mode, Python showed you the raw number it stored,
with all the decimal places. When you used print,
you got what you were expecting, since print is a
little smarter, and it knows enough to round off and
display 38.8.

It’s like asking someone the time. They could say
“twelve forty-four and fifty-three seconds.” But
most people would just say, “quarter to one,”
because they know you don’t need to be so precise.

Roundoff errors happen with floating point numbers
in any computer language. The number of correct
digits you get may vary from one computer to another
or one language to another, but they all use the
same basic method of storing floats.

Usually, roundoff errors are small enough that you
don’t need to worry about them.

>>> e = 54.99
>>> f = int(e)
>>> print e
54.99
>>> print f
54
Licensed to Deborah Christiansen <pedbro@gmail.com>

41 CHAPTER 4 Types of Data
If you want to get the nearest integer, there is a way. We will learn about that in chapter 21.

Changing a string to a float

We can also create a number from a string, like this:

Notice that, when we displayed a, the result had quotes around it. That’s Python’s way of
telling us that a is a string. When we displayed b, we got the floating-point value with all the
decimal places (just like Carter did before).

Getting more information: type()
In the last section, we relied on seeing the quote marks to know that a value was a number
or a string. There is a more direct way to find out.

Python has another function, type(), which explicitly tells us the type of a variable.
Let’s try it:

TAKE ZAT!

>>> a = '76.3'
>>> b = float(a)
>>> a
'76.3'
>>> b
76.299999999999997

>>> a = '44.2'
>>> b = 44.2
>>> type(a)
<type 'str'>
>>> type(b)
<type 'float'>
Licensed to Deborah Christiansen <pedbro@gmail.com>

42 Hello World!
The type() function told us that a is of type 'str', which stands for string, and b is of type
'float'. No more guessing!

Type-conversion errors
Of course, if you give int() or float() something that is not a number, it won’t work.
Try it and see:

We got an error message. The invalid literal error message means that Python doesn’t know
how to create a number from "fred". Do you?

Using type conversions
Going back to your Fahrenheit to Celsius temperature-conversion program from the “Try it
out” section in chapter 3, remember that you needed to fix the integer-division behavior to
get the right answer, by
changing the 5 to 5.0 or the 9 to 9.0:

The float() function
gives you another way of doing this:

 or

Try it and see.

What did you learn?

In this chapter, you learned about

■ converting between types (or, more correctly, creating types from other types): str(),
int(), and float().

■ displaying values directly without using print.
■ checking the type of a variable using type().

Test your knowledge
1 When you use int() to convert a decimal number to an integer, does the result get

rounded up or down?

>>> print float("fred")
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in -toplevel-
 print float ("fred")
ValueError: invalid literal for float(): fred

cel = 5.0 / 9 * (fahr – 32)

cel = float(5) / 9 * (fahr – 32)

cel = 5 / float(9) * (fahr – 32)
Licensed to Deborah Christiansen <pedbro@gmail.com>

43 CHAPTER 4 Types of Data
2 In your temperature-conversion program, would this have worked?
 cel = float(5 / 9 * (fahr – 32))

What about this:
 cel = 5 / 9 * float(fahr – 32)

If not, why not?

3 (Extra challenging question) Without using any other functions besides int(), how
could you get a number to round off instead of round down? (For example, 13.2 would
round down to 13, but 13.7 would round up to 14.)

Try it out
1 Use float() to create a number from a string like '12.34'. Make sure the result is

really a number!

2 Try using int() to create an integer from a decimal number like 56.78. Did the answer
get rounded up or down?

3 Try using int() to create an integer from a string. Make sure the result is really an
integer!
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 5

Input
Until now, if you wanted your program to “crunch some numbers,” you had to put those
numbers right in the code. For example, if you wrote the temperature-conversion program
in the “Try it out” section of chapter 3, you probably put the temperature to convert right
in the code. If you wanted to convert a different temperature, you would have to change
the code.

What if you want to have the user enter any temperature she wants when the program
runs? We said before that a program has three components: input, processing, and output.
Our first program had only output. The temperature-conversion program had some pro-
cessing (converting the temperature) and some output, but no input. It’s time to add the
third ingredient to our programs: input. Input means getting something, some kind of infor-
mation, into a program while it is running.

That way we can write programs
that interact with the user, which
will make things a lot more
interesting.

Python has a built-in function,
called raw_input(), that is used to
get input from the user. In the rest
of this chapter, we will learn how to
use raw_input() in our programs.
44

Licensed to Deborah Christiansen <pedbro@gmail.com>

45 CHAPTER 5 Input
raw_input()
The raw_input() function gets a string from the
user. The normal way it gets this is from the key-
board—the user types in the input.

raw_input() is another one of Python’s built-in
functions, like str(), int(), float(), and type().
(We saw those in chapter 4.) We’ll learn a lot
more about functions later. But for now, you just
need to remember to include the parentheses
(round brackets) when you use raw_input().

Here is how you use it:

This will let the user type in a string and assign it the name someName.

Now let’s put this into a program. Create a new file in IDLE, and type in the code in
listing 5.1.

print "Enter your name: "
somebody = raw_input()
print "Hi", somebody, "how are you today?"

Save and run this program in IDLE to see
how it works. You should see something like this:

I typed in my name, and the program assigned it the name somebody.

The print command and the comma
Usually, when you want input from the user, you have to tell him what you are looking for,
with a short message like this:

Then you can get his response with the raw_input() function:

When you run those code lines
and type in your name, it looks like this:

Listing 5.1 Getting a string using raw_input()

someName = raw_input()

Enter your name:
Warren
Hi Warren how are you today?

print "Enter your name: "

someName = raw_input()

Enter your name:
Warren

You might remember that we had user input in the number-guessing program in chapter 1. We didn’t explain how that worked, but now we will.
Licensed to Deborah Christiansen <pedbro@gmail.com>

46 Hello World!

S

Is there some
shorter way to have a

prompt in front of
raw_input()?

If you want the user to type his answer on the same line as the message, just put a comma
at the end of the print statement, like this:

Notice that the comma goes outside the end quotes.

If you run this code, it will look like this:

The comma can be used to combine a number of print statements on one line. The comma
really just means “don’t jump down to the next line after you print this.” We did that in the
last line of listing 5.1.

Try typing the code in listing 5.2 into an IDLE editor window and running it.

print "My",
print "name",
print "is",
print "Dave."

You should get this when you run it:

Did you notice that there are no spaces at the ends of the individual words in the quotes,
yet we got spaces between each word when we ran the program? Python adds a space
when you use the comma to combine print statements on one line.

 I’m glad you asked! I was just going to talk about that.

A shortcut for raw_input() prompts
There is a shortcut for printing prompt messages. The raw_input() function can print the
message for you, so you don’t
have to use a print statement:

It is like the raw_input() function has print built in. We will use that shortcut from now on.

Listing 5.2 What does the comma do?

print "Enter your name: ",
someName = raw_input()

Enter your name: Warren

My name is Dave.

someName = raw_input ("Enter your name: ")
Licensed to Deborah Christiansen <pedbro@gmail.com>

47 CHAPTER 5 Input
Inputting numbers
We have seen how to use raw_input() to get strings. But what if we want to get a number
instead? After all, the reason we started talking about input was to let the user enter tem-
peratures for our temperature-conversion program.

You already know the answer if you read chapter 4. We can use the int() or float()
functions to create a number from the string that raw_input() gives us. It would look
like this:

We got the user’s input as a string, using raw_input(). Then we made a number from that,
using float(). Once we had the temperature as a float, we gave it the name fahrenheit.

But there is a little shortcut. We
can do it all in one step, like this:

This does exactly the same thing. It gets the string from the user and then creates a number
from it. It just does it with a bit less code.

Now let’s use this in our temperature-conversion program. Try the program in listing 5.3,
and see what you get.

print "This program converts Fahrenheit to Celsius"
print "Type in a temperature in Fahrenheit: ",
fahrenheit = float(raw_input())
celsius = (fahrenheit – 32) * 5.0 / 9

Listing 5.3 Converting temperatures using raw_input()

temp_string = raw_input()
fahrenheit = float(temp_string)

fahrenheit = float(raw_input())

Use float(raw_input())
to get the Fahrenheit
temperature from the user

No need to use print with this baby!
Why pay more for print when
raw_input()

has it built right in?!
And it can be yours for only
3 easy payments of $99.95!

That's right!

raw_input(),
There’s NOTHING ELSE TO BUY!
Licensed to Deborah Christiansen <pedbro@gmail.com>

48 Hello World!
print "That is",
print celsius,
print "degrees Celsius"

You can also combine the last three
lines of listing 5.3 into one, like this:

This is really just shorthand for the three print statements we had before.

Using int() with raw_input()

If the number you want the user to enter will always be an integer (no decimals), you can
convert it with
int(), like this:

Notice the commas at
the ends of these lines

print "That is", celsius, "degrees Celsius"

response = raw_input("How many students are in your class: ")
numberOfStudents = int(response)

#!/bin/env python # Paginate a text file, adding a header and footer import sys, time, string # If no arguments were given, print a helpful message if len(sys.argv)!=2: print 'Usage: pyprint filename'sys.exit(0)
cla

ss
Increment the page count, and reset the line count self.header_writte

n=1
 ; s

el
f.c

ou
nt

=1
; s

elf
.pa

ge
=s

el
f.p

ag
e+

1P
rin

te
rF

or
ma

tt
er

:se
lf.

heade
r_w

rit
te

n=
0d

ef
 #

 In
cr

em
en

t t
he

 pa
ge

 co
un

t,
an

d r
ese

t the li
ne

cou
nt

se
lf

.he
ad

er
_w

rit
te

n=
1 ;

 s
el

f.c
ou

nt
=1

; s
elf

.pag
e=self.page

+1
write_

header(self):# If the header for this page has just b
een

 written, don'telf.header_written=1 ; self.count=1 ; self.page=self.page+1 write_header(self):# If the

Thinking like a (Python) programmer
There is another way to get numbers as

input. Python has a function called
input() that gives you a number directly,
so you don’t have to use int() or float()
to convert it. We used it in the
number-guessing program in chapter 1,
because it is the simplest way to get a
number from the user.

However, there are some reasons not to
use input(). One of them is that the
input() function is being removed from
future versions of Python (versions 3.0
and later). There will only be raw_input().
They are going to rename raw_input() as
input(), but it will still be the function
that we saw in this chapter, and it will
only get strings.

Because we know how to create a number
from a string, I recommend you use
raw_input() instead of input().

By the way, there is another change coming
in Python 3.0. Instead of writing
 print "Hello there"
you will have to write
 print ("Hello there")
You will have to use parentheses with print
 in Python 3.0 and later.

print >>>Hello if
 #

print >>>Hello if #

print >>>Hello if
 #
Licensed to Deborah Christiansen <pedbro@gmail.com>

49 CHAPTER 5 Input
Input from the Web
Usually, you get input for a program from the user. But there are other ways to get input,
too. You can get it from a file on your computer’s hard drive (we will learn about that in
chapter 22) or you can get it from the Internet.

If you have an Internet connection, you can try the program in listing 5.4. It opens a file
from the book’s web site and shows you the message that is in that file.

import urllib
file = urllib.urlopen('http://helloworldbook.com/data/message.txt')
message = file.read()
print message

That’s it. With just four lines of code, your
computer reaches across the Web to get a file
from the book’s web site and display it. If you
try this program (assuming you have a work-
ing Internet connection), you will see the
message.

Listing 5.4 Getting input from a file on the Web

If you are trying this program from an office or school computer, there’s a chance it won’t work. That’s because some offices and schools use something called a proxy to connect to the Internet. A proxy is another computer that acts like a bridge or gateway between the Internet and the school or office. Depending on how the proxy is set up, this program might not know how to connect to the Internet through the proxy. If you get a chance to try it from home (or somewhere else that has a direct Internet connection with no proxy), it should work.
Licensed to Deborah Christiansen <pedbro@gmail.com>

50 Hello World!
What did you learn?

In this chapter, you learned about

■ inputting text with raw_input().
■ adding a prompt message to raw_input().
■ inputting numbers using int() and float() with raw_input().
■ printing several things on one line, using a comma.

Test your knowledge
1 With this code,

if the user types in 12, what type of data is answer? Is it a string or a number?

2 How do you get raw_input() to print a prompt message?

3 How do you get an integer using raw_input()?

How do you get a float (decimal number) using raw_input()?

#!/bin/env python # Paginate a
tex

t f
ile

, a

ddi
ng

 a
he

ad
er

 a
nd

 f
oo

te
r

im
po

rt
 sy

s,
tim

e,
st

ri n
g #

 If
 no

 ar
gu

me
nt

s w
er

e g
ive

n,
 p

rin
t a

 h
el

pf
ul

 m
ess

age
 if l

en
(s

ys
.a

rg
v)

!=2
: p

rin
t 'U

sage:
 pyprint filename'sys.exit(0)class # Increment th

e pag
e coun

t, and reset the line count self.header_written=1 ; self.count=1 ; self.page=self.page+1PrinterFormatter:self.header_written=0def # Increment the page count, and reset the line count self.header_written=1 ; self.coun
t=1 ; self.page=self.page+1 write_header(self):#

Thinking like a programmer
Depending what operating system you

are using (Windows, Linux, or Mac OS X),
you might see little squares or something
like \r at the end of each line when you
try running the program in listing 5.4.

The reason is that different operating
systems use different ways to indicate
the end of a line of text. Windows

(and MS-DOS before it) use two
characters: CR (Carriage Return)

and LF (Line Feed). Linux uses just
LF. Mac OS X uses just CR.

Some programs can handle any of these,
but some, like IDLE, get confused if they
don’t see exactly the line-ending charac-
ters they are expecting. When that happens,
they display a little square, which means,
“I don’t understand this character.” You
might or might not see the little squares,
depending on what operating system you are
using and how you run the program (using
IDLE or some other method).

print >>>Hello i
f

#

print >>>Hello if
 #

print >>>Hello i
f

#

answer = raw_input()
Licensed to Deborah Christiansen <pedbro@gmail.com>

51 CHAPTER 5 Input
Try it out
1 In interactive mode, make two variables, one for your first name and one for your last

name. Then, using a single print statement, print your first and last names together.

2 Write a program that asks for your first name, then asks for your last name, and then
prints a message with your first and last names in it.

3 Write a program that asks for the dimensions (in feet) of a rectangular room, and then
calculates and displays the total amount of carpet needed to cover the room.

4 Write a program that does the same as in #3, but that also asks for the cost per square
yard of carpet. Then have the program display these three things:
■ the total amount of carpet, in square feet.
■ the total amount of carpet, in square yards (1 square yard = 9 square feet).
■ the total cost of the carpet.

5 Write a program that helps the user add up her change. The program should ask
■ “How many quarters?”
■ “How many dimes?”
■ “How many nickels?”
■ “How many pennies?”
Then it should give the total value of the change.
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 6

GUIs—Graphical User
Interfaces
Up until now, all our input and output has been simple text in the IDLE window. But mod-
ern computers and programs use lots of graphics. It would be nice if we could have some
graphics in our programs. In this chapter, we’ll start making some simple GUIs. That means
our programs will start to look more like the ones you’re used to—with windows, buttons,
and so on.

What’s a GUI?
GUI is an abbreviation for graphical user interface. In a GUI, instead of just typing text and
getting text back, the user sees graphical things like windows, buttons, text boxes, etc.,
and she can use the mouse to click things as well as type on the keyboard. The types of
programs we have done so far are command-line or text-mode programs. A GUI is just a
 different way of interacting with a program. Programs that have a GUI still have the three
basic elements: input, processing, and output. It’s just that their input and output are a
bit fancier.

By the way, the acronym GUI is usually pro-
nounced “gooey,” instead of saying the letters,
like “Gee You Eye.” It’s okay to have a GUI on
your computer, but you should avoid getting
anything gooey on your computer. It gets stuck
in the keys and makes it hard to type!
52

Licensed to Deborah Christiansen <pedbro@gmail.com>

53 CHAPTER 6 GUIs—Graphical User Interfaces
Our first GUI
We have already been using a GUI—in fact, several of them. A web browser is a GUI. IDLE is
a GUI. Now we’re going to make our own GUI. To do this, we’re going to get some help from
something called EasyGui.

EasyGui is a Python module that makes it very easy to make simple GUIs. We haven’t
really talked about modules yet (we will in chapter 15), but a module is a way of adding
something to Python that isn’t already built in.

If you installed Python using the book’s installer, you already have EasyGui installed. If not,
you can download it from http://easygui.sourceforge.net/.

Installing EasyGui
You can download easygui.py or a zip file that contains easygui.py. To install it, you just
have to put the file easygui.py in a place where Python can find it. Where is that?

The Python path
Python has a list of places on the hard drive where it looks for modules it can use. This can
be a bit complicated, because it’s different for Windows, Mac OS X, and Linux. But if you put
easygui.py in the same place where Python itself is installed, Python will find it. So, on your
hard drive, look for a folder called Python25, and put easygui.py in that folder.

Let’s get GUI-ing
Start IDLE, and type the following in interactive mode:

This tells Python that you’re going to use the EasyGui module. If you don’t get an error
message, then Python found the EasyGui module. If you do get an error message, or
EasyGui doesn’t seem to be working, go to the book’s web site (www.helloworldbook.com)
and you’ll find some additional help.

Now, let’s make a simple
message box with an OK button:

>>> import easygui

>>> easygui.msgbox("Hello There!")
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.helloworldbook.com

54 Hello World!
The EasyGui msgbox() function is used to create a message box. In most cases, the names of
EasyGui functions are just shortened versions of the English words.

When you use msgbox(), you should
see something that looks like this:

And if you click the OK button, the message box will close.

GUI input
We just saw a kind of GUI output—a message box. But what about input? You can get input
with EasyGui too.

When you ran the previous example in interactive mode, did you click on the OK button?
If you did, you should have seen something like this in the shell or
terminal or command window:

IDLE and EasyGui
Because of the way EasyGui and IDLE work, some people have had trouble using EasyGui from
IDLE. If this doesn’t work on your computer, you might have to run the EasyGui programs outside
of IDLE. There are a number of ways to do this, but I’m going to tell you the easiest one.

If you installed Python using this book’s installer, you also got a program called SPE, which stands
for Stani’s Python Editor. SPE is another way to edit and run your programs, just like IDLE.
However, SPE doesn’t have any problem working with EasyGui (as IDLE sometimes does).

You can start SPE and then open and edit Python files as you can with any other text editor. To
run Python programs, use the Tools > Run without arguments command. You can use
CTRL-SHIFT-R as a shortcut.

The only thing SPE doesn’t have is a built-in shell that works. For interactive mode, or for text-
based programs where the program asks the user for input and she has to type her response (like
the number-guessing game from chapter 1), use Tools > Run in Terminal without arguments.
The shortcut for this is SHIFT-F9. Or, stick with IDLE.

SPE is a good, easy-to-use editor for Python. It’s free, open source software (just like Python). In
fact, SPE is a Python program! If you prefer, you can use it for most of the examples in this book
from now on. Give it a try and see if you like it.

>>> import easygui
>>> easygui.msgbox("Hello there!")
'OK'
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

55 CHAPTER 6 GUIs—Graphical User Interfaces
The 'OK' part was Python and EasyGui telling you that the user clicked the OK button.
EasyGui gives you back information to tell you what the user did in the GUI—what
button she clicked, what she typed, etc. You can give this response a name (assign it
to a variable). Try this:

Click OK on the message
box to close it. Then type this:

Now the user’s response, OK, has the variable name user_response. Let’s look at a few other
ways to get input with EasyGui.

The message box that we just saw is really just one example of something called a dialog
box. Dialog boxes are GUI elements that are used to tell the user something or get some
input from the user. The input might be a button click (like OK), or a filename, or some text
(a string).

The EasyGui msgbox is just a dialog box with a message and a single button, OK. But we can
have different kinds of dialog boxes with more buttons and other things.

Pick your flavor
We’re going to use the example of choosing your favorite flavor of ice cream
to look at some different ways to get input (the ice cream flavor) from the
user with EasyGui.

Dialog box with multiple buttons

Let’s make a dialog box (like a message box) with more than one button. The
way to do this is with a button box (buttonbox). Let’s make a program, rather
than do it in interactive mode.

Start a new file in SPE (or another text editor if you’re not using SPE). Type in
the program in listing 6.1.

import easygui
flavor = easygui.buttonbox("What is your favorite ice cream flavor?",
 choices = ['Vanilla', 'Chocolate', 'Strawberry'])

easygui.msgbox ("You picked " + flavor)

Listing 6.1 Getting input using buttons

>>> user_response = easygui.msgbox("Hello there!")

>>> print user_response
OK
>>>

A list of
choices
Licensed to Deborah Christiansen <pedbro@gmail.com>

56 Hello World!
The part of the code in square brackets is called a list. We haven’t talked about lists yet, but
we’ll learn all about them in chapter 12. For now, just type in the code so you can make the
EasyGui program work. (Or, if you’re really curious, you could skip ahead. . . .)

Save the file (I called mine ice_cream1.py)
and run it. You should see this:

And then, depending which
flavor you click, you’ll see something like this:

How did this work? The label from whatever button the user clicked was the input. We
assigned that input a variable name—in this case flavor. This is just like using
raw_input(), except that the user doesn’t type in the input, she just clicks a button. That’s
what GUIs are all about.

Choice box
Let’s try another way for the user to select a flavor. EasyGui has something called a choice
box (choicebox), which presents a list of choices. The user picks one and then clicks the OK
button.

To try this, we only need to make one small change to our program in listing 6.1: just
change buttonbox to choicebox. The new version is shown in listing 6.2.

import easygui
flavor = easygui.choicebox("What is your favorite ice cream flavor?",
 choices = ['Vanilla', 'Chocolate', 'Strawberry'])
easygui.msgbox ("You picked " + flavor)

Save the program in listing 6.2 and run it.
You should see something like this:

Listing 6.2 Getting input using a choice box
Licensed to Deborah Christiansen <pedbro@gmail.com>

57 CHAPTER 6 GUIs—Graphical User Interfaces
What's going
on?

When I tried this,
my choice box was a

lot bigger. It almost filled
the whole screen!

And I can’t make it
much smaller by resizing the

window, because it
won’t let me.

After you click a flavor and then click OK, you’ll see the same kind of message box as before.
Notice that, in addition to clicking choices with the mouse, you can select a flavor with the
up and down arrow keys on the keyboard.

If you click Cancel, the program will end, and you’ll also see an error. That’s because the last
line of the program is expecting some text (like Vanilla), but if you click Cancel, it doesn’t
get any.

The same thing happened to me. But
that big choice box didn’t fit very
well in this book. So I cheated a bit!

I modified easygui.py to let me
make the choice box smaller so
it would look nice in this book.

It’s not something you need to
do, but if you really want to, here

are the steps. I warn you, it’s a bit com-
plicated!

1 Find the section in the easygui.py file that starts with def __choicebox (around line
613 in my version of easygui.py). Remember that most editors, including SPE, show
you the code line numbers somewhere near the bottom of the window.

2 About 30 lines down from that (around line 645), you’ll see some lines that look like
this:

3 Change the 0.8 to 0.4 and the 0.5 to 0.25. Save the changes to easygui.py. The next
time you run the program, the choice box window will be smaller.

Text input

The examples in this chapter have let the user pick from a set of choices that you, as the
programmer, provided. What if you want something more like raw_input(), where the user
can type in text? That way, she can enter any flavor she wants. EasyGui has something
called an enter box (enterbox) to do just that. Try the program in listing 6.3.

root_width = int((screen_width * 0.8))
root_height = int((screen_height * 0.5))
Licensed to Deborah Christiansen <pedbro@gmail.com>

58 Hello World!
import easygui
flavor = easygui.enterbox("What is your favorite ice cream flavor?")
easygui.msgbox ("You entered " + flavor)

When you run it,
you should see something like this:

And then, when you type in your favorite flavor and click OK, it’ll be displayed in the
message box, just like before.

This is just like raw_input(). It gets text (a string) from the user.

Default input

Sometimes when a user is entering information, there is a certain answer that is expected,
common, or most likely to be entered. That is called a default. You might be able to save the
user some typing by automatically entering the most common answer for her. Then, she’d
only have to type an answer if she had a different input.

To put a default in an enter box, change your program to look like the one in listing 6.4.

import easygui
flavor = easygui.enterbox("What is your favorite ice cream flavor?",
 default = 'Vanilla')
easygui.msgbox ("You entered " + flavor)

Now, when you run it, “Vanilla” is already entered in the enter box. You can delete it
and enter anything you want, but if your favorite flavor is vanilla, you don’t have to type
anything, just click OK.

What about numbers?

If you want to enter a number in EasyGui, you can always use an enter box to get a string,
and then create a number from it using int() or float() (as we did in chapter 4).

Listing 6.3 Getting input using an enter box

Listing 6.4 How to make default arguments

Here’s the
default
Licensed to Deborah Christiansen <pedbro@gmail.com>

59 CHAPTER 6 GUIs—Graphical User Interfaces
EasyGui also has something called an integer box (integerbox), which you can use for
entering integers. You can set a lower and upper limit to the number that can be entered.

It doesn’t let you enter floats (decimal numbers) though. To enter decimal numbers, you’d
have to use an enter box, get the string, and then use float() to convert the string.

The number-guessing game . . . again
In chapter 1, we made a simple number-guessing program. Now let’s try the same thing,
but using EasyGui for the input and output. Listing 6.5 has the code.

import random, easygui

secret = random.randint(1, 99)
guess = 0
tries = 0

easygui.msgbox("""AHOY! I'm the Dread Pirate Roberts, and I have a secret!
It is a number from 1 to 99. I'll give you 6 tries.""")

while guess != secret and tries < 6:
 guess = easygui.integerbox("What's yer guess, matey?")
 if not guess: break
 if guess < secret:
 easygui.msgbox(str(guess) + " is too low, ye scurvy dog!")
 elif guess > secret:
 easygui.msgbox(str(guess) + " is too high, landlubber!")
 tries = tries + 1

if guess == secret:
 easygui.msgbox("Avast! Ye got it! Found my secret, ye did!")
else:
 easygui.msgbox("No more guesses! Better luck next time, matey!")

We still haven’t learned how all the parts of this program work, but type it in and give it a
try. You should see something like this when you run it:

We’ll be learning about if, else, and elif in chapter 7, and while in chapter 8. We’ll learn
about random in chapter 15, and we’ll use it a lot more in chapter 23.

Listing 6.5 Number-guessing game using EasyGui

Picks a secret
number

Gets the player’s guess

Allows up
to 6
guesses

Uses up one try

Prints
message
at end of
game
Licensed to Deborah Christiansen <pedbro@gmail.com>

60 Hello World!
Other GUI pieces
EasyGui has a few other GUI pieces available, including a choice box that lets you pick mul-
tiple choices (instead of just one), and some special dialog boxes for getting filenames and
so on. But the ones we have looked at are enough for now.

EasyGui makes generating some simple GUIs very easy, and it hides a lot of the complexity
that is involved in GUIs so you don’t have to worry about it. Later on, we’ll look at another
way to make GUIs that gives you a lot more flexibility and control.

If you want to find out more about EasyGui, you can go to the EasyGui home page at http://
easygui.sourceforge.net.

#!/bin/env python # Paginate a text file, adding a header and footer import sys, time, string # If no arguments were given, print a helpful message if len(sys.a

rgv)!=2: print 'Usage: pyprint filename'sys.exit(0)class # Increment the page count, and reset th
e lin

e co
unt

 se
lf

.he
ad

er_
wr

itte

n=1 ; sel
f.c

ou
nt

=1

; se
lf.p

age= sel
f.p

ag
e+

1Pr
int

er
Fo

rm
at

te
r:s

el
f.h

ea
de

r_
wr

itt
en

=0
de

f #
 In

cr
em

en
t t

he
pag

e count,
 and

 re
se

t t
he

 li
ne

 co
un

t s
el

f.h
ea

de
r_

wr
itt

en
=1

; s
elf

.co
unt

=1 ; s
elf.page=self.page+1 writ

e_h
eade

r(self):# If the header for this page has just been written, don't #!/bin/env python # Paginate a text file, adding a header and footer import

print >>>Hello i
f
#

print >>>Hello if
 #

print >>>Hello i
f
#

Thinking like a (Python) programmer
 If you want to find out more about something
to do with Python, like EasyGui (or anything
else), there is a built-in help system that you
 might want to try.

 If you’re in interactive mode, you can type

 >>>help()

 at the interactive prompt to get into the help
 system. The prompt will change to look like this:

 help >

 Once you’re there, just type the name of
 the thing you want help with, like this:

 help> time.sleep

 or

 help> easygui.msgbox

and you’ll get some information.

 To get out of the help system and back to
the regular interactive prompt, just type the
word quit:

 help> quit
 >>>

 Some of the help is hard to read and
understand, and you won’t always find what
you are looking for. But if you are looking
for more information on something in Python,
it’s worth a try.
Licensed to Deborah Christiansen <pedbro@gmail.com>

61 CHAPTER 6 GUIs—Graphical User Interfaces
What did you learn?

In this chapter, you learned

■ how to make simple GUIs with EasyGui.
■ how to display messages using a message box: msgbox.
■ how to get input using buttons, choice boxes, and text entry boxes: buttonbox,

choicebox, enterbox, integerbox.
■ how to set default input for a text box.
■ how to use Python’s built-in help system.

Test your knowledge
1 How do you bring up a message box with EasyGui?

2 How do you get a string (some text) as input using EasyGui?

3 How can you get an integer as input using EasyGui?

4 How can you get a float (decimal number) as input using EasyGui?

5 What’s a default value? Give an example of something you might use it for.

Try it out
1 Try changing the temperature-conversion program from chapter 5 to use GUI input

and output instead of raw_input() and print.

2 Write a program that asks for your name, then house number, then street, then city,
then province/territory/state, then postal/zip code (all in EasyGui dialog boxes).
The program should then display a mailing-style full address that looks something
like this: John Snead

28 Main Street
Akron, Ohio
12345
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 7

Decisions, Decisions
In the first few chapters, we saw some of the basic building blocks of a program. We can
now make a program with input, processing, and output. We can even make our input and
output a little fancier by using a GUI. We can assign the input to a variable, so we can use it
later, and we can use some math to process it. Now we’re going to start looking at ways to
control what the program does.

If a program did the same thing every time, it would be a little boring and not very useful.
Programs need to be able to make decisions on what to do. We’re going to add some differ-
ent decision-making techniques to our processing repertoire.

Testing, testing
Programs need to be able to do different things based on their input. Here are a few
examples:

■ If Tim got the right answer, add 1 point to his score.
■ If Jane hit the alien, make an explosion sound.
■ If the file isn’t there, display an error message.

To make decisions, programs check (do a test) to see if a certain condition is true or not. In
the first example above, the condition is “got the right answer.”

Python has only a few ways to test something, and there are only two possible answers for
each test: true or false.
62

Licensed to Deborah Christiansen <pedbro@gmail.com>

63 CHAPTER 7 Decisions, Decisions
Here are some questions Python can ask to test something:

■ Are two things equal?
■ Is one thing less than another?
■ Is one thing greater than another?

But wait a minute, “got the right answer” isn’t one of the tests we can do, at least not
directly. That means we need to describe the test in a way Python can understand.

When we want to know if Tim got the right answer, we’d probably know the correct answer,
as well as Tim’s answer. We could write something like this:

If Tim had the correct answer, then the two variables would be equal, and the condition
would be true. If he had the wrong answer, the two variables would not be equal, and the
condition would be false.

Tr
ue

False

Doing tests and making decisions based on the
results is called branching. The program decides
which way to go, or which branch to follow,
based on the result of the test.
Licensed to Deborah Christiansen <pedbro@gmail.com>

64 Hello World!
Python uses the keyword if to test conditions, like this:

The colon at the end of the if line tells Python that a block of instructions is coming next.
The block includes every line that is indented from the if line, up until the next line that is
not indented.

If the condition is true, everything in the following block will be done. In the previous
short example, the second and third lines make up the block of statements for the if in
the first line.

Now might be a good time to talk about indenting and blocks of code.

if timsAnswer == correctAnswer:
 print "You got it right!"
 score = score + 1
print "Thanks for playing."

These lines form a “block” of code because they’re
indented from the lines above and below

Tr
ue

False

A block of code is one or more lines of code that
are grouped together. They’re all related to a
particular part of the program (like an if statement).
In Python, blocks of code are formed by indenting the lines
of code in the block.

Indenting means that a line of code is pushed over to the right
a bit. Instead of starting at the far left, it has some spaces
at the beginning, so it starts a few characters away from the
left side.
Licensed to Deborah Christiansen <pedbro@gmail.com>

65 CHAPTER 7 Decisions, Decisions
Indenting
In some languages, indenting is just a matter of style—you can indent however you like (or
not at all). But in Python, indenting is a necessary part of how you write the code. Indenting
tells Python where blocks of code start and where they end.

Some statements in Python, like the if statement, need a block of code to tell them what to
do. In the case of the if statement, the block tells Python what to do if the condition is true.

It doesn’t matter how far you indent the block, as long as the whole block is indented the
same amount. A convention in Python is to use four spaces to indent blocks of code. It would
be a good idea to follow this style in your programs.

Am I seeing double?
Are there actually two equal signs in that if statement
(if timsAnswer == correctAnswer)? Yes, there are,
and here’s why.

People say, “Five plus four is equal to nine,” and they
ask, “Is five plus four equal to nine?” One is a state-
ment; the other is a question.

In Python we have the same kinds of things—statements and questions. A statement might
assign a value to a variable. A question might check if a variable is equal to a certain value.
One means you’re setting something (assigning it or making it equal). The other means
you’re checking or testing something (is it equal, yes or no?). So Python uses two different
symbols.

We already saw the equal sign (=) used for setting or assigning values to variables. Here are
a few more examples:

For testing whether two things are equal,
Python uses a double equal sign (==), like this:

A convention just means lots of people do it that way.

correctAnswer = 5 + 3
temperature = 35
name = "Bill"

if myAnswer == correctAnswer:
if temperature == 40:
if name == "Fred":

Am I seeing
double?

Am I seeing
double?
Licensed to Deborah Christiansen <pedbro@gmail.com>

66 Hello World!
Testing or checking is also called comparing. The double equal sign is called a comparison
operator. Remember, we talked about operators in chapter 3. An operator is a special symbol
that operates on the values around it. In this case, the operation is to test whether the
values are equal.

Other kinds of tests
Lucky for us, the other comparison operators are easier to remember: less than (<), greater
than (>), and not equal to (!=). (You can also use <> for not equal to, but most people use
!=.) You can also combine > or < with = to make greater than or equal to (>=) and less than
or equal to (<=). You might have seen some of these in math class.

You can also “chain” two greater-than and less-than
operators together to make an in-between test, like this:

This will check if the variable age has a value between, but not including, 8 and 12. This
would be true if age was equal to 9, 10, or 11 (or 8.1 or 11.6, and so on). If we wanted
to include the ages 8 and 12, we’d do this instead:

THE GOTCHAS WILL GETCHA!
Mixing up = and == is one of the most common
mistakes in programming. Several languages use
these symbols (not just Python), and lots of
programmers use the wrong one in the wrong place
every day.

if 8 < age < 12:

if 8 <= age <= 12:

Comparison operators are also called relational operators
(because they test the relation between the two sides: equal
or not equal, greater than or less than). A comparison is also
called a conditional test or logical test. In programming,
logical refers to something where the answer is either true
or false.
Licensed to Deborah Christiansen <pedbro@gmail.com>

67 CHAPTER 7 Decisions, Decisions
Listing 7.1 shows an example program using comparisons. Start a new file in the
IDLE editor, type this program in, and save it—call it compare.py. Then Run it. Try running it
several times, using different numbers. Try numbers where the first one is bigger, where the
first one is smaller, and where the two numbers are equal, and see what you get.

num1 = float(raw_input("Enter the first number: "))
num2 = float(raw_input("Enter the second number: "))
if num1 < num2:
 print num1, "is less than", num2
if num1 > num2:
 print num1, "is greater than", num2
if num1 == num2:
 print num1, "is equal to", num2
if num1 != num2:
 print num1, "is not equal to", num2

What happens if the test is false?
We’ve seen how to make Python do something if the result of a test is true. But what does it
do if the test is false? In Python, there are three possibilities:

■ Do another test. If the first test comes out false, you can get Python to test something
else with the keyword elif,
(which is short for “else if ”) like this:

Listing 7.1 Using the comparison operators

Remember that
this is a double
equal sign

if answer >= 10:
 print "You got at least 10!"
elif answer >= 5:
 print "You got at least 5!"
elif answer >= 3:
 print "You got at least 3!"

if
answer>=10

elif
answer>=5

elif
answer>=3

True

True

True

Got at
least 10!

Got at
least 5!

Got at
least 3!

FalseFalseFalse
Licensed to Deborah Christiansen <pedbro@gmail.com>

68 Hello World!
You can have as many elif statements as you want after the if.

■ Do something else if all the other tests come out false. You do this with the else
keyword. This always goes at the end, after you’ve
done the if and any elif statements:

■ Move on. If you don’t put anything else after the if block, the program will continue on
to the next line of code (if there is one) or it’ll end (if there is no more code).

Try making a program with the code above by adding a line at the beginning to input a
number:

if answer >= 10:
 print "You got at least 10!"
elif answer >= 5:
 print "You got at least 5!"
elif answer >= 3:
 print "You got at least 3!"
else:
 print "You got less than 3."

if
answer>=10

elif
answer>=5

elif
answer>=3

True

True

True

Got at
least 10!

Got at
least 5!

Got at
least 3!

FalseFalseFalse

else

if
answer>=10

elif
answer>=5

elif
answer>=3

True

True

True

Got at
least 10!

Got at
least 5!

Got at
least 3!

FalseFalseFalse

else

answer = float(raw_input ("Enter a number from 1 to 15"))
Licensed to Deborah Christiansen <pedbro@gmail.com>

69 CHAPTER 7 Decisions, Decisions
Remember to save the file (you pick the name this time), and then run it. Try it a few times
with different inputs to see what you get.

Testing for more than one condition
What if we want to test for more than one thing? Let’s say you made a game that was for
eight-year-olds and up, and you want to make sure the player is in at least third grade.
There are two conditions to meet. Here is one way you could test for both conditions:

Notice that the first print line is indented eight spaces, not just four spaces. That’s because
each if needs its own block, so each one has its own indenting.

Using “and”
That last example will work fine. But there is a shorter way to do the same thing. You can
combine conditions like this:

We combined the two conditions using the and keyword. The and means that both of the
conditions have to be true for the following block to execute.

age = float(raw_input("Enter your age: "))
grade = int(raw_input("Enter your grade: "))
if age >= 8 and grade >= 3:
 print "You can play this game."
else:
 print "Sorry, you can’t play the game."

age = float(raw_input("Enter your age: "))
grade = int(raw_input("Enter your grade: "))
if age >= 8:
 if grade >= 3:
 print "You can play this game."
else:
 print "Sorry, you can’t play the game."

Combine conditions
with “and”

 age>=8 grade>=3

False

False

TrueTrue

You can
play!

if
and

(Only get here if both
conditions are true)
Licensed to Deborah Christiansen <pedbro@gmail.com>

70 Hello World!
You can put more than two
conditions together with and:

If there are more than two conditions, all the conditions have to be true for the if state-
ment to be true.

There are other ways of combining conditions too.

Using “or”
The or keyword is also used to put conditions together. If you use or, the block is executed
if any of the conditions are true.

Using “not”
You can also flip around a comparison to mean the opposite, using not.

age = float(raw_input("Enter your age: "))
grade = int(raw_input("Enter your grade: "))
color = raw_input("Enter your favorite color: ")
if age >= 8 and grade >= 3 and color == "green":
 print "You are allowed to play this game."
else:
 print "Sorry, you can’t play the game."

color = raw_input("Enter your favorite color: ")
if color == "red" or color == "blue" or color ==

"green":
 print "You are allowed to play this game."
else:
 print "Sorry, you can’t play the game."

color = “red” color = “blue”

True

True

True

False

color = “green”

FalseFalse

You can
play!

if
or or

(Get here if any
condition is true)

age = float(raw_input("Enter your age: "))
if not (age < 8):
 print "You are allowed to play this game."
else:
 print "Sorry, you can’t play the game."
Licensed to Deborah Christiansen <pedbro@gmail.com>

71 CHAPTER 7 Decisions, Decisions
This line

means the same as this one:

In both cases, the block executes if the age is 8 or higher, and it doesn’t if the age is lower
than 8.

In chapter 4, we saw math operators like +, -, *, and /. In this chapter, we saw the comparison
operators <, >, ==, and so on. The and, or, and not keywords are also operators. They’re called
logical operators. They’re used to modify comparisons by combining two or more of them
(and, or) or reversing them (not).

Table 7.1 lists all the operators we’ve talked about so far.

Table 7.1 List of math and comparison operators

Operator Name What it does

Math operators

= Assignment Assigns a value to a name (variable).

+ Addition Adds two numbers together. This can also be used to concatenate
strings.

- Subtraction Subtracts two numbers.

+= Increment Adds one to a number.

-= Decrement Subtracts one from a number.

* Multiplication Multiplies two numbers together.

/ Division Divides two numbers. If both numbers are integers, the result will
be just the integer quotient, with no remainder.

% Modulus Gets the remainder (or modulus) for integer division of two num-
bers.

** Exponentiation Raises a number to a power. Both the number and the power can
be integers or floats.

Comparison operators

== Equality Checks whether two things are equal.

< Less than Checks whether the first number is less than the second number.

> Greater than Checks whether the first number is greater than the second num-
ber.

<= Less than or equal
to

Checks whether the first number is less than or equal to the second
number.

>= Greater than or
equal to

Checks whether the first number is greater than or equal to the
second number.

if not (age < 8):

if age >= 8:
Licensed to Deborah Christiansen <pedbro@gmail.com>

72 Hello World!
You might want to bookmark this page so you can refer back to this table easily.

What did you learn?

In this chapter, you learned about

■ comparison tests and the relational operators.
■ indenting and blocks of code.
■ combining tests using and and or.
■ reversing a test using not.

Test your knowledge
1 What will the output be

when this program is run:

2 From the program in the first question, what will the output be if you change
my_number to 25?

3 What kind of if statement would you use to check if a number was greater than 30
but less than or equal to 40?

4 What kind of if statement would you use to check if the user entered the letter “Q” in
either uppercase or lowercase?

Try it out
1 A store is having a sale. They’re giving 10 percent off purchases of $10 or lower, and 20

percent off purchases of greater than $10. Write a program that asks the purchase
price and displays the discount (10% or 20%) and the final price.

2 A soccer team is looking for girls from ages 10 to 12 to play on their team. Write a pro-
gram to ask the user’s age and if male or female (using “m” or “f ”). Display a message
indicating whether the person is eligible to play on the team.

Bonus: Make the program so that it doesn’t ask for the age unless the user is a girl.

!=
<>

Not equal to Checks whether two things are not equal. (Either operator can be
used.)

Table 7.1 List of math and comparison operators (continued)

Operator Name What it does

my_number = 7
if my_number < 20:
 print 'Under 20'
else:
 print '20 or over'
Licensed to Deborah Christiansen <pedbro@gmail.com>

73 CHAPTER 7 Decisions, Decisions
3 You’re on a long car trip and arrive at a gas station. It’s 200 km to the next station.
Write a program to figure out if you need to buy gas here, or if you can wait for the
next station.

The program should ask these questions:

■ How big is your tank, in liters?
■ How full is your tank (in percent—for example, half full = 50)?
■ How many km per liter does your car get?

The output should
look something like this:

 or

Bonus: Include a 5 liter buffer in your program, in case the fuel gauge isn’t accurate.

4 Make a program where the user has to enter a secret password to use the program.
You’ll know the password, of course (because it’ll be in your code). But your friends
will either have to ask you, guess the password, or learn enough Python to look at the
code and figure it out!

The program can be anything you want, including one you have already written, or
just a simple one that displays a message like “You’re in!” when he enters the right
password.

Size of tank: 60
percent full: 40
km per liter: 10
You can go another 240 km
The next gas station is 200 km away
You can wait for the next station.

Size of tank: 60
percent full: 30
km per liter: 8
You can go another 144 km
The next gas station is 200 km away
Get gas now!
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 8

Loop the Loop
For most people, doing the same thing over and over again is very boring, so why not let
the computer do that for us? Computers never get bored, so they’re great at doing repeti-
tive tasks. In this chapter, we’re going to see how to make the computer repeat things.

Computer programs often repeat the same steps over and over again. This is called looping.
There are two main kinds of loops:

■ those that repeat a certain number of times—these are called counting loops
■ those that repeat until a certain thing happens—these are called conditional loops

because they keep going as long as some condition is true
74

Licensed to Deborah Christiansen <pedbro@gmail.com>

75 CHAPTER 8 Loop the Loop
Counting loops
The first kind of loop is called a counting loop. You’ll also hear it called a for loop, because
many languages, including Python, use the for keyword to create this kind of loop in a
program.

Let’s try a program that uses a counting loop. Start a new text editor window in IDLE, using
the File > New command (like we did for our first program). Then type in the program in list-
ing 8.1.

for looper in [1, 2, 3, 4, 5]:
 print "hello"

Save it as Loop1.py and run it. (You can use the Run > Run Module menu, or the shortcut of
pressing the F5 key.)

You should see something like this:

Hey, is there an echo in here? The program
printed “hello” five times, even though
there was only one print statement. How?
The first line (for looper in [1, 2, 3,
4, 5]:) translated into plain English
means this:

1 looper will start with the value 1 (so
looper = 1).

2 The loop will do whatever is in the
next block of instructions one time for
each value in the list. (The list is those
numbers in square brackets.)

3 Each time through the loop, the vari-
able looper is assigned the next value
in the list.

Listing 8.1 A very simple for loop

>>> ================ RESTART ================
>>>
hello
hello
hello
hello
hello
>>>

Here we
go again...
Licensed to Deborah Christiansen <pedbro@gmail.com>

76 Hello World!

S

Once I made a
mistake in a program,

and it kept looping
forever!

How can I stop
a runaway loop?

The second line (print "hello") is the block of code that Python will execute each time
around the loop. A for loop needs a block of code to tell the program what to do in each
loop. That block (the indented part of the code) is called the body of the loop. (Remember, we
talked about indenting and blocks in the last chapter.)

Let’s try something else. Instead of printing the same thing every time, let’s make it print
something different every time through the loop. Listing 8.2 does this.

for looper in [1, 2, 3, 4, 5]:
 print looper

Save this as Loop2.py and run it.
The results should look like this:

This time, instead of printing “hello” five times, it printed the value of the variable looper.
Each time through the loop, looper takes the next value in the list.

Runaway loops

The same thing has happened to me, Carter!
Runaway loops (also called endless loops or
infinite loops) happen to every programmer
once in a while. To stop a Python program at
any time (even in a runaway loop), press
CTRL-C. That means you press and hold

down the CTRL key, and while holding it
down, press the C key. This will come in very

handy later! Games and graphics programs are constantly
running in a loop. They need to keep getting input from the mouse,

keyboard, or game controller, process that input, and update the

Listing 8.2 Doing something different each time through the for loop

Each time through the loop is called an iteration.

>>> ================ RESTART ================
>>>
1
2
3
4
5
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

77 CHAPTER 8 Loop the Loop
How do I get
out of here?

screen. When we start writing these kinds of
programs, we’ll be using lots of loops.
There’s a good chance one of your
programs will get stuck in a loop at some
point, so you need to know how
to get it unstuck!

What are the square brackets for?

You might have noticed that our list of loop values is enclosed in square brackets. The
square brackets and the commas between the numbers are the way you make a list in
Python. We’ll learn more about lists soon (in chapter 12, to be exact). But for now, just know
that a list is a kind of “container” for storing a bunch of things together. In this case, the
things are numbers—the values that looper takes as it goes through different iterations of
the loop.

Using a counting loop
Now let’s do something a bit more useful with loops. Let’s print a multiplication table. It
only takes a small change to our program. The new version is in listing 8.3.

for looper in [1, 2, 3, 4, 5]:
 print looper, "times 8 =", looper * 8

Save it as Loop3.py, and run it. You should see something like this:

Listing 8.3 Printing the 8 times table

>>> =================== RESTART ===================
>>>
1 times 8 = 8
2 times 8 = 16
3 times 8 = 24
4 times 8 = 32
5 times 8 = 40
Licensed to Deborah Christiansen <pedbro@gmail.com>

78 Hello World!
Now we’re starting to see the power of loops. Without loops, we’d have had to write a
program like this one to get the same result:

To make a longer multiplication table (say, up to 10 or 20), this program would be a lot
longer, but our loop program would be almost the same (just with more numbers in the
list). Loops make this much easier!

A shortcut—range()
In the previous example, we only looped 5 times:

But what if we wanted the loop to run 100 times, or 1000 times? That would be a lot of typing!

Luckily, there’s a shortcut. The range() function lets you just enter the starting and ending
values, and it creates all the values in between for you. range() creates a list containing a
range of numbers.

Listing 8.4 uses the range() function in our multiplication table example.

for looper in range (1, 5):
 print looper, "times 8 =", looper * 8

Listing 8.4 A loop using range()

print "1 times 8 =", 1 * 8
print "2 times 8 =", 2 * 8
print "3 times 8 =", 3 * 8
print "4 times 8 =", 4 * 8
print "5 times 8 =", 5 * 8

for looper in [1, 2, 3, 4, 5]:

for looper in [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...
Licensed to Deborah Christiansen <pedbro@gmail.com>

79 CHAPTER 8 Loop the Loop
Save this as Loop4.py, and run it. (You can use the Run > Run Module menu, or the shortcut
of pressing the F5 key.) You should see something like this:

It’s almost the same as the first one . . . except that it missed the last loop! Why?

The answer is that range (1, 5) gives us the list
[1, 2, 3, 4]. You can try this in interactive mode:

Why not 5?

Well, that’s just the way the range() function works. It gives you a list of numbers starting
at the first number and ending just before the last number. You need to take that into
account and adjust the range to get the number of loops you want.

Listing 8.5 shows our program modified to give us the 8 times table up to 10.

for looper in range(1, 11):
 print looper, "times 8 =", looper * 8

And here’s what
we get when we run it:

In the program in listing 8.5, range(1, 11) gave us a list of numbers from 1 to 10, and the
loop did one iteration for each number in the list. Each time through the loop, the variable
looper took the next value in the list.

By the way, we called our loop variable looper, but you can call it anything you want.

Listing 8.5 Printing the 8 times table up to 10 using range()

>>> ================= RESTART =================
>>>
1 times 8 = 8
2 times 8 = 16
3 times 8 = 24
4 times 8 = 32

>>> print range(1, 5)
[1, 2, 3, 4]

>>> ================== RESTART ==================
>>>
1 times 8 = 8
2 times 8 = 16
3 times 8 = 24
4 times 8 = 32
5 times 8 = 40
6 times 8 = 48
7 times 8 = 56
8 times 8 = 64
9 times 8 = 72
10 times 8 = 80
Licensed to Deborah Christiansen <pedbro@gmail.com>

80 Hello World!
A matter of style—loop variable names
A loop variable is no different from any other variable. There’s nothing special about it—it’s
just a name for a value. It doesn’t matter that we’re using the variable as a loop counter.

We said before that you should use variable names that describe what the variables do.
That’s why I picked the name looper for the previous example. But loop variables are one
place where you can sometimes make an exception. That’s because there’s a convention
(remember, that means a common practice) in programming to use the letters i, j, k, and so
on, for loop variables.

Because lots of people use i, j, and k for loop variables, programmers get used to seeing
this in programs. It’s perfectly fine to use other names for loop variables, like we did. But
you shouldn’t use i, j, and k for anything other than loop variables.

If we used this convention,
our program would look like this:

And it would work exactly the same. (Try it and see!)

Which names you use for your loop variables is a matter of style. Style is about how your
programs look, not about whether they work or not. But if you use the same style as other
programmers, your programs will be easier to read, understand, and debug. You’ll also be
more used to this style, and it’ll be easier for you to read other people’s programs.

A range() shortcut

You don’t always have to give range() two numbers like we did in listing 8.5. You can give it
just one number:

Why i, j, and k for loops?
That’s because the early programmers were using
programs to figure out math stuff, and math already
uses a, b, c, and x, y, z for other things. Also, in one
popular programming language, the variables i, j, and
k were always integers—you couldn’t make them any
other type. Since loop counters are always integers,
they usually picked i, j, and k for their loop counters,
and it became common practice.

for i in range (1, 5):
 print i, "times 8 =", i * 8

for i in range (5):
Licensed to Deborah Christiansen <pedbro@gmail.com>

81 CHAPTER 8 Loop the Loop
This is the same as writing

which gives you this list of numbers: [0, 1, 2, 3, 4].

In fact, most programmers start their loops at 0 instead of 1. If you use range(5), you’ll get
5 iterations of the loop, which is easy to remember. You just have to know that the first time
through, i will be equal to 0, not 1, and the last time through, it’ll equal 4, not 5.

for i in range (0, 5):

So why do most programmers start loops from 0
instead of 1?

Well, back in the good old days, some people started
from 1 and some people started from 0. They had
these really geeky arguments about which one was
better. In the end, the 0 people won.

So there you have it. Most people start at 0 today,
but you can use whichever you like. Just remember
to adjust the upper limit so you get the right number
of iterations.

And when I ran it,
it looked like this!

How did that
happen?

>>> for letter in "Hi there":
print letter

Just for fun,
I tried doing a

loop with a
string like

this:
Licensed to Deborah Christiansen <pedbro@gmail.com>

82 Hello World!
Well, Carter, you have discovered something about strings. A string is like a list of characters.
We learned that counting loops use lists for their iterations. That means you can loop
through a string. Each character in the string is one iteration through the loop. So if we
print the loop variable, which Carter called letter in his example, we’re printing the letters
in the string, one at a time. Because each print statement starts a new line, each of the
letters prints on its own line.

Experimenting and trying different things, like Carter did here, is a great way to learn!

Counting by steps
So far, our counting loops have been counting up by 1 each iteration. What if we want the
loop to count in steps of 2? Or 5, or 10? What about counting backwards?

The range() function can have an extra argument that allows you to change the size of the
steps from the default of 1 to a different size.

We’re going to try some loops in interactive mode. When you type in the first line, with the
colon at the end, IDLE will automatically indent the next line for you, because it knows
that a for loop needs a block of code following it. When you complete the block of code,
press the Enter (or Return) key twice. Try it:

We added a third parameter, 2, to the range() function. Now the loop is counting in steps
of 2. Let’s try another one:

Arguments are the values that you put inside the parentheses
when you use a function like range(). We say that you pass
the argument to the function. The term parameter is also
used, as in, “pass the parameter”. We’ll learn more about
functions, arguments, and parameters in chapter 13.

>>> for i in range(1, 10, 2):
 print i

1
3
5
7
9

>>> for i in range (5, 26, 5):
 print i

5
10
15
20
25
Licensed to Deborah Christiansen <pedbro@gmail.com>

83 CHAPTER 8 Loop the Loop
Now we’re stepping by 5.
How about counting backwards?

When the third parameter in the range() function is negative, the loop counts down instead
of up. Remember that the loop starts at the first number and goes up to (or down to) but
not including the second number, so in our last example we only got down to 2, not 1.

We can use this to make a countdown timer program. We only need to add a couple more
lines. Open a new editor window in IDLE and type in the program in listing 8.6. Then try
running it.

import time
for i in range (10, 0, -1):
 print i
 time.sleep(1)
print "BLAST OFF!"

Don’t worry about the stuff in the program that I haven’t told you about yet, like import,
time, and sleep. We’re going to find out all about that in the following chapters. Just try the

Listing 8.6 Ready for lift-off?

>>> for i in range(10, 1, -1):
 print i

10
9
8
7
6
5
4
3
2

Hey, who put
us in reverse?

Counts
backwards

Waits one
second
Licensed to Deborah Christiansen <pedbro@gmail.com>

84 Hello World!
program in listing 8.6 and see how it works. The important thing here’s the range (10, 0,
-1) part, which makes a loop that counts backwards from 10 to 1.

Counting without numbers
In all the previous examples, the loop variable has been a number. In programming terms,
we say that the loop iterates over a list of numbers. But the list doesn’t have to be a list of
numbers. As we already saw from Carter’s experiment, it can also be a list of characters (a
string). It can also be a list of strings, or anything else.

The best way to see how this works is with an example. Try the program in listing 8.7 and
see what happens.

for cool_guy in ["Spongebob", "Spiderman", "Justin Timberlake", "My Dad"]:
 print cool_guy, "is the coolest guy ever!"

Now we’re not looping over a list of numbers, we’re looping over a list of strings. And
instead of i for the loop variable, I used cool_guy. The loop variable cool_guy takes a
different value in the list each time through. This is still a kind of counting loop, because even
though the list isn’t a list of numbers, Python counts how many items are in the list to know
how many times to loop. (I won’t show what the output looks like this time—you’ll see it
when you run the program.)

But what if we don’t know ahead of time how many iterations we’ll need? What if there’s no
list of values we can use? Don’t touch that dial, because that’s coming up next!

While we’re on the subject . . .
We just learned about the first kind of loop, a for loop or counting loop. The second kind of
loop is called a while loop or conditional loop.

The for loop is great if you know ahead of time how many times you want the loop to run.
But sometimes you want a loop to run until something happens, and you don’t know how
many iterations it’ll be until that thing happens. While loops let you do that.

In the last chapter, we learned about conditions and testing and the if statement. Instead of
counting how many times to run a loop, while loops use a test to decide when to stop a loop.
While loops are also called conditional loops. A conditional loop keeps looping while some
condition is met.

Listing 8.7 Who’s the coolest of them all?
Licensed to Deborah Christiansen <pedbro@gmail.com>

85 CHAPTER 8 Loop the Loop
That’s it!

Time to bail!

NOT DONE YET

Am I
done yet?

DONE

Basically, a while loop keeps asking “Am I done
yet? . . . Am I done yet? . . . Am I done yet?
. . .” until it’s done. It’s done when the
condition is no longer true.

While loops use the Python key-
word while. Listing 8.8 shows an
example. Type the program in, try
it, and see how it works. (Remember,
you have to Save it and then Run it.)

print "Type 3 to continue, anything else to quit."
someInput = raw_input()
while someInput == '3':
 print "Thank you for the 3. Very kind of you."
 print "Type 3 to continue, anything else to

quit."
 someInput = raw_input()
print "That's not 3, so I'm quitting now."

This program keeps asking for input from the user. While the input is equal to 3, the condi-
tion is true, and the loop keeps running. That’s why this kind of conditional loop is also
called a while loop, and it uses the Python while keyword. When the input is not equal to 3,
the condition is false, and the loop stops.

Bailing out of a loop—break and continue
There are times when you want to get out of a
loop in the middle, before a for loop is
finished counting, or before a while loop has
found its end condition. There are two ways
to do this: you can jump ahead to the next
iteration of the loop with continue, or you
can stop looping altogether with break.
Let’s look at these more closely.

Jumping ahead—continue

If you want to stop executing the current iteration of the loop and skip ahead to the next
iteration, the continue statement is what you need. The best way to show this is with an
example. Look at listing 8.9.

Listing 8.8 A conditional or while loop

Keep looping
as long as
someInput ='3'

Body of the loop
Licensed to Deborah Christiansen <pedbro@gmail.com>

86 Hello World!

for i in range (1, 6):
 print
 print 'i =', i,
 print 'Hello, how',
 if i == 3:
 continue
 print 'are you today?'

If we run this program,
the output looks like this:

Notice that, the third time through the loop (when i == 3), the body of the loop didn’t
finish—it jumped ahead to the next iteration (i == 4). That was the continue statement
at work. It works the same way in while loops.

Bailing out—break

What if we want to jump out of the loop completely—never finish counting, or give up
waiting for the end condition? The break statement does that.

Let’s change only line 6 of listing 8.9, replacing continue with break, and rerun the program
to see what happens.

This time, the loop didn’t just skip the rest of iteration 3; it stopped altogether. That’s what
break does. It works the same way in while loops.

I should tell you that some people think using break and continue is a bad idea. Personally,
I don’t think they’re bad, but I rarely use them. I thought I’d tell you about break and
continue just in case you ever need them.

Listing 8.9 Using continue in a loop

>>> ================== RESTART ==================
>>>

i = 1 Hello how are you today?

i = 2 Hello how are you today?

i = 3 Hello how
i = 4 Hello how are you today?

i = 5 Hello how are you today?

>>> ================== RESTART ==================
>>>

i = 1 Hello how are you today?

i = 2 Hello how are you today?

i = 3 Hello how
Licensed to Deborah Christiansen <pedbro@gmail.com>

87 CHAPTER 8 Loop the Loop
What did you learn?

In this chapter, you learned about

■ for loops (also called counting loops).
■ the range() function—a shortcut for counting loops.
■ different step sizes for range().
■ while loops (also called conditional loops).
■ skipping to the next iteration with continue.
■ jumping out of a loop with break.

Test your knowledge
1 How many times would the following loop run?

2 How many times would the following loop run?
And what would the values of i be for each loop?

3 What list of numbers would range (1, 8) give you?

4 What list of numbers would range (8) give you?

5 What list of numbers would range (2, 9, 2) give you?

6 What list of numbers would range (10, 0, -2) give you?

7 What keyword do you use to stop the current iteration of a loop and jump ahead to
the next iteration?

8 When does a while loop end?

Try it out
1 Write a program to print a multiplication table (a times table). At the start, it should

ask the user which table to print. The output should look something like this:

for i in range (1, 6):
 print 'Hi, Warren'

for i in range (1, 6, 2):
 print 'Hi, Warren'

Which multiplication table would you like?
5
Here's your table:
5 x 1 = 5
5 x 2 = 10
5 x 3 = 15
5 x 4 = 20
5 x 5 = 25
5 x 6 = 30
5 x 7 = 35
5 x 8 = 40
5 x 9 = 45
5 x 10 = 50
Licensed to Deborah Christiansen <pedbro@gmail.com>

88 Hello World!
2 You probably used a for loop in your program for question #1. That’s how most peo-
ple would do it. But just for practice, try doing the same thing with a while loop. Or if
you used a while loop in question #1, try it with a for loop.

3 Add something else to the multiplication table program. After asking which table
the user wants, ask her how high the table should go. The output should look like this:

You can do this with the for loop version of the program, the while loop version, or
both.

Which multiplication table would you like?
7
How high do you want to go?
12
Here's your table:
7 x 1 = 7
7 x 2 = 14
7 x 3 = 21
7 x 4 = 28
7 x 5 = 35
7 x 6 = 42
7 x 7 = 49
7 x 8 = 56
7 x 9 = 63
7 x 10 = 70
7 x 11 = 77
7 x 12 = 84
Licensed to Deborah Christiansen <pedbro@gmail.com>

Documentation is information about a program that describes the
program and how it works. Comments are one part of a program’s
documentation, but there may be other parts, outside the code
itself, that describe things like

· why the program was written (its purpose)
· who wrote it
· who it’s meant for (its audience)
· how it’s organized
and much more. Larger, more complicated programs usually have more
documentation.

La, la, la,
I can’t hear you!

La, la, la...

C H A P T E R 9

Just for You—Comments
Up until now, everything we have typed into our programs (and in interactive mode) has
been instructions to the computer. But it’s a very good idea to include some notes to your-
self in your programs, describing what the program does and how it works. This will help
you (or someone else) look at your program later and figure out what you did.

In a computer program, these notes are called comments.

Adding comments
Comments are only for you to read, not for the
computer to execute. Comments are part of
the program’s documentation, and the com-
puter ignores them when it runs your program.

Python has a couple of ways to add comments to your program.
89

Licensed to Deborah Christiansen <pedbro@gmail.com>

90 Hello World!
The Python help that we mentioned in “Thinking like a (Python) programmer” in chapter 6
is a kind of documentation. It’s meant to help users—like you—understand how Python
works.

Single-line comments
You can make any line into a comment by starting it with the “#” character. (This is called
the number sign or sometimes the pound sign.)

If you run these two lines, you’ll get the following output:

The first line is ignored when the program runs. The comment, which starts with the # char-
acter, is only for you and other people reading the code.

End-of-line comments
You can also put comments at the end of a line of code, like this:

The comment starts at the # character. Everything before the # is a normal line of code.
Everything after that is a comment.

Multiline comments
Sometimes you want to use more than one line for comments. You could use several lines
with the # character at the start of each, like this:

Multiline comments are good for making sections of your code stand out visually when
you’re reading it. You can use them to describe what’s going on in a section of code. A
multiline comment at the start of a program could list the author’s name, the name of the
program, the date it was written or updated, and any other information you think might be
useful.

area = length * width # Calculate the area of the rectangle

This is a program to illustrate how comments are used in Python
The row of stars is used to visually separate the comments
from the rest of the code

This is a comment in a Python program
print 'This is not a comment'

This is not a comment
Licensed to Deborah Christiansen <pedbro@gmail.com>

91 CHAPTER 9 Just for You—Comments
Triple-quoted strings

There is another way to make something that acts like a multiline comment in Python. You
can just make a triple-quoted string with no name. Remember from chapter 2 that a triple-
quoted string is a string that can
span multiple lines. So you can do this:

Because the string has no name and the program isn’t “doing” anything with the string, it
has no effect on the way the program runs. So it acts like a comment, even though it isn’t a
comment in strict Python terms.

If you type some comments into the IDLE editor or SPE, you’ll see that the comments have
their own color. This is meant to help you read your code more easily.

Most code editors let you change the color for comments (and for other parts of the code).
The default color for comments in IDLE is red. Because triple-quoted strings are not true
Python comments, they’ll be a different color. In IDLE they’ll be green, because green is
IDLE’s default color for strings.

Commenting style
So now you know how to add comments. But what kind of stuff should you put in them?

Because they don’t affect how the program runs, we say that they’re a matter of “style.” That
means you can put anything you want in your comments (or not use any at all). But it
doesn’t mean comments are not important. Most programmers learn this the hard way,

""" Here is a comment that is on multiple
lines, using a triple-quoted string.
It's not really a comment, but it
behaves like one.
"""

 #!/bin/
env

 py
th

on
 #

 Pa
gin

ate
 a

tex
t fi

le
, a

dd
ing

 a
he

ade

r a
nd

foo
ter

 im
po

rt
 sy

s, t
ime, str

ing # If no arguments were given, print a helpful m
ess

age
if len(sys.argv)!=2: print 'Usage

: py
print filename'sys.exit(0)class # Increment the page count, and reset the line count self.header_written=1 ; self.count=1 ; if no arguments were given, gggprintprintself.page=self.pa

ge+1
Prin

terFormatter:self.header_written=0def #
Thinking like a (Python) programmer

Some Python programmers say that you
shouldn’t use triple-quoted strings
(multiline strings) as comments. Personally,
I don’t see any good reason not to. The
reason for comments is to make your code
more readable and understandable. If you
find that triple-quoted strings are conve-

nient for you, it’s more likely you’ll put
comments in your code, which is a
good thing.
Licensed to Deborah Christiansen <pedbro@gmail.com>

92 Hello World!
What was I
thinking?

when they go back to a program they wrote several weeks,
months, or years ago (or even one they wrote yesterday)
and can’t understand it! That’s usually because they
didn’t put in enough comments to explain how the
program worked. It might seem obvious when
you’re writing it, but it can be a complete mystery
when you look at it later.

There are no hard-and-fast rules for what you
should put in comments, but I encourage you to add as
many comments as you like. For now, the more the
better. It’s better to err on the side of too many comments than too few. As you get more
experience with programming, you’ll get a feel for how much and what kind of commenting
works best for you.

Comments in this book
You won’t see many comments in the printed code listings in this book. That’s because this
book uses “annotations”—those little notes alongside the code—instead. But if you look at
the code listings in the \examples folder or on the web site, you’ll see comments in all the
listings.

Commenting out
You can also use comments to temporarily exclude parts of the program from running.
Anything that is a comment will be ignored.

Because print "Hello" was commented out, that line was not executed, so the word
“Hello” didn’t print.

This is useful when you’re debugging a program and only want certain parts to run and
other parts to be ignored. Just put a # in front of any line you want the computer to ignore,
or put triple quotes around a section of code you want the computer to ignore.

Most code editors (including IDLE and SPE) have a feature that lets you comment (and
uncomment) whole blocks of code quickly. In IDLE’s editor, look in the Format menu. In SPE,
look in the Edit menu.

#print "Hello"
print "World"

>>> =============== RESTART ================
>>>
World
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

93 CHAPTER 9 Just for You—Comments
What did you learn?

In this chapter, you learned that

■ comments are just for you (and other humans), not for the computer.
■ comments can also be used to block out parts of the code, to prevent them from run-

ning.
■ you can use triple-quoted strings as a kind of comment that spans multiple lines.

Test your knowledge

Since comments are pretty simple, we’ll take a break and not have any test questions for
this chapter.

Try it out
1 Go back to the temperature-conversion program (from the “Try it out” section in

chapter 3) and add some comments. Rerun the program to see that it still runs
the same.
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 1 0

Game Time
One of the great traditions of learning to program is typing in code you don’t understand.
Really!

Sometimes just typing in code gives you a “feel” for how things work, even if you don’t
understand every line or keyword. We did that in chapter 1, with the number-guessing
game. Now we’re going to do the same thing, but with a longer, more interesting program.

Skier
Skier is a very simple skiing game,
inspired by a game called SkiFree.
(You can find out all about SkiFree
here: en.wikipedia.org/wiki/SkiFree.)

You ski down a hill, trying to avoid
trees and pick up flags. Picking up a
flag earns 10 points. Crashing into a
tree makes you lose 100 points.

When you run the program, it should
look something like this:
94

Licensed to Deborah Christiansen <pedbro@gmail.com>

95 CHAPTER 10 Game Time
Skier uses something called Pygame to help with the graphics. Pygame is a Python module.
(We’ll learn more about modules in chapter 15.) If you ran the book’s installer, Pygame is
installed. If not, you can download it from www.pygame.org. We’ll learn all about Pygame in
chapter 16.

There are some graphics files you’ll need to go along with the program:

skier_down.png skier_right1.png

skier_crash.png skier_right2.png

skier_tree.png skier_left1.png

skier_flag.png skier_left2.png

You can find these in the \examples\skier folder (if you ran the installer) or on the book’s
web site. Just put them in the same folder or directory where you save the program. That’s
pretty important. If they’re not in the same directory as the program, Python won’t find
them, and the program won’t work.

The code for Skier is in listing 10.1. The listing is a bit long, about 115 lines of code (plus
some blank lines to make it easier to read), but I encourage you to take the time to type it
in. The listing has some notes to give a bit of explanation of what the code does.

Like EasyGui, Pygame programs sometimes have trouble running properly in IDLE, so you
might want to use SPE for entering and running this program.

import pygame, sys, random

skier_images = ["skier_down.png", "skier_right1.png",
 "skier_right2.png", "skier_left2.png",
 "skier_left1.png"]

class SkierClass(pygame.sprite.Sprite):
 def __init__(self):
 pygame.sprite.Sprite.__init__(self)
 self.image = pygame.image.load("skier_down.png")
 self.rect = self.image.get_rect()
 self.rect.center = [320, 100]
 self.angle = 0

Listing 10.1 Skier

Creates skier
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.pygame.org

96 Hello World!
 def turn(self, direction):
 self.angle = self.angle + direction
 if self.angle < -2: self.angle = -2
 if self.angle > 2: self.angle = 2
 center = self.rect.center
 self.image = pygame.image.load(skier_images[self.angle])
 self.rect = self.image.get_rect()
 self.rect.center = center
 speed = [self.angle, 6 - abs(self.angle) * 2]
 return speed

 def move(self, speed):
 self.rect.centerx = self.rect.centerx + speed[0]
 if self.rect.centerx < 20: self.rect.centerx = 20
 if self.rect.centerx > 620: self.rect.centerx = 620

class ObstacleClass(pygame.sprite.Sprite):
 def __init__(self, image_file, location, type):
 pygame.sprite.Sprite.__init__(self)
 self.image_file = image_file
 self.image = pygame.image.load(image_file)
 self.location = location
 self.rect = self.image.get_rect()
 self.rect.center = location
 self.type = type
 self.passed = False

 def scroll(self, t_ptr):
 self.rect.centery = self.location[1] - t_ptr

def create_map(start, end):
 obstacles = pygame.sprite.Group()
 gates = pygame.sprite.Group()
 locations = []
 for i in range(10):
 row = random.randint(start, end)
 col = random.randint(0, 9)
 location = [col * 64 + 20, row * 64 + 20]
 if not (location in locations):
 locations.append(location)
 type = random.choice(["tree", "flag"])
 if type == "tree": img = "skier_tree.png"
 elif type == "flag": img = "skier_flag.png"
 obstacle = ObstacleClass(img, location, type)
 obstacles.add(obstacle)
 return obstacles
def animate():
 screen.fill([255, 255, 255])
 pygame.display.update(obstacles.draw(screen))
 screen.blit(skier.image, skier.rect)
 screen.blit(score_text, [10, 10])
 pygame.display.flip()

Turns skier

Moves skier
left and right

Creates trees
and flags

Makes scenery
scroll up

Creates one
window of
random trees
and flags

Redraws screen
when things move
Licensed to Deborah Christiansen <pedbro@gmail.com>

97 CHAPTER 10 Game Time
def updateObstacleGroup(map0, map1):
 obstacles = pygame.sprite.Group()
 for ob in map0: obstacles.add(ob)
 for ob in map1: obstacles.add(ob)
 return obstacles

pygame.init()
screen = pygame.display.set_mode([640,640])
clock = pygame.time.Clock()
skier = SkierClass()
speed = [0, 6]
map_position = 0
points = 0
map0 = create_map(20, 29)
map1 = create_map(10, 19)
activeMap = 0
obstacles = updateObstacleGroup(map0, map1)
font = pygame.font.Font(None, 50)

while True:
 clock.tick(30)
 for event in pygame.event.get():
 if event.type == pygame.QUIT: sys.exit()
 if event.type == pygame.KEYDOWN:
 if event.key == pygame.K_LEFT:
 speed = skier.turn(-1)
 elif event.key == pygame.K_RIGHT:
 speed = skier.turn(1)
 skier.move(speed)
 map_position += speed[1]

 if map_position >=640 and activeMap == 0:
 activeMap = 1
 map0 = create_map(20, 29)
 obstacles = updateObstacleGroup(map0, map1)
 if map_position >=1280 and activeMap == 1:
 activeMap = 0
 for ob in map0:
 ob.location[1] = ob.location[1] - 1280
 map_position = map_position - 1280
 map1 = create_map(10, 19)
 obstacles = updateObstacleGroup(map0, map1)

 for obstacle in obstacles:
 obstacle.scroll(map_position)

Changes to next
screen of scenery

Gets
everything
ready

Starts main loop
Updates graphics
30 times per second

Checks for
keypresses or
window close

Moves skier
Scrolls scenery

Changes from one
window of scenery
to the next
Licensed to Deborah Christiansen <pedbro@gmail.com>

98 Hello World!
 hit = pygame.sprite.spritecollide(skier, obstacles, False)
 if hit:
 if hit[0].type == "tree" and not hit[0].passed:
 points = points - 100
 skier.image = pygame.image.load("skier_crash.png")
 animate()
 pygame.time.delay(1000)
 skier.image = pygame.image.load("skier_down.png")
 skier.angle = 0
 speed = [0, 6]
 hit[0].passed = True
 elif hit[0].type == "flag" and not hit[0].passed:
 points += 10
 obstacles.remove(hit[0])

 score_text = font.render("Score: " +str(points), 1, (0, 0, 0))
 animate()

The code for listing 10.1 is in the \examples\skier folder, so if you get stuck or just don’t
want to type it all in, you can use that file. But believe it or not, you’ll learn more by typing
it in than by just opening and looking at the listing.

In later chapters, we’ll learn about all the keywords and techniques that are used in Skier.
For now, just type it in and give it a try.

Try it out
1 All you need to do in this chapter is type in the Skier program (listing 10.1) and try it

out. If you get an error when you try to run it, look at the error message and try to fig-
ure out where the mistake is.

Good luck!

Checks for
hitting trees
and getting
flags

Displays score
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 1 1

Nested and Variable Loops
We already saw that, within the body of a loop (which is a block of code), we can put other
things that have their own blocks. If you look at the number-guessing program from chap-
ter 1, you’ll see this:

while guess != secret and tries < 6:

 guess = input("What's yer guess? ")

 if guess < secret:

 print "Too low, ye scurvy dog!"

 elif guess > secret:

 print "Too high, landlubber!"

 tries = tries + 1

The outer, light gray block is a while loop block, and the dark gray blocks are if and elif
blocks within that while loop block.

You can also put a loop within another loop. These loops are called nested loops.

Nested loops
Remember the multiplication table program you wrote for the “Try it out” section in
chapter 8? Without the user-input part, it might look something like this:

elif block

if block

while loop block

multiplier = 5
for i in range (1, 11):
 print i, "x", multiplier, "=", i * multiplier
99

Licensed to Deborah Christiansen <pedbro@gmail.com>

100 Hello World!
What if we wanted to print three multiplication tables at once? That’s the kind of thing a
nested loop is perfect for. A nested loop is one loop inside another loop. For each iteration of
the outer loop, the inner loop goes through all of its iterations.

To print three multiplication tables, we’d just enclose the original loop (which prints a sin-
gle multiplication table) in an outer loop (which runs three times). This makes the program
print three tables instead of one. Listing 11.1 shows what the code looks like.

for multiplier in range (5, 8):
 for i in range (1, 11):
 print i, "x", multiplier, "=", i * multiplier
 print

Notice that we had to indent the inner loop and the print statement an extra four spaces
from the beginning of the outer for loop. This program will print the 5 times, 6 times,
and 7 times tables,
up to 10 for each table:

Listing 11.1 Printing three multiplication tables at once

This inner loop
prints a single table

This outer
loop runs 3
iterations,
with values
5, 6, 7

>>> ==================== RESTART ===================
>>>
1 x 5 = 5
2 x 5 = 10
3 x 5 = 15
4 x 5 = 20
5 x 5 = 25
6 x 5 = 30
7 x 5 = 35
8 x 5 = 40
9 x 5 = 45
10 x 5 = 50

1 x 6 = 6
2 x 6 = 12
3 x 6 = 18
4 x 6 = 24
5 x 6 = 30
6 x 6 = 36
7 x 6 = 42
8 x 6 = 48
9 x 6 = 54
10 x 6 = 60

1 x 7 = 7
2 x 7 = 14
3 x 7 = 21
4 x 7 = 28
5 x 7 = 35
6 x 7 = 42
7 x 7 = 49
8 x 7 = 56
9 x 7 = 63
10 x 7 = 70
Licensed to Deborah Christiansen <pedbro@gmail.com>

101 CHAPTER 11 Nested and Variable Loops
Although you might think it’s pretty boring, a good way to see what’s going on with
nested loops is to just print some stars to the screen and count them. We’ll do that in the
next section.

Variable loops
Fixed numbers, like the ones we’ve used in the range() function, are also called constants.
If you use constants in the range() function of a for loop, the loop will run the same num-
ber of times whenever the program is run. In that case, we say the number of loops is
hard-coded, because it’s defined in your code and it never changes. That’s not always what
we want.

Sometimes we want the number of loops to be deter-
mined by the user, or by another part of the program.
For that, we need a variable.

For example, let’s say you were making a space-
shooter game. You’d have to keep redrawing the
screen as aliens get wiped out. You’d have some sort
of counter to keep track of how many aliens were left,
and whenever the screen was updated, you’d need to
loop through the remaining aliens and draw their
images on the screen. The number of aliens would
change every time the player wiped out another one.

Because we haven’t learned how to draw aliens on the screen yet, here’s a simple example
program that
uses a variable loop:

The program asked the user how many stars he wanted, and then it used a variable loop to
print that many. Well, almost! We asked for five stars and only got four! Oops, we forgot that
the for loop stops one short of the second number in the range. So we need to add 1 to the
user’s input.

numStars = int(raw_input ("How many stars do you want? "))
for i in range (1, numStars):
 print '*',

>>> ====================== RESTART ======================
>>>
How many stars do you want? 5
* * * *

numStars = int(raw_input ("How many stars do you want? "))
for i in range(1, numStars + 1):
 print '*',

Adds 1, so if he asks for 5
stars, he gets 5 stars
Licensed to Deborah Christiansen <pedbro@gmail.com>

102 Hello World!
Another way to do the same thing is to start the loop counting at 0, instead of 1. (We
mentioned that back in chapter 8.) This is very common in programming, and we’ll
see why in the next chapter. Here’s how that would look:

Variable nested loops
Now let’s try a variable nested loop. That’s just a nested loop where one or more of the
loops uses a variable in the range() function. Listing 11.2 shows an example.

numLines = int(raw_input ('How many lines of stars do you want? '))
numStars = int(raw_input ('How many stars per line? '))
for line in range(0, numLines):
 for star in range(0, numStars):
 print '*',
 print

Try running this program to see if it makes sense. You should see something like this:

The first two lines ask the user how many lines she wants and how many stars per line. It
remembers the answers using the variables numLines and numStars. Then we have the
two loops:

■ The inner loop (for star in range (0, numStars):) prints each star, and runs once
for each star on a line.

■ The outer loop (for line in range (0, numLines):) runs once for each line of stars.

The second print command is needed to start a new line of stars. If we didn’t have that, all
the stars would print on one line, because of the comma in the first print statement.

Listing 11.2 A variable nested loop

>>> ============================ RESTART ============================
>>>
How many lines of stars do you want? 3
How many stars per line? 5

numStars = int(raw_input ("How many stars do you want? "))
for i in range(0, numStars):
 print '*',

>>> ====================== RESTART =====================
>>>
How many stars do you want? 5
* * * * *
Licensed to Deborah Christiansen <pedbro@gmail.com>

103 CHAPTER 11 Nested and Variable Loops
We can even have nested-nested loops (or double-nested loops). That would look like the
ones in listing 11.3.

numBlocks = int(raw_input ('How many blocks of stars do you want? '))
numLines = int(raw_input ('How many lines in each block? '))
numStars = int(raw_input ('How many stars per line? '))
for block in range(0, numBlocks):
 for line in range(0, numLines):
 for star in range(0, numStars):
 print '*',
 print
 print

Here’s the output:

We say the loop is nested “three deep.”

Even more variable nested loops
Listing 11.4 shows a trickier version of the program from listing 11.3.

numBlocks = int(raw_input('How many blocks of stars do you want? '))
for block in range(1, numBlocks + 1):
 for line in range(1, block * 2):
 for star in range(1, (block + line) * 2):
 print '*',
 print
 print

Listing 11.3 Blocks of stars with double-nested loops

Listing 11.4 A trickier version of blocks of stars

>>> ======================= RESTART =======================
>>>
How many blocks of stars do you want? 3
How many lines of stars in each block? 4
How many stars per line? 8
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *

Formulas for number
of lines and stars
Licensed to Deborah Christiansen <pedbro@gmail.com>

104 Hello World!
Here’s the output:

In listing 11.4, the loop variables of the outer loops are used to set the ranges for the inner
loops. So instead of each block having the same number of lines and each line having the
same number of stars, they’re different each time through the loop.

You can nest loops as deep as you want. It can get a bit hairy keeping track of what’s going
on, so it sometimes helps to print out the values of the loop variables, as in listing 11.5.

numBlocks = int(raw_input('How many blocks of stars do you want? '))
for block in range(1, numBlocks + 1):
 print 'block = ', block
 for line in range(1, block * 2):
 for star in range(1, (block + line) * 2):
 print '*',
 print ' line = ', line, 'star = ', star
 print

Here’s the output of the program:

Listing 11.5 Printing the loop variables in nested loops

>>> ======================= RESTART =======================
>>>
How many blocks of stars do you want? 3
* * *

* * * * *
* * * * * * *
* * * * * * * * *

* * * * * * *
* * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * * * *
* * * * * * * * * * * * * * *

Displays variables

>>> ======================= RESTART =======================
>>>
How many blocks of stars do you want? 3
block = 1
* * * line = 1 star = 3

block = 2
* * * * * line = 1 star = 5
* * * * * * * line = 2 star = 7
* * * * * * * * * line = 3 star = 9

block = 3
* * * * * * * line = 1 star = 7
* * * * * * * * * line = 2 star = 9
* * * * * * * * * * * line = 3 star = 11
* * * * * * * * * * * * * line = 4 star = 13
* * * * * * * * * * * * * * * line = 5 star = 15
Licensed to Deborah Christiansen <pedbro@gmail.com>

105 CHAPTER 11 Nested and Variable Loops
Printing the values of variables can help you in lots of situations—not just with loops. It’s
one of the most common debugging methods.

Using nested loops
So what can we do with all these nested loops? Well, one of the things they’re good for is
figuring out all the possible permutations and combinations of a series of decisions.

Ooh, that hurt!

medic!

Frances? Frances?
Talk to me!

Frances...

...

Permutation is a mathematical term that means a unique way of
combining a set of things. Combination means something very
similar. The difference is that, with a combination, the order
doesn’t matter, but with a permutation, the order does matter.

If I asked you to pick three numbers from 1 to 20, you could
pick
 • 5, 8, 14
 • 2, 12, 20
and so on. If we tried to make a list of all the permutations of
three numbers from 1 to 20, these two would be separate entries:
 • 5, 8, 14
 • 8, 5, 14
That’s because, with permutations, the order in which they
appear matters. If we made a list of all the combinations, all
these would count as a single entry:
 • 5, 8, 14
 • 8, 5, 14
 • 8, 14, 5
That’s because order doesn’t matter for combinations.
Licensed to Deborah Christiansen <pedbro@gmail.com>

106 Hello World!
The best way to explain this is with an example. Let’s imagine you’re running a hot dog
stand at your school’s spring fair, and you want to make a poster showing how to order all
possible combinations of hot dog, bun, ketchup, mustard, and onions by number. So we
need to figure out what all the possible combinations are.

One way to think about this problem is to use something called a decision tree. The next
figure shows a decision tree for the hot dog problem.

Each decision point has only two choices, Yes or No. Each different path down the tree
describes a different combination of hot dog parts. The path I highlighted says “Yes” for hot
dog, “No” for bun, “Yes” for mustard, and “Yes” for ketchup.

Now we’re going to use nested loops to list all the combinations—all the paths through the
decision tree. Because there are five decision points, there are five levels in our decision
tree, so there will be five nested loops in our program. (Above figure only shows the first
four levels of the decision tree.)

Type the code in listing 11.6 into an IDLE (or SPE) editor window, and save it as hotdog1.py.

print "\tDog \tBun \tKetchup\tMustard\tOnions"
count = 1

for dog in [0, 1]:

 for bun in [0, 1]:

 for ketchup in [0, 1]:

 for mustard in [0, 1]:

 for onion in [0, 1]:
 print "#", count, "\t",
 print dog, "\t", bun, "\t", ketchup, "\t",
 print mustard, "\t", onion
 count = count + 1

Listing 11.6 Hot dog combinations

Start

Yes No

Y N

Y N Y N Y N Y N Y N

Y

NY Y

N

Y

Y

N N

N N

Y

Y

Y N N

etc.

Hot dog choice

Bun choice

Mustard choice

Ketchup choice

onion
loop

mustard
loop

ketchup
loop

dog
loop

bun
loop
Licensed to Deborah Christiansen <pedbro@gmail.com>

107 CHAPTER 11 Nested and Variable Loops
See how the loops are all one inside the other? That’s what nested loops really are—loops
inside other loops.

■ The outer (dog) loop runs twice.
■ The bun loop runs twice for each iteration of the dog loop. So it runs 2 x 2 = 4 times.
■ The ketchup loop runs twice for each iteration of the dog loop. So it runs 2 x 2 x 2 = 8

times.
■ And so on.

The innermost loop (that’s the one farthest in—the onion loop) runs 2 x 2 x 2 x 2 x 2 = 32
times. This covers all the possible combinations. So there are 32 possible combinations.

If you run the program in listing 11.6, you should get something like this:

>>> =========================== RESTART ===========================
>>>
 Dog Bun Ketchup Mustard Onions
1 0 0 0 0 0
2 0 0 0 0 1
3 0 0 0 1 0
4 0 0 0 1 1
5 0 0 1 0 0
6 0 0 1 0 1
7 0 0 1 1 0
8 0 0 1 1 1
9 0 1 0 0 0
10 0 1 0 0 1
11 0 1 0 1 0
12 0 1 0 1 1
13 0 1 1 0 0
14 0 1 1 0 1
15 0 1 1 1 0
16 0 1 1 1 1
17 1 0 0 0 0
18 1 0 0 0 1
19 1 0 0 1 0
20 1 0 0 1 1
21 1 0 1 0 0
22 1 0 1 0 1
23 1 0 1 1 0
24 1 0 1 1 1
25 1 1 0 0 0
26 1 1 0 0 1
27 1 1 0 1 0
28 1 1 0 1 1
29 1 1 1 0 0
30 1 1 1 0 1
31 1 1 1 1 0
32 1 1 1 1 1
Licensed to Deborah Christiansen <pedbro@gmail.com>

108 Hello World!
Mmmmm....
That’s one good

dog!

The five nested loops run through all possible combinations of dog, bun, ketchup, mustard,
and onion.

In listing 11.6, we used the tab character to line everything up. That’s the \t parts. We
haven’t talked about print formatting yet, but if you want to know more about it, you can
have a peek at chapter 21.

We used a variable called count to number
each combination. So, for example, a hot dog
with bun and mustard would be #27. Of
course, some of the 32 combinations don’t
make sense. (A hot dog with no bun but with
mustard and ketchup would be a little messy.) But you know what
they say: “The customer is always right!”

Counting calories

Since everyone is concerned about nutrition these days, let’s add a
calorie count for each combination on the menu. (You might not care
about the calories, but I bet your parents do!) That will let us use some
of Python’s math abilities, which we learned about back in chapter 3.

We already know which items are in each combination. All we need now are the calories for
each item. Then we can add them all up in the innermost loop.

Here’s some code that sets how many calories are in each item:

Now we just need to add them up. We know there’s either 0 or 1 of each item in each menu
combination. So we can just multiply the quantity by the calories for
every item, like this:

Because the order of operations is multiplication first, then addition, I didn’t
really need to put in the parentheses. I just put them in to make it easier to see
what’s going on.

dog_cal = 140
bun_cal = 120
mus_cal = 20
ket_cal = 80
onion_cal = 40

tot_cal = (dog * dog_cal) + (bun * bun_cal) + \
 (mustard * mus_cal) + (ketchup * ket_cal) + \
 (onion * onion_cal)
Licensed to Deborah Christiansen <pedbro@gmail.com>

109 CHAPTER 11 Nested and Variable Loops
Putting this all together, the new calorie-counter version of the hot dog program is shown
in listing 11.7.

dog_cal = 140
bun_cal = 120
ket_cal = 80
mus_cal = 20
onion_cal = 40

print "\tDog \tBun \tKetchup\tMustard\tOnions\tCalories"
count = 1
for dog in [0, 1]:
 for bun in [0, 1]:
 for ketchup in [0, 1]:
 for mustard in [0, 1]:
 for onion in [0, 1]:
 total_cal = (bun * bun_cal)+(dog * dog_cal) + \
 (ketchup * ket_cal)+(mustard * mus_cal) + \
 (onion * onion_cal)
 print "#", count, "\t",
 print dog, "\t", bun, "\t", ketchup, "\t",
 print mustard, "\t", onion,
 print "\t", total_cal
 count = count + 1

Try running the program in listing 11.7 in IDLE. The output should look like this:

Listing 11.7 Hot dog program with calorie counter

Long lines of code
Did you notice the backslash (\) characters at the end of the lines in the previous code? If you
have a long expression that won’t fit on a single line, you can use the backslash character to tell
Python, “This line isn’t done. Treat whatever is on the next line as if it’s part of this line.” Here we
used two backslashes to split our long line into three short lines. The backslash is called a line-
continuation character, and several programming languages have them.

You can also put an extra set of parentheses around the whole expression, and then you can split
your expression over multiple lines without using the backslash, like this:

tot_cal = ((dog * dog_cal) + (bun * bun_cal) +
 (mustard * mus_cal) + (ketchup * ket_cal) +
 (onion * onion_cal))

Lists calories
for each part
of the hot dog

Prints
headings

Dog is the
outer loop

Nested loops

Calculates calories
in the inner loop

>>> =========================== RESTART ===========================
>>>
 Dog Bun Ketchup Mustard Onions Calories
1 0 0 0 0 0 0
2 0 0 0 0 1 40
3 0 0 0 1 0 20
Licensed to Deborah Christiansen <pedbro@gmail.com>

110 Hello World!
Just imagine how tedious it would be to work out the calories for all these combinations by
hand, even if you had a calculator to do the math. It’s way more fun to write a program to
figure it all out for you. Looping and a bit of math in Python make it a snap!

What did you learn?

In this chapter, you learned about

■ nested loops.
■ variable loops.
■ permutations and combinations.
■ decision trees.

Test your knowledge
1 How do you make a variable loop in Python?

2 How do you make a nested loop in Python?

4 0 0 0 1 1 60
5 0 0 1 0 0 80
6 0 0 1 0 1 120
7 0 0 1 1 0 100
8 0 0 1 1 1 140
9 0 1 0 0 0 120
10 0 1 0 0 1 160
11 0 1 0 1 0 140
12 0 1 0 1 1 180
13 0 1 1 0 0 200
14 0 1 1 0 1 240
15 0 1 1 1 0 220
16 0 1 1 1 1 260
17 1 0 0 0 0 140
18 1 0 0 0 1 180
19 1 0 0 1 0 160
20 1 0 0 1 1 200
21 1 0 1 0 0 220
22 1 0 1 0 1 260
23 1 0 1 1 0 240
24 1 0 1 1 1 280
25 1 1 0 0 0 260
26 1 1 0 0 1 300
27 1 1 0 1 0 280
28 1 1 0 1 1 320
29 1 1 1 0 0 340
30 1 1 1 0 1 380
31 1 1 1 1 0 360
32 1 1 1 1 1 400
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

111 CHAPTER 11 Nested and Variable Loops
3 What’s the total number of stars that will be printed by the
following code:

4 What will the output from the code in question #3 look like?

5 If a decision tree has four levels and two choices per level, how many possible choices
(paths through the decision tree) are there?

Try it out
1 Remember the countdown-timer program we created in chapter 8? Here it is, to

refresh your memory:

Modify the program to use a variable loop. The program should ask the user where the
countdown should start, like this:

2 Take the program you wrote in question #1, and have it print a row of stars beside
each number, like this:

(Hint: You probably need to use a nested loop.)

for i in range(5):
 for j in range(3):
 print '*',

import time
for i in range (10, 0, -1):
 print i
 time.sleep(1)
print "BLAST OFF!"

Countdown timer: How many
seconds? 4

4
3
2
1
BLAST OFF!

Countdown timer: How many
seconds? 4

4 * * * *
3 * * *
2 * *
1 *
BLAST OFF!
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 1 2

Collecting Things Together—Lists
We’ve seen that Python can store things in its memory and retrieve them, using names. So
far, we have stored strings and numbers (both integers and floats). Sometimes it’s useful to
store a bunch of things together in a kind of “group” or “collection.” Then you can do things
to the whole collection at once and keep track of groups of things more easily. One of the
kinds of collections is a list. In this chapter, we’re going to learn about lists—what they are
and how to create, modify, and use them.

Lists are very useful, and they’re used in many, many programs. We’ll use a lot of them in
the examples in upcoming chapters when we start doing graphics and game programming,
because the many graphical objects in a game are often stored in a list.

What’s a list?
If I asked you to make a list of the members of
your family, you might write something like this:

In Python, you’d write this:

If I asked you to write down your lucky numbers,
you might write this:

In Python, you’d write this:

family = ['Mom', 'Dad', 'Junior', 'Baby']

luckyNumbers = [2, 7, 14, 26, 30]
112

Licensed to Deborah Christiansen <pedbro@gmail.com>

113 CHAPTER 12 Collecting Things Together—Lists
Both family and luckyNumbers are examples of Python lists, and the individual things
inside lists are called items. As you can see, lists in Python aren’t much different from lists
you make in everyday life. Lists use square brackets to show where the list starts and ends,
and they use commas to separate the items inside.

Creating a list
Both family and luckyNumbers are variables. We said before that you can assign different
kinds of values to variables. We have already used them for numbers and strings, and they
can also be assigned a list.

You create a list like you create any other variable—by assigning something to it, just like
we did with luckyNumbers. You can also create an empty list, like this:

There are no items inside the square brackets, so the list is empty. But what good is an
empty list? Why would we want to create one?

Well, quite often, we don’t know ahead of time what’s going to be in the list. We don’t know
how many items will be in it, or what those items will be. We just know we’ll be using a list
to hold them. Once we have an empty list, the program can add things to it. So how do we
do that?

Adding things to a list
To add things to a list, you use append(). Try this in interactive mode:

You’ll get this result:

Try adding another item:

Remember that you have to create the list (empty or not) before you start adding things to
it. It’s like if you are making a cake: you can’t just start pouring ingredients together—you
have to get a bowl out first to pour them into. Otherwise you’ll end up with stuff all over
the counter!

>>> friends = []
>>> friends.append('David')
>>> print friends

newList = []

Makes a new, empty list
Adds an item,
"David", to the list

['David']

>>> friends.append('Mary')
>>> print friends
['David', 'Mary']
Licensed to Deborah Christiansen <pedbro@gmail.com>

114 Hello World!
What’s the dot?
Why did we use a dot between friends and
append()? Well, that starts getting into a
pretty big topic: objects. We’ll learn more
about objects in chapter 14, but for now,
here’s a simple explanation.

Many things in Python are objects. To do something with an object, you need the object’s
name (the variable name), then a dot, and then whatever you want to do to the object. So
to append something to the
friends list, you’d write this:

Lists can hold anything
Lists can hold any kind of data that Python can store. That includes numbers, strings,
objects, and even other lists. The items in a list don’t have to be the same type or kind of
thing. That means a single list can hold both numbers and strings, for example. A list could
look like this:

Let’s make a new list with something simple, like the letters of the alphabet, so it’s easier to
see what’s going on as we learn
about lists. Type this in interactive mode:

Zen, ve add
ze yolk.

Magnificent,
no?

friends.append(something)

my_list = [5, 10, 23.76, 'Hello', myTeacher, 7, another_list]

>>> letters = ['a', 'b', 'c', 'd', 'e']

Append means to add something
to the end.

When you append something to
a list, you add it to the end
of the list.
Licensed to Deborah Christiansen <pedbro@gmail.com>

115 CHAPTER 12 Collecting Things Together—Lists
Hey, you're
not getting off

that easy!

S

Getting items from a list
You can get single items from a list by their index number. The list index starts from 0, so
the first item in our list is letters[0].

Let’s try another one:

Why does the index start from 0, not 1?
That’s a question that a lot of programmers, engineers,
and computer scientists have argued about since
computers were invented. I’m not going to get in the
middle of that argument, so let’s just say the answer
is “because,” and move on . . .

Okay, okay! Have a look at “WHAT’S GOING ON IN THERE” to
see an explanation of why the index starts at 0 instead of 1.

You’ll quickly get used to indices starting at 0. It’s very common in programming.

>>> print letters[0]
a

>>> print letters[3]
d

Remember that computers use binary
digits or bits to store everything.
Back in the old days, those bits
were expensive. Each one had to be
hand-picked and carried by donkey
from the bit plantation…just kidding.
 But they were expensive.

Binary counting starts at 0.
So, to make the most efficient
 use of the bits and not waste any,

things like memory locations and
list indices started at 0 as well.

Hey, you
crazy burro!
Get back

here!
Licensed to Deborah Christiansen <pedbro@gmail.com>

116 Hello World!
“Slicing” a list
You can also use indices to get more than one item from a list at a time. This is called slicing
a list.

Similar to the range() in our for loops, slicing gets the items starting with the first index,
but stops before getting to the second index. That’s why we got back three items, not four,
in the previous example. One way to remember this is that the number of items you get
back is always the difference between the two index numbers. (4 – 1 = 3, and we got three
items back.)

Index means the position of something. The plural of index

is indices (but some people also use indexes as the plural

for index).

If you’re the fourth person in line, your index in line is

4. But if you’re the fourth person in a Python list, your

index is 3, because Python list indices start at 0!

>>> print letters[1:4]
['b', 'c', 'd']

I love

le toast with

la cheese!
Licensed to Deborah Christiansen <pedbro@gmail.com>

117 CHAPTER 12 Collecting Things Together—Lists
Here’s one other thing that is important to remember about slicing a list: What you get back
when you slice a list is another (usually smaller) list. This smaller list is called a slice of the
original list. The original list isn’t changed. The slice is a partial copy of the original.

Look at the difference here:

In the first case, we got back an item. In the second case, we got back a list containing the
item. It’s a subtle difference, but you need to know about it. In the first case, we used a sin-
gle index to get one item out of the list. In the second case, we used slice notation to get a
one-item slice of the list.

To really see the difference, try this:

Displaying the type of each one tells you for certain that in one case you get a single item (a
string, in this case), and in the other case you get a list.

The smaller list you get back when you slice a list is a copy of items from the original list.
That means you can change it and the original list won’t be affected.

Slice shorthand

There are some shortcuts you can take when using slices. They don’t really save you much
typing, but programmers are a lazy bunch, so they use shortcuts a lot. I want you to know
what the shortcuts are, so you can recognize them when you see them in other people’s
code and understand what’s going on. That’s important, because looking at other people’s
code and trying to understand it is a good way to learn a new programming language, or
programming in general.

If the slice you want includes the start of the list, the shortcut is to use a colon followed by
the number of items you want, like this:

Notice that there is no number before the colon. This will give you everything from the start
of the list up to (but not including) the index you specify.

You can do something similar to get the end of a list:

>>> print letters[1]
b
>>> print letters[1:2]
['b']

>>> print type(letters[1])
<type 'str'>
>>> print type(letters[1:2])
<type 'list'>

>>> print letters[:2]
['a', 'b']

>>> letters[2:]
['c', 'd', 'e']
Licensed to Deborah Christiansen <pedbro@gmail.com>

118 Hello World!
Using a number followed by a colon gives you everything from the index you specify to the
end of the list.

If you don’t put any numbers in,
and just use a colon, you get the whole list:

Remember that I said that slices make a copy of the original? So letters[:] makes a copy
of the whole list. This is handy if you want to make some changes to a list but keep the orig-
inal unchanged.

Modifying items
You can use the index to change one of the list items:

But you can’t use the index to add new items to the list. Right now, there are five items in
the list, with indices from 0 to 4.
So we could not do something like this:

It would not work. (Try it if you want.) It’s like trying to change something that isn’t there
yet. To add items to a list, you have to do something else, and that’s where we’re going
next. But before we do, let’s
change our list back to the way it was:

Other ways of adding to a list
We already saw how to add things to a list using append(). But there are other ways. In fact,
there are three methods for adding things to a list: append(), extend(), and insert().

■ append() adds one item to the end of the list.
■ extend() adds multiple items to the end of the list.
■ insert() adds one item somewhere in the list, not necessarily at the end. You tell it

where to add the item.

Adding to the end: append()
We already saw how append()
works. It adds one item to the end of a list:

>>> letters[:]
['a', 'b', 'c', 'd', 'e']

>>> print letters
['a', 'b', 'c', 'd', 'e']
>>> letters[2] = 'z'
>>> print letters
['a', 'b', 'z', 'd', 'e']

letters[5] = 'f'

>>> letters[2] = 'c'
>>> print letters
['a', 'b', 'c', 'd', 'e']

>>> letters.append('n')
>>> print letters
['a', 'b', 'c', 'd', 'e', 'n']
Licensed to Deborah Christiansen <pedbro@gmail.com>

119 CHAPTER 12 Collecting Things Together—Lists
Let’s add one more:

Notice that the letters are not in order. That’s because append() adds the item to the end of
the list. If we want the items in order, we’ll have to sort them. We’ll get to sorting very soon.

Extending the list: extend()

extend() adds several
items to the end of a list:

Notice that what’s inside the round brackets of the extend() method is a list. A list has
square brackets, so for extend(), you could have both round and square brackets.

Everything in the list you give to extend() gets added to the end of the original list.

Inserting an item: insert()

insert() adds a single item somewhere in the list. You tell it at what position in the list you
want the item added:

Here, we added the letter z at index 2. Index 2 is the third position in the list (because the
indices start at 0). The letter that used to be in the third position, c, got bumped over by
one place, to the fourth position. Every other item in the list also got bumped one position.

The difference between append() and extend()

Sometimes append() and extend() look very similar, but they do different things. Let’s go
back to our original list. First, try
using extend() to add three items:

Now, we’ll try to use
append() to do the same thing:

>>> letters.append('g')
>>> print letters
['a', 'b', 'c', 'd', 'e', 'n', 'g']

>>> letters.extend(['p', 'q', 'r'])
>>> print letters
['a', 'b', 'c', 'd', 'e', 'n', 'g', 'p', 'q', 'r']

>>> letters.insert(2, 'z')
>>> print letters
['a', 'b', 'z', 'c', 'd', 'e', 'n', 'g', 'p', 'q', 'r']

>>> letters = ['a','b','c','d','e']
>>> letters.extend(['f', 'g', 'h'])
>>> print letters
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

>>> letters = ['a', 'b', 'c', 'd', 'e']
>>> letters.append(['f', 'g', 'h'])
>>> print letters
['a', 'b', 'c', 'd', 'e', ['f', 'g', 'h']]
Licensed to Deborah Christiansen <pedbro@gmail.com>

120 Hello World!
What happened here? Well, we said before that append() adds one item to a list. How did it
add three? It didn’t. It added one item, which happens to be another list containing three items.
That’s why we got the extra set of square brackets inside our list. Remember that a list can
hold anything, including other lists. That’s what we’ve got.

insert() works the same way as append(), except that you tell it where to put the new
item. append() always puts it at the end.

Deleting from a list
How do we delete or remove things from a list? There are three ways: remove(), del, and
pop().

Deleting with remove()

remove() deletes the item you
choose from the list and throws it away:

You don’t need to know where in the list the item is. You just need to know it’s there
somewhere. If you try to remove something that isn’t in the list, you’ll get an error:

So how can you find out if a list contains a certain item? That’s coming right up. First, let’s
look at the other ways to delete something from a list.

Deleting with del

del lets you delete an item
from the list using its index, like this:

Here, we deleted the fourth item (index 3), which was the letter d.

>>> letters = ['a', 'b', 'c', 'd', 'e']
>>> letters.remove('c')
>>> print letters
['a', 'b', 'd', 'e']

>>> letters.remove('f')

Traceback (most recent call last):
 File "<pyshell#32>", line 1, in -toplevel-
 letters.remove('f')
ValueError: list.remove(x): x not in list

>>> letters = ['a', 'b', 'c', 'd', 'e']
>>> del letters[3]
>>> print letters
['a', 'b', 'c', 'e']
Licensed to Deborah Christiansen <pedbro@gmail.com>

121 CHAPTER 12 Collecting Things Together—Lists
Deleting with pop()
pop() takes the last item off the list and gives it back to you. That means you can assign it a
name, like this:

You can also use pop()
with an index, like this:

Here, we popped the second letter (index 1), which was b. The item we popped was
assigned to second, and it was also removed from letters.

With nothing inside the parentheses, pop() gives you the last item and removes it from the
list. If you put a number in the parentheses, pop(n) gives you the item at that index and
removes it from the list.

Searching a list
Once we have several items in a list, how do we find them? Two things you’ll often need to
do with a list are

■ find out whether an item is in a list or not.
■ find out where an item is in the list (its index).

The in keyword
To find out whether something is in
a list, you use the in keyword, like this:

The 'a' in letters part is a Boolean or logical expression. It’ll return the value True if a is in
the list, and False otherwise.

>>> letters = ['a', 'b', 'c', 'd', 'e']
>>> lastLetter = letters.pop()
>>> print letters
['a', 'b', 'c', 'd']
>>> print lastLetter
e

>>> letters = ['a', 'b', 'c', 'd', 'e']
>>> second = letters.pop(1)
>>> print second
b
>>> print letters
['a', 'c', 'd', 'e']

if 'a' in letters:
 print "found 'a' in letters"
else:
 print "didn't find 'a' in letters"

Boolean is a kind of arithmetic that only uses two
values: 1 and 0, or true and false. It was invented by
mathematician George Boole, and it is used when combining
true and false conditions (represented by 1 and 0)
together with and, or, and not, like we saw in Chapter 7.
Licensed to Deborah Christiansen <pedbro@gmail.com>

122 Hello World!
You can try this in interactive mode:

This is telling us that the list called letters does have an item a, but it does not have an
item s. So a is in the list, and s isn’t in the list. Now you can combine in and remove(),
and write something that won’t give you
an error, even if the value isn’t in the list:

This code only removes the value from the list if the value is in the list.

Finding the index

To find where in the list an item is located, you use the index() method,
like this:

So we know that d has index 3, which means it’s the fourth item in the list.

Just like remove(), index() will give you an error if the value isn’t found in the list, so it’s a
good idea to use it with in, like this:

Looping through a list
When we first talked about loops, we saw that loops iterate through a list of values. We also
learned about the range() function and used it as a shortcut for generating lists of num-
bers for our loops. You saw that range() gives you a list of numbers.

But a loop can iterate through any list—it doesn’t have to be a list of numbers. Let’s say
we wanted to print our list of letters with one item on each line. We could do something
like this:

>>> 'a' in letters
True
>>> 's' in letters
False

if 'a' in letters:
 letters.remove('a')

>>> letters = ['a', 'b', 'c', 'd', 'e']
>>> print letters.index('d')
3

if 'd' in letters:
 print letters.index('d')

>>> letters = ['a', 'b', 'c', 'd', 'e']
>>> for letter in letters:
 print letter

a
b
c
d
e
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

123 CHAPTER 12 Collecting Things Together—Lists
This time, our loop variable is letter. (Before, we used loop variables like looper or i, j, and
k.) The loop iterates over (loops through) all the values in the list, and each time through,
the current item is stored in the loop variable, letter, and then is displayed.

Sorting lists
Lists are an ordered type of collection. This means the items in a list have a certain order, and
each one has a place, its index. Once you have put items in a list in a certain order, they stay
in that order unless you change the list with insert(), append(), remove(), or pop(). But
that order might not be the order you want. You might want a list sorted before you use it.

To sort a list, you use the sort() method.

sort() automatically sorts strings alphabetically and numbers numerically, from smallest to
largest.

It’s important to know that sort() modifies the list in place. That means it changes the orig-
inal list you give it. It does not create
a new, sorted list. That means you can’t do this:

If you do, you’ll get “None.”
You have to do it in two steps, like this:

Sorting in reverse order

There are two ways to get a list sorted in reverse order. One is to sort the list the normal
way, and then reverse
the sorted list, like this:

Here we saw a new list method called reverse(), which reverses the order of items in a list.

The other way is to add a parameter to sort() to make it sort in descending order (from
largest to smallest).

>>> letters = ['d', 'a', 'e', 'c', 'b']
>>> print letters
['d', 'a', 'e', 'c', 'b']
>>> letters.sort()
>>> print letters
['a', 'b', 'c', 'd', 'e']

>>> print letters.sort()

>>> letters.sort()
>>> print letters

>>> letters = ['d', 'a', 'e', 'c', 'b']
>>> letters.sort()
>>> print letters
['a', 'b', 'c', 'd', 'e']
>>> letters.reverse()
>>> print letters
['e', 'd', 'c', 'b', 'a']

>>> letters = ['d', 'a', 'e', 'c', 'b']
>>> letters.sort (reverse = True)
>>> print letters
['e', 'd', 'c', 'b', 'a']
Licensed to Deborah Christiansen <pedbro@gmail.com>

124 Hello World!
new_list = original_list

Hey,
when you made

a copy of the list,
you used

new_list = original_list[:]

instead
of just

Why did
we need the

extra slice thing
at the end?

The parameter is called reverse, and it does exactly what you’d expect—it makes the list
sort in reverse order.

Remember that all of the sorting and reversing we just talked about modifies the original
list. That means your original order is lost. If you want to preserve the original order and
sort a copy of the list, you could use slice notation, which we talked about earlier in this
chapter, to make a copy—another list equal to the original:

I’m very glad you asked that, Carter. If
you remember wayyyyy back when
we first talked about names and
variables (in chapter 2), we said that,

when you do something like name1 =
name2, you’re just making a new
name for the same thing. Remem-
ber this picture:

So giving something another name just adds a new
tag to the same thing. In Carter’s example, new_list
and original_list both refer to the same list. You
can change the list (for exam-
ple, you can sort it) by using
either name. But there is still
only one list. It looks like this:

>>> original_list = ['Tom', 'James', 'Sarah', 'Fred']
>>> new_list = original_list[:]
>>> new_list.sort()
>>> print original_list
['Tom', 'James', 'Sarah', 'Fred']
>>> print new_list
['Fred', 'James', 'Sarah', 'Tom']

original = [5,2,3,1,4]

new = original

original

original
new

original
new

5,2,3,1,4

5,2,3,1,4

1,2,3,4,5
new.sort()
Licensed to Deborah Christiansen <pedbro@gmail.com>

125 CHAPTER 12 Collecting Things Together—Lists
We sorted new, but original also got sorted, because new and original are just two differ-
ent names for the same list. There are not two different lists.

You can, of course, move the new tag to a whole new list, like this:

That’s the same thing we did with strings and numbers in chapter 2.

This means that, if you really want to make a copy of a list, you need to do something differ-
ent from new = original. The easiest way to do this is to use slice notation, like I did above:
new = original[:]. This means “copy everything in the list, from the first item to the last
item.” Then you get this:

There are now two separate lists. We made a copy of the original and called it new. Now if
we sort one list, the other one won’t be sorted.

Another way to sort—sorted()

There is another way to get a sorted copy of a list without changing the order of the origi-
nal list. Python has a function called
sorted() for that purpose. It works like this:

The sorted() function gives you a sorted copy of the original list.

original = [5,2,3,1,4]

new = original

original

original
new

original

new

5,2,3,1,4

5,2,3,1,4

5,2,3,1,4

6,7,8,9,10

new = [6,7,8,9,10]

original = [5,2,3,1,4]

new = original [:]

original

new 5,2,3,1,4

5,2,3,1,4

>>> original = [5, 2, 3, 1, 4]
>>> newer = sorted(original)
>>> print original
[5, 2, 3, 1, 4]
>>> print newer
[1, 2, 3, 4, 5]
Licensed to Deborah Christiansen <pedbro@gmail.com>

126 Hello World!
Mutable and immutable
If you remember back to chapter 2, we said that you couldn’t actually change a number or
string, you could only change what number or string a name was assigned to (in other
words, move the tag). But lists are one of the types in Python that can be changed. As we
just saw, lists can have items appended or deleted, and the items can be sorted or reversed.

These two different kinds of variables are called mutable and immutable. Mutable just means
“able to be changed” or “changeable.” Immutable means “not able to be changed” or
“unchangeable.” In Python, numbers and strings are immutable (cannot be changed), and
lists are mutable (can be changed).

Tuple—an immutable list

There are times when you don’t want a list to be changeable. So, is there an immutable kind
of list in Python? The answer is yes. There is a type called a tuple, which is exactly that, an
immutable (unchangeable)
 list. You make one like this:

You use round brackets, instead of the square ones that lists use.

Because tuples are immutable (unchangeable), you can’t do things like sort them or append
or delete items. Once you create a tuple with a set of items, it stays that way.

Lists of lists: tables of data
When thinking about how data is stored in a program, it’s useful to visualize it.

A variable has a single value.

A list is like a row of values strung together.

Sometimes you need a table with rows and columns.

my_tuple = ("red", "green", "blue")

myFriends KimCurtis ShaunJennKarla

classMarks Math Science Reading Spelling

55

65

63

61

97 95

77 81

72

88

67

92

Tom

Joe

Beth

myTeacher Mr. Wilson
Licensed to Deborah Christiansen <pedbro@gmail.com>

127 CHAPTER 12 Collecting Things Together—Lists
How can we save a table of data? We already know that we can make a list to hold several
items. We could put each student’s marks in a list, like this:

or we could use a list for each subject, like this:

But we might want to collect all the data together in a single data structure.

To make a single data structure for our class marks, we could do something
like this:

This gives us a list of items, where each item is itself a list. We have created a list of lists. Each
of the items in the classMarks list is itself a list.

We could also have created classMarks directly, without first creating joeMarks, tomMarks,
and bethMarks, like this:

Now let’s try displaying our data structure. classMarks has three items, one for each
student. So we can just loop through them using in:

>>> classMarks = [[55,63,77,81], [65,61,67,72], [97,95,92,88]]
>>> print classMarks
[[55, 63, 77, 81], [65, 61, 67, 72], [97, 95, 92, 88]]

>>> joeMarks = [55, 63, 77, 81]
>>> tomMarks = [65, 61, 67, 72]
>>> bethMarks = [97, 95, 92, 88]

>>> mathMarks = [55, 65, 97]
>>> scienceMarks = [63, 61, 95]
>>> readingMarks = [77, 67, 92]
>>> spellingMarks = [81, 72, 88]

A data structure is a way of collecting, storing, or representing
the data in a program. Data structures can include variables,
lists, and some other things we haven’t talked about yet. The
term data structure really refers to the way the data is orga-
nized in a program.

>>> classMarks = [joeMarks, tomMarks, bethMarks]
>>> print classMarks
[[55, 63, 77, 81], [65, 61, 67, 72], [97, 95, 92, 88]]

>>> for studentMarks in classMarks:
 print studentMarks

[55, 63, 77, 81]
[65, 61, 67, 72]
[97, 95, 92, 88]
Licensed to Deborah Christiansen <pedbro@gmail.com>

128 Hello World!
Here we looped through the list called classMarks. The loop variable is studentMarks. Each
time through the loop, we print one item in the list. That one item is the marks for a single
student, which is itself a list. (We created the student lists above.)

Notice that this looks very similar to the table on the previous page. So we have come up
with a data structure to hold all our data in one place.

Getting a single value from the table

How do we get access to values in this table (our list of lists)? We already know that the first
student’s marks (joeMarks) are in a list that is the first item in classMarks.
Let’s check that:

classMarks[0] is a list of Joe’s marks in the four subjects. Now we want a single value from
classMarks[0]. How do we do that? We use a second index.

If we want the third of his marks (his Reading mark), which has index 2, we’d
do this:

This gave us the first item in classMarks (index 0), which was the list of Joe’s marks, and the
third item in that list (index 2), which was his Reading mark. When you see a name with two
sets of square brackets, like classMarks[0][2], that is usually referring to a list of lists.

The classMarks list doesn’t really know about the names Joe, Tom, and Beth, or the subjects
Math, Science, Reading, and Spelling. We labeled them that way because we know
what we intended to store in the list. But to Python, they’re just numbered places in a list.
This is just like the numbered mailboxes at a post office. They don’t have names on them,
just numbers. The postmaster keeps track of what belongs where, and you know which
box is yours.

>>> print classMarks[0]
[55, 63, 77, 81]

>>> print classMarks[0][2]
77

Math Science Reading Spelling

55

65

63

61

97 95

77 81

72

88

67

92

Tom

Joe

Beth

classMarks
Licensed to Deborah Christiansen <pedbro@gmail.com>

129 CHAPTER 12 Collecting Things Together—Lists
A more accurate way to label the classMarks table would be like this:

Now it’s easier to see that the mark 77 is stored in classMarks[0][2].

If we were writing a program using classMarks to store our data, we’d have to keep track of
which data was stored in which row and column. Just like the postmaster, we’d have the job
of keeping track of which slot belongs to which piece of data.

What did you learn?

In this chapter, you learned

■ what lists are.
■ how to add things to a list.
■ how to delete things from a list.
■ how to find out if a list contains a certain value.

You mind?
I’m trying
to work

here.

GRRRRRR!

[0] [1] [2] [3]

55

65

63

61

97 95

77 81

72

88

67

92

classMarks[0]

classMarks[1]

classMarks[2]

classMarks
Licensed to Deborah Christiansen <pedbro@gmail.com>

130 Hello World!
■ how to sort a list.
■ how to make a copy of a list.
■ about tuples.
■ about lists of lists.

Test your knowledge
1 What are two ways to add something to a list?
2 What are two ways to remove something from a list?
3 What are two ways to get a sorted copy of a list, without changing the original list?
4 How do you find out whether a certain value is in a list?
5 How do you find out the location of a certain value in a list?
6 What’s a tuple?
7 How do you make a list of lists?

8 How do you get a single value from a list of lists?

Try it out
1 Write a program to ask the user for five names. The program should store the

names in a list, and print them all out at the end. It should look something
like this:

2 Modify the program from question #1 to print both the original list of names and a
sorted list.

3 Modify the program from question #1 to display only the third name the user typed in,
like this:

4 Modify the program from question #1 to let the user replace one of the names. She
should be able to choose which name to replace, and then type in the new name.
Finally, display the new list like this:

Enter 5 names:
Tony
Paul
Nick
Michel
Kevin
The names are Tony Paul Nick Michel Kevin

The third name you entered is: Nick

Enter 5 names:
Tony
Paul
Nick
Michel
Kevin
The names are Tony Paul Nick Michel Kevin
Replace one name. Which one? (1-5): 4
New name: Peter
The names are Tony Paul Nick Peter Kevin
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 1 3

Functions
Pretty soon, our programs are going to start getting bigger and more complicated. We need
some ways to organize them in smaller pieces so they’re easier to write and keep track of.

There are three main ways to break programs into smaller parts. Functions are like building
blocks of code that you can use over and over again. Objects are a way of describing pieces
of your program as self-contained units. Modules are just separate files that contain parts of
your program. In this chapter, we’ll learn about functions, and in the next two chapters,
we’ll learn about objects and modules. Then we’ll have all the basic tools we need to start
using graphics and sounds, and to create games.

Functions—the building blocks
In the simplest of terms, a function is just a chunk of
code that does something. It’s a small piece that
you can use to build a bigger program. You can put
the piece together with other pieces, just like
building something with toy blocks.

You create or define a function with Python’s def
keyword. You then use or call the function by using its name. Let’s start with a
simple example.

Creating a function

The code in listing 13.1 defines a function and then uses it. This function prints a mailing
address to the screen.
131

Licensed to Deborah Christiansen <pedbro@gmail.com>

132 Hello World!
 def printMyAddress():
 print “Warren Sande”
 print “123 Main Street”
 print “Ottawa, Ontario, Canada”
 print “K2M 2E9”
 print

 printMyAddress()

 print “Done the function”

1

32

4

def printMyAddress():
 print "Warren Sande"
 print "123 Main Street"
 print "Ottawa, Ontario, Canada"
 print "K2M 2E9"
 print

printMyAddress()

In line 1, we define a function, using the def keyword. We give the name of the function fol-
lowed by parentheses “()” and then a colon:

I will explain what the parentheses are for soon. The colon tells Python that a block of code
is coming next (just like for loops, while loops, and if statements).

Then, we have the code that makes up the function.

In the last line of listing 13.1, we have the main program: we call the function
by giving its name with the parentheses. This is where the program starts

running. This one line makes the
program run the code in the
function that we just defined.

When the main program calls a
function, it’s like the function is

helping the main program get its job done.

The code inside the def block isn’t part of
the main program, so when the pro-
gram runs, it skips over that part and
starts with the first line that isn’t
inside a def block. The figure on the
right shows what happens when
you call a function. I added one
extra line at the end of the program that
prints a message after the function is done.

These are the steps in the figure above:

1 Start here. This is the beginning of the main program.

2 When we call the function, we jump to the first line of code in the function.

Listing 13.1 Creating and using a function

Defines (creates)
the function

Calls (uses)
the function

def printMyAddress():
Licensed to Deborah Christiansen <pedbro@gmail.com>

133 CHAPTER 13 Functions
3 Execute each line of the function.

4 When the function is finished, we continue where we left off in the main program.

Calling a function
Calling a function means running the code that is inside the function. If we define a function
but never call it, that code will never run.

We call a function by using its name and a set of parentheses. Sometimes there’s something
in the parentheses and sometimes not.

Try running the program in listing 13.1 and see what happens. You should see something
like this:

Now, that’s exactly the same output we’d have gotten from a simpler program that looks
like this:

So why did we go to the trouble of making things more complex and using a function in
listing 13.1?

The main reason to use functions is that, once you have defined them, you can use them
over and over again just by calling them. So if we wanted to print the address five times, we
could do this:

And the output would be

>>> =================== RESTART ===================
>>>
Warren Sande
123 Main Street
Ottawa, Ontario, Canada
K2M 2E9

>>>

print "Warren Sande"
print "123 Main Street"
print "Ottawa, Ontario, Canada"
print "K2M 2E9"
print

printMyAddress()
printMyAddress()
printMyAddress()
printMyAddress()
printMyAddress()

Warren Sande
123 Main Street
Ottawa, Ontario, Canada
K2M 2E9

Warren Sande
123 Main Street
Ottawa, Ontario, Canada
K2M 2E9
Licensed to Deborah Christiansen <pedbro@gmail.com>

134 Hello World!

S

Like that argument
I had with you the

other day?

Well, I could do
the same thing with
a loop instead of
using a function!

You might say that you could do the same thing with a loop instead of a function.

I knew that was coming. . . . In this case, you could
do the same thing with a loop. But if you wanted

to print the address at different places in a pro-
gram instead of all at once, a loop wouldn’t work.

Another reason to use a function is that you can make it behave
 differently each time it runs. We’re going to see how to do that in the

 next section.

Passing arguments to a function
Now it’s time to see what the parentheses are for: arguments!

No, Carter, computers are very agreeable—they never argue.
In programming, the term argument means a piece of
information you give to a function. We say that you pass

the argument to the function.

Warren Sande
123 Main Street
Ottawa, Ontario, Canada
K2M 2E9

Warren Sande
123 Main Street
Ottawa, Ontario, Canada
K2M 2E9

Warren Sande
123 Main Street
Ottawa, Ontario, Canada
K2M 2E9
Licensed to Deborah Christiansen <pedbro@gmail.com>

135 CHAPTER 13 Functions
Imagine that you wanted to be able to use the address-printing function for any member of
your family. The address would be the same for everybody, but the name would be different
each time. Instead of having the name hard-coded as “Warren Sande” in the function, you
can make it a variable. The variable is passed to the function when you call it.

An example is the easiest way to see how this works. In listing 13.2, I modified the address-
printing function to use one argument for the name. Arguments are named, just like other
variables. I called this variable myName.

When the function runs, the variable myName gets filled in with whatever argument we pass
to the function when we call it. We pass the argument to the function by putting it inside
the parentheses when we call the function.

So, in listing 13.2, the argument myName is assigned the value “Carter Sande”.

def printMyAddress(myName):
 print myName
 print "123 Main Street"
 print "Ottawa, Ontario", Canada
 print "K2M 2E9"
 print

printMyAddress("Carter Sande")

If we run the code in listing 13.2, we get exactly what
you’d expect:

Listing 13.2 Passing an argument to a function

CALLER
FUNCTION

Passes myName argument
to the functionPrints the name

Passes “Carter Sande” as the
argument to the function; the
variable myName inside the
function will have the value
“Carter Sande”

>>> ===================== RESTART =====================
>>>
Carter Sande
123 Main Street
Ottawa, Ontario, Canada
K2M 2E9

>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

136 Hello World!
What if I
wanted to send

letters to everyone
on my street?

The street
numbers would have

to be different
every time.

This looks the same as the output we got from the first program, when we didn’t use
arguments. But now, we can make the address print differently every time,
like this:

And now, the output is different each time the function is called. The name changes,
because we pass the function a different name each time.

Notice that whatever value we passed to the function was used inside the function and was
printed as the name part of the address.

If there’s more than one thing that is different every
time the function runs, you need more than one argument. That’s what
 we’re going to talk about next.

>>> ========================== RESTART ==========================
>>>
Carter Sande
123 Main Street
Ottawa, Ontario, Canada
K2M 2E9

Warren Sande
123 Main Street
Ottawa, Ontario, Canada
K2M 2E9

Kyra Sande
123 Main Street
Ottawa, Ontario, Canada
K2M 2E9

Patricia Sande
123 Main Street
Ottawa, Ontario, Canada
K2M 2E9

printMyAddress("Carter Sande")
printMyAddress("Warren Sande")
printMyAddress("Kyra Sande")
printMyAddress("Patricia Sande")
Licensed to Deborah Christiansen <pedbro@gmail.com>

137 CHAPTER 13 Functions
Functions with more than one argument
In listing 13.2, our function had a single argument. But functions can have more than one
argument. In fact, they can have as many as you need. Let’s try an example with two argu-
ments, and I think you’ll get the idea. Then you can keep adding as many arguments as you
need for the functions in your programs.

CALLER FUNCTION

There’s another term you’ll hear when talking about passing
things to a function: parameters. Some people say that the
terms argument and parameter are interchangeable. So you
could say,
“I passed two parameters to that function,” or
“I passed two arguments to that function.”

Some people say that you should use argument when talking
about the passing part (when you call the function), and
parameter when talking about the receiving part (what is
inside the function).

CALLER

Here’s an
argument
for you!

FUNCTION

Thanks for the
parameter!

As long as you use argument or parameter to talk about pass-
ing values to functions, programmers will know what you mean.
Licensed to Deborah Christiansen <pedbro@gmail.com>

138 Hello World!
To send Carter’s letters to everyone on the street, our address-printing function will need
two arguments: one for the name, and one for the house number. Listing 13.3 shows what
this would look like.

def printMyAddress(someName, houseNum):
 print someName
 print houseNum,
 print "Main Street"
 print "Ottawa, Ontario, Canada"
 print "K2M 2E9"
 print

printMyAddress("Carter Sande", "45")
printMyAddress("Jack Black", "64")
printMyAddress("Tom Green", "22")
printMyAddress("Todd White", "36")

When we use multiple arguments (or parameters), we separate them with a comma, just like
items in a list, which brings us to our next topic. . . .

How many is too many?

I said before that you can pass as many arguments as you want to a function. That is true,
but if your function has more than five or six arguments, it might be time to think of doing
things another way. One thing you can do is collect all the arguments in a list and then pass
the list to the function. That way, you’re passing a single variable (the list variable), which
just happens to contain a bunch of values. It might make your code easier to read.

Listing 13.3 Function with two arguments

Uses two variables,
for two arguments

Comma makes house
number and street
print on the same line

Both variables get
printed

Calls the function
passing it two
parameters

CALLER

FUNCTION

ARGU
MEN

TS
Licensed to Deborah Christiansen <pedbro@gmail.com>

139 CHAPTER 13 Functions
Functions that return a value
So far, our functions have just been doing stuff for us. But a very useful thing about func-
tions is that they can also send you something back.

We have seen that you can send information (arguments) to functions, but functions can
also send information back to the caller. The value that comes back from a function is called
the result or return value.

Returning a value
The way you make a function return a value is to use the Python return keyword inside the
function. Here’s an example:

This will send the value taxTotal back out to the part of the program that called the
function.

But when it is sent back, where does it go? Returned values go back to whatever code
called the function. Here’s an example:

The calculateTax function will return the value 8.4694, and that value will be assigned to
totalPrice.

You can use a function to return values anywhere you’d use an expression. You can
assign the return value to a variable (as we just did), use it in another expression, or print
it, like this:

CALLER

FUNCTION

CALLER

FUNCTION

def calculateTax(price, tax_rate):
 taxTotal = price + (price * tax_rate)
 return taxTotal

totalPrice = calculateTax(7.99, 0.06)

print calculateTax(7.99, 0.06)
8.4694
total = calculateTax(7.99, 0.06) + calculateTax(6.59, 0.08)
Licensed to Deborah Christiansen <pedbro@gmail.com>

140 Hello World!
You can also do nothing with the returned value, like this:

In the last example, the function ran and calculated the total with tax, but we didn’t use the
result.

Let’s make a program with a function that returns a value. In listing 13.4, the
calculateTax() function returns a value. You give it the price before tax and the tax rate,
and it returns the price after tax. We’ll assign this value to a variable. So instead of just using
the function’s name like we did before, we need a variable, an equal sign (=), and then the
function's name. The variable will be assigned the result that the calculateTax() function
gives back.

def calculateTax(price, tax_rate):
 total = price + (price * tax_rate)
 return total

my_price = float(raw_input ("Enter a price: "))

totalPrice = calculateTax(my_price, 0.06)
print "price = ", my_price, " Total price = ", totalPrice

Try typing in, saving, and running the program in listing 13.4. Notice that the tax rate is
fixed as 0.06 (which equals 6 percent tax) in the code. If the program had to handle differ-
ent tax rates, you could have the user enter the tax rate as well as the price.

Variable scope
You might have noticed that we have variables
outside the function, like totalPrice, as well as
variables inside the function, like total. These
are just two names for the same thing. It’s just
like back in chapter 2, when we had YourTeacher
= MyTeacher.

In our calculateTax example, totalPrice and total are two tags attached to the same
thing. With functions, the names inside the function are only created when the function
runs. They don’t even exist before the function runs or after it has finished running. Python
has something called memory management that does this automatically. Python creates new
names to use inside the function when it runs, and then deletes them when the function is fin-
ished. That last part is important: when the function is done running, any names inside it
cease to exist.

Listing 13.4 Creating and using a function that returns a value

calculateTax(7.49, 0.07)

Function
calculates tax
and returns total

Sends result back
to the main
program

Calls function and stores
the result in totalPrice

MyTeacher

You
rTea

cher
Licensed to Deborah Christiansen <pedbro@gmail.com>

141 CHAPTER 13 Functions
While the function is running, the names outside the function are sort of on hold—they’re
not being used. Only the names inside the function are being used. The part of a program
where a variable is used (or available to be used) is called its scope.

Local variables

In listing 13.4, the variables price and total were only used within the function. We say
that price, total, and tax_rate are in the scope of the calculateTax() function. Another
term that is used is local. The price, total, and tax_rate variables are local variables in the
calculateTax() function.

One way to see what this means is to add a line to the program in listing 13.4 that tries to
print the value of price somewhere outside the function. Listing 13.5 does this.

def calculateTax(price, tax_rate):
 total = price + (price * tax_rate)
 return total

my_price = float(raw_input ("Enter a price: "))

totalPrice = calculateTax(my_price, 0.06)
print "price = ", my_price, " Total price = ", totalPrice
print price

If you run this, you’ll get an error that looks like this:

The last line of the error message tells the story: when we’re not inside the calculateTax()
function, the variable price is not defined. It only exists while the function is running. When
we tried to print the value of price from outside the function (when the function was not
running), we got an error.

Global variables

In contrast to the local variable price, the variables my_price and totalPrice in listing 13.5
are defined outside the function, in the main part of the program. We use the term global for
a variable that has a wider scope. In this case, wider means the main part of the program,
not what’s inside the function. If we expanded the program in listing 13.5, we could use the
variables my_price and totalPrice in another place in the program, and they would still

Listing 13.5 Trying to print a local variable

Traceback (most recent call last):
 File "C:/.../Listing_13-5.py", line 11, in <module>
 print price
NameError: name 'price' is not defined

Defines a function to
calculate tax and
return the total

Calls the function and
stores and prints the result

Tries to print price

This line explains
the error
Licensed to Deborah Christiansen <pedbro@gmail.com>

142 Hello World!
have the values we gave them earlier. They would still be in scope. Because we can use them
anywhere in the program, we say they’re global variables.

In listing 13.5, when we were outside the function and tried to print a variable that was
inside the function, we got an error. The variable didn’t exist; it was out of scope. What do
you think will happen if we do the opposite: try to print a global variable from inside the
function?

Listing 13.6 tries to print the variable my_price from inside the calculateTax() function.
Try it and see what happens.

def calculateTax(price, tax_rate):
 total = price + (price * tax_rate)
 print my_price
 return total

my_price = float(raw_input ("Enter a price: "))

totalPrice = calculateTax(my_price, 0.06)
print "price = ", my_price, " Total price = ", totalPrice

Did it work? Yes! But why?

When we started talking about variable scope, I told you that Python uses memory man-
agement to automatically create local variables when a function runs. The memory man-
ager does some other things, too. In a function, if you use a variable name that has been
defined in the main program, Python will let you use the global variable as long as you
don’t try to change it.

So you can do this:

or this:

because neither of these changes my_price.

If any part of the function tries to change the variable, Python creates a new local variable
instead. So if you do this,

then my_price is a new local variable that Python creates when the function runs.

In the example in listing 13.6, the value that was printed was the global variable my_price,
because the function didn’t change it. The program in listing 13.7 shows you that, if you do

Listing 13.6 Using a global variable inside a function

Tries to print
my_price

print my_price

your_price = my_price

my_price = my_price + 10
Licensed to Deborah Christiansen <pedbro@gmail.com>

143 CHAPTER 13 Functions
try to change the global variable inside the function, you get a new, local variable instead.
Try running it and see.

def calculateTax(price, tax_rate):
 total = price + (price * tax_rate)
 my_price = 10000
 print "my_price (inside function) = ", my_price
 return total

my_price = float(raw_input ("Enter a price: "))

totalPrice = calculateTax(my_price, 0.06)
print "price = ", my_price, " Total price = ", totalPrice
print "my_price (outside function) = ", my_price

If you run the code in listing 13.7, the output will look like this:

As you can see, there are now two different variables called my_price, with different values.
One is the local variable inside the calculateTax() function that we set to 10,000. The
other is the global variable we defined in the main program to capture the user’s input,
which was 7.99.

Forcing a global
In the last section, we saw that, if you try to change the value of a global variable from inside
a function, Python creates a new local variable instead. This is meant to prevent functions
from accidentally changing global variables.

However, there are times when you want to change a global variable from inside a function.
So how do you do it?

Python has a keyword, global, that lets you do that. You use it like this:

Listing 13.7 Trying to modify a global variable inside a function

>>> ========================== RESTART ==========================
>>>
Enter a price: 7.99
my_price (inside function) = 10000
price = 7.99 Total price = 8.4694
my_price (outside function) = 7.99
>>>

def calculateTax(price, tax_rate):
 global my_price

Modifies
my_price inside
the function

Prints the
local version of
my_price The variable

my_price
here is a
different
chunk of
memory
than the
my_price
here

Prints the
global version
of my_price

Prints my_price from
inside the function

Prints my_price from
outside the function

Tells Python you want to use
the global version of my_price
Licensed to Deborah Christiansen <pedbro@gmail.com>

144 Hello World!
If you use the global keyword, Python won’t make a new local variable called my_price. It
will use the global variable my_price. If there’s no global variable called my_price, it will cre-
ate one.

A bit of advice on naming variables
We saw in the previous sections that you can use the same names for global variables and
local variables. Python will automatically create new local variables when it needs to, or you
can prevent that with the global keyword. However, I strongly recommend that you don’t
reuse names.

As you might have noticed from
some of the examples, it can be
difficult to know whether the
variable is the local version or
the global version. It makes the
code more confusing, because
you have different variables
with the same name. And
wherever there’s confusion,
bugs love to creep in.

So for now, I recommend you use different names for local variables and global variables.
That way, there’s no confusion, and you’ll keep the bugs at bay.

What did you learn?

In this chapter, you learned
■ what a function is.
■ what arguments (or parameters) are.
■ how to pass an argument to a function.
■ how to pass multiple arguments to a function.
■ how to make a function return a value to the caller.
■ what variable scope is, and what local and global variables are.
■ how to use global variables in a function.

class Ball:
 def __init__(self, color, size, direc-
tion):
 self.color = color

 self.size = size

 self.direction = direction

 def bounce(self):
 if self.direction == "down":
 self.direction = "up"

myBall = Ball("red", "small", "down") #B
print "I just created a ball."
print "My ball is", myBall.size
print "My ball is", myBall.color
print "My ball's direction is ", myBall.direction
print "Now I'm going to bounce the ball"
Licensed to Deborah Christiansen <pedbro@gmail.com>

145 CHAPTER 13 Functions
Test your knowledge
1 What keyword do you use to create a function?

2 How do you call a function?

3 How do you pass information (arguments) to a function?

4 What’s the maximum number of arguments a function can have?

5 How do you get information back from a function?

6 What happens to local variables in a function after the function is finished running?

Try it out
1 Write a function to print your name in big letters, like this:

Write a program that calls the function a number of times.

2 Make a function that will allow you to print any name, address, street, city, state or
province, zip or postal code, and country in the world. (Hint: It needs seven argu-
ments. You can pass them as individual arguments or as a list.)

3 Try using the example from listing 13.7, but making my_price global so you can see
the difference in the resulting output.

4 Write a function to calculate the total value of some change—quarters, dimes, nickels,
and pennies (just like in the last “Try it out” question from chapter 5). The function
should return the total value of the coins. Then write a program that calls the function.
The output should look like this when it runs:

 CCCC A RRRRR TTTTTTT EEEEEE RRRRR
 C C A A R R T E R R
C A A R R T EEEE R R
C AAAAAAA RRRRR T E RRRRR
 C C A A R R T E R R
 CCCC A A R R T EEEEEE R R

quarters: 3
dimes: 6
nickels: 7
pennies: 2
total is $1.72
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 1 4

Objects
In the last few chapters, we’ve been looking at different ways of organizing data and pro-
grams and collecting things together. We have seen that lists are a way to collect variables
(data) together, and functions are a way to collect some code together into a unit that you
can use over and over again.

Objects take the idea of collecting things together
one step further. Objects are a way to collect func-
tions and data together. This is a very useful idea in
programming, and it’s used in many, many pro-
grams. In fact, if you look under the hood in
Python, almost everything is an object. In program-
ming terms, we say Python is object oriented. That
means that it’s possible (in fact, quite easy) to use
objects in Python. It isn’t necessary to create your
own objects, but it makes many things easier.

In this chapter, we’ll learn what objects are and
how to create and use them. In later chapters,
when we start doing graphics, we’ll be using
objects a lot.
146

Licensed to Deborah Christiansen <pedbro@gmail.com>

147 CHAPTER 14 Objects
Objects in the real world
What’s an object? If we were not talking about programming, and I asked you that question,
we might have a conversation like this:

That’s a good start at defining what an object is in Python, too. Take a ball, for example. You
can do things to a ball, like pick it up, throw it, kick it, or inflate it (for some balls). We call
these actions. You can also describe a ball by telling me its color, size, and weight. These are
attributes of a ball.

Real objects in the real world have

■ things that you can do to them (actions).
■ things that describe them (attributes or properties).

In programming, we have the same kind of thing.

Objects in Python
In Python, the characteristics, or “things you know” about an object, are also called attri-
butes, so that should be easy to remember. In Python, the actions, or “things you can do” to
an object, are called methods.

If you were to make a Python version or model of a ball, the ball would be an object and it
would have attributes and methods.

You can do things
to objects, like

pick them up.

mi
U

mi
U

mi
U

What is an
object?

An object
is a thing. What else can

you tell me about
objects or things?

How do you
describe

an object?

I tell you what
it looks like...

you know,
what color it is...

how big it is...

 what it can do...

that kind of stuff.

The Adventures of Mi and U

You can describe an object by describing its characteristics or
attributes. One of the attributes of a ball is its shape. Most
balls have a round shape. Other examples of attributes are
color, size, weight, and cost. Another word for attributes is
properties.
Licensed to Deborah Christiansen <pedbro@gmail.com>

148 Hello World!
The ball’s attributes would look like this:

Those are all things you can describe about the ball.

The ball’s methods would look like this:

Those are all things you can do to the ball.

What are attributes?

Attributes are all things you know (or can find out) about the ball. The ball’s attributes are
chunks of information—numbers, strings, and so on. Sound familiar? Yes, they’re variables.
They’re just variables that are included inside the object.

You can display them:

You can assign values to them:

You can assign them to regular, non-object variables:

You can also assign them
to attributes in other objects:

What are methods?

Methods are things you can do with an object. They’re chunks of code that you can call to
do something. Sound familiar? Yes, methods are just functions that are included inside the
object.

You can do all the things with methods that you can do with any other function, including
passing arguments and returning values.

Object = attributes + methods
So objects are a way of collecting together attributes and methods (things you know, and
things you can do) for a thing. Attributes are information, and methods are actions.

ball.color
ball.size
ball.weight

ball.kick()
ball.throw()
ball.inflate()

print ball.size

ball.color = 'green'

myColor = ball.color

myBall.color = yourBall.color
Licensed to Deborah Christiansen <pedbro@gmail.com>

149 CHAPTER 14 Objects
Hm... How would I describe

this house? Upper class,

middle class, or lower class?

What’s the dot?
In our previous ball examples, you probably noticed the dot between the name of the
object and the name of the attribute or method. That’s just the Python notation for using
the attributes and methods of an object: object.attribute or object.method(). Simple as
that. It’s called dot notation, and it’s used in many programming languages.

Now we have the big picture about objects. Let’s start making some!

Creating objects
There are two steps to creating an object in Python.

The first step is to define what the object will look like and act like—its attributes and
methods. But creating this description doesn’t actually create an object. It’s kind of like the

blueprints for a house. The blueprints
tell you exactly what the house will look
like, but a blueprint isn’t a house. You
can’t live in a blueprint. You can just use
it to build an actual house. In fact, you

can use the blueprint to make many
houses.

In Python the description or blueprint of an
object is called a class.

The second step is to use the class to make an
actual object. The object is called an instance
of that class.

Let’s look at an example of making a class
and an instance. Listing 14.1 shows a class
definition for a simple Ball class.

class Ball:

 def bounce(self):
 if self.direction == "down":
 self.direction = "up"

Listing 14.1 Creating a simple Ball class

This tells Python we’re
making a class

This is a method
Licensed to Deborah Christiansen <pedbro@gmail.com>

150 Hello World!
In listing 14.1, we have a class definition for a ball with one method: bounce(). But what
about attributes? Well, attributes don’t really belong to the class, they belong to each
instance. That’s because each instance can have different attributes.

There are a couple of ways we can set the instance attributes. We’ll see both ways in the fol-
lowing sections.

Creating an instance of an object

As we mentioned before, a class definition isn’t an object. It’s just the blueprints. Now let’s
build a house.

If we want to create an instance of a Ball, we do it like this:

Our ball does not have any
attributes yet, so let’s give it some:

This is one of the ways to define attributes for the object. We’ll see the other way in the next
section.

Now, let’s try out one of the methods.
Here’s how we’d use the bounce() method:

Let’s put this all together into a program, with some print statements to see what’s going
on. The program is in listing 14.2.

class Ball:

 def bounce(self):
 if self.direction == "down":
 self.direction = "up"

myBall = Ball()
myBall.direction = "down"
myBall.color = "red"
myBall.size = "small"

print "I just created a ball."
print "My ball is", myBall.size
print "My ball is", myBall.color
print "My ball's direction is", myBall.direction
print "Now I'm going to bounce the ball"
print
myBall.bounce()
print "Now the ball's direction is", myBall.direction

Listing 14.2 Using the Ball class

>>> myBall = Ball()

>>> myBall.direction = "down"
>>> myBall.color = "green"
>>> myBall.size = "small"

>>> myBall.bounce()

Here’s our class,
same as before

Makes an instance of our class

Sets some
attributes

Prints the object’s
attributes

Uses a method
Licensed to Deborah Christiansen <pedbro@gmail.com>

151 CHAPTER 14 Objects
If we run the program in listing 14.2, we should see this:

Notice that after we called the bounce() method, the ball’s direction changed from down to
up, which is exactly what the code in the bounce() method is supposed to do.

Initializing an object

When we created our ball object, it didn’t have anything filled in for the size, color, or
direction. We had to fill those in after we created the object. But there’s a way to set the
properties of an object when it’s being created. This is called initializing the object.

When you create the class definition, you can define a special method called __init__()
that will run whenever a new instance of the class is created. You can pass arguments to the
__init__() method to create the instance with its properties set however you want.
Listing 14.3 shows how this works.

class Ball:
 def __init__(self, color, size, direction):
 self.color = color
 self.size = size
 self.direction = direction

 def bounce(self):
 if self.direction == "down":
 self.direction = "up"

myBall = Ball("red", "small", "down")
print "I just created a ball."

>>> ========================== RESTART ==========================
>>>
I just created a ball.
My ball is small
My ball is red
My ball's direction is down
Now I'm going to bounce the ball

Now the ball's direction is up
>>>

Listing 14.3 Adding an __init__() method

The attributes as
we set them

Now we bounce() the ball

It changed direction,
from down to up

Initializing means “getting something ready at the start.”
When we initialize something in software, we make it ready to
use by getting it into the state or condition that we want.

Here’s the __init__() method

Attributes are passed in as
arguments to __init__()
Licensed to Deborah Christiansen <pedbro@gmail.com>

152 Hello World!
>>> print myBall
Hi, I'm a small red ball!

It’s one of the
 “magic” __xxxx__() class

methods in Python!

If you say
print myBall,

To change that,
put in a method called

__str__().

you get something weird like this:
<__main__.Ball instance at 0x00BB83A0>

Make it return
what you want printed.

Then, every time you use
print myBall,

it’ll say what you want.

print "My ball is", myBall.size
print "My ball is", myBall.color
print "My ball's direction is ", myBall.direction
print "Now I'm going to bounce the ball"
print
myBall.bounce()
print "Now the ball's direction is", myBall.direction

If you run the program in listing 14.3, you should get the same output you got from
listing 14.2. The difference is, listing 14.3 uses the __init__() method to set the attributes.

 Thanks for the tip, Carter. In
the next section, we’ll see what
these “magic” methods are all about.

A “magic” method: __str__()
Objects in Python have some “magic” methods, as Carter calls them. They’re not really
magic, of course! They’re just some methods that Python includes automatically when you
create any class. Python programmers usually call them special methods.
Licensed to Deborah Christiansen <pedbro@gmail.com>

153 CHAPTER 14 Objects
We already saw the __init__() method that initializes an object when it’s created. Every
object has an __init__() method built in. If you don’t put one in your class definition, the
built-in one takes over, and all it does is create the object.

Another special method is __str__(), which tells Python what to display when you print
an object. By default, Python tells you

■ where the instance is defined (in Carter’s case __main__, which is the main part of the
program).

■ the class name (Ball).
■ the memory location where the instance is being stored (that’s the 0x00BB83A0 part).

But if you want print to display something different for your object, you can define your
own __str__(), which will override the built-in one. Listing 14.4 shows an example.

class Ball:
 def __init__(self, color, size, direction):
 self.color = color
 self.size = size
 self.direction = direction

 def __str__(self):
 msg = "Hi, I'm a " + self.size + " " + self.color + " ball!"
 return msg

myBall = Ball("red", "small", "down")
print myBall

Now, if we run the program in
listing 14.4, here’s what we get:

That looks a lot more friendly than <__main__.Ball instance at 0x00BB83A0>, don’t you
think?

What’s “self”?
You might have noticed that the term “self” shows up in a few places in the class attributes
and method definitions, like this:

What does self mean? Well, remember that we said you could use blueprints to build
more than one house? You can also use a class to create more than one instance of an
object, like this:

Listing 14.4 Using __str__() to change how the object prints

Here’s the
__str__()
method

>>> ================= RESTART =================
>>>
Hi, I'm a small red ball!
>>>

def bounce(self):

cartersBall = Ball("red", "small", "down")
warrensBall = Ball("green", "medium", "up")

Creating two instances
of the Ball class
Licensed to Deborah Christiansen <pedbro@gmail.com>

154 Hello World!
When we call a method for one of these instances, like this,

the method has to know which instance called it. Is it cartersBall that needs to bounce, or
warrensBall? The self argument is what tells the method which object called it. It’s called
the instance reference.

But wait a minute! When we called the method, there was no argument in the parentheses
of warrensBall.bounce(), but there’s a self argument in the method. Where did the self
argument come from, if we didn’t pass anything? That’s another little bit of “magic” that
Python does with objects. When you call a class method, the information about which
instance called—the instance reference—is automatically passed to the method.

It’s like writing this:

In this case, we told the bounce() method which ball to bounce. In fact, this code will
work too, because that is exactly what Python does behind the scenes when you write
warrensBall.bounce().

In chapter 11, we made a program about hot
dogs. Now, as an example of how to use
objects, we’re going to make a class for a hot
dog.

An example class—HotDog
For this example, we’ll assume that hot dogs always have a bun. (It’s too messy otherwise.)
We’ll give our hot dog some attributes and some methods.

These are the attributes:

■ cooked_level—A number that lets us know how long the hot dog has been cooked.
We’ll use 0–3 for raw, over 3 for medium, over 5 for well-done, and anything over 8 will
be charcoal! Our hot dogs will start out raw.

warrensBall.bounce()

Ball.bounce(warrensBall)

By the way, t
he name self has no

special meaning in Pyt
hon. That’s ju

st

the name everybody
uses for the

instance refe
rence. It’s an

other one of

those conven
tions that make your

code easier
to read. You

could name

the instance
variable wha

tever you

want, but I st
rongly sugge

st you

follow the co
nvention and

 use self—

it’ll make things m
uch less con

fusing.
Licensed to Deborah Christiansen <pedbro@gmail.com>

155 CHAPTER 14 Objects
■ cooked_string—A string describing how well-done the hot dog is.
■ condiments—A list of what’s on the hot dog, like ketchup, mustard, and so on.

These are the methods:

■ cook()—Cooks the hot dog for some period of time. This will make the hot dog more
well-done.

■ add_condiment()—Adds condiments to the hot dog.
■ __init__()—Creates our instance and sets the default properties.
■ __str__()—Makes the print look nicer.

First, we need to define the class. Let’s start with the __init__() method, which will set the
default attributes for a hot dog:

We start with a raw hot dog and no condiments.

Now, let’s make a method to cook our hot dog:

Before we go any further, let’s test this part. First, we need to create an instance of a hot
dog, and we’ll check the attributes, too.

 def cook(self, time):
 self.cooked_level = self.cooked_level + time
 if self.cooked_level > 8:
 self.cooked_string = "Charcoal"
 elif self.cooked_level > 5:
 self.cooked_string = "Well-done"
 elif self.cooked_level > 3:
 self.cooked_string = "Medium"
 else:
 self.cooked_string = "Raw"

class HotDog:
 def __init__(self):
 self.cooked_level = 0
 self.cooked_string = "Raw"
 self.condiments = []

Increases the
cooked level by the
amount of time

Sets the strings
for the different
cooked levels

 myDog = HotDog()
print myDog.cooked_level
print myDog.cooked_string
print myDog.condiments
Licensed to Deborah Christiansen <pedbro@gmail.com>

156 Hello World!
Let’s put this together into a program and run it. Listing 14.5 shows the complete program
(so far).

class HotDog:
 def __init__(self):
 self.cooked_level = 0
 self.cooked_string = "Raw"
 self.condiments = []
 def cook(self, time):
 self.cooked_level = self.cooked_level + time
 if self.cooked_level > 8:
 self.cooked_string = "Charcoal"
 elif self.cooked_level > 5:
 self.cooked_string = "Well-done"
 elif self.cooked_level > 3:
 self.cooked_string = "Medium"
 else:
 self.cooked_string = "Raw"
myDog = HotDog()
print myDog.cooked_level
print myDog.cooked_string
print myDog.condiments

Now, run the code in listing 14.5 and
see what you get. It should look like this:

We see that the attributes are cooked_level = 0, cooked_string = "Raw", and condiments
is empty.

Listing 14.5 Start of our hot dog program

#!/bin/env python #
 Pa

gin
ate

 a text file, adding a header and footer import sys, time, string # If no arguments were given, print a help
ful

 message if len(sys.argv)!=2: print 'Us
ag

e: pyprint filename'sys.exit(0)class # Increment the p
age

cou
nt

, an

d r
es

et
 th

e l
ine

 co
un

t a
nd

 re
set

 a s
elf.h

eader_written=1 ; self.count=#!/bin/en
v p

ytho
n # !Bin/en

Thinking like a (Python) programmer
Another convention in Python is that the
name of a class always starts with an
uppercase (capital) letter. So far we have
seen Ball and HotDog, so we have been
following the convention.

pri
nt >>>Hello if #

pr
int >>>Hello if #

pri
nt >>>Hello if #

>>>
0
Raw
[]
>>>

The cooked_level

The cooked_string

The condiments
Licensed to Deborah Christiansen <pedbro@gmail.com>

157 CHAPTER 14 Objects
Now, let’s test the cook() method. Add the lines below to the code in listing 14.5:

Run the program again. Now,
the output should look like this:

So our cook() method seems to work. The cooked_level went from 0 to 4, and the string
updated too (from Raw to Medium).

Let’s try adding some condiments. We need a new method for that. We could also add our
__str__() function so it’ll be easier to print the object. Edit the program so it looks like list-
ing 14.6.

class HotDog:
 def __init__(self):
 self.cooked_level = 0
 self.cooked_string = "Raw"
 self.condiments = []

 def __str__(self):
 msg = "hot dog"
 if len(self.condiments) > 0:
 msg = msg + " with "
 for i in self.condiments:
 msg = msg+i+", "
 msg = msg.strip(", ")
 msg = self.cooked_string + " " + msg + "."
 return msg

 def cook(self, time):
 self.cooked_level=self.cooked_level+time
 if self.cooked_level > 8:
 self.cooked_string = "Charcoal"
 elif self.cooked_level > 5:
 self.cooked_string = "Well-done"
 elif self.cooked_level > 3:
 self.cooked_string = "Medium"
 else:
 self.cooked_string = "Raw"

 def addCondiment(self, condiment):
 self.condiments.append(condiment)

print "Now I'm going to cook the hot dog"
myDog.cook(4)
print myDog.cooked_level
print myDog.cooked_string

Listing 14.6 HotDog class with cook(), add_condiments(), and __str__()

Cooks the hot dog
for 4 minutes

Checks the new
cooked attributes

>>>
0
Raw
[]
Now I'm going to cook the hot dog
4
Medium
>>>

Before cooking

After cooking

Defines
the class

Defines the new
__str__()
method

Defines the new
add_condiments() method
Licensed to Deborah Christiansen <pedbro@gmail.com>

158 Hello World!
myDog = HotDog()
print myDog
print "Cooking hot dog for 4 minutes..."
myDog.cook(4)
print myDog
print "Cooking hot dog for 3 more minutes..."
myDog.cook(3)
print myDog
print "What happens if I cook it for 10 more minutes?"
myDog.cook(10)
print myDog
print "Now, I'm going to add some stuff on my hot dog"
myDog.addCondiment("ketchup")
myDog.addCondiment("mustard")
print myDog

This code listing is a bit long, but I still encourage you to type it all in. You already have part
of it from listing 14.5. But if your fingers are tired or you don’t have time, you can find it in
the \examples folder or on the book’s web site.

Run the program and see what you get. It should look like this:

The first part of the program creates the class. The second part
tests the methods to cook our virtual hot dog and add some

condiments. But judging by that last couple of lines, I think we
cooked it too much. What a waste of ketchup and mustard!

>>> ================================ RESTART ================================
>>>
Raw hot dog.
Cooking hot dog for 4 minutes...
Medium hot dog.
Cooking hot dog for 3 more minutes...
Well-done hot dog.
What happens if I cook it for 10 more minutes?
Charcoal hot dog.
Now, I'm going to add some stuff on my hot dog
Charcoal hot dog with ketchup, mustard.
>>>

Creates the instance

Tests to see if
everything is
working
Licensed to Deborah Christiansen <pedbro@gmail.com>

159 CHAPTER 14 Objects
Hiding the data
You might have realized that there are two ways we can view or change the data (attri-
butes) inside an object. We can either access them directly,
like this:

or we can use a method that modifies the attribute, like this:

If the hot dog started out raw (cooked_level = 0), these would both do the same thing.
They’d set the cooked_level to 5. So why did we bother making a method to do this? Why
not just do it directly?

I can think of at least two reasons:

■ If we were accessing the attributes directly, then cooking the hot dog would require at
least 2 parts: changing the cooked_level and changing the cooked_string. With a
method, we just make one method call, and it does everything we need.

■ If we were accessing the attributes
directly, we could do something like this:

That would make the hot dog less cooked than it was before. But you can’t uncook a
hot dog! So that doesn’t make sense. Using a method, we can make sure that the
cooked_level only increases and never decreases.

So far, we have seen that objects have attributes and methods. We have seen how to create
objects and how to initialize them with a special method called __init__(). We have also
seen another special method called __str__() that makes our objects print more nicely.

Polymorphism and inheritance
Next, we’re going to look at the two aspects of objects that are probably the most impor-
tant: polymorphism and inheritance. Those are two big long words, but they make objects
very useful. I’ll clearly explain what they mean in the next sections.

myDog.cooked_level = 5

myDog.cook(5)

cooked_level = cooked_level - 2

In programming terms, restricting the access
to an object’s data so you can only get it or
change it by using methods is called data
hiding. Python doesn’t have any way to
enforce data hiding, but you can write code
that follows this rule if you want to.
Licensed to Deborah Christiansen <pedbro@gmail.com>

160 Hello World!
Polymorphism—same method, different behavior

Very simply, polymorphism means that you can have two (or more) methods with the same
name for different classes. These methods can behave differently, depending on which class
they’re applied to.

For example, let’s say you were making a program to practice geometry, and you needed to
calculate the area of different shapes, like triangles and squares. You might create two
classes, like this:

Both the Triangle class and the Square class have a method called getArea(). So if we had
an instance of each class, like this,

then we could calculate the
area of either one using getArea():

We used the method name getArea() for both shapes, but the method did something dif-
ferent for each shape. This is an example of polymorphism.

Inheritance—learning from your parents

In the real (nonprogramming) world, people can inherit things from their parents or other
relatives. You can inherit traits like red hair, or you can inherit stuff like money or property.

In object-oriented programming, classes can inherit attributes and methods from other
classes. This allows you to have whole “families” of classes that share common attributes

class Triangle:
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def getArea(self):
 area = self.width * self.height / 2.0
 return area

class Square:
 def __init__(self, size):
 self.size = size

 def getArea(self):
 area = self.size * self.size
 return area

Here is the
Triangle class

Here is the
Square class

Both have a method
called getArea()

>>> myTriangle = Triangle(4, 5)
>>> mySquare = Square(7)

>>> myTriangle.getArea()
10.0
>>> mySquare.getArea()
49
Licensed to Deborah Christiansen <pedbro@gmail.com>

161 CHAPTER 14 Objects
and methods. That way, you don’t have to start from scratch every time you want to add a
member to the family.

A class that inherits attributes or methods from another class is called a derived class or
subclass. An example will help explain this.

Imagine we’re making a game where the player can pick up various things along the way,
like food, money, or clothing. We could make a class called GameObject. The GameObject
class would have attributes like name (for example, “coin”, “apple”, or “hat”) and methods
like pickUp() (which would add the coin to the player’s collection of objects). All game
objects would have these common methods and attributes.

Then, we could make a subclass for coins. The Coin class would be derived from GameObject.
It would inherit the attributes and methods of GameObject, so the Coin class would automat-
ically have a name attribute and a pickUp() method. The Coin class would also need a value
attribute (how much the coin is worth) and a spend() method (so you could use the coin to
buy something).

Let’s see what the code might look like for these classes.

class GameObject:
 def __init__(self, name):
 self.name = name

 def pickUp(self, player):
 # put code here to add the object
 # to the player's collection

class Coin(GameObject):
 def __init__(self, value):
 GameObject.__init__(self)
 self.value = value

 def spend(self, buyer, seller):
 # put code here to remove the coin
 # from the buyer's money and
 # add it to the seller's money

Eustace Petunia Hortense

El Poppo Mom
(“The Boss”)

Grampa Gramma Oppa Omma

Earl
(”Big Sissy”)

Mathilda
(”Little Sissy”)

Pavlov
(”Dog Man”)

Ingrid
(”Thumper”)

Natalia
(”Krazy Kissing Aunt”)

OlgaIvan

Defines GameObject class

Coin is a subclass
of GameObject

In __init__(), inherit GameObject’s
init and add stuff to it

A new spend() method
for the Coin class
Licensed to Deborah Christiansen <pedbro@gmail.com>

162 Hello World!
They aren't empty.
They have comments

in them!

Thinking ahead
In the last example, we didn’t put any real code in the methods, just some comments
explaining what the methods would do. It’s a way of planning or thinking ahead for what
you’ll add later. The actual code would depend on how the game worked. Programmers
often do this as a way to organize their thoughts when they’re writing more complex code.
The “empty” functions or methods are called code stubs.

If you tried to run the previous example, you’d get an error, because a function definition
can’t be empty.

That’s true, Carter, but comments don’t count, because
 they’re only for you, not for the computer.

The Python pass keyword is used as a placeholder when you want to make a code stub. So
the code should really look like this:

class Game_object:
 def __init__(self, name):
 self.name = name

 def pickUp(self):
 pass
 # put code here to add the object
 # to the player's collection

class Coin(Game_object):
 def __init__(self, value):
 Game_object.__init__(self)
 self.value = value

 def spend(self, buyer, seller):
 pass
 # put code here to remove the coin
 # from the buyer's money and
 # add it to the seller's money

Add the pass
keyword in these
two places
Licensed to Deborah Christiansen <pedbro@gmail.com>

163 CHAPTER 14 Objects
I’m not going to give more detailed examples using objects, polymorphism, and inheritance
in this chapter. We’ll see many examples of objects and how they’re used as we go through
the rest of this book. You’ll get a much better understanding of how to use objects when we
use them in real programs, like games.

What did you learn?

In this chapter, you learned about
■ what objects are.
■ attributes and methods.
■ what a class is.
■ creating an instance of a class.
■ special methods: __init__() and __str__().
■ polymorphism.
■ inheritance.
■ code stubs.

Test your knowledge
1 What keywords do you use to define a new object type?

2 What are attributes?

3 What are methods?

4 What’s the difference between a class and an instance?

5 What name is usually used for the instance reference in a method?

6 What’s polymorphism?

7 What’s inheritance?

Try it out
1 Make a class definition for a BankAccount. It should have attributes for its name (a

string), account number (a string or integer), and balance (a float). It should have
methods to display the balance, make deposits, and make withdrawals.

2 Make a class called InterestAccount that earns interest. It should be a subclass of
BankAccount (so it inherits the attributes and methods). It should also have an attri-
bute for interest rate, and a method to add interest. To keep things simple, assume
that the addInterest() method will be called once each year to calculate the interest
and update the balance.
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 1 5

Modules
This is the last chapter that talks about ways of collecting things together. We have already
learned about lists, functions, and objects. In this chapter, we’ll learn about modules. In the
next chapter, we’ll use a module called Pygame to start drawing some graphics.

What’s a module?
A module is a piece or part of something. We say
something is modular if it comes in pieces or you
can easily separate it into pieces. LEGO blocks
might be the perfect example of something
modular. You can take a bunch of different pieces
and build many different things with them.

In Python, modules are smaller pieces of a bigger program. Each module, or piece, is a sepa-
rate file on your hard drive. You can take a big program and split it up into more than one
module, or file. Or you can go the other way—start with one small module and keep adding
pieces to make a big program.

Why use modules?
So why go to all the trouble of splitting our program up into smaller pieces, when we’re
going to need them all to make the program work? Why not just leave everything in one
big file?

There are a few reasons:

■ It makes the files smaller, which makes it easier to find things in your code.
164

Licensed to Deborah Christiansen <pedbro@gmail.com>

165 CHAPTER 15 Modules
■ Once you create a module, you can use it in lots of programs. That saves you from
starting all over again next time you need the same functions.

■ You don’t always need to use all the modules together. Being modular means that you
can use different combinations of the parts to do different jobs, just as you can make
many different things out of the same set of LEGO blocks.

Buckets of blocks
In the chapter about functions (chapter 13), we said that functions are like building blocks.
You can think of a module as a bucket of building blocks. You can have as few or as many
blocks in a bucket as you want, and you can have many different buckets. Maybe you have
one bucket for all the square blocks, one for the flat pieces, and one for all the odd-shaped
blocks. That’s usually how programmers use modules—they collect similar kinds of func-
tions together in a module. Or they might collect all the functions they need for a project
together in a module, just as you would gather all the blocks you need for a castle together
in one bucket.

How do we create modules?
Let’s create a module. A module is just a Python file, like the one in listing 15.1. Type the
code in listing 15.1 in an IDLE editor window, and save it as my_module.py.

this is the file "my_module.py"
we're going to use it in another program
def c_to_f(celsius):
 fahrenheit = celsius * 9.0 / 5 + 32
 return fahrenheit

That’s it! You have just created a module! Your module has one function in it, the c_to_f()
function, which converts a temperature from Celsius to Fahrenheit.

Next, we’ll use my_module.py in another program.

Listing 15.1 Creating a module
Licensed to Deborah Christiansen <pedbro@gmail.com>

166 Hello World!
How do we use modules?
In order to use something that is in a module, we first have to tell Python which modules
we want to use. The Python keyword that lets you include other modules in your program is
import. You use it like this:

Let’s write a program that uses the module we just wrote. We’re going to use the c_to_f()
function to do a temperature conversion.

We already saw how to use a function and pass parameters (or arguments) to it. The only
difference here is that the function will be in a separate file from our main program, so we’ll
have to use import. The program in listing 15.2 uses the module we just wrote,
my_module.py.

import my_module

celsius = float(raw_input ("Enter a temperature in Celsius: "))
fahrenheit = c_to_f(celsius)
print "That's ", fahrenheit, " degrees Fahrenheit"

Create a new IDLE editor window, and type in this program. Save it as modular.py, and then
run it to see what happens. You will need to save it in the same folder (or directory) as
my_module.py.

Did it work? You should have seen something like this:

It didn’t work! What happened? The error message says that the function c_to_f() isn’t
defined. But we know it’s defined in my_module, and we did import that module.

The answer is that we have to be more specific in telling Python about functions that are
defined in other modules. One way
to fix the problem is to change the line

 to

Listing 15.2 Using a module

>>> ============================ RESTART ============================
>>>
Enter a temperature in Celsius: 34

Traceback (most recent call last):
 File "C:/local_documents/Warren/PythonBook/Sample programs/modular.py",

line 3, in -toplevel-
 fahrenheit = c_to_f(celsius)
NameError: name 'c_to_f' is not defined

import my_module

my_module contains
the c_to_f() function

fahrenheit = c_to_f(celsius)

fahrenheit = my_module.c_to_f(celsius)
Licensed to Deborah Christiansen <pedbro@gmail.com>

167 CHAPTER 15 Modules
>>> from time import sleep
or

>>> from pygame import display

You see?
You can use from to
import certain parts

of a module.

You can
also import certain
features from a

module like

Now we’re specifically telling Python that the c_to_f() function is in the my_module mod-
ule. Try the program with this change and see if it works.

Namespaces

What Carter mentioned is
related to something called
namespaces. This is a bit of a
complicated topic, but it’s
something you need to know
about, so now is a good time to
talk about it.

What’s a namespace?

Imagine that you’re in Mr. Morton’s class at school, and there’s someone named Shawn in
your class. Now imagine that, in another class in your school taught by Mrs. Wheeler, there’s
another Shawn. If you’re in your own class and you say, “Shawn has a new backpack,” every-
one in your class will know (or at least they’ll assume) that you mean the Shawn in your
class. If you meant the other one, you’d say, “Shawn in Mrs. Wheeler’s class,” or “the other
Shawn,” or something like that.

In your class, there’s only one Shawn, so when you say “Shawn,” your classmates know
which person you’re talking about. To put this in another way, in the space of your class,
there’s only one name “Shawn.” Your class is your namespace, and in that namespace, there’s
only one Shawn, so there’s no confusion.

Shawn has a
new backpack!
Licensed to Deborah Christiansen <pedbro@gmail.com>

168 Hello World!
Now, if the principal has to call Shawn to the office over the public address system, she
can’t just say, “Would Shawn please come to the office.” If she did that, both Shawns would
show up at the office. For the principal using the public address system, the namespace is
the whole school. That means everyone in the school is listening for the name, not just one
class. So she has to be more specific about which Shawn she means. She would have to say
something like, “Would Shawn from Mr. Morton’s class please come to the office.”

The other way the principal could get the correct Shawn is to go to the doorway of your
class and say, “Shawn, would you please come with me.” There would be only one Shawn
listening, and she would get the right one. In that case, the namespace would be just one
classroom, not the whole school.

Would Shawn
from Mr. Morton’s
class please come

to the office.

Would Shawn
from Mr. Morton’s
class please come

to the office.

Would Shawn
from Mr. Morton’s
class please come

to the office.

Shawn,
would you please

come with me.
Licensed to Deborah Christiansen <pedbro@gmail.com>

169 CHAPTER 15 Modules
Will Fred
please come
to the office!

In general terms, programmers refer to smaller namespaces (like your classroom) as local
namespaces and larger ones (like the whole school) as global namespaces.

Importing namespaces

Let’s assume that there’s nobody in your school, John
Young School, named Fred. If the principal goes on the
public address system and asks for Fred, she won’t get
anyone. Now imagine that another school down
the road, Stephen Leacock School, is having some
repairs done, so one of their classes moves into a
portable at your school. In that class, there’s a
student named Fred. But that portable isn’t con-
nected to the public address system yet. If the
principal calls for Fred, she won’t get anybody.
But if she connects the new portable to the public
address system and then calls for Fred, she will get
the Fred from Stephen Leacock School.

Connecting the portable from the other school is like importing a module in Python. When
you import a module, you have access to all the names in that module: all the variables, all
the functions, and all the objects.

Importing a module means the same thing as importing a namespace. When you import
the module, you import the namespace.

There are two ways to import a
namespace (or module). You can do it like this:

If you do it that way, StephenLeacock is still a separate namespace. You have access to the
namespace, but you have to specify which namespace you want before you use it. So the
principal would have to do something like this:

She would still have to give the namespace (StephenLeacock) as well as the name (Fred) if
she wanted to reach Fred. That’s what we did a few pages ago with our temperature-con-
version program.
To make it work, we wrote this:

We specified the namespace (my_module) as well as the name of the function (c_to_f).

The other way to import a namespace is like this:

import StephenLeacock

call_to_office(StephenLeacock.Fred)

fahrenheit = my_module.c_to_f(celsius)

from StephenLeacock import Fred
Licensed to Deborah Christiansen <pedbro@gmail.com>

170 Hello World!
If the principal does it that way, the name Fred from StephenLeacock gets included in her
namespace, and she can reach Fred like this:

Because Fred is now in her namespace, she doesn’t have to go to the StephenLeacock
namespace to get Fred.

In this example, the principal only imported one name, Fred, from StephenLeacock into her
local namespace. If she wanted to
import everyone, she could do this:

Here, the star (*) means all. But she has to be careful. If there are any students with the same
names from Stephen Leacock School as there are from John Young School, there will be
confusion.

Whew!

At this point, the whole namespace thing might still be a little fuzzy. Don’t worry! It’ll
become clearer as we do examples in later chapters. Whenever we need to import modules,
I’ll explain exactly what we’re doing.

Standard modules
Now that we know how to create and use modules, do we always have to write our own
modules? No! That’s one of the great things about Python.

Python comes with a bunch of standard modules to let you do things like find files, tell the
time (or count time), or generate random numbers, among other things. Sometimes, people
say Python has “batteries included,” and that’s what they’re talking about—all of Python’s
standard modules. This is known as the Python Standard Library.

Why do these things have to be in separate modules? Well, they don’t have to be, but the
people who designed Python decided that it would be more efficient. Otherwise, every
Python program would have to include every possible function. This way, you just include
the ones you need.

Of course, some things (like print, for, and if-else) are basic commands in Python, so you
don’t need a separate module for them—they’re in the main part of Python.

If Python doesn’t have a module for something you want to do (like make a graphical
game), there are other add-on modules that you can download, usually for free! We have
included several of these with this book, and they were installed if you used the install
program on the book’s web site. If not, you can always install them separately.

Let’s look at a couple of the standard modules.

call_to_office(Fred)

from StephenLeacock import *
Licensed to Deborah Christiansen <pedbro@gmail.com>

171 CHAPTER 15 Modules
Time

The time module lets you get information from your computer’s
clock, like the date and the time. It also lets you add delays to your
programs. (Sometimes the computer does things too quickly, and
you have to slow it down.)

The sleep() function in the time module is used to add a
delay—that is, to make the program wait and do nothing for a
while. It’s like putting your program to sleep, which is why the
function is called sleep(). You tell it how many seconds you want it to sleep.

The program in listing 15.3 demonstrates how the sleep() function works. Try typing,
saving, and running it, and see what happens.

import time
print "How",
time.sleep(2)
print "are",
time.sleep(2)
print "you",
time.sleep(2)
print "today?"

Notice that, when we called the sleep() function, we had to put time. in front of it. That’s
because, even though we imported time, we didn’t make it part of the main program’s
namespace. So every time we want to use the sleep() function, we have to call
time.sleep().

If we tried something like this,

it wouldn’t work, because sleep isn’t in our namespace. We’d get an error message
like this:

But if you import it like this,

that tells Python, “Look for the variable (or function or object) named sleep in the time
module, and include it in my namespace.” Now, we could use the sleep function without
putting time. in front of it:

Listing 15.3 Putting your program to sleep

import time
sleep(5)

NameError: name 'sleep' is not defined

from time import sleep

from time import sleep
print 'Hello, talk to you again in 5 seconds...'
sleep(5)
print 'Hi again'
Licensed to Deborah Christiansen <pedbro@gmail.com>

172 Hello World!
If we want the convenience of importing names into the local namespace (so we don’t have
to specify the module name every time), but we don’t know which names in the module
we’ll need, we can use the star (*) to
import all names into our namespace:

The * means all, so this imports all the available names from the module. We have to be
careful with this one. If we create a name in our program that is the same as one in the time
module, there will be a conflict. Importing with * isn’t the best way to do it. It’s better to
only import the parts that you need.

Remember the countdown program we made in chapter 8 (listing 8.6)? Now you know what
the line time.sleep(1) in that program was doing.

Random numbers

The random module is used for generating random numbers. This is very useful in games
and simulations.

Let’s try using the random
module in interactive mode:

Each time you use random.randint(), you get a new, random integer. Because we passed
the arguments 0 and 100 to it, the integer will be between 0 and 100. We used ran-
dom.randint() in the number-guessing program in chapter 1 to create the secret number.

If you want a random decimal number, use random.random(). You don’t have to put any-
thing between the brackets, because random.random() always gives you a number between
0 and 1.

If you want a random number between, say, 0 and 10, you can just multiply the
result by 10.

from time import *

>>> import random
>>> print random.randint(0, 100)
4
>>> print random.randint(0, 100)
72

>>> print random.random()
0.270985467261
>>> print random.random()
0.569236541309

>>> print random.random() * 10
3.61204895736
>>> print random.random() * 10
8.10985427783
Licensed to Deborah Christiansen <pedbro@gmail.com>

173 CHAPTER 15 Modules
What did you learn?

In this chapter, you learned
■ what a module is.
■ how to create a module.
■ how to use a module in another program.
■ what namespaces are.
■ what’s meant by local and global namespaces and variables.
■ how to bring names from other modules into your namespace.

and you also saw a couple of examples of Python’s standard modules.

Test your knowledge
1 What are some of the advantages of using modules?

2 How do you create a module?

3 What Python keyword do you use when you want to use a module?

4 Importing a module is the same as importing a __________.

5 What are two ways to import the time module so that you have access to all the names
(that is, all the variables, functions, and objects) in that module?

Try it out
1 Write a module that has the “print your name in big letters” function from the “Try it

out” section in chapter 13. Then write a program that imports the module and calls
the function.

2 Modify the code in listing 15.2 so that you bring c_to_f() into the main program’s
namespace. That is, change it so you can write

instead of

3 Write a short program to generate a list of five random integer numbers from 1 to 20,
and print them out.

4 Write a short program that prints out a random decimal number every 3 seconds for
30 seconds.

fahrenheit = c_to_f(celsius)

fahrenheit = my_module.c_to_f(celsius)
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 1 6

Graphics
You have been learning about a lot of the basic elements of computer programming: input
and output, variables, decisions, loops, lists, functions, objects, and modules. I hope you
have enjoyed filling up your brain with all this stuff! Now it’s time to start having a bit more
fun with programming and Python.

In this chapter, you’ll learn how to draw things on the screen, like lines, shapes, colors, and
even a bit of animation. This will help us make some games and other programs in the next
few chapters.

Getting some help—Pygame
Getting graphics (and sound) to work
on your computer can be a little
complicated. It involves the
operating system, your graphics card,
and a lot of low-level code that we don’t really want to worry about for now. So we’re going
to use a Python module called Pygame to help make things a bit simpler.

Pygame lets you create graphics and the other things you need to make games work on
different computers and operating systems, without having to know all the messy details of
each system. Pygame is free, and a version of Pygame comes with this book. It should be
installed if you used the book’s installer to install Python. If not, you’ll have to install it
separately. You can get it from the Pygame web site, www.pygame.org.

Pygame also needs some help from another module called Numeric. Numeric is also
installed by the book’s installer, and if you don’t have it, you can get it at the Pygame
web site.
174

Licensed to Deborah Christiansen <pedbro@gmail.com>

www.pygame.org

175 CHAPTER 16 Graphics
That’s just like our
first programs,

although it wasn’t a
problem then, because you
could see the output in the

IDLE window even after the
program ran.

Pygame and IDLE

Remember when we used EasyGui to make our first GUI programs, and I mentioned that
some people have trouble using EasyGui with IDLE? Well, the same goes for Pygame and
IDLE. On my system, I can’t run some Pygame programs properly from IDLE. For the rest of
this chapter, and for any other programs in the rest of the book that use Pygame, I recom-
mend you use SPE instead of IDLE, just like we did with EasyGui back in chapter 6.

The only thing you might have to do differently is use the Run in Terminal option (or Run in
Terminal without arguments), instead of the normal Run option. Play around with it, experi-
ment, and I’m sure you’ll figure it out. That’s a big part of what programming is about—fig-
uring things out for yourself!

A Pygame window
The first thing we need to do is make a window where we’ll start drawing our graphics. List-
ing 16.1 shows a very simple program that just makes a Pygame window.

import pygame
pygame.init()
screen = pygame.display.set_mode([640, 480])

Try running this program. What did you see? If you were looking closely, you might have
seen a window (filled with black) pop on the screen very briefly. What’s up with that?

Well, Pygame is meant for making games. Games don’t just do things on their own—they
have to interact with the player. So Pygame has something called an event loop that con-
stantly checks for the user doing something, like pressing keys or moving the mouse.
Pygame programs need to keep the event loop running all the time, and as soon as the

event loop stops, the program stops. In our first
Pygame program, we didn’t start the event loop,

so the program stopped very soon after it
started.

That’s right. But in Pygame, the window
only stays open while the program is running. So we

 have to keep it running.

Listing 16.1 Making a Pygame window
Licensed to Deborah Christiansen <pedbro@gmail.com>

176 Hello World!
One way to keep the Pygame event loop running is with a while loop, like the one in listing
16.2 (but don’t try it yet!).

import pygame
pygame.init()
screen = pygame.display.set_mode([640, 480])
while True:
 pass

pass is a Python keyword that means “do nothing.” It’s just a placeholder, because a while
loop needs a block of code, and the block can’t be empty. (Perhaps you remember that from
chapter 8 when we talked about loops.) So we put something in the while block, but that
“something” does nothing.

Remember that a while loop runs as long as the condition is True. So this really says, “While
True is True, keep looping.” Because True is always True, that means forever (or as long as
the program runs).

But if it’ll keep going forever, how will we stop it? Do you recall that, back in chapter 8,
Carter asked about stopping a program that had a runaway loop? We learned that you can

Listing 16.2 Keeping the Pygame window open

Have you been wondering why Pygame sometimes doesn’t
work with IDLE? It has to do with the event loop.
An event loop is a loop that runs constantly in a
program, checking for events like a key being
pressed or the mouse being clicked or moved.
Pygame programs need an event loop.

IDLE also has its own event loop, because it’s a
program too, and it happens to be a graphical

program that needs to keep checking for user input. The two
event loops don’t always get along—they sometimes bump into
each other and cause havoc.

The same is true for IDLE and EasyGui. It’s like if someone
is on the phone and you pick up an extension and try to make
another call. You can’t, because the phone is already busy.
If you start talking or dialing, that will interfere with the
conversation that’s already going on.

SPE doesn’t have this problem because it has a way to keep
its own event loop separate from the event loop of the pro-

gram that it’s running (like your game).
Licensed to Deborah Christiansen <pedbro@gmail.com>

177 CHAPTER 16 Graphics
use Ctrl-C to do that. We can use the same method here. However, when running programs in
SPE on Windows, you need to use Ctrl-Break instead of Ctrl-C. There’s only one trick to this: you
need to make the command shell the active window before you type Ctrl-Break. If you try using
Ctrl-Break in the Pygame window, nothing will happen.

If you have a runaway loop on a Mac, you should be able to press Ctrl-C to stop
it. If that doesn’t work, you can try Ctrl-\ to send it a quit signal. Or you can start
up the Activity Monitor (located in the Utilities folder in the Applications
folder), find the Python or Pygame process, and quit it. If you are using Linux,
the easiest way is to kill the process.

Okay, now that you know how to
stop it, try running the program in
listing 16.2. You can type it into
whatever editor you’re using, and
save it as pygame_1.py. When you
run it, you should see a new win-
dow pop up, with a black back-
ground. It should have pygame
window in the title bar. The win-
dow will stay there until you make
the command shell the active win-
dow and end the program with
Ctrl-Break.

If you’re running Pygame from SPE, there will be a shell window opened for
you. That window will have something like SPE <filename> - Press Ctrl + Break
to stop in the title bar. Click in that window to make it active before trying to
quit the application.

A better ending

There is a better way to stop our Pygame program. You probably noticed that the Pygame
window has an “X” icon in the top-right corner in the title bar (as most windows do in Win-
dows). You’d expect the “X” would close the window; it works in every other program. But
this is our program. We’re in control, and we haven’t told the “X” what to do yet. We’re going
to make the “X” close our Pygame program.
Licensed to Deborah Christiansen <pedbro@gmail.com>

178 Hello World!
In a Pygame program, the “X” should be connected to a built-in function called sys.exit().
This is a function in Python’s standard sys module that tells the program to exit, or stop. We
just need to import the sys module and make one other change to our code, as shown in
listing 16.3.

import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640, 480])
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

We’ll learn more about what those last three lines mean soon. For now, we’ll just include
them in all our Pygame programs.

Drawing in the window
Now we have a Pygame window that stays open until we close it using the “X” icon. The
[640, 480] in the third line of listing 16.3 is the size of our window: 640 pixels wide by 480
pixels high. Let’s start drawing some graphics in there. Change your program so it looks like
listing 16.4.

import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255,255,255])
pygame.draw.circle(screen, [255,0,0],[100,100], 30, 0)
pygame.display.flip()
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

What’s the “flip”?

The display object in Pygame (ours is called screen, which we
created in line 3 of listing 16.4) has two copies of whatever
is displayed in the Pygame window. The reason for this
is that, when we start doing animation, we want to
make it as smooth and fast as possible. So instead of
updating the display every time we make a small change

Listing 16.3 Making the Pygame window closeable

Listing 16.4 Drawing a circle

Remove the pass
and put this code
in its place

Fills the window
with a white
background

Add these
three lines

Draws a
circle

Flips your monitor
over... Just kidding!
Licensed to Deborah Christiansen <pedbro@gmail.com>

179 CHAPTER 16 Graphics
 to our graphics, we can make a number of changes, then “flip” to the new version of the
graphics. This makes the changes appear all at once, instead of one by one. This way we
don’t get half-drawn circles (or aliens, or whatever) on our display.

Think of the two copies as being a current screen and a next screen. The current screen is
what we see right now. The “next” screen is what we’ll see when we do a “flip.” We make all
our changes on the “next” screen and then flip to it so we can see them.

How to make a circle

When you run the program in listing 16.4, you
should see a red circle near the upper-left corner
of the window, like this:

Not surprisingly, the pygame.draw.circle() func-
tion draws a circle. You have to tell it five things:

■ On what surface to draw the circle. (In this
case, it’s on the surface we defined in line 3,
called screen, which is the display surface.)

■ What color to draw it. (In this case, it’s red, which is represented by the [255, 0, 0]).
■ At what location to draw it. (In this case, it’s at [100, 100], which is 100 pixels down

and 100 pixels over from the top-left corner.)
■ What size to draw it. (In this case, it’s 30, which is the radius, in pixels—the distance

from the center of the circle to its outer edge.)
■ The width of the line. (If width = 0, the circle is filled in completely, as it is here.)

Now we’re going to look at these five things in more detail.

Pixels

The word pixel is short for “picture element.” This means one
dot on your screen or in an image. If you look at any picture
with an image viewer and zoom in (make the image really big),
you can see the individual pixels. Here’s a regular view of a
photo and a zoomed-in version where you can see the pixels.
Licensed to Deborah Christiansen <pedbro@gmail.com>

180 Hello World!
When I look
closely at a computer

screen, I see these little
lines. Do they separate

the pixels?

Wow, you have good eyes! The little lines are actually
the rows of pixels. A typical computer screen might have 768 rows
of pixels, with each row having 1024 pixels in it. We’d say that

screen has “1024 x 768 resolution.” Some screens have more pixels,
 and some have fewer.

Pygame surfaces

If I asked you to draw a picture in real life, one of your first questions would be, “What
should I draw it on?” In Pygame, a surface is what we draw on. The display surface is the one
we see on the screen. That’s the one we called screen in listing 16.4. But a Pygame program
can have many surfaces, and you can copy images from one surface to another. You can
also do things to surfaces, like rotate them and resize them (make them bigger or smaller).

As I mentioned before, there are two copies of the display surface. In software lingo, we say
the display surface is double-buffered. This is so we don’t get half-completed shapes and
images drawn on the screen. We draw our circles, aliens, or whatever in the buffer, and then
“flip” the display surface to show us the completely drawn images.

Colors in Pygame

The color system used in Pygame is a common one used in many computer languages and
programs. It’s called RGB. The R, G, and B stand for red, green, and blue.

You might have learned in science class that you can make any color by combining or
mixing the three primary colors of light: red, green, and blue. That’s the same way it works
on computers. Each color gets a number from 0 to 255. If all the numbers are 0, there is
none of any color, which is completely dark, so you get the color black. If they’re all 255,
you get the brightest of all three colors mixed together, which is white. If you have some-
thing like [255, 0, 0], that would be pure red with no green or blue. Pure green would be
[0, 255, 0]. Pure blue would be [0, 0, 255]. If all three numbers are the same, like [150, 150,
150], you get some shade of grey. The lower the numbers, the darker the shade; the higher
the numbers, the brighter the shade.
Licensed to Deborah Christiansen <pedbro@gmail.com>

181 CHAPTER 16 Graphics
Colors are given as a list of three integers, each one ranging from 0 to 255.

If you want to play around and experiment with how the red, green, and blue combine
to make different colors, you can try out the colormixer.py program that was put in the
\examples folder when you ran this book’s installer. This will let you try any combination
of red, green, and blue to see what color you get.

Color names
Pygame has a list of named colors you can use if you don’t want to use the [R, G, B] notation. There
are over 600 color names defined. I won’t list them all here, but if you want to see what they are,
search your hard drive for a file called colordict.py, and open it in a text editor.

If you want to use the color names, you have to add this line at the start of your program:

Then, when you want to use one of the named colors, you’ll do it like this (in our circle example):

from pygame.color import THECOLORS

pygame.draw.circle(screen, THECOLORS["red"],[100,100], 30, 0)

Why 255? The range from 0 to 255 gives us 256 differ-
ent values for each primary color (red, green, and
blue). So, what’s special about that number? Why not
200 or 300 or 500?

Two hundred and fifty-six is the number of differ-
ent values you can make with 8 bits. That’s all the
possible combinations of eight 1s and 0s. Eight
bits is also called a byte, and a byte is the

smallest chunk of memory that has its own address. An address
is the computer’s way of finding particular pieces of memory.

It’s like on your street. Your house or apartment has an
address, but your room doesn’t have its own address. A house
is the smallest “addressable unit” on the street. A byte is the
smallest “addressable unit” in your computer’s memory.

They could have used more than 8 bits for each color, but the
next amount that makes sense would be 16 bits (2 bytes),
because it’s not very convenient to use only part of a byte.
And it turns out that, because of the way the human eye sees
color, 8 bits is enough to make realistic-looking colors.

Because there are three values (red, green, blue), each with 8
bits, that’s 24 bits in total, so this way of representing
color is also known as “24-bit color.” It uses 24 bits for each
pixel, 8 for each primary color.
Licensed to Deborah Christiansen <pedbro@gmail.com>

182 Hello World!
Locations—screen coordinates

If we want to draw or place something on the screen, we need to specify where on the
screen it should go. There are two numbers: one for the x-axis (horizontal direction) and
one for the y-axis (vertical direction). In Pygame, the numbers start at [0, 0] in the upper-left
corner of the window.

When you see a pair of numbers like [320, 240], the first number is horizontal,
or the distance from the left side. The second number is vertical, or the dis-
tance down from the top. In math and programming, the letter x is often used
for horizontal distance, and y is often used for vertical distance.

We made our window 640 pixels
wide by 480 pixels high. If we
wanted to put the circle in the
middle of the window, we’d need
to draw it at [320, 240]. That’s 320
pixels over from the left-hand
edge, and 240 pixels down from
the top edge.

Let’s try drawing the circle in the
middle of the window. Try the
program in listing 16.5.

import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
pygame.draw.circle(screen, [255,0,0],[320,240], 30, 0)
pygame.display.flip()
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

The location [320, 240] is used as the center of the circle. Compare the results of running
listing 16.5 to the results you saw when you ran listing 16.4 to see the difference.

Listing 16.5 Putting the circle in the middle of the window

Change this from
[100, 100] to
[320, 240]
Licensed to Deborah Christiansen <pedbro@gmail.com>

183 CHAPTER 16 Graphics
Size of shapes

When you use Pygame’s draw functions to draw shapes, you have to specify what size to
make the shape. For a circle, there is only one size: the radius. For something like a rectan-
gle, you’d have to specify the length and width.

Pygame has a special kind of object called a rect (short for “rectangle”) that is used for
defining rectangular areas. You define a rect using the coordinates of its top-left corner
and its width and height:

This defines both the location
and the size. Here’s an example:

This would create a rectangle where the top-left corner is 250 pixels from the left side of the
window and 150 pixels down from the top of the window. The rectangle would be 300 pix-
els wide and 200 pixels high. Let’s try it and see.

Substitute this line for line 5 in listing 16.5 and see what it looks like:

The location and size of the rectangle can be a simple list (or tuple) of numbers or a Pygame
Rect object. So you could also substitute the preceding line with two lines
like this:

or

Here’s what the rectangle should look like.
I added some dimensions to show you
which numbers mean what:

Rect(left, top, width, height)

my_rect = Rect(250, 150, 300, 200)

Color of the
rectangle

Location and size
of the rectangle

Line width
(or filled)

pygame.draw.rect(screen, [255,0,0], [250, 150, 300, 200], 0)

my_list = [250, 150, 300, 200]
pygame.draw.rect(screen, [255,0,0], my_list, 0)

my_rect = pygame.Rect(250, 150, 300, 200)
pygame.draw.rect(screen, [255,0,0], my_rect, 0)
Licensed to Deborah Christiansen <pedbro@gmail.com>

184 Hello World!
Notice that we only pass four arguments to pygame.draw.rect. That’s because the rect has
both location and size in a single argument. In pygame.draw.circle, the location and size
are two different arguments, so we pass it five arguments.

Line width

The last thing we need to specify when drawing shapes is how thick to make the line. In the
examples so far, we used the line width of 0, which fills in the whole shape. If we used a dif-
ferent line width, we’d see an outline of the shape.

Try changing the line width to 2:

Try it and see how it looks. Try other line widths too.

Modern art?

Want to try making some computer-generated modern art? Just for fun, try the code in
listing 16.6. You can start with what you had from listing 16.5 and modify it, or just start
from scratch.

pygame.draw.rect(screen, [255,0,0], [250, 150, 300, 200], 2)

#!/bin/env python # Paginate a text file, adding a header and footer i
m

port
 s

ys
, t

im
e,

 s
tr

i ng #
If

no
 a

rg
u

m
en

ts
 w

er e
gi

ve
n,

 p
ri

n
t a

 h
elpful message if len(sys.argv)!=2: p r

int 'Usage: pyprint filenam e'sys.exit(0)class # Increment the

 page count, and reset the li n
e count self.header_written=

1 ; self.count=1 ; self.page=self.page+1PrinterForm
atter:self.header_written=0def

Thinking like a (Pygame) programmer
Once you create a rectangle with Rect(left, top, width,
height), there are several other attributes that you can
use to move and align the Rect:

These are just for convenience. So, if you want
to move a rectangle so that its center is at a
certain point, you don’t have to figure out what
the top and left coordinates should be; you can
access the center location directly.

• the four edges: top, left, bottom, right
• the four corners: topleft, bottomleft, topright, bottomright
• the middle of each side: midtop, midleft, midbottom, midright
• the center: center, centerx, centery
• dimensions: size, width, height

pr
int >>>Hello if

pr
int >>>

Hello if

pr
int >>>Hello if

Make this 2
Licensed to Deborah Christiansen <pedbro@gmail.com>

185 CHAPTER 16 Graphics
.

import pygame, sys, random
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
for i in range (100):
 width = random.randint(0, 250)
 height = random.randint(0, 100)
 top = random.randint(0, 400)
 left = random.randint(0, 500)
 pygame.draw.rect(screen, [0,0,0], [left, top, width, height], 1)
pygame.display.flip()

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

Run this and see what you get. It should look something like this:

Do you understand how the program works? It draws one hundred rectangles with random
sizes and positions. To make it even more “artsy,” add some color and make the line width
random too, as in listing 16.7.

import pygame, sys, random
from pygame.color import THECOLORS
pygame.init()
screen = pygame.display.set_mode([640,480])

Listing 16.6 Using draw.rect to make art

Listing 16.7 Modern art with color
Licensed to Deborah Christiansen <pedbro@gmail.com>

186 Hello World!
screen.fill([255, 255, 255])
for i in range (100):
 width = random.randint(0, 250)
 height = random.randint(0, 100)
 top = random.randint(0, 400)
 left = random.randint(0, 500)
 color_name = random.choice(THECOLORS.keys())
 color = THECOLORS[color_name]
 line_width = random.randint(1, 3)
 pygame.draw.rect(screen, color, [left, top, width, height], line_width)
pygame.display.flip()
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

When you run this, you’ll get something that looks different every time. If you get one that
looks really nice, give it a fancy title like “Voice of the Machine” and see if you can sell it to
your local art gallery!

Individual pixels
Sometimes we don’t want to draw a circle or rectangle, but we want to draw individual dots
or pixels. Maybe we’re creating a math program and want to draw a sine wave, for example.

Because there is no pygame.draw.sinewave() method, we have to draw it ourselves from
individual points. One way to do this is to draw tiny circles or rectangles, with a size of just
one or two pixels. Listing 16.8 shows how that would look using rectangles.

Don’t worry about
how this line works
for now

Don't worry if you don't know what a sine
wave is. For the purposes of this chapter,
it is just a wavy shape.

Also don't worry about the math formulas
in the next few example programs. Just
type them in as they appear in the list-
ings. They are just a way to get a wavy
shape that is a nice size to fill our
Pygame window.

Hey, mon!
Them there sine waves

usually be used for sound.
Like in music.

 Me? I prefer
makin’ music on de

waves of de
ocean.
Licensed to Deborah Christiansen <pedbro@gmail.com>

187 CHAPTER 16 Graphics
import pygame, sys
import math
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
for x in range(0, 640):
 y = int(math.sin(x/640.0 * 4 * math.pi) * 200 + 240)
 pygame.draw.rect(screen, [0,0,0],[x, y, 1, 1], 1)
pygame.display.flip()
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

And here’s what it looks like when it
runs:

To draw each point, we used a rect-
angle 1 pixel wide by 1 pixel high.
Note that we also used a line width
of 1, not 0. If we used a line width of
0, nothing would show up, because
there’s no “middle” to fill in.

Connect the dots

If you look really closely, you might notice that the sine wave isn’t continuous—there are
spaces between the points in the middle. That’s because, at the steep part of the sine
wave, we have to move up (or down) by 3 pixels when we move one pixel to the right.
And because we’re drawing individual points, not lines, there’s nothing to fill the space in
between.

Let’s try the same thing using a short line to join each plot point. Pygame has a method
to draw a single line, but it also has a method that will draw lines between a series of
points (like “connect the dots”). That method is pygame.draw.lines(), and it needs five
parameters:

■ the surface to draw on.
■ a color.

Listing 16.8 Drawing curves using a lot of small rectangles

Imports the math functions,
including sin()

Draws the point using a
small rectangle

Calculates the
y-position (vertical)
of each point

Loops from
left to right,
x = 0 to 639
Licensed to Deborah Christiansen <pedbro@gmail.com>

188 Hello World!
■ whether the shape will be closed by drawing a line joining the last point back to the
first one. We don’t want to enclose our sine wave, so this will be False for us.

■ a list of points to connect.
■ the width of the line.

So in our sine wave example, the pygame.draw.lines() method would look like this:

In the for loop, instead of drawing each point, we’ll just create the list of points that
draw.lines() will connect. Then we have a single call to draw.lines(), which is outside the
for loop. The whole program is shown in listing 16.9.

import pygame, sys
import math
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
plotPoints = []
for x in range(0, 640):
 y = int(math.sin(x/640.0 * 4 * math.pi) * 200 + 240)
 plotPoints.append([x, y])
pygame.draw.lines(screen, [0,0,0],False, plotPoints, 1)
pygame.display.flip()
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

Now when we run it, it looks like this:

pygame.draw.lines(screen, [0,0,0],False, plotPoints, 1)

Listing 16.9 A well-connected sine wave

Calculates y-position
for each point

Adds each
point to the list

Draws the whole
curve with the
draw.lines()
function
Licensed to Deborah Christiansen <pedbro@gmail.com>

189 CHAPTER 16 Graphics
That’s better—no gaps between the
points. If we increase the line width to
2, it looks even better:

Connect the dots, again

Remember those connect-the-dots puzzles you did when you were young? Here’s a Pygame
version.

The program in listing 16.10 creates a shape using the draw.lines() function and a list of
points. To reveal the secret picture, type in the program in listing 16.10. There’s no cheating
this time! This one isn’t in the \examples folder—you have to type it in if you want to see
the mystery picture. But typing in all the numbers can be a bit tedious, so you can find the
dots list in a text file in the \examples folder, or on the web site.

import pygame, sys
pygame.init()

dots = [[221, 432], [225, 331], [133, 342], [141, 310],
 [51, 230], [74, 217], [58, 153], [114, 164],
 [123, 135], [176, 190], [159, 77], [193, 93],
 [230, 28], [267, 93], [301, 77], [284, 190],
 [327, 135], [336, 164], [402, 153], [386, 217],
 [409, 230], [319, 310], [327, 342], [233, 331],
 [237, 432]]

screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
pygame.draw.lines(screen, [255,0,0],True, dots, 2)
pygame.display.flip()
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

Listing 16.10 Connect-the-dots mystery picture

This time
closed=True
Licensed to Deborah Christiansen <pedbro@gmail.com>

190 Hello World!
Drawing point-by-point

Let’s go back to drawing point-by-point for a moment. It seems kind of silly to draw a tiny
circle or rectangle, when all we want to do is change the color of one pixel. Instead
of using the draw functions, you can access each individual pixel on a surface with the
Surface.set_at() method. You tell it what pixel you want to set, and what color
to set it:

If we use this line of code in our sine wave example (in place of line 8 in listing 16.8), it looks
the same as when we used one-pixel-wide rectangles.

You can also check what color a pixel is already set to with the Surface.get_at() method.
You just pass it the coordinates of the pixel you want to check, like this: pixel_color =
screen.get_at([320, 240]). In this example, screen was the name of the surface.

Images
Drawing shapes, lines, and individual pixels on the screen is one way to do graphics. But
sometimes we want to use pictures that we get from somewhere else—maybe from a
digital photo, something we downloaded from the Web, or something created in an image-
editing program. In Pygame, the simplest way to use images is with the image functions.

Let’s look at an example. We’re going to display an image that is already on your hard drive
if you installed Python from the book’s installer. The installer created an images subfolder in
the \examples folder, and the file we’re going to use for this example is beach_ball.png. So,
for example, in Windows, you’d find it at
c:\Program Files\helloworld\examples\images\beach_ball.png.

You should copy the beach_ball.png file to wherever
you’re saving your Python programs as you work
through these examples. That way Python can easily
find it when the program runs. Once you have the
beach_ball.png file in the correct location, type in the
program in listing 16.11 and try it.

import pygame, sys
pygame.init()

Listing 16.11 Displaying a beach ball image in a Pygame window

screen.set_at([x, y], [0, 0, 0])

If you didn’t use the book’s installer, you can download beach_ball.png from the book’s web site, at
www.helloworldbook.com.
Licensed to Deborah Christiansen <pedbro@gmail.com>

191 CHAPTER 16 Graphics
I can’t play
volleyball with the
ball just standing

there!

screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
my_ball = pygame.image.load("beach_ball.png")
screen.blit(my_ball, [50, 50])
pygame.display.flip()
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT: sys.exit()

When you run this program, you should see
the image of a beach ball displayed near
the top-left corner of the Pygame window,
like this:

In listing 16.11, the only lines that are new
are lines 5 and 6. Everything else you have
seen before in listings 16.4 to 16.10. We
replaced the draw code from our previous
examples with code that loads an image
from disk and displays it.

In line 5, the pygame.image.load() function loads the image from disk and creates an
object called my_ball. The my_ball object is a surface. (We talked about surfaces a few
pages ago.) But we can’t see this surface. It’s only in memory. The only surface we can see is
the display surface, which is called screen. (We created it in line 3.) Line 6 copies the
my_ball surface onto the screen surface. Then display.flip() makes it visible, just like we
did before.

 That’s okay, Carter. Pretty soon we’ll start
 moving the ball around!

You might have noticed a funny-looking thing in line 6 of listing 16.11: screen.blit().
What does blit mean? See the “WORD BOX” to find out.

These are the only
lines that are new
Licensed to Deborah Christiansen <pedbro@gmail.com>

192 Hello World!
In Pygame, we copy or blit pixels from one surface to another. Here we copied the pixels
from the my_ball surface to the screen surface.

In line 6 of listing 16.11, we blitted the beach ball image to the location 50, 50. That means
50 pixels from the left edge and 50 pixels from the top of the window. When you’re working
with a surface or rect, this sets the location of the top-left corner of the image. So the left
edge of the beach ball is 50 pixels from the left edge of the window, and the top edge of
the beach ball is 50 pixels from the top of the window.

Let’s get moving!
Now that we can get graphics onto our Pygame window, let’s start moving them around.
That’s right, we’re going to do some animation! Computer animation is really just about
moving images (groups of pixels) from one place to another. Let’s try moving our beach
ball.

To move it, we need to change its location. First, let’s try moving it sideways. To make sure
we can see the motion, let’s move it 100 pixels to the right. The left-right direction (horizon-
tal) is the first number in the pair of numbers that specify location. So to move something
to the right by 100 pixels, we need to increase the first number by 100. We’ll also put in a
delay so we can see the animation happen.

Change the program from listing 16.11 to look like the one in listing 16.12. (You’ll need to
add lines 8, 9, and 10 before the while loop.)

import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
my_ball = pygame.image.load('beach_ball.png')

Listing 16.12 Trying to move a beach ball

When doing graphics programming, copying pixels from one place
to another is something we do quite a lot (like copying from a
variable to the screen, or from one surface to another).
Pixel-copying has a special name in programming. It’s called
blitting. We say that we blit an image (or part of an image,
or just a bunch of pixels) from one place to another. It’s
just a fancy way of saying “copy,” but when you see “blit,”
you know it refers to copying pixels, not copying some other

kind of thing.
Licensed to Deborah Christiansen <pedbro@gmail.com>

193 CHAPTER 16 Graphics
screen.blit(my_ball,[50, 50])
pygame.display.flip()
pygame.time.delay(2000)
screen.blit(my_ball,[150, 50])
pygame.display.flip()
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

Run the program and see what
happens. Did the ball move?
 Well, sort of. You should have
seen two beach balls:

The first one showed up in the origi-
nal position, and then the second
one appeared to the right of it a
 couple of seconds later. So we did
move the beach ball to the right,
but we forgot one thing. We need to
erase the first ball!

Animation
When doing animation with computer graphics, there are two steps to moving something:

1 We draw the thing in its new position.

2 We erase the thing from its old position.

We already saw the first part. We drew the ball in a new position. Now we have to erase the
ball from where it was before. But what does “erasing” really mean?

Erasing images

When you draw something on paper or on a blackboard, it’s easy to erase it. You just use an
eraser, right? But what if you made a painting? Let’s say you made a painting of blue sky,
and then you painted a bird in the sky. How would you “erase” the bird? You can’t erase
paint. You’d have to paint some new blue sky over where the bird was.

Computer graphics are like paint, not like pencil or chalk. In order to “erase” something,
what you really have to do is “paint over” it. But what do you paint over with? In the case of

These are the
three new lines
Licensed to Deborah Christiansen <pedbro@gmail.com>

194 Hello World!
your sky painting, the sky is blue, so you’d paint over the bird with blue. Our background is
white, so we have to paint over the beach ball’s original image with white.

Let’s try that. Modify your program in listing 16.12 to match listing 16.13. There’s only one
new line to add.

import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
my_ball = pygame.image.load('beach_ball.png')
screen.blit(my_ball,[50, 50])
pygame.display.flip()
pygame.time.delay(2000)
screen.blit(my_ball, [150, 50])
pygame.draw.rect(screen, [255,255,255], [50, 50, 90, 90], 0)
pygame.display.flip()
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

We added line 10 to draw a white rectangle over the first beach ball. The beach ball image
is about 90 pixels wide by 90 pixels high, so that’s how big we made the white rectangle. If
you run the program in listing 16.13, it should look like the beach ball moves from its origi-
nal location to the new location.

What’s under there?

Painting over our white background (or the blue sky in your painting) is fairly easy. But what
if you painted the bird on a cloudy sky? Or on a background of trees? Then you’d have to
paint over the bird with clouds or trees to erase it. The important idea here is that you have
to keep track of what’s in the background, “underneath” your images, because when you
move them, you have to put back or repaint what was there before.

This is pretty easy for our beach ball example, because the background is just white. But if
the background was a scene of a beach, it would be trickier. Instead of painting just white,
we’d have to paint the correct portion of the background image. Another option would be
to repaint the whole scene and then place the beach ball in its new location.

Smoother animation
So far, we have made our ball move once! Let’s see if we can get it moving in a more realis-
tic way. When animating things on the screen, it’s usually good to move them in small
steps, so the motion appears smooth. Let’s try moving our ball in smaller steps.

Listing 16.13 Trying to move a beach ball again

This line “erases”
the first ball
Licensed to Deborah Christiansen <pedbro@gmail.com>

195 CHAPTER 16 Graphics
We’re not just going to make the steps smaller—we’re going to add a loop to move the ball
(because we want to make many small steps). Starting with listing 16.13, edit the code so it
looks like listing 16.14.

import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
my_ball = pygame.image.load('beach_ball.png')
x = 50
y = 50
screen.blit(my_ball,[x, y])
pygame.display.flip()
for looper in range (1, 100):
 pygame.time.delay(20)
 pygame.draw.rect(screen, [255,255,255], [x, y, 90, 90], 0)
 x = x + 5
 screen.blit(my_ball, [x, y])
 pygame.display.flip()

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

If you run this program, you should see the ball moving from its original position over to
the right side of the window.

Keeping the ball moving

In the previous program, the ball moved over to the right side of the window, then stopped.
Now we’ll try to keep the ball moving.

If we just keep increasing x, what will happen? The ball will keep moving to the right as its
x-value increases. But our window (the display surface) stops at x = 640. So the ball will just
disappear. Try changing the for
loop in line 10 of listing 16.14 to this:

Now that the loop runs twice as long, the ball disappears off the edge! If we want to con-
tinue seeing the ball, we have two choices:

■ We make the ball bounce off the side of the window.
■ We make the ball wrap around to the other side of the window.

Let’s try both to see how to do them.

Listing 16.14 Moving a beach ball image smoothly

Add these lines

Starts a for loop Changes time.delay
value from 2000 to 20

Uses x and y
(instead of numbers)

for looper in range (1, 200):
Licensed to Deborah Christiansen <pedbro@gmail.com>

196 Hello World!
Bouncing the ball
If we want to make the ball appear to bounce off the side of the window, we need to know
when it “hits” the edge of the window, and then we need to reverse its direction. If we want
to keep the ball moving back and forth, we need to do this at both the left and right edges
of the window.

At the left edge, it’s easy, because we just check for the ball’s position to be 0 (or some small
number).

At the right side, we need to check to see if the right side of the ball is at the right side of
the window. But the ball’s position is set from its left side (the top-left corner), not its right
side. So we have to subtract the width of the ball:

When the ball is moving toward the right edge of the window, we need to bounce it
(reverse its direction) when its position is 550.

To make things easier, we’re going to make some changes to our code:

■ We’re going to have the ball bouncing around forever (or until we close the Pygame
window). Because we already have a while loop that runs as long as the window is
open, we’ll move our ball-display code inside that loop. (That’s the while loop that is
in the last part of the program.)

■ Instead of always adding 5 to the ball’s position, we’ll make a new variable, speed, to
determine how fast to move the ball on each iteration. I’m also going to speed the ball
up a bit by setting this value at 10.

The new code is in listing 16.15.

640px

550px 90px

Ball’s position is the
top-left corner of its rect
Licensed to Deborah Christiansen <pedbro@gmail.com>

197 CHAPTER 16 Graphics
import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
my_ball = pygame.image.load('beach_ball.png')
x = 50
y = 50
x_speed = 10

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

 pygame.time.delay(20)
 pygame.draw.rect(screen, [255,255,255], [x, y, 90, 90], 0)
 x = x + x_speed
 if x > screen.get_width() - 90 or x < 0:
 x_speed = - x_speed
 screen.blit(my_ball, [x, y])
 pygame.display.flip()

The key to bouncing the ball off the sides of the window is lines 18 and 19. In line 18 (if x
> screen.get_width() - 90 or x < 0:), we detect whether the ball is at the edge of the
window, and if it is, we reverse its direction in line 19 (x_speed = - x_speed).

Try this and see how it works.

Bouncing in 2-D

So far, we only have the ball moving back and forth, or one-dimensional motion. Now, let’s
get it moving up and down at the same time. To do this, we only need a few changes, as
shown in listing 16.16.

import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
my_ball = pygame.image.load('beach_ball.png')
x = 50
y = 50
x_speed = 10
y_speed = 10

while True:
 for event in pygame.event.get():

Listing 16.15 Bouncing a beach ball

Listing 16.16 Bouncing a beach ball in 2-D

. . . reverse direction, by making
speed the opposite sign

Here’s the
speed variable

When ball hits either
edge of the window . . .

Put the ball-
display code
here, inside the
while loop

Add code for y-speed
(vertical motion)
Licensed to Deborah Christiansen <pedbro@gmail.com>

198 Hello World!
 if event.type == pygame.QUIT:
 sys.exit()
 pygame.time.delay(20)
 pygame.draw.rect(screen, [255,255,255], [x, y, 90, 90], 0)
 x = x + x_speed
 y = y + y_speed
 if x > screen.get_width() - 90 or x < 0:
 x_speed = - x_speed
 if y > screen.get_height() - 90 or y < 0:
 y_speed = -y_speed
 screen.blit(my_ball, [x, y])
 pygame.display.flip()

We added lines 9 (y_speed = 10), 17 (y = y + y_speed), 20 (if y > screen.get_height()
- 90 or y < 0:), and 21 (y_speed = -y_speed) to the previous program. Try it now and see
how it works!

If you want to slow down the ball, there are a couple of ways to do it:

■ You can reduce the speed variables (x_speed and y_speed). This reduces how far the
ball moves on each animation step, so the motion will also be smoother.

■ You could also increase the delay setting. In listing 16.16, it’s 20. That is measured in
milliseconds, which is thousandths of a second. So each time through the loop, the
program waits for 0.02 seconds. If you increase this number, the motion will slow
down. If you decrease it, the motion will speed up.

Try playing around with the speed and delay to see the effects.

Wrapping the ball
Now let’s look at the second option for keeping the ball moving. Instead of bouncing it off
the side of the screen, we’re going to wrap it around. That means, when the ball disappears
off the right side of the screen, it’ll reappear on the left side.

To make things simpler, we’ll go back to just moving the ball horizontally. The program is in
listing 16.17.

import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
my_ball = pygame.image.load('beach_ball.png')
x = 50
y = 50
x_speed = 5

Listing 16.17 Moving a beach ball image with wrapping

Add code for y-speed
(vertical motion)

Bounces ball off top
or bottom of window
Licensed to Deborah Christiansen <pedbro@gmail.com>

199 CHAPTER 16 Graphics

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 pygame.time.delay(20)
 pygame.draw.rect(screen, [255,255,255], [x, y, 90, 90], 0)
 x = x + x_speed
 if x > screen.get_width():
 x = 0
 screen.blit(my_ball, [x, y])
 pygame.display.flip()

In lines 17 (if x > screen.get_width():) and 18 (x = 0), we detected when the ball
reached the right edge of the window, and we moved it back, or wrapped it back, to the
left side.

You might have noticed that, when the ball appears on the right, it “pops in” at [0, 50]. It
would look more natural if it “slid in” from off screen. Change line 18 (x = 0) to x = -90 and
see if you notice the difference.

What did you learn?

Whew! That was a busy chapter! In it, you learned
■ how to use Pygame.
■ how to run programs from SPE.
■ how to create a graphics window and draw some shapes in it.
■ how to set colors in computer graphics.
■ how to copy images to a graphics window.
■ how to animate images, including “erasing” them when you move them to a new

place.
■ how to make a beach ball “bounce” around the window.
■ how to make a beach ball “wrap” around the window.

Test your knowledge
1 What color does the RGB value [255, 255, 255] make?

2 What color does the RGB value [0, 255, 0] make?

3 What Pygame method can you use to draw rectangles?

4 What Pygame method can you use to draw lines joining a number of points together?

5 What does the term “pixel” mean?

6 In a Pygame window, where is the location [0, 0]?

If the ball is at the far right . . .

. . . start over at the left side
Licensed to Deborah Christiansen <pedbro@gmail.com>

200 Hello World!
7 If a Pygame window is 600 pixels wide by 400 pixels high, what letter in the diagram
below is at [50, 200]?

8 What letter in the diagram is at location [300, 50]?

9 What Pygame method is used to copy images to a surface (like the display surface)?

10 What are the two main steps when you’re “moving” or animating an image?

Try it out
1 We talked about drawing circles and rectangles. Pygame also has methods to draw

lines, arcs, ellipses, and polygons. Try using these to draw some other shapes in a
program.

You can find out more about these methods in the Pygame documentation, at
www.pygame.org/docs/ref/draw.html. If you don’t have Internet access, you can also
find it on your hard drive (it’s installed with Pygame), but it can be hard to find. Search
your hard drive for a file called pygame_draw.html.

You can also use Python’s help system (which we talked about at the end of chapter 6).
One thing SPE doesn’t have is an interactive shell that works, so start IDLE and type
the following:

You’ll get a list of the different draw methods and some explanation for each one.

2 Try changing one of the sample programs that uses the beach ball image to use a dif-
ferent image. You can find some sample images in the \examples\images folder, or
you can download or draw one of your own. You could also use a piece of a digital
photo.

600

400

A

B

D

E FC

>>> import pygame
>>> help()
help> pygame.draw
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.pygame.org/docs/ref/draw.html

201 CHAPTER 16 Graphics
3 Try changing the x_speed and y_speed values in listing 16.16 or 16.17 to make the ball
move faster or slower and in different directions.

4 Try to change listing 16.16 to make the ball “bounce” off an invisible wall or floor that
isn’t the edge of the window.

5 In listings 16.6 to 16.10 (the modern art, sine wave, and mystery picture programs), try
moving the line pygame.display.flip inside the while loop. To do that, just indent it
four spaces. After that line, and also inside the while loop, add a delay with this line
and see what happens: pygame.time.delay(30)
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 1 7

Sprites and Collision Detection
In this chapter, we’ll continue using Pygame to do animation. We’ll look at things called
sprites, which help us keep track of lots of images moving on the screen. We’ll also see how
to detect when two images overlap or hit each other, like when a ball hits a paddle or a
spaceship hits an asteroid.

Sprites
In the last chapter, you saw that simple animation isn’t quite so simple after all. If you have
a lot of images and are moving them around, it can be a lot of work keeping track of what’s
“under” each image so you can repaint when you move the image. In our first example with
the beach ball, the background was just white, so it was easier. But you can imagine that,
with graphics in the background, it would get more complicated.

Fortunately, Pygame has some extra help for us. The individual images or parts of an image
that move around are called sprites, and Pygame has a special module for handling sprites.
This lets us move graphical objects around more easily.

In the last chapter, we had a beach ball bouncing around the screen. What if we want a
whole bunch of beach balls bouncing around? We could write the code to manage each
ball individually, but instead we’re going to use Pygame’s sprite module to make things
easier.
202

Licensed to Deborah Christiansen <pedbro@gmail.com>

203 CHAPTER 17 Sprites and Collision Detection
What’s a sprite?

Think of a sprite as a little piece of graphics—a kind of graphical object that will move
around the screen and interact with other graphical objects.

Most sprites have a couple of basic properties:

■ an image—the graphics that are displayed for the sprite
■ a rect—the rectangular area that contains the sprite

The image can be one that you draw using Pygame’s draw functions (like we saw in the last
chapter) or one that you get from an image file.

A sprite class

Pygame’s sprite module provides a base sprite class called Sprite. (Remember when we
talked about objects and classes a couple of chapters ago?) Normally we don’t use the base
class directly, but instead create our own subclass, based on pygame.sprite.Sprite. We’ll
do that in an example and call our class MyBallClass. The code to create it looks like this:

class MyBallClass(pygame.sprite.Sprite):
 def __init__(self, image_file, location):
 pygame.sprite.Sprite.__init__(self)
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location

Sprite means a group of pixels that are moved and displayed as
a single unit, a kind of graphical object.

(excerpted from "Pygame Tutorials - Sprite Module Introduction"

by Pete Shinners http://www.pygame.org/docs/tut/SpriteIntro.html)

The term ‘sprite’ is a holdover from older computer and game

machines. These older boxes were unable to draw and erase normal

graphics fast enough for them to work as games. These machines had

special hardware to handle game-like objects that needed to animate

very quickly. These objects were called ‘sprites’ and had special

limitations, but could be drawn and updated very fast . . . These

days computers have become generally fast enough to handle sprite-

like objects without dedicated hardware. The term ‘sprite’ is still

used to represent just about anything in a 2D game that is animated.

Initializes the sprite

Loads an image file into it

Gets the rectangle that defines
the boundaries of the image

Sets the initial
location of the ball
Licensed to Deborah Christiansen <pedbro@gmail.com>

204 Hello World!
The last line in this code is worth taking a closer look at. location is an [x, y] location, which
is a list with two items. Because we have a list with two items on one side of the = sign (x
and y), we can assign two things on the other side. Here, we assigned the left and top
attributes of the sprite’s rectangle.

Now that we have defined MyBallClass, we have to create some instances of it. (Remem-
ber, the class definition is just a blueprint; now we have to build some houses.) We still
need the same code we used in the last chapter to create a Pygame window. We’re also
going to create some balls on the screen, arranged in rows and columns. We’ll do that
with a nested loop:

We also need to blit the balls to the display surface. (Remember that funny word, blit? We
talked about it in the last chapter.)

Putting it all together, our program is shown in listing 17.1.

import sys, pygame

class MyBallClass(pygame.sprite.Sprite):
 def __init__(self, image_file, location):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location

size = width, height = 640, 480
screen = pygame.display.set_mode(size)
screen.fill([255, 255, 255])
img_file = "beach_ball.png"
balls = []
for row in range (0, 3):
 for column in range (0, 3):
 location = [column * 180 + 10, row * 180 + 10]
 ball = MyBallClass(img_file, location)
 balls.append(ball)
for ball in balls:
 screen.blit(ball.image, ball.rect)
pygame.display.flip()

img_file = "beach_ball.png"
balls = []
for row in range (0, 3):
 for column in range (0, 3):
 location = [column * 180 + 10, row * 180 + 10]
 ball = MyBallClass(img_file, location)
 balls.append(ball) Collect the balls in a list

Listing 17.1 Using sprites to put multiple ball images on the screen

Makes the location different
each time through the loop

Creates a ball
at that location

for ball in balls:
 screen.blit(ball.image, ball.rect)
pygame.display.flip()

Defines ball
subclass

Sets window size

Adds balls to a list
Licensed to Deborah Christiansen <pedbro@gmail.com>

205 CHAPTER 17 Sprites and Collision Detection

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT: sys.exit()

If you run this, you should
see nine beach balls
appear in the Pygame
window, like this:

In a minute, we’ll start moving them around.

Did you notice the small change in lines 10 and 11, which set the size of the Pygame win-
dow? We replaced

with

This code not only sets the size of the window—like before—but also defines two variables,
width and height, which we can use later. The neat thing here is that we have defined a list,
called size, with two items in it, and we have also defined two integer variables, width and
height, all in one statement. We also didn’t use square brackets around our list, and Python
is fine with that.

I just wanted to show you that there are sometimes different ways to do things in Python.
One isn’t necessarily better than the other (as long as they both work). Even though you
have to follow Python’s syntax (rules of language), there’s still some room for freedom of
expression. If you asked ten programmers to write the same program, you probably
wouldn’t get any two pieces of code that were identical.

screen = pygame.display.set_mode([640,480])

size = width, height = 640, 480
screen = pygame.display.set_mode(size)
Licensed to Deborah Christiansen <pedbro@gmail.com>

206 Hello World!
A move() method

Because we’re creating the balls as instances of MyBallClass, it makes sense to move them
using a class method. So let’s create a new class method called move():

Sprites (actually the rects within them) have a built-in method called move(). This method
requires a parameter called speed to tell it how far (that is, how fast) to move the object.
Because we’re dealing with 2-D graphics, the speed is a list of two numbers, one for x-speed
and one for y-speed. We also check for the ball hitting the edges of the window, so we can
“bounce” the balls around the screen.

Let’s change the MyBallClass definition to add the speed property and the move() method:

Notice the change in line 2 (def __init__(self, image_file, location, speed):) and the
addition of line 7 (self.speed = speed), as well as the new move() method in lines 9 to 15.

Now when we create each instance of a ball, we need to tell it the speed as well as the
image file and location:

def move(self):
 self.rect = self.rect.move(self.speed)
 if self.rect.left < 0 or self.rect.right > width:
 self.speed[0] = -self.speed[0]

 if self.rect.top < 0 or self.rect.bottom > height:
 self.speed[1] = -self.speed[1]

class MyBallClass(pygame.sprite.Sprite):
 def __init__(self, image_file, location, speed):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
 self.speed = speed

 def move(self):
 self.rect = self.rect.move(self.speed)
 if self.rect.left < 0 or self.rect.right > width:
 self.speed[0] = -self.speed[0]

 if self.rect.top < 0 or self.rect.bottom > height:
 self.speed[1] = -self.speed[1]

Checks for hitting sides
of the window, and if so,
reverses the x-speed

Checks for hitting top
or bottom of the
window, and if so,
reverses the y-speed

Adds the
location argument

Adds this line to create a
speed attribute for the ball

Adds this
method for
moving the ball

speed = [2, 2]
ball = MyBallClass(img_file, location, speed)
Licensed to Deborah Christiansen <pedbro@gmail.com>

207 CHAPTER 17 Sprites and Collision Detection
The preceding code will create all the balls with the same speed (same direction), but it
would be fun to see the balls move around a bit randomly. Let’s use the random.choice()
function to set the speed, like this:

This will choose either -2 or 2 for both the x and y speed.

Listing 17.2 shows the complete program.

import sys, pygame
from random import *

#-----ball subclass definition -----------------------------
class MyBallClass(pygame.sprite.Sprite):
 def __init__(self, image_file, location, speed):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
 self.speed = speed

 def move(self):
 self.rect = self.rect.move(self.speed)
 if self.rect.left < 0 or self.rect.right > width:
 self.speed[0] = -self.speed[0]

 if self.rect.top < 0 or self.rect.bottom > height:
 self.speed[1] = -self.speed[1]

#----- Main Program -----------------------------
size = width, height = 640, 480
screen = pygame.display.set_mode(size)
screen.fill([255, 255, 255])
img_file = "beach_ball.png"
balls = []
for row in range (0, 3):
 for column in range (0, 3):
 location = [column * 180 + 10, row * 180 + 10]
 speed = [choice([-2, 2]), choice([-2, 2])]
 ball = MyBallClass(img_file, location, speed)
 balls.append(ball)

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT: sys.exit()
 pygame.time.delay(20)
 screen.fill([255, 255, 255])
 for ball in balls:
 ball.move()
 screen.blit(ball.image, ball.rect)
 pygame.display.flip()

Listing 17.2 A program for moving balls around using sprites

from random import *
speed = [choice([-2, 2]), choice([-2, 2])]

Creates list to keep track of balls

Adds each ball to the
list as it’s created

Redraws the screen
Licensed to Deborah Christiansen <pedbro@gmail.com>

208 Hello World!
This program uses a list to keep track of all the balls. In line 32 (balls.append(ball)), each
ball is added to the list as it’s created.

The code in the last five lines redraws the screen. Here we cheat a bit, and instead of “eras-
ing” (painting over) each ball separately, we just fill the window with white and then redraw
all the balls.

You can experiment with this code by having more (or fewer) balls, changing their speed,
changing how they move and “bounce,” and so on. You’ll notice that the balls move around
and bounce off the sides of the window, but they don’t bounce off each other—yet!

Bump! Collision detection
In most computer games, you need to know when one sprite hits another one. For example,
you might need to know when the bowling ball hits the pins or when your missile hits the
spaceship.

You might be thinking that, if we know the position and size of every sprite, we could write
some code to check those against the position and size of every other sprite, to see where
they overlap. But the folks who wrote Pygame have already done that for us. Pygame has
what’s called collision detection built in.

Pygame also has a way of grouping sprites together. For example, in a bowling game, all the
pins might be in one group, and the ball would be in a group of its own.

Groups and collision detection go hand in hand. In the bowling example, you’d want to
detect when the ball hits any of the pins, so you’d look for collisions between the ball sprite
and any sprites in the pins group. You can also detect collisions within a group (like the pins
hitting each other).

Let’s work through an example. We’ll start with our bouncing beach balls, but to make it
easier to see what’s going on, we’ll start with just four balls instead of nine. And instead of
making a list of the balls like we did in the last example, we’ll use Pygame’s group class.

We’ll also clean up the code a bit by putting the part that animates the balls (the last few
lines in listing 17.2) into a function, which we’ll call animate(). The animate() function will
also have the code for collision detection. When two balls collide, we’ll make them reverse
direction.

Collision detection simply means knowing when two sprites are
touching or overlapping. When two things that are moving run
into each other, it’s called a collision.
Licensed to Deborah Christiansen <pedbro@gmail.com>

209 CHAPTER 17 Sprites and Collision Detection
Listing 17.3 shows the code.

import sys, pygame
from random import *

class MyBallClass(pygame.sprite.Sprite):
 def __init__(self, image_file, location, speed):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
 self.speed = speed

 def move(self):
 self.rect = self.rect.move(self.speed)
 if self.rect.left < 0 or self.rect.right > width:
 self.speed[0] = -self.speed[0]
 if self.rect.top < 0 or self.rect.bottom > height:
 self.speed[1] = -self.speed[1]

def animate(group):
 screen.fill([255,255,255])
 for ball in group:

 group.remove(ball)

 if pygame.sprite.spritecollide(ball, group, False):
 ball.speed[0] = -ball.speed[0]
 ball.speed[1] = -ball.speed[1]

 group.add(ball)

 ball.move()
 screen.blit(ball.image, ball.rect)
 pygame.display.flip()
 pygame.time.delay(20)

size = width, height = 640, 480
screen = pygame.display.set_mode(size)
screen.fill([255, 255, 255])
img_file = "beach_ball.png"
group = pygame.sprite.Group()
for row in range (0, 2):
 for column in range (0, 2):
 location = [column * 180 + 10, row * 180 + 10]
 speed = [choice([-2, 2]), choice([-2, 2])]
 ball = MyBallClass(img_file, location, speed)
 group.add(ball)

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT: sys.exit()
 animate(group)

Listing 17.3 Using a sprite group instead of a list

The ball
class
definition

Removes sprite
from the group

The new
animate()
functionChecks for collisions

between the sprite
and the group

Adds ball back
into the group

The main program
starts here

Creates only four
balls this time

Creates the
sprite group

Adds each ball
to the group

Calls animate()
function, passing
the group to it
Licensed to Deborah Christiansen <pedbro@gmail.com>

210 Hello World!
The most interesting new thing here is how the collision detection works. The Pygame
sprite module has a function called spritecollide(), which looks for collisions between a
single sprite and any sprite in a group. If you’re checking for collisions between sprites in
the same group, you have to do it in three steps:

■ First, you remove the sprite from the group.
■ Next, you check for collisions between the sprite and the rest of the group.
■ Finally, you add the sprite back to the group.

This happens in the for loop in lines 23 to 29 (in the middle part of the animate() function).
If we don’t remove the sprite from the group first, spritecollide() will detect a collision
between the sprite and itself, because it’s in the group. This might seem kind of odd at first,
but it makes sense if you think about it for a while.

Run the program and see how it looks. Did you notice any strange behavior? I noticed two
things:

■ When the balls collide, they do a “stutter” or a
double bump.

■ Sometimes a ball gets “stuck” along the edge of
the window and stutters along for a while.

Why does this happen? Well, it has to do with the way
we wrote the animate() function. Notice that we move
one ball, then we check its collisions, then we move
another ball, then we check its collisions, and so on. We
should probably do all the moving first, and then do all
the collision checking after that.

So we want to take line 31, ball.move(), and put it in its own loop, like this:

def animate(group):
 screen.fill([255,255,255])
 for ball in group:
 ball.move()
 for ball in group:
 group.remove(ball)

 if pygame.sprite.spritecollide(ball, group, False):
 ball.speed[0] = -ball.speed[0]
 ball.speed[1] = -ball.speed[1]

 group.add(ball)

 screen.blit(ball.image, ball.rect)
 pygame.display.flip()
 pygame.time.delay(20)

This is easier to see if you make the animation steps bigger. You can do this by increasing the speed from 2 to 5 and also increasing the delay between each step from 20 to 50.

Moves all
the balls first

Then does
collision
detection and
bounces them
Licensed to Deborah Christiansen <pedbro@gmail.com>

211 CHAPTER 17 Sprites and Collision Detection
Try this and see if it works a little better.

You can play with the code, changing things like the speed (the time.delay() number),
number of balls, original location of the balls, randomness, and so on to see what happens
to the balls.

Rect collision versus pixel-perfect collision

One thing you’ll notice is that the balls aren’t always completely touching when they
“collide.” That’s because spritecollide() doesn’t use the round shape of the ball to
detect collisions. It uses the ball’s rect, the rectangle around the ball.

If you want to see this, draw a rectangle around the ball image, and use that new image
instead of the regular beach ball image.
I’ve made one for you, so you can try it:

It should look
something like this:

If you wanted the balls to bounce
off each other only when the
round parts of the balls (not the
edges of the rectangles) actually
touched, you’d have to use some-
thing called “pixel-perfect colli-
sion detection.” The
spritecollide() function doesn’t
do this, but instead uses the sim-
pler “rect collision detection.”

Here’s the difference. With rect collision detection, two balls will “collide” when any part of
their rectangles touch each other. With pixel-perfect collision detection, two balls will only
collide when the balls themselves touch, like this:

img_file = "b_ball_rect.png"

Rect collision Pixel-perfect collision
Licensed to Deborah Christiansen <pedbro@gmail.com>

212 Hello World!
00:00:00:12

Pixel-perfect collision detection is more realistic. (You haven’t felt any invisible rectangles
around any real beach balls, have you?) But it’s more complicated to do in a program.

For most things that you’ll do in Pygame, rect collision detection is good enough. Pixel-
perfect collision detection takes more code and it’ll make your games run slower, so you’ll
only use it if you really, really need it. There’s a separate module for doing pixel-perfect
collision detection, but we won’t use it here. You can find it at http://arainyday.se/projects/
python/PixelPerfect/ or on this book’s web site.

Counting time
Up until now, we have been using time.delay() to control how fast our animation runs. But
that isn’t the best way because, when you use time.delay(), you don’t really know how
long each loop will be. The code in the loop takes some time to run (an unknown time), and

then the delay takes some more
time (a known time). So part of
the timing is known, but part is

unknown.

If we want to know how often our loop
runs, we need to know the total time

of each loop, which is code time +
delay time. To calculate time for

animation, it’s convenient to use milliseconds, or thousandths of a second. The abbreviation
is ms, so 25 milliseconds is 25 ms.

In our example, let’s assume that the code time is 15 ms. That means it takes 15 ms for the
code in the while loop to run, not including the time.delay(). We know the delay time,
because we set it to 20 ms using time.delay(20). The total time for the loop is 20 ms + 15
ms = 35 ms, and there are 1000 ms in one second. If each loop takes 35 ms, we get 1000
ms / 35 ms = 28.57. This means we’ll get about 29 loops per second. In computer graphics,
each animation step is called a frame, and game programmers talk about frame rate and
frames per second when they discuss how fast their graphics are updating. In our example,
the frame rate would be about 29 frames per second, or 29 fps.

The problem is, we can’t really control the “code time” part of the equation. If we add or
remove code, the time will change. Even with the same code, if there is a different number
of sprites (for example, as game objects appear and disappear), the time it takes to draw
them all will change. Instead of 15 ms, the code time might be 10 ms or 20 ms. It would be
good if there were a more predictable way to control the frame rate. Fortunately, Pygame’s
time module gives us the tools to do this, with a class called Clock.
Licensed to Deborah Christiansen <pedbro@gmail.com>

213 CHAPTER 17 Sprites and Collision Detection
Controlling the frame rate with pygame.time.Clock()

Rather than adding a delay to each loop, pygame.time.Clock()
controls how often each loop runs. It’s like a timer that keeps
going off, saying “Start the next loop now! Start the next
loop now! . . .”

Before you start using a Pygame clock, you have to create an
instance of a Clock object. That works just the same as creating
an instance of any other class:

Then, in the body of the main loop, you just tell the clock how often it
should “tick”—that is,
how often the loop should run:

The number you pass clock.tick() isn’t a number of milliseconds. Instead,
it’s the number of times per second the loop should run. So this loop
should run 60 times per second. I say “should run,” because the loop can only run as fast as
your computer can make it run. At 60 loops (or frames) per second, that’s 1000 / 60 = 16.66
ms (about 17 ms) per loop. If the code in the loop takes longer than 17 ms to run, it won’t
be done by the time clock tells it to start the next loop.

Basically, this means that there’s a limit to how many frames per second your graphics can
run. That limit depends on how complex the graphics are, the size of the window, and the
speed of the computer that the program is running on. For a certain program, one com-
puter might be able to run at 90 fps, while an older, slower computer chugs along at 10 fps.

For reasonably complex graphics, most modern computers won’t have any problem running
Pygame programs at 20 to 30 fps. So if you want your games to run at the same speed on
most computers, pick a frame rate of 20 to 30 fps or less. This is fast enough to produce
smooth-looking motion. We’ll use clock.tick(30) for the examples in this book from
now on.

Checking the frame rate

If you want to know how fast your program can run, you can check the frame rate with a
function called clock.get_fps(). Of course, if you set the fame rate to 30, it’ll always go at
30 fps (assuming your computer can run that fast). To see the fastest a particular program
can run on a particular machine, set the clock.tick very fast (like 200 fps) and then run the
program and check the actual frame rate with clock.get_fps(). (An example is coming up
soon.)

clock = pygame.time.Clock()

clock.tick(60)
Licensed to Deborah Christiansen <pedbro@gmail.com>

214 Hello World!
Scaling the frame rate

If you want to be really sure your animation runs at the same speed on every machine,
there’s a trick you can do with clock.tick() and clock.get_fps(). Because you know the
speed you want to run at and the speed you’re actually running at, you can adjust, or scale,
the speed of your animation according to the speed of the machine.

For example, let’s say you have clock.tick(30), which means you’re trying to run at 30 fps.
If you use clock.get_fps() and find you’re only getting 20 fps, you know that objects on
the screen are moving slower than you’d like. Because you’re getting fewer frames per sec-
ond, you have to move your objects farther in each frame to make them appear to move at
the correct speed. You’ll probably have a variable (or attribute) called speed for your mov-
ing objects, which tells them how far to move in each frame. You just need to increase
speed to make up for a slower machine.

How much to increase it? You just increase it by the ratio of desired fps / actual fps. If your
object’s current speed is 10 for the desired 30 fps, and the program is actually running at 20
fps, you’d have

So instead of moving 10 pixels per frame, you’d move the object 15 pixels per frame to
make up for the slower frame rate. We’ll use this trick in some programs later in the book.

Here’s a listing of the beach ball program using the things we have discussed in the last
couple of sections: Clock and get_fps().

import sys, pygame
from random import *

class MyBallClass(pygame.sprite.Sprite):
 def __init__(self, image_file, location, speed):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
 self.speed = speed

 def move(self):
 self.rect = self.rect.move(self.speed)
 if self.rect.left < 0 or self.rect.right > width:
 self.speed[0] = -self.speed[0]

 if self.rect.top < 0 or self.rect.bottom > height:
 self.speed[1] = -self.speed[1]

Listing 17.4 Using Clock and get_fps() in the beach ball program

object_speed = current_speed * (desired fps / actual fps)
object_speed = 10 * (30 / 20)
object_speed = 15

The ball
class
definition
Licensed to Deborah Christiansen <pedbro@gmail.com>

215 CHAPTER 17 Sprites and Collision Detection
def animate(group):
 screen.fill([255,255,255])
 for ball in group:
 ball.move()
 for ball in group:
 group.remove(ball)

 if pygame.sprite.spritecollide(ball, group, False):
 ball.speed[0] = -ball.speed[0]
 ball.speed[1] = -ball.speed[1]

 group.add(ball)

 screen.blit(ball.image, ball.rect)
 pygame.display.flip()

size = width, height = 640, 480
screen = pygame.display.set_mode(size)
screen.fill([255, 255, 255])
img_file = "beach_ball.png"
clock = pygame.time.Clock()
group = pygame.sprite.Group()
for row in range (0, 2):
 for column in range (0, 2):
 location = [column * 180 + 10, row * 180 + 10]
 speed = [choice([-4, 4]), choice([-4, 4])]
 ball = MyBallClass(img_file, location, speed)
 group.add(ball) #add the ball to the group

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 frame_rate = clock.get_fps()
 print "frame rate = ", frame_rate
 sys.exit()
 animate(group)
 clock.tick(30)

You may have noticed that we used while 1 for the while loop at the end of listing 17.4 B,
instead of while True, like we did in listing 17.3. They both do the same thing. When test-
ing for True or False (like in a while statement), the values 0 and None and an empty string
or an empty list are treated as False. Any other value is treated as True. So 1 = True, and
that’s why while 1 is the same as while True. Both of these are commonly used in Python.

There is something else that you might notice, depending on how you run the program. If
you are using SPE and you use Run in terminal without arguments, the terminal window
might close when you end the Pygame program, so you’ll never get to see the output of the
print statement that prints the frame rate. There are a couple of ways to solve this:

The
animate
function

time.delay()
has been removed

Creates instance
of Clock

Initializes
everything
and draws
beach balls

The main while loop starts hereB

Checks the
frame rate

clock.tick now controls
the frame rate (limited by
the speed of the computer)
Licensed to Deborah Christiansen <pedbro@gmail.com>

216 Hello World!
■ Run the program using Run without arguments (CTRL-Shift-R), and you will see the
output of the print statement in the SPE shell window (below the text editor window
in SPE).

■ Add a delay after the print statement, like this: pygame.time.delay(5000). That will
give you 5 seconds to read the output before the terminal window closes.

Depending on your system, the terminal window may stay open anyway. On my system, I
have to manually close the terminal window after ending the Pygame program.

That covers the basics of Pygame and sprites. In the next chapter, we’ll make a real game
using Pygame, and we’ll see some other things you can do, like adding text (for game
scores), sound, and mouse and keyboard input.

What did you learn?

In this chapter, you learned about

■ sprites in Pygame and how to use them to handle multiple moving images.
■ groups of sprites.
■ collision detection.
■ pygame.clock and frame rate.

Test your knowledge
1 What is rect collision detection?

2 What is pixel-perfect collision detection, and how is it different from rect collision
detection?

3 What are two ways to keep track of a number of sprite objects together?

4 What are two ways to control the speed of animation in your code?

5 Why is using pygame.clock more accurate than using pygame.time.delay()?

6 How can you tell what frame rate your program is running at?

Try it out

If you typed in all of the code examples in this chapter, you’ve tried enough out. If you
didn’t, go back and do that. I promise you’ll learn something from it!
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 1 8

A New Kind of Input—Events
Up until now, we have had very simple kinds of inputs for our programs. The user either
typed in strings using raw_input(), or we got numbers and strings from EasyGui (in chapter
6). I also showed you how you could use the mouse to close a Pygame window, but I didn’t
really explain how that worked.

In this chapter, you’ll learn about a different kind of input called events. Along the way, we’ll
look at exactly what the exit code for the Pygame window is doing and how it works. We’ll
also get input from the mouse and make our programs react immediately to a key being
pressed, without having to wait for the user to press Enter.

Events
If I asked you, “What’s an event?” in real life, you might say that it’s “something that hap-
pens.” That’s a pretty good definition, and that same definition is true in programming.
Many programs need to react to “things that happen,” like

■ the mouse being moved or clicked.
■ keys being pressed.
■ a certain amount of time passing.

Most of the programs we have written so far have followed a fairly predictable path from
beginning to end, maybe with some loops or conditions in the middle. But there’s another
whole class of programs, called event-driven programs, that don’t work that way. Event-
driven programs basically sit there and do nothing, waiting until something—an event—
happens. When an event does happen, they spring into action, doing whatever is necessary
to handle the event.
217

Licensed to Deborah Christiansen <pedbro@gmail.com>

218 Hello World!
A good example of this is the Windows operating system (or any other GUI). If you turn on
your Windows computer, it will just sit there once it’s done booting up. No programs will
start, and you won’t see the mouse cursor zipping around the screen. However, if you start
moving or clicking the mouse, things start to happen. The mouse cursor moves on the
screen, the Start menu pops up, or whatever.

The event loop

In order for an event-driven program to “see” events happening, it has to be “looking” for
them. The program has to be constantly scanning the part of the computer’s memory that’s
used to signal when an event has happened. It does this over and over again, as long as the
program is running. Back in chapter 8, we learned how programs do things over and over
again—they use a loop. The special loop that keeps looking for events is called an event loop.

In the Pygame programs we have been making in the last two chapters, there was always a
while loop at the end. We said that this loop ran the whole time the program was running.
That while loop is Pygame’s event loop. (There’s the first piece of the puzzle about how the
exit code works.)

The event queue

We have all these events happening whenever somebody moves or clicks the mouse or
presses a key. Where do they go? In the last section, I said that the event loop constantly
scans part of the memory. The part of memory where events are stored is called the
event queue.

The event queue is a list of all the events that have happened, in the order they happened.

Event handlers

If you’re writing a GUI program or a game, the program has to know whenever the user
presses a key or moves the mouse. Those presses, clicks, and mouse moves are all events,
and the program has to know what to do with them. It has to handle them. A part of a pro-
gram that handles a certain kind of event is called an event handler.

The word queue is pronounced “cue.” In everyday use, it means a
waiting line.

In programming, queue usually means a list of things that have
arrived in a particular order or that will be used in a particu-
lar order.
Licensed to Deborah Christiansen <pedbro@gmail.com>

219 CHAPTER 18 A New Kind of Input—Events
Not every event will be handled. As you move the mouse across the desk, hundreds of
events are created, because the event loop runs very fast. Every fraction of a second, if the
mouse has moved even a tiny bit, a new event is generated. But your program may not care
about every tiny movement of the mouse. It may only care when the user clicks on a certain
thing. So your program might ignore mouseMove events and only pay attention to
mouseClick events.

Event-driven programs have event handlers for the kinds of events they care about. If you
have a game that uses the arrow keys on the keyboard to control the movement of a ship,
you might write a handler for the keyDown event. If instead you’re using the mouse to con-
trol the ship, you might write a handler for the mouseMove event.

We’ll start looking now at some specific events that we can use in our programs. We’re
going to use Pygame again, so all the events we’ll talk about in the rest of this chapter will
come from Pygame’s event queue. Other Python modules have different sets of events that
you can use. For example, we’ll look at another module called PythonCard in chapter 20.
PythonCard has its own set of events, some of which are different from Pygame. However,
the way events are handled is generally the same from one set of events to another (and
even from one programming language to another). It’s not exactly the same for each event
system, but there are more similarities than differences.

Keyboard events
Let’s start with an example of a keyboard event. Let’s say we want something to happen as
soon as a key is pressed on the keyboard. In Pygame, the event for that is KEYDOWN. To illus-
trate how this is used, let’s use our bouncing ball example from listing 16.15, which just
moves the ball sideways, bouncing off the sides of the window. But before we start adding
events, let’s update that program with the new stuff we have learned:

■ using sprites
■ using clock.tick() instead of time.delay()

First, we need a class for the ball. That class will have an __init__() method and a move()
method. We’ll create an instance of the class, and in the main while loop, we’ll use
clock.tick(30). Listing 18.1 shows the code with those changes.

import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640,480])
background = pygame.Surface(screen.get_size())
background.fill([255, 255, 255])
clock = pygame.time.Clock()

Listing 18.1 Bouncing ball program, with sprites and Clock.tick()
Licensed to Deborah Christiansen <pedbro@gmail.com>

220 Hello World!

class Ball(pygame.sprite.Sprite):
 def __init__(self, image_file, speed, location):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
 self.speed = speed

 def move(self):
 if self.rect.left <= screen.get_rect().left or \
 self.rect.right >= screen.get_rect().right:
 self.speed[0] = - self.speed[0]
 newpos = self.rect.move(self.speed)
 self.rect = newpos

my_ball = Ball('beach_ball.png', [10,0], [20, 20])
while True:

 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

 clock.tick(30)
 screen.blit(background, (0, 0))
 my_ball.move()
 screen.blit(my_ball.image, my_ball.rect)
 pygame.display.flip()

One thing to notice here is that we did something different to “erase” the ball when we
moved it. We have seen two ways to “erase” sprites before repainting them in their new
positions: one is to paint the background color over each sprite’s old position, and the other
is to just repaint the whole background for each frame—basically starting over with a blank
screen each time. In this case, we did the second one. But instead of using screen.fill()
every time through the loop, we made a surface called background and filled it with white.
Then, each time through the loop, we just blit that background onto the display surface,
screen. It accomplishes the same thing; it’s just a slightly different way of doing it.

Key events

Now we’ll add an event handler that makes the ball move up when the up arrow is pressed
and move down when the down arrow is pressed. Pygame is made up of a number of differ-
ent modules. The module we’ll use in this chapter is pygame.event.

We already have the Pygame event loop running (the while loop). That loop is looking for a
special event called QUIT.

The Ball
class,
including the
move()
method

Makes an
instance of
the ball

Speed, location

This is the clock

Redraws
everything

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
Licensed to Deborah Christiansen <pedbro@gmail.com>

221 CHAPTER 18 A New Kind of Input—Events
The pygame.event.get() method gets a list of all the events from the event queue. The for
loop iterates through each event in the list, and if it sees the QUIT event, it runs a function
called sys.exit(), which closes the Pygame window, ending the program. So now you have
the whole story on how the “click the X to end the program” code works.

For this example though, we also want to detect a different type of event. We want to
know when a key is pressed, so we need to look for the KEYDOWN event. We need something
like this:

Because we already have an if statement, we can just add another condition with elif, like
we learned in chapter 7:

What “something” do we want to do when a key is pressed? We said that, if the up arrow
was pressed, we’d make the ball move up, and if the down arrow was pressed, we’d move it
down. So we could do something like this:

K_UP and K_DOWN are Pygame’s names for the up and down arrow keys. Make this change to
listing 18.1, and the program should now look like listing 18.2.

import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640,480])
background = pygame.Surface(screen.get_size())
background.fill([255, 255, 255])
clock = pygame.time.Clock()

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 elif event.type == pygame.KEYDOWN:
 # do something

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_UP:
 my_ball.rect.top = my_ball.rect.top - 10
 elif event.key == pygame.K_DOWN:
 my_ball.rect.top = my_ball.rect.top + 10

Listing 18.2 Bouncing ball with up and down arrow keys

if event.type == pygame.KEYDOWN

This is the new part where
we detect the key press

Makes the ball
move up by 10 pixels

Makes the ball move
down by 10 pixels

Initializes everything
Licensed to Deborah Christiansen <pedbro@gmail.com>

222 Hello World!

class Ball(pygame.sprite.Sprite):
 def __init__(self, image_file, speed, location):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
 self.speed = speed

 def move(self):
 if self.rect.left <= screen.get_rect().left or \
 self.rect.right >= screen.get_rect().right:
 self.speed[0] = - self.speed[0]
 newpos = self.rect.move(self.speed)
 self.rect = newpos

my_ball = Ball('beach_ball.png', [10,0], [20, 20])
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_UP:
 my_ball.rect.top = my_ball.rect.top - 10
 elif event.key == pygame.K_DOWN:
 my_ball.rect.top = my_ball.rect.top + 10

 clock.tick(30)
 screen.blit(background, (0, 0))
 my_ball.move()
 screen.blit(my_ball.image, my_ball.rect)
 pygame.display.flip()

Run the program in listing 18.2, and try the up and down arrow keys. Does it work?

Repeating keys

You might have noticed that, if you hold down the up or down arrow key, the ball only
moves one step up or down. That’s because we didn’t tell our program what to do if a key
was held down. When the user pressed the key, it generated a single KEYDOWN event, but
there’s a setting in Pygame to make it generate multiple KEYDOWN events if a key is held
down. This is known as key repeat. You tell it how long to wait before it starts repeating,
and how often to repeat. The values are in milliseconds (thousandths of a second). It looks
like this:

The delay value tells Pygame how long to wait before starting to repeat, and the interval
value tells Pygame how fast the key should repeat—in other words, how long between each
KEYDOWN event.

The Ball class definition,
including move() method

Makes an instance
of the ball

Checks for key presses
and moves ball up or down

Redraws everything

delay = 100
interval = 50
pygame.key.set_repeat(delay, interval)
Licensed to Deborah Christiansen <pedbro@gmail.com>

223 CHAPTER 18 A New Kind of Input—Events
Try adding this to listing 18.2 (somewhere after pygame.init, but before the while loop) to
see how it changes the behavior of the program.

Event names and key names
When we were looking for the up and down arrow keys being pressed, we looked for the
KEYDOWN event type and the K_UP and K_DOWN key names. What other events are available?
What are the names of the other keys?

There are quite a lot of them, so I won’t list them all here. But they’re on the Pygame web
site and the book’s web site, and if you installed Python (and Pygame) from either of those
places, the Pygame documentation is on your computer too. You can find the list of events
in the event section of the Pygame documentation:

C:\python25\Lib\site-packages\pygame\docs\ref\event.html (in Windows)

The list of key names is in the key section:

C:\python25\Lib\site-packages\pygame\docs\ref\key.html

Here are a few of the common events we’ll use:
■ QUIT
■ KEYDOWN
■ KEYUP
■ MOUSEMOTION
■ MOUSEBUTTONUP
■ MOUSEBUTTONDOWN

We’ll see some of the other key names as we go along, but they all start with K_, followed by
the name of the key, like this:

■ K_a, K_b (for letter keys)
■ K_SPACE
■ K_ESCAPE

and so on.

Mouse events
We just saw how to get key events from the keyboard and use them to control something in
our program. We made the beach ball move up and down using the arrow keys. Now we’re
going to use the mouse to control the ball. This will show you how to handle mouse events
and how to use the mouse position information.

The three types of mouse events that are most commonly used are
■ MOUSEBUTTONUP
■ MOUSEBUTTONDOWN
Licensed to Deborah Christiansen <pedbro@gmail.com>

224 Hello World!
■ MOUSEMOTION

The simplest thing to do is just have the beach ball follow the mouse position any time the
mouse is moved within the Pygame window. To move the beach ball, we’ll use the ball’s
rect.center attribute. That way, the center of the ball will follow the mouse.

We’ll replace the code that detected key events in the while loop with code to detect the
mouse events.

This is even simpler than the keyboard example. Make this change to listing 18.2 and try it.
The event.pos part is the position (x and y coordinates) of the mouse. We just move the
center of the ball to that location.

Changing the ball’s rect.center changed both the x and y positions. We’re no longer just
moving the ball up or down, but also sideways. When there are no mouse events—either
because the mouse isn’t moving, or because the mouse cursor is outside the Pygame win-
dow—the ball continues its side-to-side bouncing.

Now let’s try making our mouse control work only when the mouse button is held down.
Moving the mouse while a mouse button is held down is called dragging. There’s no
MOUSEDRAG event type, so we’ll just use the ones we have to get the effect we want.

How can we tell if the mouse is being dragged? Dragging means the mouse is being moved
while a mouse button is being held down. We can tell when the button goes down with
the MOUSEBUTTONDOWN event, and we can tell when it’s released (goes back up) with the
MOUSEBUTTONUP event. Then we just have to keep track of the status of the button. We can
do that by making a variable, which we’ll call held_down. Here’s how that would look:

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 elif event.type == pygame.MOUSEMOTION:
 my_ball.rect.center = event.pos

held_down = False
while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 elif event.type == pygame.MOUSEBUTTONDOWN:
 held_down = True
 elif event.type == pygame.MOUSEBUTTONUP:
 held_down = False
 elif event.type == pygame.MOUSEMOTION:
 if held_down:
 my_ball.rect.center = event.pos

Detects mouse movement
and moves the ball

Determines whether the
mouse button is being
held down or not

Executes when the
mouse is being dragged
Licensed to Deborah Christiansen <pedbro@gmail.com>

225 CHAPTER 18 A New Kind of Input—Events
Now we’re
getting into some

programming!

The dragging condition (the mouse moving while a button is held down) is detected in the
last elif block in the preceding code. Try making this change to the while loop in your pre-
viously modified version of listing 18.2. Run it and see how it works.

Hey, we have been programming since chapter 1! But now
that we’re doing things with graphics, sprites, and the mouse,
it’s getting more interesting. I told you we’d get there. You
just had to stick with me and learn some of the basics first.

Timer events
So far in this chapter, we have seen keyboard events and mouse events. Another kind of
event that’s very useful, especially in games and simulations, is a timer event. A timer
generates an event at regular intervals, like your alarm
clock. If you set it and leave the alarm on, it will ring at
the same time every day.

Pygame timers can be set for any interval. When the
timer goes off, it creates an event that the event loop can
detect. And what kind of event does it generate? It generates something called a user event.

Pygame has a number of predefined event types. These events are numbered, starting from
0, and they also have names to make them easier to remember. We have already seen some
of them, like MOUSEBUTTONDOWN and KEYDOWN. There’s also room in Pygame for user-defined
events. These are events that Pygame has not set aside for anything specific, and you can
use them for whatever you want. One of the things they can be used for is timers.

To set a timer in Pygame, you use
the set_timer() function, like this:

EVENT_NUMBER is the number of the event, and interval is how often (in milliseconds) the
timer will go off and generate an event.

What EVENT_NUMBER should we use? We should use one that Pygame isn’t already using for
something else. We can ask Pygame what numbers are already used. Try this in interac-
tive mode:

pygame.time.set_timer(EVENT_NUMBER, interval)

>>> import pygame
>>> pygame.USEREVENT
24
Licensed to Deborah Christiansen <pedbro@gmail.com>

226 Hello World!
This tells us that Pygame is using event numbers from 0 to 23, and the first one available for
user events is 24. So we need to pick a number of 24 or higher. How high can we go? Let’s
ask Pygame again.

NUMEVENTS tells us that the maximum number of event types we can have in Pygame is 32
(from 0 to 31). So we have to pick a number of 24 or greater, but less than 32. We could just
set up our timer like this:

But if, for some reason, the value of USEREVENT changes, the code might not work. It would
be better to do it this way:

If we had to set up another user event, we could use USEREVENT + 1, and so on. The 1000 in
this example means 1000 milliseconds, which is one second, so this timer will go off once
every second. Let’s put this into our bouncing ball program.

Like before, we’ll use the event to move the ball up or down, but because the ball won’t be
controlled by a user this time, we should make it bounce off the top and bottom as well as
the sides. The complete program, based on modifying listing 18.2, is shown in listing 18.3.

import pygame, sys
pygame.init()
screen = pygame.display.set_mode([640,480])
background = pygame.Surface(screen.get_size())
background.fill([255, 255, 255])
clock = pygame.time.Clock()

class Ball(pygame.sprite.Sprite):
 def __init__(self, image_file, speed, location):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
 self.speed = speed

 def move(self):
 if self.rect.left <= screen.get_rect().left or \
 self.rect.right >= screen.get_rect().right:
 self.speed[0] = - self.speed[0]
 newpos = self.rect.move(self.speed)
 self.rect = newpos

my_ball = Ball('beach_ball.png', [10,0], [20, 20])
pygame.time.set_timer(pygame.USEREVENT, 1000)
direction = 1
while 1:

Listing 18.3 Using a timer event to move the ball up and down

>>> pygame.NUMEVENTS
32

pygame.time.set_timer(24, 1000)

pygame.time.set_timer(pygame.USEREVENT, 1000)

Initializes everything

The Ball class definition

Makes an instance of Ball

Creates a timer:
1000 ms = 1 second
Licensed to Deborah Christiansen <pedbro@gmail.com>

227 CHAPTER 18 A New Kind of Input—Events
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 elif event.type == pygame.USEREVENT:
 my_ball.rect.centery = my_ball.rect.centery + (30*direction)
 if my_ball.rect.top <= 0 or \
 my_ball.rect.bottom >= screen.get_rect().bottom:
 direction = -direction
 clock.tick(30)
 screen.blit(background, (0, 0))
 my_ball.move()
 screen.blit(my_ball.image, my_ball.rect)
 pygame.display.flip()

Remember, the \ is the line-continuation character B. You can use it to write something on
two lines that would normally go on a single line. (Just don't type any spaces after the \ or
the line continuation won't work.)

If you save and run the program in listing 18.3, you should see the ball moving back and
forth (side to side), as well as moving 10 pixels up or down (once per second). That up or
down movement is coming from the timer event.

Time for another game—PyPong
In this section, we’ll put together some of the things we have learned—including sprites,
collision detection, and events—to make a simple paddle-and-ball game, similar to Pong.

The event handler
for the timer

B

Redraws everything

Pong was one of the first video games that people used in
their homes. The original Pong game did not have any
software—it was just a bunch of circuits! This was before
there were any home computers. It plugged into your TV
and you controlled the “paddles” with knobs. Here’s a
picture of what it looked like on the TV screen:

Litt le k nown fac t :
Granny was not only a master Pong player, but she is a World C hampion ping-pong player!
Licensed to Deborah Christiansen <pedbro@gmail.com>

228 Hello World!
He
looks a little

scared.

We’ll start with a simple one-player version. Our game will need

■ a ball to bounce around.
■ a paddle to hit the ball with.
■ a way to control the paddle.
■ a way to keep score and display the score in the window.
■ a way to keep track of “lives”—how many turns you get.

We’ll cover each of these requirements one-by-one as we build up our program.

The ball

The beach ball we have been using so far is a bit big for a Pong game. We need something
smaller. Carter and I came up with this wacky tennis ball guy for our game:

Hey, you’d be scared too if you were about to get whacked
around by a paddle!

We’re going to use sprites for this game, so we need to make a sprite for our ball and then
create an instance of it. We’ll use the Ball class with __init__() and move() methods.

class MyBallClass(pygame.sprite.Sprite):
 def __init__(self, image_file, speed, location):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
 self.speed = speed

 def move(self):
 self.rect = self.rect.move(self.speed)
 if self.rect.left < 0 or self.rect.right > width:
 self.speed[0] = -self.speed[0]

 if self.rect.top <= 0 :
 self.speed[1] = -self.speed[1]

Bounces off the
sides of the window

Bounces off the
top of the window
Licensed to Deborah Christiansen <pedbro@gmail.com>

229 CHAPTER 18 A New Kind of Input—Events
When we create the instance of the ball, we’ll tell it which image to use, the speed of the
ball, and its starting location:

We’ll also need to add the ball to a group, so we can do collision detection between the ball
and the paddle. We can create the group and add the ball to it at the same time:

The paddle

For the paddle, we’ll stick with the Pong tradition and just use a simple rectangle. We’ll use
a white background, so we’ll make the paddle a black rectangle. We’ll make a sprite class
and instance for the paddle too:

Notice that, for the paddle, we didn’t load an image from an image file; we created one by
filling a rectangular surface with black. But every sprite needs an image attribute, so we
used the Surface.convert() method to convert the surface into an image.

The paddle can only move left or right, not up or down. We’ll make the paddle’s x-position
(its left-right position) follow the mouse, so the user will control the paddle with the mouse.
Because we’ll do this right in the event loop, we don’t need a separate move() method for
the paddle.

Controlling the paddle

As I mentioned in the last section, we’re going to control the paddle with the mouse. We’ll
use the MOUSEMOTION event, which means the paddle will move whenever the mouse moves
inside the Pygame window. Because Pygame only “sees” the mouse when it’s inside the
Pygame window, the paddle will automatically be limited to the edges of the window. We’ll
make the center of the paddle follow the mouse.

The code should look like this:

myBall = MyBallClass('wackyball.bmp', ball_speed, [50, 50])

ballGroup = pygame.sprite.Group(myBall)

class MyPaddleClass(pygame.sprite.Sprite):
 def __init__(self, location):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 image_surface = pygame.surface.Surface([100, 20])
 image_surface.fill([0,0,0])
 self.image = image_surface.convert()
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location

paddle = MyPaddleClass([270, 400])

Converts the
surface to an image

Fills the surface with black

Creates a surface for the paddle

elif event.type == pygame.MOUSEMOTION:
 paddle.rect.centerx = event.pos[0]
Licensed to Deborah Christiansen <pedbro@gmail.com>

230 Hello World!
event.pos is a list with the [x, y] values of the mouse’s position. So event.pos[0] gives us
the x-location of the mouse whenever it’s moved. Of course, if the mouse is at the left or
right edges, the paddle will be halfway out of the window, but that’s okay.

The last thing we need is collision detection between the ball and the paddle. This is how we
“hit” the ball with the paddle. When there is a collision, we’ll simply reverse the y-speed of
the ball (so when it’s going down and hits the paddle, it will bounce and start going up).
The code looks like this:

We also have to remember to redraw things every time through the loop. If we put this all
together, we get a very basic Pong-like program. Listing 18.4 has the complete code (so far).

import pygame, sys
from pygame.locals import *

class MyBallClass(pygame.sprite.Sprite):
 def __init__(self, image_file, speed, location):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
 self.speed = speed

 def move(self):
 self.rect = self.rect.move(self.speed)
 if self.rect.left < 0 or self.rect.right > screen.get_width():
 self.speed[0] = -self.speed[0]

 if self.rect.top <= 0 :
 self.speed[1] = -self.speed[1]

class MyPaddleClass(pygame.sprite.Sprite):
 def __init__(self, location = [0,0]):
 pygame.sprite.Sprite.__init__(self)
 image_surface = pygame.surface.Surface([100, 20])
 image_surface.fill([0,0,0])
 self.image = image_surface.convert()
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location

pygame.init()
screen = pygame.display.set_mode([640,480])
clock = pygame.time.Clock()
ball_speed = [10, 5]
myBall = MyBallClass('wackyball.bmp', ball_speed, [50, 50])
ballGroup = pygame.sprite.Group(myBall)
paddle = MyPaddleClass([270, 400])

Listing 18.4 The first version of PyPong

if pygame.sprite.spritecollide(paddle, ballGroup, False):
 myBall.speed[1] = -myBall.speed[1]

The ball class definition

Moves the ball (bounces
it off top and sides)

The paddle
class definition

Initializes Pygame,
clock, ball, paddle
Licensed to Deborah Christiansen <pedbro@gmail.com>

231 CHAPTER 18 A New Kind of Input—Events
I tried this out,
and it’s a little

boring.

while 1:
 clock.tick(30)
 screen.fill([255, 255, 255])
 for event in pygame.event.get():
 if event.type == QUIT:
 sys.exit()
 elif event.type == pygame.MOUSEMOTION:
 paddle.rect.centerx = event.pos[0]

 if pygame.sprite.spritecollide(paddle, ballGroup, False):
 myBall.speed[1] = -myBall.speed[1]
 myBall.move()
 screen.blit(myBall.image, myBall.rect)
 screen.blit(paddle.image, paddle.rect)
 pygame.display.flip()

Here’s what the program should
look like when it runs:

Okay, so it’s not the most exciting game, but we’re just getting
started with making games in Pygame. Let’s add a few more things to

 our PyPong game.

Keeping score and displaying it with pygame.font

There are two things we need to keep track of: the number of lives and the number of
points. To keep things simple, we’ll give one point for each time the ball hits the top of the
window. We’ll give the player three lives.

We’ll also need a way to display the score. Pygame uses a module called font for displaying
text. Here’s how you use it:

The start of the
main while loop

Moves paddle if
mouse moves

Checks for ball
hitting paddle

Redraws everything

Moves the ball
Licensed to Deborah Christiansen <pedbro@gmail.com>

232 Hello World!
I tried that
and it gave me a
NameError!

■ Make a font object, telling Pygame the font style and size you want.
■ Render the text, passing a string to the font object, which returns a new surface with

the text drawn on it.
■ Blit this surface onto the display surface.

The string, in our case, will be the number of points (but we’ll have to convert it from an int
to a string first).

We need some code like this, just before the event loop (after the screen.fill([255, 255,
255]) line) in listing 18.4:

The None in the first line is where we could tell Pygame what font (type style) we want to
use. By putting None, we tell Pygame to use a default font.

Then, inside the event loop, we need something like this:

This will redraw the score text each time through the loop.

Of course, Carter, we haven’t made a points variable yet.
(I was just getting to that.) Add this line just before the code
that creates the font object:

font = pygame.font.Font(None, 50)
score_text = font.render(str(points), 1, (0, 0, 0))
textpos = [10, 10]

screen.blit(score_text, textpos)

In computer graphics, render means to draw something

or make it visible.

Sets the text location

Creates the font object
Renders the text

Blits the text at that location

points = 0
Licensed to Deborah Christiansen <pedbro@gmail.com>

233 CHAPTER 18 A New Kind of Input—Events
Now, to keep track of the points . . . We already detect when the ball hits the top of the win-
dow (in order to bounce it). We just need to add a couple of lines there:

Oops! We forgot something about namespaces. Remember that big, long explanation in
chapter 15? Now you can see a real example of it. Although we do have a variable called
points, we’re trying to use it from within the move() method of the Ball class. The class is
looking for a local variable called points, which doesn’t exist. Instead, we want to use the
global variable we already created, so we just need to tell the move() method to use the
global points, like this:

We also need to make score_text a global variable, so the code should actually look
like this:

Now it should work! Try it and see. You should now see the score in the upper-left corner
of the window, and the score should increase as you bounce the ball off the top of the
window.

Keeping track of lives

Now let’s keep track of the lives. Currently, if you miss the ball, it just drops off the bottom
of the window, never to be seen again. We want to give the player three lives or chances, so
let’s make a variable called lives and set it equal to 3.

if self.rect.top <= 0 :
 self.speed[1] = -self.speed[1]
 points = points + 1
 score_text = font.render(str(points), 1, (0, 0, 0))

The two new lines

def move(self):
 global points

def move(self):
 global points, score_text

lives = 3

It STILL
gives me an error,
when the ball hits

the top!

Traceback (most recent call last):

File "C:...", line 59, in <module>

myBall.move()

File "C:\...", line 24, in move

points = points + 1

UnboundLocalError: local variable 'points'

referenced before assignment
Licensed to Deborah Christiansen <pedbro@gmail.com>

234 Hello World!
After the player misses the ball and it drops to the bottom of the window, we’ll subtract 1
from lives, wait a couple of seconds, and then start over with a new ball:

This code goes inside the while loop. By the way, the reason that we write myBall.rect for
the ball, and get_rect() for screen is this:

■ myBall is a sprite, and sprites have a rect included.
■ screen is a surface, and a surface does not have a rect included. You can find the rect

that encloses a surface with the get_rect() function.

If you make these changes and run the program, you’ll see that the player now has three lives.

Adding a life counter

Most games that give the player a number of lives have a way of showing how many lives
are left. We can do the same thing with our game.

One easy way is to show a number of balls equal to the number of lives remaining. We can
put these in the upper-right corner. Here’s a little formula in a for loop that will draw the
life counter:

This code also needs to go inside the main while loop, just before the event loop (after the
screen.blit(score_text, textpos) line).

Game over

The last thing we need to add is a “Game Over” message when the player uses up the last
life. We’ll make a couple of font objects that include our message and the player’s final
score, render them (create surfaces with the text on them), and blit the surfaces to screen.

We also need to stop the ball from reappearing after the last turn. To help with that, we’ll
make a done variable to tell us when we’re at the end of the game. The following code will
do that—it goes inside the main while loop.

if myBall.rect.top >= screen.get_rect().bottom:
 lives = lives - 1
 pygame.time.delay(2000)
 myBall.rect.topleft = [50, 50]

for i in range (lives):
 width = screen.get_rect().width
 screen.blit(myBall.image, [width - 40 * i, 20])
Licensed to Deborah Christiansen <pedbro@gmail.com>

235 CHAPTER 18 A New Kind of Input—Events
If we put this all together, the final PyPong program looks like listing 18.5.

import pygame, sys

class MyBallClass(pygame.sprite.Sprite):
 def __init__(self, image_file, speed, location):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
 self.speed = speed

 def move(self):
 global points, score_text
 self.rect = self.rect.move(self.speed)
 if self.rect.left < 0 or self.rect.right > screen.get_width():
 self.speed[0] = -self.speed[0]

 if self.rect.top <= 0 :
 self.speed[1] = -self.speed[1]
 points = points + 1
 score_text = font.render(str(points), 1, (0, 0, 0))

class MyPaddleClass(pygame.sprite.Sprite):
 def __init__(self, location = [0,0]):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 image_surface = pygame.surface.Surface([100, 20])
 image_surface.fill([0,0,0])
 self.image = image_surface.convert()
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location

if myBall.rect.top >= screen.get_rect().bottom:
 lives = lives - 1
 if lives == 0:
 final_text1 = "Game Over"
 final_text2 = "Your final score is: " + str(points)
 ft1_font = pygame.font.Font(None, 70)
 ft1_surf = font.render(final_text1, 1, (0, 0, 0))
 ft2_font = pygame.font.Font(None, 50)
 ft2_surf = font.render(final_text2, 1, (0, 0, 0))
 screen.blit(ft1_surf, [screen.get_width()/2 - \
 ft1_surf.get_width()/2, 100])
 screen.blit(ft2_surf, [screen.get_width()/2 - \
 ft2_surf.get_width()/2, 200])
 pygame.display.flip()
 done = True
 else: #wait 2 seconds, then start the next ball
 pygame.time.delay(2000)
 myBall.rect.topleft = [(screen.get_rect().width) - 40*lives, 20]

Listing 18.5 Final PyPong code

Subtracts a life if the ball
hits the bottom

Centers the text
in the window

Line-continuation
characters

Defines ball class

Defines paddle class
Licensed to Deborah Christiansen <pedbro@gmail.com>

236 Hello World!
pygame.init()
screen = pygame.display.set_mode([640,480])
clock = pygame.time.Clock()
myBall = MyBallClass('wackyball.bmp', [10,5], [50, 50])
ballGroup = pygame.sprite.Group(myBall)
paddle = MyPaddleClass([270, 400])
lives = 3
points = 0

font = pygame.font.Font(None, 50)
score_text = font.render(str(points), 1, (0, 0, 0))
textpos = [10, 10]
done = False

while 1:
 clock.tick(30)
 screen.fill([255, 255, 255])
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 elif event.type == pygame.MOUSEMOTION:
 paddle.rect.centerx = event.pos[0]

 if pygame.sprite.spritecollide(paddle, ballGroup, False):
 myBall.speed[1] = -myBall.speed[1]
 myBall.move()

 if not done:
 screen.blit(myBall.image, myBall.rect)
 screen.blit(paddle.image, paddle.rect)
 screen.blit(score_text, textpos)
 for i in range (lives):
 width = screen.get_width()
 screen.blit(myBall.image, [width - 40 * i, 20])
 pygame.display.flip()

 if myBall.rect.top >= screen.get_rect().bottom:
 lives = lives - 1

 if lives == 0:
 final_text1 = "Game Over"
 final_text2 = "Your final score is: " + str(points)
 ft1_font = pygame.font.Font(None, 70)
 ft1_surf = font.render(final_text1, 1, (0, 0, 0))
 ft2_font = pygame.font.Font(None, 50)
 ft2_surf = font.render(final_text2, 1, (0, 0, 0))
 screen.blit(ft1_surf, [screen.get_width()/2 - \
 ft1_surf.get_width()/2, 100])
 screen.blit(ft2_surf, [screen.get_width()/2 - \
 ft2_surf.get_width()/2, 200])
 pygame.display.flip()
 done = True

 else:
 pygame.time.delay(2000)
 myBall.rect.topleft = [50, 50]

Initializes everything

Creates the font
object

The start of the main
program (while loop)

Detects mouse motion
to move the paddle

Detects collisions
between the ball
and paddleMoves

the ball

Redraws everything

Decreases life counter
if ball hits bottom

Creates and
draws the final
score text

Starts a new life,
after 2-second delay
Licensed to Deborah Christiansen <pedbro@gmail.com>

237 CHAPTER 18 A New Kind of Input—Events
If you run the code in listing 18.5,
you should see
something like this:

If you were paying attention in the editor, this is about 75 lines of code (plus some blank
lines). That’s the biggest program we have created so far, but it also has a lot of stuff going
on, even though it looks pretty simple when you run it.

In the next chapter, we’ll learn about sounds in Pygame, and we’ll add some sound to our
PyPong game.

What did you learn?

In this chapter, you learned about

■ events.
■ the Pygame event loop.
■ event handling.
■ keyboard events.
■ mouse events.
■ timer events (and user event types).
■ pygame.font (for adding text to Pygame programs).
■ putting all these things together to make a game!

Test your knowledge
1 What are two kinds of events that a program can respond to?

2 What do you call the piece of code that deals with an event?
Licensed to Deborah Christiansen <pedbro@gmail.com>

238 Hello World!
3 What is the name of the event type that Pygame uses for detecting keys being
pressed?

4 What attribute of a MOUSEMOVE event tells you where in the window the mouse is
located?

5 How do you find out what the next available event number is in Pygame (for example,
if you want to add a user event)?

6 How do you create a timer to generate timer events in Pygame?

7 What kind of object is used to display text in a Pygame window?

8 What are the three steps to make text appear in a Pygame window?

Try it out
1 Did you notice anything strange that happens when the ball hits the side of the pad-

dle instead of the top? It kind of bounces along through the middle of the paddle for a
while. Can you figure out why? Can you fix it? Give it a try before looking at my solu-
tion in the answer section.

2 Try rewriting the program (either listing 18.4 or 18.5) so that there’s some randomness
to the ball’s bounces. You might change the way the ball bounces off the paddle or
the walls, make the speed random, or something else that you can think of. (We saw
random.randint() and random.random() in chapter 15, so you know how to generate
random numbers, both integers and floats.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 1 9

Sound
In the last chapter, we made our first graphical game, PyPong, using what we have learned
about graphics, sprites, collisions, animation, and events. In this chapter, we’ll add another
piece of the puzzle: sound. Every video
game and many other
programs use sound to
make them more
interesting and enjoyable.

Sound can be both an input
and an output. As an
input, you’d connect
a microphone or
other sound source to the
computer, and the program would record
the sound or do something else with it
(maybe send it over the Internet). But sound is much more common as an output, and that's
what we’ll cover in this book. We’ll learn how to play sounds like music or sound effects and
add them to our programs, like PyPong.

More help from Pygame—mixer
Sound is another one of those things, like graphics, that can get complicated, because dif-
ferent computers have different hardware and software for playing sounds. To make things
simpler, we’re going to get some help from Pygame again.
239

Licensed to Deborah Christiansen <pedbro@gmail.com>

240 Hello World!
Pygame has a module for working with sound, called pygame.mixer. In the real, non-
programming world, a device that takes in different sounds and merges them together
is called a “mixer,” and that’s where Pygame got the name.

Making sounds versus playing sounds
There are two basic ways for a program to produce sounds. The program can generate or
synthesize the sounds—that means create them from scratch by making sound waves of dif-
ferent pitch and volume. Or the program can play back a recorded sound. This could be a
piece of music on a CD, an MP3 sound file, or some other type of sound file.

In this book, we’re only going to learn about playing back sounds. Making your own sounds
from scratch is a pretty big topic, and there’s only so much room in this book. If you’re inter-
ested in computer-generated sounds, there are many programs for generating music and
sound from your computer.

Playing sounds
When you play back a sound, you’re taking a sound file from your hard drive (or from a CD
or sometimes the Internet) and turning it into sound that you can hear on the computer’s
speakers or headphones. There are many different types of sound files you can use on a
computer. These are some of the more common ones:

■ Wave files—The filenames end in .wav, like hello.wav.
■ MP3 files—The filenames end in .mp3, like mySong.mp3.
■ WMA (Windows Media Audio) files—The filenames end in .wma, like someSong.wma.
■ Ogg Vorbis files—The filenames end in .ogg, like yourSong.ogg.

In our examples, we’re going to use .wav and .mp3 files. All the sounds we’ll use are in the
\sounds folder, where HelloWorld was installed. For example, on Windows computers, it
should be at c:\Program Files\HelloWorld\examples\sounds.

There are two ways to include a sound file in your program. You can copy the sound file into
the same folder where the program is saved. This is where Python expects to find the file,
so you can just use the name of
the file in your program, like this:

If you don’t copy the sound file into the same folder as the program, you have to tell Python
exactly where the sound file is located, like this:

sound_file = "c:\Program Files\HelloWorld\sounds\my_sound.wav"

sound_file = "my_sound.wav"
Licensed to Deborah Christiansen <pedbro@gmail.com>

241 CHAPTER 19 Sound
For our examples, I’ll assume you have copied the
sound files to the folder where you save your pro-
grams. This means that, wherever a sound file is
used in the examples, you’ll just see the filename
and not the full location of the file. If you don’t copy
the sound files to the program folder, you’ll need to
replace the filenames with the full file locations.

Starting pygame.mixer

In order to play sounds, we have to initialize pygame.mixer. Remember what initializing
means? It means to get something ready at the start.

Getting pygame.mixer ready is
very easy. We just need to add the line

after we initialize Pygame. So the code at the start of a program that uses Pygame for sound
looks like this:

Now we’re ready to play some sounds. There are two main types of sounds you’ll use in your
programs. The first is sound effects or sound clips. These are usually short, and they’re most
commonly stored in .wav files. For these kinds of sounds, pygame.mixer uses a Sound object,
like this:

The other kind of sound you’ll use a lot is music. Music is most commonly stored in
.mp3, .wma, or .ogg files. To play these, Pygame uses a module within mixer called
music. You use it like this:

This will play the song (or whatever is in the music file)
once and then stop.

Let’s try playing some sounds. First, let’s try playing a
“splat” sound.

We still need a while loop to keep the Pygame pro-
gram running. Also, even though we won’t be drawing

All the sound files for these examples are already on your hard drive if you used the book’s installation program. Otherwise, you can find them on the book’s web site:
www.helloworldbook.com.

pygame.mixer.init()

import pygame
pygame.init()
pygame.mixer.init()

splat = pygame.mixer.Sound("splat.wav")
splat.play()

pygame.mixer.music.load("bg_music.mp3")
pygame.mixer.music.play()
Licensed to Deborah Christiansen <pedbro@gmail.com>

242 Hello World!
any graphics right now, Pygame programs are not happy unless they have a window. Also,
on some systems, mixer takes a little time to initialize. If you try to start playing a sound too
quickly, you’ll hear only part of it, or none at all. So we will wait a bit for mixer to get ready.
The code should look something like listing 19.1.

import pygame, sys
pygame.init()
pygame.mixer.init()

screen = pygame.display.set_mode([640,480])
pygame.time.delay(1000)

splat = pygame.mixer.Sound("splat.wav")
splat.play()

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

Try this and see how it works. Remember that IDLE can have trouble with Pygame pro-
grams, so you might want to use SPE or some other method to run this program.

Now let’s try playing some music using the mixer.music module. We only need to change a
couple of lines in listing 19.1. The new code is in listing 19.2.

import pygame, sys
pygame.init()
pygame.mixer.init()

screen = pygame.display.set_mode([640,480])
pygame.time.delay(1000)

pygame.mixer.music.load("bg_music.mp3")
pygame.mixer.music.play()

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

Give that a try, and make sure you can hear the music play.

I don’t know about you, but it seemed a bit loud to me. I had to turn the volume way down
on my computer. Let’s find out how to control the sound volume in our programs.

Listing 19.1 Trying out sounds in Pygame

Listing 19.2 Playing music

Initializes Pygame
and mixer

Creates a Pygame window

Waits a second for mixer
to finish initializing

Creates the sound objectPlays the sound

The usual Pygame
event loop

These are the two
changed lines
Licensed to Deborah Christiansen <pedbro@gmail.com>

243 CHAPTER 19 Sound
Like some video
games that have their

own volume control.

Controlling volume
You can control the volume of
sound on your computer by using
the volume controls. In Windows,
this is done with the little speaker
icon in the system tray. That setting
controls the volume of all the
sounds on your computer. You might also have a volume knob on the speakers themselves.

But we can also control the volume that Pygame sends to your computer’s sound card.

 And the good thing is, we can control the
volume of each sound individually—like making the
music quieter and the “splat” a bit louder, if we want.

For music, we use pygame.mixer.music.set_volume(). For
sounds, there’s a set_volume() method for each sound
object. In our first example, splat was the name of our sound
object, so we’d use splat.set_volume(). The volume is a
floating-point number from 0 to 1; for example, 0.5 would be
50 percent or half volume.

Now let’s try having music and sound in the same program. How about playing a song and
then playing the “splat” sound at the end. We’ll also turn down the volume of our sound a
bit. We’ll set the music to 30 percent and the “splat” sound to 50 percent. The code should
look something like listing 19.3.

import pygame, sys
pygame.init()
pygame.mixer.init()

screen = pygame.display.set_mode([640,480])
pygame.time.delay(1000)

pygame.mixer.music.load("bg_music.mp3")
pygame.mixer.music.set_volume(0.30)
pygame.mixer.music.play()
splat = pygame.mixer.Sound("splat.wav")
splat.set_volume(0.50)
splat.play()

Listing 19.3 Music and sound with volume adjustment

Adjusts the volume
on the music

Adjusts the volume
on the sound effect
Licensed to Deborah Christiansen <pedbro@gmail.com>

244 Hello World!
Hey, it “splatted”
me right at the start!
It didn't wait for the

song to finish.

Why not?

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

Give this a try and see how it works.

What Carter noticed is that, as soon as the program
 starts the music, it goes on to do the next thing, which
happens to be playing the “splat” sound. The reason for this is
that music is quite often used in the background, and you won’t
always want the program to sit there and play the entire song
before doing something else. In the next section, we’ll make this
work the way we want.

Playing background music
Background music is meant to play in the background while the game is being played. So
once you start the background song, Pygame has to get ready to do other things, like mov-
ing sprites around or checking the mouse and keyboard for input. It doesn’t wait for the
song to finish.

But what if you want to know when the song ends? Maybe you want to start a different
song or play another sound (like we want to do). How do you know when the music is
done? Pygame has a way to tell you: you can ask the mixer.music module if it’s still busy
playing a song. If it is, you know the song isn’t done yet. If it is not busy, you know the song
is done. Let’s try that.

To find out if the music module is still busy playing a song, you use the mixer.music mod-
ule’s get_busy() function. This will return the value True if it’s still busy, and False if it isn’t.
This time, we’ll make our program play the song, then play the sound effect, and then end
the program automatically. Listing 19.4 shows you how.

import pygame, sys
pygame.init()
pygame.mixer.init()

screen = pygame.display.set_mode([640,480])
pygame.time.delay(1000)

Listing 19.4 Waiting for the end of the song
Licensed to Deborah Christiansen <pedbro@gmail.com>

245 CHAPTER 19 Sound
pygame.mixer.music.load("bg_music.mp3")
pygame.mixer.music.set_volume(0.3)
pygame.mixer.music.play()
splat = pygame.mixer.Sound("splat.wav")
splat.set_volume(0.5)

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

 if not pygame.mixer.music.get_busy():
 splat.play()
 pygame.time.delay(1000)
 sys.exit()

This code will play the song once, then play the sound effect, and then the program
will end.

Repeating music
If we’re going to use a song as background music
for a game, we probably want to have the music
continue as long as the program is running. The
music module can do this for us. You can repeat the
playback a certain number of times, like this:

This will play the song three times.

You can also make the song repeat forever by passing a special value, -1, like this:

This will keep repeating the song forever, or as long as the Pygame program is running.
(Actually, it doesn’t have to be -1. Any negative number will do the trick.)

Adding sounds to PyPong
Now that we know the basics of playing sounds, let’s add some sound to our PyPong game.

First, we’ll add a sound every time the ball hits the paddle. We already know when that is,
because we’re using collision detection to reverse the direction of the ball when it hits the
paddle. Remember this code from listing 18.5:

if pygame.sprite.spritecollide(paddle, ballGroup, False):
 myBall.speed[1] = -myBall.speed[1]

Checks if the music is
done playing

Waits a second for the
“splat” sound to finish

pygame.mixer.music.play(3)

pygame.mixer.music.play(-1)

The documentation for Pygame says that the code
pygame.mixer.music.play(3) will play the song four times: the first time plus three repeats. They goofed on that one. It will really play the song three times.
Licensed to Deborah Christiansen <pedbro@gmail.com>

246 Hello World!
Now we need to add the code that plays a sound. We need to add pygame.mixer.init()
near the start of the program, and we’ll also create the sound object so it’s
ready to use:

We’ll also set the volume so it’s not too loud:

Then, when the ball hits the paddle, we’ll play the sound:

Try adding this to the PyPong
program from listing 18.5.
Make sure you copy the
hit_paddle.wav file to the
same place you’re saving
your program. When you run
it, you should hear a sound
every time the ball hits the
paddle.

More wacky sounds
Now that we have the hit sound when the ball hits the paddle, let’s add a few other
sounds. We’ll add sounds for these things:

■ when the ball hits the side walls
■ when the ball hits the top wall and the player scores a point
■ when the player misses the ball and the ball hits the bottom
■ when a new life starts
■ when the game ends

if pygame.sprite.spritecollide(paddle, ballGroup, False):
 myBall.speed[1] = -myBall.speed[1]
 hit.play()

hit = pygame.mixer.Sound("hit_paddle.wav")

hit.set_volume(0.4)

Plays the sound
Licensed to Deborah Christiansen <pedbro@gmail.com>

247 CHAPTER 19 Sound
First we need to create sound objects for all of these. You can put the code anywhere after
pygame.mixer.init() but before the while loop:

I picked the volume levels by just trying it out to see what sounded right. You can set them
to whatever you like. And remember to copy all the sound files to wherever you’re saving
your code. All of these sounds can be found in the \examples\sounds folder, or on the web
site.

Now we need to add the play() methods to the places where these events occur. The
hit_wall sound should happen whenever we hit the sides of the window. We detect this in
the ball’s move() method, and we reverse the ball’s x-speed (to make the ball “bounce” off
the sides). In the original listing 18.5, this is in line 15 (if self.rect.left < 0 or
self.rect.right > screen.get_width():). In SPE, you can see the line numbers down the
left side of the editor window.

So when we reverse direction, we can also play our sound. The code would look like this:

We can do the same thing for the get_point sound. Just a little farther down in the ball’s
move() method, we detect the ball hitting the top of the window. That’s where we bounce
the ball and add a point to the player’s score. Now we’re going to play a sound as well. The
new code would look like this:

Give these additions a try to see how they work.

hit_wall = pygame.mixer.Sound("hit_wall.wav")
hit_wall.set_volume(0.4)
get_point = pygame.mixer.Sound("get_point.wav")
get_point.set_volume(0.2)
splat = pygame.mixer.Sound("splat.wav")
splat.set_volume(0.6)
new_life = pygame.mixer.Sound("new_life.wav")
new_life.set_volume(0.5)
bye = pygame.mixer.Sound("game_over.wav")
bye.set_volume(0.6)

if self.rect.top <= 0 :
 self.speed[1] = -self.speed[1]
 points = points + 1
 score_text = font.render(str(points), 1, (0, 0, 0))
 get_point.play()

if self.rect.left < 0 or self.rect.right
 > screen.get_width():
 self.speed[0] = -self.speed[0]
 hit_wall.play()

Plays the sound for
hitting the side wall

Plays the sound for getting a point
Licensed to Deborah Christiansen <pedbro@gmail.com>

248 Hello World!
At the end of
the game, the bye sound

and the splat sound started
playing over and over!

Next we can add the code to play a sound when the player misses the ball and loses a life.
We detect this in the main while loop, in line 67 of the original listing 18.5 (if
myBall.rect.top >= screen.get_rect().bottom:). We just need to add a line like this:

We can also add a sound when the new life starts. This happens in the last three lines of list-
ing 18.5, in the else block. This time we’ll give our sound effect a little time to play before
we start the new life:

Instead of waiting two seconds (like we did in the original program), we wait one second
(1000 milliseconds), play the sound, and then wait another second before starting the new
turn. Give it a try and see how it sounds.

There’s one more sound effect to add, and that’s when the game is over. This happens in
line 69 of listing 18.5 (if lives == 0:).
Add the line to play the bye sound here:

Try this and see how it works.

Oops! We forgot something. The code that plays the bye
sound and the splat sound is in the main while loop,
which doesn’t stop until the Pygame window is closed, so

it keeps playing over and over as long as the while loop
runs! We need to add something to make sure it only plays once.

if myBall.rect.top >= screen.get_rect().bottom:
 splat.play()
 # lose a life if the ball hits the bottom
 lives = lives - 1

Plays the sound for missing
a ball and losing a life

else:
 pygame.time.delay(1000)
 new_life.play()
 myBall.rect.topleft = [50, 50]
 screen.blit(myBall.image, myBall.rect)
 pygame.display.flip()
 pygame.time.delay(1000)

if lives == 0:
 bye.play()
Licensed to Deborah Christiansen <pedbro@gmail.com>

249 CHAPTER 19 Sound
I noticed
something

else.
Even after

the game is over,
it sounds like the ball
is still bouncing off

the walls!?

One thing we can use is the variable called done, which tells us when the game is over. We
can just change our code to look like this:

Try that and make sure it works.

Hmmm . . . We might need to think about this
one a bit. We have our done variable to tell us when the

game is over, and we’re using that to know when to play our
bye sound and also when to display the final message with the
score. But what’s the ball doing?

Even though the ball has reached the bottom of the window, it’s still moving! There’s noth-
ing to stop the ball from going farther down, so its y-value just keeps getting bigger. It’s
“below” the bottom of the screen where we can’t see it, but we can still hear it! The ball is
still moving, so it’s still bouncing off the “sides” whenever its x-value gets big enough or
small enough. That happens in the move() method, and that method keeps running as long
as the while loop is running.

How can we fix it? There are a few ways. We could

■ stop the ball from moving by setting its speed to [0,0] when the game is over.
■ check if the ball is below the bottom of the window, and don’t play the hit_wall

sound if it is.
■ check the done variable and don’t play the hit_wall sound if the game is done.

I picked the second one, but any of them would work. I’ll leave it up to you to pick one and
modify your code to fix this problem.

if myBall.rect.top >= screen.get_rect().bottom:
 if not done:
 splat.play()
 lives = lives - 1
 if lives == 0:
 if not done:
 bye.play()

Makes sure the sound
only plays once
Licensed to Deborah Christiansen <pedbro@gmail.com>

250 Hello World!
Adding music to PyPong
There’s just one thing left to do—add the music. We need to load the music file, set the vol-
ume, and start it playing. We want it to keep repeating while the game is playing, so we’ll
use the special value of -1, like this:

This code can go anywhere before the main while loop. That will start the music
playing. Now we just need to stop the music at the end, and there’s a nice way to do this.
pygame.mixer.music has a method called fadeout() that will fade the music out gradually
instead of stopping it abruptly. You just tell it how long the fadeout should be,
like this:

That’s 2000 milliseconds, which is 2 seconds. That line can go in the same place where we
set done = True. (It doesn’t matter if it comes before or after.)

The program is now complete with sound effects and music. Give it a try and see how it sounds!
In case you want to see how the whole thing goes together, I have included my final version as
listing 19.5. You will need to make sure that wackyball.bmp and all the sound files are in the same
folder as the program.

import pygame, sys

class MyBallClass(pygame.sprite.Sprite):
 def __init__(self, image_file, speed, location = [0,0]):
 pygame.sprite.Sprite.__init__(self)
 self.image = pygame.image.load(image_file)
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
 self.speed = speed

 def move(self):
 global points, score_text
 self.rect = self.rect.move(self.speed)
 if self.rect.left < 0 or self.rect.right > screen.get_width():
 self.speed[0] = -self.speed[0]
 if self.rect.top < screen.get_height():
 hit_wall.play()

 if self.rect.top <= 0 :
 self.speed[1] = -self.speed[1]
 points = points + 1
 score_text = font.render(str(points), 1, (0, 0, 0))
 get_point.play()

Listing 19.5 PyPong with sound and music

pygame.mixer.music.load("bg_music.mp3")
pygame.mixer.music.set_volume(0.3)
pygame.mixer.music.play(-1)

pygame.mixer.music.fadeout(2000)

Plays sound when the
ball hits the side wall

Plays sound when the ball hits
the top (player gets a point)
Licensed to Deborah Christiansen <pedbro@gmail.com>

251 CHAPTER 19 Sound
class MyPaddleClass(pygame.sprite.Sprite):
 def __init__(self, location = [0,0]):
 pygame.sprite.Sprite.__init__(self)
 image_surface = pygame.surface.Surface([100, 20])
 image_surface.fill([0,0,0])
 self.image = image_surface.convert()
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.top = location
pygame.init()
pygame.mixer.init()

pygame.mixer.music.load("bg_music.mp3")
pygame.mixer.music.set_volume(0.3)
pygame.mixer.music.play(-1)
hit = pygame.mixer.Sound("hit_paddle.wav")
hit.set_volume(0.4)
new_life = pygame.mixer.Sound("new_life.wav")
new_life.set_volume(0.5)
splat = pygame.mixer.Sound("splat.wav")
splat.set_volume(0.6)E
hit_wall = pygame.mixer.Sound("hit_wall.wav")
hit_wall.set_volume(0.4)

get_point = pygame.mixer.Sound("get_point.wav")
get_point.set_volume(0.2)
bye = pygame.mixer.Sound("game_over.wav")
bye.set_volume(0.6)
screen = pygame.display.set_mode([640,480])
clock = pygame.time.Clock()

myBall = MyBallClass('wackyball.bmp', [12,6], [50, 50])
ballGroup = pygame.sprite.Group(myBall)
paddle = MyPaddleClass([270, 400])
lives = 3
points = 0

font = pygame.font.Font(None, 50)
score_text = font.render(str(points), 1, (0, 0, 0))
textpos = [10, 10]
done = False

while 1:
 clock.tick(30)
 screen.fill([255, 255, 255])
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 elif event.type == pygame.MOUSEMOTION:
 paddle.rect.centerx = event.pos[0]

 if pygame.sprite.spritecollide(paddle, ballGroup, False):
 hit.play()
 myBall.speed[1] = -myBall.speed[1]

Initializes Pygame’s sound module

Loads music file

Starts playing the music, repeats forever
Sets volume of the music

Creates sound objects,
loads sounds, and sets
volume for each

Plays sound when the
ball hits the paddle
Licensed to Deborah Christiansen <pedbro@gmail.com>

252 Hello World!

 myBall.move()

 if not done:
 screen.blit(myBall.image, myBall.rect)
 screen.blit(paddle.image, paddle.rect)
 screen.blit(score_text, textpos)
 for i in range (lives):
 width = screen.get_width()
 screen.blit(myBall.image, [width - 40 * i, 20])
 pygame.display.flip()

 if myBall.rect.top >= screen.get_rect().bottom:
 if not done:
 splat.play()
 lives = lives - 1
 if lives <= 0:
 if not done:
 pygame.time.delay(1000)
 bye.play()
 final_text1 = "Game Over"
 final_text2 = "Your final score is: " + str(points)
 ft1_font = pygame.font.Font(None, 70)
 ft1_surf = font.render(final_text1, 1, (0, 0, 0))
 ft2_font = pygame.font.Font(None, 50)

 ft2_surf = font.render(final_text2, 1, (0, 0, 0))
 screen.blit(ft1_surf, [screen.get_width()/2 - \
 ft1_surf.get_width()/2, 100])
 screen.blit(ft2_surf, [screen.get_width()/2 - \
 ft2_surf.get_width()/2, 200])

 pygame.display.flip()
 done = True
 pygame.mixer.music.fadeout(2000)
 else:
 pygame.time.delay(1000)
 new_life.play()
 myBall.rect.topleft = [50, 50]
 screen.blit(myBall.image, myBall.rect)
 pygame.display.flip()
 pygame.time.delay(1000)

That’s getting long-ish! (It’s around 100 lines, plus blank lines.) This could be made quite a
bit shorter, but it might also be harder to read and understand. We’ve been building the
program a bit at a time in these chapters, so you didn’t have to type it all at once.

If you followed along with the book, you should understand what each part of the program
does and how the parts go together. And just in case you need it, the full listing is in the
\examples folder on your computer (if you installed it) and on the web site.

Plays sound when
the player loses a life

Waits one second, then
plays the ending sound

Fades out the music

Plays sound when a
new life starts
Licensed to Deborah Christiansen <pedbro@gmail.com>

253 CHAPTER 19 Sound
In the next chapter, we’ll make a different kind of graphical program: one with buttons,
menus, and so on—a GUI.

What did you learn?

In this chapter, you learned

■ how to add sound to your programs.
■ how to play sound clips (usually .wav files).
■ how to play music files (usually .mp3 files).
■ how to know when a sound is done playing.
■ how to control the volume of sound effects and music.
■ how to make music repeat, so it plays over and over.
■ how to fade out music gradually.

Test your knowledge
1 What are three types of files that are used for storing sound?

2 What Pygame module is used for playing music?

3 How do you set the volume for a Pygame sound object?

4 How do you set the volume for background music?

5 How do you make music fade out?

Try it out
1 Try adding sounds to the number-guessing game in chapter 1. Even though the game

is text-mode, you will need to add a Pygame window, like we did in the examples in
this chapter. There are some sounds you can use in the \examples\sounds folder (and
on the web site):

Ahoy.wav
TooLow.wav
TooHigh.wav
WhatsYerGuess.wav
AvastGotIt.wav
NoMore.wav

Or it might be fun to record your own sounds. You would use something like Sound
Recorder in Windows, or you could download the free program Audacity (which is
available for multiple operating systems) at http://audacity.sourceforge.net/.
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 2 0

More GUIs
We made some simple GUIs back in chapter 6, when we used EasyGui to make some dialog
boxes (or just “dialogs” for short). But GUIs need more than dialogs. In most modern pro-
grams, the whole program runs in a GUI. In this chapter, we’re going to look at making GUIs
with PythonCard, which gives you more flexibility and control over how things look.

PythonCard is a module that helps you create GUIs. We’re first going to use it to make a ver-
sion of our temperature-conversion program.

Working with PythonCard
Before using PythonCard, we have to make sure it is installed on your computer. If you
installed Python using the book’s installer, PythonCard is already installed. If not, you’ll
have to download and install it separately. You can get PythonCard from
pythoncard.sourceforge.net. Make sure you get the correct version for your operating
system and the version of Python you’re using (version 2.5, if you ran the installer).

PythonCard was inspired by a much older piece of
software called HyperCard. HyperCard was one of the
first programs to make creating GUIs simple enough
that everyday users could try it. HyperCard was
software for the Apple Macintosh, which was one of
the first home computers to use a GUI.
254

Licensed to Deborah Christiansen <pedbro@gmail.com>

255 CHAPTER 20 More GUIs
In order for PythonCard to work, you’ll also need something called wxPython. Again, that’s
installed with the book’s installer. If you need to download and install it separately, you can
find it at www.wxpython.org.

Resource Editor

The main way to use PythonCard to create a GUI is with something called the Resource Edi-
tor. You can find the icon for it, and start it (for example, Start Menu > All Programs >
PythonCard > Resource Editor in Windows). If you can’t find the icon, look in the place
where PythonCard is installed. In Windows, the usual place is c:\python25\lib\
site-packages\pythoncard\tools\resourceEditor\resourceEditor.py. If you can’t find it on
your system, you can always do a search on your hard drive for resourceEditor.py to find it.

When you start the Resource Editor, you should see something like this:

The window on the left, the blank one, is your GUI. It’s blank because you haven’t put any-
thing in it yet. The window on the right is the Property Editor. That’s where you’ll tell
PythonCard how the various parts of the GUI should look.

Components
In a GUI, the individual buttons, check boxes, and so on, are called components. They’re also
referred to as controls, and sometimes as widgets. Let’s start adding some components to our
GUI.
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.wxpython.org

256 Hello World!
Adding a button

In the left window (the empty one), select the Component menu, and then select Button.
You’ll see a NewButton dialog pop up, with Button1 as the name and label. Here we have to
enter the name for our button (which we’ll use to refer to it in our program), and a label
(which will appear on the button on the screen). Let’s call our button helloButton, and give
it the label “Hello!”

After you click OK in the NewButton dialog,
you’ll see the button appear in the GUI win-
dow. It should look something like this:

You’ll also see, in the Property Editor win-
dow, the properties for this button:

We can see that the name of the button is
helloButton. If you click some of the other
properties in the Properties list, you can see
things like the button’s color, size, position,
and so on.

Changing the button

There are two ways to change the button’s size or position in the window: drag it with the
mouse, or change the Size or Position properties. Try both ways of moving and resizing the
button to see how they work.

Saving the GUI

Let’s save what we have so far. In PythonCard programs, the description of all the compo-
nents is saved in a resource file. This file has all the information about the window, menu, and
components. This is the same information that was displayed in Resource Editor, and now
we need to save it into a file for the PythonCard program to use when it runs.
Licensed to Deborah Christiansen <pedbro@gmail.com>

257 CHAPTER 20 More GUIs
To save the resource file when you’re in Resource Editor, go to the File menu and choose
Save As, and give the file a name. Let’s call our GUI MyFirstGui. You’ll notice that the
Save As Type box has “.rsrc.py” in it. That means that, when you enter the filename,
 “.rsrc.py” will be added to the end as the file extension. So the resource file for this
program is MyFirstGui.rsrc.py.

You can look at this file in any text editor (such as SPE or IDLE). If you open it, you’ll see
something like this:

It looks a little confusing, but if you take a closer look, you’ll see a section that starts with
backgrounds (starting on line 3). That’s the part that describes the window, which has a size
of 400 x 300 pixels. Then there’s a section for the menu (starting on line 10), then a section
called components (starting on line 25). You’ll see a component of type Button, with its
properties listed: name, position, size, and label.

{'application':{'type':'Application',
 'name':'Template',
 'backgrounds': [
 {'type':'Background',
 'name':'bgTemplate',
 'title':'Standard Template with File->Exit menu',
 'size':(400, 300),
 'style':['resizeable'],

 'menubar': {'type':'MenuBar',
 'menus': [
 {'type':'Menu',
 'name':'menuFile',
 'label':'&File',
 'items': [
 {'type':'.MenuItem',
 'name':'menuFileExit',
 'label':'E&xit',
 'command':'exit',
 },
]
 },
]
 },
 'components': [
{'type':'Button',
 'name':'helloButton',
 'position':(60, 51),
 'size':(90, 45),C
 'label':u'Hello!',
 },
] # end components
} # end background
] # end backgrounds
} }

Defines the window
(the background)

The component
definitions start here

Defines our button
Licensed to Deborah Christiansen <pedbro@gmail.com>

258 Hello World!
She’s a real beauty, ain’t she?
She can do zero to zero

in 1 second flat.

Making our GUI do something
We now have a very basic GUI—a window with a button and a very simple menu. (The
menu was added automatically for us.) But it doesn’t do anything. We haven’t written any
code to tell the program what to do when someone clicks the button. It’s like having a car
with four wheels and a body, but no engine.
It looks nice, but it won’t go anywhere.

We need a little bit of code to make our program run. For a PythonCard program, the mini-
mum you need is something like this:

As you might expect with Python, everything in PythonCard is an object. Each window is an
object, defined with the class keyword. Type this into an IDLE or SPE editor window, and
save it as MyFirstGui.py. The name is important. It must have the same name as the
resource file, except without the “.rsrc” part.

■ Main code: MyFirstGui.py
■ Resource File: MyFirstGui.rsrc.py

The two files also need to be saved in the same location, so Python can find them both.

You can now run this from SPE or IDLE. You’ll see the window open, and you can click the
button. But nothing happens yet. We have our program running, but we still haven’t written
any code for the button. Close the program, either by clicking the X in the title bar or by
using the File > Exit menu.

Let’s do something simple. When we click the button, let’s make it move to a new place in
the window. Remove the pass keyword from line 4, and add the code in lines 5 to 12 of list-
ing 20.1.

from PythonCard import model

class MainWindow(model.Background):
 pass

app = model.Application(MainWindow)
app.MainLoop()
Licensed to Deborah Christiansen <pedbro@gmail.com>

259 CHAPTER 20 More GUIs
from PythonCard import model

class MainWindow(model.Background):

 def on_helloButton_mouseClick(self, event):
 old_position = self.components.helloButton.position
 old_x = old_position[0]
 old_y = old_position[1]
 new_x = old_x + 20
 new_y = old_y + 10
 new_position = [new_x, new_y]
 self.components.helloButton.position = new_position

app = model.Application(MainWindow)
app.MainLoop()

Make sure you indent the whole def block four spaces in from the class statement, as
shown in the listing. We need to do that because all components are inside, or are part of, the
window. So the code for the button goes inside the class definition.

Try running it to see what happens. We’re going to look at this code in detail in the next
section.

The return of event handlers
In our Pygame programs in the last few chapters, we learned about event handlers and how
to use them to look for keyboard and mouse activity, or events. The same thing applies for
PythonCard.

PythonCard programs have a class of type Background. In listing 20.1, we called it
MainWindow (in line 3), but we could have used any name. Within that class, we define the
event handlers for the window. Because the button is in our main window, the event han-
dler for the button goes there.

The definition of the event handler starts on line 5. PythonCard event handlers start with
on_ followed by the name of the component (in our case, helloButton), then by another
underscore and the kind of event. So we get on_helloButton_mouseClick.

mouseClick is just one of the events we can get for the button. Some of the others are
mouseDown, mouseUp, mouseDrag, mouseMove, and mouseDoubleClick, and there are several
others.

What is self?

In the on_helloButton_mouseClick event handler, there are two parameters: self, event.
What are they? PythonCard event handlers always take two parameters, which we normally

Listing 20.1 Adding an event handler for the Hello button

Add these lines to
make the button move
on each mouse click
Licensed to Deborah Christiansen <pedbro@gmail.com>

260 Hello World!
call self and event. (You can call them anything you want, but using self and event is the
convention.)

Just like when we first talked about objects in chapter 14, self refers to the instance that’s
calling the method. In this case, all events come from the background or main window, so
it’s the window object that’s calling the event handler. Here, self refers to the main win-
dow. You might think that self refers to the component that was clicked, but it doesn’t; it
refers to the window containing the component.

event refers to the kind of event we’re responding to (in this case, the mouse click).

Moving the button
When we want to do something to the button, how do we refer to it? PythonCard keeps a
list of all the components in the window. The list is called self.components. If we want to
specifically do something with our button, we use its name, helloButton, together with the
name of the list. So we have self.components.helloButton.

In our example in listing 20.1, we made the button move every time we clicked on it.
The button’s position in the window is determined by its position property, which is
self.components.helloButton.position. The position property is a list, which has two
items: the x-position and the y-position, each of which is an integer. The x-position is the
distance from the left side of the window, and the y-position is the distance from the top of
the window. The top-left corner of the window is [0, 0] (just like in Pygame).

To move the button, we just change the position. Lines 6 to 12 of listing 20.1 do that. (I
didn’t need to use quite so many lines to do this, but I wanted to make it easy to follow
what the code is doing, so I gave each small step its own line of code.)

When you run this program, you’ll see that, after a few clicks, the button disappears off the
bottom-right corner of the window. If you want, you can resize the window (drag the edge
or corner) to make it bigger and find the button again. When you’re done, you can close the
window either by clicking the X in the title bar or by using File > Exit.

Notice that, unlike Pygame, we don’t need to worry about “erasing” the button from its old
position and redrawing it in the new position. We just move it. PythonCard takes care of all
the erasing and redrawing for us.

More useful GUIs
Our first PythonCard GUI was good for looking at the basics of how to make a GUI in
PythonCard, but it’s not useful, and not much fun either. So, in the rest of this chapter and
Licensed to Deborah Christiansen <pedbro@gmail.com>

261 CHAPTER 20 More GUIs
in chapter 22, we’re going to work on a couple more projects, one small and one a bit big-
ger, that will let us learn more about using PythonCard.

The first project will be a PythonCard version of our temperature-conversion program. In
chapter 22, we’ll use PythonCard to make a GUI version of the game Hangman.

TempGUI
In chapter 3 (in the “Try it out” section), you made your first temperature-conversion pro-
gram. In chapter 5, we added user input to it, so the temperature to be converted didn’t
have to be hard-coded into the program. In chapter 6, we used EasyGui to get the input and
display the output. Now we’re going to use PythonCard to make a graphical version of the
temperature-conversion program.

TempGUI components

Our temperature-conversion GUI will be pretty simple. We only need a few things:

■ places to enter the temperatures (Celsius or Fahrenheit)
■ buttons to make the temperature conversion happen
■ some labels to show the user what’s what

Just for fun, let’s use two different kinds of entry widgets for Celsius and Fahrenheit. You’d
never do that in a real program (it would only confuse people), but we’re here to learn!

When we’re done making the GUI
layout, it should look something like this:

Widgets is another word for the different types of components -
buttons, scrollbars, drop-down lists, etc. These are also some-
times called controls.
Licensed to Deborah Christiansen <pedbro@gmail.com>

262 Hello World!
You can probably do this on your own, because Resource Editor is pretty user-friendly. But
just in case you need any help, I’m going to explain the steps. This will also make sure we’re
using the same names for our components, which will make it easier to follow the code
later on.

Don’t worry about getting the components exactly lined up or exactly the same as shown
here, as long as they’re roughly the same.

Creating the new GUI

The first step is to make a new PythonCard project. Open Resource Editor, and it will open a
new project. If you still have the first GUI open, close Resource Editor and open it again.

Now we need to start adding components: the Celsius entry box is a TextField, the Fahren-
heit entry box is a Spinner, the labels under each temperature entry box are StaticText
components, and there are two Button components. Here are the steps to make the GUI:

1 Select Component > Button. Give the button the following properties:
■ name: btnCtoF
■ label: Celsius to Fahrenheit >>>
Click OK. Drag the button to somewhere in the middle of the window.

2 Select Component > Button. Give the button the following properties:
■ name: btnFtoC
■ label: <<< Fahrenheit to Celsius
Click OK. Drag the button and place it below the other button.

3 Select Component > TextField. Give the text field the following property:
■ name: tfCel
Leave the text field blank, and click OK. Drag the text box down a bit, so it’s to the left
of the Celsius to Fahrenheit button.

4 Select Components > Spinner. Give the spinner (also sometimes called a spin box) the
following name:
■ name: spinFahr
Click OK. Drag the button down and over, so it’s to the right of the Celsius to
Fahrenheit button.

5 Select Components > StaticText. Leave the name as is, but change the text:
■ text: Celsius
Click OK. Drag the StaticText below the Celsius text field.

6 Select Components > StaticText. Leave the name as is, but change the text:
■ text: Fahrenheit
Click OK. Drag the StaticText below the Fahrenheit spin box.
Licensed to Deborah Christiansen <pedbro@gmail.com>

263 CHAPTER 20 More GUIs
Now we have the GUI elements (components, or controls, or widgets) placed, and we have
given them the names and labels we want. Save the resource file as TempGui.rsrc.py by
selecting File > Save As in Resource Editor.

Next, start a new file in your code editor (SPE or IDLE), and type in the basic PythonCard
code (or copy it from our first program):

We won’t bother with the pass keyword, because that’s just a placeholder for when there’s
nothing defined in a block. We’re going to define several event handlers for our MainWindow
class.

Converting Celsius to Fahrenheit

First, let’s get the Celsius to Fahrenheit function working. The formula for converting Celsius
to Fahrenheit is

We need to get the Celsius temperature from the tfCel text box, do the calculation, and
put the result in the spinFahr Fahrenheit spin box. That should all happen when the user
clicks the Celsius to Fahrenheit button, so the code to do it should go in that button’s
event handler:

To get the value from the Celsius box, we use self.components.tfCel.text. This value is a
string, so we have to convert it to a float:

Then we need to do the conversion:

Next, we need to put that value in the Fahrenheit box. There’s one catch here: spinners can
only have integer values in them, not floats. So we have to make sure we convert the value
to an int before putting it in the spinner. The number in the spinner is its value property,
so the code looks like this:

Converting Fahrenheit to Celsius

The code for converting the other way (from Fahrenheit to Celsius) is very similar. The for-
mula for that conversion is

from PythonCard import model

class MainWindow(model.Background):

app = model.Application(MainWindow)
app.MainLoop()

fahr = cel * 9.0 / 5 + 32

def on_btnCtoF_mouseClick(self, event):

cel = float(self.components.tfCel.text)

fahr = Cel * 9.0 / 5 + 32

self.components.spinFahr.value = int(fahr)

cel = (fahr - 32) * 5.0 / 9
Licensed to Deborah Christiansen <pedbro@gmail.com>

264 Hello World!
It goes in the event handler for
the Fahrenheit to Celsius button:

We need to get the Fahrenheit
temperature from the spinner:

This value is already an integer, so we don’t have to do any type conversion. Then we apply
the formula:

Finally, we convert this to a
string and put it in the Celsius text box:

The whole thing should look like listing 20.2.

from PythonCard import model

class MainWindow(model.Background):

 def on_btnCtoF_mouseClick(self, event):
 cel = float(self.components.tfCel.text)
 fahr = cel * 9.0 / 5 + 32
 self.components.spinFahr.value = int(fahr)

 def on_btnFtoC_mouseClick(self, event):
 fahr = self.components.spinFahr.value
 cel = (fahr - 32) * 5.0 / 9
 self.components.tfCel.text = str(cel)

app = model.Application(MainWindow)
app.MainLoop()

Save this program as TempGui.py. You can run it and try out the GUI.

A small improvement

One thing you’ll notice when you run the program is that, when you convert a Fahrenheit
temperature to Celsius, the answer has a lot of decimal places, and some of them might get
cut off in the text box. There’s a way to fix this—it’s called print formatting. We haven’t cov-
ered it yet, so you can either skip ahead to chapter 21 to get the full explanation of how it
works, or you can just type in the code I’ll give you here. Add the following code line
between lines 12 (cel = (fahr - 32) * 5.0 / 9) and 13 (self.components.tfCel.text =
str(cel)) in listing 20.2:

Listing 20.2 Complete temperature-conversion program

def on_btnFtoC_mouseClick(self, event):

fahr = self.components.spinFahr.value

cel = (fahr - 32) * 5.0 / 9

self.components.tfCel.text = str(cel)

Line 13
Line 12

celStr = '%.2f' % cel
Licensed to Deborah Christiansen <pedbro@gmail.com>

265 CHAPTER 20 More GUIs
Saturn

Uranus

Neptune

Pluto

you are
insanely

cold!

If I enter -50
in the Celsius box, and

click the button, I should get
about -58 Fahrenheit.

But it
says 0. What's

happening?

Hey,
I found a

bug!

This will display the number with two decimal places. We also don’t need the str() func-
tion in line 13 anymore (because this code gives us a string), so that line should now look
like this:

Hmmm . . . Maybe it’s time to do
some debugging. What if our users
want to convert temperatures in

Antarctica? Or on Pluto?

Squashing a bug

We said before that one good way to see what’s going on in the program is to print out the
value of some of the variables while the program is running. So let’s try that.

Because it’s the Fahrenheit value in the Celsius to Fahrenheit conversion that seems not to
be working, we’ll start there. Add this line after line 7 (fahr = cel * 9.0 / 5 + 32) in list-
ing 20.2:

Now, whenever you click the Celsius to Fahrenheit button, you can see the cel and fahr
variables printed out in the IDLE (or SPE) shell window. Try it with a few different values for
cel and see what happens. I got something like this:

>>> ============================ RESTART ============================
>>>
cel = 50.0 fahr = 122.0
cel = 0.0 fahr = 32.0
cel = -10.0 fahr = 14.0
cel = -50.0 fahr = -58.0

self.components.tfCel.text = celStr

print 'cel = ', cel, ' fahr = ', fahr
Licensed to Deborah Christiansen <pedbro@gmail.com>

266 Hello World!
It looks like the fahr value is being computed correctly. So why won’t the Fahrenheit box
display anything less than 0?

Go back to Resource Editor and click the spinFahr spinner that we used for Fahrenheit. (You
have to click the part with the up-down arrows.) Now look at the Property Editor window
and scroll through the different properties. Do you see two properties called min and max?
What are their values? Can you guess what the problem is now?

What’s on the menu?
Our temperature-conversion GUI has buttons to make the conversions happen. Many pro-
grams also have a menu to perform some functions. Sometimes these are the same things
you can do by clicking a button, so why would you want to have two different ways to do
the same thing?

Well, some users are more comfortable using menus than clicking buttons. Also, you can
operate menus from the keyboard, and some people find it faster to use menus than to take
their hands off the keyboard and use the mouse.

Let’s add some menu items to give our users a different way to make the temperature
conversions happen.

PythonCard includes a Menu Editor. Our program already has a very simple menu—it just
has File > Exit. We’re going to use the Menu Editor to add to the menu system of our GUI.

 I don’t recognize
anything on these

new-fangled modern
menus.

Well, I think
the “Format”
looks good...
Licensed to Deborah Christiansen <pedbro@gmail.com>

267 CHAPTER 20 More GUIs
If you closed Resource Editor, start it again
and open TempGui.rsrc.py. Now select
Edit> Menu Editor. You should see some-
thing like this:

You can see the File menu with the Exit item below it. We’re going to add a menu called
Convert, and then two menu items called Celsius to Fahrenheit and Fahrenheit to Celsius.

Adding the menu

To add the new menu, click the New Menu
button. You’ll see that the Menu Editor fills
in a name and label for us, but we want to
put our own values there. Change the
Name to menuConvert and the Label to
&Convert. The Menu Editor should now
look something like this:

Depending what menu item was selected
when you clicked the New Menu button,
the Convert menu may be at the top,
middle, or bottom of the list on the left.
We want it at the bottom. Click the
&Convert entry in the list and then click
the Down button until the &Convert
menu is at the bottom of the list, like this:

What’s that funny symbol?

Why did we put the & symbol before the C in Convert? That’s how we tell the Menu Editor
what hot key we want to use for the menu. Remember we just said that you can use the key-
board to control menus? Well, hot keys are one way to do that.
Licensed to Deborah Christiansen <pedbro@gmail.com>

268 Hello World!
How do you
use a hot key for

a menu item

(like Exit, for
example)?

To activate a menu, you hold down the ALT key and press a letter on the keyboard. The let-
ter you press is the one that’s underlined in the menu’s label. For example, to get into the
File menu, you use ALT-F. The & symbol before the C in &Convert tells the Menu Editor that
we want C to be the hot key for the Convert menu. That means PythonCard will automati-
cally display it with an underline when the program runs.

Hot keys work a bit differently in Mac OS X and Linux. I won’t go into all the details here, but
if you use one of those operating systems, you are probably familiar with how their hot keys
work. If not, try to find someone who does know that you can ask.

Adding the menu items

Now let’s add the menu items. In the left pane of the Menu Editor, click the &Convert menu
you just added. Then click the New Menu Item button. This adds a new item under the
Convert menu. Again, the Menu Editor fills in some defaults, but we want to use our own
values. Change the Name to menuConvertCtoF and the Label to &Celsius to Fahrenheit.

Add another item, and call this one
menuConvertFtoC, with the label
&Fahrenheit to Celsius. The Menu
Editor should now look like this:

Well, Carter, to use hot keys for menu items,
you use the Alt key (in Windows). As we
said, Alt-F will get you into the File menu.
Once you’re in the File menu, you use the

hot key for the menu item within the File
menu, in this case X for Exit.

We now have a new menu, and if you run the program,
you’ll be able to click the Convert menu and see the two

menu items appear. You can even click them, but nothing
will happen. That’s because we haven’t created event han-
dlers for them yet.
Licensed to Deborah Christiansen <pedbro@gmail.com>

269 CHAPTER 20 More GUIs
Menu event handlers

Now we need to add event handlers in our code. The event that happens when you select a
menu item is select. Just like the button event handlers, these event names start with on_,
followed by the event name (which is the menu item name), and then the type of event,
which in this case is _select. So the code for the event handler should start
with this line:

Then we need to add the conversion code. This is the same code we used for the btnCtoF
event handler in listing 20.2, so you can just copy it in.

Do the same thing for the other menu item. The event handler should start
with this line:

Then it should include the same code as the btnFtoC event handler. The finished code
should look something like listing 20.3.

from PythonCard import model

class MainWindow(model.Background):

 def on_btnCtoF_mouseClick(self, event):
 cel = float(self.components.tfCel.text)
 fahr = cel * 9.0 / 5 + 32
 print 'cel = ', cel, ' fahr = ', fahr
 self.components.spinFahr.value = int(fahr)

 def on_btnFtoC_mouseClick(self, event):
 fahr = self.components.spinFahr.value
 cel = (fahr - 32) * 5.0 / 9
 cel = '%.2f' % cel
 self.components.tfCel.text = cel

 def on_menuConvertCtoF_select(self, event):
 cel = float(self.components.tfCel.text)
 fahr = cel * 9.0 / 5 + 32
 print 'cel = ', cel, ' fahr = ', fahr
 self.components.spinFahr.value = int(fahr)

 def on_menuConvertFtoC_select(self, event):
 fahr = self.components.spinFahr.value
 cel = (fahr - 32) * 5.0 / 9
 cel = '%.2f' % cel
 self.components.tfCel.text = cel

app = model.Application(MainWindow)
app.MainLoop()

Listing 20.3 Adding menu event handlers

def on_menuConvertCtoF_select(self, event):

def on_menuConvertFtoC_select(self, event):
Licensed to Deborah Christiansen <pedbro@gmail.com>

270 Hello World!
Try running this program to make sure it works.

Cleaning up

Although this code works fine, there’s something that bothers me about it. We used the
same two blocks of code in two places each. We copied the code from the button event
handlers into the menu event handlers, because the menu items do the same things as the
two buttons. For a small program like this, it doesn’t matter too much, but it would be bet-
ter style to reorganize our program a bit.

One way to improve it would be to make the conversion blocks into functions. Then we
could call the conversion code from each event handler. Listing 20.4 shows what our code
might look like if we did that.

from PythonCard import model

def CtoF(self):
 cel = float(self.components.tfCel.text)
 fahr = cel * 9.0 / 5 + 32
 print 'cel = ', cel, ' fahr = ', fahr
 self.components.spinFahr.value = int(fahr)

def FtoC(self):
 fahr = self.components.spinFahr.value
 cel = (fahr - 32) * 5.0 / 9
 cel = '%.2f' % cel
 self.components.tfCel.text = cel

class MainWindow(model.Background):

 def on_btnCtoF_mouseClick(self, event):
 CtoF(self)

 def on_btnFtoC_mouseClick(self, event):
 FtoC(self)

 def on_menuConvertCtoF_select(self, event):
 CtoF(self)

 def on_menuConvertFtoC_select(self, event):
 FtoC(self)

app = model.Application(MainWindow)
app.MainLoop()

This is better than before, but there’s an even better way to clean it up. Each PythonCard
component has another property called command, and you can use this property to create a
common event handler for a number of components. For example, we could give both our

Listing 20.4 Cleaning up our code
Licensed to Deborah Christiansen <pedbro@gmail.com>

271 CHAPTER 20 More GUIs
Celsius to Fahrenheit button and the Convert Celsius to Fahrenheit menu item a command
called cmdCtoF. This command would be run when the button is clicked or the menu item is
selected.

To make this work, go into Resource Editor and select the btnCtoF component. Scroll
through the list of properties until you see command. Change the value from None to cmdCtoF.
Do the same thing for the other button, but call the command cmdFtoC. Then start the
Menu Editor, and select the &Celsius to Fahrenheit menu item. You’ll notice that there’s a
text box for Command, which is empty. In this box, type cmdCtoF. Do the same for the
&Fahrenheit to Celsius menu item, but call the command cmdFtoC.

Now we have both a button and a menu item with the command property set to cmdCtoF. The
other button and menu item both have their command property set to cmdFtoC. Now we just
have to change the names of the event handlers. Because we’re sharing an event handler
between a button and a menu item, there will only need to be two event handlers, not four.
The code should look like listing 20.5.

from PythonCard import model

class MainWindow(model.Background):

 def on_cmdCtoF_command(self, event):
 Cel = float(self.components.tfCel.text)
 Fahr = Cel * 9.0 / 5 + 32
 print 'cel = ', Cel, ' fahr = ', Fahr
 self.components.spinFahr.value = int(Fahr)

 def on_cmdFtoC_command(self, event):
 Fahr = self.components.spinFahr.value
 Cel = (Fahr - 32) * 5.0 / 9
 Cel = '%.2f' % Cel
 self.components.tfCel.text = Cel

app = model.Application(MainWindow)
app.MainLoop()

Now there are only two event handlers, and no extra functions are required. The command
property is a good way to share an event handler between two or more components, if the
components have to do the same things (like a button and a menu item do).

That’s it for the temperature-conversion GUI. In chapter 22, we’ll use PythonCard to make a
version of the Hangman game.

Listing 20.5 Cleaning up our code even more
Licensed to Deborah Christiansen <pedbro@gmail.com>

272 Hello World!
What did you learn?

In this chapter, we learned about

■ PythonCard.
■ Resource Editor, for laying out the GUI.
■ components—the buttons, text, and so on, that make up the GUI.
■ the Menu Editor.
■ menu items and hot keys.
■ event handlers—making your components do something.
■ the command property for sharing event handlers.

Test your knowledge
1 What are three names for the things like buttons, text fields, and so on, that make up a

GUI?

2 What’s the term for the letter that you press along with ALT to get into a menu?

3 What must you put at the end of the filename for PythonCard resource files?

4 What are five types of components you can include in a GUI using PythonCard?

5 To make a component (like a button) do something, it needs to have an
_____________ ________________.

6 What special character is used in the Menu Editor to define a hot key?

7 The content of a spinner (or spin box) in PythonCard is always an __________.

Try it out
1 We made a text-based number-guessing program in chapter 1, and we made a simple

GUI version of the same game in chapter 6. Try making a GUI version of the number-
guessing game using PythonCard.

2 Did you find the problem with the spinner when it wouldn’t display any values below
0? (Carter found this bug in listing 20.2.) Fix the spinner properties to solve this prob-
lem. Make sure you fix both ends of the scale so the spinner can display very high tem-
peratures as well as very low ones. (Maybe your user is going to convert the
temperatures on Mercury and Venus, as well as on Pluto!)
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 2 1

Print Formatting and Strings
Waaaayyyy back in chapter 1, you learned about the print statement. It was the first com-
mand we ever used in Python. We’ve also seen (in chapter 5) that you can put a comma at
the end of a print statement to make Python keep printing the next thing on the same line.
We used that to make prompts for raw_input(), until we learned the shortcut of putting
the prompt right in the raw_input() function.

In this chapter, we’re going to look at print formatting—ways to make your program’s output
look the way you want it to. We’ll look at things like

■ starting new lines (and when you should do that).
■ spacing things out horizontally (and lining things up in columns).
■ printing variables in the middle of a string.
■ formatting numbers in integer, decimal, or E-notation format, and setting how many

decimal places they should have.

We’ll also learn about some of Python’s built-in methods for working with strings. These
methods can do things like

■ splitting strings into smaller parts.
■ joining strings together.
■ searching for strings.
■ searching within strings.
■ removing parts of strings.
■ changing case (uppercase and lowercase).

All of these things will be useful for text-mode (non-GUI) programs, and most of them will
find their way into GUIs and game programs as well. There’s a lot more Python can do with
print formatting, but this should be all you will need for 99 percent of your programs.
273

Licensed to Deborah Christiansen <pedbro@gmail.com>

274 Hello World!
New lines
We have already seen the print statement many times. What happens if you use it more
than once? Try this short program:

When you run it, the
output should look like this:

Why did these two things print on
different lines? Why didn’t the output look like this:

Unless you tell it otherwise, Python will start each print on a new line. After the Hi, Python
moves down one line and back to the first column to print There. Python inserts a newline
character between the two words. A newline is like pressing Enter in your text editor.

Print and the comma
The print statement automatically puts a newline at the end of whatever it prints, unless
you tell it not to. And how do you tell it not to? By adding a comma
(like we saw in chapter 5):

print "Hi"
print "There"

>>> =================== RESTART ===================
>>>
Hi
There

HiThere
#!/bin/env python # Pag

ina
te a text file, adding a header and foote

r im

port sys, time, string # If no
 ar

gum
en

ts
 we

re gi

ve
n,

 pr
int a

 hel

pfu
l

me

ssa
ge if

 le
n(

sy
s.

ar
gv

)!
=2

: p
rin

t '
Us

ag
e:

py
pri

nt fil
ename'sys.exit(0)c

las
s # Increment the page count, and reset the l

ine count self.heade
r_written=1 ; f.count=1header_written=1 ; #
!/bin/env python # Paginate a text

Thinking like a programmer

Remember back in chapter 5 you learned about
CR and LF (carriage return and line feed) for
marking the end of a line of text? And remember
how I said that some systems use one or the
other, or both? Newline is the generic name for
the end-of-line marker on any system. In Win-
dows, newline = CR + LF. In Linux, newline =
LF, and in Mac OS X, newline = CR. That way,
you don’t have to worry about what system
you’re on. Just put a newline wherever you
want to start a new line.

print >>>Hello i
f
#

print >>>Hello if
 #

print >>>Hello i
f
#

print 'Hi',
print 'There'

>>> =================== RESTART ===================
>>>
Hi There
Licensed to Deborah Christiansen <pedbro@gmail.com>

275 CHAPTER 21 Print Formatting and Strings
Notice that there’s a space between Hi and There. When you use a comma to prevent
Python from printing the newline, it prints a space instead.

If you want to print two things right together without a space, you can use concatenation,
which we saw before:

Remember that concatenation is like adding strings together, but it has a special name
because “adding” is only for numbers.

Adding our own newlines

What if we want to add our own newlines? For example, what if we want an extra row of
space between hi and there? The easiest
way is just to add an extra print statement:

When you run it, you’ll get this:

Special printing codes

There’s another way to add newlines. Python has some special codes you can add to strings to
make them print differently. These special printing codes all start with a backlash (\) character.

The code for a newline is \n. Try this in interactive mode:

The \n made the two words Hello and World print on different lines, because it added a
newline in between.

Horizontal spacing—tabs
We just saw how to control vertical spacing (by adding newlines or using commas to pre-
vent newlines). Now we’ll look at how to control the spacing of things across the screen,
horizontally, with tabs.

print 'Hi' + 'There'

>>> ==================== RESTART ====================
>>>
HiThere

print "Hi"
print
print "There"

>>> ================== RESTART ==================
>>>
Hi

There

>>> print "Hello World"
Hello World
>>> print "Hello \nWorld"
Hello
World
Licensed to Deborah Christiansen <pedbro@gmail.com>

276 Hello World!
Tabs are useful for lining things up in columns. To understand how tabs work, think of each
line on the screen as being divided into blocks, with each block being the same size. Let’s
say each block is eight characters wide. When you insert a tab, you move over to the start of
the next block.

The best way to see how this works is to try it. The special code for tab is \t, so try this in
interactive mode:

Notice that the XYZ is a few characters away from the ABC. In fact, the XYZ is exactly eight
characters from the start of the line. That’s because the size of the block is 8. Another way
to say this is that there’s a tab stop every eight characters.

Here’s an example of some
different print statements,
with some shading added
to show where the tab
stops are:

You can think of the screen (or each line) as being laid out in blocks of eight spaces. Notice
that, as the ABC sequence gets longer, the XYZ stays in the same place. The \t tells Python to
start the XYZ at the next tab stop, or at the next available block. But once the ABC sequence
gets big enough to fill the first block, Python moves the XYZ over to the next tab stop.

Tabs are good for arranging things in columns, so that everything lines up. Let’s use this, as
well as what we know about loops, to print a table of squares and cubes. Open a new win-
dow in IDLE, and type in the short program in listing 21.1. Save it and run it. (I called mine
squbes.py, short for “squares and cubes.”)

Listing 21.1 A program to print squares and cubes
print "Number \tSquare \tCube"
for i in range (1, 11):
 print i, '\t', i**2, '\t', i**3

>>> print 'ABC\tXYZ'
ABC XYZ

ABC XYZ

ABCDE XYZ

ABCDEF XYZ

>>> print 'ABC\tXYZ'

>>> print 'ABCDE\tXYZ'

>>> print 'ABCDEF\tXYZ'

ABCDEFG XYZ

ABCDEFGHI XYZ

>>> print 'ABCDEFG\tXYZ'

>>> print 'ABCDEFGHI\tXYZ'
Licensed to Deborah Christiansen <pedbro@gmail.com>

277 CHAPTER 21 Print Formatting and Strings
When you run it, you should see output that’s nicely lined up, like this:

How do we print a backslash?

Because the backslash character (\) is used for special printing codes, how do we tell Python
when we want to actually print a \ character, instead of using it as part of a code? The trick
is just to put two of them together:

The first \ tells Python that something special is coming, and the second one tells Python
what the special thing is: a \ character.

Inserting variables in strings
Up until now, when we wanted to put a variable in the middle of a string, we did something
like this:

If we ran that code, we’d get this:

But there’s another way to insert variables into strings that gives us more control over how
they’ll look, especially numbers. We can use format strings, which use the percent sign (%).
Let’s say you want to insert a string variable in the middle of a print statement, like we just
did. The way to do it
with format strings is like this:

The % sign is used in two places. It’s used in the middle of the string to say where the vari-
able will go. Then it’s used again after the string to tell Python that the variable we want to
insert in the string is coming next.

>>> ====================== RESTART ======================
>>>
Number Square Cube
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
>>>

>>> print 'hi\\there'
hi\there

name = 'Warren Sande'
print 'My name is', name, 'and I wrote this book.'

My name is Warren Sande and I wrote this book.

name = 'Warren Sande'
print 'My name is %s and I wrote this book' % name
Licensed to Deborah Christiansen <pedbro@gmail.com>

278 Hello World!
The %s means that it’s a string variable we want to insert. For an integer, we’d use %i; for a
float, we’d use %f.

Here are a couple more examples:

When you run this, you’ll get the following:

Here’s another one:

When you run this, you’ll get the following:

The %s, %f, and %i are called format strings, and they’re a kind of code for how you want the
variable to look.

There are some other things you can add to the format strings to make numbers print
exactly how you want. There are also a few different format strings you can use to get
things like E-notation. (Remember that from chapter 3?) We’ll look at these in the next
few sections.

Number formatting
When we print numbers, we’d like to have control over how they look:

■ how many decimal places they display
■ whether to use regular or E-notation
■ whether to add leading or trailing zeros
■ whether to display + or - signs in front of the numbers

With format strings, Python gives us the flexibility we need to do all this and more!

For example, if you were using a program that told you the weather forecast, which would
you rather see:

or

Getting numbers to look right is important for many programs.

Let’s start with an example. Let’s say we want to print a decimal number with exactly two
decimal places. Try
this in interactive mode:

age = 13
print 'I am %i years old.' % age

I am 13 years old.

average = 75.6
print 'The average on our math test was %f percent.' % average

The average on our math test was 75.600000 percent.

Today’s High: 72.45672132, Low 45.4985756

Today’s High: 72, Low: 45

>>> dec_number = 12.3456
>>> print 'It is %.2f degrees today.' % dec_number
It is 12.35 degrees today
Licensed to Deborah Christiansen <pedbro@gmail.com>

279 CHAPTER 21 Print Formatting and Strings
I thought the
% sign was used
for the modulus

operator!

In the middle of the print statement, there’s our format string. But instead of just using %f,
this time we used %.2f. That tells Python to show two digits after the decimal place, with
floating-point format. (Notice that Python was smart enough to round the number correctly
to two decimal places, instead of just chopping the extra digits off.)

After the string, the second % sign tells Python that the number to be printed is coming
next. The number is printed with the formatting that’s described in the format string. A few
more examples will make this clearer.

You have a good memory, Carter! The % sign is used for
modulus (the remainder in integer division), as we
learned in chapter 3, but it’s also used to indicate
format stings. Python can tell from the way it’s used
whether you mean modulus or a format string.

Integers: %d or %i

To print something as an integer, use the %d or %i format string. (I don’t know why there are
two, but you can use either one.)

Notice that, this time, the number wasn’t rounded. It was truncated (which means “chopped
off”). If it were rounded, we would have seen 13 instead of 12. When you use integer for-
matting, the number is truncated, and when you use floating-point formatting, the number
is rounded.

There are three things to notice here:

■ You don’t have to have any other text in the string—you can have just the format
string by itself.

■ Even though our number was a float, we printed it as an integer. You can do that with
format strings.

>>> number = 12.67
>>> print '%i' % number
12
Licensed to Deborah Christiansen <pedbro@gmail.com>

280 Hello World!
■ Python truncated the value to the next lowest integer. However, this is different from
the int() function (which we saw in chapter 4), because format strings don’t create a
new value like int() does—they just change how the value is displayed.

Just now, we printed 12.67 in integer format, and it printed 12. But the value of the variable
number has not been changed. Check it and see:

The value of number hasn’t changed. We just made it print differently using the format string.

Floating point numbers: %f or %F

For decimal numbers, you can use either the
uppercase or lowercase f in the format string (%f or %F):

If you use just %f by itself, the number will display with six decimal places. If you add .n
before the f, where n is any integer, it’ll round the number off to that many decimal places:

You can see how it rounded the number 12.3456 to two decimal places: 12.35.

If you specify more decimal places than are actually in the number, Python will pad (fill in)
the number with zeros:

Here the number only had four places after the decimal, but we asked for eight, so the
other four were filled in with zeros.

If the number is negative, %f will always display the - sign. If you want the number to
always display a sign, even if it’s positive, use a + sign right after the % (this is good for lining
up lists of positive and negative numbers):

If you want your list of positive and negative numbers to line up, but don’t want to see
the + sign on positive numbers, use a
space instead of the +, right after the %:

>>> print number
12.67

>>> number = 12.3456
>>> print '%f' % number
12.345600

>>> print '%.2F' % number
12.35

>>> print '%.8f' % number
12.34560000

>>> print '%+f' % number
+12.345600

>>> number2 = -98.76
>>> print '% .2f' % number2
-98.76
>>> print '% .2f' % number
 12.35
Licensed to Deborah Christiansen <pedbro@gmail.com>

281 CHAPTER 21 Print Formatting and Strings
Notice that there is a space before 12 in the output, so that the 12 and 98 line up one below
the other, even though one has a sign and the other doesn’t.

E-notation: %e and %E
When we talked about E-notation (in chapter 3), I promised I’d show you how to make num-
bers print using E-notation. Well, here it is.

The %e format string is used to print E-notation. It always prints six decimal places unless
you tell it otherwise.

You can print more or fewer decimal places by using a .n after the %, just like
with floats:

The %.3e rounded off to three decimal places, and the %.8e added some zeroes to make up
the extra digits.

You can use a lowercase or uppercase e, and the output will use the same case you used in
the format string:

Automatic float or E-notation: %g and %G

If you want Python to automatically choose float notation or E-notation for you, use
the %g format string. Again, if you use uppercase, you’ll get an uppercase E in
the output.

Did you notice how Python automatically chose E-notation for the big number and regular
floating-point notation for the smaller number?

How do I print a percent sign?

You might be wondering, because the percent sign (%) is a special character for format
strings, how you make a % sign print?

>>> number = 12.3456
>>> print '%e' % number
1.234560e+001

>>> number = 12.3456
>>> print '%.3e' % number
1.235e+001
>>> print '%.8e' % number
1.23456000e+-001

>>> print '%E' % number
1.234560E+001

>>> number1 = 12.3
>>> number2 = 456712345.6
>>> print '%g' % number1
12.3
>>> print '%g' % number2
4.56712e+008
Licensed to Deborah Christiansen <pedbro@gmail.com>

282 Hello World!
Well, Python is smart enough to figure out when you’re using a % sign to start a format
string, and when you just
want to print one. Try this:

How does it know? There wasn’t a second % outside the string, and there was no variable to
format, so Python assumed that the % was just another character in your string.

Storing formatted numbers
Sometimes you don’t want to print the formatted number right away, but rather store it
in a string to use later. That’s easy. Instead of printing it, just assign it to a variable,
like this:

Instead of directly printing the formatted number, we assigned it to the variable my_string.
Then we combined my_string with some other text and printed our sentence.

Storing the formatted number as a string is very useful for GUIs and other graphical pro-
grams like games. Once you have a variable name for the formatted string, you can display
it however you want: in a text box, button, dialog, or game screen.

Strings ’n’ things
When we first learned about strings (back in chapter 2), we saw that you could combine two
of them with the + sign, like this:

Now we’re going to find out more things you can do with strings.

Strings in Python are really objects (see, everything is an object . . .) and they have their own
methods for doing things like searching, splitting, and combining. These are known as string
methods.

Splitting strings
Sometimes you need to split up a long string into a number of smaller ones. Usually you
want to do this at particular points in the string, like whenever a certain character
appears. For example, a common way of storing data in a text file is to have items
separated from each other by a comma. So you might have a list of names that looks
like this:

>>> print 'I got 90% on my math test!'
I got 90% on my math test!

>>> my_string = '%.2f' % 12.3456
>>> print my_string
12.35
>>> print "The answer is", my_string
The answer is 12.35

>>> print 'cat' + 'dog'
catdog

name_string = "Sam,Brad,Alex,Cameron,Toby,Gwen,Jenn,Connor"
Licensed to Deborah Christiansen <pedbro@gmail.com>

283 CHAPTER 21 Print Formatting and Strings
Suppose you want to put these names in a list, with each item being one name. You need to
split this string wherever there’s a comma. The Python method for doing this is called
split(), and it works like this:

You tell it what character to use as the split marker, and it gives you back a list, which is the
original string broken up into parts. If we printed the output from this example, the one big
string of names would be split up into individual items in a list:

You can have more than one character as the split marker. For instance, you could use
'Toby,' as the split marker,
and you’d get the following list:

This time, the string got split into two parts: all the stuff on one side of 'Toby,' and all the
stuff on the other side of 'Toby,'. Notice that 'Toby,' doesn’t appear in the list, because the
split marker gets thrown away.

There’s one other thing to know. If you don’t give Python any split marker, it’ll split the
string at any whitespace:

>>> print names
['Sam','Brad','Alex','Cameron','Toby','Gwen','Jenn','Connor']

>>> for name in names:
 print name

Sam
Brad
Alex
Cameron
Toby
Gwen
Jenn
Connor
>>>

names = name_string.split(',')

Please not me...

don’t split me!

>>> parts = name_string.split('Toby,')
>>> print parts
['Sam,Brad,Alex,Cameron', 'Gwen,Jenn,Connor']

>>> for part in parts:
 print part

Sam,Brad,Alex,Cameron
Gwen,Jenn,Connor

names = name_string.split()
Licensed to Deborah Christiansen <pedbro@gmail.com>

284 Hello World!
Whitespace means any spaces, tab characters, or newlines.

Joining strings
We just saw how to split a string into smaller pieces. How about joining two or more strings
to make one larger string? We already saw, way back in chapter 2, that you can join strings
together using the + operator. It’s like adding two strings together, except that it’s called
concatenating.

There’s another way to join strings together. You can use the join()function. You tell it
what strings you want to join together and what characters (if any) you want inserted
between the parts when they are joined. It’s basically the opposite of split(). Here’s an
example in interactive mode:

I admit that this looks a little odd. The characters that will go between each piece of the
joined string go in front of the join(). In this case, we wanted a space between each word,
so we used ' '.join(). That’s different from what most people expect, but that’s just how
Python’s join() method works.

The following example
makes me sound like a dog:

To put it another way, the string in front of join() is used as the glue to hold the other
strings together.

Searching for strings
Suppose you want to make a program for your mom that takes recipes and displays them in
a GUI. You want to put the ingredients in one place and the instructions in another. Let’s
imagine that the recipe
looks something like this:

>>> word_list = ['My', 'name', 'is', 'Warren']
>>> long_string = ' '.join(word_list)
>>> long_string
'My name is Warren'

>>> long_string = ' WOOF WOOF '.join(word_list)
>>> long_string
'My WOOF WOOF name WOOF WOOF is WOOF WOOF Warren'

Chocolate Cake
Ingredients:
2 eggs
1/2 cup flour
1 tsp baking soda
1 lb chocolate

Instructions:
Preheat oven to 350F
Mix all ingredients together
Bake for 30 minutes
Licensed to Deborah Christiansen <pedbro@gmail.com>

285 CHAPTER 21 Print Formatting and Strings
Assume that the lines of the recipe are in a list, and that each line is a separate item in the
list. How would you find the “Instructions” section? Python has a couple of methods that
would help you.

The startswith() method tells you whether a string starts with a certain character or
characters. An example is the easiest way
to show this. Try this in interactive mode:

The name “Frankenstein” starts with the letter
“F,” so the first one was True. The name
“Frankenstein” starts with the letters “Frank,” so
the second one was True. The name
“Frankenstein” does not start with “Flop,” so
that one was False.

Because the startswith() method returns a
True or False value, you can use it in compari-
sons or if statements, like this:

There’s a similar method called endswith()
that does just what you’d expect:

Now, to get back to the problem at hand . . . If you wanted to find the start of the “Instruc-
tions” section of the recipe,
you could do something like this:

>>> name = "Frankenstein"
>>> name.startswith('F')
True
>>> name.startswith("Frank")
True
>>> name.startswith("Flop")
False
>>>

>>> if name.startswith("Frank"):
 print "Can I call you Frank?"

>>> name = "Frankenstein"
>>> name.endswith('n')
True
>>> name.endswith('stein')
True
>>> name.endswith('stone')
False

i = 0
while not lines[i].startswith("Instructions"):
 i = i + 1

Can I call
you Frank?
Licensed to Deborah Christiansen <pedbro@gmail.com>

286 Hello World!
This code will keep looping until it finds a line that starts with “Instructions.” Remember
that lines[i] means that i is the index for lines. So you’d start with lines[0] (the first
line), then lines[1] (the second line), and so on. When the while loop finishes, i will be
equal to the index of the line that starts with “Instructions,” which is the one you’re
looking for.

Searching anywhere in a string: in and index()

The startswith() and endswith() methods work really well for finding things at the start
or end of a string. But what if you want to find something in the middle of a string?

Let’s say you had a bunch of
strings that had street addresses, like this:

Maybe you want to find all the addresses with “Maple” in them. None of them start or end
with “Maple,” but two of them contain the word “Maple.” How would you find them?

Actually, we already saw how to do this. When we were talking about lists (back in chapter
12), we saw that you could check
whether an item is in a list by doing this:

We used the keyword in to check whether a certain item was in the list. The in keyword
also works for strings. A string is basically a list of characters,
so you can do this:

The in keyword just tells you whether the substring is somewhere in the string you’re check-
ing. It doesn’t tell you where it is. For that, you need the index() method. Like with lists,
index() tells you where in the bigger string the smaller string starts.
Here’s an example:

657 Maple Lane
47 Birch Street
95 Maple Drive

if someItem in my_list:
 print "Found it!"

>>> addr1 = '657 Maple Lane'
>>> if 'Maple' in addr1:
 print "That address has 'Maple' in it."

When you’re looking for a smaller
string, like “Maple”, within a bigger
string, like “657 Maple Lane”, the
smaller string is called a substring.

>>> addr1 = '657 Maple Lane'
>>> if 'Maple' in addr1:
 position = addr1.index('Maple')
 print "found 'Maple' at index", position
Licensed to Deborah Christiansen <pedbro@gmail.com>

287 CHAPTER 21 Print Formatting and Strings
Hi, Warren San!

If you run this code, you’ll get the following output:

The word “Maple” starts at position 4 of the string “657 Maple Lane”. Just like with lists, the
indexes (or positions) of letters within a string start at 0, so the “M” is at index 4.

Notice that, before we tried using index(), we first checked to see if the substring “Maple”
was in the bigger string. That’s because, if you use index() and the thing you’re looking for
is not in the string, you’ll get an error. Checking with in first ensures you won’t get an error.
This is the same thing we did with lists in chapter 12.

Removing part of a string

Quite often you’ll want to remove or strip off part of a string. Usually, you’ll want to strip
something off the end, like a newline character or some extra spaces. Python has a string
method called strip() to do exactly this. You
just tell it what you want stripped off, like this:

In this case, we stripped the “de” off the end of
my name. If there were no “de” at the end, nothing

would be stripped off:

If you don’t tell strip() what to strip off, it’ll strip off any whitespace. Like we said before,
that includes spaces, tabs, and newlines. So if we had extra spaces to get rid of, we could
do this:

Notice that the extra spaces after my name were removed. The good thing is that you don’t
need to tell strip() how many spaces to remove. It’ll remove all whitespace at the end of
the string.

found 'Maple' at index 4

6 5 7 M a p l e L a n e
0 1 2 3 4 5 6 7 8 9 10 11 12 13

>>> name = 'Warren Sande'
>>> short_name = name.strip('de')
>>> short_name
'Warren San'

>>> name = 'Bart Simpson'
>>> short_name = name.strip('de')
>>> short_name
'Bart Simpson'

>>> name = "Warren Sande "
>>> short_name = name.strip()
>>> short_name
'Warren Sande'

See the extra spaces
at the end of my name
Licensed to Deborah Christiansen <pedbro@gmail.com>

288 Hello World!
Changing case

There are two more string methods I want to show you. They are for changing the case of a
string from uppercase to lowercase or vice versa. Sometimes you want to compare two
strings like “Hello” and “hello”, and you want to know if they have the same letters, even if
the case is not the same. One way to do this is to make all the letters in both strings lower-
case, and then do the comparison.

Python has a string method for that. It is
called lower(). Try this in interactive mode:

There is a similar method called upper():

You can make all-lowercase (or all-uppercase) copies of your original strings and then com-
pare the copies to check if they are the same, ignoring case.

What did you learn?

In this chapter, you learned

■ how to adjust vertical spacing (adding or deleting newlines).
■ how to set horizontal spacing with tabs.
■ how to display different number formats using format strings.
■ how to split strings with split() and join them with join().
■ how to search strings with startswith(), endswith(), in , and index().
■ how to remove things from the end of strings with strip().
■ how to make strings all uppercase or all lowercase with upper() and lower().

Test your knowledge
1 If you have two separate print statements, like this,

how would you make everything print on the same line?

2 How can you add extra blank lines when printing something?

3 What special printing code do you use to line things up in columns?

4 What format string do you use to force a number to print in E-notation?

>>> string1 = "Hello"
>>> string2 = string1.lower()
>>> print string2
hello

>>>string3 = string1.upper()
>>> print string3
HELLO

print "What is"
print "your name?"
Licensed to Deborah Christiansen <pedbro@gmail.com>

289 CHAPTER 21 Print Formatting and Strings
Try it out
1 Write a program that asks for a person’s name, age, and favorite color, and then prints

it out in one sentence. A run of the program should look like this:

2 Remember our times-table program from chapter 8 (listing 8.5)? Write an improved
version that uses tabs to make sure everything lines up nicely in columns.

3 Write a program that calculates all the fractions of 8 (for example, 1/8, 2/8, 3/8, . . . up
to 8/8) and displays them with exactly three decimal places.

>>> ======================== RESTART ========================
>>>
What is your name? Sam
How old are you? 12
What is your favorite color? green
Your name is Sam you are 12 years old and you like green
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 2 2

File Input and Output
Have you ever wondered how your favorite computer game remembers the high scores,
even after the computer is turned off? How about your browser remembering your favorite
web sites? In this chapter, we’re going to learn how.

We have talked several times about how programs have three main aspects: input, process-
ing, and output. Up until now, the input has mostly come directly from the user, from the
keyboard and mouse. The output has been sent directly to the screen (or the speakers, in
the case of sound). But sometimes we need to use input that comes from other sources.
Quite often, programs need to use input that’s stored somewhere, rather than entered
when the program is running. Some programs need to get their input from a file on the
computer’s hard drive.

For example, if you made a game of Hangman, your program would need a word list from
which to choose the secret word. That list of words would have to be stored somewhere,
probably in a “word list” file that goes with the program. The program would need to open
this file, read the word list, and pick a word to use.

The same thing is true for output. Sometimes the output of a program needs to be stored.
All the variables that a program uses are temporary—they’re lost when the program stops
running. If you want to save some of the information to use later, you have to store it some-
where more permanent, like on the hard drive. For example, if you want to keep a list of
high scores for a game, you need to store them in a file so that, next time the program runs,
it can read the file and display the scores.

In this chapter, we’ll see how to open files and how to read and write them (get information
from them and store information to them).
290

Licensed to Deborah Christiansen <pedbro@gmail.com>

291 CHAPTER 22 File Input and Output
What’s a file?
Before we start talking about opening, reading, and writing files, we should talk about what
a file is.

We said that computers store information in binary format, which just uses 1s and 0s. Each 1
or 0 is called a bit, and a group of eight bits is called a byte. A file is a collection of bytes that
has a name and is stored on a hard drive, CD, DVD, floppy drive, flash drive, or some other
kind of storage.

Files can store many different kinds of information. A file can have text, pictures, music,
computer programs, a list of phone numbers, and so on. Everything that’s stored on your
computer’s hard drive is stored as files. Programs are made of one or more files. Your com-
puter’s operating system (Windows, or Mac OS X, or Linux, for example) has many, many
files that it needs to run.

Files have the following properties:

■ a name
■ a type, which indicates what kind of data is in the file (picture, music, text)
■ a location (where the file is stored)
■ a size (how many bytes are in the file)

Filenames
In most operating systems (including Windows), part of the filename is used to tell you
what type of data is in the file. Filenames usually have at least one “dot” (the period symbol)
in the name. The part after the dot tells you what kind of file it is. That part is called the
extension.

Here are a few examples:

■ In my_letter.txt the extension is .txt, which stands for “text,” so this file probably has
text in it.

■ In my_song.mp3, the extension is .mp3, which is a kind of sound file.
■ In my_program.exe, the extension is .exe, which stands for “executable.” As I men-

tioned way back in chapter 1, “executing” is another word for running a program. So
.exe files are usually programs that you can run.

■ In my_cool_game.py, the extension is .py, which usually means a Python program.

In Mac OS X, program files (files that contain a program you can run) have
the extension .app, which stands for “application,” which is another word
for “program.”
Licensed to Deborah Christiansen <pedbro@gmail.com>

292 Hello World!
One important thing to know is that you can name a file anything you want, and use any
extension. You can make a text file (in Notepad, for instance) and call it my_notes.mp3. That
does not make it a sound file. It still has just text in it, so it’s really a text file. You have just
given it a file extension that makes it look like it’s a sound file, which will probably confuse
people and computers. When naming a file, it’s a very good idea to use a file extension that
matches what kind of file it is.

File locations
Up until now, we have been working with files that are stored in the same location as the
program itself. We haven’t worried about how to find the file, because it’s in the same place
as the program.

It’s like, when you’re in your room, you don’t
have to worry about how to find your closet—
it’s right there. But if you’re in another room, in
another house, or in another city, then finding
your closet is more complicated!

Every file needs to be stored somewhere, so in addition to a name, every file has a location.
Hard drives and other storage media are organized into folders or directories. Folders and
directories are two names for the same thing. They’re a way of grouping files together.
The way the folders or directories are arranged and connected is called a folder structure
or directory structure.

In Windows, each storage media has a letter, like C for the
hard drive, or maybe E for a flash drive. In Mac OS X and
Linux, each storage media has a name (for example, hda or
FLASH DRIVE). Each storage unit can be divided up into a
number of folders, such as Music, Pictures, and Programs. If
you look at it in a file viewer like Windows Explorer, it will
look like this:

Folders can also have other folders within them, and those
folders can have other folders within them, and so on.
Here’s an example of three levels of folders:
Licensed to Deborah Christiansen <pedbro@gmail.com>

293 CHAPTER 22 File Input and Output
The first level is Music. The next level has New
Music and Old Music, and the next level has
Kind of old music and Really old music.

When you’re trying to find a file or folder in Windows
Explorer (or some other file browser), the folders are like
branches of a tree. The “root” is the drive itself, like C: or E:.
Each main folder is like a main branch of the tree. The folders
within each main folder are like smaller branches, and so on.

But when you need to access files from within a program, the tree idea doesn’t quite work.
Your program can’t click on folders and browse around the tree to find individual files. It
needs a more direct way to find the file. Fortunately, there’s another way to represent
 the tree structure. If you look in the address bar of Windows Explorer when you click
on different folders and subfolders, you’ll see something that looks
like this:

That’s called the path. The path is a description of where the file is in the folder structure.
This particular path reads like this:

1 Start at the e: drive.

2 Go into the folder called Music.

3 In the Music folder, go into a subfolder called Old Music.

4 In the Old Music subfolder, go into a subfolder called Really old music.

5 In the Really old music subfolder, there’s a file called my_song.mp3.

You can get to any file on your computer using a path like this. That’s the way programs find
and open files. Here’s an example:

You can always get to a file using its full pathname. That’s the name including all the folder
names right down the tree to the root (the drive, like c:). The name in this example is a full
pathname.

image_file = "c:/program files/HelloWorld/examples/beachball.png"

The folders within other folders
are called subfolders. If you’re
using the term “directories,”
you’d call them subdirectories.

e:\Music\Old Music\Really old music\my_song.mp3
Licensed to Deborah Christiansen <pedbro@gmail.com>

294 Hello World!
Sometimes you don’t need the whole file path. The next section talks about finding a file if
you’re already partway down the path.

Finding where you are

Most operating systems (including Windows) have the idea of a “working directory,”
sometimes called the “current working directory.” This is the directory in the folder tree
you’re currently working in.

Imagine that you started at the root (c:), and you moved down the Program Files branch to
the HelloWorld branch. Your current location or current directory would be c:/Program Files/
HelloWorld.

Now, to get to the file called beachball.png, you have to go down the examples branch.
So your path to get there would be /examples/beachball.png. Because you were already
partway down the right path, you only needed the rest of the path to get where you
wanted to go.

Slash or backslash?
It’s important that the slashes (\ and /) go the right way. Windows will accept either a forward
slash (/) or a backslash (\) in pathnames, but if you use something like c:\test_results.txt
in a Python program, the \t part will cause a problem. Remember, in chapter 21, we talked
about special characters for print formatting, like \t for tab? That’s why you should avoid the
\ character in file paths. Python (and Windows) will treat \t as a tab character instead of part of
your filename as you intended. Use / instead.

The other option is to use double backslashes, like this:

Remember that, if you want to print a \ character, you have to put another one in front of it. It
works the same way in filenames. But I recommend you use / instead.

image_file "c:\\program files\\HelloWorld\\images\\beachball.png"
Licensed to Deborah Christiansen <pedbro@gmail.com>

295 CHAPTER 22 File Input and Output
Remember, in chapter 19 on sound, we opened our sound files as splat.wav, and so on? We
didn’t use a path. That’s because I told you to copy the sound files to the same folder where
you saved the program. If you looked at it in Windows Explorer, it would look something
like this:

Notice that I have Python files (with the .py extension) in the same folder as sound files
(with the .wav extension). When a Python program is running, its working directory is what-
ever folder the .py file is stored in.

If you stored your program in e:/programs and ran the program, that program would start
with e:/programs as its working directory. If you have a sound file stored in the same folder,
your program only needs the filename to use that file. It doesn’t need a path to get
there, because it’s already
there. So you can just do this:

Notice that we don’t need to use the full pathname of the sound file (which would be
e:/programs/splat.wav). We just use the filename without the path, because the file is
in the same folder as the program that’s using it.

Enough about paths!

That’s all I’m going to say about paths and file locations. The whole topic of folders and
directories, paths, working directories, and so on, is one that some people find confusing,
and it would take a lot of pages to fully explain it. But this book is about programming, not
about operating systems, file locations, or paths, so if you’re having trouble with this,
maybe you can ask a parent, teacher, or someone else who knows about computers to
help you.

All the other examples in this book that use files read and write files that are in the
same place as the program, so we don’t have to worry about the path or about using
full pathnames.

my_sound = pygame.mixer.Sound("splat.wav")
Licensed to Deborah Christiansen <pedbro@gmail.com>

296 Hello World!
Opening a file
Before you open a file, you need to know what you’ll be doing with the file:

■ If you’ll be using the file as input (looking at what’s in the file without changing it),
you’ll open the file for reading.

■ If you’ll be creating a brand new file or replacing an existing file with something brand
new, you’ll open the file for writing.

■ If you’ll be adding to an existing file, you’ll open the file for appending. (Remember
from chapter 12 that append means to add to something.)

When you open a file, you make a file object in Python. (See, I told you that many things in
Python are objects.) You make the file object by using the open() function with the name of
the file, like this:

The filename is a string, so it needs quotes around it. The 'r' part means we’re opening the
file for reading. We’ll learn more about that in the next section.

It’s important to understand the difference between the file object and the filename. The file
object is what we’ll use inside the program to access the file. The filename is what Windows
(and Linux and Mac OS X) calls the file on the disk.

We do the same thing with people. We have different names that we use in different
places. If your teacher’s name is Fred Weasley, you probably call him Mr. Weasley. His
friends probably call him Fred, and his computer username might be fweasley. With files,
there’s a name that’s used by the operating system to store the file on disk (the filename),
and there’s a name your program uses when working with the file (the file object).

The two names—the name of the object and the name of the file—don’t have to be the
same. You can call the object whatever you want. For example, if we have a text file with
some notes in it that’s
called notes.txt, we could do this:

or we could do this:

Once we have opened the file and created the file object, we don’t need the filename any
more. We do everything in the program using the file object.

my_file = open('my_filename.txt','r')

notes = open('notes.txt', 'r')

File object Filename

some_crazy_stuff = open("notes.txt", 'r')

File object Filename
Licensed to Deborah Christiansen <pedbro@gmail.com>

297 CHAPTER 22 File Input and Output
Reading a file
As I mentioned in the last section, we open a file and create a file object using the open()
function. This is one of Python’s built-in functions. To open the file for reading, you use 'r'
as the second argument, like this:

If you try to open a file for reading that does not exist, you’ll get an error. (After all, you can’t
read something that’s not there, right?)

Python has a couple more built-in functions for getting information from the file into our
program once the file is open. To read lines of text from a file, you can use the readlines()
method, like this:

This will read the whole file and make a list, with one line of text in each item of the list.
Let’s say the notes.txt file contained a
short list of things you need to do today:

We could have used a program like Notepad to create this file. In fact, why don’t you make a
file like this using Notepad (or your favorite text editor) right now? Call it notes.txt and save
it in the same place you save your Python programs. Then close Notepad.

If we open this file with a short Python program and read it, the code might look like
listing 22.1.

my_file = open('notes.txt', 'r')
lines = my_file.readlines()
print lines

The output would be like this (depending on what you put in
the file):

The lines of text were read from the file and they were put into a list, which we called lines.
Each item in the list is a string containing one line from the file. Notice the \n part at the
end of the first two lines. These are the newline characters that separate the lines in the file.
That’s where we pressed Enter when we were creating the file. If you pressed Enter after
typing in the last line, there will be a third \n after the third item.

Listing 22.1 Opening and reading from a file

my_file = open('notes.txt', 'r')

lines = my_file.readlines()

Wash the car
Make my bed
Collect allowance

>>>======================= RESTART =========================
>>>
['Wash the car\n', 'Make my bed\n', 'Collect allowance']
>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

298 Hello World!
Why? Why not
leave it open so
we can access

it later?

There’s one more thing we need to add to the program in listing 22.1. When we’re
done with the file, we should close it:

 Well, Carter, if another program needs to use the file
 and our program hasn’t closed it, the other program
 might not be able to access the file. It’s generally a good
 idea to close files when you’re done using them.

Once the file is in our program as a list of strings, we can do
whatever we want with it. This list is just like any other Python

list, so we can loop through it, sort it, append items, delete items, and so on. The strings are
like any other strings, so we can print them, convert them to int or float (if they contain
numbers), use them as labels in a GUI, or do anything else that you’d do with a string.

Reading one line at a time

The readlines() method reads all the lines of a file, right up until the end of the file.
If you want to read just one line at a time, you can use the readline() method,
like this:

This will read just the first line of the file. If you use readline() again in the same program,
Python remembers where it was. So the second time you use it, you’ll get the second line of
the file. Listing 22.2 shows an example of this.

my_file = open('notes.txt', 'r')
first_line = my_file.readline()
second_line = my_file.readline()
print "first line = ", first_line
print "second line = ", second_line
my_file.close()

The output of that
program would look like this:

Listing 22.2 Using readline() more than once

my_file.close()

first_line = my_file.readline()

>>>================== RESTART ====================
>>>
first line = Wash the car

second line = Make my bed

>>>
Licensed to Deborah Christiansen <pedbro@gmail.com>

299 CHAPTER 22 File Input and Output
The readline() method only reads one line at a time, so it doesn’t put the results into a list.
Each time you use readline(), you get a single string.

Going back to the start

If you have used readline() a few times and you want to start back at the beginning of the
file, you can use the seek() method, like this:

The seek() method makes Python go to whatever place in the file you tell it. The number in
brackets is the number of bytes from the start of the file. So setting it to 0 takes it right back
to the start of the file.

Text files and binary files
All the examples of opening files and reading lines of text so far are assuming one thing: the
file actually has text in it! Remember that text is just one of the kinds of things we can store in
a file. Programmers lump together all other kinds of files and call them binary files.

There are two main types of files you can open:

■ Text files—These have text in them, with letters, numbers, punctuation, and some
special characters, like newlines.

■ Binary files—These don’t have text in them. They might have music, pictures, or some
kind of data, but because they don’t have text, they don’t have lines either, because
there are no newlines.

That means you can’t use readline() or readlines() on a binary file. If you try to read a
“line” from a .wav file, for example, you don’t know what you’ll get. Most likely, you’ll get a
whole bunch of gobbledygook that looks like this:

There’s something that looks like text at the start of the .wav file, but then it gets crazy.
That’s because a .wav file doesn’t have text in it, it has sound. The readline() and
readlines() methods are only for reading text files.

>>> f = open('splat.wav', 'r')
>>> print f.readline()
RIFFö? WAVEfmt ? ? ? "V "V datap? ÇÇÇÇÇÇÇÇüÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ?ÇÇ?????Ç????Ç
ÇÇÇ??ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ?Ç?ÇÇÇÇüÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ?ÇÇÇÇÇüüÇÇÇ?ÇÇ?ÇÇÇÇ??ÇÇüéééÇzvvy{|Ç

âçïê}trv|äëïîèå~ut|?yrqrtxÇîÖ?æäàütvçÆÄ|mlfWR]jnmpxüêÅ
ºƒâràó«¼Ö}`ORj?{hZZgwàëy{äæá?¿ÿézåÿèmWLISjÇàzrvÇüytv~üÇ}yrifjt}äêèêëÄöÉémSCFZ
lrtyéïö¥ñ¬½?ñ¢ÆÄìÅôòÆÄÅæ|åÜ?¬ÿüpd\UME@;99:>EJMW]YTZfuçòƒ?????????????¢ôë~{|{y
xzzuiZNGHLSbs?~wrnf\TPQU]`jvàæÉ?osÇïôæä}üàë??

first_line = my_file.readline()
second_line = my_file.readline()
my_file.seek(0)
first_line_again = my_file.readline()
Licensed to Deborah Christiansen <pedbro@gmail.com>

300 Hello World!
Most of the time, if you need to use a binary file, you’ll be using something like Pygame or
some other module to load
the file, like we did in chapter 19:

In that case, Pygame takes care of opening the file and reading the binary data (which is
music in this example).

This book isn’t going to cover how to process binary files. But just so you know what it looks
like, you can open a binary file by
adding a b to the file mode, like this:

The 'rb' part means we’re opening the file for reading in binary mode.

In the past few sections, we have been learning how to get information from a file into
our program, which is called reading the file. Next we’re going to learn about getting
information out of our program into a file. This is called writing the file.

Writing to a file
If you want to store some information from your program more permanently, you could
look at it on the screen and write it down on a piece of paper. But that kind of defeats the
purpose of using a computer!

A better idea is to save the information on the hard drive, so that, even when the program
isn’t running—in fact, even when the computer is turned off—your data is still there and
you can get it later. You have done this many, many times already. Every time you save a
report for school, a picture, a song, or a Python program, you’re storing it to the hard drive.

pygame.mixer.music.load('bg_music.mp3')

my_music_file = open('bg_music.mp3', 'rb')

Back in my day, all we had was paper! There were no
monitors, printers, or even keyboards. You “wrote”
your code by punching holes into cards. Then you fed
this stack of cards into a big machine that would
convert the punched holes into electrical signals the

computer could understand. Sometimes it took days to
get an answer. Boy, was that painful!

Old computer punch card
Licensed to Deborah Christiansen <pedbro@gmail.com>

301 CHAPTER 22 File Input and Output
Correction! You can
open a file for appending
if it’s not there. It’ll just
create a new one that’s

blank!

As I mentioned earlier, there are two ways you can put things in a file:

■ writing—This means starting a new file or overwriting an existing one.
■ appending—This means adding to an existing file and keeping what’s already there.

To write or append to a file, you first have to open the file. You use the open() function, just
like we did before, except that the second parameter will be different:

■ For reading, you
use 'r' as the file mode:

■ For writing, you
use 'w' as the file mode:

■ For appending, you
use 'a' as the file mode:

If you use 'a' for append mode, the filename has to be one that already exists on the hard
drive, or you’ll get an error. That’s because append is for adding to an existing file.

 Carter is right, again! If you use 'w' for write
 mode, there are two possibilities:

■ If the file already exists, whatever is in the file will be lost
and replaced with whatever you write there.

■ If the file doesn’t exist, a new file with that name will be
 created, and whatever you write will go into the new file.

 Let’s look at some examples.

Appending to a file
First we’ll take the notes.txt file that we created earlier and append something to it. Let’s
add another line that says “Spend allowance.” If you were looking closely when we did the
readlines() example, you might have noticed that there’s no \n, no newline, at the end of
the last line. So we need to add one, and then add our new string. To write strings to a file,
we use the write() method, like in listing 22.3.

todo_list = open('notes.txt', 'a')
todo_list.write('\nSpend allowance')
todo_list.close()

Listing 22.3 Using append mode

my_file = open('new_notes.txt', 'r')

my_file = open('new_notes.txt', 'w')

my_file = open('notes.txt', 'a')

Closes the file

Opens the file in
append mode

Adds our string to the end
Licensed to Deborah Christiansen <pedbro@gmail.com>

302 Hello World!
When we were reading files, we said you should close the file when you’re done. But it’s
even more important to use close() when you’re done writing. That’s because the changes
don’t actually get saved to the file until you close() it.

After you run the program in listing 22.3, open notes.txt using Notepad (or any other text
editor) and see what’s in it. Remember to close Notepad when you’re done.

Writing to a file
Now let’s try an example of writing to a file using the write mode. We’ll open a file that isn’t
on the hard drive. Type in the program in listing 22.4 and run it.

new_file = open("my_new_notes.txt", 'w')
new_file.write("Eat supper\n")
new_file.write("Play soccer\n")
new_file.write("Go to bed")
new_file.close()

How do you know it worked? Check in the folder where you saved the program from
listing 22.4. You should see a file there called my_new_notes.txt.
You can open this file in Notepad to see what’s in it. You should see this:

You created a text file with this program and stored some text in it. This text is on the hard
drive, and it’ll stay there forever—or at least as long as the hard drive keeps working—
unless you delete it. So we have a way to permanently store data from our programs. Now
your programs can leave a permanent mark on the world (or at least on your hard drive).
Anything you need to keep when the program stops and the computer is shut off, you can
put in a file.

Let’s see what happens if we use write mode on a file that’s already on the hard drive.
Remember our file called notes.txt? If you
ran the program in listing 22.3, it looks like this:

Let’s open this file in write mode and write to it, to see what happens. Listing 22.5 has the
code.

the_file = open('notes.txt', 'w')
the_file.write("Wake up\n")
the_file.write("Watch cartoons")
the_file.close()

Listing 22.4 Using write mode on a new file

Listing 22.5 Using write mode on an existing file

Eat supper
Play soccer
Go to bed

Wash the car
Make my bed
Collect allowance
Spend allowance
Licensed to Deborah Christiansen <pedbro@gmail.com>

303 CHAPTER 22 File Input and Output
I’m a
baby dill!

I’m a big
pickle!

 And I’m a
really big

pickle!

 We’re being
pickled so we can

be used later!

Run this code, and then open notes.txt in Notepad to see what it contains. You should
see this:

The stuff that was in notes.txt before is gone. It has been replaced by the new stuff from the
program in listing 22.5.

Writing to a file using print

In the last section, we wrote to a file using write(). You can also use print to write to a file.
You still have to open the file in write or append mode, but then you can write to the file
using print, like this:

The two > symbols (which are sometimes called chevrons) are telling print to send its
output to a file instead of to the screen. This is called redirecting output.

Sometimes it’s more convenient to use print than write(), because print does things like
automatically converting numbers to strings, and so on. You can decide whether to use
print or write() to put text into a file.

Saving your stuff in files: pickle
In the first part of this chapter, we talked about reading and writing
text files. Text files are one way you can store things to the
hard drive. But what if you want to store something
like a list or an object? Sometimes the items in
the list might be strings, but not always. And
what about storing things like objects? You
might be able to convert all the object’s prop-
erties to strings and write them to a text file, but
then you’d have to do the opposite to go from the
file back to an object. It could get complicated.

Luckily, Python has a way to make storing things
like lists and objects easier. It’s a Python module
called pickle. That’s kind of a funny name, but think
about it: pickling is a way of preserving food so you
can use it later. In Python, you “pickle” your data so
you can save it on disk and use it later. Makes sense!

Wake up
Watch cartoons

my_file = open("new_file.txt", 'w')
print >> my_file, "Hello there, neighbor!"
my_file.close()
Licensed to Deborah Christiansen <pedbro@gmail.com>

304 Hello World!
Pickling

Let’s say we have a list with different kinds of things in it,
like this:

To use pickle, first you have to import the pickle module:

Then to “pickle” something, like a list, you use the dump() function. (That’s easy to
remember if you think of dumping your pickles into the jar.) The dump() function needs
a file object, and we know
how to make one of those:

We open it for writing with 'w' because we’re going to be storing something in this file. You
can pick whatever name and extension you want. I picked .pkl as the extension, short for
“pickle.”

Then we dump() our list into the pickle file:

The whole process looks like listing 22.6.

import pickle
my_list = ['Fred', 73, 'Hello there', 81.9876e-13]
pickle_file = open('my_pickled_list.pkl', 'w')
pickle.dump(my_list, pickle_file)
pickle_file.close()

You can use this same method to store any kind of data structure to a file. But what about
getting it back? That’s next.

Unpickling

In real life, once you pickle something, it stays pickled. You can’t undo it. But in Python,
when you “preserve” some data by pickling it, you can also reverse the process and get your
data back the way it was.

The function to “unpickle” something is load(). You give it a file object for the file that
contains the pickled data, and it gives you back the data in its original form. Let’s try it. If
you ran the program in listing 22.6, you should have a file called my_pickled_list.pkl in the
same place where you store your programs. Now try the program in listing 22.7 and see if
you get the same list back.

Listing 22.6 Using pickle to store a list to a file

my_list = ['Fred', 73, 'Hello there', 81.9876e-13]

import pickle

pickle_file = open('my_pickled_list.pkl', 'w')

pickle.dump(my_list, pickle_file)
Licensed to Deborah Christiansen <pedbro@gmail.com>

305 CHAPTER 22 File Input and Output
import pickle
pickle_file = open('my_pickled_list.pkl', 'r')
recovered_list = pickle.load(pickle_file)
pickle_file.close()

print recovered_list

You should get
output that looks like this:

It looks like the unpickling worked! We got back the same items we pickled. The E-notation
looks a little different, but it’s the same number, at least to 16 decimal places. The difference
is from roundoff error, which we talked about in chapter 4.

In the next section, we’re going to use what we have learned about file input and output to
help us make a new game.

Game time again—Hangman
Why do we have a game in the chapter on files? Well, one thing that makes a game of
Hangman interesting is to have a nice big list of words from which to choose the puzzles.
The easiest way to do that is to read it from a file. We’ll also use PythonCard for this game
to show that using Pygame isn’t the only way to make graphical games.

I’m not going to explain this program in quite as much detail as some other programs. By
now, you should be able to look at the code and figure out how most of it works on your
own. I’ll just give you a little guidance to help you along.

The Hangman GUI

The main GUI for our Hangman
program looks like this:

This shows all the parts of the hanged
man, but when the program runs, we’ll
start by hiding all his parts. When the
player guesses a wrong letter, we’ll
reveal another part of the man. If the
whole man is drawn, the player gets one
more guess, and then it’s game over!

Listing 22.7 Unpickling using load()

['Fred', 73, 'Hello there', 8.1987599999999997e-012]
Licensed to Deborah Christiansen <pedbro@gmail.com>

306 Hello World!
When the player guesses a letter, the program checks to see if the letter is in the secret
word. If it is, the letter is revealed. At the bottom of the window, the player can see every-
thing he’s guessed so far. The player can also try to guess the word at any time.

Carter created Hangman, and he wanted to keep it as simple as possible, so the words in
the word list have to contain only letters. They can’t have any punctuation.

When the program
is running, it looks like this:

Here’s a summary of how the program
works.

At the start, the program does these
things:

■ loads word list from a file
■ takes newline characters off the

end of each line
■ makes all parts of the man invisible
■ picks a word randomly from the word list
■ shows the same number of dashes as there are letters in the secret word

When the player clicks the Guess a letter button, the program does these things:

■ opens a dialog box with a text entry field where the player can type in a letter
■ checks the secret word to see if it contains the letter
■ if the player’s guess is right, shows the places where the letter occurs by replacing the

dash with the letter
■ if the player’s guess is wrong, reveals another part of the man
■ adds the guessed letter to the Your Guesses display
■ checks to see if the player has completed the word (guessed all the letters)
■ checks to see if the player is out of turns—if so, shows a dialog saying You Lost and

shows what the secret word was

When the player clicks the Guess the word button, the program does these things:

■ opens a dialog box to let the player enter the word
■ checks to see if the player’s guess is right
■ if it is, shows a dialog saying You Got It! and starts a new game

We also made a menu item to start a new game, so if he’s partway through a game, he can
start a new one without restarting the whole program.
Licensed to Deborah Christiansen <pedbro@gmail.com>

307 CHAPTER 22 File Input and Output
Getting words from the word list

This is a chapter about files, so let’s look at the part of the program that gets the word list.
The code looks like this:

The words.txt file is just a text file, so we can read it using readlines(). Then, to pick a
word from the list, we use the
random.choice() function, like this:

Revealing the man

There are several ways we could have kept track of which parts of the man are already
revealed and which part to reveal next. Carter decided to use nested if statements, which
works fine. It looks like this:

There are six parts of the hanged man, so we need six nested if blocks. Notice that, if all
the parts are visible and there’s a wrong guess, you get the message saying you lost.

def wrong_guess(self):
 dialog.alertDialog(self, "WRONG!!!", 'Hangman')
 if self.components.head.visible == True:
 if self.components.body.visible == True:
 if self.components.arm1.visible == True:
 if self.components.arm2.visible == True:
 if self.components.foot1.visible == True:
 if self.components.foot2.visible == True:
 dialog.alertDialog(self,
 "You lost! Word was "+self.currentword,
 'Hangman')
 self.new_game()
 else:
 self.components.foot2.visible = True
 else:
 self.components.foot1.visible = True
 else:
 self.components.arm2.visible = True
 else:
 self.components.arm1.visible = True
 else:
 self.components.body.visible = True
 else:
 self.components.head.visible = True

f = open("words.txt", 'r')
self.lines = f.readlines()
for line in self.lines:
 line.strip()
f.close()

Removes newline
characters from each line

self.currentword = random.choice(self.lines)
Licensed to Deborah Christiansen <pedbro@gmail.com>

308 Hello World!
If there were a lot more parts to the man, nested if blocks would get difficult to keep track
of, and we might find another way to do this. Maybe you can think of one!

Checking the letter guesses

One of the trickiest parts of this program is checking the player’s guessed letter to see if it
appears in the secret word. What makes it tricky is that the letter could appear more than
once in the word. For example, if the secret word is “lever,” and the player guesses e, you
have to reveal both the second and fourth letters because they’re both e.

Carter needed a little help with this part, so I wrote a couple of functions that do this. The
find_letters() function finds all the places a particular letter appears in a word and
returns a list of those positions. For example, for the letter e and the word “lever,” it would
return [1, 3], because the letter e appears at index 1 and index 3 in the string. (Remember
that the indices start at 0.) Here’s the code:

The replace_letters() function takes the list from find_letters() and replaces the
dashes at those positions with the correct letter. In our example (the letter e in “lever”), it
would replace ----- with -e-e-. It shows the player where the correctly guessed letters
appear in the word, and leaves the rest as dashes. Here’s the code:

def find_letters(letter, a_string):
 locations = []
 start = 0
 while a_string.find(letter, start, len(a_string)) != -1:
 location = a_string.find(letter, start, len(a_string))
 locations.append(location)
 start = location + 1
 return locations

def replace_letters(string, locations, letter):
 new_string = ''
 for i in range (0, len(string)):
 if i in locations:
 new_string = new_string + letter
 else:
 new_string = new_string + string[i]
 return new_string
Licensed to Deborah Christiansen <pedbro@gmail.com>

309 CHAPTER 22 File Input and Output
Then, when the player makes a letter guess, we use the two functions we just defined,
find_letters() and replace_letters():

The total program is about 95 lines of code, plus some blank lines to make things look nice.
Listing 22.8 shows the whole program, with some notes explaining the different sections.
The code is in the \examples\hangman folder on your computer if you used the installer,
and it’s also on the web site. It includes hangman.py, hangman.rsrc.py, and words.txt.

from PythonCard import model, dialog
import random

def find_letters(letter, a_string):
 locations = []
 start = 0
 while a_string.find(letter, start, len(a_string)) != -1:
 location = a_string.find(letter, start, len(a_string))
 locations.append(location)
 start = location + 1
 return locations

def replace_letters(string, locations, letter):
 new_string = ''
 for i in range (0, len(string)):
 if i in locations:
 new_string = new_string + letter
 else:
 new_string = new_string + string[i]
 return new_string

class Hangman(model.Background):

def on_btnGuessLetter_mouseClick(self, event):
 result = dialog.textEntryDialog(self,
 'enter the letter here:', 'Hangman', '')
 guess = result.text
 if len(guess) == 1:
 self.components.stYourGuesses.text = \
 self.components.stYourGuesses.text + " " + guess + " "
 if result.text in self.currentword:
 locations = find_letters(guess, self.currentword)
 self.components.stDisplayWord.text = replace_letters \
 (self.components.stDisplayWord.text, locations,guess)
 if self.components.stDisplayWord.text.find('-') == -1:
 dialog.alertDialog(self, 'You win!!!!!', 'Hangman')
 self.new_game()
 else:
 self.wrong_guess()
 else:
 dialog.alertDialog(self, 'Type one letter only', 'Hangman')

Listing 22.8 The whole hangman.py program

Checks if the letter
is in the word

Checks if no dashes left
(which means you won!)

Finds letters

Replaces letters

Replaces dashes
with letter

Checks where
the letter

appears
Licensed to Deborah Christiansen <pedbro@gmail.com>

310 Hello World!
 def on_initialize(self, event):
 self.currentword = ""
 f=open("words.txt", 'r')
 self.lines = f.readlines()
 f.close()
 self.new_game()

 def new_game(self):
 self.components.stYourGuesses.text = ""
 self.currentword = random.choice(self.lines)
 self.currentword = self.currentword.strip()
 self.components.stDisplayWord.text = ""
 for a in range(len(self.currentword)):
 self.components.stDisplayWord.text = \
 self.components.stDisplayWord.text + "-"

 self.components.foot2.visible = False
 self.components.foot1.visible = False
 self.components.arm1.visible = False
 self.components.arm2.visible = False
 self.components.body.visible = False
 self.components.head.visible = False

 def on_btnGuessWord_mouseClick(self, event):
 result = dialog.textEntryDialog(self,
 'What is the word','Hangman','the word')
 self.components.stYourGuesses.text = \
 self.components.stYourGuesses.text + " " + result.text + " "
 if result.text == self.currentword:
 dialog.alertDialog(self, 'You did it!', 'Hangman')
 self.new_game()
 else:
 self.wrong_guess()

 def wrong_guess(self):
 dialog.alertDialog(self, "WRONG!!!", 'Hangman')
 if self.components.head.visible == True:
 if self.components.body.visible == True:
 if self.components.arm1.visible == True:
 if self.components.arm2.visible == True:
 if self.components.foot1.visible == True:
 if self.components.foot2.visible == True:
 dialog.alertDialog(self,
 "You lost! Word was " + self.currentword
 'Hangman')
 self.new_game()
 else:
 self.components.foot2.visible = True
 else:
 self.components.foot1.visible = True
 else:
 self.components.arm2.visible = True
 else:
 self.components.arm1.visible = True
 else:
 self.components.body.visible = True

Gets word list

Picks a word

Strips the newline off
the end of the word

Displays dashes

Hides the man

Lets player guess the word

Shows another part of the
man when guess is wrong
Licensed to Deborah Christiansen <pedbro@gmail.com>

311 CHAPTER 22 File Input and Output
 else:
 self.components.head.visible = True

 def on_btnGuessLetter_mouseClick(self, event):
 result = dialog.textEntryDialog(self,
 'enter the letter here:', 'Hangman', '')
 guess = result.text
 if len(guess) == 1:
 self.components.stYourGuesses.text = \
 self.components.stYourGuesses.text + " " + guess + " "
 if result.text in self.currentword:
 locations = find_letters(guess, self.currentword)
 self.components.stDisplayWord.text = replace_letters \
 (self.components.stDisplayWord.text, locations, guess)
 if self.components.stDisplayWord.text.find('-') == -1:
 dialog.alertDialog(self, 'You win!!!!!', 'Hangman')
 self.new_game()
 else:
 self.wrong_guess()
 else:
 dialog.alertDialog(self, 'Type one letter only', 'Hangman')

 def on_cmdNewGame_command(self, event):
 self.new_game()

I encourage you to try creating this program on your own. You can build the GUI in
PythonCard using Resource Editor. It doesn’t matter if it doesn’t look exactly the same as
the version I have here. Just make sure you look at the code to see what names to use for
the components. The names in the code have to match the names in the resource file.

Type in the code if you can. Run the program and see how it works. And if you think of
something different to try, go for it! Have fun, play around with it, and experiment.
That’s one of the most fun and rewarding parts of programming, and it’s how you’ll learn
the most.

What did you learn?

In this chapter, you learned

■ what a file is.
■ how to open and close files.
■ different ways to open a file: reading, writing, and appending.
■ different ways to write things to a file: write() or print >>.
■ how to use pickle to save lists and objects (and other Python data structures) to a file.
■ a lot about folders (also called directories), file locations, and paths.

Shows another part of the
man when guess is wrong

Lets player guess a letter

Starts a new game
Licensed to Deborah Christiansen <pedbro@gmail.com>

312 Hello World!
We also made a Hangman game that used data from a file to get a word list.

Test your knowledge
1 The kind of object in Python that’s used to work with files is called a _______.

2 How do you create a file object?

3 What’s the difference between a file object and a filename?

4 What should you do with a file when you’re done reading or writing it?

5 What happens if you open a file in append mode and then write something to the file?

6 What happens if you open a file in write mode and then write something to the file?

7 How do you start reading the start of a file after you have already read part of it?

8 What pickle function is used to save a Python object to a file?

9 What pickle method is used to “unpickle” an object—to get it from a pickle file and
put it back in a Python variable?

Try it out
1 Make a program to create silly sentences. Each sentence should have at least four

parts, like this:

The __________ ___________ ____________ _____________

 (adjective) (noun) (verb phrase) (adverb phrase)

For example: "The crazed monkey played a ukulele on the table."

The program should create the sentence by randomly picking an adjective, a noun, a
verb phrase, and an adverb phrase. The words will be stored in files, and you can use
Notepad to create them. The simplest way to make this program work is to have one
file for each of the four groups of words, but you can do it however you want. Here are
some ideas to get you started, but I’m sure you’ll come up with your own:

■ adjectives: crazed, silly, shy, goofy, angry, lazy, obstinate, purple
■ nouns: monkey, elephant, cyclist, teacher, author, hockey player
■ verb phrases: played a ukulele, danced a jig, combed his hair, flapped her ears
■ adverb phrases: on the table, at the grocery store, in the shower, after breakfast,

with a broom

Here’s another sample output: “The lazy author combed his hair with a broom.”

2 Write a program that asks the user to enter her name, age, favorite color, and favorite
food. Have the program save all four items to a text file, each one on a separate line.

3 Do the same as in question #2, but use pickle to save the data to a file. (Hint: This will
be easy if you put the data in a list.)

adjective noun verb phrase adverb phrase
Licensed to Deborah Christiansen <pedbro@gmail.com>

A

A

K

K

C H A P T E R 2 3

Take a Chance—Randomness
One of the most fun things about games is that you never know what will happen. Games
are unpredictable. They’re random. It’s this randomness that makes them interesting.

As we have already seen, computers can simulate random behavior. In our number-
guessing program (in chapter 1), we used the random module to generate a random integer,
which the user had to guess. You also used random to pick words for the silly sentence pro-
gram in the “Try it out” section in chapter 22.

Computers can also simulate the random behavior of rolling dice or shuffling a deck of
cards. This makes it possible to create computer games with cards or dice (or
other randomly behaving objects). For example,
almost everyone has tried playing Solitaire on
Windows, which is a card game where the pro-
gram randomly shuffles the cards before each
game. Computer Backgammon, which uses two
dice, is also very popular.

In this chapter, we’ll learn how to use the random module to make computer-generated
dice and decks of cards that we can play games with. We’ll also look at how you can use
computer-generated random events to explore the idea of probability, which is how likely
something is to happen.

What’s randomness?
Before we start talking about how to make programs have random behavior, we should
understand what “random” really means.
313

Licensed to Deborah Christiansen <pedbro@gmail.com>

314 Hello World!
Take the example of flipping a coin. If you toss a coin in the air and let it
land, it will either land heads-up or tails-up. For a normal coin, the
chances of getting heads are the same as the chances of getting tails.
Sometimes you’ll get heads, sometimes tails. On any one toss, you don’t
know what you’ll get. Because the outcome of a toss can’t be predicted,
we say it’s random. Tossing a coin is an example of a random event.

If you toss the coin many times, you’ll probably get about the same number of heads as
tails. But you can never really be sure. If you toss the coin 4 times, you might get 2 heads
and 2 tails. But you could get 3 heads and 1 tail, 1 head and 3 tails, or even 4 heads (or tails)
in a row. If you toss the coin 100 times, you might get 50 heads. But you could get 20, 44,
67, or even all 100 tosses coming up heads! That’s very unlikely, but it could happen.

The point is that each event is random. Although there might be some pattern to it if you
make a lot of tosses, each individual toss has the same chance of coming up heads or tails.
Another way to say this is that the coin has no memory. So even if you just tossed 99 heads
in a row, and you think it’s nearly impossible to get 100 heads in a row, the next toss still has
a 50 percent chance of being heads. That’s what random means.

A random event is an event with two or more possible outcomes, where you can’t predict
which outcome will happen. The outcome could be the order of cards in a shuffled deck, or
the number of spots that show when you roll the dice, or which side a coin will land on.

Rolling the dice
Almost everyone has played a game using dice. Whether it’s Monopoly, Yahtzee, Trouble,
Backgammon, or some other game, rolling dice is one of the most common ways to gener-
ate a random event in a game.

Dice are very easy to simulate in a program, and Python’s random module has a couple of
ways to do it. One is the randint() function, which picks a random integer. Because the
number of spots on the sides of a die are integers (1, 2, 3, 4, 5, and 6), rolling a single die
could be simulated like this:

That gives you a number from 1 to 6, with each number having an equal chance of appear-
ing. This is just like a real die.

Another way to do the same thing is to make a list of the possible results, and then use the
choice() function to pick one of
them. Here’s how that would look:

import random
die_1 = random.randint(1, 6)

import random
sides = [1, 2, 3, 4, 5, 6]
die_1 = random.choice(sides)
Licensed to Deborah Christiansen <pedbro@gmail.com>

315 CHAPTER 23 Take a Chance—Randomness
This would do exactly the same thing as the previous example. The choice() function ran-
domly chooses an item from a list. In this case, the list is the numbers from 1 to 6.

More than one die
What if you want to simulate rolling two dice? If you’re just going to add up the two dice to
get the total, you might think of doing it this way:

After all, the total of two dice can be from 2 to 12, right? Well, yes and no. You will get a
random number between 2 and 12, but not in the same way as adding up two random
numbers from 1 to 6. What that code line does is like rolling one big 11-sided die, not two
6-sided dice. But what’s the difference? That gets into a topic called probability. The easiest
way to see the difference is to try it out and see.

Let’s roll the dice many times and keep track of how many times each total comes up.
We’ll do that with a loop and a list. The loop will roll the dice, and the list will keep track of
how many times each total comes up. Let’s start with the single 11-sided die, as shown in
listing 23.1.

import random

totals = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
for i in range(1000):
 dice_total = random.randint(2, 12)
 totals[dice_total] += 1

for i in range (2, 13):
 print "total", i, "came up", totals[i], "times"

The list has indexes from 0 to 12, but we won’t use the first two, because we don’t care
about totals 0 or 1—they’ll never happen B. When we get a result, we add 1 to that list
item C. If the total is 7, we add one to totals[7]. So totals[2] is the number of 2s we got,
totals[3] is the number of 3s we got, and so on.

If you run this code, you
should get something like this:

Listing 23.1 Rolling a single 11-sided die 1,000 times

two_dice = random.randint(2, 12)

List has 13 items,
with index 0 to 12B

Adds 1 to the
count of this totalC

total 2 came up 95 times
total 3 came up 81 times
total 4 came up 85 times
total 5 came up 86 times
total 6 came up 100 times
total 7 came up 85 times
total 8 came up 94 times
total 9 came up 98 times
total 10 came up 93 times
total 11 came up 84 times
total 12 came up 99 times
Licensed to Deborah Christiansen <pedbro@gmail.com>

316 Hello World!
If you look at the totals, you can see that all the numbers came up roughly the same num-
ber of times, between 80 and 100. They didn’t come up exactly the same number of times
because the numbers are random, but they’re close, and there’s no obvious pattern of some
numbers coming up much more often than others. Try running the program a few times to
make sure. Or try increasing the number of loops to 10,000 or 100,000.

Now let’s try the same thing with two 6-sided dice. The code in listing 23.2 does that.

import random

totals = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
for i in range(1000):
 die_1 = random.randint(1, 6)
 die_2 = random.randint(1, 6)
 dice_total = die_1 + die_2
 totals[dice_total] += 1

for i in range (2, 13):
 print "total", i, "came up", totals[i], "times"

If you run the code in listing 23.2, you should get output that looks something
like this:

Notice that the highest and lowest numbers came
up less often, and the middle numbers, like 6 and 7,
came up most often. That’s different from what
happened with a single 11-sided die. If we do this
many more times, and then calculate the percent-
age of times that a certain total occurs, it looks
like this:

Listing 23.2 Rolling two 6-sided dice 1,000 times

total 2 came up 22 times
total 3 came up 61 times
total 4 came up 93 times
total 5 came up 111 times
total 6 came up 141 times
total 7 came up 163 times
total 8 came up 134 times
total 9 came up 117 times
total 10 came up 74 times
total 11 came up 62 times
total 12 came up 22 times

Result
One

11-sided die
Two

6-sided dice

2 9.1% 2.8%

3 9.1% 5.6%

4 9.1% 8.3%

5 9.1% 11 . 1%

6 9.1% 13 .9%

7 9.1% 16.7%

8 9.1% 13 .9%

9 9.1% 11 . 1%

10 9.1% 8.3%

11 9. 1% 5.6%

12 9.1% 2.8%
Licensed to Deborah Christiansen <pedbro@gmail.com>

317 CHAPTER 23 Take a Chance—Randomness
If we plot a graph of
these numbers, it looks
like this:

Why are they different? The reason involves the rather large topic of probability. Basically,
the middle numbers are more likely to come up with two dice because there are more ways
the middle totals can happen with two dice.

When you roll two dice, there are many different combinations that can happen. Here’s a list
of them, with their totals:

There are 36 possible combinations. Now look at how many times each total appears:

■ The total 2 appears 1 time.
■ The total 3 appears 2 times.
■ The total 4 appears 3 times.
■ The total 5 appears 4 times.
■ The total 6 appears 5 times.
■ The total 7 appears 6 times.
■ The total 8 appears 5 times.
■ The total 9 appears 4 times.
■ The total 10 appears 3 times.
■ The total 11 appears 2 times.
■ The total 12 appears 1 time.

1+1 = 2 1+2 = 3 1+3 = 4 1+4 = 5 1+5 = 6 1+6 = 7
2+1 = 3 2+2 = 4 2+3 = 5 2+4 = 6 2+5 = 7 2+6 = 8
3+1 = 4 3+2 = 5 3+3 = 6 3+4 = 7 3+5 = 8 3+6 = 9
4+1 = 5 4+2 = 6 4+3 = 7 4+4 = 8 4+5 = 9 4+6 = 10
5+1 = 6 5+2 = 7 5+3 = 8 5+4 = 9 5+5 = 10 5+6 = 1 1
6+1 = 7 6+2 = 8 6+3 = 9 6+4 = 10 6+5 = 1 1 6+6 = 12
Licensed to Deborah Christiansen <pedbro@gmail.com>

318 Hello World!
Yeesh. How
many more times
do I have to flip

this thing?

This means that there are more ways to roll a 7 than a 2. For a 7, you can roll 1+6, 2+5, 3+4,
4+3, 5+2, or 6+1. For a 2, the only way to get it is to roll 1+1. So it makes sense that, if we
roll the dice a bunch of times, we should expect more 7s than 2s. And that’s what we got
from our two-dice program.

Using computer programs to generate random events is a really good way to experiment
with probability and see what happens over a large number of tries. It would take you a
long time to roll a real pair of dice 1,000 times and record the results. But a computer pro-
gram can do the same thing in a fraction of a second!

Ten in a row

Let’s do one more probability experiment before we move on. A few pages ago, we talked
about flipping a coin and how likely it would be to get a bunch of heads in a row. Why don’t
we try an experiment to see how often we get 10 heads in a row? It won’t happen very
often, so we’re going to have to do a lot of coin flips before we see it. Why don’t we try

1,000,000! With a real coin, that would take . . . a
long time.

If you could do one coin toss every 5 seconds,
that would be 12 per minute, or 720 per hour.

If you could do coin tosses for 12 hours a day
(after all, you still have to eat and sleep), you could

do about 8,500 tosses a day. So it would take about 115 days
(about 4 months) to do one million coin tosses. But with a com-

puter, we can do it in seconds. (Okay, maybe a few minutes,
because we have to write the program first.)

For this program, in addition to flipping the coin, we have to
keep track of when we get 10 heads in a row. One way to do

this is to use a counter. A counter is a variable used to count
something.

We’ll need two counters. One will be for the number of heads we have tossed in a row. Let’s
call it heads_in_row. The other is for the number of times we get 10 heads in a row. Let’s call
it ten_heads_in_row. This is what the program will do:

■ Whenever we get heads, the heads_in_row counter will increase by 1.
■ Whenever we get tails, the heads_in_row counter will go back to 0.
■ When the heads_in_row counter reaches 10, we’ll increase the ten_heads_in_row

counter by 1 and set the heads_in_row counter back to 0, to start over.
■ At the end, we’ll print a message saying how many times we got 10 heads in a row.
Licensed to Deborah Christiansen <pedbro@gmail.com>

319 CHAPTER 23 Take a Chance—Randomness
Listing 23.3 has some code to do this.

from random import *
coin = ["Heads", "Tails"]
heads_in_row = 0
ten_heads_in_row = 0
for i in range (1000000):
 if choice(coin) == "Heads":
 heads_in_row += 1
 else:

 heads_in_row = 0

 if heads_in_row == 10:
 ten_heads_in_row += 1
 heads_in_row = 0

print "We got 10 heads in a row", ten_heads_in_row, "times."

When I ran this program, it said

I ran the program a few times, and the number was always around 500. That means, in a mil-
lion coin tosses, we should expect to get 10 heads in a row about 500 times, or about once
every 2,000 tosses (1,000,000 / 500 = 2,000).

Creating a deck of cards
Another kind of random event that’s used a lot in games is drawing a card. It’s random
because the deck is shuffled, so you don’t know what card is coming next. And every time
the deck is shuffled, the order is different.

With dice and coin tosses, we said that every toss has the same probability, because the
coin (or die) has no memory. But that’s not true with cards. As you draw cards from the
deck, there are fewer and fewer cards left (in most games, anyway). That changes the proba-
bility of drawing each one of the remaining cards.

For example, when you start with a full deck, the chances of drawing the 4 of Hearts is 1/52,
or about 2 percent. This is because there are 52 cards in the deck, and only one 4 of Hearts.
If you keep drawing (and haven’t drawn the 4 of Hearts yet), when you’re halfway through
the deck, the chances of getting the 4 of Hearts are 1/26, or about 4 percent. By the time
you reach the last card, if you still haven’t drawn the 4 of Hearts, the chances of drawing it
are 1/1, or 100 percent. It’s certain that you’ll draw the 4 of Hearts next, because it’s the only
card left.

Listing 23.3 Looking for 10 heads in a row

Flips the coin

Got 10 heads in a row,
increments counter

We got 10 heads in a row 510 times.
Licensed to Deborah Christiansen <pedbro@gmail.com>

320 Hello World!
Pick a card,
any card!

The reason I’m telling you all this is to show that, if we’re going to make a computer game
using a deck of cards, we need to keep track of which cards have been removed from the
deck as we go along. One good way to do this is with a list. We can start with a list of all 52
cards in the deck and use the random.choice() function to pick cards randomly from the
list. As we pick each card, we can remove it from the list (the deck) using remove().

Shuffling the deck

In a real card game, we shuffle the deck, which
means we mix up the cards so they’re in a
random order. That way we can just take the
top card, and it’ll be random. But with the
random.choice() function, we’re going to pick ran-
domly from the list anyway. We don’t have to take the
“top” card, so there’s no point in “shuffling” the deck. We’ll
just randomly pick a card from anywhere in the deck. This is like
fanning out the cards and saying “Pick a card, any card!” That would be
rather time-consuming to do for each person’s turn in a card game, but
 it’s very easy in a computer program.

A card object

We’re going to use a list to act as our “deck” of cards. But what about the cards themselves?
How should we store each one? As a string? An integer? What things do we need to know
about each card?

For card games, these are the three things we
usually need to know about a card:

■ Suit—Diamonds, Hearts, Spades, or Clubs.
■ Rank—Ace, 2, 3, . . . 10, Jack, Queen, King.
■ Value—For the numbered cards (2 through

10), this is usually the same as their rank.
For Jack, Queen, and King, it’s usually 10,
and for the Ace, it can be 1, 11, or some
other value, depending on the game.

Rank Value

Ace 1 or 1 1

2 2

3 4

4 4

5 5

6 6

7 7

8 8

9 9

10 10

Jack 10

Queen 10

King 10
Licensed to Deborah Christiansen <pedbro@gmail.com>

321 CHAPTER 23 Take a Chance—Randomness
So we need to keep track of these three things, and we need to keep them together in some
kind of container. A list would work, but we’d have to remember which item was which.
Another way is to make a “card”
object that has attributes like these:

That’s what we’ll do. We’ll also add a couple more attributes called suit_id and rank_id:

■ suit_id is a number from 1 to 4 for the suit, where
1 = Diamonds, 2 = Hearts, 3 = Spades, 4 = Clubs.

■ rank_id is a number from 1 to 13, where
1 = Ace
2 = 2
3 = 3
 . . .
10 = 10
11 = Jack
12 = Queen
13 = King.

The reason for adding these two attributes is so that we can easily use a nested for loop to
make a deck of 52 cards. We can have an inner loop for the rank (1 to 13) and an outer loop
for the suit (1 to 4). The __init__() method for the card object will take the suit_id and
rank_id and create the other attributes of suit, rank, and value. It also makes it easy to com-
pare the rank of two cards to see which has the higher rank.

We should add two more attributes to make our card object easy to use in a program. When
the program needs to print the card, it’ll want to print something like “4H” or “4 of Hearts”.
For the face cards, it would be something like “JD” or “Jack of Diamonds”. We’ll add the attri-
butes short_name and long_name, so the program can easily print either a short or long
description of the card.

Let’s make a class for a playing card. The code is shown in listing 23.4.

class Card:
 def __init__(self, suit_id, rank_id):
 self.rank_id = rank_id
 self.suit_id = suit_id

Listing 23.4 The Card class

card.suit
card.rank
card.value
Licensed to Deborah Christiansen <pedbro@gmail.com>

322 Hello World!
 if self.rank_id == 1:
 self.rank = "Ace"
 self.value = 1
 elif self.rank_id == 11:
 self.rank = "Jack"
 self.value = 10
 elif self.rank_id == 12:
 self.rank = "Queen"
 self.value = 10
 elif self.rank_id == 13:
 self.rank = "King"
 self.value = 10
 elif 2 <= self.rank_id <= 10:
 self.rank = str(self.rank_id)
 self.value = self.rank_id
 else:
 self.rank = "RankError"
 self.value = -1

 if self.suit_id == 1:
 self.suit = "Diamonds"
 elif self.suit_id == 2:
 self.suit = "Hearts"
 elif self.suit_id == 3:
 self.suit = "Spades"
 elif self.suit_id == 4:
 self.suit = "Clubs"
 else:
 self.suit = "SuitError"
 self.short_name = self.rank[0] + self.suit[0]
 if self.rank == '10':
 self.short_name = self.rank + self.suit[0]
 self.long_name = self.rank + " of " + self.suit

Listing 23.4 isn’t a complete program. It’s just the class definition for our Card class. Because
this is something we could use over and over in different programs, maybe we should make
it a module. Save the code in listing 23.4 as cards.py.

The error checking in the code B makes sure that rank_id and suit_id are in range and
that they are integers. If they aren’t, you would see something like “7 of SuitError” or
“RankError of Clubs” when displaying the card in a program.

Now we need to make some instances of cards—in fact, a whole deck would be nice! To test
our Card class, let’s make a program to create a deck of 52 cards and then pick 5 cards at
random and display their attributes. Listing 23.5 has some code for that.

import random
from cards import Card

Listing 23.5 Making a deck of cards

Creates rank and
value attributes

Performs some
error checkingB

Creates suit
attribute

Imports our cards module
Licensed to Deborah Christiansen <pedbro@gmail.com>

323 CHAPTER 23 Take a Chance—Randomness
deck = []
for suit_id in range(1, 5):
 for rank_id in range(1, 14):
 deck.append(Card(suit_id, rank_id))

hand = []
for cards in range(0, 5):
 a = random.choice(deck)
 hand.append(a)
 deck.remove(a)

print
for card in hand:
 print card.short_name, '=' ,card.long_name, " Value:", card.value

The inner loop goes through each card in the suit, and the outer loop goes through each
suit B (13 cards * 4 suits = 52 cards). Then the code picks five cards from the deck and puts
them in a hand C. It also removes the cards from the deck.

If you run the code in listing 23.5,
you should get something like this:

If you run it again, you should get five different cards. And no matter how many times you
run it, you should never get the same card twice in one hand.

So now we can make a deck of cards and randomly draw cards from it to add them to a
hand. It sounds like we have the basic things we need to make a card game! In the next sec-
tion, we’ll make a card game that you can play against the computer.

Crazy Eights
You might have heard of a card game called “Crazy Eights.” You might even have played it.

One thing about card games on the com-
puter is that it’s difficult to have multiple
players. That’s because, in most card
games, you’re not supposed to see the
other players’ cards. If everyone is look-
ing at the same computer, everybody
will see everyone else’s cards. So the best

Uses nested for
loops to make a deckB

Picks 5 cards from the
deck to make a handC

7D = 7 of Diamonds Value: 7
9H = 9 of Hearts Value: 9
KH = King of Hearts Value: 10
6S = 6 of Spades Value: 6
KC = King of Clubs Value: 10
Licensed to Deborah Christiansen <pedbro@gmail.com>

324 Hello World!
card games for playing on the computer are those where you can play with just two players
—you against the computer. Crazy Eights is one of those games that works well with two
players, so we’re going to make a Crazy Eights game where the user plays against the com-
puter.

Here are the rules for our program. It is a game for two players. Each player gets five cards.
The rest of the cards are placed face down, and then one card is turned face up to start the
discard pile. The object of the game is to get rid of all your cards before anyone else and
before the deck runs out.

1 At each turn, a player has to do one of the following:
■ play a card of the same suit as the up card.
■ play a card of the same rank as the up card.
■ play an 8.

2 If the player plays an 8, he can “call the suit,” which means he gets to choose the suit
that the next player is trying to match.

3 If the player can’t play any of his cards, he must pick up a card from the deck and add
it to his hand.

4 If a player gets rid of all his cards, he wins that game, and gets points depending on
what the other player has left in his hand:

■ 50 points for each 8.
■ 10 points for each face card.
■ face value for every other card.
■ 1 point for each Ace.

5 If the deck runs out and no one can make a play, the game is over. In that case, both
players get points for the other player’s remaining cards.

6 You can play up to a certain point total, or just keep playing until you’re tired, and the
one with the most points wins.

The first thing we should do is modify some of our card objects a bit. The point values in
Crazy Eights are mostly the same as what we had before, except for the 8, which is worth 50
points instead of 8 points. We could change the __init__ method in our Card class to make
8s worth 50 points, but that would affect every other game that might use the cards mod-
ule. It would be better to make the change in the main program and leave the class defini-
tion alone. Here’s one way we could do it: deck = []

for suit in range(1, 5):
 for rank in range(1, 14):
 new_card = Card(suit, rank)
 if new_card.rank == 8:
 new_card.value = 50
 deck.append(new_card)
Licensed to Deborah Christiansen <pedbro@gmail.com>

325 CHAPTER 23 Take a Chance—Randomness
Here, before adding the new card to the deck, we check to see if it’s an 8. If it is, we set its
value to 50.

Now we’re ready to start making the game itself. Here are some of the things our program
will need to do:

■ Keep track of the face-up card.
■ Get the player’s choice of what to do (play a card or draw a card).
■ If the player tries to play a card, make sure the play is valid:

■ The card must be a valid card.
■ The card must be in the player’s hand.
■ The card must either match the rank or suit of the face-up card or be an 8.

■ If the player plays an 8, ask for the new suit (and make sure the choice is a valid suit).
■ Play the computer’s turn (more on that shortly).
■ Determine when the game is over.
■ Count up the points.

In the rest of the chapter, we’ll go through these points one by one. Some of them will need
just a line or two of code, and some will be a bit longer. For the longer ones, we’ll create
functions that we can call from the main loop.

The main loop

Before we get into the details, let’s figure out what the main loop of the program will look
like. Basically, we have to alternate turns between the player and the computer until some-
body wins or both are blocked. The code will look something like listing 23.6.

init_cards()
while not game_done:
 blocked = 0
 player_turn()
 if len(p_hand) == 0:
 game_done = True
 print
 print "You won!"
 if not game_done:
 computer_turn()
 if len(c_hand) == 0:
 game_done = True
 print
 print "Computer won!"
 if blocked >= 2:
 game_done = True
 print "Both players blocked. GAME OVER."

Listing 23.6 The main loop of Crazy Eights

Player’s turn

Player’s hand (p_hand) has
no cards left, so player wins

Computer’s turn

Computer’s hand (c_hand) has
no cards left, so computer wins

Both players are blocked,
so game endsB
Licensed to Deborah Christiansen <pedbro@gmail.com>

326 Hello World!
Part of the main loop is figuring out when the game is over. It can be over when either the
player or the computer is out of cards. It can also be over if neither of them is out of cards
but both of them are blocked (that is, they have no valid plays). The blocked variable is set
in the code for the player’s turn (if the player is blocked) and the computer’s turn (if the
computer is blocked). We wait until blocked = 2, to make sure both player and computer
are blocked B.

Note that listing 23.6 is not a complete program, so if you try to run it, you will get an error.
It is just the main loop. We still need all the other parts to make the program complete.

This code is for a single game. If we want to keep playing more games, we can wrap the
whole thing in
another, outer while loop:

This gives us the main structure of the program. Now we need to add the individual pieces
to do what we need.

done = False
p_total = c_total = 0
while not done:
 [play a game... see listing 23.6]
play_again = raw_input("Play again (Y/N)? ")
 if play_again.lower().startswith('y'):
 done = False
 else:
 done = True

#!/bin/env python # Paginate a text file, adding a header and footer import sys, time, string # If no arguments were given, print a helpful message if l
en(s

ys.argv)!=2: print 'Usage: p
ypr

int
 fi

le
na

me
's

ys
.ex

it(
0)

cl
as

s #
 In

cr
em

en
t t

he
 p

ag
e

co
un

t,
an

d
re

se
t t

he
 li

ne
coun

t s

elf
.he

ad

er_
written

=1
; s

el
f.c

ou
nt

=1
 ;

sel
f.pa

ge=self.page+1PrinterFormatter:self.head
er_w

ritten=0def # Increment the page count, and res
et

 th
e l

ine count self.header_written=1 ; self.count=1 ; self.page=self.page+1 #!/bin/env

Thinking like a programmer
The approach described above is called
"top-down" programming.

That's where you start with the outline
of what is needed and then fill in the
details.

Another way to do it is "bottom-up". In
that method, you would first create all
the individual parts, like the player's
turn, the computer's turn, etc., and then
put them together like building blocks.

Both approaches have advantages and
disadvantages. Deciding how to choose one
over the other is not a topic for this
book. But I thought you should know that
there are different ways to tackle build-
ing a program.

pr

int >>>Hello if #

print >>>Hello if
 #

print >>>Hello i
f

#

Licensed to Deborah Christiansen <pedbro@gmail.com>

327 CHAPTER 23 Take a Chance—Randomness
The face-up card
When the hand is first dealt, one card from the deck is turned up to start the discard pile.
When any player plays a card, it goes on the discard pile, face up. The card that’s showing
on the discard pile at any time is called the up card. We could keep track of this by making a
list for the discard pile, the same way we made a list for the “hand” in our test code in listing
23.5. But we don’t really care about all the cards in the discard pile. We only care about the
last card added to it. So we can just use a single instance of a Card object to keep track of it.

When the player or computer plays
a card, we’ll do something like this:

The active suit
Usually, the active suit (the one the player or computer is trying to match) is the same as
the suit of the up card. But there’s an exception. When an 8 has been played, the player calls
the suit. So if he plays the 8 of Diamonds, he might call Clubs as the suit. That means that
the next play must match Clubs, even though a Diamond (the 8 of Diamonds) is showing.

This means we need to keep track of the active suit, because it might be different from the
suit that’s showing. We can use a
variable, active_suit, to do this:

Whenever a card is played, we’ll update the active suit, and when a player plays an 8, he’ll
choose the new active suit.

The player’s turn

When it’s the player’s turn, the first thing we need to do is get his choice of what to do. He
can play a card from his hand (if possible) or draw from the deck. If we were making a GUI
version of this program, we’d have the player click the card he wanted to play, or click the
deck to draw. But we’re going to start with a text-based version of the program, so he’ll
have to type in a choice, and then we’ll have to check what he typed and figure out what he
wants to do and whether that input is valid.

To give you an idea of what kind of input the player will need to provide, we’ll look at a
sample game. The player’s input is in bold.

Crazy Eights

Your hand: 4S, 7D, KC, 10D, QS Up Card: 6C
What would you like to do? Type a card name or "Draw" to take a card: KC
You played the KC (King of Clubs)
Computer plays 8S (8 of spades) and changes suit to Diamonds

hand.remove(chosen_card)
up_card = chosen_card

active_suit = card.suit
Licensed to Deborah Christiansen <pedbro@gmail.com>

328 Hello World!
This isn’t a complete game, but you get the idea. The player has to type in things like QS or
Draw to tell the program his choice. The program has to check that what the player typed in
makes sense. We’ll use some string methods (from chapter 21) to help us with that.

Displaying the hand

Before we ask the player what he wants to do, we should show him what cards are in his
hand and what the up
card is. Here’s some code for that:

Your hand: 4S, 7D, 10D, QS Up Card: 8S Suit: Diamonds
What would you like to do? Type a card name or "Draw" to take a card: 10D
You played 10D (10 of Diamonds)
Computer plays QD (Queen of Diamonds)

Your hand: 4S, 7D QS Up card: QD
What would you like to do? Type a card name or "Draw" to take a card: 7D
You played 7D (7 of Diamonds)
Computer plays 9D (9 of Diamonds)

Your hand: 4S, QS Up card: 9D
What would you like to do? Type a card name or "Draw" to take a card: QM
That is not a valid card. Try again: QD
You do not have that card in your hand. Try again: QS
That is not a legal play. You must match suit, match rank, play an 8, or draw a

card
Try again: Draw
You drew 3C
Computer draws a card

Your hand: 4S, QS, 3C Up card: 9D
What would you like to do? Type a card name or "Draw" to take a card: Draw
You drew 8C
Computer plays 2D

Your hand: 4S, QS, 3C, 8C Up card: 2D
What would you like to do? Type a card name or "Draw" to take a card: 8C
You played 8C (8 of Clubs)
Your hand: 4S, QS, 3C Pick a suit: S
You picked spades
Computer draws a card

Your hand: 4S, QS, 3C Up card: 8C Suit: Spades
What would you like to do? Type a card name or "Draw" to take a card: QS
You played QS (Queen of Spades)
 .
 .
 .

print "\nYour hand: ",
for card in p_hand:
 print card.short_name,
print " Up card: ", up_card.short_name
Licensed to Deborah Christiansen <pedbro@gmail.com>

329 CHAPTER 23 Take a Chance—Randomness
If an 8 has been played, we also need to tell him what the active suit is. So let’s add a couple
more lines, as shown in listing 23.7.

print "\nYour hand: ",
for card in p_hand:
 print card.short_name,
print " Up card: ", up_card.short_name
if up_card.rank == '8':
 print" Suit is", active_suit

Just like listing 23.6, listing 23.7 is not a complete program. We are still building up the
parts we need to make a complete program. But when the code in listing 23.7 runs (as part
of the complete program), it gives output like this:

If you wanted to use the long names for the cards instead of the short names, the output
would look something like this:

In our examples, we’ll use the short names.

Getting the player’s choice

Now we need to ask the player what he wants to do and process his response. He has two
main choices:

■ play a card
■ draw a card

If he decides to play a card, we need to make sure that the play is valid. We said before that
we need to check three things:

■ Is his choice a valid card? (Did he try to play the 4 of Marshmallows?)
■ Is the card in his hand?
■ Is the chosen card a legal play? (Does it match the rank or suit of the up card, or is

it an 8?)

But if you think about it, his hand can only have valid cards in it. So if we check that the card
is in his hand, we don’t have to worry about checking whether it is valid. He can’t have the 4
of Marshmallows in his hand, because it never existed in the deck.

Listing 23.7 Displaying what’s in the player’s hand

Your hand: 4S, QS, 3C Up card: 8C Suit: Spades

Your hand: 4 of Spades, Queen of Spades, 3 of Clubs
Up Card: 8 of Clubs Suit: Spades
Licensed to Deborah Christiansen <pedbro@gmail.com>

330 Hello World!
So let’s look at some code
that will get the player’s
choice and validate it. It’s
shown in listing 23.8.

print "What would you like to do? ",
response = raw_input ("Type a card to play or 'Draw' to take a card: ")
while not valid_play:
 selected_card = None
 while selected_card == None:
 if response.lower() == 'draw':
 valid_play = True
 if len(deck) > 0:

 card = random.choice(deck)
 p_hand.append(card)
 deck.remove(card)
 print "You drew", card.short_name
 else:
 print "There are no cards left in the deck"
 blocked += 1
 return
 else:
 for card in p_hand:
 if response.upper() == card.short_name:
 selected_card = card
 if selected_card == None:
 response = raw_input("You don't have that card. Try again:")

 if selected_card.rank == '8':
 valid_play = True
 is_eight = True
 elif selected_card.suit == active_suit:
 valid_play = True
 elif selected_card.rank == up_card.rank:
 valid_play = True

 if not valid_play:
 response = raw_input("That's not a legal play. Try again: ")

At this point, we have a choice that’s valid: either drawing or playing a valid card. If the
player draws, we add a card to his hand, as long as there are cards left in the deck B.

If playing a card, we need to remove the card from the hand and make it the up card:

Listing 23.8 Getting the player’s choice

p_hand.remove(selected_card)
 up_card = selected_card
 active_suit = up_card.suit
 print "You played", selected_card.short_name

Keeps trying until player enters something valid

Gets a card that the player
has in hand, or draws

If “draw”, takes card
from deck and adds
it to player’s handB

Got “draw”, so
returns to main loop

Checks if the selected
card is in player’s hand—
keeps trying until it is
(or he draws)

Playing an 8 is
always legal

Checks if selected card
matches up-card suit

Checks if selected card
matches up-card rank

Validate means to make sure something is valid,
which means it is allowed or makes sense.
Licensed to Deborah Christiansen <pedbro@gmail.com>

331 CHAPTER 23 Take a Chance—Randomness
If the card played was an 8, the player needs to tell us what suit he wants next. Because the
player_turn() function is getting a bit long, we’ll make getting the new suit into a separate
function called get_new_suit(). Listing 23.9 shows the code for this function.

def get_new_suit():
 global active_suit
 got_suit = False
 while not got_suit:
 suit = raw_input("Pick a suit: ")
 if suit.lower() == 'd':
 active_suit = "Diamonds"
 got_suit = True
 elif suit.lower() == 's':
 active_suit = "Spades"
 got_suit = True
 elif suit.lower() == 'h':
 active_suit = "Hearts"
 got_suit = True
 elif suit.lower() == 'c':
 active_suit = "Clubs"
 got_suit = True
 else:
 print"Not a valid suit. Try again. ",
 print "You picked", active_suit

This is everything we need for the player’s turn. In the next section, we’ll make the com-
puter smart enough to play Crazy Eights.

The computer’s turn
After the player’s turn, the computer has to play, so we need to tell the program how to play
Crazy Eights. It has to follow the same rules as the player, but the program needs to decide
what card to play. We have to specifically tell it how to handle all possible situations:

■ playing an 8 (and picking a new suit)
■ playing another card
■ drawing

To make things a bit simpler, we’ll tell the computer to always play an 8 if it has one. This
might not be the best strategy, but it’s a simple one.

If the computer plays an 8, it must pick the new suit. The easiest way to do that is to count
the number of cards of each suit in the computer’s hand and pick the suit that it has the
most of. Again, this isn’t a perfect strategy, but it’s one of the simplest to code.

If there’s no 8 in the computer’s hand, the program will go through all the cards and see
which ones are possible plays. Out of these cards, it’ll pick the one with the highest value
and play that one.

Listing 23.9 Getting the new suit when the player plays an 8

Keeps trying until player
enters a valid suit
Licensed to Deborah Christiansen <pedbro@gmail.com>

332 Hello World!
If there’s no option to play a card, the computer will draw. If the computer tries to draw and
there are no cards left in the deck, the computer is blocked, just like the human player.

Listing 23.10 shows the code for the computer’s turn, with a few notes of explanation.

def computer_turn():
 global c_hand, deck, up_card, active_suit, blocked
 options = []
 for card in c_hand:
 if card.rank == '8':

 c_hand.remove(card)
 up_card = card
 print " Computer played ", card.short_name
 #suit totals: [diamonds, hearts, spades, clubs]
 suit_totals = [0, 0, 0, 0]
 for suit in range(1, 5):
 for card in c_hand:
 if card.suit_id == suit:
 suit_totals[suit-1] += 1
 long_suit = 0
 for i in range (4):
 if suit_totals[i] > long_suit:
 long_suit = i
 if long_suit == 0:
 active_suit = "Diamonds"
 if long_suit == 1:
 active_suit = "Hearts"
 if long_suit == 2:
 active_suit = "Spades"
 if long_suit == 3:
 active_suit = "Clubs"
 print " Computer changed suit to ", active_suit
 return
 else:
 if card.suit == active_suit:
 options.append(card)
 elif card.rank == up_card.rank:
 options.append(card)

 if len(options) > 0:
 best_play = options[0]
 for card in options:
 if card.value > best_play.value:
 best_play = card

 c_hand.remove(best_play)
 up_card = best_play
 active_suit = up_card.suit
 print " Computer played ", best_play.short_name

Listing 23.10 The computer’s turn

Plays an 8

Counts cards in each
suit; suit with the most
is the “long suit”

Makes long
suit the
active suit

Ends computer’s
turn; back to
main loop

Checks what
cards are
possible plays

Checks which option is
best (highest value)

Plays card
Licensed to Deborah Christiansen <pedbro@gmail.com>

333 CHAPTER 23 Take a Chance—Randomness
 else:
 if len(deck) >0:
 next_card = random.choice(deck)
 c_hand.append(next_card)
 deck.remove(next_card)
 print " Computer drew a card"
 else:
 print" Computer is blocked"
 blocked += 1
 print "Computer has %i cards left" % (len(c_hand))

We’re almost done—just a couple more things to add. You might have noticed that the
computer’s turn was defined as a function, and we used some global variables in that func-
tion. We could also have passed the variables to the function, but using globals works just
as well and is more like the real world, where the deck is “global”—anybody can reach over
and take a card from it.

The player’s turn is also a function, but we didn’t show the first part of that function defini-
tion. It would look like this:

There’s just one more thing we need. We have to keep track of who wins!

Keeping score

The last thing we need for our game to be complete is scoring. When a game ends, we need
to keep track of how many points the winner got for the cards remaining in the loser’s hand.
We should display the points for that game, as well as the total for all games. Once we add
those things in, the main loop will look something like listing 23.11.

done = False
p_total = c_total = 0
while not done:
 game_done = False

def player_turn():
 global deck, p_hand, blocked, up_card, active_suit
 valid_play = False
 is_eight = False
 print "\nYour hand: ",
 for card in p_hand:
 print card.short_name,
 print " Up card: ", up_card.short_name
 if up_card.rank == '8':
 print" Suit is", active_suit
 print "What would you like to do? ",
 response = raw_input ("Type a card to play or 'Draw' to take a card: ")

Listing 23.11 The main loop with scoring added

Draws, because
no possible plays

No cards left in deck—
computer is blocked
Licensed to Deborah Christiansen <pedbro@gmail.com>

334 Hello World!
 blocked = 0
 init_cards()
 while not game_done:
 player_turn()
 if len(p_hand) == 0:
 game_done = True
 print
 print "You won!"
 # display game score here
 p_points = 0
 for card in c_hand:
 p_points += card.value
 p_total += p_points
 print "You got %i points for computer's hand" % p_points

 if not game_done:
 computer_turn()
 if len(c_hand) == 0:
 game_done = True
 print
 print "Computer won!"
 # display game score here
 c_points = 0
 for card in p_hand:
 c_points += card.value
 c_total += c_points
 print "Computer got %i points for your hand" % c_points
 if blocked >= 2:
 game_done = True
 print "Both players blocked. GAME OVER."
 player_points = 0
 for card in c_hand:
 p_points += card.value
 p_total += p_points
 c_points = 0
 for card in p_hand:
 c_points += card.value
 c_total += c_points
 print "You got %i points for computer's hand" % p_points
 print "Computer got %i points for your hand" % c_points
 play_again = raw_input("Play again (Y/N)? ")
 if play_again.lower().startswith('y'):
 done = False
 print "\nSo far, you have %i points" % p_total
 print "and the computer has %i points.\n" % c_total
 else:
 done = True

print "\n Final Score:"
print "You: %i Computer: %i" % (p_total, c_total)

The init_cards() function (not shown here) just sets up the deck and creates the player’s
hand (5 cards), computer’s hand (5 cards), and the first up card B.

B
Sets up deck and player
and computer hands

Player wins

Adds points from
computer’s
remaining cards Adds points

from this game
to total

Computer wins

Adds points from
player’s remaining cards

Adds points
from this game
to total

Both blocked,
so both get
points

Prints game
points

Prints total
points so far

Prints final
totals
Licensed to Deborah Christiansen <pedbro@gmail.com>

335 CHAPTER 23 Take a Chance—Randomness
Listing 23.11 is still not a complete program, so it will give you an error if you try to run it.
But if you have been following along, you have almost the whole program in your editor by
now. The complete listing for Crazy Eights is too long to print here (it’s about 200 lines of
code, plus blank lines and comments), but you can find it in the \examples folder, if you
used the book’s installer. It’s also on the web site (www.helloworldbook.com).

You can use IDLE or SPE to edit and run this program. If you use SPE, use the Run in
terminal without arguments option (Shift-F9). This will run the program in its own com-
mand window.

What did you learn?

In this chapter, you learned

■ what randomness and random events are.
■ a little bit about probability.
■ how to use the random module to generate random events in a program.
■ how to simulate flipping a coin or rolling dice.
■ how to simulate drawing cards from a shuffled deck.
■ how to play Crazy Eights (if you didn’t already know).

Test your knowledge
1 Describe what a “random event” is. Give two examples.

2 Why is rolling one 11-sided die with numbers from 2 to 12 different from rolling a pair
of six-sided dice, which produce totals from 2 to 12?

3 What are two ways to simulate rolling a die in Python?

4 What kind of Python variable did we use for a single card?

5 What kind of Python variable did we use for a deck of cards?

6 What method did we use to remove a card from the deck when it’s drawn, or from a
hand when it’s played?

Try it out
1 Try the “ten in a row” experiment using the program from listing 23.3, but try different

amounts for the “in a row.” How often do you get five in a row? How about six, seven,
eight, and so on? Do you see a pattern?
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.helloworldbook.com

C H A P T E R 2 4

Computer Simulations
Have you ever seen a “virtual pet”: those little toys with a small display screen and a few
buttons for feeding your pet when it’s hungry, letting it sleep when it’s tired, playing with
it when it’s bored, and so on? The virtual pet has some of the same characteristics as a real,
live pet. That’s an example of a computer simulation—the virtual pet device is a tiny
computer.

In the last chapter, we learned about random events and how to generate them in a pro-
gram. In a way, that was a kind of simulation. A simulation is where you create a computer
model of something from the real world. We created computer models of coins, dice, and
decks of cards.

In this chapter, we’ll learn more about using computer programs to simulate the real world.

Modeling the real world
There are many reasons to use a computer to simulate or model the real world. Sometimes
it isn’t practical to do an experiment because of time, distance, danger, or other reasons. For
example, in the last chapter we simulated flipping a coin a million times. Most of us don’t
have time to do that with a real coin, but a computer simulation did it in seconds.

Sometimes scientists want to figure out “What if . . . ?” What if an asteroid smashed into the
moon? We can’t make a real asteroid smash into the moon, but a computer simulation can
tell us what would happen. Would the moon zoom off into space? Would it crash into Earth?
How would its orbit change?

When pilots and astronauts are learning to fly planes and spacecraft, they can’t always
practice on the real thing. That would be very expensive! (And would you want to be the
336

Licensed to Deborah Christiansen <pedbro@gmail.com>

337 CHAPTER 24 Computer Simulations
passenger of a “student pilot”?) So they use simulators, which give them all the same con-
trols as the real plane or spacecraft to practice on.

In a simulation, you can do many things:

■ try an experiment or practice a skill without having any equipment (except your
computer), and without putting anyone in danger

■ speed up or slow down time
■ do many experiments at once
■ try things that would be costly, dangerous, or impossible in the real world

The first simulation, we’re going to do is one involving gravity. We’re going to try to land a
spacecraft on the moon, but we only have a certain amount of fuel, so we have to be careful
how we use our thrusters. This is a very simple version of an arcade game called “Lunar
Lander” that was popular many years ago.

Lunar Lander
We’ll start with our spacecraft some distance above
the moon’s surface. The moon’s gravity will start to
pull it down, and we’ll have to use the thrusters to
slow its descent and make a soft landing.

Here’s what the program will look like:

The small grey bar on the left side is the throttle.
You drag it up or down with the mouse to control
the thrust of the engines. The fuel gauge tells you
how much fuel you have left, and the text gives you
information on your velocity, acceleration, height,
and thrust.

Simulating the landing

In order to simulate a spacecraft landing, we have
to understand how the force of gravity and the
force of the spacecraft’s engine balance against
each other.

For our simulation, we’ll assume the force of gravity is constant. That’s not quite true, but as
long as the spacecraft isn’t too far from the moon, gravity is very nearly constant—close
enough for our simulation.
Licensed to Deborah Christiansen <pedbro@gmail.com>

338 Hello World!
The force of the engines depends on how much fuel you’re burning. Sometimes it’ll be
greater than the force of gravity, sometimes less. When the engines are off, their force is 0,
and we’re left with only the force of gravity.

To get the total or net force on the spacecraft, we just add the two forces. Because they’re in
opposite directions, one will be positive and one will be negative.

Once we have the net force on the spacecraft, we can figure out its speed and position with
a formula.

Our simulation will have to keep track of the following things:
■ The spacecraft’s height above the moon, and its velocity and acceleration.
■ The mass of the spacecraft (which changes as we use up fuel).
■ The thrust, or force, of the engines. The more thrust we use, the faster we’ll burn fuel.
■ The amount of fuel on the spacecraft. As we burn fuel with our thrusters, the space-

craft will get lighter, but if we run out of fuel, there will be no more thrust.
■ The force of gravity on the spacecraft. That depends on the size of the moon, and the

mass of the spacecraft and fuel.

Pygame returns

We’ll use Pygame again to make this simulation. The Pygame clock tick will be our unit of
time. For every tick, we’ll check the net force on the spacecraft and update the height,
velocity, acceleration, and fuel remaining. Then we’ll use that information to update the
graphics and text.

Because the animation is very simple, we won’t use a sprite for the spaceship. But we’ll use
one for the throttle (the grey rectangle), because that makes it easy to drag it with the

The word velocity means almost the same thing as “speed,” except that
velocity includes a direction, and speed doesn’t. For example, “fifty
miles an hour” describes a speed, while “fifty miles an hour due north”
describes a velocity. Many people use the word “speed” when they really
mean “velocity,” and vice versa. In our program, we need to know
whether the spaceship is going up or down, so we will use velocity.

Acceleration means how fast the velocity is changing. Positive
acceleration means the velocity is increasing, and negative acceleration
means the velocity is decreasing.
Licensed to Deborah Christiansen <pedbro@gmail.com>

339 CHAPTER 24 Computer Simulations
mouse. The fuel gauge is just a couple of rectangles drawn with Pygame’s draw.rect()
method. The text is made with pygame.font objects, just like we did for PyPong.

The code will have sections that do the following:

■ initialize the game—set up the Pygame window, load the images, and set some initial
values for the variables

■ define the sprite class for the throttle
■ calculate the height, velocity, acceleration, and fuel consumption
■ display the information
■ update the fuel gauge
■ display the rocket flames (which change size depending on the thrust)
■ blit everything to the screen, check for mouse events, update the throttle position,

and check if the ship has landed—this will be the main Pygame event loop
■ display “Game Over” and final stats

Listing 24.1 shows the code for Lunar Lander, and you can find it as Listing_24-1.py in the
\examples\LunarLander folder, or on the web site (www.helloworldbook.com). The graphics
(the spaceship and moonscape) are there too. Have a look at the code and the notes, and
make sure you understand how everything works. Don’t worry about the height, velocity,
and acceleration formulas. You’ll learn about all that in high school physics, pass the exam,
then soon forget it (unless you go to work for NASA). Or maybe this program will help you
remember!

import pygame, sys

pygame.init()
screen = pygame.display.set_mode([400,600])
screen.fill([0, 0, 0])
ship = pygame.image.load('lunarlander.png')
moon = pygame.image.load('moonsurface.png')
ground = 540 #landing pad is y = 540
start = 90
clock = pygame.time.Clock()
ship_mass = 5000.0A
fuel = 5000.0
velocity = -100.0
gravity = 10
height = 2000
thrust = 0
delta_v = 0
y_pos = 90
held_down = False

Listing 24.1 Lunar Lander

Initializes
program
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.helloworldbook.com

340 Hello World!

class ThrottleClass(pygame.sprite.Sprite):
 def __init__(self, location = [0,0]):
 pygame.sprite.Sprite.__init__(self) #call Sprite initializer
 image_surface = pygame.surface.Surface([30, 10])
 image_surface.fill([128,128,128])
 self.image = image_surface.convert()
 self.rect = self.image.get_rect()
 self.rect.left, self.rect.centery = location

def calculate_velocity():
 global thrust, fuel, velocity, delta_v, height, y_pos
 delta_t = 1/fps
 thrust = (500 - myThrottle.rect.centery) * 5.0
 fuel -= thrust /(10 * fps)
 if fuel < 0: fuel = 0.0
 if fuel < 0.1: thrust = 0.0
 delta_v = delta_t * (-gravity + 200 * thrust / (ship_mass + fuel))
 velocity = velocity + delta_v
 delta_h = velocity * delta_t
 height = height + delta_h
 y_pos = ground - (height * (ground - start) / 2000) - 90

def display_stats():
 v_str = "velocity: %i m/s" % velocity
 h_str = "height: %.1f" % height
 t_str = "thrust: %i" % thrust
 a_str = "acceleration: %.1f" % (delta_v * fps)
 f_str = "fuel: %i" % fuel
 v_font = pygame.font.Font(None, 26)

 v_surf = v_font.render(v_str, 1, (255, 255, 255))
 screen.blit(v_surf, [10, 50])
 a_font = pygame.font.Font(None, 26)
 a_surf = a_font.render(a_str, 1, (255, 255, 255))
 screen.blit(a_surf, [10, 100])
 h_font = pygame.font.Font(None, 26)
 h_surf = h_font.render(h_str, 1, (255, 255, 255))
 screen.blit(h_surf, [10, 150])
 t_font = pygame.font.Font(None, 26)
 t_surf = t_font.render(t_str, 1, (255, 255, 255))
 screen.blit(t_surf, [10, 200])
 f_font = pygame.font.Font(None, 26)
 f_surf = f_font.render(f_str, 1, (255, 255, 255))
 screen.blit(f_surf, [60, 300])

def display_flames():
 flame_size = thrust / 15
 for i in range (2):
 startx = 252 - 10 + i * 19
 starty = y_pos + 83
 pygame.draw.polygon(screen, [255, 109, 14], [(startx, starty)
 (startx + 4, starty + flame_size)
 (startx + 8, starty)], 0)

The sprite
class for
the throttle

Calculates
height, velocity,

acceleration, fuel

Turns throttle sprite
y-position into thrust amount

The “tick” is one frame
of Pygame loop

Subtracts fuel
depending on thrust

The physics formula Converts height
into Pygame
y-position

Displays
stats using
font objects

Displays rocket
flames using
two triangles

Draws flame
triangles
Licensed to Deborah Christiansen <pedbro@gmail.com>

341 CHAPTER 24 Computer Simulations
def display_final():
 final1 = "Game over"
 final2 = "You landed at %.1f m/s" % velocity
 if velocity > -5:
 final3 = "Nice landing!"
 final4 = "I hear NASA is hiring!"
 elif velocity > -15:
 final3 = "Ouch! A bit rough, but you survived."
 final4 = "You'll do better next time."
 else:
 final3 = "Yikes! You crashed a 30 Billion dollar ship."
 final4 = "How are you getting home?"
 pygame.draw.rect(screen, [0, 0, 0], [5, 5, 350, 280],0)
 f1_font = pygame.font.Font(None, 70)
 f1_surf = f1_font.render(final1, 1, (255, 255, 255))
 screen.blit(f1_surf, [20, 50])
 f2_font = pygame.font.Font(None, 40)
 f2_surf = f2_font.render(final2, 1, (255, 255, 255))
 screen.blit(f2_surf, [20, 110])
 f3_font = pygame.font.Font(None, 26)
 f3_surf = f3_font.render(final3, 1, (255, 255, 255))
 screen.blit(f3_surf, [20, 150])
 f4_font = pygame.font.Font(None, 26)
 f4_surf = f4_font.render(final4, 1, (255, 255, 255))
 screen.blit(f4_surf, [20, 180])
 pygame.display.flip()

myThrottle = ThrottleClass([15, 500])

while True:
 clock.tick(30)
 fps = clock.get_fps()
 if fps < 1: fps = 30
 if height > 0.01:
 calculate_velocity()
 screen.fill([0, 0, 0])
 display_stats()
 pygame.draw.rect(screen, [0, 0, 255], [80, 350, 24, 100], 2)
 fuelbar = 96 * fuel / 5000
 pygame.draw.rect(screen, [0,255,0],
 [84,448-fuelbar,18, fuelbar], 0)
 pygame.draw.rect(screen, [255, 0, 0],
 [25, 300, 10, 200],0)
 screen.blit(moon, [0, 500, 400, 100])
 pygame.draw.rect(screen, [60, 60, 60],
 [220, 535, 70, 5],0) #landing pad
 screen.blit(myThrottle.image, myThrottle.rect)
 display_flames()
 screen.blit(ship, [230, y_pos, 50, 90])
 instruct1 = "Land softly without running out of fuel"
 instruct2 = "Good landing: < 15m/s Great landing: < 5m/s"
 inst1_font = pygame.font.Font(None, 24)
 inst1_surf = inst1_font.render(instruct1, 1, (255, 255, 255))

Displays final
stats when
game over

Creates throttle object

The start of main
Pygame event loop

Draws fuel
gauge outline

Draws
everything

Draws throttle slider
Draws moon

Draws
thrust
handle

Draws ship
Licensed to Deborah Christiansen <pedbro@gmail.com>

342 Hello World!
 screen.blit(inst1_surf, [50, 550])
 inst2_font = pygame.font.Font(None, 24)
 inst2_surf = inst1_font.render(instruct2, 1, (255, 255, 255))
 screen.blit(inst2_surf, [20, 575])
 pygame.display.flip()

 else: #game over - print final score
 display_final()

 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 elif event.type == pygame.MOUSEBUTTONDOWN:
 held_down = True
 elif event.type == pygame.MOUSEBUTTONUP:
 held_down = False
 elif event.type == pygame.MOUSEMOTION:
 if held_down:
 myThrottle.rect.centery = event.pos[1]
 if myThrottle.rect.centery < 300:
 myThrottle.rect.centery = 300
 if myThrottle.rect.centery > 500:
 myThrottle.rect.centery = 500

Give the program a try. Maybe you’ll find out you’re a good spaceship pilot! If you think it’s
too easy, you can modify the code to make gravity stronger, make the ship heavier (more
massive), give yourself less fuel, or set a different starting height or velocity. You’re the pro-
grammer, so you can decide how the game should work.

The Lunar Lander simulation is mostly about gravity. In the rest of the chapter, we’ll talk
about another important factor in simulations—time. And we’ll make a simulation that
requires keeping track of time.

Keeping time
Time is an important factor in many simulations. Sometimes we want to speed up time, or
make things happen faster than in the real world, so we don’t have to wait so long to find
out what happens. Sometimes we want to slow things down, so we can get a better look at
things that normally happen faster than we can see. And sometimes we want the program
to keep real time—to act just like it would in the real world. In all cases, we need some kind
of clock to measure time in our program.

Every computer has a clock built in that you can use to measure time. We have already seen
a couple of examples of using and measuring time:

■ In chapter 8, we used the time.sleep() function to make a countdown timer.
■ In our Pygame programs, we have used both Pygame’s time.delay and clock.tick

functions to control the animation speed or frame rate. We also used get_fps() to

Draws
everything

Checks for
mouse drag
of throttle

Updates
throttle
position
Licensed to Deborah Christiansen <pedbro@gmail.com>

343 CHAPTER 24 Computer Simulations
check how fast the animation was running, which is a way of measuring time (the
average time for each frame).

So far, we have always kept track of time while the program was running, but sometimes
you need to keep track of time even when the program is not running. If you made a Virtual
Pet program in Python, you wouldn’t want to leave it running all the time. You’d want to
play with it for a while, then stop and come back to it later. While you were away, you’d
expect your pet to get tired or hungry, or to go to sleep. So the program needs to know
how much time has passed since the last time it ran.

One way to do this is for the program to save a little piece of information—the current
time—to a file just before it shuts down. Then, next time it starts up, it can read the file to
get the previous time, check the current time, and compare the two to see how much time
has passed since the program last ran.

Python has a special kind of object for
working with times and dates. We’re going
to learn a bit about Python’s date and time
objects in the next section.

Time objects
Python’s date and time object classes are defined in their own datetime module. The
datetime module has classes for working with dates, times, and the difference or delta
between two dates or times.

The first kind of object we’ll use is a datetime object. (Yes, the class has the same name as
the module.) The datetime object includes the year, month, day, hour, minute, and second.
You create one like this (follow along in interactive mode):

The word delta means “difference.” It’s a letter of the Greek
alphabet, and it looks like this: ∆ (a triangle).

Letters of the Greek alphabet are often used in science and math
as a shorthand for certain quantities. Delta is used for a dif-
ference between two values.

>>> import datetime
>>> when = datetime.datetime(2008, 10, 24, 10, 45, 56)
>>>

Module name Class name

When you save the current time to a
file for reading back later, that’s
called a timestamp.
Licensed to Deborah Christiansen <pedbro@gmail.com>

344 Hello World!
Let’s see what we have:

We have created a datetime object, called when, which contains date and time values.

When creating a datetime object, the order of the parameters (the numbers in brackets) is
year, month, day, hour, minute, second. But if you can’t remember that, you can put them in
any order you want, as long as you tell Python which one is which, like this:

There are some other things you can do with datetime objects. You can get the individual
pieces like year, day, or minute. You can also get a formatted string of the date and time.
Try these in interactive mode:

A datetime object has both the date and the time. If you only care about the date, there’s
also a date class that only has the year, month, and day. If you only care about the time,
there’s a time class that only has the hour, minute, and second. Here’s what they look like:

Just like with the datetime object, you can pass the parameters in a different order if you
specify which is which:

There’s also a way to break up a datetime
object into a date object and a time object:

when = datetime.datetime(hour=10, year=2008, minute=45, month=10,
 second=56, day=24)

>>> print when.year
2008
>>> print when.day
23
>>> print when.ctime()
Fri Oct 24 10:45:56 2008

>>> today = datetime.date(month=10, day=24, year=2008)
>>> some_time = datetime.time(second=56, hour=10, minute=45)

>>> print when
2008-10-24 10:45:56
>>>

Gets individual parts of
datetime object

Prints string
version of date
and time

>>> today = datetime.date(2008, 10, 24)
>>> some_time = datetime.time(10, 45, 56)
>>> print today
2008-10-24
>>> print some_time
10:45:56

>>> today = when.date()
>>> some_time = when.time()
Licensed to Deborah Christiansen <pedbro@gmail.com>

345 CHAPTER 24 Computer Simulations
And you can combine a date and a time to make a datetime object by using the combine()
method of the datetime class in the datetime module:

Now that we have seen what a datetime object is and some of its properties, we’ll look at
how you can compare two of them to find the difference between them (how much time
has passed between one and the other).

Difference between two times

Quite often in simulations, we need to know how much time has passed. For example, in a
Virtual Pet program, we might need to know how much time has passed since the pet was
fed so we can figure out how hungry it is.

The datetime module has an object class that will help us figure out the difference between
two dates or times. The class is called timedelta. Remember that delta means “difference.”
So a timedelta is a difference between two times.

To create a timedelta and figure out the difference between two times, you just subtract
them, like this:

Notice that, when we subtracted the two datetime objects, what we got wasn’t another
datetime, but rather a timedelta object. Python does that automatically.

Small pieces of time

Up to now, we have just been looking at time measured in whole seconds. But the time
objects (date, time, datetime, and timedelta) are more precise than that. They can measure
down to the microsecond, which is one millionth of a second.

To see this, try out the now() method, which gives you the current time of your computer’s
clock:

>>> yesterday = datetime.datetime(2008, 10, 23)
>>> tomorrow = datetime.datetime(2008, 10, 25)
>>> difference = tomorrow - yesterday
>>> print difference
2 days, 0:00:00
>>> print type(difference)
<type 'datetime.timedelta'>
>>>

>>> when = datetime.datetime.combine(today, some_time)
>>>

Module name Class name Method

Gets the
difference of the
two dates

Tomorrow and
yesterday are 2
days apart The difference is a

timedelta object

>>> print datetime.datetime.now()
2008-10-24 21:25:44.343000
Licensed to Deborah Christiansen <pedbro@gmail.com>

346 Hello World!
Notice how the time doesn’t just
have seconds, it has fractions of a second:

On my computer, the last three digits will always be 0 because my operating system’s
clock only goes to milliseconds (thousandths of a second). But that’s plenty precise enough
for me!

It’s important to know that, although it looks like a float, the seconds are actually stored as
a number of seconds (an integer) and a number of microseconds (an integer): 44 seconds
and 343000 microseconds. To make this into a float, you need a little formula. Assuming you
have a time object called some_time, and you want the number of seconds as a float, here’s
what the formula looks like:

The float() function is used to make sure we don’t get
caught by the integer-division gotcha.

You can use the now() method and a timedelta object to
test your typing speed. The program in listing 24.2
displays a random message, and the user has to type the
same message in. The program times how long it takes to
type it in, and then calculates the typing speed.
Give it a try.

import time, datetime, random

messages = [
 "Of all the trees we could've hit, we had to get one that hits back.",
 "If he doesn't stop trying to save your life he's going to kill you.",
 "It is our choices that show what we truly are, far more than our abilities.",
 "I am a wizard, not a baboon brandishing a stick.",
 "Greatness inspires envy, envy engenders spite, spite spawns lies.",
 "In dreams, we enter a world that's entirely our own.",
 "It is my belief that the truth is generally preferable to lies.",
 "Dawn seemed to follow midnight with indecent haste."
]

print "Typing speed test. Type the following message. I will time you."
time.sleep(2)
print "\nReady..."
time.sleep(1)
print "\nSet..."
time.sleep(1)
print "\nGo:"

seconds_float = some_time.seconds + some_time.microseconds / float(1000000)

Listing 24.2 Measuring time differences—typing speed test

44.343000

Uses time module for
the sleep() function

Prints instructions
Licensed to Deborah Christiansen <pedbro@gmail.com>

347 CHAPTER 24 Computer Simulations
message = random.choice(messages)
print "\n " + message
start_time = datetime.datetime.now()
typing = raw_input('>')
end_time = datetime.datetime.now()
diff = end_time - start_time
typing_time = diff.seconds + diff.microseconds / float(1000000)
cps = len(message) / typing_time
wpm = cps * 60 / 5.0
print "\nYou typed %i characters in %.1f seconds." % (len(message),
 typing_time)
print "That's %.2f chars per sec, or %.1f words per minute" %(cps, wpm)
if typing == message:
 print "You didn't make any mistakes."
else:
 print "But, you made at least one mistake."

There’s one more thing you should know about timedelta objects. Unlike datetime objects,
which have year, month, day, hour, minute, second (and microseconds), a timedelta object
only has days, seconds, and microseconds. If you want the months or years, you have to cal-
culate them from the number of days. If you want minutes or hours, you have to calculate
them from the seconds.

Saving time to a file
As we mentioned at the start of the chapter, sometimes we need to save a time value to a
file (on the hard disk) so it can be saved even when the program isn’t running. If you save
the now() time whenever a program finishes, you can check the time when the program
starts again and print a message like this:

Of course, most programs don’t do that, but there are some programs that need to know
how long they have been idle, or not running. One example is a Virtual Pet program. Just
like the virtual pet keychains you can buy, you might want the program to keep track of
time even when you’re not using it. So, for example, if you end the program and then come
back to it two days later, your virtual pet should be very hungry! The only way for the pro-
gram to know how hungry the pet should be is for it to know how much time has passed
since the last time it was fed. That includes the time the program was shut down.

There are a couple of ways we could save the time to a file. We could just write a string to
the file, like this:

It has been 2 days, 7 hours, 23 minutes since you last used this program.

Picks message from list

Starts clock

Stops clock Calculates
elapsed time

For typing speed,
1 word = 5 characters

Displays results with
print formatting

timeFile.write ("2008-10-24 14:23:37")
Licensed to Deborah Christiansen <pedbro@gmail.com>

348 Hello World!
Then, when we want to read the timestamp, we’ll use some string methods like split() to
break the string up into the various parts, like day, month, year and hour, minute, second.
That should work just fine.

The other way is to use the pickle module, which we saw in chapter 22. The pickle
module lets you save any kind of variable to a file, including objects. Because we’ll be using
datetime objects to keep track of time, it should be quite easy to use pickle to save them
to a file and read them back again.

Let’s try a very simple example that just prints a message saying when the program was last
run. It will need to do these things:

■ It will look for a pickle file and open it. Python has a module called os (short for “oper-
ating system”) that can tell us if the file exists. The method we’ll use is called isfile().

■ If the file exists, we’ll assume that the program has run before, and we’ll find out when
it last ran (from the time in the pickle file).

■ Then we’ll write a new pickle file with the current time.
■ If this is the first time the program has run, there will be no pickle file to open, so we’ll

display a message saying we created a new pickle file.

Listing 24.3 has the code. Try it and see how it works.

import datetime, pickle
import os

first_time = True
if os.path.isfile("last_run.pkl"):
 pickle_file = open("last_run.pkl", 'r')
 last_time = pickle.load(pickle_file)
 pickle_file.close()
 print "The last time this program was run was ", last_time
 first_time = False

pickle_file = open("last_run.pkl", 'w')
pickle.dump(datetime.datetime.now(), pickle_file)
pickle_file.close()
if first_time:
 print "Created new pickle file."

Now we have all the pieces we need to make a simple Virtual Pet program, which we’ll do in
the next section.

Listing 24.3 Saving time to a file using pickle

Imports datetime,
pickle, and os modules

Checks if the pickle file exists

Opens pickle file for
reading (if it exists)

Unpickles the datetime object

Opens (or creates) the
pickle file for writing

Pickles the datetime
object of the current time
Licensed to Deborah Christiansen <pedbro@gmail.com>

349 CHAPTER 24 Computer Simulations
Virtual Pet
We’re going to make a very simplified Virtual Pet program, which, as we indicated, is a kind
of simulation. You can buy virtual pet toys (like a keychain with a small screen) and down-
load virtual pet software. There are also web sites like Neopets and Webkinz, which are
forms of virtual pets. All of these, of course, are simulations as well. They mimic the behav-
ior of a living thing and get hungry, lonely, tired, and so on. To keep them happy and
healthy, you have to feed them, play with them, or take them to the doctor.

Our virtual pet will be a lot simpler and less realistic than the ones you can buy or down-
load because I just want to give you the basic idea, and I don’t want the code to get too
complicated. But you could take our simple version and expand or enhance it as much as
you want.

Here are the features our program will have:

■ The pet will have four different activities that you can do: feed it, walk it, play with it,
or take it to the doctor.

■ The pet will have three stats that you can monitor: hunger, happiness, and health.

■ The pet can be awake or asleep.

■ Hunger will increase over time. You can reduce hunger by feeding.
■ Hunger will increase more slowly when the pet is asleep.
■ If the pet is asleep and you do any activity, it will wake up.
■ If the pet gets too hungry, its happiness will decrease.
■ If the pet gets very, very hungry, its health will decrease.
■ Walking the pet will make both its happiness and health increase.
■ Playing with the pet will make its happiness increase.
■ Taking the pet to the doctor will make its health increase.
■ The pet will have six different graphics:

■ one for sleeping.
■ one for being awake but doing nothing.
Licensed to Deborah Christiansen <pedbro@gmail.com>

350 Hello World!
■ one for walking.
■ one for playing.
■ one for eating.
■ one for going to the doctor.

The graphics will use some simple animation. In the next few sections, we’ll see how this all
goes together in a program.

The GUI

Carter and I have created a PythonCard GUI for our
Virtual Pet program. It has buttons to do the
activities and gauges for the vital stats. There’s
also a place to show the graphic of what the pet
is doing. Here’s what it looks like:

The buttons for the activities are a type of PythonCard
component called ImageButton. This lets you create a
button with a picture on it, instead of just text. The
health gauges are a component type called Gauge.
The main graphic is an Image component. The labels
are StaticText components.

You can create a GUI like this using the PythonCard Resource Editor.

The algorithm

To be able to write the code for the Virtual Pet program, we need to be more specific about
the behavior of the pet. Here’s the algorithm we’ll use:

■ We’ll divide the pet’s “day” into 60 parts, which we’ll call “ticks.” Each tick will be 5 sec-
onds of real time, so the pet’s “virtual day” will be 5 minutes of our time.

■ The pet will be awake for 48 ticks, and then it will want to sleep for 12 ticks. You can
wake it up, but it might be grumpy!

■ Hunger, happiness, and health will be on a scale of 0 to 8.
■ When awake, hunger increases 1 unit for every tick, and happiness decreases 1 unit for

every 2 ticks (unless walking or playing).
■ When sleeping, hunger increases 1 unit for every 3 ticks.
■ When eating, hunger decreases 1 unit for every tick.
■ When playing, happiness increases 1 unit for every tick.
■ When walking, happiness and health increase 1 unit for every 2 ticks.
■ When at the doctor, health increases 1 unit for every tick.
Licensed to Deborah Christiansen <pedbro@gmail.com>

351 CHAPTER 24 Computer Simulations
■ If hunger goes to 7, health decreases 1 unit for every 2 ticks.
■ If hunger goes to 8, health decreases 1 unit for every tick.
■ If awakened while sleeping, happiness decreases by 4 units.
■ While the program isn’t running, pet is either awake (doing nothing) or asleep.
■ When the program restarts, we’ll count how many ticks have passed, and update the

stats for each tick that passed.

These might seem like a lot of rules, but they’re actually pretty easy to code. In fact, you
might even want to add a few more behaviors of your own to make it more interesting. The
code, with some explanations, is coming right up.

Simple animation

You don’t always need Pygame to do animation. We can do some simple animation in
PythonCard by using something called a timer. A timer is something that creates an event
every so often. Then you write an event handler to make something happen when the timer
goes off. This is just like writing an event handler for a user action, like clicking a button,
except that the timer event is generated by the program, not by the user.

Our Virtual Pet GUI will use two timers: one for the animation and one for the ticks. The
animation will update every half second (0.5 seconds) and the tick will happen every
5 seconds.

When the animation timer goes off, we’ll change the image of the pet that’s being dis-
played. Each activity (eating, playing, and so on) will have its own set of images for the
animation, and each set will be stored in a list. The animation will cycle through all the
images in the list. The program will figure out which list to use depending on what activity
is happening.

Try, try again

We’ll be using another new thing in this program. It’s called a try-except block.

If a program is going to do something that could cause an error, it’s nice to have some way
to catch the error and deal with it, instead of having the program just stop. A try-except
block does that.

For example, if you try to open a file and the file doesn’t exist, you’ll get an error. If you
don’t handle this error, the program will just stop at this point. But maybe you want to ask
the user to reenter the filename, in case she made a typo. A try-except block lets you catch
the error and keep going.
Licensed to Deborah Christiansen <pedbro@gmail.com>

352 Hello World!
Here’s what it looks like, using the example of opening a file:

The thing that you want to try (that might cause an error) goes in the try block. In this case,
it’s trying to open a file. If that happens without an error, the except part is skipped.

If the code in the try block causes an error, the code in the except block runs. The code
in the except block tells the program what to do if there was an error. You can think of it
this way:

The try-except statements are Python’s way of doing what’s generally called error handling.
Error handling lets you write code where things can go wrong—even things that would
normally stop your program—so that your program will still work. We’re not going to talk
about error handling in any more detail in this book, but I wanted to show you the basics,
because you’ll see it in the Virtual Pet code.

Let’s have a look at the code, which is shown in listing 24.4. The notes will explain most of
what’s going on. This one is a bit long, so if you don’t feel like typing it all in, you can find it
in the \examples\VirtualPet folder (if you ran the book’s installer). It can also be down-
loaded from the book’s web site (www.helloworldbook.com). The PythonCard resource file
and all the graphics are there too. Try running it, and then look at the code and make sure
you understand how it works.

from PythonCard import model, timer, dialog
import pickle, datetime, wx

class MyBackground(model.Background):

 def on_initialize(self, event):
 self.doctor = False
 self.walking = False
 self.sleeping = False
 self.playing = False
 self.eating = False
 self.time_cycle = 0
 self.hunger = 0
 self.happiness = 8
 self.health = 8

try:
 file = open("somefile.txt", "r")
except:
 print "Couldn't open the file. Do you want to reenter the filename?"

Listing 24.4 VirtualPet.py

try:
 to do this (don’t do anything else...)
except:
 if there was an error, then do this

Initializes
values
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.helloworldbook.com

353 CHAPTER 24 Computer Simulations
 self.forceAwake = False
 self.sleepImages = ["sleep1.gif","sleep2.gif","sleep3.gif",
 "sleep4.gif"]
 self.eatImages = ["eat1.gif", "eat2.gif"]
 self.walkImages = ["walk1.gif", "walk2.gif", "walk3.gif",
 "walk4.gif"]
 self.playImages = ["play1.gif", "play2.gif"]
 self.doctorImages = ["doc1.gif", "doc2.gif"]
 self.nothingImages = ["pet1.gif", "pet2.gif", "pet3.gif"]

 self.imageList = self.nothingImages
 self.imageIndex = 0

 self.myTimer1 = timer.Timer(self.components.petwindow, -1)
 self.myTimer1.Start(500)
 self.myTimer2 = timer.Timer(self.components.HungerGauge, -1)
 self.myTimer2.Start(5000)
 filehandle = True
 try:
 file = open("savedata_vp.pkl", "r")
 except:
 filehandle = False
 if filehandle:
 save_list = pickle.load(file)
 file.close()
 else:
 save_list = [8, 8, 0, datetime.datetime.now(), 0]
 self.happiness = save_list[0]
 self.health = save_list[1]
 self.hunger = save_list[2]
 then = save_list[3]
 self.time_cycle = save_list[4]

 difference = datetime.datetime.now() - then
 ticks = difference.seconds / 50
 for i in range(0, ticks):
 self.time_cycle += 1
 if self.time_cycle == 60:
 self.time_cycle = 0
 if self.time_cycle <= 48: #awake
 self.sleeping = False
 if self.hunger < 8:
 self.hunger += 1
 else: #sleeping
 self.sleeping = True
 if self.hunger < 8 and self.time_cycle % 3 == 0:
 self.hunger += 1
 if self.hunger == 7 and (self.time_cycle % 2 ==0) \
 and self.health > 0:
 self.health -= 1
 if self.hunger == 8 and self.health > 0:
 self.health -=1
 if self.sleeping:
 self.imageList = self.sleepImages
 else:
 self.imageList = self.nothingImages

Lists images for
animations

Sets up
timers

Tries to open
pickle file

Reads from pickle file, if open

Uses default values if
pickle file not open

Pulls individual
values out of list

Checks how long
since last run

Simulates all
ticks that
happened during
down time

Uses correct
animation—awake
or sleeping
Licensed to Deborah Christiansen <pedbro@gmail.com>

354 Hello World!

 def sleep_test(self):
 if self.sleeping:
 result = dialog.messageDialog(self, """WARNING!
Your pet is sleeping, if you wake him up he'll be unhappy!
Do you want to proceed?""", 'WARNING!',
wx.ICON_EXCLAMATION | wx.YES_NO | wx.NO_DEFAULT)

 if result.accepted:
 self.sleeping = False
 self.happiness -= 4
 self.forceAwake = True
 return True
 else:
 return False
 else:
 return True

 def on_doctor_mouseClick(self, event):
 if self.sleep_test():
 self.imageList = self.doctorImages
 self.doctor = True
 self.walking = False
 self.eating = False
 self.playing = False

 def on_feed_mouseClick(self, event):
 if self.sleep_test():
 self.imageList = self.eatImages
 self.eating = True
 self.walking = False
 self.playing = False
 self.doctor = False

 def on_play_mouseClick(self, event):
 if self.sleep_test():
 self.imageList = self.playImages
 self.playing = True
 self.walking = False
 self.eating = False
 self.doctor = False

 def on_walk_mouseClick(self, event):
 if self.sleep_test():
 self.imageList = self.walkImages
 self.walking = True
 self.eating = False
 self.playing = False
 self.doctor = False

 def on_stop_mouseClick(self, event):
 if not self.sleeping:
 self.imageList = self.nothingImages
 self.walking = False
 self.eating = False
 self.playing = False
 self.doctor = False

Checks if pet is
sleeping before
doing an action

The doctor button
event handler

The feed button
event handler

The play button
event handler

The walk button
event handler

The stop button
event handler
Licensed to Deborah Christiansen <pedbro@gmail.com>

355 CHAPTER 24 Computer Simulations

 def on_petwindow_timer(self, event):
 if self.sleeping and not self.forceAwake:
 self.imageList = self.sleepImages
 self.imageIndex += 1
 if self.imageIndex >= len(self.imageList):
 self.imageIndex = 0
 self.components.petwindow.file = \
 self.imageList[self.imageIndex]
 self.components.HappyGauge.value = self.happiness
 self.components.HealthGauge.value = self.health
 self.components.HungerGauge.value = self.hunger

 def on_HungerGauge_timer(self, event):
 self.time_cycle += 1
 if self.time_cycle == 60:
 self.time_cycle = 0
 if self.time_cycle <= 48 or self.forceAwake:
 self.sleeping = False
 else:
 self.sleeping = True
 if self.time_cycle == 0:
 self.forceAwake = False

 if self.doctor:
 self.health += 1
 elif self.walking and (self.time_cycle % 2 == 0):
 self.happiness += 1
 self.health += 1
 elif self.playing:
 self.happiness += 1
 elif self.eating:
 self.hunger -= 1
 elif self.sleeping:
 if self.time_cycle % 3 == 0:
 self.hunger += 1
 else: #awake, doing nothing
 self.hunger += 1
 if self.time_cycle % 2 == 0:
 self.happiness -= 1
 if self.hunger > 8: self.hunger = 8
 if self.hunger < 0: self.hunger = 0
 if self.hunger == 7 and (self.time_cycle % 2 ==0) :
 self.health -= 1
 if self.hunger == 8:
 self.health -=1
 if self.health > 8: self.health = 8
 if self.health < 0: self.health = 0
 if self.happiness > 8: self.happiness = 8
 if self.happiness < 0: self.happiness = 0
 self.components.HappyGauge.value = self.happiness
 self.components.HealthGauge.value = self.health
 self.components.HungerGauge.value = self.hunger

The animation
timer (every 0.5

sec) event handler

Updates pet’s
image (animation)

The start of main 5 sec
timer event handler

Checks if
sleeping
or awake

Adds or subtracts
units depending on
activity

Makes sure
values are
not out of
range

Updates
gauges
Licensed to Deborah Christiansen <pedbro@gmail.com>

356 Hello World!

 def on_close(self, event):
 file = open("savedata_vp.pkl", "w")
 save_list = [self.happiness, self.health, self.hunger, \
 datetime.datetime.now(), self.time_cycle]
 pickle.dump(save_list, file)
 event.Skip()

app = model.Application(MyBackground)
app.MainLoop()

The sleep_test() function uses a PythonCard dialog box with a slight twist. You might
remember that PythonCard is based on another Python module called wxPython. That’s
why you need to install wxPython when you install
PythonCard. Sometimes you can use special
wxPython arguments to change the behavior of
PythonCard. In this case, we changed the
standard PythonCard message dialog, which
would look like this:

We turned it into a dialog with an exclamation
mark and Yes and No buttons, like this:

Don’t worry if you don’t understand all this code. You can learn more about PythonCard and
wxPython if you want. A good place to start is the PythonCard web site:
http://pythoncard.sourceforge.net/.

In this chapter, we have only scratched the surface of what can be done with computer sim-
ulations. We have seen the basic ideas of simulating real-world conditions, like gravity and
time, but computer simulations are widely used in science, engineering, medicine, and
many other fields. Many of them are very complex and take days or weeks to run even on
the fastest supercomputers. But even the little virtual pet on your friend’s keychain is a kind
of simulation, and sometimes the simplest simulations are the most interesting.

What did you learn?

In this chapter, you learned

■ what computer simulations are and why they’re used.
■ how to simulate gravity, acceleration, and force.

Saves
status and
timestamp
to pickle file

Line continuation
character
Licensed to Deborah Christiansen <pedbro@gmail.com>

357 CHAPTER 24 Computer Simulations
■ how to keep track of and simulate time.
■ how to save timestamps to a file using pickle.
■ a bit about error handling (try-except).
■ how to use timers to generate periodic events.

Test your knowledge
1 List three reasons computer simulations are used.

2 List three kinds of computer simulations that you have seen or that you know of.

3 What kind of object is used to store a difference between two dates or times?

Try it out
1 Add an “out of orbit” test to the Lunar Lander program. If the ship goes out the top of

the window, and the velocity exceeds +100m/s, stop the program and display a mes-
sage like this: “You have escaped the moon’s gravity. No landing today!”

2 Add an option for the user to play Lunar Lander again after landing the ship, without
having to restart the program.

3 Add a Pause button to the Virtual Pet GUI. This should stop time for the pet, whether
the program is running or not. (Hint: This means you probably need to save the
“paused” state in the pickle file.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

C H A P T E R 2 5

What’s Next?
This is the end of Hello World! Computer Programming for Kids and Other Beginners. If you have
read the whole book and tried the examples, you should have a good basic understanding
of programming and some fun things you can do with it.

This section will give you some places to look for more information on programming. There
are some resources for programming in general, for Python in particular, for game program-
ming, and a few other things.

General programming
How you go about learning more about programming depends on what you want to do
with it. You have a start with Python, and many of the things you have learned from this
book are general programming ideas and concepts that will transfer to other computer lan-
guages. How and what you learn depends on the direction you want to go: games? web
programming? robotics? (Robots need software to tell them what to do.)

For younger readers, if you have enjoyed learning programming with Python, you might
also enjoy trying a different approach. Squeak Etoys is a programming “language” for kids
that’s almost entirely graphical. You write almost no code, and you make programs by creat-
ing graphical objects and modifying their properties and actions. Behind the scenes, your
graphical objects are turned into code in a language called Smalltalk. You can find out more
about Etoys at www.squeakland.org.

Another option for kids is Kids Programming Language, or KPL. The newer version of this is
called Phrogram. You can check it out at www.kidsprogramminglanguage.com or
www.phrogram.com. Personally, I like Python better, partially because it’s free (Phrogram
358

Licensed to Deborah Christiansen <pedbro@gmail.com>

www.squeakland.org
www.kidsprogramminglanguage.com
www.phrogram.com

359 CHAPTER 25 What’s Next?
isn’t), and partially because I think Python is a better language. But you can have a look and
decide for yourself.

Python can take you a long way, but to do some specific things you may need a different
language, like C, C++, Java, or another one. If so, you’ll want to find a book or other
resource that teaches you that specific language. There are so many different ones out
there that I can’t give you much advice on that subject.

One book you might want to look at is How to Think Like a Computer Scientist: Learning with
Python, by Allen Downey, Jeffrey Elkner, and Chris Meyers. This book is released under a
public license, which means it’s freely available to anyone. You can find it online at
www.greenteapress.com/thinkpython/thinkCSpy/. There’s also a new version in the works,
which is titled How to Think Like a (Python) Programmer.

Python
There are many places to learn more about Python. The online Python documentation is
very complete, but it can be a bit hard to read. It includes a Language Reference, Library
Reference, Global Module Index, and a Tutorial by Guido van Rossum, who created Python.
You can find it here: docs.python.org.

And these are some good reference books to have if you’re going to do Python
programming:

■ Dive Into Python, by Mark Pilgrim. You can find it in the bookstore or read it online at
www.diveintopython.org.

■ Beginning Python: From Novice to Professional, by Magnus Lie Hetland.

None of these are written for kids, so you might find them a little tougher to read than Hello
World!, but they have a lot of good information in them.

Mailing lists are also very useful. You can post a message and other users will do their best
to answer it. Most of the lists have archive pages where you can read or search older mes-
sages to see if someone has already asked your question. The mailing list for PythonCard
can be found here: https://lists.sourceforge.net/lists/listinfo/pythoncard-users.

Game programming and Pygame
If making games is what you want to do, there are many books on the subject—too many to
list here. You’ll probably want to learn about something called OpenGL, which is short for
“Open Graphics Language.” This is a graphics system that many games use. OpenGL is avail-
able in Python by using a module called PyOpenGL, and there are several books about it.
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.greenteapress.com/thinkpython/thinkCSpy/
www.diveintopython.org

360 Hello World!
If Pygame caught your interest, there are a few places you can look to find out more. The
Pygame site, www.pygame.org, has many examples and tutorials.

If you really want to do game programming with Pygame, there are a couple of very good
resources. One is the Pygame mailing list. I have found it very helpful. You can find out
about it at www.pygame.org/wiki/info. The mailing list address is pygame-users@seul.org.

You could also check out Beginning Game Development with Python and Pygame: From Novice to
Professional, by Will McGugan, and Game Programming with Python, by Sean Riley.

Other Python stuff
We have looked at a few Python modules: Pygame, PythonCard, and EasyGui. There are
many more modules available to do all kinds of things with Python. Here are just a few you
might want to look at.

Turtle

For younger readers, the turtle module might be interesting. Turtle graphics is a kind of
programming where you control the actions of a small character (a turtle) by giving it com-
mands like forward, left, right, speed, and so on. Turtle graphics has been used to teach pro-
gramming to young children using a language called Logo, and the turtle module brings
the turtle to Python. Gregor Lingl has developed a newer version of turtle called xturtle,
and you can find out more here: http://xturtle.rg16.at/.

The turtle and xturtle modules give you commands that are similar to LOGO. But if you
want to use actual Logo commands in Python, there’s PyLogo, which gives you the ability to
use LOGO commands from your Python program to do turtle graphics–type programming.
The PyLogo home page is here: www.pylogo.org.

There’s also something called RUR-PLE, which uses Python to control a robot named
Reeborg and move it around your screen. This is a similar idea to Logo or Turtle, and
you can find out more here: rur-ple.sourceforge.net/en/rur.htm.

VPython

If you want to try some 3-D graphics in Python, the first thing you should look at is VPython
(short for Visual Python). It lets you easily make 3-D objects and move them around a 3-D
scene with the mouse. Here’s a quick example of making a bouncing ball with only a few
lines of code:
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.pygame.org
www.pygame.org/wiki/info
www.pylogo.org

361 CHAPTER 25 What’s Next?
That code makes a scene that looks like this:

The ball bounces up and down on the “floor.” The
user can rotate the scene and zoom in and out with
the mouse. (However, that code won't run until you
install VPython, which is not included in the Hello
World installer.) You can find out more about
VPython, including how to install it, here:
www.vpython.org.

PyWinAuto

If you’re using Windows and you want to control other programs with Python, you might
want to look at Pywinauto. This module lets you write Python programs to interact with
other Windows programs by simulating mouse clicks, typing text, and so on. You can find
out more about it here: pywinauto.pbwiki.com. This is definitely a more advanced topic.

Win32com

Also for Windows users only, the win32com module lets Python programs interact with some
Windows programs directly. You can do things like open a spreadsheet and change the val-
ues in the cells. win32com is part of a larger package called pywin32. You can find out more
about it here: python.net/crew/mhammond/win32. This is another advanced topic, and if
you’re going to do serious Windows programming with Python, you’ll probably want to get

from visual import *
scene.title = "Bouncing Ball"
scene.background = (1,1,1)
scene.center = (0, 5, 0)
scene.autoscale = False
floor = box (pos=(0,0,0), length=4, height=0.5, width=4, color=color.blue)
ball = sphere (pos=(0,6,0), radius=1, color=color.red)
ball.velocity = vector(0,-2,0)
dt = 0.01
while 1:
 rate (100)
 ball.pos = ball.pos + ball.velocity*dt
 if ball.y < ball.radius:
 ball.velocity.y = -ball.velocity.y
 else:
 ball.velocity.y = ball.velocity.y - 9.8*dt
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.vpython.org

362 Hello World!
a book specifically on this topic—something like Python Programming on Win32, by Mark
Hammond and Andy Robinson.

Keep it BASIC

One thing you might notice if you look for books at the library is that there were quite a few
programming books for kids written in the 1980s, and many of them use a language called
BASIC, which was very popular back then. (You can still get versions of BASIC for modern
computers, including QBASIC and BBC BASIC for Windows.) These books tend to have lots of
games in them. Something that might be fun to try is to take a game from one of the old
BASIC books and try to rewrite it using Python. You could use Pygame or PythonCard to
help with graphics if you need to. I guarantee you’d learn a lot by doing that!

Look around
There are many, many other topics to explore and resources that can help you in different
areas of programming in general, and Python in particular. You can always check at your
library or bookstore for books that have information on a topic you’re interested in. You can
also do a web search on the topics to see if there are online tutorials or Python modules to
help do what you want to do.

Whatever you do, have fun with programming! Keep learning, exploring, and experiment-
ing. The more you learn about programming, the more interesting it gets!

Bye for now!
Licensed to Deborah Christiansen <pedbro@gmail.com>

A P P E N D I X

Variable Naming Rules
Here are the rules for variable names (also called identifiers):

■ They must begin with either a letter or an underscore character. Following that, you
can use an unlimited sequence of letters, numbers, or underscore characters.

■ The letters can be uppercase or lowercase, and case matters. In other words, Ax is not
the same as aX.

■ The numbers can be any of the digit characters from 0 to 9 inclusive.

Aside from letters, numbers, and the underscore character, no other characters can be used.
Spaces, punctuation, and other characters are not allowed in variable names:

The only special character that’s allowed is the underscore character. In case you don’t
know what that is, here are a couple of examples:

■ first_number = 15

■ student_name = "John"

The character between first and number is the underscore. There’s also one between
student and name. Programmers sometimes use an underscore to separate two words in
the name of a variable. Because spaces aren’t allowed in variable names, they use the
underscore instead.

I recommend that you not use the underscore character at the beginning or end of a vari-
able name unless you know exactly why you’re using it. In some situations, using the
underscore character at the beginning or end of an identifier has a special meaning. So
avoid this:

~ ` ! @ # $ % ^ & * () ; - : " ' < > , . ? / { } [] + = /
363

Licensed to Deborah Christiansen <pedbro@gmail.com>

364 Hello World!
■ _first_number = 15

■ student_name_ = "John"

Here are some examples of valid variable names:

■ my_answer

■ answer23

■ answer_23

■ YourAnswer

■ Your2ndAnswer

Here are some examples of invalid variable names:

■ 23answer (Variable names can’t start with a number.)
■ your-answer (The hyphen character isn’t allowed.)
■ my answer (Spaces aren’t allowed.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

Answers to Self-Test Questions
Here are the answers to the “Test your knowledge” and “Try it out” questions at the end of
each chapter. Of course, there’s sometimes more than one right answer, especially with the
“Try it out” questions, but you can use these answers to see if you are on the right track.

Chapter 1: Getting Started
Test your knowledge

1 In Windows, start IDLE by opening the Start menu, and under the Python 2.5 entry,
select the IDLE (Python GUI) entry. In Mac OS X, click IDLE in the Dock, or double-click
IDLE.app in the Applications folder. In Linux, it depends on which window manager
you are using, but usually there is some sort of Applications or Programs menu.

2 print displays some text in the output window (the IDLE shell window, in our first
examples).

3 The symbol for multiplication in Python is * (the asterisk symbol).

4 When you run a program, IDLE displays this line:

5 “Executing” a program is another way to say “running” a program.

Try it out
1 >>> print 7 * 24 * 60 (7 days in a week, 24 hours in a day, 60 minutes in an hour).

You should get 10,080 as the answer.

>>> ======================= RESTART =======================
365

Licensed to Deborah Christiansen <pedbro@gmail.com>

366 Hello World!
2 Your program should
look something like this:

Chapter 2: Remember This—Memory and Variables
Test your knowledge

1 You tell Python that a variable is a string by putting quotes around it.

2 The question was, “Can you change the value that is assigned to a variable?” That
depends what you mean by “change.” If you do this,

then you can do

You have changed what is assigned to myAge. You have moved the myAge tag to a dif-
ferent thing: you moved it from 10 to 11. But you didn’t actually change the 10 into an
11. So it is more correct to say that you can “reassign the name to a different value,” or
“assign a new value to the variable,” rather than “change the value of the variable.”

3 No, TEACHER is not the same as TEACHEr. Because variable names are case-sensitive, the
last letter of the two variable names makes them different.

4 Yes, 'Blah' and "Blah" are the same. They are both strings, and in this case, Python
doesn’t care which kind of quotes you use, as long as the opening and closing quotes
around the string match.

5 No, '4' is not the same as 4. The first one is a string (even though it only has one char-
acter) because it has quotes around it. The second one is a number.

6 Answer b. 2Teacher is not a correct variable name. Variable names in Python can’t
start with a number.

7 "10" is a string because it has quotes around it.

Try it out
1 In interactive mode, you

would do something like this:

2 You could do either of these:

 or

print "My name is Warren Sande."
print "My birth date is January 1, 1970."
print "My favorite color is blue."

myAge = 10

myAge = 11

>>> temperature = 25
>>> print temperature
25

>>> temperature = 40
>>> print temperature
40

>>> temperature = temperature + 15
>>> print temperature
40
Licensed to Deborah Christiansen <pedbro@gmail.com>

367 Answers to Self-Test Questions
3 You would do something like this:

4 Using variables, your “minutes per day” program would look something
like this:

5 To see what would happen if there were 26 hours in the day,
you would do this:

Chapter 3: Basic Math
Test your knowledge

1 Python uses the * (asterisk) symbol for multiplication.

2 Python would say that 8 / 3 = 2. Because 8 and 3 are both integers, Python gives the
answer rounded down to the nearest integer.

3 To get the remainder, use the Modulus operator: 8 % 3.

4 To get the decimal answer for 8 / 3, change one of them into a decimal number: 8.0
/ 3 or 8 / 3.0.

5 What’s another way of calculating 6 * 6 * 6 * 6 in Python? 6 ** 4

6 17,000,000 in E-notation would be written as 1.7e7.

7 4.56e-5 is the same as 0.0000456.

Try it out
Here are some ways to solve these problems. You might have come up with a different way
to do the same thing.

1 a) Calculate how much each
 person should pay at the restaurant:

 Rounding this off, each person should pay $13.52.

b) Calculate the area and
 perimeter of a rectangle:

>>> firstName = "Fred"
>>> print firstName
Fred

>>> DaysPerWeek = 7
>>> HoursPerDay = 24
>>> MinutesPerHour = 60
>>> print DaysPerWeek * HoursPerDay * MinutesPerHour
10080

>>> HoursPerDay = 26
>>> print DaysPerWeek * HoursPerDay * MinutesPerHour
10920

>>> print 35.27 * 1.15 / 3
>>> 13.5201666667

length = 16.7
width = 12.5
Perimeter = 2 * length + 2 * width
Area = length * width
print 'Length = ', length, ' Width = ', width
print "Area = ", Area
print "Perimeter = ", Perimeter
Licensed to Deborah Christiansen <pedbro@gmail.com>

368 Hello World!
Here’s a sample run of the program:

2 Here’s a program to convert temperatures from Fahrenheit to Celsius:

3 Calculate the time it will take to
drive a certain distance at a given speed:

(Remember to make at least one of the numbers in the division a decimal, unless you
want the answer to be rounded down to an integer.)

Chapter 4: Types of Data
Test your knowledge

1 The int() function always rounds down (to the next integer to the left on the number
line).

2 In our temperature-conversion
program, would these have worked?

Try them and see what happens:

Why didn’t it work?

Remember that everything inside the
parentheses is done first. So it goes like this:

Then

Because it goes from left to right, 5 / 9 gets done first. Because 5 and 9 are both inte-
gers, Python does integer division and rounds the answer down. Because the answer
is less than 1, it gets rounded down to 0. Then

Then

fahrenheit = 75
celsius = 5.0/9 * (fahrenheit - 32)
print "Fahrenheit = ", fahrenheit, "Celsius =", celsius

Length = 16.7 Width = 12.5
Area = 208.75
Perimeter = 58.4

distance = 200
speed = 80.0
time = distance / speed
print "time =", time

cel = float(5 / 9 * (fahr – 32))
cel = 5 / 9 * float(fahr – 32)

>>> fahr = 75
>>> cel = float(5 / 9 * (fahr – 32))
>>> print cel
0.0

75 - 32 = 43

5 / 9 = 0

0 * 43 = 0

float(0) = 0.0
Licensed to Deborah Christiansen <pedbro@gmail.com>

369 Answers to Self-Test Questions
By the time it got to float(), it was too late—the answer was already 0! The same
goes for the second equation.

3 You can “trick” int() into rounding off instead of rounding down by adding 0.5 to the
number you pass to int().

Here’s an example (in interactive mode):

If the original number is less then 13.5, int() gets a number less than 14, which
rounds down to 13.

If the original number is 13.5 or greater, int() gets a number equal to or greater than
14, which rounds down to 14.

Try it out
1 We can use float() to

convert a string to a decimal number:

But how do we know that this is a
number and not a string? Let’s check the type:

2 We can use int() to convert a
decimal number to an integer:

The answer got rounded down.

3 We can use int() to convert a string to an integer:

Chapter 5: Input
Test your knowledge

1 With this code,

if the user types in 12, answer contains a string. That’s because raw_input() always
gives you a string.

>>> a = 13.2
>>> roundoff = int(a + 0.5)
>>> roundoff
13
>>> b = 13.7
>>> roundoff = int(b + 0.5)
>>> b
14

>>> a = float('12.34')
>>> print a
12.34

>>> type(a)
<type 'float'>

>>> print int(56.78)
56

>>> a = int('75')
>>> print a
75
>>> type(a)
<type 'int'>

answer = raw_input()
Licensed to Deborah Christiansen <pedbro@gmail.com>

370 Hello World!
Try it in a short program and see:

So raw_input() gives you a string.

2 To get raw_input() to print a prompt message, put some text in quotes inside the
parentheses, like this:

3 To get an integer using raw_input(), use int() to convert the string you get from
raw_input(). You can do it in two steps, like this:

Or you can do it in a single step, like this:

4 This is very similar to the previous question, except you use float() instead of int().

Try It Out
1 Your instructions in interactive

mode should look something like this:

Oops! There’s no space. You can either
add a space at the end of your first name,

or try this:

or you could just use a comma, like this:

2 The program should
look something like this:

print "enter a number: ",
answer = raw_input()
print type(answer)

>>> ============== RESTART ==============
>>>
enter a number: 12
<type 'str'>
>>>

answer = raw_input("Type in a number: ")

something = raw_input()
answer = int(something)

answer = int(raw_input())

>>> first = 'Warren'
>>> last = 'Sande'
>>> print first + last
WarrenSande

>>> first = 'Warren '

>>> print first + ' ' + last
Warren Sande

>>> first = 'Warren'
>>> last = 'Sande'
>>> print first, last
Warren Sande

first = raw_input('enter your first name: ')
last = raw_input('enter your last name: ')
print 'Hello,', first, last, 'how are you today?'
Licensed to Deborah Christiansen <pedbro@gmail.com>

371 Answers to Self-Test Questions
3 The program should look something like this:

4 You can just add a few lines to the program from #3 above:

5 The program should look like this:

Chapter 6: GUIs—Graphical User Interfaces
Test your knowledge

1 To bring up a message box
with EasyGui, use msgbox(), like this:

2 To get a string as input using EasyGui, use an enterbox.

3 To get an integer as input, you can use an enterbox (which gets a string from the
user), then convert it to an int. Or you can use an integerbox.

4 To get a float from the user, you can use an enterbox (which gives you a string), then
use the float() function to convert the string to a float.

5 A default value is like an “automatic answer.” Here’s one way you might use a default: if
you were writing a program where all the students in your class had to enter their
name and address, you might have the name of the city where you live as the default
city in the address. That way, the students wouldn’t have to type it in unless they lived
in a different city.

length = float(raw_input ('length of the room in feet: '))
width = float(raw_input ('width of the room in feet: '))
area = length * width
print 'The area is', area, 'square feet.'

length = float(raw_input ('length of the room in feet: '))
width = float(raw_input ('width of the room in feet: '))
cost_per_yard = float(raw_input ('cost per square yard: '))
area_feet = length * width
area_yards = area_feet / 9.0
total_cost = area_yards * cost_per_yard
print 'The area is', area_feet, 'square feet.'
print 'That is', area_yards, 'square yards.'
print 'Which will cost', total_cost

quarters = int(raw_input("How many quarters? "))
dimes = int(raw_input("How many dimes? "))
nickels = int(raw_input("How many nickels? "))
pennies = int(raw_input("How many pennies? "))
total = 0.25 * quarters + 0.10 * dimes + 0.05 * nickels + 0.01 * pennies
print "You nave a total of: ", total

easygui.msgbox("This is the answer!")
Licensed to Deborah Christiansen <pedbro@gmail.com>

372 Hello World!
Try it out
1 Here is a temperature-conversion program using EasyGui:

2 Here is a program that asks for your name and the parts of your address and then dis-
plays the whole address. For this one, it helps to know a little tidbit that we will talk
about in a later chapter: how to force a newline. A newline makes the following text
start on a new line. To do this, you use \n. This is explained in chapter 21, but here is a
preview:

Chapter 7: Decisions, Decisions
Test your knowledge

1 The output would be

Because my_number is less than 20, the test in the if statement is true, so the block fol-
lowing the if (in this case, just a single line) is executed.

2 The output would be

Because my_number is greater than 20, the test in the if statement is false, so the
code in the block following the if is not executed. The code from the else block is
executed instead.

tempgui1.py
EasyGui version of temperature-conversion program
converts Fahrenheit to Celsius
import easygui

easygui.msgbox('This program converts Fahrenheit to Celsius')
temperature = easygui.enterbox('Type in a temperature in Fahrenheit:')
Fahr = float(temperature)
Cel = (Fahr - 32) * 5.0 / 9
easygui.msgbox('That is ' + str(Cel) + ' degrees Celsius.')

address.py
Enter parts of your address and display the whole thing
import easygui
name = easygui.enterbox("What is your name?")
addr = easygui.enterbox("What is your street address?")
city = easygui.enterbox("What is your city?")
state = easygui.enterbox("What is your state or province?")
code = easygui.enterbox("What is your postal code or zip code?")

whole_addr = name + "\n" + addr + "\n" + city + ", " + state + "\n" +
code

easygui.msgbox(whole_addr, "Here is your address:")

Under 20

20 or over
Licensed to Deborah Christiansen <pedbro@gmail.com>

373 Answers to Self-Test Questions
3 To check if a number is greater than 30, but less than or equal to 40, you would use
something like this:

You could also do this:

4 To check for the letter “Q” in uppercase or lowercase, you could do something like
this:

Notice that the string we printed uses double quotes, but there are single quotes
inside it, around the “Q”. In case you were wondering how to print quote marks, that’s
one way to do it: use the other kind of quote marks to enclose your string.

Try it out
1 Here is one answer:

I didn’t worry about rounding the answer off to two decimal places (cents) or about
displaying the dollar sign.

2 Here is one way to do it:

program to calculate store discount
10% off for $10 or less, 20% off for more than $10
item_price = float(raw_input ('enter the price of the item: '))
if item_price <= 10.0:
 discount = item_price * 0.10
else:
 discount = item_price * 0.20
final_price = item_price - discount
print 'You got ', discount, 'off, so your final price was', final_price

program to check age and gender of soccer players
accept girls who are 10 to 12 years old
gender = raw_input("Are you male or female? ('m' or 'f') ")
if gender == 'f':
 age = int(raw_input('What is your age? '))
 if age >= 10 and age <= 12:
 print 'You can play on the team'
 else:
 print 'You are not the right age.'
else:
 print 'Only girls are allowed on this team.'

if number > 30 and number <= 40:
 print 'The number is between 30 and 40'

if 30 < number <= 40:
 print "The number is between 30 and 40"

if answer == 'Q' or answer == 'q':
 print "you typed a 'Q' "
Licensed to Deborah Christiansen <pedbro@gmail.com>

374 Hello World!
3 Here is one answer:

To add a 5-liter
buffer, change the line,

 to

4 Here is a simple password program:

Chapter 8: Loop the Loop
Test your knowledge

1 The loop would run 5 times.

2 The loop would run 3 times, and the values would be as follows: i = 1, i = 3, i = 5.

3 range(1, 8) would give you [1, 2, 3, 4, 5, 6, 7].

4 range(8) would give you [0, 1, 2, 3, 4, 5, 6, 7].

5 range(2, 9, 2) would give you [2, 4, 6, 8].

6 range (10, 0, -2) would give you [10, 8, 6, 4, 2].

7 You use continue to stop the current iteration of a loop and jump ahead to the next
iteration.

8 A while loop ends when the condition being tested is false.

program to check if you need gas.
Next station is 200 km away
tank_size = int(raw_input('How big is your tank (liters)? '))
full = int(raw_input ('How full is your tank (eg. 50 for half full)?'))
mileage = int(raw_input ('What is your gas mileage (km per liter)? '))
range = tank_size * (full / 100.0) * mileage
print 'You can go another', range, 'km.'
print 'The next gas station is 200km away.'
if range <= 200:
 print 'GET GAS NOW!'
else:
 print 'You can wait for the next station.'

password = "bigsecret"
guess = raw_input("Enter your password: ")
if guess == password:
 print "Password correct. Welcome"
 # put the rest of the code for your program here
else:
 print "Password incorrect. Goodbye"

range = tank_size * (full / 100.0) * mileage

range = (tank_size - 5) * (full / 100.0) * mileage
Licensed to Deborah Christiansen <pedbro@gmail.com>

375 Answers to Self-Test Questions
Try it out
1 Here is a program to print a multiplication table of the user’s choice using a for loop:

2 Here is the same multiplication table using a while loop:

3 Here is the multiplication table with a user-defined range:

Notice in the for line that the second thing in range() includes a variable, not just a
number. We will learn more about that in chapter 11.

Chapter 9: Just for You—Comments
Try it out

1 Here’s a sample of some comments I would add to the temperature-conversion
 program:

program to print multiplication table up to 10
number = int(raw_input('Which table would you like? '))
print 'Here is your table:'
for i in range(1, 11):
 print number, 'x', i, '=', number * i

program to print mult table (while loop)
number = int(raw_input('Which table would you like? '))
print 'Here is your table:'
i = 1
while i <= 10:
 print number, 'times', i, '=', number * i
 i = i + 1

program to print multiplication table
user inputs how high they want it to go
number = int(raw_input('Which table would you like? '))
limit = int(raw_input('How high would you like it to go?

'))
print 'Here is your table:'
for i in range(1, limit + 1):

 print number, 'times', i, '=', number * i

tempconv1.py
program to convert a Fahrenheit temperature to Celsius
Fahr = 75
Cel = (Fahr – 32) * 5.0 / 9 #decimal division, not integer
print "Fahrenheit = ", Fahr, "Celsius = ", Cel
Licensed to Deborah Christiansen <pedbro@gmail.com>

376 Hello World!
Chapter 10: Game Time
Try it out

1 Did you try typing in the program and running it? Don’t forget to put the graphics in
the same folder as the program.

Chapter 11: Nested and Variable Loops
Test your knowledge

1 You can make a variable loop in Python by putting a variable in the range() function,
like this:

or

2 To make a nested loop, put a loop
in the body of another loop, like this:

This code will print “hi” 8 times on a line (the inner loop), and do 5 lines of that (the
outer loop).

3 There will be 15 stars printed.

4 The output from the code will look like this:

5 For a four-level decision tree, there are 2**4 or 2 * 2 * 2 * 2 possible choices. That’s 16
possible choices, or 16 paths through the tree.

Try it out
1 Here is a countdown timer program that asks the user where to start:

Countdown timer asks the user where to start
import time
start = int(raw_input("Countdown timer: How many seconds? ",))
for i in range (start, 0, -1):
 print i
 time.sleep(1)
print "BLAST OFF!"

for i in range(numberOfLoops)

for i in range(1, someNumber)

for i in range(5):
 for j in range(8):
 print "hi",
 print

* * *
* * *
* * *
* * *
* * *
Licensed to Deborah Christiansen <pedbro@gmail.com>

377 Answers to Self-Test Questions
2 Here is a version that prints a row of stars beside each number:

Chapter 12: Collecting Things Together—Lists
Test your knowledge

1 You can add something to a list using append(), insert(), or extend().

2 You can remove something from a list using remove(), pop(), or del().

3 To get a sorted copy of the list, you can do either of these:
■ make a copy of the list, using slices: new_list = my_list[:], and then sort the new

list: new_list.sort()
■ use the sorted() function: new_list = sorted(my_list)

4 You find out whether a certain value is in a list by using the in keyword.

5 You find out the location of a value in a list by using the index() method.

6 A tuple is a collection that is like a list, except that you can’t change it. Tuples are
immutable (unchangeable), while lists are mutable (changeable).

7 You can make a list of lists in several ways:
■ by using nested square brackets:

■ by using append(), and appending a list:

Countdown timer asks the user where to start
and prints stars beside each number

import time
start = int(raw_input("Countdown timer: How many seconds? ",))
for i in range (start, 0, -1):
 print i,
 for star in range(i):
 print '*',
 print
 time.sleep(1)
print "BLAST OFF!"

my_list = [[1, 2, 3], ['a', 'b', 'c'], ['red', 'green', blue']]

>>> my_list = []
>>> my_list.append([1, 2, 3])
>>> my_list.append(['a', 'b', 'c'])
>>> my_list.append(['red', 'green', 'blue'])
>>> print my_list
[[1, 2, 3], ['a', 'b', 'c'], ['red', 'green', 'blue']]
Licensed to Deborah Christiansen <pedbro@gmail.com>

378 Hello World!
■ by making individual lists and then combining them:

8 You get a single value from a list of lists by using two indexes (or indices):

The answer would be 'green'.

Try it out
1 Here is a program that will get five names, put them in a list, and then print them out:

2 Here is a program that will print the original list and a sorted version:

3 Here is a program to print only the third name in the list:

4 Here is a program to allow the user to replace a name in the list:

list1 = [1, 2, 3]
list2 = ['a', 'b', 'c']
list3 = ['red', 'green', 'blue']
my_list = [list1, list2, list3]

my_list = [[1, 2, 3], ['a', 'b', 'c'], ['red', 'green', 'blue']]
my_color = my_list[2][1]

nameList = []
print "Enter 5 names (press the Enter key after each name):"
for i in range(5):
 name = raw_input()
 nameList.append(name)

print "The names are:", nameList

nameList = []
print "Enter 5 names (press the Enter key after each name):"
for i in range(5):
 name = raw_input()
 nameList.append(name)

print "The names are:", nameList
print "The sorted names are:", sorted(nameList)

nameList = []
print "Enter 5 names (press the Enter key after each name):"
for i in range(5):
 name = raw_input()
 nameList.append(name)

print "The third name is:", nameList[2]

nameList = []
print "Enter 5 names (press the Enter key after each name):"
for i in range(5):
 name = raw_input()
 nameList.append(name)
Licensed to Deborah Christiansen <pedbro@gmail.com>

379 Answers to Self-Test Questions
Chapter 13: Functions
Test your knowledge

1 You use the def keyword to create a function.

2 You call a function by using its name with parentheses.

3 You pass arguments to a function by putting the arguments in the parentheses when
you call the function.

4 There is no limit to the number of arguments a function can have.

5 The function sends information back to the caller using the return keyword.

6 After a function is finished running, any local variables are destroyed.

Try it out
1 The function is just a bunch of print statements:

The program that calls it could look like this:

2 Here’s my example for printing addresses with seven arguments:

print "The names are:", nameList
print "Replace one name. Which one? (1-5):",
replace = int(raw_input())
new = raw_input("New name: ")
nameList[replace - 1] = new
print "The names are:", nameList

def printMyNameBig():
 print " CCCC A RRRRR TTTTTTT EEEEEE RRRRR "
 print " C C A A R R T E R R "
 print "C A A R R T EEEE R R "
 print "C AAAAAAA RRRRR T E RRRRR "
 print " C C A A R R T E R R "
 print " CCCC A A R R T EEEEEE R R"

define a function with seven arguments
def printAddr(name, num, str, city, prov, pcode, country):
 print name
 print num,
 print str
 print city,
 if prov !="":
 print ", "+prov
 else:
 print ""
 print pcode

for i in range(5):
 printMyNameBig()
Licensed to Deborah Christiansen <pedbro@gmail.com>

380 Hello World!
3 No answer, just try it.

4 The function to add up change should look like this:

The program that calls it would look like this:

Chapter 14: Objects
Test your knowledge

1 To define a new object type, you use the class keyword.

2 Attributes are the “things you know” about an object. They are variables contained in
an object.

3 Methods are the “actions” you can do to an object. They are functions contained in an
object.

4 A class is just a definition or blueprint for an object. An instance is what you get when
you make an object from the blueprint.

5 The name self is usually used as the instance reference in an object method.

6 Polymorphism is the ability to have two or more methods with the same name on dif-
ferent objects. The methods can behave differently depending on which object they
belong to.

7 Inheritance is the ability for objects to acquire attributes and methods from their “par-
ents.” The “child” class (which is called a subclass or derived class) gets all the attri-
butes and methods of the parent and can also have attributes and methods that are
not shared with the parent.

 print country
 print

#call the function and pass seven arguments to it
printAddr("Sam", "45", "Main St.", "Ottawa", "ON", "K2M 2E9", "Canada")
printAddr("Jian", "64", "2nd Ave.", "Hong Kong", "", "235643", "China")

def addUpChange(quarters, dimes, nickels, pennies):
 total = 0.25 * quarters + 0.10 * dimes + 0.05 * nickels + 0.01 *

pennies
 return total

quarters = int(raw_input("quarters: "))
dimes = int(raw_input("dimes: "))
nickels = int(raw_input("nickels: "))
pennies = int(raw_input("pennies: "))

total = addUpChange(quarters, dimes, nickels, pennies)

print "You have a total of: ", total
Licensed to Deborah Christiansen <pedbro@gmail.com>

381 Answers to Self-Test Questions
Try it out
1 A class for a bank account might look like this:

And here’s some code to test it and
make sure it is working:

2 To make an interest account, make a subclass of BankAccount, and create a method to
add interest:

Here’s some
code to test it:

class BankAccount:
 def __init__(self, acct_number, acct_name):
 self.acct_number = acct_number
 self.acct_name = acct_name
 self.balance = 0.0

 def displayBalance(self):
 print "The account balance is:", self.balance

 def deposit(self, amount):
 self.balance = self.balance + amount
 print "You deposited", amount
 print "The new balance is:", self.balance

 def withdraw(self, amount):
 if self.balance >= amount:
 self.balance = self.balance - amount
 print "You withdrew", amount
 print "The new balance is:", self.balance
 else:
 print "You tried to withdraw", amount
 print "The account balance is:", self.balance
 print "Withdrawal denied. Not enough funds."

myAccount = BankAccount(234567, "Warren Sande")
print "Account name:", myAccount.acct_name
print "Account number:", myAccount.acct_number
myAccount.displayBalance()

myAccount.deposit(34.52)
myAccount.withdraw(12.25)
myAccount.withdraw(30.18)

class InterestAccount(BankAccount):
 def addInterest(self, rate):
 interest = self.balance * rate
 print "adding interest to the account,",rate *

100,"percent"
 self.deposit (interest)

myAccount = InterestAccount(234567, "Warren Sande")
print "Account name:", myAccount.acct_name
print "Account number:", myAccount.acct_number
myAccount.displayBalance()
myAccount.deposit(34.52)
myAccount.addInterest(0.11)
Licensed to Deborah Christiansen <pedbro@gmail.com>

382 Hello World!
Chapter 15: Modules
Test your knowledge

1 Some of the advantages of using modules are
■ you can write some code once and use it in many programs.
■ you can use modules that other people have written.
■ your code files are smaller, so it’s easier to find things in your code.
■ you can use only the parts (modules) you need to do the job.

2 You create a module by writing some Python code and saving it in a file.

3 When you want to use a module, you use the import keyword.

4 Importing a module is the same as importing a namespace.

5 The two ways to import the time module so we have access to all the names in the
module are

and

Try it out
1 To write a module, just put the code for your “big name” function in a file—something

like bigname.py. Then, to import the module and call the function, do
something like this:

or you could do this:

2 To bring c_to_f() into the main
program’s namespace, you can do this:

or this:

3 A short program to print five random
integers from 1 to 20 would look like this:

4 A short program that prints out a random decimal number every 3 seconds for 30 sec-
onds would look like this:

import time

from time import *

import bigname
bigname.printMyNameBig()

from bigname import *
printMyNameBig()

from my_module import c_to_f

from my_module import *

import random
for i in range(5):
 print random.randint(1, 20)

import random, time
for i in range(10):
 print random.random()
 time.sleep(3)
Licensed to Deborah Christiansen <pedbro@gmail.com>

383 Answers to Self-Test Questions
Chapter 16: Graphics
Test your knowledge

1 The RGB value [255, 255, 255] makes the color white.

2 The RGB value [0, 255, 0] makes the color green.

3 To draw rectangles, you use the Pygame method pygame.draw.rect().

4 To draw lines joining a number of points together (like connect-the-dots), you use the
pygame.draw.lines() method.

5 The term ”pixel” is short for “picture element,” and it means one dot on the screen (or
paper).

6 In a Pygame window, location [0, 0] is the upper-left corner.

7 In the diagram, location [50, 200] is at letter B.

8 In the diagram, location [300, 50] is at letter D.

9 The blit() method is used to copy images in Pygame.

10 To move or animate an image, use these two steps:
■ Erase the image from its old location.
■ Draw the image in its new location.

Try it out
1 Here is a program that draws a few different shapes on the screen. You can also find it

as TIO_CH16_1.py in the \answers folder and on the web site.

import pygame, sys
pygame.init()
screen=pygame.display.set_mode((640, 480))
screen.fill((250, 120, 0))
pygame.draw.arc(screen, (255, 255, 0), pygame.rect.Rect(43, 368, 277,

235), -6.25, 0, 15)
pygame.draw.rect(screen, (255, 0, 0), pygame.rect.Rect(334, 191, 190,

290))
pygame.draw.rect(screen, (128, 64, 0), pygame.rect.Rect(391, 349, 76,

132))
pygame.draw.line(screen, (0, 255, 0), (268, 259), (438, 84), 25)
pygame.draw.line(screen, (0, 255, 0), (578, 259), (438, 84), 25)
pygame.draw.circle(screen, (0, 0, 0), (452, 409), 11, 2)
pygame.draw.polygon(screen, (0, 0, 255), [(39, 39), (44, 136), (59, 136),

(60, 102), (92, 102), (94, 131), (107, 141), (111, 50), (97, 50), (93,
86), (60, 82), (58, 38)], 5)

pygame.draw.rect(screen, (0, 0, 255), pygame.rect.Rect(143, 90, 23, 63),
5)

pygame.draw.circle(screen, (0, 0, 255), (153, 60), 15, 5)
clock = pygame.time.Clock()
pygame.display.flip()
Licensed to Deborah Christiansen <pedbro@gmail.com>

384 Hello World!
2 To replace the beach ball image with a different one, just replace the filename in this
line

with a different filename for a different graphic.

3 In listing 16.16, just change

to something else, like

4 To make the ball bounce off an “invisible” wall, change the line in listing 16-16
from

to this:

This just makes the ball reverse direction before it gets to the edge of the window. You
can do the same thing for the “floor” with the y-coordinates.

5 Here’s what listing 16.6 looks like with the display.flip moved inside the while loop,
and with a delay added:

You should be able to see each rectangle appear individually, because we have slowed
down the program and we are now refreshing the display after each rectangle is
drawn. If you do this to the sine wave programs, you can see each point in the sine
wave being plotted.

while 1:
 clock.tick(60)
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 elif event.type == pygame.KEYDOWN and event.key ==

pygame.K_ESCAPE:
 sys.exit()

import pygame, sys, random
pygame.init()
screen = pygame.display.set_mode([640,480])
screen.fill([255, 255, 255])
for i in range (100):
 width = random.randint(0, 250)
 height = random.randint(0, 100)
 top = random.randint(0, 400)
 left = random.randint(0, 500)
 pygame.draw.rect(screen, [0,0,0], [left, top, width, height], 1)
 pygame.display.flip()
 pygame.time.delay(30)

my_ball = pygame.image.load('beach_ball.png')

x_speed = 10
y_speed = 10

x_speed = 20
y_speed = 8

if x > screen.get_width() - 90 or x < 0:

if x > screen.get_width() - 250 or x < 0:
Licensed to Deborah Christiansen <pedbro@gmail.com>

385 Answers to Self-Test Questions
Chapter 17: Sprites and Collision Detection
Test your knowledge

1 Collision detection means detecting when two graphical objects are touching or over-
lapping.

2 Pixel-perfect collision detection uses the true outline of the graphical object to do col-
lision detection. Rect collision detection uses a rectangle around the object to deter-
mine collisions. Pixel-perfect collision detection is more accurate and realistic, but it
also takes more code, which will slow things down a little bit.

3 You can keep track of a number of sprite objects together by using either a regular
Python list or a Pygame sprite group.

4 You can control the speed of animation (frame rate) in your code either by adding
delays between each frame, or by using pygame.time.Clock to get a specific frame
rate. You can also change how far (how many pixels) the object moves in each frame.

5 Using the delay method is less accurate because it doesn’t take into account how long
the code itself takes for each frame, so you don’t know exactly what frame rate you’ll
get.

6 You can find out what frame rate your program is running at by using
pygame.time.Clock.get_fps().

Chapter 18: A New Kind of Input—Events
Test your knowledge

1 Two kinds of events that a program can respond to are keyboard events and mouse
events.

2 The piece of code that deals with an event is called an event handler.

3 Pygame uses the KEYDOWN event to detect keys being pressed.

4 The pos attribute tells you where the mouse is located when the event happens.

5 To get the next available event number for user events, use pygame.NUMEVENTS.

6 To create a timer, use pygame.time.set_timer().

7 To display text in a Pygame window, use a font object.

8 These are the three steps to use a font object:
■ Create a font object.
■ Render the text, creating a surface.
■ Blit this surface to the display surface.
Licensed to Deborah Christiansen <pedbro@gmail.com>

386 Hello World!
Try it out
1 Why does the ball behave strangely when it hits the side of the paddle instead of

the top? That’s because we have a collision, so the code tries to reverse the ball’s
y-direction (make it go up instead of down). But because the ball is coming in from the
side, it is still “colliding” with the paddle, even after reversing direction. The next time
through the loop (one frame later), it reverses direction again, so it’s going down
again, and so on. A simple way to fix this is to always set the ball to go “up” (a negative
y-speed) when it collides with the paddle. It’s not perfect, because it means that even
if the ball hits the side of the paddle, it will bounce up—not too realistic! But it will
solve the problem of the ball bouncing around in the paddle. If you want a more real-
istic solution, it will require a bit more code. You would probably need to add some-
thing where you check which edge of the paddle the ball has collided with before
“bouncing” it.

2 An example of some code that adds randomness to the program is posted on the web
site as TIO_CH18_2.py.

Chapter 19: Sound
Test your knowledge

1 Types of files used for storing sound include Wave (.wav), MP3 (.mp3), Ogg Vorbis
(.ogg), and Windows Media Audio (.wma).

2 The pygame.mixer module is used for playing music.

3 You set the volume for Pygame sound objects using the set_volume() method of each
sound object.

4 You set the volume of background music using pygame.mixer.music.set_volume().

5 To make music fade out, use the pygame.mixer.music.fadeout() method. Use the
number of milliseconds (thousandths of a second) of fade time as an argument. For
example, pygame.mixer.music.fadeout(2000) will fade the sound out in 2 seconds.

Try it out
1 The code for a number-guessing program with sound is on the web site, as

TIO_CH19_1.py.

Chapter 20: More GUIs
Test your knowledge

1 Three names for the graphical elements of a GUI are control, widget, and component.

2 The letter that you press (along with Alt) to get into a menu is called a hot key.
Licensed to Deborah Christiansen <pedbro@gmail.com>

387 Answers to Self-Test Questions
3 PythonCard resource files need to end in .rsrc.py.

4 Types of components you can include in a GUI using PythonCard include button,
checkbox, gauge, list, radio group, spinner, slider, text field, image, static text, and
several others. See the Component menu of Resource Editor to view the whole list.

5 To make a component do something, it needs to have an event handler.

6 The & (ampersand) character is used to define a hot key in the PythonCard Menu
Editor.

7 The content of a spinner in PythonCard is always an integer.

Try it out
1 A version of the number-guessing program using PythonCard is posted on the web

site as TIO_CH20_1.py and TIO_CH20_1.rsrc.py.

2 To fix the spinner problem, select the spinner component in Resource Editor. In the
Property Editor, change the min and max properties. The min property should be some-
thing like -1000, and the max can be something very large like 1000000.

Chapter 21: Print Formatting and Strings
Test your knowledge

1 If you have two separate print statements, and you want everything to print on the
same line, put a comma at the end
of the first print statement, like this:

2 To add extra blank lines when you print something, you can either add extra print
statements with nothing in them, like this:

or you can print newline characters, \n, like this:

3 To line things up in columns, use the tab character, \t.

4 To make a number print in E-notation,
use the format string %e or %E, like this:

print "What is",
print "your name?"

print "Hello"
print
print
print
print "World"

print "Hello\n\n\nWorld"

>>> number = 12.3456
>>> print '%e' % number
1.234560e+001
Licensed to Deborah Christiansen <pedbro@gmail.com>

388 Hello World!
Try it out
1 The program would look like this:

2 The code to line up the times table using tabs would look like this:

Notice the \t in front of the word times and after the = sign.

3 Here is a program to
print the fractions of 8:

The first part, print str(i) + '/8 =, prints the fraction. The last part, %.3f' % frac-
tion, prints the decimal number with 3 decimal places.

Chapter 22: File Input and Output
Test your knowledge

1 The kind of object in Python that’s used to work with files is called a file object.

2 You create a file object by using the open() function, which is one of Python’s built-in
functions.

3 A filename is the name used to store the file on the disk (or on other storage, like a
flash drive). A file object is the thing used to work with files in Python. The name of the
file object does not have to be the same as the filename on the disk.

4 When a program is done reading or writing a file, the program should close the file.

5 If you open a file in append mode and write something to it, the information you write
gets added (appended) to the end of the file.

6 If you open a file in write mode and then write something to the file, everything that
was in the file is lost and is replaced with the new data.

7 To reset the read point of a file back to the beginning, use the seek() method, with an
argument of 0, like this:

name = raw_input("What is your name? ")
age = int(raw_input("How old are you? "))
color = raw_input("What is your favorite color? ")

print "Your name is", name,
print "you are ", age, "years old,",
print "and you like the color", color

for looper in range(1, 11):
 print looper, "\ttimes 8 =\t", looper * 8

for i in range(1, 9):
 fraction = i / 8.0
 print str(i) + '/8 = %.3f' % fraction

myFile.seek(0)
Licensed to Deborah Christiansen <pedbro@gmail.com>

389 Answers to Self-Test Questions
8 To save a Python object to a file using pickle, you use the pickle.dump() method, with
the object you want to save and the filename as arguments, like this:

9 To unpickle or retrieve an object from a pickle file, use the pickle.load() method,
with the pickle file as
an argument, like this:

Try it out
1 Here is a simple program to create silly sentences:

The word files should just be lists of words separated by commas.

2 Here is a program that saves some data in a text file:

pickle.dump(myObject, "my_pickle_file.pkl")

import random

noun_file = open("nouns.txt", 'r')
nouns = noun_file.readline()
noun_list = nouns.split(',')
noun_file.close()

adj_file = open("adjectives.txt", 'r')
adjectives = adj_file.readline()
adj_list = adjectives.split(',')
adj_file.close()

verb_file = open("verbs.txt", 'r')
verbs = verb_file.readline()
verb_list = verbs.split(',')
verb_file.close()

adverb_file = open("adverbs.txt", 'r')
adverbs = adverb_file.readline()
adverb_list = adverbs.split(',')
adverb_file.close()

noun = random.choice(noun_list)
adj = random.choice(adj_list)
verb = random.choice(verb_list)
adverb = random.choice(adverb_list)

print"The", adj, noun, verb, adverb + '.'

name = raw_input("Enter your name: ")
age = raw_input("Enter your age: ")
color = raw_input("Enter your favorite color: ")
food = raw_input("Enter your favorite food: ")

my_data = open("my_data_file.txt", 'w')

myObject = pickle.load("my_pickle_file.pkl")
Licensed to Deborah Christiansen <pedbro@gmail.com>

390 Hello World!
3 Here is a program that saves some data using the pickle module:

Chapter 23: Take a Chance—Randomness
Test your knowledge

1 A random event is something that happens (an “event”) where you don’t know ahead of
time what the outcome will be. Two examples are flipping a coin (you don’t know if it
will come up heads or tails), and rolling a pair of dice (you don’t know what numbers
will come up on the dice).

2 Rolling an 11-sided die is different from rolling two 6-sided dice because, with an
11-sided die, all numbers from 2 to 12 have an equal probability of coming up. With
two 6-sided dice, some numbers (totals of the two dice) will come up more often than
others.

3 Here are two ways to
simulate rolling a die in Python:

and

4 To represent a single card, we used an object.

5 To represent a deck of cards, we used a list. Each item in the list was one card (an
object).

my_data.write(name + "\n")
my_data.write(age + "\n")
my_data.write(color + "\n")
my_data.write(food)

my_data.close()

import pickle

name = raw_input("Enter your name: ")
age = raw_input("Enter your age: ")
color = raw_input("Enter your favorite color: ")
food = raw_input("Enter your favorite food: ")

my_list = [name, age, color, food]

pickle_file = open("my_pickle_file.pkl", 'w')
pickle.dump(my_list, pickle_file)

pickle_file.close()

import random
sides = [1, 2, 3, 4, 5, 6]
die_1 = random.choice(sides)

import random
die_1 = random.randint(1, 6)
Licensed to Deborah Christiansen <pedbro@gmail.com>

391 Answers to Self-Test Questions
6 To remove a card from a deck or a hand, we used the remove() method for lists, like
this: deck.remove() or hand.remove().

Try it out
1 Just try it and see what happens.

Chapter 24: Computer Simulations
Test your knowledge

1 Computer simulations are used for a number of reasons:
■ To save money (to do experiments that would be too expensive to do in the real

world).
■ To protect people and equipment (to do experiments that would be too dangerous

in the real world).
■ To try things that simply aren’t possible in the real world (like making a big asteroid

crash into the moon).
■ To speed up time (to make an experiment go faster than it would in the real world).

This is good for studying things that take a long time, like glaciers melting.
■ To slow down time (to make an experiment go slower than it would in the real

world). This is good for studying things that happen very fast, like electrons zipping
down a wire.

2 You can list any kind of computer simulations you can think of. These could be games,
math or science programs, or even weather forecasts (which are created by using com-
puter simulations).

3 A timedelta object is used to store the difference between two dates or times.

Try it out
The programs for this section are quite long—too long to print in the book. You can
find them all on the web site:

TIO_CH24_1.py—Lunar Lander with out-of-orbit check.

TIO_CH24_2.py—Lunar Lander with play-again option.

TIO_CH24_3.py—Virtual Pet GUI with pause button.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Index

Symbols
: (colon) 12
’ (single quotes in strings) 21
" (double quotes in strings) 21, 275
() (function arguments) 30, 126
_ (underscore in variables) 20
* (all) 170, 172
""" (triple-quoted string) 91
/ (forward slash) 294
\ (backslash) 109, 275, 277, 294
\n (newline) 297
& (before hot keys) 267
(with comments) 90, 92
% (percentage sign) 32, 277, 281
%d (integer in format string) 279
%E, %e (E-notation in format string) 281
%F, %f (Float in format string) 278, 280

negative numbers 280
positive numbers 280

%G, %g (choice of float or E-notation in format
string) 281

%i (integer in format string) 278–279
%s (string in format string) 278
>> (redirecting output) 303
>>> (Python prompt) 3, 16

Math and comparison operators
- (minus/subtraction) 27
-= (decrement) 33
< (less than) 66, 71
<= (less than or equal to) 66, 71
<> (not equal to) 72
!= (not equal to) 66, 72
* (multiplication) 5
** (exponentiation) 31, 71
/ (division) 27
% (modulus) 71
+ (plus/addition) 27, 280, 282, 284
+= (increment) 33
= (assignment⁄equal) 16, 28, 65, 204
== (testing if equal) 65, 71
> (greater than) 66, 71
>= (greater than or equal to) 66, 71

Numerics
24-bit color 181
3-D graphics 360

A
A conditional or while loop 85
A loop using range() 78
A program for moving balls around using

sprites 207
A program to print squares and cubes 276
A trickier version of blocks of stars 103
A variable nested loop 102
A very simple for loop 75
A well-connected sine wave 188
acceleration 337
access values in a table 128
activate a menu, ALT key 268
active window 177
addends 28
Adding an event handler for the Hello button 259
Adding an _init_() method 151
adding comments in Python 89
Adding menu event handlers 269
addition 5, 27
ALT key 268
and 69
animation 193
.app 291
append() 114, 118
appending to a file 296, 301
arguments 82, 134, 137
arithmetic 5, 26
arithmetic expression 17
assigning a name 16
assignment operator 28
asterisk, * 5
attributes

change data 159
view data 159

attributes of an object 147

B
background music 244

repeating 245
backslash (line continuation character), \ 109, 294
backslash character,\ (for special printing

codes) 275
BASIC 362
BBC BASIC 362
binary xiv, 40
393

Licensed to Deborah Christiansen <pedbro@gmail.com>

394 Hello World!
binary files 299–300
opening 300
rb 300

binary format 291
bits 181, 291
blit 191, 204, 220, 339
blitting 191
block of code 64
Blocks of stars with double-nested loops 103
body of the loop 76
Boolean

False 121
True 121

Boolean expression 121
bottom-up 326
Bouncing a beach ball 197

in 2-D 197
Bouncing ball program, with sprites and

Clock.tick() 219
Bouncing ball with up and down arrow keys 221
break 86
bugs 28
button 256

Cancel 57
changing properties 256

button property position 260
buttonbox() 55
byte 181, 291

C
C 359
C++ 359
Jcalling a function 131, 133
Cancel 57
card game, Crazy Eights 323
carriage return 274
case-sensitive 20, 24
chaining operators 66
chevrons, >> 303
choice() 314, 320
choicebox() 56
class 149, 153

Clock 212
date 344
derived 161
families 160
group 208
inheritance 160
naming convention 156
polymorphism 160
Sprite 203
subclass 161
time 344
timedelta 345

class keyword 258
Cleaning up our code 270

Cleaning up our code even more 271
closing a file, close() 298, 302
code 4
code stubs 162
coin flipping 318
collection 112
collision detection 208, 230

pixel-perfect 211
rect 211

colon 117
colon symbol, : 12, 64, 132
colors

255 181
numbers 180
primary 180
RGB 180

combination 105
combine() 345
comma 46, 113, 138, 274
command shell 177
command-line 3
commenting out 92
comments 89

end of line 90
multiline 90
single line 90

common bug 24
comparison operator 66
Complete temperature-conversion program 264
component 256

controls 261
widgets 261

component property command 270
components, StaticText 262
computer address 181
computer animation 192
computer card games 323
computer generated

decks of cards 313
dice 313
random events 313

computer memory 15
read from 15
write to 15

computer model 336
computer punch card 300
computer simulation 336
concatenation 21, 275, 284
condition 62–63

more than one 69
conditional loop 74, 84
Connect-the-dots mystery picture 189
console 3
constants 101
continue 85
controls 261
Licensed to Deborah Christiansen <pedbro@gmail.com>

395INDEX
converting data 38
Converting temperatures 47
copy a list 125
copying pixels 191
counter 318
counting loop 75, 77
CR 274
creating a function 131
Creating a module 165
Creating a simple Ball class 149
Creating and using a function 132
Creating and using a function that returns a

value 140
Ctrl-Break 177
CTRL-C 76, 177
CTRL-SHIFT-R 54, 216
current time 343

timestamp 343
current working directory 294

D
data structure 127
date class 344
datetime object 343

parameters 344
datetime.combine() 345
debugging 265
debugging a program 92
decimal numbers 27
decision point 106
decision tree 106

decision point 106
decisions 62
deck of cards

drawing a card 319
memory 319
picking a card 320

decrement a variable, -= 23, 33
def 131
default 58
define a function 131
del 120
delta 343, 345
dialog box 55, 254

input 55
dice 314

different combinations 317
rolling two 315

directories 292
subdirectories 293

directory structure 292
display surface 180

double-buffered 180
flip 179–180

Displaying a beach ball image in the Pygame
window 190

Displaying what's in the player's hand 329
division 27

modulus 32
quotient 31
remainder 31

documentation 89
Doing something different each time through the

for loop 76
dot notation 149
double backslash, \\ 294
double equal sign, == 65
double star sign, ** 31
double-buffered 180
double-nested loop 103

down arrow, K_DOWN 221
dragging 224

Drawing a circle 178
Drawing curves using a lot of small rectangles 187
dump() 304

E
EasyGui 53, 175

buttonbox() 55
choicebox() 56
enterbox() 57
integerbox() 59
learning more 60
making the choice box smaller 57
message box 53
text input 57

easygui.py 53
elif 67, 99
else 68
endless loops 76
end-of-line comments 90
endswith() 285
E-notation 33–34, 36, 305
Enter key 3
enterbox() 57
entry box

spin box 262
Spinner 262
TextField 262

equal sign, = 28, 65
erase, paint over 193
error 28

invalid literal 42
roundoff 40
syntax 9

error handling 352
error message 4, 10
errors 9

handling 352
evaluate an expression 17
event 351

random 314
Licensed to Deborah Christiansen <pedbro@gmail.com>

396 Hello World!
event driven programs 217
event handlers 218, 259, 351

on_ 259
parameters 259

event loop 175, 218
events 175

event queue 218, 221
events 175, 217–218, 259–260

event handlers 218
event loop 218
event queue 218, 221
key events 220
keyboard 219
KEYDOWN 219, 221
mouse 223
MOUSEBUTTONDOWN 223–224
MOUSEBUTTONUP 223–224
MOUSEMOTION 224, 229
pygame.event.get() 221
QUIT 220
timer 225
timer events 225
user event 225

executable file, .exe 291
execute 5
exponents 31, 36
extend() 118–119
extension 291

.py 8

F
False value 121, 215
file 290–291

.app 291

.exe 291

.mp3 291

.py 291, 295

.txt 291
adding to 296
appending 296, 301
binary 299
closing 298, 302
creating 296
extension 291
filename 296
folders 292
load() 304
location 291
name 291
opening 296
path 293
pathname 293
pickle 303
print 303
properties 291
reading 297

readline() 298
readlines() 297
replacing 296
seek() 299
size 291
storing 291–292
text files 299
type 291
unpickling 304
writing 296, 300–301

file locations 292
file mode

a 301
r 301
w 301

filenames 291, 296
Final PyPong code 235
First version of PyPong 230
flip 179–180
flipping a coin 314
float 346
float variable, %f 278
float() 38, 47, 346
float(raw_input()) 47
floating-point formatting 279
floating-point numbers 27
floats 27, 59
folder structure 292
folders 292

branches 293
multi-level 292
root 293
subfolders 293
tree 293

font object 232
for 75
for loop 75, 321
force

gravity 337
net 338

force of gravity 337
format strings 277

%d 279
%E, %e 281
%F, %f 278, 280
%G, %g 281
%i 278–279
%s 278

forward slash, / 27, 294
frame 212
frame rate 212–213

adjusting 214
scaling 214

frames per second 212
limit 213
Licensed to Deborah Christiansen <pedbro@gmail.com>

397INDEX
function
buttonbox() 55
choice() 314, 320
choicebox() 56
Displaying a beach ball image in the Pygame

window 190
enterbox() 57
float() 346
help() 60
image 190
integerbox() 59
msgbox() 54
pygame.draw.circle() 179
pygame.draw.lines() 187
pygame.draw.rect() 183
pygame.image.load() 191
randint() 314
range() 78
range() shortcut 80
remove() 320
sorted() 125
Surface.get at() 190
Surface.set at() 190
sys.exit() 221

functions 38, 131, 146
arguments 82, 134, 137–138
calling 131, 133
code stubs 162
creating 131
defining 131
float() 38, 47
input() 48
int() 38, 47
list 138
methods 148
more than one argument 137
multiple arguments 138
multiple parameters 138
parameters 82, 137
passing arguments 134
raw_input() 44
result 139
return value 139
returning a value 139
str() 38
type() 41

Functions with two arguments 138
future versions of Python 48

G
games, random 313
Getting a string using raw_input() 45
Getting input from a file on the Web 49
Getting input using a choice box 56
Getting input using an enter box 58
Getting input using buttons 55

Getting the new suit when the player plays an 8 331
Getting the player's choice 330
global 143
global namespace 169
global variables 141, 143
Graphical User Interface 3, 52, 254, 327
graphics 174

erasing 193, 208, 220
frame 212
frame rate 212
frames per second 212
painting over 193, 208, 220
render 232

gravity simulation 337
greater than sign, > 66
group class 208
GUI 3, 52, 254, 327

components 255
controls 255
Hangman 305
Virtual Pet 350
widgets 255

GUI elements
dialog boxes 55, 254

H
handling errors 352
Hangman 305
Hello World 3
help() 60
horizontal spacing 275
Hot dog program with calorie counter 109
hot key 267
HotDog class with cook(), add_condiments(), and

str() 157
How to make default arguments 58
HyperCard 254
hyphen 27

I
lines 286
identifiers 363
IDLE 2, 53, 335

colors 4, 91
text editor 7

if 64, 69, 99
images 190
immutable variable 126
import 166
import a namespace 169
importing a module 166
importing EasyGui 53
in 121, 286
in the scope variables 141
increment a variable, += 23, 33
indenting 64–65
indenting convention 65
Licensed to Deborah Christiansen <pedbro@gmail.com>

398 Hello World!
index 115
start from 0 115

index number 115
index() 122, 286
indices 115
infinite loops 76
inheritance 160
init() 151
initialize 151, 339
initializing the object 151
input 14–15, 44, 52, 290, 296

events 217
input from other sources 49
input() 48
insert() 118–119
installing EasyGui 53
installing Python 1–2
instance 149
instance reference 154
instruction 3–4
int() 38, 40, 47
integer 27, 346
integer formatting 279
integer variable, %i 278
integerbox() 59
interactive 5
interactive mode 19, 39
invalid literal error 42
isfile() 348
iteration 76, 79, 100

J
Java 359
join() 284

K
Keeping the Pygame window open 176
key repeat 222
keyboard event 219
KEYDOWN 221

delay value 222
interval value 222
key repeat 222
multiple events 222

keyword 5, 8
and 69
class 258
def 131
elif 67, 99
else 68
for 75
global 143
green 8
if 64, 69, 99
in 121, 286
not 70
or 70

orange 8
pass 162, 176
print 17
return 139
sort() 123
while 85

Kids Programming Language 358
KPL 358

L
learning more about EasyGui 60
less than sign, < 66
LF 274
line continuation character 109
line feed 274
list 56, 77, 112, 126, 138, 146, 320

adding to 113
append() 113, 118
contents 114
copy 125
creating 113
del 120
empty 113
extend() 119
in 121
index 115
index() 122
insert() 119
items 113
modifying 118
mutable 126
ordered 123
pop() 121
remove() 120
reverse() 123
searching 121
slice 117
slice notation 117
slice shortcut 117
slicing 116
sorted copy 125
sorting 123
sorting in reverse order 123
tuple 126

list of operators 71
lists of lists 126
load() 304
local namespace 169
local variables 141
logical expression 121
logical operators 71
Logo 360
Looking for ten heads in a row 319
loop 99

conditional 84
double-nested 103
event 218
Licensed to Deborah Christiansen <pedbro@gmail.com>

399INDEX
loop (continued)
for 75
nested 107
nested-nested 103
variable 101
variable name 79
variable nested 102
while 84

looping 74
body 76
break 86
breaking out 86
condition 74, 84
continue 85
counting 75
endless 76
infinite 76
iteration 76, 79, 100
list of strings 84
naming convention 80
nested 99
runaway 76
skipping ahead 85
through a list 122
using i, j, and k 80

lower() 288
lowercase 288
Lunar Lander 339

M
Mac OS X, .app 291
mailing list 359

Pygame 360
PythonCard 359

Making a deck of cards 322
making a list 77
Making a Pygame window XE 175
making the choice box smaller 57
Making the Pygame window closeable 178
math 26
memory 15, 314

read from 15
write to 15

memory management 140, 142
menu 266

activate 268
Menu Editor

New Menu 267
New Menu Item 268

menu event, select 269
methods

code stubs 162
combine() 345
inheritance 160
passing arguments 148
polymorphism 160
returning values 148

methods of an object 147
minus 27
model 336
Modern art with color 185
modifying a list 118
module 53, 165, 254, 322

import 166
random 172, 313
sleep() 171
sprite 202
time 171

modules 131, 164
creating 165
importing 166, 169
namespace 167
Python Standard Library 170
using 166

modulus, % 32, 279
more than one argument 137
mouse dragging 224
mouse events 223
move() parameter, speed 206
Moving a beach ball image smoothly 195
Moving a beach ball image with wrapping 198
.mp3 291
MP3 files 240
msgbox() 54
multi-level folders 292
multiline comments 90
multiple arguments 138
multiple parameters 138
multiplication 5
music 241

background 244
fadeout() 250
get busy() 244
PyPong 250
repeat forever 245
repeating 245
set volume() 243

Music and sound with volume adjustment 243
mutable variable 126

N
name 15–16

assigning 16
namespaces 167, 233

global 169
local 169

naming a program 15
naming convention for loop variables 80
naming variables 144
nested loops 99, 107, 321
nested-nested loop 103
net force 338
newline character, \n 274–275, 297, 299
Licensed to Deborah Christiansen <pedbro@gmail.com>

400 Hello World!
not 70
not equal to sign, <>, != 66
now() 345–346
number sign, # 90, 92
Number-guessing game 11
Number-guessing game using EasyGui 59
numbers 21

O
object oriented 146
object syntax 114
objects 114, 131, 146

attributes 147
change attributes 159
class 149, 153
collect functions and data together 146
creating 149
creating an instance of 150
data hiding 159
derived class 161
__init__ () 151
initializing 151
instance 149
instance reference 154
methods 147–148
properties 147
self 153
__str__() 152
subclass 161
variables 148

Ogg Vorbis files 240
on_ 259
Open Graphics Language 359
open source xvi
open() 296

a argument 301
r argument 297, 301
w argument 301

OpenGL 359
Opening and reading from a file 297
operands 28
operating system, os 348
operators 28, 66

chaining 66
equal 63
greater than 66
less than 66
list 71
logical 71
not equal 66
relational 66

or 70
order of operations 29
os 348
out-of-scope variables 142
output 14, 52, 290

redirecting 303

P
parameter 82, 137

reverse 123
parentheses 30, 45, 48, 109, 121, 135
part 297
pass 162, 176
Passing an argument to a function 135
passing arguments 134
path 293

pathname 293
pathname 293
percent 32
percent sign, % 277, 281
permutation 105
Phrogram 358
pickle 303, 348

dump() 304
load() 304

picture element 179
pixel 179

copying 191
Playing music 242
plus 27
plus sign, + 282, 284
polymorphism 160
Pong 227
pop() 121
print 4, 17, 19, 40, 273
print a \ 277
print formatting 264, 273

automatic float 281
comma 274
concatenation 275
E-notation 281
floating point 280
integers 279
number formatting 278
pad 280
storing formatted numbers 282

printing prompt messages 46
Printing the 8 times table 77
Printing the 8 times table up to 10 using range() 79
Printing the loop variables in nested loops 104
Printing three multiplication tables at once 100
probability 313, 315, 317

memory 314, 319
process 14, 52
programming xiii

block of code 64
bottom-up 326
commenting out 92
comments 89
condition 62–63
conditional test 66
debugging 92, 265
decision tree 106
Licensed to Deborah Christiansen <pedbro@gmail.com>

401INDEX
programming (continued)
decisions 62
documentation 89
dot notation 149
functions 131
importance of comments 91
indenting 64–65
logical 66
looping 74
modules 131
objects 131, 146
question 65
statement 65
style 80, 91
test 62
top-down 326

programming language
BASIC 362
BBC BASIC 362
C 359
C++ 359
Java 359
Kids Programming Language 358
KPL 358
Logo 360
Phrogram 358
QBASIC 362
Smalltalk 358
Squeak Etoys 358

programs xiv, 7, 14
A conditional or while loop 85
A loop using range() 78
A program for moving balls around using

sprites 207
A program to print squares and cubes 276
A trickier version of blocks of stars 103
A variable nested loop 102
A very simple for loop 75
A well-connected sine wave 188
Adding an event handler for the Hello button 259
Adding an _init_() method 151
Adding menu event handlers 269
Blocks of stars with double-nested loops 103
Bouncing a beach ball 197
Bouncing a beach ball in 2-D 197
Bouncing ball program, with sprites and

Clock.tick() 219
Bouncing ball with up and down arrow keys 221
Cleaning up our code 270
Cleaning up our code even more 271
command-line 3
Complete temperature-conversion program 264
Connect-the-dots mystery picture 189
console 3
Converting temperatures 47
Creating a module 165

Creating a simple Ball class 149
Creating and using a function 132
Creating and using a function that returns a

value 140
Displaying what's in the player's hand 329
Doing something different each time through the

for loop 76
Drawing a circle 178
Drawing curves using a lot of small

rectangles 187
event-driven 217
Final PyPong code 235
First version of PyPong 230
Functions with two arguments 138
Getting a string using raw_input() 45
Getting input from a file on the Web 49
Getting input using a choice box 56
Getting input using an enter box 58
Getting input using buttons 55
Getting the new suit when the player plays

an 8 331
Getting the player’s choice 330
GUI 3
Hello World 3
Hot dog program with calorie counter 109
HotDog class with cook(), add_condiments(),

and _str_() 157
How to make default arguments 58
input 44, 52
Keeping the Pygame window open 176
Looking for ten heads in a row 319
Lunar Lander 339
Making a deck of cards 322
Making the Pygame window closeable 178
Modern art with color 185
Moving a beach ball image smoothly 195
Moving a beach ball image with wrapping 198
Music and sound with volume adjustment 243
naming 15
Number-guessing game 11
Number-guessing game using EasyGui 59
Opening and reading from a file 297
output 14, 52
Passing an argument to a function 135
Playing music 242
Printing the 8 times table 77
Printing the 8 times table up to 10 using

range() 79
Printing the loop variables in nested loops 104
Printing three multiplication tables at once 100
process 14, 52
Putting the circle in the middle of the

window 182
Putting your program to sleep 171
PyPong with sound and music 250
Ready for lift-off? 83
Licensed to Deborah Christiansen <pedbro@gmail.com>

402 Hello World!
programs (continued)
Rolling a single 11-sided die 1,000 times 315
Rolling two 6-sided dice 1,000 times 316
Sample run of Crazy Eights 328
Saving time to a file using pickle 348
Skier 95
Solving the hot dog program 107
Start of our hot dog program 107
text-mode 3
The Card class 321
The computer’s turn 332
The main loop of Crazy Eights 325
The main loop with scoring added 333
The whole hangman.py program 309
Trying out sounds in Pygame 242
Trying to modify a global variable inside a

function 143
Trying to move a beach ball 192
Trying to move a beach ball again 194
Trying to print a local variable 141
Unpickling using load() 305
Using a module 166
Using a sprite group instead of a list 209
Using a timer event to move the ball up and

down 226
Using append mode 301
Using Clock and get_fps() in the beach ball

program 214
Using draw.rect to make art 185
Using pickle to store a list to a file 304
Using readline() more than once 298
Using sprites to put multiple ball images on the

screen 204
Using _str_() to change how the object prints 153
Using the Ball class 150
Using the comparison operators 67
Using write mode on a new file 302
Using write mode on an existing file 302
VirtualPet.py 352
Waiting for the end of the song 244
Who’s the coolest of them all? 84

prompt, >>> 3, 16
messages, printing 46

properties 147
Property Editor (PythonCard) 255, 266
Property Editor properties

max 266
min 266

public license 359
Putting the circle in the middle of the window 182
Putting your program to sleep 171
.py 8, 291, 295
Pygame 95, 174, 338, 360

animation 193
arguments 184
blit 191

clock.get_fps() 213
clock.tick() 213
collision detection 208, 230
color names 181
colordict.py 181
colormixer.py 181
colors 180
display 178
displaying text 231
down arrow 221
draw 183
draw.rect() 339
drawing shapes 178
event loop 175, 218
events list 223
flip() 178
font 231
font object 232, 339
frame rate 213
grouping sprites 208
images 190
key names list 223
line width 184
list of events 223
list of key names 223
location 182
mailing list 360
pixel-perfect 211
pygame.event 220
pygame.font 231
pygame.mixer 240
pygame.time.Clock() 213
PyPong 227
rect 183
size 183
spritecollide() 210–211
sprites 202
surfaces 180
sys.exit() 178
time 212
time.delay() 212
up arrow 221
user-defined events 225

pygame window 177
pygame.draw.circle() 179

color 179
location 179
size 179
surface 179
width of the line 179

pygame.draw.lines() 187
closed 188
color 187
list 188
surface 187
width 188
Licensed to Deborah Christiansen <pedbro@gmail.com>

403INDEX
pygame.draw.rect() 183
pygame.font 231
pygame.image.load() 191
pygame.mixer 240

initialize 241
music 241
Sound 241

PyLogo 360
PyPong 227

adding music 250
adding sounds 245

PyPong with sound and music 250
Python 1, 359

.py extension 8
3-D graphics 360
adding comments 89
adding newlines 275
assigning a name 16
block of code 64
built-in functions 38, 45
class-naming convention 156
datetime 343
double star (asterisk) 31
EasyGui 53
error handling 352
file object 296
first program 7
future versions of 48
Global Module Index 359
help() 60
immutable 126
indenting 65
indenting convention 65
installing 1–2
integer-division behavior 28
Language Reference 359
Library Reference 359
list 112
making a list 77
memory management 140, 142
module 53, 95, 164–165
multiplication 5
name 16
naming a program 15
newline character 274
Numeric module 174
object oriented 146
objects 114, 146, 282
online documentation 359
order of operations 29
os 348
pad 280
pickle 303
print 273
prompt 3
PyLogo 360

PyOpenGL 359
Python Standard Library 170
PythonCard 254
Pywinauto 361
randint() 314
retrieving information 17
running your program 8
RUR-PLE 360
shell 3
spacing 46
SPE 54
special methods 152
standard modules 170
Stani's Python Editor 54
start using 2
stopping a program 76
strings 282
syntax 205
testing 62
try-except 351
turtle 360
Tutorial 359
using IDLE 2
using quotation marks 16, 21
using variables 22
van Rossum, Guido 359
variable names 20
version 2
VPython 360
win32com 361
Windows 361

Python file, .py 291, 295
Python Standard Library 170
PythonCard 254, 305

Background 259
button 256
command 270
component 256, 350
dialog box 356
event handlers 259
events 260
Gauge 350
GUI 350
hot key 267
Image 350
ImageButton 350
list 260
mailing list 359
menu 266
Menu Editor 266
menu event handlers 269
NewButton 256
object 258
Property Editor 255, 266
Resource Editor 255, 262, 266, 311
resource file 256
Licensed to Deborah Christiansen <pedbro@gmail.com>

404 Hello World!
PythonCard (continued)
self 259
StaticText 350
timer 351
wxPython 255

Pywinauto 361

Q
QBASIC 362
queue 218
QUIT 220
quotation marks, ’, " 16, 21
quotes 21, 41
quotient 31

R
randint() 314
random 172, 313

randint() 172
random event 314
random games 313
random.choice() 307
range() 78, 82

argument 82
shortcut 80
third parameter 82

raw_input() 44, 56
getting a number 47
getting a string 45

read 290
read from memory 15
reading a file 296
reading in binary mode 300
readline() 298
readlines() 297
Ready for lift-off? 83
real numbers 27
real time 342
rect method, move() 206
redirecting output 303
relational operators 66
remainder 31
remove() 120, 320
render 232
reserved word 5
resolution 180
Resource Editor 311
Resource Editor (PythonCard) 255, 262, 266
resource file 256
RESTART 9
retrieving information 17
return 139
Return key 3
returning a value 139
reverse parameter 124
reverse() 123
RGB 180

robotics 358
Rolling a single 11-sided die 1,000 times 315
Rolling two 6-sided dice 1,000 times 316
rolling two dice 315
round brackets 30, 45, 48, 119, 126
rounded down 48
rounding 279
roundoff error 40, 305
run 8
Run in Terminal 175
Run Module 8
Run without arguments 216
runaway loops 76
running your program 8
runtime error 10
RUR-PLE 360

S
Sample run of Crazy Eights 328
Saving time to a file using pickle 348
scientific notation 34
scope of a variable 140
screen coordinates 182

horizontal 182
vertical 182
x-axis 182
y-axis 182

seek() 299
self 153, 259
shell 3

IDLE 3
sign

- 27
!= 66
* 5
** 31
/ 27
90, 92
+ 27
< 66
= 28, 65, 204
== 65
> 66

simulation 336
gravity 337
time 342

sine wave 186
single-line comments 90
Skier 95
SkiFree 94
sleep() 171
slice notation 117, 124
slice, shortcut 117
slicing a list 116
Smalltalk 358
software xiv
Licensed to Deborah Christiansen <pedbro@gmail.com>

405INDEX
Solving the hot dog problem 107
sort() 123
sorted() 125
sound 239

.mp3 241

.ogg 241

.wav 241

.wma 241
generate 240
input 239
looping 245
MP3 files 240
music 241
Ogg Vorbis files 240
output 239
play back 240
playing 240
pygame.mixer 241
synthesize 240
volume 243
Wave files 240
WMA files 240

sound clips 241
sound effects 241
sound file, .mp3 291
sounds, PyPong 245
spacing in Python 46
spacing, horizontal 275
SPE 54, 175, 177, 335
speed 337
split marker 283

whitespace 283
split() 283 348

split marker 283
sprite 202

spritecollide() 210–211
sprite groups 208
sprite properties

image 203, 229
rect 203

spritecollide() 210–211
sprites 202, 338
square brackets 77, 113, 128
Squeak Etoys 358
standard modules 170
Stani's Python Editor 54
star, * 170, 172
Start of our hot dog program 156
startswith() 285
stopping a program 76
store a value 20
storing information 290
str() 153
str() 38
string 21, 42, 45, 82, 296

concatenation 21

substring 286
triple-quoted 22

string methods 282
endswith() 285
index() 286
join() 284
lower() 288
searching 284
split() 283
startswith() 285
strip() 287
upper() 288

string variable, %s 278
style 80, 91
subdirectories 293
subfolders 293
subscript 34
substring 286
subtraction 27
superscript 34
Surface.get at() 190
Surface.set at() 190
symbol 64

: 12, 132
& 267
% 32

syntax 9, 205
syntax error 9
sys.exit() 178

T
tab 108

tab stop 276
tab stop 276
table 126

accessing values 128
tabs 275
test 62
text editor 7
text file 299
text file, .txt 291
text-mode 3
The Card class 321
The computer's turn 332
The main loop of Crazy Eights 325
The main loop with scoring added 333
The whole hangman.py program 309
time 171

current 343
delta 343, 345
real 342
sleep() 171

time class 344
time simulation 342
time.delay() 212
timedelta 345–346
Licensed to Deborah Christiansen <pedbro@gmail.com>

406 Hello World!
timer 225, 351
timestamp 343
top-down 326
triple-quoted string 22, 91
True value 121, 215
try-except 351

except block 352
try block 352

Trying out sounds in Pygame 242
Trying to modify a global variable inside a

function 143
Trying to move a beach ball 192
Trying to move a beach ball again 194
Trying to print a local variable 141
tuple 126
turtle 360
.txt 291
type conversion 38

float() 38
int() 38
str() 38

type, tuple 126
type() 41
types of data 38

U
underscore character, _ 20
Unpickling using load() 305
up arrow, K_UP 221
upper() 288
uppercase 288
user event 225
Using a module 166
Using a sprite group instead of a list 209
Using a timer event to move the ball up and

down 226
Using append mode 301
Using Clock and get_fps() in the beach ball

program 214
Using draw.rect to make art 185
using i, j, and k 80
Using pickle to store a list to a file 304
Using readline() more than once 298
Using sprites to put multiple ball images on the

screen 204
Using _str_() to change how the object

prints 153
Using the Ball class 150
Using the comparison operators 67
Using write mode on a new file 302
Using write mode on an existing file 302

V
validate 330
validation code 330
van Rossum, Guido 359

variable 20, 22, 24, 126
count 108
counter 318
decrement 23, 33
global 141, 143
immutable 126
in the scope 141
increment 23, 33
local 141
mutable 126
naming 144
out of scope 142
scope 140

variable loops 101
variable name

case-sensitive 24
rules 20, 24

variable name, loop 79
variable nested loop 102
variables 113
velocity 337
Virtual Pet GUI 350
VirtualPet.py 352
volume control 243
VPython 360

W
Waiting for the end of the song 244
Wave files 240
web browser 53
while 85, 176
while 1 215
while loop 84, 99, 176

event loop 218
test 84

whitespace 283, 287
Who's the coolest of them all? 84
whole number 39
widgets 261
win32com 361
Windows Media Audio files 240
WMA files 240
working directory 294–295
write 290
write to memory 15
writing to a file 296, 301, 304

using print 303
wxPython 255, 356

X
x-axis 182
xturtle 360

Y
y-axis 182
Licensed to Deborah Christiansen <pedbro@gmail.com>

	Hello World!
	Contents
	Preface
	Acknowledgments
	About this book
	Chapter 1 Getting Started
	Installing Python
	Starting Python with IDLE
	Instructions, please
	Interacting with Python
	Time to program
	Running your first program
	If something goes wrong
	Your second program

	Chapter 2 Remember This— Memory and Variables
	Input, processing, output
	Names
	What’s in a name?
	Numbers and strings
	How “variable” are they?
	The new me

	Chapter 3 Basic Math
	The four basic operations
	Operators
	Order of operations
	Two more operators
	Really big and really small

	Chapter 4 Types of Data
	Changing types
	Getting more information: type()
	Type-conversion errors
	Using type conversions

	Chpater 5 Input
	raw_input()
	The print command and the comma
	The print command and the comma
	Inputting numbers
	Input from the Web

	Chapter 6 GUIs—Graphical User Interfaces
	What’s a GUI?
	Our first GUI
	GUI input
	Pick your flavor
	The number-guessing game . . . again
	Other GUI pieces

	Chapter 7 Decisions, Decisions
	Testing, testing
	Indenting
	Am I seeing double?
	Other kinds of tests
	Other kinds of tests
	What happens if the test is false?
	Testing for more than one condition
	Using “and”
	Using “or”
	Using “not”

	Chapter 8 Loop the Loop
	Counting loops
	Using a counting loop
	A shortcut—range()
	A matter of style—loop variable names
	Counting by steps
	Counting without numbers
	While we’re on the subject . . .
	Bailing out of a loop—break and continue

	Chapter 9 Just for You—Comments
	Adding comments
	Single-line comments
	End-of-line comments
	Multiline comments
	Commenting style
	Commenting out

	Chapter 10 Game Time
	Skier

	Chapter 11 Nested and Variable Loops
	Nested loops
	Variable loops
	Variable nested loops
	Even more variable nested loops
	Using nested loops

	Chapter 12 Collecting Things Together—Lists
	What’s a list?
	Creating a list
	Adding things to a list
	What’s the dot?
	Lists can hold anything
	Getting items from a list
	“Slicing” a list
	Modifying items
	Other ways of adding to a list
	Deleting from a list
	Searching a list
	Looping through a list
	Sorting lists
	Mutable and immutable
	Lists of lists: tables of data

	Chapter 13 Functions
	Functions—the building blocks
	Calling a function
	Passing arguments to a function
	Functions with more than one argument
	Functions that return a value
	Variable scope
	Forcing a global
	A bit of advice on naming variables

	Chapter 14 Objects
	Objects in the real world
	Objects in Python
	Object = attributes + methods
	What’s the dot?
	Creating objects
	An example class—HotDog
	Hiding the data
	Polymorphism and inheritance
	Thinking ahead

	Chapter 15 Modules
	What’s a module?
	Why use modules?
	Buckets of blocks
	How do we create modules?
	How do we use modules?
	Namespaces
	Standard modules

	Chapter 16 Graphics
	Getting some help—Pygame
	A Pygame window
	Drawing in the window
	Individual pixels
	Images
	Let’s get moving!
	Animation
	Smoother animation
	Bouncing the ball
	Wrapping the ball

	Chapter 17 Sprites and Collision Detection
	Sprites
	Bump! Collision detection
	Counting time

	Chapter 18 A New Kind of Input—Events
	Events
	Keyboard events
	Mouse events
	Timer events
	Time for another game—PyPong

	Chapter 19 Sound
	More help from Pygame—mixer
	Making sounds versus playing sounds
	Playing sounds
	Controlling volume
	Repeating music
	Adding sounds to PyPong
	More wacky sounds
	Adding music to PyPong

	Chapter 20 More GUIs
	Working with PythonCard
	Components
	Making our GUI do something
	The return of event handlers
	Moving the button
	More useful GUIs
	TempGUI
	What’s on the menu?

	Chapter 21 Print Formatting and Strings
	New lines
	Horizontal spacing—tabs
	Inserting variables in strings
	Number formatting
	Strings ’n’ things

	Chapter 22 File Input and Output
	What’s a file?
	Filenames
	File locations
	Opening a file
	Reading a file
	Text files and binary files
	Writing to a file
	Saving your stuff in files: pickle
	Game time again—Hangman

	Chapter 23 Take a Chance—Randomness
	What’s randomness?
	Rolling the dice
	Creating a deck of cards
	Crazy Eights

	Chapter 24 Computer Simulations
	Modeling the real world
	Lunar Lander
	Keeping time
	Time objects
	Saving time to a file
	Virtual Pet

	Chapter 25 What’s Next?
	General programming
	Python
	Game programming and Pygame
	Other Python stuff
	Look around

	Appendix - Rules
	Answers to Self-Test Questions
	Chapter 1: Getting Started
	Chapter 2: Remember This—Memory and Variables
	Chapter 3: Basic Math
	Chapter 4: Types of Data
	Chapter 5: Input
	Chapter 6: GUIs—Graphical User Interfaces
	Chapter 7: Decisions, Decisions
	Chapter 8: Loop the Loop
	Chapter 9: Just for You—Comments
	Chapter 10: Game Time
	Chapter 11: Nested and Variable Loops
	Chapter 12: Collecting Things Together—Lists
	Chapter 13: Functions
	Chapter 14: Objects
	Chapter 15: Modules
	Chapter 16: Graphics
	Chapter 17: Sprites and Collision Detection
	Chapter 18: A New Kind of Input—Events
	Chapter 19: Sound
	Chapter 20: More GUIs
	Chapter 21: Print Formatting and Strings
	Chapter 22: File Input and Output
	Chapter 23: Take a Chance—Randomness
	Chapter 24: Computer Simulations

	Index
	Symbols
	Math and comparison operators
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back Cover

