
Prepared exclusively for Trieu Nguyen

What readers are saying about Rails for .NET Developers

Eng and Cohen, like a modern-day Lewis and Clark, have blazed a

trail that .NET developers can follow to the new frontier. If you are

a .NET developer and are considering moving to Ruby on Rails, then

this book is the place to start.

James Avery

President and CEO, Infozerk, Inc.

If you’re ready to make the rewarding trip from .NET to Rails, this

book will give you the road map you need.

Mike Gunderloy

Former .NET Developer, http://afreshcup.com

This book will be a tremendous aid to anyone making the transition

from .NET to Ruby on Rails. All the major topics a new Rails developer

should become familiar with are covered in great detail.

Michael Leung

Lead Developer, Urbis.com

Jeff and Brian have done a wonderful job of explaining Ruby on Rails

to .NET developers in this book...but there’s more value here than just

learning a hot technology. Jeff and Brian show you how Ruby on Rails

can make you a better developer no matter what platform you use, as

well as how it can influence how you design and write web applica-

tions.

Brian Hogan

Principal Consultant, New Auburn Personal Computer

Services LLC

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://afreshcup.com

Rails for .NET Developers

Jeff Cohen

Brian Eng

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Jeff Cohen and Brian Eng.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-20-4

ISBN-13: 978-1-934356-20-3

Printed on acid-free paper.

P2.0 printing, December 2008

Version: 2009-4-20

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.pragprog.com

Contents
Acknowledgments 8

Preface 9

What’s in This Book . 9

Who This Book Is For . 10

About the Environment and Version Requirements 10

Conventions . 11

Online Resources . 11

I Hello, Rails 12

1 Getting Started with Rails 13

1.1 Why Rails? . 13

1.2 Culture Shock and Its Treatment 15

1.3 Let’s Get This Party Started 17

1.4 Installing Ruby and Rails 18

1.5 Connecting to a Database 21

1.6 Instant Gratification—Your First Rails App 22

2 Switching to Ruby 31

2.1 Ruby vs. .NET for the Impatient 32

2.2 Our First Ruby Program 34

2.3 Working with String Objects 35

2.4 irb Is Your New “Immediate Mode” 38

2.5 Arrays . 38

2.6 Symbols . 44

2.7 Hashes . 46

2.8 Everything Is an Object 48

2.9 Classes and Objects . 50

2.10 Loops . 56

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CONTENTS 6

3 Ruby Skills for the Rails Developer 58

3.1 Working with Collections and Iterators 59

3.2 Reusing Code with Base Classes 66

3.3 Where’d My Interfaces Go? 68

3.4 Code Reuse Using Modules 70

3.5 Ruby Wrap-Up . 73

II Rails in Action 74

4 A Bird’s Eye View of Rails 75

4.1 Comparing Web Architectures 76

4.2 Environments in Rails 81

4.3 Configuring Data Access 83

4.4 Receiving HTTP Requests 84

4.5 Generating HTTP Responses 85

5 Rails Conventions 88

5.1 MVC: Separating Responsibilities in Your Application . 88

5.2 Putting It to REST . 94

6 CRUD with ActiveRecord 100

6.1 Displaying a Grid of Data in a Table 100

6.2 Sorting, Filtering, and Paging Data 108

6.3 Validating User Input . 119

6.4 Representing Relationships Between Tables 124

7 Directing Traffic with ActionController 128

7.1 Routing and Pretty URLs 128

7.2 User Authentication . 133

7.3 Providing an API . 142

8 Exploring Forms, Layouts, and Partials 150

8.1 Diving Into Forms . 150

8.2 Using Layouts Instead of Master Pages 161

8.3 Creating Partials Instead of User Controls 166

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=6

CONTENTS 7

9 Creating Rich User Experiences with Ajax 172

9.1 First, a Little Background 172

9.2 Partial-Page Updates . 174

9.3 Visual Effects on the Web 184

III Advanced Topics 190

10 Test-Driven Development on Rails 191

10.1 A First Look at Test/Unit 192

10.2 Test-Driven Development with Test/Unit 195

10.3 DRYing Up Tests with Setup Methods 204

10.4 Providing Test Data with Fixtures 206

10.5 Behavior-Driven Development with Shoulda 210

11 Integrating with .NET 216

11.1 Using a Rails Web Service from .NET 216

11.2 Using a SOAP Web Service from Ruby 227

12 Finishing Touches 232

12.1 Getting to Know RubyGems 232

12.2 Using Gems in Your Rails Applications 238

12.3 Learning More About rake 240

12.4 Distributing Rails with Your Application 245

12.5 Deployment Considerations 248

13 Inspired by Rails 252

13.1 IronRuby . 253

13.2 ASP.NET MVC . 257

13.3 Other Open Source Projects 261

13.4 How About You? . 262

Bibliography 264

Index 265

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=7

Acknowledgments
We are very grateful to those who helped make this book a reality.

Susannah Pfalzer’s time, patience, and insight were enormously valu-

able to us time and again during the writing of this book. We also

had great help from our reviewers—Geoffrey Grosenbach, James Avery,

Michael Dwan, Dianne Siebold, Mike Gunderloy, Michael Leung, Scott

Hanselman, and Ron Green—and our publishers, Dave Thomas and

Andy Hunt. They not only helped us with technical details, but their

thoughtfulness and feedback elevated our writing to the next level. We

would also like to thank Michael Manley, Scott Epskamp, and the rest

of Jeff’s colleagues at Leapfrog Online, whose understanding and flexi-

bility helped make this book possible.

Jeff says: I could not have written this book without the encouragement

and support of my beautiful wife, Susannah, and our two wonderful

children, Laura and Emily. I also thank my parents, Bill and Marilyn

Cohen, who first taught me how to read and write—two skills that came

in quite handy.

Brian says: I’d like to thank my wonderful wife, Erika, for her support

and inspiration—but especially for caring for our two baby girls, Katie

and Abbie, all day and night while I’ve been working on this book! Also

thanks to my mom and dad, Alfred and Patricia Eng, for the Apple II

that got all this computer stuff started.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Preface
As a .NET developer, you’ve probably heard the buzz surrounding Ruby

on Rails. It’s true: Rails enables you to create database-driven web

applications with remarkable speed and ease. And like many other open

source projects, Rails has been most easily adopted by individuals and

organizations already immersed in the open source community. That

means, as a Microsoft developer, you face unique challenges learning

not just Rails but all the open source technologies that go along with it.

This book will be your guide as you navigate this new terrain.

For a .NET developer, learning Rails is as much about the cultural and

philosophical shifts in thinking as it is about the technical learning

curve. In this book, we hope to break down some of these barriers for

you. We have learned a lot of valuable lessons from Rails that we’ve

applied to our .NET development too; if you take anything away from

this book, it will be a new way of thinking about software development—

the Rails way.

What’s in This Book

To get things going, we’ll introduce the Rails development environment

and the core set of tools you’ll need to be an effective Rails developer

from the very beginning. Nothing is better to get your feet wet than to

actually write some code and build a small application, so that’s exactly

what we’ll do.

Becoming a skilled Rails developer is all about learning Ruby. So, we’ll

take an in-depth look at the Ruby language and how to understand

it from a Microsoft developer’s perspective. We’ll ease you into it and

gradually move into more advanced topics.

Once we’ve established a solid base of Ruby knowledge, we’ll dive head-

first into the Rails framework. We’ll address common programming

scenarios and compare the .NET approaches to the Ruby/Rails ones.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

WHO THIS BOOK IS FOR 10

We will look at almost all aspects of the framework from at least a

high level, from data access to the controller to the presentation layer,

including Ajax.

Throughout the book we’ll be emphasizing agile development practices,

including a tour of basic unit testing approaches for Rails applications.

You’ll also get a head start on integrating your new Rails applications

with existing .NET web services, as well as learn how you can write

.NET programs to use Rails web services.

Finally, we’ll wrap up by talking about the Rails ecosystem, its philoso-

phies and tools, and how (and why) Rails is quickly becoming one of

the frameworks of choice for the truly agile web developer.

Who This Book Is For

This book is written for experienced .NET developers who are interested

in exploring Rails for web development. A strong background with web

development is not necessary, but we’re assuming you have at least

some Microsoft-centric programming experience. We are .NET develop-

ers, so we’ve geared the material in this book to suit the unique needs

of those who think the way we do about programming problems.

The hurdles of learning a new language and a new framework can be

daunting. Once we get you up and running, we’ll start with a gentle

introduction to the object-oriented Ruby language, including examples

and direct comparisons with C#, so you’ll quickly feel at home writing

Ruby code for the first time.

About the Environment and Version Requirements

Most .NET developers we know write software on a Windows PC. As

such, we’ve written the code examples and most of the walk-through

console commands and tools on the Windows platform (some exam-

ples also show Mac/Linux-style shell sessions for those developing or

deploying on those platforms). The Rails community is well-known for

being Mac-friendly, but it’s just as easy to develop Rails applications on

Windows—we’ll highlight the differences along the way. The majority of

the screenshots are from our Windows XP and Windows Vista develop-

ment environments; the web application screenshots were taken from

Internet Explorer 7 and Firefox 2.0.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=10

CONVENTIONS 11

Most of the code examples compare .NET/ASP.NET 3.5 with Rails 2.1.

The Ruby examples will run on most newer Ruby versions, but version

1.8.6 or newer is recommended. Because Rails is ever-changing tech-

nology, we’ve made our best effort to present the examples using the

latest and greatest, Rails 2.1. However, that means many of the code

examples will not work in earlier versions of Rails.

Most of the .NET code is vanilla, out-of-the-box ASP.NET 3.5. Although

numerous plug-ins and third-party assemblies exist that give .NET

developers some of the same capabilities as Rails (we explore some in

Chapter 13, Inspired by Rails, on page 252), we won’t cover them in

depth in this book.

Conventions

There is a lot of code in this book, and to make it easier to distinguish

between the .NET and Ruby/Rails code, we’ve marked snippets of code

with an icon that corresponds to the language in which it’s written.

.NET Download preface/hello.cs

public void Hello()

{

Console.WriteLine("Hello");

}

Ruby Download preface/hello.rb

def hello

puts 'hello'

end

Online Resources

All code samples are available for download online.1 If you’re read-

ing this book in PDF, you can access the downloadable code sam-

ples directly by clicking the little gray boxes before code excerpts. In

addition, we encourage you to interact with us by participating in our

forums.2

Let’s get started!

1. http://www.pragprog.com/titles/cerailn/source_code

2. http://forums.pragprog.com/forums/75

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/preface/hello.cs
http://media.pragprog.com/titles/cerailn/code/preface/hello.rb
http://www.pragprog.com/titles/cerailn/source_code
http://forums.pragprog.com/forums/75
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=11

Part I

Hello, Rails

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Chapter 1

Getting Started with Rails
Grand adventures and trips to the grocery store begin the same way.

You step outside your door and close it behind you. Soon your inten-

tions will become clear: you’re either just going to get some more milk

or on your way to some other part of the planet.

As software developers, we work with the same technologies day after

day. We simply tend to stick with what we already know. The best soft-

ware developers, however, make time to explore new ideas and learn

new things. These journeys enrich their understanding of the art and

science of software engineering.

We all say we want to try new things, but actually doing so is another

story. It’s the difference between glancing at an adventure guide and

actually booking a ticket on the next flight out.

This book is for those .NET developers who are ready for their next

adventure.

1.1 Why Rails?

Rails offers attractive benefits to all website developers. Let’s highlight

some of the most-often cited reasons that developers are trying Rails.

The first is the issue of cost. Already got a computer? Then you’re

in luck, because everything else you need can be had for free. The

Ruby interpreter, the entire Rails framework library, a wide choice of

good code editors, various deployment tools, and industrial-strength

database engines such as MySQL are all available at no cost to the

developer. Even free online support can be found within the commu-

nity of fellow Ruby on Rails developers.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

WHY RAILS? 14

Second is the notion of writing beautiful code. Ruby is a powerful and

incredibly flexible programming language for web application develop-

ment. Most C# and VB .NET developers will find themselves writing less

code to accomplish the same thing in Ruby. Ruby code tends to be more

readable, easier to test, and easier to change than the statically typed

.NET languages.

Next up is Rails itself. Rails was built on the premise that the vast

majority of web applications are simply HTML forms on top of a data-

base, and thus it makes these types of applications very easy to build.

If you’ve never had a chance to build your code on top of a Model-View-

Controller framework before, you’re going to love it. (In fact, Microsoft

has recently added an MVC project type to ASP.NET 3.5 projects as

its response to the success of MVC frameworks like Rails. We’ll take a

peek at it in Chapter 13, Inspired by Rails, on page 252.) The separation

of concerns brings both simplicity and flexibility to your application’s

internal architecture. Although many aspects of Rails are configurable,

Rails requires no XML configuration files. The tight integration between

view templates and Ruby code also makes it much easier for website

designers and programmers to collaborate on the same project.

Rails also appeals to developers who are well-versed in “agile” tech-

niques. The built-in support for unit testing, refactoring, and incre-

mental database modeling provides a simpler, faster path to large-scale

application development.

The Ruby community has experienced a recent explosion of alternate

Ruby implementations that allow integration with non-Ruby environ-

ments and code libraries. JRuby and IronRuby are the most prominent

examples that provide seamless integration with Java and .NET code,

respectively. The once-high bar for Rails adoption in “the enterprise” is

getting lower and lower.

Finally, it’s been our experience that developing applications with Rails

is just plain fun. There’s a particular rhythm and flow that occurs with

Rails development that most developers enjoy. The Rails framework

is geared to generate visible results quickly, leading to the pattern of

“small victories” often cited as a key reason for a project’s success.

These are all great and valid reasons why Rails is so compelling. But

even seasoned .NET developers willing to give Rails a shot can find the

experience disorienting enough to give up before they can really ever

get started. Let’s talk about these challenges and how we’re going to

conquer them in this book.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=14

CULTURE SHOCK AND ITS TREATMENT 15

1.2 Culture Shock and Its Treatment

.NET developers who take their first step into the Ruby on Rails frame-

work are joining a new developer community. As a result, they often

feel like they’ve been transported to a foreign land for the first time. In

this new land, there seem to be some very happy people bustling about,

but the surroundings are a bit strange. Local customs are unfamiliar.

Everyone is speaking a different language than the one they know. It

can add up to a kind of culture shock that can be a bit discouraging

at first. As a result, some first-time visitors to the land of Rails quickly

give up and take the first flight back to a more familiar place.

This book will be your personal tour guide to help you get your bearings

in the world of Rails. Pretty soon, you won’t just be coping with Rails;

you’ll be a very happy programmer, bustling around in your own way

as you begin to discover the joy of developing web applications in Ruby

on Rails.

Let’s start by addressing the most obvious change: the Ruby program-

ming language. Learning Ruby isn’t just a matter of memorizing new

keywords, although you will have to do that. It’s also not just a matter

of learning a new class library, although you will have to do that, too.

It’s like memorizing the vocabulary of a new spoken language. You may

be able to say the words, but you’re not going to sound like a native

speaker until you adopt the particular idioms, nuances, and inflec-

tions that lead to true language fluency. Writing excellent Ruby code

is similar: there is certainly some new “vocabulary” to learn, but the

idioms, style, and nuances are the key to writing natural-looking Ruby

programs.

Along with a new programming language comes a new set of develop-

ment tools. If you are a Visual Studio user who never leaves the IDE,

you may not realize the variety of tools you’ve been using:

• A code editor

• A debugger

• A unit testing framework1

• A build system

• A distribution/deployment packaging tool

1. At the time of this writing, only the paid editions of Visual Studio Team System provide

any support for integrated unit testing. However, many Visual Studio users have long

used tools like NUnit to fill this need.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=15

CULTURE SHOCK AND ITS TREATMENT 16

One day, Visual Studio may support the writing of Ruby on Rails appli-

cations directly in the IDE. Some products such as Ruby in Steel2 inte-

grate into Visual Studio to provide an environment for building Rails

applications inside the IDE, and the IronRuby project (see Section 13.1,

IronRuby, on page 253) will also provide better support for Rails. In the

meantime, many developers choose to use alternative coding environ-

ments on Windows.

Many developers, however, switch to a new operating system altogether.

Rails, like most open source projects, began life on Linux. The best

tools and support thrive primarily on Mac and Linux systems. Since

you will likely deploy your Rails applications onto Linux servers, there’s

an advantage to building Rails applications on a *nix-based OS as well.

Developing on Windows but then deploying to Linux can complicate the

develop-test-deploy cycle. On the other hand, switching development

platforms just might not be an investment you’re ready to make right

off the bat, and that’s precisely why we’ll show you how to develop Rails

apps on Windows throughout this book.

Getting help when you need it is also going to be different from what

you’re accustomed to—there’s nothing at the moment that compares

to the vast repositories of information like the one found at MSDN.

Although you can find basic information on the Ruby and Rails home

pages,3 you can find in-depth user-to-user support by visiting one

of the online Google Groups or IRC channels.4 Whether you need an

answer to a specific question or just want to keep up with the latest

news, they are both invaluable in helping you get the information you

need. Lastly, your best friend may well be the official Ruby on Rails

documentation, which ships with Rails and is also available online in a

variety of different formats.5

That leads to the final, and perhaps most exciting, step you can take

to smooth your transition into your new community: participate! Once

you’ve learned something about Rails, no matter how small, it’s imme-

diately time to give back. Find questions on the Rails Google Group from

newcomers that you’re able to answer, and help them out. And remem-

ber that Rails is an open source project. That means absolutely anyone

is allowed submit code patches for consideration. Whether you’d like to

2. http://sapphiresteel.com/

3. http://www.ruby-lang.org/ and http://www.rubyonrails.org

4. Start with http://groups.google.com/group/rubyonrails-talk or #rubyonrails on IRC.
5. http://railsbrain.com/ and http://api.rubyonrails.org/ are good places to start.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://sapphiresteel.com/
http://www.ruby-lang.org/
http://www.rubyonrails.org
http://groups.google.com/group/rubyonrails-talk
http://railsbrain.com/
http://api.rubyonrails.org/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=16

LET’S GET THIS PARTY STARTED 17

Getting Help Online (Or, Help Them Help You)

We’d like to take a moment to provide a public service
announcement. It’s important to learn the etiquette that’s
expected when using the various Google Groups and IRC
channels that are open to all Ruby on Rails developers.

Please remember that you’ve stepped into a land of volun-
teerism, and etiquette is paramount. Unlike getting support
from Microsoft for your VB .NET questions, those who participate
in the various online Ruby on Rails communities do so for free
and on their own time.

Before asking a question, do your homework first. Google is your
friend. It’s unlikely that you’re the first one to ask any particular
question, so search for the answer first.

If you can’t find what you’re looking for, then by all means feel
free to participate in the discussions. Just be sure to mention
what you’ve tried so far, and reduce any code samples to the
minimum necessary to demonstrate the issue you’re having.
And when you do get an answer, be sure to thank those who
took the time to help you.

We now return you to your regularly scheduled programming.

fix a bug, add a feature, or improve the documentation, there are many

ways to lend a hand. You’re encouraged to get personally involved in

the continued success of Rails.

1.3 Let’s Get This Party Started

Remember when you were a kid and someone in your house was having

a birthday? Before the guests came over, the cake would be all set out,

but it wasn’t time to eat it yet. When Mom wasn’t looking, what did you

want to do? Get a taste of some frosting, of course!

The rest of the this book will be like that birthday cake: there will be a

lot of layers to see, some cool decorations to admire, and more than one

fire-breathing implement placed on top. The party will really get started

in Chapter 2, Switching to Ruby, on page 31. But who can wait that

long? Let’s get a taste right now.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=17

INSTALLING RUBY AND RAILS 18

To get things rolling, we’ll show you how to get a Ruby and Rails devel-

opment environment set up on your Windows machine. It’s a fairly

straightforward process that takes just a few minutes. In fact, build-

ing a Rails development environment from scratch is arguably easier

on Windows than on any other platform.

The ingredients for creating a productive Rails development environ-

ment are Ruby, Rails, a database engine, and a few supporting tools.

In this chapter, we’ll walk through getting all these necessary compo-

nents of your development environment installed. Then, we’ll get right

to work and exercise your new developer’s toolset by building a small

Rails application.

1.4 Installing Ruby and Rails

The first thing we’ll look at is how to install the Ruby language, followed

by the quick-and-easy installation of the Rails framework.

Instant Rails

Instant Rails,6 written by Curt Hibbs, has long been the Windows tool

of choice for getting a Rails development environment up and running

quickly. However, there is a lot of valuable information to be learned

about the inner workings of Ruby and Rails by going through the instal-

lation process ourselves, so that’s what we’re going to do for the remain-

der of this section.

The Ruby Language

Before we can install Rails, we’ll need to install the Ruby language and

interpreter. For this, the Ruby One-Click Installer (OCI)7 does the trick.

After downloading and stepping through the installation, you can make

sure that Ruby is indeed installed by entering a simple command at the

command prompt:

C:\> ruby -v

And this should yield something like the following:

ruby 1.8.6 (2007-09-24 patchlevel 111) [i386-mswin32]

6. http://instantrails.rubyforge.org

7. http://rubyforge.org/projects/rubyinstaller/

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://instantrails.rubyforge.org
http://rubyforge.org/projects/rubyinstaller/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=18

INSTALLING RUBY AND RAILS 19

RubyGems

The Ruby OCI includes a Ruby-specific package and software distribu-

tion system called RubyGems, which we cover in much greater depth in

Section 12.1, Getting to Know RubyGems, on page 232. You can think

of it being similar to Windows Installer, but for Ruby programs. It is

accessible via the gem command, and we’ll use it now to install Rails.

Git

Git8 is a distributed version control system that is quickly gaining popu-

larity in the open-source world, especially with Ruby developers. Many

of the popular Ruby-based open-source projects, including Rails and

many of its plugins, are now hosted using Git, so installing Git on our

development machine is definitely recommended.

The easiest way to get Git running on Windows is to install msysgit9 with

its default configuration. Once it’s installed, we can simply right-click

on any directory in Windows Explorer to open up an interactive shell in

which we can run Git commands.

Rails

The gem command can take a variety of parameters, which we will dig

deeper into in Section 12.1, Getting to Know RubyGems, on page 232,

but for now, we’re going to simply tell the gem command that we want

to install a package called rails:

C:\> gem install rails

Rails actually consists of several smaller packages—ActiveRecord,

ActiveSupport, ActionPack, ActionMailer, and ActionWebService—all of

which are installed when you install Rails using the gem command.

We’ll take a much closer look at each one of these packages in Chap-

ter 4, A Bird’s Eye View of Rails, on page 75, but for now, if everything

goes well, we’ll see some output that lets you know that each one of

these packages was successfully installed and that, in addition, all the

documentation for these gems are installed. To make sure everything

worked, you can test your Rails installation by issuing this command:

C:\> rails -v

8. http://git.or.cz/

9. http://code.google.com/p/msysgit/

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://git.or.cz/
http://code.google.com/p/msysgit/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=19

INSTALLING RUBY AND RAILS 20

Code Editing on Windows

Code editors for Rails development on Windows are not nearly
as mature or full-featured as what you may be used to with
Visual Studio. However, you have some several solid choices,
ranging from simple text editors to more comprehensive inte-
grated development environments. As you become more pro-
ficient at developing Rails applications, you’ll find that the fea-
tures of your editor/IDE are going to be less important than sim-
ply finding an environment in which you are comfortable writ-
ing code and navigating through the Rails directory structure.
That said, here are several good choices for the Windows plat-
form:

E Text Editor A text editor that is similar in spirit to TextMate for
Mac OS X.

Ruby in Steel A Rails development plug-in for Visual Studio.

Aptana IDE (RadRails) Formerly a stand-alone application,
RadRails is now a plug-in for the Aptana IDE and is
a mature Rails development environment that supports
Ruby and Rails out of the box, including syntax highlighting
and basic code completion.

WordPad If you are on Windows, you’ve got it. Simple and
effective.

Notepad++ Like WordPad but includes simple syntax highlight-
ing and an integrated file viewer.

Scite Comes with the Ruby OCI and provides very good syntax
highlighting for many languages, including Ruby.

Ultraedit A more full-featured text editor with support for Ruby
syntax highlighting.

And you should see something like this:

Rails 2.1.0

If you see this output, congratulations! You’ve successfully installed

Ruby on Rails.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=20

CONNECTING TO A DATABASE 21

1.5 Connecting to a Database

Rails is great at a variety of web-based applications, but its sweet spot

is the rapid development of database-backed websites. So naturally,

we’ll need to install and set up a database. Rails supports the use of

most popular relational database systems, so what you decide upon

for your projects is largely based on what you’re comfortable using.

MySQL is free and powerful, so Rails developers who don’t otherwise

have a preference tend to choose it for production use. SQL Server is

also supported for those of us who are comfortable with it from the .NET

world. However, for development and testing purposes, Rails 2.x uses

SQLite, a simple file-based RDBMS, by default. Since it’s supported out

of the box, most of the examples in this book will assume a SQLite 310

database.

Installing SQLite 3 on Windows

Although support for SQLite 3 is built in to Rails, it does not come

preinstalled with any version of Windows (like it does with Mac OS X

10.5). Thankfully, it’s straightforward (and free) to obtain and install it

on your Windows box. Once you’ve downloaded and unpacked the latest

version available on the SQLite website, copy sqlite3.dll and sqlite3.def to

your C:\windows\system32 directory. The last thing to do is to install the

supporting files that will allow access to the SQLite 3 API from Ruby.

This is all nicely packaged up in a single gem:

C:\> gem install sqlite3-ruby

Just to make sure, let’s test that SQLite 3 was successfully installed.

C:\> sqlite3

SQLite version 3.5.4

Enter ".help" for instructions

sqlite>

If your output looks like this, you are all done with your database set-

up! Type .exit to leave the SQLite 3 shell, and let’s get to building your

application.

10. http://www.sqlite.org/

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.sqlite.org/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=21

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 22

1.6 Instant Gratification—Your First Rails App

The best way to “get it” when starting out with Rails is to just go for it by

building a simple application and playing around with its capabilities.

In this section, that is exactly what we’ll do. We’ll build a basic applica-

tion that’s going to help us keep track of all the books (yes, paper!) in

our library.

We’re going to write almost the entire application using just a few simple

commands. You’ll have to see it to believe it, so let’s fire up a command

prompt, cd to where you’d like your application to live (we’ve chosen

the C:\dev directory), and create a new Rails application:

C:\dev> rails book_tracker

C:\dev> cd book_tracker

The rails command results in the default Rails directory structure being

created. Like File > New Project in Visual Studio, it creates a shell of an

application for us. Let’s go ahead and list the directory contents to see

exactly what was created:

C:\> dir

app

components

config

db

doc

lib

log

public

script

test

tmp

vendor

We’ll go into the Rails directory structure in further detail later, but for

now, let’s focus on the two directories where we’ll likely spend the most

time. The app directory contains all your main application code, broken

down into four subfolders: controllers, helpers, models, and views. And the

config directory contains our application’s configuration. Among other

things, this application configuration describes how we’ll connect to our

database.

Once we’ve created the Rails project, it’s time for some Rails magic.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=22

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 23

Scaffolding—An App in One Line

Scaffolding, in Rails terms, is a lot like real-world scaffolding—it is boil-

erplate code to help keep our application in place while we’re build-

ing the real production-quality code behind it. We can put it up very

quickly, and when we’re done, we should tear it down so that it doesn’t

get in the way. Let’s put the scaffolding up now:

C:\dev\book_tracker> ruby script/generate scaffold book title:string

author:string on_loan:boolean

exists app/models/

exists app/controllers/

exists app/helpers/

create app/views/books

exists app/views/layouts/

exists test/functional/

exists test/unit/

create app/views/books/index.html.erb

create app/views/books/show.html.erb

create app/views/books/new.html.erb

create app/views/books/edit.html.erb

create app/views/layouts/books.html.erb

create public/stylesheets/scaffold.css

dependency model

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/book.rb

create test/unit/book_test.rb

create test/fixtures/books.yml

create db/migrate

create db/migrate/20080722191828_create_books.rb

create app/controllers/books_controller.rb

create test/functional/books_controller_test.rb

create app/helpers/books_helper.rb

route map.resources :books

The generate command, in its simplest form, takes two parameters, the

first being what you’d like to generate—in this case a scaffold—and the

second being the name of the new class. By convention, the scaffold

generator expects the singular form of the resource you’re trying to

create, so we’ve passed in the singular book argument to the command.

In addition, we’ve also told the generator about what fields a book has.

We’ve told it that each book will have two string fields, title and author,

and a boolean field that indicates whether we’ve lent that book to a

friend.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=23

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 24

All the scaffold generator command (or any generator command, for

that matter) does is create a bunch of files for us. We could have created

these files ourselves, but this is a whole lot easier! We’ll get into what

all these files are for in a moment, but for now, let’s concentrate on the

db/migrate/20080722191828_create_books.rb file. This file is what’s known

as a migration.

Versioning the Database with Migrations

A migration is a Ruby script that uses a very simple domain-specific lan-

guage (DSL) for manipulating databases. As .NET developers, we might

be accustomed to inventing our own ways of creating and versioning

database schemas. If we were developing an app with .NET and SQL

Server, a simple example might go something like this:

1. When developing the first cut of your application, create an initial

database creation script by using SQL or by using a graphical tool

such as SQL Management Studio and then dumping the schema

to a text file.

2. While developing, make changes to the database schema through

a similar process—using various SQL scripts—sharing throughout

with team members so they can keep up-to-date.

3. After our application is deployed to staging or production envi-

ronments, use additional SQL scripts we’ve created to keep the

database schemas on your development environment in sync with

these other environments in our IT infrastructure.

Migrations are simply the Rails way of doing the same thing. Except

that instead of using SQL, it’s all written in Ruby. This approach has a

couple of benefits:

• Since our app and database manipulation are all written in the

same language, there’s very little context switching or deep knowl-

edge about database-specific intricacies necessary to be success-

ful building your app.

• Rails does all the low-level SQL for you, and it is completely

platform-agostic. We can easily switch from MySQL to Postgres

to SQL Server if we want and even have a different database plat-

form per environment. Imagine developing on a Mac with SQLite 3,

staging to a Linux box with MySQL, and deploying to a Windows

server with SQL Server for production (not that we recommend

this, but doing so would be trivial).

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=24

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 25

Let’s open db/migrate/20080722191828_create_books.rb and take a peek at

what a migration looks like:

Ruby Download instant/20080722191828_create_books.rb

class CreateBooks < ActiveRecord::Migration

def self.up

create_table :books do |t|

t.string :title

t.string :author

t.boolean :on_loan

t.timestamps

end

end

def self.down

drop_table :books

end

end

The fields we passed as parameters to the scaffold generator command

are already in this migration file. We are free to modify them in any way

at this point; the actual changes to the database schema have not been

made yet.

The name of the file is crucial—well, at least the number at the begin-

ning is. This is a time stamp of when the migration was created, and

it represents the database version. As we add more migrations to our

application, that number will increase; that’s how Rails knows the order

in which to execute them.

A migration class has two methods: self.up and self.down. The self.up

method tells Rails what to do when migrating up; likewise, the self.down

method gets executed when rolling the database back.

Remember, the generate command creates a bunch of files—nothing

else. The actual database manipulation doesn’t take place until we exe-

cute the migration file. Let’s do that now:

C:\dev\book_tracker> rake db:migrate

(in c:/dev/book_tracker)

== 20080722191828 CreateBooks: migrating ==============================

-- create_table(:books)

-> 0.2267s

== 20080722191828 CreateBooks: migrated (0.2269s) =====================

rake is Ruby’s automation and task-running utility (more about rake in

Chapter 12, Finishing Touches, on page 232), and we’ve just used it

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/instant/20080722191828_create_books.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=25

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 26

to run the db:migrate task, thus creating our books table. Wait, where?

Remember that, unless you specify otherwise, Rails will use the SQLite

3 engine for its development and test databases by default. If you now

list the contents of the db directory, you’ll see that your development

database (the development.sqlite3 file) has just been created.

Fire It Up

Believe it or not, a complete application that we can use to maintain

our book collection is now ready to use! But first, we’ll want to start

up WEBrick, the lightweight web server that comes with the default

Rails installation.11 WEBrick is the Rails equivalent of Web Developer

Server for us ASP.NET devs—it’s a technology that lets us run our app

locally while developing. And, like Web Developer Server, we access it

via localhost on a high-numbered port that doesn’t interfere with other

services on our machine. WEBrick starts up on port 3000 by default:

C:\dev\book_tracker> ruby script\server

=> Booting WEBrick...

=> Rails application started on http://0.0.0.0:3000

=> Ctrl-C to shutdown server; call with --help for options

Head over to http://localhost:3000 using your web browser of choice. You

should see the standard Rails welcome screen, as shown in Figure 1.1,

on the following page. Now, simply add the name of the resource you’re

interested in—in this case books—to the end of that URL so that you end

up with http://localhost:3000/books. Then you can marvel at what you’ve

accomplished with one simple command.

As you browse, you’ll find that everything you need to create, update,

read, and delete books has been automatically generated for you. Not

only is the application perfectly usable, but the code that’s been gener-

ated is a great starting point for understanding how a Rails application

is supposed to be built.

Time to Tweak

OK, that was easy. Let’s take it a step further now. Let’s say we’d now

like to capture the date on which each book was purchased.

11. If you have the mongrel gem installed, it will be used instead of WEBrick.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=26

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 27

Figure 1.1: Rails welcome screen

Thanks to migrations, adding the field to the database is easy. Simply

generate a new migration with this command:

ruby script\generate migration add_purchased_on_to_books

exists db/migrate

create db/migrate/20080722191930_add_purchased_on_to_books.rb

This will create a new migration file at db/migrate/20080722191930_add_

purchased_on_to_books.rb. Now we’ll add code to the self.up method to

indicate what should happen when we upgrade from the current ver-

sion (version 20080722191828) to the next version (version 20080722-

191930—as indicated by the first part of the migration’s filename). And,

we’ll also add code to the self.down method in case we ever want to roll

back to the previous version.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=27

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 28

Joe Asks. . .

How Do I Roll Back My Database to a Previous Version?

Migrations can also be undone:

C:\dev\book_tracker> rake db:rollback

In addition, the rake task used to migrate up also accepts an
optional parameter with the target version. For example, the
following command would also migrate the database back to
version 20080722191828:

C:\dev\book_tracker> rake db:migrate VERSION=20080722191828

Ruby Download instant/20080722191930_add_purchased_on_to_books.rb

class AddPurchasedOnToBooks < ActiveRecord::Migration

def self.up

add_column :books, :purchased_on, :date

end

def self.down

remove_column :books, :purchased_on

end

end

Now, we’ll execute the migration:

C:\dev\book_tracker> rake db:migrate

(in C:/dev/book_tracker)

== 20080722191930 AddPurchasedOnToBooks: migrating ====================

-- add_column(:books, :purchased_on, :date)

-> 0.0470s

== 20080722191930 AddPurchasedOnToBooks: migrated (0.0470s) ===========

Now that we’ve added the new field to the database, the last step is to

add the new field to the pages used to create, edit, and display books.

Open app/views/books/new.html.erb, and you’ll notice that the scaffolding

created code that generates text fields for the title and author fields, as

well as a checkbox for the “on loan” flag. The methods text_field and

check_box in this code are known as form helpers. These helper meth-

ods tell Rails to show text input and checkbox input HTML tags, respec-

tively, when the page is rendered. Since we’ve added a date column to

the database, we could use a text input field if we wanted, but in most

cases, the date_select helper method to display the date input using

three drop-down boxes is a more attractive choice.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/instant/20080722191930_add_purchased_on_to_books.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=28

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 29

Ruby Download instant/new.html.erb

<h1>New book</h1>

<%= error_messages_for :book %>

<% form_for(@book) do |f| %>

<p>

Title

<%= f.text_field :title %>

</p>

<p>

Author

<%= f.text_field :author %>

</p>

<p>

On loan

<%= f.check_box :on_loan %>

</p>

<p>

Purchased on

<%= f.date_select :purchased_on %>

</p>

<p>

<%= f.submit "Create" %>

</p>

<% end %>

<%= link_to 'Back', books_path %>

Head on over to http://localhost:3000/books again, and give it a try. Upon

visiting the “create book” page, you should see something similar to

what’s shown in Figure 1.2, on the next page. Using the same tech-

nique, you should also go ahead and enhance app/views/new.html.erb in

the same way.

More One-Liners—Validating Input

As we’ve seen so far, Rails is the king of the one-liners. These simple

commands represent a lot of the little things you need to turn your app

from a set of simple forms into a full-blown web application.

Try to create a new book with no title and no author. You’ll find that

there’s no validation preventing that from happening. Luckily, there’s

an easy way to fix that. Open app/models/book.rb, and add a new line of

code, just after the class definition.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/instant/new.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=29

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 30

Figure 1.2: Creating a book with a “Purchased On” date

Ruby Download instant/book.rb

class Book < ActiveRecord::Base

validates_presence_of :title, :author

end

Try to create a new book with no title or author one more time. Voila!

Now Rails catches that error and displays an appropriate error message

on the page.

In this chapter, we’ve gotten a solid Rails development stack installed,

and we’ve seen how easy it is to get a simple application up and run-

ning. We’ve already built a real application that talks to a database,

learned how to do basic database versioning, and even done some sim-

ple form validation. That’s not bad for just a few lines of code.

We also built it all without the help of an IDE, which is probably differ-

ent from what you’re used to, if you’ve been living in the .NET world for

a while.

You’re now prepared to go a lot deeper into the anatomy of a Rails

application and understand how the Ruby language plays a big part in

what makes Rails what it is.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/instant/book.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=30

Chapter 2

Switching to Ruby
All good Rails developers share a common trait: they are also good Ruby

programmers. A solid understanding of the Ruby programming lan-

guage is essential to reaching those “ah-ha!” moments that will truly

elevate your Rails expertise. Ruby is an object-oriented language, like

C# or VB .NET, so many concepts in Ruby will be very familiar and easy

to pick up.

However, because Ruby is also a scripting language and does not dis-

tinguish between a compilation phase and an execution phase, some

details of Ruby semantics may not be as apparent. Ruby is also a

dynamically typed programming language, which means any variable

in memory is allowed to change its type while the program is running.

This can be unsettling for those of us who are accustomed to a statically

typed language like C# or VB .NET. Statically typed languages require

that variables are not only declared as belonging to a specific type, but

also they must remain so for the duration of the program’s lifetime. An

object’s callable methods, properties, and internal field structures are

immutable for the life of the object. Attempting to treat an object with

the wrong type specification can be disastrous. The C# and VB .NET

compiler catches type mismatch errors for us so that we’re much less

likely to find a type error at runtime.

In contrast, since Ruby objects can, by design, change their list of

callable methods at runtime, Ruby developers learn to rely on unit tests

to not only test the type-compatibility of their code but also to ensure

the correctness of all facets of a Ruby application.

But there is a lot of good news. The similarities between Ruby and

the .NET languages far outweigh their differences. In this chapter, we’ll

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

RUBY VS. .NET FOR THE IMPATIENT 32

highlight the essential elements of Ruby, often comparing them with

their .NET counterparts, so that you can get up to speed with Ruby

quickly and with confidence.

For a complete introduction to the Ruby language, see Programming

Ruby [TFH05].

2.1 Ruby vs. .NET for the Impatient

If you’ve never written any code in Ruby, you’re probably anxious to find

out what’s different and whether you’ll have to throw out everything you

already know about .NET and start over. Let’s dive right in by answering

some of the most frequently asked questions that .NET developers have

when they start learning Rails:

• In Ruby’s object-oriented world, we work with objects and

methods. Unlike VB .NET, where some subroutines return a value

(Functions) and others do not (Subs), all Ruby methods must

return a value. When an explicit return statement is not used, the

last-evaluated expression automatically becomes the return value.

• Variables are not declared prior to their use. Ruby automat-

ically allocates memory for variables upon first use, and it also

assigns their type based on inference. Like .NET, a garbage collec-

tor will reclaim memory automatically.

• There is no distinction made between methods, properties,

and fields (or “member variables”) like there is in .NET. Ruby

has only the concept of methods. However, Ruby classes do sport

a convenient syntax for defining “attribute methods,” which are

equivalent to defining .NET properties. attr_reader and attr_accessor

automatically define methods that provide property-like access to

instance variables.

• Comments start with the hash character (#), unless the hash

occurs inside a double-quoted string. Everything after the hash

is ignored. There is no multiline comment character in Ruby.

• Ruby classes may define instance methods and class meth-

ods. Class methods are called static methods in .NET.

• Methods can be declared public, protected, or private, and

these visibility scopes have the same meaning as they do in

.NET. There is no Ruby equivalent for “internal” or “assembly-

level” visibility.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=32

RUBY VS. .NET FOR THE IMPATIENT 33

• Instance variable names must start with an at (@) sign and

are always private. Class variables, or what we might call static

variables in .NET, start with two at signs. The rules for mem-

ory allocation and object assignment for class variables can get

pretty strange in Ruby, so we tend to avoid using them, especially

since Rails provides an alternative syntax for using class variables

in Rails applications. Here is an example of how to use simple

instance variables in a Ruby class:

Ruby Download ruby101/objects.rb

class Flight

def prepare

Assign a value to an instance variable

This variable can be seen by all other instance methods

as well

@num_engines = 2

@num_wings = 2

end

def report

puts "We have #{@num_engines} engines

and #{@num_wings} wings."

end

end

• Ruby classes can be derived from only one base class but can

“mix in” any number of modules. A module in Ruby is simply

a set of related methods packaged together using the module key-

word instead of class.

• There is no separate compilation step in Ruby. If we execute

this Ruby code:

Ruby Download ruby101/objects.rb

class Flight

puts "This is a flight"

def fly_somewhere

...

implementation code goes here

#...

end

end

you might not expect anything to happen, because it appears that

we have a simple class definition. But in fact, you will see the

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/objects.rb
http://media.pragprog.com/titles/cerailn/code/ruby101/objects.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=33

OUR FIRST RUBY PROGRAM 34

to_s vs. ToString()

.NET’s base class, Object, provides a ToString method. All .NET
classes override ToString so that each object can provide a
string representation of themselves when needed.

Ruby’s equivalent is to_s. Ruby objects override to_s to provide
a suitable string representation.

In our example, we needed to emit the value of the len variable
as a string. We used the to_s method to first convert the integer
value to a string so we could concatenate them together.

string “This is a flight” emitted to the console! Ruby scripts are

interpreted—that is, actually executed—one line at a time as the

interpreter reads the file.

Let’s get some Ruby code under our belt so we can examine the lan-

guage in detail.

2.2 Our First Ruby Program

Start a new file named hello.rb, and open it with your favorite text editor.

Type the following code into your file:

Ruby Download ruby101/hello.rb

name = 'Joe'

len = name.length

puts name + " has " + len.to_s + " letters in his name."

We don’t need to define a Main method anywhere. Ruby is an interpreted

language, and the Ruby interpreter simply starts at the top of the file

and executes each Ruby statement in order until it gets to the end of

the file.

Let’s walk through this short example one line at a time to understand

what this code will do. We immediately see how easy it is to create new

variables in Ruby. The variable name is assigned to the string value

Joe. Next, we create a variable called len and assign it the length of the

string held by name. Finally, we use the built-in Ruby method puts to

print a string to standard output.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/hello.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=34

WORKING WITH STRING OBJECTS 35

Let’s see it in action. Save the file, open a Windows command prompt,

and go to the directory where you saved it (in our case, it’s in c:\dev):

c:\dev> ruby hello.rb

Joe has 3 characters in his name.

c:\dev>

Next, we’ll build upon the Ruby program we’ve written to explore spe-

cific, practical elements of Ruby that you’ll need to know as you write

Ruby code. The best place to start is to learn about how we work with

string variables and string literals in Ruby.

2.3 Working with String Objects

In our previous example, we used single quote marks for the string

’Joe’. In Ruby, single quotes are similar to using the @ syntax for strings

in C#. If you want to include special control characters in your string,

such as a tab or carriage return, then you need to use double quotes

instead. Using double quotes also allows us to use the string interpola-

tion feature of Ruby, where we can embed any Ruby expression into a

double-quoted string by surrounding the expression with #{ }:

Ruby Download ruby101/hello.rb

puts "\t#{5*10}"

puts "Hello, #{name}. You have #{name.length} letters in your name"

c:\dev> ruby hello.rb

50

Hello, Joe. You have 3 letters in your name.

The String class provides so many helpful methods that we will just look

at some of the more common methods we use in Rails applications.

Let’s start with how to search inside a string for a substring or pattern.

Searching and Replacing

Sometimes we want to know whether a string contains a particular

substring and, if so, at which position it was found. This is done with

the index method, which can take a literal substring to search for or a

regular expression pattern.

If you’ve worked with regular expressions in .NET, you’ll be glad to know

that working with them in Ruby is significantly easier. Regular expres-

sion patterns are first-class citizens in Ruby, and denoting a regular

expression in your code is as easy as working with strings. Instead of

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/hello.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=35

WORKING WITH STRING OBJECTS 36

using quotation marks, patterns are simply surrounded with forward

slashes.

Regular expression patterns may look odd at first, because languages

such as C# and VB .NET usually require the use of the RegExp class

instead of being able to directly insert a pattern in your code.

In this next code sample, we use the index method to find out where

each substring or pattern is found in our string:

Ruby Download ruby101/hello.rb

word = "restaurant"

puts word.index('a') # prints 4

puts word.index("ant") # prints 7

puts word.index(/st.+nt$/) # prints 2

puts word.index(/ANT$/i) # prints 7

puts word.index('buffet') # prints "nil"

That last line printed something strange, didn’t it? When index can’t

find a match, it returns nil. In Ruby, nil serves the same purpose as NULL

in SQL, null in C#, and Nothing in VB.

Sometimes we need to replace a given substring with another. The sub

method comes to our aid here. sub will find the first occurrence of a

substring or pattern and replace it with something else. To perform

multiple replacements in the same string, we can use gsub:

Ruby Download ruby101/hello.rb

flight = "United Airlines, Flight #312, ORD to LAX, 9:45AM to 11:45AM"

puts flight.sub('United', 'American')

puts flight.sub(/(\w+)to/, 'PDX to')

puts flight.gsub('AM', 'PM')

The resulting output will be as follows:

American Airlines, Flight #312, ORD to LAX, 9:45AM to 11:45AM

United Airlines, Flight #312, PDX to LAX, 9:45AM to 11:45AM

United Airlines, Flight #312, ORD to LAX, 9:45PM to 11:45PM

Notice that we did not actually modify the contents of the flight vari-

able at all. This is because sub and gsub do not modify the string but

simply return a new string with the desired replacements. We could

have captured the result in a new variable if we wanted to work with

the replaced version further. Or, we could have used the bang or “dan-

gerous” versions of these methods, sub! and gsub!, to change the flight

value in place. In Ruby parlance, “dangerous” methods are those that

will modify the value of the object directly, and the Ruby convention is

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/hello.rb
http://media.pragprog.com/titles/cerailn/code/ruby101/hello.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=36

WORKING WITH STRING OBJECTS 37

to use an exclamation point in the method name to help communicate

that fact.

Trimming Whitespace

Another common task when working with strings is removing leading

and trailing whitespace. We could choose to combine our knowledge of

gsub with regular expressions to do something like this:

Ruby Download ruby101/hello.rb

notice extra whitespace

flight = " United Airlines, Flight #312, 9:45AM to 11:45AM "

flight = flight.gsub(/^\s+/, '') # remove leading whitespace

flight = flight.gsub(/\s+$/, '') # remove trailing whitespace

But the String class provides us with a much simpler alternative with

the strip method:

Ruby Download ruby101/hello.rb

notice extra whitespace

flight = " United Airlines, Flight #312, 9:45AM to 11:45AM "

flight = flight.strip # removes leading and trailing whitespace

More likely, you’ll want to use the “dangerous version” strip! instead:

flight.strip! will remove leading and trailing whitespace from flight.

Splitting a String into Parts

We’ll wrap up our quick overview of Ruby strings with the split method,

which is handy when you need to break up a string into pieces based on

a delimiter or delimiting pattern of some kind. The split method returns

an instance of an Array class:

Ruby Download ruby101/hello.rb

flight = "United Airlines, Flight #312, ORD to LAX, 9:45AM to 11:45AM"

info = flight.split(',')

puts info.size # prints 4

puts info # prints the contents of the info array

info = flight.split(/\s*,\s*/)

puts info.size # prints 4

puts info # show the info array, this time without extra spaces

This concludes our quick look at handling strings. You’re encouraged

to explore the rest of the String methods on your own. Next, we’ll take a

look at irb, a handy utility that makes exploring Ruby objects easier.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/hello.rb
http://media.pragprog.com/titles/cerailn/code/ruby101/hello.rb
http://media.pragprog.com/titles/cerailn/code/ruby101/hello.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=37

IRB IS YOUR NEW “IMMEDIATE MODE” 38

2.4 irb Is Your New “Immediate Mode”

Let’s learn about a useful command-line tool that comes with Ruby

called irb (interactive Ruby). irb is an interactive tool for learning Ruby,

and for doing all sorts of Ruby experiments, without having to endure

the laborious edit/save/run cycle that we’ve been doing so far. If you’ve

ever used Visual Studio’s “immediate mode” window, irb should feel very

familiar.

To use irb, just open a Windows command prompt, and type irb. You

should see something like this:

c:\dev> irb

irb(main):001:0>

Enter any Ruby expression, and irb will evaluate it and emit the result:

irb(main):001:0> 1 + 2

=> 3

irb(main):002:0>

irb prefixes the result with =>. In fact, irb always displays the resulting

value of the expression or statement entered, even when it might seem

unexpected; for example:

irb(main):002:0> puts 'Hello'

Hello

=> nil

irb(main):003:0>

We had indeed wanted the string Hello to be displayed, but why did irb

also emit the => nil after that? Like every method call in Ruby, puts must

return a value, even if it’s nil, and irb always displays the return value

of the expression or method call that we’ve entered at the irb prompt.

Here, we’ve discovered that the return value from puts is nil.

2.5 Arrays

When we are building an application in Rails, we will find ourselves

working with arrays quite a bit. Arrays in Ruby are always dynamic and

heterogeneous. They are said to be dynamic because arrays have vari-

able length. We don’t have to decide ahead of time how many elements

the array will have. The array will grow automatically as elements are

inserted into the array. They are said to be heterogeneous because we

can store elements of any type into any element of an array.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=38

ARRAYS 39

The built-in Array class provides a lot of functionality right out of the

box. So, let’s take a look at how to get started with arrays in Ruby.

Creating an Array

We will begin by looking at a small C# console application that creates

a couple of arrays and displays some information on the console:

.NET Download ruby101/array.cs

List<String> colors = new List<String>();

// Add some elements

colors.Add("Purple");

colors.Add("White");

// Emit first color to console

Console.WriteLine(colors[0]); // prints "Purple"

// Create a new array, initialized with some data

List<String> sports = new List<string>

{ "Hockey", "Baseball", "Football" };

// Emit first sport to console

Console.WriteLine(sports[0]); // or, sports.First(); if using LINQ

// Combine two arrays

List<String> favorites = new List<string>();

favorites.AddRange(colors);

favorites.AddRange(sports);

// Emit the size of the combined array

Console.WriteLine(favorites.Count); // prints 5

Now let’s see how we accomplish the same thing in Ruby. There are two

easy ways to create new array objects in Ruby. The first is to explicitly

declare a new Array instance. The second uses a special, implicit bracket

syntax to create an array on the fly.

In the following example, we create a new array instance and assign it to

the variable colors. Remember that in Ruby, we don’t need to declare the

type of variable to the interpreter. Instead, Ruby surmises the variable

type at runtime.

Ruby Download ruby101/array.rb

Line 1 colors = Array.new
- colors.push 'Purple'
- colors << 'White' # => same as .push
- puts colors[0] # => prints "Purple"
5

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/array.cs
http://media.pragprog.com/titles/cerailn/code/ruby101/array.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=39

ARRAYS 40

- sports = ['Hockey', 'Baseball', 'Football']
- puts sports.first # => prints "Hockey"
-

- favorites = colors + sports
10 puts favorites.size # prints 5

The sports array shows an alternate style of using arrays. In Ruby,

arrays are denoted by square brackets. Here we’ve used the bracket

syntax to easily populate our array with an initial list of values.

The Array class defines many useful methods that help us operate on

arrays, and here we’ve used the push to append new elements to the

array. Elements in an array can be retrieved directly by providing a

zero-based index value. Therefore, puts colors[0] will display the first ele-

ment of our array.

The Array class also provides many convenient “operator overloads.” We

created the favorites array by simply “adding” the elements of the two

previous arrays together. When operating on Array instances, the addi-

tion operator creates a new array by starting with the elements of the

first array and then appending all the elements from the second array.

We then captured this new array into a variable named favorites.

Here is an example of an array that contains both strings and numbers:

Ruby Download ruby101/array.rb

mixed = ["Cars", 36, 10*50, "Tables"]

puts mixed[0] # prints "Cars"

puts mixed[2] # prints 500

Common Array Operations

Given an array, we can determine how many elements are in the array

with either the length or size method. This is an example of how Ruby

sometimes provides more than one method to perform the same func-

tion. Simply choose the method that, in your opinion, makes your code

more understandable or more readable. While other languages strive

for a minimal interface, Ruby tends toward what is sometimes called a

humane interface, because Ruby tends to value readability and clarity

of code over the principle of having as few public methods as possible.

In addition to accessing an element directly by its index, we can also

obtain the first and last elements and search for elements that meet

some desired criteria with the select and find methods.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/array.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=40

ARRAYS 41

Take a look at this code:

Ruby Download ruby101/array.rb

sports = ['Hockey', 'Baseball', 'Football']

puts sports.first # prints "Hockey"

puts sports.last # prints "Football"

puts sports.find { |sport| sport =~ /ball/ } # prints "Baseball"

puts sports.detect { |sport| sport =~ /ball/ } # prints "Baseball"

uses_a_ball = sports.select { |sport| sport =~ /ball/ }

puts uses_a_ball.size # prints 2

The select and find methods are examples of methods where you supply

a block to the method. The select method returns a list of all matching

elements, whereas find will find and return only the first match.

You may have noticed that detect and find returned the same result.

Again, you are free to choose whichever method gives your code the

most natural feel.

Transforming an Array into a String

Earlier we learned how to use the split method on String to create an

array of strings. Sometimes we want to do the inverse: given an array of

strings, we need to join them together into one string. If we call the join

method without any arguments, it will simply glue the strings together.

We can also pass an string value that we would like to use as the “glue”

between the elements as they are joined. Here are some examples:

Ruby Download ruby101/array.rb

colors = ["Blue", "Green", "Orange"]

puts colors.join

puts colors.join(' and ')

puts colors.join("\n")

c:\dev> ruby array.rb

BlueGreenOrange

Blue and Green and Orange

Blue

Green

Orange

Notice that for the last line, we used double quotes around our joining

string so that we could specify a newline (carriage return) to join the

strings together. This is how we got each element of the array to be

printed on its own line.

The puts method will call join("\n") when given an array to output.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/array.rb
http://media.pragprog.com/titles/cerailn/code/ruby101/array.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=41

ARRAYS 42

Joe Asks. . .

What’s a Block?

Blocks are a lot like .NET anonymous methods: sections of code
that behave like a function but just don’t have a name. Some
methods expect to collaborate with a snippet of code that you
must provide. Your code snippet is a block. Simply enclose your
code in a do...end block (one-liners should instead use curly
braces).

Blocks can even take parameters, just like a method can. Block
arguments are surrounded with pipe | symbols.

Download ruby101/blocks.rb

The Array.detect method expects us to define a block
and for our block to return true
when the given element is the desired
element we want to find.
sports.detect { |sport| sport.index('ball') != nil }

Logic that requires more than one line
should use a do..end pair instead.
Here, we detect the first sport
that can be played on a grass surface.
sports.detect do |sport|

category = find_category(sport)
category == 'played on grass'

end

Blocks arrange your code right alongside the method that’s
requiring it, making your code more readable than locating a
method somewhere else in your program.

This is just one way that Ruby promotes more generic, decou-
pled, and collaborative program architectures.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/blocks.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=42

ARRAYS 43

Finding Array Elements with Regular Expressions

You may already be familiar with grep, a common command-line utility

that searches text using regular expressions. Some Ruby classes also

implement a method named grep, which indicates it has some kind of

similar searching feature. The Array class provides a grep method so

that you can easily search an array’s elements for those that match a

given regular expression:

Ruby Download ruby101/array.rb

colors = ["Blue", "Green", "Orange", "Red", "Purple"]

my_colors = colors.grep(/u/)

puts my_colors

c:\dev> ruby array.rb

Blue

Purple

Shortcut for Creating an Array of Strings

Ruby provides a shortcut when we want to create an array from a list

of words:

Ruby Download ruby101/array.rb

colors = %w(Blue Green Orange Red Purple)

The %w is a special sequence in Ruby code. The parentheses are com-

monly used, but you can use any character that you want to use to

mark the beginning and ending of your list of words. Whitespace is

used to split the string up into the array of words.

Deleting Elements from an Array

Removing an object from an array is easy. Just call the delete method.

You must provide a reference to the object you want to delete. If the

object is found in the array, it will be removed and returned to you. If

the object is not found, the delete method will simply return nil, instead

of raising an exception like .NET languages would.

Alternatively, if you don’t have a reference to the object but you do know

the index position of the element you need to delete, you can use the

remove_at method to remove whatever element is at that position and

have it returned to you. You’ll get nil back if you supply an index that’s

out of range for the array.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/array.rb
http://media.pragprog.com/titles/cerailn/code/ruby101/array.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=43

SYMBOLS 44

Ruby Download ruby101/array.rb

colors = ["Blue", "Green", "Orange", "Red", "Purple"]

colors.delete 'Blue' # returns "Blue"

colors.delete 'Green' # returns "Green"

colors.delete 'Brown' # returns nil

colors.delete_at(0) # returns "Orange"

colors.delete_at(5) # returns nil

colors is now ["Red", "Purple"]

2.6 Symbols

The string and array classes we’ve examined so far correspond well to

similar .NET classes. Symbols, on the other hand, don’t have an exact

counterpart. They play a vital role in Rails programming, so we need to

become familiar with them before we move on.

We will start by looking at two common .NET constructs: constants and

enums. Let’s start with a typical use of the const keyword:

public const int Circle = 1;

public const int Square = 2;

public const int Octagon = 3;

public void DrawShape(int shape)

{

switch (shape)

{

case Circle:

// draw a circle

break;

case Square:

// draw a square

break;

case Octagon:

// draw an octagon

break;

}

}

// Let's draw a square

DrawShape(Square);

By using names instead of passing raw integers, our code becomes

clearer. Inside DrawShape(), we used the names of our shapes instead

of relying on hard-coded integer values. Outside the class, the benefit

is just as large. We could have written DrawShape(2) instead, but that

would be harder to read and understand.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/array.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=44

SYMBOLS 45

Some .NET developers want to guarantee that the DrawShape() method

can receive only a valid shape constant, instead of just any old integer.

After all, the actual values we assigned to each shape constant were

arbitrary; it didn’t really matter what value we assigned to each con-

stant. Enumerated values in .NET are useful for associating names with

constant values when you don’t really care about the actual value. For

example, we can rewrite the previous example using an enum instead:

public enum Shape { Circle, Square, Octagon }

public void DrawShape(Shape shape)

{

switch (shape)

{

case Shape.Circle:

// draw a circle

break;

case Shape.Square:

// draw a square

break;

case Shape.Octagon:

// draw an octagon

break;

}

}

// Let's draw a square

DrawShape(Shape.Square);

This code retains the same level of clarity, and we didn’t have to spec-

ify any integer values anywhere. (Behind the scenes, the C# compiler

will assign integer values to each enumerated value, but it’s a hidden,

unimportant detail as far as the programmer is concerned.)

Here’s the key point: a .NET enum value is a globally unique, named

representation of a single location in memory. The actual value held at

that memory location is unimportant. When all we want is a named

value in C#, enums are our friends.

At last, we’re ready for Ruby symbols. What is a symbol?

A symbol is globally unique, named representation of a single location

in memory. (Sound familiar?) So, any time we want to have a nice name

for something and we don’t care about what value it really has, we use

a symbol.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=45

HASHES 46

Here’s the same code, this time written in Ruby:

def draw_shape(shape)

case shape

when :circle

draw a circle

when :square

draw a square

when :octagon

draw an octagon

end

end

Let's draw a square

draw_shape(:square)

Symbols always start with a colon, as in :circle. Unlike .NET enumera-

tions like Shape, we don’t need to define symbols before we use them.

Ruby will automatically spring them into existence for us the first time

they’re used.

Symbols can be used like any other type in Ruby. They are objects of

type Symbol, and you can call methods on them. Here’s how we can get

a string representation of a symbol, for example:

puts :square.to_s # prints "square"

As another example, here’s how we create an array of them:

An array of three symbols

[:circle, :square, :octagon]

The most common place we’re going to find ourselves using symbols in

Rails is when we work with hashes, which we will explore next.

2.7 Hashes

In Ruby, a hash is very much like a .NET Dictionary. Like an array, a

hash is a data structure that contains a series of elements. Unlike an

array, hash elements are pairs of objects: a key and a value. Hashes

are extremely easy to use in Ruby, and they come in handy in web

development where we often want to associate one object with another.

Like arrays in Ruby, hashes are also heterogeneous structures. There

is no requirement that all the objects in the hash are of the same type.

We can mix and match any type of objects into any of the keys and

values. Ruby doesn’t care. It’s up to you to do whatever you think is

appropriate for your situation.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=46

HASHES 47

Let’s start by looking at a few simple examples. There are two common

ways of creating hashes in Ruby. We can create a new instance of the

Hash class:

irb(main):001:0> hangar_status = Hash.new

=> {}

irb(main):002:0> hangar_status['waiting'] = 3

=> 3

irb(main):003:0> hangar_status['repairing'] = 7

=> 7

irb(main):004:0> hangar_status

=> {"waiting"=>3, "repairing"=>7}

Here we see that we can create new key/value pairs by using the []

operator. If the given key does not exist, it is created automatically, and

the given value is paired with the given key. If the key already exists, it

is simply paired up with the new value.

If we try to access a key that doesn’t exist, we simply get a nil value back

(whereas some .NET implementations would raise an exception):

irb(main):003:0> hangar_status['damaged']

=> nil

Alternately, we can use curly braces to directly create a populated Hash:

irb(main):001:0> hangar_status = { 'waiting' => 3, 'repairing' => 7 }

=> {"waiting"=>3, "repairing"=>7}

Notice that when we work with hash elements, we use the special =>

syntax to specify the key/value pair.

We can use any kind of objects we want in a hash at any time. Let’s

keep track of how many passengers are onboard our airplanes. Here

we create two Airplane objects and use them as keys in a hash. The

values in the hash represent the number of passengers onboard each

plane. Note how we create an initially empty hash by just using two

curly braces:

irb(main):001:0> ord_to_jfk = Airplane.new '747'

=> #<Airplane:0x8c050 @altitude=0, @model="747", @speed=0>

irb(main):002:0> pdx_to_sfo = Airplane.new '707'

=> #<Airplane:0x870a0 @altitude=0, @model="707", @speed=0>

irb(main):003:0> passengers = {}

=> {}

irb(main):004:0> passengers[ord_to_jfk] = 165

=> 165

irb(main):005:0> passengers[pdx_to_sfo] = 104

=> 104

irb(main):006:0> passengers[ord_to_jfk]

=> 165

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=47

EVERYTHING IS AN OBJECT 48

Hashes are a powerful way to store data. It’s very important that you

become comfortable working with hashes as you begin to develop Rails

applications.

Finally, here are some examples that use symbols as keys into a hash:

options = { :model => '747', :capacity => 250, :engines => 2 }

puts options[:capacity] # prints 250

options[:engines] = 3 # we now have 3 engines

We’ve completed a quick tour of four of Ruby’s data types that we

will use frequently in Rails applications: strings, arrays, symbols, and

hashes. We haven’t yet talked much about the object-oriented nature

of the Ruby language. We need to do that now before we can continue

to explore the other fundamental elements of the language.

2.8 Everything Is an Object

In Ruby, we like to say everything is an object. Although many .NET

languages like C# and VB .NET are considered to be object-oriented,

Ruby’s definition of object-oriented is more hardcore. Every element of

code in Ruby really is an object. To illustrate what we mean, let’s look

at some of the more startling examples of how objects work in Ruby as

we continue to highlight the similarities and differences with .NET.

Even Built-in Types Are Objects

Ruby has built-in types like strings, arrays, and fixnums. Fixnums are

like the Int32 data type in .NET. When we do something like this in Ruby:

Ruby Download ruby101/objects.rb

puts 1 + 2 # prints 3

we are still using objects even though it looks like we’re using built-in

literal values for 1 and 2. The literal number 1 in Ruby is an object! It’s

actually an instance of the Fixnum class. So is the literal number 2. The

plus sign is syntactic sugar that allows us to call a method named + on

the 1 object.

Mirror, Mirror on the Wall

An interesting feature of the Ruby language is the built-in ability for

every class and object to tell us about themselves. Every Ruby class is

derived directly or indirectly from a built-in class named Object. Object

defines many methods, including some that help us “reflect” upon an

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/objects.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=48

EVERYTHING IS AN OBJECT 49

object’s type. Here is an example of how we can use the class method to

find out the class of a given object:

Ruby Download ruby101/objects.rb

puts 1.class # prints "FixNum"

puts 2.class # prints "FixNum"

.NET calls this technique reflection, because we’re asking an object to

look itself in the mirror and tell us what it sees. Rubyists sometimes

like to call it introspection, but it’s the same concept. Reflection is very

useful and powerful in a dynamic language like Ruby, since an object’s

behavior is subject to change at runtime. Let’s learn two more ways to

have an object tell us more about itself.

We can use methods to find out what methods we can call on an object:

irb(main):001:0> s = "hello"

=> "hello"

irb(main):002:0> s.methods

=> ["%", "select", "[]=", "inspect", "<<", "each_byte", "clone",

"method", "gsub", "casecmp", "public_methods", "to_str", "partition",

"tr_s", "empty?", "instance_variable_defined?", "tr!", "equal?",

"freeze", "rstrip", "*", "match", "grep", "chomp!", "+", "next!",

"swapcase", "ljust", "to_i", "swapcase!", "methods", "respond_to?",

"upto", "between?", "reject", "sum", "hex", "dup", "insert",

"reverse!", "chop", "instance_variables", "delete", "dump", "__id__",

"tr_s!", "concat", "member?", "object_id", "succ", "find", "eql?",

"each_with_index", "strip!", "id", "rjust", "to_f",

"singleton_methods", "send", "index", "collect", "oct", "all?",

"slice", "taint", "length", "entries", "chomp", "frozen?",

"instance_variable_get", "upcase", "sub!", "squeeze", "include?",

"__send__", "instance_of?", "upcase!", "crypt", "delete!", "detect",

"to_a", "unpack", "zip", "lstrip!", "type", "center", "<",

"protected_methods", "instance_eval", "map", "<=>", "rindex",

"display", "any?", "==", ">", "split", "===", "strip", "size",

"sort", "instance_variable_set", "gsub!", "count", "succ!",

"downcase", "min", "kind_of?", "extend", "squeeze!", "downcase!",

"intern", ">=", "next", "find_all", "to_s", "<=", "each_line",

"each", "rstrip!", "class", "slice!", "hash", "sub", "tainted?",

"private_methods", "replace", "inject", "=~", "tr", "reverse", "nil?",

"untaint", "sort_by", "lstrip", "to_sym", "capitalize", "max",

"chop!", "is_a?", "capitalize!", "scan", "[]"]

Wow, that’s a lot to look at. Let’s make it easier to read by sorting the

methods first and by using grep to find only the methods that start

with, say, the letter s:

irb(main):003:0> s.methods.sort.grep(/^s/)

=> ["scan", "select", "send", "singleton_methods", "size", "slice",

"slice!", "sort", "sort_by", "split", "squeeze", "squeeze!", "strip",

"strip!", "sub", "sub!", "succ", "succ!", "sum", "swapcase",

"swapcase!"]

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/objects.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=49

CLASSES AND OBJECTS 50

Use methods inside an irb session when you want to discover exactly

what a class or object can do. Here we learned how handy the sort and

grep methods can be.

Quacking Like a Duck

Every Ruby object, like the string object we just examined, ultimately

inherits from Object. This is the same as it is in .NET. As a result,

many of the methods that a string object has are inherited from Object.

Perhaps the most interesting method of all of these is the respond_to?

method. With this method, we can find out at runtime whether an

object can respond to a particular message or method:

irb(main):005:0> s.respond_to?('split')

=> true

irb(main):006:0> s.respond_to?('translate_to_spanish')

=> false

Here we’ve used the respond_to? method to discover that the object s

implements a method called split but does not have a method named

translate_to_spanish.

This is the main idea behind duck typing: Ruby can detect available

runtime behaviors at the method level. Instead of achieving polymor-

phic behavior only through base class inheritance or interface imple-

mentation, Ruby code can work with objects that simply “talk” and

“walk” as expected, regardless of their actual type.

2.9 Classes and Objects

Declaring classes and using classes are the bread and butter of any

object-oriented system, and the reasons for using classes, instantiating

objects, and calling their methods are the same in Ruby as they are

in .NET. Let’s look at some concrete code examples to see how they

compare.

Let’s Fly an Airplane

We will start by reviewing how we define classes in the .NET language

C#. Here is a C# class that represents an airplane, perhaps to be used

in a flight simulator program or as part of an air traffic control system:

.NET Download ruby101/classes.cs

using System;

using System.Collections.Generic;

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/classes.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=50

CLASSES AND OBJECTS 51

public class Airplane

{

private string model;

private int altitude;

private int speed;

public Airplane(string model)

{

this.model = model;

this.altitude = 0;

this.speed = 0;

}

public string Model

{

get

{

return this.model;

}

}

public int Altitude

{

get

{

return this.altitude;

}

}

public int Speed

{

get

{

return this.speed;

}

}

public void Fly()

{

if (this.model == "777")

this.altitude = 40000;

else

this.altitude = 30000;

this.speed = 500;

}

public void Land()

{

this.altitude = 0;

this.speed = 0;

}

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=51

CLASSES AND OBJECTS 52

public static List<String> Models

{

string[] availableModels = { "707", "747", "777" };

return new List<string>(availableModels);

}

}

We’ve defined a public class called Airplane that must be initialized with

a model parameter. A static method called Models() returns a list of

available models that can be used. An Airplane instance can keep track

of its speed and altitude, and these are changed by calling the Fly() and

Land() methods. Finally, we defined three read-only properties, Model,

Altitude, and Speed.

Now, let’s translate this class directly into Ruby. Our first attempt may

not result in the most concise Ruby code ever written, but we’ll refine

the code after we’ve performed our initial translation:

Ruby Download ruby101/classes.rb

Line 1 class Airplane
-

- def initialize(model)
- @model = model
5 @altitude = 0
- @speed = 0
- end

-

- def model
10 return @model

- end

-

- def altitude
- return @altitude

15 end
-

- def speed
- return @speed
- end

20

- def moving?
- return @speed > 0
- end

-

25 def fly
- if @model == '777'
- @altitude = 40000
- else
- @altitude = 30000

30 end

-

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/classes.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=52

CLASSES AND OBJECTS 53

- @speed = 500
- end
-

35 def land
- @altitude = 0
- @speed = 0
- end

-

40 def self.models
- return ['707', '747', '777']
- end

-

-

45 end

Ruby is a very readable language, but let’s go through it a step at a time.

We introduce a new class scope with the class keyword. Our Airplane

class doesn’t explicitly derive from any other class, so it will be derived

from the built-in Object class by default.

On line 3, we see how to define the initializer for our class. The initializer

is Ruby’s equivalent of a .NET constructor. You can define your initial-

izer to accept parameters, but note that only one initializer is allowed,

since Ruby does not support method overloading. Here we’ve declared

that our initializer will require one parameter, the “model” of airplane

that should be created.

In the body of the initializer, we have defined three instance variables,

@model, @altitude, and @speed. The @ sign declares them as private

instance variables, whose type is automatically determined by the as-

signed values.

On line 9, we see how to declare a method that will give us property-like

syntax for reading the value of an instance variable. We’ve defined the

model method, which simply returns the value of our @model attribute.

In this way, we provide read-only access to the @model variable. We’ve

done the same thing for the @altitude value, by providing a wrapper

method for it as well.

The fly method on line 25 uses a simple if statement to determine at

which altitude we should fly, based on the type of airplane being flown.

The instance variable @speed is set to 500 regardless of the airplane

type. The land method, as its name implies, bring us back to Earth and

brings the plane to a stop.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=53

CLASSES AND OBJECTS 54

Finally, the models method is an example of a class method. Class

methods are like static methods in .NET. They’re a convenient way to

house methods that logically belong to a class, even though a specific

instance of that class is not needed to call the method. Here, we call Air-

plane.models to retrieve a list of the valid models that we can use when

constructing an airplane instance:

Ruby Download ruby101/classes.rb

model_to_use = Airplane.models[1]

airplane = Airplane.new(model_to_use)

puts "Our #{airplane.model} is starting at #{airplane.altitude} feet"

airplane.fly

puts "Our #{airplane.model} is currently at #{airplane.altitude} feet"

if airplane.moving?

puts "Yes, the plane is moving."

end

airplane.land

puts "Our #{airplane.model} is now at #{airplane.altitude} feet"

What happens when we execute this Ruby script? See whether you

guessed correctly:

c:\dev> ruby classes.rb

Our 747 is starting at 0 feet

Our 747 is currently at 30000 feet

Yes, the plane is moving.

Our 747 is now at 0 feet

c:\dev>

A More Idiomatic Approach

The class we just wrote was fairly readable, and it reflects how it would

probably look if it were written by a C# programmer making his first

Ruby program. However, in practice, this code would be a bit differ-

ent. Let’s learn about just a couple of standard idioms commonplace in

Ruby programming. Here is a revised example that shows one way our

code could have been written:

Ruby Download ruby101/classes.rb

Line 1 class Airplane
-

- attr_reader :model
- attr_reader :altitude
5 attr_reader :speed
-

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/classes.rb
http://media.pragprog.com/titles/cerailn/code/ruby101/classes.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=54

CLASSES AND OBJECTS 55

- def initialize(model)
- raise "Model not recognized!" unless Airplane.models.include?(model)
-

10 @model = model
- @altitude = 0
- @speed = 0
- end

-

15 def fly
- @speed, @altitude = 500, cruising_altitude
- end

-

- def land
20 @altitude = 0

- @speed = 0
- end

-

- def moving?
25 @speed > 0

- end

-

- def self.models
- ['707', '747', '777']

30 end

-

- private
-

- def cruising_altitude
35 @model == '777' ? 40000 : 30000

- end

-

- end

What did we change?

• We omitted return statements wherever it seemed reasonable. Ruby

always uses the value of the last-evaluated expression as the re-

turn value of a method, so often it’s not needed to use the return

statement explicitly.

• Like a getter in .NET properties, we used the built-in attr_reader

method to automatically define read-only access methods to the

@model and @altitude values. This helps us avoid writing boiler-

plate code like we did before to return those values.

• Because type safety is not ensured as it would be with a statically

typed language such as C#, we added a check in the initializer to

make sure a valid model was given and to raise an exception if we

get an unexpected model.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=55

LOOPS 56

• Finally, we’ve added a private section to the class and defined a

new private method called cruising_altitude. This allowed us to make

the fly method more readable and easier to maintain. We assign

multiple values at once in Ruby using a comma-separated list of

values on each side of an assignment statement.

Writing Ruby that feels natural takes some time and experience. Seek

out Ruby libraries that have been written by longtime Rubyists to get

a sense of how to recognize good Ruby style when you see it. Reading

other code written by good Ruby coders is one of the best ways to learn

how to write code in Ruby.

2.10 Loops

We will close this chapter by looking at another essential building block

of Ruby programs: the concept of loops and iterators. Web applications

spend a lot of time working with sets of data, usually enumerating over

them for some purpose, perhaps to display a list of some kind, select

a subset of data based on some kind of criteria, or transform a set of

objects from one kind to another.

Some looping constructs in Ruby are quite different from the constructs

you have experienced in .NET, while some of them are almost the same.

There are two main differences to keep in mind when learning to read

and write loop statements in Ruby as compared with C# or VB .NET:

• We don’t need to explicitly declare any types, since Ruby always

determines variable types automatically.

• Everything is an object, including seemingly built-in literals, so

some loops are easier to write.

Simple Iterations

Here’s a simple for loop that prints the digits 0 to 9 in C#:

.NET Download ruby101/loops.cs

for (int i = 0; i < 10; ++i)

{

Console.WriteLn(i);

}

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby101/loops.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=56

LOOPS 57

And here’s one way to do it in Ruby:

irb(main):001:0> 0.upto(9) { |n| puts n }

0

1

2

3

4

5

6

7

8

9

=> 0

Iterating Over Every Element of an Array

The most common way to simply loop through each element of an array

is to use the each method:

irb(main):008:0> odds = [1, 3, 5, 7, 9]

=> [1, 3, 5, 7, 9]

irb(main):009:0> odds.each { |n| puts n }

1

3

5

7

9

=> [1, 3, 5, 7, 9]

The each method class is one example of an iterator. An iterator is a

powerful pattern in Ruby programs by which a data structure’s ele-

ments are visited in collaboration with a user-supplied block. Iterators

are just one of the important dimensions of the Ruby language we’ll be

exploring in the next chapter.

We’ve started from the simplest of Ruby scripts; seen how primary ele-

ments like strings, arrays, and loops compare with their .NET counter-

parts; and dipped our toes in some advanced topics such as introspec-

tion and a few rules of idiomatic Ruby. It’s time to learn more about

iterators, a central concept in all Rails applications; see some advanced

Ruby syntax; and take a closer look at code reuse techniques. These

are the skills that will take us beyond thinking about simple .NET-to-

Ruby translations so that we can instead “think in Ruby” as our native

language.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=57

Chapter 3

Ruby Skills for
the Rails Developer

In this chapter, we will explore two pillars of the Ruby language: work-

ing with data collections and strategies for code reuse. Both of these

are aspects of Ruby that play a central role both in the construction of

Rails applications and inside the Rails framework.

If you’ve ever written an application that is primarily driven by data

retrieved from a database, you’ve had to tackle the thorny problems of

retrieving, filtering, sorting, and transforming raw data into a format

that is required by the users of your application. Rails has powerful

facilities for transparently moving sets of data in and out of Ruby col-

lection classes, but that’s of no use if we don’t know how to efficiently

manipulate those collections in our Ruby code to prepare it for display

to our users.

Code reuse is an important topic in any application language or frame-

work. Agile development speaks of the DRY principle[HT00], which stands

for Don’t Repeat Yourself. In other words, we never want to see a sec-

tion of code duplicated elsewhere in our program. Redundant code is

harder to maintain, debug, and understand. We want our programming

language to make it easy to reuse code so that we can write a method or

class and reuse it whenever we need it. The DRY principle is a mantra

of the Rails community and is a driving force behind the design of Rails.

We will be learning how Ruby enables easy code reuse in our applica-

tions as well.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

WORKING WITH COLLECTIONS AND ITERATORS 59

3.1 Working with Collections and Iterators

Web applications spend a good deal of time manipulating various sets

of data. In .NET we often use the term collection to refer to an array, a

dictionary, or some other data structure that contains a series of data

elements. We’ve already learned about the Array and Hash classes and

how to perform basic manipulation of the elements they contain. Ruby

takes the notion of a collection class a step further than pure contain-

ment, beyond the insert/retrieve/remove interface that is familiar to

every .NET developer.

When we work with data collections in our programs, a particular pat-

tern called the iterator pattern often emerges. This pattern describes

the frequent need to examine a collection of some kind, visit each ele-

ment of the collection, and then do something with that element. For

example, starting from a given collection, we may way want to synthe-

size an entirely new data set containing only those elements that meet

certain criteria. The new data structure might even contain elements of

a completely different type than the original elements. Or perhaps we

just want to visit all of the elements, inspecting them along the way, to

perform some kind of aggregate calculation or statistical analysis of the

data at hand.

Ruby’s collection classes, such as Array and Hash, expose public meth-

ods that help encapsulate these usage patterns so that the code we

have to write can be reduced to a bare minimum. To get a sense of the

power of these iterator methods, we will start with some typical exam-

ples of how we work with collections in both .NET and compare them

with their Ruby equivalents to see the power of Ruby iterators in action.

Looping Over a collection

Suppose we have a collection of Airplane objects. Each Airplane has a

large number of properties, including model number, passenger capac-

ity, the year it was built, the date of last service, and more. Let’s imag-

ine further that our airplanes are required to be serviced every four

months.

We can find out how many planes are due for service by using a simple

loop. Here’s a typical loop in C#:

.NET Download ruby201/each.cs

public int CountPlanesDueForService(Plane[] planes)

{

count = 0;

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/each.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=59

WORKING WITH COLLECTIONS AND ITERATORS 60

foreach (Plane plane in planes)

{

if (DateTime.Now.Subtract(TimeSpan.FromDays(90)) >

plane.LastServiceDate)

{

count += 1;

}

}

return count;

}

Let’s accomplish the same task in Ruby:

Ruby Download ruby201/each.rb

def count_planes_due_for_service(planes)

count = 0

planes.each do |plane|

if (Date.today - 90 > plane.last_service_date)

count += 1

end

end

return count

end

This simple example reveals the central role of Ruby’s block syntax.

The each method is an iterator method. It visits each element, one at a

time. As it does so, it passes the current element to a Ruby code block

that we must provide.

Ruby blocks are analogous to .NET 2.0 anonymous methods: they are

a section of code that looks and behaves just like any other method

definition. They can even take parameters just like a method can. The

only real difference is that instead of defining your method elsewhere in

your class definition, you’re providing the method definition inline with

the code that’s calling it.

Grasping the block syntax in Ruby depends on understanding the fol-

lowing key concepts about Ruby syntax:

• Blocks are bounded by a simple do...end pair, similar to the pairing

def...end we use for named methods.

• Blocks can specify a list of expected arguments, just like regular

named methods. However, instead of the typical parentheses we

place around arguments in normal method definitions, we use the

vertical pipe symbol instead.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/each.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=60

WORKING WITH COLLECTIONS AND ITERATORS 61

• Blocks return a value, just like all other methods in Ruby. If an

explicit return statement is omitted, the last-evaluated expression

is used as the return value from the block.

With these rules in mind, let’s return to the block we wrote:

Ruby Download ruby201/each.rb

planes.each do |plane|

if (Date.today - 90 > plane.last_service_date)

count += 1

end

end

It should now be clear that the block:

• accepts a parameter named plane, and

• increments the count variable for planes that haven’t been serviced

in the last 90 days.

Now that we know the basics of how we write a block to collaborate with

the each() method, let’s now see how Ruby utilizes this same pattern

when we need to select certain elements from a collection.

Selecting Elements from a Collection

Suppose that instead of merely obtaining a count of planes due for

service, we want to create a list of those airplanes that are due for

service. How would we write code to do that? Let’s start with a C# 1.1

example:

.NET Download ruby201/iterator.cs

using System.Collections;

public Plane[] FindPlanesDueForService(ArrayList planes)

{

// Example for .NET 1.1

ArrayList dueForService = new ArrayList();

foreach (Plane plane in planes)

{

if (DateTime.Now.Subtract(TimeSpan.FromDays(90)) >

plane.LastServiceDate)

{

dueForService.Add(plane);

}

}

return (Plane[]) dueForService.ToArray(typeof(Plane));

}

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/each.rb
http://media.pragprog.com/titles/cerailn/code/ruby201/iterator.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=61

WORKING WITH COLLECTIONS AND ITERATORS 62

Here we start with a data structure (in this case, an array of airplanes)

and we want to return our results by generating a new data structure

that contains only the data in which we’re interested. To accomplish

that, we write a very typical foreach loop so that we can visit each plane

in the array. We then examine each plane’s service record and deter-

mine whether it is due for service. If it is, we then add that airplane to

our list of planes that must be scheduled for service. Finally, we return

our newly created list of airplanes.

Selecting elements from a data structure based on some criteria became

a bit easier in C# 2.0 with the use of generics. We can use the FindAll()

method to help us find the planes we want:

.NET Download ruby201/iterator.cs

using System.Collections.Generic;

// Using C# 2.0 Generics

public List<Plane> FindPlanesDueForService(List<Plane> planes)

{

List<Plane> dueForService = planes.FindAll(IsDueForService);

return dueForService;

}

public bool IsDueForService(Plane plane)

{

DateTime cutoffDate = DateTime.Now.Subtract(

TimeSpan.FromDays(90));

return cutoffDate > plane.LastServiceDate;

}

The introduction of LINQ provides a more succinct way to do all these

things at once, using a more SQL-esque syntax:

.NET Download ruby201/iterator.cs

public List<Plane> FindPlanesDueForService(List<Plane> planes)

{

// Using C# 3.5 Generics and LINQ

var dueForService =

from plane in planes

where plane.LastServiceDate < DateTime.Now.AddDays(-90)

select plane;

return dueForService.ToList();

}

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/iterator.cs
http://media.pragprog.com/titles/cerailn/code/ruby201/iterator.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=62

WORKING WITH COLLECTIONS AND ITERATORS 63

At last we come to the Ruby approach:

Ruby Download ruby201/iterator.rb

require 'date'

def find_planes_due_for_service(planes)

due_for_service = planes.select do |plane|

Date.today - 90 > plane.last_service_date

end

return due_for_service

end

This time, instead of each, we use the select method, which will do the

following:

• Create a new, internal collection that is initially empty

• Loop over our planes collection and call our block for each plane it

finds

• Push the plane into the internal collection, if and only if the block

returns true

• Return the newly created collection

By wrapping up all the boilerplate code, the select method does all

the tedious work. Our code must implement only the interesting part,

which is to define the rule by which planes will be pushed into the new

collection.

We capture the returned collection into a local variable named due_for_

service and return it. Eagle-eyed readers will notice that we can take

advantage of Ruby’s ability to use the last-evaluated expression as a

return value, enabling us to simplify our code to just one line:

Ruby Download ruby201/iterator.rb

def find_planes_due_for_service(planes)

planes.select { |plane| Date.today - 90 > plane.last_service_date }

end

The select method creates a subset of our original collection. The ele-

ments in the new collection are of the same type as the original. But

just as often, we will want to transform the elements into something

else as they are moved into the new collection.

Transforming a Collection

Two of the most powerful and commonly used iterators in Ruby are the

map method and its identical twin, collect. Once again, Ruby provides

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/iterator.rb
http://media.pragprog.com/titles/cerailn/code/ruby201/iterator.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=63

WORKING WITH COLLECTIONS AND ITERATORS 64

Joe Asks. . .

When Do I Use do...end Instead of Curly Braces?

Sometimes you will see blocks that use the do...end keywords.
Other times you may see curly braces instead. They may seem
interchangable, but that’s not entirely true.

In Ruby, curly braces have a slightly different binding prece-
dence than a do...end pair. Braces will bind to the rightmost
variable or method call on the line. A do...end pair bind to the
leftmost. As a result, using braces to delimit a block can have
unintended consequences.

A common Ruby idiom has emerged to help avoid unexpected
behavior in this regard. A good Ruby programmer (that means
you!) will therefore follow these guidelines:

• If the block can be written in one line, use curly braces.

• If the block requires more than one line, use a do...end pair.

us with two methods that do the same thing, because depending on

your situation, one name will be obviously more appropriate than the

other. These iterators allow us to transform a collection of one kind into

a collection of a different kind.

Let’s return to our array of airplanes. Suppose we want to generate a

list that contains just the FAA identifiers of each plane. In C# 1.1, we

would probably do something like this:

.NET Download ruby201/iterator.cs

public static String[] GenerateIdentificationList(ArrayList planes)

{

ArrayList identificationList = new ArrayList();

foreach (Plane plane in planes)

{

identificationList.Add(plane.FaaIdentifier);

}

return (String[]) identificationList.ToArray(typeof(String));

}

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/iterator.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=64

WORKING WITH COLLECTIONS AND ITERATORS 65

But it gets quite a bit easier with the use of generics in C# 2.0:

.NET Download ruby201/iterator.cs

public static List<String> GenerateIdentificationList(List<Plane> planes)

{

converter = new Converter<Plane, String>(ConvertPlaneToIdentifier);

List<String> identifiers = planes.ConvertAll(converter);

return identifiers;

}

public static String ConvertPlaneToIdentifier(Plane plane)

{

return plane.FaaIdentifier;

}

Similarly, in Ruby, without using map or collect, we might do something

like this:

Ruby Download ruby201/iterator.rb

def generate_identification_list(planes)

identification_list = []

planes.each do |plane|

identification_list << plane.faa_identifier

end

return identification_list

end

We start with an empty array to hold our identification numbers. Then

we loop through each plane in our collection and append each plane’s

identifier to the array. The identification_list is now a simple list of identi-

fication numbers.

Fortunately, Ruby once again saves us from impending tedium by re-

moving the boilerplate code into an iterator method. We can supply a

block to the map method that transforms (or maps) the elements from

the original container into the new one:

Ruby Download ruby201/iterator.rb

identification_list = planes.map { |plane| plane.faa_identifier }

puts identification_list

This code is so short that it might not be obvious how it works. Let’s

take it one step at a time:

1. We call planes.map. Invisibly, a new, empty collection is created to

hold the results of the mapping operation.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/iterator.cs
http://media.pragprog.com/titles/cerailn/code/ruby201/iterator.rb
http://media.pragprog.com/titles/cerailn/code/ruby201/iterator.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=65

REUSING CODE WITH BASE CLASSES 66

2. map passes each element, one at a time, to our block. Just like

a function that takes one parameter, our block takes one plane

object each time it’s called.

3. The block is ultimately responsible for just one thing: returning

the value we want to be mapped into the new collection. In our

example, we want to reduce the original airplane collection down

to a bare list of airplane identifiers. So for each plane we’re given,

we return the plane’s identification number.

4. Each identifier is (again, invisibly) appended to the new collection.

5. When all elements have been visited, the new collection is then

returned, which we capture into the identification_list variable.

That’s a lot of work being done by one line of code. We will use the map

(or collect) method time and again as we develop web applications in

Rails.

3.2 Reusing Code with Base Classes

Ruby equips the programmer with several options for efficient code

reuse. We’ll start with a strategy with which .NET developers are already

familiar with, inheriting from base classes, so that derived classes can

inherit properties and behavior and not have to repeat the same code

in the derived classes.

All object-oriented programming languages support the notion of inher-

itance: a class can derive from another class. In Ruby, we can derive

our classes from at most one base class.

Let’s take a look at how we set up an inheritance chain in C#, and then

we will see how it compares to Ruby’s syntax. Let’s have our Airplane

class derive from a Vehicle class. Every vehicle has a current speed, so

let’s put that into the Vehicle class.

.NET Download ruby201/baseclass.cs

class Vehicle

{

private int speed;

// Constructor

public Vehicle()

{

speed = 0;

}

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/baseclass.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=66

REUSING CODE WITH BASE CLASSES 67

// Read-write property for speed

public int Speed

{

get

{

return speed;

}

set

{

speed = value;

}

}

}

Next, let’s create an Airplane class that derives from Vehicle. C# employs

a simple syntax for derivation; we just use a colon between the class

names:

.NET Download ruby201/baseclass.cs

class Airplane : Vehicle

{

// Airplane-specific properties and methods go here

}

Ruby’s syntax is similar, but we use a less-than sign instead of a colon.

Here’s the Ruby code for both classes:

Ruby Download ruby201/baseclass.rb

class Vehicle

Read-write property for speed

attr_accessor :speed

Initializer

def initialize

@speed = 0

end

end

Ruby Download ruby201/baseclass.rb

class Airplane < Vehicle

Airplane-specific methods go here

end

Aside from Ruby’s more compact syntax for defining properties, the

code is quite similar. As you would expect, derived classes behave as

they do in .NET.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/baseclass.cs
http://media.pragprog.com/titles/cerailn/code/ruby201/baseclass.rb
http://media.pragprog.com/titles/cerailn/code/ruby201/baseclass.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=67

WHERE’D MY INTERFACES GO? 68

We can ask an airplane for its speed in C# like this:

.NET Download ruby201/baseclass.cs

Airplane plane = new Airplane();

plane.speed = 350;

System.Console.WriteLine(plane.speed);

And it’s just as easy in Ruby:

Ruby Download ruby201/baseclass.rb

plane = Airplane.new

plane.speed = 350

puts plane.speed

3.3 Where’d My Interfaces Go?

Static languages in .NET, like C# and Visual Basic, encourage the use of

interfaces. Interfaces define a set of behaviors classes can implement.

Methods that depend upon interfaces, instead of concrete classes, tend

to be more reusable. Let’s look at how we use interfaces in .NET and

then see how we accomplish the same goal in Ruby.

Perhaps we’d like to say that some vehicles like airplanes and heli-

copters are flyable vehicles. We could introduce a class called FlyableVe-

hicle in between Vehicle and Airplane, but there’s probably not much

concrete implementation that would be prove to be reusable among all

flyable vehicles. An interface would make more sense in this case. We

know that all flyable vehicles need to take off and land, right?

.NET Download ruby201/baseclass.cs

public interface IFlyableVehicle

{

void TakeOff();

void Land();

}

The big value we get from having defined interfaces is the ability to

write functions that can accept objects that implement that interface,

without knowing the concrete class of the objects themselves. In other

words, it enables the creation of this kind of C# code:

.NET Download ruby201/baseclass.cs

void AllowAllTakeoffs(List<IFlyableVehicle> flyables)

{

foreach (IFlyableVehicle flyable in flyables)

{

flyable.TakeOff();

}

}

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/baseclass.cs
http://media.pragprog.com/titles/cerailn/code/ruby201/baseclass.rb
http://media.pragprog.com/titles/cerailn/code/ruby201/baseclass.cs
http://media.pragprog.com/titles/cerailn/code/ruby201/baseclass.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=68

WHERE’D MY INTERFACES GO? 69

We’d like to show you the Ruby equivalent of the interface keyword, but

we can’t. Ruby doesn’t have one.

Yes, that’s right—Ruby does not advocate the proliferation of interfaces

as a way to enable polymorphic code. To understand why, let’s think

again about why an interface is appealing in a statically typed language.

Would this code be dangerous in C#?

.NET Download ruby201/baseclass.cs

// Dangerous code ahead?

static void AllowAllTakeoffs(List<Object> objects)

{

foreach (Object obj in objects)

{

Plane flyable = (Plane)(obj);

flyable.TakeOff();

}

}

This code appears dangerous because this method cannot guarantee

that it will succeed. It’s been given a list of objects, but there’s no way

to know those objects are flyable airplanes. We attempt to cast each

object to an airplane, but an exception will be thrown if the cast fails

and we try to call the nonexistent TakeOff() method.

Without interfaces, there are only two ways we can make sure that this

code is safe:

• Practice test-driven development, which requires that we write

unit tests to ensure that only flyable objects are passed to AllowAll-

Takeoffs().

• Use reflection to test for the existence of a public method named

TakeOff() before attempting the cast.

Ruby encourages the use of both of these techniques. It’s often been

observed that interfaces tend to grow in size over time, when polymor-

phic functions such as AllowAllTakeoffs() tends to care about the exis-

tence of only a small minority of these methods (in this case, only one).

Here then is the Ruby approach to writing a method that can safely

work with objects that can take off:

Ruby Download ruby201/baseclass.rb

def allow_all_takeoffs(flyables)

flyables.each do |flyable|

flyable.take_off if flyable.responds_to?(:take_off)

end

end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/baseclass.cs
http://media.pragprog.com/titles/cerailn/code/ruby201/baseclass.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=69

CODE REUSE USING MODULES 70

We use the responds_to? method to find out whether the given object has

defined a method named take_off. If so, then we call it.

If you’re feeling insecure about this notion of not being able to have

the compiler ensure that your objects implement specific interfaces,

remember the second part of our equation: unit tests. If you’re new to

unit testing, be sure to read Chapter 10, Test-Driven Development on

Rails, on page 191.

It’s time to look at another cornerstone of Ruby application structure:

modules.

3.4 Code Reuse Using Modules

In addition to code inheritance through base classes, the other strategy

for code reuse that we will examine is the judicious use of Ruby mod-

ules. Modules serve two purposes in Ruby: code reuse and namespace

identification. This duality is often surprising for newcomers to Ruby.

Let’s take a look at each of these purposes one at a time.

Modules As Mixins

Ruby classes can derive from one base class, which is a classical way

to enable code reuse in object-oriented systems. Sometimes, we want

to inherit or “mix in” behaviors that are otherwise orthogonal to the

responsibilities of both the class and the base class. Languages that do

not support multiple inheritance often provide some facility for “mixin”

code reuse. Ruby modules fulfill this role.

A module is similar to a class definition, but it cannot be instantiated.

A module must by “included into” another class before its methods

can be called. In fact, a module is generally nothing more than a set

of method definitions, scoped within a particular namespace. Modules

can also contain other modules, classes, attributes, and any other valid

Ruby code.

Let’s look at a simple example of how a module can be used. Suppose

we are writing a text editor of some kind. We want our text editor to

include some simple spell checking, be able to suggest a synonym for a

word, and perhaps display the definition of a word.

We may decide that these tasks lie outside the core responsibility of a

text editor, but the text editor would like to be able to support these

operations. Moreover, we want this behavior to be reusable outside the

text editor component, perhaps in some other class as well.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=70

CODE REUSE USING MODULES 71

We first wrap the code we want to isolate into a module. We define a

module just like we do for a class, substituting the module keyword

instead. We then define our methods as we normally would:

Ruby Download ruby201/reuse.rb

module Dictionary

def synonym(word)

lookup synonym here

end

def definition(word)

return definition of word

end

def spelled_correctly?(word)

return true if we find the word in our dictionary

end

end

To mix in our new functionality in our TextEditor class, we use the include

keyword and specify which module we want to include into our class

definition:

Ruby Download ruby201/reuse.rb

class TextEditor

include Dictionary

Other TextEditor methods go here

end

And presto, our TextEditor now has Dictionary abilities:

Ruby Download ruby201/reuse.rb

editor = TextEditor.new

We can call Dictionary methods as if

they were originally defined in

the TextEditor class

editor.spelled_correctly?("Airplane")

suggestion = editor.synonym("Delayed")

Modules As Namespaces

The .NET namespace keyword is used to partition a system into logical

components and to avoid identifier collisions between classes, inter-

faces, and other named constructs. Namespaces serve as a container

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/reuse.rb
http://media.pragprog.com/titles/cerailn/code/ruby201/reuse.rb
http://media.pragprog.com/titles/cerailn/code/ruby201/reuse.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=71

CODE REUSE USING MODULES 72

Method Names That End in Question Marks

The spelled_correctly? method in our Dictionary module may look
funny. It demonstrates that certain punctuation marks can be
added to Ruby method names in order to give more meaning
to the method name.

Methods ending with a question mark are, by convention,
expected to be a “getter” method that returns a boolean
value. (In .NET, it would be common to use the word Is as part
of the method name, as in IsSpelledCorrectly(), to indicate that
the return value will be a boolean value.)

for these constructs and can also contain other namespaces to provide

a nested namespace hierarchy.

Ruby modules provide this same kind of namespace facility. Every mod-

ule serves to define a Ruby namespace. Here’s an example of how we

might use modules to provide namespace isolation for two classes that

would otherwise clash:

Ruby Download ruby201/reuse.rb

module Utilities

module Text

module Dictionary

method definitions go here

...

end

end

end

We’ve wrapped our Dictionary module inside two other modules. In .NET

we use a period to construct a fully qualified class name. In Ruby,

however, we use two colons. Here is how we would now include the

Dictionary module into our TextEditor class:

Ruby Download ruby201/reuse.rb

class TextEditor

Use fully-qualified name of

the Dictionary module

include Utilities::Text::Dictionary

Other TextEditor methods go here

end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ruby201/reuse.rb
http://media.pragprog.com/titles/cerailn/code/ruby201/reuse.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=72

RUBY WRAP-UP 73

Using namespaces becomes essential in large Ruby systems, even in

very small components when you want to share your code with others.

The Rails framework is composed of a hierarchy of modules. Rails plug-

ins are always wrapped in a module that helps identify the source of

the plug-in so that class and method name collisions can be avoided

between plug-ins.

3.5 Ruby Wrap-Up

Over the past two chapters, we’ve used short Ruby scripts to explore

some of the core language features that are the lifeblood of every Rails

application: strings, arrays, hashes, iterators, blocks, modules, and

duck typing. Ruby is a language that lends itself well to agile devel-

opment practices, such as unit testing, refactoring, and the DRY prin-

ciple. We will explore more fully in Chapter 10, Test-Driven Development

on Rails, on page 191. For those who want to dive deeply into Ruby, we

recommend Programming Ruby [TFH05] and The Ruby Way [Ful06]

But right now, it’s time to put our Ruby onto some Rails.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=73

Part II

Rails in Action

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Chapter 4

A Bird’s Eye View of Rails
Now that we’re armed with a basic knowledge of Ruby, we’re ready

understand how Rails is put together. Rails is installed as a single gem

but is actually made up of several smaller components that are installed

as separate gems. Each gem is simply Ruby code and may in fact be

used outside of Rails if desired (for a full introduction to gems, see

Section 12.1, Getting to Know RubyGems, on page 232):

• ActiveRecord is the object-relational mapper (ORM) that allows our

Rails app to talk to databases. We dive into ActiveRecord in Chap-

ter 6, CRUD with ActiveRecord, on page 100.

• ActionPack consists of ActionController and ActionView, giving us

controller/routing and view/templating capabilities, respectively.

We discover ActionController in Chapter 7, Directing Traffic with

ActionController, on page 128 and ActionView in Chapter 8, Explor-

ing Forms, Layouts, and Partials, on page 150.

• ActiveSupport is a collection of utility classes and methods that

mostly extend Ruby built-in classes to make things easier for web

developers. We’ll see examples of ActiveSupport in action through-

out the book.

• ActionMailer gives us the ability to send mail from our applica-

tion. We’ll see an example of this in Chapter 8, Exploring Forms,

Layouts, and Partials, on page 150.

• ActiveResource allows easy communications between Rails appli-

cations. A discussion of ActiveResource is outside the scope of this

book but is an essential library to look at if you want two or more

Rails applications to talk.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

COMPARING WEB ARCHITECTURES 76

Throughout the rest of this book, we’re going to build various compo-

nents of a simple flight reservations system as an example to demon-

strate many of the features that the Rails framework has to offer. In

the real world, this system would be used by travel agents and airline

personnel to keep track of passenger lists, book flights, and maintain

flight and airline data.

We’ll be developing this application a little bit at a time, refactoring

along the way, in keeping with the spirit of Rails’ agile development

culture.

In this chapter, we’ll take a big-picture view of a Rails application. First,

we’ll take a look at the stack, which describes the large-scale software

architecture that hosts a web application. We will compare the Rails

stack with might be used in a typical ASP.NET hosting setup. We will

also delve deeper into how the stack differs in different environments

(for example, development vs. production). Finally, we’ll explore the sev-

eral components of the framework and the lifetime of a request to our

application.

4.1 Comparing Web Architectures

In its simplest form, a web application can be broken down into two

components—the request that is initiated by the client (likely to be a

user sitting at a web browser) and the response that is sent back from

the web server—with a lot of messy details in between.

ASP.NET WebForms does a lot of hard work abstracting these details

away from developers. With ASP.NET, web application development be-

haves and feels a lot like desktop application development. This is

a good thing for a developer who has a lot of desktop development

experience; it certainly reduces the barriers to entry for learning to

build a web application. Still, at the end of the day, an ASP.NET app

is ultimately delivered to the end user as a mix of HTML, CSS, and

JavaScript—the only things that the typical web browser is able to

natively understand.

Frameworks like Rails, Django, and PHP take a different approach.

Instead of creating much abstraction between the developer and the

raw code that is given back to the web browser, we’re right there in the

trenches, entrusting only the dynamic parts of the application to the

framework.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=76

COMPARING WEB ARCHITECTURES 77

To fully understand what we’re talking about here, let’s first look at the

application architecture of a typical web application and what role each

of the pieces plays:

• When a client program (like a browser) issues an HTTP request,

the web server is the first to receive it. It’s responsible for handling

it and deciding how to best generate an appropriate response. It

might know what to do right away, in which case it simply returns

a response. This is most often the case when the request is for a

static HTML document, image, or one of the more common MIME

types. Or, it might need to delegate this responsibility to the appli-

cation server if dynamic content is required. The web server may

also be in charge of other things like logging, bandwidth throttling,

and basic authentication.

• The application server is primarily responsible for serving dynamic

content, often by asking the database server for the information

requested.

• The database server is where the (no surprise) data lives.

Both ASP.NET and Rails are database-agnostic, with support for all

the major RDBMS systems. The real architectural differences between

ASP.NET and Rails become more apparent when we compare the role

of the web server and the application server in the processing of an

HTTP request. The various components involved from the receipt of the

request to the final delivery of the response are often referred to as

a web stack. Let’s briefly review how the ASP.NET and Rails stacks

compare with each other.

The Typical ASP.NET Stack

In the average ASP.NET deployment, Internet Information Services (IIS)

plays the role of both web server and application server. When an HTTP

request hits IIS, it decides whether it has the ability to send back an

appropriate response. Web stacks like IIS use the URL to identify the

file that’s being requested.

Sometimes, IIS can directly generate a response without resorting to

any application logic. IIS does this by looking at the extension of the

file requested. For example, if the extension is that of one of the known

MIME types (for instance, .html, .jpg, or .txt), IIS will immediately serve

the requested file from disk.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=77

COMPARING WEB ARCHITECTURES 78

Web Server

Apache
nginx
lighttpd
Litespeed

Application Server

mongrel

Database Server

sqlite
MySQL

PostgreSQL
SQL Server

Oracle and more...

Figure 4.1: The typical Rails stack

If, instead, the extension is .aspx, it will have to delegate the request

to the application server, which is in fact just the ASP.NET process.

ASP.NET executes the .aspx page code, synthesizing the HTML markup

to be sent back to the browser.

While our application is in development, we work on a local machine

instead of the production web server. We want to focus our attention on

how the application will respond to requests, so we often want to skip

the web server part of the equation altogether. ASP.NET and Visual Stu-

dio lets us do this by providing a local web server (Web Developer Server)

that bypasses IIS just for development purposes. A typical implemen-

tation of this usually involves different configuration files, for exam-

ple, a different web.config file per environment. We can also compile

and run our assemblies in different configurations, such as “Debug” or

“Release,” and define our own custom configurations if desired. We can

set breakpoints in our code and set different logging levels per config-

uration. In addition, we can target a different database in development

than we would in production.

All of these concepts we have with .NET have their equivalents in Rails.

They’re just implemented a little differently.

The Rails Stack

Unless we use an alternative platform for running our ASP.NET apps

(say, Mono), ASP.NET is pretty much married to IIS, Windows, and,

for the most part, other Microsoft technologies from a web architecture

standpoint. With Rails, we have a lot of choices, which is a good thing—

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=78

COMPARING WEB ARCHITECTURES 79

Installing mongrel on Windows

Installing mongrel on Windows is very simple and can be done
by typing gem install mongrel at the command line. Once mon-

grel is installed, the script\server command will use mongrel by
default, instead of WEBrick.

but many choices can be daunting when we’re first starting out. Let’s

take a quick look at some of our options, as shown in Figure 4.1, on

the previous page.

Apache is certainly the old standby when it comes to web servers, and it

has been a stable and proven solution for many developers and organi-

zations. However, it is notoriously difficult to configure and get up and

running, especially for those with little experience with it. For this rea-

son, other web server applications like lighttpd, nginx, and Litespeed

have grown in popularity, particularly in the Rails world.

As far as application servers go, mongrel is a lightweight, Ruby-based

solution (written by Zed Shaw in 2006) that has quickly become the

de facto standard for serving Rails applications in both production and

development.

The recent introduction of Passenger1 (aka mod_rails) gives us another

option. A module that runs on top of the popular Apache web server,

Passenger allows for simple, “PHP-like” deployments of Rails applica-

tions. Because of its speed and ease of use, Passenger is gaining popu-

larity quickly in the Rails world.

In general, we want to develop our application in an environment that

mirrors our production environment as closely as possible. So although

it’s not often necessary to run a web server application like Apache in

our development environment (although it can be very helpful to do so

when testing things like caching strategies and security), it is generally

a good idea to run mongrel in development. Doing so is easy enough;

script/server will use mongrel as the default if the gem is installed. To

install the mongrel gem, simply gem install mongrel from the command

prompt.

1. http://modrails.com/

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://modrails.com/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=79

COMPARING WEB ARCHITECTURES 80

boot.rb

environment.rb

runs for all
environments

development.rb
test.rb

production.rb

environment-
specific code

Rails framework
code

Figure 4.2: The Rails boot/initialization process

What Happens When a Rails Application Starts Up

Way back in Section 1.6, Fire It Up, on page 26, we saw that the script\

server command starts up our Rails application server. Let’s now take a

look at what really happens when we do that (see Figure 4.2).

It’s important to realize that Rails is nothing more than a (rather large)

Ruby program. Recall that Ruby programs do not have a Main() func-

tion or any other predefined starting point. The Ruby interpreter simply

starts at the top of the first file it’s asked to process and executes all

the code from top to bottom.

The first Ruby script that is the starting file for all Rails applications is

config/boot.rb. This file, which is generated for you when you create a

new Rails application and is not meant to be modified by hand, loads

all the dependencies needed to start up our Rails application, includ-

ing the loading of the Rails gem itself (unless you’ve “frozen” a specific

version of Rails into your application; see Section 12.4, Freezing a Rails

Application, on page 246).

boot.rb then goes on to execute all the code in config/environment.rb,

which is code we want to run regardless of which “environment” we’re

in. Rails has a notion of distinct runtime environments. By default, it

knows about three: development, test, and production. We often need

different settings depending on the environment, like which database

should be used and how much debugging and logging support we want.

For settings that are common to all environments, environment.rb is the

best place to put code that is required throughout the application that

is not already part of Rails core. For instance, let’s pretend we installed

a gem called xyz and wanted to use it in every model and controller

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=80

ENVIRONMENTS IN RAILS 81

in our application. Instead of putting require ’xyz’ in every model and

controller file, we could put that in our environment.rb file instead.

Lastly, Rails will look for environment-specific code that should be exe-

cuted. Rails defined a convention for how it should locate this code

by searching for a file named config/environments/{environment}.rb, for ex-

ample, config/environments/development.rb, config/environments/test.rb, or

config/environments/production.rb.

Remember that because Ruby is a scripting language, whatever code

comes last wins. So, a method that is defined in environment.rb will be

overridden by a method with the same name if it’s defined in our envi-

ronment-specific code. Likewise, since the environment.rb and environ-

ment-specific files are loaded after the Rails framework code, we can

override anything in Rails at this point as well.

As you may have already guessed, this concept of a particular Rails

runtime environment plays an understated but very important role in

Rails development, so let’s take a closer look at it.

4.2 Environments in Rails

Environment is the Rails term that refers to what we’re doing with our

code at the time of execution. And, just like in .NET, having different

environments allows us to define different database connections, vari-

ables, code, and any other things that may differ between development,

testing, integration, staging, and production setups.

By default, three environments are defined in a Rails application—

development, test, and production. Environments in Rails are defined

by simple Ruby configuration files in the config/environments directory.

Here is an excerpt from the three files:

Ruby Download http/development.rb

config.cache_classes = false

config.action_controller.perform_caching = false

config.action_mailer.raise_delivery_errors = false

FOO = "bar"

Ruby Download http/test.rb

config.cache_classes = false

config.action_controller.perform_caching = false

config.action_mailer.raise_delivery_errors = false

FOO = "bar"

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/http/development.rb
http://media.pragprog.com/titles/cerailn/code/http/test.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=81

ENVIRONMENTS IN RAILS 82

Ruby Download http/production.rb

config.cache_classes = true

config.action_controller.perform_caching = true

config.action_mailer.raise_delivery_errors = true

FOO = "baz"

Let’s now take a look at the first line of each file. With this line, we

are telling Rails that in development and test we don’t want to cache

classes. Caching classes speeds Rails’ performance up considerably but

requires that we restart the application server any time code changes

are made. This is probably what we want in production, but we cer-

tainly don’t want that in development. Along the same lines, we want

caching turned on and want errors to be raised if we can’t send mail

in production, but we don’t care about those things in development or

test. There are a lot of configuration options that can be set per envi-

ronment; check out the Rails documentation to see all of them. We can

also set our own variables, like we’ve done in the last line of each envi-

ronment file.

In Visual Studio, we can use different configuration files to define cus-

tom environments if we want. Adding our own custom environments in

Rails is just as simple, except that, instead of XML configuration files,

they’re written in Ruby. For example, if we wanted a staging environ-

ment, we would simply add a staging.rb file to the config/environments

directory and set the appropriate options that we wanted.

We specify the environment we want to run when starting up the appli-

cation server. For example, to start up our application in production

using script\server, we would simply type this:

c:\dev\flight> ruby script\server -e production

This starts up Rails on the default port (3000) in the production envi-

ronment. The default environment is development, so if we don’t specify

one using the -e argument, that’s what we’ll get.

One last thing about environments: the current environment is always

available for us to use in code by accessing the RAILS_ENV constant. Here

is just a simple example of how we might use it to display a footer on a

page:

Ruby Download http/_footer.html.erb

<div id="footer">

<% if RAILS_ENV == 'development' -%>

We're still working on it, so be nice.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/http/production.rb
http://media.pragprog.com/titles/cerailn/code/http/_footer.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=82

CONFIGURING DATA ACCESS 83

<% else -%>

© 2008 Super-Mega Corp. All rights reserved.

<% end -%>

</div>

Here, we are using the value of RAILS_ENV to show a different footer to

those running in development mode than in any other environment.

4.3 Configuring Data Access

If we were talking typical ASP.NET, we’d probably use our web.config file

to configure access to our database by supplying a different connection

string per environment. In Rails, information about data access across

all environments is contained in a single file, the config/database.yml

file. Here’s an example:

Download http/database.yml

development:

adapter: sqlite3

database: db/development.sqlite3

timeout: 5000

test:

adapter: sqlite3

database: db/test.sqlite3

timeout: 5000

staging:

adapter: mysql

database: flight_staging

username: foo

password: bar

production:

adapter: mysql

database: flight_production

username: deploy

password: secret

Each of our environments must have an entry in this file to let the

application know how we’d like to access the data for that environ-

ment. Here, we are telling our application that in development and test

we’d like to use a simple SQLite file-based database and that in stag-

ing and production we’re going to use MySQL. We’ve also supplied the

credentials necessary to access these databases.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/http/database.yml
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=83

RECEIVING HTTP REQUESTS 84

Joe Asks. . .

What Is YAML?

The database.yml file is in a format called YAML (rhymes with
“camel” and stands for YAML Ain’t a Markup Language or
Yet Another Markup Language—depending on who you ask!).
YAML is a data serialization format that’s designed to be very
human-readable and editable. Data in YAML is represented in
a simple hierarchical structure, and indentation matters. You
can find more information about YAML at the YAML website.∗

∗. http://yaml.org

4.4 Receiving HTTP Requests

We talked earlier about how some web frameworks like IIS use the URL

to basically determine which file should be processed by the server.

Rails takes a different approach. Some files, like images, are still han-

dled directly by the web server. But any time the request is not matched

to a physical file on disk, it gets handed off to Rails’ dispatcher. The

dispatcher does not try to locate a file that matches the URL’s direc-

tory structure. Instead, the URL maps to a specific Ruby method in our

Rails application.

It probably seems funny to think about a URL as just a way to invoke

a method in our application, but that’s exactly what Rails does. To

determine which method should be called, the dispatcher first consults

our routes to determine which controller (a class in our app/controllers

directory) and which action (a public method of our controller class) to

send the request off to. We will explore routes in depth in Chapter 7,

Directing Traffic with ActionController, on page 128. For now just know

that unless a URL represents a nondynamic HTML file or asset, it must

be translated into a method call. Not just any method can be called,

only public methods of controller classes are callable by the dispatcher.

In Rails-speak, public controller methods are called actions. Once the

controller dispatcher identifies the controller class and action to call, it

instantiates the controller, and the action method is called.

Our method can do anything it wants. After our method runs, Rails

constructs an HTML response to send back to the browser. Typically,

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=84

GENERATING HTTP RESPONSES 85

Dispatcher Controller ViewRouting

Model

Figure 4.3: The journey of an HTTP request in a Rails app

the controller talks to one or more model classes to send or retrieve

some data, and a view containing an embedded Ruby script is rendered

to the end user (see Figure 4.3).

4.5 Generating HTTP Responses

Most of the work involved in receiving HTTP requests is behind the

scenes in Rails, just as it is in .NET. The responsibility for generating

the response, however, is placed squarely on the shoulders of the appli-

cation. Most of the remainder of this book will focus on generating HTTP

responses of various kinds and in various ways, but we’ll first outline

the primary concepts you’ll need to know in order to successfully switch

from a .NET mind-set to the Rails way of thinking.

Controllers

In a Model-View-Controller (MVC) architecture, the controllers are like

first responders to an emergency. They are the first ones that get told of

the call, and they are the ones that have to decide what to do about it.

In Rails, controllers are normal Ruby classes that inherit from Action-

Controller:Base or (more often) the generated ApplicationController class.

Controllers have public action methods that can be called from the

dispatcher, as well as their own protected and private methods. Before

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=85

GENERATING HTTP RESPONSES 86

an action method returns, it is responsible for generating a response

in a format that is compatible with what the client expects. For a web

browser that’s requesting HTML, we need to generate HTML; for an RSS

reader that’s expecting Atom-formatted XML, we need to generate the

appropriate XML document; and so on.

Remember too that Rails is best suited for database-backed web appli-

cations. As a result, action methods typically follow this pattern:

1. Manipulate the domain model in some way. This might be select-

ing some data from the database, inserting data into the database

based on incoming parameters, or otherwise using one or more

classes from the app/models directory.

2. Look at the response format that’s been requested by the client.

3. Generate a response in the correct form by rendering a view tem-

plate.

Controllers generate a response by explicitly calling the render() method

before they leave scope, by redirecting the browser to a different page, or

by allowing Rails to implicitly render a view template that is associated

with the action. For all that controllers do, they are surprisingly free

of code. Controllers should delegate most of their “intellectual work” to

models and do little more than provide data to be consumed by the

views.

Models

Models, on the other hand, should constitute the bulk of your applica-

tion code. They provide a persistent storage mechanism to your data-

base and should also define all business logic. Any time there’s a deci-

sion to be made that has nothing to with the format of the request or

the response, the model should be the one making the decision. When

there’s a need to query the database, it’s the model that should be

issuing the query. Models should be the “brain” that operate on your

application’s database, determine and change the state of other objects,

and coordinate the overall logic of your application.

There’s a philosophy often referred to as “Fat Models, Skinny Con-

trollers.” As a rule of thumb, if the code in your controller actions

are getting messy or unwieldy, especially if you’re touching data in a

database, then whatever you’re doing probably belongs in your models

instead.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=86

GENERATING HTTP RESPONSES 87

Put another way, if you didn’t have a web browser handy, could you

manipulate your application logic from an irb session? If not, then some

of your application logic has been put into a controller or view when it

belongs in a model instead.

Views

Views are text files in app/views that can be pure HTML; HTML tem-

plates with embedded Ruby, XML, CSV; or any other kind of text file.

Views are identified by MIME type and how they should be interpreted

or built. Rails will automatically detect both of these characteristics if

we name our view files according to a specific convention:

action.mimetype.builder

For example, show.html.erb is a template named show that will be ren-

dered automatically after the show action method returns; it is appro-

priate only for HTML requests and must be processed as an embedded

Ruby template file.

This MVC dance takes a little getting used to, but this forced sepa-

ration of concerns pays big dividends as your application grows. The

independence of views from models means that once we have an HTML

representation of our data, we can create an XML view of the same data

by adding a new kind of view template and allow the controller to dis-

cover it automatically. Similarly, we can be free to enhance and evolve

the public interfaces of our models with little or no impact on the views

but only upon the controllers that uses them.

In this chapter, we’ve brushed elbows with the Rails framework and

taken a peek at what a Rails application is actually made of. Next, we’ll

take a look at some of Rails’ conventions and how following them helps

make application development, dare we say, enjoyable.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=87

Chapter 5

Rails Conventions
One of the important things to know about Rails is that it’s opinion-

ated. It certainly seems strange to talk about a software development

framework as having an opinion, but it is this quality that truly makes

Rails what it is. If you build your app the way Rails expects you to build

it, it can be a pure joy. And if you want to do things a little differently,

it can sometimes be a challenge.

One of the pillars of the Rails framework is the notion of “convention

over configuration.” Rails strives not to overwhelm the developer with

options; instead, it promotes the use of sensible defaults for the major-

ity of cases, with the ability to override these defaults—if you really

want. In this chapter, we’ll closely examine what some of these conven-

tions are and how to approach problems “the Rails way.” Many of these

defaults come as a result of Rails’ implementation of both the MVC and

REST design patterns, and we’ll examine both of these implementations

in detail.

5.1 MVC: Separating Responsibilities in Your Application

.NET developers should be familiar with the idea of splitting up parts of

an application into different layers in order for code to make more sense

and to make it easier to maintain. Most professional .NET application

developers are probably accustomed to doing this by creating sepa-

rate libraries for their data, business, and presentation logic. ASP.NET

developers are used to the framework doing much of this for them by

default, breaking a web form, for example, into ASPX/ASCX and its

corresponding code-behind.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

MVC: SEPARATING RESPONSIBILITIES IN YOUR APPLICATION 89

Rails, by convention, implements a similar separation of responsibili-

ties. The goals are the same—to logically partition an application into

smaller pieces that are much easier to understand. To accomplish this,

Rails employs a very well-known software design pattern: Model-View-

Controller (MVC). It goes something like this:

• Models are the classes that represent your business domain and

that are responsible for communicating with your data. In Rails,

this means the tables in your database.

• Views represent your presentation layer, for example, HTML and

JavaScript.

• Controllers are responsible for connecting the models and views

and managing the flow of the application.

If you take a peek in the app folder of any Rails application, you’ll find

the models, views, and controllers folders inside. Here’s where the magic

of Rails happens. Simply put your Ruby code inside these folders, con-

form to the conventions of file and class naming (that we’ll discuss in a

moment), and that’s it—you’re already following Rails’ MVC pattern.

Bear in mind that you aren’t required to follow every one of these con-

ventions; Rails allows you to override most of them, if you want. But in

general, it will be a lot easier and more productive to simply do what

Rails expects and just ride the wave.

Model Conventions

The granddaddy of all the modules that make up Rails is ActiveRecord’s

built-in object-relational mapping (ORM) tool. And, as is often the case

with granddaddies, it is also the most opinionated one in the family.

Model classes in Rails, all of which inherit from the ActiveRecord base

class ActiveRecord::Base, map one-to-one to a table in your database.

They belong in the app/models directory and should follow these simple

rules:

• There should be one class per file.

• The class name should be singular and camel-cased, for example,

Person or InvoiceItem.

• The corresponding table name should be lowercased, plural, and

underscored, for example, people or invoice_items.

• The corresponding table is always identified by an autoincrement-

ing integer field called id.

• Column names should also be lowercased.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=89

MVC: SEPARATING RESPONSIBILITIES IN YOUR APPLICATION 90

• The filename should be the lowercased and underscored version

of the class name, for example, person.rb or invoice_item.rb.

To represent the relationships between tables and columns in your

application, ActiveRecord provides a set of methods collectively called

associations. These are used to express things like “flight belongs to

airline” or “flight has many passengers.” Here’s an example of a set of

ActiveRecord classes that take advantage of the basic association meth-

ods:

Ruby Download conventions/flight.rb

class Flight < ActiveRecord::Base

has_many :reservations

has_many :passengers, :through => :reservations

belongs_to :airline

has_one :manifest

end

class Reservation < ActiveRecord::Base

belongs_to :flight

belongs_to :passenger

end

class Passenger < ActiveRecord::Base

has_many :reservations

has_many :flights, :through => :reservations

end

class Airline < ActiveRecord::Base

has_many :flights

end

class Manifest < ActiveRecord::Base

belongs_to :flight

end

As you can see, association methods are a lot like representing for-

eign keys in a database diagram—in Ruby code. Figure 5.1, on the next

page, shows what the corresponding database diagram might look like.

The power of association methods stems from the power of Ruby itself.

Because of the dynamic nature of the language, these methods actu-

ally add (or mix in) behavior to the class in which they’re defined.

For instance, now that we’ve implemented the has_many method in

our Flight class, we can now create an instance of Flight and do things

like flight.passengers or flight.airline and get back an array of passengers

on that flight and the flight’s airline, respectively. This all happens

automagically, of course—if you follow the conventions. There’s a lot to

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/conventions/flight.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=90

MVC: SEPARATING RESPONSIBILITIES IN YOUR APPLICATION 91

airline_id
number
origin
destination
departs_at
arrives_at

id
flights

flight_id
passenger_id

id
reservations

name
id
passengers

name
id

airline

flight_id
departed_at
arrived_at

id
manifest

belongs_to :airline

has_many :reservations

has_many :passengers,

 :through => :reservations

has_many :flights

has_one :flight

belongs_to :flight

belongs_to :passenger

has_many :reservations

has_many :flights,

 :through => :reservations

Figure 5.1: Database diagram for flight reservation example

remember with the conventions for association methods, but over time

you’ll learn that it’s as natural as following the rules of the English

language:

• has_many represents a zero-to-many relationship between the par-

ent class in which it’s declared and the child class. It must take

at least one parameter, which is the pluralized version of the child

class, and the child table must have a field that starts with the

singular, lowercased parent class name and ends with _id. For

instance, as shown in Figure 5.1, a Flighthas_many :reservations, so

the reservations table must contain a flight_id column.

• has_many can take an option, :through, which then allows it to rep-

resent a many-to-many relationship. For instance, the reservations

table acts as a join table between flights and passengers, so it must

have both flight_id and passenger_id columns.

• has_many is often reciprocated by a belongs_to method call on the

child class. In the previous example, “an airline has many flights”

and “a flight belongs to an airline,” so the flights table must contain

an airline_id column.

• A has_one association is much like a belongs_to in that it represents

a one-to-one relationship in your database. The key difference is

whether the foreign key column lives on the parent or on the child

table. If “a flight has one manifest” as in the example, then the

manifest table must contain a flight_id column. If, instead, “a flight

belongs to a manifest,” then the flight table would have a manifest_id

column.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=91

MVC: SEPARATING RESPONSIBILITIES IN YOUR APPLICATION 92

Finally, keep in mind that because of the strict implementation of MVC

in Rails, your models should have no knowledge of stuff like what URL

a user has typed into her browser, what GET or POST parameters are

being passed around, or what URL the user should go to next—these

are jobs for the controller.

Controller Conventions

Controllers have all the knowledge about, and control over, the flow of

request to response in a Rails application. Here are some key things to

know:

• The controller’s class name should be camel-cased and pluralized

and be followed by the word Controller, for example, OrdersController

or ProductSearchesController.

• As with models, the filename should be the lowercased and under-

scored version of the class name, for example, orders_controller.rb or

product_searches_controller.rb.

A public method of a controller class is known as an action, for example,

new, edit, show, and so on. Each one of these methods connects the data

in your model layer to what you’d like the end user to see.

Enough talk, here’s an example:

Ruby Download conventions/flights_controller.rb

class FlightsController < ApplicationController

def show

@flight = Flight.find(params[:id])

end

end

Here, we see that the FlightsController has a single action, show, and that

it has very little implementation other than finding a flight record based

on an ID that’s been passed in and assigning that record to an instance

variable called @flight. Notice that we haven’t told the action to go to a

particular page or otherwise render any HTML. This is because, unless

explicitly told not to, Rails will simply render the view with the same

name as the action.

View Conventions

Views live in the app/views directory, and each file goes into a subdi-

rectory named after the controller to which it belongs. For example,

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/conventions/flights_controller.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=92

MVC: SEPARATING RESPONSIBILITIES IN YOUR APPLICATION 93

every view of the OrdersController is inside the app/views/orders directory.

View files themselves follow a simple and logical naming convention—

the name of the action, followed by the type of file, followed by the ren-

dering engine, all separated by a dot. For example, a view file named

edit.html.erb in the orders directory tells us that this view corresponds to

the edit action of the OrdersController, that it is written in HTML markup,

and that it should use the ERb engine to do the rendering.

Here is an example view for the show action we implemented in the

FlightsController:

Ruby Download conventions/show.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title>Showing Flight Number <%= @flight.number %></title>

</head>

<body>

<p>Flight Number: <%= @flight.number %></p>

<p>Departs <%= @flight.origin %> at <%= @flight.departs_at %></p>

<p>Arrives <%= @flight.destination %> at <%= @flight.arrives_at %></p>

</body>

</html>

Here, we see some simple HTML that will give us a page showing our

customer’s name. Since the view has access to any instance variable

set in its corresponding controller method, we’re able to use the @flight

variable in our markup. Rails gives you access to any of the columns of

a model’s corresponding table as well—calling @flight.number will auto-

matically return the value of the number column that belongs to the

Flight record returned.

Generators

Luckily, you don’t have to remember all this yourself. Rails comes with

a set of scripts, called generators, that (unsurprisingly) generates code

so you can skip past the mundane tasks of creating files and having to

remember where to put them and get to work instead!

Let’s take the model and controller generators for a spin, but remember

that, by convention, models are singular and controllers are plural.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/conventions/show.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=93

PUTTING IT TO REST 94

c:\dev\flight> ruby script\generate model flight

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/flight.rb

create test/unit/flight_test.rb

create test/fixtures/flights.yml

create db/migrate

create db/migrate/001_create_flights.rb

c:\dev\flight> ruby script\generate controller flights

exists app/controllers/

exists app/helpers/

create app/views/flights

exists test/functional/

create app/controllers/flights_controller.rb

create test/functional/flights_controller_test.rb

create app/helpers/flights_helper.rb

Generators are a great timesaver. They also teach you a lot about where

things belong and what Rails expects you to do next. For instance, in

addition to the model and controller classes being created and placed

in the proper directories, you’ll notice that a bunch of files get created

under the test directory as well. We’ll learn more about what this is for

in Chapter 10, Test-Driven Development on Rails, on page 191.

5.2 Putting It to REST

Now that you know all about how Rails implements MVC, there’s one

other key topic to understand before we can get to building that next

great app of yours. In addition to baked-in MVC, Rails is tailor-made

to allow for rapid development of RESTful web applications. To under-

stand what that means to you, as a developer, we have to first dive into

a little history lesson.

Representational State Transfer (REST) is a fancy term that simply

refers to a particular style of programming. It’s not something that’s

unique to Rails at all—the concept of REST was coined by Roy Fielding

back in Internet medieval times (the year 2000, that is). If you’re new

to the concept of REST, the best way to get started is to think of your

application as a collection of nouns and verbs.

Thinking way back to third-grade reading class, I think I can come up

with a few nouns:

• Dog

• Car

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=94

PUTTING IT TO REST 95

• Shoe

• Truck

Nouns aka Resources

Of course, your web application is probably not made up of dogs, cars,

shoes, and trucks. It’s most likely made up of things like customers,

orders, products, and shopping carts. In our flight reservations sys-

tem, it’s probably going to be comprised of, among other things, flights,

reservations, and passengers. So, that’s the first step in designing your

application in a RESTful manner—to identify your nouns, otherwise

known as resources. To think RESTfully is to stop thinking of your web

application as a bunch of pages and begin to see it as a collection of

resources.

Verbs

Although you’re allowed to have an infinite number of nouns/resources

in your application, according to the REST gospel, only a short list of

verbs is allowed; you’re allowed only to create, read, update, and delete

(CRUD) your resources.

You might initially think that your application, in your particular busi-

ness domain, won’t fit into this model. But, most likely, you’ll find that

it’s not only possible but also extremely liberating. Furthermore, HTTP,

the native language of the Web, has been implemented using a REST-

style pattern. We web developers are all familiar with the GET and POST

methods that HTTP implements. Well, GET and POST are HTTP’s way

of implementing the read and create verbs. And although HTML under-

stands only the GET and POST methods, HTTP also implements PUT

and DELETE methods, which are meant to represent the updating and

deleting of your resources.

OK, we know. You’re not buying this yet. Let’s go a step further.

A Practical Example

If you’ve been doing object-oriented programming at all, embracing

REST is all about thinking about your application a little differently

than you might be used to doing. If not REST, then you’ve probably

been doing what’s known as RPC-style programming. That is, you have a

bunch of classes (nouns), and each of those classes has some arbitrary

number of methods (verbs) on it where you take action on a particular

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=95

PUTTING IT TO REST 96

instance of that class. For instance, in our flight reservation system,

your Flight class might implement the following methods:

• GetFlight()

• AddFlight()

• UpdateFlight()

• TakeOff()

• Delay()

• Cancel()

This approach works great in many OO programming scenarios, but

wouldn’t it make more sense, in a web programming context, to make

your application API more web-like?

Let’s think about what you’d do if your boss or client approached you

and wanted you to implement the flight cancellation use case in your

application. Your first thought might be to create a page for it that does

the job. If you were using ASP.NET, you might create something like

CancelFlight.aspx and access it via a URL like http://localhost/CancelFlight.

aspx. Or, in Rails, you might perhaps create an action on your Flights-

Controller called cancel and make it accessible via http://localhost/flights/

cancel?flight_id=123. This all makes perfect sense, but the REST way

takes a different approach. REST, in contrast to RPC, emphasizes the

diversity of nouns, not verbs—just like HTTP does. So instead, the

REST way to do this would be to create another resource—perhaps

called FlightCancellations—and to perform a create on the FlightCancella-

tions resource.

What Does This All Buy Us?

Why subject ourselves to these types of constraints? Going along with

the spirit of Rails as a whole, the REST way is really all about not having

to think about the petty implementation details of your application.

Rather, it allows you to focus on your website’s business domain and

unique features and what you’d actually like your application to do.

One of the hardest things for a developer, at times, is to just get started

on a new project. With REST, again, there’s not much thinking involved.

Simply identify your resources, and get coding. Here are some other

benefits of REST that are along the same lines:

• Consistency. You can sleep easy at night knowing that all your

resources have a common API. It sure makes your application easy

to maintain, because you won’t be hunting for hours trying to find

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=96

PUTTING IT TO REST 97

that weird method that you or a teammate wrote last year. What if

your boss asks you to implement the ability to “uncancel” a flight?

It’s easy enough to do—simply add a delete verb to your flight

cancellation noun.

• If you ever decided to expose a public API, those who consume it

wouldn’t need to keep track of all the crazy actions you’ve made

up—they would need to know only which resources they’re allowed

to CRUD.

• What if you needed to keep track of all flight cancellations? No

problem. The create, read, update, and delete verbs sound an

awful lot like INSERT, SELECT, UPDATE, and DELETE in SQL,

if you ask us. It’s a very natural mapping that requires very little

work on your brain’s part to understand.

REST is a design pattern. As with all design patterns in software, it

is a suggested framework for how you might write and organize your

code. Simply put, you don’t need to conform to REST practices 100%

of the time in order to build web applications with Rails. But as with

everything else in Rails, you’d be going against the grain, be a lot less

productive, and be running into a few more challenges.

How REST Works in Rails

There’s a really easy way to get started with REST in Rails—by using the

built-in scaffold generator. Scaffolding in Rails is lot like scaffolding in

construction terms. It provides a skeleton of an application that holds

everything in place while you build what’s going to really become the

finished product. And, just like real scaffolding, it’s not meant to remain

in place for production use; it’s there to guide you along the way and

provide something to stand on until the real thing is completed. Most

of all, it’s an excellent learning tool in helping you understand how a

Rails application is intended to be built in a RESTful manner. To see

what I mean, let’s create a new Rails project for our flight reservation

system:

c:\dev\> rails flight

Next, we’ll use the scaffold generator to create a Flight model, as well as

a FlightsController within your Rails project:

c:\dev\flight\> ruby script\generate scaffold flight

flight_number:integer departs_at:datetime arrives_at:datetime

origin:string destination:string

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=97

PUTTING IT TO REST 98

Rails Action Which Represents... URL HTTP Verb

index A collection of flights /flights GET

show A flight /flights/123 GET

new A form for creating a new

flight

/flights/new GET

create Where you submit the

new flight form

/flights POST

edit A form for editing an

existing flight

/flights/123/edit GET

update Where you submit the

edit flight form

/flights/123 PUT

destroy Where you destroy (de-

lete) an existing flight

/flights/123 DELETE

Figure 5.2: The seven RESTful Rails actions

What we are telling the scaffold generator to do here is to create a

model, a controller, and some views to perform basic CRUD operations

for a database table named flights. The scaffold generator also takes

field names and types as parameters, and we are taking advantage of

that capability here to add a flight number, departure/arrival time, and

origin and destination cities. Note that the ID field is always created

by default, so there is no need to specify it through the generator

command.

Take a look at the controller that’s generated, and you’ll see that Rails

takes the four verbs we’ve been talking about (create, read, update, and

delete) and maps them to seven controller actions (the public methods

of the controller), as shown in Figure 5.2.

Notice that the URLs for the show, update, and destroy methods are

identical. That’s OK because they each use different HTTP verbs, which

distinguishes them from each other.

There is one more important thing that the scaffold generator does.

Rails routing, as defined in the routes.rb file, also needs to know about

your resources in order to map them properly to the aforementioned

HTTP verbs.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=98

PUTTING IT TO REST 99

Joe Asks. . .

Wait a Minute...Didn’t You Say HTML Doesn’t Understand PUT
and DELETE?

That’s right, it doesn’t. Even though HTTP supports the PUT and
DELETE methods just fine, HTML doesn’t—it does only GET and
POST. So, in order for Rails to conform to the HTTP convention in
the interest of being RESTful, a hidden form field is used to sim-
ulate PUT and DELETE requests. You don’t have to really worry
about how this happens as long as you use Rails’ built-in form
helpers, but it’s a good thing to know anyway.

Running the scaffold generator does this for us, but let’s just take a

peek:

Ruby Download conventions/routes.rb

ActionController::Routing::Routes.draw do |map|

map.resources :flights

end

That single line of code in our routes file does a whole lot of work for

us. It lets Rails know that flights is a resource in our RESTful design;

defines all seven URLs that we need to list, show, create, update, and

delete our resource; and creates helper methods that allow for quick

access to those URLs. That’s not bad for one line of code!

From this chapter, you should now have a solid understanding of the

main Rails conventions—MVC and REST. But this is in fact only the

tip of the proverbial iceberg. From here, we’re ready to get cranking on

our flight reservations system and apply these concepts to writing a

real-world Rails app.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/conventions/routes.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=99

Chapter 6

CRUD with ActiveRecord
ActiveRecord is the part of Rails that’s responsible for talking with the

database of our application. Whether that database is MySQL, SQL

Server, SQLite, Postgres, or one of the myriad of other RDBMSs that

Rails supports, ActiveRecord allows us to tell it what to do in a single

language, Ruby.

In this chapter, we’ll explore the sweet spot of Rails—the creating, read-

ing, updating, and deleting (CRUD) of data—using ActiveRecord. We’ve

already talked about some of the conventions that we’ll need to follow

to take full advantage of ActiveRecord; now, we’ll put this knowledge to

the test by using Rails to do a lot of the same things we’re used to doing

in .NET. In addition, we’ll be concentrating much more on the capabil-

ities of ActiveRecord and the model side of things and only minimally

on the controller and view parts of the Rails world. We’ll take a much

closer look at the controller and view in the next chapter.

6.1 Displaying a Grid of Data in a Table

One of the features that you’ll see in almost any web application is

a collection of records in a database displayed in a human-readable

grid/table format. Let’s say we’d like display a simple table that shows

all passengers in our flight system from our passengers table.

How You Might Approach It in .NET

There’s no built-in ActiveRecord-like ORM mapper in .NET, although

several open source and commercial packages are similar in style and

function. For the most part, though, in out-of-the-box ASP.NET Web-

Forms, you’re looking at SQL (whether it’s in a stored procedure or

dropping a SQL statement into code) or LINQ in order to get an object

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

DISPLAYING A GRID OF DATA IN A TABLE 101

that contains your data and then displaying it with a control like the

GridView. The following illustrates such an approach:

.NET Download crud/Passengers.aspx

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs"

Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<title>Passengers</title>

</head>

<body>

<form id="form1" runat="server">

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

ConnectionString="<%$ ConnectionStrings:ConnectionString %>"

SelectCommand="SELECT * FROM passengers"></asp:SqlDataSource>

<asp:GridView ID="GridView1" runat="server"

AutoGenerateColumns="False" DataKeyNames="id"

DataSourceID="SqlDataSource1">

<Columns>

<asp:BoundField DataField="name" HeaderText="name"

SortExpression="name" />

<asp:BoundField DataField="address" HeaderText="address"

SortExpression="address" />

<asp:BoundField DataField="seating_preference"

HeaderText="seating_preference"

SortExpression="seating_preference" />

</Columns>

</asp:GridView>

</form>

</body>

</html>

Here, we create a simple GridView that contains our data by binding

the control to a SqlDataSource object that queries for all passengers.

Within the GridView definition, we declaratively let the control know

which columns we want to display. When we start our application up,

this code will translate into HTML for display in the web browser.

The Rails Way

It’s pretty trivial to create the same interface using Rails’ scaffolding,

as we did in the previous chapter. But we’re going to do everything by

hand this time so we can dig a little deeper into how Rails works behind

the scenes.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud/Passengers.aspx
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=101

DISPLAYING A GRID OF DATA IN A TABLE 102

As we’ve already learned, three parts are involved in building the same

read-only view of a data collection as the ASP.NET GridView approach:

the model, the view, and the controller. Let’s quickly use a generator to

get all the files we need before exploring our application further.

c:\dev\flight> ruby script\generate resource passenger

exists app/models/

exists app/controllers/

exists app/helpers/

create app/views/passengers

exists test/functional/

exists test/unit/

dependency model

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/passenger.rb

create test/unit/passenger_test.rb

create test/fixtures/passengers.yml

exists db/migrate

create db/migrate/20080722201710_create_passengers.rb

create app/controllers/passengers_controller.rb

create test/functional/passengers_controller_test.rb

create app/helpers/passengers_helper.rb

route map.resources :passengers

Now that we have the files we need, let’s make a few edits to the gener-

ated code to get our application working the way we want it.

The Passenger Model

We’ll concentrate on the model layer first. Notice that the generator

created a migration file, db/migrate/20080722201710_create_passengers.rb.

Let’s modify this migration to reflect the schema we’d like to create for

the passengers table, where each passenger will have a name, address,

and seat preference.

Ruby Download crud/20080722201710_create_passengers.rb

class CreatePassengers < ActiveRecord::Migration

def self.up

create_table :passengers do |t|

t.string :name, :address, :seat_preference

t.timestamps

end

end

def self.down

drop_table :passengers

end

end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud/20080722201710_create_passengers.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=102

DISPLAYING A GRID OF DATA IN A TABLE 103

Now we’ll run the migration:

c:\dev\flight> rake db:migrate

(in c:\dev\flight)

== 20080722201710 CreatePassengers: migrating =======

-- create_table(:passengers)

-> 0.0026s

== 20080722201710 CreatePassengers: migrated (0.0029s) =====

Great. The passengers table is now created based on the information

we’ve provided in the migration file. With no SQL. Just Ruby.

The Rails Console

Now that we’ve created our table, it’s a good time to mention that Rails

ships with a handy utility called console that is a lot like irb, except

that it runs within the context of our web application. This means that,

in addition to evaluating Ruby interactively, you can also do things

like manipulate your application’s database, make simulated requests,

and execute other Rails-specific commands that wouldn’t otherwise be

available with vanilla irb. Let’s fire it up now:

c:\dev\flight> ruby script\console

Loading development environment (Rails 2.1.0)

>>

From the console, we’re able to learn a lot about the capabilities of the

ActiveRecord library. Let’s use it now to create some sample records in

our passengers table:

>> Passenger.create(:name => 'John Doe', :address => '123 Main St',

:seat_preference => 'Aisle')

=> #<Passenger id: 1, name: "John Doe", address: "123 Main St",

seat_preference: "Aisle", created_at: "2008-01-15 15:49:24",

updated_at: "2008-01-15 15:49:24">

The create method is a class method of the class Passenger that accepts

a single parameter—a Hash where the keys are column names (as sym-

bols) and the corresponding values. We could just easily do it the long

way and instantiate a new Passenger object, assign the values we’d like,

and call the save method:

>> passenger = Passenger.new

=> #<Passenger id: nil, name: nil, address: nil, seat_preference:

nil, created_at: nil, updated_at: nil>

>> passenger.name = 'Jane Doe'

=> "Jane Doe"

>> passenger.address = '123 Main St'

=> "123 Main St"

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=103

DISPLAYING A GRID OF DATA IN A TABLE 104

>> passenger.seat_preference = 'Window'

=> "Window"

>> passenger.save

=> true

Both approaches yield the same result: a new record gets created in the

passengers table with the values you’ve specified for each column. Some

developers like the one-line brevity of the create method, and others

enjoy the clear intention expressed by the multiline approach. It’s up

to you to decide which of the styles you like better.

It’s Just SQL

By now, you have probably realized that ActiveRecord, as fantastic a

library as it is, is not magic. All it really does is create SQL statements

behind the scenes, with the added bonus of being completely database-

agnostic. That is, it understands the various idiosyncrasies of various

database engines and adjusts the generated SQL accordingly.

The closer your relationship with ActiveRecord, the more productive

Rails developer you’ll become. And the key to a deeper and more mean-

ingful relationship with ActiveRecord is knowing exactly what SQL is

being generated when you call methods like create. Fortunately, the

raw SQL is exposed through the log file of a running Rails application,

and furthermore, you can also examine it in the console. By default,

the log output of any commands you execute in the console go straight

to your development log (located at log\development.log), but you can

issue a one-line command to override this and direct the log output to

standard output instead. We’ll do this now so that we can inspect the

SQL that ActiveRecord creates quickly:

>> ActiveRecord::Base.logger = Logger.new(STDOUT)

=> #<Logger:0x105a608 @default_formatter=#<Logger::Formatter:0x105a5e0

@datetime_format=nil>, @progname=nil,

@logdev=#<Logger::LogDevice:0x105a590, @filename=nil,

mutex=#<Logger::LogDevice::LogDeviceMutex:0x105a52c

@mon_entering_queue=[], @mon_count=0, @mon_owner=nil,

@mon_waiting_queue=[]>, @dev=#<IO:0x2e7d4>, @shift_size=nil,

@shift_age=nil>, @level=0, @formatter=nil>

So when we create a new record, we see the underlying SQL right away:

>> passenger = Passenger.create(:name => 'Brian Eng', :address =>

'1060 West Addison', :seat_preference => 'Aisle')

Passenger Create (0.000887) INSERT INTO passengers ("name",

"updated_at", "seat_preference", "address", "created_at")

VALUES('Brian Eng', '2008-01-15 16:13:18', 'Aisle', '1060 West

Addison', '2008-01-15 16:13:18')

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=104

DISPLAYING A GRID OF DATA IN A TABLE 105

=> #<Passenger id: 3, name: "Brian Eng", address: "1060 West

Addison", seat_preference: "Aisle", created_at: "2008-01-15

16:13:18", updated_at: "2008-01-15 16:13:18">

One thing to note is that when a record gets created, the created_at

and updated_at columns of the table automatically get filled in. Don’t

remember creating those columns? That’s because you didn’t. When

we used the generator to create the migration for the passengers table, it

inserts the t.timestamps line in there by default. That’s a special method

that creates the created_at and updated_at columns for us. These are

special column names that ActiveRecord recognizes and automatically

fills in for us when a row is created or updated, respectively.

Also note that the value returned from the create method is a instance

of the Passenger class, which contains the methods id, name, address,

seat_preference, created_at, and updated_at.

>> passenger.address

=> "1060 West Addison"

You might think that these methods were added in by the generator

code as well, but if you take a peek at the Passenger class, you’ll see

that’s not the case:

Ruby Download crud/passenger.rb

class Passenger < ActiveRecord::Base

end

That’s right—a completely empty class definition. ActiveRecord knows

what columns you have in your database and automatically generates

a method for each column under the covers. All you do is call it.

Now, let’s explore a few more ActiveRecord methods from the console

and see where it takes us. First we’ll find and update a single record in

the table using the find and save methods:

>> passenger = Passenger.find(1)

Passenger Load (0.000601) SELECT * FROM passengers WHERE

(passengers."id" = 1)

=> #<Passenger id: 1, name: "John Doe", address: "123 Main St",

seat_preference: "Aisle", created_at: "2008-01-15 15:49:24",

updated_at: "2008-01-15 15:49:24">

>> passenger.address = '321 Main St'

=> "321 Main St"

>> passenger.save

Passenger Update (0.000567) UPDATE passengers SET "created_at"

= '2008-01-15 15:49:24', "name" = 'John Doe', "seat_preference"

= 'Aisle', "address" = '321 Main St', "updated_at" = '2008-01-15

16:18:31' WHERE "id" = 1

=> true

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud/passenger.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=105

DISPLAYING A GRID OF DATA IN A TABLE 106

We can also delete (destroy) a record with the destroy method:

>> Passenger.destroy(3)

Passenger Load (0.000535) SELECT * FROM passengers WHERE

(passengers."id" = 3)

Passenger Destroy (0.000573) DELETE FROM passengers

WHERE "id" = 3

=> #<Passenger id: 3, name: "Brian Eng", address: "1060 West

Addison", seat_preference: "Aisle", created_at: "2008-01-15

16:10:34", updated_at: "2008-01-15 16:10:34">

And finally, to get all the records in the table, we’ll use the find method,

passing in the :all option:

>> Passenger.find(:all)

Passenger Load (0.000760) SELECT * FROM passengers

=> [#<Passenger id: 1, name: "John Doe", address: "123 Main St",

seat_preference: "Aisle", created_at: "2008-01-15 15:49:24",

updated_at: "2008-01-15 15:49:24">, #<Passenger id: 2, name: "Jane

Doe", address: "123 Main St", seat_preference: "Window",

created_at: "2008-01-15 15:55:35", updated_at: "2008-01-15

16:06:10">, #<Passenger id: 3, name: "Brian Eng", address: "1060

West Addison", seat_preference: "Aisle", created_at: "2008-01-15

16:10:34", updated_at: "2008-01-15 16:10:34">]

Finding a data collection like this returns an Array of Passenger objects,

which we will ultimately loop through to create our grid of data.

Creating the Controller and View for Our Grid of Data

Now that we’ve added a couple of rows to our passengers table and we

know how to get the data we want in order to display our table of pas-

sengers, let’s hook up the controller and view code.

First, in the controller, we’re going to add a method for the index action:

Ruby Download crud/passengers_controller.rb

class PassengersController < ApplicationController

def index

@passengers = Passenger.find(:all)

end

end

In the index action, we’ve defined an instance variable called @passengers

that holds an Array of Passenger objects corresponding to all the records

of the passengers table. Any instance variables we define in the controller

are available for use in the rendered view, which by convention is the

view file with the same name as the action located in the subdirectory

named after the controller.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud/passengers_controller.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=106

DISPLAYING A GRID OF DATA IN A TABLE 107

In this case, it’s app/views/passengers/index.html.erb.

Ruby Download crud/index.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title>Showing All Passengers</title>

</head>

<body>

<table border="1" cellspacing="5" cellpadding="5">

<tr>

<th>Passenger Name</th>

<th>Address</th>

<th>Seat Preference</th>

</tr>

<% @passengers.each do |passenger| %>

<tr>

<td><%= passenger.name %></td>

<td><%= passenger.address %></td>

<td><%= passenger.seat_preference %></td>

</tr>

<% end %>

</table>

</body>

</html>

Fire up your server using the script/server command, hop over to your

browser, and you should see something like what’s in Figure 6.1, on

the next page.

Rails is definitely a bit “closer to metal” than ASP.NET WebForms. In-

stead of writing a SQL statement, dropping a control on a page, and

letting the framework write the HTML for us, we’re writing the HTML

ourselves instead, delegating only the most granular data-driven details

to the framework. This gives us the ultimate fine-grained control over

the final output from the very beginning.

As shown by this example, Rails—unlike ASP.NET—doesn’t really have

the concept of GUI controls that you’d use to build a web form. Your

only GUI “toolbox” in Rails is that of the native languages of the Web—

HTML, JavaScript, and CSS.

A view, like this one, is simply HTML with some Ruby intermingled

in there—otherwise known as Embedded Ruby (ERb). Here, we have

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud/index.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=107

SORTING, FILTERING, AND PAGING DATA 108

Figure 6.1: Showing a table of all passengers

a basic HTML page with markup for the table of passengers we want

to display. Any Ruby code between the <% %> symbols is going to be

interpreted at runtime. So, we’re dynamically looping through the con-

tents of the @passengers Array and creating a table row for each record.

Within each tr tag, we have three columns represented by the td tags,

and within each td tag, we’re again calling on Ruby to give back a value.

When Ruby code lives within <%= %> tags, we’re asking Ruby to actu-

ally write the result of the code within the tags out to the resulting

HTML, instead of simply running the code. From an HTML generation

perspective, Rails is similar in style and spirit to traditional ASP.

6.2 Sorting, Filtering, and Paging Data

Now that we can view our data using a simple HTML table, it’s time

to move on creating more interesting views of that data. For a very

small data set, the previous example would work just fine. Most likely,

however, we will be working with larger and more complex sets of data

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=108

SORTING, FILTERING, AND PAGING DATA 109

in our production environments. For a better end-user experience, we

should provide the ability to sort, filter, and paginate.

How You Might Approach It in .NET

If we were using ASP.NET’s GridView control, the ability to page through

and sort data is built right in. Set the EnablePaging and EnableSorting

properties to true, and that’s all there is to it.

Let’s say we’d also like to filter our grid of passengers by their seat

preference. We would start by creating a DropDownList control that

contains the values Aisle, Window, and Both. We would bind the Selecte-

dIndexChanged event of the DropDownList with the following code:

.NET Download crud/Passengers.aspx.cs

protected void DropDownList1_SelectedIndexChanged(object sender,

EventArgs e)

{

string filter = (sender as DropDownList).SelectedItem.Value;

if (filter == "Both")

{

SqlDataSource1.SelectCommand = "SELECT * FROM passengers";

}

else

{

SqlDataSource1.SelectCommand = "SELECT * FROM passengers WHERE

seating_preference = '" + filter + "'";

}

GridView1.DataBind();

}

This well illustrates the advantage of a GUI controls-based approach,

because all the hard work of coding HTML, styling it, and managing the

appropriate JavaScript callback hooks have all been done for us; all we

need to do is turn it on. The flip side of that is that we’re stuck with the

implementation the framework provides, at least without quite a bit of

kicking and screaming. Customizing the way the built-in ASP.NET con-

trols work is a much more difficult task than with handcrafted HTML

and CSS.

The Rails Way

Let’s take our passenger list from the previous example and give it the

same functionality that the ASP.NET GridView version would give us.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud/Passengers.aspx.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=109

SORTING, FILTERING, AND PAGING DATA 110

Sorting

One of the really nice things about the ASP.NET GridView control is

that it makes sorting simple. We can click a column header, and it

automatically sorts the content by the values in that column. It is also

smart enough to hang onto the current sort order so that if the column

header is clicked again, the order is reversed.

Let’s take a look at how ActiveRecord will help us do the same thing.

Let’s fire up script\console again:

>> Passenger.find(:all, :order => 'name')

Passenger Load (0.001694) SELECT * FROM passengers ORDER BY name

=> [#<Passenger id: 4, name: "Brian Eng", address: "1060 West

Addison", seat_preference: "Aisle", created_at: "2008-01-15

16:13:18", updated_at: "2008-01-15 16:13:18">, #<Passenger id: 2,

name: "Jane Doe", address: "123 Main St", seat_preference: "Window",

created_at: "2008-01-15 15:55:35", updated_at: "2008-01-15

16:06:10">, #<Passenger id: 1, name: "John Doe", address: "321 Main

St", seat_preference: "Aisle", created_at: "2008-01-15 15:49:24",

updated_at: "2008-01-15 16:18:31">]

The second argument of the find method is an optional hash of options.

Among others, one of those options is order, which we’ve passed in here.

This option tacks on an ORDER BY clause to the end of the resulting

SQL statement, using the value of the order option as the second half of

the ORDER BY clause:

>> Passenger.find(:all, :order => 'name DESC')

Passenger Load (0.001242) SELECT * FROM passengers ORDER BY name DESC

=> [#<Passenger id: 1, name: "John Doe", address: "321 Main St",

seat_preference: "Aisle", created_at: "2008-01-15 15:49:24",

updated_at: "2008-01-15 16:18:31">, #<Passenger id: 2, name: "Jane

Doe", address: "123 Main St", seat_preference: "Window", created_at:

"2008-01-15 15:55:35", updated_at: "2008-01-15 16:06:10">,

#<Passenger id: 4, name: "Brian Eng", address: "1060 West Addison",

seat_preference: "Aisle", created_at: "2008-01-15 16:13:18",

updated_at: "2008-01-15 16:13:18">]

Since the order option of the find method will add anything we want

to the ORDER BY clause of the resulting SQL statement, we’ve simply

added the SQL to order descending.

Adding to the Controller and View to Support Sorting

Assuming we want the same behavior as the ASP.NET GridView, where

clicking a column header a single time sorts by that column and click-

ing it again reverses the order, let’s first change those static column

headers into links.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=110

SORTING, FILTERING, AND PAGING DATA 111

Ruby Download crud-sorting/index.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title>Showing All Passengers</title>

</head>

<body>

<table border="1" cellspacing="5" cellpadding="5">

<tr>

<th>

<%= link_to "Passenger Name", passengers_url(:order => "name",

:reverse => session[:order] == "name") %>

</th>

<th>

<%= link_to "Address", passengers_url(:order => "address",

:reverse => session[:order] == "address") %>

</th>

<th>

<%= link_to "Seat Preference", passengers_url(:order =>

"seat_preference", :reverse => session[:order] ==

"seat_preference") %>

</th>

</tr>

<% @passengers.each do |passenger| %>

<tr>

<td><%= passenger.name %></td>

<td><%= passenger.address %></td>

<td><%= passenger.seat_preference %></td>

</tr>

<% end %>

</table>

</body>

</html>

The link_to helper method is the built-in way to spit out a hyperlink. As

with all the other helper methods, you don’t have to use it—you could

write out the HTML a tag instead—but using the helper is a lot easier

and makes for much simpler refactoring in the long run.

Let’s take the first link_to as an example. We’re telling the link_to helper

that the resulting link should have “Passenger Name” as its text and

that the URL it should link to is passengers_url. passengers_url is another

helper method that’s generated by Rails’ routing mechanism, which

we will examine in greater depth in Chapter 7, Directing Traffic with

ActionController, on page 128. For now, know that it will simply return

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud-sorting/index.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=111

SORTING, FILTERING, AND PAGING DATA 112

the string http://localhost:3000/passengers, which will point back to our

index action.

In addition, we’re passing along a parameter called order that will let the

controller know the column by which we’d like to sort. This adds a GET

parameter to the resulting URL and changes it from http://localhost:3000/

passengers to http://localhost:3000/passengers?order=name. On the control-

ler end of things, we can access this value (and any other GET or POST

parameters) using a special hash named params. Think of params like

Request.Form or Request.QueryString in ASP.NET—it’s a container meant

for us to pass values from the presentation layer through to the busi-

ness layer, most notably HTTP GET or POST parameters. So, to get

the value of the order GET parameter, we ask the params hash, using

the name of the parameter we want (as a symbol) as the key. With that

knowledge in hand, here’s how we might change our PassengersController

to account for the sort order:

Ruby Download crud-sorting/passengers_controller_simple.rb

class PassengersController < ApplicationController

def index

@passengers = Passenger.find(:all, :order => params[:order])

end

end

Not bad. But not perfect. We still need to build in the reverse sorting

when the header column is clicked a second time. To do this, we’ll have

to store which column was clicked, and for this, we’ll use the session

object. Just like in ASP.NET, the session object refers to the application’s

session store, which may be configured to be held in a variety of ways,

including a cookie, a file, or the database. It’s simply a way for objects

to be held for later use in the application.

Ruby Download crud-sorting/passengers_controller.rb

class PassengersController < ApplicationController

def index

options = {}

if params[:order]

new_order = params[:order]

new_order += " DESC" if params[:reverse]

options.merge!(:order => new_order)

session[:order] = new_order

end

@passengers = Passenger.find(:all, options)

end

end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud-sorting/passengers_controller_simple.rb
http://media.pragprog.com/titles/cerailn/code/crud-sorting/passengers_controller.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=112

SORTING, FILTERING, AND PAGING DATA 113

In our finished version of the PassengersController, we check for the exis-

tence of an order parameter and merge it into our options hash if it

exists. In addition, we store the current sort order into the session, and

in the view, we check whether the new sort order is the same as the

current sort order—meaning the user clicked the column header a sec-

ond time. If it is, we make the sort order descending by passing along

an additional reverse parameter.

Filtering

In our ASP.NET example, we used a DropDownList control to filter our

passenger list by seat preference. To do the same thing in Rails, we’ll

need to use a combination of a simple form with a select_tag and some

additional code in the controller to do the actual filtering. Our approach

is not unlike how it’s implemented in ASP.NET; but yes, we have to

think of it in a more raw HTML way, as opposed to letting a built-in

control do the thinking for us.

We’ll build a form that will submit to the index action (that is, the /pas-

sengers URL). Inside the form, we’ll have a select_tag that will hold the

values Both, Aisle, and Window. And we’ll also have a hidden field that

will carry over the value of any sort order we may already have. We’ll

also throw some JavaScript in there to automatically submit the form

when the value of the select is changed.

Ruby Download crud-filtering/index.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title>Showing All Passengers</title>

</head>

<body>

<table border="1" cellspacing="5" cellpadding="5">

<tr>

<th><%= link_to "Passenger Name",

passengers_url(:order => "name",

:reverse => session[:order] == "name") %>

</th>

<th><%= link_to "Address",

passengers_url(:order => "address",

:reverse => session[:order] == "address") %>

</th>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud-filtering/index.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=113

SORTING, FILTERING, AND PAGING DATA 114

<th><%= link_to "Seat Preference",

passengers_url(:order => "seat_preference",

:reverse => session[:order] == "seat_preference") %>

</th>

</tr>

<% @passengers.each do |passenger| %>

<tr>

<td><%= passenger.name %></td>

<td><%= passenger.address %></td>

<td><%= passenger.seat_preference %></td>

</tr>

<% end %>

</table>

<p>

<% form_tag passengers_url, :method => :get do %>

<%= hidden_field_tag "order", params[:order] if params[:order] %>

<%= select_tag "filter", options_for_select(%w(Both Aisle Window),

params[:filter]), :onchange => "this.form.submit()" %>

<% end %>

</p>

</body>

</html>

Remember that, as with all Rails helpers, the form_tag and select_tag

helpers ultimately generate raw HTML markup. Here, we’re telling the

form_tag method that we’d like the resulting HTML form to submit to

the /passengers URL with an HTTP method of GET. We’re also including

a select_tag, which will generate an HTML select tag with our list of

choices as options, as well as a hidden_field_tag that will help us carry

over the current sort order if there is one. If we were to “view source”

on the resulting page, we’d see some simple and clean HTML:

<form action="http://localhost:3000/passengers" method="get">

<select id="filter" name="filter" onchange="this.form.submit()">

<option value="Both">Both</option>

<option value="Aisle">Aisle</option>

<option value="Window">Window</option></select>

</form>

There are a couple of things to note here. We must explicitly specify a

method of GET on the form, because the POST version of /passengers

points to the create action. Also, if we wanted to make sure that those

without JavaScript turned on had a working experience, we could add

a submit button to the form, tucking it inside a noscript tag.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=114

SORTING, FILTERING, AND PAGING DATA 115

Adding to the Controller and View to Support Filtering

Now that our view code is in there, we can add a couple of lines of code

to the controller to support the filtering we want:

Ruby Download crud-filtering/passengers_controller.rb

class PassengersController < ApplicationController

def index

options = {}

if params[:order]

new_order = params[:order]

new_order += " DESC" if params[:reverse]

options.merge!(:order => new_order)

session[:order] = new_order

end

if params[:filter] && params[:filter] != "Both"

options.merge!(:conditions => ["seat_preference = ?",

params[:filter]])

end

@passengers = Passenger.find(:all, options)

end

end

Again, we’re testing for the existence of a parameter called filter in our

params hash, and we’re merging a conditions option into our options hash

if it exists. The conditions option allows for the addition of a WHERE

clause to the resulting SQL statement. Let’s look at a quick example:

>> Passenger.find(:all, :order => "name", :conditions =>

"seat_preference = 'Aisle'")

Passenger Load (0.001123) SELECT * FROM passengers WHERE

(seat_preference = 'Aisle') ORDER BY name

=> [#<Passenger id: 4, name: "Brian Eng", address: "1060 West

Addison", seat_preference: "Aisle", created_at: "2008-01-15

16:13:18", updated_at: "2008-01-15 16:13:18">, #<Passenger id: 1,

name: "John Doe", address: "321 Main St", seat_preference: "Aisle",

created_at: "2008-01-15 15:49:24", updated_at: "2008-01-15

16:18:31">]

Just like the order option, the conditions option allows us to insert any

arbitrary SQL into the resulting SQL statement. Whereas order cor-

responds with the ORDER BY clause, conditions instead maps to the

WHERE clause. And, in addition to a simple string, we can use other

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud-filtering/passengers_controller.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=115

SORTING, FILTERING, AND PAGING DATA 116

Special Syntax for the conditions Option

We can specify a string, an array, or a hash in the conditions

option of a find. If we use a string, that string will simply be used
as the WHERE clause of the resulting SQL statement.

If we choose a hash, the WHERE clause will be constructed from
the keys and values of the hash. For example:

>> Passenger.find(:all, :conditions => {
:seat_preference => 'Aisle' })

Passenger Load (0.000582) SELECT * FROM passengers WHERE
(passengers."seat_preference" = 'Aisle')

If we use an array, the first element of the array represents the
body of the WHERE clause. Any question marks (?) in the first
element will be substituted with the values from the subsequent
members of the array.

In general, when building a web application where the condi-
tions are typically dynamically set through interactions with the
end user, we’ll want to use either the array or hash style of build-
ing conditions. If we do this instead of specifying a plain string,
Rails will automatically sanitize the input parameters, protecting
against SQL injection attacks. In addition, strings will be properly
quoted, so we don’t have to worry about it.

special syntax to construct the WHERE clause (see the sidebar on the

current page).

Paging

Rails no longer has built-in support for pagination as part of the core

framework, because the Rails core team has adopted a philosophy of

keeping only the most common and critical features in the core frame-

work and leaving everything else to plug-ins. Plug-ins are smaller mod-

ules that add functionality to Rails when we need it, and one of the

most popular is the will_paginate plug-in by Chris Wanstrath and PJ

Hyett. This plug-in is distributed as a Ruby gem. We will learn more

about how Rails applications can use third-party gems in Section 12.2,

Using Gems in Your Rails Applications, on page 238.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=116

SORTING, FILTERING, AND PAGING DATA 117

For now, simply open up the config/environment.rb file, and add the fol-

lowing lines:

Ruby Download crud-paging/environment.rb

Rails::Initializer.run do |config|

config.gem 'mislav-will_paginate',

:version => '~> 2.3.2',

:lib => 'will_paginate',

:source => 'http://gems.github.com'

end

Now that we’ve specified that our application needs this gem, Rails can

install it for us:

c:\dev\flight> rake gems:install

We’ll have to restart our web server for Rails to pick up our changes.

Using will_paginate is straightforward. It gives us a new method, pagi-

nate, that is a drop-in replacement for the find method on any ActiveRe-

cord model class. The only difference between paginate and find is that

paginate needs two more parameters to be set: per_page, which is the

number of records to display on one page, and page, the current page

number. Our revised controller code now looks like this:

Ruby Download crud-paging/passengers_controller.rb

class PassengersController < ApplicationController

def index

options = {}

if params[:order]

new_order = params[:order]

new_order += " DESC" if params[:reverse]

options.merge!(:order => new_order)

session[:order] = new_order

end

if params[:filter] && params[:filter] != "Both"

options.merge!(:conditions => ["seat_preference = ?",

params[:filter]])

end

options.merge!(:page => params[:page], :per_page => 2)

@passengers = Passenger.paginate(options)

end

end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud-paging/environment.rb
http://media.pragprog.com/titles/cerailn/code/crud-paging/passengers_controller.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=117

SORTING, FILTERING, AND PAGING DATA 118

We’ve replaced the find method with the paginate method and added the

per_page and page values to the default options hash. per_page is set

to a hard-coded value of 2, and page is set using the will_paginate view

helper, which we’ll add at the bottom of our view:

Ruby Download crud-paging/index.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title>Showing All Passengers</title>

</head>

<body>

<table border="1" cellspacing="5" cellpadding="5">

<tr>

<th>

<%= link_to "Passenger Name", passengers_url(:order => "name",

:reverse => session[:order] == "name") %>

</th>

<th>

<%= link_to "Address", passengers_url(:order => "address",

:reverse => session[:order] == "address") %>

</th>

<th>

<%= link_to "Seat Preference", passengers_url(:order =>

"seat_preference", :reverse => session[:order] ==

"seat_preference") %>

</th>

</tr>

<% @passengers.each do |passenger| %>

<tr>

<td><%= passenger.name %></td>

<td><%= passenger.address %></td>

<td><%= passenger.seat_preference %></td>

</tr>

<% end %>

</table>

<p>

<% form_tag passengers_url, :method => :get do %>

<%= hidden_field_tag "order", params[:order] if params[:order] %>

<%= select_tag "filter", options_for_select(%w(Both Aisle Window),

params[:filter]), :onchange => "this.form.submit()" %>

<% end %>

</p>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud-paging/index.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=118

VALIDATING USER INPUT 119

Figure 6.2: Passenger data with sorting, filtering, and

pagination

<p>

<%= will_paginate @passengers %>

</p>

</body>

</html>

We’ve added the will_paginate helper method to our view, which trans-

lates into some markup that gives us previous and next links, as well

as a numbered link for each page of data in our data set. Following

any of these links will send us back to the current action—the index

action—with the addition of the aforementioned page parameter. Our

final output is shown in Figure 6.2.

6.3 Validating User Input

In a perfect world, our end users would never make mistakes. They

would fill out all the required fields on forms, never violate referential

integrity, and always respect formatting requirements. Of course, the

reality is that these kinds of data validity issues, whether intentional or

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=119

VALIDATING USER INPUT 120

not, happen all the time when users are using our web applications. We

must have a way of validating user input and return clear and infor-

mative messages to the end user when it happens.

Although conventional wisdom says to enforce data rules in the data-

base itself, for the purposes of this discussion, we’re not going to talk

about that. Rather, we’re going talk about the differences in validating

data on the client side between the two platforms.

How You Might Approach It in .NET

For a simple ASP.NET form, we can use the different validator controls

that it provides to validate form input on the client side. For instance,

to ensure that the user doesn’t leave a textbox empty, we can use

the RequiredFieldValidator and attach it to the form field that’s required.

Here’s a basic example:

.NET Download crud-validations/AddPassenger.aspx

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="AddPassenger.aspx.cs"

Inherits="AddPassenger" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<title>Add a Passenger</title>

</head>

<body>

<form id="form1" runat="server">

<p>

Name

<asp:TextBox ID="name" runat="server"></asp:TextBox>

<asp:RequiredFieldValidator ID="RequiredFieldValidator1"

runat="server"

ErrorMessage="Name is required."

ControlToValidate="name">

</asp:RequiredFieldValidator>

</p>

<p>

Address

<asp:TextBox ID="address" runat="server"></asp:TextBox>

<asp:RequiredFieldValidator ID="RequiredFieldValidator2"

runat="server"

ErrorMessage="Address is required."

ControlToValidate="address">

</asp:RequiredFieldValidator>

</p>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud-validations/AddPassenger.aspx
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=120

VALIDATING USER INPUT 121

<p>

Seating Preference

<asp:TextBox ID="seating_preference" runat="server">

</asp:TextBox>

</p>

<p>

<asp:Button ID="Button1" runat="server" Text="Add Passenger"

onclick="Button1_Click1" />

</p>

</form>

</body>

</html>

Next to each of the textboxes that are required to be filled out—the

ones for the name and address—we put a RequiredFieldValidator that

is attached to the respective textbox. When we try to submit the form,

error messages will appear if the textboxes are empty.

The Rails Way

Here is a simple example of a form to create a new passenger:

Ruby Download crud-validations/new.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title>Showing All Passengers</title>

</head>

<body>

<% form_for @passenger do |f| %>

<p>

<%= f.label :name %>

<%= f.text_field :name %>

</p>

<p>

<%= f.label :address %>

<%= f.text_field :address %>

</p>

<p><%= f.submit "Create new passenger" %></p>

<% end %>

</body>

</html>

Don’t worry too much about how this form works for now; we’ll be going

in depth with Rails forms in Chapter 8, Exploring Forms, Layouts, and

Partials, on page 150. For now, just know that this code will result in

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud-validations/new.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=121

VALIDATING USER INPUT 122

two HTML text input fields being shown onscreen, and when this form

is submitted, it will call the create action.

In Rails, we use the same declarative-style syntax to perform valida-

tions as we’ve seen before. A philosophical difference between Rails and

ASP.NET surfaces exists here; instead of this validation being enforced

in the presentation layer as with ASP.NET, Rails puts this type of logic

down into the model. To implement the same functionality as we’ve

done in our ASP.NET add-a-passenger example, we can do something

like this:

Ruby Download crud-validations/passenger.rb

class Passenger < ActiveRecord::Base

validates_presence_of :name, :address

end

The validates_presence_of method on the Passenger model class won’t

allow a passenger record to be saved to the database if it’s blank or nil—

that is, if we call save on a Passenger object without a name or address,

the record won’t be saved, and the return value of the save method will

be false.

Next, we should probably show a message to the end user in the event

they do leave either of those fields blank. Let’s see what our Passen-

gersController looks like without the logic to show an error message in

place:

Ruby Download crud-validations/passengers_controller.rb

class PassengersController < ApplicationController

def new

@passenger = Passenger.new

end

def create

@passenger = Passenger.new(params[:passenger])

@passenger.save

redirect_to passengers_url

end

end

In the create action, we’re simply instantiating a new Passenger object

with the values passed in from the new.html.erb form and calling its save

method.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud-validations/passenger.rb
http://media.pragprog.com/titles/cerailn/code/crud-validations/passengers_controller.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=122

VALIDATING USER INPUT 123

Regardless of what happens, we’ll redirect to the passenger index page.

Now, let’s have a look at the code with error handling enabled:

Ruby Download crud-validations/passengers_controller_with_validations.rb

class PassengersController < ApplicationController

def new

@passenger = Passenger.new

end

def create

@passenger = Passenger.new(params[:passenger])

if @passenger.save

redirect_to passengers_url

else

render :action => 'new'

end

end

end

We’ve added an if statement that redirects the index page if the save call

is successful and simply re-renders the new.html.erb form if not. In our

form, we’ll also add a line of code that will display our error message:

Ruby Download crud-validations/new_with_validations.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title>Showing All Passengers</title>

</head>

<body>

<%= error_messages_for :passenger %>

<% form_for @passenger do |f| %>

<p>

<%= f.label :name %>

<%= f.text_field :name %>

</p>

<p>

<%= f.label :address %>

<%= f.text_field :address %>

</p>

<p><%= f.submit "Create new passenger" %></p>

<% end %>

</body>

</html>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud-validations/passengers_controller_with_validations.rb
http://media.pragprog.com/titles/cerailn/code/crud-validations/new_with_validations.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=123

REPRESENTING RELATIONSHIPS BETWEEN TABLES 124

Figure 6.3: Standard Rails validation message

This additional line of code with result in a standard error message

displayed inline, as shown in Figure 6.3.

6.4 Representing Relationships Between Tables

Rarely does a web application allow a user to view and manipulate

a single database table. A much more common situation involves the

slicing and dicing of data based on much more complex relationships

between tables. For example, in our flight application, we’re probably

not that interested in seeing a list of all passengers; rather, it’s much

more interesting to see which passengers are on a particular flight.

Part of this exercise is the actual modeling of the database. Can a pas-

senger be on more than one flight? Can a flight have more than one

passenger? The relationship we’re discussing is most certainly a many-

to-many one. We’ve outlined this relationship in Figure 6.4, on the fol-

lowing page.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=124

REPRESENTING RELATIONSHIPS BETWEEN TABLES 125

airline_id
number
origin
destination
departs_at
arrives_at

id
flights

flight_id
passenger_id

id
reservations

name
id
passengers

belongs_to :airline

has_many :reservations

has_many :passengers,

 :through => :reservations

belongs_to :flight

belongs_to :passenger

has_many :reservations

has_many :flights,

 :through => :reservations

Figure 6.4: Relationship between flights and passengers

How You Might Approach It in .NET

To do this type of thing in out-of-the-box .NET, we’re almost certainly

talking about LINQ, or a SQL statement with an INNER JOIN, possibly

saved away in a stored procedure for reusability. If we were interested

in which passengers were on flight #123, for instance, we could hand-

code this SQL:

SELECT passengers.* FROM passengers INNER JOIN reservations

ON passengers.id = reservations.passenger_id INNER JOIN flights

ON passengers.flight_id = flights.id

WHERE flights.number = '123'

This is pretty straightforward for the experienced developer but not

quite as object-oriented or elegant as the Rails solution.

The Rails Way

In Rails, we can set up the relationships between our tables in our

model code, in a declarative fashion:

Ruby Download crud-associations/models.rb

class Flight < ActiveRecord::Base

has_many :reservations

has_many :passengers, :through => :reservations

end

class Reservation < ActiveRecord::Base

belongs_to :flight

belongs_to :passenger

end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/crud-associations/models.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=125

REPRESENTING RELATIONSHIPS BETWEEN TABLES 126

class Passenger < ActiveRecord::Base

has_many :reservations

has_many :flights, :through => :reservations

end

We can see at a glance that a flight has_many reservations and that a

passenger also has_many reservations. In addition, the has_many :through

associations allow us to chain these relationships together. For exam-

ple, the reservation class is used as a proxy between a flight and a pas-

senger; a flight has_many passengers through the reservations associa-

tion. This code reflects our database diagram directly and is extremely

easy to read and understand.

We’ve said it before; but again, it’s important to step back at this point

and realize that ActiveRecord is not magic. What have we actually done

with these few lines of code? Rails simply takes a look at the names of

the classes we are referring to and adds a number of additional meth-

ods to each of our classes so we can do things like passenger.flights and

passenger.flights.find(123) without having to write our own methods. A full

list of all the methods added by Rails’ associations is available via the

official Rails documentation.1

Back to the task at hand—how do we get our passengers for flight #123,

then?

c:\dev\flight> ruby script\console

Loading development environment (Rails 2.1.0)

>> f = Flight.find_by_number '123'

Flight Load (0.000554) SELECT * FROM flights WHERE

(flights."id" = 1)

=> #<Flight id: 1, flight_number: 123, departs_at:

"2008-06-25 12:00:00", arrives_at: "2008-06-25 16:00:00", origin:

"ORD", destination: "PDX", created_at: "2008-06-25 12:44:43",

updated_at: "2008-06-25 12:44:43">

flight> f.passengers

Flight Load (0.000973) SELECT * FROM flights WHERE

(flights."id" = 1)

Passenger Load (0.000982) SELECT passengers.* FROM passengers

INNER JOIN reservations ON passengers.id =

reservations.passenger_id WHERE ((reservations.flight_id = 1))

=> [#<Passenger id: 1, name: "Brian Eng",

address: "1060 West Addison", created_at: "2008-06-30 14:42:53",

updated_at: "2008-06-30 14:42:53">, #<Passenger id: 2, name:

"Jeff Cohen", address: "1901 West Madison", created_at:

"2008-06-30 14:44:14", updated_at: "2008-06-30 14:44:14">]

1. http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=126

REPRESENTING RELATIONSHIPS BETWEEN TABLES 127

Because we have our associations set up properly, getting the passen-

gers for a flight is pretty straightforward and intuitive. We’ve found the

flight record with the flight number 123, and we’ve used the method

passengers that comes along with the has_many association to return the

list of passengers in which we’re interested. And, as you can see from

the output, Rails uses essentially the same SQL statement we hand-

wrote in our .NET example. To reiterate, ActiveRecord is just SQL, but

with just a thin layer of abstraction on top to make this kind of stuff a

lot more pleasant.

In this chapter, we learned how to do basic CRUD operations with

ActiveRecord—find, create, update, and destroy, and we saw that Active-

Record generates plain ol’ SQL that adjusts for the little differences

between RDBMSs. We’ve also built functionality onto our flight reserva-

tions app that emulates the basic features of the ASP.NET GridView. We

took a brief look at how Rails handles the job of data validation vs. the

.NET approach we’re used to using. And lastly, we examined the .NET

vs. Rails way of dealing with relationships between database tables.

We’ve also had a little taste of what’s to come, exploring the basics of the

controller by doing some passing of data between HTTP requests using

the params hash and learning how to keep data around for later using

the session store. We’ve touched on some view basics as well by looking

at some rudimentary ERb and the link_to, form_tag, and select_tag view

helpers. The remainder of this section of the book will deal further with

the controller and view; first, the controller.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=127

Chapter 7

Directing Traffic with
ActionController

In the previous chapter, we looked at some of the capabilities of Active-

Record while creating our passenger list and, at the same time, we

scratched the surface of controllers and views. In this chapter, we’ll

explore controllers in much greater detail.

ActionController is the part of Rails that we’ll be discussing in depth

in this chapter. ActionController is one of two modules that make up

ActionPack, the other being ActionView. ActionController gives us (you

guessed it) controllers in Rails, the part of the framework that’s respon-

sible for processing an incoming request and figuring out what to do

with it. After the controller processes the request and we’re now ready to

return a response to the end user, ActionView (which we’ll be discussing

in the next chapter) goes to work generating HTML, XML, JavaScript,

or anything else that the consuming application (for instance, a web

browser) would be interested in.

We’re going to touch on some of the main functionality of ActionCon-

troller by going through three practical examples: using Rails routing

to rewrite URLs, performing user authentication, and providing an API

for our application.

7.1 Routing and Pretty URLs

At the heart of every web development framework lies some mechanism

that takes a URL that a user types into the web browser and hands it

over to your code. Routing refers to this part of Rails. Routing gives

Rails the ability to take just about any URL and understand how that

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

ROUTING AND PRETTY URLS 129

translates to our application’s inner workings, giving us the freedom to

be as creative (or not) as we want with our URLs.

Let’s look at a practical example. We’d like each airline in our flight

reservations system to have its own page, where we’ll show the details

for that airline along with any flights it may have for that day. Since we

are using resource-based routing (that is, we have the line map.resources

:airlines in our routes.rb file), our conventional resource-based URL for

such a page would look something like /airlines/1, where airlines repre-

sents the name of our resource, airline, followed by the numeric ID of

the resource we want. And by convention, this URL will route to the

show action of the AirlinesController.

But let’s say we don’t want that. Suppose we’d like the URL to read

/flights-for-today/united instead. There are a variety of reasons why we

might want our URL to read like this, such as search engine optimization

(SEO), backward compatibility, or simply improved readability.

How You Might Approach It in .NET

Routing in ASP.NET is largely file-based. That is, the default URLs in

an application largely depend on where the .aspx files live in the file

system, and where you put those files is largely up to the developer. For

instance, if we have a file called ShowAirline.aspx located in a directory

called Airlines, that would translate to a URL of /Airlines/ShowAirline.aspx.

There are variety of ways to do the type of URL “rewriting” we want with

ASP.NET.1 We’ll look at just one of these techniques in particular.

The first technique involves only application code and no web server–

level configuration. We can simply intercept the request by putting code

in the Application_BeginRequest event handler in Global.asax, and using

the HttpContext.RewritePath() method, we can redirect the user-inputted

URL to the URL that really works. Here’s a simplified example of this

approach:

.NET Download controller/Global.asax

void Application_BeginRequest(object sender, EventArgs e) {

string requestedUrl = Request.Url.ToString();

if (requestedUrl.Contains("/flights-for-today/United.aspx")) {

Context.RewritePath("/Airlines/ShowAirline.aspx?Airline=United");

}

}

1. http://weblogs.asp.net/scottgu/archive/2007/02/26/tip-trick-url-rewriting-with-asp-net.aspx

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/Global.asax
http://weblogs.asp.net/scottgu/archive/2007/02/26/tip-trick-url-rewriting-with-asp-net.aspx
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=129

ROUTING AND PRETTY URLS 130

In this not-so-robust example, we’re simply looking for the existence

of a URL that reads /flights-for-today/United.aspx and redirecting it to a

URL that actually does something in our application, that is, /Airlines/

ShowAirline.aspx?Airline=United. This example works only for a single URL;

if we wanted to implement this application-wide, UrlRewriter2 is a good,

open source HttpModule that takes this concept and makes it a lot easier

and configurable through our application’s web.config.

There are also a few techniques we can employ to remove the .aspx

extension entirely. In IIS 6, for example, we can ask IIS to send exten-

sion-less requests all the way to ASP.NET, and UrlRewriter can take

it from there. With IIS 7, it is a bit easier, because HttpModules can

be executed anywhere within the IIS pipeline. In any event, there is

certainly some work involved to get it to work.

The Rails Way

ActionController gives us a very simple yet powerful way to deal with

everything that has to do with routing—the config/routes.rb file. Adding

a single additional line in the routes file defines our custom route:

Ruby Download controller/routes.rb

ActionController::Routing::Routes.draw do |map|

map.flights_today '/flights-for-today/:name',

:controller => 'airlines',

:action => 'show'

map.resources :airlines

map.resources :flights

map.resources :passengers

end

This line of code tells our Rails application to look for any request with

the URL /flights-for-today/<name> and to send that request along to the

show action of the FlightsController. Furthermore, whatever is in the name

part of the URL gets passed into the controller and will be accessible

via the params hash. An important thing to note is the order that the

routes are specified. Routes are evaluated top down, so whatever comes

first wins. If we had inserted our custom route at the bottom of the file,

the resource-based routes would have been evaluated first. In either

case, the resource-based route is still present, so a URL of /airlines/1

still works.

2. http://urlrewriter.net

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/routes.rb
http://urlrewriter.net
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=130

ROUTING AND PRETTY URLS 131

Here’s how the show action of the airlines controller might look:

def show

@airline = Airline.find_by_name(params[:name]) ||

Airline.find(params[:id])

end

The or condition in this line of code means that this controller action

supports both the resource-based route and the new custom route we

put in place; if the name parameter isn’t supplied, we perform a find by

ID instead.

So, now we know how to interpret this URL if it’s typed in by the end

user. How do we access this route in our application? Because we’ve

used the syntax map.flights_today, we’ve created a named route. Named

routes refer to any custom routes in our routes file that get defined

with a specific name—a generic, non-named route would be defined

using map.connect. Named routes give us a couple of helper methods

that we’re able to use from our controllers and views. In this case, the

flights_today_url and flights_today_path methods are created for us. The

only difference between the two methods is that one creates the entire

fully qualified URL, such as http://localhost:3000/flights-for-today/united,

whereas the other generates just the absolute path, that is, /flights-for-

today/united. For example, we can create a link to an airline page in a

view like this:

<%= link_to "United Flights for Today", flights_today_path(

:name => 'united') %>;

The output of this code will simply be an HTML a tag: <a href="/flights-

for-today/united">United Flights for Today. What we’re expected to pass

into the flights_today_path method is a hash of the dynamic parts of the

URL as specified by our custom route, in this case, just the name of the

airline.

By now, you’ve probably figured out that the main advantage of using

a named route is easy refactoring. If we ever wanted to change the way

that URL reads, perhaps to /united/flights-for-today, no changes would

have to be made to the individual controllers and views. One change to

the routes file, and we’re done.

That’s just a small taste of what’s possible with routing. Much more

complex rules are possible; here are some short examples:

map.flights_by_date "/flights_for/:year/:month/:day",

:controller => "flights",

:action => "show",

:requirements => {

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=131

ROUTING AND PRETTY URLS 132

:year => /(19|20)\d\d/,

:month => /[01]?\d/,

:day => /[0-3]?\d/ }

Here, we want to show a list of flights by date, and we want to pass that

date in via the URL. It’s similar to our airline page example, with the

addition of the requirements option, which specifies regular expressions

under which the URL will be valid. That is, the application will route to

the show action of the flights_by_date controller only if the format require-

ments of the year, month, and day parts of the URL are satisfied. If not,

it will simply fall through to the reminder of the routes until either one

is matched or a routing error exception is raised.

We can also use a regular expression for URL parameters:

map.connect '/:name', :id => /\A.*-flights\Z/,

:controller => 'airlines', :action => 'show'

Here, a URL like http://localhost:3000/united-flights will be matched. And

in the controller code, we’re receiving the value of the name parame-

ter from the match result of the regular expression as specified by the

route, so the controller code we already have in place still works. This

can be a particularly useful technique in creating SEO-friendly URLs.

This is also an example of a non-named route. By using the method

connect, there will be no helper methods that will automatically pro-

duce a URL or path to this action when called.

As another example of creative things we can do with routing, we’ll pass

an array of parameters via the URL:

map.connect 'flights_for/*airlines', :controller => 'flights',

:action => 'show'

In the FlightsController, we’ll be passed a parameter called airlines, which

will be an array of values specified in the URL. For example, a URL

of http://localhost:3000/flights_for/American/Delta/United will yield an array

containing the values ["American", "Delta", "United"] when params[:airlines] is

called in our controller. Here’s a simple example of how we might use

this in our controller to build up a list of all the airlines we asked for in

the URL:

def show

@airlines

params[:airlines].each do |airline_name|

if airline = Airline.find_by_name(airline_name)

@airlines << airline

end

end

end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=132

USER AUTHENTICATION 133

@airlines will then become an array of the Airline objects, which we can

further manipulate for displaying to the end user.

Finally, a predefined method tells Rails what to do when the root of the

application is requested, for example, http://localhost:3000:

map.root, :controller => 'passengers'

The map.root method is simply an alias for map.connect ’/’. In addition,

for this route to work properly, we must delete the public/index.html file.

Otherwise, the end user will see the “welcome” page when hitting our

website’s root.

7.2 User Authentication

Some kind of framework for user authentication is usually important

when building a web application. In its simplest form, a user of the

system supplies a login and password, and the application uses that

information to compare against stored information in a database or

some other data store typically used for security purposes, such as

OpenID, LDAP, or NTLM. For the purposes of this exercise, we’ll look at

how to build a simple login form and authenticate against a database.

How You Might Approach It in .NET

There are a few ways to perform database-backed form-based authen-

tication in ASP.NET. Let’s assume we want to protect the entire site

against unauthenticated users. A typical scenario might go something

like this:

Download controller/web.config

<system.web>

<authentication mode="Forms">

<forms loginUrl="Login.aspx" />

</authentication>

<authorization>

<deny users="?" />

</authorization>

</system.web>

In the web.config file for the application, we’re turning on forms authen-

tication and denying access to all unauthenticated users. We’ll also cre-

ate a login form called Login.aspx, where we’ll direct all unauthenticated

requests.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/web.config
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=133

USER AUTHENTICATION 134

Then, we’ll create a User Store database where information on the users

of the application, authentication details, and roles are stored.

Finally, in the Login.aspx form, we add some code to an event handler

that fires when login is attempted:

.NET Download controller/Login.aspx.cs

if (Membership.ValidateUser(username, password))

{

FormsAuthentication.RedirectFromLoginPage(username, false);

}

We check the validity of the login details provided by using the Mem-

bership class’s ValidateUser method. If successful, redirect to the page

originally requested. If not, the user gets sent back to the login form.

The Rails Way

Performing user authentication with Rails is not dissimilar to the ASP

.NET way, in the sense that it involves a three-step process of denying

the user access to one or more resources, displaying a login form, and

storing the user’s credentials away somewhere once authenticated.

The Rails community has created several plug-ins to handle this sce-

nario, one of the most popular ones being restful_authentication.3 In prac-

tice, we would use one of these plug-ins and be done. In this case,

however, we’re going to build something similar in functionality to rest-

ful_authentication to illustrate several key aspects of Rails’ controllers.

Setting Up the Model

Before we can get to writing controller code, though, we’ll need to do

some basic setup on the model side. Let’s quickly create a User model

and build a method to help us authenticate against it:

c:\dev\flight> ruby script\generate model user

exists app/models/

exists test/functional/

exists test/unit/

dependency model

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/user.rb

create test/unit/user_test.rb

create test/fixtures/users.yml

exists db/migrate

create db/migrate/003_create_users.rb

3. http://svn.techno-weenie.net/projects/plugins/restful_authentication

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/Login.aspx.cs
http://svn.techno-weenie.net/projects/plugins/restful_authentication
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=134

USER AUTHENTICATION 135

Now, let’s update the migration, keeping it simple for the purposes of

this example:

Ruby Download controller/003_create_users.rb

class CreateUsers < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.string :login, :password

t.timestamps

end

end

def self.down

drop_table :users

end

end

Execute the migration by doing a rake db:migrate. A simple users table

with login and password fields is set to go.

The next step is to build a method in the User class that tests for a valid

login/password combination:

Ruby Download controller/user.rb

class User < ActiveRecord::Base

def self.authenticate(login, password)

User.find_by_login_and_password(login, password)

end

end

In this very simple implementation, we’re simply checking the database

for the existence of a record that contains that login and password

combination. If it is found, we’ll return the corresponding User object. If

it is not found, we’ll return nil.

Let’s fire up the console to add a user to the database and to test the

authenticate method we just wrote:

c:\dev\flight> ruby script\console

>> User.create(:login => 'brian', :password => 'foo')

User Create (0.000489) INSERT INTO users ("updated_at", "login",

"password", "created_at") VALUES('2008-02-27 12:57:19', 'brian',

'foo', '2008-02-27 12:57:19')

=> #<User id: 1, login: "brian", password: "foo", created_at:

"2008-02-27 12:57:19", updated_at: "2008-02-27 12:57:19">

>> User.authenticate('brian', 'foo')

User Load (0.000317) SELECT * FROM users WHERE (users."password" =

'foo' AND users."login" = 'brian') LIMIT 1

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/003_create_users.rb
http://media.pragprog.com/titles/cerailn/code/controller/user.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=135

USER AUTHENTICATION 136

=> #<User id: 1, login: "brian", password: "foo", created_at:

"2008-02-27 12:57:19", updated_at: "2008-02-27 12:57:19">

>> User.authenticate('brian', 'bar')

User Load (0.000290) SELECT * FROM users WHERE (users."password"

= 'bar' AND users."login" = 'brian') LIMIT 1

=> nil

We created a user with a login and password, and we used the authenti-

cate method we wrote to test against the user record. In the first case,

we supplied a valid login/password combination, so it returned a User

model object that corresponds to the database record that was found.

In the second case, we supplied an invalid combination of values, so it

returned nil. It works.

Now that the model layer is established, it’s time to get going on the

controller.

Setting Up Routing and a Login Form

Now, we’ll generate a controller for a session resource. A session, in the

context of our application, is a RESTful resource that we’ll use exclu-

sively for login purposes. Creating a new session will represent logging

in, and destroying or deleting a session will log the user out. We can

easily accomplish the same thing using a LoginController with login and

logout actions, but we do want to keep our application RESTful when-

ever possible.

c:\dev\flight> ruby script\generate controller sessions

exists app/controllers/

exists app/helpers/

create app/views/sessions

exists test/functional/

create app/controllers/sessions_controller.rb

create test/functional/sessions_controller_test.rb

create app/helpers/sessions_helper.rb

The generator creates the controller we want, along with the associated

test and helper. It’s time to create the login form:

Ruby Download controller/new.html.erb

<% form_tag sessions_url do %>

<p>

<label for="login">Login</label>

<%= text_field_tag :login %>

</p>

<p>

<label for="password">Password</label>

<%= password_field_tag :password %>

</p>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/new.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=136

USER AUTHENTICATION 137

<p>

<%= submit_tag "Submit" %>

</p>

<% end %>

This will be a simple form that has two input fields, one for the login and

the other for the password, and that has a submit button. These inputs

will be wrapped by a form_tag. The form_tag helper method accepts, at

a minimum, a URL that the form data will be submitted to—in this

case, the create action. If we think back to our RESTful resource-based

routes (see Figure 5.2, on page 98), we’ll recall that the create action will

be called with a POST to the /sessions URL. Since we’ve passed a URL

of sessions_url to our form_tag helper and we haven’t explicitly defined

any other method, Rails assumes a POST, and we’ll get exactly what

we want when the submit button is clicked, provided that we supply a

map.resources call in our routes file:

Ruby Download controller/routes_with_sessions_resource.rb

ActionController::Routing::Routes.draw do |map|

map.resources :sessions

map.resources :flights

map.resources :passengers

map.root :controller => 'passengers'

end

By calling map.resources :sessions in our routes, we are letting Rails know

that sessions is a valid resource in our application, and therefore, we

want the seven routes defined for us.

Using the Session and Filtering

The next thing to do is write a create action—the target for the form

submission:

Ruby Download controller/sessions_controller.rb

class SessionsController < ApplicationController

def create

if User.authenticate(params[:login], params[:password])

redirect_to root_url

else

render :action => 'new'

end

end

end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/routes_with_sessions_resource.rb
http://media.pragprog.com/titles/cerailn/code/controller/sessions_controller.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=137

USER AUTHENTICATION 138

The login and password supplied will be in the params hash when it gets

to the controller. In the create action, we’re simply handing those values

to the User.authenticate method we wrote earlier. If it returns anything

(that is, a User model object), the login has succeeded, and we’ll redirect

the user to the root URL of the application. If not, we want to re-render

the login form.

We’re almost there. The last hurdle is that, although the login form

works, all this code has nothing to do with access to the application.

We can still access any controller/action regardless of whether we’ve

logged in successfully. To lock the application down, we’ll have to use

a simple filter.

Filters allow processing to happen before and/or after an action. In our

login use case, we want to check that a user is logged in before execut-

ing any action. So, we’ll use a before_filter in the ApplicationController:

Ruby Download controller/application.rb

class ApplicationController < ActionController::Base

helper :all

before_filter :login_required

private

def login_required

unless logged_in?

session[:return_to] = request.request_uri

redirect_to new_session_url

return false

end

@current_user = User.find(session[:user_id])

end

def logged_in?

!session[:user_id].blank?

end

end

Every controller in a Rails application inherits from ApplicationController,

so every filter defined in it applies to all controllers. Here, we’ve declared

that the login_required method should be executed before all actions in

all controllers. In this method, we want to check whether the user

is already logged in, which we determine by examining the value of

session[:user_id]. If the user is not already logged in, we do two things.

First, we store the URL that the user is trying to get to in the ses-

sion, with a key of :return_to. Then, we redirect the user to the login

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/application.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=138

USER AUTHENTICATION 139

Joe Asks. . .

What Is the Session Store, Exactly?

When we do something like session[:user_id] = 123, we’re ask-
ing Rails to tuck the data we give it in a special hash
object reserved for storing temporary, application-specific
data. Whatever is stored in the session hash persists until the ses-
sion ends—typically when the end user’s browser is closed.

Just like in ASP.NET, we have several options as to how this data
is stored. By default, it’s stored in browser-based cookies, but we
can configure the session store to be in memory, in files, or in the
database, or to use some other server process like memcached.
We can even write our own class to specify how we’d like it to
work.

page, /sessions/new, using the helper method new_session_url. If the user

is already logged in, we grab the user record from the database and

make it available to the entire application via the @current_user variable.

To hook the whole thing up, we must also make some changes to the

sessions_controller:

Ruby Download controller/sessions_controller_with_login_code.rb

class SessionsController < ApplicationController

skip_before_filter :login_required

def create

if user = User.authenticate(params[:login], params[:password])

session[:user_id] = user.id

redirect_to session[:return_to] || root_url

else

render :action => 'new'

end

end

end

The first change is an important one. We have to put a skip_before_filter

in this controller, which will bypass the before_filter we’ve set up in the

ApplicationController. If we don’t do this, we’ll be caught in an infinite

loop where we’ll try to access the login page, not be logged in, and be

redirected to it over and over again.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/sessions_controller_with_login_code.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=139

USER AUTHENTICATION 140

Joe Asks. . .

Why Are We Storing the User ID and Not the Whole User
Object in the Session?

One potential drawback to the approach we’ve taken here
is that the login_required method makes an extra database
hit with every request. We could store the whole User object
instead, but if the User object changes for any reason (for exam-
ple, we add a field), the session could become corrupted. So,
it’s a small price to pay for better stability.

Then, in the create action, we added some code that stuffs the ID of the

user into the session once the authentication test passes. This will, in

turn, be used in the login_required method to determine whether we’re

logged in. Finally, we redirect to the URL originally requested or the

root of the application if the login page was accessed directly.

More Temporary Storage—Cookies and Flash

So far, we’ve been working on only one type of temporary data store

that Rails provides, the session. Just like ASP.NET, we also have cook-

ies, a mechanism for interacting directly with browser cookies. Rails

also provides us with flash. Regardless of how any of these temporary

storage engines work, we interact with them as if they were normal

Ruby hashes. If we wanted to store the login name in a cookie so that

the user wouldn’t have to type it in every time they visited, we could

make a simple change to the SessionsController:

Ruby Download controller/sessions_controller_with_cookies.rb

class SessionsController < ApplicationController

skip_before_filter :login_required

def create

if user = User.authenticate(params[:login], params[:password])

session[:user_id] = user.id

cookies[:login] = { :value => user.login, :expires =>

1.week.from_now }

redirect_to session[:return_to] || root_url

else

render :action => 'new'

end

end

end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/sessions_controller_with_cookies.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=140

USER AUTHENTICATION 141

Here, upon successful login, we are storing the value of the login name

in a cookie that is set to expire in one week. We can then pick up this

value in the view:

Ruby Download controller/new_with_cookies.html.erb

<% form_tag sessions_url do %>

<p>

<label for="login">Login</label>

<%= text_field_tag :login, cookies[:login] %>

</p>

<p>

<label for="password">Password</label>

<%= password_field_tag :password %>

</p>

<p>

<%= submit_tag "Submit" %>

</p>

<% end %>

Now, when the user hits the login page, the login field will be populated

with the cookied value, provided that it has been less than a week since

the last login.

The flash storage bucket is unique to Rails; there’s not really an equiv-

alent to it in ASP.NET. Data stored in flash stays around for exactly one

request—then it’s deleted. This therefore makes it a convenient mech-

anism for conveying error messages and other short bits of information

to the user.

Returning to our login scenario, we’re handling a successful login pretty

well, but an unsuccessful login simply re-renders the login form—not

a very user-friendly experience. It would be a lot more usable if we

at least displayed a message letting the user know that the login was

unsuccessful. Let’s modify our SessionsController and login form view to

make that happen:

Ruby Download controller/sessions_controller_with_flash.rb

class SessionsController < ApplicationController

skip_before_filter :login_required

def create

if user = User.authenticate(params[:login], params[:password])

session[:user_id] = user.id

cookies[:login] = { :value => user.login, :expires => 1.week.from_now }

redirect_to session[:return_to] || root_url

else

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/new_with_cookies.html.erb
http://media.pragprog.com/titles/cerailn/code/controller/sessions_controller_with_flash.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=141

PROVIDING AN API 142

flash[:notice] = "Sorry, that is not a valid login/password combination."

render :action => 'new'

end

end

end

Ruby Download controller/new_with_flash.html.erb

<% if flash[:notice] %>

<p>

<%= flash[:notice] %>

</p>

<% end %>

<% form_tag sessions_url do %>

<p>

<label for="login">Login</label>

<%= text_field_tag :login, cookies[:login] %>

</p>

<p>

<label for="password">Password</label>

<%= password_field_tag :password %>

</p>

<p>

<%= submit_tag "Submit" %>

</p>

<% end %>

The interface to flash is just like session and cookies—it behaves just like

an ordinary Ruby hash. We’ve used a key of notice here; we could have

easily used any key we wanted. Then, we’ve modified the view to display

the flash message above the login form if it is populated. Now, when the

login is unsuccessful, the user will receive an informative message in

addition to being shown the login form again.

7.3 Providing an API

We often want to provide our users with a way to talk with our appli-

cations without actually using them in a web browser. For example,

we may want to allow our users to consume our data from a desktop

application, mobile device, or another web application. The .NET and

Rails approaches to doing this are quite different in both philosophy

and execution.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/new_with_flash.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=142

PROVIDING AN API 143

In this example, we’ll be creating an API in both .NET and Rails to

retrieve flight data from our application.

How You Might Approach It in .NET

The .NET way of exposing data to the outside world is through web ser-

vices. .NET web services use a combination of XML-based technologies

—SOAP and WSDL—along with some code-generation magic that allows

developers to easily create robust APIs by writing essentially ordinary

methods.

To expose these methods as web services, we simply put them in a file

with an .asmx extension (as opposed to .aspx for a regular web form) and

tag them with a WebMethod declaration. Here’s how our simple flight

web service might look:

.NET Download controller/Flights.asmx.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Services;

namespace FlightMvc

{

[WebService(Namespace = "http://tempuri.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

[System.ComponentModel.ToolboxItem(false)]

public class Flights : System.Web.Services.WebService

{

[WebMethod]

public List<flight> GetAllFlights()

{

FlightDataContext flightData = new FlightDataContext();

return flightData.flights.ToList();

}

}

}

We’re simply using LINQ to retrieve flight data from our database and

returning a List of flight objects to the consumer of our web service. The

typical way for the consumer to call our web method would be to send

a SOAP message to it via HTTP. SOAP is nothing more than plain ol’

XML that follows the specifications for it laid out by the W3C.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/Flights.asmx.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=143

PROVIDING AN API 144

When submitted to our web service resource (our ASMX page) via HTTP,

this SOAP request:

Download controller/soap_request.xml

<?xml version="1.0" encoding="utf-8"?>

<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">

<soap12:Body>

<GetAllFlights xmlns="http://tempuri.org/" />

</soap12:Body>

</soap12:Envelope>

would return the following response:

Download controller/soap_response.xml

<?xml version="1.0" encoding="utf-8"?>

<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">

<soap12:Body>

<GetAllFlightsResponse xmlns="http://tempuri.org/">

<GetAllFlightsResult>

<flight>

<id>1</id>

<number>123</number>

<departs_at>2008-06-28T00:00:00</departs_at>

<arrives_at>2008-06-28T01:30:00</arrives_at>

<departure_airport>ORD</departure_airport>

<arrival_airport>SFO</arrival_airport>

</flight>

<flight>

<id>2</id>

<number>369</number>

<departs_at>2008-06-28T13:30:00</departs_at>

<arrives_at>2008-06-28T16:30:00</arrives_at>

<departure_airport>ORD</departure_airport>

<arrival_airport>PDX</arrival_airport>

</flight>

</GetAllFlightsResult>

</GetAllFlightsResponse>

</soap12:Body>

</soap12:Envelope>

Since our web method returned a List of flight objects, .NET automati-

cally translates that to a standard XML format that simply lists all the

fields and the corresponding values in each record. In addition, .NET

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/soap_request.xml
http://media.pragprog.com/titles/cerailn/code/controller/soap_response.xml
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=144

PROVIDING AN API 145

web services also publish a WSDL4 by default, providing consumers

with a way to know which API methods are available, along with their

expected parameters and return values. This makes it dead simple to

consume a .NET web service from another .NET application, because

full IntelliSense is provided.

Although the .NET-to-.NET scenario couldn’t be smoother, a common

criticism of this approach is its level of complexity and nonconformance

to the standards of HTTP. As we’ll see now, Rails takes a quite different,

RESTful approach to APIs.

The Rails Way

We’ve already talked at length about Rails’ adoption of REST principles

and the advantages associated with it. Unsurprisingly, Rails also takes

a RESTful approach to APIs and web services; after all, the typical use

of our application’s API is nothing more than a client, other than the

web browser performing CRUD operations on our resources.

At the heart of Rails’ web service support is ActionController’s respond_to

method. Without web service support, our FlightsController’s index action

looks like this:

def index

@flights = Flight.find(:all)

end

As we’ve already seen, this simply puts all the flight data into an Array,

which is then stored in an instance variable for the view to use. Without

any other information given, Rails is going to look for index.html.erb and

attempt to render that view as HTML to be returned to the browser.

Now, let’s add web service support:

def index

@flights = Flight.find(:all)

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @flights }

end

end

This code (which is actually the default code generated by the scaffold

generator) now supports two types of responses, HTML and XML. To

4. Web Services Description Language, an XML-based language that describes a web

service

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=145

PROVIDING AN API 146

determine the type of response the client wants, Rails looks at the HTTP

request and inspects the value of the Accept header. If it’s text/html, it

will render HTML as before. If the client wants text/xml, we’ll ask for the

@flightsArray to be serialized into XML and returned.

Another way we can get XML back, without setting the Accept header

ourselves, is to explicitly ask for it in the URL. This is also a nifty way

to perform a quick test to see whether the XML response returns what

we want. To do this, we simply add the .xml extension to any RESTful

URL. So if we hit the URL /flights.xml in our web browser, we’ll get back

an XML-formatted response:

Download controller/flights.xml

<?xml version="1.0" encoding="UTF-8"?>

<flights type="array">

<flight>

<arrives-at type="datetime">2008-06-25T16:00:00-05:00</arrives-at>

<created-at type="datetime">2008-06-25T12:44:43-05:00</created-at>

<departs-at type="datetime">2008-06-25T12:00:00-05:00</departs-at>

<destination>PDX</destination>

<flight-number type="integer">1234</flight-number>

<id type="integer">1</id>

<origin>ORD</origin>

<updated-at type="datetime">2008-06-25T12:44:43-05:00</updated-at>

</flight>

<flight>

<arrives-at type="datetime">2008-06-25T17:00:00-05:00</arrives-at>

<created-at type="datetime">2008-06-25T12:45:11-05:00</created-at>

<departs-at type="datetime">2008-06-25T16:00:00-05:00</departs-at>

<destination>SFO</destination>

<flight-number type="integer">3333</flight-number>

<id type="integer">2</id>

<origin>PDX</origin>

<updated-at type="datetime">2008-06-25T12:45:11-05:00</updated-at>

</flight>

</flights>

The :xml option in our render method automatically takes the ActiveRe-

cord object and converts it to XML, providing all the fields in the table

by default. Unlike .NET web services and SOAP, it’s up to us as the

developers to determine what will actually be sent back to the con-

sumer of the service, and we can make it as simple or as robust as we

want. And, although it is outside the scope of this book, Rails uses the

technology we’ve just described to make quick work of communicating

with other Rails applications through ActiveResource.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/flights.xml
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=146

PROVIDING AN API 147

Bonus Round: Creating an iPhone Version of Our App

respond_to can be used for many other purposes other than creating an

API. One of the obvious applications of it is to create separate views of

our application for use on mobile devices or perhaps to shoot data out

to an Excel spreadsheet.

Consider a respond_to block like this:

respond_to do |format|

format.html

format.js

format.xml { render :xml => @flights }

end

The html, js, and xml methods are saying that this action knows how

to respond to HTML, JavaScript, and XML MIME types, respectively.

Although these are the defaults, these aren’t the only MIME types you

can specify. In fact, you can add any MIME types you want, just by

adding a few lines of code in the config/initializers/mime_types.rb file:

Ruby Download controller/mime_types.rb

Mime::Type.register "text/richtext", :rtf

Mime::Type.register "application/vnd.ms-excel", :xls

Mime::Type.register_alias "text/html", :iphone

We are telling the Rails environment, in addition to supporting the

default HTML, JavaScript, and XML formats, to also support Rich Text

(RTF), Excel, and iPhone. The first two are new MIME types that we’d

like to be able to handle; the iPhone type is an alias for the text/html type

we’re already handling with the default HTML format but one we’ll need

to have in order to differentiate between the regular HTML and iPhone

responses in our code. Our respond_to block might now look like this:

respond_to do |format|

format.html

format.js

format.xml { render :xml => @flights }

format.xls # render a template that creates a CSV file

format.iphone # render a template for the iPhone

end

We can either pass a block into the respond_to block for each MIME type,

like we’ve done here with the XML type, or just let Rails’ defaults take

over. For instance, if the format is set to iphone, the controller will then

look for a file called index.iphone.erb instead of index.html.erb in the usual,

HTML-formatted case. But how do we tell Rails the format in which we’d

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/mime_types.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=147

PROVIDING AN API 148

like to receive our response? We’ve already seen two different ways; let’s

review and talk about a third:

• Change the HTTP Accept header to the appropriate MIME type; for

example, setting the Accept header to text/xml will set the format

to XML.

• Tack the appropriate extension onto the end of a RESTful URL;

for instance, a URL of /flights/4.iphone will ask for our show action,

with an ID parameter of 4, and set the format to iphone.

• Set it explicitly in code, for example, request.format = :iphone.

Here is our FlightsController, optimized for both XML and iPhone con-

sumption:

Ruby Download controller/flights_controller.rb

class FlightsController < ApplicationController

before_filter :adjust_format_for_iphone

def index

@flights = Flight.find(:all)

respond_to do |format|

format.html # render html

format.xml # render xml

format.iphone # render for the iPhone

end

end

private

def adjust_format_for_iphone

if request.env["HTTP_USER_AGENT"]

&& request.env["HTTP_USER_AGENT"] =~ /(Mobile)\/.+Safari)/

request.format = :iphone

end

end

end

Here, we have our respond_to block that is set up to handle three for-

mats—HTML, XML, and iPhone. We also have a before_filter in place

that inspects the user agent string of the client and manually sets the

desired format to iphone if the request is being made from the iPhone.

The respond_to block then handles the rendering of the appropriate tem-

plate based on the format.

In this chapter, we’ve explored many aspects of Rails controllers. We

first looked at how user-inputted URLs relate to the actions/methods

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/controller/flights_controller.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=148

PROVIDING AN API 149

of a controller and how we can do some pretty diverse application-

level URL rewriting using Rails’ built-in routing functionality. We’ve also

walked through a user authentication scenario, taking a look at filters

and the different types of temporary application data storage (sessions,

cookies, and the flash) in the process. Finally, we created a simple API

for our application using Rails’ respond_to mechanism, with the added

bonus of seeing how we might deliver an iPhone-friendly version of our

application.

In this chapter and the previous one, we’ve been briefly creating views

and building some basic front ends using ERb. Next, we’re going to go

in depth with ActionView.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=149

Chapter 8

Exploring Forms,
Layouts, and Partials

Among the three sides of the MVC triangle, it’s the V—the view—that

seems to get all the attention. Views in an MVC framework represent

the ways in which we display the output of our application. To be sure,

controllers are important because they receive input from the user and

act as central switchboard operators. Models are also crucial because

they help us represent our problem domain, they contain our business

rules, and they provide us with data. However, without views, there

would really be no application at all.

HTML forms are the primary way that web applications receive user

input, and in this chapter we will take a closer look at how we create

forms with Rails. We will also explore the concept of layouts, which help

us refactor common HTML code out of individual view templates and

enables both controller-wide and site-wide layouts. Finally, we will take

a look at partials, which give us the ability to share reusable fragments

of templated code across actions or even across controllers.

8.1 Diving Into Forms

We’ll see how to create forms in Rails by revisiting our Flight model and

views. When we used the scaffold generator for the flight resource, we

got a lot of functionality for free. Without having to do any more work,

we could simply start our local server and navigate to the form that lets

us create a new flight, as shown in Figure 8.1, on the following page.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

DIVING INTO FORMS 151

Figure 8.1: Scaffold-generated “new flight” form

The life cycle of a form on a web page generally involves two phases:

• Generating the appropriate HTML for the form, which includes the

proper assignment of the form tag’s attributes so that the submit

button will trigger the appropriate login on the server. It may also

include setting default values for some of the controls so that the

user has less work to do to complete the form.

• Processing the results of the form and updating the database as

necessary.

ASP.NET forms can be difficult to build and process without aid from

the Visual Studio IDE to help generate the necessary HTML. In Rails,

all the development can be done “by hand” with a text editor. Let’s take

a look.

How You Might Approach It in .NET

Let’s take a quick tour of how a simple new flight form might be cre-

ated in ASP.NET. Creating a form in ASP.NET is fairly easy. A WYSIWYG

design surface not only lets you drag and drop an ASP.NET server con-

trol onto the form, but we can also use the visual property grid to make

changes without having to look at the underlying source. In practice,

however, most ASP.NET developers switch to Source View for the nec-

essary fine-tuning of the HTML and server properties that may not be

exposed by the property grids. The ASP.NET Source View is not exactly

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=151

DIVING INTO FORMS 152

the HTML that will be returned to the browser, as we will see in a

moment.

Our form is going to need a table underlying it so we can save our flight

data somewhere. Visual Studio and ASP.NET’s data-binding features

provide a wealth of choices for binding your form elements to data sets

or custom queries. For our simple example, we’ve chosen to use a SQL

Server database .mdf file, and we added a table named flights. We then

used the Project > Add New Item menu to create a TableAdapter object

that wraps the entire flights table for us (see Figure 8.3, on page 154).

Creating the Form

Once we’ve created the database file, a flights table, and a TableAdapter

class, we can start the business of creating the form (see Figure 8.2, on

the following page). For our example, we simply dragged some label and

textbox controls onto the designer surface and set their Name proper-

ties as desired. Switching to Source View reveals the following code:

Download view/netsource.html

Line 1 <body>

-

- <h1>New Flight</h1>
-

5 <form id="form1" runat="server">

-

- <p><asp:Label ID="Label1" runat="server"
- AssociatedControlID="flightNumber"
- Text="Flight Number:">

10 </asp:Label>
- </p>

- <p><asp:TextBox ID="flightNumber" runat="server"></asp:TextBox></p>

-

- <p><asp:Label ID="Label2" runat="server"
15 AssociatedControlID="origin"

- Text="Origin:"></asp:Label></p>
- <p><asp:TextBox ID="origin" runat="server"></asp:TextBox></p>
-

- <p><asp:Label ID="Label3" runat="server"
20 AssociatedControlID="destination"

- Text="Destination:"></asp:Label></p>
- <p><asp:TextBox ID="destination" runat="server"></asp:TextBox></p>

-

- <p>
25 <asp:Button ID="Button1" runat="server" onclick="Button1_Click"

- Text="Create" style="height: 26px" />
- </p>
- </form>

- </body>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/netsource.html
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=152

DIVING INTO FORMS 153

Figure 8.2: Creating a flight in ASP.NET

On line 5, we see the first clue that we’re not looking at raw HTML.

Browsers don’t understand runat attributes of HTML elements. The runat

attribute of the form element is specific to ASP.NET, and it helps to

endow our form with special properties and behaviors by hooking into

the HTTP request/response pipeline. When we run our application in a

browser and then view the raw HTML source, we can see how ASP.NET

synthesized together the actual HTML:

Download view/nethtml.html

<form name="form1" method="post" action="Default.aspx" id="form1">

ASP.NET did the work of specifying the action, method, and id attributes

that the browser will use to submit the form to our application.

Similarly, we can see how the Label and TextBox controls are rendered

into the HTML counterparts. Take a look at how the label and textbox

pair on lines 1 to 2 became rendered into HTML:

Download view/nethtml.html

Line 1 <p><label for="flightNumber" id="Label1">Flight Number:</label></p>
- <p><input name="flightNumber" type="text" id="flightNumber" /></p>

Beginning ASP.NET developers may not realize that Source View in

Visual Studio is not HTML source or is it the code for our code-behind

class; rather, it’s the intermediate .NET template code for the form. In

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/nethtml.html
http://media.pragprog.com/titles/cerailn/code/view/nethtml.html
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=153

DIVING INTO FORMS 154

Figure 8.3: flights table definition in Visual Studio

classic ASP we called these templates ASP script files. In Rails, they are

called view templates.

Saving the Flight to a Database

By using the Table Adapter Wizard, we ended up with a FlightsManager-

Adapter in our code. If we ever need to change our table—say we add or

drop a column—we would need to be sure to regenerate our code.

When the user clicks the submit button, we need to save our flight

data to the database, and we do that by double-clicking the button in

the designer to open our code-behind editor.

.NET Download view/netcode.cs

Line 1 protected void Button1_Click(object sender, EventArgs e)
- {
- string number = this.flightNumber.Text;
- string originAirport = this.origin.Text;
5 string destinationAirport = this.destination.Text;
-

- DataSet1TableAdapters.FlightsTableAdapter adapter =
- new FlightManager.DataSet1TableAdapters.FlightsTableAdapter();
-

10 int flightID = adapter.Insert(originAirport,
- destinationAirport,
- number);
-

- }

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/netcode.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=154

DIVING INTO FORMS 155

Starting on line 3, we capture the values entered into the form. On line

7, we create a new instance of our adapter, and finally on line 12, we

insert a new row into the table.

We can become as elaborate with this form as we want, adding vali-

dation (see Section 6.3, Validating User Input, on page 119 for details),

CSS support, theming and skinning, and a variety of ways to bind our

form elements to the database. But the general principles we’ve seen

here will remain the same:

• ASP.NET forms have an underlying Source View that is the “script”

or “template” for the page.

• The ASP.NET machinery will transform the template into raw

HTML, suitable for browser consumption.

• Code-behind partial classes can give the appearance of an event-

driven model for your web applications, and ASP.NET takes care

of the actual request/response processing behind the scenes.

• Data binding in .NET involves using some kind of code-generated

data source control or class and using the facilities of that class

to insert/update/delete data in your tables.

With our refresher of ASP.NET form basics complete, let’s see how we

develop forms in Rails.

The Rails Way

Developing web forms in Rails is a great way to learn about the corner-

stones of Ruby on Rails.

Every form in Rails will involve these central pieces of the framework:

• Models: These are Ruby classes that are usually derived from

ActiveRecord::Base, but they are any Ruby class that you write that

helps model your particular problem domain. Forms in Rails tend

to be for the purpose of creating or editing instances of a particular

model.

• Views: These are HTML files that contain embedded Ruby code.

Rails generates a pure HTML response by executing any embed-

ded Ruby statements first and then sending the entire result to

the browser. Rails provides many helper methods you can embed

inside your HTML forms that help bind form controls to model

attributes automatically.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=155

DIVING INTO FORMS 156

• Controllers: These are your Ruby classes that are first activated

by Rails and determine many things, including which models to

manipulate and which view should be rendered to the browser.

• Routing: The routes.rb file is consulting for every incoming HTTP

request. One of the most important results of the routing machin-

ery is to generate a Ruby hash that contains all the data sent by

the browser. This hash is the params hash. All data entered by the

user into a form is stored in this hash.

If this sounds like a lot for a simple form, you may be surprised to learn

that these same elements exist in ASP.NET as well. ASP.NET kept most

of these gory details hidden from us to shield us from its internals.

But the invisible is also unchangeable. Rails brings these elements into

the light so that we can tweak, customize, and optimize our appli-

cation as we see fit. Rails gets us “close to the metal” of the HTTP

request/response cycle for detailed control, while Ruby enables our

code to remain at a comfortably high level of abstraction.

We can learn about how these elements fit together by looking at the

code that was generated for us by the script/generate scaffold command.

Forms for an ActiveRecord Model

Rails applications spend a lot of time interacting with their underlying

ActiveRecord-derived models. It should be no surprise that Rails, there-

fore, makes it easy to create forms that have a one-to-one mapping to

an ActiveRecord object. Our embedded Ruby templates (those that end

with .erb) can use the form_for method to wrap an ActiveRecord model

instance with a form.

Go ahead and open the app/views/flights/new.html.erb template, and you

will find a line like this:

<% form_for(@flight) do |f| %>

Here we’re calling the form_for method, passing it the @flight variable we

created in the new method of our controller. form_for will take care of

generating the underlying HTML form tag for us with the appropriate

attributes. Use your browser to view the source for the form, and you’ll

see that the form tag was generated like this:

<form action="/flights" class="new_flight" id="new_flight" method="post">

The action attribute is set to /flights, while the method attribute is set to

post. According to REST routing rules, this will mean that the submit

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=156

DIVING INTO FORMS 157

Joe Asks. . .

What If I Need to Call the Edit Action Instead?

The form_for code in the new.html.erb template seems to “know”
that we want to trigger the create action. But if we’re editing an
existing flight, we would want it to call the edit action instead.

It turns out that form_for is pretty smart. If the variable we pass to
it (@flight in our case) is a new, unsaved model instance, then it
will set the action and method attributes to values that will in turn
trigger the create action.

But if the variable is already associated with an existing row in
the database, it will generating HTML like this:

<form action="/flights/1" class="edit_flight"
id="edit_flight_1" method="post">

Here, the action targets a specific flight resource with a method

of POST. This combination will instead trigger the edit action of
the FlightsController.

button for this form will trigger the create method of the FlightsCon-

troller—exactly what we want!

Eagle-eyed readers will notice that form_for is a method that expects

a user-supplied block. The block is given an object that can be used

inside the block to assist in generating HTML client-side controls. The

scaffold-generated code uses the common convention of naming this

variable f. This variable is valid only inside the form_for block and is

called a form builder helper. The form builder helper provided by form_for

provides the equivalent functionality of control data binding in .NET.

We are now ready to take a look at how form_for enables us to easily bind

HTML controls to Flight object attributes—in other words, to columns in

our flights table.

Data-Bound Textbox

In .NET, textbox controls are used whenever we need an HTML text

input control. In Rails, we use the text_field helper.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=157

DIVING INTO FORMS 158

Look at how the first textbox is implemented in our form:

Ruby Download view/new.html.erb

<%= f.text_field :flight_number %>

Here we simply call the text_field method, passing it a symbol represent-

ing the method on our model that we want to bind to the textbox. If we

view the raw HTML source in our browser, we will see this:

<input id="flight_flight_number" name="flight[flight_number]"

size="30" type="text" />

Just as ASP.NET transforms <asp:.....> controls into raw HTML for the

browser to display, Rails generates this HTML for us when the template

is rendered.

The text_field method, like all the form helper methods, can accept many

optional parameters that we can use to specify HTML attributes like the

size of the text field, the CSS class we want applied to the control, the

HTML ID, and more. See the Rails API for complete details.

How Data Binding Works in Rails

The one HTML attribute that you will not want to override is the name

attribute. The form builder helper has assigned the name specially to

follow Rails conventions. When this form is submitted, the browser will

send the name and value of this textbox control. The name becomes a

key into the params hash in our controller.

Something cool happens when the name of a control includes square

brackets. When the form is submitted, Rails will break apart this name

and create a new hash for us inside the params hash. params[:flight]

returns this hash, in which the keys represent the controls and the

values are the corresponding user-supplied values for those controls.

So in our case, params[:flight][:flight_number] will return exactly what the

user entered into our textbox.

That’s exactly what we find inside the create action in our FlightsCon-

troller. This code in our controller:

Ruby Download view/flights_controller.rb

@flight = Flight.new(params[:flight])

creates a new instance of Flight, initialized with all of the values entered

by the user.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/new.html.erb
http://media.pragprog.com/titles/cerailn/code/view/flights_controller.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=158

DIVING INTO FORMS 159

Figure 8.4: “New flight” form with enhancements

By defining conventions for HTML name attributes, Rails controllers

can create a new model instance or update an existing model with one

line of Ruby code.

When we use form_for and use the form builder object to create the

form’s HTML controls, we get HTML that conforms to these conven-

tions. The framework is able to automatically map the incoming HTML

values into a hash that contains all the values entered into our form.

That alone would be very handy, but the story gets even better. Active-

Record models can accept this hash of keys and values when creating

new instances by using the new or create class methods, and existing

rows can be updated instantly with the update_attributes method avail-

able on every ActiveRecord object.

This is another example of how powerful our code becomes when we

follow conventions defined by Rails.

Combo Boxes and List Boxes in Rails

The scaffold generator created textboxes on our form for the origin and

destination attributes of our model, where users would enter an airport

code like ORD or ATL. It would be better if we could allow them to select

the airport codes from a predefined list (see Figure 8.4).

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=159

DIVING INTO FORMS 160

Let’s generate a new Airport resource:

ruby script\generate scaffold Airport code:string city:string

rake db:migrate

We can create our airports by manually with the Rails console or by

starting up our local web server, then navigating our browser to http://

localhost:3000/airports, and using the scaffold interface to create airport

data.

Once we have some airports to play with, we can change the origin and

destination controls into combo boxes. First we need to edit the new

action in our controller to get a list of all the airports.

Ruby Download view/flights_controller.rb

@airports = Airpot.find(:all, :order => "city asc")

and then we use the collection_select helper method in our view:

Ruby Download view/new.html.erb

<p>

Origin

<%= f.collection_select :origin, airports, :code, :city %>

</p>

<p>

Destination

<%= f.collection_select :destination, airports, :code, :city %>

</p>

The collection_select takes four parameters:

• The attribute of our Flight model that we want to be bound to the

combo box.

• The collection to use to populate the combo box.

• The method that should be called on the selected item when the

form is submitted. The return value of this method is what gets

sent to the application.

• The method that should be called on each item to be used as the

displayable string in the combo box.

If we prefer to show a listbox instead, we need to use the full form of

the collection_select method that takes six parameters, where the fifth

and sixth are hashes. The sixth parameter is a hash of HTML options,

and that’s the one we need to use to specify the size of our list. Here’s

how we would turn the origin combo box into a listbox with a height of

ten items:

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/flights_controller.rb
http://media.pragprog.com/titles/cerailn/code/view/new.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=160

USING LAYOUTS INSTEAD OF MASTER PAGES 161

<%= f.collection_select :origin, airports, :code, :city, {},

{ :size => 10 } %>

Other Data-Bound Controls

The form_for block object can help build other controls as well:

• check_box binds a checkbox to a boolean attribute.

• password_field binds a textbox to a string attribute but masks the

input.

• hidden_field creates a hidden value that will be sent to the applica-

tion when the form is submitted.

• radio_button binds a radio button to a model attribute. Multiple

radio buttons for the same attribute are considered to be a radio

button group.

• text_area is similar to text_field but allows multiple lines of input.

Each of these helper methods “bind” HTML controls to data columns

simply because they’ll use generate the proper name values in the re-

sulting HTML code. Your create or update actions in your controller per-

form the heavy lifting by calling the create or update_attributes method

on your ActiveRecord model.

We’ve toured the basics of creating forms in Rails. The following sec-

tions will take us into two other aspects of view management in Rails:

layouts that help us provide a consistent look and feel among all of our

pages; and partials, which will help us avoid repeating the same code

from one view to the next.

8.2 Using Layouts Instead of Master Pages

ASP.NET 2.0 introduced the concept of master pages so that site-wide

logic and HTML can be applied across all pages that share the same

structure and layout.

In Rails, we use layouts to apply a common HTML structure to our

entire application or for specific controllers. Since layouts in Rails are

normal view templates that can contain embedded Ruby code, lay-

outs provide one way for us to dynamically “theme” our site. We can

determine styles and page structure dynamically based on environ-

ment settings, user profiles, configuration files, time of day, data in

our database, or anything else we can dream of.

Layouts also serve a second purpose. Ruby developers like to keep their

code DRY. Refactoring reduces the number of lines of application code,

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=161

USING LAYOUTS INSTEAD OF MASTER PAGES 162

isolates faulty code to a single spot so that a fix can be performed in

just one place, and helps maintain readable code as the size of the

application grows larger. We want to treat our view templates as first-

class code citizens in our application and strive to keep our view code

as DRY as possible as well. Layouts help us refactor common code out

of our views so that we don’t need to repeat the same code in each view

template.

Master Pages in ASP.NET

Master pages help enforce a standard structure or layout for every page

on the site. Master pages have the file extension .master and use a @

Master directive instead of the usual @ Page. This placeholder would be

replaced at runtime with the content of the current page.

Master pages are similar to regular .aspx files, but at some point in the

code there must be a ContentPlaceHolder control. As its name suggests,

the placeholder is replaced at runtime by an actual .aspx page, wrapped

by the outer master layout. The page being wrapped is often referred to

as the content page.

Connecting a content page with its master page involves setting the

MasterPageFile property in the content page’s @ Page directive. We usu-

ally do this from the Add Item Wizard in Visual Studio, but it can also

be done by hand later. And although they are similar to regular .aspx

pages, content pages do not contain HTML tags such as <html>, <body>,

or even <form>.

The motivation behind master pages is to help ease the development

of sites where pages share a common layout so that the common ele-

ments can be specified once in the master page. Changes to the com-

mon structure can be done in the master page, and all pages that use

that master page will automatically use the new structure. At runtime,

ASP.NET will merge the content page into the surrounding master page.

Rails also provides a mechanism for sharing common structure among

pages by introducing the notion of a layout template. If you’ve been

using master pages in your ASP.NET projects, using layouts will feel

natural and easier to use than master pages.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=162

USING LAYOUTS INSTEAD OF MASTER PAGES 163

Using Layouts in Rails

Layouts differ from master pages in a few ways:

• Layouts are either controller-wide or site-wide.

• Instead of a “placeholder” tag in the template, layouts use the

Ruby keyword yield.

• Views are automatically merged into the controller or site-wide

layout. No separate step is needed to connect a view to its layout.

Layouts are normal embedded Ruby templates to generate HTML, with

a twist. Layouts will be “wrapped around” your more specific, action-

based view templates. The layout combines with an action-specific tem-

plate to generate the complete HTML for a web page. Using layout files

is entirely optional, but most projects benefit from using even simple

layouts.

You can incorporate layouts into your views in three ways:

• A controller-specific layout will automatically be used if it exists.

Each controller can contribute a file into the app/views/layouts/

directory if it follows the specific naming convention of controller.

html.erb. For example, app/views/layouts/flights.html.erb is the lay-

out template that will wrap around all templates served by the

FlightsController.

• A site-wide default layout will be used if a controller-specific lay-

out does not exist. The site-wide layout file must be named appli-

cation.html.erb. If the site-wide layout and a controller layout both

exist, the controller layout takes priority. This means you can

define a site-wide layout but override it for specific controllers as

needed.

• Specify the layout file in your controller’s Ruby code. You can

explicitly call the layout class method in your controller to define

the layout file you’d like to use for your controller:

class FlightsController < ApplicationController

Use app/views/layout/my_special_layout

for every action rendered by this controller

layout "my_special_layout"

end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=163

USING LAYOUTS INSTEAD OF MASTER PAGES 164

If needed, you can override the layout setting for a specific action:

class FlightsController < ApplicationController

Use app/views/layouts/my_special_layout.html.erb

only for the index action.

All other actions will use flights.html.erb

or application.html.erb if they exist

layout "my_special_layout", :only => :index

end

or if you choose, specify the layout during an explicit render call:

class FlightsController < ApplicationController

def index

render index.html.erb wrapped by

app/views/layouts/my_special_layout.html.erb

render :action => :index, :layout => 'my_special_layout'

end

end

Let’s see how we can put layouts to practical use.

Using Layouts for Controller-wide Themes

Layout templates are just like normal action view templates, but they

wrap their contents around action view templates. When no specific

layout directive is found in the controller code, the controller-specific

layout found in the app/views/layouts directory will automatically wrap

around every action rendered by that controller.

Inside the layout, you decide exactly where the action template’s code

is to be inserted by calling yield, as shown in the flights.html.erb layout.

Ruby Download view/layouts/flights.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html;charset=UTF-8" />

<title>Flights: <%= controller.action_name %></title>

<%= stylesheet_link_tag 'scaffold' %>

</head>

<body>

<p style="color: green"><%= flash[:notice] %></p>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/layouts/flights.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=164

USING LAYOUTS INSTEAD OF MASTER PAGES 165

<%= yield %>

</body>

</html>

We can modify the output rendering of every action from the FlightsCon-

troller by enhancing this template. Let’s add a nice header to our views:

Ruby Download view/layouts/flights_enhanced.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html;charset=UTF-8" />

<title>Flights: <%= controller.action_name %></title>

<%= stylesheet_link_tag 'scaffold' %>

</head>

<body>

<h1 id="flights">Flight Administration</h1>

<p style="color: green"><%= flash[:notice] %></p>

<div id="action">

<%= yield %>

</div>

</body>

</html>

We will now tweak the scaffold.css code a bit:

Download view/layouts/scaffold.css

#header { border-bottom: solid 2px green; padding: 20px;}

#action { margin-left: 100px;}

To see the layout wrap around every action of the FlightsController, go to

http://localhost:3000/flights, and use the scaffold-generated pages. You’ll

see that all the pages automatically inherit the same heading and mar-

gin styles because they are now rendered from within the layout.

Creating a Site-wide Layout

Often we want to enforce a site-wide structural layout. A site-wide lay-

out is implemented by simply naming the template application.html.erb.

Rails refers to this file as the application layout, and Rails will use it for

every controller that does not specify its own layout.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/layouts/flights_enhanced.html.erb
http://media.pragprog.com/titles/cerailn/code/view/layouts/scaffold.css
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=165

CREATING PARTIALS INSTEAD OF USER CONTROLS 166

To demonstrate, let’s convert our newly made flights layout into a site-

wide, or application, layout:

1. Rename flights.html.erb to application.html.erb in the app/views/layouts

directory.

2. Edit the title tag as desired, and let’s change the h1 tag as well:

Ruby Download view/layouts/application.html.erb

<h1 id="header">Airline Management App</h1>

3. Delete the existing controller-specific layouts.

Now, every page will be rendered with our site-wide layout.

Controllers can override the site-wide layout, but you can’t have it both

ways: actions can be wrapped by their controller’s layout or the appli-

cation layout, but not both.

8.3 Creating Partials Instead of User Controls

Websites are often composed of common elements. We have already

seen how layouts help promote a common structure without needlessly

repeating code inside each view template and how layouts can be seen

as a kind of equivalent to .NET master pages. Although layouts are

useful for providing overall structure and “wrapper” content, we often

want to reuse small components or self-contained sections across many

pages. .NET provides this facility with user controls, which help encap-

sulate appearance and behavior together as a unit. In this section, we

will explore partials, which is another facility provided by Rails to help

us reuse small sections or “components” of a web page in other pages

as well.

User Controls in ASP.NET

User controls and server controls are powerful features of ASP.NET.

They provide several important benefits to ASP.NET projects that use

them:

• They help encapsulate often-used UI and behavior in one place.

• They help factor common functionality from individual pages.

• They can be derived from DataBoundControl to bind the control’s

UI to the database.

• They can inherit from other user controls, leveraging existing code

and again helping reduce code redundancy.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/layouts/application.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=166

CREATING PARTIALS INSTEAD OF USER CONTROLS 167

Partials in Rails

Partials are reusable bits of template code that can be included in a

view. If we look again at the views that were generated for us by the

scaffold generator, we see that the new and edit templates are almost

identical. The enhancements we made to the new template in the previ-

ous section would need to be duplicated in the edit template. Using par-

tials, we can factor out the form code so that both templates can share

the same form code. Improvements to the form will then be instantly

available to both templates.

DRYing Up Views with Partials

Looking at the form_for block in the new and edit templates, we see that

the only difference is the text caption assigned to the submit button.

The new template needs to use the text “Create,” but the edit template

wants to use “Update.”

Factoring code out of a template and into a partial follows a standard

three-step process:

1. Cut the code out from the view, and paste into a new file in the

same directory. This filename can be called anything you want but

must begin with an underscore. In Rails, all partial views must

begin their filenames with an underscore.

2. Insert code into the view to render the partial where the code used

to be. Pass local variable values as needed into the partial.

3. There is no step 3.

In our case, we remove the entire form_for block from the new template

into a file named app/views/flights/_form.html.erb. Note the underscore in

front of the filename.

We then insert code to render the partial. Our new template code now

looks like this:

Ruby Download view/partials/new.html.erb

<h1>New flight</h1>

<%= error_messages_for :flight %>

<%= render :partial => 'form' %>

<%= link_to 'Back', flights_path %>

Immediately we reap a prime benefit of using partials: the template code

has become much more readable. Rather than having to wade through

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/partials/new.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=167

CREATING PARTIALS INSTEAD OF USER CONTROLS 168

all the details of the form, we can now see at a glance the true intent of

the new template: to show validation messages, display a form, and let

the user navigate back if they need.

Refreshing our browser pointed at http://localhost:3000/flights/new, we see

no new apparent difference, which is exactly what we want whenever

we refactor. We’ve improved the inside design of the code without dis-

turbing any of its outward behavior.

Now we can change the edit.html.erb template to also include the partial:

Ruby Download view/partials/edit.html.erb

<h1>Editing flight</h1>

<%= error_messages_for :flight %>

<%= render :partial => 'form' %>

<%= link_to 'Show', @flight %> |

<%= link_to 'Back', flights_path %>

Our editing form now has the new combo boxes and any other enhance-

ments we may have chosen to add. Even better, future enhancements

will automatically be reflected in both forms.

However, we do have one problem: the edit form’s submit button says

“Create” instead of “Update.” We want our partial to use “Update” when

we are editing an existing row in the database but “Create” when we’re

creating a new row. We could solve this in many ways:

• In the FlightsController, we could assign an instance variable @sub-

mit_caption to be “Create” in the new action and “Edit” in the edit

action. The code in our _form.html.erb for the submit button then

becomes this:

<%= f.submit @submit_caption %>

This works because partials have access to the same controller

variables as their containing templates.

• We could have the partial interrogate the @flight variable to find out

whether it’s a new, unsaved model. For example, here we create

local variable and initially set the caption to “Edit” but change it

to “Create” if necessary:

<% caption = "Edit" %>

<% caption = "Create" if @flight.new_record? %>

<%= f.submit caption %>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/partials/edit.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=168

CREATING PARTIALS INSTEAD OF USER CONTROLS 169

• Instead of having the partial create its own local variables, we

can have the parent template be responsible for supplying them

instead. Here’s how we could modify the render call in new.html.erb:

<%= render :partial => 'form', :locals=>{ :caption => "Create" }%>

Conversely, in edit.html.erb we adjust the code to say this:

<%= render :partial => 'form', :locals=>{ :caption => "Update" }%>

Now we can use this local variable code when we create the submit

button in _form.html.erb:

<%= f.submit caption %>

Being able to automate the creation of local variables for the partial

helps make the partial more generic and more reusable. Our form has

in many ways become our very own kind of “user control” is that we can

embed our flight form into any template rendered by the FlightsController.

In fact, the render method can do even more for us, as we will see in the

next section.

Rendering Collections with Partials

Partials are very useful when want to display items from a collection in

a table or grid. Open up index.html.erb, and you’ll see code like this:

Ruby Download view/partials/index.html.erb

<% for flight in @flights %>

<tr>

<td><%=h flight.flight_number %></td>

<td><%=h flight.departs_at %></td>

<td><%=h flight.arrives_at %></td>

<td><%=h flight.origin %></td>

<td><%=h flight.destination %></td>

<td><%= link_to 'Show', flight %></td>

<td><%= link_to 'Edit', edit_flight_path(flight) %></td>

<td><%= link_to 'Destroy', flight, :confirm => 'Are you sure?',

:method => :delete %></td>

</tr>

<% end %>

We can abstract the details of the table into a partial by moving this

code into a separate file. Let us name this file _flight.html.erb (again,

remember that all partials must begin with an underscore). Our index.

html.erb gets a bit easier to read.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/partials/index.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=169

CREATING PARTIALS INSTEAD OF USER CONTROLS 170

Ruby Download view/partials/index_2.html.erb

<h1>Listing flights</h1>

<table>

<tr>

<th>Flight number</th>

<th>Departs at</th>

<th>Arrives at</th>

<th>Origin</th>

<th>Destination</th>

</tr>

<%= render :partial => 'flight' %>

</table>

<%= link_to 'New flight', new_flight_path %>

The for loop has been moved into the partial. In fact, it’s so common to

have a partial loop over a collection of items that Rails supports this

scenario directly and allows us to remove the looping construct from

our code. Our new _flight.html.erb code contains just the markup needed

to represent one row in the table:

Ruby Download view/partials/_flight.html.erb

<tr>

<td><%=h flight.flight_number %></td>

<td><%=h flight.departs_at %></td>

<td><%=h flight.arrives_at %></td>

<td><%=h flight.origin %></td>

<td><%=h flight.destination %></td>

<td><%= link_to 'Show', flight %></td>

<td><%= link_to 'Edit', edit_flight_path(flight) %></td>

<td><%= link_to 'Destroy', flight, :confirm => 'Are you sure?',

:method => :delete %></td>

</tr>

We need to modify the index.html.erb template and ask Rails to loop over

the collection for us:

<%= render :partial => 'flight', :collection => @flights %>

Using the :collection specifier, render the partial once for each item in

the given collection. The question arises, how does the flight variable

come to exist inside the partial?

When we use the :collection option, Rails will instantiate a local variable

for each iteration. The name of this local variable is, by convention, the

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/view/partials/index_2.html.erb
http://media.pragprog.com/titles/cerailn/code/view/partials/_flight.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=170

CREATING PARTIALS INSTEAD OF USER CONTROLS 171

singular form of the variable name used for the collection. Since we

used the variable @flights, Rails will construct a local variable with the

singular form—flight—that can be accessed from within the partial.

In fact, if we’re willing to follow another naming convention, we can use

an even simpler syntax for rendering a collection via a partial. If the

filename of the partial is the singular form of the collection, the render

method will be able to infer which partial it should use. We named our

partial _flight, which is the singular form for @flights, so we’re in luck. We

can replace our call to render with simply this:

<%= render :partial => @flights %>

Once again, we can see how embracing Rails conventions enabled us to

avoid writing boilerplate code, focusing instead on the more interesting

and important aspects of our application.

In this chapter, we took a tour of some of the options we have with our

presentation layer in Rails. We saw how the MVC pattern presents a

different approach than the forms-based approach we’re used to with

ASP.NET. We examined how HTML forms work in Rails and how to use

layouts and partials to refactor our views to make them cleaner, more

flexible, and easier to maintain. Next, we’ll continue our exploration of

the presentation layer and take a dip into creating robust user inter-

faces with Ajax.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=171

Chapter 9

Creating Rich
User Experiences with Ajax

Ajax is one of many buzzwords used in the web development indus-

try today that loosely defines a collection of different technologies and

methodologies for building web applications. In this chapter, we’ll define

what Ajax is and how we can take advantage of it to build more respon-

sive and visually appealing web applications. Then we’ll examine Rails’

implementation of the various Ajax technologies and how it differs from

the .NET approach, and we’ll see how Rails’ built-in support for Ajax is

one of the things that distinguishes it as a truly powerful modern web

framework.

9.1 First, a Little Background

It’s important for us to fully understand what Ajax is and what choosing

to use these technologies buys us. The easiest way to begin would be

to take a look at the lifetime of a “traditional” (that is, non-Ajax) web

request. A typical scenario goes something like this:

1. The end user types a URL in the web browser or clicks a link on a

web page. A request is initiated and sent along the web server.

2. The web server takes the request, processes it, and prepares an

HTML document to return in response.

3. The end user’s screen flickers a bit, and the resulting HTML doc-

ument is rendered onscreen.

4. Rinse and repeat.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

FIRST, A LITTLE BACKGROUND 173

Before Ajax, this request-response-repeat cycle is what programming

for the Web was all about. It makes perfect sense, because HTTP is a

stateless protocol. That’s just a fancy way of saying that each request

to the web server has no built-in way to understand state; that is, the

HTTP request itself doesn’t have any knowledge of what has happened

previously. Of course, the modern web application demands that we

know what happened before the current request, because we need to do

things like manage user account information, add widgets to shopping

carts, and send virtual gifts to our friends. So, web frameworks have

worked around this limitation by storing session state data in a variety

of places, such as in browser cookies, in server memory, in hidden form

fields, embedded in the URL, or in a database.

Desktop applications, in contrast, don’t have to deal with this limi-

tation. A desktop application does just fine maintaining state between

button pushes and screen transitions. As a result, desktop applications

tend to seem more responsive and be more satisfying to use.

That is, they are until clever web developers began to realize that,

through browser-side scripting, they could make web applications

behave a lot like desktop applications in terms of usability. Not entirely,

but good enough in most cases. Instead of going through the whole

request-screen-flicker-response cycle over and over again, technologies

like JavaScript make it possible to replace only parts of a web page

instead of the whole thing.

Ajax, by the way, stands for Asynchronous JavaScript And XML. It’s

“asynchronous” in the sense that the request/response happens out-

side the realm of the traditional full page GET or POST that we’re all

used to. JavaScript is the technology that typically powers the ability

to do so, and XML is a common data format for the data exchange that

happens behind the scenes, although it doesn’t necessarily have to be

XML. The “XML” part is also applicable because it’s the XMLHttpRequest

object that allows us to make server-side calls from JavaScript.

The other aspect of using desktop applications that users are really

fond of is the support for a richer UI and visual effects. The ability to

react to UI events other than hyperlink clicks—such as dragging and

dropping, moving the mouse, resizing a window—is also intrinsic to

desktop app development. If partial-page updating is one pillar of what

Ajax is all about, then the emulation of desktop-like visual effects is the

other.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=173

PARTIAL-PAGE UPDATES 174

To summarize, we care about Ajax because it makes our web applica-

tions’ user experience better. Both Rails and .NET have their answers

to making partial-page updates and visual effects easy, so let’s have a

look.

9.2 Partial-Page Updates

The idea of partial-page updating is pretty straightforward. The way

JavaScript sees an HTML document is known as the Document Object

Model (DOM), and through the DOM, we can inspect or manipulate any

part of the HTML document any way we want. Here is the most basic of

examples to illustrate this in action:

Download ajax/random.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>My Great AJAX Application</title>

</head>

<body>

<p><a href="#" onclick="document.getElementById('random').innerHTML =

Math.random()">Random number please!</p>

<p id="random"></p>

</body>

</html>

Here, we have one link that, when clicked, will replace the contents of

a DOM element identified by the ID “random” with a random number.

As simple as this example is, this is what partial-page updates are all

about. In practice, we may be replacing the contents of the element with

something more robust, such as nicely formatted data returned from

our database, but the idea is the same.

Let’s go a step further. If we take the previous example and combine it

with some server-side processing, what we’ll get is the quintessential

example of an “Ajax-ified” web application. No longer do we have to live

with the request-flicker-response cycle—now we have this:

• The end user triggers an Ajax request by clicking an element on a

page.

• Without any postback or screen flicker, the server processes the

request and returns a response, the elements on the page are up-

dated, and the user gets immediate visual feedback—just like a

desktop app.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ajax/random.html
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=174

PARTIAL-PAGE UPDATES 175

Of course, with the amount of Ajax that may be going on in a modern

web app, doing it all by hand like this is going to get old pretty quickly.

That’s why both Rails and .NET provide client-side libraries to help get

it done a lot easier.

The .NET Ajax Client Library

ASP.NET Ajax, which is an add-on to ASP.NET 2.0 and included in

ASP.NET 3.5, is a rich set of extensions to the core .NET libraries cre-

ated to help us implement Ajax functionality in our applications. Its

other goal is to help us develop client-side code in the languages we’re

used to, such as C# or VB. The idea, as we’ve seen in other parts of this

book, is to reduce the amount of context switching we have do, making

us more productive.

At the heart of the .NET Ajax library is the UpdatePanel control. The

UpdatePanel defines a region of the page that will be replaced when

certain events occur. Here is a rudimentary example—we’re going to

create a page that will display a totally random flight status when a

link is clicked:

.NET Download ajax/RandomFlightStatus.aspx

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs"

Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<title>Completely Random Flight Status Page</title>

<script runat="server" language="C#">

protected override void OnLoad(EventArgs e)

{

base.OnLoad(e);

if (Page.IsPostBack)

{

string[] statuses = { "on-time", "delayed", "cancelled" };

status.Text = statuses[new Random().Next(statuses.Length)];

}

}

</script>

</head>

<body>

<form id="form1" runat="server">

<div>

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ajax/RandomFlightStatus.aspx
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=175

PARTIAL-PAGE UPDATES 176

<p><asp:LinkButton ID="LinkButton1" runat="server"

onclick="LinkButton1_Click">What's the status of my flight?

</asp:LinkButton></p>

<asp:UpdatePanel ID="UpdatePanel1" runat="server"

UpdateMode="Conditional">

<ContentTemplate>

<p><asp:Label runat="server" ID="status"></asp:Label></p>

</ContentTemplate>

<Triggers>

<asp:AsyncPostBackTrigger ControlID="LinkButton1"

EventName="Click" />

</Triggers>

</asp:UpdatePanel>

</div>

</form>

</body>

</html>

Breaking it down a bit, we have several controls in place that make this

all work:

• A ScriptManager, which is required on any web form that uses Ajax.

• A LinkButton, which is the link we’ll click to display the flight status.

• An UpdatePanel, which is the area to be updated when the link is

clicked.

• Within the UpdatePanel, we define a ContentTemplate, which con-

tains the content that will be updated and displayed when the

update event occurs. Here, the ContentTemplate contains a single

Label control—status.

• Also within the UpdatePanel, we have a AsyncPostBackTrigger, which

tells us the control and event name that drives the updating of the

UpdatePanel, in this case, the click event of LinkButton1.

We also have some C# code in the head of the document, which defines

an OnLoad event. This code will fire on postback and will update the

text of the status Label control with our totally random value.

This solution scales nicely from a developer’s point of view. As we add

more content that we want to update, we simply add more controls to

the ContentTemplate. If we want to retrieve data from a database, we

simply modify the OnLoad method to give us the data we want. And all

this code is written in C# and ASP.NET, not JavaScript.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=176

PARTIAL-PAGE UPDATES 177

The Rails Way

In Rails, a couple of different technologies are at work that make the

job of partial-page updating a lot easier. The first is the Prototype Java-

Script framework, and the other is RJS templates.

The Prototype JavaScript Framework

Prototype1 was created by Sam Stephenson, who has also been a mem-

ber of the Rails core team. As with the .NET Ajax library, the main

goals of Prototype are to make JavaScript less like, well, JavaScript and

to make programming with JavaScript more aligned with the object-

oriented patterns with which we’re already comfortable. Prototype is

basically a set of helper methods that extends JavaScript, making com-

mon tasks easier and makes it more, dare we say, Ruby-like.

Although it is built in to the core Rails framework, Prototype works

great on its own and alongside many other web programming frame-

works, including ASP.NET. Along the same lines, it is certainly not the

only JavaScript framework that Rails developers can use in building

their applications; libraries like jQuery, 2 MooTools,3 and Dojo4 are per-

fectly acceptable alternatives to Prototype if you are comfortable using

them already.

Here is the random number example again, this time with a Prototype

helper method along for the ride:

Download ajax/random_with_prototype.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>My Great AJAX Application</title>

<script src="prototype.js" type="text/javascript"></script>

</head>

<body>

<p>

Random number please!</p>

<p id="random"></p>

</body>

</html>

The difference here is subtle but important. Instead of document.

getElementById() as in the pure JavaScript example, we’ve replaced it

1. http://prototypejs.org/

2. http://jquery.com/

3. http://mootools.net/

4. http://dojotoolkit.org/

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ajax/random_with_prototype.html
http://prototypejs.org/
http://jquery.com/
http://mootools.net/
http://dojotoolkit.org/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=177

PARTIAL-PAGE UPDATES 178

with the $ function, which essentially does the same thing. If we’re

going to be doing a lot of partial-page updates, it certainly saves a lot

of typing! But it still feels like a bit of a hack. One of the big selling

points of Prototype is that it takes hackish JavaScript DOM manipula-

tion code and lays a nice blanket of abstraction on top, making it seem

a lot more object-oriented. Here is yet another way of writing the same

simple code:

Download ajax/random_with_prototype_2.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>DOM Element Updating With Prototype</title>

<script src="prototype.js" type="text/javascript"></script>

</head>

<body>

<p>

Random number please!</p>

<p id="random"></p>

</body>

</html>

Now, we’ve replaced the $ function with a call to the Element.update

function, passing the DOM ID of the element we want to update, along

with the new value. Nice and clean. Now, for our last bit of JavaScript

refactoring, let’s go crazy by removing the inline JavaScript altogether:

Download ajax/random_unobtrusive.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>DOM Element Updating With Prototype</title>

<script src="prototype.js" type="text/javascript"></script>

<script type="text/javascript" charset="utf-8">

function generateRandomNumber() {

Element.update('random', Math.random());

}

Event.observe(window, 'load', function() {

Event.observe('generate', 'click', generateRandomNumber);

});

</script>

</head>

<body>

<p>Random number please!</p>

<p id="random"></p>

</body>

</html>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ajax/random_with_prototype_2.html
http://media.pragprog.com/titles/cerailn/code/ajax/random_unobtrusive.html
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=178

PARTIAL-PAGE UPDATES 179

Event.observe is a Prototype function that creates an observer—that is, a

bit of code that waits for something to happen in the DOM. Here, we’ve

told the browser to wait for the content of the page to be fully loaded

and then to keep an eye out for click events on the DOM element with

the ID generate. And, when that event is fired, run another JavaScript

function, generateRandomNumber(), which does the same DOM element

replacement we did previously.

“Unobtrusive JavaScript” zealots would propose that this is the proper

way to do web programming. They would argue that HTML markup

should describe a document’s structure, not the programmatic behav-

ior. With this technique, the presentation (the markup) and the func-

tionality (the JavaScript) are completely separated, and using Prototype

makes it easy.

Talking with Server Data with Prototype

In a real-life scenario, we’re probably going to be using Ajax to get data

from a web server and display it to the user, not just executing a sim-

ple client-side function. Prototype gives us a few built-in ways to do

this, the most basic being the Ajax.Request method. The Ajax.Request

method handles the lifetime of an Ajax request from the browser and

provides callbacks to help us evaluate the response. Here is a look at

how Ajax.Request is typically used:

new Ajax.Request('/path/to/return/some/data', {

method: 'post',

onSuccess: function(transport) {

alert(transport.responseText);

}

});

The Ajax.Request method takes two parameters, a URL and a JavaScript

“hash” of options. At a minimum, this hash typically includes an onSuc-

cess callback, like we’re doing here, which indicates what we’d like to

happen when the Ajax request returns successfully. In this case, we’re

simply displaying a dialog box with the contents of the raw response.

However, if we don’t specify any callbacks to react to the response of

the Ajax call, Prototype will simply eval (execute) any JavaScript code

that is returned. This is the basic idea behind RJS.

Rendering JavaScript with RJS Templates

Now that we’ve seen how powerful the Prototype library can be, let’s

look at RJS. As we’ve seen with other components of Rails, one of the

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=179

PARTIAL-PAGE UPDATES 180

main goals of the framework is to have as much of our application writ-

ten in Ruby as possible. Yes, even the JavaScript. RJS takes some of the

most common tasks we might normally perform with pure JavaScript

and gives us a Ruby layer on top of it.

In theory and spirit, RJS in Rails is not all that different from .NET

Ajax—they both stem from the desire to at least try to do all our devel-

opment activities in a single language—but as we’ll see, it is quite dif-

ferent in style.

Let’s now take the same functionality from our random flight status ASP

.NET example and write it in Rails.

First off, we need to build a back end for our flight status randomizer.

We’ll use a StatusesController to do that:

c:\dev\flight> script/generate controller statuses

Since this is a RESTful controller, we’ll also need to add the appropriate

route to our routes file:

map.resources :statuses

Now, here’s the controller code:

Ruby Download ajax/statuses_controller.rb

class StatusesController < ApplicationController

def create

statuses = %w(on-time delayed cancelled)

@status = statuses[rand(statuses.size)]

respond_to do |wants|

wants.js

end

end

end

Our controller has a single action, create, which retrieves a random

status message from an array of messages. The @status instance vari-

able is then set with that value. Just like our normal HTML/ERb views,

any instance variable that is set in the controller is also available in

the view. The respond_to block indicates that we want this method to

respond to and return a JavaScript response. We need the respond_to

block because, by default, this action will look for and render a tem-

plate named create.html.erb if not specifically told to do otherwise. This

respond_to block says to instead look for an RJS template; and by con-

vention, the template is named create.js.rjs.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ajax/statuses_controller.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=180

PARTIAL-PAGE UPDATES 181

Download ajax/create.js.rjs

page.replace_html :random, @status

Since this RJS template is only a one-liner, some folks like to skip the

separate file entirely and write the controller like this instead:

Ruby Download ajax/statuses_controller_render_update.rb

class StatusesController < ApplicationController

def create

statuses = %w(on-time delayed cancelled)

@status = statuses[rand(statuses.size)]

render :update do |page|

page.replace_html :random, @status

end

end

end

In general, short bits of RJS like this one can usually be written inline

in the controller code, whereas more complex UI functionality should

be dished off to a separate RJS file. It’s up to us to decide what feels

right in terms of style and code readability. Regardless of which way

it’s written, what we’re doing here is telling the controller to return a

JavaScript-typed response to the browser. The browser then executes

the JavaScript code, which in this case replaces the contents of the

DOM element with ID random with the contents of the instance variable

@status.

The last thing we’ll need to do is to create a page that calls this action

and displays our flight status. We’ll call it the index action:

Ruby Download ajax/index.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Totally Random Flight Status Generator</title>

<%= javascript_include_tag :defaults %>

</head>

<body>

<p><%= link_to_remote "What's my flight status?",

:url => statuses_url %></p>

<p id="random"></p>

</body>

</html>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ajax/create.js.rjs
http://media.pragprog.com/titles/cerailn/code/ajax/statuses_controller_render_update.rb
http://media.pragprog.com/titles/cerailn/code/ajax/index.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=181

PARTIAL-PAGE UPDATES 182

Figure 9.1: Using Firebug to inspect the DOM

Looks familiar. It’s just like our random number example with a couple

of notable exceptions. First, we’re using the link_to_remote helper rather

than the link_to helper that we’d use for a non-Ajax hyperlink. And we’re

also including the Prototype library with a javascript_include_tag in the

head of the document.

To really see what’s going on behind the scenes, we can use Firefox

along with Joe Hewitt’s outstanding Firebug5 extension to inspect the

source of the link we’re clicking and see the JavaScript response that

is returned, as shown in Figure 9.1.

The Rails code that we wrote looks like this:

<%= link_to_remote "What's my flight status?",

:url => statuses_url %>

5. http://getfirebug.com/

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://getfirebug.com/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=182

PARTIAL-PAGE UPDATES 183

Joe Asks. . .

But This JavaScript Isn’t Unobtrusive, Is It?

That’s right. The default Rails implementation of RJS and the Pro-
totype helpers don’t generate unobtrusive JavaScript; it ren-
ders it all inline. This has been a point of contention for many
developers in the Rails community; if unobtrusive JavaScript
is important for your web app, it’s highly recommended you
check out the Unobtrusive JavaScript for Rails plug-in,∗ built on
top of Dan Webb’s excellent LowPro† extensions for Prototype.

∗. http://www.ujs4rails.com/

†. http://www.danwebb.net/2006/9/3/low-pro-unobtrusive-scripting-for-prototype

Using Firebug, this is actually rendered as this markup:

<a onclick="new Ajax.Request('http://localhost:3000/statuses',

{asynchronous:true, evalScripts:true}); return false;" href="#">

What's my flight status?

On the onclick event of this hyperlink, we are using Prototype’s Ajax.

Request to make an Ajax request to the /statuses URL. And since we

have no callbacks in place (such as onSuccess or onFailure), the resulting

JavaScript code is simply going to be eval’d.

Again, using Firebug, we can see what that JavaScript code is by in-

specting the XMLHttpRequest’s response when we click the link. So, the

code that we wrote:

page.replace_html :random, @status

is rendered into this JavaScript code at runtime:

Element.update("random", "cancelled");

This code will be executed and will replace the DOM element random

with our desired value when the response is successfully returned. Just

to illustrate a point, we could have written the RJS like this:

page << "Element.update('random', '#{@status}');"

Using the << method sends arbitrary JavaScript to the page, so this

would yield identical results. Doing it this way, of course, is more

JavaScript than Ruby, so we don’t want to do this. But in some cases,

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.ujs4rails.com/
http://www.danwebb.net/2006/9/3/low-pro-unobtrusive-scripting-for-prototype
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=183

VISUAL EFFECTS ON THE WEB 184

RJS doesn’t do the job, and we have to write our own JavaScript code

and inject it using the << method.

In short, to really be a great Ajax applications developer, you have to

learn JavaScript. But Prototype along with RJS makes it fairly painless

to perform common tasks and gets us most of the way there without

having to be a hardcore JavaScript programmer.

Now that we’ve looked at the basics of JavaScript in Rails vs. ASP.NET,

let’s move on to some visual effects.

9.3 Visual Effects on the Web

One of the things that has traditionally been missing from web user

interfaces is any kind of rich, desktop-like visual response to input

from the end user. Since the web was created simply to be a collec-

tion of essentially static hypertext documents, it’s been a long road

getting web user interfaces on par with what we’re used to with client

applications; computer users have long taken for granted features such

as animated screen transitions, drag and drop, and autocompletion in

desktop applications.

For the purposes of this discussion, let’s disregard plug-in technologies

like Flash and Silverlight and say that the only current way to sup-

port rich visual interfaces on the Web is by using the power of the web

browser and JavaScript to, again, manipulate the DOM in such a way

that the end user finds it visually appealing and responsive. And again,

the average web developer would probably find that writing these types

of visual effects from scratch using raw JavaScript rather painful. Luck-

ily, both ASP.NET Ajax and Rails provide comprehensive frameworks for

generating the JavaScript necessary to make it all happen.

Providing User Feedback

Back in the days when web page design was very simple, there was

very little need to use Ajax for visual feedback purposes. The end user

would submit a form or click a link, and the speed of the response that

would come back from a full HTTP request was probably good enough

to satisfy most people. But today, higher-bandwidth connections bring

higher expectations; combine that with the face that modern web appli-

cations are usually quite heavy with images and other content with

larger file sizes, and now we do have a need for a way to provide more

immediate feedback.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=184

VISUAL EFFECTS ON THE WEB 185

To illustrate some very simple visual effects, we’ll extend our random

flight status example just a little more. When our end user clicks the

link to ask for the flight status, what we’d like to do is give the resulting

status a little more visual flair. Instead of simply replacing the contents

of the DOM element with the new value, as we’ve done, we’re going

to make the DOM element “fade in,” that is, begin with a completely

invisible element and make it visible by gradually increasing its opacity.

How You Might Approach It in .NET

To perform animations and other rich visual effects in ASP.NET, we’ll

need the ASP.NET Ajax Control Toolkit.6 Once we reference the binaries

for the Ajax Control Toolkit in our project, we’ll get some additional con-

trols for building ASP.NET Ajax applications, on top of what is already

provided with the core ASP.NET Ajax framework.

Updating an element and displaying a visual effect to the end user is a

pretty common task in the modern Ajax web interface. So, the Ajax

Control Toolkit provides the UpdatePanelAnimationExtender to help us

out. Here is our ASP.NET random flight status example again, this time

with fade-in effect:

.NET Download ajax/RandomStatusWithAnimation.aspx

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs"

Inherits="_Default" %>

<%@ Register

Assembly="AjaxControlToolkit"

Namespace="AjaxControlToolkit"

TagPrefix="ajaxToolkit" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<title>Completely Random Flight Status Page</title>

<script runat="server" language="C#">

protected override void OnLoad(EventArgs e)

{

base.OnLoad(e);

if (Page.IsPostBack)

{

string[] statuses = { "on-time", "delayed", "cancelled" };

status.Text = statuses[new Random().Next(statuses.Length)];

}

}

</script>

</head>

6. http://www.codeplex.com/Wiki/View.aspx?ProjectName=AtlasControlToolkit

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ajax/RandomStatusWithAnimation.aspx
http://www.codeplex.com/Wiki/View.aspx?ProjectName=AtlasControlToolkit
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=185

VISUAL EFFECTS ON THE WEB 186

<body>

<form id="form1" runat="server">

<div>

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

<p><asp:LinkButton ID="LinkButton1" runat="server"

onclick="LinkButton1_Click">What's the status of my flight?

</asp:LinkButton></p>

<asp:UpdatePanel ID="UpdatePanel1" runat="server"

UpdateMode="Conditional">

<ContentTemplate>

<p style="background:#ff7f00">

<asp:Label runat="server" ID="status"></asp:Label></p>

</ContentTemplate>

<Triggers>

<asp:AsyncPostBackTrigger ControlID="LinkButton1"

EventName="Click" />

</Triggers>

</asp:UpdatePanel>

<ajaxToolkit:UpdatePanelAnimationExtender id="animationExtender"

TargetControlID="UpdatePanel1" runat="server">

<Animations>

<OnUpdated>

<Sequence duration="0.25">

<FadeIn AnimationTarget="UpdatePanel1" />

</Sequence>

</OnUpdated>

</Animations>

</ajaxToolkit:UpdatePanelAnimationExtender>

</div>

</form>

</body>

</html>

Let’s highlight the differences between this and our sample without

animation:

• We’ve imported the AjaxControlToolkit assembly at the top of the doc-

ument so we can use the controls that are included with it.

• We’ve added an UpdatePanelAnimationExtender control. This allows

us to declaratively specify which control is to be animated, which

events will trigger the animations, and which animations we want

to display. In this case, we want to animate UpdatePanel1 with

a FadeIn effect that lasts for 0.25 seconds whenever the panel is

updated.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=186

VISUAL EFFECTS ON THE WEB 187

I Need My Controls

Web development with ASP.NET has always followed in the spirit
of control-based desktop development, and ASP.NET Ajax is no
exception. With the Ajax Control Toolkit, these are just a handful
of the built-in pieces of functionality you get just by dragging
and dropping controls onto your web form:

• Accordions

• Calendars

• Drop shadows

• Rounded corners

• Sliders

• Slideshows

The short answer to whether these types of controls are avail-
able by default in Rails is no. But that doesn’t mean we can’t
include them in our application. It just means that we may
have to utilize one of the many other JavaScript control libraries
available, such as the ones included in Dojo or the Yahoo
User Interface (YUI) library, look for an open source solution, or
at worst write our own JavaScript. Thankfully, the open source
JavaScript community is quite strong, and the Rails community
does a fantastic job of finding the best open source JavaScript
solutions and converting them into Rails plug-ins for all to use.

• For added effect, we’ve tacked on an inline style to the content

that’s displayed, giving it an orange background color. This will

make the fade-in effect a lot easier to see.

The Rails Way

Along with Prototype, Rails ships with another JavaScript library,

Scriptaculous,7 which builds on top of Prototype to provide user inter-

face-specific functionality such as animation, drag and drop, in-place

editing, and other utility classes. And, just like it does with Prototype,

Rails wraps most of Scriptaculous with helper methods in order to keep

it all in Ruby.

7. http://script.aculo.us/

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://script.aculo.us/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=187

VISUAL EFFECTS ON THE WEB 188

Here is the Rails version of the random flight status interface, complete

with fade-in effect:

Ruby Download ajax/index_with_effects.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Totally Random Flight Status Generator</title>

<%= javascript_include_tag :defaults %>

</head>

<body>

<p><%= link_to_remote "What's my flight status?",

:url => statuses_url, :loading => "Element.hide('random')",

:complete => visual_effect(:appear, :random) %></p>

<p id="random" style="background:#ff7f00"></p>

</body>

</html>

There’s very little difference between this example and the one without

animation; and, we’ve done this without any changes to the back-end

controller or RJS code. Thanks to Prototype, the link_to_remote method is

able to provide a few callbacks that we can take advantage of to display

visual effects. The loading callback is called when we make the Ajax

request. We could use this to display a progress graphic; here, we’re

simply hiding the DOM element random. The complete callback then

calls the helper method visual_effect, which is simply a wrapper around

Scriptaculous methods that display certain effects of the animation

framework. In this case, we’re asking for the appear effect, which makes

the element random fade in.

Many other effects are available, all of which are well-documented on

the Scriptaculous website. Switching from a “fade-in” to a “blind-down”

(where the element appears from top to bottom) is as simple as chang-

ing our link_to_remote call:

<%= link_to_remote "What's my flight status?", :url => statuses_url,

:loading => "Element.hide('random')",

:complete => visual_effect(:blind_down, :random) %>

All we have to do is replace the name of the first parameter to the

visual_effect method. Feeling crazy and want to make the element move

from side to side when updated?

<%= link_to_remote "What's my flight status?", :url => statuses_url,

:complete => visual_effect(:shake, :random) %>

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/ajax/index_with_effects.html.erb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=188

VISUAL EFFECTS ON THE WEB 189

We’ve removed the loading callback, since we’re not making the element

disappear and appear again, and simply changed the effect name to

shake. It’s that simple.

In this chapter, we’ve gone headfirst into discovering Ajax web devel-

opment. We’ve discussed what Ajax is and why it’s important in cre-

ating truly modern web applications. And, we’ve taken a look at two

mainstays of Ajax development—partial-page updating and rich visual

effects—and the fundamental differences between the implementation

of these techniques in .NET and Rails. We have seen how Rails uses

the Prototype JavaScript framework and the Scriptaculous extensions,

while ASP.NET uses the ASP.NET Ajax client library, and we have seen

how the philosophical differences between the two frameworks are re-

flected in the implementation of Ajax as well.

Congratulations, you’ve reached the end of our coverage of basic Ruby

on Rails. Combined with the software development experience you al-

ready had working with .NET, you’re now armed with some new know-

ledge on—and hopefully a new perspective of—developing web applica-

tions the opinionated way with Ruby on Rails. Now we’ll tackle some

more advanced topics, including test-driven development, integration

with .NET, and fine-tuning our Rails development environment.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=189

Part III

Advanced Topics

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Chapter 10

Test-Driven Development on Rails
Test-driven development (TDD) is the agile practice of writing unit tests

as you develop your application. Writing and maintaining a suite of

unit tests is recognized as one of the hallmarks of quality application

development. Rails not only supports the writing of unit tests, but it

also actively encourages it. In this chapter, we’ll first learn how write

tests for preexisting Rails code to demonstrate how you can begin to

develop an automated test suite for your applications. Then, we’ll step

into TDD, writing tests before we write code. Finally, we’ll take a look at

Shoulda, one of the many “specification” frameworks that provides an

alternative to the standard Ruby unit testing syntax.

If you’ve never done TDD before, writing tests before there’s any code to

test might sound silly. To the contrary, writing tests first generally leads

to simpler and cleaner application code. Here are a few of the reasons

TDD developers typically cite when asked why they prefer to write tests

before they write any code:

• Writing a unit test for a small piece of functionality is a great way

to capture your requirements, so you know what to build.

• Writing a test before you write the application code forces you to

design the public interfaces of your classes from the client code’s

point of view.

• Writing tests first generates a wonderful by-product, which is an

automated test suite for your application.

Software written without unit tests is fragile software. It can be fright-

ening to change code in a large system when you’re worried that you

might break something and not even know it. Ugly code that needs

cleaning will tend to be ignored.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

A FIRST LOOK AT TEST/UNIT 192

Bad code will get worse with each subsequent hack and workaround,

until finally one day you just have to throw everything out so you can

start over with a clean slate.

Before we can dive headlong into TDD, we will start by first learning

how Ruby helps us write executable test suites, whether we write them

first (which we will do in Section 10.2, Test-Driven Development with

Test/Unit, on page 195) or last.

10.1 A First Look at Test/Unit

Ruby comes with a built-in testing framework, called Test/Unit, named

after the require statement used by Ruby programmers to enable the

unit testing framework inside their projects. A well-written test is gen-

erally composed of three parts:

• Some test data to play with is created. This data could be any-

thing, from simple local variables to data from a test database

filled with test data.

• The class or object to be tested is put through its paces.

• Assertions are made to ensure that the object’s final state matches

some expected state.

Let’s first look at Ruby example that does not involve any Rails code at

all. Take a look at this Car class:

Ruby Download tdd/car.rb

Line 1 class Car
-

- MILES_PER_GALLON = 20
-

5 # Represent the fuel tank of our car
- attr_reader :fuel
-

- def initialize
- @fuel = 0 # start with an empty tank

10 end

-

- # Add some fuel to the tank
- def add_fuel(amount)
- @fuel += amount if amount > 0

15 end

-

- # How far can we go?
- def range
- 0

20 end

-

- end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/car.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=192

A FIRST LOOK AT TEST/UNIT 193

Our car gets twenty miles to the gallon. We can add fuel to the tank by

calling the add_fuel method. Once the car has some fuel, we can find

out how far we can go by calling the range method.

To find out whether the range method works correctly, we could choose

to write a client program that uses our Car class:

Ruby Download tdd/use_car.rb

Line 1 require 'car'
-

- # Create a car object
- my_car = Car.new
5

- # Add 10 gallons to the tank
- my_car.add_fuel(10)
-

- # Display the range of the car
10 # We expect to see "20"

- puts "Range is: #{my_car.range}"

We reference our Car file on line 1 so that Ruby will know about the Car

class. We proceed to create a Car object, fill it with ten gallons of fuel,

and then display the car’s range. We can run this program from our

command prompt like this:

c:\dev> ruby use_car.rb

Range is: 0

We got 0 instead of the expected value of 200. There’s a bug in our code

somewhere. Ah, yes, we need to correctly implement the range method

like this:

def range

@fuel * MILES_PER_GALLON

end

Let’s run the client code again and see what we get now:

c:\dev> ruby use_car.rb

Range is: 200

We’ve fixed the bug, but let’s not celebrate too loudly. To find the bug

in the first place, we had to manually run the program and inspect the

results. In a large program—say, a web application—it may not be pos-

sible to manually exercise every feature of the application to make sure

everything works. We’d also have to manually test the entire applica-

tion before every release to make sure that changes to one class haven’t

adversely affected the expectations or behavior of any other class.

Let’s see how we can use Ruby’s built-in test framework to help us

ensure that our code works the way we want it to without having to
Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/use_car.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=193

A FIRST LOOK AT TEST/UNIT 194

write a separate client test program or requiring us to manually verify

the results. Here’s our testing code:

Ruby Download tdd/car_test.rb

Line 1 require 'test/unit'
- require 'car'
-

- class CarTest < Test::Unit::TestCase
5

- def test_range
- # Prepare a car for testing
- car = Car.new
-

10 # Do something interesting with the car
- car.add_fuel 10
-

- # Make sure the range is calculated correctly
- assert_equal(200, car.range)

15 end

-

- end

We start by requiring the test/unit library as well as our Car class file.

We then declare a class that derives from Test::Unit::TestCase, which is

defined for us by the test/unit library.

We define our test on line 6. After creating a Car object to test with,

we add some fuel on line 11. We then assert that the car’s range now

equals 200.

Now that our test is written, how do we run it? You might expect that

we need to write some more code to instantiate our CarTest class and

call the test_range() method. Fortunately, we don’t have to do any of

that work.

Our TestCase-derived class is a normal Ruby class but with one impor-

tant difference. When we run our file through the Ruby interpreter, any

methods that begin with test_ will automatically be executed after all

the code is loaded.

Let’s see what happens when we simply run our test code:

c:\dev> ruby car_test.rb

Loaded suite car_test

Started

.

Finished in 0.000237 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/car_test.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=194

TEST -DRIVEN DEVELOPMENT WITH TEST/UNIT 195

Directory What It’s Used For

unit Unit (model) tests

functional Functional (single controller) tests

integration Integration (multiple controllers) tests

fixtures Hardcoded fixture data (.yml files)

mocks Mock/stub classes used in development and test modes

Figure 10.1: Test subdirectories

Presto! Our test method was automatically detected and executed for

us. The results show that we wrote one test method, which contained

one assertion, and it passed with flying colors.

As we add features to our Car class, we could write more tests. And at

any time, we can run our tests to make sure that our code still behaves

as it should, no matter how large our code gets. Having an automated

suite of tests is essential to writing any application, and we wouldn’t

think of writing a real-world Rails application without it.

It will come as no surprise that Rails embraces Ruby’s built-in test-

ing. Let’s see how Rails encourages us to write unit tests for our web

applications.

10.2 Test-Driven Development with Test/Unit

Let’s start a new Rails application to demonstrate how to write unit

tests for web applications. We will write a very simple application that

lets a passenger make a flight reservation. This time around, we will

start by writing the tests first.

Start by generating a new Rails application:

dev$ rails reservations

Every Rails application includes a test directory, which is where all our

test classes will go. The test directory contains several subdirectories,

as shown in Figure 10.1.

In this chapter, we’ll be focusing on Rails unit tests and fixtures, which

are the core elements of all Rails testing.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=195

TEST -DRIVEN DEVELOPMENT WITH TEST/UNIT 196

Writing Our First Test

Our application will allow a passenger to book a reservation on a flight.

We’ve already learned a lot about creating models, views, and con-

trollers in Rails, so we’re going to keep things simple and concentrate

on the testing facilities that are available to us as we develop Rails

applications.

Here are the requirements we aim to achieve in our simple application:

• Passengers have a name and optionally an email address and fre-

quent flyer number.

• We need to be able to reserve a seat on a flight for on behalf of a

passenger.

• We need to cancel a reservation for a given passenger.

Let’s generate our passenger and flight models:

reservations$ script/generate model flight number:string

origin:string destination:string

reservations$ script/generate model passenger name:string email:string

freq_flyer:string flight_id:integer

reservations$ rake db:create:all

reservations$ rake db:migrate

Whenever we generate a model, Rails automatically starts a skeleton

test class for it. Model tests are called unit tests in Rails. Open up

test/unit/passenger_test.rb, and you’ll see what Rails generated for us:

Ruby Download tdd/reservations/passenger_test_1.rb

Line 1 require File.dirname(__FILE__) + '/../test_helper'
-

- class PassengerTest < ActiveSupport::TestCase
- # Replace this with your real tests.
5 def test_truth
- assert true

- end

- end

Rails creates a placeholder test, called test_truth, that’s on line 5. Re-

name it, and create our first test—that passengers must have a name

to be considered valid records in our database.

Ruby Download tdd/reservations/passenger_test.rb

Line 1 def test_passenger_invalid_if_name_is_missing
- # Create a passenger without a name
- p = Passenger.new :email => 'someone@example.com'
-

5 # Make sure the passenger object is not valid
- assert_equal false, p.valid?
- end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger_test_1.rb
http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger_test.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=196

TEST -DRIVEN DEVELOPMENT WITH TEST/UNIT 197

Joe Asks. . .

What About Controller and View Tests?

In this chapter, we’re exploring model tests, or what Rails refers
to as unit tests. Rails also supports automated testing of con-
trollers and views. For more information on how to write “func-
tional” (single-controller) tests and “integration” (application-
wide) tests, we recommend Agile Web Development with

Rails [RTH08].

Our test code is pretty simple. On line 3, we create a new Passen-

ger object with only an email address. On line 6, we use the built-in

assert_equal method to ensure that the passenger is not valid.

Now all we have to do is run the test. Recalling our Car example earlier,

we may be tempted to just run the passenger_test.rb script directly. How-

ever, that won’t actually work in all circumstances. To understand why,

we need to take a closer look at the meaning of the “test environment”

in Rails.

The Rails Test Environment

Back in Section 4.2, Environments in Rails, on page 81, we learned

about the different kinds of Rails environments we can define. In Sec-

tion 4.3, Configuring Data Access, on page 83, we looked closely at the

database.yml file and saw how it is used to map each Rails environ-

ment to a particular database. In development mode, the environment

variable RAILS_ENV is given the value development, and the correspond-

ing database configuration is read from the database.yml file. When we

start up our local web server and use our browser to play with our

application, it’s the development database that’s being used.

But something very different happens whenever we run our unit tests:

• The RAILS_ENV variable is set to test.

• All our model classes that derive from ActiveRecord::Base will point

at the test database instead of the development database.

• All log output will be directed to log/test.log, instead of log/develop-

ment.log.

• Any environment settings in config/environments/test.rb will be exe-

cuted instead of config/environments/development.rb.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=197

TEST -DRIVEN DEVELOPMENT WITH TEST/UNIT 198

New Test Syntax Coming Soon?

As this book was being completed, the Rails core team had
begun to introduce an alternative syntax for defining test meth-
ods. This new syntax will not be required but will be an option for
those who prefer it. The new approach eschews Ruby method
definitions for Ruby blocks instead:

test "test_passenger_invalid_if_name_is_missing" do
Normal test/unit code and assertions go here

end

Check the latest Rails documentation for the syntax that’s actu-
ally available in your version of Rails.

This means that as we run our tests, new rows of data will be inserted

into the test database, not the development database. This is very good

news, because it means our tests can run in total isolation from our

development environment.

However, it also means that before we can run any tests, we need to

ensure that our test database has the same schema as our develop-

ment environment. Any migrations that we’ve applied to our develop-

ment database (by running rake db:migrate) need to first be applied to

our test database, too.

In addition, we may want to prepopulate our test database with a lot

of test data that’s useful for our tests to use. The rows of data we pro-

vide in our test database are called fixtures, and we’ll learn more about

how to use fixtures in Section 10.4, Providing Test Data with Fixtures,

on page 206. The important thing to know for now is that we need to

ensure that the test database is reset to a known, good state before

each test is run.

Lastly, Rails projects can consist of many models, each with their own

accompanying test classes. Running each one by hand would become

tedious, and we’d have to be careful that we run every test class every

time we want to run the full suite of tests.

Since we can’t dependably run a test without first ensuring that all

these dependencies are taken into consideration first, we generally do

not run a test class directly from the command line. Instead, we use

the rake command to run our tests, as we’ll learn about next.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=198

TEST -DRIVEN DEVELOPMENT WITH TEST/UNIT 199

Running Tests with rake

Rails believes that you should be writing tests and executing them fre-

quently as you develop your application. Running your tests should be

easy, leaving no room for excuses not to write and run them. It may

come as a pleasant surprise (if you’re already practicing test-driven

development) or a bit of a shock (if you aren’t) that, in the absence of

any other instructions, rake will run all your tests.

We’ll be talking about rake in more detail in Section 12.3, Learning More

About rake, on page 240. For now, all we need to know is that a number

of things will happen automatically for us:

• The RAILS_ENV variable is set to test.

• The test database’s table schema is made to match the develop-

ment database schema.

• Any test data fixtures are loaded into the database.

• All test files in the test/unit, test/functional, and test/integration direc-

tories are detected and executed.

Here’s what happens when we call rake for the first time (we’ve removed

some clutter for clarity’s sake):

reservations$ rake

Loaded suite /../rake/rake_test_loader

Started

.F

Finished in 0.10178 seconds.

1) Failure:

test_passenger_invalid_if_name_is_missing(PassengerTest)

[./test/unit/passenger_test.rb:10:in

`test_passenger_invalid_if_name_is_missing'

<false> expected but was

<true>.

2 tests, 2 assertions, 1 failures, 0 errors

Errors running test:units!

Whoa. That’s a lot of output. Rails ran all of our tests, including the

placeholder test that was created for us in flight_test.rb. The important

thing to notice is that our test failed:

1) Failure:

test_passenger_invalid_if_name_is_missing(PassengerTest)

[./test/unit/passenger_test.rb:10:in

`test_passenger_invalid_if_name_is_missing'

<false> expected but was

<true>.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=199

TEST -DRIVEN DEVELOPMENT WITH TEST/UNIT 200

This is good news! Our test fails because we haven’t written any code

yet that would fulfill this requirement. Now let’s make this test pass,

shall we?

Making the First Test Pass

Now comes the fun part: making the test pass. How do we do that?

Whenever we seek to fix a failing test, we must say to ourselves: what’s

the simplest thing we could possible do in our application to make the

test pass?

Let’s open app/models/passenger.rb and add a simple validation rule for

the name attribute:

Ruby Download tdd/reservations/passenger.rb

class Passenger < ActiveRecord::Base

validates_presence_of :name

end

Now run our test suite again:

reservations$ rake

Loaded suite /../rake/rake_test_loader

Started

..

Finished in 0.059897 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

Even though it’s only one test, we’re actually on the road toward build-

ing a maintainable, automated test suite for our application. Before we

move on, let’s quickly review the steps we took to implement a test-

driven feature:

1. We started by writing a test that will prove that our requirement

has been fulfilled.

2. We gave our test a descriptive name and made sure to start the

test method with test_.

3. We ran our tests with the rake command. We watched it fail before

we wrote any application code. In this small project, this could

be viewed as overkill. In larger applications, it’s often critical: you

want to make sure the test you wrote can clearly show that the

desired requirement has not yet been implemented so that a sub-

sequent pass is proof that you’ve properly implemented the new

feature or requirement.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=200

TEST -DRIVEN DEVELOPMENT WITH TEST/UNIT 201

4. We wrote the simplest application code we could that would make

the test pass.

5. We ran rake to confirm that all the tests pass.

If you have that feel-good feeling by seeing our first test pass, pat your-

self on the back: you’re catching the idea of TDD. We’re ready to finish

off our application.

Making a Reservation

Now that we have a passenger, let’s create a reservation. A reservation

is an association between a passenger and a flight. Let’s see how we

might write our next test:

Ruby Download tdd/reservations/passenger_test.rb

Line 1 def test_make_reservation
- # Create a passenger
- passenger = Passenger.new :name => 'John Smith'
-

5 # Create a flight
- flight = Flight.new :number => '321',
- :origin => 'ORD',
- :destination => 'JFK'
-

10 # Make reservation
- flight.reserve(passenger)
-

- # Make sure reservation exists
- assert flight.passengers.include?(passenger)

15 end

To make a reservation, we first create a passenger object on line 3, as

well as a flight object on line 6. We decide that it would be neat to make

a reservation by calling a reserve method on our flight object, so that’s

exactly what we do. We then check to make sure the flight has our

reservation by making sure our passenger is in the list of passengers

booked for the flight.

If you’re thinking, “Wait a minute, we haven’t written all those other

methods yet,” you’re exactly right. What we’ve done is specified more

of the design of our application. We just made up some method names

that made sense for the situation. This is one of the great advantages of

test-driven development. We design public interfaces by writing tests,

making the test the first-ever client of our application code.

Without TDD, we probably would’ve begun by adding a bunch of meth-

ods to the Flight class. Next, we would have tried to write some appli-

cation code that would use those methods. Maybe our initial guesses

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger_test.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=201

TEST -DRIVEN DEVELOPMENT WITH TEST/UNIT 202

were right, but maybe they’d be found to be wrong. Test-first devel-

opment turns the tables, enabling us to think of our system from the

client code’s perspective first. We add methods to our classes only when

necessary and with names that make the most sense for the code that

will actually use them.

Let’s rake our code again. You’ll get something like this amidst the rake

output:

1) Error:

test_make_reservation(PassengerTest):

NoMethodError: undefined method `reserve' for #<Flight:0x6cef30>

We’re following the classic TDD pattern: write a test, watch it fail, write

the implementation code, and watch it pass. We’re halfway there, so

let’s now write some implementation code. Here’s what we need to add

to the Flight class:

Ruby Download tdd/reservations/flight.rb

class Flight < ActiveRecord::Base

has_many :passengers

def reserve(passenger)

passengers << passenger

end

end

Let’s rake again, and now all of our tests pass. Awesome! We’ve added

another bit of functionality to our application. A flight now knows about

its list of passengers.

But a passenger doesn’t know that they’ve been booked on a flight. Let’s

add that by writing a test for it:

Ruby Download tdd/reservations/passenger_test.rb

Line 1 def test_passenger_knows_about_reservation
- # Create a passenger
- passenger = Passenger.new :name => 'John Smith'
-

5 # Create a flight
- flight = Flight.new :number => '321',
- :origin => 'ORD',
- :destination => 'JFK'
-

10 # Make reservation
- flight.reserve(passenger)
-

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/flight.rb
http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger_test.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=202

TEST -DRIVEN DEVELOPMENT WITH TEST/UNIT 203

- # Make sure passenger knows about reservation
- assert_not_nil passenger.flight

15 end

Here we’re using the built-in assert_not_nil assertion, which takes one

argument. The object we pass must not be nil in order for the test to

succeed.

Let’s take an educated guess at how to implement this code. We just

need to add a belongs_to association in our Passenger class:

Ruby Download tdd/reservations/passenger_2.rb

class Passenger < ActiveRecord::Base

validates_presence_of :name

belongs_to :flight

end

So, rake again, and...the test still fails:

1) Failure:

test_passenger_knows_about_reservation(PassengerTest)

[./test/unit/passenger_test.rb:42:in

`test_passenger_knows_about_reservation'

<nil> expected to not be nil.

That’s odd, isn’t it? We know that the flight has the passenger in its

has_many list of passengers, so why hasn’t the belongs_to association

worked?

Look again at the reserve method we wrote earlier. We pushed the pas-

senger object into the list of passengers, but we never saved the new

list to the database. We need to call save:

Ruby Download tdd/reservations/flight_2.rb

def reserve(passenger)

passengers << passenger

save

end

Run rake again, and voila, all of our tests now pass.

Canceling a Reservation

Now that we can make a reservation, let’s cancel it. You know what

comes first: let’s write a test.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger_2.rb
http://media.pragprog.com/titles/cerailn/code/tdd/reservations/flight_2.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=203

DRYING UP TESTS WITH SETUP METHODS 204

Ruby Download tdd/reservations/passenger_test.rb

def test_cancel_reservation

Create a passenger

passenger = Passenger.new :name => 'John Smith'

Create a flight

flight = Flight.new :number => '321',

:origin => 'ORD',

:destination => 'JFK'

Make reservation

flight.reserve(passenger)

Cancel it

flight.cancel(passenger)

passenger.reload

Make sure reservation is cancelled

assert !flight.passengers.include?(passenger)

assert_nil passenger.flight

end

This will fail as expected, since we haven’t written a cancel method yet.

Let’s do that now:

Ruby Download tdd/reservations/flight_2.rb

def cancel(passenger)

passengers.delete passenger

end

Let’s rake again, and presto—all tests pass.

We’ve done it: we’ve fulfilled all of our requirements, and we have an

automated regression test suite to boot. Any time that we change our

code, we can run our tests to find out whether we’ve broken any of

our requirements. This means we can change our implementation code

as much as we want, whenever we want, and be confident that our

software still works as planned.

But we’re not done. Yes, our tests pass, but they are ugly. We have

duplicated a bunch of code in our tests. It’s time to DRY them up.

10.3 DRYing Up Tests with Setup Methods

Three of our tests need the same test data to work with, so they each

have code dedicated to creating this data:

• A passenger object

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger_test.rb
http://media.pragprog.com/titles/cerailn/code/tdd/reservations/flight_2.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=204

DRYING UP TESTS WITH SETUP METHODS 205

• A flight object

• A reservation for the passenger on that flight

Being good agile developers, we could extract this code into a separate

method. That would be an improvement, but we’d still have the ugliness

of needing to call that method at the start of each test. Since this is a

recurring pattern in unit test code, the Test/Unit library provides a

solution: the setup method.

If we choose to define a setup method for our class, it will automatically

be detected and called before each and every test. It’s a great place to

put code that creates data for the tests to play with. Let’s refactor the

passenger_test.rb file to use a setup method:

Ruby Download tdd/reservations/passenger_test_after_refactoring.rb

require File.dirname(__FILE__) + '/../test_helper'

class PassengerTest < ActiveSupport::TestCase

def setup

Create a valid passenger

@passenger = Passenger.new :name => 'John Smith'

Create a flight

@flight = Flight.new :number => '321',

:origin => 'ORD',

:destination => 'JFK'

Make reservation

@flight.reserve(@passenger)

end

def test_passenger_invalid_if_name_is_missing

Create a passenger without a name

p = Passenger.new :email => 'someone@example.com'

Make sure the passenger object is not valid

assert_equal false, p.valid?

end

def test_make_reservation

assert @flight.passengers.include?(@passenger)

end

def test_passenger_knows_about_reservation

assert_not_nil @passenger.flight

end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger_test_after_refactoring.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=205

PROVIDING TEST DATA WITH FIXTURES 206

def test_cancel_reservation

@flight.cancel(@passenger)

Make sure reservation is cancelled

@passenger.reload

assert !@flight.passengers.include?(@passenger)

assert_nil @passenger.flight

end

end

The tests have become eminently more readable. Without the clutter of

all the setup code, the intent of each test method shines through a bit

more.

It’s worth noting that by removing local variables from the individual

tests, we had to create instance variables so that the test methods could

have access to the @flight and @passenger objects.

10.4 Providing Test Data with Fixtures

Our little reservation system doesn’t need a lot of data to test with,

but in larger applications the setup method can become quite large. We

want our test code to be all about testing our application, not about

preparing a bed of test data. Rails provides us with test fixtures, which

are an alternative to creating test data by hand in code.1

When we created our flight and passenger models, Rails also generated

fixture files for each model. Fixtures are a way to easily populate our

test database with data, without having to ever touch the database

itself. Using easily readable YML files, we can specify the data we want

to have in our test database before each test is run.

Here’s our test/fixtures/flights.yml file:

Download tdd/reservations/flights.yml

Line 1 ord_to_jfk:
- number: 123
- origin: ORD
- destination: JFK

YML files are plain-text files that are easy to read and write:

• Key/value pairs are separated by a colon.

1. Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/flights.yml
http://ar.rubyonrails.org/classes/Fixtures.html
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=206

PROVIDING TEST DATA WITH FIXTURES 207

• Sections can be created by putting a section name on its own line

ending with a colon. In Rails fixture files, each section becomes a

named row in a table in the test database.

For example, the flights.yml fixture specifies the rows of data for the flights

table in our test database. In line 1, we start a table row named ord_to_jfk

and provide the necessary column values.

We do the same with our passengers table. Our tests use two kinds of

passengers: one with just an email address and one that is a valid

passenger object. We therefore specify two rows in our table:

Download tdd/reservations/passengers.yml

Line 1 email_only:

- email: someone@example.com
-

- john_smith:

5 name: John Smith
- email: someone@example.com
- flight: ord_to_jfk

Notice an important feature of Rails fixtures in line 7. Our passengers

table has a foreign key column, flight_id, which relates the passengers

table to the flights table. In our fixture files, we don’t need to worry about

managing a list of foreign key identifiers. We can simply use the named

section from our flights fixture. Here we are specifying the john_smith

row in the passengers table should have a foreign key to the ord_to_jfk

row from the flights table. Our test class has attained a new level of

readability:

Ruby Download tdd/reservations/passenger_test_with_fixtures.rb

Line 1 require File.dirname(__FILE__) + '/../test_helper'
-

- class PassengerTest < ActiveSupport::TestCase
-

5 def setup
- # Create a valid passenger
- @passenger = passengers(:john_smith)
-

- # Create a flight
10 @flight = flights(:ord_to_jfk)

-

- # Make reservation
- @flight.reserve(@passenger)
- end

15

- def test_passenger_invalid_if_name_is_missing
- assert_equal false, passengers(:email_only).valid?
- end

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passengers.yml
http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger_test_with_fixtures.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=207

PROVIDING TEST DATA WITH FIXTURES 208

Joe Asks. . .

When Does Rails Load the Fixture Data?

By default, fixture data is loaded only once each time you run
the rake command. Rails then runs each test inside of its own
database transaction, rolling back each transaction after each
test runs. This ensures that the database returns to a clean state
for each test.

-

20 def test_make_reservation
- assert @flight.passengers.include?(@passenger)
- end

-

- def test_passenger_knows_about_reservation
25 assert_not_nil @passenger.flight

- end

-

- def test_cancel_reservation
- @flight.cancel(@passenger)

30

- # Make sure reservation is cancelled
- @passenger.reload
- assert !@flight.passengers.include?(@passenger)
- assert_nil @passenger.flight

35 end
- end

Instead of assigning our @passenger and @flight variables by manually

creating them with hardcoded data, we use the passengers and flights

methods to automatically retrieve the rows by YML section name.

By using well-named names in our YML files, the intent of our tests

becomes clearer. For example, :email_only is a more meaningful name

than if we had used passenger_2, because it conveys something about

the actual content and intent of that row in our test database.

Because the Test/Unit library is a standard Ruby library installed with

Ruby, there can be no excuses for not giving it a try. We’ve seen how

writing tests rely on very little overhead or ceremony:

1. Start with require ’test/unit’ at the top of your Ruby file.

2. Declare a regular Ruby class that derives from Test::Unit::TestCase (or

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=208

PROVIDING TEST DATA WITH FIXTURES 209

The Missing Model

A limitation of our current design has become obvious: we have
a one-to-many relationship between a passenger and a flight.
There is no way for a passenger to book more than one flight—
not even their return flight. We might as well name our appli-
cation the Roach Motel Flight Reservation System: passengers
can fly somewhere, but they can never come back.

We can improve our design by writing more tests. Here’s one
way we could proceed:

def test_round_trip_reservations
@passenger.reservations.create

:flight => flights(:go_on_vacation),
:payment => @credit_card

@passenger.reservations.create
:flight => flights(:come_back_home)
:payment => @credit_card

assert_equal 2, @passenger.flights.count
end

This test will fail the first time we run it, forcing us to improve the
design of our models. We’ve discovered a model that has gone
missing until now: a Reservation that associates a passenger to
a specific flight. A Reservation can take care of all the details
regarding a specific reservation.

Let your tests drive the design of your application.

ActiveSupport::TestCase in Rails,which in turn derives from Test::Unit::

TestCase).

3. Define methods the normal way. Methods that start with test_ are

automatically identified as test methods.

4. You can optionally define a setup method, which will be called

before each test is run.

Test-driven development is one of those daily practices that experienced

developers come to rely on, and Test/Unit has historically been the

bread and butter of Ruby development. In the next section, we will take

a quick look at behavior-driven development, an outgrowth from and an

alternative to the test/unit style of testing.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=209

BEHAVIOR-DRIVEN DEVELOPMENT WITH SHOULDA 210

10.5 Behavior-Driven Development with Shoulda

Very recently, a new twist on TDD has begun to gain favor in some

agile development circles. Behavior-driven development (BDD) intends

to make writing tests easier by changing some of the terminology and

the way in which test methods are created. The basic tenets of test-

driven development still hold: we write tests first as a way of driving the

design and implementation of our application.

One of the primary benefits of a test-oriented approach is that the tests

serve as a living document of the requirements. A word processing doc-

ument can specify all the application’s requirements. Test suites go

one better in that they not only capture requirements, but they are

executable pieces of code that tell us how well our application is con-

forming to those requirements.

BDD takes this notion one step further by elevating the role of the test

to a loftier place. Instead of thinking about writing dull, boring “tests,”

we instead think of them in terms of specifications. The intention is

to provide a more comfortable segue from the language of business

requirements into the language of Ruby.

To that end, there are two main differences between writing tests with

Test/Unit and a BDD framework:

• We don’t write test methods; we write specifications. Specifications

are 100% executable Ruby code but are written using methods

inherited from a BDD framework.

• The specification framework leverages the metaprogramming won-

ders of Ruby to provide us with a more English-like vocabulary to

describe our specifications.

To think in BDD instead of classical TDD, we must begin to think as a

user, not as a developer, and as a stakeholder who writes user stories,

not as a programmer who thinks in terms of bits and bytes. The Ruby

world is currently undergoing an early evolution of BDD frameworks.

Three frameworks in particular stand out:

• RSpec,2 a full-blown Ruby framework for behavior-driven devel-

opment in Ruby and in Rails

• test/spec,3 a lightweight alternative to RSpec

2. http://rspec.info/

3. http://test-spec.rubyforge.org/test-spec/

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://rspec.info/
http://test-spec.rubyforge.org/test-spec/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=210

BEHAVIOR-DRIVEN DEVELOPMENT WITH SHOULDA 211

RSpec

RSpec is a behavior-driven development framework for Ruby.
An RSpec plug-in for Rails is also available so that RSpec syn-
tax can be used inside of Rails unit, functional, and integration
tests. Unlike Shoulda and test/spec, RSpec is not an addition to
or superset of Test/Unit; it is a complete replacement. The syn-
tax for describing test contexts and specs are completely dif-
ferent. Some BDD developers prefer RSpec’s choice of vocab-
ulary terms over those seen in Test/Unit, test/spec, and Shoulda.

The key highlights of RSpec are as follows:

• An English-like vocabulary for application-level
specifications

• A “story runner” framework for describing user
acceptance tests in plain text

• Full replacement of Test/Unit-style assertions with
specification-style “should” methods

• Generation of spec listings and “red-green”-style output

• rake integration (with Rails plug-in)

• A built-in mocking and stubbing framework

RSpec was one of the first widely available BDD frameworks for
Ruby, and it continues to grow and evolve. Check out http://

rspec.info for more information and to download the RSpec gem
and Rails plug-in.

RSpec inspired projects like test/spec (which uses an “RSpec-
inspired syntax”), Shoulda, and others are certain to appear
that follow the spirit of RSpec but require a smaller footprint
(and correspondingly fewer features). We encourage you to
give RSpec a try and choose the framework that’s right for you.

• Shoulda,4 another lightweight BDD framework that integrates well

with Ruby’s traditional Test/Unit library

In this book we will focus on Shoulda. Covering RSpec in depth is

beyond this book, but those who are curious can refer to the sidebar

on this page to learn more about how to get started with RSpec.

4. http://thoughtbot.com/projects/shoulda

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://rspec.info
http://rspec.info
http://thoughtbot.com/projects/shoulda
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=211

BEHAVIOR-DRIVEN DEVELOPMENT WITH SHOULDA 212

First, we need to install Shoulda into our Rails project. See the Shoulda

home page for the latest version and installation instructions, but as of

this writing we can easily install it as a Rails plugin if we have Git (see

Section 1.4, Git, on page 19 for how to get started with Git):

reservations$ script/plugin install

git://github.com/thoughtbot/shoulda.git

On Windows, the command looks like this:

c:\dev\reservations> ruby script/plugin install

git://github.com/thoughtbot/shoulda.git

When we wrote our unit tests with the Test/Unit framework, we would

think in terms of writing classes and methods. BDD replaces these

concepts with contexts and specs (as in, specifications).

We will write our tests for the Passenger class over again from scratch,

this time with the Shoulda framework. Let’s start by declaring a single

context and a single test:

Ruby Download tdd/reservations/passenger_test_shoulda_1.rb

Line 1 require File.dirname(__FILE__) + '/../test_helper'
-

- class PassengerTest < ActiveSupport::TestCase
-

5 context "A passenger" do

-

- setup do

- @passenger = passengers(:email_only)
- end

10

- should "have a name" do
- assert_equal false, @passenger.valid?
- end

-

15 end

-

- end

This looks and feels quite different from our old Test/Unit class. We

still derive from the same base class, but there does not appear to be

any Ruby methods at all! In reality, however, the context and should

methods are generating test methods for us behind the scenes. We’ve

replaced the Ruby method definition drudgery with the more airy and

English-like “should” syntax that can help our tests look and feel more

like real-world specifications that an end user would write. Let’s walk

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger_test_shoulda_1.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=212

BEHAVIOR-DRIVEN DEVELOPMENT WITH SHOULDA 213

through it slowly to get our bearings before we add the rest of our tests

(oops, I mean specs).

Contexts

On line 5 we declare a context. A context simply is a container around

a set of related specs. Contexts are given a name and a block of code,

which contain specs and (optionally) nested contexts.

Contexts can contain setup methods, just as TestCase classes do. These

setups work just as you would expect, being run before each spec is

executed. However, because we can have multiple contexts per test case

(and even nested contexts), we can fine-tune our setups better than we

could with Test/Unit. We will see an example of this shortly.

The setup for our context is quite minimal to start:

Ruby Download tdd/reservations/passenger_test_shoulda.rb

setup do

@passenger = passengers(:john_smith)

end

Specs

Specifications (or specs, for short) always start with the word should.

Like contexts, specs are also given a name and a block of code. The code

block we provide serves as the bridge between Shoulda and Test/Unit.

Inside the block goes regular Ruby Test/Unit-style assertion code.

We start our first spec on line 11. The name of the spec is intended to

be a continuation of an English sentence that starts with the name of

the context, followed by the word should. The full name for our spec

becomes “A passenger should have a name,” and that’s exactly what

will be displayed if this test were to ever fail.

Let’s see it in action:

c:\dev\reservations> rake

Loaded suite /.../lib/rake/rake_test_loader

Started

..

Finished in 0.094631 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

So far, so good. (If you’re wondering why it reports two tests instead of

one, recall that we still have a default test written for us in flight_test.rb.)

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger_test_shoulda.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=213

BEHAVIOR-DRIVEN DEVELOPMENT WITH SHOULDA 214

Let’s intentionally make our test fail to see what will be displayed:

c:\dev\reservations> rake

Loaded suite /../rake/rake_test_loader

1) Failure:

test: A passenger should have a name. (PassengerTest)

[./test/unit/passenger_test.rb:12:in `__bind_1211299740_775702'

/.../gem/shoulda.rb:189:in `call'

/.../gem/shoulda.rb:189:in `test: A passenger should have a name. '

/.../active_support/testing/default.rb:7:in `run']:

<true> expected but was

<false>.

Here we can see the name of the spec that failed, “A passenger should

have a name,” which was constructed for us. The rest of the output is

standard rake output using the Test/Unit library.

More Specs

Let’s add a new context for the remaining specs:

Ruby Download tdd/reservations/passenger_test_shoulda.rb

Line 1 context "makes a reservation" do
-

- setup do

- @passenger = passengers(:john_smith)
5 @flight = flights(:ord_to_jfk)
- @flight.reserve(@passenger)
- end
-

- should "be able to get a seat" do

10 assert @flight.passengers.include?(@passenger)
- end
-

- should "have a reservation" do

- assert_not_nil @passenger.flight
15 end

-

- should "be able to cancel it" do
- @flight.cancel(@passenger)
- @passenger.reload

20

- assert !@flight.passengers.include?(@passenger)
- assert_nil @passenger.flight
- end

- end

We start the context on line 1, and it gets a setup method of its own.

We then create three specifications, carrying over the same Ruby code

as we had before. We can rake our tests and find that they all pass.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/tdd/reservations/passenger_test_shoulda.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=214

BEHAVIOR-DRIVEN DEVELOPMENT WITH SHOULDA 215

BDD isn’t for everyone. Some feel that the vocabulary defined by their

particular BDD framework makes it easier to translate business re-

quirements into code. Others feel it’s unnecessary sugar and that the

Test/Unit library is more than sufficient.

Whether you stick with Test/Unit or choose one of the new BDD frame-

works, the important thing is to write tests. TDD and BDD are empow-

ering techniques that give you the freedom to change your application

code at will as your code grows, without losing the elegance and sim-

plicity it had when it first got started.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=215

Chapter 11

Integrating with .NET
In a .NET enterprise environment, it can sometimes be hard to justify

the investment in a new Rails project. It can be helpful to have some

assurance that Rails applications can leverage the .NET infrastructure

that has already been built. Data exposed by .NET web applications

for consumption by .NET web services can also be consumed by Rails

applications. Rails applications can therefore play an important role in

existing .NET environments.

Perhaps more interestingly, .NET client applications—WinForms and

“smart client” applications, Windows Mobile applications, Tablet PC

software, and more—can all use the functionality delivered by Rails

applications. The secret is in the respond_to magic that RESTful appli-

cations employ to provide tailor-made responses to incoming requests.

Rails applications that conform to RESTful best practices can imme-

diately expose the same functionality to XML-seeking .NET clients as

they do for HTML-seeking web browsers.

In this chapter, we will take a tour of how you can start to integrate

.NET client applications with your Rails services, as well as how we

can write Ruby code to call a SOAP service exposed by a .NET 3.0 web

service project.

11.1 Using a Rails Web Service from .NET

When we explored the RESTful side of Rails controllers, we learned

that controllers can provide different responses for different types of

clients. When a web browser comes calling with an HTTP request, we

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

USING A RAILS WEB SERVICE FROM .NET 217

can respond with an HTML stream. When an RSS reader makes a

request, we can provide an XML feed. In fact, we can respond to any

kind of request by simply examining the Accept header of the incoming

HTTP request and then responding appropriately.

In other words, when you use respond_to in your controllers, you’ve

instantly transformed your website into a real live web service. If you’re

working in a .NET environment that is also now working with Rails,

you can use the .NET Framework to create a rich client application

that connects to the web service you’re built in Rails.

So, in this section, we will turn the tables. We’re going to take a look at

this process from the client application’s point of view. We will see how

to use the HTTP request and response streams to provide an entirely

different kind of user interface on our flight and passenger data.

We will write a .NET client application that can access our passenger

data, as provided by the Rails application we developed in Part II. We

will build a standard WinForms application, but the core functional-

ity we will develop is reusable across any other kind of .NET applica-

tion you can think of: embedded applications, handwriting recognition

applications for the Tablet PC, mobile applications for smartphones, or

even inside other ASP.NET web applications and services.

Designing the WinForms UI

Our .NET application will be a bare-bones WinForms application. Many

tomes are dedicated to writing rich client applications in .NET, so we

won’t be talking much about .NET UI development here. Instead, we

will focus on how your .NET code can interact with a RESTful Rails

web service. When you run the application, it looks like Figure 11.1, on

the following page.

Our main form consists of a listview and four buttons. Each button will

exercise a different kind of HTTP request against our Rails service.

One important note: our C# code expects to call a Rails service that’s

up and running on local port 3000. If you want to try this code on

your machine, be sure to have your Rails application running on your

machine on that port, or change the URL in our examples as necessary

to fit your environment.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=217

USING A RAILS WEB SERVICE FROM .NET 218

Figure 11.1: An empty passenger list

Calling the Index Action

Let’s first look at how we call the index action on the PassengersController.

This will return a list of all the passengers in the database. In the real

world, this would probably not be wise, unless we have very unpopular

airlines.

For now, we’re using our local development environment with a small

number of passengers, so we don’t have to worry about performance or

caching considerations.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=218

USING A RAILS WEB SERVICE FROM .NET 219

Here’s the event handler for the Refresh button’s click event:

.NET Download dotnetintegration/passengerview.cs

private void buttonRefreshList_Click(object sender, EventArgs e)

{

// Clear listview

passengers.Items.Clear();

// Create the url to the index action of the Passengers controller

string url = "http://localhost:3000/passengers";

// Create an HTTP request

HttpWebRequest req = (HttpWebRequest) WebRequest.Create(url);

// Specify GET as the HTTP verb we want to use

req.Method = "GET";

// Specify that we can only accept XML

req.Accept = "text/xml";

// Call the web service and capture the returned XML

WebResponse resp = req.GetResponse();

StreamReader reader = new StreamReader(resp.GetResponseStream());

string xml = reader.ReadToEnd();

// Parse the received XML

XmlDocument doc = new XmlDocument();

doc.LoadXml(xml);

XmlNodeList passengerList = doc.SelectNodes("//passenger");

// Loop through each xml passenger

foreach (XmlNode passenger in passengerList)

{

// Parse out passenger details

string id = passenger["id"].InnerText;

string name = passenger["name"].InnerText;

string address = passenger["address"].InnerText;

string preference = passenger["aisle-preference"].InnerText;

// Add passenger to the listview

// Save the passenger ID in the Tag property of the item

ListViewItem item = passengers.Items.Add(id);

item.SubItems.Add(name);

item.SubItems.Add(address);

item.SubItems.Add(preference);

item.Tag = passenger["id"].InnerText;

}

}

We start by generating a properly formed, RESTful URL to our index

action: http://localhost:3000/passengers. You can substitute in the correct

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/dotnetintegration/passengerview.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=219

USING A RAILS WEB SERVICE FROM .NET 220

host and port for your environment, as long as you recognize the impor-

tant part, which is /passengers.

You may recall that the RESTful routing in Rails provides two possible

actions for the /passengers URL: one to call the index action and one to

call the create action. Rails has to decide which one to invoke, and its

decision is based on the HTTP verb that the client has specified in the

HTTP request header. We do that by utilizing the Method property of our

HttpWebRequest object.

Now Rails understands that we’re calling the index action in our con-

troller. But our application can respond to both HTML and XML. We

want to make sure we trigger the format.xml branch in our controller’s

respond_to block. We do that by setting the request’s Accept property to

text/xml.

Properly setting the Accept header in the HTML request is absolutely

critical. If you are receiving HTML from your web service, it’s likely

you’ve forgotten to set the Accept header to the proper value.

In fact, changing the Accept header is the magic wand that enables you

to extract data from your web service in any format you want! HTML,

XML, JSON, CSV, or any other custom format you can dream of is

accessible to your client applications by properly using the HTTP verb

and Accept header.

All that’s left for our .NET code to do is to actually send the request and

receive the response, which we do with the GetResponse method. If all

goes well, you’ll have some tidy XML captured in the xml string variable.

Finally, we parse the XML and add a row to the listview for each pas-

senger we can extract from the XML data.

If you’re seeing something like Figure 11.2, on the next page (though

probably with different passenger names), congratulations! You’ve just

made a web service call, from .NET to Rails.

Calling the Show Action

Once we have passengers in the listview, you can select a passenger

in the list, which will enable the three other buttons on the form. The

Show button demonstrates how to call the show action in our controller.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=220

USING A RAILS WEB SERVICE FROM .NET 221

Figure 11.2: Form populated with data from a Rails web service

The code for our Show button’s click event handler looks like this:

.NET Download dotnetintegration/passengerview.cs

private void buttonShow_Click(object sender, EventArgs e)

{

if (passengers.SelectedItems.Count != 1)

return;

ListViewItem item = passengers.SelectedItems[0];

// Determine the url

string url = "http://localhost:3000/passengers/" + item.Tag;

// Create the url to the index action of the Passengers controller

HttpWebRequest req = (HttpWebRequest) WebRequest.Create(url);

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/dotnetintegration/passengerview.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=221

USING A RAILS WEB SERVICE FROM .NET 222

// Specify GET as the HTTP verb we want to use

req.Method = "GET";

// Specify that we can only accept XML

req.Accept = "text/xml";

// Call the web service and capture the returned XML

WebResponse resp = req.GetResponse();

StreamReader reader = new StreamReader(resp.GetResponseStream());

string xml = reader.ReadToEnd();

// Parse the received XML

XmlDocument doc = new XmlDocument();

doc.LoadXml(xml);

XmlNode passenger = doc.SelectSingleNode("//passenger");

string id = passenger["id"].InnerText;

string name = passenger["name"].InnerText;

string address = passenger["address"].InnerText;

string preference = passenger["aisle-preference"].InnerText;

MessageBox.Show(string.Format("ID: {0}\nName: {1}\nAddress:

{2}\nAisle Preference: {3}", id, name,

address, preference));

}

Most of this code is identical to what we wrote when we called the index

action. (Good agile developers are cringing right now, seeing the need

for some refactoring.) In fact, there are only two differences:

• We construct the URL by using the Tag property from the selected

item. This will generate a URL like http://localhost:3000/passengers/

3 so that we can call the show action, setting params[:id] to 3 inside

the Rails framework.

• We receive a single XML node, not a list, so the parsing code is a

bit different.

We then show a simple message box to prove that we have indeed

received passenger data from the web service.

Deleting a Passenger

So far we’ve used the GET verb to call the index and show actions. The

Delete button demonstrates how we can manipulate the HTTP header

to call the destroy action in our controller.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://localhost:3000/passengers/3
http://localhost:3000/passengers/3
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=222

USING A RAILS WEB SERVICE FROM .NET 223

Here’s the code for the Delete button’s click event handler:

.NET Download dotnetintegration/passengerview.cs

private void buttonDelete_Click(object sender, EventArgs e)

{

foreach (ListViewItem item in passengers.SelectedItems)

{

if (MessageBox.Show("Delete Passenger #" + item.Tag + "?",

"Confirm Delete", MessageBoxButtons.YesNo)

== DialogResult.Yes)

{

string url = "http://localhost:3000/passengers/" + item.Tag;

HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);

req.Method = "DELETE";

req.Accept = "text/xml";

req.ContentType = "application/xml";

WebResponse resp = req.GetResponse();

MessageBox.Show(resp.StatusCode.ToString());

}

}

}

It’s much shorter than our previous event handlers, because we’re not

expecting any data back from the web service. Instead, we display the

status code we received from the web service. If all goes well, you should

get a message box that says “OK.”

The key elements in this code are as follows:

• For each selected passenger, we construct the passenger-specific

URL.

• We set the HTTP verb to DELETE.

Try it! Select a passenger, and click the Delete button. You can then

click Refresh, and the passenger will no longer show up in the list.

If you want to take a look behind the curtain, return to your command

prompt, start your Rails console, and do a Passenger.find(:all) or Passen-

ger.count—you’ll find that the passenger was truly deleted from your

database.

Creating a New Passenger

Creating a new Passenger object via our Rails web service is straightfor-

ward but does require a few extra housekeeping details. In the following

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/dotnetintegration/passengerview.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=223

USING A RAILS WEB SERVICE FROM .NET 224

code, we’ve hardcoded the passenger data we want to create. You can

enhance the code by creating a form for the user to fill out instead.

As you read the code, you’ll see that much of the code is the same as

before. See whether you can spot what’s new.

.NET Download dotnetintegration/passengerview.cs

private void buttonCreate_Click(object sender, EventArgs e)

{

// Create a new passenger

string name = "Grover";

string address = "123 Sesame St.";

string preference = "Window";

// Determine the url

string url = "http://localhost:3000/passengers/";

// Create the request

HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);

// Specify the POST verb

req.Method = "POST";

// Specify XML both ways

req.Accept = "text/xml";

req.ContentType = "application/xml";

// Create the XML to send to the webservice

string xml = "<passenger>";

xml += "<name>" + name + "</name>";

xml += "<address>" + address + "</address>";

xml += "<aisle-preference>" + preference + "</aisle-preference>";

xml += "</passenger>";

// Encode the XML

ASCIIEncoding encoding = new ASCIIEncoding();

byte[] byte1 = encoding.GetBytes(xml);

// Set the Content-Length header

req.ContentLength = byte1.Length;

// Write the XML into the request

Stream stream = req.GetRequestStream();

stream.Write(byte1, 0, byte1.Length);

stream.Close();

// Send the request and capture the result code

HttpWebResponse resp = (HttpWebResponse)req.GetResponse();

MessageBox.Show(resp.StatusCode.ToString());

}

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/dotnetintegration/passengerview.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=224

USING A RAILS WEB SERVICE FROM .NET 225

Figure 11.3: Updating the aisle preference attribute

Here are the key elements of creating a new passenger from a .NET

client:

• We use the POST verb in the HTTP header instead of GET so that

the create action is called instead of the index action.

• We construct a byte-encoded XML string that we can write into the

request stream.

All in all, it’s a rather straightforward process. If all goes well, you’ll get

a “CREATED” message box instead of an “OK.” Surprised? Remember

that our create action returns a 201 CREATED status code instead of a

200 OK.

Updating Passenger Data

Suppose we want to update an attribute of an existing passenger. Our

sample application includes a small form that the user can use to

change the passenger’s aisle preference (see Figure 11.3).

To update the passenger resource, we must be sure to do the following:

• Use the PUT verb in the HTTP request header.

• Construct an XML fragment for the attributes we want to change.

• Use the correct passenger-specific URL.

That last point is an important one. We don’t specify the passenger ID

we’re referring to by configuring it in the XML. Rails convention spec-

ifies that the URL will indicate the resource to be used. So, we need

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=225

USING A RAILS WEB SERVICE FROM .NET 226

to make sure we use the passenger’s ID as part of the URL. Here’s the

code to update a passenger’s aisle preference:

.NET Download dotnetintegration/passengerview.cs

Line 1 private void buttonUpdate_Click(object sender, EventArgs e)
- {
-

- // Demonstrate the Update action
5

- ListViewItem item = passengers.SelectedItems[0];
-

- Form2 f = new Form2();
- f.textBox1.Text = item.SubItems[3].Text;

10 if (f.ShowDialog(this) == DialogResult.OK)
- {
-

- // Create passenger-specific URL
- string url = "http://localhost:3000/passengers/" + item.Tag;

15

- HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);
- req.Method = "PUT";
- req.Accept = "text/xml";
- req.ContentType = "application/xml";

20

- ASCIIEncoding encoding = new ASCIIEncoding();
- byte[] byte1 = encoding.GetBytes("<passenger><aisle-preference>" +
- f.textBox1.Text + "</aisle-preference></passenger>");
- req.ContentLength = byte1.Length;

25

-

- Stream stream = req.GetRequestStream();
- stream.Write(byte1, 0, byte1.Length);
- stream.Close();

30

- HttpWebResponse resp = (HttpWebResponse)req.GetResponse();
- MessageBox.Show(resp.StatusCode.ToString());
- }
- }

There are two important aspects of this code that are worth pointing

out. First, on line 14, we construct the URL that identifies the resource

for this specific passenger. This is how the Rails code will know which

passenger we want to update. Second, line 17 shows how we trans-

mit the HTTP PUT verb, which Rails will route to the update action

inside the controller. The HTTP verb and the URL are the most impor-

tant things to remember to specify when calling your Rails code from a

.NET application.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/dotnetintegration/passengerview.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=226

USING A SOAP WEB SERVICE FROM RUBY 227

We’ve taken a quick tour of how to CRUD our passenger data from a

.NET rich client application. Integrating your .NET applications with

resources that are managed by a Rails web service is easy to do and

can quickly add value to your .NET applications.

11.2 Using a SOAP Web Service from Ruby

We’ve seen how to write .NET code to call into a Rails web service, but

what if we need to do the exact opposite? It may be that you already

have web services written in .NET and you want your Rails applications

to be able to call into those services, too. In this section, we will first

write a very simple web service in .NET 3.0 to be our .NET guinea pig,

and then we will see how to write Ruby code that calls the method we

implemented in C#.

Generating a .NET Web Service

To demonstrate how a Ruby client can connect to a .NET SOAP web

service, we’ll have to first generate a small web service that we can use.

We will generate a web service using the .NET 3.0 Web Service project

type (see Figure 11.4, on the next page).

The Project Wizard generates a sample HelloWorld method. We will add

another method that we will be able to call when we want to know how

many frequent flyer points have been racked up by any given passenger.

.NET Download dotnetintegration/service1.cs

[WebMethod]

public int GetPoints(string frequentFlyerNumber)

{

// Lookup the points for the given

// frequent flyer number.

// This really should come from a file, database,

// or any other source.

// In this example, we will simply

// hardcode a fictitious value.

return 456;

}

In a real web service, we would likely be connecting to a SQL Server

database or perhaps a legacy mainframe system, which would retrieve

the number of frequent flyer points that have been accrued for the given

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/dotnetintegration/service1.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=227

USING A SOAP WEB SERVICE FROM RUBY 228

Figure 11.4: Creating a new web service in VS 2008

frequent flyer number. In our example, we’re using a hardcoded value,

regardless of which frequent flyer number was actually passed.

Running the Web Service

Visual Studio 2008 provides an easy way to start up your web service on

a local port on your computer. Right-click the .asmx page in the Project

Explorer, and select View in Web Browser. This will start a local web

server (if it isn’t running already) and then open your browser to the

appropriate localhost address.

Generating a Ruby Proxy

Now that we have our web service up and running, we can write a Ruby

program that uses it. Every client of a SOAP-based web service must

start out by:

• locating a WSDL-compliant description of the web service, and

• generating a client “proxy” object based on the WSDL.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=228

USING A SOAP WEB SERVICE FROM RUBY 229

Figure 11.5: Top portion of frequent flyer .asmx page

We start by locating the WSDL for our little web service. The .asmx page

in our browser contains a link to the WSDL document. Click the link,

and you should see a complicated XML document in your browser. Copy

and paste the URL you see in your browser. On our machine, the URL

is http://localhost:1986/Service1.asmx?WSDL (see Figure 11.5).

Our next goal is to use the WSDL to generate a proxy, which is a Ruby

class that exposes the same methods as the web service and which

knows how to call the real web service methods on our behalf. To do

that, we will use a publicly available Ruby utility called soap4R. Fortu-

nately, soap4R is available as an easily installable Ruby gem. Install it

now if you don’t already have it:

gem install soap4r

Now that soap4R is installed, we can generate our proxy code using the

wsdl2r utility. All we need to do is hand it the URL to the WSDL for our

.NET web service. First, let’s create a directory for ourselves to contain

our Ruby web service client:

C:\dev>mkdir soap_example

C:\dev>cd soap_example

Now, we can generate the proxy:

wsdl2ruby --wsdl http://localhost:1986/Service1.asmx?WSDL --type client

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://localhost:1986/Service1.asmx?WSDL
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=229

USING A SOAP WEB SERVICE FROM RUBY 230

You should see output as it creates four files in the current directory:

INFO -- app: Creating class definition.

INFO -- app: Creates file 'default.rb'.

INFO -- app: Creating mapping registry definition.

INFO -- app: Creates file 'defaultMappingRegistry.rb'.

INFO -- app: Creating driver.

INFO -- app: Creates file 'defaultDriver.rb'.

INFO -- app: Creating client skelton.

INFO -- app: Creates file 'FrequentFlyerServiceClient.rb'.

INFO -- app: End of app. (status: 0)

wsdl2ruby did a lot of work for us in a short amount of time:

• It downloaded the XML document found at our localhost URL.

• It generated several Ruby scripts, culminating with defaultDriver.rb,

which is a full-blown proxy for our .NET web service interface.

• It generated a fourth Ruby script, FrequentFlyerServiceClient.rb, that

is a complete example of how to use the generated proxy class.

We can write Ruby code that uses the generated proxy class to call our

GetPoints() method like this. Create a new Ruby script called getpoints.rb

with this code:

Ruby Download dotnetintegration/getpoints.rb

require 'rubygems'

gem 'soap4r'

require 'defaultDriver.rb'

proxy = FrequentFlyerServiceSoap.new

response = proxy.getPoints("A1234")

points = response.getPointsResult.to_s

puts "You have #{points} frequent flyer points."

It’s important to require the defaultDriver.rb file. That defines our proxy

class for us. We then call getPoints and pull out the C# return value by

calling getPointsResponse from the Ruby response object. Let’s just take

it for a spin and see what we get:

c:\dev\soap_example> ruby getpoints.rb

You have 456 frequent flyer points.

Presto! Our Ruby code called into our .NET web service and got the

correct value back.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/dotnetintegration/getpoints.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=230

USING A SOAP WEB SERVICE FROM RUBY 231

In this chapter, we took a quick look at how Ruby and Rails applica-

tions can fit nicely into an existing .NET environment. One of the most

challenging aspects of software engineering is being able to choose the

right tool for the right job. We don’t need to use Rails for everything, just

like we don’t need to use .NET for everything. They each have strengths

and weaknesses that make them more or less suitable for any given

situation. The goal is to use each according to their strength and then

be able to seamlessly integrate them together.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=231

Chapter 12

Finishing Touches
We’ve learned a lot about both the Ruby language and the Rails frame-

work. Creating great web applications requires more than just coding

skills, however. It’s time for us to take a step beyond the nuts and bolts

of Rails development and to invest some time in developing some other

skills that seasoned Rails developers attain.

To that end, we will explore three key areas that every Rails developer

must feel comfortable with: RubyGems, rake, and deployment.

12.1 Getting to Know RubyGems

Most software systems have a notion of package management. Espe-

cially useful for distributing prewritten code libraries, package manage-

ment refers to some standardized way for users to share source code

or executable binaries with each other. Windows has a long tradition

of using the Add/Remove Programs facility. Microsoft has published a

standard package format for third-party software called the Windows

Installer format. These standards make it easy for software creators to

distribute their works to a large audience and also provides a standard

way for users to manage (that is, install, upgrade, and uninstall) the

software they own.

Unlike .NET languages that can be compiled to binary assemblies to

make distribution easy, Ruby programs don’t have a binary represen-

tation. To share your Ruby code with someone else, you can simply give

them your code. However, distributing a Ruby library that consists of a

large set of Ruby source files can be unwieldy. The user who chooses to

use such a library is faced with the unenviable task of managing their

third-party libraries manually, upgrading and removing them by hand.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

GETTING TO KNOW RUBYGEMS 233

RubyGems is the solution to this problem—a kind of Add/Remove Pro-

grams equivalent for Ruby developers. It is the official package man-

agement system for Ruby code libraries, and it enables us to consume

Ruby code written by someone else in a simple manner, allowing us to

install, upgrade, and remove Ruby libraries from our system at will.

A Standard Package Format and Experience

In the same way that the standard Windows Installer file format worked

in concert with the Add/Remove Programs applet to help solve software

distribution problems, Ruby has its own standard packaging format for

Ruby libraries that works in concert with a standard utility program for

installing, upgrading, and removing third-party Ruby code.

A Ruby code library packaged in this standard format is called a Ruby

gem. Smart pun notwithstanding, a gem is a single-file encapsulation

of all the Ruby files you want to distribute. But a gem is more than a

simple ZIP file of your Ruby code. It also describes certain metadata of

the code library contained within it: who created it, the version number,

the operating system or platform that it was built for, and more.

RubyGems is the system we use to interact with gems. The gem utility

provides us with a consistent experience for installing, upgrading, and

removing third-party code libraries. RubyGems automatically stores all

gems in a central location on your hard drive. It is easy to install new

gems from both official and user-supplied web locations (“gem reposi-

tories”) and even makes it easy to manage multiple versions of a gem

(this is the Ruby equivalent of .NET “side-by-side” installations).

Let’s learn how to use RubyGems to fine-tune and enhance our Ruby

environment.

Exploring the RubyGems Commands

We can get a brief summary of how to use the RubyGems system by

using the help command:

c:\dev> gem help

RubyGems is a sophisticated package manager for Ruby. This is a

basic help message containing pointers to more information.

Usage:

gem -h/--help

gem -v/--version

gem command [arguments...] [options...]

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=233

GETTING TO KNOW RUBYGEMS 234

Examples:

gem install rake

gem list --local

gem build package.gemspec

gem help install

Further help:

gem help commands list all 'gem' commands

gem help examples show some examples of usage

gem help platforms show information about platforms

gem help <COMMAND> show help on COMMAND

(e.g. 'gem help install')

Further information:

http://rubygems.rubyforge.org

It is also important to know how to determine what version of the

RubyGems system you have installed on your machine by using the

-v option. Here we can see that we have version 1.2.0 installed:

c:\dev> gem -v

1.2.0

To upgrade your RubyGems system to the latest version available, you

should use this command:

c:\dev> gem update --system

For the rest of this chapter, we will assume you have version 1.1 or

higher installed.

It’s easy to view a list of all possible gem commands:

c:\dev> gem help commands

We’re now ready to walk through the gem commands Rails developers

use most.

Finding Out What Gems Are Installed

When you first installed Ruby, you installed not only the Ruby inter-

preter and the RubyGems system, but several gems as well. You can

find out what gems you have installed on your machine by using the list

command:

c:\dev> gem list

*** LOCAL GEMS ***

actionmailer (2.1.0, 2.0.2)

actionpack (2.1.0, 2.0.2)

activerecord (2.1.0, 2.0.2)

activeresource (2.1.0, 2.0.2)

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=234

GETTING TO KNOW RUBYGEMS 235

activesupport (2.1.0, 2.0.2)

cgi_multipart_eof_fix (2.5.0, 2.1)

fastthread (1.0)

gem_plugin (0.2.3, 0.2.2)

mongrel (1.0.1)

rails (2.1.0, 2.0.2)

rake (0.7.3)

RedCloth (3.0.4)

rubygems-update (0.9.5)

sources (0.0.1)

sqlite3-ruby (1.2.1)

tzinfo (0.3.5)

For each installed gem, you will see the following:

• The name of the gem

• A list of version numbers for the gem

That second point implies a lot of functionality: you can have more than

one version of a particular gem installed at the same time. When your

code uses a gem’s classes or methods, you can choose to always use the

latest version of the gem or select a specific version (or even specify a

range of allowable versions). For details on how to use gems from within

your own non-Rails applications, see Programming Ruby [TFH05].

Installing a New Gem

When you want to install a new gem onto your computer, RubyGems

can install it for you directly from the Internet. Let’s suppose we want

to install the win32-sound gem, which provides a wrapper around the

Windows sound API:

c:\dev> gem install win32-sound

Successfully installed win32-sound-0.4.1

1 gem installed

Installing ri documentation for win32-sound-0.4.1...

Installing RDoc documentation for win32-sound-0.4.1...

That was so easy that it bears some explanation of what really hap-

pened under the hood. The RubyGems system actually did a lot of work

for us in a short amount of time:

• It searched well-known, sanctioned Internet locations, known as

remote sources for a gem named win32-sound.

• It identified our operating system platform (Windows or Mac, for

example).

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=235

GETTING TO KNOW RUBYGEMS 236

• It downloaded the latest version of the win32-sound gem that has

been made available for our platform.

• It installed the gem into our local gem repository.

• By default, it will download and installed any dependent gems.

• It generated the RDoc documentation for the gem.

Uninstalling a Gem

Getting rid of a gem is just as easy:

c:\dev> gem uninstall win32-sound

Successfully uninstalled win32-sound-0.4.1

Notice how it reported the full name of the gem, including the version

number. If you have multiple versions of a gem installed, you will be

prompted to select which version (or all) you’d like to remove. Alterna-

tively, you can use the --version option to explicitly state which version

you’d like to uninstall.

Environment Settings

Sometimes it’s helpful to have RubyGems report what it believes to be

our platform, local gem repository directory, and other elements of our

local environment. As you may have guessed, RubyGems provides that

information to us with the environment command. We will also take this

chance to demonstrate how we can abbreviate gem command names

(so long as they aren’t so short as to conflict with another command):

c:\dev>gem env

RubyGems Environment:

- RUBYGEMS VERSION: 0.9.5 (0.9.5)

- RUBY VERSION: 1.8.6 (2007-03-13 patchlevel 0) [i386-mswin32]

- INSTALLATION DIRECTORY: c:/ruby/lib/ruby/gems/1.8

- RUBY EXECUTABLE: c:/ruby/bin/ruby.exe

- RUBYGEMS PLATFORMS:

- ruby

- x86-mswin32-60

- GEM PATHS:

- c:/ruby/lib/ruby/gems/1.8

- GEM CONFIGURATION:

- :update_sources => true

- :verbose => true

- :benchmark => false

- :backtrace => false

- :bulk_threshold => 1000

- REMOTE SOURCES:

- http://gems.rubyforge.org

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=236

GETTING TO KNOW RUBYGEMS 237

Use of sudo required on Mac/Linux

The command shell sessions we’re showing here demonstrate
typical usage on Windows. However, on *nix platforms, you
sometimes need to wrap your gem commands with sudo to
temporary elevate your permissions environment. This is gener-
ally required only when installing, updating, or removing gems.
If you see an error like this:

$ gem install activerecord
ERROR: While executing gem ... (Gem::FilePermissionError)

You don't have write permissions into the
/usr/local/lib/ruby/gems/1.8 directory.

then you need to use the sudo command:

$ sudo gem install activerecord

The GEM PATHS folder is the directory where all gems are located on your

computer. If you open that folder, you can (after drilling down into the

appropriate subdirectories) find the win32-sound.gem file that we just

installed.

Getting Help for a Specific Command

This would be a good time to learn how to get detailed information on a

specific command. Let’s say we wanted to learn more about the options

available for the uninstall command:

c:\dev> gem help uninstall

Usage: gem uninstall GEMNAME [GEMNAME ...] [options]

Options:

-a, --[no-]all Uninstall all matching versions

-i, --[no-]ignore-dependencies Ignore dependency requirements

while uninstalling

-x, --[no-]executables Uninstall applicable executables

without confirmation

-v, --version VERSION Specify version of gem to uninstall

--platform PLATFORM Specify the platform of gem to

uninstall

Common Options:

-h, --help Get help on this command

-V, --[no-]verbose Set the verbose level of output

-q, --quiet Silence commands

--config-file FILE Use this config file

--backtrace Show stack backtrace on errors

--debug Turn on Ruby debugging

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=237

USING GEMS IN YOUR RAILS APPLICATIONS 238

Arguments:

GEMNAME name of gem to uninstall

Summary:

Uninstall gems from the local repository

Defaults:

--version '>= 0' --no-force

Upgrading a Gem

Sometimes we want to upgrade a gem to a new version. Upgrading a

gem is similar to installing a gem from scratch:

c:\dev> gem update win32-sound

To find out whether we have any gems that could be updated, without

actually performing the update, we can use the outdated command:

c:\dev> gem outdated

actionmailer (2.0.1 < 2.0.2)

actionpack (2.0.1 < 2.0.2)

activerecord (2.0.1 < 2.0.2)

activeresource (2.0.1 < 2.0.2)

activesupport (2.0.1 < 2.0.2)

hpricot (0.4 < 0.6)

rails (2.0.1 < 2.0.2)

win32-clipboard (0.4.1 < 0.4.3)

win32-dir (0.3.1 < 0.3.2)

win32-eventlog (0.4.3 < 0.4.7)

win32-file (0.5.3 < 0.5.5)

win32-file-stat (1.2.3 < 1.2.7)

win32-process (0.5.1 < 0.5.5)

win32-sapi (0.1.3 < 0.1.4)

windows-pr (0.6.2 < 0.7.4)

You can see that for each outdated gem, it reports the name of the gem

that’s outdated, indicated the version currently installed vs. the latest

version that’s available.

Next, let’s find out how we can use a gem’s functionality from inside a

Rails application.

12.2 Using Gems in Your Rails Applications

Using a third-party gem from within your Rails code is dirt simple. Rails

knows to activate the RubyGems environment when it starts up, so all

you have to do is tell Rails which Rails your application depends upon.

You’ll then need to decide whether you want to bundle a copy of each

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=238

USING GEMS IN YOUR RAILS APPLICATIONS 239

gem with your application or whether you’ll be installing the gems on

the server.

Adding Gem Specifications

First, locate your config/environment.rb file. Open it up, and inside you’ll

see a block that begins like this:

Rails::Initializer.run do |config|

Inside this block, we can add a variety of configuration settings and

options. For example, here’s how we tell Rails that we need to load

version 1.1 or higher of the pdf-writer gem:1

Rails::Initializer.run do |config|

Require version 1.1 or higher

config.gem "pdf-writer", :version => '1.1'

end

You can specify as many gems as you need in this way. The version

parameter is optional, and we recommend you check the latest Rails

documentation for details on this and other optional parameters you

can use.

Including Gems in Your Application

Although we’ve installed the gem on our development machine, our

code won’t work when we deploy it to our server unless we either install

the same gems on the server or include a copy of the gems with our

application.

Including a copy of the gems you need is called unpacking them. Now

that we’ve included our specification in the previous Initializer block, we

can ask Rails to unpack all of our gems for us:

c:\dev\flight> rake gems:unpack

This will unpack all the gems your application needs into the ven-

dor/gems directory. You can now deploy your app anywhere you want,

without worrying about whether the server has your gems.

Installing Gems on the Server

Sometimes you may choose instead to install a gem once onto your

server, instead of copying into each and every Rails app that you deploy

there.

1. http://ruby-pdf.rubyforge.org/pdf-writer

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://ruby-pdf.rubyforge.org/pdf-writer
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=239

LEARNING MORE ABOUT RAKE 240

Rails can make this task easier:

rake gems:install

This command will search your Initializer block for all your gem specifi-

cations and install fresh copies as if you ran the gem install command

yourself for each one.

Knowing how to use and manage gems in your Ruby environment is

a skill that all advanced Ruby developers possess. Next, we will learn

about another essential utility that Ruby developers can’t live without:

rake. We’ve actually been using it throughout this book, but it’s time we

took a closer look to understand the central role it plays in every Rails

application.

12.3 Learning More About rake

rake is one of the most commonly used gems in the Ruby community.

Originally developed as a Ruby version of make, rake is a first-class

citizen in the Rails environment. The rake gem is actually listed as a

dependency of Rails: you can’t install Rails without also installing rake.

rake provides a simple command-line syntax for running tasks defined

in rakefiles. Rakefiles, make files, and the Visual Studio build system

are all examples of a build system founded on concepts of tasks and

dependency chaining. Building and maintaining software systems often

utilize a set of tasks that have some relationship or dependency struc-

ture among them.

If you’re a Visual Studio user, you know that pressing F5 will start

the build cycle. Every .NET project has a natural dependency chain

structure. Source code files can depend upon other files. Your project

depends upon other projects and ultimately upon the .NET Framework

itself. Building a .NET executable is the process of determining what

must be done (compiling assemblies, creating help files, building mani-

fests, and so on) according to your project’s dependency chain and then

performing those tasks so that the right components can be built in the

right order.

rake is the Ruby analogy to MSBuild, the Visual Studio build system.

rake reads a text file (a rakefile) to understand what needs to be done

and in what order. Unlike static languages like C#, Ruby does not have

any compile-time dependencies to worry about. So, why would we need

a task-dependency build tool like rake?

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=240

LEARNING MORE ABOUT RAKE 241

It turns out that although we don’t need to compile our Ruby code into

any kind of native executable format, there are in fact many chores that

must be done during Rails development that need a task-dependency

tool. These chores:

• often rely on another chore or task having been done first, and

• need to be done repeatedly during development and can be auto-

mated.

Let’s get some concrete examples of how rake is used during Rails devel-

opment.

Built-in rake Tasks

rake comes with a bunch of prewritten rake tasks to make Rails devel-

opment easier. To get a listing of all the rake tasks that come with Rails,

go to your “root” directory for your application, and enter the following:

c:\dev\flight> rake -T

You’ll see a rather lengthy list of tasks, complete with a brief comment

or description of each one.

Tasks are invoked by simply specifying their name on the command

line. For example, rake stats will execute the stats task, which provides

rudimentary statistics about your code.

More commonly, tasks are grouped into various namespaces. For exam-

ple, db:create refers to the create task that’s in the db task namespace.

rake namespaces help avoid name collisions in the same way that .NET

namespaces and Ruby module names do.

It is in fact also allowable to call rake without specifying any task explic-

itly. In this case, the default task will be executed. Every rake file des-

ignates one task as the default task. We don’t have to provide any

command-line arguments to execute the default task; thus it is the

easiest task to run.

It would therefore behoove a large Ruby project like Rails to think care-

fully about which task should be the default task. We learned in Sec-

tion 10.2, Running Tests with rake, on page 199 that the default rake

task in a Rails project is to run all the tests.

Creating Local Databases

Unless you’re using a file-based database system like SQLite, you will

need to create your development and test databases before attempting

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=241

LEARNING MORE ABOUT RAKE 242

to run any migrations. You can use a GUI or command-line tool to

create the databases for you—or you can use rake!

c:\dev> rails -d mysql flight

c:\dev> cd flight

c:\dev\flight> rake db:create:all

The db:create:all task reads your config\database.yml file, determines

which databases are local databases, and creates them with the given

name. Databases are considered local only when:

• The host: line is omitted.

• The host: value is localhost.

• The host: value is 127.0.0.1.

In other words, rake db:create:all will generally create your development

and test databases, but you’ll have to create the production database

on your production server yourself (unless you first deploy your appli-

cation to the server and then run rake db:create from there).

If you want, you can choose to only create the database for a given Rails

environment. For example, to just create the test database, you can use

the db:create task and pass the desired RAILS_ENV:

rake db:create RAILS_ENV=test

Migrating the Database

In Part II we learned how to “migrate” the database whenever we added

new models or needed to adjust tables or indexes in some fashion:

rake db:migrate

You can also specify VERSION= to instruct the migration mechanism to

migrate up (or down) to a specific version. For example, this will roll

back all migrations, leaving you with an empty database:

rake db:migrate VERSION=0

Sometimes you’ll want to simply rerun the most recent migration:

rake db:migrate:redo

Sometimes you’ll want to roll back all migrations and then run all the

migrations again. This can happen toward the end of development, if

you choose to consolidate your migrations or rewrite them in some way.

rake db:migrate:reset

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=242

LEARNING MORE ABOUT RAKE 243

Displaying the Current Database Version

Here’s an easy way to display the current database version, in case

you’re trying to modify your migrations or in case you’re wondering

whether the database is due for another migration:

rake db:version

Routes Cheat Sheet

As we learned in Part II, the routes.rb file employs a powerful syntax

for describing the mapping between incoming URL structures and your

controller actions. When resources are nested inside one another, or

the number of resources in your application simply grows too large, it

can be hard to keep track of all the named routes and the HTTP verbs

that go with them.

rake to the rescue! To see a quick cheat sheet of all your routes, use

rake routes:

rake routes

Cleaning Up the Log File

Finally, here’s a task that seems trivial but can be very handy. Your

development and test log files can grow out of control if you don’t trun-

cate them from time to time. You guessed it, there’s even a rake task for

doing just that. Here’s how we can clear the test.log file:

rake log:clear RAILS_ENV=test

RAILS_ENV always defaults to “development,” so to clear your develop-

ment log, you can simply run rake log:clear.

Writing Custom rake Tasks

Much in the same way that Visual Studio allows us to insert custom

build steps into a project (see Figure 12.1, on the following page), we

can also write our own rake tasks. They will be listed in the rake -T task

list and are executed like any other task.

Custom rake tasks are useful when any of the following are true:

• You want to write a Ruby script that has easy access to your Rails

models, controllers, and views.

• You want to augment or replace one of the built-in rake tasks.

• Your task can be accomplished, at least in part, by calling upon

other rake tasks.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=243

LEARNING MORE ABOUT RAKE 244

Figure 12.1: Custom build steps for a .NET project

Suppose we’d like to submit our airline on-time performance reports to

the FAA on a daily basis. We can choose to use a system utility such

as cron on Linux systems or the Scheduler on Windows systems to run

our task once a day.

To create our own rake tasks, we simply create a file in the lib/tasks folder

and give it an extension of .rake. For example, we could name our file

faa.rake. In the file, we define our task like this:

Ruby Download finetuning/custom_rake.rb

desc "Submit on-time performance to the FAA"

task :ontime_report => :environment do

compliance_helper = FaaCompliance.new

compliance_helper.ontime_performance(Date.yesterday)

end

This code should look familiar, since it’s just Ruby code. However, it

may also look a little odd, since we don’t seem to be defining any classes

or methods. Rakefiles are just Ruby source code. But your rakefile will

be called from the rake utility itself, and rake provides a set of predefined

methods we can use such as desc() and task(). These methods allow us

to define our tasks as simply as possible. The rake system will find the

Ruby code inside your task definition when your task is invoked by the

rake command line.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/finetuning/custom_rake.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=244

DISTRIBUTING RAILS WITH YOUR APPLICATION 245

rake tasks start by calling the desc() method, which allows us to provide

a short description of our task. It is this description that will be shown

next to the task name when rake -T is used to get a task list.

We define our task named ontime_report. The important thing to notice is

the hash-like syntax we can use to declare that our task depends upon

the environment task. The environment task is a built-in Rails task that

loads our Rails environment for us—essentially doing the same thing

that script/console would do. It loads all our model classes, establishes

database connections, and does everything else that Rails application

needs to operate.

We then provide a code block for our task. Our task is just two lines in

this example, but your task code can have as much or as little Ruby

code as you need.

rake tasks can be as simple as the one we’ve shown here or arbitrarily

complex as needed. For more about rake, consult the project’s home

page at http://rake.rubyforge.org/.

Now that we’ve peered into the depths of both RubyGems and rake, we

are prepared to discuss the strategies available for packaging the Rails

framework into a Rails application, a step that’s often necessary prior

to deployment to a production server.

12.4 Distributing Rails with Your Application

The Rails framework code is itself just a handful of Ruby gems installed

on your machine. Your application will, by default, always look for the

same version of Rails that was present when you first generated your

application.

When you need to copy your application code to another workstation

or server—perhaps the time has come to deploy your application to a

live production web server—you must ensure that the expected version

of Rails has been installed on the server and that no one has modified

that version in any way, shape, or form.

There are only two ways to accomplish this:

• Install the Rails gems that you need on the server using the gem

install command. Place a pack of hungry wolves outside the door

to the server room. Finally, revoke administrative privileges from

every user account on the box except your own.

• Freeze your application to your current version of Rails.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://rake.rubyforge.org/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=245

DISTRIBUTING RAILS WITH YOUR APPLICATION 246

Freezing a Rails Application

We will assume that you’ve agreed that option #1 isn’t feasible. Then

what do we mean by freezing the application?

Freezing an application binds your application to a specific version of

Rails. This line in your config/environment.rb file appears to magically do

this:

Ruby Download finetuning/gems.rb

Specifies gem version of Rails to use when vendor/rails is not present

RAILS_GEM_VERSION = '2.1.0' unless defined? RAILS_GEM_VERSION

This code is generated for you when you use the rails command to create

your application. Unless you change the version number specified here,

your application must be able to locate that exact version of the Rails

gems when it starts up.

Though this might seem sufficient, it is not. Web servers typically serve

more than just one application. Since gems are system-wide, servers

would have to keep multiple versions of Rails installed indefinitely to

support legacy applications. This may not be desirable or even possible,

particularly in shared hosting environments.

Freezing an application places an entire copy of the Rails gems into your

application’s vendor/rails directory. More precisely, it unpacks each gem

so that the complete source code for Rails will end up in vendor/rails. So

when you deploy your application, a copy of whatever Rails version you

were using during development will be shipped along with your code.

When you start up your application on the web server, there will actu-

ally be two choices available: the gems that are installed on the server

and the gems that have been copied into your application’s vendor/rails

directory. Which one will Rails use?

The Rails startup code first looks in the vendor/rails directory for the

framework source code. If it finds it, it will use it. Otherwise, your appli-

cation will instead look for and use the system-wide Rails gems that

match the version specification hard-coded in your environment.rb file.

Freezing your application is highly recommended. It insulates your

application from unexpected changes in the system-wide Rails gems

and guarantees that your production code will be the same as your

development code, framework and all.

Enough talk. Open a command prompt, go the root directory of the

application, and enter the following:

c:\dev\flight> rake rails:freeze:gems

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/finetuning/gems.rb
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=246

DISTRIBUTING RAILS WITH YOUR APPLICATION 247

Edge Rails

The phrase “freezing to edge” means something similar, but
distinctly different from, freezing to the latest version of your
system-installed gems. Instead, “edge” refers to the latest Rails
code that’s under active development.

Freezing your application to the most up-to-the-minute version
of Rails that resides in the official Rails source code repository
can be a great way to learn about the changes are going into
Rails. To freeze your code to the edge, run these two rake tasks:

rake rails:freeze:edge

Living “on the edge” is fun and often instructive. Just remember,
you do this at your own risk! Don’t ship production code with it
unless you’re confident of your test coverage.

Note: if you’re using a version of Rails prior to 2.1, you’ll need to
run this command as well:

rake rails:update

If you now go to c:\dev\flight\vendor\rails, you will see that a copy of the

entire Rails framework has been placed there. Open the code, and take

a look! It’s open source, you know!

Thawing It Out Again

After freezing your application to your current Rails version, you may

want to unfreeze it. Perhaps you have updated your Rails gems on your

system, and you want to bind your application to the new version. First

you’ll need to thaw it out:

rake rails:unfreeze

If you check your vendor directory, you’ll see that the rails subfolder

has melted away. You’re back to “floating with gems.” The application

will now look for system-installed Rails gems that match the version

number specified in your environment.rb file.

Now that we’re familiar with how to distribute the framework with our

application, we can now embark on an overview of the bigger picture

surrounding Rails application deployments.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=247

DEPLOYMENT CONSIDERATIONS 248

12.5 Deployment Considerations

Way back in Chapter 4, A Bird’s Eye View of Rails, on page 75, we

explained the concept of a “web stack.” Rails applications today are, by

and large, deployed on Linux servers of one flavor or another. Chances

are that the cool new Rails application you build today will need to be

deployed into a Linux environment. Although a full tutorial on Rails

deployments is beyond the scope of this book, we can at least get a

rough idea of what’s involved so that you can feel confident about tak-

ing the next step even if you haven’t used Linux before. For a com-

plete guide to deploying Rails applications on both Linux and Windows

servers, see Deploying Rails Applications: A Step-by-Step Guide [ZT08].

Choosing a Deployment Host

Regardless of your choice of operating system, there are three choices

as to where you can host your application:

• You can own the servers yourself, with your own Internet con-

nection, security setup, power supply backup, and data backup

services. This is the best scenario since you have complete con-

trol over the hardware and software. But it’s also the most expen-

sive, so this choice tends to be a bit unusual for budding Rails

entrepreneurs.

• You can get a virtual private server with a company that will let you

rent an entire server, under some kind of virtualization technology

like Xen or VMware. A VPS lets you believe you have full control

over a physical server somewhere, when in fact you’re managing

a virtual machine image of an OS that you choose. Many users

might be using your physical machine at the same time you are,

but the virtualization ensures fault isolation and some degree of

guaranteed performance.

• You can get a shared hosting account with a company that will

sell you an account on one of their servers. This is the cheapest

option, but usually the worst, because you won’t have full control

over the server and typically have no control over how many other

applications are running on your server along with yours. This

means memory and bandwidth can be limited. But it can also be

a great way to get your feet wet with deploying Rails applications

to a real production environment.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=248

DEPLOYMENT CONSIDERATIONS 249

Once you’ve decided on where to host your application, you need to

choose an operating system. Let’s take a quick tour of the popular

choices available today to Rails applications.

Deploying to a Linux Environment

Let’s start with the top of the stack, the web server. Most Rails appli-

cations are currently deployed under Apache, with nginx (pronounced

“engine-x”) gaining momentum. Apache 2.2 provides a compelling com-

bination of speed and configurability, making it the runaway leader

in web server installations. Litespeed2 is also a viable alternative to

Apache.

Next up, the application server. The winner at the moment here is Mon-

grel, but there are some others that are proving to be good competition:

lighttpd, Litespeed, and mod_rails for Apache.

• Thin3 is a lightweight, Ruby-specific application server that claims

to have slightly better stability under heavy loads.

• mod_rails, aka Passenger,4 is an Apache module that eliminates

the need for a separate application server. Its simple configura-

tion and ease of management make it an appealing alternative in

Apache environments.

• Lighttpd5 (pronounced “lighty”) was a forerunner to Mongrel and

is still a viable Rails application server.

• FastCGI was the original technique for connecting Apache to a

Rails application, but it’s no longer considered a reasonable choice

for production environments.

• WEBrick comes built into every Rails application...but don’t even

think about it. WEBrick is fine for your development environment

but is not suitable for real-world production environments.

It’s important to realize that you’ll likely need to deploy more than one

instance of your application server. Your web server should also act as

load balancer, handing out requests to your application servers. Appli-

cation servers in this kind of configuration are often referred to as a

cluster, as in a “Mongrel cluster.” Part of the configuration that your

web server needs to be concerned with is making sure that requests

2. http://litespeedtech.com/

3. http://code.macournoyer.com/thin/

4. http://www.modrails.com/

5. http://www.lighttpd.net/

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://litespeedtech.com/
http://code.macournoyer.com/thin/
http://www.modrails.com/
http://www.lighttpd.net/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=249

DEPLOYMENT CONSIDERATIONS 250

are forwarded to the cluster in a manner that evenly distributes the

load among them. You’ll need to install the mongrel_cluster gem:

gem install mongrel_cluster

For more information about how to use mongrel_cluster to manage a

group of Mongrel servers as a single unit, see the Mongrel home page.6

When it comes time to actually deploy your code to the server, we highly

recommend using a tool like Capistrano.7 Capistrano is a free Ruby gem

that enables you to automate the nitty-gritty tasks of deployment. Much

of the work involved in deploying a web application is error-prone and

tedious: getting the latest code from your source repository, deploying

the code to one or more physical application server, migrating your

database, and finally restarting the application servers. Capistrano is

easy to configure and uses simple Ruby scripts to control its operation.

Deploying to a Windows Environment

Deploying to a Windows server is not as straightforward or trouble-free

as it is with Linux. However, with some patience and little trial and

error, it can be achieved. We’ll just try to provide an overview here;

refer to Deploying Rails: A Step-by-Step Guide [ZT08] for all the gory

details on how to get a production-quality Rails environment setup on

Windows servers. Your first decision—the choice of web server—will be

the biggest. There are mainly three choices here:

• IIS 6 (or higher), with the ISAPI Rewrite module8

• Apache 2.2 (or higher) for Windows9

• Pen10 for Windows

IIS 7 is most common in Microsoft-centric organizations but is per-

haps the most problematic in getting set up for Rails. However, recent

enhancements including a FastCGI handler should make Rails appli-

cations easier to deploy. The advent of IronRuby11 is sure to make

the Rails deployment story much easier in the near future (see Sec-

tion 13.1, IronRuby, on page 253). In the meantime, one big hurdle

must be overcome: the proxying of load-balanced requests back and

forth to a separate application server (and mongrel_service is the only

real option currently).

6. http://mongrel.rubyforge.org

7. http:///www.capify.org/

8. http://www.isapirewrite.com/

9. http://www.apache.org/

10. http://siag.nu/pen/

11. http://www.ironruby.net

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://mongrel.rubyforge.org
http:///www.capify.org/
http://www.isapirewrite.com/
http://www.apache.org/
http://siag.nu/pen/
http://www.ironruby.net
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=250

DEPLOYMENT CONSIDERATIONS 251

The IIS Rewrite module will enable you to forward requests from IIS to

your application server. But the HTTP responses must go back to IIS for

eventual delivery back to the client. This is the job of a “reverse proxy,”

which is something the IIS Rewrite module cannot do. However, Brian

Hogan12 has written an excellent Rails plug-in, named Reverse Proxy

Fix, that you can install into your Rails application that will suffice.

You can install this plug-in into your Rails app like this:

ruby script/plugin install

http://svn.napcsweb.com/public/reverse_proxy_fix

Apache 2.2 is a good choice for Windows and comes complete with an

installation wizard to help ensure a trouble-free installation experience.

It can be installed as a Windows service. Perhaps the best reason to

choose Apache is the sheer wealth of configuration tutorials and exam-

ples that can be found all over the Internet because of its popularity in

the Unix/Linux communities.

Finally, Pen is a straightforward web server that is best suited to lower-

traffic environments. It is easier to set up and configure than Apache

or IIS, but it has fewer features and is not quite as flexible in terms of

SSL capabilities and URL rewriting.

Once you have decided on a web server, then choosing the application

server is easy: mongrel_service. It’s currently the only viable choice as

a production-worthy application server on Windows. Just as on Linux,

it’s recommended that you install the mongrel_cluster gem so that you

can set up multiple instances of Mongrel, each listening on different

ports, and have your web server spread the requests among them.

Finally, to deploy your application, Capistrano won’t work, since it can-

not deploy to servers that don’t implement the standard Secure Shell

(SSH) protocol. It’s up to you to determine the best means of deploying

your Rails code from your source code repository given the constraints

and aspects of your particular server environment.

12. http://www.napcsweb.com/blog/

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.napcsweb.com/blog/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=251

Chapter 13

Inspired by Rails
When David Heinemeier Hansson released Rails back in 2004, it looked

like a promising “little” web application framework to us. We certainly

had no idea of the kind of impact Rails would ultimately make on

the software development industry. It has transformed many people’s

impressions of what is possible within web development, given just a

little creative (and opinionated) thinking.

On the surface, Rails is simply a framework for creating web applica-

tions quickly. But it’s much more than that. It also represents a set of

ideals for what makes a web application great and a blueprint for how

web development “should be done.” By not trying to be all things to all

people, and instead succeeding at being most things for most people,

Rails has carved out a very substantial place in the software develop-

ment industry.

And because of Rails, many other technologies have been created in

the same spirit. Even existing technologies that are part of the Rails

ecosystem have experienced an incredible resurgence because of its

popularity. Most notably, the Ruby language has certainly been pro-

pelled into mainstream recognition because of the hard work done by

David and the Rails core team.

In this chapter, we’re going to look at a few technologies in the Microsoft

universe that have been heavily influenced by Rails, including Iron-

Ruby and ASP.NET MVC. Each of these technologies is different in pur-

pose and in style, but undoubtedly, they were all created because their

authors were inspired by Rails.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

IRONRUBY 253

13.1 IronRuby

IronRuby1 is an implementation of Ruby that is written entirely using

the .NET Framework. This project runs under Microsoft’s Dynamic Lan-

guage Runtime (DLR), the purpose of which is to allow developers to

develop .NET platform applications in their programming language of

choice—even if that language is a dynamic one (Ruby, Python, Java-

Script) rather than a static one (C#, Java). The addition of the Ruby

language to the core .NET Framework speaks volumes about Microsoft

and its continuing commitment to both dynamic languages and open

source technologies.

IronRuby means Ruby developers can leverage the full power of the

.NET Framework and still write code in Ruby. And for .NET developers,

it means being able to introduce the flexibility of the Ruby language

and frameworks into the everyday workflow. In fact, Rails is able to

run—unmodified—on top of IronRuby today, and in the near future,

IronRuby on Rails for production-quality apps will be a reality.

Benefits of IronRuby

Why go through all this trouble? Isn’t plain ol’ Ruby good enough as

is? In fact, the official implementation of Ruby, known as Matz’s Ruby

Interpreter (MRI), is written in C and has always been the subject of

criticism by some, usually in regard to performance, threading, and

the use of modern programming techniques. Fortunately for us, within

the scope of the average web application, these things won’t matter

to most people. Still, several alternative implementations, in addition

to IronRuby, have sprung up, among them JRuby (implemented in

Java), Rubinius (a Ruby virtual machine written in Ruby), and YARV

(Yet Another Ruby Virtual machine—the official Ruby interpreter in the

next version of Ruby, version 1.9).

IronRuby is another attempt to build a better Ruby, but with the goal of

interoperability with Microsoft systems. IronRuby may ultimately mean

the following:

• It will be easy to talk with .NET assemblies from a Ruby program.

• We will be able to use first-class TDD/BDD tools from the Ruby

world like test/unit, shoulda, and RSpec to test our .NET

applications.

1. This is available for download at http://www.ironruby.net.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.ironruby.net
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=253

IRONRUBY 254

• When combining IronRuby with ASP.NET MVC (which we’ll look

at in Section 13.2, ASP.NET MVC, on page 257), we will be able

to write Rails-like MVC applications with the power of the .NET

Framework under the hood.

• We will be able to write Windows Presentation Foundation (WPF)

and Silverlight applications with Ruby.

• We will be able to evaluate Ruby code directly in the web client,

without the need to go back to the server, when IronRuby runs

within Silverlight.

• Ruby will be a first-class citizen within the .NET Framework, and

someday, we’ll be able to run applications like Ruby on Rails on

Windows servers out of the box.

IronRuby in Action

Let’s look at a quick example of how IronRuby can talk to a .NET assem-

bly. First, we’ll create a couple of simple .NET classes:

.NET Download inspired/Person.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Test

{

public class Person

{

public Person(string name)

{

this.Name = name;

}

public string Name;

}

}

.NET Download inspired/DemoClass.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Test

{

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/inspired/Person.cs
http://media.pragprog.com/titles/cerailn/code/inspired/DemoClass.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=254

IRONRUBY 255

public class DemoClass

{

public Int32 Two()

{

return 2;

}

public static string Marco()

{

return "Polo";

}

public static List<Int32> SomeNumbers()

{

List<Int32> numbers = new List<Int32>();

numbers.Add(1);

numbers.Add(2);

numbers.Add(3);

return numbers;

}

public static List<Person> People()

{

List<Person> people = new List<Person>();

people.Add(new Person("Brian"));

return people;

}

}

}

Here, we have a very simple Person class that has a constructor and a

single property, Name. Then, we have a DemoClass that contains just

one instance method and three class methods. For the purposes of this

example, we’ll build this assembly and stick it in c:\dev\Test.dll.

After building IronRuby,2 we’ll have access to the ir command, which

acts as the IronRuby equivalent of both the ruby and irb commands.

Running ir by itself will open an interactive session where you can run

IronRuby code interactively, just like irb, as shown in Figure 13.1, on

the following page. We can use ir now to exercise our .NET assembly:

IronRuby 1.0.0.0 on .NET 2.0.50727.3031

Copyright (c) Microsoft Corporation. All rights reserved.

Note that local variables do not work today in the console.

As a workaround, use globals instead (eg $x = 42 instead of x = 42).

2. http://ironruby.rubyforge.org/wiki/wiki.pl?BuildingIronRuby

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://ironruby.rubyforge.org/wiki/wiki.pl?BuildingIronRuby
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=255

IRONRUBY 256

Figure 13.1: Running IronRuby interactively

>>> require 'c:\dev\Test.dll'

=> true

>>> Test::DemoClass.new

=> #<Test::DemoClass:0x000005c>

>>> Test::DemoClass.new.Two

=> 2

>>> Test::DemoClass.Marco

=> "Polo"

>>> Test::DemoClass.SomeNumbers

=> [1, 2, 3]

>>> Test::DemoClass.People

=> [#<Test::Person:0x0000060>]

>>> Test::DemoClass.People[0]

=> #<Test::Person:0x0000062>

>>> Test::DemoClass.People[0].name

=> "Brian"

>>>

Several interesting things are happening here:

• We can easily reference our .NET assembly from IronRuby simply

by require’ing it.

• Once referenced, we can call both instance and class methods in

our assembly as if it were any other Ruby class.

• Even though the SomeNumbers and People methods have a return

value of a strongly typed generic List in our .NET code, these types

are correctly marshaled into the appropriate Ruby type (Array).

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=256

ASP.NET MVC 257

Even from this simple example, we can see how IronRuby opens up a

world of possibilities for developers wanting to build applications tar-

geting the .NET Framework in Ruby.

13.2 ASP.NET MVC

ASP.NET MVC is Microsoft’s answer to bringing the MVC pattern that’s

popular with Rails and other LAMP3 stack web frameworks to ASP.NET.

Currently available as a preview release that runs on top of ASP.NET

3.5, Microsoft hopes to include ASP.NET MVC as part of the standard

ASP.NET development environment with its next release. In addition to

the separation of responsibilities that the MVC pattern usually follows,

ASP.NET MVC also includes the following features:

• Built-in support for testing and mocking.

• A URL rewriting/mapping component that allows for the “pretty”

URLs that we’re used to in Rails.

• No more postback. Instead of postback, all requests will be routed

through controllers that then direct traffic to the appropriate place

(sound familiar?).

ASP.NET MVC takes a similar approach to development as Rails, rely-

ing on a lot of the same conventions and folder structure we’ve seen

throughout this book. Creating a new ASP.NET MVC project, as shown

in Figure 13.2, on the next page, yields a project broken into the sub-

folders Models, Views, and Controllers, containing code that (unsurpris-

ingly) does essentially the same job as Rails’ models, views, and con-

trollers. The directory structure for our project is shown in Figure 13.3,

on page 259.

We’re going to create a small application that simply lists all the flights.

We have an SQL Server table—flights—containing fields for flight num-

ber, departure and arrival airports, and departure and arrival times.

The Model and Controller

We’re going to use a simple LINQ query to get the flight data we want

to display, so the model is going to be a LINQ to SQL object that we’re

adding to our project; this will give us a FlightDataContext class that we

can use to instantiate our data access.

3. Acronym for Linux, Apache, MySQL, and Perl/PHP/Python, typically used to describe

any open source bundle of software used to run a website

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=257

ASP.NET MVC 258

Figure 13.2: Creating a new ASP.NET MVC project

We then use that data in our controller class:

.NET Download inspired/FlightsController.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Mvc;

namespace FlightMvc

{

public class FlightsController : Controller

{

FlightDataContext flightData = new FlightDataContext();

public ActionResult Index()

{

var flights = flightData.flights.ToList();

ViewData["Title"] = "All Flights";

return View(flights);

}

}

}

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/inspired/FlightsController.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=258

ASP.NET MVC 259

Figure 13.3: ASP.NET MVC project structure

ASP.NET MVC has some conventions of its own going on here. Like

Rails, the name of the method, Index(), corresponds to the view that will

be rendered—that is, it’s expected that an Index.aspx page be present

in the Views directory. The Index() method is also expected to return

an object of type ActionResult. This, combined with the View method,

is ASP.NET MVC’s way of exchanging data between the controller and

view. The View method indicates the primary object the view is to act

upon; we can also pass additional data by populating the ViewData

collection.

The View

The view, Index.aspx, then takes this data and, through some templating

magic that’s similar in style to what we’ve seen with ERb, displays the

end result to the user.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=259

ASP.NET MVC 260

.NET Download inspired/Index.aspx

<%@ Page Language="C#" AutoEventWireup="true"

CodeBehind="Index.aspx.cs"

Inherits="FlightMvc.Views.Flights.Index" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title></title>

</head>

<body>

<table border="1">

<tr>

<th>Flight Number</th>

<th>Departs</th>

<th>To</th>

<th>Departure Time</th>

<th>Arrival Time</th>

</tr>

<% foreach (var f in ViewData.Model) { %>

<tr>

<td><%= f.number %></td>

<td><%= f.departure_airport %></td>

<td><%= f.arrival_airport %></td>

<td><%= f.departs_at %></td>

<td><%= f.arrives_at %></td>

<% } %>

</table>

</body>

</html>

.NET Download inspired/Index.aspx.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Mvc;

namespace FlightMvc.Views.Flights

{

public partial class Index : ViewPage<List<flight>>

{

}

}

The view has a code-behind that, in this case, derives from the type

of the ActionResult (a List of Flight objects). This gives us a pretty nice

feature—the ability to have full IntelliSense on that object in the view.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/cerailn/code/inspired/Index.aspx
http://media.pragprog.com/titles/cerailn/code/inspired/Index.aspx.cs
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=260

OTHER OPEN SOURCE PROJECTS 261

Figure 13.4: ASP.NET MVC application showing flights

The view template itself is pretty straightforward—we loop through each

Flight object in the collection and display each record in an HTML table.

Our finished product is shown in Figure 13.4.

ASP.NET MVC is clearly Microsoft’s response to developers wanting

simpler and cleaner solutions for web development than the WebForms

approach currently gives us. It’s also exciting to think about ASP.NET

MVC and IronRuby working together, which essentially gives us a full

Ruby-based web development framework that is as easy to use as Rails,

but with a powerful .NET back end that is able to talk with existing

.NET-based enterprise systems.

13.3 Other Open Source Projects

Two other Rails-inspired projects are worth mentioning, namely the

Castle Project and Subsonic. Both have been around for some time

and continue to have active communities driving further development.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=261

HOW ABOUT YOU? 262

The Castle Project

The Castle Project4 also brings the MVC pattern to ASP.NET develop-

ment. The MVC component of the Castle Project (known as MonoRail)

works alongside Castle’s own ActiveRecord module to provide a very

Rails-like development experience to .NET web applications. It predates

ASP.NET MVC and is very similar in style and spirit.

Subsonic

Subsonic5 concentrates more on the data access side of things, bringing

Rails ActiveRecord-like features to the .NET party. One of the great

things about Subsonic is that it’s not web-app-specific, so we can easily

have an ActiveRecord-like experience within our WinForms applications

as well. This includes the ORM mapping, transactions, and migrations

that we love in Rails, plus IntelliSense.

The authors of Castle and Subsonic are able to achieve these things by

being opinionated and adhering to the “convention over configuration”

and DRY mantras that Rails have popularized. Here are some examples

of Subsonic’s conventions:

• Autoincrementing integers as primary keys

• Singular table names

• Columns named CreatedOn and ModifiedOn gives you the same

autoauditing capabilities as the created_at and updated_at fields

give us in Rails

These conventions aren’t necessarily the same as they are in Rails, but

the point is that increased developer productivity has less to do with

what the conventions are and more to do with that there are conven-

tions in the first place; it’s about deciding upon a set of best practices

and then sticking to them, as opposed to forcing the developer to make

all the choices.

13.4 How About You?

In this chapter, we’ve taken a look at just a handful of technologies that

have come from the Microsoft development community that have been

influenced by Rails. It would be safe to say that the invention, and

subsequent popularity, of Rails has caused those involved with other

4. http://castleproject.org/

5. http://subsonicproject.com/

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://castleproject.org/
http://subsonicproject.com/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=262

HOW ABOUT YOU? 263

development communities to take a long, hard look at new technologies

and methodologies that can increase developer productivity, improve

speed to market, and make developing for the Web fun again. In this

regard, Rails has certainly succeeded.

Now, how about you? Are you inspired to become proficient in Ruby on

Rails?

After getting their feet wet with some Rails programming, some budding

Ruby developers get a bit stuck at this point. They’re not sure how to

get beyond the basics and begin to really excel at Ruby programming,

RESTful web design, and real-world deployment, to name just a few

areas that are the hallmarks of experienced Rails developers.

Our answer is threefold. First, just do it. That sounds obvious, but it’s

really true. Following on with the examples in this book is a good start.

Not sure what a gem command will do? Try it. Wondering how to write

a rake task for your project? Start writing one and see what happens.

Getting an error page you can’t understand? Try the Ruby or Rails

Google Groups to get an answer. Hesitant to try a Linux server? Get a

cheap shared hosting account and try it. Dive in!

Second, seek to understand everything you do. Reading someone else’s

Ruby code is one of the best ways to learn. Read the best Ruby and

Rails blogs6 you can find. And don’t lift code from the Internet, blindly

pasting it into your project hoping it will work. Understand it before you

use it.

Finally, give back to the community. Submit a Rails patch, and con-

tribute to the ongoing development of the framework. Everything from

big enhancements to tiny documentation fixes are all welcome. Help

someone else learn Ruby for the first time, or answer questions on the

public Ruby and Rails Google groups. These are just a few of the many

meaningful ways you can contribute.

We hope you’ve been inspired to continue your journey into Rails. Your

adventure is just beginning.

6. Start with the official one at http://weblog.rubyonrails.org/.

Report erratum

this copy is (P2.0 printing, December 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://weblog.rubyonrails.org/
http://books.pragprog.com/titles/cerailn/errata/add?pdf_page=263

Bibliography

[Ful06] Hal Fulton. The Ruby Way. Addison-Wesley, Reading, MA,

second edition, 2006.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[RTH08] Sam Ruby, David Thomas, and David Heinemeier Hansson.

Agile Web Development with Rails. The Pragmatic Program-

mers, LLC, Raleigh, NC, and Dallas, TX, third edition, 2008.

[TFH05] David Thomas, Chad Fowler, and Andrew Hunt. Program-

ming Ruby: The Pragmatic Programmers’ Guide. The Prag-

matic Programmers, LLC, Raleigh, NC, and Dallas, TX, sec-

ond edition, 2005.

[ZT08] Ezra Zygmuntowicz and Bruce Tate. Deploying Rails Appli-

cations: A Step-by-Step Guide. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2008.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Index
Symbols
<%= %>, 108

<<, 183

$ function, 177

%w, 43

A
Accept header, 220

ActionController, 128–148

API, providing, 142–148

routing, 128–133

user authentication, 133–142

ActionMailer, 75

ActionPack, 75

Actions, 84

ActionView, 128

ActiveRecord, 89

Castle Project and, 262

console and, 103

CRUD and, 100–127

data views, 119f, 109–119

databases, 108f, 100–108

input validation, 124f, 120–124

table relationships, 125f, 124–127

defined, 75

forms for, 156

sorting, 110

SQL and, 104

ActiveResource, 75

ActiveSupport, 75

Agile techniques and Rails, 14

Agile Web Development with Rails

(Ruby, Thomas & Hansson), 197

Aisle preference, 225f

Ajax, 172–189

background of, 172–174

client library, 175

partial-page updates and, 182f,

174–184

Prototype and, 177–179

RJS templates and, 179

visual effects and, 184–187

:all, 106

Apache, 249–251

API, providing, 142–148

Application layout, 165

Application servers, 77

Applications

bootup process, 80f, 80–81

deployment considerations, 248–251

freezing, 246

hosting choices, 248

Rails distribution with, 245–247

Rails, first, 30f, 22–30

splitting up, 88

test-driven development and, 196

Aptana IDE, 20

Architecture, comparison, 76–81

Arrays, 38–43

creating, 39

deleting elements from, 43

ID numbers and, 65

iterating over, 57

operations with, 40

regular expressions and, 43

transforming into strings, 41

ASP.NET Ajax Control Toolkit, 185, 187

ASP.NET MVC, 258f, 259f, 261f,

257–261

assert_not_nil, 203

Assertions, 192, 194, 203

At sign, 33

B
Behavior-driven development (BDD),

210–214

Blocks, 41, 42, 60, 157, 161, 180, 239

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CAPISTRANO 266 DRY PRINCIPLE

C
Capistrano, 250, 251

Car class example, 192–195

Castle Project, 261

check_box, 161

Class method, 54

Classes, 32

initializer for, 53

modules and, 33

objects and, 50–56

reusing code with, 66–68

Code

DRY principle and, 58

modules and, 70–73

reusing, 66–68

safety of, 69

Code editors, 20

Code samples, 11

Code-behind, 88, 260

collect, 63

:collection, 170

collection_select, 160

Collections, 59–66

looping over, 59–61

partials, rendering with, 169

selecting elements from, 61–64

transforming, 64–66

Colon, 46, 67, 206

Comments, 32

Compilation, 33

conditions, 116

console, 103

const, 44

Contexts, 212, 213

Controller-wide layout, 164

Controllers, 92, 156

ASP.NET MVC and, 258

defined, 89

filtering, 115

HTTP requests and, 84

passenger data, 106

respond_to and, 217

RJS templates and, 180

role of, 85

show, 220

site-wide layouts and, 166

sorting and, 110

Conventions

controllers, 92

generators, 93

MVC framework, 88–94

Rails, 88–99

REST, 94–99

Subsonic, 262

Cookies, 140–142

Costs, 13

create, 103, 137

CRUD, 95

ActiveRecord and, 100–127

data views, 119f, 109–119

databases, 108f, 100–108

input validation, 124f, 120–124

table relationships, 125f, 124–127

Culture shock, Rails, 15–17

Curly braces, 64

D
Data access, configuring, 83

Data binding, 158

Database servers, 77

Databases

adding a field to, 27

connecting to, 21

flight reservation example, 91f

grid of data, 108f, 100–108

input validation, 124f, 120–124

local, 242

migrating with rake, 242

saving data to, 154

table relationships, 125f, 124–127

validating input, 29–30

versioning with migrations, 24–26

versions, rolling back, 28

viewing, 119f, 109–119

DELETE, 99, 222

delete, 43

Deploying Rails Applications: A

Step-by-Step Guide (Zygmuntowicz

& Tate), 248, 250

Deployment, 248–251

desc, 244

destroy, 106

Development, 82

Development tools, 15

Directory structure, 22

do...end, 64

Document Object Model (DOM), 174

Dojo, 177

Domain-specific language (DSL), 24

DRY principle, 58, 66–68

partials and, 167

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

DUCK TYPING 267 HYPERLINKS

test-driven development and,

204–206

Duck typing, 50

Dynamic arrays, 38

Dynamically typed programming

language, 31

E
E Text Editor, 20

each, 63

Edge Rails, 247

edit, 157

Elements, selecting from collections,

61–64

enum, 45

Environments, 81–83

defined, 81

testing, 197–198

ERb, 107

F
Fade-in effect, 185, 188

FastCGI, 249

Filtering, 113

Filters, 138

find, 41, 105, 106

Firebug, 182f, 183

Fixnums, 48

Fixtures, 198, 206–209

Flash, 140–142

Flight reservation example, 91f, 95–96,

119f

aisle preference, 225f

API, providing, 142–148

data validation, 121, 124f

FAA identifiers list, 64

fade-in effect, 185, 188

filtering data, 113

flight form, 151f, 153, 154f, 159f

forms, 151f, 153f, 154f, 159f,

150–161

frequent flyer, 229f

layouts vs. master pages, 161–166

partials, 166–171

passenger lists, 218f, 217–226

passenger/flight relationships, 125f

passengers table, 108f, 100–108

routing, 128–133

test-driven development and,

196–204

user authentication, 133–142

Flight simulator program, 50–54

Form builder helper, 157

Form helpers, 28

form_for, 156, 157, 161

form_tag, 137

Forms, 151f, 153f, 154f, 159f, 150–161

ActiveRecord and, 156

combo boxes, 159

creating, 152

data-bound controls for, 161

list boxes, 159

Rails framework for, 155

textbox, data-bound, 158

Freezing, 246

G
GEM PATHS, 237

generate command, 23

Generators, 93, 102

GET, 114

Git

described, 19

Shoulda installation and, 212

Google Groups, 16, 17

grep, 43

H
Hansson, David Heinemeier, 252

has_many, 126

Hash character, 32

Hashes, 46–48, 139, 156

Help, 16, 17

Helper methods, 161

Heterogeneous arrays, 38

Hewitt, Joe, 182

Hibbs, Curt, 18

hidden_field, 161

Hogan, Brian, 251

HTML

name attribute, 158

runat, 153

HTTP

configuring data access, 83

PUT and DELETE, 99

requests, receiving, 85f, 84–85

responses, 85–87

YAML, 84

Humane interface, 40

Hyett, PJ, 117

Hyperlinks, 111

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

IDIOMS 268 NAMED ROUTE

I
Idioms, 54–56

if, 123

IIS, 250

Immediate mode, 38

index, 36, 106, 218, 220

Initializer, 53

Installation, 18–20

of Git, 19

mongrel, 79

of Ruby gems on server, 240

of RubyGems, 235

SQLite 3, 21

WEBrick, 26

Instance variables, 33, 106

Instant Rails (Hibbs), 18

IntelliSense, 262

interface keyword, 69

Interfaces, 68–70

Internet Information Services (IIS), 77

ir, 255

irb, 38

IRC channels, 16, 17

IronRuby, 16, 256f, 253–257

Iterating, 56–57, 59–66

Iterator pattern, 59

J
join, 41

jQuery, 177

JRuby, 253

K
Key/value pairs, 46, 47, 206

L
LAMP, 257–259, 261

Layout templates, 162

Layouts, 161–166

in ASP.NET, 162

controller-wide themes, 164

in Rails, 163–166

site-wide, 165

Less-than sign, 67

Lighttpd, 249

link_to, 111

LINQ, 62, 143

Linux, deploying to, 249–250

List boxes, 159

Litespeed, 249

Local databases, 242

Local variables, 169

Login form, 136–137

login_required, 140

Loops, 56–57, 59–66

LowPro, 183

M
map, 63, 65, 66

Master pages vs. layouts, 161–166

Matz’s Ruby Interpreter (MRI), 253

Methods, 32

class, 54

helper, 161

question marks and, 72

methods, 49

Migrations, 24

with rake, 242

undoing, 28

versioning with, 24–26

Minimal interface, 40

Mixins, 70

Model tests, 197

Models

ASP.NET MVC and, 258

conventions, 89–92

defined, 89, 155

flight reservation example, 91f

passenger table, 102

role of, 86

module keyword, 71

Modules, 33

code reuse in, 70–73

as mixins, 70

as namespaces, 72

Mongrel, 249

mongrel, 79

mongrel_cluster gem, 250

MonoRail, 262

MooTools, 177

msysgit, 19

MVC framework, 14, 88–94

ASP.NET and, 258f, 259f, 261f,

257–261

defined, 89

generators and, 93

HTTP and, 85–87

N
name attribute, 158

Named route, 131

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

NAMESPACES 269 RUBY

Namespaces, 72

.NET integration, 216–231

index action, 218

IronRuby and, 254

Rails web service and, 218f, 221f,

225f, 217–227

SOAP web service and, 227–230

WinForms UI, 217

Notepad ++, 20

Nouns, 95

O
Object, 48

Object-oriented languages, 48

Objects, 31, 32, 48–50

classes and, 50–56

string, 35–37

One-Click Installer (OCI), 18

One-to-many relationship, 209

Operator overloads, 40

order, 110

ORM tool, 89

P
Package management, 232

Paging, 117

params, 156

Parentheses, 43

Partial-page updates, 182f, 174–184

Partials, 166–171

Passenger, 79, 249

password_field, 161

Pen, 250, 251

Pipe symbol, 60

Platform, 16

Plug-ins, 117, 134

POST, 114, 225

Postback, 176

Production, 82

Prototype, 177–179, 187

Proxy, 229

PUT, 99

puts, 34

Q
Question marks, 72, 116

R
radio_button, 161

Rails

application, beginner, 30f, 22–30

benefits of, 13–14

bootup process, 80f, 80–81

console in, 103

conventions in, 88–99

MVC framework, 88–94

REST, 94–99

culture shock, 15–17

databases, connecting to, 21

deployment, 248–251

directory structure, 22

distributing with application,

245–247

documentation, 16, 17

installation of, 18–20

platform, 16

resources for this book, 11

versions, 11

welcome screen, 27f

rails command, 22

rake, 26, 240–245

built-in tasks, 241

custom tasks, 243

databases, local, 242

databases, migrating, 242

log file clean up, 243

routes cheat sheet, 243

testing and, 199–200

version display, 243

Reflection, 49

Resources, 11, 16, 17

respond_to, 147, 180, 216, 217

REST

benefits of, 96

conventions, 94–99

flight reservation example, 95–96

nouns (resources) in, 95

Rails and, 98f, 97–99

routing in, 220

scaffold generator, 97

verbs in, 95

web services and, 145

restful_authentication plug-in, 134

return, 55

Reverse Proxy Fix, 251

RJS, 179

Routing, 128–133, 136–137, 156, 220

RPC-style programming, 96

RSpec, 211

Rubinius, 253

Ruby

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

RUBY IN STEEL 270 TEXT_AREA

culture shock and, 15

dynamic nature of, 31

idioms in, 54–56

impact of, 252

installation, 18–20

vs. .NET, 32–34

objects in, 31, 32

resources, 16, 17

syntax, 60

versions, 10

Ruby in Steel, 16, 20

RubyGems, 75, 232–238

commands for, 233–234

defined, 233

environment settings, 236

finding which are installed, 234

help for commands, 237

installation, 19, 235

installation on server, 240

platforms and, 237

specs for, 239

uninstalling, 236

upgrading, 238

using, 239–240

runat, 153

S
save, 103, 105

Scaffolding, 23, 97, 101

Scite, 20

script/server, 107

Scriptaculous, 187

Search engine optimization (SEO), 129

select, 41, 63

self.down, 25

self.up, 25

Server control, 152

Servers, 77

session, 112

Session store, 139

setup method, 205

Seven RESTful Rails actions, 98f

Shared hosting, 248

Shaw, Zed, 79

Shoulda, 210–214

show, 93, 220

Site-wide layout, 165

SOAP web service, 143, 228f, 229f,

227–230

soap4R gem, 229

Sorting, 110

Specifications, 210, 212, 213, 239

split, 37

SQL, 24, 104

SQLite 3, 21

Standard output, 104

Stateless protocol, 173

Stephenson, Sam, 177

String literals, 35

String objects, 35–37

String variables, 35

Strings

from arrays, 41

replacing, 36

searching, 35

splitting, 37

whitespace and, 37

strip, 37

Subsonic, 262

sudo, 237

Symbols, 44–46

Syntax, 116

blocks and, 60

for test methods, 198

T
Tables, relationships in, 125f, 124–127

task, 244

Test, 82

Test directory, 195f, 195

Test-driven development (TDD),

191–215

vs. behavior-driven development,

210–214

benefits of, 191–192

defined, 191

DRY principle and, 204–206

fixtures and, 206–209

implementation, steps of, 200

passing tests, 200–201

rake and, 199–200

subdirectories and, 195f

syntax for, 198

test components, 192

with Test/Unit, 195–204

test/spec, 211

Test/Unit

vs. BDD framework, 210–211

overview of, 192–195

test-driven development and, 195f,

195–204

text_area, 161

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

TEXTBOX 271 YML FILES

Textbox, 158

Thin, 249

U
Ultraedit, 20

Unit tests, 197

UrlRewriter, 130

URLs, routing, 128–133

User controls (ASP.NET), 166

Users

Ajax and, 173

authenticating, 133–142

feedback and visual effects, 184–187

validating input, 124f, 120–124

V
Validation, user input, 124f, 120–124

Variables, 32, 169

Verbs, 95

Versions, 10

databases and, 28

migrations and, 24–26

View templates, 154

Views, 93, 150–171

ASP.NET MVC and, 259

defined, 89, 155

filtering, 115

forms, 151f, 153f, 154f, 159f,

150–161

HTTP and, 87

layouts, 161–166

partials, 166–171

passenger data, 106

sorting and, 110

Virtual private server (VPS), 248

Visual effects, 184–187

Visual Studio, 15, 20, 82, 154f, 228f,

228

VMware, 248

W
Wanstrath, Chris, 117

Web architecture, comparison, 76–81

Web servers, 77

Web services, 143, 217, 221f, 227, 228f

Web stacks, 78f, 77–79

Webb, Dan, 183

WEBrick, 26, 249

Whitespace, trimming, 37

will_paginate plug-in, 117, 119

Windows

code editors for, 20

deploying to, 250–251

mongrel, 79

WinForms UI, 217

WordPad, 20

WSDL, 228

wsdl2ruby, 230

X
Xen, 248

Y
YAML, 84

YARV, 253

yield, 163

YML files, 206

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Web 2.0
Welcome to the Web, version 2.0. You need some help to tame the wild technologies out

there.

Prototype and script.aculo.us
Tired of getting swamped in the nitty-gritty of

cross-browser, Web 2.0–grade JavaScript? Get back

in the game with Prototype and script.aculo.us, two

extremely popular JavaScript libraries that make it

a walk in the park. Be it Ajax, drag and drop,

autocompletion, advanced visual effects, or many

other great features, all you need is to write one or

two lines of script that look so good they could

almost pass for Ruby code!

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

Christophe Porteneuve

(330 pages) ISBN: 1-934356-01-8. $34.95

http://pragprog.com/titles/cppsu

Design Accessible Web Sites
The 2000 U.S. Census revealed that 12% of the

population is severely disabled. Sometime in the

next two decades, one in five Americans will be

older than 65. Section 508 of the Americans with

Disabilities Act requires your website to provide

equivalent access to all potential users. But beyond

the law, it is both good manners and good business

to make your site accessible to everyone. This book

shows you how to design sites that excel for all

audiences.

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

Jeremy Sydik

(304 pages) ISBN: 978-1-9343560-2-9. $34.95

http://pragprog.com/titles/jsaccess

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragprog.com/titles/cppsu
http://pragprog.com/titles/jsaccess

Getting It Done
Start with the habits of an agile developer and use the team practices of successful agile

teams, and your project will fly over the finish line.

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to • apply the principles of

agility throughout the software development

process • establish and maintain an agile working

environment • deliver what users really want

• use personal agile techniques for better coding

and debugging • use effective collaborative

techniques for better teamwork • move to an agile

approach

Practices of an Agile Developer:

Working in the Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragprog.com/titles/pad

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • you’re frustrated at lack of progress on

your project. • you want to make yourself and your

team more valuable. • you’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • you’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • you need to get software out the

door without excuses.

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragprog.com/titles/prj

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragprog.com/titles/pad
http://pragprog.com/titles/prj

It All Starts Here
If you’re programming in Ruby, you need the PickAxe Book: the definitive reference to the

Ruby Programming language, now in the revised 3rd Edition for Ruby 1.9.

Programming Ruby 1.9 (The Pickaxe for 1.9)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language.

• Up-to-date and expanded for Ruby version 1.9

• Complete documentation of all the built-in

classes, modules, and methods • Complete

descriptions of all standard libraries • Learn more

about Ruby’s web tools, unit testing, and

programming philosophy

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

Dave Thomas with Chad Fowler and Andy Hunt

(992 pages) ISBN: 978-1-9343560-8-1. $49.95

http://pragprog.com/titles/ruby3

Agile Web Development with Rails
Rails is a full-stack, open-source web framework,

with integrated support for unit, functional, and

integration testing. It enforces good design

principles, consistency of code across your team

(and across your organization), and proper release

management. This is the newly updated Second

Edition, which goes beyond the Jolt-award winning

first edition with new material on:

• Migrations • RJS templates • Respond_to

• Integration Tests • Additional ActiveRecord

features • Another year’s worth of Rails best

practices

Agile Web Development with Rails: Second

Edition

Dave Thomas and David Heinemeier Hansson with

Leon Breedt, Mike Clark, James Duncan Davidson,

Justin Gehtland, and Andreas Schwarz

(750 pages) ISBN: 0-9776166-3-0. $39.95

http://pragprog.com/titles/rails2

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragprog.com/titles/ruby3
http://pragprog.com/titles/rails2

Stuff You Need to Know
From massively concurrent systems to the basics of Ajax, we’ve got the stuff you need to

know.

Programming Erlang
Learn how to write truly concurrent programs—

programs that run on dozens or even hundreds of

local and remote processors. See how to write

high-reliability applications—even in the face of

network and hardware failure—using the Erlang

programming language.

Programming Erlang: Software for a Concurrent

World

Joe Armstrong

(536 pages) ISBN: 1-934356-00-X. $36.95

http://pragprog.com/titles/jaerlang

Pragmatic Ajax
Ajax redefines the user experience for web

applications, providing compelling user interfaces.

Now you can dig deeper into Ajax itself as this book

shows you how to make Ajax magic. Explore both

the fundamental technologies and the emerging

frameworks that make it easy.

From Google Maps to Ajaxified Java, .NET, and

Ruby on Rails applications, this Pragmatic guide

strips away the mystery and shows you the easy

way to make Ajax work for you.

Pragmatic Ajax: A Web 2.0 Primer

Justin Gehtland, Ben Galbraith, Dion Almaer

(296 pages) ISBN: 0-9766940-8-5. $29.95

http://pragprog.com/titles/ajax

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragprog.com/titles/jaerlang
http://pragprog.com/titles/ajax

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Rails for .NET Developers’ Home Page

http://pragprog.com/titles/cerailn

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/cerailn.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragprog.com/titles/cerailn
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/cerailn
www.pragprog.com/catalog

	Contents
	Acknowledgments
	Preface
	What's in This Book
	Who This Book Is For
	About the Environment and Version Requirements
	Conventions
	Online Resources

	Hello, Rails
	Getting Started with Rails
	Why Rails?
	Culture Shock and Its Treatment
	Let's Get This Party Started
	Installing Ruby and Rails
	Connecting to a Database
	Instant Gratification---Your First Rails App

	Switching to Ruby
	Ruby vs. .NET for the Impatient
	Our First Ruby Program
	Working with String Objects
	irb Is Your New ``Immediate Mode''
	Arrays
	Symbols
	Hashes
	Everything Is an Object
	Classes and Objects
	Loops

	Ruby Skills for the Rails Developer
	Working with Collections and Iterators
	Reusing Code with Base Classes
	Where'd My Interfaces Go?
	Code Reuse Using Modules
	Ruby Wrap-Up

	Rails in Action
	A Bird's Eye View of Rails
	Comparing Web Architectures
	Environments in Rails
	Configuring Data Access
	Receiving HTTP Requests
	Generating HTTP Responses

	Rails Conventions
	MVC: Separating Responsibilities in Your Application
	Putting It to REST

	CRUD with ActiveRecord
	Displaying a Grid of Data in a Table
	Sorting, Filtering, and Paging Data
	Validating User Input
	Representing Relationships Between Tables

	Directing Traffic with ActionController
	Routing and Pretty URLs
	User Authentication
	Providing an API

	Exploring Forms, Layouts, and Partials
	Diving Into Forms
	Using Layouts Instead of Master Pages
	Creating Partials Instead of User Controls

	Creating Rich User Experiences with Ajax
	First, a Little Background
	Partial-Page Updates
	Visual Effects on the Web

	Advanced Topics
	Test-Driven Development on Rails
	A First Look at Test/Unit
	Test-Driven Development with Test/Unit
	DRYing Up Tests with Setup Methods
	Providing Test Data with Fixtures
	Behavior-Driven Development with Shoulda

	Integrating with .NET
	Using a Rails Web Service from .NET
	Using a SOAP Web Service from Ruby

	Finishing Touches
	Getting to Know RubyGems
	Using Gems in Your Rails Applications
	Learning More About rake
	Distributing Rails with Your Application
	Deployment Considerations

	Inspired by Rails
	IronRuby
	ASP.NET MVC
	Other Open Source Projects
	How About You?

	 Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

