

What readers are saying about

Pragmatic Project Automation

Where has this book been all my life?! Mike Clark’s clear,

concise, and fun style has me on the edge of my seat eager to

find out what trick is next. His CruiseControl RSS publisher

is already in action on my projects, and even more of these

gems are working their way into my routine. Lava Lamps and

Groovy—the hippest software book ever!

Erik Hatcher, Co-author of Java Development with

Ant and Lucene in Action

From the minute I learned about the Pragmatic Starter Kit,

this book was the one I was most eager to read. Now that I’ve

read it, it’s the one I’m most eager to recommend.... Mike’s

book shows clearly that automation is part and parcel of good

software engineering: well-designed systems lend themselves

to automation, and automation helps us build good systems.

Glenn Vanderburg

This book—fun and interesting to read—is a wonderful

collection of tips and tricks that will help you take simple

everyday tools and do amazing things with them.

James Duncan Davidson, Creator of Ant

We’ve all heard that time is money. So it follows naturally

that saving time is saving money. This book shows you how

to do both.... I’m going to staple this book to my desk, so it

doesn’t ’disappear.’

David Rupp, Sr. Software Engineer, Great-West Life

& Annuity

If your software project is not automated, you are wasting

time and money every day, and I can’t think of a better, more

thorough, or more practical book to get you started on that

path than Mike Clark’s Pragmatic Project Automation.

Alberto Savoia, CTO, Agitar Software Inc.

If you’ve ever hoped to find a technical book that gave solid,

usable examples that you can apply in real life rather than

just throwing lofty-sounding buzzwords about, then this

book is it.... This book will be mandatory reading on all of my

projects from this time forth.

Simon P. Chappell, Technical Lead, Lands’ End, Inc.

This book is both inspiring and informative. I now have no

excuses not to automate my projects.

David Vydra, www.testdriven.com

Finally! Mike Clark has captured in this book what has

taken me years to learn—how to make the computers do the

dull repetitive work so that the developers can spend more

time solving the REAL problems.... By implementing the

simple guidelines presented here, every software project can,

in essence, gain another team member.

Jonathan Julian, Java Consultant

Doing the things this book describes saves each member of

our team hours of grief and frustration every time we do a

release. Overall, I think this is an excellent addition to the

lineup—it’s valuable stuff, and the writing and examples are

very clear.

Greg Wilson, Hewlett-Packard

Pragmatic Project Automation explains plainly how and why

to automate the building, integration, and release of your

projects. This book is a must-read for anyone who wants to

have their software project succeed.

Johannes Brodwall, Senior Software Architect, BBS

Norway

In the tradition of the Pragmatic series, Pragmatic Project

Automation introduces a wealth of techniques (and free tools)

for improving both software quality and software developers’

quality of life.

Darin Herr, Web Developer

Pragmatic Project Automation
How to Build, Deploy, and Monitor

Java Applications

Mike Clark

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

B o o k s h e l fP r a g m a t i c
Many of the designations used by manufacturers and sellers to distinguish

their products are claimed as trademarks. Where those designations appear

in this book, and The Pragmatic Programmers, LLC was aware of a trademark

claim, the designations have been printed in initial capital letters or in all

capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic

Programming, Pragmatic Bookshelf and the linking “g” device are trademarks

of The Pragmatic Programmers, LLC. The configuration of the LAVA R© brand

motion lamp is a registered trademark of Haggerty Enterprises, Inc.

Every precaution was taken in the preparation of this book. However, the

publisher assumes no responsibility for errors or omissions, or for damages

that may result from the use of information (including program listings) con-

tained herein.

Our Pragmatic courses, workshops and other products can help you and your

team create better software and have more fun. For more information, as well

as the latest Pragmatic titles, please visit us at:

http://www.pragmaticprogrammer.com

Copyright c© 2004 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system,

or transmitted, in any form, or by any means, electronic, mechanical, photo-

copying, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9745140-3-9

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, June 2004

Version: 2004-6-30

http://www.pragmaticprogrammer.com

Contents
About the Starter Kit ix

Preface xi

1 Introduction 1

1.1 Look Ma, No Hands! 1

1.2 Types of Automation 4

1.3 Questions About Automation 6

1.4 Road Map . 9

2 One-Step Builds 10

2.1 Building Software Is Like Making Sausage . . . 10

2.2 Choosing a Project Directory Structure 15

2.3 Making Your First Build 16

2.4 Building with Ant 19

2.5 Taste-Testing the Build 29

2.6 Cleaning Up . 34

2.7 Scripting a Build 35

2.8 Getting an Early Start 39

3 Scheduled Builds 42

3.1 Scheduling Your First Build 43

3.2 Putting a Build on CruiseControl 46

3.3 Running CruiseControl 58

3.4 Publishing the Build Status 63

3.5 Scaling Up . 68

4 Push-Button Releases 71

4.1 Releasing Early and Often 71

4.2 Preparing for Your First Release 72

4.3 Packaging the Release 78

4.4 Generating the Release 85

4.5 Tagging the Release 90

CONTENTS viii

4.6 Handing Off the Release 92

4.7 Automating the Release Procedure 92

4.8 Generating Daily Distributions 94

5 Installation and Deployment 97

5.1 Delivering the Goods 97

5.2 Installing the Standard Distribution File 98

5.3 Troubleshooting by Phone 99

5.4 Troubleshooting with Diagnostic Tests 101

5.5 Enhancing Your Installed Image 107

5.6 Deploying Hosted Applications 115

5.7 Auto-Updating Installed Applications 120

6 Monitoring 125

6.1 Monitoring Scheduled Builds 125

6.2 Getting Feedback from Visual Devices 128

6.3 Monitoring Your Java Process 133

6.4 Checking Up on Your Web Application 134

6.5 Watching Log Files 136

6.6 Monitoring with log4j 138

6.7 Building Trip Wires with RSS 141

6.8 Monitoring Health with a Debug Command . . 143

6.9 Creating a Crash Report 144

6.10 3-2-1... 145

6.11 Automate! . 147

A Resources 148

A.1 On the Web . 148

A.2 Bibliography . 149

B Pragmatic Project Automation: Summary 150

Prepared exclusively for Robert McGovern

About the Starter Kit
Our first book, The Pragmatic Programmer: From Journeyman

to Master, is a widely acclaimed overview of practical topics in

modern software development. Since it was first published in

1999, many people have asked us about follow-on books, or

sequels. We’ll get around to that. But first, we thought we’d

go back and offer a prequel of sorts.

Over the years, we’ve found that many of our pragmatic read-

ers who are just starting out need a helping hand to get their

development infrastructure in place, so they can begin form-

ing good habits early. Many of our more advanced pragmatic

readers understand these topics thoroughly, but they need

help convincing and educating the rest of their organization

or team. We think we’ve got something that can help.

The Pragmatic Starter Kit is a three-volume set that covers

the essential basics for modern software development. These

volumes include the practices, tools, and philosophies that

you need to get a team up and running and superproductive.

Armed with this knowledge, you and your team can adopt

good habits easily and enjoy the safety and comfort of a well-

established “safety net” for your project.

The first volume, Pragmatic Version Control, describes how to

use version control as the cornerstone of a project. A project

without version control is like a word processor without an

Undo button: The more text you enter, the greater the risk, as

mistakes will be more and more expensive to fix. Pragmatic

Version Control shows you how to use version control systems

effectively, with all the benefits and safety but without crip-

pling bureaucracy or lengthy, tedious procedures.

Volume II, Pragmatic Unit Testing, discusses how to do effec-

tive unit testing. Unit testing is an essential technique as it

ABOUT THE STARTER KIT x

provides real-world, real-time feedback for developers as they

write code. Many developers misunderstand unit testing and

don’t realize that it makes our jobs as developers easier. There

are two versions of this volume: one based on JUnit (for Java),

the other based on NUnit (for C#).

This book, Pragmatic Project Automation, is the third volume

of the series. It covers the essential practices and technolo-

gies needed to automate your code’s build, test, and release

procedures. Few projects suffer from having too much time

on their hands, so Pragmatic Project Automation will show you

how to get the computer to do more of the mundane tasks by

itself, freeing you to concentrate on the more interesting—and

difficult—challenges.

These books were created in the same approachable style as

our first book, and they address specific needs and problems

that you face in the trenches every day. But these aren’t

dummy-level books that give you only part of the picture;

they’ll give you enough understanding that you’ll be able to

invent your own solutions to the novel problems you face that

we haven’t addressed specifically.

For up-to-date information on these and other books, as well

as related pragmatic resources for developers and managers,

visit us on the web at www.pragmaticprogrammer.com.

Thanks, and remember to make it fun!

Dave Thomas and Andy Hunt

June 2004

pragprog@pragmaticprogrammer.com

Prepared exclusively for Robert McGovern

www.pragmaticprogrammer.com

Preface
They say the cobbler’s child is the last to have shoes. It’s the

same for software developers—we write applications for others

but rarely take the time to automate our own processes. This

is crazy: if we let our computers do more of the repetitive,

tedious, and boring work for us, then not only do we free

up our time to do more worthwhile things, we also guarantee

more repeatable results.

Rest assured that in this book you won’t find the sort of

automation used to make backups or process your payroll.

This is automation for those of us who are on the hook to

deliver working software next week, the week after, and the

week after that. To keep that pace, we need to work smarter,

not harder. Manual processes of any duration quickly add up

to big problems. Automation is the antidote.

This book shows you how to automate your software project

soup-to-nuts: from building and testing your code to deploy-

ing and monitoring production software. Follow these auto-

mation recipes, and your team will eliminate inconsistency,

save time, and make life easier for yourselves and the users

of your software.

Where to Find the Goodies

Throughout this book you’ll find the machinery of automation:

shell scripts, build files, configuration files, and even Java

code. Some of these are complete listings while others are

mere fragments. If you want to run any of the examples or

see the complete listing for fragments, just look in the margin.

Each example was derived from the filename printed in the

margin next to the example itself.

PREFACE xii

All the examples in this book are available on the web on the

Pragmatic Project Automation book’s home page. Check out

http://www.pragmaticprogrammer.com/sk/auto.

Beyond the Book

Throughout this book you’ll also encounter automation sto-

ries from the field. Folks were kind enough to contribute these

stories to share just how automation is helping them on their

real-world projects.

Automation takes many forms and can be applied to all sorts

of project activities. This book focuses on what we consider

to be the core procedures that are ripe for automation on all

software projects. But it doesn’t end there. So when you reach

the end of this book and want more, we invite you to tune in

to http://www.pragmaticautomation.com.

On that site your tireless author will post news and content

related to all sorts of project automation, including stories you

submit from your project!

A Place Called Home

To guarantee the best possible accuracy, I ran all the exam-

ples in this book and copied the console output verbatim

whenever possible. Thus, the output uses the conventions of

the operating system I call home: Mac OS X. Here’s an exam-

ple of how I change to the directory work in my home directory:

$ cd ˜/work

The $ character is the shell (system) prompt. On Unix, the

tilde character ˜ is a shortcut for the current user’s home

directory. Unlike Unix-style paths that typically use all lower-

case characters, many of the default paths in Mac OS X use

mixed case, so the paths may look different on the machine

you call home.

All the example files were dynamically inserted into the book

when it was built to avoid the perils of copy/paste. Because

I use Mac OS X, this means you’ll see a lot more Unix shell

Prepared exclusively for Robert McGovern

http://www.pragmaticprogrammer.com/sk/auto
http://www.pragmaticautomation.com

PREFACE xiii

scripts than Windows batch files. For those of you who call

Windows home, you’ll find that its shell scripting language is

powerful enough to handle the duties of the Unix scripts you’ll

see here. Alternatively, Cygwin (http://www.cygwin.com) is

a free POSIX emulation library that makes it possible to run

these Unix scripts on Windows.

Typographic Conventions

italic font Indicates terms that are being defined or

are borrowed from another language.

fixed or sans font Computer stuff (filenames, terminal ses-

sions, commands, and so on).

A warning that the corresponding mate-

rial is more advanced and can safely be

skipped on your first reading.

“Joe the Developer,” our cartoon friend,

asks a question that you may find useful.

Acknowledgments

First and foremost, many thanks to Dave and Andy for the

privilege of writing the third volume of your starter kit, for

imparting your wisdom, and for all the outstanding support

you gave me throughout the process. I’ve been spoiled.

This book wouldn’t be nearly as interesting if it weren’t for the

stories contributed by James Duncan Davidson, Scott Hasse,

Bob Lee, Jared Richardson, Alberto Savoia, and Bryce Unruh.

Thanks for sharing your brilliant ideas and experiences.

I’m humbled by the number of people who cared enough to

spend their free time helping make this book better. My sin-

cere thanks and appreciation go to David Bock for signing

on as an early reviewer; Johannes Brodwall for a thorough

technical review from Norway; Simon Chappell for so many

wonderful quotes that buoyed my spirit at the end of a long

Prepared exclusively for Robert McGovern

http://www.cygwin.com

PREFACE xiv

journey; James Duncan Davidson for being a steadfast friend

and an invaluable sounding board, and for introducing me

to this Mac; Jeffrey Fredrick for all your expert help with

CruiseControl; Erik Hatcher for always being a pal and for

writing the best Ant book on the planet; Stuart Halloway for

your friendship and for creating Flow; Darin Herr for offering

to buy the book before it was complete; Jonathan Julian for

early and enthusiastic reviews that helped shape the book;

Chris Morris for exchanging stories by email; Jared Richard-

son for setting the bar high for scheduled builds; David Rupp

for a phenomenal job cleaning up my sloppy grammar; Alberto

Savoia for inspiring everyone to light up Lava Lamps on their

project; Jason Sypher for listening to my automation rants

before I had this pulpit; Andy Tinkham for typing up review

comments in the wee hours of the morning; Glenn Vander-

burg for always supporting my work, for a comprehensive

review even though you didn’t have time, and for so many

great memories together on the road; David Vydra for your

thoughts and online book plugs; and Greg Wilson for your

keen insights and for supporting the starter kit. I hope you

all see your influence sprinkled throughout this book.

Nicole made writing this book possible. What’s really amazing

is that she encouraged me to take on this project, knowing

full well the cost of being an author’s wife. Thank you, my

love, for your daily inspiration.

To Mom, Dad, Cris, Tory, and Sayer: thank you for sharing

new life and timeless love.

Reading books has always filled me with wonder and content-

ment. I never could have imagined that I’d have the oppor-

tunity to give that gift to others. My profound thanks to

Grandma and Grandpa for teaching me to read and for a life-

time of unconditional love. This book is for you.

Mike Clark

June 2004

mike@clarkware.com

Prepared exclusively for Robert McGovern

Chapter 1

Introduction
This is the book your computer didn’t want published. Until

now, your computer has had a life of leisure: reading email,

displaying web pages, and maybe even compiling Java code.

Meanwhile you’ve been on the treadmill doing repetitive, mun-

dane, and downright boring tasks that take away time from

delivering valuable software and seeing your family.

Simply put, this book tells you how to put this thing called

a computer to work doing some of that mundane (but impor-

tant) project stuff. That means you’ll have more time and

energy to do the really exciting—and challenging—stuff, such

as writing quality code. In other words, we’ll task computers

to do what they’re good at, leaving us to do what we do well.

But aside from the obvious efficiency gains, automation also

makes our project’s procedures consistent and repeatable so

that we spend less time debugging problems. How does this

play out in real life? Let’s start with a story....

1.1 Look Ma, No Hands!

Today we find Fred, our favorite programmer, working on

his company’s flagship product, the document management

system, or DMS for short. OK, so “document management

system” might be what Fred calls it on his resumé. It’s really

just a collection of HTML files that can be indexed and then

searched. Fred chuckles as he thinks of how much venture

capital (VC) money his company could have raised in 1998

just for promoting something by that name.

LOOK MA, NO HANDS! 2

But it’s 2004, and a cool product name and a web site just

don’t cut it. These days you actually have to demonstrate

working software to loosen the VC purse strings. Speaking of

which, Fred is in charge of preparing a demo for the venture

capitalists tomorrow at noon. There’s just one problem: By

that time tomorrow Fred will be a few state lines away from

the office. In fact, his RV is out in the parking lot right now,

gassed up for a trip to the yearly family reunion in Kansas.

Just as soon as he adds this last feature, Fred and his family

will hit the road.

It Works on My Machine

Fred can already taste the barbecue sauce as he finishes up

the last bit of code. He presses the Compile button on his

favorite IDE. No errors. Then he runs all his local unit tests,

and they pass. So far, so good. Now for the grand finale. Fred

checks out the latest version of the rest of the project from the

version control system to set up for an integration test. Then

he touches off a build by running the project’s build script.

WooHoo! The build succeeded. Fred is reminded once again

that he’s the world’s greatest programmer. So he commits

his changes, grabs his lunch pail, and races for the elevator.

In the morning, all his team needs to do to deploy the demo

is run the deployment script. They may even have time for

a game of foosball before the venture capitalists show up at

noon. Life is good as Fred, the missus, and all the rugrats

crawl into the Winnebago and drive out of town.

Somewhere Out on I-70...

Fred has the pedal to the metal as the RV lumbers down I-70

in the dead of night. Just as the kids have dozed off, Fred

is startled back into reality by a beep of his cell phone. It’s

a text message sent from the scheduled build process on the

build machine back at the office, hundreds of miles in Fred’s

rearview mirror. When it woke up and tried to run a build, it

failed. Fred grimaces as he reads the error message. In his

haste he forgot to check in a new source file.

Prepared exclusively for Robert McGovern

LOOK MA, NO HANDS! 3

Fred leaves a voice mail for his faithful teammate Barney, let-

ting him know that he’ll need to check in the file before the

demo. And then Fred goes back to counting mile markers.

The Next Morning

Barney strolls into the office a tad late the next morning. The

whole team had worked hard preparing for the demo all week,

so last night they celebrated by downing some brews at the

bowling lanes. Checking voice mail is the last thing on what’s

left of Barney’s mind. He’ll return phone calls after the demo.

But he can’t help but notice the boiling red bubbles in one of

the Lava Lamps that the team uses to indicate the build sta-

tus.1 Oh no! The scheduled build has failed. When they left

work last night, the green lamp was bubbling. “What could

have happened?” Barney wonders as he checks the build sta-

tus web page. It tells him that since the last successful build,

one person has checked in code...Fred! The error message

says he forgot to check in a file.

Back on Solid Ground

Perhaps it’s time for Barney to check voice mail. He listens as

Fred sheepishly explains that a local file on his machine needs

to be checked in for the build to work. Having checked in the

missing file, Barney wants some confidence that everything

is in place for the demo. So he forces an independent build

on the build machine. He also cranks up the frequency of

scheduled builds so that Fred can’t get so far away next time

before finding out the build failed.

Everything compiles, and the tests pass on the build machine.

Barney then runs a script that automatically creates a release

branch containing the current versions of all files in version

control, builds and tests the release branch, creates a distri-

bution file, and deploys it into the demo web server.

After running the deployment script, Barney clicks through a

few pages of the demo to make sure it looks right. Then he

takes an early lunch before folks show up for the demo.

1Don’t worry, you’ll learn how to light up your own Lava Lamps in Sec-

tion 6.2, Getting Feedback from Visual Devices, on page 128.

Prepared exclusively for Robert McGovern

TYPES OF AUTOMATION 4

Then, Right Before the Demo...

Barney’s pager goes off just as he’s finishing his brontosaurus

burger. The demo site has crashed. How does he know this?

Well, Barney has been burned by demos crashing before. And

when he has an itch, he finds some way to scratch it.

Before going to lunch, Barney hooked up a simple monitor to

the demo web page. It automatically inspects the site every

couple of minutes looking for an error message. If it finds

one, it notifies Barney by sending him a text page. Fred gets

the same text message on his cell phone, but he’s up to his

elbows in barbecued spareribs.

This time it looks like somebody shut down the database on

the demo machine. Thankfully, there’s time to straighten that

out before the big demo.

A Happy Ending

Today we find Fred, Wilma, Barney, and the whole crew down

at the bowling lanes high-fiving over the huge success of last

week’s demo. They all laugh at themselves for being in the

stone age of automation for so long. “1998 called,” Fred jokes.

“It wants all its manual, repetitive, boring work back.”

Sure, Fred learned his lesson about missing files—but more

important, he and his team learned to appreciate all the auto-

mation that’s watching their backs. It was automation that

reduced the risk of a failed demo by notifying them early when

problems popped up, wherever they were. It was automation

(and version control) that saved them time by giving them a

consistent and repeatable way to build and deploy their code.

They’ll prepare for a lot more demos and (if things go well)

production releases after this. Automation will pay for itself

many times over. That’s what this book is all about.

1.2 Types of Automation

In a short amount of time, Fred and his team experienced the

three primary types of automation shown in Figure 1.1 on the

next page. Let’s look at each of those in detail.

Prepared exclusively for Robert McGovern

TYPES OF AUTOMATION 5C o m m a n d e d A u t o m a t i o nS c h e d u l e dA u t o m a t i o n T r i g g e r e dA u t o m a t i o n
Figure 1.1: Types of Automation

• Commanded automation. This happens anytime you run

a command and the computer performs a set of tasks

in a consistent and repeatable manner. For example,

Fred ran a build script, and it attempted to generate a

build just as it would on any machine. The computer

remembered exactly how to do all the build steps for

Fred, and everyone else on the project. Likewise, Barney

ran a script that carried out the lock-step instructions

for deploying the application consistently.

• Scheduled automation. Once you can get automation by

running a command, then you can put that command on

a schedule so that nobody has to run it manually. Fred

forgot to check in a file, but even though he was miles

away the scheduled build ran on time and notified him

of the problem.

• Triggered automation. Commands can also be automat-

ically run when some important event happens. For

example, every time a file is checked in to version con-

trol a formatting script could be automatically run. Trig-

gered automation is frequently associated with a sched-

uled task. For example, Barney wanted to reduce the

risk of the demo site not being ready, but he didn’t have

time to continuously check the site. So he ran a monitor

that periodically watched the site for an error event that

then triggered his pager.

Prepared exclusively for Robert McGovern

QUESTIONS ABOUT AUTOMATION 6

Because the team made effective use of all three types of auto-

mation while preparing for the demo, they got feedback at

each of the stages: building, deploying, and monitoring their

software. Imagine how stressful it might have been for the

team otherwise.

1.3 Questions About Automation

Before diving into automation, it’s only natural to have ques-

tions. Let’s look at some common ones.

What Do I Need to Get Started?

The automation techniques used on Fred’s project were fairly

simple and inexpensive, but they didn’t come for free. The

team needed a few basic things in place before they could

capitalize on automation.

• Version control. A central repository for all the files in

their project gave the team a place to synchronize all

their work. This in turn gave the build machine a sin-

gle source from which the project could be built. Using

version control also allowed Barney to create a snapshot

of all the files used to build the demo so that the same

demo can be reproduced at any time in the future. Ver-

sion control is covered in detail in [TH03].

• Automated tests. Running automated tests—tests that

check their own results—gave the team confidence in

their code base. Fred ran automated tests on his local

machine before checking in code to version control. The

tests also ran as part of the scheduled build on the build

machine to check that all the project code worked in

harmony. Barney then ran the same automated tests

to verify that the code in the release branch was ready

for distribution. At each step in the project life cycle,

from writing code to deploying a new release, the auto-

mated tests were run to gain confidence before moving

on. Indeed, automated tests are the underpinning of

effective project automation. Writing good automated

tests is covered in detail in [HT03].

Prepared exclusively for Robert McGovern

QUESTIONS ABOUT AUTOMATION 7

• Scripting. The team needed to write a few shell scripts

(or batch files) to train the computer how to automate

procedures. And while you can use programming lan-

guages such as Java for automation, a simple shell script

is quicker to write, simpler to debug, and doesn’t require

a build process. Throughout this book we’ll look at sev-

eral scripting examples that make it easy for beginners

to follow along.

• Communication devices. Automation helped the team

communicate and get feedback even while they were on

the go. Email and web pages are standard communi-

cation tools on software projects, but all too often they

get ignored. It was a Lava Lamp that captured Barney’s

attention. Cell phones and text pagers let you get notifi-

cations on the road (or at the beach). Thankfully, we’re

surrounded by such communication devices these days,

and in this book we’ll put them to good use.

Why Should I Automate Something?

Frankly, you’ve got better things to do than piece together

builds, follow checklists full of release commands, copy files

around on servers, and monitor running programs. So auto-

mation will give you back something you don’t have enough

of: time. And with the global competition for development

work heating up, you have to be as productive as possible.

Better yet, automation will give you confidence because auto-

mated procedures are accurate, consistent, and repeatable.

People just aren’t as good at repetitive tasks as machines.

You run the risk of doing it differently the one time it matters,

doing it on one machine but not another, or doing it just plain

wrong. But the computer can do these tasks for you the same

way, time after time, without bothering you. You don’t have to

fear something bad happening when you hit the Enter button.

Automation also reduces the need for documentation. Rather

than explaining to a new team member all the steps that go

into making a build or generating a release, you just show her

how to run a script. And if she’s interested, the script has all

the details.

Prepared exclusively for Robert McGovern

QUESTIONS ABOUT AUTOMATION 8

Automation changes the way you work. Not only does it make

your job easier, it also enables you to perform critical project

procedures as often as you should.

When Do I Automate Something?

The simple answer is that you should apply automation when-

ever you’ve grown tired of doing something manually. Some

folks have higher boredom thresholds than others. As a rule

of thumb, manual procedures that will be run more than twice

should be automated. Odds are the third time won’t be the

last.

Errors follow naturally from boredom, so if a repeated manual

procedure needs to be accurate and consistent, then it’s time

for automation.

But remember, this book is about being pragmatic. Never

spend more time developing an automated solution than the

time the solution will ultimately save.

When Should Automation Run?

The frequency of automation varies with the procedure being

automated. For example, the build process is commanded

automation that runs whenever we want to create a build.

Scheduled builds, on the other hand, should run as often as

necessary to give us timely feedback about the health of our

software. The scheduled build we’ll set up will run many times

a day.

Releasing and deploying applications will occur on a less fre-

quent basis, in phase with the project’s release cycle. When

we have enough new features or bug fixes, we run a command

to generate a release and possibly another command to deploy

new software to a server.

Monitoring can happen in real time such as when an event is

triggered or in a polling loop with a configurable interval.

In the road map that follows, each procedure we automate

includes a suggestion of its frequency.

Prepared exclusively for Robert McGovern

ROAD MAP 9O n e % S t e p B u i l d s(O n C o m m a n d)C o m p i l eT e s t S c h e d u l e d B u i l d s(H o u r l y)C h e c k o u tC o m p i l e &T e s tE m a i lI n s t a l l a t i o n &D e p l o y m e n t(M o n t h l y)I n s t a l lT e s tA u t o]U p d a t eD e l i v e r M o n i t o r i n g(C o n t i n u o u s l y)V i s u a lD e v i c e sR S Sl o g 4 jC e l l P h o n e /P a g e r(W e e k l y)T e s tP a c k a g eR e l e a s eB r a n c hP u s h % B u t t o n R e l e a s e s
Figure 1.2: Automation Road Map

1.4 Road Map

Figure 1.2 shows the procedures we’ll visit. We’ll start with

one-step builds that can be run by everyone on your team.

Then we’ll put the build on a schedule so we always have fresh

software. When it’s ready to be released, we’ll push a button

to cut a new distribution. Finally, we’ll make that distribution

available to our customers through an automated installation

process. Throughout this cycle we’ll set up monitors that alert

us to problems that require our attention.

Prepared exclusively for Robert McGovern

Chapter 2

One-Step Builds
Let’s dive right in by automating a procedure that gets run

repeatedly by programmers: building and testing code.

2.1 Building Software Is Like Making Sausage

When you sit down and write a computer program, you’re cre-

ating something unique. It’s a human process that involves

elements of art, craft, science, and engineering. Try as you

may, you just can’t bottle up a programming session and

replay it later. Therefore, writing software isn’t anything like

the mechanical process of making sausage.

Building software, on the other hand, is a lot like making

sausage. For starters, it’s messy. You really don’t want to

know how your beautiful source code is ground into bits to

be consumed by a computer. It’s also a repeatable process:

every time you run a build, you get a consistent copy of your

unique program.

The Build Process

To “bake” a build you first need a recipe—commonly referred

to as the build file. The build file lists all the ingredients that build file

go into baking the build including source files, configuration

files, and vendor libraries. The build file also includes step-

by-step instructions for mixing those ingredients together into

something tasty. We either write the build file from scratch

or, like any great recipe, it’s handed down to us from other

programmers.

BUILDING SOFTWARE IS LIKE MAKING SAUSAGE 11B u i l dP r o c e s sP r o d u c t i o n C o d eV e n d o r L i b r a r i e s V e n d o r L i b r a r i e sY o u r L i b r a r i e sS c r i p t s /E x e c u t a b l e sD o c u m e n t a t i o nD o c u m e n t a t i o nB u i l d F i l eT e s t C o d e
Figure 2.1: The Build Process

A build process is nothing more than a series of steps that build process

transmogrify our creative artifacts into a software deliverable.

In other words, a build process simply follows the instructions

in our carefully prepared build recipe. It takes the ingredients

as inputs, turns the crank a few times, and pops out software

packaged ready to use. Indeed, it’s the build machinery inside

the black box at the center of Figure 2.1 that affords us more

time for the software writing process.

Making CRISP Builds

Having an automated build process lets us mass-produce our

software at the push of a button. If you need to change how

the software is put together, alter the recipe and push the but-

ton again. Otherwise, automation lets you ignore the recipe.

But being able to push a button to generate a build is as much

about consistency as it is about efficiency. That is, a one-step

build process lets us make builds that are CRISP.

• Complete

• Repeatable

• Informative

• Schedulable

• Portable

Let’s look at each quality of a CRISP build in turn.

Prepared exclusively for Robert McGovern

BUILDING SOFTWARE IS LIKE MAKING SAUSAGE 12

Complete Builds

Complete builds are made from scratch using only the ingre-

dients specified in the build recipe. That is, you don’t want

to spoon-feed files to the build process before it runs or sup-

plement it with additional files after it has run. These sorts of

manual steps are error-prone and easy to forget. And frankly,

you’ve got better things to do than chase down build depen-

dencies every time you run a build.

If the build process is self-sufficient, we can automate it to get

a complete build every time the process is run.

Repeatable Builds

The key to producing repeatable builds is to store the build file

and all the build inputs in a version control system, such as

CVS.1 This gives you a time machine that allows you to build

any version of the software by checking out files using a time

stamp or a build label. Given the same recipe and ingredients

from any moment in time, this computer will bake an identical

build.

A repeatable build is also consistent. This means you can

easily regenerate prior software releases if you need to diag-

nose problems reported by customers, or if you simply want

to backtrack.

Informative Builds

Informative builds radiate valuable information to us so that

we always know the health of our software. As detectors of

unexpected changes, automated tests play a crucial role in

this feedback loop.

If the build succeeds, we gain confidence that what we’re

building today actually works—all the code compiled, all the

tests passed, and all other build artifacts were produced with-

out error. By knowing that everything works today, and each

subsequent day, we don’t have to cross our fingers and hope

that it all works the day we try to deliver.

1http://cvshome.org

Prepared exclusively for Robert McGovern

http://cvshome.org

BUILDING SOFTWARE IS LIKE MAKING SAUSAGE 13

If the build fails, we want to know quickly why, so we don’t

spend a lot of time debugging what went wrong. An infor-

mative build provides detailed information that points to the

source of any failure: a required file that’s missing, a source

file that didn’t compile, or a test that failed.

Schedulable Builds

By making builds complete and repeatable, we effectively have

a build that can be run on a schedule. Since everything that

goes into making a build is available in the version control

system, a computer can easily generate fresh builds many

times per day or on demand whenever we want.

A scheduled build can occur at a specified time of day (e.g.,

midnight), on a time interval (e.g., every hour), on an event

(e.g., when we check source code in), or one after another

continuously. And the beauty of it is we don’t have to do

anything. The builds get done in the background while we

carry on coding.

Portable Builds

Last, but certainly not least, portable builds can be baked in

any reasonably well-stocked kitchen. It’s the recipe and ingre-

dients that matter, not the features of the oven. Not only can

we make a build whenever we want, we can make it wherever

we want.

A portable build doesn’t necessarily mean you should be able

to build a Unix application on a Windows box. Rather, if the

application builds on a Unix machine, then it should be easy

to build the application on any Unix machine. Likewise, run-

ning a build shouldn’t be dependent on any particular IDE, a

machine’s IP address, or the directory from which it’s run.

All this talk of baking must be making you hungry. So let’s

don our chef’s hat and bake a CRISP build. We’ll start by

defining our project directory structure.

Prepared exclusively for Robert McGovern

BUILDING SOFTWARE IS LIKE MAKING SAUSAGE 14

The Compile Button Isn’t a Build Process

As appealing as it might be to use it as such, the
Compile button on your favorite IDE isn’t a build pro-
cess that generates CRISP builds. An IDE is a power-
ful development tool for compiling code, browsing its
structure, and even refactoring code efficiently. How-
ever, on Java projects everyone seems to use their
personal favorite IDE. If you have your build process
locked up behind an IDE button, then that means the
whole team has to agree on the right IDE. Good luck
with that.

And even if everyone could agree on an IDE (or you
let the winner of an arm-wrestling match decide the
standard IDE), everyone on the team needs to config-
ure their installation identically so that everyone gets
consistent builds. You could put the IDE’s configura-
tion files under version control so that everyone on the
team shares the same configuration—this takes disci-
pline, but it can be done.

Now how do you automate the build process on a
schedule? Do you park a programmer in front of the
IDE to push the Compile button whenever a food pel-
let appears? Well, we’re programmers, so we could
write a script that launches the IDE and pushes the
button for us. But that’s not what the IDE is designed
for, and running builds this way makes integration with
build-scheduling tools more difficult.

You get more flexibility by externalizing the build pro-
cess from any particular kind of IDE. This gives anyone,
regardless of their IDE affiliation, the freedom to run a
build manually or to configure a build to be run unat-
tended. And by having a canonical build process,
you don’t sacrifice build consistency in the name of
flexibility. Fortunately, the new generation of Java IDEs
are moving toward using standard build systems such
as Ant, which we’ll explore a bit later. This allows you
to run the same build process from inside the IDE as
you do outside the IDE.

Prepared exclusively for Robert McGovern

CHOOSING A PROJECT DIRECTORY STRUCTURE 15d m s /s r c / v e n d o r /b u i l d / c o m /p r a g p r o g /d m s /A . j a v aB . j a v a l i b /j u n i t ¾ 3 . 8 . j a rl u c e n e ¾ 1 . 3 . j a rT i d y . j a rt e s t /c o m /p r a g p r o g /d m s /A T e s t . j a v aB T e s t . j a v ap r o d / te s t/c o m /p r a g p r o g /d m s /A T e s t .c l a s sB T e s t .c l a s sc o m /p r a g p r o g /d m s /A .c l a s sB .c l a s s i n v e r s i o n c o n t r o l
Figure 2.2: Project Directory Structure

2.2 Choosing a Project Directory Structure

Before you can start making builds, you need to lay out a

directory structure for the project. These directories will con-

tain the inputs to the build process and store its outputs.

And not a moment too soon, the marketing department has

returned from an extended off-site meeting where they came

up with a name for our software project: the Document Man-

agement System (DMS). They’ll probably change their minds

tomorrow, but we need to get started now.

Before marketing has a chance to rethink the name, create a

directory called dms as the top of the project directory struc-

ture. You have a lot of options for defining subdirectories, but

being consistent is more important than choosing the right

names. We’ve had good success automating projects that use

the structure shown in Figure 2.2 .

Build Inputs

The src and test directories contain the primary build inputs.

All the production source files go in the src directory, and the

test files go in the test directory. These directories mirror each

other using the Java package structure, which means the test

files are in the same Java package as the production code they

Prepared exclusively for Robert McGovern

MAKING YOUR FIRST BUILD 16

test. It’s just easier to keep things organized when you put

test code in a separate, but parallel, directory structure.

The production and test source files are the things you’re

being paid to write, so you need to put the contents of the

src and test directories into the version control system.

The vendor directory contains all the third-party libraries that

the production code uses. When the build compiles the code,

it will need to reference these libraries.

You could easily download the libraries in the vendor/lib direc-

tory if you were to lose them, but the source code may be

dependent on specific versions of each of these libraries. In

the future, you may not be able to find all the correct versions

to run a build. Storing the vendor directory and its contents

in your version control repository ensures that the build is

complete and repeatable.

Build Outputs

When the build runs, it will compile all the Java source files—

production code and test code—into class files. Those class

files will go in the build/prod and build/test directories, respec-

tively. Again, those directories use the same Java package

structure as the source files. Putting the build outputs into

separate directories makes it easy to ship only the production

class files.

The build directory will only contain files generated by our

build process. Given that the build inputs are already under

version control, you can consistently regenerate the build out-

puts. There’s no need to store the build directory in the version

control system.

2.3 Making Your First Build

Now that you have the build inputs organized in a directory

structure, you’re ready to create a build recipe that will bake

a build using those ingredients.

In the src directory there’s a handful of .java files represent-

ing production code. In the vendor/lib directory, there are

Prepared exclusively for Robert McGovern

MAKING YOUR FIRST BUILD 17

several .jar files containing vendor libraries that the produc-

tion code uses. The recipe calls for mixing these two ingre-

dients together by compiling the production code referencing

the vendor libraries. If all goes well, you’ll end up with .class

files in the build/prod directory.

Building from the Command Line

The easiest way to mix ingredients and bake a build is from

the command line. The command line can be awkward and

terse, but being able to fall back on it in a pinch is a use-

ful skill. Let’s walk through how we’d follow our build recipe

using the Unix command line.

First, navigate into the dms project directory.

$ cd ˜/work/dms

Once in that directory, everything looks familiar because of

the consistent directory structure. Next, because the direc-

tory build/prod isn’t under version control, create it to hold the

build outputs.

$ mkdir -p build/prod

Finally, mix the build inputs together and cook the build

using the javac compiler.

$ javac -classpath vendor/lib/lucene-1.3.jar:vendor/lib/Tidy.jar

-d build/prod src/com/pragprog/dms/*.java

There’s a lot happening here, so let’s take it one option at a

time. The -classpath compiler option lists all the vendor JAR

files that the production code uses. On Unix, each classpath

entry is separated by a colon. This turns out to be a minor

annoyance for Windows users, since the classpath separator

is a semicolon on that platform. We’ll address that a bit later.

The -d option tells the compiler to put the resulting class files

in the build/prod directory. Following that, the compiler needs

the collection of source files it should attempt to compile. We

eagerly give it our whole pile of production source code.

Behind the scenes, javac generates the following files:

build/prod/com/pragprog/dms/HtmlDocument.class

build/prod/com/pragprog/dms/Indexer.class

build/prod/com/pragprog/dms/Logger.class

build/prod/com/pragprog/dms/Search.class

Prepared exclusively for Robert McGovern

MAKING YOUR FIRST BUILD 18

Believe it or not, you just ran your first build process. It took

all the build inputs, ground them through the compiler, and

generated the build outputs.

Scripting the Command Line

You’ll bake lots of builds before the project is over. If you

have to type in all those commands every time you want a

build, then you’re not going to run many builds. And when

you absolutely have to run builds, chances are you’ll type in

something incorrectly and have to debug what went wrong.

You could avoid all this by delegating running a build to some-

one else on the team, but you’d have to explain to them how

to run a build on the command line. So the command-line

build process isn’t repeatable, at least not in the consistent,

always-accurate way we’re shooting for.

Equally troubling is that the command-line build process isn’t

portable. For example, you’ll have to remind Windows users

that classpath entries are separated from each other by semi-

colons, not colons. It’s a minor matter now, but it will get

worse as the build process gets more complex.

You could solve both of these problems by putting the build

commands in both a shell script and a batch file (for Unix

and Windows users, respectively). Being able to group multi-

ple commands together in a single executable file means that

those commands can be repeatedly, and consistently, run by

pressing the Enter key. For example, instead of remember-

ing the syntax for several commands, you can bottle up those

micro commands in a script and simply remember one macro

command, like this:

$ sh compile.sh

Then anybody with a pulse could create a build by running

the appropriate file for their operating system. That’s com-

manded automation at work, and for small projects a simple

build script might just be enough. But projects rarely stay

small. We’ll likely need to expand the build process to include

steps in addition to simply compiling source files. On Java

projects, the build tool of choice is Ant.

Prepared exclusively for Robert McGovern

BUILDING WITH ANT 19

2.4 Building with Ant

Ant2 is an open-source build tool that’s specialized for build-

ing Java projects. If you run in Java circles, you need to know

your way around Ant. And given that our DMS project is writ-

ten in Java, now is a perfect time to put Ant to the task.

What Ant Does for Us

Using Ant offers several benefits over the command-line or

scripted build process.

• Ant build files are portable. When you run a build file,

Ant will resolve any platform dependencies such as how

to format the Java classpath correctly for the underlying

operating system. It also knows how to execute a generic

command, such as making a new directory, by invoking

the appropriate operating-system command. This is a

boon because everyone on the team can use one common

build file, including a dedicated build machine.

• Ant tracks file dependencies. This means that, for exam-

ple, it invokes the javac compiler only when a source file

has been changed. Thus when you run the compile step,

you don’t have to wait for everything to be recompiled.

• In addition to knowing how to compile Java source files,

Ant includes a comprehensive set of tasks that do vari- tasks

ous and sundry things. For example, Ant includes a task

for running JUnit tests. You can also extend Ant by writ-

ing custom tasks in Java. For a comprehensive tour of

everything Ant can do, see [HL02].

The benefits of using Ant come at a price: You have to express

the build recipe in an XML file. The price of admission is

arguably worth the support and portability we get out of using

a well-known format. But all those XML angle brackets can

blur what’s really going on, so as we write the Ant build file

we’ll focus on one section at a time.

2http://ant.apache.org

Prepared exclusively for Robert McGovern

http://ant.apache.org

BUILDING WITH ANT 20

NAnt

If you’re developing code for Microsoft’s .NET
platform, we’ve got some good news: You
can follow along in this chapter by using NAnt
(http://nant.sourceforge.net). It uses a syntax
similar to that of Ant (thus the name), so our discus-
sion of Ant here should be easily transferable to NAnt.
NAnt’s also an alternative to using the treacherous
Compile button in Visual Studio to create a build.

Microsoft is also planning to bundle MSBuild, its XML-
based build tool, with the next version of Visual Studio
(“Whidbey”). At the time of this writing, the MSBuild
syntax appeared to be very similar to Ant/NAnt. If
Visual Studio will generate MSBuild files for external
use, as reported, then MSBuild will be a major step
in helping create an automated build process that’s
also supported in the Visual Studio environment.

Writing an Ant Build File

The easiest way to start using Ant is to write a build file that

contains the build steps you typed in at the command line.

By default, when Ant is run, it will look for a build file named

build.xml in the current working directory. We’ll work through

writing a build.xml file one section at a time. Figure 2.3 on

page 25 shows the complete file.

Define the Project

Open your favorite text editor, and create a build.xml file in the

root dms project directory. The first line says that what follows

is XML. Then, on the second line, define the project.

<?xml version="1.0"?>

<project name="dms" default="compile" basedir=".">

An Ant build file defines one project. Name your project using project

the name attribute of the <project> element. Setting the value

of the default attribute to compile tells Ant that when you

type ant on the command line (giving no other parameters), it

should run the compile step of the build process. We’ll define

Prepared exclusively for Robert McGovern

http://nant.sourceforge.net

BUILDING WITH ANT 21

that step a bit later. Setting the basedir attribute’s value to

. tells Ant that any other paths used in this build file should

be relative to the directory that contains the build.xml file.

Select the Ingredients

Next, you make Ant aware of the project directory structure

by defining a property for each of your project directories. property

<property name="build.dir" location="build"/>

<property name="build.prod.dir" location="${build.dir}/prod"/>

<property name="build.test.dir" location="${build.dir}/test"/>

<property name="doc.dir" location="doc"/>

<property name="index.dir" location="index"/>

<property name="src.dir" location="src"/>

<property name="test.dir" location="test"/>

<property name="vendor.lib.dir" location="vendor/lib"/>

Each <property> element associates a name with the direc-

tory in the corresponding location attribute. The directories

pointed to by the location attributes are relative to the value

of the basedir attribute defined in the <project> element.

Using Ant properties to name relative directories has two ben-

efits. First, it means that your build file can be run from any

directory. When Ant runs the build file, it will locate all the

directories relative to the directory that contains the build.xml

file. The second benefit is that properties make your build

file easy to maintain. Instead of referring to the build direc-

tory, for example, use the build.dir property. Then later if

you decide to change the name of the actual build directory

to classes, you need to change only the value of the loca-

tion attribute of the build.dir property. Everywhere you

reference the build.dir property in the build file will then

automatically point to the new classes directory.

This is an example of the DRY principle.3 Rather than scatter

this crucial build information throughout the build file, we

should define it in one place. Our build script is software, too,

so we should try to design it well, and good design usually has

benefits that you can’t foresee.

3DRY stands for “Don’t Repeat Yourself.” It’s a key software design prin-

ciple explained in [HT00].

Prepared exclusively for Robert McGovern

BUILDING WITH ANT 22

Mix the Ingredients

To generate complete builds, we need to make it easy to spec-

ify all the build ingredients. When a dependency on a ven-

dor library creeps into the software, for example, your build

process needs to be flexible enough to make adding that ingre-

dient to the build easy. If it’s too difficult or time-consuming to

correctly specify build dependencies, then no one will bother.

The next time the build runs, it will fail because the recipe is

missing a key ingredient. And before long, half-baked builds

become acceptable, and even expected.

We’ll start with the classpath. Following the properties sec-

tion, define a path that represents your project’s Java class-

path.

<path id="project.classpath">

<pathelement location="${build.prod.dir}" />

<pathelement location="${build.test.dir}" />

<fileset dir="${vendor.lib.dir}">

<include name="*.jar"/>

</fileset>

</path>

The <path> element creates a path named project.class-

path. We’ll use this path later during the compile step of the

build process.

First, the two build directories are added to the path using

<pathelement> elements so that the Java compiler can find

all of the class files. Then, using the <fileset> element, all

the vendor .jar files are added to the path so that the Java

compiler can find the vendor classes our classes use. Notice

that we use properties when referring to directory names to

keep the build file flexible.

By defining a classpath in the build file, the build is self-

contained. In other words, you don’t have to set up a CLASS-

PATH environment variable on every machine that will run

the build. If you need to add or update a vendor library that

the project depends on, simply drop the file into the directory

vendor.lib.dir and let the <fileset> add it to the classpath

dynamically. This helps us keep the build complete.

Prepared exclusively for Robert McGovern

BUILDING WITH ANT 23

Set the Table

Next we define the first build step—called a target. This target target

simply creates the directories where the compile step will put

the Java class files.

<target name="prepare">

<mkdir dir="${build.prod.dir}"/>

<mkdir dir="${build.test.dir}"/>

</target>

A target is simply a named build step that defines a series of

tasks to be run in the specified order. The prepare target

uses the <mkdir> task to create the build output directories.

This is equivalent to using mkdir on the command line, but

it works on any operating system, doesn’t fail if the directory

already exists, and makes parent directories if necessary.

Turn the Crank

At long last, we define the compile step. It compiles all of the

production source files, putting the resulting class files in one

of the directories created by the prepare target.

<target name="compile" depends="prepare">

<javac srcdir="${src.dir}" destdir="${build.prod.dir}">

<classpath refid="project.classpath" />

</javac>

</target>

The order in which the targets are run is important. That is,

you can’t compile the source files until you have a directory

to put them in. You specify order by creating dependencies

between targets using their depends attributes. The value of

this attribute is a comma-separated list of target names.

For example, the compile target uses the depends attribute

to declare a dependency on the prepare target. This means

running the compile target will first run the prepare target

to create the required directories before compiling any source

files. This is a big advantage over using a shell script or batch

file that always runs commands sequentially.

After the prepare target has run, the compile target invokes

the Java compiler by running the <javac> task. The compiler

takes all the Java source files in the directory pointed to by

the src.dir property and generates the corresponding class

Prepared exclusively for Robert McGovern

BUILDING WITH ANT 24

files in the directory pointed to by the build.prod.dir prop-

erty. What’s more, it’s smart about what needs to be compiled

because Ant watches the time stamps on the Java source files;

you don’t have to always recompile everything from scratch.

The project.classpath path comes in handy in the compile

step. The compiler needs a classpath to find all the vendor

JAR files that the source files reference. The <classpath>

element tells the compiler to use the classpath represented

by the value of the project.classpath path. We’ll use this

path again later when testing the build.

Save the Recipe

Figure 2.3 on the following page shows the contents of the

build.xml file at this point. Before actually firing up a build,

there’s one more thing you need to do: Put build.xml under

version control. After all, it will be used by everyone on the

team, and its contents may change over time. If, a year from

now, you check out the project as it is today, you’d want to

see today’s version of build.xml too.

We’ve written quite a bit of XML just to compile a few Java

source files. Thankfully, most of this text is boilerplate across

Ant build files. That’s not much consolation, but the upside

is once you get the hang of this basic file you’ll be well on your

way to reading almost any Ant build file. More important, with

this build file as a template you can quickly add new steps to

the recipe.

Running the Build

Now that you have an Ant build file, running the build is easy.

First, navigate into the directory that contains the build.xml

file.

$ cd ˜/work/dms

Before running Ant, you’ll need to ensure that the ANT HOME

environment variable points to your Ant installation directory

and that the $ANT HOME/bin directory is in your PATH environ-

ment variable. Then run Ant from the command line.

$ ant

Prepared exclusively for Robert McGovern

BUILDING WITH ANT 25

<project name="dms" default="compile" basedir=".">

<property name="build.dir" location="build"/>

<property name="build.prod.dir" location="${build.dir}/prod"/>

<property name="build.test.dir" location="${build.dir}/test"/>

<property name="doc.dir" location="doc"/>

<property name="index.dir" location="index"/>

<property name="src.dir" location="src"/>

<property name="test.dir" location="test"/>

<property name="vendor.lib.dir" location="vendor/lib"/>

<path id="project.classpath">

<pathelement location="${build.prod.dir}" />

<pathelement location="${build.test.dir}" />

<fileset dir="${vendor.lib.dir}">

<include name="*.jar"/>

</fileset>

</path>

<target name="prepare">

<mkdir dir="${build.prod.dir}"/>

<mkdir dir="${build.test.dir}"/>

</target>

<target name="compile" depends="prepare">

<javac srcdir="${src.dir}" destdir="${build.prod.dir}">

<classpath refid="project.classpath" />

</javac>

</target>

</project>

dms/build.xml

Figure 2.3: The Build File

Ant reads the build.xml file and executes the build steps (tar-

gets) in the defined order. Because compile is the default

target specified in the build file, the build proceeds as follows:

Buildfile: build.xml

prepare:

[mkdir] Created dir: /Users/mike/work/dms/build/prod

[mkdir] Created dir: /Users/mike/work/dms/build/test

compile:

[javac] Compiling 4 source files to

/Users/mike/work/dms/build/prod

BUILD SUCCESSFUL
Total time: 3 seconds

This is your second build process. It compiled all of the pro-

duction source files by executing the compile target, but only

after first executing the prepare target to create the build

output directories.

You can also run the build file with a specific target. For

Prepared exclusively for Robert McGovern

BUILDING WITH ANT 26

Joe Asks. . .

What About Maven?

Let’s face it, most Java projects have a similar build
process: Compile some code, bundle up the classes
in a JAR file, and generate copious amounts of Java-
doc. In turn, most Ant build files tend to have the
same boilerplate XML and define similar build targets.

Maven∗ takes the grunt work out of defining a build
process with Ant. Think of Maven as being a project
manager that knows its way around Java projects. For
example, once you tell Maven where your source files
live and the versions of libraries they depend on, it
figures out how to execute the compile step. That
is, you don’t have to write a compile target in your
Ant build file. That’s Maven’s job. If required ver-
sions of third-party libraries aren’t available locally
when it runs the build, Maven will download those
libraries from remote repositories. And to top it all off,
Maven will create a project website with navigation
to generated documentation (e.g., Javadoc and test
reports).

Maven looks promising because it can give you a
common view into projects. Running and maintain-
ing the build is then easier because you don’t have
to wander around in the details. But the jury is still out
on Maven, so until it takes over the world it’s impor-
tant to know how to create CRISP builds with Ant. Just
like understanding how to compile Java on the com-
mand line helps you understand and appreciate how
Ant works, understanding how to create builds with
Ant will help you understand what’s going on inside
Maven.

∗http://maven.apache.org

Prepared exclusively for Robert McGovern

http://maven.apache.org

BUILDING WITH ANT 27

Joe Asks. . .

When Do I Use make vs. Ant?

For building Java projects, Ant is the right tool for the
job because it’s a specialized build tool that caters to
Java environments. Ant offers a slew of what it calls
tasks to do such things as compile Java source files,
generate Javadoc, assemble JAR files, and run JUnit
tests. But once you step outside of those predefined
tasks, you’re on your own. That’s the price you pay for
a specialized tool.

make, on the other hand, is a general-purpose tool.
You can make it to do just about anything (no pun
intended). But depending on what you want it to do,
it might require more effort than using a specialized
tool. And makefiles aren’t as portable as Ant build
scripts. That’s the price you pay for a general-purpose
tool.

If you’re doing Java development, using Ant is a no-
brainer because it works on multiple platforms and
its integration with the Java toolset complements its
general-purpose usability.

example, to explicitly run the compile target we ran before,

type

$ ant compile

As the output shows, there’s nothing for Ant to do.

Buildfile: build.xml

prepare:

compile:

BUILD SUCCESSFUL
Total time: 2 seconds

When we first ran the build, it compiled all the Java source

files. We haven’t changed any of those files since running

the build. So Ant sees that the .class files are newer than

their respective .java files, and therefore nothing needs to be

compiled.

OK, so now we have a smarter (lazier) build process. But

Prepared exclusively for Robert McGovern

BUILDING WITH ANT 28

we’re still just compiling code. In just a minute, we’ll expand

the build process to test our code as well. But first, you may

be wondering if there’s a better build file format than all this

messy XML. It’s an excellent question, and it’s one that Ant’s

creator wrestled with, as well. So let’s take a break to hear

James’ history lesson.

The Creator of Ant Exorcizes One of His Demons

by James Duncan Davidson

The first version of Ant didn’t have all the angle brackets that

you see sprinkled all over its build files. Instead, it used a

properties file and the java.util.Properties class to define what

tasks should be executed for a target. This worked really well

for small projects but started breaking down rapidly as projects

grew.

The reason it broke down was the way that Ant views the

world: A project is a collection of targets. A target is a collection

of tasks. Each task has a set of properties. This is obviously a

hierarchical tree. However, property files give you only a flat

name=key mapping, which doesn’t fit this tree structure at all.

I wanted a hierarchical file format that would capture the way

that Ant viewed the world. But I didn’t want to create my own

format. I wanted to use a standard one—and more important I

didn’t want to create a full parser for my own custom format. I

wanted to reuse somebody else’s work. I wanted to take the

easiest way possible.

At the time, XML was just breaking out onto the radar. The

spec had been completed, but only recently. SAX had become a

de-facto standard, but we didn’t yet have JAXP. I was convinced

that XML was going to be the next big thing after Java. Portable

code and portable data. Two buzzphrases that go well together.

Even better, since XML viewed data as a tree structure, it

seemed like a perfect fit for the kinds of things that needed to

be expressed in a build file. Add in that XML was still a

hand-editable text-based format, and it seemed like a marriage

made in heaven. And, I didn’t have to write a parser. The deal

was done.

In retrospect, and many years later, XML probably wasn’t as

good a choice as it seemed at the time. I have now seen build

files that are hundreds, and even thousands, of lines long, and,

at those sizes, it turns out that XML isn’t quite as friendly a

Prepared exclusively for Robert McGovern

TASTE-TESTING THE BUILD 29

format to edit as I had hoped. As well, when you mix XML and

the interesting reflection-based internals of Ant that provide

easy extensibility with your own tasks, you end up with an

environment that gives you quite a bit of the power and

flexibility of a scripting language—but with a whole lot of

headache in trying to express that flexibility with angle

brackets.

(To Be Continued...)

And that, folks, is how computing history is made. If there’s

a lesson in all of this, it’s that looking back can give us ideas

for how to go forward. Later on we’ll take a brief look at one

approach to combining the power of Ant with the flexibility

of a scripting language, without the constraints of XML. But

right now, we have a build that needs a “taste tester.”

2.5 Taste-Testing the Build

We’ve learned over the years that a successful compile doesn’t

mean much. The compiler doesn’t give you any indication

whether the code will actually work. You have to test to get

that warm, fuzzy feeling. (If you’re new to unit testing with

JUnit, please see [HT03] for guidance on how to quickly get

started writing good JUnit tests.)

We place JUnit tests in the test directory. Without these tests

we’d be afraid to change code for fear of breaking something.

Indeed, without the tests our production code becomes a lia-

bility, so our tests live in the version control repository as

first-class source files.

Compiling the Tests

Start by defining a separate build target in the build.xml file

that compiles the test source files.

<target name="compile-tests" depends="compile">

<javac srcdir="${test.dir}" destdir="${build.test.dir}">

<classpath refid="project.classpath" />

</javac>

</target>

The compile-tests target is very similar to the compile tar-

get defined earlier. It differs in that the <javac> task compiles

the test source files in the test.dir directory and puts the

Prepared exclusively for Robert McGovern

TASTE-TESTING THE BUILD 30

resulting class files in the build.test.dir directory. That

is, the build input and output directories are different. Notice

that we’re reusing the project.classpath path as the class-

path for compiling the test code.

Running the Tests

Next, define a build target in the build.xml file that will run all

of your JUnit tests automatically.

<target name="test" depends="compile-tests">

<junit haltonfailure="true">

<classpath refid="project.classpath" />

<formatter type="brief" usefile="false" />

<batchtest>

<fileset dir="${build.test.dir}"

includes="**/*Test.class" />

</batchtest>

<sysproperty key="doc.dir" value="${doc.dir}" />

<sysproperty key="index.dir" value="${index.dir}" />

</junit>

</target>

There’s a lot going on in the test target, so let’s look at it

piece by piece.

Define a Test Target

Before you can run the tests, you must compile the test code.

The depends attribute on the test target creates a depen-

dency on the compile-tests target just defined.

<target name="test" depends="compile-tests">

<junit haltonfailure="true">

<classpath refid="project.classpath" />

If the build succeeds, it should mean that not only did every-

thing compile, but it also passed all the tests. This gives us

confidence to use the build outputs. Setting the value of the

haltonfailure attribute to true will cause the build to fail

if any test fails.

Did we mention just how useful that project.classpath

path turned out to be? We’ve used it again here to define

the classpath for running the JUnit tests.

Prepared exclusively for Robert McGovern

TASTE-TESTING THE BUILD 31

Display Test Output

Next you tell JUnit where to display its output. Do that by

defining an output formatter.

<formatter type="brief" usefile="false" />

In the <formatter> element, use the brief type to print the

name of each test case that runs and its statistics, and more

detailed information only when a test fails. The plain type

prints a bit more information by default than the brief type.

The xml type prints the test results in XML format. Setting

the value of the usefile attribute to false prints the test

results to the console rather than a file.

Create a Test Suite

At this point you have only a few JUnit tests, but in the com-

ing days you’ll be writing a lot more. Thankfully, Ant can find

tests in your project directory and run all of them in batch.

<batchtest>

<fileset dir="${build.test.dir}"
includes="**/*Test.class" />

</batchtest>

The <batchtest> task gathers all the tests returned by the

enclosed <fileset> element and automatically creates a test

suite that contains the tests. Just to be explicit about which

classes are JUnit tests, we’ll name all our test classes using

the *Test.java naming convention. These files will be compiled

into the corresponding *Test.class files in the directory named

by the build.test.dir property for the <fileset> to find. In

other words, using the <batchtest> task means that you don’t

have to remember to add each new test case you write to a list.

Specify Test Properties

Finally, the tests for the DMS project need to know the loca-

tions of two directories in order to run successfully. They need

to know where to find documents and where to put the result

of indexing those documents. We’ll pass that information in

when the tests are run.

<sysproperty key="doc.dir" value="${doc.dir}" />

<sysproperty key="index.dir" value="${index.dir}" />

Prepared exclusively for Robert McGovern

TASTE-TESTING THE BUILD 32

The <sysproperty> element defines a system property as a

key-value pair. These properties are accessible in your test

code. For example, to locate the absolute path of the doc

directory in the project’s directory structure, tests would look

up the doc.dir system property sent in when the tests are

run. Again, because you’re using properties here, you can

change the actual directory name without having to change

the test code.

Figure 2.4 on the next page shows our Ant build file after

adding the test-related targets. Figure 2.5 on page 34 shows

a visual representation of the Ant target dependencies gener-

ated by Grand4 into a Graphviz5 “dot” file. If you know what

we’re going to tell you to do with the build.xml file, you’ve been

paying attention. Check it in to version control already!

Testing the Build

At this point you’ve defined all the build targets necessary to

compile and run your tests. Now to run the tests, execute the

test target.

$ ant test

Since the test target depends on the compile-tests target,

you’re assured that all the test code is compiled and up-to-

date before the tasks in the test target are run.

Buildfile: build.xml
prepare:

compile:

compile-tests:

[javac] Compiling 3 source files to /Users/mike/work/dms/build/test

test:
[junit] Testsuite: com.pragprog.dms.DocumentTest

[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.437 sec

[junit] Testsuite: com.pragprog.dms.SearchTest

[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.862 sec

BUILD SUCCESSFUL
Total time: 4 seconds

Doesn’t that just make you feel good? All the code compiles

and works. Being able to run the test target whenever you

change code gives you confidence. If you happen to break

something that’s being tested, the build will fail. Once you get

4http://www.ggtools.net/grand
5http://www.research.att.com/sw/tools/graphviz

Prepared exclusively for Robert McGovern

http://www.ggtools.net/grand
http://www.research.att.com/sw/tools/graphviz

TASTE-TESTING THE BUILD 33

<project name="dms" default="compile" basedir=".">

<property name="build.dir" location="build"/>

<property name="build.prod.dir" location="${build.dir}/prod"/>

<property name="build.test.dir" location="${build.dir}/test"/>

<property name="doc.dir" location="doc"/>

<property name="index.dir" location="index"/>

<property name="src.dir" location="src"/>

<property name="test.dir" location="test"/>

<property name="vendor.lib.dir" location="vendor/lib"/>

<path id="project.classpath">

<pathelement location="${build.prod.dir}" />

<pathelement location="${build.test.dir}" />

<fileset dir="${vendor.lib.dir}">

<include name="*.jar"/>

</fileset>

</path>

<target name="prepare">

<mkdir dir="${build.prod.dir}"/>

<mkdir dir="${build.test.dir}"/>

</target>

<target name="compile" depends="prepare">

<javac srcdir="${src.dir}" destdir="${build.prod.dir}">

<classpath refid="project.classpath" />

</javac>

</target>

<target name="compile-tests" depends="compile">

<javac srcdir="${test.dir}" destdir="${build.test.dir}">

<classpath refid="project.classpath" />

</javac>

</target>

<target name="test" depends="compile-tests">

<junit haltonfailure="true">

<classpath refid="project.classpath" />

<formatter type="brief" usefile="false" />

<batchtest>

<fileset dir="${build.test.dir}"
includes="**/*Test.class" />

</batchtest>

<sysproperty key="doc.dir" value="${doc.dir}" />

<sysproperty key="index.dir" value="${index.dir}" />

</junit>

</target>

</project>

dms/build.xml

Figure 2.4: The Build File with Tests

Prepared exclusively for Robert McGovern

CLEANING UP 34

Figure 2.5: Target Dependencies

used to having the safety net of tests, you won’t ever want to

write code without them.

If tests start failing and you don’t fix them right away, then

broken tests will quickly become acceptable. Before long,

you’ll lose confidence in the build. You need to know as soon

as possible if the build is failing—that way you can fix it before

problems compound or folks start to get the impression that

nobody cares. See [HT00] for more details on what happens

when “broken windows” go unrepaired.

In the next chapter, we’ll keep the build running continuously

and publish its status to the team.

2.6 Cleaning Up

After the build process has run, and you know you can repro-

duce its outputs, you can safely clean up. Just define an Ant

target that deletes all the build outputs.

<target name="clean">

<delete dir="${build.dir}" />

</target>

The clean target uses the <delete> task to remove the direc-

tory referenced by build.dir. This build step is made easier

by the fact all the build outputs are placed under a common

directory. To clean up, run the clean target.

$ ant clean

Buildfile: build.xml
clean:

[delete] Deleting directory /Users/mike/work/dms/build

BUILD SUCCESSFUL
Total time: 1 second

Prepared exclusively for Robert McGovern

SCRIPTING A BUILD 35

Now you’re right back where you started with a clean project

directory. Relax, that’s what a good build process gives you:

repeatability. Those class files that just went down the drain

are merely the by-product of running the build. You can easily

reproduce another identical set of class files by running the

build process again.

$ ant test

Since we have all of the target dependencies chained together

correctly, that single command runs all the targets in the

build file to produce all the build outputs and run all the tests.

Buildfile: build.xml

prepare:

[mkdir] Created dir: /Users/mike/work/dms/build/prod

[mkdir] Created dir: /Users/mike/work/dms/build/test

compile:

[javac] Compiling 4 source files to /Users/mike/work/dms/build/prod

compile-tests:

[javac] Compiling 3 source files to /Users/mike/work/dms/build/test

test:
[junit] Testsuite: com.pragprog.dms.DocumentTest

[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.511 sec

[junit] Testsuite: com.pragprog.dms.SearchTest

[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.99 sec

BUILD SUCCESSFUL
Total time: 7 seconds

Flushing the build outputs was good clean fun, but it actu-

ally serves a useful purpose. By defining a clean target it’s

easy to create builds from scratch. It’s good to do that once

in a while to uncover problems that may be masked by incre-

mental builds. Remember that Ant tracks dependencies by

checking the time stamps of files. That’s reliable most of the

time, but it’s possible to get compiled classes out of synch

with one another. Running a build from scratch is a sanity

check that the build is truly complete and repeatable.

2.7 Scripting a Build

We’re going to take a ride on the wild side for a moment.

It’s certainly deserved after all the hard work you’ve put into

automating the build process. While what follows may not be

immediately applicable to your project, it’s worth keeping in

your back pocket. And enjoy the ride!

Prepared exclusively for Robert McGovern

SCRIPTING A BUILD 36

Your build process currently uses Ant—a declarative language

for describing how to build Java projects. An Ant build file

specifies properties and targets. Targets declare a series of

tasks to be run and can have dependencies on other targets

in the project. This is all you need for most Java projects.

But once in a while, especially when building more complex

projects, you might like some conveniences offered by a gen-

eral programming language. Perhaps you’d like to use a loop

to run a task multiple times, each time changing an input

value. Or maybe you want only to run a build target based

on conditional logic. It’s tempting to try to use Ant in these

situations because it does have some rudimentary scripting

support. But Ant falls short as a scripting language.

This is where we pick up where we left off with the Ant story.

James was discussing the historical reasons for Ant’s XML

syntax, but he goes on to give us a glimpse into the future:

The Creator of Ant Exorcizes One of His Demons

(Continued)

by James Duncan Davidson

Now, I never intended for the file format to become a scripting

language. After all, my original view of Ant was that there was a

declaration of some properties that described the project and

that the tasks written in Java performed all the logic. The

current maintainers of Ant generally share the same feelings.

But when I fused XML and task reflection in Ant, I put together

something that is 70–80% of a scripting environment. I just

didn’t recognize it at the time. To deny that people will use it as

a scripting language is equivalent to asking them to pretend

that sugar isn’t sweet.

If I knew then what I know now, I would have tried using a real

scripting language, such as JavaScript via the Rhino

component or Python via JPython, with bindings to Java

objects that implemented the functionality expressed in today’s

tasks. Then, there would be a first-class way to express logic,

and we wouldn’t be stuck with XML as a format that is too

bulky for the way that people really want to use the tool.

Hindsight is always 20/20.

As we learned in James’ story, scripting languages offer an

alternative way of applying logic to the build process. That is,

Prepared exclusively for Robert McGovern

SCRIPTING A BUILD 37

although Ant has some support for scripting, it’s not intended

to be used as a scripting language. Ant is quite good, how-

ever, at handling all the heavy lifting of a build system. And

because it’s written in Java, it’s portable. Ideally, when you

need to express logic you’d mix Ant with some scripting glue.

Writing a Groovy Build Script

Groovy6 is a dynamic scripting language that runs on the

Java Virtual Machine (JVM). It uses a Java-like syntax, so

as Java programmers we should feel right at home writing

Groovy scripts. And Java programmers should feel comfort-

able picking Groovy because it has traction both with com-

munity leaders and with the Java Community Process (JCP).

Groovy also happens to support Ant scripting using Groovy-

Markup. That is, you can call Ant tasks right from the com-

fort of a Java program. Figure 2.6 on the next page shows a

Groovy script called build.groovy. The first thing you’ll notice

is you’re not staring at XML angle brackets. Isn’t that refresh-

ing? The second thing you’ll notice is this looks a lot like Java,

but without the type information and semicolons.

The build.groovy script defines a Java class called Build. The

last line of the script creates an instance of that class and

invokes its compile method. As an example of build depen-

dencies, the compile method first calls the prepare method,

which calls the clean method before creating the build output

directory.

Then the compile method calls the javac Ant task to compile

the source files. It does that using an instance of Groovy’s

built-in AntBuilder class that knows how to call any of Ant’s

tasks. The projectClasspath method even uses an Ant fileset to

gather up the dependent JAR files.

Running the Groovy Build Script

After installing Groovy, run the build script by typing the fol-

lowing:

$ groovy build.groovy

6http://groovy.codehaus.org

Prepared exclusively for Robert McGovern

http://groovy.codehaus.org

SCRIPTING A BUILD 38

import java.io.File

class Build {

srcDir = "src"
buildDir = "build"
buildProdDir = buildDir + File.separator + "prod"

vendorLibDir = "vendor" + File.separator + "lib"

ant = new AntBuilder()

void clean() {
ant.delete(dir: buildDir)

}

void prepare() {
clean()

ant.mkdir(dir: buildProdDir)

}

void compile() {

prepare()

ant.javac(srcdir: srcDir,

destdir: buildProdDir,

classpath: projectClasspath())

}

String projectClasspath() {

ant.path {

fileset(dir: vendorLibDir) {

include(name: "**/*.jar")

}

}

}

}

new Build().compile()

dms/build.groovy

Figure 2.6: Groovy Build Script

The result is standard Ant output.

[delete] Deleting directory /Users/mike/work/dms/build

[mkdir] Created dir: /Users/mike/work/dms/build/prod

[javac] Compiling 5 source files to /Users/mike/work/dms/build/prod

The next time you run this build script, it will compile only

the source files that have changed. That’s another benefit of

continuing to use Ant even as you move toward a scripting

language.

Scripting Custom Build Steps

The beauty of scripting the build process with Groovy is that

the build file is a regular Groovy program that has access to

the Ant build system and the JVM. That is, you can use all of

Prepared exclusively for Robert McGovern

GETTING AN EARLY START 39

Ant’s tasks while enjoying the power of a full-blown scripting

language that includes all the familiar Java libraries.

As an example of where scripting comes in handy, imagine

you want to loop through all the vendor JAR files and perform

a custom action (e.g., instrumenting the class files) on each

JAR file. That can be difficult to do with Ant unless you write

a custom Ant task that uses a nested <fileset>. It’s much

easier when you have Groovy at your fingertips.

void instrumentJARs() {

scanner = ant.fileScanner {

fileset(dir: vendorLibDir)

}

scanner.each { instrument(it) }

}

void instrument(file) {

println("Instrumenting ${file}")

// insert code here

}

The instrumentJARs method iterates through all the vendor JAR

files using a fileset. For each JAR file, it calls the instrument

method, which can perform any processing on the JAR file.

The instrumentJARs method can then be called from any step in

the build process.

For simple build processes, the benefit of using a scripting

language is a wash. But for complex build processes, the

scales start to tip back in favor of scripting approaches.7

2.8 Getting an Early Start

You might be tempted to delay automating the build until your

project has amassed enough code worthy of the automation.

Unfortunately, that’s usually too late. After you’ve chosen a

project directory structure, the next thing that happens is the

programmers settle in writing code. It’s what makes a project

feel real to us. Those directories quickly start to fill up with

code (and tests, of course).

Then one day some programmer pokes his head above the

cubicle walls and belts out, “It doesn’t build on my machine!”

7Of course, there are other pure-scripting alternatives, such as Rake

(http://rake.rubyforge.org).

Prepared exclusively for Robert McGovern

http://rake.rubyforge.org

GETTING AN EARLY START 40

Sound the alarm. It’s time for a fire drill. After everyone has

been rattled from their chairs, some conscientious soul finally

wanders over to the hapless programmer’s cube for a first-

hand look at the disaster.

“Ah, you don’t have elmo-2.1.7.jar in your CLASSPATH. Fred just

checked in a new file that requires that library.”

And then through a flurry of mouse motions, the program-

mer’s IDE gets a clue about elmo-2.1.7.jar and the onerous

CLASSPATH is temporarily correct. The crisis is averted, for

now, but it won’t be long before somebody else incites another

fire drill.

The moral of the story is that we save ourselves a lot of trou-

ble by setting up a canonical build process on Day One of

the project. Make it the first thing you do after choosing a

project directory structure that day, before anyone writes a

line of code.8 Then as the team writes code one file at a time—

updating the build file as necessary along the way—the build

process will continue to keep everything in check.

What if you already have directories overflowing with source

files? Well, thankfully it’s never too late to start automat-

ing the build. Think of it this way: Every day we postpone

automating the build is another day that could be interrupted

by a fire drill. And someday (we hope) we’ll be ready to release

the first version of our software, and many more after that,

beyond these cubicle walls. Being able to generate a build at

the push of a button will pay for itself many times over.

What We Just Did

We started with a build process that ran from the command

line. Then we created an Ant build file that lets everyone on

the project run the build in one step. When the build suc-

ceeds, it gives everyone confidence that all the code compiles

and passes its tests. When the build fails, it provides detailed

8Megg (http://sourceforge.net/projects/megg) will help you get

started quickly by generating a skeleton project directory structure and an

Ant build file from supplied templates.

Prepared exclusively for Robert McGovern

http://sourceforge.net/projects/megg

GETTING AN EARLY START 41

information about what went wrong to save everyone debug-

ging time. This means we’re in good shape for scheduling the

build. So in the next chapter, we’re going to tie our hands

behind our back and let the computer run builds for us.

Prepared exclusively for Robert McGovern

Chapter 3

Scheduled Builds

It claims to be fully automatic, but

actually you have to push this little

button here.

Gentleman John Killian

A one-step build process is a gift that keeps on giving. Every

time you push the button that runs a build, it will feel like

you’re getting something for free. This is the beauty of com-

manded automation. Invest just a wee bit of time and get lots

of time back. In this chapter we’ll take the next automation

step: letting a computer push the build button for us.

Scheduled automation takes the one-step build you created

and runs it for you, as often as you want, without you ever

lifting a finger. You can still run the build manually if you

need to, but in the typical case the computer will do it for

you. And it turns out that having a machine running builds

continuously does more than just save some typing.

Scheduled builds find both integration (compile time) and fail-

ing test (run time) problems quickly because they run at regu-

lar intervals. For example, if the schedule says to run a build

at the top of every hour, then every 60 minutes you’ll know

if the build is broken. This makes finding problems easier

because you have to look only at changes that occurred in that

interval. It also makes fixing problems easier because little

problems don’t have a chance to compound into big problems.

And because finding and fixing problems is easier, you’re less

constrained by fear.

How is a scheduled build any different from, say, all the pro-

grammers running the build file every few minutes? Well, I

don’t know many programmers that want to do that. They’ve

usually got better things to do. The build cycle might take

SCHEDULING YOUR FIRST BUILD 43

a few minutes, or even a few hours, and running it inter-

feres with their work. And even if everyone on the team could

quickly run a full build, they might deliberately put off doing

so because they have a deadline to meet and they’re afraid

someone else’s changes might conflict and cause delays. That

is, unlike a scheduled build, programmers typically only build

parts of the system at a time rather than testing that the entire

system is integrated.

A scheduled build, on the other hand, has nothing better to

do than build and test everything. Once you have a one-step

build process, you have much to gain by putting it on a sched-

ule for a computer to run. Thankfully, it doesn’t cost much to

go this extra mile. It will end up costing a lot in the end if you

don’t start scheduling builds early. So let’s get cracking!

3.1 Scheduling Your First Build

Scheduling a build is similar to programming the timer that

controls your office building’s heating system. You want it to

start warming up the place before you’re out of bed so that

you can arrive to a toasty office. In the same way, you want to

come into the office with a nice toasty build waiting for you.

Since you can schedule a build to run at a time or frequency

of your choosing, why pick just one time every day? You may

as well schedule it to run often so you’ll know sooner if your

world is collapsing. You want to hear those processors grind-

ing as background noise while you’re writing code. It’s the

sound of software being tested. It’s the sound of everyone’s

time being saved. And that’s music to our ears.

Scheduling with cron

The easiest way to schedule a build would be to start by writ-

ing a script or batch file that does the following:

1. Checks out the current code from version control.

2. Calls your build file to build and test the code.

3. Squirrels away the build results in a log file.

Prepared exclusively for Robert McGovern

SCHEDULING YOUR FIRST BUILD 44

Next you need to run the build script at some predefined time

of day (or night). On Unix, the scheduler of choice is cron. To

configure cron, type

$ crontab -e

This pops open your default editor, the computer’s subtle way

of asking you what you want it to do and when it should be

done. Say, for example, you have a build.sh script that runs

your Ant build.xml file. You want cron to run that script at 2

a.m. every morning. To appease cron’s cryptic syntax, type

the following line into your editor and save the file:

0 2 * * * $HOME/work/dms/build.sh

Each crontab entry is a single line with six fields. The first

five fields represent the schedule, starting from the left: the

minute (0–59), the hour (0–23), the day of the month (1–31),

the month (1–12), and the day of the week (0–6). A * character

in any field means to match all possibilities. For example,

using * in the third field means that we want it to run every

day of the month. The last field specifies the command to run.

If you’re on a Windows box, the built-in scheduler is the at

command. To schedule the build.bat file to run at 2 a.m. every

morning, for example, type the following at the command line:

at 02:00 /every: c:\work\dms\build.bat

That’s really all there is to it! You just scheduled a build. The

computer wakes up about the time most authors are going to

bed and runs the build, no questions asked.

Picking the Right Tool for the Job

If cron (or at) gets the job done, then why not just use it and

move on? It would feel good to check one more thing off the

automation checklist. That’s a fair question, especially since

this is a book about being pragmatic. Creating a continuous

build is less about tools than it is about building continu-

ously. We could start with the simplest tool first, then haul

out the commercial-grade tools when, and if, we need them.

There’s just one problem: Being pragmatic also means using

the right tool for the job. And the simplest tool isn’t always

the right tool. If you start with a simple shell script such

Prepared exclusively for Robert McGovern

SCHEDULING YOUR FIRST BUILD 45

The Cost of Not Integrating Frequently

It seems that many projects don’t have, and claim
to not be able to afford, a machine dedicated to
automatically building and testing their software on
a regular interval. Ironically, these same projects can
afford to continuously spend time fighting integration
and quality problems.

Just how much programmer time does it take to jus-
tify the cost of a dedicated build machine? Consider
that on average a ten-person development team
costs your company at least $500 per hour. If that
team spends merely two hours debugging integration
problems over the life of the project, you’ve paid for
a respectable build machine fully capable of com-
piling and testing code. That’s a one-time expense.
Then when you start to consider that every day your
team is debugging integration problems is another
day late to market, you just can’t afford not to have
a dedicated build machine.

A dedicated build machine will help your team con-
serve time for the really important stuff. If you don’t
already have one on your software project, then
you’re behind the competition.

as build.sh, it will likely begin as a few commands: check out

the project from version control, run the Ant build file, and

redirect the build output somewhere useful.

And then you might decide that emailing the build results

to the team would be beneficial to let everyone know how

things are going. Better yet, why not publish the build result

in HTML for viewing in a browser? Oh, and then you will

need a web application that shows all previous build results.

Before long you’re spending more time maintaining your “sim-

ple” script than you are writing production code.

That’s where being pragmatic comes in again. If you want

a build scheduler with all these fancy features, and you can

get it for free, then you should use it rather than spend time

creating and maintaining your own scheduler. And if that

Prepared exclusively for Robert McGovern

PUTTING A BUILD ON CRUISECONTROL 46

scheduler is also open source, then you have the option of

extending it for any of your special needs later, if necessary.

In that pragmatic spirit, let’s take a drive with a scheduler

designed to build Java applications. We’ll take it one milepost

at a time.

3.2 Putting a Build on CruiseControl

CruiseControl1 is like cron for Ant, but with many bells and

whistles. It runs in the background, waking up on cue to run

any scheduled Ant targets.

Bear in mind, what CruiseControl does for us isn’t rocket sci-

ence. You could do all this stuff manually if you were bored

and didn’t mind being pigeonholed as the build guru on your

project. It’s also nothing a custom build script couldn’t do if

you wanted to write one and be its maintainer for life. But

we’re short on time as it is, and maybe even behind schedule.

Reinventing all the scheduling features we need that come for

free out of the CruiseControl box isn’t going to save us any

time. CruiseControl isn’t the only such tool either, but we’ll

use it because it meets our needs here.

Choosing a Build Machine

Before installing CruiseControl you need to find a suitable

home for it. The machine where you install CruiseControl will

be the workhorse for scheduled builds, but it doesn’t need to

be top-o’-the-line hardware that breaks your bank. You just

need it to compile source code and run tests. That’s slightly

more CPU intensive than reading email and surfing the web,

but less so than servicing thousands of concurrent users. If

build machines filled out personal want ads, you’re looking

to hook up with the beautiful bucket of bits described in Fig-

ure 3.1 on the following page.

That being said, I realize all the good machines on your project

may not be available. If you’re lucky enough to find available

machines waiting to be put to work, then this decision is easy.

Just snag the best one you can and enlist it into service for

1http://cruisecontrol.sourceforge.net

Prepared exclusively for Robert McGovern

http://cruisecontrol.sourceforge.net

PUTTING A BUILD ON CRUISECONTROL 47B u i l d i n g R e l a t i o n s h i p s : I ' m a s i n g l e ú p r o c e s s o r , m i d d l e ú a g e b i tt w i d d l e r (S P M A B T) s e e k i n g a l o n g ú l a s t i n g r e l a t i o n s h i p w i t h a s t a b l ep r o v i d e r o f d a t a w h o c a n h a n d l e c h a n g e . M y f r i e n d s s a y I ' m r e s o u r c e f u lb e c a u s e I c a n a c c e s s v e r s i o n c o n t r o l r e p o s i t o r i e s . U n l i k e t h o s e j e t ús e t t i n g l a p t o p s , I e n j o y s t a y i n g a t t h e o f f i c e 2 4 h o u r s a d a y . T h e l a s tt i m e I w a s r e b o o t e d w a s m o r e t h a n 7 d a y s a g o , b u t I b o u n c e d r i g h tb a c k . I l o o k f o r w a r d t o m e e t i n g y o u f a c e t o f a c e o r w e c a n c h a td i s c r e e t l y o v e r o n e o f m y m a n y r e m o t e i n t e r f a c e s .T u b u l a r l o v e : S W F s e e k s T V f o r f u n a n d r o m a n c e . L i k e s d a y t i m et e l e v i s i o n , r e a l i t y s h o w s , a n d a n y t h i n g i n v o l v i n g a n i m a l s e a t i n g t h i n g s .R e m o t e r e l a t i o n s h i p p r e f e r r e d . C a l l , b u t o n l y w h e n t h e r e ' s n o t h i n gw o r t h w a t c h i n g . 5 5 5 ú 6 5 2 7C h e c k m e o u t : U n i t t e s t s e e k s c o d e f o r o n g o i n g r e l a t i o n s h i p . I k n o wI c a n b e d e m a n d i n g a n d t r y i n g , b u t l e t m e c h e c k y o u o u t ú y o u ' l l f e e lb e t t e r f o r i t . 5 5 5 ú 8 0 1 7
Figure 3.1: Wanted: A Dream Build Machine

your project. It’s happy to be wanted by someone. If you’re not

so lucky, then consider two-timing with a machine already in

service.2

And if you just can’t find those spare CPU cycles anywhere

on your project, then feel free to mention to your manager

how inexpensive good hardware is these days. This will go

over better than mentioning how expensive programmers are

in comparison.

Installing CruiseControl

Now that you’ve found a suitable build machine, you’re ready

to introduce it to CruiseControl. This is somewhat like making

a new friend only to turn around and offer him a shovel, but

trust that we have good intentions here.

When you download CruiseControl, you get a ZIP file. Extract

this file into a directory which we’ll refer to as $CC HOME. Then

you need to build CruiseControl; on Unix type

$ cd $CC HOME/main

$ sh build.sh

2To temporarily convert a PC into a Linux box without reconfiguring the

PC, check out Knoppix (http://www.knoppix.net). It’s a Linux distribution

that boots and runs completely from a CD. Presto, change-o!

Prepared exclusively for Robert McGovern

http://www.knoppix.net

PUTTING A BUILD ON CRUISECONTROL 48

CruiseControl.NET

If you’re writing code on the Microsoft .NET platform
and using NAnt to build your project, here’s another
opportunity to follow along. CruiseControl.NET∗ is a
feature port of CruiseControl to the .NET platform. It
integrates with the NAnt build tool and the NUnit unit-
testing framework. And we’d be remiss if we didn’t
mention the optional CCTray utility that shows a green
or red build status icon in your Windows system tray.

∗http://ccnet.thoughtworks.com

Under Windows, the commands are similar.

$ cd %CC HOME%\main

$ build.bat

The script then compiles and tests CruiseControl. (Notice that

this is commanded automation at work.) When it’s done,

you’ll end up with a file called cruisecontrol.jar in the direc-

tory $CC HOME/main/dist. That file needs to be there to run

CruiseControl later.

Preparing a Build Workspace

Next, you need to prepare a workspace on the build machine.

This will be the directory from which CruiseControl will run

builds and store the results. We’ll walk through creating the

workspace step by step.

Create the Build Directory

The build workspace is a directory on the build machine. Let’s

assume we call that directory builds because it’s the workspace

for all of our scheduled builds. The easiest approach is to

create the builds directory in some user’s home directory on

the build machine. On Unix, log in as that user and type

$ mkdir ˜/builds

Prepared exclusively for Robert McGovern

http://ccnet.thoughtworks.com

PUTTING A BUILD ON CRUISECONTROL 49b u i l d s / c h e c k o u t /l o g s / d m s /c c > b u i ld . x m lc o n f ig . x m l
Figure 3.2: The Build Workspace

Check Out the Project

So far, we only have one project to build on a schedule: our

DMS project. It’s safely stored in CVS and needs to be checked

out locally for CruiseControl to use. To keep the top-level

builds directory tidy, check out the dms module into a checkout

subdirectory.

$ cd ˜/builds

$ mkdir checkout

$ cd checkout

$ cvs co dms

This assumes that your CVSROOT environment variable is set

to the location of your CVS repository. After running these

commands the checkout/dms directory will contain all of the

files in the dms project. This is a local copy of the project—a

snapshot of the project at this instant of time. We’ll use this

directory just to prime the scheduled build process.

Create a Log Directory

Finally, create a directory that will contain all of the Cruise-

Control build log files.

$ cd ˜/builds

$ mkdir logs

Now you have a cozy workspace for scheduled builds. Fig-

ure 3.2 shows the directory structure just created. Next, you

Prepared exclusively for Robert McGovern

PUTTING A BUILD ON CRUISECONTROL 50

need to create the cc-build.xml and config.xml files shown in

that directory structure. We’ll start by writing the cc-build.xml

file.

Writing a Delegating Build File

When your scheduled build runs, it should

1. Delete the last build.

2. Check out the current project from CVS.

3. Run the build.

That is, we want to run a “scorch-the-Earth” build. Start-

ing from scratch each time helps avoid the strangeness that

inevitably happens with incremental builds. When a build

runs successfully from scratch, you get more confidence that

it’s complete. And if a machine is going to run the build for

us, we can afford to be spendthrifts with its time.

You could put those three steps in a target of the existing

build.xml file. But it’s a good idea to keep the scheduled build

procedure separate from the Ant build file used to run builds

manually. To do that, create a separate Ant build file called

cc-build.xml in the builds directory. The cc-build.xml file just sets

up the checkout directory with a fresh copy of code and then

delegates the build procedure to the build.xml file.

<project name="cc-build" default="build" basedir="checkout">

<target name="build">

<delete dir="dms" />

<cvs command="co dms" />

<ant antfile="build.xml" dir="dms" target="test" />

</target>

</project> b
u

ild
s/

c
c

-b
u

ild
.x

m
l

The syntax of this build file should look familiar. It defines

an Ant project with build as the default target to run. The

basedir attribute points to the checkout directory that con-

tains a local copy of the project.

The meat of the cc-build.xml file is the build target. It first

deletes the copy of the project used during the last build to

ensure that the next build starts from scratch.

<delete dir="dms" />

It then checks out a fresh local copy of the project from the

CVS repository into the checkout/dms directory.

Prepared exclusively for Robert McGovern

PUTTING A BUILD ON CRUISECONTROL 51

<cvs command="co dms" />

This form of the <cvs> task uses the value of the CVSROOT

environment variable to locate your CVS repository. Alterna-

tively, you can set the CVSROOT in the cvsRoot attribute of

the <cvs> task.

Using the repository as the sole source for the build process

means that all the build inputs need to be in CVS. The com-

puter will use the lack of any required file as an excuse for not

making good builds. For example, it won’t tolerate having to

find files littered across the filesystem or the network. Using

a version control system also means that any machine with

access to the repository is a candidate for running builds.

The build target then needs to call the project’s build file to

compile and test everything.

<ant antfile="build.xml" dir="dms" target="test" />

This is where having a one-step build process really pays

off. The <ant> task calls the test target of the build.xml file

located in the checkout/dms directory.

Test the Procedure

After writing the cc-build.xml file, it’s a good idea to test it

before handing it off to a cranky computer. To verify the dele-

gating build file works, type

$ cd ˜/builds

$ ant -buildfile cc-build.xml

Make sure to use the -buildfile option here to specify the

cc-build.xml file, since by default Ant will look for a file called

build.xml. Alternatively, you can use -f as an abbreviation for

-buildfile.

Save the Delegating Build File

You need to store the cc-build.xml file under version control so

you don’t lose it. This presents a slight conundrum because

the build file checks out the project from CVS, and yet it’s

in CVS itself. But cc-build.xml isn’t likely to be updated all

that often, so just manually check out cc-build.xml into your

Prepared exclusively for Robert McGovern

PUTTING A BUILD ON CRUISECONTROL 52

builds directory whenever it’s changed. This is another benefit

to using a separate build file for CruiseControl builds, rather

than just adding a target to the main build file.

All we’ve done here is created a wrapper around our existing

build file: build.xml is wrapped by the cc-build.xml file. This

delegating build file checks out the project and builds it, just

as you’d do it from the command line.

Configuring the Build Process

Think of the cc-build.xml file as playing the role of any new pro-

grammer on the team. They show up with an empty directory,

check out the project anew, and build it with the expecta-

tion that everything will work. That is, they provide an objec-

tive second opinion as to whether the builds are successful.

Unfortunately, no one can hire enough new programmers to

get build feedback as often as needed in order to keep working

confidently. That’s where CruiseControl comes in.

Our next step is to tell CruiseControl how and when it should

run our build. By default, it looks for a configuration file

called config.xml that defines the projects it’s responsible for

building. We’ll write the config.xml file one section at a time.

The complete file is shown in Figure 3.3 on page 58.

Define the Project

Create the config.xml file in the builds directory. The first few

lines of config.xml set up the project.

<cruisecontrol>

<project name="dms" buildafterfailed="false"> b
u

ild
s/

c
o

n
fig

.x
m

l

The name attribute of the <project> element identifies this

project. Multiple projects can be defined in this file with each

project having a unique name.

By default, CruiseControl will continue to attempt to build a

project even if the build failed on the last attempt and nothing

has changed in CVS since then. This can be useful for projects

that have dependencies on external resources that might not

be available when the build runs: If at first you don’t succeed,

try and try again. But it’s overkill for this project since every-

thing it depends on is in the CVS repository. Set the value of

Prepared exclusively for Robert McGovern

PUTTING A BUILD ON CRUISECONTROL 53

the buildafterfailed attribute to false so that when the

build fails the CPUs will get a chance to cool down while you

fix the problem.

Bootstrap the Build

Next, define bootstrappers—things to be done before the build bootstrappers

cycle happens.

<bootstrappers>

<currentbuildstatusbootstrapper

file="logs/dms/currentbuildstatus.txt" />

</bootstrappers>

The <currentbuildstatusbootstrapper> simply writes a mes-

sage to the logs/dms/currentbuildstatus.txt file indicating that a

build cycle has begun. Running a bootstrapper doesn’t mean

that a build will be attempted, only that CruiseControl has

awakened to check if a build is necessary. Think of it as

CruiseControl punching in for work.

Check for Changes

You want to run a build only if something has changed in the

CVS repository. After all, there’s no sense running builds if

all the programmers are away at a conference honing their

skills. Next define how CruiseControl checks for changes to

determine if a build is necessary.

<modificationset quietperiod="60">

<cvs localworkingcopy="checkout/dms" />

</modificationset>

The <modificationset> element tells CruiseControl what to

watch to see if a build is required. The project is in CVS,

so you can use the <cvs> element with the localworking-

copy attribute pointing at the local copy of the dms module.3

This means that the local directory will be used to locate the

CVS repository to determine if something has changed. This

keeps you from having to hard-code the CVSROOT in the con-

fig.xml file. The important thing to remember is that a build

3ClearCase, Subversion, StarTeam, Visual SourceSafe, and other version

control systems are also supported.

Prepared exclusively for Robert McGovern

PUTTING A BUILD ON CRUISECONTROL 54

will be attempted only if something being watched by the

<modificationset> has changed.

CVS doesn’t support atomic commits, which means if you

check in 10 files they are committed in 10 separate steps.

What happens when 5 of 10 changes have been committed

when CruiseControl wakes up? It will notice that at least 5

things have changed since the last time it looked at the repos-

itory. But starting a build at this point would be problematic

because not everything has made it into the repository.

To give you a chance to get everything checked in before a

build starts, set the value of the <modificationset> element’s

quietperiod attribute to 60 seconds. This means the CVS

repository must be quiet (inactive) for 60 seconds before a

build is attempted. If CruiseControl wakes up and detects

that changes have been made to the repository during the

quiet period, it will go back to sleep and check again later.

Dial In the Build Interval

Finally, define the build interval and how a build should be

attempted.

<schedule interval="60">

<ant buildfile="cc-build.xml" target="build" />

</schedule>

The <schedule> element tells CruiseControl when to attempt

a build. Here, we set the interval attribute to 60 seconds.

This means CruiseControl will wake up every minute to check

to see if any changes have been made as indicated by the

results of the <modificationset> element. In other words, the

dms module of CVS will be polled every minute for differences.

If changes were made, but not within the quiet period, then a

build will be attempted.

The <ant> element tells CruiseControl how to run a build. In

this case, we want it to invoke the build target of our delegat-

ing build file—cc-build.xml. Recall that this build file will delete

the last build, check out a fresh copy of dms from CVS, and

then run the test target of the checkout/dms/build.xml file.

To recap what we’ve done here: Every minute CruiseControl

will check to see if something in the project has changed. If

Prepared exclusively for Robert McGovern

PUTTING A BUILD ON CRUISECONTROL 55

Joe Asks. . .

How Frequently Should a Build Run?

The only limiting factor to how often you can run
the build is the length of your build cycle. Some
projects may not even finish the compile step in under
a minute. But if we can build the entire project in
less than five minutes, for example, then why not build
every five minutes?

Remember, if nobody changes code, the build just
doesn’t run. But if somebody does change code,
then wouldn’t it be nice to know as soon as possible
if all of the tests still pass? If they didn’t pass, then
you’d only have to look at the last five minutes worth
of changes to diagnose what went wrong.

On a real-world project you’ll probably have differ-
ent types of tests: unit tests, acceptance tests, per-
formance tests, etc. You don’t want to wait for all of
those tests to run just to see if your unit tests passed. To
avoid that, each type of test would have a different
Ant target and you’d configure CruiseControl to run
each target on a different schedule.

Schedule build targets to run based on how often
you want feedback about your system. For example,
you might run all the unit tests every five minutes, all
the acceptance tests every hour, and all the perfor-
mance tests once a day. It’s a game of confidence
and this computer is here to help you feel better.

so, the system will be rebuilt and all of our tests will be run,

using the latest code. Now that’s automation!

Save the Logs

CruiseControl generates a log file every time it attempts a

build. It’s a good idea to save those files so that you can

check on the build results later.

<log dir="logs/dms">

<merge dir="checkout/dms/build/test-results" />

</log>

Prepared exclusively for Robert McGovern

PUTTING A BUILD ON CRUISECONTROL 56

We’ll use the logs directory created earlier as the dumping

ground for log files. The dms subdirectory will be created to

hold the dms project’s log files. That is, the build log files are

stored in a directory that isn’t deleted every build cycle.

In addition to the log files that CruiseControl generates, you

also want each build log to include the results of JUnit tests.

Unfortunately, the test output is currently being displayed

only on the console. You need to create a new test target

that, when run, will also output the JUnit test results as XML

files in the build/test-results directory of the project. This direc-

tory is used as the value of the dir attribute of the <merge>

element. CruiseControl will then merge the contents of that

directory into the build log.

Generate Test Results As XML

When we ran our tests from the command line in the previous

chapter, they output messages to the console. But when a

scheduled build is run, nobody will be watching the console.

We need to capture the test results in a format that can be

displayed to us later in the CruiseControl build log.

Let’s revisit the build.xml file and define a new build target that

will run the tests and send the output to XML files.

<target name="test" depends="compile-tests">

<delete dir="${test.xml.dir}"/>

<mkdir dir="${test.xml.dir}"/>

<junit errorProperty="test.failed"

failureProperty="test.failed">

<classpath refid="project.classpath" />

<formatter type="brief" usefile="false" />

<formatter type="xml" />

<batchtest todir="${test.xml.dir}">

<fileset dir="${build.test.dir}"
includes="**/*Test.class" />

</batchtest>

<sysproperty key="doc.dir" value="${doc.dir}" />

<sysproperty key="index.dir" value="${index.dir}" />

</junit>

<fail message="Tests failed! Check test reports."

if="test.failed" />

</target>

This test target is similar to the test target from the last

chapter, but has a few important differences. First, it always

Prepared exclusively for Robert McGovern

PUTTING A BUILD ON CRUISECONTROL 57

creates an empty directory to hold the JUnit test results.

<delete dir="${test.xml.dir}"/>

<mkdir dir="${test.xml.dir}"/>

The test.xml.dir property, defined in the properties sec-

tion of the build.xml file, points to the project’s build/test-results

directory. This is the directory that CruiseControl uses as the

source for merging test results into the build log.

Instead of halting on the first test failure, the <junit> task

sets a test.failed property on either an error or a failure.

<junit errorProperty="test.failed"

failureProperty="test.failed">

This makes sure that all the tests results—successes and

failures—are collected in XML files. Notice that later in the

file we use the test.failed property in the <fail> task to

alert us if one or more tests failed.

To output test results to the console and to XML files, define

both a brief and an xml formatter.

<formatter type="brief" usefile="false" />

<formatter type="xml" />

The <batchtest> task needs to be changed to include a todir

attribute. This attribute defines the output directory for the

XML files generated by the XML formatter.

<batchtest todir="${test.xml.dir}">

<fileset dir="${build.test.dir}"
includes="**/*Test.class" />

</batchtest>

Now we have a new test target that generates XML files, in

addition to showing test results on the console. CruiseControl

will use those XML files when it generates a build log. This

feature will come in handy later when we send the build status

to the team.

Publish Build Results

Finally, back in the config.xml file, you need to specify publish-

ers—things to be notified after the build cycle happens. publishers

<publishers>

<currentbuildstatuspublisher

file="logs/dms/currentbuildstatus.txt" />

</publishers>

Prepared exclusively for Robert McGovern

RUNNING CRUISECONTROL 58

<cruisecontrol>

<project name="dms" buildafterfailed="false">

<bootstrappers>

<currentbuildstatusbootstrapper

file="logs/dms/currentbuildstatus.txt" />

</bootstrappers>

<modificationset quietperiod="60">

<cvs localworkingcopy="checkout/dms" />

</modificationset>

<schedule interval="60">

<ant buildfile="cc-build.xml" target="build" />

</schedule>

<log dir="logs/dms">

<merge dir="checkout/dms/build/test-results" />

</log>

<publishers>

<currentbuildstatuspublisher

file="logs/dms/currentbuildstatus.txt" />

</publishers>

</project>

</cruisecontrol>

builds/config.xml

Figure 3.3: CruiseControl Configuration File

The <currentbuildstatuspublisher> publisher simply writes a

message to the logs/dms/currentbuildstatus.txt file indicating that

the build cycle has finished. Similar to bootstrappers, the

publishers are run regardless of whether a build was actually

attempted. Think of this as CruiseControl punching out after

a hard interval’s work.

You’ve passed the test. You’re now licensed to drive on Cruise-

Control! Figure 3.3 shows the complete config.xml file.

OK, so that configuration exercise wasn’t a leisurely Sunday

drive, especially compared to the one-liner you wrote for cron.

But from this point, you can easily get a lot more than cron

offers. Moreover, now that you’ve configured CruiseControl

for the first time, you can apply the same steps to put your

other projects on a schedule.

3.3 Running CruiseControl

With the configuration file that tells CruiseControl everything

it needs to know to run our build process in hand, we’re ready

Prepared exclusively for Robert McGovern

RUNNING CRUISECONTROL 59

to see some action! First, navigate to the builds directory that

contains the config.xml and cc-build.xml files. Then run the

CruiseControl script. On Unix, the commands are

$ cd ˜/builds

$ $CC HOME/main/bin/cruisecontrol.sh

Under Windows, the slashes swing around.

$ cd \builds

$ %CC HOME%\main\bin\cruisecontrol.bat

CruiseControl will start up, read the config.xml file, and go

right to work.

Starting Up

When CruiseControl starts up, the output can be verbose. It

likes to let us know it’s doing something useful as a result of

our configuration effort. Here’s the important information:

projectName = [dms]

Project dms: reading settings from config file

[/Users/mike/builds/config.xml]

Project dms starting

Project dms: next build in 1 minutes

Project dms: idle

If the output you see doesn’t look so hopeful, then perhaps

you need to tweak your config.xml file. Thankfully, you don’t

have to restart CruiseControl to change the configuration. It

will reload the config.xml file every time a build cycle starts.

You can make any necessary changes and simply wait another

minute for it to notice.

Then You Wait...

Now wait patiently as 60 long seconds go by. CruiseControl

then wakes up on schedule to check if there’s any work.

Project dms: in build queue

Project dms: reading settings from config file

[/Users/mike/builds/config.xml]

Project dms: bootstrapping

Project dms: checking for modifications

Project dms: 2 modifications have been detected.

Project dms: now building

When it wakes up, it first reloads the config.xml file. Then it

checks the CVS repository and finds that something has been

modified. This being the first build cycle, CruiseControl may

Prepared exclusively for Robert McGovern

RUNNING CRUISECONTROL 60

or may not detect changes in your repository. It needs to

establish a baseline and you may have to change a file in your

repository to force CruiseControl to run a build. Assuming it

detects a change, it’s ready to run the build.

...Until a Build Is Attempted

This is where you finally get to experience the fruits of your

labors. At long last, you will see the one-step build process

get run automatically by the computer.

Buildfile: cc-build.xml

build:
[delete] Deleting directory /Users/mike/builds/checkout/dms

[cvs] Using cvs passfile: /Users/mike/.cvspass

[cvs] U dms/README

[cvs] U dms/build.xml
...
prepare:

[mkdir] Created dir: /Users/mike/builds/checkout/dms/build/prod

[mkdir] Created dir: /Users/mike/builds/checkout/dms/build/test

compile:

[javac] Compiling 4 source files to /Users/.../dms/build/prod

compile-tests:

[javac] Compiling 3 source files to /Users/.../dms/build/test

test:
[junit] Testsuite: com.pragprog.dms.SearchTest
...

BUILD SUCCESSFUL

A lot happened here. The build target of the cc-build.xml file

ran. It deleted the checkout/dms directory and then re-created

it by checking out the dms project from CVS.

Then the test target of the build.xml file ran. That Ant target

has dependencies on other targets, such as the compile tar-

get. As you’d expect, all the dependent targets are run prior to

running the tests. And miracle of miracles, the project built

successfully!

Having run the build, CruiseControl records the results in a

log file, notifies the publishers that indeed it showed up for

work on time, and then promptly goes back to sleep.

Project dms: merging accumulated log files

Project dms: publishing build results

Project dms: idle

Project dms: next build in 1 minutes

Once CruiseControl is started, it keeps running regardless of

whether the last build succeeded or failed. It awakens on

cue to check if a build is necessary, and if so goes about the

Prepared exclusively for Robert McGovern

RUNNING CRUISECONTROL 61

Joe Asks. . .

What About Anthill?

Another build scheduler that’s definitely worth explor-
ing is Anthill.∗ It’s available in either an open-source
version (Anthill OS) or, for those who need some
chrome under the hood, there’s Anthill Pro.

Opinions vary as to whether CruiseControl or Anthill
is easier to install and configure. It really depends
on what you consider easy. To run Anthill you deploy
a WAR file into your favorite servlet engine and then
configure it through a web interface. CruiseControl,
on the other hand, can be configured and run via
the command line without ever firing up a servlet
engine. It’s easier to demonstrate scheduled builds
using CruiseControl as it doesn’t require a servlet
engine.

Remember, the choice of a tool isn’t as important as
getting your build scheduled as soon as possible. So
use whatever tool helps you do that.

∗http://www.urbancode.com/projects/anthill

business of attempting a build. Then it goes to sleep until the

next build interval. Rinse and repeat. It’s a pretty dull life,

which is exactly why we’re happy not to be doing it ourselves.

Now It’s Your Turn

CruiseControl is now in its rhythmic build loop waiting for

us to do what we’re paid to do. Every minute it wakes up,

notices that we haven’t touched anything in CVS, and goes

back to sleep.

Project dms: No modifications found, build not necessary.

Project dms: idle

Project dms: next build in 1 minutes

And it’s happy to just keep doing this and enjoying a life of

leisure. But we’re not going to stand for that kind of lack-

adaisical behavior—we want to see if it’s really watching the

CVS repository and not asleep at the switch.

Prepared exclusively for Robert McGovern

http://www.urbancode.com/projects/anthill

RUNNING CRUISECONTROL 62

In the ˜/work directory, there is a checked-out local copy of the

dms project. Now we’ll change a Java source file. But suppose

in our haste we unknowingly introduce a bug. Worse yet, we

forget to run our unit tests before checking in the modified

source file.

$ cd ˜/work/dms

$ emacs src/com/pragprog/dms/Search.java

(Hack, hack, hack)

$ cvs commit -m "I’m too busy to test"

Now we wait around for the build timer to pop. When it does,

CruiseControl checks for work. Again, the output is verbose,

but it vaguely resembles the following:

1 modification has been detected.
Project dms: now building

Buildfile: cc-build.xml

build:
[delete] Deleting directory /Users/mike/builds/checkout/dms

[cvs] Using cvs passfile: /Users/mike/.cvspass

[cvs] U dms/README

[cvs] U dms/build.xml
...
prepare:
...

compile:
...

compile-tests:
...

test:
[junit] Testsuite: com.pragprog.dms.SearchTest

[junit] Tests run: 2, Failures: 1, Errors: 0, Time elapsed: 1.957 sec

[junit] Testcase: testTitleSearch(com.pragprog.dms.SearchTest): FAILED

[junit] expected:[2] but was:[0]
...

BUILD FAILED

Uh oh! We just got busted. CruiseControl can’t do much for

us other than record the failure in the log file and tell us to fix

things before the next build interval. Rest assured, we won’t

have to spend our days monitoring the build machine. We’ll

automate the notification of a build failure through email a

bit later and explore advanced monitoring techniques in Sec-

tion 6.1, Monitoring Scheduled Builds, on page 125.

What a Scheduled Build Is Good For

We got sloppy. It happens to the best of us from time to time,

so we need somebody looking over our shoulder. In this case,

that somebody is CruiseControl. It noticed that a modification

was made to the CVS repository, and it attempted to run the

tests against those changes. But the test is expecting one

Prepared exclusively for Robert McGovern

PUBLISHING THE BUILD STATUS 63

value and got another, so it fails. It’s not the ideal situation,

but at least you now know there’s a problem and you can fix

it before it turns into a costly problem later.

Now before you do anything else short of breathing, you need

to get the build back to a steady state. Make the necessary

changes to the local copy of the project in the ˜/work/dms direc-

tory. And run the tests before checking in this time! Then sit

back and wait for the next build interval.

A minute later CruiseControl builds the project and confirms

that indeed you’re still the world’s greatest programmer. Bet-

ter yet, it will continue watching for changes and running all

the tests while you’re off doing what you’re good at—writing

programs.

3.4 Publishing the Build Status

The build is now running on a schedule, but you’re missing

something important. Unless a real, live human watches the

console output of CruiseControl, you won’t know when the

build breaks.

When a build fails, we’d like something to send up a flare,

sound the alarm, and start brewing a fresh pot of coffee. Fail-

ing all that, an email will do.

Sending Build Results via Email

We have a lot of options when it comes to who gets what kind

of email, but let’s keep it simple. We’re interested only in get-

ting an email when the build fails and when it has been fixed.

And once we get an email that tells us the build has failed,

we don’t care to continue getting more email until we’re back

on stable ground. Less is more in this case. If we’re con-

stantly being bombarded with build email, we’ll stop reading

them. It’s like signing up for a newsgroup. All the posts are

interesting...for the first day.

Notification by email is relatively easy with CruiseControl.4

Just add an email publisher.

4See [HL02] for details on how to send a build failure email using Ant.

Prepared exclusively for Robert McGovern

PUBLISHING THE BUILD STATUS 64

<htmlemail mailhost="your.smtp.host"

returnaddress="cruisecontrol@clarkware.com"
defaultsuffix="@clarkware.com"
buildresultsurl="http://localhost:8080/cruisecontrol/buildresults/dms"

css="/Users/mike/tools/cruisecontrol/reporting/jsp/css/cruisecontrol.css"

xsldir="/Users/mike/tools/cruisecontrol/reporting/jsp/xsl"

logdir="logs/dms">

<map alias="manager" address="bigcheese@clarkware.com" />

<map alias="mike" address="mike@clarkware.com" />

<map alias="fred" address="fred@somewhere.com" />

<always address="manager" />

<failure address="mike" reportWhenFixed="true" />

<failure address="fred" reportWhenFixed="true" />

</htmlemail>

Add this <htmlemail> element inside the <publishers> ele-

ment of config.xml. Even though the build is failing, we’d like

the email to be nicely formatted HTML. Figure 3.4 on the next

page shows what arrives in our inbox. Notice that it includes

test failure details because we merged our JUnit test results

into the CruiseControl log. It also lists all the modifications

that were made—and who made those modifications!—since

the last successful build. Perhaps you know where the guilty

party lives.

In the interest of sanity, we’re going to gloss over the details of

email configuration here. Most of it is self-explanatory. How-

ever, there are a few things worth noting, starting from the

top:

<htmlemail mailhost="your.smtp.host"

returnaddress="cruisecontrol@clarkware.com"
defaultsuffix="@clarkware.com"
buildresultsurl="http://localhost:8080/cruisecontrol/buildresults/dms"

css="/Users/mike/tools/cruisecontrol/reporting/jsp/css/cruisecontrol.css"

xsldir="/Users/mike/tools/cruisecontrol/reporting/jsp/xsl"

logdir="logs/dms">

The logdir directory points to the directory CruiseControl

uses for saving each build log. To format the email, it applies

a style through the formatting wonders of the css and xsldir

attributes to the latest build log. If you don’t particularly like

the default email format, you have the power of CSS and XSLT

at your fingertips.

Next, create email aliases for each user that should receive an

email.

<map alias="manager" address="bigcheese@clarkware.com" />

<map alias="mike" address="mike@clarkware.com" />

<map alias="fred" address="fred@somewhere.com" />

Prepared exclusively for Robert McGovern

PUBLISHING THE BUILD STATUS 65

Figure 3.4: Build Failure Email

Using the <map> element, each member of our team is asso-

ciated with their corresponding email address. Without any

mappings in place, CruiseControl will use the CVS username

and the value of the defaultsuffix attribute. In this exam-

ple, it’s not necessary to map “mike” to “mike@clarkware.com”

if “mike” is a CVS user. That’s taken care of when the email

publisher applies the value of the defaultsuffix attribute.

Our manager needs to have an email address mapped because

he wants email, but he’s not a CVS user. And Fred wants his

email sent to an address different from that in the default-

suffix attribute, so we have to define a specific mapping for

him.

By default, CruiseControl sends email on a success or a fail-

ure to those folks who checked stuff in since the last success-

ful build. We can get a bit more control by defining exactly

what kind of email each mapped user receives.

Prepared exclusively for Robert McGovern

PUBLISHING THE BUILD STATUS 66

<always address="manager" />

<failure address="mike" reportWhenFixed="true" />

<failure address="fred" reportWhenFixed="true" />

Using the <always> element, we make sure our manager gets

an email for both successful and failed builds. That just hap-

pens to be his preference. He doesn’t make changes to CVS,

so we need to explicitly declare him as an email recipient.

All the programmers should know when the software isn’t

building. As a team, we need to get it fixed pronto. (Oh,

and a little peer pressure goes a long way on some teams.)

Use the <failure> element to list programmers as recipients

of email when the build fails. It’s also important for the pro-

grammers to know when the build is fixed, so set the value of

the reportWhenFixed attribute to true to get those emails

as rewards for fixing the build. You may want to set up an

alias in your email system for all the developers on your team

and send an email to that alias when the build fails and when

it’s fixed.

You may have noticed that the build status email includes a

“View results here” hyperlink at the top. Let’s see what that’s

all about.

Pulling Build History from a Web Page

It’s nice to have the build status forwarded via email. But

when it comes time to debug build failures, it’s also conve-

nient to have a historical record of all the builds. When you

need that information, you can pull it from a web page.

The standard CruiseControl distribution includes an optional

web reporting project in the $CC HOME/reporting/jsp directory.

Building this project creates a WAR file that can be dropped

into your favorite servlet engine, such as Tomcat.

Build and Deploy the Web Application

First, you need to define three properties that tell the web

application where to find files and directories in your build

workspace. In the $CC HOME/reporting/jsp directory, create a

file called override.properties that defines the following proper-

ties (substitute your absolute builds directory):

Prepared exclusively for Robert McGovern

PUBLISHING THE BUILD STATUS 67

Figure 3.5: Build History Web Page

user.log.dir=/Users/mike/builds/logs

user.build.status.file=currentbuildstatus.txt
cruise.build.artifacts.dir=/Users/mike/builds/logs

Next, build the web application. On Unix type the following:

$ cd $CC HOME/reporting/jsp

$ sh build.sh war

This incantation creates a cruisecontrol.war file in the direc-

tory $CC HOME/reporting/jsp/dist. Deploy this WAR file into your

server. If you’re using Tomcat on Unix, for example, type

$ cp dist/cruisecontrol.war $TOMCAT HOME/webapps

View the Build History

With your server running and the CruiseControl web applica-

tion deployed, click the hyperlink at the top of a build results

email or browse to

http://buildmachine:port/cruisecontrol/buildresults/dms

This will take you to a web page similar to the one shown in

Figure 3.5 .

Prepared exclusively for Robert McGovern

SCALING UP 68

Along the left side of this page is a list of all the builds that

were attempted. Clicking any build shows the details you see

in the right area. This is the same information you’ll see in

emails sent by the <htmlemail> publisher.

Now you have build results being pushed via email, and any-

body with access to the web server can actively pull a detailed

history of builds from a web page. That’s a good start, but

in Section 6.1, Monitoring Scheduled Builds, on page 125 we’ll

explore how to get feedback about builds in other cool and

exciting ways.

3.5 Scaling Up

If while reading this chapter you’ve been wondering if Cruise-

Control can handle all the code in your Java project, then

wonder no longer. Here’s a glimpse of CruiseControl on a

massive, real-world project:

CruiseControl on a Large Scale

by Jared Richardson, Software Manager, SAS Institute

Many people think that open-source projects can’t scale to the

enterprise level, but CruiseControl is an example of one that

does. This is our success story of how flexible and extensible

CruiseControl is.

We have approximately 800 developers working on more than

250 projects with five million lines of Java code. Some of these

projects are very low-level components, some are portlets, and

some are end-user solutions. We were able to get all five million

lines of Java code under continuous integration using

CruiseControl relatively easily. In fact, as I type this, we are

covering three code branches, so we are really covering 15

million lines of code, and the CruiseControl box is a single CPU

x86 machine.

We used a few tricks to get CruiseControl running at the

enterprise level. First, we multithreaded CruiseControl

ourselves. (Those changes should be in the next release of CC.)

This is one of the advantages of working with an open-source

project!

Next, instead of using the regular CVS modification set, we are

using the compound modification set. It contains a trigger that

initiates the build and a target that is used to actually get the

Prepared exclusively for Robert McGovern

SCALING UP 69

file changes. For our trigger, we use the filesystem modification

set. When a project changes in CVS, a CVS trigger touches a

single file that CruiseControl is monitoring. This prevents

CruiseControl from trying to poll CVS every ten minutes for

changes in 15 million lines of code. Once it sees that a project

trigger file has changed, it uses the regular CVS modification

set—the target in the compound modification set—to see

exactly what changes were made.

Will Gwaltney, another SAS employee, wrote the compound

modification set, and we contributed it back to the

CruiseControl project. Now anyone can use a compound

modification set, and you can use any of the CruiseControl

modification sets as either triggers or targets.

We use one trick that isn’t stock. We have a build grid at SAS

that has a number of machines behind it. We are able to ask it

to do the builds for us, and it finds an available machine. This

keeps the load of building the systems off the CruiseControl

box.

All in all, CC was very easy to roll out and is now part of the

standard Java development experience at SAS. With very little

effort, you can get this same type of coverage at your company,

no matter the size of the code base.

That’s right, Jared, no project is too big to be built on a sched-

ule! Indeed, the more code you have, the more you need con-

tinuous integration to keep it in check. After all, would you

want to be running builds of that proportion manually to get

confidence that it’s always working? You might have to use a

few clever tricks, but it’s well worth it in the end. And with

CruiseControl, you already have a powerful scheduler that’s

free. Of course, this is just the beginning of what CruiseCon-

trol can do. To learn more, visit the CruiseControl wiki.5

What We Just Did

We’ve come a long way in this chapter. We started with a one-

step build process that we previously ran manually from the

command line. Then we scheduled that command to run at

regular intervals so that the project is continually integrated

5http://confluence.public.thoughtworks.org/display/CC/Home

Prepared exclusively for Robert McGovern

http://confluence.public.thoughtworks.org/display/CC/Home

SCALING UP 70

and tested. We can even schedule multiple Ant targets, each

running on a different schedule. The build scheduler alerts

us when the build breaks by sending email and recording the

build history on a common web page. All this makes finding

and fixing problems easier so that we have more time to do

the really exciting stuff.

Prepared exclusively for Robert McGovern

Chapter 4

Push-Button Releases
All this fuss about building and testing software is important,

but it’s just a means to an end. After all, you get paid to deliver

working software of value to customers. Everything up to this

point is just resumé building unless you can easily generate

a release, and consistently regenerate it, to capitalize on your

development efforts. You can’t stop at just automating the

build and test cycle.

In this chapter we’ll focus on the bottom line: generating a

release of software. Automating the release procedure sets us

up to release new versions of our software, or regenerate any

prior release, at the push of a button.

4.1 Releasing Early and Often

As it stands, the DMS project is still rather trivial. The build

process compiles a few Java files and runs unit tests in a

matter of seconds. We’re successfully creating builds locally

by manually running the Ant build file and automatically on

the machine that runs scheduled builds. Before things get

any more complicated, however, we need to start generating

releases of our software.

The Contents of a Release

A software release is a packaged collection of files intended software release

for some customer of our software. The exact contents of a

release may vary, but most software releases consist of at

least the following:

PREPARING FOR YOUR FIRST RELEASE 72

• A release is uniquely identified by a name and a version

number. The name typically bears some resemblance to

the name of the software product as defined by market-

ing. The version number is generally a combination of a

major and minor version number. For example, a bug-fix

release of the second version of our DMS project might

be identified as the dms-2.1 release.

• Each release is defined by the set of features it includes.

That is, we generate a release when we’ve built features

that offer value to the end user. That might mean we

wait for a dozen features to be developed or for a single

bug to be fixed.

• Each release is complete. All the files necessary to run all

the features of the software are included. All the docu-

mentation related to that release is also included. Users

like us more when this happens.

• If installing a release requires following a set of instruc-

tions, those instructions are carried out by running a

single installation script or utility.

Whether we’re generating a release for our project’s QA team,

the in-house project down the hall, or the entire computing

world, we generate a release in the same consistent way.

4.2 Preparing for Your First Release

We’ve been heads-down on the DMS project for a week now

implementing features for our first release. It’s an exciting

time, not because we’re hoping to get rich selling this release,

but because this is our first opportunity to actually release

something. At the end of the day we’ll be able to point to

neatly packaged software and say, “We made that!” And as

creators, that brings us great joy. It also gives the rest of our

project team confidence in our ability to deliver.

Aiming Small

We’ll be delivering this first release to the good folks on the

QA team. That is, they’ll serve as our internal customers. You

can only do so much in a week, so the list of features that

Prepared exclusively for Robert McGovern

PREPARING FOR YOUR FIRST RELEASE 73

made it into this release is rather short. It’s kind of difficult

to generate a release now, while the project is small and the

build process is fast—and it will only get more difficult as

the project continues. So we should start generating releases

before the job gets any bigger. If we aim small, we can only

miss small.

Synchronizing Work for the Release

All week the programmers have been hard at work on new fea-

tures: checking files out of version control, making changes,

running tests, and checking the files back in. Meanwhile, the

scheduled build is running on a frequent interval to keep all

the code integrated.

At the end of the week, everbody working on the release needs

to synchronize their local workspace with the shared reposi-

tory. They make sure all their tests pass, then type

$ cd ˜/work/dms

$ cvs commit -m "I’m done with this release"

cvs commit: Examining .

Sanity Checking the Work

At this point we take off our “programmer” hat and replace it

with a “release manager” hat. (You might actually log in as a

separate user for the remainder of this chapter.)

Despite the good intentions of programmers, it’s not uncom-

mon for them to forget to check in a local file. Perhaps a

local file was never added to the repository, so running the cvs

commit command ignores it. When this happens, a “Works on

my machine” debugging session soon follows. The scheduled

build process will notify us when files are missing, but we can

conserve our release-manager hairline slightly by running a

quick sanity check before going any further.

Let’s make sure we can build and test the code we’re about

to copy into the release branch. First, check out a fresh copy

of the files currently in the version control repository into a

nondevelopment directory.

$ rm -r ˜/work/dms

$ cd ˜/work

$ cvs co dms

Prepared exclusively for Robert McGovern

PREPARING FOR YOUR FIRST RELEASE 74

Then run the test target of the build file.

$ cd ˜/work/dms

$ ant test

Buildfile: build.xml
...

BUILD SUCCESSFUL

Seeing that neon BUILD SUCCESSFUL sign gives us confidence

to proceed to the next step.

Creating a Release Branch

At this point the mainline of the version control repository

contains the master copy of all the files we’ll put into the

release. There’s just one problem: At the same time that

we’re preparing the release, someone could change a file on

the mainline. If that were to happen, the contents of our

release may become inconsistent.

We could lock the version control repository until we’ve suc-

cessfully generated the release, but in effect that blocks every-

one from starting on the next release. Alternatively, we could

create a copy of all the files that will go into the release into

a temporary directory. But then let’s assume you fix a bug

or need to make a minor enhancement to a file while prepar-

ing the release. How do you also make those changes to the

master copy under version control? And after you’ve delivered

the release to QA and deleted the temporary directory, how do

you regenerate the release to fix bugs QA might find?

A much more reliable option is to use the version control

repository to create a stable working area for the release. After

all, it’s designed to keep track of file changes so you can

recover any version of a file at any time. By creating what’s

commonly called a release branch in the repository, you can release branch

isolate yourself from activity on the live mainline while prepar-

ing this release.

Now that we know the mainline of the repository contains

everything for the release, we’re ready to create the release

branch. To do that, run the cvs rtag command.

$ cd ˜/work/dms

$ cvs rtag -b RB 1 0 dms

You can run the cvs rtag command from anywhere because it

ignores what’s in the local directory. Instead, it takes a snap-

Prepared exclusively for Robert McGovern

PREPARING FOR YOUR FIRST RELEASE 75

Joe Asks. . .

Can I Do This with My Version Control System?

In this chapter we’re focused on releasing software
with consistency and repeatability. A version con-
trol system is merely a tool that helps us do that. It
keeps track of file versions, creates multiple copies
of those versioned files in separate branches, and
applies named tags to a set of versioned files.

Branching and tagging are concepts supported by
most version control systems. That is, while the syn-
tax for how to create branches and tags differs across
version control systems, the concepts are universal.
And frankly, if your version control system doesn’t sup-
port the basic concepts demonstrated in this chapter,
then trade it in for one that does.

Although the examples in this chapter use CVS, it’s
not the only version control system in the known uni-
verse. If you’re using another version control system
on your project, then feel free to gloss over the CVS
syntax. If you aren’t yet using a version control system,
or you aren’t familiar with branching and tagging in
CVS, please see [TH03].

shot of the files in the version control system’s repository. The

-b option creates a branch off of the mainline that contains a

copy of all the files in the dms module. It also tags all of those

files with the RB 1 0 branch tag.

Now you have a release branch named RB 1 0 for version 1.0

of the DMS project. Think of the release branch as a copy of

the files on the mainline at the time the branch was created.

As compared to a temporary directory, a branch maintains

its own history and the ability to efficiently merge changes

back onto the mainline. After we’ve delivered the release, this

branch will continue to be available. We can easily regenerate

the release should we need to fix a bug reported by QA.

Prepared exclusively for Robert McGovern

PREPARING FOR YOUR FIRST RELEASE 76w o r k / d m s Q 1 _ 0 Q r b /d m s /
Figure 4.1: Release Branch Directory

Checking Out the Release Branch

Creating the release branch had no effect on the local direc-

tory ˜/work/dms. It’s still working on the mainline. If you were

to change a file in the local directory and check it in, the

change would go onto the mainline, not the release branch.

To begin working on the release branch, you need to check

it out. We’ll name our branch’s directory ˜/work/dms-1 0-rb,

which is parallel to our ˜/work/dms directory. By appending

the version number (1 0 in this case) to the release branch

directory name, we’ll know exactly which release version we’re

working on. Using an underscore between the major and

minor version numbers keeps the name consistent with the

convention used to name the release branch. By also append-

ing rb to the directory name, we’ll avoid confusing the release

branch directory with the mainline directory.

To check out the release branch, specify the branch tag and

override the default directory name.

$ cd ˜/work

$ cvs co -r RB 1 0 -d dms-1 0-rb dms

cvs checkout: Updating dms-1 0-rb

U dms-1 0-rb/LICENSE

U dms-1 0-rb/README

U dms-1 0-rb/build.xml
...

The -r checkout option indicates the branch tag: RB 1 0.

This checks out the most recent files in that branch. The -d

checkout option overrides the default directory name so that

the files are checked out under the ˜/work/dms-1 0-rb directory.

Figure 4.1 shows the two parallel directories we now have.

Prepared exclusively for Robert McGovern

PREPARING FOR YOUR FIRST RELEASE 77

Testing the Release Branch

The first thing to do after checking out the release branch is

test it. This is the same sanity check we made before creating

the release branch. This time, instead of verifying that the

mainline of the repository is up-to-date, we’re verifying that

those same files successfully made it into the release branch.

Run the build in the release branch directory by typing

$ cd ˜/work/dms-1 0-rb

$ ant test

Buildfile: build.xml
...

BUILD SUCCESSFUL

This step may seem a bit overcautious, but running all the

tests is cheap insurance. Now you know that all the source

files compile and the tests are passing. It stands to reason

the release branch is intact, so we’re confident in moving on

to the next step.

Tweaking the Release Branch

At this point you have a release branch directory that contains

files isolated from the repository’s mainline. You can commit

changes in this directory, and they’ll be made to the release

branch, and not the mainline. This allows you to make any

necessary revisions to the files in preparation for the release.

Say, for example, you notice that the README file is missing

a few minor details that will surely trip up QA when they get

the release. To make those changes, edit the README file in

the release branch directory and commit the change back.

$ cd ˜/work/dms-1 0-rb

$ emacs README

$ cvs commit -m "Oops, forgot these important details!"

This updated version of the README file exists only on the

release branch. To apply the same change to the mainline,

you’d need to merge the file onto the mainline.

You can continue making edits in the release branch directory

in preparation for generating the actual release. When you’re

done polishing, it’s wise to run all the tests as a sanity check

before moving on to the next step: packaging the release.

Prepared exclusively for Robert McGovern

PACKAGING THE RELEASE 78

4.3 Packaging the Release

After the release branch directory has been polished, the code

has compiled, and all the tests have run, we’re in good shape.

We now have a directory that contains source files, class files,

vendor libraries, scripts, and even some documentation. Not

too shabby for a first release. Indeed, this is an accomplish-

ment to be proud of on any project. But it’s not quite enough.

The release needs to be in a package usable by a customer. So

once we’ve built and tested the contents of the release branch

directory, the next step in the release procedure calls for cre-

ating a distribution file. This is the file a customer would effec- distribution file

tively pull off the shelf, take back to the office, and install with

a minimum number of tools required.

Selecting Files for Distribution

When a customer unpacks the distribution file, presentation

is everything. The way in which the files are organized and

laid down on disk is a reflection of the software’s quality. We

want to put all the necessary parts and pieces into a neat

little box that’s clearly labeled so that its contents are obvious.

And when the box is opened, the instructions should be right

on top. That is, we want the distribution file to resemble a

software product rather than a development project.

The first step toward packaging the release is to carefully

select which files from our release branch directory will go

into the distribution file. Figure 4.2 on the next page shows

the transformation process from the release branch directory

to the directory structure in the distribution file. When the

customer unpacks the distribution file, we want them to get

the directory structure on the right.

Notice that not everything makes the cut—only a subset of the

files in the directory on the left make it into the distribution

directory on the right. If you think of this selection process as

being like a playground game of dodgeball, here’s who doesn’t

get picked to play for the distribution team:

• Development tools. Customers won’t be building the soft-

ware, so they don’t need development tools. For exam-

ple, the build.xml file is not distributed. Also, any vendor

Prepared exclusively for Robert McGovern

PACKAGING THE RELEASE 79d m s Z 1 _ 0 Z r b /
v e n d o r / l i b /b u i l d /d o c / t h i r d op a r ty l ib ra r i e sp r o d /s r c /t e s t /R E A D M EL I C E N S Eb u i l d . x m l d m s Z 1 _ 0 /v e n d o r / l i b /b i n /d o c / l u c e n e � 1 . 3 . j a rl i b / d m s . j a rR E A D M EL I C E N S Et e s t / i n d e x . *i n d e x A l l . *s e a r c h . *T i d y . j a rb i n / i n d e x . *i n d e x A l l . *s e a r c h . *s e l f t e s t . *
Figure 4.2: Standard Distribution File Contents

libraries that are needed only for building (not running)

our software, such as junit-3.8.jar, don’t make the team.

• Build inputs. Unless this is an open-source project, cus-

tomers don’t need, nor do we want to give them, any of

the inputs to the build process. The src and test directo-

ries, for example, aren’t included in the distribution file.

• Test classes. We won’t be distributing our tests as part

of the standard distribution. So the build/test directory

stays behind for now. This is another reason to keep

all the test classes in their own directory—it helps avoid

accidentally distributing them.

• Individual production class files. The production classes

in the build/prod directory on the left do get picked, but in

a different form. They are first bundled into the lib/dms.jar

file on the right. This means we can easily replace all the

class files by distributing an updated dms.jar file later.

Prepared exclusively for Robert McGovern

PACKAGING THE RELEASE 80

Packing the Distribution File

Once you’ve determined the contents of the distribution file,

you’re ready to do the actual packing, putting your files into a

nice tidy box. But what kind of box? There are many options,

but the ZIP and tar varieties are most popular. Pick the appro-

priate type for your customers. We’ll put our release in a ZIP

file. If you prefer to distribute tar files, then it’s simply a word

substitution from here on.

Write a Packaging Script

When it comes to writing the script that packs the distribution

file, we’re faced with another decision. We’ll need something

that runs the jar command to bundle our class files into a JAR

file and then runs the zip command to create a distribution file

containing all the necessary files.

We could use a shell script or a batch file. However, Ant has

a <jar> and a <zip> task that both offer conveniences over

the command-line versions. Since we’re already familiar with

Ant’s syntax, let’s drop back into Ant for this step.

Start by creating an Ant build file called package.xml. The

complete file is shown in Figure 4.3 on page 84. The first line

defines a project.

<project name="dms" default="zip" basedir=".">

This project has a default target called zip that creates the

distribution ZIP file.

Define Packaging Properties

After defining the project, add three properties to define the

release by its unique name and version number.

<property name="name" value="dms" />

<property name="version" value="x y" />

<property name="release" value="${name}-${version}" />

Using properties to define the release is convenient because it

means you can override these properties when invoking Ant

from the command line. For example, let’s say you run the

package.xml file like so:

$ ant -buildfile package.xml -Dversion=1 0

Prepared exclusively for Robert McGovern

PACKAGING THE RELEASE 81

When Ant runs the package.xml file with the -Dversion=1 0

option, the value of the release property used during pack-

aging will be dms-1 0. This means you don’t have to change

the Ant build file when you update to new release versions.

Next, use properties to define the location of the production

class files and the directory that will ultimately contain the

distribution file.

<property name="build.prod.dir" location="build/prod"/>

<property name="dist.dir" location="dist" />

Following those properties, define four additional properties

that refer to the JAR and ZIP files.

<property name="jar.name" value="${name}.jar" />

<property name="jar.path" location="${dist.dir}/${jar.name}" />

<property name="zip.name" value="${release}.zip" />

<property name="zip.path" location="${dist.dir}/${zip.name}" />

Notice how these properties use the release name and version

to name the JAR and ZIP files. The JAR file’s name will include

the project name, so it will be called dms.jar. The ZIP file’s

name will include the project name and the version number,

as defined by the release property. For example, the first

release will be packaged in a ZIP file called dms-1 0.zip. Notice

that both of these files will be created in the directory pointed

to by the dist.dir property (dist in this case).

The targets we’ll write next will use these properties rather

than the actual filenames. Defining the filenames and loca-

tions as properties makes it easy to change the naming con-

vention later, if necessary. This also allows you to override the

filenames from the command line.

Create a JAR File

The first target of package.xml file creates a JAR file containing

all the production class files.

<target name="jar">

<mkdir dir="${dist.dir}"/>

<jar destfile="${jar.path}" basedir="${build.prod.dir}" />

</target>

The jar target first creates the distribution directory. It then

uses the <jar> task to package all the classes in the build/prod

directory into the resulting dist/dms.jar file.

Prepared exclusively for Robert McGovern

PACKAGING THE RELEASE 82

Create a ZIP File

The second target of the package.xml file creates a ZIP file con-

taining all the files in the distribution.

<target name="zip" depends="jar">

<zip destfile="${zip.path}">

<zipfileset dir="${basedir}" prefix="${release}">

<include name="README" />

<include name="LICENSE" />

</zipfileset>

<zipfileset dir="bin" filemode="755" prefix="${release}/bin">

<include name="index.*" />

<include name="indexAll.*" />

<include name="search.*" />

</zipfileset>

<zipfileset dir="doc" prefix="${release}/doc" />

<zipfileset dir="dist" includes="${jar.name}"

prefix="${release}/lib" />

<zipfileset dir="vendor" prefix="${release}/vendor">

<include name="**/lucene-1.3.jar" />

<include name="**/Tidy.jar" />

</zipfileset>

</zip>

</target>

Ant will ensure that the jar target is run to generate the JAR

file before the zip target because of the declared dependency.

The zip target then uses the <zip> task to copy specific files

in the release branch directory into a ZIP file.

By using <zipfileset> elements you can control exactly which

files get packaged into the distribution ZIP file and where

those files are placed. This means you can organize the dis-

tribution file for the best presentation to your customers. For

example:

• Only specific scripts from the bin directory are included

in the bin directory of the ZIP file. Setting the filemode

of the scripts to 0755 ensures that everyone is permitted

to read and execute the scripts, but only the file owner

has write permission.

• The dms.jar file was created in the dist directory by the

jar target. In this step it’s copied into the lib directory of

the ZIP file.

• Only two vendor libraries are included from the vendor/lib

directory—that’s all that’s needed to run the software.

Prepared exclusively for Robert McGovern

PACKAGING THE RELEASE 83

• All the files and directories in the ZIP file are organized

under a parent directory named for our release, as speci-

fied by using the prefix attribute on all the <zipfileset>

elements. This means that when the customer unzips

the distribution file for version 1.0, all its files will be

under the dms-1 0 directory.

Now you have a script that automates the packing step. With

it, you can create an infinite number of distribution files. Fig-

ure 4.3 on the next page shows the contents of the final pack-

age.xml file. Running this script with a specific version num-

ber creates a ZIP file whose structure mirrors that shown on

the right side of Figure 4.2 on page 79.

Packing an Optional Test Distribution File

When we created the distribution file, it didn’t contain any

test classes. Normally, we don’t want to ship our tests as

part of the standard distribution because it might make the

distribution file unreasonably large.

However, if a customer experiences a problem with our soft-

ware once it’s been installed, we’d like to know what went

wrong. In that case, it would be beneficial to provide an

optional distribution file that includes the tests and a push-

button script to run them. Then we could ask the customer to

install this optional distribution file, run the tests, and send

us the results for analysis.

While we’re in the packaging mode, it’s easy to use all the

same Ant tricks we just learned to create an optional distri-

bution file for testing purposes. Figure 4.4 on page 85 shows

the transformation process from the release branch directory

to the directory structure in the optional test distribution file.

When a customer unpacks the test distribution file, they’ll

get the directory structure on the right. By unpacking this

file in the same directory that contains our dms-1 0 installa-

tion, they’ll be adding another layer of support to the standard

installation. That is, they’ll have a standard distribution that

also includes everything needed to run diagnostic tests.

The package-tests.xml script shown in Figure 4.5 on page 86

is very similar to the package.xml script we just wrote. In

Prepared exclusively for Robert McGovern

PACKAGING THE RELEASE 84

<?xml version="1.0"?>

<project name="dms" default="zip" basedir=".">

<property name="name" value="dms" />

<property name="version" value="x y" />

<property name="release" value="${name}-${version}" />

<property name="build.prod.dir" location="build/prod"/>

<property name="dist.dir" location="dist" />

<property name="jar.name" value="${name}.jar" />

<property name="jar.path" location="${dist.dir}/${jar.name}" />

<property name="zip.name" value="${release}.zip" />

<property name="zip.path" location="${dist.dir}/${zip.name}" />

<target name="jar">

<mkdir dir="${dist.dir}"/>

<jar destfile="${jar.path}" basedir="${build.prod.dir}" />

</target>

<target name="zip" depends="jar">

<zip destfile="${zip.path}">

<zipfileset dir="${basedir}" prefix="${release}">

<include name="README" />

<include name="LICENSE" />

</zipfileset>

<zipfileset dir="bin" filemode="755" prefix="${release}/bin">

<include name="index.*" />

<include name="indexAll.*" />

<include name="search.*" />

</zipfileset>

<zipfileset dir="doc" prefix="${release}/doc" />

<zipfileset dir="dist" includes="${jar.name}"

prefix="${release}/lib" />

<zipfileset dir="vendor" prefix="${release}/vendor">

<include name="**/lucene-1.3.jar" />

<include name="**/Tidy.jar" />

</zipfileset>

</zip>

</target>

</project>

dms/package.xml

Figure 4.3: Standard Distribution Packaging Script

Prepared exclusively for Robert McGovern

GENERATING THE RELEASE 85d m s � 1 _ 0 /v e n d o r / l i b /b i n / j u n i t ± 3 . 8 . j a rl i b / d m s ± t e s t s . j a rs e l f t e s t . *d m s � 1 _ 0 � r b /
v e n d o r / l i b /b u i l d /d o c / t h i r d Åp a r ty l ib ra r i e sp r o d /s r c /t e s t /R E A D M EL I C E N S Eb u i l d . x m lt e s t /b i n / i n d e x . *i n d e x A l l . *s e a r c h . *s e l f t e s t . *

Figure 4.4: Test Distribution File Contents

this case, however, the targets create dms-tests.jar, a JAR file

containing just the test classes, and dms-1 0-tests.zip, a ZIP file

containing the dms-tests.jar file and all additional files needed

to run the tests.

We’ll put this test distribution file to good use when we dis-

cuss how our customers install the software in Section 5.4,

Troubleshooting with Diagnostic Tests, on page 101. The point

to remember is that you can create multiple distribution files

each with a subset of the files in the project directory. Then

you can unpack them individually to layer on additional sup-

port to the standard distribution.

4.4 Generating the Release

Everything up to this point has been preparation. Preparation

is key, but now it’s time to actually generate the release.

Prepared exclusively for Robert McGovern

GENERATING THE RELEASE 86

<?xml version="1.0"?>

<project name="dms-tests" default="zip" basedir=".">

<property name="name" value="dms" />

<property name="version" value="x y" />

<property name="release" value="${name}-${version}" />

<property name="build.test.dir" location="build/test"/>

<property name="dist.dir" location="dist" />

<property name="jar.name" value="${name}-tests.jar" />

<property name="jar.path" location="${dist.dir}/${jar.name}" />

<property name="zip.name" value="${release}-tests.zip" />

<property name="zip.path" location="${dist.dir}/${zip.name}" />

<target name="jar">

<mkdir dir="${dist.dir}"/>

<jar destfile="${jar.path}" basedir="${build.test.dir}" />

</target>

<target name="zip" depends="jar">

<zip destfile="${zip.path}">

<zipfileset dir="bin" filemode="755" prefix="${release}/bin">

<include name="selftest.*" />

</zipfileset>

<zipfileset dir="dist" includes="${jar.name}"

prefix="${release}/lib" />

<zipfileset dir="vendor" prefix="${release}/vendor">

<include name="**/junit-3.8.jar" />

</zipfileset>

</zip>

</target>

</project>

dms/package-tests.xml

Figure 4.5: Test Distribution Packaging Script

Creating a Distribution File

Recall that earlier we tested the release branch. This involved

compiling the code and running the tests. This means all the

build outputs are ready for packaging. To create your first

distribution file, change back to the release branch directory

and run the package.xml script. Make sure to set the version

property with the appropriate version number.

$ cd ˜/work/dms-1 0-rb

$ ant -buildfile package.xml -Dversion=1 0

Buildfile: package.xml

jar:

[mkdir] Created dir: /Users/mike/work/dms-1 0-rb/dist

[jar] Building jar: /Users/mike/work/dms-1 0-rb/dist/dms.jar

zip:

Prepared exclusively for Robert McGovern

GENERATING THE RELEASE 87

[zip] Building zip: /Users/mike/work/dms-1 0-rb/dist/dms-1 0.zip

BUILD SUCCESSFUL
Total time: 2 seconds

This creates two files in the ˜/work/dms-1 0-rb/dist directory:

dms.jar and dms-1 0.zip. Because JAR files are compatible with

the ZIP file format, the jar tool can be used to check the con-

tents of the distribution ZIP file.

$ cd ˜/work/dms-1 0-rb/dist

$ jar tf dms-1 0.zip

dms-1 0/

dms-1 0/LICENSE

dms-1 0/README

dms-1 0/bin/

dms-1 0/bin/index.bat

dms-1 0/bin/index.sh

dms-1 0/bin/indexAll.bat

dms-1 0/bin/indexAll.sh

dms-1 0/bin/search.bat

dms-1 0/bin/search.sh

dms-1 0/doc/

dms-1 0/doc/Example1.html

dms-1 0/doc/Example2.html

dms-1 0/doc/Example3.html

dms-1 0/lib/

dms-1 0/lib/dms.jar

dms-1 0/vendor/

dms-1 0/vendor/lib/

dms-1 0/vendor/lib/Tidy.jar

dms-1 0/vendor/lib/lucene-1.3.jar

Testing the Distribution Contents

We’ve created a distribution file, but does it contain all the

necessary files? It would be good to know for sure before we

start shipping this release. We could punt for now, knowing

that when we deliver the release to QA they’ll poke and prod

it for us. If an important file is missing, the phone will ring.

But you’d like to limit the number of times your phone rings.

We have a few strategies for verifying that the distribution file

contains all the right stuff.

• Compare the file contents. You could run the diff com-

mand or an equivalent to compare the contents of the

unzipped distribution file against the files in the release

branch directory. You’ll need to be smart about how you

do that given that the distribution contains a subset of

files from the release branch, but it’s possible.

Prepared exclusively for Robert McGovern

GENERATING THE RELEASE 88

• Run the application. This involves unzipping the distri-

bution file and running a script that you know will fail

if the distribution contents aren’t intact. That is, you

could do exactly what the customer will do once they’ve

installed the distribution.

• Run the tests. Even though the tests aren’t in the distri-

bution file, you could, through some CLASSPATH man-

gling, run the tests in the release branch against the

production classes in the dms.jar file of the distribution.

Each of these options verifies something different, so ideally

you should run through all of them to get the most confi-

dence. Running the application might be easiest option, if

you know what should happen as a result. But it’s only eas-

iest the first time—the visual inspection required will get old

pretty quickly. If we use the existing tests, both running and

verifying the distribution will be automated.

“But wait!” you say. “Didn’t you just tell me not to include

the tests in the release? How can I run what’s not there?” Ah,

that’s the neat part about automating this using Ant. We can

arrange to run the code in the distribution file and the tests

from our release branch. Watch....

Fake an Install

First, unzip the distribution file from the release branch direc-

tory into ˜/testinstall. We’re effectively doing what a customer

would do during installation, though in a different directory.

$ mkdir ˜/testinstall

$ cd ˜/testinstall

$ unzip ˜/work/dms-1 0-rb/dist/dms-1 0.zip

Archive: /Users/mike/work/dms-1 0-rb/dist/dms-1 0.zip

creating: dms-1 0/

inflactin: dms-1 0/LICENSE

inflating: dms-1 0/README

creating: dms-1 0/bin/
...

This creates a ˜/testinstall/dms-1 0 directory that contains every-

thing a customer would see.

Prepared exclusively for Robert McGovern

GENERATING THE RELEASE 89

Extract the JAR File

Next, “unjar” the dms.jar file in the distribution. This isn’t

necessary to run the software, but we’d like to use the existing

build.xml file in the release branch directory to run the tests. It

expects the production class files to be in a directory, not in a

JAR file. So by expanding the JAR file using the jar command,

you get a directory structure containing the production class

files.

$ cd ˜/testinstall/dms-1 0/lib

$ jar xvf dms.jar

created: com/

created: com/pragprog/

created: com/pragprog/dms/

extracted: com/pragprog/dms/HtmlDocument.class

extracted: com/pragprog/dms/Indexer.class

extracted: com/pragprog/dms/Logger.class

extracted: com/pragprog/dms/Search.class

Now the production classes that get shipped in the distribu-

tion are sprawled out in the ˜/testinstall/dms-1 0/lib directory.

Their corresponding test classes are under the release branch

directory ˜/work/dms-1 0-rb/build/test.

Test the Distribution Classes

We need to run the test target of build.xml that’s in the release

branch directory. But we don’t want to test the production

classes in the release branch. Instead, we want to test the

production classes in the distribution file we just unpacked.

Because we stuck to sound design principles when we wrote

our build script, we can override build directories by setting

Ant properties on the command line. Run the test by typing

$ cd ˜/work/dms-1 0-rb

$ ant test -Dbuild.prod.dir=/Users/mike/testinstall/dms-1 0/lib

-Dvendor.lib.dir=/Users/mike/testinstall/dms-1 0/vendor/lib

Buildfile: build.xml
prepare:

compile:

compile-tests:

test:
[junit] Testsuite: com.pragprog.dms.DocumentTest

[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.519 sec

[junit] Testsuite: com.pragprog.dms.SearchTest

[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 1.184 sec

BUILD SUCCESSFUL
Total time: 5 seconds

Prepared exclusively for Robert McGovern

TAGGING THE RELEASE 90w o r k / d m s å 1 _ 0 å r b /v e n d o r / l i b /b i n /b u i l d /d o c / th i r d ÷p a r ty l i b r a r i e sp r o d /s r c /t e s t /R E A D M EL I C E N S Eb u i l d . x m l t e s t i n s t a l l / d m s å 1 _ 0 /v e n d o r / l i b /b i n /d o c / l u c e n e � 1 . 3 . j a rl i b / d m s . j a rR E A D M EL I C E N S Et e s t / T i d y . j a rc o m / p r a g p r o g / d m sC L A S S P A T H
Figure 4.6: Testing the Release

Notice that we overrode the location for production classes

using the -Dbuild.prod.dir option. We also overrode the

location for vendor libraries using -Dvendor.lib.dir. This

means we’re running the tests in the release branch direc-

tory against the production classes and vendor libraries in the

unpacked distribution directory. The compile and compile-

tests targets did nothing because all the class files are up-

to-date. We’re just using what we already have.

Figure 4.6 shows what the Java CLASSPATH includes when

you run the test target with these options.

By testing across directories like this we’re fairly sure that

the distribution is ready for prime time. If the phone starts

ringing off the hook, then we’ll need to come up with another

way to verify that the goods we’re delivering are indeed good.

4.5 Tagging the Release

After you’ve done your best to ensure that the distribution file

is golden, the next step in the release procedure is to tag the

current contents of the release branch directory. This not only

Prepared exclusively for Robert McGovern

TAGGING THE RELEASE 91R E L _ 1 _ 0R B _ 1 _ 0 M a i n l i n e B u g F i x e s
Figure 4.7: Tagging The Release

creates an audit of all the files in the release, it also effectively

gives you a time machine. At any time in the future you can

use the release tag to check out the code used to generate

this release. Tag the current contents of the release branch

directory as REL 1 0 by typing

$ cd ˜/work/dms-1 0-rb

$ cvs tag REL 1 0

cvs tag: Tagging .

T LICENSE
...

Using the cvs tag command to tag the release is different from

the cvs rtag command used earlier. The cvs tag command

tags the revisions of files in the repository that match what’s

checked out in the local directory. This way, if developers

have checked in new changes while we’ve been off building,

packaging, and testing, those changes won’t be tagged. We

want the tag to reflect what’s actually in the release.

Figure 4.7 shows the tags now in the CVS repository. Between

applying the RB 1 0 branch tag and the REL 1 0 release tag, we

were preparing for the release and generating the distribution

file. Now that we’ve officially generated a release in the repos-

itory by creating a release tag, we’re ready to hand off the

release to the QA team. If they report any bugs, we’ll fix files

in the release branch before merging them onto the mainline.

Prepared exclusively for Robert McGovern

HANDING OFF THE RELEASE 92

4.6 Handing Off the Release

The last step in our release procedure is to deliver it to the

customer. Since we’re just delivering to QA, it’s as easy as

copying the distribution file to a shared directory:

$ cp ˜/work/dms-1 0-rb/dist/dms-1 0.zip /Users/Shared/releases

We’ll look at other slightly more involved deployment scenar-

ios in the next chapter. For now, the key point is that we have

a distribution file. Where we choose to put that file—either

locally or remotely—is another thing altogether.

4.7 Automating the Release Procedure

“Wait just one second,” I hear folks saying. “Where’s the auto-

mation in all of this? Our fingertips are raw from all the typing

we’ve been doing on the command line, and we’ve learned that

there’s no repeatability to be gained by typing in a sequence

of commands on the command line. So why are we doing all

this manually and not automating it from the start?”

Well, before you can automate a procedure, you need to be

able to run through it manually. That is, you can’t teach

this computer to do something before knowing how to do it

yourself. So here’s the good news you’ve been waiting for:

The computer is going to generate our next release for us.

That’s right—anything you can do on the command line, the

computer can do better once you teach it how.

Recapping What We Did

Let’s review the steps we went through to generate our first

release on the command line.

1. Test the contents of the mainline directory.

2. Create a release branch.

3. Check out the release branch.

4. Build and test the release branch.

5. Create a distribution file for the release.

6. Test the distribution file contents.

7. Tag the release.

8. Hand off the distribution file to QA.

Prepared exclusively for Robert McGovern

AUTOMATING THE RELEASE PROCEDURE 93

This sequence of steps is our release procedure. It’s a lot of

work. And if we have to do all those things every time we cut

a release, we won’t want to cut a release very often. When we

do, we’ll likely mess something up because following detailed

instructions is prone to boredom and error.

Scripting the Release Procedure

But all is not lost. Take a quick look back over those steps.

The one variable in the whole equation is the version number.

This week it’s version 1.0, and next week perhaps we’ll be

ready with version 1.1. This means we can automate this

entire release procedure in two scripts.

You do steps 1–4 every time you want to create a new release

branch. Once you have a release branch, steps 5–8 gener-

ate a release on that branch. For example, you might create

multiple releases from the same 1.0 release branch with each

release containing a bug fix. That is, you run these two pro-

cedures at different intervals.

Figure 4.8 on the following page shows a push-button script

called release branch.sh that creates the release branch (steps

1–4). To create a release branch for the 1.1 release, type

$ sh release branch.sh 1 1

Figure 4.9 on page 95 shows a script called release generate.sh

that generates the release from the release branch (steps 5–8).

To generate a distribution file for release 1.1, type

$ sh release generate.sh 1 1

Both of these scripts assume that you have the CVSROOT envi-

ronment variable set to your CVS repository. Together they

run through all eight steps of the release procedure, based

on the specified version number, just like we did on the com-

mand line. If the build step that runs the tests fails in either

script, then the release is not built.

Obviously, using a Unix shell script isn’t the only way to auto-

mate the release procedure. You could use a Windows batch

file, an Ant build file, or even some more powerful scripting

language. Likewise, your release procedure will be differ-

ent if you aren’t using CVS. How you get to an automated

Prepared exclusively for Robert McGovern

GENERATING DAILY DISTRIBUTIONS 94

#!/bin/bash

if [$# -eq 0]

then
echo "usage: release branch.sh <version>"

exit 1
fi

VERSION=$1

NAME=dms
RELEASE=$NAME-$VERSION

WORK DIR=$HOME/work

1. Test the mainline

cd $WORK DIR

rm -rf $NAME

cvs co $NAME

cd $NAME

if ! ant test
then

echo "Mainline test failed!"
exit 1

fi

2. Create a release branch

cd $WORK DIR/$NAME

cvs rtag -b RB $VERSION $NAME

3. Check out the release branch

cd $WORK DIR

cvs co -r RB $VERSION -d $RELEASE-rb $NAME

4. Build and test the release branch

cd $WORK DIR/$RELEASE-rb

if ! ant test
then

echo "Release branch test failed!"
exit 1

fi

dms/bin/release branch.sh

Figure 4.8: Create a Release Branch Script

release procedure is irrelevant. Getting there somehow is

what’s important.

4.8 Generating Daily Distributions

Any time you have a push-button script, you don’t necessarily

have to push a button to make it go. You can just as easily

schedule the button to be pushed by a computer.

For example, right now we cut an official release by manually

running a script. Between official releases, it might be conve-

nient to automatically create daily internal releases. This is

handy in the event that someone on the project wants to run

the latest and greatest code but they don’t want to go through

Prepared exclusively for Robert McGovern

GENERATING DAILY DISTRIBUTIONS 95

#!/bin/bash

if [$# -eq 0]

then
echo "usage: release generate.sh <version>"

exit 1
fi

VERSION=$1

NAME=dms
RELEASE=$NAME-$VERSION

WORK DIR=$HOME/work

TEST DIR=$HOME/testinstall

5. Create a distribution file

cd $WORK DIR/$RELEASE-rb

ant -buildfile package.xml -Dversion=$VERSION

6. Test the distribution contents

cd $TEST DIR

unzip $WORK DIR/$RELEASE-rb/dist/$RELEASE.zip

cd $TEST DIR/$RELEASE/lib

jar xvf $NAME.jar

cd $WORK DIR/$RELEASE-rb

if ! ant test \

-Dbuild.prod.dir=$TEST DIR/$RELEASE/lib \

-Dvendor.lib.dir=$TEST DIR/$RELEASE/vendor/lib

then
echo "Distribution test failed!"
exit 1

fi

7. Tag the release

cd $WORK DIR/$RELEASE-rb

cvs tag REL $VERSION

8. Hand off the distribution file

cp $WORK DIR/$RELEASE-rb/dist/$RELEASE.zip /Users/Shared/releases

dms/bin/release generate.sh

Figure 4.9: Generate a Release Script

the build process. These releases aren’t for the faint of heart,

mind you, as they are created from the mainline of our repos-

itory and therefore may contain incomplete features.

Figure 4.10 on the following page shows the release daily.sh

script. When this script runs, it puts a distribution file in a

dated directory under /Users/Shared/releases/daily. And because

you don’t want to run it by hand every day, schedule the script

with cron on Unix or with at on Windows. After the first three

days you’ll have the following directories, for example:

$ ls /Users/Shared/releases/daily

310304-Wednesday

010404-Thursday

020404-Friday

Prepared exclusively for Robert McGovern

GENERATING DAILY DISTRIBUTIONS 96

#!/bin/bash

VERSION=$1

NAME=dms
RELEASE=$NAME-$VERSION

WORK DIR=$HOME/work

DATE=‘date +%d%m%y-%A‘

DATED DIR=/Users/Shared/releases/daily/$DATE

1. Check out the project

cd $WORK DIR

rm -r $RELEASE-daily

cvs co -d $RELEASE-daily $NAME

2. Build and test the project

cd $RELEASE-daily

if ! ant test
then

exit 1
fi

3. Create a distribution file

ant -buildfile package.xml -Dversion=$VERSION

4. Drop the release in the dated directory

mkdir -p $DATED DIR

cp $WORK DIR/$RELEASE-daily/dist/$RELEASE.zip $DATED DIR

dms/bin/release daily.sh

Figure 4.10: Daily Release Script

Each of these directories contains a distribution file named for

the version we’re currently working toward. For example, if

you’re working on version 2.0, then each directory would con-

tain a distribution file called dms-2 0.zip built from the current

contents of the CVS repository. For convenience, you may

want to create a symbolic link that always points to the cur-

rent distribution file. Anybody can copy a distribution file and

install it just as a customer will when it’s officially released.

What We Just Did

We took a step-by-step manual release procedure and auto-

mated it so that it’s easy to generate releases. Simply by push-

ing a button—running a script—we’re able to generate consis-

tent and repeatable releases. Anyone on our team can cut a

release whenever we’re ready to give our customers new fea-

tures (or bug fixes). In the next chapter, we’ll use automation

to install and deploy new releases.

Prepared exclusively for Robert McGovern

Chapter 5

Installation and Deployment
Putting our software in a user’s hands is a watershed moment

for any project. Too many projects unfortunately never see

the light of day. We can increase our potential for success by

generating frequent releases that can also be easily installed.

In this chapter, we’ll travel the last mile to our end-users.

5.1 Delivering the Goods

The ultimate goal in generating a release is to deliver the

resulting distribution file to end-users—anyone from the guy end-users

down the hall to his grandmother living in the boonies. And it

would be nice to be able to do this automatically.

You can automate the delivery of the distribution to end-users

in a variety of ways. This usually involves a bit of scripting,

either by adding steps to your release script or by writing a

separate script to push out the distribution file.

If users download the application over the web, then auto-

mation may be as simple as copying the distribution file to a

shared drive or using FTP to transfer it to a server. Then you’d

need to make sure that your public web site has a page that

includes a hyperlink to the latest distribution file.

Alternatively, you might ship physical CDs to users. The

release script might then include additional actions that walk

you through the procedure of creating a master image, burn-

ing it onto a master CD, and firing up the CD duplicator.

INSTALLING THE STANDARD DISTRIBUTION FILE 98

5.2 Installing the Standard Distribution File

Regardless of their location, from our perspective every end-

user wants the same thing: to use what’s inside the distribu-

tion file. Installing it is simply a means to an end, so we need

to make installing our software as painless as possible.

Let’s assume, for example, that somehow an end-user has

obtained a copy of the distribution ZIP file for version 1.0 of

the DMS application. In other words, they have a file called

dms-1 0.zip in their home directory. Before they can experience

the cutting-edge world of document indexing and searching,

they need to install the application. Because the distribution

file is packaged in a ZIP format, the installation process is

simple: unzip it. To do that, they change into their home

directory and type

$ unzip dms-1 0.zip

Archive: dms-1 0.zip

creating: dms-1 0/

inflating: dms-1 0/LICENSE

inflating: dms-1 0/README

creating: dms-1 0/bin/

inflating: dms-1 0/bin/index.bat

inflating: dms-1 0/bin/index.sh

inflating: dms-1 0/bin/indexAll.bat

inflating: dms-1 0/bin/indexAll.sh

inflating: dms-1 0/bin/search.bat

inflating: dms-1 0/bin/search.sh

creating: dms-1 0/doc/

inflating: dms-1 0/doc/Example1.html

inflating: dms-1 0/doc/Example2.html

inflating: dms-1 0/doc/Example3.html

creating: dms-1 0/lib/

inflating: dms-1 0/lib/dms.jar

creating: dms-1 0/vendor/

creating: dms-1 0/vendor/lib/

inflating: dms-1 0/vendor/lib/Tidy.jar

inflating: dms-1 0/vendor/lib/lucene-1.3.jar

That’s the entire installation process! Armed with WinZip,

even Grandma can handle that one. She’ll likely also appreci-

ate that all the files for version 1.0 of the DMS application were

placed under the dms-1 0 directory. This makes it easy to find

everything. Using the version number in the directory name

also prevents the next release from overwriting the directory

containing the previous release.

For some of our Java applications, unzipping a distribution

file might be a sufficient installation process. All the files

Prepared exclusively for Robert McGovern

TROUBLESHOOTING BY PHONE 99

explode onto the user’s disk and then the user consults a

README file for further instructions. For example, to start

indexing and searching documents, they type

$ cd dms-1 0/bin

$ indexAll.bat

$ search.bat programmers vi emacs

This is where the location independence of the scripts and

batch files pays off. Without any additional installation steps,

these programs can find directories and dependent libraries

relative to the current working directory. Out of the box the

software just works, delighting our users. Indeed, unless

there’s a problem, you may never hear from them again.

5.3 Troubleshooting by Phone

OK, so in reality you may be lucky enough to never hear

from most users. They unzip the distribution file, follow any

instructions in the README, and before long they’ve built

their own searching empire around using your humble DMS

application.

The users you do hear from, however, will often have instal-

lation problems that really hurt your brain. Some of these

same people couldn’t pour water from a boot if the instruc-

tions were on the heel. Giving them better written installation

instructions simply won’t help. Consider this fictional story,

which may sound frighteningly familiar:

Just Another Day in Tech Support

by You, Senior Programmer and Technical Support Jockey

So there I was, heads-down in a Zen-like programming state

that computers fear. The code was streaming from my

fingertips, the compiler was laboring under the load, all the

tests were passing in a green bar that could illuminate a small

village...and then the phone rang. When I finally snapped back

into reality, I remember the conversation going something like

this:

Customer: Hello. I’m a customer with deep pockets and a

shallow memory. I just installed DMS, but it doesn’t work?!

Me: Strange. Our download stats say it’s a banner day for our

bank account, and you’re the first to report a problem.

Prepared exclusively for Robert McGovern

TROUBLESHOOTING BY PHONE 100

Customer: Well, it worked just great after I installed it, but

when I run a search now I get a NoSuchMethodException.

Me: OK, but this didn’t happen the first time you ran it. So

what changed between installing it and running it now?

Customer: I haven’t changed anything. I installed it yesterday

and it worked, but today it’s broken.

Me: Very interesting. Well, a NoSuchMethodException is

typically a symptom of using an incompatible version of Java.

DMS requires Java 1.4.x. You’re running that version, right?

Customer: Of course. And it worked yesterday, so....

Me: And you obviously didn’t change anything between then

and now. So, uh, you’re probably, um, running the correct

Java version. Let’s just, er, check. Please type in java -version.

Customer: OK. (Click, click...pause) Oops! It says java version

1.3.1. Did I mention that just this morning I was messing

around with my JAVA HOME environment variable?

Me: Funny that. OK, please change your JAVA HOME back to

your installation of Java version 1.4.1.

Customer: OK. Done!

Me: Great. Does it work now?

Customer: Nope, it still doesn’t work. Now when I try to index

documents it says it can’t obtain a lock on my index directory.

Me: OK, at least we’re making progress. Do you see a directory

called index in your DMS HOME directory?

Customer: Yes, I see that directory. Oh, that reminds me. Right

after changing my JAVA HOME this morning, I accidentally

deleted that index directory. I lost a goodly amount of work.

Major bummer, indeed. So after re-creating the index directory,

I changed its permissions so I wouldn’t accidentally delete it

again.

Me: Ah. I’m sure that it’s just a (cough) coincidence that you

fiddled with the permissions of that directory and now the

software doesn’t work. It’s a long shot, but can you check that

you have read and write permission on your index directory?

(Long pause with muffled profanity.)

Customer: Just how much is this support call gonna cost me?

Prepared exclusively for Robert McGovern

TROUBLESHOOTING WITH DIAGNOSTIC TESTS 101

After hanging up the phone, I leaned back in my chair, took a

few deep breaths, and wished I could have the last 15 minutes

of my life back. What a waste of my time. It’ll take another half

hour to get back into the programming zone.

If you’ve ever worked in a small shop, then you’ve probably

lived this story. If you’re working in a shop with a full-fledged

tech support department, then somebody else is living it for

you. And many of the tech support calls seem to go the same

way: the wrong version of Java, a fatal change in the directory

structure, or a minor configuration error. You might think

you can keep on top of it all by creating checklists for trouble-

shooting these problems quickly. Then when the phone rings

a dedicated tech support person walks meticulously through

the checklist until—bingo!—the problem is found.

But what if you didn’t need a technical support department

after all, or at least not one that spends its time solving these

nagging problems? Assume that you could come up with a

checklist that diagnoses a large portion of installation prob-

lems. And instead of reading it over the phone to customers,

you gave them the checklist when they had installation prob-

lems. You certainly wouldn’t be the first project to do that.

But what if instead of asking them to read the checklist, you

asked them to run the checklist?

5.4 Troubleshooting with Diagnostic Tests

If the same installation problem crops up for two or more

users, it’s trying to tell us something. The installation pro-

cess may be too complicated for a person to follow accurately

and needs to be simplified in the next release. But we’re

still not home free. Undetected configuration changes after

installation, such as we learned with the JAVA HOME environ-

ment variable in the tech support story, can cause problems.

Bundling the correct version of Java with our application is

an option, but we can’t escape the possibility of human error.

All we can do is work to minimize it with good automation.

The standard response is to give all users a troubleshooting

checklist, add all known installation issues to a FAQ, and

hope for the best. But we can do better. As they said when

Prepared exclusively for Robert McGovern

TROUBLESHOOTING WITH DIAGNOSTIC TESTS 102

they rebuilt The Six Million Dollar Man: “We have the technol-

ogy.” Indeed, our troubleshooting checklist is screaming for

automation in the form of diagnostic tests.

Writing a Diagnostic Test

You’re already using JUnit to write unit tests for your appli-

cation. Those tests compare an expected value with an actual

value, and if the values don’t match, the test fails. When a

unit test fails, you know something has gone haywire in your

code. Unfortunately, you know something has gone haywire

with a user’s installation only when the phone rings.

What if you could put JUnit to work helping users diagnose

when and why something has gone wrong with their installa-

tion? Figure 5.1 on the next page shows a JUnit test called

InstallTests that defines two test methods.

• testJavaVersion checks the java.version system prop-

erty to verify that version 1.4.x of Java is running.

• testIndexDirectory locates the installation directory using

the dms.dir system property passed into the test when

it’s run. Then it verifies that a subdirectory called index

exists with read and write permissions for the user run-

ning the test.

This simple diagnostic test might not seem like much. It

checks a system property and a directory. And yet it can

diagnose all the problems uncovered during the tech support

phone conversation, and much more quickly. Now you just

need a way to distribute it to users in their time of need.

Fielding Diagnostic Tests

When users experience problems, you need a way to drop

diagnostic tests into their troubled installation. You could just

always include tests in the standard distribution, but depend-

ing on the size of the distribution file and the frequency of

problems, this may be overkill.

An alternative approach is to make a separate test distribu-

tion file available to users on demand. The release procedure

we automated in the previous chapter sets us up to do just

that. It creates a file called dms-1 0-tests.zip that contains all

Prepared exclusively for Robert McGovern

TROUBLESHOOTING WITH DIAGNOSTIC TESTS 103

package com.pragprog.dms.selftest;

import java.io.File;

import java.io.IOException;

import junit.framework.TestCase;

public class InstallTests extends TestCase {

public void testJavaVersion() {
String version = System.getProperty("java.version");

assertTrue("Incompatible Java version. " +

"Requires version 1.4.x, but found " + version,

version.startsWith("1.4"));

}

public void testIndexDirectory() throws IOException {
File dmsDir = getDirectory("dms.dir");

File indexDir = new File(dmsDir, "index");

assertDirectoryExists(indexDir);

assertDirectoryReadable(indexDir);

assertDirectoryWritable(indexDir);

}

void assertDirectoryExists(File dir) throws IOException {

assertNotNull(dir);

assertTrue("Directory doesn’t exist: " + dir.getCanonicalPath(),

dir.exists());

}

void assertDirectoryReadable(File dir) throws IOException {
assertTrue("Directory not readable: " + dir.getCanonicalPath(),

dir.canRead());

}

void assertDirectoryWritable(File dir) throws IOException{

assertTrue("Directory not writable: " + dir.getCanonicalPath(),

dir.canWrite());

}

File getDirectory(String propertyName) {
String dirName = System.getProperty(propertyName);

assertNotNull("’" + propertyName + "’ not defined", dirName);

return new File(dirName);

}

}

dms/test/com/pragprog/dms/selftest/InstallTests.java

Figure 5.1: Installation Diagnostic Test

Prepared exclusively for Robert McGovern

TROUBLESHOOTING WITH DIAGNOSTIC TESTS 104

the tests in our build/test directory and a script to run the

tests. This is in addition to creating the standard dms-1 0.zip

distribution file.

When users notice a problem, you ask them to download the

test distribution file and install it over the top of their stan-

dard distribution. That is, if they’ve installed version 1.0 of

DMS in their home directory, then they would unzip the file

dms-1 0-tests.zip in their home directory by typing

$ cd $HOME

$ unzip dms-1 0-tests.zip

Archive: dms-1 0-tests.zip

inflating: dms-1 0/bin/selftest.bat

inflating: dms-1 0/bin/selftest.sh

inflating: dms-1 0/lib/dms-tests.jar

inflating: dms-1 0/vendor/lib/junit-3.8.jar

Because the contents of this ZIP file are also under a direc-

tory with the same name as the standard distribution, the

test-related files are expanded into the standard distribution

directory. Think of it as adding a testing layer to the standard

distribution, as shown in Figure 5.2 on the following page.

Running the Diagnostic Tests

Now the user is ready to sic the diagnostic tests on their

installation. To do that, they run the selftest script or batch

file that was packaged in the test distribution file.

$ sh bin/selftest.sh

.F.F
Time: 0.092
There were 2 failures:

1) testJavaVersion(com.pragprog.dms.selftest.InstallTests)

junit.framework.AssertionFailedError:

Incompatible Java version. Requires version 1.4.x, but found 1.3.1

2) testIndexDirectory(com.pragprog.dms.selftest.InstallTests)

junit.framework.AssertionFailedError:

Directory not readable: /Users/somebody/dms-1 0/index

FAILURES!!!
Tests run: 2, Failures: 2, Errors: 0

Uh oh! The test explains that version 1.3.1 of Java is being

used, but version 1.4.x is required. (And if the diagnostic tests

can’t be run because no version of Java is found, selftest.sh

could politely inform the user of that.) What’s more, this user

doesn’t have read permissions for their index directory. That’s

a 15-minute phone conversation reduced to pushing a button

and reading the output.

Prepared exclusively for Robert McGovern

TROUBLESHOOTING WITH DIAGNOSTIC TESTS 105d m s 8 1 _ 0 /v e n d o r / l i b /b i n /d o c / l u c e n e I 1 . 3 . j a rl i b / d m s . j a rR E A D M EL I C E N S Ei n d e x . *i n d e x A l l . *s e a r c h . *s e l f t e s t . *d m s 8 t e s t s . j a rj u n i t 8 3 . 8 . j a rT i d y . j a r
d m s 8 1 _ 0 /v e n d o r / l i b /b i n /d o c / l u c e n e I 1 . 3 . j a rl i b / d m s . j a rR E A D M EL I C E N S Ei n d e x . *i n d e x A l l . *s e a r c h . *T i d y . j a r d m s 8 1 _ 0 /v e n d o r / l i b /b i n / j u n i t I 3 . 8 . j a rl i b / d m s I t e s t s . j a rs e l f t e s t . *

Figure 5.2: Adding Tests to a Standard Distribution

If the diagnostic messages are intuitive, then we hope the user

can take the appropriate corrective action. Failing that, they

send you the test output by email for analysis. That still takes

far less of your time than troubleshooting by phone.

You know the application is back on solid ground when the

user runs the tests and sees the welcomed OK message in the

output.

$ sh bin/selftest.sh
..
Time: 0.082

OK (2 tests)

By putting these diagnostic tests in the field, you’ve essen-

tially sent a tech support person to the user. That is, the test

walks through the checklist in the same way you would on

the phone.

Prepared exclusively for Robert McGovern

TROUBLESHOOTING WITH DIAGNOSTIC TESTS 106

package com.pragprog.dms.selftest;

import junit.framework.Test;

import junit.framework.TestSuite;

public class AllTests {

public static Test suite() {

TestSuite suite = new TestSuite("DMS Selftests");

suite.addTestSuite(InstallTests.class);

suite.addTestSuite(ClasspathTests.class);

// Add more diagnostic tests here

return suite;

}

public static void main(String[] args) {
junit.textui.TestRunner.run(suite());

}

}

dms/test/com/pragprog/dms/selftest/AllTests.java

Figure 5.3: Diagnostic Test Suite

Writing a Diagnostic Test Suite

The two tests in InstallTests obviously can’t diagnose all possible

installation problems. But for now they cover the recurring

installation problems we know about. So what happens when

a new installation problem is reported by multiple users? You

just add more diagnostic tests. Of course you have to make

sure they don’t have dependencies that would prevent the

tests from running. Some example installation questions that

tests can answer for users include

• Does the classpath (the java.class.path system prop-

erty) include all the necessary files and directories in the

proper order?

• Can the application get a database connection?

• Is the WAR or EAR file configured properly, and has it

been installed in the appropriate directory?

• Is a required host or URL accessible?

As you write new tests, you’ll likely create new JUnit test

cases. To make it easy for the user to run all of the diag-

nostic tests en masse, put them all into a JUnit test suite.

Figure 5.3 shows the AllTests test suite, which includes a new

test case, called ClasspathTests.

Prepared exclusively for Robert McGovern

ENHANCING YOUR INSTALLED IMAGE 107

The suite method adds the InstallTests and ClasspathTests test

cases to a suite. This means that when the user runs the

script selftest.sh, all the installation diagnostic tests will run.

$./bin/selftest.sh
...
Time: 0.075

OK (3 tests)

But why stop there? If the installation diagnostic tests all

pass but the user is still experiencing a problem, then the

more tests the better. And since you’ve already invested time

writing unit tests that help you find problem during develop-

ment, you might as well let them run in the field. To do that,

you’d ask the user to run the AllUnitTests suite by, for example,

passing an option to selftest.sh or by running another script.

Now we have a test suite that keeps paying us back. Every

time it’s run by a user, it automatically checks a bunch of

important stuff. And if anything is out of whack, it fails with a

detailed report of what went wrong. Better yet, no matter how

many tests we add, the user still just types a single command

to run them all.

5.5 Enhancing Your Installed Image

Let’s face it, unzipping a distribution file isn’t a sexy install

process. It gets the job done, but it’s not likely to attract the

kind of attention that will make our software stand out from

the crowd. It’s also not a scriptable process—we have no way

to add installation steps into the unzipping process. Once

the distribution ZIP file has been expanded onto disk, any

additional installation steps must be carried out manually by

the user.

Thankfully, giving our users a professional-looking installer

that also helps them follow all the installations steps cor-

rectly doesn’t have to be difficult or expensive. Let’s turn

some heads by dressing up our installation process with a

free installer that’s rich with features and yet easy to use.

Prepared exclusively for Robert McGovern

ENHANCING YOUR INSTALLED IMAGE 108

Installer Choices

NSIS is just one installer available to you. If you’re not
installing on Windows, have no fear. There are plenty
of installers to go around.

The Mac OS X developer tools include the Pack-
ageMaker for creating a native installation package
(.pkg) file. The ESP Package Manager∗ is an installer
in the same price category as NSIS (free!) for native
Unix formats. For cross-platform support, IzPack† is a
Java-based installer that runs on any platform with a
Java Virtual Machine.

If you have the budget for commercial installers, they
offer lots of bells and whistles on various operating sys-
tems. For details on those, flip through almost any
Java magazine or consult Google.

∗http://www.easysw.com/epm
†http://www.izforge.com/izpack

Creating an Installer with NSIS

The Nullsoft Scriptable Install System1 (NSIS) wraps applica-

tions in installers (and uninstallers) for Windows. If you’ve

installed the Tomcat servlet engine on Windows, for example,

you’ve used an NSIS-powered installer. Even though NSIS

doesn’t create installers for other operating systems, we’ll use

it as an example of what a great installer can do for you.

Write an NSIS Script

To create a NSIS installer, you write a script. This is just

a text file that uses NSIS’s powerful scripting language. The

scripting language is very flexible and supports commands for

automating all manner of installation tasks: creating directo-

ries, editing the registry, setting environment variables, and

even rebooting the system. And yet we don’t have to risk being

electrocuted by all that power if we just need a basic installer.

1http://nsis.sourceforge.net

Prepared exclusively for Robert McGovern

http://www.easysw.com/epm
http://www.izforge.com/izpack
http://nsis.sourceforge.net

ENHANCING YOUR INSTALLED IMAGE 109

Figure 5.4 on the following page shows the first part of an

NSIS script called dms.nsi that creates an installer/uninstaller

for the DMS application. It does a bit more than a bare-bones

installer, and we’ll discuss why in a moment. But first, you

might be looking at that strange syntax wondering how you’ll

write your own script from scratch. Well, here’s the secret:

You don’t have to do that. The bulk of the dms.nsi script was

generated using HM NIS Edit:2 a free NSIS script editor. It

has a script generation wizard that asks you basic questions

about your installation process and then generates an NSIS

script for you. Then you can tweak that script by hand in the

editor to add more complex installation steps.

Just to give you a feel for the syntax, we’ll walk through the

high points of the script. The !insertmacro and Page com-

mands near the top define the flow of the install/uninstall wiz-

ard pages. During installation, the user transitions through

the following six wizard pages:

Ê Welcome the user to what’s about to happen.

Ë Display the license agreement and prompt for accep-

tance before continuing.

Ì Let the user choose the destination directory.

Í Show a custom page that prompts for user preferences.

Î Install the files, showing a progress bar and the details

of each installation step.

Ï Show a happy ending to put the user on their way.

Following the wizard page definitions, two installation sec-

tions are defined: AllSection (Ð) and PostInstallSection

(Ñ). These sections are executed during the installation step—

the fifth wizard page.

The steps in AllSection (Ð) do all the heavylifting. When you

compile the script, this section compresses the files under the

directory defined by the COMPRESS DIR variable into an exe-

cutable. When the executable is run on the user’s machine,

it will extract those files into the c:\Program Files\DMS-1.0 direc-

tory while preserving the directory structure. After all those

2http://hmne.sourceforge.net

Prepared exclusively for Robert McGovern

http://hmne.sourceforge.net

ENHANCING YOUR INSTALLED IMAGE 110

!define PRODUCT NAME "DMS-1.0"
!ifndef COMPRESS DIR

!define COMPRESS DIR "c:\test\dms-1 0"

!endif

Name "${PRODUCT NAME}"
OutFile "Setup.exe"

InstallDir "$PROGRAMFILES\${PRODUCT NAME}"

!include "MUI.nsh"

; Install Pages (1-6)

Ê !insertmacro MUI PAGE WELCOME

Ë !insertmacro MUI PAGE LICENSE "${COMPRESS DIR}\LICENSE"

Ì !insertmacro MUI PAGE DIRECTORY

Í Page custom UserPrefsPage

Î !insertmacro MUI PAGE INSTFILES

Ï !insertmacro MUI PAGE FINISH
; Uninstall Pages (1-2)

!insertmacro MUI UNPAGE CONFIRM
!insertmacro MUI UNPAGE INSTFILES

!insertmacro MUI LANGUAGE "English"

Ð Section "All Components" AllSection

SetOutPath "$INSTDIR"

File /r "${COMPRESS DIR}*.*"

Call WritePropertyFile

SectionEnd

Ñ Section -PostInstallSection

WriteUninstaller "$INSTDIR\Uninstall.exe"

CreateDirectory "$SMPROGRAMS\${PRODUCT NAME}"

CreateShortCut "$SMPROGRAMS\${PRODUCT NAME}\Search.lnk" \

"$INSTDIR\bin\search.bat"

CreateShortCut "$SMPROGRAMS\${PRODUCT NAME}\Uninstall.lnk" \

"$INSTDIR\Uninstall.exe"

SectionEnd

Ò Section Uninstall
RMDir /r "$INSTDIR"

RMDir /r "$SMPROGRAMS\${PRODUCT NAME}"
SectionEnd

dms/installer/dms.nsi

Figure 5.4: NSIS Script (Part 1)

Prepared exclusively for Robert McGovern

ENHANCING YOUR INSTALLED IMAGE 111

Figure 5.5: Custom Installation Wizard Page

files have been installed, the WritePropertyFile function is

called. We’ll explore that function a bit later.

PostInstallSection (Ñ), creates an uninstaller executable

called Uninstall.exe. Running this executable causes the Unin-

stall section (Ò) to be run. Shortcuts are also created in the

Start menu for the user’s convenience.

Design a Custom Installation Page

We’d like to go above and beyond the basic installation steps

by adding a custom page that prompts the user for their per-

sonal configuration options. Say, for example, during instal-

lation we want the user to be able to choose two DMS-specific

directories: a directory containing documents to index and an

index directory. Designing custom pages is made easier with

the InstallOptions Designer in HM NIS Edit. Figure 5.5 shows

a custom page prompting for two directories.

Prepared exclusively for Robert McGovern

ENHANCING YOUR INSTALLED IMAGE 112

Function .onInit
!insertmacro MUI INSTALLOPTIONS EXTRACT "UserPrefsPage.ini"

FunctionEnd

Ê Function UserPrefsPage

!insertmacro MUI HEADER TEXT "Choose User Preferences" \
"Your very own DMS settings"

!insertmacro MUI INSTALLOPTIONS DISPLAY "UserPrefsPage.ini"

FunctionEnd

Var DOC DIR
Var INDEX DIR

Ë Function WritePropertyFile

!insertmacro MUI INSTALLOPTIONS READ $DOC DIR \

"UserPrefsPage.ini" "Field 2" "State"

!insertmacro MUI INSTALLOPTIONS READ $INDEX DIR \

"UserPrefsPage.ini" "Field 4" "State"

FileOpen $0 "$PROFILE\dms.properties" "w"

FileWrite $0 "document.directory=$DOC DIR\r\n"

FileWrite $0 "index.directory=$INDEX DIR\r\n"

FileClose $0

DetailPrint "Stored user preferences in $PROFILE\dms.properties"

FunctionEnd

dms/installer/dms.nsi

Figure 5.6: NSIS Script (Part 2)

After the user has chosen directories, those preferences are

stored in a file called dms.properties in a user-specific direc-

tory. If the properties file exists when DMS is run, the user’s

chosen directories will override the default directories. Stor-

ing this file on a per-user basis in a separate directory makes

it safe to upgrade to a new DMS version without losing user

preferences.

Figure 5.6 shows the second part of the dms.nsi script that

defines custom functions. The UserPrefsPage function (Ê)

displays the custom page shown in Figure 5.5 on the page

before. The WritePropertyFile function (Ë) captures val-

ues supplied by the user and then writes those values in the

dms.properties file. For example, given that the user “mike”

enters the values shows in Figure 5.5 on the preceding page,

then C:\Documents and Settings\mike\dms.properties would con-

tain

document.directory=C:\Documents and Settings\mike\DMS Documents

index.directory=C:\Documents and Settings\mike\DMS Index

Being able to script extensions into the installation process

Prepared exclusively for Robert McGovern

ENHANCING YOUR INSTALLED IMAGE 113

is important because it allows you to automate custom steps.

Consider how you might extend this to automate the instal-

lation of more complex applications. For example, a cus-

tom wizard page could ask for information about your web

server and database, and the install step could then expand

an application configured on the fly into the appropriate direc-

tory of your application server.

Generate an Executable

After writing the dms.nsi installer script, you need to compile

it. To run the compiler, you can either right-click the script

file and choose “Compile NSIS Script” or compile the script

directly in the HM NIS Edit editor. These options work well

to test the script as you’re writing it, but at some point you

need to automate the compile step. That’s when running the

NSIS compiler (MakeNSIS.exe) from the command line comes in

handy. To compile the script, type

% MakeNSIS dms.nsi

The compiler parses the script and creates an installer and an

uninstaller: the Setup.exe file and the Uninstall.exe file.

Running the compiler from the command line gives us a lot

of automation options. Suppose, for example, we want to use

the distribution ZIP file as the source of files for the installer.

That is, instead of trying to locate all the individual files that

will go into the installer, we want to unzip the distribution ZIP

file and put all those files into the installer. This helps keep

both distribution files consistent—the dms-1 0.zip file and the

Setup.exe will contain the same files.

To do that, you need to override the COMPRESS DIR variable

to point to the directory containing the files that go into the

installer. First, unzip dms-1 0.zip into the c:\install directory.

Then, compress all those files into the installer executable by

typing

% makensis /DCOMPRESS DIR=c:\install\dms-1 0 dms.nsi

In other words, overriding variables on the command line lets

you vary the directory names from version to version without

having to edit the NSIS script. This means you could run

Prepared exclusively for Robert McGovern

ENHANCING YOUR INSTALLED IMAGE 114

Figure 5.7: A Successful Install

the NSIS compiler every time you run the release script to

generate an installer for the new release, simply by passing in

the name of a version-specific directory.

Ship It!

Compile the NSIS script, and we end up with a self-contained

(yet surprisingly small!) executable file called Setup.exe. That’s

all you need to give to end-users. You could provide a link to it

on your web site, burn it on a CD, or choose any of a number

of delivery options.

To install DMS, users simply run the Setup.exe file and answer

any questions posed by the wizard. Figure 5.7 shows the

installer in action.

Customers might also like to take advantage of automation.

Say, for example, they want to install DMS on a number of

machines, all with the same installation directory and config-

Prepared exclusively for Robert McGovern

DEPLOYING HOSTED APPLICATIONS 115

uration options. Going through the installer wizard for each

machine will definitely slow them down and could introduce

inconsistencies. Thankfully, NSIS supports silent installation

by allowing default values to be used for such things as mes-

sage boxes and configuration information to be passed in with

command-line options.

Now we have an installer that presents itself well to the user.

Moreover, it automates installation steps and verifies config-

uration options for improved accuracy. All this means you’ll

spend less time diagnosing installation problems, and your

customers will love you for it.

5.6 Deploying Hosted Applications

Some Java applications need to be deployed into a server.

That installation process involves slightly more than unzip-

ping a distribution file in a user’s home directory. We might be

tempted to stop short here with automation, choosing to auto-

mate only the low-hanging installation fruit. But as the com-

plexity of deployment increases, so does the manual workload

and the potential for error. This is one area where automation

can really pay off by helping you deploy new releases quickly

and accurately.

Deploying hosted J2EE applications is made easier through

the use of standardized, self-contained deployment modules—

WAR and EAR files. These deployment modules contain build

outputs such as Java class files, dependent JAR files, and

deployment descriptors that declare how the deployed appli-

cation interacts with the server.

Let’s briefly walk through some techniques for automating the

deployment of a J2EE application.

Creating Deployment Modules

Creating WAR and EAR files is part of the build process. So,

because we’re already using Ant as our build tool, we’d add

additional targets to our build file that generate these build

artifacts. Those build targets would use the <war> and <ear>

Ant tasks to automate the assembly of WAR and EAR files

Prepared exclusively for Robert McGovern

DEPLOYING HOSTED APPLICATIONS 116

from the files in our project directory. See [HL02] for details

on how to use these Ant tasks.

Then our release script could invoke these targets to generate

WAR or EAR files ready for deployment. It might also gener-

ate a ZIP distribution file that contained all the deployment

modules ready for distribution to internal or external users.

In other words, using Ant allows you to re-create deployment

modules consistently just like any other build artifact.

Deploying the Application

In general, deploying a new version of a J2EE application

involves shutting down the server, dropping a new WAR or

EAR file in the appropriate server directory, and then restart-

ing the server. Many servers even support hot deployment

so you don’t have to go through the restart procedure. This

deployment procedure can be automated.

Hot Deploy the Application

If your server supports hot deployment, the simplest auto-

mated deployment technique may be to copy or file-transfer

the deployment files into a “hot” directory. Of course Ant

includes <copy>, <scp>, and <ftp> tasks, but these opera-

tions are just as easy to script. You can use the ftp command,

for example, to upload a local file to a remote server.

The ftp command has many variants, but one approach that

works equally well on Unix or Windows is to command it

through file redirection. Let’s say, for example, your appli-

cation server is running on a machine called enoch. It hot

deploys applications placed in the /server/webapps directory.

To upload and deploy a new version of the dms.war file, type

ftp -n enoch < upload.ftp

Once an FTP connection is established, the following sequence

of commands in the upload.ftp file are fed into the FTP com-

mand interpreter:

user username password

binary

cd /server/webapps

put dms.war

Prepared exclusively for Robert McGovern

DEPLOYING HOSTED APPLICATIONS 117

This is low-tech, but it’s automation at its finest because it’s

noninteractive and repeatable. When you want to deploy the

dms.war module, simply run the ftp command from the com-

mand line or as a step in a script. Copying the module to a

local or shared directory is equally easy to automate.

Build Your Own Hot Deploy

Many application servers include custom Ant tasks for deploy-

ment. For example, Tomcat includes Ant tasks for stopping

an application, deploying files remotely through Tomcat’s web

interface, and then restarting the application. The following is

an example target that uses Tomcat’s custom <deploy> task

to upload a local WAR file into a remote server:

<target name="deploy">

<deploy url="${tomcat.manager.url}"

username="${tomcat.manager.username}"

password="${tomcat.manager.password}"

path="/${webapp.name}"

war="file:${warfile.path}"/>

</target> d
m

s/
in

st
a

lle
r/

d
e

p
lo

y.
xm

l

Using Tomcat’s custom Ant tasks you can build your own hot

deployment script by chaining targets together, like this:

<target name="hot-deploy" depends="stop, undeploy, deploy, start" />

Deploying the application into the remote Tomcat server is

now automated by running the deploy.xml build file, for exam-

ple, which runs the hot-deploy target by default.

$ ant -buildfile deploy.xml

Buildfile: deploy.xml

stop:

[stop] OK - Stopped application at context path /dms

undeploy:

[undeploy] OK - Undeployed application at context path /dms

deploy:

[deploy] OK - Deployed application at context path /dms

start:
[start] OK - Started application at context path /dms

hot-deploy:

BUILD SUCCESSFUL
Total time: 2 seconds

The Tomcat web interface supports all the commands offered

by the Ant tasks. This means you can command Tomcat to

start an application by issuing an HTTP GET request that

Prepared exclusively for Robert McGovern

DEPLOYING HOSTED APPLICATIONS 118

includes the start command as a URL parameter. So with

a series of wget commands in a shell script, for example, you

can automate the same hot deployment procedure as in the

deploy.xml Ant script.

Practice on Stage

Before we put the latest version of our application in front of

a live studio audience, we need to practice on stage. A staging

server offers a production-like setting without the possibility

of tomatoes being thrown if the application bombs. This is

where QA gets to run their battery of acceptance tests before

the application goes live.

Deploying to the staging server is both a test of your applica-

tion and your deployment process. Make sure to use the same

automation technique to deploy to the staging server as to

deploy in the production server. This means the deployment

scripts should be easy to configure between servers. In the

case of an Ant script, this might be as simple as overriding the

tomcat.manager.url property when the hot-deploy target

is run.

Run a Production Sound Check

After QA has finally given the green light and the application

is deployed onto the production server, it’s time to run a last-

minute sound check. This final test is just another step in a

deployment script. We basically want to know if the correct

version of the application has been deployed and is open for

business.

One simple approach is to embed a diagnostic web page with

every deployed web application. That page could include the

current version number, among other things. Then you could

write a trivial program that verifies that the version number on

the page matches the version number just deployed. The last

step of your deployment script runs this program as a sanity

check against what it deployed. We’ll explore more techniques

for monitoring deployed applications in Section 6.4, Checking

Up on Your Web Application, on page 134.

Prepared exclusively for Robert McGovern

DEPLOYING HOSTED APPLICATIONS 119

So, if you feel more at home in Ant than in a shell script or

a batch file, then use Ant as a deployment tool. Otherwise,

you can do all this same automation with a script. The goal is

automation; how you get there isn’t nearly as important.

Tackling Complex Deployments

“I wish deploying applications to my server were this easy,”

you say. “But our server doesn’t have these deployment hooks

to use for script-based automation.” Indeed, some servers can

be a challenge and require a bit more creativity than we’ve

seen in this chapter. As just one example of that creative

spirit in action, let’s see how one team solved their server’s

deployment challenges.

Automating Deployments to WebSphere

by Scott Hasse, Isthmus Group, Inc.

My team was recently faced with the challenge of automating

J2EE application builds and deployments from an existing

ClearCase environment to a new WebSphere platform. There

were several challenges that made the project interesting.

Deploying enterprise applications to WebSphere via the web

administrative console can be an involved process, consisting

of several configuration and resource mapping steps. To solve

this problem, we used wsadmin, an IBM-provided

command-line interface to WebSphere’s JMX management

features. As of WebSphere Application Server 5.1, you can

either use JACL (a TCL variant) or Jython to script operations

in wsadmin. Since we had some existing Python skills on the

team, we opted to use Jython. An additional benefit was

Jython’s seamless integration with the extensive Java APIs.

Although using the wsadmin interface the first few times was

not as easy as clicking buttons in the web administrative

console, it eventually enabled us to automate even the finest

detail of application deployments to WebSphere. We even found

a built-in facility that allowed us to deploy an application

manually one time and then capture the resulting command to

an application-specific Jython deployment script to automate

future deployments.

To actually perform the deployments, we created a main deploy

script that is able to retrieve an EAR file with an arbitrary

version or label out of ClearCase, run the Jython scripts

Prepared exclusively for Robert McGovern

AUTO-UPDATING INSTALLED APPLICATIONS 120

embedded in the EAR file to ensure the application-specific

resources are properly created, and deploy the application

itself. The centralized script handles the task of stopping the

application, removing the existing deployment, and starting the

application after it has been (re)deployed.

This combination of solutions has allowed us to achieve a

remarkable degree of process improvement and deployment

automation. The amount of time developers have had to devote

to making sure deployment goes well has been significantly

reduced. The application infrastructure team can now do

push-button deployments. Customer and QA platform

confidence has increased dramatically.

Scott’s story teaches us to look under our server’s hood for

deployment hooks. Another lesson is that automating com-

plex deployment procedures often requires the power of a real

scripting language. But once you overcome the challenges,

deployment automation continues to pay for itself.

5.7 Auto-Updating Installed Applications

If updating installed software is automatic, then most of our

users will always be running the latest and greatest version of

our software. This means they’ll benefit from bug fix releases,

security patches, and new features.

If updating software is a manual step, however, then users will

fall behind, and we’ll potentially end up with every version of

our software in the field. And when the tech support phone

rings, our first question to the user will always be, “Are you

running the latest version?” If they aren’t, we’ll ask them to

install the latest version and call back if it doesn’t fix their

problem.

Ideally we want an auto-updater that checks for new updates

on a schedule: daily, weekly, or monthly. Or perhaps it

checks for updates every time the user runs the application,

or every fifth time. At any rate, the user shouldn’t have to

remember to check for updates.

Prepared exclusively for Robert McGovern

AUTO-UPDATING INSTALLED APPLICATIONS 121

Writing a Custom Auto-Updater

At first blush, writing an auto-updater appears trivial. The

algorithm goes something like this:

1. Trigger the update on a schedule or an event.

2. Programmatically hit a known web site URL that returns

the current version number.

3. If the current version is greater than the installed ver-

sion, then automatically download the current version.

4. Optionally show the user a dialog box explaining that a

new version is available and that it should be installed.

5. Install the latest version.

You could probably implement the best-case scenario for the

first few steps on a Friday afternoon. It’s a fun exercise in

network programming. The last step—upgrading an existing

installation with the new version—can be tricky. Users expect

auto-updates to be bullet-proof. They’re running a perfectly

good application, and we’re asking them to update it. When

it’s all over, they should have a better application that also

remembers everything they did in the previous version. It’s

not an unreasonable expectation.

But everyone has a horror story about a time when they let

the computer update software for them. It takes only one

of those experiences to make you never want to auto-update

again. Don’t expect building an auto-updater to be something

you can pull off in a day at the end of a release cycle. You

might get something working for the happy path, but your

users might not be happy with the results.

We can’t possibly build a realistic auto-updater in this chap-

ter. Most auto-updaters are custom pieces of software that

install applications with custom needs. Reusable solutions

will likely emerge as auto-updating gradually becomes more

prevalent. But just to whet your appetite, we’ll write a simple

auto-updater using a free technology: Java Web Start.

Prepared exclusively for Robert McGovern

AUTO-UPDATING INSTALLED APPLICATIONS 122

Auto-Updating with Java Web Start

Java Web Start3 (JWS) lets you deploy applications directly

from the web. You launch an application for the first time

by using a web browser to access a special file on the soft-

ware vendor’s web site. The application is then automatically

downloaded to your computer and starts running.

Each subsequent time you launch the application, behind the

scenes JWS will check the web to see if a new version is avail-

able. If a new version isn’t available or JWS can’t contact the

server to make a determination, the local version cached on

your computer is used. If a new version is available, JWS will

automatically download it and run the new version instead

of the local version. This means you’re automatically always

using the most recent version available.

Know Your Limitations

Java Web Start sounds lovely, but you should keep a few

important restrictions in mind. It works best in the follow-

ing contexts:

• Your application is a Java GUI using Swing or SWT, and

you intend to deploy it to a wide user base.

• Your application can be delivered as a set of JAR files.

All application resources (e.g., configuration files) must

be included in the JAR files and looked up using the

services of the Java classloader.

• Your users have already installed (or they can tolerate

installing) an appropriate version of the Java Runtime

Environment (JRE). They need this to run JWS, which is

bundled in recent JRE versions, and to run your down-

loaded application.

• By default, JWS runs applications in a secure “sand-

box” with restricted access to local resources, such as

the filesystem. If your application needs unrestricted

access to these resources, then you’ll need to digitally

sign your JAR files.

3http://java.sun.com/products/javawebstart

Prepared exclusively for Robert McGovern

http://java.sun.com/products/javawebstart

AUTO-UPDATING INSTALLED APPLICATIONS 123

<?xml version="1.0" encoding="UTF-8"?>

<jnlp spec="1.0+"

codebase="http://www.yourdomain.com/products" href="DMS.jnlp" >

<information>

<title>DMS</title>

<vendor>Your Company Name, Inc.</vendor>

<description>Document Management System</description>

<offline-allowed />

</information>

<resources>

<j2se version="1.4+" />

<jar href="dms.jar" />

<jar href="lucene-1.3.jar" />

<jar href="Tidy.jar" />

</resources>

<application-desc main-class="com.pragprog.dms.GUI" />

<!-- If JARs are signed, allow to run wild. -->

<security>

<all-permissions />

</security>

</jnlp>

dms/installer/DMS.jnlp

Figure 5.8: Java Web Start JNLP File

Write a JNLP File

To make software available over the web for users with JWS,

you need to write a Java Network Launching Protocol (JNLP)

file. This is the file users will access over the web, so it must

be accessible through your web site. Figure 5.8 shows an

example JNLP file for the DMS application.

Configure the Server Side

Next, put the JNLP file and the dms.jar file in a subdirectory

called products in your web server’s document root directory.

With this in place, users can download and run DMS by point-

ing their web browser to

http://www.yourdomain.com/products/DMS.jnlp

Provided users have version 1.4.x of a JRE installed on their

machine, that’s all there is to it! They hit that web address,

the dms.jar file is downloaded, and the main method in the

com.pragprog.dms.GUI class is run.

Prepared exclusively for Robert McGovern

AUTO-UPDATING INSTALLED APPLICATIONS 124

Later, if you fix a bug and update the contents of dms.jar on

your server, all users get that bug fix the next time they run

DMS. You can also configure JWS to send only changed Java

classes to the client, rather than the entire JAR file.

Notice that JWS doesn’t address an important auto-update

issue: How do you ensure that version-specific files and pref-

erences from the prior version are migrated to the new ver-

sion? This is custom programming that’s likely to take more

than an afternoon.

Java Web Start is one example of an auto-updater. It’s not

always the right tool for the job. If your application and

users meet the criteria, then you’ll want to dig deeper4 into

JWS. Otherwise, consider it a thought experiment for how you

might benefit from an auto-update strategy.

What We Just Did

We started off by installing a distribution file using a low-tech

installer: unzip. When our software didn’t behave as expected

in the field, we automated the troubleshooting process by

installing and running diagnostic tests. Then we wrote an

installer that gives our application a more professional look.

We also explored automation techniques for deploying hosted

applications. Finally, we deployed our application over the

web and made sure its users are always running the latest

and greatest version.

4http://lopica.sourceforge.net is a great resource for everything

related to JWS.

Prepared exclusively for Robert McGovern

http://lopica.sourceforge.net

Chapter 6

Monitoring
Writing quality code for each release takes your best efforts

and attention. When you’re focused on moving forward, you

don’t have time to keep checking the rearview mirror. Instead,

you need to be actively notified when something demands

your attention.

In this chapter we’ll explore ways to use triggered automation

to monitor builds and running programs. These are merely

suggested monitoring techniques to help get you going. Feel

free to color outside the lines and come up with other creative

ways to monitor what’s important to you. And make sure to

have some fun along the way!

6.1 Monitoring Scheduled Builds

Knowing as soon as possible if a scheduled build has failed is

important because it means you need to stop making changes

until the build is fixed. Otherwise you’re just throwing good

work after bad. And fixing the build now will be easier than

trying to fix it later when problems have compounded.

Way back in Section 3.4, Sending Build Results via Email, on

page 63, we configured CruiseControl to send a spiffy email

when the build fails. That’s great, if everyone checks email.

But what if you’re at the beach?

MONITORING SCHEDULED BUILDS 126

Sending Build Results to Your Cell Phone

If your cell phone or pager can receive text messages, you

don’t need to be within reach of email to know when the build

breaks. Indeed, text messaging has grown from something

your teenager does with friends to an effective way to commu-

nicate with machines. That’s right, you could be lounging on

a tropical beach, soaking up warm rays, the ocean breeze fan-

ning your sun-burned face...and then suddenly your mobile

phone beeps.

OK, so that may not be the best thing for your vacation plans.

But at least you’ll know the rest of your programmer bud-

dies are hard at work fixing the build. And that makes your

refreshing drink taste that much better.

Add an Email Publisher to CruiseControl

Most providers of wireless phones and pagers assign an email

address to each account that has a text messaging (SMS) fea-

ture. Sending build results to your cell phone (or your pager)

is as easy as sending an email. To do that with CruiseControl,

just define an additional publisher.

<email mailhost="your.smtp.host"

returnaddress="cruisecontrol@clarkware.com"
buildresultsurl="">

<map alias="fred" address="3035551212@mobile.att.net" />

<failure address="fred" reportWhenFixed="true" />

</email>

The <email> publisher sends a plain-text email to all regis-

tered recipients. In this example, when a build fails, Fred’s

mobile phone gives him a jolt. Then when the build has been

fixed, Fred gets another message. Ah...now back to that trop-

ical vacation.

You may recall that we used the <htmlemail> publisher when

we initially set up CruiseControl. That publisher is still in

use. We’ve just added the <email> publisher for those folks

who also want the build status sent to their phone or pager,

but not in an HTML format.

Prepared exclusively for Robert McGovern

MONITORING SCHEDULED BUILDS 127

Broadcasting a Build RSS Signal

Back in Section 3.4, Pulling Build History from a Web Page,

on page 66 we discussed using CruiseControl’s optional web

application to view the build history. That’s useful for the

casual build observer or while we’re doing build archaeology.

But you probably won’t remember to go look at that web page

as often as you should to notice build failures.

Rather than actively pulling information from a web site, we’d

like to get it pushed to the desktop. RSS is becoming increas-

ingly pervasive as a low-tech way to push information around.

An RSS feed is an XML file that lives on a server. You point an

RSS reader at the file, and each time the file is updated, your

reader highlights the feed as having new information.

What advantage does using RSS have over sending the build

status as email? Say you want to collect information from

various sources on your project—including the status of all

the latest builds—and display it like the dashboard in your

car. An email just won’t do. You need a way to push the build

status to an application that can parse it in a standard way.

That’s where RSS really shines because it offers an easy way

to aggregate multiple feeds into one consistent view.

Add an XSLT Publisher to CruiseControl

CruiseControl formats all its build logs as XML. Trust that

you don’t want to read those log files. They’re not intended to

be viewed by human eyes. But to a computer, those log files

are quite attractive. Since RSS is just another XML format,

through the power of XSLT we’ll transform the XML build logs

into an RSS build feed. To do that, add an XSLT publisher.

<XSLTLogPublisher

directory="/Library/WebServer/Documents"

outfilename="dmsbuildstatus.rss"
xsltfile="buildstatus.xsl" />

The <XSLTLogPublisher> is another publisher defined within

the <publishers> element of the CruiseControl config.xml file.

It uses a custom XSLT stylesheet called buildstatus.xsl.1 This

1Available at http://www.pragmaticprogrammer.com/sk/auto, the

book’s web site.

Prepared exclusively for Robert McGovern

http://www.pragmaticprogrammer.com/sk/auto

GETTING FEEDBACK FROM VISUAL DEVICES 128

Figure 6.1: Build Results via RSS

stylesheet transforms the last build log into a dmsbuildstatus.rss

file in the build machine’s web server directory.

Every time the build process runs, the RSS feed is updated.

Anybody can get the latest build results by pointing their

favorite RSS reader to a URL similar to the following:

http://buildmachine/dmsbuildstatus.rss

Figure 6.1 shows how the NetNewsWire2 RSS reader displays

a build failure RSS item. In this case, you may want more

information than is contained in this summary. That’s when

CruiseControl’s web application comes in handy. The hyper-

link at the top of the RSS item gives you a quick link to the

web page showing the complete build history.

6.2 Getting Feedback from Visual Devices

We’ve looked at several ways to radiate build information,

either by pushing it via email, SMS, and RSS or by pulling it

2http://ranchero.com/netnewswire. This is a Mac product.

Prepared exclusively for Robert McGovern

http://ranchero.com/netnewswire.

GETTING FEEDBACK FROM VISUAL DEVICES 129

Joe Asks. . .

What If My Team Is Dislocated?

These days it’s not uncommon for software to be built
by teams distributed across the globe. For example,
one team may be working in the United States and
another team in India. In this scenario, the two teams
are 12 hours apart in their work shifts. At the end of
every shift, an implicit hand-off occurs. One team
starts their programming day, and the other heads for
home. At that transition point, the build needs to be
in a stable state. This allows one team to quickly pick
up where the other left off.

Building software is as much about communication as
it is about writing code. When teams are dislocated
by distance and time, communication will naturally
suffer. Spreading the word that the system isn’t suc-
cessfully building by hanging out at the water cooler
just won’t work.

So dislocated teams have more to gain from monitor-
ing builds from a common source because it provides
a synchronization point. That is, everybody needs
to know that they’re starting with a successful build
every morning. Being able to get feedback about
the last build by looking at an RSS feed, or even an
official web page, gives each team confidence to
continue moving forward.

from a web page. But your team may already be inundated, or

just plain bored, with information delivered this way. When

that happens, you need to use something eye-popping and,

well, cool. The health of your software is entirely too impor-

tant to be ignored.

Let’s get an eyeful of fun ideas by considering how one project

is using visual devices3 to radiate the status of their builds.

3Have a look at http://www.pragmaticautomation.com for more cool

and effective feedback devices.

Prepared exclusively for Robert McGovern

http://www.pragmaticautomation.com

GETTING FEEDBACK FROM VISUAL DEVICES 130

Figure 6.2: XFD Build Monitor

eXtreme Feedback Devices

by Alberto Savoia, CTO, Agitar Software Inc.

To make sure that key project data that we want to monitor

and act upon does not go unobserved, I’ve started to

experiment with what I call eXtreme Feedback Devices (XFDs).

XFDs are designed to call attention to themselves and the data

they monitor. In order to do that the devices should be

somewhat unique or, at the very least, placed in very visible

and hard-to-miss locations.

Figure 6.2 shows a picture of one of my first XFD experiments,

which is still used to this day. The display alternates between

two full-screen “pages”: One shows the number of open bugs,

and the other shows the result of our continuous automated

build and test cycles. The display is posted in a very visible and

well-frequented area of our building: by the coffee and water

cooler. Everyone in the company (including our CEO, VP of

Marketing, and even the sales team) has made a habit of

looking at it. Since I sit near the monitor, I hear people making

comments about the metrics several times a day.

When a particularly challenging or important metric changes

(from good to bad or otherwise) everybody notices: “We finally

Prepared exclusively for Robert McGovern

GETTING FEEDBACK FROM VISUAL DEVICES 131

cleaned up all our P1 bugs!” or “Hey, who broke the build?” In

addition to giving very useful status on our bugs and the

builds, the visibility of the display creates some friendly peer

pressure that gets people to act quickly to resolve any

problems.

The cost of implementing this XFD is minimal since you

probably have an old or unused PC that will be more than

adequate for running the monitoring application. I spent about

$500 for an LCD monitor and a wall-mounting bracket. The

software (written in Java) polls our build machine (where we do

continuous builds using CruiseControl) and our bug database

(Bugzilla) and updates the results every few minutes. It took

me only a couple of hours to write the software: ten minutes for

the guts of the code and the rest to tweak the fonts and

graphics layout to make it look good.

It’s OK to break the build once in a while; it’s actually a good

sign that the tests are catching problems. But if it’s important

to get a build fixed as soon as possible, a Lava Lamp makes a

great XFD. Figure 6.3 on the following page shows our

dual-bubbly-lamp build monitor in action.

Since it takes a few minutes for the goo in the lamp to start

bubbling (time enough to fix minor problems that should be

fixed ASAP), the feedback mechanism matches the desired

behavior: fix the problem before the lamp starts bubbling. In

the original implementation of this XFD, I used a single red

Lava Lamp since red is associated with problems and the

objective was to keep it from bubbling. Developers, however,

really liked looking at the bubbles, so I added a green lamp that

is active when the build is not broken. This way one of the Lava

Lamps is always going.

In order to turn an ordinary Lava Lamp into an XFD, I used a

computer-driven wireless home-automation system called

FireCracker (www.x10.com). I wrote a small Java program that

polls our intranet to check the build status and then interfaces

with the X10 system through a wireless device to turn the lamp

on and off.

• Cost of Lava Lamps: $40 for 2

• Cost of X10 devices: $60

• Using Java and lava to keep the builds clean: priceless

Based on my experience, I’m 100 percent sold on the idea of

eXtreme Feedback Devices. I highly recommend them to any

Prepared exclusively for Robert McGovern

www.x10.com

GETTING FEEDBACK FROM VISUAL DEVICES 132H a p p yG r e e nB u b b l e sS a dR e dL a v a
Figure 6.3: Bubbles Green == Build Is Clean

software development organization that wants to make the

most of their monitoring and feedback efforts. XFDs are

inexpensive to build and operate, they add fun and color to the

workspace, and most important they are effective in providing

the team with feedback on key items and getting them to act

upon it.

As we learned in Alberto’s story, it’s relatively easy and inex-

pensive to make build monitoring a spectator sport.4 But

don’t stop there. Using similar techniques you can monitor

any information that’s valuable to your team.

4Alberto used a GPL Java library to interface with FireCracker, available

at http://www.theprescotts.com/software/firecracker.

Prepared exclusively for Robert McGovern

http://www.theprescotts.com/software/firecracker

MONITORING YOUR JAVA PROCESS 133

Mobile Visual Monitoring

The trouble with Lava Lamps is that you can’t take them on

the road with you. An alternative is to use an Ambient Orb.5

It’s a sphere the size of a softball that glows in a rainbow

of colors. The cool part is that inside the orb is a wireless

pager receiver. Simply plug the orb into a power source, and

it receives wireless signals over a nationwide wireless network

much like a cell phone or pager. For a small monthly fee you

can purchase a premium account that lets you program how

the orb changes color through the Ambient wireless network.

Imagine your project’s Ambient Orb in a peaceful state glow-

ing green. The next time your scheduled build runs, it fails.

Behind the scenes a wireless packet is transmitted to your

orb, and suddenly it turns red for everyone on the team to

see!

6.3 Monitoring Your Java Process

Now that you have monitors in place for your build process,

let’s explore ways to use automation to monitor your deployed

software.

We’ll start with the simplest deployment: a long-running Java

process. When you start it on a machine somewhere, it quietly

goes to work offering some useful service. Let’s assume that

this service is shy, meaning that it doesn’t offer a diagnostic

interface or a user interface of any sort. Once it’s started and

you walk away, how will you know if it dies unexpectedly?

One cheap way to baby-sit a shy Java process is to start it

under the watch of another tattletale process. The following

Unix shell script does just that:

#!/bin/sh

while ! java com.pragprog.Main

do
mail -s "Help Me!" 3035551212@mobile.att.net < email.txt

sleep 60

done m
o

n
it
o

rs
/l

a
u

n
c

h
e

r/
la

u
n

c
h

.s
h

5http://www.ambientdevices.com

Prepared exclusively for Robert McGovern

http://www.ambientdevices.com

CHECKING UP ON YOUR WEB APPLICATION 134

The monitoring loop first starts the application by running the

java command directly as the condition of the while loop (of

course it could invoke any command or script that kick-starts

your Java application). The loop then hangs waiting for the

java command to exit. If the Java process exits with an exit

code other than 0, then something went horribly wrong. This

could happen because an exception came flying out of the

main method or somebody “accidentally” killed the process.

When the process dies, it’s time to call in the humans. The

script sends a “Help Me!” text message to your cell phone or

pager using the contents in email.txt as the message body. You

could just as easily have it light up some visible object.

But it might be prudent to automatically restart the process

before you’ve arrived on the scene. That’s what the while

loop buys us. The script sleeps for a minute just to avoid

going berserk and then loops back to restart the process. If

the process being monitored creates logs files, we don’t want

those files getting clobbered; it’s important that the script save

a time-stamped version of those files before restarting the pro-

cess.

Simply by changing the way we start a Java process—putting

it under the management of a process monitor—we’re sure to

know when it crashes.

6.4 Checking Up on Your Web Application

Web applications aren’t so shy. Indeed, they have the capabil-

ity of a remote diagnostic interface built right in. Consider, for

example, the dreaded “404 Not Found” message. It’s one not-

so-subtle indication that your web application took an early

vacation. An indication of an internal problem is seeing a

default error page that includes an error message or (gasp!)

an exception and its stack trace.

Here’s the good news: If you can detect problems by looking

at a web page, you can train a computer to watch for those

same problems. Better yet, you don’t pay a computer by the

hour, so you can afford to have it continuously monitor web

pages.

Prepared exclusively for Robert McGovern

CHECKING UP ON YOUR WEB APPLICATION 135

Writing a Screen Scraper

Writing a program that monitors a web page turns out to be

remarkably easy if we choose the right tools. Sure, we could

do this in Java, but it’s overkill for this problem. You already

have powerful HTML scrapers available to you: the curl and

wget utilities. The following Unix shell script, checkurl.sh, will

get the job done lickety-split:

#!/bin/sh

if [$# -eq 0]

then
echo "usage: checkurl.sh <url>"

exit 1
fi

url=$1

outputfile="/tmp/test-$$.html"

to="3035551212@mobile.att.net"
subject="Uh oh!"

message=""

trap "rm -f $outputfile" 0

if curl -o $outputfile $url

then

if grep -qiE "Error|Exception" $outputfile

then
message="Error or Exception"

else
exit 0 # success

fi

else

message="Unavailable"

fi

(cat << END OF MAIL

Sadly, $url isn’t feeling well right now.

Diagnosis: $message

Thanks,

Your Humble Monitor
END OF MAIL
) | mail -s "$subject" "$to" m

o
n

it
o

rs
/c

h
e

c
ku

rl
.s

h

To check up on the DMS application, for example, run the

script like this:

$ checkurl.sh http://xyz.com:8080/dms

The script uses curl to download the web page at the specified

URL to a local temporary file. It then uses the ever-powerful

grep command to search the downloaded page’s contents for

the presence of the word “Error” or “Exception.” If the web

page isn’t found or if it’s displaying either of those bad words,

then your cell phone or pager receives the following text mes-

sage:

Prepared exclusively for Robert McGovern

WATCHING LOG FILES 136

Sadly, http://xyz.com:8080/dms isn’t feeling well right now.

Diagnosis: Error or Exception

Thanks,

Your Humble Monitor

Scheduling a Checkup

Our freedom comes from monitors that run on a schedule.

How often something is monitored is a decision we get to make

based on how quickly we need to be notified of a problem.

After running the checkurl.sh script manually a time or two to

make sure it works, you need to put it on a schedule. On

Unix systems, the simplest scheduling tool is cron. To check

every hour whether DMS is alive and well, for example, create

a crontab entry like this:

0 * * * * $HOME/bin/checkurl.sh http://xyz.com:8080/dms

That’s it! Now doesn’t it feel good knowing this computer is

watching your back? Admittedly, we haven’t done anything

fancy. It’s just a cheap monitor that uses the good ol’ fash-

ioned screen scraping your father told you about. But it con-

tinues to pay you back by notifying you when problems occur.

Of course, you could noodle with this monitoring script for

days or rewrite it in Ant, Ruby, Java, or whatever language

makes you do a happy dance. But you don’t have days to

noodle with automation because you have to ship software,

remember? So pick the simplest tools that get the job done,

and then go back to preparing the next earth-shattering mega-

release of your software.

6.5 Watching Log Files

Another way to monitor a Java application from the outside

is by watching log files it updates. Many applications are

already laced with logging statements ranging from harmless

debugging information to end-of-the-world announcements.

These are crude diagnostic interfaces, but they can be useful

as early-warning detectors. That is, we can put a computer on

guard watching logs for signs that our application has crashed

or isn’t feeling well and may crash.

Prepared exclusively for Robert McGovern

WATCHING LOG FILES 137

Let’s assume all error messages are being written to a local

error file. When that file is updated, it means your application

is crying for help. To constantly listen for those sounds, write

a program that monitors the error log file for changes.

We’ll use Ruby just to illustrate that shell scripts aren’t the

only way to create monitors. In the following Ruby program,

the watch method checks the specified file every minute. If the

modification time of the file has changed since the last time it

was checked, then the notify method is invoked.

#!/usr/bin/env ruby

def watch(file)

last touched = File.mtime(file)

loop do

sleep 60

current time = File.mtime(file)

if current time != last touched
notify(file)

end
last touched = current time

end

end

def notify(file)

puts "#{file} was changed."

send an email, text message, etc.

end

if ARGV.empty?

puts "Usage: filemonitor.rb <filename>"

exit 1
end

watch(ARGV[0]) m
o

n
it
o

rs
/fi

le
m

o
n

it
o

r.r
b

To start monitoring the error log file, type

$ filemonitor.rb error.log

If the application you’re monitoring happens to write all log-

ging messages—from debug to fatal—in a single log file, then

the monitor will need to get a bit smarter. For example, it

might notify you when really bad things happen by searching

for new messages that include the word “FATAL.”

The important thing to remember is that monitors are just

trip wires that cause some form of notification to be sent or

displayed. The notify method in this monitor, for example,

could do anything you want: send an email or text message,

broadcast a message to all users on the system, or change the

color of a visible object to bright red.

Prepared exclusively for Robert McGovern

MONITORING WITH LOG4J 138

6.6 Monitoring with log4j

If an application is using a configurable logger such as log4j,6

then we can do better than idly watch log files. Indeed, by

simply changing an external configuration file, we can capture

logging events as they happen inside the application.

How log4j Works

Say, for example, when running in production, your appli-

cation logs only error and fatal messages. All other logging

categories are disabled in this environment because of perfor-

mance concerns. You’ve configured it this way by including

the following line in the log4j.properties file:

log4j.logger.com.pragprog.dms=ERROR, logFile

Given this configuration, consider what happens when the

following code is executed.

Logger logger = Logger.getLogger("com.pragprog.dms.Search");

logger.debug("Debug message");

logger.info("Info message");

logger.warn("Warning message");

logger.error("Error messsage");

logger.fatal("Fatal message");

It first gets an instance of a Logger by requesting a logger

named com.pragprog.dms.Search. Because there’s no log-

ger by that exact name in the configuration, so it returns

the Logger instance matching the com.pragprog.dms prefix.

Since that logger is assigned a level of ERROR, it will log only

messages at that level or higher: ERROR or FATAL. Therefore,

it logs only the messages passed to the error and fatal methods.

Loggers send their messages to all registered destinations,

called appenders. In this case, the only appender is log- appenders

File, which is configured to write log messages to a file called

error.log. Thus, when the program is run, the following mes-

sages are logged to the error log file:

ERROR - Error messsage

FATAL - Fatal message

6http://logging.apache.org/log4j

Prepared exclusively for Robert McGovern

http://logging.apache.org/log4j

MONITORING WITH LOG4J 139

Plugging In a Monitoring Appender

In addition to spooling all error and fatal message to an error

log file, we’d like to create our own monitor for those logging

events.

log4j allows multiple appenders to be registered for each log-

ger. It’s distributed with a variety of prebuilt appenders to

send logging messages to the console, a file, a socket, email

addresses, the Unix Syslog daemon, the NT Event logger, or

asynchronously to a JMS destination. If you’d like your mes-

sages color coded on a GUI display, you could run Chainsaw—

a GUI-based log viewer which can monitor logging events in

remote applications through a socket.

But if the stock appenders aren’t enough, you can write a cus-

tom log4j appender that opens the door for just about any type

of monitoring. The easiest way to write a custom appender is

to create a class that extends AppenderSkeleton.

package com.pragprog.dms;

import org.apache.log4j.AppenderSkeleton;

import org.apache.log4j.spi.LoggingEvent;

public class MonitoringAppender extends AppenderSkeleton {

protected void append(LoggingEvent event) {

// send or display notification

}

public boolean requiresLayout() {

return false;

}

public void close() { }

} m
o

n
it
o

rs
/l

o
g

g
e

r/
M

o
n

it
o

ri
n

g
A

p
p

e
n

d
e

r.j
a

v
a

The append method is called for all logging events destined for

the MonitoringAppender. Let’s say you want this appender to

receive the same logging messages as the error log file: error

and fatal messages only. Simply register the appender with

the logger by updating the log4j.properties file.

log4j.logger.com.pragprog.dms=ERROR, logFile, monitor

log4j.appender.monitor=com.pragprog.dms.MonitoringAppender

This gives us a way to monitor the application for problems

without having to watch the log file directly. We could imple-

ment the append method of the MonitoringAppender to send a

notification by any means or turn on a visual device. Again,

Prepared exclusively for Robert McGovern

MONITORING WITH LOG4J 140

this monitor serves merely as a trip wire. The notification

mechanism we use is based on the severity of the problem.

Just how far can you take logger-based monitoring? For one

answer to that question, let’s now turn our attention to a

project where bugs can’t hide.7

Automatic Crash Reporting

by Bob Lee, http://crazybob.org

It seems that more often than not, logging fails to garner the

respect it deserves. Many applications weave megabytes of

useful debug information from a combination of thousands of

successful and failed requests into a single log file. Tools help

filter the result to some degree but can’t help much when the

production application foregoes debug-level logging for the sake

of performance. How many times have you troubleshot a

production issue sans adequate information?

My current web application made do during development with

a simple default error page that printed the exception stack

trace to the browser. Testers would copy the stack trace and

enter a short description into Bugzilla. In the past, when the

production deadline rolled around, we would typically modify

the error handler to display a generic error message and

unique ID in place of the stack trace and fire off an email to an

administrator. This time we decided to turn things up a notch.

First, throwing away useful debug-level log messages seemed

like an enormous waste. If dumping the messages from

separate requests to one place produces a bottleneck, why not

keep them separate? Second, filing bugs and filtering out

duplicates struck me as unnecessarily rote. How could we

better automate the process?

So I built a crash reporting framework (nicknamed ”Bobzilla”

by a co-worker). The simple implementation does not impact

application code; we combine a custom Servlet filter and a

custom log4j appender to capture the log messages for the

scope of a web request in a thread-local buffer. When the filter

catches an exception, it creates a new bug in Bugzilla and uses

the log messages leading up to the exception and the

exception’s stack trace as the bug description.

Integrating with Bugzilla proved easier than we expected. Tired

of waiting for permission to directly access the Bugzilla

7This story first appeared on http://java.net.

Prepared exclusively for Robert McGovern

http://java.net

BUILDING TRIP WIRES WITH RSS 141

database, I decided to post bugs directly to the Bugzilla web

application. I discovered through experimentation that Bugzilla

lets you pass the user ID and password along with the rest of

the parameters, so authentication was a snap. Integration

amounted to looking at the HTML source for the “New Bug”

page to see what parameters it passed in and duplicating the

effort using a Java URLConnection.

We filter out duplicate exceptions by hashing the stack trace.

Unfortunately, even after some experimentation and tweaking,

a couple duplicates still make it through; however, any further

filtering must be application specific and would require more

development effort than simply invalidating duplicate bugs by

hand. We’re still much better off than where we started.

With “Bobzilla” in place for a few weeks now, the turnaround

time for addressing bugs has dropped considerably, testers

focus more time identifying functionality issues, fewer

problems slip through the cracks, we collect debug level

messages in production with no performance penalty, and I no

longer waste time tailing logs and filtering the noise caused by

ten concurrent requests.

This is a clever and efficient way to automatically turn excep-

tions into trackable issues. The program in the story is an in-

house hosted application, but this technique could be used

by any application with network access. Those applications

just need a way to “phone home” when a problem occurs.

6.7 Building Trip Wires with RSS

As you learn more about the kinds of things worth monitoring

in your application, you can add special monitoring trip wires.

These might be important events, but you don’t need to get

immediate notification when they happen.

For example, say you’d like to know when somebody orders

five or more books. Perhaps you want to send them a box of

chocolates. With log4j you might use a logger called sales

and log a significant book order event like this:

Logger logger = Logger.getLogger("sales");

logger.info("Joe (joe@xyz.com) ordered 10 books!");

When this event happens, you don’t want to have to go search-

ing through a log file or your email inbox. You’d like the noti-

Prepared exclusively for Robert McGovern

BUILDING TRIP WIRES WITH RSS 142

fication pushed to you via RSS so that you have a history of

all big orders in one RSS feed. That way everyone who has a

vested interest in book sales can watch the same feed.

To do that, write a custom log4j appender called RSSAppen-

der, for example. Then change the log4j.properties file to add a

new logger called sales that uses this new RSSAppender as its

destination.

log4j.logger.sales=INFO, rss

log4j.appender.rss=com.pragprog.RSSAppender

This now means that the appender named rss is assigned

to the logger named sales with a logging level of INFO or

higher. And once the sales-related logging statements have

been inserted into the code, you can selectively enable or dis-

able them level by level by changing the log4j.properties file.

The append method of the RSSAppender would need to make a

new RSS item for each logging message it receives. Here’s an

example RSS feed with two items:

<?xml version="1.0" encoding="iso-8859-1" ?>

<rss version="0.91">

<channel>

<title>Sales Info</title>

<description>Important sales events.</description>

<language>en-us</language>

<item>

<title>Big Order</title>

<description>

Joe (joe@xyz.com) ordered 10 books!

</description>

</item>

<item>

<title>One-Millionth Customer</title>

<description>

Sally (sally@xyz.com) just broke the one-million mark!

</description>

</item>

</channel>

</rss> m
o

n
it
o

rs
/r

ss
/s

a
le

s.
rs

s

Then anyone with access to that RSS file could listen to sales

events by pointing their RSS reader to the RSS feed. Fig-

ure 6.4 on the next page shows the sales information in the

NetNewsWire reader. So, monitoring can be more than wait-

ing for something bad to happen. Indeed, it can also be used

to notify us of something good in a timely way.

Prepared exclusively for Robert McGovern

MONITORING HEALTH WITH A DEBUG COMMAND 143

Figure 6.4: Sales Information via RSS

6.8 Monitoring Health with a Debug Command

When a remote application is showing signs of being ill, it

would be helpful if we could ask it where it hurts. To do that,

create an internal debug command that dumps the applica-

tion’s health on demand. The output might include

• JVM statistics

• The last error message logged

• Number of concurrent users on the system

• Open database connections vs. connection pool size

• Average response time of a key web page

One way to get a debug dump is to run a command-line pro-

gram that connects to a remote program and asks for a report.

However, a web interface offers a powerful alternative.

Asking a Web Server

HTTP is a ubiquitous and convenient interface protocol that

works even through most firewalls. If an application is run-

ning in a web server, then you can get information about it

remotely by issuing HTTP requests. For example, to generate

Prepared exclusively for Robert McGovern

CREATING A CRASH REPORT 144

a debug dump of the DMS application as it’s running, send it

an HTTP request similar to this:

http://xyz.com:8080/dms/debugdump

That URL would map to some resource that generates a debug

dump showing an arbitrary amount of diagnostic informa-

tion about the application. To get a diagnostic report, either

browse to that URL or run a screen scraper that sends the

request programmatically and checks the response for telltale

signs of a problem.

This monitoring technique is powerful enough that you might

want to consider embedding a web server in remote applica-

tions that aren’t already running inside a web server. That is,

rather than building a remote diagnostic interface, just bring

all the power of HTTP right to the application.

Embedding a web server might involve writing a bare-bones

web server or just using something like Jetty:8 a small, fast,

free, and embeddable HTTP server and servlet container. Let’s

see just how easy Jetty is to embed:

import org.mortbay.http.HttpServer;

import org.mortbay.jetty.servlet.ServletHandler;

public class WebServer {

public static void main(String[] args) throws Exception {

HttpServer server = new HttpServer();

server.addListener("8080");

ServletHandler handler = new ServletHandler();

handler.addServlet("DebugDumpServlet", "/debugdump/*",

"com.pragprog.DebugDumpServlet");

server.getContext("/").addHandler(handler);

server.start();

}

} m
o

n
it
o

rs
/w

e
b

se
rv

e
r/

W
e

b
Se

rv
e

r.j
a

v
a

Running that minimal code starts an HTTP server on port

8080 with the DebugDumpServlet mapped to the /debugdump/

path. Serving static content from a directory is even easier.

6.9 Creating a Crash Report

Sometimes, applications crash. When they do, we’ll want to

do a postmortem analysis to find out what went wrong in

8http://jetty.mortbay.org

Prepared exclusively for Robert McGovern

http://jetty.mortbay.org

3-2-1... 145

hopes of preventing it from happening again. Log files can

hold some of the clues, but they can be too much informa-

tion to wade through and they’re usually just one piece of the

puzzle.

Go a step further by writing a simple script or batch file that

knows how to collect just the right amount of evidence from

various sources, including

• The last x number of messages in the log file

• The version of the application

• The operating system and JVM version

• Key environment variables and system properties

• Names of other running processes

When a user experiences a crash, they run the script and

send you the resulting crash report. Better yet, the applica-

tion could automatically create the crash report and display

it in a dialog box or an HTML form. The user then gets a

chance to review the crash report before pushing the button

that submits it over the web to your technical support server.

Taking a lesson from the automatic crash reporting story pre-

viously, that server could record the crash as a new bug in

your issue-tracking database.

6.10 3-2-1...

My friend Bryce Unruh is a rocket scientist, literally. His

team designs hardware and embedded software for science-

gathering instruments that fly aboard satellites out in space.

Launching their product consists of installing the software on

the hardware, strapping the hardware to a four-story rocket,

and lighting the fuse.

OK, it’s slightly more complicated than that. The result, how-

ever, is the same: Successfully deploying their product puts it

far out of their reach in an environment less hospitable than

your average server room. And failure is a very expensive

option. So once their handiwork is in orbit, they need to con-

tinuously monitor its health as a heads-up for scheduling pre-

ventative maintenance.

Prepared exclusively for Robert McGovern

3-2-1... 146

As you can imagine, they’re busy folk, and they don’t have

time to sit around channel-surfing through all the spacecraft’s

data waiting for a problem. They’re much too busy for that

sort of active monitoring. At any given time, the team may

have several systems deployed high above their heads while

they’re hard at work on the next stellar system. So how can

they possibly stay on top of everything in the universe? As

Bryce explains in the following story, they use automation to

turn science fiction into science fact:

A Story from Outer Space

by Bryce Unruh, Ball Aerospace & Technologies Corp

Our team was responsible for maintaining the flight software

for two instruments on the Spitzer Space Telescope: one of

NASA’s Great Observatories currently in its first year of a

five-plus year mission.

Because of the telescope’s unique orbit (earth trailing,

heliocentric) and communication constraints with the Deep

Space Network, contact windows between the ground stations

and the telescope occur at about 12-hour intervals. During

these contacts, science and engineering data are transmitted

from the observatory. Hundreds of telemetry items are

transmitted during this downlink, and it is crucial that our

team be notified immediately if certain values are out of limit.

The out-of-limit channels are identified by an automatic alarm

notification system, and a text message is sent to everyone on

our team. A simple message is sent to our text pagers that

includes the telemetry channel, alarm value, time stamp, and

spacecraft ID. The team member on call then looks up the

telemetry channel in our database, assesses the severity of the

situation, and takes appropriate action.

We also have another method of capturing less obvious metrics

on our software’s performance. Our software is written to

detect errors that occur during instrument operation. These

errors are written to an internal error buffer in memory. Each

entry contains the error ID, error parameter, and time stamp.

When the instrument is commanded to turn off, an on-board

spacecraft sequence of commands dumps the memory area

which includes the error buffers. Ground software has been

written to take this memory dump data and send the team a

summary of errors that occurred during the instrument

campaign.

Prepared exclusively for Robert McGovern

AUTOMATE! 147

As we saw in Bryce’s down-to-earth story, automated moni-

toring can help you gather important information about your

deployed software without you having to continuously ask it

how it’s feeling. When it requires attention, it lets you know.

In the meantime, you’re free to go merrily about your terres-

trial business.

Thankfully, you don’t have to be a rocket scientist or have

an astronomical budget to enjoy the benefits of automated

monitoring. Asynchronous communication with email, cell

phones, and pagers has never been easier. The techniques

we’ve used in this chapter can be applied to monitoring all

kinds of stuff.

6.11 Automate!

So, now we’ve finished. We’ve put together repeatable builds

and arranged for them to be run automatically. We’ve created

installers that let us deploy our applications at the push of

a button and written tests that allow those installations to be

tested once they arrive on a client’s system. And, just because

things sometimes go wrong, we’ve arranged for all these steps

to notify us of problems, whereever we are in the world.

And all of this is being done automatically, without any inter-

vention on our part. That’s sweet—the machines are doing all

the boring work for us. Now we can get down to coding the

interesting stuff....

Prepared exclusively for Robert McGovern

Appendix A

Resources
A.1 On the Web

Ant . http://ant.apache.org
A specialized build tool for Java that’s powerful, portable, extensible,

and integrated into many Java IDEs.

Anthill http://www.urbancode.com/projects/anthill
An Ant build scheduler similar to CruiseControl that runs inside of

a Servlet container.

CruiseControl http://cruisecontrol.sourceforge.net
An application and extensible framework for a continuous build pro-

cess. It includes plug-ins for email notification, version control sys-

tems, and Ant and Maven integration.

CVS . http://cvshome.org
A widely used, open-source version control system.

Cygwin .http://www.cygwin.com
A POSIX emulation library for Windows.

Groovy. .http://groovy.codehaus.org
A dynamic language with Java-like syntax that runs on the Java

platform.

Java Web Start. . .
. . . http://java.sun.com/products/javawebstart

A web-based deployment and auto-update technology bundled in

newer versions of Java.

Jetty .http://jetty.mortbay.org/jetty
An embeddable web server and Servlet container.

JUnit . http://junit.org
The de facto standard unit testing tool for Java.

http://ant.apache.org
http://www.urbancode.com/projects/anthill
http://cruisecontrol.sourceforge.net
http://cvshome.org
http://www.cygwin.com
http://groovy.codehaus.org
http://java.sun.com/products/javawebstart
http://jetty.mortbay.org/jetty
http://junit.org

BIBLIOGRAPHY 149

log4j .http://logging.apache.org/log4j
A highly configurable logging framework for Java.

NSIS . http://nsis.sourceforge.net
The Nullsoft Scriptable Install System (NSIS) is a free installer and

uninstaller for Windows.

Pragmatic Automation . . . http://pragmaticautomation.com
The companion web site for this book where you’ll find fresh news,

stories, and content related to all sorts of project automation. Got

an automation story from your project? Submit it here.

Pragmatic Programming. . .
. . . http://www.pragmaticprogrammer.com

The Pragmatic Programmer’s home page, where you’ll find links to

the Pragmatic Bookshelf titles (including this book), along with infor-

mation for developers and managers.

A.2 Bibliography

[HL02] Erik Hatcher and Steve Loughran. Java Develop-

ment with Ant. Manning Publications Co., Green-

wich, CT, 2002.

[HT00] Andrew Hunt and David Thomas. The Pragmatic

Programmer: From Journeyman to Master. Addi-

son-Wesley, Reading, MA, 2000.

[HT03] Andrew Hunt and David Thomas. Pragmatic Unit

Testing In Java with JUnit. The Pragmatic Pro-

grammers, LLC, Raleigh, NC, and Dallas, TX,

2003.

[TH03] David Thomas and Andrew Hunt. Pragmatic Ver-

sion Control Using CVS. The Pragmatic Program-

mers, LLC, Raleigh, NC, and Dallas, TX, 2003.

Prepared exclusively for Robert McGovern

http://logging.apache.org/log4j
http://nsis.sourceforge.net
http://pragmaticautomation.com
http://www.pragmaticprogrammer.com

Pragmatic Project Automation: Summary

C R I S P B u i l d sC o m p l e t eR e p e a t a b l eI n f o r m a t i v eS c h e d u l a b l eP o r t a b l eh t t p : / / w w w . p r a g m a t i c p r o g r a m m e r . c o m / s k / a u t oC r e a t e a o n e ¶ s t e p b u i l d p r o c e s sB u i l d o n a f r e q u e n t s c h e d u l eW r i t e b r a n c h a n d r e l e a s e s c r i p t sC r e a t e a n i n s t a l l e r / d e p l o y e rM o n i t o r b u i l d s a n d a p p l i c a t i o n sR e v i e w a n d r e v i s eA u t o m a t i o n C h e c k l i s t
O n e Ë S t e p B u i l d s(O n C o m m a n d)C o m p i l eT e s t S c h e d u l e d B u i l d s(H o u r l y)C h e c k o u tC o m p i l e &T e s tE m a i lI n s t a l l a t i o n &D e p l o y m e n t(M o n t h l y)I n s t a l lT e s tA u t o õU p d a t eD e l i v e r M o n i t o r i n g(C o n t i n u o u s l y)V i s u a lD e v i c e sR S Sl o g 4 jC e l l P h o n e /P a g e r(W e e k l y)T e s tP a c k a g eR e l e a s eB r a n c hP u s h Ë B u t t o n R e l e a s e s

Index
A
Accuracy, 7

Advanced deployment, 119

Ambient Orb, 133

Ant, 18–28, 148

clean target, 34

default target, 20

deploy J2EE apps, 115

draw dependencies, 32

with Groovy, 38

history of, 28, 36

vs. make, 27

property, 21

running, 24

scheduling, 44

target, 23

tasks, 19, 23

test target, 29

Tomcat tasks, 117

see also ANT HOME,

<batchtest>, <delete>,

<fileset>, haltonfailure,

<mkdir>, <path>,

<pathelement>, <project>,

<property>,

<sysproperty>, <target>,

<zipfileset>

<ant> (CruiseControl), 51, 54

ANT HOME environment

variable, 24

Anthill, 61, 148

Appender, log4j, 139

Application

embed web server in, 143

monitor while running, 133

restarting, 134

web, monitoring, 134

Archive, see JAR, tar, and ZIP

files

at (scheduling), 44

create release, 95

Auto-update install, 120

Automated tests, see Tests

Automation

benefits, x

commanded, 5, 18

deployment, 97

prerequisites, 6

reasons for, 7–8

release, see Release

scheduled, 5, 42–70

triggered, 5, 125

types of, 4–6

web site, xi

when to, 8

see also Build

B
Background build, 13

basedir (Ant), 21

Batch file, see Script

<batchtest> (Ant), 31, 57

Big project, 68

Bock, David, xii

Bootstrap CruiseControl, 53

Branch, release, see Version

control

Brodwall, Johannes, xii

Broken windows, 34

Bugzilla, 140

Build, 10–41

continuous, 44

results via e-mail, 63

feedback, 128

file, see Ant

frequency, 55

incremental vs. full, 35

interval, 54

BUILD FILE 152 CVS

monitor display, 130

monitoring, 125

publish results, 57, 63

recipe, 10

results to web, 66

results via RSS, 127

results via SMS, 126

workspace for CruiseControl,

48

see also Script

Build file, 10

delegating, 50

example, 25, 33

Groovy, 38

Build machine

configuration, 46

justifying, 45

personal ad, 47

build.groovy, 37

build.xml, 20

buildafterfailed (CruiseControl),

53

C
cc-build.xml (CruiseControl), 50

under CVS, 51

CCTray (build status), 48

CD, used for delivery, 97

Cell phone (get build results), 126

Chainsaw (log4j), 139

Chappell, Simon, xii

Checklist, 150

checkurl.sh, 135

Clark, Nicole, xiii

Class file, 16

removing, 34

Classpath, 17, 22

environment variable, 22

testing contents, 106

Clean up after build, 34

ClearCase, 119

Cobbler’s children, x

Code, finding book’s, x

Command line, xi

build from, 17–18

Commanded automation, see

Automation, commanded

Compile

using Ant, 24

using IDE, 14

javac, 17

Complete builds (CRISP), 12

Confidence, 12

config.xml (CruiseControl), 50, 52

Consistency, 7

Continuous build, 44

Conventions, xii

Cost of build machine, 45

Crash report, 144

CRISP acronym, 11

cron (scheduling), 43, 136

create release, 95

crontab format, 44

CruiseControl, xiii, 46–69, 148

bootstrap, 53

build interval, 54

build workspace, 48

checking CVS, 53

e-mail publisher, 126

how to run, 58

installing, 47

large example, 68

log, 49, 53, 55, 59

monitoring CVS, 62

monitoring remotely, 125

multi-threaded, 68

.NET version, 48

RSS results, 127

stop after failure, 53

test configuration, 51

web results, 66

wiki, 69

XSLT publisher, 127

see also <ant>, Anthill,

buildafterfailed,

cc-build.xml, config.xml,

<currentbuildstatusboot-

strapper>, <cvs>, <email>,

<htmlemail>, <map>,

<modificationset>,

<publishers>, <schedule>,

<XSLTLogPublisher>

curl utility, 135

<currentbuildstatusboot-

strapper> (CruiseControl),

53

Customer

auto-update software, 120

deliver release to, 92, 97–124

running tests, 101

support issue, 99

CVS, 12, 49, 51, 148

<cvs> (CRUISECONTROL) 153 HATCHER

CruiseControl checks, 53

release branch, 74, 91

rtag, 74

tag, 91

tag release, 90

<cvs> (CruiseControl), 51

CVSROOT environment variable,

49, 51, 53, 93

Cygwin, xii, 148

D
Daily releases, 94

Dangerous bend, xii

Database, verify connection, 106

Davidson, James Duncan, xii,

xiii, 28, 36

Default Ant target, 20

Delegating build file, 50

<delete> (Ant), 34

Delivery, see Deployment;

Release

Dependencies

ant tasks, 23

drawing (Ant), 32

file, 19, 22, 24

Deployment

advanced, 119

auto-update, 120

automatic, 97

via CD, 97

via FTP, 97, 116

hosted, 115

hot (J2EE), 116

installing, 98

Java Web Start, see JWS (Java

Web Start)

staging, 118

testing, 118

see also Install; Release

Diagnostic tests, see Tests,

diagnostic on install

Directory structure, 15, 21, 48

create with Megg, 40

location independence, 99

of installed files, 98

relative paths, 21

for releases, 76

testing, 102

Dislocated team, 129

Distribution, see Release

DMS (Document Management

System), 15, 49, 71

installing, 98

Documentation, reduced need, 7

DRY (Don’t Repeat Yourself), 21

E
E-mail, 7

build results, 63, 126

EAR file, 115, 119

checking configuration, 106

<email> (CruiseControl), 126

Embedded web server, 143

End user, see Customer

Errors, reducing with

automation, 8, 12

ESP Package Manager, 108

Example code, finding, x

Extreme feedback, 130

F
Feedback, 6, 32, 128, 130

File dependency, 19, 22, 24

<fileset> (Ant), 22

FireCracker (X10 automation),

131

Formatter, test output, 31, 56

Frederick, Jeffrey, xiii

Frequency, of build, 55

FTP (File Transfer Protocol)

delivery to client, 97

J2EE deployment, 116

G
Grandma, sterotype, 98

Graphviz (draw Ant

dependencies), 32

grep, 135

Groovy, 148

Ant integration, 38

for builds, 37

Gwaltney, Will, 69

H
Halloway, Stuart, xiii

haltonfailure, Ant test

attribute, 30

Hasse, Scott, xii, 119

Hatcher, Erik, xiii

HELP DESK 154 <mkdir> (ANT)

Help desk, see Customer,

support issue

Herr, Darin, xiii

HM NIS (NSIS script editor), 109

Hosted applications, 115

HTML screen scrape, see Screen

scrape

<htmlemail> (CruiseControl), 64,

126

HTTP, see Web server

I
IDE, problems building with, 14

Incremental build, dangers, 35

India, 129

Informative builds (CRISP), 12

Install, 97–124

auto-update, 120

automatic, 107–115

custom pages, 111

ESP Package Manager, 108

hosted applications, 115

IzPack, 108

Java Web Start, see JWS (Java

Web Start)

license agreement, 109

NSIS (Nullsoft Scriptable

Install System), 108–115,

149

PackageMaker (OS X), 108

staging, 118

testing, 88

writing script, 108

Installer

NSIS (Nullsoft Scriptable

Install System), 108

International teams, 129

Interval (of build), 54

IzPack installer, 108

J
J2EE, install apps under, 115

JACL, 119

JAR file, 80, 81, 89

Java

Ant, 27

testing version, 104

Java Web Start, see JWS (Java

Web Start)

JAVA HOME environment

variable, 100, 101

javac compiler, 17

Ant task, 23

JavaScript, 36

Jetty (web server), 144, 148

JMX, 119

JNLP, see JWS (Java Web Start)

Joe the Developer, xii

JPython, 36

Julian, Jonathon, xiii

JUnit, see Tests, JUnit

<junit> (Ant), 30, 56–57

JWS (Java Web Start), 121, 148

constraints, 122

JNLP, 122

sandbox, 122

Jython, 119

K
Killian, Gentleman John, 42

Knoppix (Linux distribution), 47

L
Large project, 68

Lava Lamps, xiii, 3, 7, 131

Lee, Bob, xii, 140

Libraries, 16

License agreement, 109

Linux (for build machine), 47

Location-independent files, 99

Log file, 49, 53, 55

log levels, 138

log4j, 138, 149

monitor via RSS, 141

monitoring, 136

log4j, 149

appender, 139

Chainsaw, 139

monitoring, 138

Lonely hearts, 47

M
Mac OS X, xi

installer (PackageMaker), 108

make, vs. Ant, 27

Manual procedures, 12

when to automate, 8

<map> (CruiseControl), 65

Maven (build tool), 26

Megg, 40

Microsoft Visual Studio, 20

<mkdir> (Ant), 23

<modificationset> (CRUISECONTROL) 155 RSS (RDF SITE SUMMARY)

<modificationset>

(CruiseControl), 53, 54

Monitor, 125–147

to cell phone, 126

crash report, 144

log file, 136

log4j, 138

running application, 133

satellite, 145

watchdog, 133

web application, 134

using web server, 143

Morris, Chris, xiii

MSBuild, 20

Multi-threaded CruiseControl, 68

N
NAnt (Ant for .NET), 20, 48

NetNewsWire, 128

NSIS (Nullsoft Scrtiptable Install

System), see Installer, NSIS

O
Orb, Ambient, 133

OS X, xi

installer (PackageMaker), 108

Outsourcing, 7, 129

P
package.xml (Ant), 80

PackageMaker (OS X), 108

Packaging, see Release

Pager (notifying), 7, 126

<path> (Ant), 22

Path names (mixed case), xi

<pathelement> (Ant), 22

Phone (notifying), 7, 126

Portability, 13, 18, 27

POSIX, xii

Pragmatic Programmer

book, viii

web site, ix, 149

Pragmatic Starter Kit, viii

Automation, 149

Unit Testing, viii

Version Control, viii

Product, release, see Release

<project> (Ant), 20

<project> (CruiseControl), 52

Project roles, 73

Project, in build.xml, 20

Prompt, see Command line

<property> (Ant), 21

<publishers> (CruiseControl),

64, 127

Publishing results, 57, 63

e-mail, 63

on web, 66

Push button release, see Release

Python, 36

Q
QA (Quality Assurance), 72, 92,

118

release for, 72

R
Rake, 39

README, 77, 99

Recipe, 10

Relative paths, 21

Release, 71–96

automation, 92

branch, 74, 91

build using cron or at, 95

contents, 71

to customer, 92

daily internal, 94

distribution file, 78, 86

distribution test, 87

including tests, 83

installing, 98

packaging, 80

scripting, 80, 93

selecting content, 78

tagging in version control, 90

version number, 72, 81

Release branch, see Version

control

Release manager, 73

Repeatability, 7, 12, 18, 35

Repeated tasks, see Automation,

scheduled

Restart, application, 134

Results, publishing, 57, 63

Rhino, 36

Richardson, Jared, xii, xiii, 68

Roadmap, 150

RSS (RDF Site Summary), 127

and logging, 141

NetNewsWire, 128

RUBY 156 WEB

Ruby, 137

Rule of Three, 8

Rupp, David, xiii

S
Sandbox (JWS), 122

Satellite, monitoring, 145

Sausage making, 10

Savoia, Alberto, xii, xiii, 130

<schedule> (CruiseControl), 54

Scheduled automation, see

Automation, scheduled

Scheduling

builds, 13

with cron, 43

Screen scrape, 135

Script, xii, 7

build, 18–28, 37

installer, 108

packaging, 80

release, 93

Servlet engine, 66

Setup.exe, see Install

Shell, see Command line

Ship product, see Install

Shoeless children, x

Six Million Dollar Man, 102

SMS, 126

Software release, see Release

Source code, finding book’s, x

Staging (during deployment), 118

Summary of book, 150

Support, see Customer, support

Sypher, Jason, xiii

<sysproperty> (Ant), 32

T
Tag, see CVS

tar file, 80

<target> (Ant), 23

Task, see Ant, tasks

Team, dislocated, 129

Technical support, see Customer,

support issue

Tests, 6

in Ant, 29–34

under CruiseControl, 62

deployment, 118

diagnostic on install, 101

distributing with release, 83

of distribution file, 87

JUnit, 29–34, 56, 102, 148

output, 31

overlaying on distribution, 102

prior to release, 73

release, 77

saving logs, 56

suite, 31

Time, reclaiming, 7, 125

Timestamps, file, 24

Tinkham, Andy, xiii

Tomcat, 66, 108, 117

Triggered automation, see

Automation, triggered

Trip wire, 137, 141

Troubleshooting, see Tests,

diagnostic on install

Types of automation, 4–6

Typographic conventions, xii

U
Unit Tests, see Tests

Unruh, Bryce, xii, 145

Update installation, 120

V
Vanderburg, Glenn, xiii

Vendor code, 16, 39

in release, 82, 90

Version control, viii, 6, 16

release branch, 74, 91

tag release, 90

see also CVS

Version number

of release, 72, 81, 118

Visual feedback, 128

Visual Studio, 20

Vydra, David, xiii

W
WAR file, 115, 117

checking configuration, 106

Watchdog, 133

Web application, monitoring, 134

Web server

embedded, 143

Jetty, 144, 148

Web site

Pragmatic Automation, xi, 149

Pragmatic Programmer, ix

Web, build results to, 7, 66

WEBSPHERE 157 <zipfileset> (ANT)

WebSphere, 119

Welcome screen, 109

Whidbey (Visual Studio), 20

Wiki, CruiseControl, 69

Wilson, Greg, xiii

Windows

build status, 48

scheduling tasks with at, 44

Windows batch file, see Script

WinZip, 98

Wizard, install script, 109

wsadmin, 119

X
X10 automation, 131

XFD (eXtreme Feedback Device),

130

XML, why Ant uses, 28

XSLT (CruiseControl publisher),

127

<XSLTLogPublisher>

(CruiseControl), 127

Z
ZIP file, 80–82, 98, 107

<zipfileset> (Ant), 82

Pragmatic Starter Kit
Version Control. Unit Testing. Project Automation. Three great titles, one

objective. To get you up to speed with the essentials for successful project

development. Keep your source under control, your bugs in check, and your

process repeatable with these three concise, readable books from The Prag-

matic Bookshelf.

Visit Us Online
Project Automation Home Page

pragmaticprogrammer.com/sk/auto

Source code from this book, errata, and other resources. Come give us feed-

back, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list,

interact with our wiki, and benefit from the experience of other Pragmatic

Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s

available for purchase at our store: pragmaticprogrammer.com/sk/auto.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/sk/auto
www.pragmaticprogrammer.com/catalog

	About the Starter Kit
	Preface
	Introduction
	Look Ma, No Hands!
	Types of Automation
	Questions About Automation
	Road Map

	One-Step Builds
	Building Software Is Like Making Sausage
	Choosing a Project Directory Structure
	Making Your First Build
	Building with Ant
	Taste-Testing the Build
	Cleaning Up
	Scripting a Build
	Getting an Early Start

	Scheduled Builds
	Scheduling Your First Build
	Putting a Build on CruiseControl
	Running CruiseControl
	Publishing the Build Status
	Scaling Up

	Push-Button Releases
	Releasing Early and Often
	Preparing for Your First Release
	Packaging the Release
	Generating the Release
	Tagging the Release
	Handing Off the Release
	Automating the Release Procedure
	Generating Daily Distributions

	Installation and Deployment
	Delivering the Goods
	Installing the Standard Distribution File
	Troubleshooting by Phone
	Troubleshooting with Diagnostic Tests
	Enhancing Your Installed Image
	Deploying Hosted Applications
	Auto-Updating Installed Applications

	Monitoring
	Monitoring Scheduled Builds
	Getting Feedback from Visual Devices
	Monitoring Your Java Process
	Checking Up on Your Web Application
	Watching Log Files
	Monitoring with log4j
	Building Trip Wires with RSS
	Monitoring Health with a Debug Command
	Creating a Crash Report
	3-2-1...
	Automate!

	Resources
	On the Web
	Bibliography

	Pragmatic Project Automation: Summary

